

WindowsPowerShell
By Bruce Payette

CONTENTS INCLUDE:
n	 About Windows Powershell
n	 The Language
n	 Operators
n	 Basic Tasks—Text and Files
n	 Types and Objects
n	 Building Custom Objects
n	 Hot Tips and more...

DZone, Inc. | www.dzone.com

ABOUT WINDOWS POWERSHELL

 tech facts at your fingertips
W

in
d

ow
s

P
o

w
er

Sh
el

l

 w
w

w
.d

zo
n

e.
co

m

 S
u

b
sc

ri
b

e
 N

o
w

 f
o

r
F

R
E

E
!

 r
ef

ca
rd

z.
co

m

PowerShell is freely available through the Microsoft Windows
Update Service packaged as an optional update for Windows
XP SP2, Windows Vista and Windows Server 2003. It is also
included with Windows Server 2008 as an optional component.
Once installed, it can be started from the Start menu or simply
by running “powershell.exe”. Basic things you need to know:

n	Use the “exit” keyword to exit the shell

n	Ctrl-C will interrupt the current task returning you to the prompt

n	A command can be spread over multiple lines and the
 interpreter will prompt for additional input. The line continuation
 character is the back-quote ‘`’ (also called the back-tick).

n	To get help about a command you can do “help command”.
 The help command by itself will give you a list of topics.

n	The help command supports wildcards so “help get-*”
 will return all of the commands that start with “get-”.

n	You can also get basic help on a command by doing
 “commandName -?” like “dir -?”

n	As well as cmdlet help, there is a collection of general help
 topics prefixed with “about_”. You can get a list of these
 topics by going help about_*

Command-Line editing in Powershell: Command-line Editing
works just like it does in cmd.exe: use the arrow keys to go up
and down, the insert and delete keys to insert and delete
characters and so on.

GETTING STARTED WITH POWERSHELL

n Authoritative content
n Designed for developers
n Written by top experts
n Latest tools & technologies
n Hot tips & examples
n Bonus content online
n New issue every 1-2 weeks

Subscribe Now for FREE!
Refcardz.com

Get More Refcardz
(They’re free!)

Hot
Tip

 tech facts at your fingertips

Keyboard
sequence

Editing operation

Left/Right Arrows Move the editing cursor left and right through the current
command line.

Ctrl-Left Arrow,
Ctrl-Right Arrow

Move the editing cursor left and right a word at a time.

Home Move the editing cursor to the beginning of the current
command line.

End Move the editing cursor to the end of the current command line.

Up/Down Arrows Move up and down through the command history.

Insert Key Toggles between character insert and character overwrite modes.

Delete Key Deletes the character under the cursor

Backspace Key Deletes the character behind the cursor.

F7 Pops up command history in a window on the console. Use
the up and down arrows to select a command then Enter to
execute that command.

Tab Does command line completion. PowerShell completes on
filenames, cmdlet names (after the dash), cmdlet parameter
names and property and method names on variables.

THE LANGUAGE

PowerShell parses text in one of two modes—command mode,
where quotes are not required around a string and expression
mode where strings must be quoted. The parsing mode is
determined by what’s at the beginning of the statement. If it’s a
command, then the statement is parsed in command mode. If
it’s not a command then the statement is parsed in expression
mode as shown:
PS (1) > echo 2+2 Hi there # command mode – starts with
‘echo’ command
2+2 Hi there
PS (2) > 2+2; “Hi there” # expression mode starts with 2
4
Hi there
PS (3) > echo (2+2) Hi (echo there) # Mixing and matching
modes with brackets)
4 Hi there

Why PowerShell? Why Now? PowerShell was designed to do for
Windows what the UNIX shells do for UNIX: provide a powerful,
well-integrated command-line experience for the operation
system. Unfortunately since Windows is mostly managed through
objects (WMI, COM and .NET) this required creating a new kind
of shell. So why create it now? As Windows moves off the desktop
and into server farms or application servers like print, DNS
and LDAP services, command-line automation becomes a
fundamental requirement.

This refcard covers starting and using Windows PowerShell,
including the syntax for all statements, operators and other
elements of the language. Also included are examples of how
to use .NET, COM, ADSI and WMI objects from PowerShell.
Finally, it includes tips and tricks—short examples showing
how to perform common tasks from PowerShell.

http://www.dzone.com
http://www.refcardz.com
http://www.dzone.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com

Windows PowerShell
2

DZone, Inc. | www.dzone.com

 tech facts at your fingertips

Variables: In PowerShell, variables are organized into namespaces.
Variables are identified in a script by prefixing their names with
a ‘$” sign as in “$x = 3”. Variable names can be unqualified
like $a or they can be name-space qualified like: $variable:a
or $env:path. In the latter case, $env:path is the environ-
ment variable path. PowerShell allows you to access functions
through the function names space: $function:prompt and
command aliases through the alias namespace alias:dir

Arrays: Arrays are constructed using the comma ‘,’ operator. Unless
otherwise specified, arrays are of type Object[]. Indexing is done
with square brackets. The ‘+’ operator will concatenate two arrays.

 PS (1) > $a = 1, 2, 3
 PS (2) > $a[1]
 2
 PS (3) > $a.length
 3
 PS (4) > [string] ($a + 4, 5)
 1 2 3 4 5

Because PowerShell is a dynamic language, sometimes you don’t
know if a command will return an array or a scalar. PowerShell
solves this problem with the @() notation. An expression evaluated
this way will always be an array. If the expression is already an
array, it will simple be returned. If it wasn’t an array, a new single-
element array will be constructed to hold this value.

HashTables: The PowerShell hashtable literal produces an instance
of the .NET type System.Collections.Hashtable. The hashtable
keys may be unquoted strings or expressions; individual key/value
pairs are separated by either newlines or semicolons as shown:

 PS (1) > $h = @{a=1; b=2+2
 >> (“the” + “date”) = get-date}
 >>
 PS (2) > $h

 Name Value
 ---- -----
 thedate 10/24/2006 9:46:13 PM
 a 1
 b 4

 PS (3) > $h[“thedate”]

 Tuesday, October 24, 2006 9:46:13 PM

 PS (4) > $h.thedate

 Tuesday, October 24, 2006 9:46:13 PM
 @{ a=1; b=2}
 Types
 [typename]

Type Conversions: For the most part, traditional shells only deal
with strings. Individual tools would have to interpret (parse) these
strings themselves. In PowerShell, we have a much richer set of
objects to work with. However, we still wanted to preserve the
ease of use that strings provide. We do this through the Power-
Shell type conversion subsystem. This facility will automatically
convert object types on demand in a transparent way. The type
converter is careful to try and not lose information when doing a
conversion. It will also only do one conversion step at a time. The
user may also specify explicit conversions and, in fact, compose
those conversions. Conversions are typically applied to values but
they may also be attached to variables in which case anything
assigned to that variable will be automatically be converted.

THE LANGUAGE, continued

Commands: There are 4 categories of commands in PowerShell:

Pipelines: As with any shell, pipelines are central to the operation
of PowerShell. However, instead of returning strings from external
processes, PowerShell pipelines are composed of collections of
commands. These commands process pipeline objects one at
a time, passing each object from pipeline element to pipeline
element. Elements can be processed based on properties
like Name and Length instead of having to extract substrings
from the objects.

PowerShell Literals: PowerShell has the usual set of literal
values found in dynamic languages: strings, numbers, arrays
and hashtables.

Numbers: PowerShell supports all of the signed .NET number
formats. Hex numbers are entered as they are in C and C#
with a leading ‘0x’ as in 0xF80e. Floating point includes Single
and Double precisions and Decimal. Banker’s rounding is used
when rounding values. Expressions are widened as needed. A
unique feature in PowerShell are the multiplyer suffixes which
make it convenient to enter larger values easily:

Strings: PowerShell uses .NET strings. Single and Double
quoted strings are supported. Variable substitution and escape
sequence processing is done in double-quoted strings but not
in single quoted ones as shown:

 PS (1) > $x=”Hi”
 PS (2) > “$x bob`nHow are you?”
 Hi bob
 How are you?
 PS (3) > ‘$x bob`nHow are you?’
 $x bob`nHow are you?

The escape character is backtick instead of backslash so that
file paths can be written with either forward slash or backslash.

Cmdlets These are built-in commands in the shell, written in a .NET language
like C# or Visual Basic. Users can extend the set of cmdlets by writing
and loading PowerShell snap-ins.

Functions Functions are commands written in the PowerShell language that are
defined dynamically.

Scripts Scripts are textfiles on disk with a .ps1 extension containing a
collection of PowerShell commands.

Applications Applications (also canned native commands) are existing windows
programs. These commands may be executables, documents for
with there are associated editors like a word file or they may be
script files in other languages that have interpreters registered and
that have their extensions in the PATHTEXT environment variable.

Multiplier
Suffix

Multiplication
Factor

Example Equivalent
Value

.NET Type

kb or KB 1024 1KB 1024 System.Int32

mb or MB 1024*1024 2.2mb 2306867.2 System.Double

gb or GB 1024*1024*1024 1Gb 1073741824 System.Int32

dir Command

dir -recurse -filter *.cs | sort length | select -first 5 | format-table name, length

Named parameter
with Argument

Pipe Operator Positional
Arguments

Switch Parameter

More Commands

http://www.refcardz.com

3

DZone, Inc. | www.dzone.com

Windows PowerShell
 tech facts at your fingertips

PowerShell has a very rich set of operators for working with
numbers, strings, collections and objects. These operators are
shown in the following tables.

Arithmetic operators: The arithmetic operators work on numbers.
The ‘+’ and ‘*’ operators also work on collections. The ‘+’ operator
concatenates strings and collections or arrays. The ‘*’ operator will
duplicate a collection the specified number of times.

Assignment Operators: PowerShell has the set of assignment
operators commonly found in C-derived languages. The seman-
tics correspond to the binary forms of the operator.

Here’s is an example where a set of type constraints are applied
to a variable. We want anything assigned to this variable to first
be converted into a string, then into an array of characters and
finally into the code points associated with those characters.

PS (1) > [int[]][char[]][string]$v = @() # define variable
PS (2) > $v = “Hello” # assign a string
PS (3) > [string] $v # display the
code points
72 101 108 108 111
101
108
108
111
PS (4) > $v=2+2 # assign a number
PS (5) > $v # display the
code points
52
PS (6) > [char] 52 # cast it back
to char

Flow-control Statements: PowerShell has the usual collection
of looping and branching statements. One interesting difference
is that in many places, a pipeline can be used instead of a simple
expression.

if Statement:
if ($a –eq 13) { “A is 13} else {“A is not 13”}

The condition part of an if statement may also be a pipeline.

if (dir | where {$_.length –gt 10kb}) {
 “There were files longer than 10kb”
}

while Loop:
$a=1; while ($a –lt 10) { $a }
$a=10 ; do { $a } while (--$a)

for Loop:
for ($i=0; $i –lt 10; $i++) {
 “5 * $i is $(5 * $i)”
}

foreach Loop:
foreach ($i in 1..10) { “`$i is $i” }
foreach ($file in dir –recurse –filter *.cs | sort length)
{
 $_.Filename
}

foreach Cmdlet: This cmdlet can be used to iterate over
collections of operators (similar to the map() operation found
in many other languages like Perl.) There is a short alias for this
command ‘%’. Note that the $_ variable is used to access the
current pipeline object in the foreach and where cmdlets.

1..10 | foreach { $_ * $_ }
$t = 0; dir | foreach { $t += $_ } ; $t
1..10 | %{ “*” * $_ }

where Cmdlet: This cmdlet selects a subset of objects from a
stream based on the evaluation of a condition. The short alias
for this command is ‘?’.

1..10 | where {$_ -gt 2 –and $_ -lt 10}
get-process | where {$_.handlecount –gt 100 }

switch Statement: The PowerShell switch statement combines
both branching and looping. It can be used to process collections
of objects in the condition part of the statement or it can be used
to scan files using the –file option.

THE LANGUAGE, continued

OPERATORS

Operator Description Example Result

+ Add two numbers together 2+4 6

Add two strings together “Hi“ + “there” “Hi There”

Concatenate two arrays 1,2,3 + 4,5,6 1,2,3,4,5,6

* Multiply two values 2 * 4 8

Repeat the string “a” 3 times. “a” * 3 “aaa”

Concatenate the array twice 1,2 * 2 1,2,1,2

- Subtract one value from
another

6 -2 4

/ Divide two values 6 /2 3

Divide two values, auto-
convert to double

7/4 1.75

% Returns the remainder from a
division operation

7/4 3

Operator Example Equivalent Description

= $a= 3
$a,$b,$c =1,2,3

Sets the variable to the specified
value. Multiple assignment is
supported.

+= $a += 2 $a = $a + 2 Performs the addition operation
in the existing value then assign
the result back to the variable.

- = $a -= 13 $a = $a – 13 Performs the subtraction
operation in the existing value
then assign the result back to the
variable.

*= $a *= 3 $a = $a * 3 Multiplies the value of a variable
by the specified value or appends
to the existing value.

/= $a /= 3 $a = $a / 3 Divides the value of a variable by
the specified value

%= $a %= 3 $a = $a % 3 Divides the value of a variable by
the specified value and assigns the
remainder (modulus) to the variable

switch Keyword

switch -options (<pipeline>)
 {

<pattern> { <statementList> }
<pattern> { <statementList> }
default { <statementList> }

 }

Switch options control how
matching is done. These are:
-regex -wildcard -match -case

Pattern/action clauses. All matching clauses are executed.
Use the break keyword to halt processing or continue to cause

switch to skip to the next item to process.

default Keyword.
The default clause
is executed only if
there are no other

matches.

The pipeline produces values
to switch on. Alternatively

you can specify the sequence
switch -file <expr> {

Instead of
switch (<pipeline>) {

http://www.refcardz.com

4

DZone, Inc. | www.dzone.com

Windows PowerShell
 tech facts at your fingertips

Comparison Operators: Most of the PowerShell operators are
the same as are usually found in C-derived languages. The
comparison operators, however, are not. To allow the ‘>’ and ‘<’
operators to be used for redirection, a different set of characters
had to be chosen so PowerShell operators match those found in
the Bourne shell style shell languages. (Note: when applying
a PowerShell operator against collection, the elements of the
collection that compare appropriately will be returned instead
of a simple Boolean.)

Operator Description Example Result

-eq –ceq –ieq Equals 5 –eq 5 $true

-ne –cne –ine Not equals 5 –ne 5 $false

-gt –cgt –igt Greater than 5 –gt 3 $true

-ge –cge –ige Greater than or equal 5 –ge 3 $true

-lt –clt –ilt Less than 5 –lt 3 $false

-le –cle –ile Less than
or equals

5 –le 3 $false

-contains -ccontains
-icontains

The collection on the
left hand side contains
the value specified on
the right hand side.

1,2,3 –contains 2 $true

-notcontains-
cnotcontains
-inotcontains

The collection on the
left hand side does not
contain the value on the
right hand side.

1,2,3
–notcontains 2

$false

Pattern Matching Operators: PowerShell supports two sets of
pattern-matching operators. The first set uses regular expressions
and the second uses wildcard patterns (sometimes called
globbing patterns).

Regular Expression Patterns: PowerShell regular expressions
are implemented using the .NET regular expressions.

Operator Description Example Result

-match –cmatch
-imatch

Do a pattern match using
regular expressions

“Hello” –match
“[jkl]”

$true

-notmatch
-cnotmath
-inotmatch

Do a regex pattern match,
return true if the pattern
doesn’t match.

“Hello” –notmatch
“[jkl]”

$false

-replace
-creplace
-ireplace

Do a regular expression
substitution on the string
on the right hand side
and return the modified
string. Backreferences
are indicated in the
replacement string using
the sequence $n when
n is the corresponding
parenthetical expression
in the pattern.

“Hello” –replace
“ello”,”i’

“Hello” -replace
‘(ll)’,’+$1+’

“Hi”

“He+ll+o”

Delete the portion of the
string matching the
regular expression.

“abcde” –replace
“bcd”

“ae”

-like –clike –ilike Do a wildcard pattern
match

“one” –like “o*” $true

-notlike
–cnotline
-inotlike

Do a wildcard pattern
match, true if the pattern
doesn’t match.

“one”
–notlike “o*”

$false

OPERATORS, continued

Metacharacter Description Example

\w
Matches any “word” character,
approximately equivalent to
[a-zA-Z0-9]

“abcd defg” -match “\w+”

\W Matches any non-word character “abcd defg” -match “\W+”

\s Matches any whitespace character “abcd defg” -match “\s+”

\S
Matches any non-whitespace
character.

“abcd defg” -match “\s+”

\d \D
Matches any digit or non-digit
respectively

12345 -match “\d+”

{n} {n,} {n,m}

Quantifiers matching n through
m instances of a pattern.. If m is
not specified, it matches at least
n instances. If one n is specified,
it must match exactly n instances.

“abc” -match “\w{2,3}”

PowerShell Functions: Functions can be defined with the
function keyword. Since PowerShell is a shell, every statement in
a PowerShell function may return a value. Use redirection to $null
to discard unnecessary output. The following diagram shows a
simple function definition.

Advanced Functions: functions can also be defined like
cmdlets with a begin, process and end clause for handling
processing in each stage of the pipeline.

Copy console input into a file:
[console]::In.ReadToEnd() > foo.txt

Setting the Shell Prompt:
 function prompt { “$PWD [“ + $count++ + “]” }

 Setting the Title Bar Text:
 $host.UI.RawUI.WindowTitle = “PATH: $PWD”

Unary Operators:

Operator Example Results Description

= - (2+2) -4 Sets the variable to the specified
value. Multiple assignment is
supported.

+ + “123” 123 Performs the addition operation
in the existing value then assign
the result back to the variable.

-- --$a ; $a-- Depends on the
current value of the
variable.

Pre and post decrement
operator

++ ++$a;
$a++

Depends on the
current value of the
variable.

Pre and post increment

[<type>] [int]
“0x123”

291 Divides the value of a variable by
the specified value

, , (1+2) 1-element array
containing the value
of the expression.

Divides the value of a variable by
the specified value and assigns
the remainder (modulus) to the
variable

Hot
Tips

function
keyword; may
also use the
filter keyword

function <name> ($p1=<expr1>, $p2 ...) { <statementList> }

The name of
the function

Additional parameter specifications
are separated by commas

Parameter with initializer expression; name
followed by = symbol, followed by an expression

Parameter
specifications; may
include initializers

Function body;
list of statements
in parentheses

May use either
the function or

filter keyword; in
this case they are
treated the same
and the clauses
determine the

pipeline behavior

function <name> (<parameter list>)
{
 begin {
 <statementList>
 }
 process {
 <statementList>
 }
 end {
 <statementList>
 }
}

Function name List of formal parameters
to the function

List of statements to process
in the begin phase

List of statements to process
for each pipeline object

List of statements to process
during the end phase

http://www.refcardz.com

5

DZone, Inc. | www.dzone.com

Windows PowerShell
 tech facts at your fingertips

BASIC TASkS — TExT AND FILES

In general, the easiest way to get things done in PowerShell
is with cmdlets. Basic file operations are carried out with the
“core” cmdlets. These cmdlets work on any namespace. This
means that you can use them to manipulate files and directories

but can also use them to list the defined variables by doing
 dir variables:

or remove a function called “junk” by doing:
 del function:/junk

Cmdlet Name PowerShell
Standardized Alias

cmd
Command

UNIX sh
Command

Description

Get-Location gl pwd pwd Get the current directory

Set-Location sl cd, chdir cd, chdir Change the current directory

Copy-Item cpi copy cp Copy files

Remove-Item ri del, rd rm, rmdir Remove a file or directory. PowerShell has no separate command for removing directories as opposed to
file.

Move-Item mi move mv Move a file.

Rename-Item rni Rn ren Rename a file.

Set-Item si Set the contents of a file.

Clear-Item cli Clear the contents of a file.

New-Item ni Create a new empty file or directory. The type of object is controlled by the -type parameter.

Mkdir md mkdir Mkdir is implemented as a function in PowerShell so that users can create directories without having to
specify –type directory

Get-Content gc type cat Send the contents of a file to the output stream.

Set-Content sc Set the contents of a file. UNIX and cmd.exe have no equivalent. Redirection is used instead. The difference
between Set-Content and Out-File is discussed in detail in Chapter 10 of Windows PowerShell in Action.

I/O Redirection

Operator Example Results Description

> dir > out.txt Contents of out.txt are replaced. Redirect pipeline output to a file, overwriting the current contents

>> dir >> out.txt Contents of out.txt are appended to. Redirect pipeline output to a file, appending to the existing content.

2> dir nosuchfile.txt 2> err.txt Contents of err.txt are replaced by the error messages Redirect error output to a file, overwriting the current contents

2>> dir nosuchfile.txt 2>> err.txt Contents of err.txt are appended with the error messages Redirect error output to a file, overwriting the current contents

2>&1 dir nosuchfile.txt 2>&1 The error message is written to the output. The error messages are written to the output pipe instead of the error pipe.

Searching Through Text: The fastest way to search through text and files is to use the select-string cmdlet as shown:

 select-string Username *.txt –case # case-sensitive search for Username
 dir –rec –filter *.txt | select-string # case-insensitive search
 # through a set of files
 dir –rec –filter *.cs |
 select-string –list Main # only list the first match

The Select-String cmdlet is commonly aliased to ‘grep’ by UNIX users.

Formatting and Output: by default the output of any expression
that isn’t redirected will be displayed by PowerShell. The default
display mode can be overridden using the formatting cmdlets:

Cmdlet Description Example

Format-Table Formats a set of properties
into a table

dir | format-table name, length

Format-List Displays properties 1 per line
in a list.

dir | format-list *

Format-Wide Displays a single property in
multiple columns

dir | format-wide

Format-Custom Complex formatter dir | format-custom

Output is also handled by a set of cmdlets that send the
output to different locations.

Cmdlet Description Example

Out-File Writes formatted text to a file dir | out-file –encoding
unicode foo.txt

Out-Host Writes formatted text to the screen dir | out-host -pag

Out-Null Discards all output (equivalent to >
$null)

dir | out-null

Out-Printer Sends formatted output to the printer. cat report.ps | out-printer

Out-String Formats input as strings and writes them
to the output pipe

dir | out-string | where {$_.
match “x”}

Hot
Tip ErrorForegroundColor : Red

ErrorBackgroundColor : Black
WarningForegroundColor : Yellow
WarningBackgroundColor : Black
DebugForegroundColor : Yellow

DebugBackgroundColor : Black
VerboseForegroundColor : Yellow
VerboseBackgroundColor : Black
ProgressForegroundColor : Yellow
ProgressBackgroundColor : DarkCyan

Getting and Setting Text Colors: PS (1) > $host.PrivateData

http://www.refcardz.com
books.dzone.com/books/windowsps-in-action

6

DZone, Inc. | www.dzone.com

Windows PowerShell
 tech facts at your fingertips

TyPES AND OBjECTS
Accessing Instance Members: as is the case with most object
oriented languages, instance members (fields, properties and
method) are accesses through the dot “.” operator.

 “Hi there”.length
 “Hi there”.SubString(2,5)

The dot operator can also be used with an argument on the right
hand side:

 “Hi there”.(“len” + “th”)

Methods can also be invoked indirectly:

 $m = “Hi there”.substring
 $m.Invoke(2,3)

Static methods are invoked using the ‘::’ operator with an expres-
sion that evaluates to a type on the left-hand side and a member on
the right hand side

 [math]::sqrt(33)
 $m = [math]
 $m::pow(2,8)

Working With Collections: Foreach-Object, Where-Object

Unlike most scripting languages, the basic object model for
PowerShell is .NET which means that instead of a few simple
built-in types, PowerShell has full access to all of the types in
the .NET framework. Since there are certain common types
that are used more often than others, PowerShell includes
shortcuts or type accelerators for those types. The set of accel-
erators is a superset of the type shortcuts in C#. (Note: a type
literal in Powershell is specified by using the type name enclosed
in square brackets like [int] or [string].

Type Alias Corresponding .NET Type Example

[int] System.Int32 1 -15 1kb 0x55aa -15

[long] System.Int64 10000000000

[string] System.String “Hello`nthere” ‘hi’

[char] System.Char [char] 0x20

[bool] System.Boolean $true $false

[byte] System.Byte [byte] 13

[double] System.Double 1.2 1e3mb -44.00e16KB

[decimal] System.Decimal 12.0d 13D

[float] System.Single [float] 1.0

[single] System.Single same as float

[regex] System.Text.
RegularExpressions.Regex

[regex] “^[a-z]+”

[array] System.Xml.XmlDocument [array] 22

[xml] System.Management.
Automation.ScriptBlock

[xml] “<tag>Hi there</tag>”

[scriptblock] System.Management.
Automation.SwitchParameter

{ param($x,$y) $x+$y }

[switch] System.String function f ([switch] $x) { “x is $x” }

[hashtable] System.Collections.Hashtable @{a=1; b=2*3; c = dir | sort length }

[psobject] System.Management.
Automation.PSObject

new-object psobject

[type] System.Type [type] “int”

Operators For Working With Types

Operator Example Results Description

-is $true –is [bool] $true True if the type of the left hand
side matches the type of the right
hand side

$true -is [object] $true This is always true – everything is
an object except $null

$true -is [ValueType] $true The left hand side is an instance of
a .NET value type.

“hi” -is [ValueType] $false A string is not a value type, it’s a
reference type.

“hi” –is [object] $true But a string is still an object.

12 –is [int] $true 12 is an integer

12 –is “int” $true The right hand side of the operator
can be either a type literal or a string
naming a type.

-isnot $true –isnot [string] $true The object on the left-hand is not of
the same type as the right hand side.

$true –isnot [object] $true The null value is the only thing that
isn’t an object.

-as “123” -as [int] 123 Takes the left hand side and converts
it to the type specified on the right-
hand side.

123 –as “string” “123” Turn the left hand side into an
instance of the type named by the
string on the right.

THE .NET FRAmEWORk

Loading Assemblies:
 [void][reflection.assembly]::LoadWithPartialName
 (“System.Windows.Forms”)

Using Windows Forms to do GUI Programming from
PowerShell:
 $form = new-object Windows.Forms.Form
 $form.Text = “My First Form”
 $button = new-object Windows.Forms.Button
 $button.text=”Push Me!”
 $button.Dock=”fill”
 $button.add_click({$form.close()})
 $form.controls.add($button)
 $form.Add_Shown({$form.Activate()})
 $form.ShowDialog()

Working With Date and Time
Use the Get-Date cmdlet to get the current date.
$now = get-date; $now

Do the same thing using the use static method on System.
DateTime
$now = [datetime]::now ; $now

Get the DateTime object representing the beginning of this
year using a cast.
$thisYear = [datetime]”2006/01/01”

Get the day of the week for today
$now.DayOfWeek

Get the total number of days since the beginning of the year.
($now-$thisyear).TotalDays

Get the total number of hours since the beginning of the year.
($now-$thisyear).TotalHours

Get the number of days between now and December 25th for
this year.
(([datetime] “12/25/2006”)-$now).TotalDays

Get the day of the week it occurs on:
([datetime] “12/25/2006”).DayOfWeek

Hot
Tip

http://www.refcardz.com

7

DZone, Inc. | www.dzone.com

Windows PowerShell
 tech facts at your fingertips

The other major object model used in PowerShell is WMI—
Windows Management Infrastructure. This is Microsoft’s imple-
mentation of the Common Instrumentation Model or CIM. CIM
is an industry standard created by Microsoft, HP, IBM and many
other computer companies with the intent of coming up with a
common set of management abstractions. WMI is accessed in
PowerShell through the Get-WMIObject cmdlet and through
the [WMI] [WMISearcher] type accelerators. For example, to get
information about the BIOS on your computer, you could do:

PS (1) > (Get-WmiObject win32_bios).Name
v3.20

PowerShell has no language support for creating new types.
Instead this is done through a series of commands that allow
you to add members (properties, fields and methods) to existing
object. Here’s an example:

PS (1) > $a = 5 # assign $a the integer 5
PS (2) > $a.square()
Method invocation failed because [System.Int32] doesn’t
contain a method named ‘square’.
At line:1 char:10
+ $a.square(<<<<)
PS (3) > $a = 5 | add-member -pass scriptmethod square
{$this * $this}
PS (4) > $a
5
PS (5) > $a.square()
25
PS (6) > $a.gettype().Fullname
System.Int32

Working With XML Data: PowerShell directly supports XML.
XML documents can be created with a simple cast and document
elements can be accessed as though they were properties.

PS (1) > $d = [xml] “<a>1<c>2</c>”
PS (2) > $d.a.b
1
PS (3) > $d.a.c
2

WmI (WINDOWS mANAGEmENT INFRASTRUCTURE)

BUILDING CUSTOm OBjECTS IN POWERSHELL

Support for active directory is accomplished through type
accelerators. A string can be cast into an ADSI (LDAP) query
and then used to manipulate the directory as shown:

$domain = [ADSI] `
>> “LDAP://localhost:389/dc=NA,dc=fabrikam,dc=com”
PS (2) > $newOU = $domain.Create(“OrganizationalUnit”,
“ou=HR”)
PS (3) > $newOU.SetInfo()
PS (5) > $ou = [ADSI] `
>> “LDAP://localhost:389/
ou=HR,dc=NA,dc=fabrikam,dc=com”
>>
PS (7) > $newUser.Put(“title”, “HR Consultant”)
PS (8) > $newUser.Put(“employeeID”, 1)
PS (9) > $newUser.Put(“description”, “Dog”)
PS (10) > $newUser.SetInfo()
PS (12) > $user = [ADSI] (“LDAP://localhost:389/” +
>> “cn=Dogbert,ou=HR,dc=NA,dc=fabrikam,dc=com”)
>>

ADSI (ACTIvE DIRECTORy)

Along with .NET, PowerShell also lets you work with COM object.
This is most commonly used as the Windows automation mecha-
nism. The following example shows how the Microsoft Word
automation model can be used from PowerShell:

Listing: Get-Spelling Script — this script uses Word to spell
check a document

if ($args.count -gt 0)
{ #1
@”
Usage for Get-Spelling:

Copy some text into the clipboard, then run this script. It will
display the Word spellcheck tool that will let you correct the
spelling on the text you’ve selected. When you’re done it will
put the text back into the clipboard so you can paste back into
the original document.

“@
 exit 0
}

$shell = new-object -com wscript.shell
$word = new-object -com word.application
$word.Visible = $false

$doc = $word.Documents.Add()
$word.Selection.Paste()

if ($word.ActiveDocument.SpellingErrors.Count -gt 0)
{
 $word.ActiveDocument.CheckSpelling()
 $word.Visible = $false
 $word.Selection.WholeStory()
 $word.Selection.Copy()
 $shell.PopUp(“The spell check is complete, “ +
 “the clipboard holds the corrected text.”)
}
else
{
 [void] $shell.Popup(“No Spelling Errors were detect-
ed.”)
}

$x = [ref] 0
$word.ActiveDocument.Close($x)
$word.Quit()

COm (COmPONENT OBjECT mODEL)

Hot
Tip

Tokenizing a Stream
Using Regular Expressions:

The –match operator will only retrieve
the first match from a string. Using the [regex] class,
it’s possible to iterate through all of the matches.
The following example will parse simple arithmetic
expressions into a collection of tokens:

 $pat = [regex] “[0-9]+|\+|\-|*|/| +”

 $m = $pat.match(“11+2 * 35 -4”)

 while ($m.Success) {

 $m.value

 $m = $m.NextMatch()

 }

http://www.refcardz.com

Bruce Payette
Bruce Payette is a Principal Developer with the Windows PowerShell
team at Microsoft. He is a founding member of the PowerShell team,
co-designer of the PowerShell language and implementer of the
language. Prior to joining Microsoft to try and fix the Windows
command-line, he worked at a variety of companies including MKS
and Softway Systems (the makers of Interix), trying to fix the Windows

command line. Bruce lives in Bellevue, Washington, with his wife and three extremely
over-bonded cats.

Publications
n	 Windows PowerShell in Action, 2006

ABOUT THE AUTHOR

8

RECOmmENDED BOOk

BUy NOW
books.dzone.com/books/windowsps-in-action

Windows PowerShell

Windows PowerShell in Action is a log-
ically oriented and clearly expressed
introduction to a big subject. It is also
an invaluable guide for veterans to
the expert techniques they need to
know to draw a lot more power of this
incredible tool.

 tech facts at your fingertips

Subscribe Now for FREE! refcardz.com

Getting
Started with
Ajax

GWT Style, Configuration
and JSNI Reference

Hot
Tip

 tech facts at your fingertips

 tech facts at your fingertips

Upcoming Refcardz:

n		Dependency Injection in EJB3
n		Spring Configuration
n	 RSS and Atom
n	 Flexible Rails:
 Flex 3 on Rails 2
n		Getting Started with Eclipse

n		 jQuery Selectors
n		Design Patterns
n		MS Silverlight 2.0
n		NetBeans IDE 6
 Java Editor
n		Groovy

FREE

The DZone Network is a group of free online services that aim to

satisfy the information needs of software developers and architects.

From news, blogs, tutorials, source code and more, DZone offers

everything technology professionals need to succeed.

To quote PC magazine, “DZone is a developer’s dream.”

DZone, Inc.
1251 NW Maynard
Cary, NC 27513

888.678.0399
919.678.0300

Refcardz Feedback Welcome

refcardz@dzone.com

Sponsorship Opportunities

sales@dzone.com

Copyright © 2008 DZone, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic,
mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Version 1.0

$7
.9

5

ISBN-13: 978-1-934238-01-1
ISBN-10: 1-934238-01-5

9 781934 238011

5 0 7 9 5

Errors and Debugging: The success or failure status of the last
command can be determined by checking $?. A command may
also have set a numeric code in the $LASTEXITCODE variables.
(This is typically done by external applications.)

PS (11) > “exit 25” > invoke-exit.ps1
PS (12) > ./invoke-exit

PS (13) > $LASTEXITCODE

The default behavior when an error occurs can be controlled
globally with the $ErrorActionPreference variable or, for a single
command, with the -ErrorAction Parameter.

The trap Statement: will catch any exceptions thrown in a
block. The behavior of the trap statement can be altered with
the break and continue statements.

The throw Statement: along with the trap statement, there
is a throw statement. This statement may be used with no
arguments in which case a default exception will be constructed.
Alternatively, an arbitrary value may be thrown that will be
automatically wrapped in a PowerShell runtime exception.

BUILDING CUSTOm OBjECTS IN POWERSHELL

Hot
Tip

The Format Operator
The PowerShell format operator is a
wrapper around the .NET String.Format
method. It allows you to do very precise

 formatting:

 “0x{0:X} {1:hh} |{2,5}|{3,-5}|{4,5}”
 -f 255, (get-date), “a”,”b”,”c”

trap keyword

trap [<exceptionType>] {<statementList>}

Type of exception to catch
(may be omitted)

Body of the trap
statement

The throw keyword

throw [<expression>]

Optional expressions
that produces a value to
throw. This value need
not be an exception

books.dzone.com/books/windowsps-in-action
books.dzone.com/books/windowsps-in-action
books.dzone.com/books/windowsps-in-action
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.refcardz.com
http://www.dzone.com
http://www.dzone.com
http://www.dzone.com
mailto:refcardz@dzone.com
mailto:sales@dzone.com
books.dzone.com/books/windowsps-in-action

