JQUERY
PRUGRAMI%ING

COOKBOOK

Hot Recipes for jQuery Development

&

Quervy

N
l write less, do more.

2 WEB CODE GEEKS

jQuery Programming Cookbook

jQuery Programming Cookbook

jQuery Programming Cookbook ii
Contents

1 Add/Remove Class Example 1

1.1 BasicDocument Setup L e 1

1.2 .addClass() and .removeClass() Methods e e 2

121 AddClass oo e 2

1.22 Remove CIass o o e e e e 4

1.3 Adding or Removing Classes on Event Listeners i 4

1.3.1 Toggle Classes on Event Listeners it 5

1.4 Conclusion e e e 5

1.5 Download o e e e 6

2 UI Datepicker 7

2.1 Basic Setup & Application e e e e e e e e e e e 7

2.1.1 Document SEtup e e e e e e e e 7

2.1.2 Default Functionality e e 8

2.2 Options and Examples e e e e e e e e 8

22,1 Animationsl e e 8

2.2.2 Datesin Other Months e 9

223 Display Button Bar e e e e 9

2.24 Display Month and Year Menus 10

2.2.5 Display Multiple Months e 11

2.2.6 SelectaDate Range e 11

227 TeonTrig@er. o o i e e 12

228 FormatDate e 12

2.3 ConClusion e e e 13

24 Download e 13

3 jQuery and AJAX 14

3.1 AnlIntroduction to AJAX! . . . L e 14

3.1.1 Howwecamehere? e 14

3.1.2 Getting to Know AJAX Better e 15

3.1.3 AJAX Benefits oL e 16

jQuery Programming Cookbook iii

3.2 Implementation Ll e e e e e 16
3.2.1 BasicDocument Setup e e e e e e 16

322 AjaxDeclaration L L 17

323 AReal-World AJAX Example! 18

3.3 AJAX SEHtiNgS . . . o o e e e e e e e e e e 19
330 aCCepts . ..o e 19

332 ASYNC . .o e e 20

333 beforeSend 20

334 cache e 20

335 complete ... e e e e e e e e 20

336 CONENLS o vt e e e e e 20

337 contentType L e e e e e 20

338 CONEXt o e 21

339 data ... 21
3310 data e 21
33,01 dataType o o e e e e e e e 21
3302 BITOT . . o o o v e e e e e e 22
3313 global 22
3314 method 22
3315 SUCCESS « v v v v o e e e e e e e e e e e e e e 22
3316 tIMeoUto 22
B30T LYPC . o o e 23
3308 url . .o 23
33,19 username L. e 23
3320 password oL L. e e e 23

3.4 Where to use AJAX? . . . o e e e 23
3.5 Conclusion 24
3.6 Download L e 24
4 File Upload 25
4.1 Plugin Demo and Features e 25
4.1.1 Video Demo #1 - Single & Multiple Files Upload 25

4.1.2 Video Demo #2 - Drag & Drop File Upload 25

4.1.3 Features 25

4.2 BasicPlugin Setup L L e 26
421 HTML Setup o oo o e e e e e e e e e e e e 26
4.2.2 Display Upload Progress o 0 e e e e e 27

4.2.3 Tie afile to an element node during the life cycle of anupload 27

424 Start Uploads withabuttonclick o 27

jQuery Programming Cookbook

4.3 Requirements e e e e
4.3.1 Mandatory Requirementso e e e
4.3.2 Optional Requirements L e e e e e e e
44 BIOWSETS . o v v v v i i e e e e e e e e e e e e e e e e e
4.4.1 Desktop Browsers e e
442 Mobile BrowSers o e e
4.5 Conclusion e e e
4.6 Download L

S Drag and Drop

5.1 Basic Setup & Application e e e e
5.2 Customized Draggable Elements e
5.2.1 Constraining MOVEMENt it e e e e e e e e e e e e
5.2.2 Cursor Styles over Draggable Element o
5.2.3 Revert Draggable Element Position
524 SnaptoElementor Grid e e e e e e
5.3 An Advanced Approach L e e e e
54 Conclusion
55 Download

6 UI Autocomplete

6.1 Document SEtUP e e e e e e e
6.2 Basic Autocomplete Input Field e
6.3 Autocomplete Options L. e e e e
6.3.1 AppendTo oL e
6.3.2 Delayo e e e e
6.3.3 Disabled L e
6.3.4 minlength L e
6.3.5 Source
6.4 ConcClusion e
6.5 Download L e e e

7 CSS Background Image

7.1 Basic SEtupo e
7.1.1 Initial Document Setup L.
7.1.2 Understanding the .css() method e
7.2 Background Image using .csS() e e e e e e e e
7.3 ConcClusion e

7.4 Download e

jQuery Programming Cookbook v

8 Disable Button 45
8.1 BasicSetup e 45

8.2 Disabling a Button with jJQuery e e e e e 46
8.2.1 Disabled as an Initial State of the Button. L 46

8.2.2 DisablingaButtonon Click e 46

8.2.3 Disabling a Button after Form Submission e 47

83 Conclusion e 47

8.4

Download e e 48

jQuery Programming Cookbook

vi

Copyright (c) Exelixis Media P.C., 2015

All rights reserved. Without limiting the rights under

copyright reserved above, no part of this publication

may be reproduced, stored or introduced into a retrieval system,
transmitted, in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior written
permission of the copyright owner.

or

jQuery Programming Cookbook vii

Preface

jQuery is a cross-platform JavaScript library designed to simplify the client-side scripting of HTML. jQuery is the most popular
JavaScript library in use today, with installation on 65% of the top 10 million highest-trafficked sites on the Web.

jQuery’s syntax is designed to make it easier to navigate a document, select DOM elements, create animations, handle events,
and develop Ajax applications. jQuery also provides capabilities for developers to create plug-ins on top of the JavaScript
library. This enables developers to create abstractions for low-level interaction and animation, advanced effects and high-level,
theme-able widgets. The modular approach to the jQuery library allows the creation of powerful dynamic web pages and web
applications. (Source: https://en.wikipedia.org/wiki/JQuery)

In this ebook, we provide a compilation of jQuery based examples that will help you kick-start your own web projects. We
cover a wide range of topics, from UI Widgets, to Drag and Drop functionality and CSS manipulation. With our straightforward
tutorials, you will be able to get your own projects up and running in minimum time.

https://en.wikipedia.org/wiki/JQuery

jQuery Programming Cookbook viii

About the Author

Fabio is a passionate student in web tehnologies including front-end (HTML/CSS) and web design. He likes exploring as much
as possible about the world wide web and how it can be more productive for us all. Currently he studies Computer Engineering,
at the same time he works as a freelancer on both web programming and graphic design.

jQuery Programming Cookbook 1/48

Chapter 1

Add/Remove Class Example

In this example, we’ll go through jQuery .addClass () and . removeClass () methods. jQuery provides a seamless, easy
and efficent way to add or remove classes to specific DOM elements and trigger these events on the various listening events it
provides like c1ick, mouseover, mouseleave ect.

These methods are very useful to dynamically change content based on your cases, and gives your website a rather interactive
and engaging user experience. From changing styles and colors to animations, it provides powerful ways to get you going.

You’ll be able to access these methods just by including the jQuery library in your HTML document.

1.1 Basic Document Setup

To begin, create a new HTML document and add the following basic syntax inside:

<!DOCTYPE html>

<html>
<head>
<title>jQuery Add/Remove Class Example</title>
</head>
<body>
<!--— STYLE SECTION -—->

<style type="text/css">

</style>
<!-— HTML SECTION ——>
<!-— JAVASCRIPT SECTION -—>

<script src="jquery-1.11.3.min.Jjs"></script>
<script type="text/javascript">
</script>

</body>
</html>

Also, let’s create some elements with classes and define properties for these classes in CSS. For now, there will be only one
element and two classes:

jQuery Programming Cookbook

2/48

<!-— HTML SECTION -—-—>
I am going to get classes added or removed!<div>

For now, we’d have this view:

| am going to get classes added or removed!

Figure 1.1: Basic Element View

Alongside with this element, let’s add two classes, one for styling and another for shaping:

<!—— STYLE SECTION -——>
<style type="text/css">
.style {
font-family: "Clear Sans";

font-size: 1.5em;
color: #AE0001;
font-style: oblique;
padding: lem;

}

.shape {
width: 25em;
height: 3em;
border: 0.lem solid #2c3e50;
margin: Sem;
line-height: 3em;
text-align: center;

}

.decoration {
text—-decoration: underline;
font-size: 1.2em;
padding: lem;
width: 15em;

}

.color {
color: #e74c3c;

}

.background {
background-color: #ecf0fl;
font-size: 1.2em;
padding: lem;
width: 15em;

}

</style>

Next, we’ll continue adding and removing classes that we have.
1.2 .addClass() and .removeClass() Methods

1.2.1 Add Class

The addClass () method adds the specified class(es) to each element in the set of matched elements:

jQuery Programming Cookbook 3/48

1. .addClass ("className"), in which className is a string containing one or more space-separated classes to be
added to the class attribute of each matched element.

2. .addClass (function) in which className A function returning one or more space-separated class names to be
added to the existing class name(s). Receives the index position of the element in the set and the existing class name(s) as
arguments. Within the function, this refers to the current element in the set.

Now using jQuery, we can add a class to our .element:

<!-— JAVASCRIPT SECTION -->
<script type="text/javascript">

S(’.element’) .addClass (’'style’);
</script>

Easy as that, just selected the DOM element and added a class.

I am going to get classes added or removed!

Figure 1.2: Element View after Adding the style Class

We added the .style class, the same goes for .shape class and we’d have this view:

| am going to get classes added or removed!

Figure 1.3: Added the .shape Class

But what is interesting, is that you can have more than one class added, just by leaving a blank space between them:

<!-— JAVASCRIPT SECTION -—>

<script type="text/javascript">
$(’.element’) .addClass (' style shape’);

</script>

jQuery Programming Cookbook

4/48

I am going to get classes added or removed!

Figure 1.4: Multiple Classes Added

1.2.2 Remove Class

Similarily, .removeClass() removes a (or some) class/es from an element. To show this, add a new HTML element:

<!-— HTML SECTION -->
I need to get rid of some classes

In the JS section, let’s remove two of these classes:

<!-- JAVASCRIPT SECTION -—>

<script type="text/javascript">
$(’.element’) .addClass (’style shape’);

</script>

The view we’d get is this:

Before removeClass After removeClass

| need to get rid of some classes | need to get rid of some classes

Figure 1.5: Remove Class Method

1.3 Adding or Removing Classes on Event Listeners

You can trigger classes only when a specific event listener happens to become true. Let’s add some elements:

<!—-— HTML SECTION -——>
<h2 class="decoration">This is a click event add class.</h2>

jQuery Programming Cookbook 5/48

<!-— JAVASCRIPT SECTION -—>
<script type="text/javascript">
S("article’) .hide () ;
S("h2’).click (function (e) {
e.preventDefault () ;
$(this) .addClass (' shape color’);
$(this) .removeClass (' decoration’) ;

}) i
</script>

The result would be two classes added and one removed after click like so:

Before Click Event

This is a click event add class.

After Click Event

This is a click event add class.

Figure 1.6: Trigger Add or Remove Class on Event Listener!

1.3.1 Toggle Classes on Event Listeners

You can use .toggleClass () to toggle between the two states of an element, with and without classes like this:

<!—-— JAVASCRIPT SECTION -——>
<script type="text/javascript">
$(’"article’) .hide () ;
$("h2").click (function (e) {
e.preventDefault () ;
$(this) .toggleClass ('’ shape color’);

1)
</script>

Check out the functionality here.

1.4 Conclusion

To conclude, the jQuery methods for adding or removing classes are just right whenever it feels useful. You can actually add or
remove content (by adding or removing classes), change the view on mouse or keyboard event ect. It is a process where you can
try a lot and see how it best fits to what you want to achieve. I use it a lot when adding classes from a third party CSS stylesheet
like an animation one, to animate elements mouseover or mouseleave. Itis up to you.

http://www.webcodegeeks.com/wp-content/uploads/2015/09/add-remove-class-6.gif

jQuery Programming Cookbook 6/48

1.5 Download

Download You can download the full source code of this example here: jQuery Add/Remove Class

http://www.webcodegeeks.com/wp-content/uploads/2015/09/jQuery-Add-Remove-Class.zip

jQuery Programming Cookbook 7/48

Chapter 2

Ul Datepicker

In this example, we’ll have a look at the datepicker widget of jQuery. The jQuery UI Datepicker is a highly configurable
plugin that adds datepicker functionality to your pages. You can customize the date format and language, restrict the selectable
date ranges and add in buttons and other navigation options easily.

By default, the datepicker calendar opens in a small overlay when the associated text field gains focus. For an inline calendar,
simply attach the datepicker to a div or span.

There are quite some other javascript frameworks out there that offer the datepicker widget better designed, but that is up to
you to decide.

2.1 Basic Setup & Application

The following sections will help you begin with the very basics.

2.1.1 Document Setup

To begin, create a new HTML document and add the following basic syntax to it:

<!DOCTYPE html>

<html>
<head>
<title>jQuery Datepicker Example</title>
</head>
<body>
<!—— LINKS SECTION -—>

<link href="http://ajax.googleapis.com/ajax/libs/jqueryui/l.11.4/themes/smoothness/ jquery—- <
ui.css" rel="stylesheet" type="text/css"/>

<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>

<script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1l1.11.4/jquery-ui.min.js"></
script>

<link href="style.css" rel="stylesheet" type="text/css"/>

<!-— HTML SECTION -->
<!--— JAVASCRIPT SECTION -->
<script src="jquery-1.11.3.min.Jjs"></script>

<script type="text/javascript">

jQuery Programming Cookbook 8/48

</script>

</body>
</html>

Don’t forget to download or link jQuery library, otherwise the code won’t work. Other links of the jQuery Ul are provided, so
you don’t have to.

2.1.2 Default Functionality

Let us begin with this very simple and basic datepicker. The datepicker is tied to a standard form input field. Focus on the input
(click, or use the tab key) to open an interactive calendar in a small overlay. Choose a date, click elsewhere on the page (blur the
input), or hit the Esc key to close. If a date is chosen, feedback is shown as the input’s value.

So, create a new p element in HTML and add some text like Date:. Inside the p add an input element and give it a class of .
datepicker:

<!-— HTML SECTION -->
Date: <input type="text" class="datepicker">

Now, to show a basic datepicker, in jQuery, create a new function where you select the .datepicker input field and add the .
datepicker () method.

<!-- JAVASCRIPT SECTION -->
<script type="text/javascript">
S (function () {
$(".datepicker") .datepicker();
1)
</script>

Check out the functionality here.

2.2 Options and Examples

The following section will expand on the various customizations the widget can have.

2.2.1 Animations

You can use different animations when opening or closing the datepicker. Choose an animation from the dropdown, then click
on the input to see its effect. You can use one of the three standard animations or any of the UI Effects.

<!-— HTML SECTION -——>
Date: <input type="text" class="datepicker" size="30">

Animations:

<select class="anim">
<option value="show">Show (default)</option>
<option value="slideDown">Slide down</option>
<option value="fadeIn">Fade in</option>
<option value="blind">Blind (UI Effect)</option>
<option value="bounce">Bounce (UI Effect)</option>
<option value="clip">Clip (UI Effect)</option>
<option value="drop">Drop (UI Effect)</option>
<option value="fold">Fold (UI Effect)</option>
<option value="slide">Slide (UI Effect)</option>
<option value="">None</option>

</select>

http://www.webcodegeeks.com/wp-content/uploads/2015/09/datepicker-1.gif

jQuery Programming Cookbook

9/48

<!-— JAVASCRIPT SECTION -—>
<script type="text/javascript">
S (function () {
$(".datepicker") .datepicker();
$(".anim") .change (function () {
$(".datepicker") .datepicker (
}) i
}) i
</script>

"option",

Look at the results in this video: datepicker-2

2.2.2 Dates in Other Months

"showAnim",

S (this) .val ()

)i

You might have noticed that the calendar does not show dates that are not of the current month. You can change that using the
showOtherMonths and selectOtherMonths options. Just add these two lines inside your .datepicker () method.

<!--— JAVASCRIPT SECTION -->
<script type="text/javascript">
S (function () {
$(".datepicker") .datepicker ({
showOtherMonths: true,
selectOtherMonths: true
}) i
}) i
</script>

Date:}
(4] September 2015 D

Su Mo Tu We Th Fr Sa

31 1 2 3 4 >
6 7 8 9|10 A1 12
13| 14| 15| 16| 17| 18(19
200 21| 22| 23| 24| 25| 26
27| 28| 29(30 1

Figure 2.1: Dates in other months!

2.2.3 Display Button Bar

Display a button for selecting Today’s date and a Done button for closing the calendar with the boolean showButtonPanel
option. Each button is enabled by default when the bar is displayed, but can be turned off with additional options. Button text is

customizable.

<!—— JAVASCRIPT SECTION -—>
<script type="text/javascript">
S (function () {

http://www.webcodegeeks.com/wp-content/uploads/2015/09/datepicker-2.mp4

jQuery Programming Cookbook 10/ 48

$(".datepicker") .datepicker ({
showButtonPanel: true
})i
}) i
</script>

Date:“ |

0 September 2015 [+]

Su Mo Tu We Th Fr Sa

i 2 3 4 5
6 7 8 9|10 11|12
13| 14| 15| 16| 17| 18| 19
200 21| 22| 23| 24| 25| 26
27 28| 29 30

Today Done

Figure 2.2: Display a button bar!

2.2.4 Display Month and Year Menus

Show month and year dropdowns in place of the static month/year header to facilitate navigation through large timeframes. Add
the boolean changeMonth and changeYear options.

<!—-— JAVASCRIPT SECTION -->
<script type="text/javascript">

S (function () {

$(".datepicker") .datepicker ({

changeMonth: true,
changeYear: true
1)
1)
</script>

jQuery Programming Cookbook 11/48

Date:

@ [sep rv|2015 +| ©

Su Mo Tu We Th Fr Sa

1 2 3 4 5

6 72 8 9| 10 11 12

13| 14| 15| 16| 17| 18| 19

20021 22| 23| 24| 25| 26
27| 28| 29 30

Figure 2.3: Display Month & Year Menus!

2.2.5 Display Multiple Months

Set the numberOfMonths option to an integer of 2 or more to show multiple months in a single datepicker.

<!—— JAVASCRIPT SECTION -——>
<script type="text/javascript">

S (function () {

$(".datepicker") .datepicker ({

numberOfMonths: 3
}) i

1)
</script>

Date: ||

(4] September 2015 October 2015 November 2015 [+]

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa

1 2 3 4 5 1 2 3 1 2 3 4 5 6 7

6 7 8 9| 10| 11 12 4 = 6 7 8 910D 8 Q|- 10| 11| 12| 13| 14

13| 14 15| 16| 17| 18| 19 L1213 14| 15(16| 17 15| 16| 17| 18| 19| 20| 21

200 21| 22| 23| 24| 25| 26 18| 19| 20/ 21| 22| 23| 24 22\ 23| 24| 25| 26| 27| 28
27| 28| 29| 3D 25| 26| 27| 28| 29(30| 31 29/ 30

Figure 2.4: Select Multiple Months!

2.2.6 Select a Date Range

Select the date range to search for.

jQuery Programming Cookbook 12/48

<!-— HTML SECTION -—-—>

<label for="from">From</label>

<input type="text" id="from" name="from">
<label for="to">to</label>

<input type="text" id="to" name="to">

<!-— JAVASCRIPT SECTION -—>
<script type="text/Jjavascript">
S (function () {
S$("#from").datepicker ({
defaultDate: "+1w",
changeMonth: true,
numberOfMonths: 3,
onClose: function(selectedDate) {
$("#to").datepicker("option", "minDate", selectedDate);
}
1)
S("#to").datepicker ({
defaultDate: "+1w",
changeMonth: true,
numberOfMonths: 3,

onClose: function(selectedDate) {
S("#from").datepicker("option", "maxDate", selectedDate);
}
}) i
1)
</script>

Look at the results in this video: Video-9-9-2015-12-10-44-PM

2.2.7 Icon Trigger

Click the icon next to the input field to show the datepicker. Set the datepicker to open on focus (default behavior), on icon click,
or both.

<!—— JAVASCRIPT SECTION --—>
<script type="text/javascript">
S (function () {
S(".datepicker") .datepicker ({
showOn: "button",
buttonImage: "calendar.png",

buttonImageOnly: true,
buttonText: "Select date"
}) i
1)
</script>

Check out the functionality here.

2.2.8 Format Date

Display date feedback in a variety of ways. Choose a date format from the dropdown, then click on the input and select a date to
see it in that format.

<!-— HTML SECTION -->
Format options:

<select class="format">
<option value="mm/dd/yy">Default - mm/dd/yy</option>

http://www.webcodegeeks.com/wp-content/uploads/2015/09/Video-9-9-2015-12-10-44-PM.mp4
http://www.webcodegeeks.com/wp-content/uploads/2015/09/datepicker-8.gif

jQuery Programming Cookbook

13/48

<option value="yy-mm-dd">ISO 8601 - yy-mm-dd</option>

<option value="d M, y">Short - d M, y</option>

<option wvalue="d MM, y">Medium - d MM, y</option>

<option value="DD, d MM, yy">Full - DD, d MM, yy</option>

<option value="'day’ d 'of’ MM ’"in the year’ yy">With text - ’'day’ d "of’ MM ’'in the <+

year’ yy</option>
</select>

<!-— JAVASCRIPT SECTION -->
<script type="text/javascript">
S (function () {
$(".datepicker") .datepicker();
$(".format") .change (function() {
$(".datepicker") .datepicker("option",
}) i
}) i
</script>

Look at the results in this video: datepicker-9

2.3 Conclusion

"dateFormat", $(this).val());

To conclude, the datepicker widget of jQuery Ul is a complete solution for developers whenever it comes to getting a date
information or a period of time from the user. The datepicker is very used in airlines, hotels and other reservation websties. It is
easy to implement and use in jQuery and you can use jQuery Ul themes to have a different design.

2.4 Download

Download You can download the full source code of this example here: jQuery Datepicker

http://www.webcodegeeks.com/wp-content/uploads/2015/09/datepicker-9.mp4
http://www.webcodegeeks.com/wp-content/uploads/2015/09/jQuery-Datepicker.zip

jQuery Programming Cookbook 14/48

Chapter 3

jQuery and AJAX

The aim of this example is to give you a full understanding of AJAX, which stands for Asynchronous Javascript and XML. Ajax
is not a programming language or a tool, but a concept.

Ajax is a client-side script that communicates to and from a server/database without the need for a postback or a complete page
refresh.

The best definition for Ajax would be “the method of exchanging data with a server, and updating parts of a web page - without
reloading the entire page.”

Ajax itself is mostly a generic term for various JavaScript techniques used to connect to a web server dynamically without
necessarily loading multiple pages. In a more narrowly-defined sense, it refers to the use of XmlHttpRequest objects to interact
with a web server dynamically via JS.

3.1 An Introduction to AJAX!

3.1.1 How we came here?

Traditionally webpages required reloading to update their content. For web-based email this meant that users had to manually
reload their inbox to check and see if they had new mail. This had huge drawbacks: it was slow and it required user input. When
the user reloaded their inbox, the server had to reconstruct the entire web page and resend all of the HTML, CSS, JavaScript, as
well as the user’s email.

This was hugely inefficient. Ideally, the server should only have to send the user’s new messages, not the entire page. By 2003,
all the major browsers solved this issue by adopting the XMLHttpRequest (XHR) object, allowing browsers to communicate
with the server without requiring a page reload.

The XMLHttpRequest object is part of a technology called Ajax (Asynchronous JavaScript and XML). Using Ajax, data could
then be passed between the browser and the server, using the XMLHttpRequest API, without having to reload the web page.
With the widespread adoption of the XMLHttpRequest object it quickly became possible to build web applications like Google
Maps, and Gmail that used XMLHttpRequest to get new map tiles, or new email without having to reload the entire page.

Ajax requests are triggered by JavaScript code; your code sends a request to a URL, and when it receives a response, a callback
function can be triggered to handle the response. Because the request is asynchronous, the rest of your code continues to execute
while the request is being processed, so it’s imperative that a callback be used to handle the response.

Unfortunately, different browsers implement the Ajax API differently. Typically this meant that developers would have to account
for all the different browsers to ensure that Ajax would work universally. Fortunately, jQuery provides Ajax support that abstracts
away painful browser differences. It offers both a full-featured $. ajax () method, and simple convenience methods such as $.
get (), S.getScript (), $.getJSON(), S.post (),and $ () .1load ().

jQuery Programming Cookbook

15/48

3.1.2 Getting to Know AJAX Better

Like DHTML and LAMP, AJAX is not a technology in itself, but a group of technologies. AJAX uses a combination of:

HTML and CSS for marking up and styling information.

The DOM accessed with JavaScript to dynamically display and interact with the information presented.

A method for exchanging data asynchronously between browser and server, thereby avoiding page reloads. The XMLHttpRe-
quest (XHR) object is usually used, but sometimes an [Frame object or a dynamically added tag is used instead.

A format for the data sent to the browser. Common formats include XML, pre-formatted HTML, plain text, and JavaScript
Object Notation (JSON). This data could be created dynamically by some form of server-side scripting.

A picture being worth a thousand words, below a diagram that illustrates the communication between the client and the remote
server, as well as the differences between the classic and the AJAX-powered applications:

HTTP request (all client requests)

Server Response: JS + HTML + CSS

HTTF request (first client request)

Web

Browser Server Response: JS + HTML + CSS

Javascript calls HTTP Reguest

AJAX
engine

HTML + CSS i Server Data

AJAX application communication model

Figure 3.1: AJAX Application Communication Model

Web
Server
(+scripting
languafe &
database server)

jQuery Programming Cookbook 16/48

For the orange part, you can do everything by hand (with the XMLHt t pRequest object) or you can use famous JavaScript
libraries like jQuery, Prototype, YUI, etc to "AJAXify" the client-side of your application. Such libraries aim to hide the com-
plexity of JavaScript development (e.g. the cross-browser compatibility), but might be overkill for a simple feature.

On the server-side, some frameworks can help too (e.g. DWR or RAJAX if you are using Java), but all you need to do is basically
to expose a service that returns only the required informations to partially update the page (initially as XML/XHTML - the X in
AJAX - but JSON is often preferred nowadays).

3.1.3 AJAX Benefits

There are 4 main benefits of using Ajax in web applications:

1.

3.2

To be

3.2.1

To be

Callbacks: Ajax is used to perform a callback, making a quick round trip to and from the server to retrieve and/or save
data without posting the entire page back to the server. By not performing a full postback and sending all form data to
the server, network utilization is minimized and quicker operations occur. In sites and locations with restricted bandwidth,
this can greatly improve network performance. Most of the time, the data being sent to and from the server is minimal.
By using callbacks, the server is not required to process all form elements. By sending only the necessary data, there is
limited processing on the server. There is no need to process all form elements, process the ViewState, send images back
to the client, or send a full page back to the client.

Making Asynchronous Calls: Ajax allows you to make asynchronous calls to a web server. This allows the client browser
to avoid waiting for all data to arrive before allowing the user to act once more.

User-Friendly: Because a page postback is being eliminated, Ajax enabled applications will always be more responsive,
faster and more user-friendly.

Increased Speed: The main purpose of Ajax is to improve the speed, performance and usability of a web application. A
great example of Ajax is the movie rating feature on Netflix. The user rates a movie and their personal rating for that movie
will be saved to their database without waiting for the page to refresh or reload. These movie ratings are being saved to
their database without posting the entire page back to the server.

Implementation
gin, set up your document, and get to learn how to organize your files for this to work.

Basic Document Setup

gin, create a new HTML document and add the basic syntax inside it like so:

<!DOCTYPE html>

<htm

1>

<head>

<meta charset="utf-8">
<title>jQuery AJAX Example</title>

</head>

<body>

<!-— HTML SECTION -->

<!--— JAVASCRIPT SECTION -->

<script src="jquery-1.11.3.min.Jjs"></script>

<scr

</sc

ipt type="text/javascript">

ript>

</body>
</html>

jQuery Programming Cookbook 17 /48

We will create another HTML file, where we’ll add some random content that we’d like to retrieve later with AJAX:

<!DOCTYPE html>
<html>
<head>
<title>jQuery AJAX Example</title>
</head>
<body>

<!-—— HTML SECTION -——>

<div class="content">
<h2>I just showed up here!</h2>
I am a paragraph, just retrieved with AJAX!

</body>
</html>

Here, we don’t need the javascript section at all. This is how this page looks like for now:

| just showed up here! document.html

| am a paragraph, just retrieved with AJAX!

write less, do more. ’ r LULUL

Figure 3.2: An extra HTML where content is going to be retrieved.

3.2.2 Ajax Declaration

The basix syntax in which you can start using AJAX is:

jQuery.ajax (‘url’, {settings}) orsimply $.ajax (‘url’, {settings}) where:

1. urlis of a type st ring and contains the url to where the request is sent.

2. settings is of a type P1lainObject and can be considered set of key/value pairs that configure the Ajax request.

This is how a simple AJAX request would look like:

jQuery Programming Cookbook 18/48

$.ajax (' file.html’, {
success: function () {
/* do sth if the file.html is reached successfully =x/
}I
type: 'GET’
b i

As you can see, in this simple example, we only configured two settings, because settings are optional, and you can set as many
as you like referring to the existing ones. The success function is going to do sth if the request is accepted and data can be
retrieved, while t ype is telling AJAX that this is a request and not a submission on the server. We’ll have a more extensive look
at settings later in this article.

You can achieve the same using a shorthand method which is $.get (url, success) ; like this:

S.get (" document .html’, function (response) {
$(’ .content’) .html (response) .slideDown () ;

1)

3.2.3 A Real-World AJAX Example!

We’ve already set up our basic HTML docs, now let’s add some content on the first one:

<!-— HTML SECTION ——>
<button>Click Me</button> <!—— content will be shown on this button click -->
<div class="content"> <!-- content will be shown in this div —-->

</div>

Now, on the JavaScript section, we’re going to listen for a click on the button we just created and then show any element we want
that is located on the remote document . html file: (look at the image below the source code for explanation)

<!—— JAVASCRIPT SECTION -—>
<script src="jquery-1.11.3.min.Jjs"></script>

<script type="text/javascript">
$('button’) .on(’click’, function() {
$.ajax (' document.html’, {
success: function (response) {
S ('’ .content’) .html (response) ;
}I
type: 'GET’,
}) i
}) i
</script>

jQuery Programming Cookbook 19/48

Javascript Section

S{'button').on('click', function()}{ J* Listening for button click event */
$.ajax('document.html', { /% specify the destination file */
success: function(response }{ f* 1T ajax reaches the document successfully..*/
/* retrieve data and place them inside the div with the class ‘content’ */
${"'.content').html{response);
|
type: "GET', /* ajax 1s going to get data from somewhere */

Figure 3.3: AJAX - Retrieving Data!

This would mean that AJAX will call all elements found in document . html and show them just at the moment of clicking the
button like so.

Check out the functionality here.

Additionally, you can show only part of a HTML document (that is, you can filter to show only section of a website). Let’s take
the example above, where we have three different tag types that contain their own data, we ahve h2, a paragraph p and an image
img. If you want to show only one of them, or two you can modify your ajax call to search the DOM for the response and there
find the wanted tag (or class if we referred to classes):

<!—— JAVASCRIPT SECTION -—>
<script src="jquery-1.11.3.min.Jjs"></script>

<script type="text/javascript">
$('button’) .on(’click’, function() {
$.ajax (' document .html’, {
success: function (response) {
S ('’ .content’) .html ($ (response) .find (' img, h2’).fadelIn());
}I
type: 'GET’,
}) i
}) i
</script>

Only the line where we put data under the . content div is changed to get both the image and h2 element on button click and
fade them in, but not the paragraph. Now see it in action.

Check out the functionality here.

3.3 AJAX Settings

Below, there is basic information about the most important of the ajax settings that you can use.

3.3.1 accepts
e default: depends on DataType
* type: PlainObject

« function: The content type sent in the request header that tells the server what kind of response it will accept in return.

http://www.webcodegeeks.com/wp-content/uploads/2015/08/ajax-3.gif
http://www.webcodegeeks.com/wp-content/uploads/2015/08/ajax-5.gif

jQuery Programming Cookbook 20/48

3.3.2 async

e default: true
* type: Boolean

* function: By default, all requests are sent asynchronously (i.e. this is set to true by default). If you need synchronous
requests, set this option to false. Cross-domain requests and dataType: " jsonp" requests do not support synchronous
operation. Note that synchronous requests may temporarily lock the browser, disabling any actions while the request is active.

3.3.3 beforeSend

e default: does not apply
* type: Function

* function: A pre-request callback function that can be used to modify the jgXHR (in jQuery 1.4.x, XMLHTTPRequest) object
before it is sent. Use this to set custom headers, etc. The jgXHR and settings objects are passed as arguments. This is an Ajax
Event. Returning false in the beforeSend function will cancel the request.

3.3.4 cache

e default: true, false for dataType script and jsonp
* type: Boolean

* function: If set to false, it will force requested pages not to be cached by the browser. Note: Setting cache to false will
only work correctly with HEAD and GET requests. It works by appending timestamp to the GET parameters. The parameter
is not needed for other types of requests, except in IE§ when a POST is made to a URL that has already been requested by a
GET.

3.3.5 complete

¢ default: does not apply
e type: Function

* function: A function to be called when the request finishes (after success and error callbacks are executed). The function
gets passed two arguments: The jgXHR (in jQuery 1.4.x, XMLHTTPRequest) object and a string categorizing the status of the

request ("success", "notmodified", "nocontent", "error", "timeout", "abort", or "parsererror").

3.3.6 contents

¢ default: does not apply
* type: PlainObject

* function: An object of string/regular-expression pairs that determine how jQuery will parse the response, given its content type.

3.3.7 contentType

e default: " application/x-www—form-urlencoded; charset=UTF-8’
* type: Boolean, String

* function: When sending data to the server, use this content type. Default is "application/x-www-form-urlencoded; charset=UTF-
8", which is fine for most cases. If you explicitly pass in a content-type to $.ajax(), then it is always sent to the server (even if
no data is sent).

jQuery Programming Cookbook 21/48

3.3.8 context

¢ default: does not apply
* type: PlainObject

« function: This object will be the context of all Ajax-related callbacks. By default, the context is an object that represents the
Ajax settings used in the call ($.ajaxSettings merged with the settings passed to $.ajax). For example, specifying a
DOM element as the context will make that the context for the complete callback of a request, like so:

S.ajax ({
url: "test.html",
context: document.body
}) .done (function () {
$(this) .addClass("done");
1) i

3.3.9 data

¢ default: does not apply
e type: PlainObject, String, Array

* function: Data to be sent to the server. It is converted to a query string, if not already a string. It’s appended to the url for
GET-requests. See processData option to prevent this automatic processing. Object must be Key/Value pairs. If value is
an Array, jQuery serializes multiple values with same key based on the value of the traditional setting (described below).

3.3.10 data

¢ default: does not apply
* type: Function

* function: A function to be used to handle the raw response data of XMLHttpRequest. This is a pre-filtering function to sanitize
the response. You should return the sanitized data. The function accepts two arguments: The raw data returned from the server
and the dataType parameter.

3.3.11 dataType

¢ default: (xml, json, script, or html)
* type: String

* function: The type of data that you're expecting back from the server. If none is specified, jQuery will try to infer it based on
the MIME type of the response (an XML MIME type will yield XML, in 1.4 JSON will yield a JavaScript object, in 1.4 script
will execute the script, and anything else will be returned as a string). The available types (and the result passed as the first
argument to your success callback) are:

e "xml": Returns a XML document that can be processed via jQuery.
e "html": Returns HTML as plain text; included script tags are evaluated when inserted in the DOM.

e "script": Evaluates the response as JavaScript and returns it as plain text. Disables caching by appending a query string
parameter, _=[TIMESTAMP], to the URL unless the cache option is set to t rue. Note: This will turn POSTs into GETs
for remote-domain requests.

* "Json": Evaluates the response as JSON and returns a JavaScript object. Cross-domain

jQuery Programming Cookbook 22 /48

* "jsonp": Loads in a JSON block using JSONP. Adds an extra "?callback=2?" to the end of your URL to specify the
callback. Disables caching by appending a query string parameter, "_=[TIMESTAMP] ", to the URL unless the cache
option is set to true.

e "text": A plain text string.

3.3.12 error

* default: does not apply
e type: Function
* function: A function to be called if the request fails. The function receives three arguments: The jgXHR (in jQuery 1.4.x,

XMLHttpRequest) object, a string describing the type of error that occurred and an optional exception object, if one occurred.

non non

Possible values for the second argument (besides null) are "t imeout"”, "error", "abort", and "parsererror". When
an HTTP error occurs, errorThrown receives the textual portion of the HTTP status, such as "Not Found" or "Internal
Server Error."

3.3.13 global

e default: true
* type: Boolean

* function: Whether to trigger global Ajax event handlers for this request. The default is true. Set to false to prevent the
global handlers like a jaxStart or ajaxStop from being triggered. This can be used to control various Ajax Events.

3.3.14 method

e default: ' GET’
* type: String
* function: The HTTP method to use for the request (e.g. POST, GET, PUT).

3.3.15 success

* default: does not apply
* type: Function

* function: A function to be called if the request succeeds. The function gets passed three arguments: The data returned from
the server, formatted according to the dataType parameter or the dataFilter callback function, if specified; a string
describing the status; and the jgXHR (in jQuery 1.4.x, XMLHttpRequest) object.

3.3.16 timeout

¢ default: does not apply
* type: Number

* function: Set a timeout (in milliseconds) for the request. This will override any global timeout set with $.ajaxSetup ().
The timeout period starts at the point the $. a jax call is made; if several other requests are in progress and the browser has no
connections available, it is possible for a request to time out before it can be sent.

jQuery Programming Cookbook 23/48

3.3.17 type

e default: ' GET’
* type: String

* function: An alias for method. You should use type if you’re using versions of jQuery prior to 1.9.0.

3.3.18 url

e default: ' current page’
* type: String

* function: A string containing the URL to which the request is sent.

3.3.19 username

¢ default: does not apply
* type: String

* function: A username to be used with XMLHttpRequest in response to an HTTP access authentication request.

3.3.20 password

¢ default: does not apply
* type: String

* function: A password to be used with XMLHttpRequest in response to an HTTP access authentication request.

To be as precise as possible, information on AJAX options/settings is taken from the official website, where you can find even
more by clicking here.

3.4 Where to use AJAX?

Ajax should be used anywhere in a web application where small amounts of information could be saved or retrieved from the
server without posting back the entire pages. A good example of this is data validation on save actions. Another example would
be to change the values in a drop down list-box based on other inputs, such as state and college list boxes. When the user selects
a state, the college list box will repopulate with only colleges and universities in that state.

Another great example is when the client needs to save or retrieve session values from the server, based on a user preference such
as the height, width or position of an object. Adjusting the width could make a callback to the server to set the session variable for
the new width. This way, whenever the page is refreshed, the server can adjust the object’s width based on this session variable.
Otherwise, the object would go back to its initial default width.

Other features include text hints and autocomplete text boxes. The client types in a couple of letters and a list of all values
that start with those letters appear below. A callback is made to a web service that will retrieve all values that begin with these
characters. This is a fantastic feature that would be impossible without Ajax and is also part of the Ajax Control Toolkit.

Credits go to SegueTech for providing a great overview on AJAX use cases.

http://api.jquery.com/jquery.ajax/
http://www.seguetech.com/

jQuery Programming Cookbook 24 /48

3.5 Conclusion

There are so much ways you can benefit from using AJAX that you barely have time to notice all. However, it is important to
learn the basics and expand knowledge on the various options that we presented above. This way you’ll know exactly when
to use certain options to achieve data retrieval, on several conditions! AJAX can be as well used with php or other back-end
programming languages, but here we focused on jQuery, where it gets its’ most usable features and it is easier to implement.

Note: You can only try and see the results of this code in Internet Explorer because we used offline files to demonstrate AJAX,
which other browser cannot handle or require extra set up.

3.6 Download

Download You can download the full source code of this example here: jQuery AJAX

http://www.webcodegeeks.com/wp-content/uploads/2015/08/jQuery-AJAX.zip

jQuery Programming Cookbook 25/48

Chapter 4

File Upload

The aim of this example is to give you the right knowledge about how you can achieve file upload with jQuery. Notice that this
is not an easy task, and plugins are recommended to have non-surprising results.

In particular, there is one famous and very used jQuery Plugin for file upload made public to GitHub by blueimp. They created a
file upload widget with multiple file selection, drag&drop support, progress bar, validation and preview images, audio and video
for jQuery.

It supports cross-domain, chunked and resumable file uploads. Works with any server-side platform (Google App Engine, PHP,
Python, Ruby on Rails, Java, etc.) that supports standard HTML form file uploads.

4.1 Plugin Demo and Features

4.1.1 Video Demo #1 - Single & Multiple Files Upload

Look at the demo in this video: jquery-fileupload-1.mp4

4.1.2 Video Demo #2 - Drag & Drop File Upload

Look at the demo in this video: jquery-fileupload-2.mp4

4.1.3 Features

* Multiple file upload: Allows to select multiple files at once and upload them simultaneously.

* Drag & Drop support: Allows to upload files by dragging them from your desktop or filemanager and dropping them on your
browser window.

» Upload progress bar: Shows a progress bar indicating the upload progress for individual files and for all uploads combined.
* Cancelable uploads: Individual file uploads can be canceled to stop the upload progress.

* Resumable uploads: Aborted uploads can be resumed with browsers supporting the Blob API.

* Chunked uploads: Large files can be uploaded in smaller chunks with browsers supporting the Blob API.

* Client-side image resizing: Images can be automatically resized on client-side with browsers supporting the required JS APIs.

* Preview images, audio and video: A preview of image, audio and video files can be displayed before uploading with browsers
supporting the required APIs.

http://www.webcodegeeks.com/wp-content/uploads/2015/09/jquery-fileupload-1.mp4
http://www.webcodegeeks.com/wp-content/uploads/2015/09/jquery-fileupload-2.mp4

jQuery Programming Cookbook 26/48

* No browser plugins (e.g. Adobe Flash) required: The implementation is based on open standards like HTMLS and JavaScript
and requires no additional browser plugins.

* Graceful fallback for legacy browsers: Uploads files via XMLHttpRequests if supported and uses iframes as fallback for
legacy browsers.

 HTML file upload form fallback: Allows progressive enhancement by using a standard HTML file upload form as widget
element.

* Cross-site file uploads: Supports uploading files to a different domain with cross-site XMLHttpRequests or iframe redirects.
* Multiple plugin instances: Allows to use multiple plugin instances on the same webpage.

* Customizable and extensible: Provides an API to set individual options and define callBack methods for various upload
events.

* Multipart and file contents stream uploads: Files can be uploaded as standard "multipart/form-data" or file contents stream
(HTTP PUT file upload).

* Compatible with any server-side application platform: Works with any server-side platform (PHP, Python, Ruby on Rails,
Java, Node.js, Go etc.) that supports standard HTML form file uploads.

4.2 Basic Plugin Setup

4.21 HTML Setup

<!DOCTYPE HTML>
<html>
<head>
<meta charset="utf-8">
<title>jQuery File Upload Example</title>
</head>
<body>
<input id="fileupload" type="file" name="files[]" data-url="server/php/" multiple>
<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<script src="js/vendor/jquery.ui.widget.js"></script>
<script src="js/jquery.iframe-transport.js"></script>
<script src="js/jquery.fileupload.js"></script>
<script>
S (function () {
S('#fileupload’) .fileupload ({
dataType: ' json’,
done: function (e, data) {
$.each(data.result.files, function (index, file) {
S(’").text (file.name) .appendTo (document .body) ;

b
</script>
</body>
</html>

Response and data type

The example above sets the dataType option to json, expecting the server to return a JSON response for each uploaded file.
However it’s also possible to handle HTML content types as response or any other dataType that you can handle in your done
handler.

jQuery Programming Cookbook 27 /48

4.2.2 Display Upload Progress

The fileupload plugin triggers progress events for both individual uploads (progress) and all running uploads combined (progres-
sall). Event handlers can be set via the event binding mechanism or as widget options.

S("#fileupload’) .fileupload ({
[x oo %/
progressall: function (e, data) {
var progress = parselnt (data.loaded / data.total » 100, 10);
S (" #progress .bar’) .css(
"width’,

progress + %’

o

)i

1) i

The previous code assumes a progress node with an inner element that displays the progress status via its width percentage:

<div class="bar" style="width: 0%;">
</div>

The inner element should have a different background color than the container node, set via CSS and needs a height applied:

.bar {
height: 18px;
background: green;

4.2.3 Tie afile to an element node during the life cycle of an upload

Often, you will display a file to upload in an element node. This can be done in the add callback.

To be able to refer to the same element node in other callbacks related to the upload, you can make use of the context option
(which is actually an option of jquery.ajax):

S (function () {
S(’"#fileupload’) .fileupload ({

dataType: ' json’,

add: function (e, data) {
data.context = $('<p />').text ('Uploading...’) .appendTo (document .body) ;
data.submit () ;

}I

done: function (e, data) {
data.context.text ('Upload finished.’);

4.2.4 Start Uploads with a button click

Based on the previous example, it’s possible to start uploads on the click of a button instead of automatically:

S (function () {
$(’'#fileupload’) .fileupload ({
dataType: ' json’,
add: function (e, data) {
data.context = $(’<button />') .text ('Upload’)
.appendTo (document .body)
.click (function () {

jQuery Programming Cookbook 28/48

data.context = $('<p />').text ('Uploading...’) .replaceAll ($(this));
data.submit () ;
}) i
}I
done: function (e, data) {
data.context.text ('Upload finished.’);

4.3 Requirements

4.3.1 Mandatory Requirements

* jQuery v. 1.6+
* jQuery UI widget factory v. 1.9+ (included)
* jQuery Iframe Transport plugin (included)

The jQuery UI widget factory is a requirement for the basic File Upload plugin, but very lightweight without any other depen-
dencies from the jQuery UI suite. The jQuery Iframe Transport is required for browsers without XHR file upload support.

4.3.2 Optional Requirements

* JavaScript Templates engine v. 2.5.4+

e JavaScript Load Image library v. 1.13.0+

* JavaScript Canvas to Blob polyfill v. 2.1.1+
* blueimp Gallery v. 2.15.1+

e Bootstrap v. 3.2.0+

* Glyphicons

The JavaScript Templates engine is used to render the selected and uploaded files for the Basic Plus UI and jQuery UL

The JavaScript Load Image library and JavaScript Canvas to Blob polyfill are required for the image previews and resizing
functionality.

The blueimp Gallery is used to display the uploaded images in a lightbox.

The user interface of all versions except the jQuery UI version is built with Bootstrap and icons from Glyphicons.

4.4 Browsers

441 Desktop Browsers

The File Upload plugin is regularly tested with the latest browser versions and supports the following minimal versions:

* Google Chrome
* Apple Safari 4.0+

jQuery Programming Cookbook 29/48

* Mozilla Firefox 3.0+
e Opera 11.0+
* Microsoft Internet Explorer 6.0+

* Microsoft Edge

4.4.2 Mobile Browsers

The File Upload plugin has been tested with and supports the following mobile browsers:

* Apple Safari on i0S 6.0+

* Google Chrome on iOS 6.0+

* Google Chrome on Android 4.0+
* Default Browser on Android 2.3+

* Opera Mobile 12.0+

4.5 Conclusion

To conclude, file upload with jQuery can be easily adapted to your websites using the plugin we presented and its’ features. You
can find this plugin on GitHub following the link https://github.com/blueimp/jQuery-File-Upload. It also has detailed information
on the plugin useage and a live demo. However, if you feel that you are searching for something else Kendo UI has another
solution for file uploads that you can find here.

4.6 Download

Download You can download the full source code of this example here: jQuery File Upload

https://github.com/blueimp/jQuery-File-Upload
http://demos.telerik.com/kendo-ui/upload/index
http://www.webcodegeeks.com/wp-content/uploads/2015/09/jQuery-File-Upload.zip

jQuery Programming Cookbook

30/48

Chapter 5

Drag and Drop

The aim of this example is to explain and use drag and drop functionality with jQuery. Basically, in jQuery you can enable
draggable functionality on any DOM element and move the draggable object by clicking on it with the mouse and dragging it
anywhere within the viewport. Dragging and dropping can be a very intuitive way for users to interact with your site or web app.

People often use drag-and-drop for things like:

* Moving email messages into folders
* Reordering lists of items

* Moving objects in games around, such as cards and puzzle pieces

5.1 Basic Setup & Application

To begin, create and new HTML document and add the following basic syntax inside:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>jQuery Drag & Drop Example</title>

<!-— LINKS SECTION -——>
<link rel="stylesheet" href="jquery-ui.css">
<script src="jquery-1.11.3.min.Jjs"></script>
<script src="jquery-ui.]js"></script>
<link rel="stylesheet" href="style.css">
</head>
<body>

<!—— STYLE SECTION —-->
<style type="text/css">

</style>

<!—— HTML SECTION -—>

<!—— JAVASCRIPT SECTION --—>
</script>

</body>

</html>

jQuery Programming Cookbook

31/48

Don’t worry about the link files, you’ll find them attached in your final source download at the end of the article.

Now let’s see a basic drag and drop example. First, create a new element in the HTML section and give it a class name.

<!-— HTML SECTION
Drag me!

——>

Next, to make it more clear, give this element some styling:

<!-— STYLE SECTION ——>

<style type="text/css">

.dragme {
border-radius:
width: 12em;
height: 8em;
padding: lem;
font-family:

0.5em;

"Montserrat",
background-color: #00C5CD;
color: white;

"Arial";

}
</style>

Next, in your Javascript section, create a new function which finds the
to this class:

<!--— JAVASCRIPT SECTION -->
<script type="text/javascript">
S (function () {

$(’ .dragme’) .draggable () ;
}) i
</script>

The result would be a draggable element like this.

5.2 Customized Draggable Elements

.dragme class and applies the . draggable () method

In this section, we’ll have a look at how much we can customize draggable elements to fit our needs.

5.2.1 Constraining Movement

Constrain the movement of each draggable by defining the boundaries of the draggable area. Set the axis option to limit the
draggable’s path to the x- or y-axis, or use the containment option to specify a parent DOM element or a jQuery selector, like
document. Let’s first use the containment to limit the area to a parent div:

<!-— HTML SECTION --—>

<div class="dragme">Drag me!
</div>

Let’s give the parent div a little styling:

<!—— STYLE SECTION ——>
<style type="text/css">
.drag-parent {

border: 0.lem solid #BAO64E;
width: 45em;
height: 20em;

}
</style>

http://www.webcodegeeks.com/wp-content/uploads/2015/08/draggable-1.gif

jQuery Programming Cookbook 32/48

And now, let’s add the containment option to the draggable () method:

<!—— JAVASCRIPT SECTION -—-—>
<script type="text/javascript">
S (function () {
$ (' .dragme’) .draggable ({ containment: ".drag-parent" });
1)
</script>

This would result in a limited draggable area.
Check out the functionality here.

Now let’s constrain draggable area by axis, x or y. To do this, add the axis option to the .draggable () method and give it
avalue of ' x” or 'y’ depending on what you are looking for.

<!—— HTML SECTION -——>
Drag me by x!
Drag me by y!

<!—— JAVASCRIPT SECTION -->
<script type="text/javascript">
S (function () {
$(’ .dragme-x'") .draggable ({ axis: "x" });
$(’ .dragme-y’) .draggable ({ axis: "y" });

1)
</script>

Check out the functionality here.

5.2.2 Cursor Styles over Draggable Element

Position the cursor while dragging the object. By default the cursor appears in the center of the dragged object; use the curso
rAt option to specify another location relative to the draggable (specify a pixel value from the top, right, bottom, and/or
left). Customize the cursor’s appearance by supplying the cursor option with a valid CSS cursor value: default, move, pointer,
crosshair, etc.

<!-— HTML SECTION -->
Drag me by x!
Drag me by y!

<!--— JAVASCRIPT SECTION -->

<script type="text/javascript">

S (function () {

S (’ .dragme-crosshair’) .draggable ({ cursor: "crosshair", cursorAt: { top: 80, left: 120 } }) <
7

$ (' .dragme-move’) .draggable ({ cursor: "move", cursorAt: { top: 90, left: 100 } });

}) i
</script>

The result would be a customized cursor while dragging our element. Check out the functionality here.

5.2.3 Revert Draggable Element Position

You can actually return the draggable (or it’s helper) to its original location when dragging stops with the boolean revert
option.

http://www.webcodegeeks.com/wp-content/uploads/2015/08/draggable-2.gif
http://www.webcodegeeks.com/wp-content/uploads/2015/08/draggable-3.gif
http://www.webcodegeeks.com/wp-content/uploads/2015/08/draggable-4.gif

jQuery Programming Cookbook 33/48

<!-— JAVASCRIPT SECTION -—>
<script type="text/javascript">
S (function () {
$(’.dragme’) .draggable({ revert: true });

}) i
</script>
[source, javal

Check out the functionality here.

Another useful option here would be he lper with the value clone. That would create a clone of the element while dragging
and still show the original element right in its inital position:

S (function () {
$(’.dragme’) .draggable({ revert: true, helper: "clone" });

)i
[source, javal

Check out the functionality here.

5.2.4 Snap to Element or Grid
Snap the draggable to the inner or outer boundaries of a DOM element. Use the snap or snapMode (inner, outer, both). Or snap
the draggable to a grid. Set the dimensions of grid cells (height and width in pixels) with the grid option.
<!—— HTML SECTION -—>
<div class="dragme dragme-normal">I snap to all other draggable elements!

Drag me to my parent!
Drag me to my grid!

</div>

<!-— JAVASCRIPT SECTION -—->

<script type="text/javascript">
S (function () {

$ (' .dragme-normal’) .draggable ({ snap: true });
$(’ .dragme-parent’) .draggable ({ snap: ’.drag-parent’ });
$(’ .dragme-grid’) .draggable ({ grid: [50, 50] });

1)
</script>

Check out the functionality here.

5.3 An Advanced Approach

In a more professional and complete demo that you can find here, you can make this ultimate by adding or removing congtent
(classes) on mouseover and mouseleave to complete the whole user experience for the modern web. The demo includes your
source code for this. Check out the functionality here.

5.4 Conclusion

Drag-and-drop with JavaScript used to be very hard to do - in fact, getting a decent cross-browser version working was next to
impossible. However, with modern browsers and a smattering of jQuery, drag-and-drop is now a piece of cake! Dragging has a
lot to customize and improve to make your UX perfect. Try out and see how you can get creative and productive!

http://www.webcodegeeks.com/wp-content/uploads/2015/08/draggable-5.gif
http://www.webcodegeeks.com/wp-content/uploads/2015/08/draggable-6.gif
http://www.webcodegeeks.com/wp-content/uploads/2015/08/draggable-7.gif
http://demos.telerik.com/kendo-ui/dragdrop/index
http://www.webcodegeeks.com/wp-content/uploads/2015/08/draggable-8.gif

jQuery Programming Cookbook 34/48

5.5 Download

Download You can download the full source code of this example here: jQuery Drag & Drop

http://www.webcodegeeks.com/wp-content/uploads/2015/08/jQuery-Drag-Drop.zip

jQuery Programming Cookbook 35/48

Chapter 6

Ul Autocomplete

In this example, we’re going through a very useful widget of jQuery, autocomplete ().

Autocomplete enables users to quickly find and select from a pre-populated list of values as they type, leveraging searching and
filtering. Any field that can receive input can be converted into an Autocomplete, namely, <input > elements, <textarea>
elements, and elements with the contenteditable attribute.

By giving an Autocomplete field focus or entering something into it, the plugin starts searching for entries that match and displays
a list of values to choose from. By entering more characters, the user can filter down the list to better matches.

This can be used to choose previously selected values, such as entering tags for articles or entering email addresses from an
address book. Autocomplete can also be used to populate associated information, such as entering a city name and getting the
zip code.

6.1 Document Setup

In order to have a good start, after creating a new HTML document, add the following basic syntax and jQuery links into it:

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>jQuery UI Autocomplete Example</title>

<!-— LINKS SECTION -——>
<link href="http://ajax.googleapis.com/ajax/libs/jqueryui/1l.8/themes/base/jquery-ui.css" <
rel="stylesheet" type="text/css"/>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js"></script>
<script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.8/jquery-ui.min.js"></script <«
>
<link href="style.css" rel="stylesheet" type="text/css"/>

<!-— JAVASCRIPT SECTION -—>
</head>
<body>

<!-— HTML SECTION -—>

</body>
</html>

Now that we’ve included the most important links like the jquery-ui and jquery javascript files, we’re ready to create a basic
autocomplete field.

jQuery Programming Cookbook 36/48

6.2 Basic Autocomplete Input Field

So basically, what we’re doing here is creating a variable inside a function, which will hold the actual suggested (autocomplete)

words, and then use that source to populate the filtered list as we type in the input field. The schema below shows how we’re
structuring our code to do this:

. JAVASCRIPT SECTION
script

I— function

var names = ['namel’, ‘name?’, ..];

$(class/id’).autocomplete({ source: names });

HTML SECTION
div

label

input id="people’ or input class="people’

Figure 6.1: Our Code Structure

That’s it. Let’s go ahead and do it:

<!-—— HTML SECTION -——>
<!-- this class could be anything you want -->
<label for="people">Tags: </label>

<input class="people">

<!—— JAVASCRIPT SECTION --—>
<script>
S (function () {
var names = [
"Alban",
"Andy",

"Ajax",

jQuery Programming Cookbook 37/48

"Bob",
"Cody",
"Chloe",
"Camela",
"Charlotte",
"Ciara",
"Ella",
"Fabio",
"George",
"Helen",
"Juliet",
"James",
"Lory",
"Patricia",
"Peter",
"Roxanna",
"Randi",
"Selena",
"Sara"

17

$(".people") .autocomplete ({
/+xrefer to the same id that input hasx/
source: names
/*set the source name that you gave your array variablex/

1)
P
</script>

Trying this out in the browser would result in getting constant suggestions as we type.

Check out the functionality here.

6.3 Autocomplete Options

Autocomplete has some interesting options that will be helpful when using the autocomplete method. Below, we’ll have a look
at some of them.

6.3.1 AppendTo

Add a new element in HTML, that will be the element where filtered words will be added.

<!-- HTML SECTION -->

<label for="people">Tags: </label>
<input class="people">
<p class="para"> <!-- added this line —-->

Now initialize the autocomplete with the appendTo option specified:

$(".people") .autocomplete ({
appendTo: ".para"
1) i

Get or set the appendTo option, after initialization:

// Getter
var appendTo = $(".people").autocomplete("option", "appendTo");

http://www.webcodegeeks.com/wp-content/uploads/2015/08/autocomplete4.gif

jQuery Programming Cookbook 38/48

// Setter
S(".people").autocomplete("option", "appendTo", ".para");
The result would show names getting appended to the paragraph as soon as they are searched by a letter.

Look at the results in this video: autocomplete-3

6.3.2 Delay

The delay in milliseconds between when a keystroke occurs and when a search is performed. A zero-delay makes sense for local
data (more responsive), but can produce a lot of load for remote data, while being less responsive.

Initialize the autocomplete with the de 1ay option specified:

S(".selector").autocomplete ({
delay: 500
1) i

Get or set the delay option, after initialization:

// Getter

var delay = $(".selector").autocomplete("option", "delay");
// Setter

$(".selector").autocomplete("option", "delay", 500);

Check out the functionality here.

6.3.3 Disabled

Disables the autocomplete if set to t rue.
Initialize the autocomplete with the di sabled option specified:

S(".selector").autocomplete ({
disabled: true

1) g

Get or set the disabled option, after initialization:

// Getter

var disabled = $(".selector").autocomplete("option", "disabled");
// Setter

$(".selector").autocomplete("option", "disabled", true);

Check out the functionality here.

6.3.4 minLength

The minimum number of characters a user must type before a search is performed. Zero is useful for local data with just a few
items, but a higher value should be used when a single character search could match a few thousand items.

Initialize the autocomplete with the minLength option specified:

$(".selector").autocomplete ({
minLength: 2
1)

http://www.webcodegeeks.com/wp-content/uploads/2015/08/autocomplete-3.mp4
http://www.webcodegeeks.com/wp-content/uploads/2015/08/autocomplete-4.gif
http://www.webcodegeeks.com/wp-content/uploads/2015/08/autocomplete-5.gif

jQuery Programming Cookbook 39/48

Get or set the minLength option, after initialization:

// Getter

var minLength = $(".selector").autocomplete("option", "minLength");
// Setter

$(".selector").autocomplete("option", "minLength", 2);

As a result, autocompletion will only start after typing the second character in the input field.

Check out the functionality here.

6.3.5 Source

Defines the data to use, must be specified. It may be an Array, a String or a Function.
Initialize the autocomplete with the source option specified:

$(".selector").autocomplete ({
source: ["c++", "java", "php", "coldfusion", "javascript", "asp", "ruby"]

1) i

Get or set the source option, after initialization:

// Getter

var source = $(".selector").autocomplete("option", "source");

// Setter

$(".selector").autocomplete("option", "source", ["c++", "java", "php", "coldfusion", "

javascript", "asp", "ruby" 1);

Notice that we already used the source option as the most basic option, but we used an array of names apart, instead of inline
declaration.

6.4 Conclusion

The autocomplete widget is a useful tool to consider when dealing with input fields, it gives the user a suggestion (or maybe
a hint) on what the input can be filled with. As we saw here, it is highly customizable and helps you optimize it. For more
information on the aut ocomplete widget, feel free to use the official jQuery UI wesbite and specifically this topic.

6.5 Download

Download You can download the full source code of this example here: jQuery UI Autocomplete

http://www.webcodegeeks.com/wp-content/uploads/2015/08/autocomplete-6.gif
http://api.jqueryui.com/autocomplete/
http://www.webcodegeeks.com/wp-content/uploads/2015/08/jQuery-UI-Autocomplete.zip

jQuery Programming Cookbook

40/48

Chapter 7

CSS Background Image

In this example, we’ll learn how to use jQuery to add CSS properties to HTML elements and specifically how to add backgrounds

like colors or images using the . css () method.

The . css () method is a convenient way to get a computed style property from the first matched element, especially in light of
the different ways browsers access most of those properties (the get ComputedStyle () method in standards-based browsers
versus the currentStyle and runtimeStyle properties in Internet Explorer) and the different terms browsers use for

certain properties.

For example, Internet Explorer’s DOM implementation refers to the f1oat property as styleFloat, while W3C standards-
compliant browsers refer to it as cssFloat. For consistency, you can simply use "float", and jQuery will translate it to the

correct value for each browser.

7.1 Basic Setup

7.1.1 Initial Document Setup

To begin, create a new HTML document and add the following sections and links:

<!DOCTYPE html>

<html>
<head>
<title>jQuery CSS Background Image Example</title>

</head>

<body>

<l== Smvans SCuion ——=

<!-— HTML SECTION -->

<!-- JAVASCRIPT SECTION -->

<script src="jquery-1.11.3.min.Jjs"></script>

<script type="text/javascript">
// our jQuery code goes here
</script>

</body>
</html>

jQuery Programming Cookbook

7.1.2 Understanding the .css() method

.css(propertyName) - Get the computed style properties for the first element in the set of matched elements. property-

Name will be a string containing the name of a CSS property. Look at the following example:

<!-- HTML SECTION -->
 <!-- show the computed results here —-->
Click to show two of my css properties.

<!-— STYLE SECTION -——>
<style type="text/css">

.content {

width: 20em;
height: 10em;
margin: lem;

background-color: #FB2A59;
text-align: center;
line-height: 10em;

white;

color:

border-radius: 0.5em;

}
</style>

<!—— JAVASCRIPT SECTION -——>
<script src="jquery-1.11.3.min.Jjs"></script>

<script type="text/javascript">
S (function () {
S (' .content’) .click (function () { /*results will be shown on clickx/
var width = $(this).css ("width"); /+*store the width in a variablex/
var height = $(this).css("height"); /*store the height in a variablex/
/+xconcatinate several properties and attach them to some other elementx/
$ (" .result’) .html ("Width: " + width + "
" + "Height: " + height);
1)
})

</script>

Before Click After Click

Width: 320px
Height: 160px

Click to show two of my css properties.

Click to show two of my css properties.

Figure 7.1: Using .css() - Single Property

jQuery Programming Cookbook 42/48

But you can use the .css() method with multiple properties inside: .css(propertyNames) where propertyNames
would represent an array of one or more CSS properties. Modifying the example above, we’d get:

<!—— JAVASCRIPT SECTION -->
<script src="jquery-1.11.3.min.Jjs"></script>

<script type="text/Jjavascript">
$ (function () {
var html = ["The clicked div has the following styles:" 1];
S(’ .content’) .click (function(){ /*results will be shown on clickx/
/xstore the css properties array in a variablex/
var properties = $(this).css(["width", "height", "background-color", "color"]);
/*concatinate several properties and attach them to some other elementsx/
$.each(properties, function(prop, value) {
html.push(prop + ": " + value);
1)
$(".result").html(html.Jjoin("
"));
1)
})

</script>

Before Click After Click

The clicked div has the following styles:
width: 320px

height: 160px

background-color: rgh(251, 42, 89)
Click to show two of my css properties. color: rgh(255, 255, 255)

g Click to show two of my css properiies.

Figure 7.2: Using .css() - Multiple Properties

7.2 Background Image using .css()

Now let’s try to add a background color and then a background image in a content box. The easiest way to do this is to refer to
the element you want to give a background color and then use . css (' background-color’, ’#eee’) like so:

<!-— JAVASCRIPT SECTION -->
<script type="text/javascript">
S (function () {
$ (' .content’) .css (’background-color’, ’#51326F');
})

</script>

jQuery Programming Cookbook 43/48

Look at my background color.

Figure 7.3: jQuery Background Image

In a similar manner, we can use the syntax .css (' background-image’, ’‘url (image.jpg)’) to add a background
image like so:

<!-- JAVASCRIPT SECTION -—>
<script type="text/javascript">
S (function () {
$(’ .content’) .css (’background-image’, ’url (bg.Jjpg)’);
b

</script>

Look at my-background image.

Figure 7.4: jQuery Background Image

You can choose to show the background image we just set with jQuery only on click. You can do that like this:

<!—-— JAVASCRIPT SECTION -——>
<script type="text/javascript">
$(’ .contentl’) .click (function () {
$ (this) .css (' background-image’, "url (bgl.jpg)’);
S(this).find('p’) .hide () ;
S (this) .html ("Nice Job, User!");
}) i
</script>

Check out the functionality here.

http://www.webcodegeeks.com/wp-content/uploads/2015/08/css-bgimage-5.gif

jQuery Programming Cookbook 44/ 48

7.3 Conclusion

To conclude, changing the background of an element with jQuery becomes really useful and necessary when you want to trigger
these events on certain actions taken by the user or when you want to create functions to manipulate the background for some
reason like animation ect. At all times, keep in mind the basic syntax of .css() method as it is an essential jQuery method to be
used to set or change CSS properties.

7.4 Download

Download You can download the full source code of this example here: jQuery CSS Background Image

http://www.webcodegeeks.com/wp-content/uploads/2015/08/jQuery-CSS-Background-Image.zip

jQuery Programming Cookbook

45/48

Chapter 8

Disable Button

The aim of this example is to show you how to enable/disable a button using the famous jQuery library of Javascript.

This is a pretty simple task but very useful on certain cases like when you want to submit a form and disable the button that did
S0, or just because a button is part of a conditional statement and it should be disabled if one of the conditions is true/false. Let’s

have a further look into it.

8.1 Basic Setup

To start fresh, just create a new HTML document with its basic syntax inside and link your jQuery file inside like so:

<!DOCTYPE html>

<html>
<head>
<title>Basic Example</title>
</head>
<body>
<!-— STYLE SECTION ——>

<style type="text/css">

</style>
<!—— HTML SECTION -—>
<!—— JAVASCRIPT SECTION -—>

<script src="jquery-1.11.3.min.Jjs"></script>
<script type="text/javascript">
</script>

</body>
</html>

In order to continue with jQuery, let’s first add a new button in HTML like so:

<!-— HTML SECTION ——>
<button>Send Details</button>

jQuery Programming Cookbook 46/48

8.2 Disabling a Button with jQuery

There are several cases and ways you can and want to disable a button, so here are the most important ones!

8.2.1 Disabled as an Initial State of the Button

There might be cases you want to set a button as disabled by default since the opening of the page. With jQuery, you can do that
using the . attr method.

<!—— JAVASCRIPT SECTION -->
<script src="jquery-1.11.3.min.Jjs"></script>

<script type="text/javascript">
$ (document) . ready (function () { /*execute code after the page has been loadedx/
/+reference the button and change its disabled attribute to ’"disabled’ x/
$('button’) .attr ('disabled’, ’'disabled’);
1)

</script>

Button appears disabled as default!

Send Details

Figure 8.1: Disabling a Button as an Initial State

8.2.2 Disabling a Button on Click

What if you want to disable a button as soon as it is clicked by the user. Well, you can do that by adding a function which will be
executed on any click on the button.

<script type="text/javascript">
$ (document) . ready (function () {
// reference a button and execute a ’function’ when it is clicked
S ("button’) .click (function () {
// reference ’'this’ (button), and change the disabled attribute to ’'disabled’
$(this) .attr(’disabled’, ’'disabled’);
1)
}) i
</script>

Now clicking on that button will disable it.

Before Click After Click

Send Details Send Details

Figure 8.2: Disabling a Button on Click

jQuery Programming Cookbook 47 /48

8.2.3 Disabling a Button after Form Submission

A useful case when it would be obvious to disable a button is when a form submission button is clicked. First, add some lines to
create a form in HTML.:

<form>
<input type="text" placeholder="Name">
<input type="text" placeholder="Age">
<button>Send Details</button>

</form>

To disable the button on form submission, first we reference the form and use the .submit event listener to execute a function we
define:

<script type="text/javascript">
$ (document) . ready (function () {
// reference the form element and watch for ’form’ submission event
S (' form’) .submit (function (e) {
// prevent the default browser behaviour on this case
e.preventDefault () ;
// reference ’'this’ (the form) then find the ’button’
// change its disabled attribute to ’disabled’
$(this).find (’button’) .attr (’disabled’, ’'disabled’);
i b

</script>
Before Button Click WebCodeGeeks 21 Send Details
Aﬁer Buttﬂ'n 'C”Ck WebCodeGeeks 21 Send Details

Figure 8.3: Disabling a Button after Form Submission

In another scenarion, when our button would be represented as an input element of t ype="submit" like this:

<input type="submit">

disabling it in jQuery would look like this:

// reference children of the ’form’ element which have an ’input’ with a type of submit
// disable that input using the disabled value of the disabled attribute
$(this) .children (’ input [type=submit]’) .attr (’disabled’, ’disabled’);

The idea is the same, only the way we define the button is changed.

8.3 Conclusion

Disabling a button is just a normal action to take whenever you need to. With jQuery, this is easy and short in code. However,
do remember to reference the right elements/classes when on larger documents and notice to differentiate buttons using classes
(therefore, referencing classes) in case you don’t won’t to apply the disabled state to all of them.

jQuery Programming Cookbook 48/48

8.4 Download

Download You can download the full source code of this example here: jQuery Disable Button Example

http://www.webcodegeeks.com/wp-content/uploads/2015/08/jQuery-Disable-Button-Example.zip

	Add/Remove Class Example
	Basic Document Setup
	.addClass() and .removeClass() Methods
	Add Class
	Remove Class

	Adding or Removing Classes on Event Listeners
	Toggle Classes on Event Listeners

	Conclusion
	Download

	UI Datepicker
	Basic Setup & Application
	Document Setup
	Default Functionality

	Options and Examples
	Animations
	Dates in Other Months
	Display Button Bar
	Display Month and Year Menus
	Display Multiple Months
	Select a Date Range
	Icon Trigger
	Format Date

	Conclusion
	Download

	jQuery and AJAX
	An Introduction to AJAX!
	How we came here?
	Getting to Know AJAX Better
	AJAX Benefits

	Implementation
	Basic Document Setup
	Ajax Declaration
	A Real-World AJAX Example!

	AJAX Settings
	accepts
	async
	beforeSend
	cache
	complete
	contents
	contentType
	context
	data
	data
	dataType
	error
	global
	method
	success
	timeout
	type
	url
	username
	password

	Where to use AJAX?
	Conclusion
	Download

	File Upload
	Plugin Demo and Features
	Video Demo #1 - Single & Multiple Files Upload
	Video Demo #2 - Drag & Drop File Upload
	Features

	Basic Plugin Setup
	HTML Setup
	Display Upload Progress
	Tie a file to an element node during the life cycle of an upload
	Start Uploads with a button click

	Requirements
	Mandatory Requirements
	Optional Requirements

	Browsers
	Desktop Browsers
	Mobile Browsers

	Conclusion
	Download

	Drag and Drop
	Basic Setup & Application
	Customized Draggable Elements
	Constraining Movement
	Cursor Styles over Draggable Element
	Revert Draggable Element Position
	Snap to Element or Grid

	An Advanced Approach
	Conclusion
	Download

	UI Autocomplete
	Document Setup
	Basic Autocomplete Input Field
	Autocomplete Options
	AppendTo
	Delay
	Disabled
	minLength
	Source

	Conclusion
	Download

	CSS Background Image
	Basic Setup
	Initial Document Setup
	Understanding the .css() method

	Background Image using .css()
	Conclusion
	Download

	Disable Button
	Basic Setup
	Disabling a Button with jQuery
	Disabled as an Initial State of the Button
	Disabling a Button on Click
	Disabling a Button after Form Submission

	Conclusion
	Download

