
Top 5 Java performance metrics,  
tips & tricks



Top 5 Java performance metrics, tips & tricks 2

Top 5 Java performance metrics, tips & tricks

Chapter 1: Getting started with APM......................................................................................4

Chapter 2: Challenges in implementing an APM strategy.......................................................9

Chapter 3: Top 5 performance metrics to capture in enterprise Java applications................14

Chapter 4: AppDynamics approach to APM .........................................................................20

Chapter 5: APM tips and tricks..............................................................................................25



Chapter 1
Getting started with APM



Top 5 Java performance metrics, tips & tricks 4

What is Application Performance Management (APM)? 
As applications have evolved from stand-alone applications to client-server 
applications to distributed applications and ultimately to cloud-based elastic 
applications, application performance management has evolved to follow suit. 
When we refer to APM we refer to managing the performance of applications 
such that we can determine when they are behaving normally and when they are 
behaving abnormally. Furthermore, when someone goes wrong and an application 
is behaving abnormally, we need to identify the root cause of the problem quickly 
so that we can remedy it. 

We might observe things like:
-- The physical hardware upon which the application is running
-- The virtual machines in which the application is running
-- The JVM that is hosting the application environment
-- The container (application server or web container) in which the application 
is running

-- The behavior of the application itself
-- Supporting infrastructure, such as network communications, databases, 
caches, external web services, and legacy systems

Once we have captured performance metrics from all of these sources, we need 
to interpret and correlate them with respect to the impact on your business 
transactions. This is where the magic of APM really kicks in. APM vendors employ 
experts in different technologies so that they can understand, at a deep level, 
what performance metrics mean in each individual system and then aggregate 
those metrics into a holistic view of your application. 

The next step is to analyze this holistic view your application performance against 
what constitutes normalcy. For example, if key business transactions typically 
respond in less than 4 seconds on Friday mornings at 9am but they are responding 
in 8 seconds on this particular Friday morning at 9am then the question is why? 
An APM solution needs to identify the paths through your application for those 
business transactions, including external dependencies and environmental 
infrastructure, to determine where they are deviating from normal. It then needs 
to bundle all of that information together into a digestible format and alert you to 
the problem. You can then view that information, identify the root cause of the 
performance anomaly, and respond accordingly.

Finally, depending on your application and deployment environment, there may 
be things that you can tell the APM solution to do to automatically remediate the 
problem. For example, if your application is running in a cloud-based environment 
and your application has been architected in an elastic manner, you can configure 
rules to add additional servers to your infrastructure under certain conditions.

Thus we can refine our definition of APM to include the following activities: 
-- The collection of performance metrics across an entire application 
environment

-- The interpretation of those metrics in the light of your business applications
-- The analysis of those metrics against what constitutes normalcy
-- The capture of relevant contextual information when abnormalities are 
detected

-- Alerts informing you about abnormal behavior
-- Rules that define how to react and adapt your application environment to 
remediate performance problems

Chapter 1: Getting started with APM

Application Performance Management, or APM, is the monitoring and management of the availability and performance of 
software applications. Different people can interpret this definition differently so this article attempts to qualify what APM 
is, what it includes, and why it is important to your business. If you are going to take control of the performance of your 
applications, then it is important that you understand what you want to measure and how you want to interpret it in the 
context of your business. 

http://en.wikipedia.org/wiki/Application_performance_management


Top 5 Java performance metrics, tips & tricks 5

Why is APM important? 
It probably seems obvious to you that APM is important, but you will likely need 
to answer the question of APM importance to someone like your boss or the 
company CFO that wants to know why she must pay for it. In order to qualify the 
importance of APM, let’s consider the alternatives to adopting an APM solution 
and assess the impact in terms of resolution effort and elapsed down time. 

First let’s consider how we detect problems. An APM solution alerts you to the 
abnormal application behavior, but if you don’t have an APM solution then you 
have a few options:

-- Build synthetic transactions 
-- 	Manual instrumentation
-- 	Wait for your users to call customer support!?

A synthetic transaction is a transaction that you execute against your application 
and with which you measure performance. Depending on the complexity of your 
application, it is not difficult to build a small program that calls a service and 
validates the response. But what do you do with that program? If it runs on your 
machine then what happens when you’re out of the office? Furthermore, if you do 
detect a functional or performance issue, what do you do with that information? 
Do you connect to an email server and send alerts? How do you know if this is a 
real problem or a normal slowdown for your application at this hour and day of 
the week? Finally, detecting the problem is one thing, how do you find the root 
cause of the problem?

The next option is manually instrumenting your application, which means that 
you add performance monitoring code directly to your application and record 
it somewhere like a database or a file system. Some challenges in manual 
instrumentation include: what parts of my code do I instrument, how do I 
analyze it, how do I determine normalcy, how do I propagate those problems 
up to someone to analyze, what contextual information is important, and so 
forth. Plus you have introduced a new problem: you have introduced performance 
monitoring code into your application that you need to maintain. Furthermore, 
can you dynamically turn it on and off so that your performance monitoring code 
does not negatively affect the performance of your application? If you learn more 
about your application and identify additional metrics you want to capture, do 
you need to rebuild your application and redeploy it to production? What if your 
performance monitoring code has bugs?

There are other technical options, but what I find most often is that companies 
are alerted to performance problems when their custom service organization 
receives complaints from users. I don’t think I need to go into details about why 
this is a bad idea!

Next let’s consider how we identify the root cause of a performance problem 
without an APM solution. Most often I have seen companies do one of two things:

-- Review runtime logs
-- Attempt to reproduce the problem in a development / test environment

Log files are great sources of information and many times they can identify 
functional defects in your application (by capturing exception stack traces), but 
when experiencing performance issues that do not raise exceptions, they typically 
only introduce additional confusion. You may have heard of, or been directly 
involved in, a production war room. These war rooms are characterized by finger 
pointing and attempts to indemnify one’s own components so that the pressure 
to resolve the issue falls on someone else. The bottom line is that these meetings 
are not fun and not productive.

Alternatively, and usually in parallel, the development team is tasked with 
reproducing the problem in a test environment. The challenge here is that you 
usually do not have enough context for these attempts to be fruitful. Furthermore, 
if you are able to reproduce the problem in a test environment, that is only the 
first step, now you need to identify the root cause of the problem and resolve it!

So to summarize, APM is important to you so that you can understand the 
behavior of your application, detect problems before your users are impacted, 
and rapidly resolve those issues. In business terms, an APM solution is important 
because it reduces your Mean Time To Resolution (MTTR), which means that 
performance issues are resolved quicker and more efficiently so that the impact 
to your business bottom line is reduced.

Chapter 1: Getting started with APM (cont’d)



Top 5 Java performance metrics, tips & tricks 6

Evolution of APM
The APM market has evolved substantially over the years, mostly in an attempt to 
adapt to changing application technologies and deployments. When we had very simple 
applications that directly accessed a database then APM was not much more than a 
performance analyzer for a database. But as applications moved to the web and we saw 
the first wave of application servers then APM solutions really came into their own. At the 
time we were very concerned with the performance and behavior of individual moving 
parts, such as:

-- Physical servers and the operating system hosting our applications
-- JVM
-- Application server behavior
-- Application response time

We captured metrics from all of these sources and stitched them together into a holistic 
story. We were deeply interested in garbage collection behavior, thread and connection 
pools, operating system reads and writes, and so forth. Not to mention, we raised fatal 
alerts whenever a server went down. Advanced implementations even introduced the 
ability to trace a request from the web server that received it across tiers to any backend 
system, such as a database. These were powerful solutions, but then something happened 
to rock our world: the cloud.

The cloud changed our view of the world because no longer did we take a system-level 
view of the behavior of our applications, but rather we took an application-centric view 
of the behavior of our applications. The infrastructure upon which an application runs 
is still important, but what is more important is whether or not an application is able to 
execute its business transactions in a normal fashion. If a server goes down, we do not 
need to worry as long as the application business transactions are still satisfied. As a 
matter of fact, cloud-based applications are elastic, which means that we should expect 
the deployment environment to expand and contract on a regular basis. For example, 
if you know that your business experiences significant load on Fridays from 5pm-10pm 
then you might want to start up additional virtual servers to support that additional load 
at 4pm and shut them down at 11pm. The former APM monitoring model of raising alerts 
when servers go down would drive you nuts.

Furthermore, by expanding and contracting your environment, you may find that single 
server instances only live for a matter of a few hours. I have heard of one large cloud-
based application that uses a very large amount of RAM in its JVMs, but its recycling 
strategy ensures that those servers are shut down before garbage collection ever has 
a chance to run. This might be an extreme example, but it illustrates that what was 
once one of the most impactful performance issues has been rendered a non-issue by a 
creative deployment model.

You may still find some APM solutions from the old world, but the modern APM vendors 
have seen these changes in the industry and have designed APM solutions to focus on 
your application behavior and have placed a far greater importance on the performance 
and availability of business transactions than on the underlying systems that support 
them.

Buy versus build
This article has covered a lot of ground and now you’re faced with a choice: do you 
evaluate APM solutions and choose the one that best fits your needs or do you try 
to roll your own. I really think this comes down to the same questions that you need 
to ask yourself in any buy versus build decision: what is your core business and is it 
financially worth building your own solution? 

If your core business is selling widgets then it probably does not make a lot of sense 
to build your own performance management system. If, on the other hand, your core 
business is building technology infrastructure and middleware for your clients then it 
might make sense (but see the answer to question two below). You also have to ask 
yourself where your expertise lies. If you are a rock star at building an eCommerce site 
but have not invested the years that APM vendors have in analyzing the underlying 
technologies to understand how to interpret performance metrics then you run the 
risk of leaving your domain of expertise and missing something vital.

The next question is: is it financially worth building your own solution? This depends 
on how complex your applications are and how downtime or performance problems 
affect your business. If your applications leverage a lot of different technologies (e.g. 
Java, .NET, PHP, web services, databases, NoSQL data stores) then it is going to 
be a large undertaking to develop performance management code for all of these 
environments. But if you have a simple servlet that calls a database then it might not 
be insurmountable. 

Finally, ask yourself about the impact of downtime or performance issues on your 
business. If your company makes its livelihood by selling its products online then 
downtime can be disastrous. And in a modern competitive online sales world, 
performance issues can impact you more than you might expect. Consider how the 
average person completes a purchase: she typically researches the item online to 
choose the one she wants. She’ll have a set of trusted vendors (and hopefully you’re 
in that honored set) and she’ll choose the one with the lowest price. If the site is 
slow then she’ll just move on to the next vendor in her list, which means you just 
lost the sale. Additionally, customers place a lot of value on their impression of your 
web presence. This is a hard metric to quantify, but if your web site is slow then 
it may damage customer impressions of your company and hence lead to a loss in 
confidence and sales.

All of this is to say that if you have a complex environment and performance issues 
or downtime are costly to your business then you are far better off buying an APM 
solution that allows you to focus on your core business and not on building the 
infrastructure to support your core business.

Chapter 1: Getting started with APM (cont’d)



Top 5 Java performance metrics, tips & tricks 7

Conclusion
Application Performance Management involves measuring the performance of 
your applications, capturing performance metrics from the individual systems 
that support your applications, and then correlating them into a holistic view. 
The APM solution observes your application to determine normalcy and, when it 
detects abnormal behavior, it captures contextual information about the abnormal 
behavior and notifies you of the problem. Advanced implementations even allow 
you to react to abnormal behavior by changing your deployment, such as by 
adding new virtual servers to your application tier that is under stress. An APM 
solution is important to your business because it can help you reduce your mean 
time to resolution (MTTR) and lessen the impact of performance issues on your 
bottom line. If you have a complex application and performance or downtime 
issues can negatively affect your business then it is in your best interested to 
evaluate APM solutions and choose the best one for your applications.

This article reviewed APM and helped outline when you should adopt an APM 
solution. In the next article, we’ll review the challenges in implementing an APM 
strategy and dive much deeper into the features of APM solutions so that you can 
better understand what it means to capture, analyze, and react to performance 
problems as they arise.

Chapter 1: Getting started with APM (cont’d)



Chapter 2
Challenges in implementing an 
APM strategy



Top 5 Java performance metrics, tips & tricks 9

Capturing performance data
Most applications of substance leverage a plethora of technologies. For example, 
you may have an application server or a web container, a SQL database, one or 
more NoSQL databases, a caching solution, web services running on alternate 
platforms, and so forth. Furthermore, we’re finding that certain technologies are 
better at solving certain problems than others, which means that we’re adding 
more technologies into the mix. 

In order to effectively manage the performance of your environment, you need to 
gather performance statistics from each component with which your application 
interacts. We can categories these metrics into two raw buckets:

-- 	Business Transaction Components
-- Container or Engine Components

Measuring business transaction performance
The previous article emphasized the importance of measuring business transactions 
as an indicator of the performance of your application because business transactions 
identify real-user behavior. If your users are able to complete their business 
transactions in the expected amount of time then we can say that the performance 
of the application is acceptable. But if business transactions are unable to complete 
or are performing poorly then there is a problem that needs to be addressed.

Business Transactions can be triggered by any significant interaction with your 
application, whether that is a web request, a web service request, or a message 
that arrives on a message queue. Business Transactions are composed of various 
components, or segments, that run on tiers: as a request passes from one system 
to another, such as a by executing a web service call or executing a database 
query, we add the performance of that tier to the holistic business transaction. 

Therefore, an APM strategy that effectively captures business transactions not 
only needs to measure the performance of the business transaction as a whole, 
but also needs to measure the performances of its constituent parts. Practically 
this means that you need to define a global business transaction identifier (token) 
for each request, find creative ways to pass that token to other services, and then 
access that token on the those servers to associate this segment of the business 
transaction with the holistic business transaction on an APM server. Fortunately 
most communication protocols support mechanisms for passing tokens between 
machines, such as using custom HTTP headers in web requests or custom JMS 
headers/properties in asynchronous messaging. The point is that this presents a 
challenge because you need to account for all of these communication pathways 
in your APM strategy.

Once you have captured the performance of a business transaction and its 
constituent tiers, the fun begins. The next section describes analysis in more 
depth, but assuming that you have identified a performance issue, the next step is 
to capture a snapshot of the performance trace of the entire business transaction, 
along with any other relevant contextual information. There are different strategies 
for capturing performance snapshots, but the most common are byte-code 
instrumentation (BCI) and thread polling. 

Java source code is compiled into byte-code, which is similar to assembly or machine 
code, and then the Java Virtual Machine interprets the byte-code in real-time. Byte-
code instrumentation involves modifying the byte-code of a running application, 
typically by hooking into the JVM’s class loader, to inject performance-monitoring 
code. For example, we might create a new method that wraps a method call with 
code that captures the response time and identifies exceptions. BCI is complex and 
not for the weary hearted, but it is a well-understood science at this point. The big 
caveat to be aware of is that you need to capture performance information without 
negatively impacting the performance of the business transaction itself. Stated 
another way, don’t make the problem (too much) worse!

Chapter 2: Challenges in implementing an APM strategy

The last article presented an overview of Application Performance Management (APM), described high-level strategies and 
requirements for implementing APM, presented an overview of the evolution of APM over the past several years, and provided 
you with some advice about whether you should buy an APM solution or build your own. This article expands upon that 
foundation by presenting the challenges to effectively implementing an APM strategy. Specifically this article presents the 
challenges in:
 - Capturing performance data from disparate systems
 - Analyzing that performance data
 - Automatically, or programmatically, responding to performance problems



Top 5 Java performance metrics, tips & tricks 10

Chapter 2: Challenges in implementing an APM strategy (cont’d)

BCI provides a real-user view of the behavior of the business transaction, but it 
can be a heavyweight solution that can slow down the overall performance of the 
business transaction. An alternative is to identify the thread that is executing the 
business transaction and poll for a stack trace of that thread on a regular interval, 
such as every 10 or 50 milliseconds. From these stack traces you can infer how 
long each method took to execute, at the granularity of your polling interval. 
Thread polling adds constant overhead to the JVM while it is running so it does 
not get in the way any individual business transaction execution. The key, as with 
BCI, is to perform thread polling sparingly and intelligently to reduce the overhead 
that you’re adding to already overburdened machine.

Measuring container performance
In addition to capturing the performance of business transactions, you are going 
to want to measure the performance of the containers in which your application 
is running. Unfortunately the benefits that Java brings us through the notion of 
“write once, run everywhere” translates to challenges in container monitoring.
Figure 1 attempts to illustrate this complexity.

Figure 1 A JVM’s Layered Architecture

An application runs in an application server or web container that runs in a JVM that 
runs on an operating system that runs on physical (or virtual) hardware. If there 
is a performance issue in the application, there is a fair amount of infrastructure 
that could be contributing to the problem. And in a modern virtualized or cloud-
based deployment, the problem is more complex because you have introduced an 
additional layer of infrastructure between the JVM and the underlying hardware.

In order to effectively manage the performance of your application, you need to 
gather container metrics such as the following:

-- Application Server / Web Container: thread pool usage, resource pool usage 
(e.g. connection pools), cache hit-counts and miss-counts, queued requests

-- 	JVM: memory usage, garbage collection, JVM threads
-- 	Operating Systems: network usage, I/O rates, system threads
-- 	Hardware: CPU utilization, system memory, network packets

These are just a few of the relevant metrics, but you need to gather information 
at this level of granularity in order to assess the health of the environment in 
which your application is running. And as we introduce additional technologies 
in the technical stack, such as databases, NoSQL databases, .NET services, 
distributed caches, key/value stores, and so forth, they each have their own set 
of metrics that need to be captured and analyzed. Building readers that capture 
these metrics and then properly interpreting them can be challenging.

Your App Dependecies/JARs

Application Server / Web Container

JVM Other Processes

Operating System

Hardware



Top 5 Java performance metrics, tips & tricks 11

Analyzing performance data
Now that we have captured the response times of business transactions, both 
holistically and at the tiered level, and we have collected a hoard of container 
metrics, the next step is to combine these data points and derive business value 
from them. As you might surmise, this is a non-trivial effort.

Let’s start with business transactions. We already said that we needed to generate 
a unique token for each business transaction and then pass that token from tier 
to tier, tracking the response time for each tier and associating it with that token. 
We need a central server to which we send these constituent “segments” that will 
be combined into an overall view the performance of the business transaction. 
Figure 2 shows this visually.

Figure 2 Assembling Segments into a Business Transaction

Analyzing the performance of a business transaction might sound easy on the 
surface: compare its response time to a service-level agreement (SLA) and if it is 
slower than the SLA then raise an alert. Unfortunately, in practice it is not that 
easy. In the years that I spent delivering performance tuning engagements to 
dozens of companies I can count on one hand the number of companies that had 
formally defined SLAs. In practice we want to instead determine what constitutes 
“normal” and identify when behavior deviates from “normal”.

We need to capture the response times of individual business transactions, as a 
whole, as well as the response times of each of those business transactions’ tiers 
or segments. For example, we might find that the “Search” business transaction 
typically responds in 3 seconds, with 2 seconds spent on the database tier and 
1 second spent in a web service call. But this introduces the question of what 
constitutes “typical” behavior in the context of your application?

Different businesses have different usage patterns so the normal performance 
of a business transaction for an application at 8am on a Friday might not be 
normal for another application. In short, we need to identify a baseline of the 
performance of a business transaction and analyze its performance against that 
baseline. Baselines can come in the following patterns:

-- The average response time for the business transaction, at the granularity of 
an hour, over some period of time, such as the last 30 days.

-- The average response time for the business transaction, at the granularity 
of an hour, based on the hour of day. For example, we might compare the 
current response time at 8:15am with the average response time for every 
day from 8am-9am for the past 30 days.

-- The average response time for the business transaction, at the granularity 
of an hour, based on the hour of the day and the day of the week. In this 
pattern we compare the response time of a business transaction on Monday 
at 8:15am with the average response time of the business transaction from 
8am-9am on Mondays for the past two months. This pattern works well 
for applications with hourly variability, such as ecommerce sites that see 
increased load on the weekends and at certain hours of the day.

-- The average response time for the business transaction, at the granularity of 
an hour, based on the hour of day and the day of the month. In this pattern 
we compare the response time of a business transaction on the 15th of the 
month at 8:15am with the average response time of the business transaction 
from 8am-9am on the 15th of the month for the past 6 months. This pattern 
works well for applications with date based variability, such as banking 
applications in which users deposit their checks on the 15th and 30th of 
each month.

In addition to analyzing the performance of business transactions, we also need 
to analyze the performance of the container and infrastructure in which the 
application runs. There are abhorrent conditions that can negatively impact all 
business transactions running in an individual environment. For example, if your 
application server runs out of threads then requests will back up, if the JVM runs a 
major/full garbage collection then all threads in the JVM will freeze, if the OS runs 
a backup process with heavy I/O then the machine will slow down, and so forth. It 
is important to correlate business transaction behavior with container behavior to 
identify false-positives: the application may be fine, but the environment in which 
it is running is under duress.

Finally, container metrics can be key indicators that trigger automated responses 
that dynamically change the environment, which we explore in the next section.

Chapter 2: Challenges in implementing an APM strategy (cont’d)

Browser Server 1

Server 2

Server 3

Central 
Monitoring 

Server
S1 S2 S3Segment 1

Business Transaction

Segment 2

Segment 3



Top 5 Java performance metrics, tips & tricks 12

Automatically Responding to Performance Issues
Traditional applications that ran on very large monolithic machines, such as 
mainframes or even high-end servers, suffered from the problem that they 
were very static: adding new servers could be measured in days, weeks, and 
sometimes months. With the advent of the cloud, these static problems went 
away as application environments became elastic. Elasticity means that application 
environments can be dynamically changed at run-time: more virtual servers can 
be added during peak times and removed during slow times. It is important to 
note that elastic applications require different architectural patterns than their 
traditional counterparts, so it is not as simple as deploying your traditional 
application to a cloud-based environment, but I’ll save that discussion for a future 
article.

One of the key benefits that elastic applications enable is the ability to automatically 
scale. When we detect a performance problem, we can respond in two ways:

-- Raise an alert so that a human can intervene and resolve the problem
-- Change the deployment environment to mitigate the problem

There are certain problems that cannot be resolved by adding more servers. For 
those cases we need to raise an alert so that someone can analyze performance 
metrics and snapshots to identify the root cause of the problem. But there are 
other problems that can be mitigated without human intervention. For example, if 
the CPU usage on the majority of the servers in a tier is over 80% then we might 
be able to resolve the issue by adding more servers to that tier. 

Business transaction baselines should include a count of the number of business 
transactions executed for that hour. If we detect that load is significantly higher 
than “normal” then we can define rules for how to change the environment to 
support the load. Furthermore, regardless of business transaction load, if we 
detect container-based performance issues across a tier, adding servers to that 
tier might be able mitigate the issue.

Smart rules that alter the topology of an application at runtime can save you 
money with your cloud-based hosting provider and can automatically mitigate 
performance issues before they affect your users.

Conclusion
This article reviewed some of the challenges in implementing an APM strategy. 
A proper APM strategy requires that you capture the response time of business 
transactions and their constituent tiers, using techniques like byte-code 
instrumentation and thread polling, and that you capture container metrics across 
your entire application ecosystem. Next, you need to correlate business transaction 
segments in a management server, identify the baseline that best meets your 
business needs, and compare current response times to your baselines. Finally, 
you need to determine whether you can automatically change your environment 
to mitigate the problem or raise an alert so that someone can analyze and resolve 
the problem.

In the next article we’ll look at the top-5 performance metrics to measure in an 
enterprise Java application and how to interpret them.

Chapter 2: Challenges in implementing an APM strategy (cont’d)



Chapter 3
Top 5 performance metrics to capture 
in enterprise Java applications



Top 5 Java performance metrics, tips & tricks 14

Business Transactions
Business Transactions provide insight into real-user behavior: they capture real-time 
performance that real users are experiencing as they interact with your application. 
As mentioned in the previous article, measuring the performance of a business 
transaction involves capturing the response time of a business transaction holistically 
as well as measuring the response times of its constituent tiers. These response times 
can then be compared with the baseline that best meets your business needs to 
determine normalcy. 

If you were to measure only a single aspect of your application I would encourage 
you to measure the behavior of your business transactions. While container metrics 
can provide a wealth of information and can help you determine when to auto-scale 
your environment, your business transactions determine the performance of your 
application. Instead of asking for the thread pool usage in your application server 
you should be asking whether or not your users are able to complete their business 
transactions and if those business transactions are behaving normally. 

As a little background, business transactions are identified by their entry-point, 
which is the interaction with your application that starts the business transaction. A 
business transaction entry-point can be defined by interactions like a web request, a 
web service call, or a message on a message queue. Alternatively, you may choose 
to define multiple entry-points for the same web request based on a URL parameter 
or for a service call based on the contents of its body. The point is that the business 
transaction needs to be related to a function that means something to your business. 

Once a business transaction is identified then its performance is measured across your 
entire application ecosystem. The performance of each individual business transaction 
is evaluated against its baseline to assess normalcy. For example, we might determine 
that if the response time of the business transaction is slower than two standard 
deviations from the average response time for this baseline that it is behaving 
abnormally, as shown in figure 1.

Figure 1 Evaluating BT Response Time Against its Baseline

The baseline used to evaluate the business transaction is consistent for the hour 
in which the business transaction is running, but the business transaction is being 
refined by each business transaction execution. For example, if you have chosen a 
baseline that compares business transactions against the average response time for 
the hour of day and the day of the week, after the current hour is over, all business 
transactions executed in that hour will be incorporated into the baseline for next 
week. Through this mechanism an application can evolve over time without requiring 
the original baseline to be thrown away and rebuilt; you can consider it as a window 
moving over time.

In summary, business transactions are the most reflective measurement of the user 
experience so they are the most important metric to capture.

Chapter 3: Top 5 performance metrics to capture in enterprise Java applications

The last couple articles presented an introduction to Application Performance Management (APM) and identified the 
challenges in effectively implementing an APM strategy. This article builds on these topics by reviewing five of the top 
performance metrics to capture to assess the health of your enterprise Java application.
 
Specifically this article reviews the following:
 - Business Transactions
 - External Dependencies
 - Caching Strategy
 - Garbage Collection
 - Application Topology

Business Transaction Response Time

Baseline

Average + 2 Standard Deviations

Greater than 2 SDs: Alert



Top 5 Java performance metrics, tips & tricks 15

External Dependencies
External dependencies can come in various forms: dependent web services, legacy 
systems, or databases; external dependencies are systems with which your application 
interacts. We do not necessarily have control over the code running inside external 
dependencies, but we often have control over the configuration of those external 
dependencies, so it is important to know when they are running well and when they 
are not. Furthermore, we need to be able to differentiate between problems in our 
application and problems in dependencies.

From a business transaction perspective, we can identify and measure external 
dependencies as being in their own tiers. Sometimes we need to configure the 
monitoring solution to identify methods that really wrap external service calls, 
but for common protocols, such as HTTP and JDBC, external dependencies can be 
automatically detected. For example, when I worked at an insurance company, we 
had an AS/400 and we used a proprietary protocol to communicate with it. We 
identified that method call as an external dependency and attributed its execution to 
the AS/400. But we also had web service calls that could be automatically identified 
for us. And similar to business transactions and their constituent application tiers, 
external dependency behavior should be baselined and response times evaluated 
against those baselines. 

Business transactions provide you with the best holistic view of the performance 
of your application and can help you triage performance issues, but external 
dependencies can significantly affect your applications in unexpected ways unless 
you are watching them

Caching Strategy
It is always faster to serve an object from memory than it is to make a network call 
to retrieve the object from a system like a database; caches provide a mechanism 
for storing object instances locally to avoid this network round trip. But caches 
can present their own performance challenges if they are not properly configured. 
Common caching problems include:

-- 	Loading too much data into the cache
-- 	Not properly sizing the cache

I work with a group of people that do not appreciate Object-Relational Mapping (ORM) 
tools in general and Level-2 caches in particular. The consensus is that ORM tools are 
too liberal in determining what data to load into memory and in order to retrieve 
a single object, the tool needs to load a huge graph of related data into memory. 
Their concern with these tools is mostly unfounded when the tools are configured 
properly, but the problem they have identified is real. In short, they dislike loading 
large amounts of interrelated data into memory when the application only needs a 
small subset of that data.

When measuring the performance of a cache, you need to identify the number of 
objects loaded into the cache and then track the percentage of those objects that 
are being used. The key metrics to look at are the cache hit ratio and the number of 
objects that are being ejected from the cache. The cache hit count, or hit ratio, reports 
the number of object requests that are served from cache rather than requiring a 
network trip to retrieve the object. If the cache is huge, the hit ratio is tiny (under 
10% or 20%), and you are not seeing many objects ejected from the cache then this 
is an indicator that you are loading too much data into the cache. In other words, 
your cache is large enough that it is not thrashing (see below) and contains a lot of 
data that is not being used.

The other aspect to consider when measuring cache performance is the cache size. 
Is the cache too large, as in the previous example? Is the cache too small? Or is the 
cache sized appropriately?

A common problem when sizing a cache is not properly anticipating user behavior and 
how the cache will be used. Let’s consider a cache configured to host 100 objects, 
but that the application needs 300 objects at any given time. The first 100 calls will 
load the initial set of objects into the cache, but subsequent calls will fail to find 
the objects they are looking for. As a result, the cache will need to select an object 
to remove from the cache to make room for the newly requested object, such as 
by using a least-recently-used (LRU) algorithm. The request will need to execute a 
query across the network to retrieve the object and then store it in the cache. The 
result is that we’re spending more time managing the cache rather than serving 
objects: in this scenario the cache is actually getting in the way rather than improving 
performance. To further exacerbate problems, because of the nature of Java and how 
it manages garbage collection, this constant adding and removing of objects from 
cache will actually increase the frequency of garbage collection (see below).

When you size a cache too small and the aforementioned behavior occurs, we say 
that the cache is thrashing and in this scenario it is almost better to have no cache 
than a thrashing cache. Figure 2 attempts to show this graphically

Figure 2 Cache Thrashing

Chapter 3: Top 5 performance metrics to capture in enterprise Java applications 
(cont’d)

External 
Resource

App Retrieve Object

Cache Retrieve Object

Not Found

Add Object to Cache

Eject item from the Cache 
Add New Item to the CacheX



Top 5 Java performance metrics, tips & tricks 16

In this situation, the application requests an object from the cache, but the object 
is not found. It then queries the external resource across the network for the 
object and adds it to the cache. Finally, the cache is full so it needs to choose an 
object to eject from the cache to make room for the new object and then add the 
new object to the cache. 

Garbage Collection
One of the core features that Java provided, dating back to its initial release, 
was garbage collection, which has been both a blessing and a curse. Garbage 
collection relieves us from the responsibility of manually managing memory: when 
we finish using an object, we simply delete the reference to that object and 
garbage collection will automatically free it for us. If you come from a language 
that requires manually memory management, like C or C++, you’ll appreciate 
that this alleviates the headache of allocating and freeing memory. Furthermore, 
because the garbage collector automatically frees memory when there are no 
references to that memory, it eliminates traditional memory leaks that occur 
when memory is allocated and the reference to that memory is deleted before 
the memory is freed. Sounds like a panacea, doesn’t it?

While garbage collection accomplished its goal of removing manual memory 
management and freeing us from traditional memory leaks, it did so at the cost of 
sometimes-cumbersome garbage collection processes. There are several garbage 
collection strategies, based on the JVM you are using, and it is beyond the scope 
of this article to dive into each one, but it suffices to say that you need to 
understand how your garbage collector works and the best way to configure it. 

The biggest enemy of garbage collection is known as the major, or full, garbage 
collection. With the exception of the Azul JVM, all JVMs suffer from major garbage 
collections. Garbage collections come in a two general forms:

-- Minor
-- Major

Minor garbage collections occur relatively frequently with the goal of freeing 
short-lived objects. They do not freeze JVM threads as they run and they are not 
typically significantly impactful. 

Major garbage collections, on the other hand, are sometimes referred to as “Stop 
The World” (STW) garbage collections because they freeze every thread in the 
JVM while they run. In order to illustrate how this happens, I’ve included a few 
figures from my book, Pro Java EE 5 Performance Management and Optimization.

Figure 3 Reachability Test

When garbage collection runs, it performs an activity called the reachability test, 
shown in figure 3. It constructs a “root set” of objects that include all objects 
directly visible by every running thread. It then walks across each object referenced 
by objects in the root set, and objects referenced by those objects, and so on, 
until all objects have been referenced. While it is doing this it “marks” memory 
locations that are being used by live objects and then it “sweeps” away all memory 
that is not being used. Stated more appropriately, it frees all memory to which 
there is not an object reference path from the root set. Finally, it compacts, or 
defragments, the memory so that new objects can be allocated.

Chapter 3: Top 5 performance metrics to capture in enterprise Java applications 
(cont’d)

At the beginning 
of a GC cycle 
objects that are 
allocated but no 
longer reachable 
are reclaimed 
by the Garbage 
Collector



Top 5 Java performance metrics, tips & tricks 17

Minor and major collections vary depending on your JVM, but figures 4 and 5 
show how minor and major collections operate on a Sun JVM.

 

Figure 4 Minor Collection

In a minor collection, memory is allocated in the Eden space until the Eden space 
is full. It performs a “copy” collector that copies live objects (reachability test) 
from Eden to one of the two survivor spaces (to space and from space). Objects 
left in Eden can then be swept away. If the survivor space fills up and we still have 
live objects then those live objects will be moved to the tenured space, where 
only a major collection can free them.
 

Figure 5 Major Collection

Eventually the tenured space will fill up and a minor collection will run, but it will 
not have any space in the tenured space to copy live objects that do not fit in 
the survivor space. When this occurs, the JVM freezes all threads in the JVM, 
performs the reachability test, clears out the young generation (Eden and the two 
survivor spaces), and compacts the tenured space. We call this a major collection.

As you might expect, the larger your heap, the less frequently major collections 
run, but when the do run they take much longer than smaller heaps. Therefore it 
is important to tune your heap size and garbage collection strategy to meet your 
application behavior.

Chapter 3: Top 5 performance metrics to capture in enterprise Java applications 
(cont’d)

Tenured Space

To Space

text text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

Tenured Space

text

text text

texttext

text

text

text

text text text text text

Tenured Space

From Space

Eden

text

text

text text text text

text text text text text

texttext

text text

text

text text

text

text

text

text

Tenured Space

To Space

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

Tenured Space

To Space

From Space

Eden

text text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text text text

To Space

From Space

Eden

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text

text text

text

text

text

text

text



Top 5 Java performance metrics, tips & tricks 18

Application Topology
The final performance component to measure in this top-5 list is your application 
topology. Because of the advent of the cloud, applications can now be elastic 
in nature: your application environment can grow and shrink to meet your user 
demand. Therefore, it is important to take an inventory of your application 
topology to determine whether or not your environment is sized optimally. If you 
have too many virtual server instances then your cloud-hosting cost is going to 
go up, but if you do not have enough then your business transactions are going 
to suffer.

It is important to measure two metrics during this assessment:
-- Business Transaction Load
-- 	Container Performance

Business transactions should be baselined and you should know at any given 
time the number of servers needed to satisfy your baseline.  If your business 
transaction load increases unexpectedly, such as to more than two times the 
standard deviation of normal load then you may want to add additional servers 
to satisfy those users. 

The other metric to measure is the performance of your containers. Specifically 
you want to determine if any tiers of servers are under duress and, if they are, 
you may want to add additional servers to that tier. It is important to look at 
the servers across a tier because an individual server may be under duress due 
to factors like garbage collection, but if a large percentage of servers in a tier 
are under duress then it may indicate that the tier cannot support the load it is 
receiving.

Because your application components can scale individually, it is important to 
analyze the performance of each application component and adjust your topology 
accordingly.

 
Conclusion
This article presented a top-5 list of metrics that you might want to measure when 
assessing the health of your application. In summary, those top-5 items were:

-- Business Transactions
-- 	External Dependencies
-- 	Caching Strategy
-- 	Garbage Collection
-- 	Application Topology

In the next article we’re going to pull all of the topics in this series together to 
present the approach that AppDynamics took to implementing its APM strategy. 
This is not a marketing article, but rather an explanation of why certain decisions 
and optimizations were made and how they can provide you with a powerful view 
of the health of a virtual or cloud-based application.

Chapter 3: Top 5 performance metrics to capture in enterprise Java applications 
(cont’d)



Chapter 4
AppDynamics approach to APM



Top 5 Java performance metrics, tips & tricks 20

Business Transaction Centric
Because of the dynamic nature of modern applications, AppDynamics chose to 
design its solution to be Business Transaction Centris. In other words, business 
transactions are at the forefront of every monitoring rule and decision. Rather than 
only answering questions like: what is the behavior of the execution queue thread 
pool on this server, it instead first answers the questions of whether not users are 
able to execute their business transactions and if those business transactions are 
behaving normally. The solution also captures container information, but really 
with the focus of supporting the analysis of business transactions.

Business transactions begin with entry-points, which are the triggers that start a 
business transaction. AppDynamics automatically identifies common entry-points, 
such as servlet executions, Struts Actions, Spring MVC service calls, and so forth, 
but also allows you to manually configure them. The goal is to identify and name 
all common business transactions out-of-the-box, but to provide the flexibility 
to meet your business needs. For example, you might define a SOAP-based web 
service that contains a single operation that satisfies multiple business functions. 
In this case, AppDynamics will automatically identify the business transaction, but 
will allow you to define the criteria that splits the business transaction based on 
your business needs, such as by fields in the payload.

Once a business transaction has been defined and named, that business 
transaction will be followed across all tiers that your application needs to satisfy 
it. This includes both synchronous calls like web service and database calls, as well 
as asynchronous calls like JMS messages. AppDynamics adds custom headers, 
properties, and other protocol-specific elements so that it can assemble all tier 
segments into a holistic view of the business transaction. It collects the business 
transaction on its management server for analysis.

Figure 1 shows how a business transaction might be assembled across multiple 
tiers. 

Figure 1 Defining a Business Transaction

Chapter 4: AppDynamics approach to APM 

This article series has presented an overview of application performance management (APM), identified the challenges 
in implementing an APM strategy, and proposed a top-5 list of important metrics to measure to assess the health of an 
enterprise Java application. This article pulls all of these topics together to describe an approach to implementing an APM 
strategy, and specifically it describes the approach that AppDynamics chose when designing its APM solution.

Web 
Browser

Web  
Services

Topic  
Listener

External 
Services

Hadoop

JSM Topic

Add data to Hadoop HDFSInvoke Third-part services

Insert to database
POST /some-resource

Subscribe to Message

Publish Message

 
Database



Top 5 Java performance metrics, tips & tricks 21

AppDynamics identified that defining static SLAs are difficult to manage over 
time, as an application evolves, so, while it allows you to define static SLAs, it 
primarily relies on baselines for its analysis. It captures raw business transaction 
data, saves it in its database, and allows you to choose the best baseline against 
which to analyze incoming business transactions. Baselines can be defining in the 
following ways:

-- Average response time over a period of time
-- 	Hour of day over a period of time
-- 	Hour of day and day of week over a period of time
-- 	Hour of day and day of month over a period of time

Recall from the previous articles in this series that baselines are selected based 
on the behavior of your application users. If your application is used consistently 
over time then you can choose to analyze business transactions against a rolling 
average over a period time. With this baseline, you might analyze the response 
time against the average response time for every execution of that business 
transaction over the past 30 days.

If your user behavior varies depending on the hour of day, such as with an internal 
intranet application in which users log in at 8:00am and log out at 5:00pm, then 
you can opt to analyze the login business transaction based on the hour of day. 
In this case we want to analyze a login at 8:15am against the average response 
time for all logins between 8:00am and 9:00am over the past 30 days.

If your user behavior varies depending on the day of the week, such as with an 
ecommerce application that experiences more load on Fridays and Saturdays, 
then you can opt to analyze business transaction performance against the hour 
of day and the day of the week. For example, we might want to analyze an add-
to-cart business transaction executed on Friday at 5:15pm against the average 
add-to-cart response time on Fridays from 5:00pm-6:00pm for the past 90 days.

Finally, if your user behavior varies depending on the day of month, such as a 
banking or ecommerce application that experiences varying load on the 15th and 
30th of the month, when people get paid, then you can opt to analyze business 
transactions based on the hour of day on that day of the month. For example, 
you might analyze a deposit business execution executed at 4:15pm on the 15th 
of the month against the average deposit response time from 4:00pm-5:00pm on 
the 15th of the past six months.

All of this is to say that once you have identified the behavior of your users, 
AppDynamics provides you with the flexibility to define how to interpret that data. 
Furthermore, because it maintains the raw data for those business transactions, 
you can select your baseline strategy dynamically, without needing to wait a 
couple months for it to recalibrate itself.

Figure 2 shows an example of how we might evaluate a business transaction 
against its baseline.

Figure 2 Sample Business Transaction Baseline Evaluation

Finally, baselines are not only captured at the holistic business transaction level, 
but also at the business transaction’s constituent segment level. This means 
that although a business transaction might not wholly violate its performance 
criterion, but may be degrading at a specific tier, such as the database, that you 
will be alerted to the problem. This early warning system can help you detect and 
resolve problems before they impact your users.

Chapter 4: AppDynamics approach to APM (cont’d)

1 second

30 Days Ago

29 Days Ago

2 Days Ago

Yesterday

...

2 second 3 second



Top 5 Java performance metrics, tips & tricks 22

Production Monitoring First
Defining a Business Transaction centric approach was an important first step 
in designing a production monitoring solution, but AppDynamics expanded its 
solution by realizing that an APM solution must not impact the application it is 
monitoring, to every extent possible. For example, if an APM solution adds an 
additional 20% overhead to the application it is monitoring then that valuable 
information is gathered at too high of a price.

AppDynamics implemented quite a few optimizations that make it well suited to 
be a production monitoring solution, but two of those powerful are:

-- Sparing use of byte-code instrumentation
-- 	Intelligently capture performance snapshots

Byte-code instrumentation involves injecting byte-code into your application 
classes at runtime, as classes are loaded into memory by the JVM class loader. 
In terms of performance monitoring, this instrumentation adds performance 
counters and tracing information that can be used to capture performance 
snapshots. Byte-Code Instrumentation is a powerful tool, but if it is used too 
liberally it can add significant overhead to your application. For example, if it is 
used to measure the response time of every method in a business transaction 
and that business transaction needs 50 methods to complete, then that is a lot 
of additional overhead. Most monitoring solutions mitigate this by running in a 
passive mode (a single Boolean check on each instrumented method tells the 
instrumentation code if it should be capturing response times). But even this 
passive monitoring comes at a slightly elevated overhead (one Boolean check for 
each method in the business transaction.)

AppDynamics takes a different approach: it only uses byte-code instrumentation 
where it needs to. It leverages byte-code instrumentation for all entry-points, 
which start business transactions, and for exit-points, which are the points in 
which a business transaction leaves the current virtual machine by making an 
external call. Entry-points are important to instrument because they setup and 
name a business transaction, exit-points are important to instrument because 
business transaction contextual information needs to be sent to the next tier in 
the business transaction, but for all other methods, byte-code instrumentation 
is not necessary.

Instead, AppDynamics monitors the performance of live running business 
transactions and, if it detects a problem, then it incorporates a thread stack 
trace polling strategy. Thread stack trace polling can be performed external to 
live business transactions: it adds additional constant overhead to the JVM, but it 
does not impact individual business transactions. It does come with its own cost 

because the amount of time spent in any individual method is inferred, which 
means that it is not exact and its granularity is limited to the polling interval. Out-
of-the-box, AppDynamics polls at an interval of 10 milliseconds, but it allows you 
to tune this to balance monitoring granularity with overhead. This is a concession 
that AppDynamics made when defining itself as a production-monitoring tool 
because its goal is to capture rich information, but while keeping its overhead 
to a minimum. And the rationale is that if a method really takes less than 10 
milliseconds to execute and you’re searching for the root cause of a performance 
problem, do you really care about it?

This strategy leads to the next strategy: intelligently capturing performance 
snapshots. Some monitoring solutions capture every running transaction because 
they want to give you access to the one that violated its performance criterion. 
But as with almost every aspect of performance monitoring, this comes with a 
price: significant overhead for every transaction that you do not care about.

Because AppDynamics was designed from its inception to monitor production 
applications, they took a different approach. AppDynamics captures two types 
of snapshots:

-- In-flight partial snapshots
-- 	Real-time full snapshots used to diagnose a problem

First, if AppDynamics identifies that a business transaction is running slower than 
it should then it starts tracing from that point until the end of the transaction 
in an attempt to show you what was happening when it started slowing down. 
Depending on the nature of the problem this may or may not provide you with 
insight to the root cause of the problem (it may have already passed the slow 
portion of transaction), but many times it can identify systemic problems while 
keeping overhead at a minimum.

Once it has identified a slow running business transaction then it starts capturing 
full snapshots that can be used to diagnose the root cause of the performance 
problem. Rather than capturing as many transaction executions as it can, it 
instead attempts to capture relevant examples of the problem while reducing 
its overhead. Out-of-the-box it is configured to capture up-to 5 examples of the 
problem per minute for 5 minutes, but stopping at a maximum of 10 traces. This 
means that for every minute it will capture up to 5 examples of the problem: 
if the first 5 traces exhibit the problem then it stops tracing for the rest of the 
minute and picks up the next minute, but if it captures 10 traces and does not 
yet have 5 examples of the problem then it quits for the minute and waits for the 
next minute. After 5 minutes it stops and provides you with all of examples that 
show the problem.

Chapter 4: AppDynamics approach to APM (cont’d)



Top 5 Java performance metrics, tips & tricks 23

Chapter 4: AppDynamics approach to APM (cont’d)

This is a tradeoff between relevant data and the overhead required the capture 
the relevant data. The rationale, however, is that if the performance problem is 
systemic then 50 attempts (10 tries for 5 minutes) should be more than enough 
to identify the problem; if 50 attempts do not illustrate the problem then chances 
are that it is not systemic. Furthermore, how many examples do you need to 
examine to identify the root cause? If the solution captures 500 examples, are 
you really going to go through all of them? The assertion is that a representative 
sample illustrating the problem is enough information to allow you to diagnose 
the root cause of the problem.

Finally, if it is a systemic problem, rather than starting this 5 minute sampling 
every 5 minutes, AppDynamics is smart enough to give you a 30 minute breather 
in between the samples. This decision was made to reduce overhead on an already 
struggling application.
 
Auto-Resolving Problems though Automation
In addition to building a Business Transaction centric solution that was designed 
from its inception for production use, AppDynamics also observed the trend in 
environment virtualization and cloud computing. As a result, it has been refining 
its automation engine over the years to enable you to automatically change the 
topology of your application to meet your business needs. 

It is capturing all of the performance information that you need to make your 
decision:

-- Business Transaction performance and baselines
-- 	Business Transaction execution counts and baselines
-- 	Container performance

And then it adds to that a rules engine that can execute actions under the 
circumstances that you define. Actions can be general shell scripts that you can 
write to do whatever you need to, such as to start 10 new instances and update 
your load balancer to include the new instances in load distribution, or they can 
be specific prebuilt actions defined in AppDyamics repository to do things like 
start or stop Amazon Web Service AMI instances or add servers to a Heroku 
environment.

In short, the AppDynamics automation engine provides you with all of the 
performance data you need to determine whether or not you need to modify your 
application topology as well as the tools to make automatic changes.

Monitoring Your Business Application
It is hard to choose the most valuable subset of features that AppDynamics 
provides in its arsenal, but one additional feature that sets it apart is its ability 
extract business value from your application and visualize and define rules against 
those business values. It allows you to capture the value of specific parameters 
passed to methods in your execution stack. For example, if you have a method that 
accepts the amount charged by a credit card purchase, you can tell AppDynamics 
to instrument that method, capture the value passed to that parameter, and 
store it just as it would any performance metric. This means that you report on 
credit card average purchases, minimum, maximum, standard deviation, and so 
forth. Furthermore, it means that you setup alerts when the average credit card 
purchase exceeds some limit, which can alert you to potential fraud. In short, 
AppDynamics allows you to integrate the performance of your application with 
business-specific metrics, side-by-side.

Conclusion
Application Performance Management (APM) is a challenge that balances the 
richness of data and the ability to diagnose the root cause of performance 
problems with the overhead to capture that data. This article presented several of 
the facets that AppDynamics used when defining its APM solution:

-- 	Business Transaction Focus
-- 	Production First Monitoring
-- 	Automatically Solving Problems through Automation
-- 	Integrating Performance with Business Metrics

In the next, and final, article, we’ll review tips-and-tricks that can help you develop 
an effective APM strategy.



Chapter 5
APM tips and tricks



Top 5 Java performance metrics, tips & tricks 25

Business Transaction Optimization
Over and over throughout this article series I have been emphasizing the importance 
of business transactions to your monitoring solution. To get the most out of your 
business transaction monitoring, however, you need to do a few things:

-- Properly name your business transactions to match your business functions
-- 	Properly identify your business transactions
-- 	Reduce noise by excluding business transactions that you do not care about

AppDynamics will automatically identify business transactions for you and try 
to name them the best that it can, but depending on how your application is 
written, these names may or may not be reflective of the business transactions 
themselves. For example, you may have a business transaction identified as “POST 
/payment” that equates to your checkout flow. In this case, it is going to be easier 
for your operations staff, as well as when generating reports that you might share 
with executives, if business transactions names reflect their business function. So 
consider renaming this business transaction to “Checkout”.

Next, if you have multiple business transactions that are identified by a single 
entry-point, take the time to break those into individual business transactions. 
There are several examples where this might happen, which include the following:

-- Business Transactions that determine their function based on their payload 
-- 	Business Transactions that determine their function based on a query 
parameter

-- 	Complex URI paths

If a single entry-point corresponds to multiple business functions then configure 
the business transactions based on the differentiating criteria. For example, if the 
body of an HTTP POST has an “operation” element that identifies the operation 
to perform then break the transaction based on that operation. Or if there is an 
“execute” servlet that accepts a “command” query parameter, then break the 
transaction based on the “command” parameter. Finally, URI patterns can vary 
from application to application, so it is important for you to choose the one that 
best matches your application. For example, AppDynamics automatically defines 
business transactions for URIs based on two segments, such as /one/two. If your 
application uses one segment or if it uses four segments, then you need to define 
your business transactions based on your naming convention.

Naming and identifying business transactions is important to ensuring that you’re 
capturing the correct business functionality, but it is equally important to exclude 
as much noise as possible. Do you have any business transactions that you really 
do not care about? For example, is there a web game that checks high scores 
every couple minutes? Or is there a batch process that runs every night, takes 
a long time, but because it is offline you do not care? If so then exclude these 
transactions so that they do not add noise to your analysis.

Chapter 5: APM tips and tricks

This article series has covered a lot of ground: it presented an overview of application performance management (APM), 
it identified the challenges in implementing an APM strategy, it proposed a top-5 list of important metrics to measure 
to assess the health of an enterprise Java application, and it presented AppDynamics’ approach to building an APM 
solution. In this final installment this article provides some tips-and-tricks to help you implement an optimal APM strategy. 
Specifically, this article addresses the following topics:
 - Business Transaction Optimization
 - Snapshot Tuning
 - Threshold Tuning
 - Tier Management
 - Capturing Contextual Information
 - Intelligent Re-Cycling Virtual Machines



Top 5 Java performance metrics, tips & tricks 26

Snapshot Tuning
As mentioned in the previous article, AppDynamics intelligently captures 
performance snapshots by both sampling thread executions at a specified interval 
instead of leveraging byte-code instrumentation for all snapshot elements, and 
by limiting the number of snapshots captured in a performance session. Because 
both of these values can be tuned, it can benefit you to tune them. 

Out-of-the-box, AppDynamics captures stack trace samples every 10 milliseconds, 
which balances the granularity of data captured with the overhead required to 
capture that data. If you are only interested in “big” performance problems then 
you may not require granularity as fine as 10 milliseconds. If you were to reduce 
this polling interval to 50 milliseconds, you will lose granularity, but you will also 
reduce the performance overhead of the polling mechanism. If you are finely 
tuning your application then you may want 10-millisecond granularity, but if you 
have no intention of tuning methods that execute in under 50 milliseconds, then 
why do you need that level of granularity? The point is that you should analyze 
your requirements and tune accordingly.

Next, observe your production troubleshooting patterns and determine whether 
or not the number of snapshots that AppDynamics captures is appropriate for 
your situation. If you find that, while capturing up to 5 samples every minute 
for 5 minutes is resulting in 20 or more snapshots, but you only ever review 2 
of those samples then do not bother capturing 20. Try configuring AppDynamics 
to capture up to 1 snapshot every minute for 5 minutes. And if you’re only 
interested in systemic problems then you can turn down the maximum number 
of attempts to 5. This will significantly reduce that constant overhead of thread 
stack trace sampling, but at the cost of possibly not capturing a representative 
snapshot. 
 

Threshold Tuning
AppDynamics has designed a generic monitoring solution and, as such, it defaults 
to alerting to business transactions that are slower than two standard deviations 
from normal. This works well in most circumstances, but you need to identify how 
volatile your application response times are to determine whether or not this is 
the best configuration for your business needs. 

AppDynamics defines three types of thresholds against which business transactions 
are evaluated with their baselines:

-- Standard Deviation: compares the response time of a business transaction 
against a number of standard deviations from its baseline

-- 	Percentage: compares the response time of a business transaction against a 
percentage of difference from baseline

-- 	Static SLAs: compares the response time of a business transaction against a 
static value, such as 2 seconds

If your application response times are very volatile then the default threshold of 
two standard deviations might result in too many false alerts. In this case you 
might want to increase this to more standard deviations or even switch to another 
strategy. If your application response times have very low volatility then you might 
want to decrease your thresholds to alert you to problems sooner.  Furthermore, 
if you have services or APIs that you provide to users that have specific SLAs then 
you should setup a static SLA value for that business transaction. AppDynamics 
provides you with the flexibility of defining alerting rules generally or on individual 
business transactions.

You need to analyze your application behavior and configure the alerting engine 
accordingly.

Chapter 5: APM tips and tricks (cont’d)



Top 5 Java performance metrics, tips & tricks 27

Tier Management
I’ve described how AppDynamics captures baselines for business transactions, 
but it also captures baselines for business transactions across tiers. For example, 
if your business transaction calls a rules engine service tier then AppDynamics 
will capture the number of calls and the average response time for that tier as a 
contributor to the business transaction baseline. Therefore, you want to ensure 
that all of your tiers are clearly identified.

Out of the box, AppDynamics identifies tiers across common protocols, such as 
HTTP, JMS, JDBC, and so forth. For example, if it sees you make a database call 
then it assumes that there is a database and allocates the time spent in the JDBC 
call to the database. This is important because you don’t want to think that you 
have a very slow “save” method in a DAO class, instead you want to know how 
long it takes to persist your object to the database and attribute that time to the 
database.

AppDynamics does a good job of identifying tiers that follow common protocols, 
but there are times when you’re communication with a back-end system does not 
use a common protocol. For example, I was working at an insurance company that 
used an AS/400 for quoting. We leveraged a library that used a proprietary socket 
protocol to make a connection to the server. Obviously AppDynamics would know 
nothing about that socket connection and how it was being used, so the answer 
to our problem was to identify the method call that makes the connection to 
the AS/400 and identify it as a custom back-end resource.  When you do this, 
AppDynamics treats that method call as a tier and counts the number of calls and 
captures the average response time of that method execution. 
You might be able to use the out of the box functionality, but if you have special 
requirements then AppDynamics provides a mechanism that allows you to 
manually define your application tiers.

Capturing Contextual Information
When performance problems occur, they are sometimes limited to a specific 
browser or mobile device, or they may only occur based on input associated with 
a request. If the problem is not systemic (across all of your servers), then how do 
you identify the subset of requests that are causing the problem?

The answer is that you need to capture context-specific information in your 
snapshots so that you can look for commonalities. These might include:

-- HTTP headers, such as browser type (user-agent), cookies, or referrer
-- JMS properties
-- HTTP query parameter values
-- Method parameter values

Think about all of the pieces of information that you might need to troubleshoot 
and isolate a subset of poor performing business transactions. For example, if 
you capture the User-Agent HTTP header then you can know the browser that 
the user was using to execute your business transaction. If your HTTP request 
accepts query parameters, such as a search string, then you might want to see 
the value of one or more of those parameters, e.g. what was the user searching 
for? Additionally, if you have code-level understanding about how your application 
works, you might want to see the values of specific method parameters. 

AppDynamics can be configured to capture contextual information and add it 
to snapshots, which can include all of the aforementioned types of values. The 
process can be summarized as follow:
1.	 AppDynamics observes that a business transaction is running slow
2.	 It triggers the capture of a session of snapshots
3.	 On each snapshot, it captures the contextual information that you 

requested and associates it with the snapshot

The result is that when you find a snapshot illustrating the problem, you can 
review this contextual information to see if it provides you with more diagnostic 
information.

The only warning is that this comes at a small price: AppDynamics uses byte-code 
instrumentation to capture the values of methods parameters. In other words, 
use this functionality where you need to, but use it sparingly.

Chapter 5: APM tips and tricks (cont’d)



Top 5 Java performance metrics, tips & tricks 28

Intelligent Re-Cycling Virtual Machines
The final recommendation that I have for you is to recycle your virtual machines 
intelligently. I’ve discussed the nature of cloud-based applications and how they 
are intended to be elastic: they are meant to scale up to satisfy increased user 
load and scale down when user load decreases to save on cost. But how do you 
determine what servers to decommission when you need to scale down?

The best strategy is to keep track of the servers that you have started and the 
order in which you started them, and then decommission servers in the reverse 
order. In other words, remove the servers that have been running the longest, 
see Figure 1. 

Figure 1 Recycling Virtual Machines

Why does this matter? To illustrate this, I spoke with someone responsible for 
the performance of one of the largest cloud-based environments in Amazon and 
he told me that they ran JVMs with 30 gigabyte heaps and he opted to use a 
parallel mark-sweep garbage collection strategy. This strategy suffers from one 
big problem: while it postpones major (or full) garbage collections, when they 
do run, they are very impactful and long running. I asked him how he handles 
this problem and his answer surprised me: he decommissions virtual machines 
before they ever have a chance to run major garbage collections! In other words, 
he redefined the garbage collection problem altogether, to the point where it 
becomes a non-issue. It is a powerful strategy that enables them to avoid garbage 
collection pauses altogether. But the key to his strategy is cycling virtual machines 
in a very prescribed and precise order.

Furthermore, even when you do not need to scale up or scale down to meet user 
demands, recycling servers on a regular basis can have a profound affect on the 
performance of your environment.

Conclusion
Application Performance Management (APM) is a challenge that balances the 
richness of data and the ability to diagnose the root cause of performance problems 
with the overhead required to capture that data. There are configuration options 
and tuning capabilities that you can employ to provide you with the information 
you need while minimizing the amount of overhead on your application. This 
article reviewed a few core tips and tricks that anyone implementing an APM 
strategy should consider. Specifically it presented recommendations about the 
following:

-- Business Transaction Optimization
-- Snapshot Tuning
-- Threshold Tuning
-- Tier Management
-- Capturing Contextual Information
-- Intelligent Re-Cycling Virtual Machines

APM is not easy, but tools like AppDynamics make it easy for you to capture the 
information you need while reducing the impact to your production applications.

Chapter 5: APM tips and tricks (cont’d)

Server 1

Server 2

Server 3

Server 4

Server 5

Server 6

AWS Engine

Start Server
Decommission 

Servers

Start New Servers

Virtual Machine 
Management



© 2015 Copyright AppDynamics

appdynamics.com

http://www.appdynamics.com
http://www.appdynamics.com

	Chapter 1: Getting started with APM
	Chapter 2: Challenges in implementing an APM strategy
	Chapter 3: Top 5 performance metrics to capture in enterprise Java applications
	Chapter 4: AppDynamics approach to APM 
	Chapter 5: APM tips and tricks

	AppDynamics: 
	Page 2: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 95: Off
	Page 106: Off
	Page 117: Off
	Page 128: Off
	Page 149: Off
	Page 1510: Off
	Page 1611: Off
	Page 1712: Off
	Page 1813: Off
	Page 2014: Off
	Page 2115: Off
	Page 2216: Off
	Page 2317: Off
	Page 2518: Off
	Page 2619: Off
	Page 2720: Off
	Page 2821: Off

	Google: 
	Page 2: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 95: Off
	Page 106: Off
	Page 117: Off
	Page 128: Off
	Page 149: Off
	Page 1510: Off
	Page 1611: Off
	Page 1712: Off
	Page 1813: Off
	Page 2014: Off
	Page 2115: Off
	Page 2216: Off
	Page 2317: Off
	Page 2518: Off
	Page 2619: Off
	Page 2720: Off
	Page 2821: Off

	Button 1: 
	Page 2: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 95: Off
	Page 106: Off
	Page 117: Off
	Page 128: Off
	Page 149: Off
	Page 1510: Off
	Page 1611: Off
	Page 1712: Off
	Page 1813: Off
	Page 2014: Off
	Page 2115: Off
	Page 2216: Off
	Page 2317: Off
	Page 2518: Off
	Page 2619: Off
	Page 2720: Off
	Page 2821: Off

	Twitter: 
	Page 2: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 95: Off
	Page 106: Off
	Page 117: Off
	Page 128: Off
	Page 149: Off
	Page 1510: Off
	Page 1611: Off
	Page 1712: Off
	Page 1813: Off
	Page 2014: Off
	Page 2115: Off
	Page 2216: Off
	Page 2317: Off
	Page 2518: Off
	Page 2619: Off
	Page 2720: Off
	Page 2821: Off

	LinkedIn: 
	Page 2: Off
	Page 41: Off
	Page 52: Off
	Page 63: Off
	Page 74: Off
	Page 95: Off
	Page 106: Off
	Page 117: Off
	Page 128: Off
	Page 149: Off
	Page 1510: Off
	Page 1611: Off
	Page 1712: Off
	Page 1813: Off
	Page 2014: Off
	Page 2115: Off
	Page 2216: Off
	Page 2317: Off
	Page 2518: Off
	Page 2619: Off
	Page 2720: Off
	Page 2821: Off



