
Top 5 Java
Performance
Considerations

Contents
A Culture of Java Performance .. 3

Using the Express Lane: Code Optimizations ... 7

Building Foundations: Application Infrastructure11

Software Nostalgia: Memory Management ...16

Embracing Your Growth: Scale ...20

3

A Culture of Java
Performance

01

4

Perhaps more than any programming language, Java continues to
have a profound impact on how people navigate today’s world. Java’s
functionality is responsible for setting a great deal of what users expect
in terms of performance from their internet-accessible devices.

The history of Java is more than two decades long and the language
continues to grow and adapt in response to evolving consumer and
business expectations. Throughout all of these changes, however, the
performance of Java applications remains a paramount concern for
developers.

A Brief History of Java

Java was originally created in the 1990s at Sun Microsystems by James
Gosling, Michael Sheridan, and Patrick Naughton, who intended to use it
for next-generation smart televisions. Because the language would be
used in consumer appliances, its developers had five guiding principles
for Java’s performance, security, and functionality. These principles
declared that Java would be:

• Secure and robust
• High performance
• Portable and architecture-neutral, able to run on any software or

hardware
• Threaded, interpreted, and dynamic

• Object-oriented

Although using Java (then known as Oak) for interactive television failed
to pan out, the language was repurposed for use with the World Wide
Web. In 1995, Sun released Java 1.0, promising that programmers could
“Write Once, Run Anywhere” by developing code on any device and
running it on any device with a Java Virtual Machine.

Due to Java’s many strengths, the language has not only survived
but thrived up to the present day. Over the course of its two-decade
history, Java has been used for an incredible variety of purposes,
from embedded systems and web applets to desktop and mobile
applications.

Java Today

With an estimated 9 million developers worldwide, the Java community
is a very robust one. One of the most important uses of Java today is
building applications for mobile devices using the Android operating
system. In addition, Java remains incredibly popular for enterprise
applications and client-server web applications, and is also a very
common language of instruction in software development courses.

According to application security company Veracode, Java’s popularity
among web applications has slightly declined over the past few years.
In 2011, Veracode’s customers used Java to write 52% of their web
applications, a figure which has since decreased to 43% in 2016 as .NET
applications have grown in popularity.

However, Java has still maintained its dominant position in the world
of software development thanks to advantages such as its flexibility,
portability, and ease of use. According to the April 2017 TIOBE index, Java
remains by far the most popular programming language for developers
around the world.

5

Why Is Java Performance Important?
Software developers and architects love to solve problems — after all,
it’s part of the job description. However, it’s not always true that the
most elegant, efficient, or obvious solution is also the best-performing
solution.

Car analogies are rampant in the world of software development,
but here’s another one. Imagine that you’re an automobile engineer
in charge of building a racecar. Would you start by building a
family-friendly sedan and then make changes to the engine and the
chassis, or would you build a racecar from the very beginning?

Of course, you’d choose to build it from scratch, because turning a
sedan into a racecar would involve much more effort than building a
racecar in the first place. The same philosophy should apply to your
Java applications. If you don’t design them for performance from the
outset, then you’ll spend a lot more time and effort upgrading their
performance once they’re built.

Why Is APM Important?

Application performance management (APM) is the monitoring and
management of your applications in order to learn how well they
perform. Of course, this is a very broad definition that can apply to
many different activities with various kinds of software and hardware.

To be a little more specific, APM can monitor — and correlate — factors
such as:
 • The physical hardware atop which your application runs

• The virtual machines in which your application runs
• The JVM hosting the application environment
• The container in which your application runs
• The application’s behavior
• The supporting infrastructure, including networks, databases,

and caches

Once you’ve captured performance metrics from these sources, you
need to interpret them and determine what impact they’ll have on your
business. APM experts are able to understand what these performance
metrics mean for an individual system, and whether they indicate
abnormal behavior for your application.

In addition, depending on your application and deployment environment,
your APM solution may be able to take corrective action automatically
when it detects an issue. For example, if you have an elastic application
running in a cloud environment, you can have your APM solution add
additional services to your infrastructure when your application is
experiencing high demand.

APM is important because it helps you determine when your applications
are behaving abnormally so you can identify the root cause of the
problem. APM solutions can resolve your application’s performance
issues more quickly and efficiently than other options, such as manual
instrumentation or even having your end users inform you about problems.

6

Business Transactions
Business Transactions are how users directly interact with and
experience your business. This kind of interaction can take many
forms, from online purchases, watching a video, tracking an order, or
transferring funds. Think of Business Transactions as discrete tasks or
objectives that people want to achieve when they use your applications.

A well-defined Business Transaction is how non-technical users
think of your software. That means a non-technical user won’t say,
“CPU utilization is at 98 percent,” but would definitely say something
like, “When I try to check the weather the application is slow.” By
monitoring Business Transactions, we’re also monitoring the functions
of the software as the users see them, which helps ensure that we’re
monitoring the important stuff.

Of course, there’s a lot of abstraction built into your web applications.
This means that there’s a lot of separation between any given Business
Transaction (e.g., checking the weather) and the software functions
and components that go into executing that transaction.

Being able to break a Business Transaction down into these constituent
parts is immensely valuable. By doing so, you can troubleshoot poor
performance from your application and identify code-level issues in order
to isolate the root causes of your performance issues.

As a software developer, Business Transactions should be one of the core
fundamental metrics that you pay attention to. In order to properly assess
your application’s performance, you need to keep track of how well your
users can execute the Business Transactions they set out to accomplish.

Capturing metrics about your Business Transactions helps you understand
how your users experience your application’s behavior. In order to extract
the most valuable information, analyze what the minimum, maximum,
and average response times are for your Business Transactions, as well as
the standard deviation in order to assess the impact of any outliers.

Web

Mobile

IoT

Login

Flight Status

Search Flight

Purchase

Cloud

NETWORK

MONGODB

ORACLE

ESB/MQ

APACHE JBOSS SERVICE

TOMCAT SERVICE

WEBLOGIC SERVICE

A Search Flight business transaction

7

Organizational Inertia
Unfortunately, Java’s incredible persistence as a programming language
has meant that it has become ossified within many organizations.
Companies that have been using Java for a long time have likely seen
a great deal of success with it. Of course, this makes them reluctant to
adapt their software development practices and workflow. After all, why
change what’s working for them?

Many companies see the cost of upgrading their applications as too high,
causing them to rely on older, inefficient APIs and solutions. Some of the
most common outdated technologies in Java applications are:

• Synchronous HTTP: Current best practices are to almost always
use asynchronous HTTP requests. Synchronous HTTP requests are
disfavored because they block the client until the operation is com-
plete, wasting valuable computation time.

• Java Messaging System (JMS): Developers now prefer to work with
modern, high-performance messaging solutions such as Kafka or
ZeroMQ.

• Java Database Connectivity (JDBC): JDBC is oriented for use with re-
lational database management systems (RDBMS). However, many
developers currently favor NoSQL for their web applications.

• J2EE containers: Nowadays, developers tend to use modern asyn-
chronous HTTP engines.

This unwillingness to stay current is dangerous and potentially fatal for
organizations. Using outdated enterprise applications may feel like slipping
into a comfortable pair of shoes, but it puts you at risk for unexpected
behavior and events. For one, older technology — especially incredibly
popular technology such as Java — is more vulnerable to security risks
and cyber attacks that can bring your organization to a standstill.
Naturally, there’s also the simple fact that older technology makes you
less competitive against your rivals in the constantly changing business
landscape. It becomes harder to hire technical people who understand
how the older software works together. Meanwhile, it’s easier to hire talent
willing and able to bring applications up to date with modern technologies.

To avoid this fate for your organization, it’s your obligation to keep abreast
of the most crucial and common Java performance issues. By doing
so, you’ll be able to minimize their impact and even prevent them from
happening in your application.

8

Using the Express
Lane: Code
Optimizations

02

9

In terms of performance, Java has come a long way since the 1990s.
Over the years, the language has acquired a reputation of being
slow — partly deserved and partly not. At its inception, Java was an
interpreted language, not compiled, which made it sluggish to execute.
What’s more, after just-in-time (JIT) compilation was introduced, it
took some time to refine, growing more and more efficient with each
version.

Today, well-designed Java applications perform extremely well in
production environments. In many instances, Java code is able to
match or even outperform code in “fast” languages such as C/C++.
Java isn’t the ideal choice for every type of application, and many Java
applications take a long time to start up, which may contribute to the
lingering reputation for slowness.

Today, the responsibility for slow Java applications lies solely with
the developers. Unfortunately, too many Java developers are either
ignorant of the code issues that are harming their application’s
performance, or they don’t care enough to fix them.

This negligent attitude is a shame, because many problems with Java
code boil down to a few core issues that are fairly straightforward to
understand. Here are some of the most egregious errors you might
be committing when writing Java code — and the ways you can avoid
them in your own applications.

Remote Calls
Java Remote Method Invocation (RMI) is a Java API that, as its name
implies, allows objects in a distributed system to access the data and
invoke the methods of other non-local objects. Essentially, Java RMI makes
it possible for applications running on one Java Virtual Machine (JVM) to
call the methods of remote Java objects on other JVMs.

More specifically, Java RMI works by using “stubs” and “skeletons”, objects
created to ensure reliable communication during the method call. The
calling object delegates a method request to the stub, which converts the
caller’s arguments into a byte stream representation and passes them to
the remote skeleton. The skeleton “reinflates” this byte stream back into the
original arguments and invokes the desired method of the called object.
Once the skeleton receives a return value, it converts this response into a
byte stream and returns it to the stub.

Why It’s Bad
Unfortunately, as you might have guessed from the description above,
remote calls are resource-intensive. For starters, the application needs to
create the stub and skeleton objects. You’ll also need to spend additional
time and effort to convert and revert the method arguments, send them
over the network, and wait for a response.

Although there are still valid reasons to use Java RMI, using remote calls
inefficiently or designing your remote interfaces poorly can put a serious
ding in your application’s performance. For example, you may be using
web services specified at a level that’s too granular, requiring dozens of
calls in order to complete the functionality for a single request.

10

What to Do
To lessen the drawbacks of using Java RMI, try to make as few round trips
as possible by making it easy to retrieve multiple items within a single
remote invocation. Keep your method arguments as simple as you can so
that you don’t have to convert and revert complex objects and pass them
over the network.

Java RMI Client/Server Model
Source: Oracle.com

Client Host

Server Object Interface

Client
Program

Server
Stub

Server Host

RMI Registry Host

Server Object Interface

RMI Registry

(4) Data
Communication

(1) Register Server Object
(3) Return Server Stub

(2) Look for Server Object

Server
Skeleton

Server
Object

Exceptions as Control Flow
Using exceptions to control the flow of your program is one of the most
well-known “anti-patterns” in Java development, and yet programmers
still do it all the time. So, why is it so tempting, and why is it so bad for your
application?

In Java, exceptions are objects created when an error or other unusual
event happens during program execution, disrupting the normal flow
of the program. The exception is given or “thrown” to the Java runtime
system, which is responsible for figuring out what to do with it and what to
do next.

Like their name implies, exceptions are intended for exceptional
circumstances — times when your application screeches to a halt — and
to help figure out what’s gone wrong. They’re not to be used to save a few
lines of code or craft an elegant function, and they’re not what compilers
expect to find on a regular basis.

Why It’s Bad
Exceptions are akin to GOTO statements, which transfer control to another
line of code elsewhere in the program. Of course, GOTO statements
have been falling out of favor ever since Edsger Dijkstra’s renowned 1968
letter “Go To Statement Considered Harmful.” GOTO statements violate
standard principles about what your code should look like — and tend to
make your program more confusing for other developers in the process.

Furthermore, using exceptions for control flow is generally frowned upon
because exceptions are expensive. Creating a Java exception is a very
slow operation. After all, exceptions are supposed to be rare events, so
compilers have less reason to optimize their performance.

This sluggishness is generally because it takes a long time to fill in the
exception thread stack via the Throwable.fillInStackTrace() function. This
function fills in the execution stack trace, providing information about the
state of the stack frames at the time the exception occurred, and places it
inside the new Throwable object.

What to Do
Despite these performance costs, you shouldn’t be dissuaded from using
exceptions in your Java application. Just make sure that you save them for
truly exceptional events that require the intervention of the Java runtime
system.

11

Data Transformations
One of the convenient things about Java from a development
perspective is the ease with which you can convert data between
different representations, such as XML or JSON. This transformation is
known as “serialization” when converting an object or data structure
into a storable format, or “marshalling” when this data will be used in
a remote call. Appropriately enough, the opposite process, inflating a
representation of an object into the executable object itself, is called
“deserialization” or “unmarshalling”.

Why It’s Bad
Java’s in-house implementation of serialization leaves a lot to be
desired. For one, Java’s serialization algorithm relies on reflection to
discover information about the object instance that it’s serializing,
which tends to be slow. In addition, the serialization algorithm is
recursive, meaning that any objects reachable from the current object
also must be serialized.

What to Do

If you’re struggling with slow performance from your serialized objects,
know that there’s an alternative — the Externalizable interface. Unlike
the Serializable interface, Externalizable requires you to implement the
serialization and deserialization methods yourself. This requires more
work upfront, but pays off later with control over these algorithms,
eliminating some of the inefficiencies of the default serialization
algorithm.

When done correctly, switching your objects to implement the
Externalizable interface instead can deliver significant performance
improvements for your application.

Excessive Logging

Logging messages are incredibly useful for your work as a software
developer — until you realize that they’re hurting your performance.
At first glance, it’s hard to see how this could be so. After all, more
information about your application could never be harmful, and

logging as much data as possible could be helpful for bug fixing and
troubleshooting in the future.

Why It’s Bad
Logging usually means your code base will be longer by at least one
line for every event logged. If you’re logging everything that you possibly
can, your code will be cluttered up, obscuring the actual functions your
application is carrying out.

Excessive logging doesn’t just clog up your code, it also creates crowded
log files. Remember that the logging messages you’re creating are
ultimately for human consumption, and the longer these log files are, the
more draining it will be to analyze them.

However, the real drawback of excessive logging is that it will have a
measurable impact on your application, slowing it down to unacceptable
levels. String construction and concatenation in Java are not negligible
operations, and when performed thousands or millions of times in
succession, they will use up a great deal of resources. In addition,
excessive logging requires your application to perform disk I/O operations
more frequently, which can create problems with CPU wait time.

What to Do

Ultimately, only you can say whether the amount of logging in your
application is truly excessive or if you actually need it to do your work. If
you’re struggling to figure out how much logging you need to do, you’re
probably doing too much. Finding that sweet spot between logging and
performance will require some degree of experimentation.

If you’re using a logging utility such as Log4j in your application, make
full use of the different levels: DEBUG, INFO, WARN, ERROR, and FATAL,
in increasing order of severity. Correctly placing your logging events
within this hierarchy will make sure that you see the right levels of severity
exactly when you want to see them. Also, avoid creating strings or any
other objects by guarding the logging calls inside of an “if” block checking
whether the appropriate log level is active.

12

Building
Foundations:
Application
Infrastructure

03

13

Your Java applications are much more than the code that they’ve been
created with. Modern non-trivial web applications require support from
a number of infrastructural elements — including databases, servers,
and networks — in order to function properly.

But, introducing this external infrastructure also introduces a variety
of new concerns and performance issues that you’ll have to address.
Here’s a look at some of the biggest problems that Java developers
face when dealing with their application’s infrastructure.

Database

The backbone of any modern web application is its data. Since their
introduction in the mid-1990s, web applications have gone from being
static programs with little user interaction to incredibly complex beasts
that perform a variety of functions.

Of course, “With great power comes great responsibility.” The
database is both the most essential part of many Java applications
and the greatest source of performance issues. Problems might crop
up in many places. Your application code may access the database
inefficiently, the database connection pool may be improperly sized,
or the database itself may be missing indices or otherwise in need of
tuning.

The N+1 Problem

One of the biggest database problems for Java applications is known
as “Death by a thousand cuts,” also called the “N+1 problem”. Suppose
that you want to retrieve the last 100 entries from your “Order” table. To
begin with, you’ll need to execute a query to find the primary keys of
each item:

SELECT id FROM Order WHERE …

Next, you’ll need to execute one query for each record:

SELECT * FROM Order WHERE id = ?

Doing this requires one query for each record, plus the initial query to
find the primary keys. In other words, it takes 101 queries to retrieve 100
records, hence the term “N+1 problem”. Fortunately, fixing issues of this
sort is usually fairly straightforward — simply increase your database’s
capacity.

Database Metrics
The N+1 problem is just one example of a Java database issue that
reveals the importance of understanding your program’s performance
and behavior. It’s essential to manage the overall performance of your
application and measure the performance of your database metrics. A
few important database metrics are described below:
 • EXPLAIN PLAN: SQL statements that display how the Oracle optimiz-

er plans to perform an operation.
• Wait States: Delays when a processor needs to access external

memory or devices.
• Disk I/O: The number of read-and-write operations to and from

disk, which may cause delays if excessive.
• Network I/O: The number of read-and-write operations over your

network, which also may cause delays if excessive.
• CPU: The percentage of database call time that is spent on the

CPU. Although there is no “correct” figure for this metric, significant
changes may indicate changes in how the application or database
operates.

14

SQL
Using SQL in your application means that you need to be mindful of a
number of software and hardware performance issues. First, make sure
that your queries are well-designed and efficient. Poor query design is
one of the biggest causes of degrading database performance. Some
of the issues surrounding SQL query design are:
 • Selecting more data than necessary, often with the use of the

SELECT * statement.
• Inefficient join operations between tables with large amounts of

data.
• Too few or too many indexes, causing slow performance.
• Too many literals in your SQL statements and functions, creating

parse-related contention.

Another issue that can strike SQL databases is capacity, which can
come in many forms:
 • CPUs: You may not have enough CPUs, or the speed of your cur-

rent CPUs may be too slow.
• Disks: Your disks may be full, misconfigured, or too slow, without a

sufficient number of input/output operations per second (IOPS).
• Memory: You may have insufficient memory for the operations

that you want to execute.

Other issues can be caused by the configuration of the SQL Server,
such as a buffer cache that is too small or the failure to cache previous
queries.

Cache
When you use it correctly, caching can provide your application with huge
savings in time and memory. Done properly, the majority of your requests
should be hitting the cache, rather than requiring a trip to your database.

If your application isn’t using the cache properly, however, the pressure on
your database will increase as the pressure on your application increases.
This means that your database will require more CPU power and may
need to read from and write to the disk more, which degrades the
performance of applications that interact with the database.

No Caching

The first mistake that some developers make is not using a cache at all.
Of course, serving content from memory is much faster than having to
execute a query in order to retrieve your data from a database. Unless you
have specific reasons to do so in your application, not caching is a critical
error in judgment.

Cache Configuration

Another performance issue occurs when you fail to configure your cache
properly. Caches hold stateful objects, which represent specific object
instances that are distinct from other objects of the same type. Because
caches are stateful, you need to configure them to a finite size so that you
don’t run out of memory.

When the cache is full, it will take action based on how you’ve configured
it. For example, it might decide to remove the objects that have been
accessed the least, or those that have not been accessed for the longest
period of time. If your application searches for an object in the cache
that’s no longer present, then it results in a miss that usually requires a
database lookup. Monitor your cache’s hit ratio — the percentage of object
retrievals from the cache that were successful — in order to determine if
you need to adjust your caching strategy.

15

Anatomy of Cache Layers

Distributed Caching
One final issue with caching comes when you have multiple servers
each writing to their own caches. Without configuring these caches to
be distributed, they won’t stay in sync with each other, which means that
your results may vary depending on which server your application uses.

Most modern caches support a distributed paradigm where updates
to one cache propagate to other members in the cache. However, this
can be an expensive operation, depending on the number and size of
the caches and the data consistency that your application requires. You
may be able to tolerate caches that are “eventually consistent” after a
short period of time where they differ. However, it may be just as true
that you need all of the caches to be consistent before any update can
be considered complete.

Whatever the case, figure out what your business requires from your
application, and adopt the loosest distributed caching strategy that
matches those requirements.

Server
If you’re running your own servers locally, it’s essential to know your
machine metrics in order to accurately judge their performance. Some of
the most important server metrics are:
 • Response Times: The amount of time that your application requires

to generate a response to a request. You should pay attention to
both average response times over a given monitoring period as
well as peak response times, which measure the longest gap be-
tween request and response.

• CPU Utilization: The amount of CPU time that your application takes
to service a request. Percentages near 100 percent usually indicate
a problem with the application or a need for additional computing
power.

• Memory Utilization: The amount of memory that your application
uses while servicing a request. This metric is usually calculated as a
percentage by determining the ratio of your application’s resident
set size to the total physical memory of the server.

• Error Rate: The percentage of server requests that result in an HTTP
status code indicating an error.

• Uptime: The time that a server has been available and working.
Both the absolute amount of time and the percentage of actual
uptime are important metrics. If your server has been available less
than roughly 99% of the time, you should investigate possible caus-
es and fixes.

If you’re running in the cloud with a provider such as Microsoft Azure or
Amazon Web Services EC2, it will still help to understand the behavior of
the machine, even if it’s virtual.

Service Layer Data Access Layer

Shared BuffersService Layer Data Access Layer

Performance Consistency

RDBMS

16

Network
Network visibility is currently a black box for many APM solutions. At
AppSphere 2016, we showed how our customers can now shine a
light into the black box of network performance and begin measuring
throughput of all their systems.

The AppDynamics network visibility dashboard doesn’t rely on switched
port analyzer (SPAN) or test access point (TAP) methods. Instead,
we monitor traffic in and out of the network by assembling five data
points into a tuple: the source and destination IP addresses, the source
and destination ports, and the protocol. Once you toggle the network
dashboard, you’ll see an overlay of the underlying network traffic flow
data, as well as key performance indicators such as bandwidth, packet
loss, and throughput.

17

Software
Nostalgia: Memory
Management

04

18

How Memory Management Works in
Java
In Java, memory management is the responsibility of the Java Virtual
Machine (JVM). The JVM’s memory-related duties include allocating
memory for the application from the operating system, managing
the application’s heap and stack, and removing unneeded objects
(“garbage collecting”).

Unlike in C/C++, there is no explicit allocation or deallocation of memory
in Java. Instead, when a new object is created in the course of running
an application, the JVM allocates a contiguous block of memory on
the heap in order to store it. Objects that are no longer referenced are
considered to be “garbage” and are cleared from the heap by the JVM’s
garbage collector, a program that reclaims unused memory for use at
a later time.

The specifics of memory management and garbage collection vary
depending on the JVM implementation. For example, the Sun JVM uses
a “generational” heap that is divided into two primary components: the
“young generation” and the “old generation”. The young generation is
further subdivided into three spaces: Eden space, where objects are
created, and two Survivor spaces. When the Eden space is full, objects
that survive garbage collection are moved to one of the Survivor
spaces. After a major garbage collection event, objects within the young
generation are moved to the old generation for preservation.

Java Garbage Collection

Eden Space PermGen SpaceOld (Tenured) Space

JVM Heap (-Xms-Xmx)

Young Generation

S0 S1

Old Generation -XX: PermSize
-XX: MaxPermSize

19

Primary Symptoms of Java Memory
Leaks
The garbage collector in Java helps remove many of the mundane
concerns surrounding memory management, and memory issues with
Java are much less of a concern than with C/C++. However, despite all
the hype around Java’s automatic memory management, it’s still very
possible to experience memory leaks in a Java application.

Java memory leaks occur when your application continues to maintain
a reference to an object that is no longer necessary. Thus, the object
remains in memory far past its “expiration date”, taking up space
and putting pressure on the application’s performance. Because the
garbage collector has no insight into the developers’ thought process, it
will assume that you want to use an object reference that continues to
be maintained, even if you have no intention of doing so.

In Java, memory leaks can only occur inside containers that support
unbounded growth. The most common example of these are the
Collection classes: lists, maps, and sets that can be used to build data
structures such as arrays, trees, hash tables, and linked lists. In many
cases, memory leaks occur when the application adds an object to a
Collection but does not remove it from the Collection when it’s no longer
needed.

If you’re coming from a C/C++ background, the symptoms of a memory
leak in Java will be all too familiar to you. When a memory leak occurs,
the amount of memory that the application uses continually increases
until the heap eventually runs out of memory. Often, this means that
your application will work well at first, but slow down over time or as
you work with larger datasets. In addition, your application might crash
unexpectedly.

When a memory leak causes your application’s heap to run out of
memory, Java will often throw an OutOfMemoryError, which usually
requires you to restart the JVM. However, it’s important to note that not
all OutOfMemoryErrors are due to a memory leak, and not all memory
leaks will cause an OutOfMemoryError. If memory leaks are a disease
affecting your application, then OutOfMemoryErrors are a symptom
that isn’t present in all patients.

The Benefits of Memory Monitoring
In order to monitor the memory that your application is using, you need
to track the memory inside of the JVM, not the memory used by the
JVM process. This means that you’ll have to use a specialized tool for
looking inside the JVM process, rather than a system monitor such as Task
Manager for Windows, or Activity Monitor for Mac.

Garbage collection in Java isn’t a constant activity, but is run only after
certain conditions are met. This means that the memory you see the
JVM using at any given point in time is likely more than your application
requires, unless you measure it immediately after the garbage collector
has run.

Therefore, in order to get an accurate picture of your application’s
memory usage, you need to measure the average amount of memory
used over an extended period of time. Noticing that your application has
recently started using a little more memory isn’t cause for concern, but if
its memory usage consistently increases while running, then there may be
a memory leak somewhere in your code.

If your application is consistently running out of memory and you suspect
that it contains a memory leak, you can test your hypothesis by simply
allocating more memory to the application. Examine the time your
application takes to crash after providing this additional memory. If the
time between crashes has now increased, there’s likely a memory leak
somewhere in the application.

20

The Garbage Collector
The JVM garbage collector works by performing a “mark-and-sweep”
test to determine which objects are reachable. In this test, the garbage
collector first traverses the heap, marking those objects that it was able
to reach during its journey. Next, all objects that were not marked during
the traversal are swept away by the garbage collector, reclaiming this
unused memory.

In certain cases, garbage collection can itself cause performance issues
for your application. As described above, the Sun JVM divides the heap
into two spaces, the young generation and the old generation. When a
major garbage collection event occurs, objects in the young generation
that are still reachable are transferred to and compacted within the
old generation. These major events are also known as “stop-the-world”
(STW) collections.

STW garbage collections are extremely effective for your application,
but they also cause serious performance issues. This is because they live
up to their name — when STW collection occurs, all of the threads in the
JVM are frozen while the garbage collector is carrying out its business.
In other words, your application has to stop and wait while the JVM does
some interior redecorating. The length of the pause depends directly
on the size of your heap. If your heap is only a few gigabytes, you might
wait 3 to 5 seconds, but a heap 10 times that size could require half a
minute or more.

There are a number of possible solutions to minimize the impact of STW
collections on your application’s performance. However, none of them
will completely remove the need for STW collection, since it’s a normal
process that only presents a problem when it takes too long or occurs
too often.

To begin with, you can try fine-tuning the performance of your garbage
collector using command-line options. The JVM provides you with a
number of options related to garbage collection that you can set at
runtime. For example, you can adjust the initial and maximum sizes of the
heap, as well as the comparative sizes of the young and old generations
and the Eden and Survivor spaces. By playing around with these options,
you can see which ones result in the best performance.

Java also allows you to set the type of garbage collector that you use
in your application. The JVM actually includes four different garbage
collectors — serial, parallel (the default), concurrent-mark-sweep (CMS),
and garbage first (G1). These last two modes are the most interesting for
experimentation.

The CMS garbage collector uses an additional thread to constantly mark
and sweep objects, in exchange for using more CPU resources. This extra
thread helps to reduce the number of times that your application needs
to perform a STW collection. Meanwhile, the G1 garbage collector, which
was introduced in Java Development Kit (JDK) 7, is intended for heaps that
will grow larger than 4 gigabytes. The G1 collector uses multiple threads to
scan through different regions of the heap, focusing on those regions that
contain the most garbage objects.

21

Embracing Your
Growth: Scale

05

22

You can scale an application in one of two ways — horizontally or
vertically. Horizontal scaling involves adding more machines or nodes to
your current system, usually to reduce the burden on the existing nodes.
Vertical scaling, on the other hand, involves adding resources to an existing
machine, such as memory or processing power. Horizontal scaling has no
physical limits, whereas vertical scaling does, since you can’t add infinite
memory or processors. In addition, you can even scale your application
down during times of decreased demand in order to conserve resources.

With the advent of cloud computing, scalability has become easier than
ever, as the resources available for your application become near-infinite.
These days, scaling your application is less a question of whether you can
do so, and more a question of how you can do so efficiently.

Many applications rely on concurrency in order to achieve scalability. But
what exactly is concurrency, and how does it help you use your available
hardware to the fullest extent?

Vertical versus Horizontal Scaling

An Introduction to Concurrency
Users expect that modern enterprise applications will be able to do
all sorts of things at once, from performing complex mathematical
calculations to communicating with distant servers. In other words,
enterprise applications need to be concurrent. In the context of software
development, an application that is concurrent is one that’s able to
execute several streams of computations at the same time.

Concurrent applications tend to be more complex than sequential
programs because each stream of operations can interact and
interfere with other streams. Objects that can be shared between these
different streams — known as threads — should not change while several
computations are ongoing. Otherwise, multiple threads might each make
changes to an object, unaware of the other threads’ behaviors, and this
will cause an unexpected (and likely incorrect) result.

The Java language deals with thread concurrency using a technique
called synchronization. Each object in Java has a lock that can only be
given to one thread at a time. If a thread wants to have an object’s lock
but finds that it’s unavailable, then it must wait for the other thread to
release the lock before executing its own synchronized code.

As great as synchronization is, of course, it also introduces added
complexity into your Java application — and the possibility of additional
performance issues.

A

A

B

Vertical Scaling Horizontal Scaling

B A B C N...

23

Deadlocks
Imagine that you’re in kindergarten and you want to do some finger
painting with your best friend. You both go to grab the supplies. You get
the paints from your backpack while your friend finds some paper. Now
both of you have one material that you need to do the painting, but not
the other, and neither one of you wants to give up what you have.

Of course, in real life the situation would be resolved somehow. This kind
of scenario is exactly what happens when multiple threads need access
to objects that the other thread is currently using. However, unlike real
life, there’s no easy way to resolve the situation in your application — the
two threads are deadlocked.

Diagnosis
Deadlocks are very difficult to reproduce in a development environment
because they’re the result of race conditions, when simultaneous
operations are not executed in the order that you expected they would
be. However, if you believe that your application is suffering from
deadlock, watch your metrics to see if the CPU remains consistently
underutilized while the application does less and less. To confirm your
suspicions, you can request a thread dump that will show you reports of
deadlocked threads.

Avoiding Deadlocks
In order to avoid deadlocks, make your application and resources
as immutable as you can, and try to avoid using too much thread
synchronization. As we’ll see in the next section, that creates its own issues.

Thread Deadlock

Thread 1 Thread 2

Object 1

is holding wants is holding

Object 2

24

Gridlocks
If you’ve ever driven on a highway, you’ve almost certainly been the
victim of a traffic jam that seems to come out of nowhere. After waiting
for an excruciating amount of minutes or hours, you finally get past the
bottleneck, only to see that it was caused by a car accident or a new
construction project.

In these cases, restricting cars to one or two lanes is necessary because
of the unexpected block on the highway. Similarly, it’s sometimes
necessary to use synchronization in your application in order to avoid
unexpected behavior. If your application is over-synchronized, however,
then you’re essentially merging all of the “lanes” on your highway for no
good reason. Thread synchronization is a powerful tool, but it should be
used with caution to ensure that you don’t unintentionally cripple your
application.

Gridlock as result of thread over-synchronization

Diagnosis
One major symptom of over-synchronization is that your application
will have slow response times and low CPU utilization, because only one
thread will be active at a time. In order to diagnose over-synchronization
in your application, however, you’ll have to figure out where your code is
waiting and why each thread has been stalled. This means that you may
need to use thread dumps or examine your Business Transactions from
a method-level view. With AppDynamics, you can simply use the new
thread contention feature to mitigate.

Avoiding Gridlocks
To remove gridlocks and deadlocks from your application, the same
advice is generally applicable — use synchronization only when absolutely
necessary. Try to use non-blocking constructs such as Java’s built-in
collections from the java.util.concurrent package.

You should be especially clear about when to use a StringBuilder and
when to use a StringBuffer. Unlike a StringBuilder, the StringBuffer
class is thread-safe, and all of its public methods are synchronized.
However, StringBuilders perform better than StringBuffers under most
circumstances, and you should generally prefer them.

Issues such as gridlocks and deadlocks are usually themselves a symptom
of a greater infrastructural problem. You should architect your application
in a manner that will avoid thread synchronization issues in the first place.

Synchronized
Block

Synchronized
Block

T1

T1

T3

T2

T3

T2

Time

25

Worker Sizing Problems
Whether it’s in line at the supermarket or on hold on the phone,
everyone has had the unpleasant experience of waiting too long to
get customer service. Fortunately, this sort of incident taught you the
exact frustrations that your users have when there are gridlocks in your
application’s thread pool.

Applications that run in an application server or web container will have
a thread pool that controls how many requests they can handle at
once. Arriving requests are placed in a queue. When a thread from the
pool is available to do work, this worker thread claims the first request in
the queue, processes it, and returns to the pool to claim another job.

Getting the size of your application’s thread pool right can make you
feel like Goldilocks hunting for the right bed to sleep in — it can’t be too
big or too small. If you don’t have enough threads in your thread pool,
then your requests will linger a long time before being serviced. On the
other hand, if you have too many threads in the pool, then they’ll all
execute at the same time, soaking up all of your computing resources.
It’s even possible that some of your threads will “starve” because they
have to wait indefinitely for CPU time while other threads use it up.

Diagnosis
Thread pools that are too small are relatively easy to diagnose by
examining your metrics. If this is the case for your application, you
should see a thread pool utilization of nearly 100 % while the CPU is
being underutilized. This is a fairly clear sign that your machine is able to
process additional requests.

Conversely, if your thread pool is too large, you’ll see the opposite results
— a very high rate of CPU utilization, but a thread pool that has too
many idle threads and few requests waiting for service.

Avoiding Worker Sizing Problems
The ideal size of your thread pool is highly dependent on your application
and your business needs. Of course, the best way to figure this out is
configuration through experimentation. Your thread pool should be
large enough to take full advantage of your processing resources, while
remaining small enough to avoid trying to do too much at the same time.

Configuring the size of your thread pool grows more complicated if your
application needs to access external resources such as a database. In
this case, your thread pool also needs to be the right size to use these
resources effectively without flooding them with data.

Figuring out the right size of your thread pool for working with external
resources is still as much of an art as it is a science. However, you can
use a performance tuning strategy called “wait-based tuning” for a little
assistance. First, determine the maximum capacity of your external
resources, and then regulate your application so that it will send an
appropriate volume of requests without exceeding this capacity. From
there, you can configure your application backwards to determine the
optimum size of the thread pool.

26

Conclusion
Performance is something that needs to be baked into your code from
the very beginning. If you only start measuring performance once all
the functionality has been completed, you’ll likely spend extra hours or
days fixing the issues that you uncover. Even worse, if you don’t have
true visibility into application performance, you’ll have trouble finding
the root causes of your performance and scalability issues, which are
often architectural in nature.

As your little Java web application gets bigger and bigger, you’ll likely
have to adjust it to make it more scalable. Perhaps you’ve hit it big and
now have 10 times the number of users, or the size of your database
is growing by leaps and bounds. Nonetheless, your technical debt will
catch up so augmenting your software development life cycle (SDLC)
now with an APM solution will help you reach maximum velocity and
peak performance moving forward.

Whatever your situation, your application needs to expand in order
to satisfy your business needs and understanding the most critical
performance metrics will help you reach rapid scale.

Todd Rader has been in the software field
for over 20 years doing applications, system
software, and for the last 10 years, APM.
He has held positions in development,
leadership, and sales engineering, and has
been in the trenches as APM has moved
up the stack from monitoring low-level
metrics of a three-tier app to monitoring the
health of a software-defined business, in
companies as diverse as Sun Microsystems,
Wily Technology, CA, VMware, and currently,
AppDynamics. As a Java developer in a
startup implementing a multi-tenant SaaS
offering during the dot-com boom, Todd
was sold on the promise of DevOps before it
even had a name.

27

appdynamics.com

About AppDynamics

AppDynamics is the Application Intelligence company. With AppDynamics, enterprises have real-time insights into application
performance, user performance and business performance so they can move faster in an increasingly sophisticated,
software-driven world. AppDynamics’ integrated suite of applications is built on its innovative, enterprise-grade App iQ Platform
that enables its customers to make faster decisions that enhance customer engagement and improve operational and business
performance. AppDynamics is uniquely positioned to enable enterprises to accelerate their digital transformations by actively
monitoring, analyzing, and optimizing complex application environments at scale which has led to proven success and trust with
the Global 2000. For more information, visit appdynamics.com.

START A FREE TRIAL AT
APPDYNAMICS.COM

