

Java Annotations Tutorial i

Java Annotations Tutorial

Java Annotations Tutorial ii

Contents

1 Overview 1

2 Why annotations? 2

3 Introduction 3

4 Consumers 4

5 Annotations syntax and annotation elements 5

6 Where can be used 6

7 Use cases 7

8 Built in annotations 8

9 Java 8 and annotations 10

10 Custom annotations 13

11 Retrieving Annotations 15

12 Inheritance in annotations 17

13 Known libraries using annotations 19

13.1 Junit . 19

13.2 Hibernate ORM . 20

13.3 Spring MVC . 21

13.4 Findbugs . 22

13.5 JAXB . 23

14 Summary 25

15 Download 26

16 Resources 27

Java Annotations Tutorial iii

Copyright (c) Exelixis Media P.C., 2015

All rights reserved. Without limiting the rights under
copyright reserved above, no part of this publication
may be reproduced, stored or introduced into a retrieval system, or
transmitted, in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior written
permission of the copyright owner.

Java Annotations Tutorial iv

Preface

Annotations in Java are a major feature and every Java developer should know how to utilize them.

We have provided an abundance of tutorials here at Java Code Geeks, like Creating Your Own Java Annotations [1], Java
Annotations Tutorial with Custom Annotation and Java Annotations: Explored & Explained.

We also featured articles on annotations used in various libraries, including Make your Spring Security @Secured annotations
more DRY and Java Annotations & A Real World Spring Example.

Now, it is time to gather all the information around Annotations under one reference post for your reading pleasure. Enjoy!

References:

[1] http://www.javacodegeeks.com/2014/07/creating-your-own-java-annotations.html

[2] http://www.javacodegeeks.com/2012/11/java-annotations-tutorial-with-custom-annotation.html

[3] http://www.javacodegeeks.com/2012/08/java-annotations-explored-explained.html

[4] http://www.javacodegeeks.com/2012/06/make-your-spring-security-secured.html

[5] http://www.javacodegeeks.com/2012/01/java-annotations-real-world-spring.html

http://www.javacodegeeks.com/2014/07/creating-your-own-java-annotations.html
http://www.javacodegeeks.com/2012/11/java-annotations-tutorial-with-custom-annotation.html
http://www.javacodegeeks.com/2012/08/java-annotations-explored-explained.html
http://www.javacodegeeks.com/2012/06/make-your-spring-security-secured.html
http://www.javacodegeeks.com/2012/01/java-annotations-real-world-spring.html

Java Annotations Tutorial v

About the Author

Daniel Gutierrez Diez holds a Master in Computer Science Engineering from the University of Oviedo (Spain) and a Post Grade
as Specialist in Foreign Trade from the UNED (Spain). Daniel has been working for different clients and companies in several
Java projects as programmer, designer, trainer, consultant and technical lead.

Java Annotations Tutorial 1 / 27

Chapter 1

Overview

In this article we are going to explain what Java annotations are, how they work and what can be done using annotations in Java.

We will show what annotations come with Java out of the box, also called Built in or Meta annotations and what new features
are available in Java 8 related to them.

Finally we will implement a custom annotation and a processor application (consumer) that makes use of annotations one using
reflection in Java.

We will list some very well known and broadly used libraries based on annotations like Junit, JAXB, Spring and Hibernate.

At the end of this article you can find a compressed file with all the examples shown in this tutorial. In the implementation of
these examples following software versions were used:

• Eclipse Luna 4.4

• JRE Update 8.20

• Junit 4

• Hibernate 4.3.6

• FindBugs 3.0.0

Java Annotations Tutorial 2 / 27

Chapter 2

Why annotations?

Annotations were introduced in Java in the J2SE update 5 already and the main reason was the need to provide a mechanism that
allows programmers to write metadata about their code directly in the code itself.

Before annotations, the way programmers were describing their code was not standardized and each developer did it in his own
original way: using transient keywords, via comments, with interfaces, etc. This was not a good approach and a decision was
taken: a new form of metadata is going to be available in Java, annotations were introduced.

Other circumstances help to that decision: At that moment, XML was used as standard code configuration mechanism for
different type of applications. This was not the best way to do it because of the decoupling between code and XML (XML is not
code!) and the future maintenance of this decoupled applications. There were other reasons like for example the usage of the
reserved word @deprecated (with small d) in the Javadocs since Java update 4, I am very sure that this was one of the reasons
for the current annotations syntax using the @.

The main Java Specification Requests involved in the annotations design and development are:

• JSR 175 A metadata facility for the Java programming Language

• JSR 250 Common Annotations for the Java Platform

https://www.jcp.org/aboutJava/communityprocess/final/jsr175/index.html
https://jcp.org/en/jsr/detail?id=250

Java Annotations Tutorial 3 / 27

Chapter 3

Introduction

The best way to explain what an annotation is is the word metadata: data that contains information about itself. Annotations are
code metadata; they contain information about the code itself.

Annotations can be used within packages, classes, methods, variables and parameters. Since Java 8 annotations can be placed
almost in every place of the code, this is called type annotations; we will see this in this tutorial more in detail.

The annotated code is not directly affected by their annotations. These only provide information about it to third systems that
may use (or not) the annotations for different purposes.

Annotations are compiled in the class files and can be retrieved in run time and used with some logical purpose by a consumer
or processor. It is also possible to create annotations that are not available at runtime, even is possible to create annotations that
are only available in the source and not at compilation time.

Java Annotations Tutorial 4 / 27

Chapter 4

Consumers

It can be difficult to understand what is actually the annotations purpose and what they can be used for, they do not contain any
kind of functional logic and they do not affect the code that are annotating, what are they for?

The explanation to this is what I call the annotation consumers. These are systems or applications that are making use of the
annotated code and executing different actions depending on the annotations information.

For example, in the case of the built in annotations (Meta annotations) that come out of the box with the standard Java, the
consumer is the Java Virtual Machine (JVM) executing the annotated code. They are other examples that we are going to see
later in this tutorial like Junit, where the consumer is the Junit processor reading and analyzing the annotated test classes, and
deciding for example, depending on the annotation, in which order the unit tests are going to be executed or what methods are
going to be executed before and after every test.

We will see this in more detail in the Junit related chapter.

Consumers use reflection in Java in order to read and analyze the annotated source code. The main packages used for this purpose
are java.lang and java.lang.reflect. We will explain in this tutorial how to create a custom consumer from scratch
using reflection.

Java Annotations Tutorial 5 / 27

Chapter 5

Annotations syntax and annotation elements

An annotation is declared using the character @ as prefix of the annotation name. This indicates the compiler that this element is
an annotation. An example:

@Annotation
public void annotatedMehod() {
...
}

The annotation above is called "Annotation" and is annotating the method annotatedMethod(). The compiler will take care
of it.

An annotation has elements in form of key-values. These "elements" are the properties of the annotation.

@Annotation(
info = "I am an annotation",
counter = "55"

)
public void annotatedMehod() {
...
}

If the annotation contains only one element (or if only one element needs to be specified because the rest have default values),
we can do something like:

@Annotation("I am an annotation")
public void annotatedMehod() {
...
}

As we saw in the first example, if no elements need to be specified, then the parentheses are not needed.

Multiple annotations are possible for an element, in this case for a class:

@ Annotation (info = "U a u O")
@ Annotation2
class AnnotatedClass { ... }

Some annotations come out of the box with Java; these are called built in annotations. It is also possible to define your own
annotations, these are called custom annotations. We will see these in the next chapters.

Java Annotations Tutorial 6 / 27

Chapter 6

Where can be used

Annotations can be used basically in almost every element of a Java program: classes, fields, methods, packages, variables, etc.

Since Java 8 the concept of annotations by type is available. Before Java 8 annotations should be used only in the declarations of
the elements listed before. After Java 8 also in declaration of types an annotation can be used. Something like the following is
now available:

@MyAnnotation String str = "danibuiza";

We will see this mechanism in more detail in the chapter related to Java 8 annotations.

Java Annotations Tutorial 7 / 27

Chapter 7

Use cases

Annotations can be used for many different purposes, the most common ones are:

• Information for the compiler: Annotations can be used by the compiler to produce warnings or even errors based on different
rules. One example of this kind of usage is the Java 8 @FunctionalInterface annotation. This one makes the compiler
to validate the annotated class and check if it is a correct functional interface or not.

• Documentation: Annotations can be used by software applications to measure the quality of the code like FindBugs or PMD
do or generate reports automatically like Jenkins, Jira or Teamcity.

• Code generation: annotations can be used to generate code or XML files automatically using metadata information present in
the code. A good example of this is the JAXB library.

• Runtime processing: Annotations that are examined in runtime can be used for different objectives like unit testing (Junit),
dependency injection (Spring), validation, logging (Log4J) ,data access (Hibernate) etc.

In this tutorial we will show several possible usages of annotations and we will show how very well known Java libraries are
using them

Java Annotations Tutorial 8 / 27

Chapter 8

Built in annotations

The Java language comes with a set of default annotations. In this chapter we are going to explain the most important ones. It is
important to mention that this list refers only to the core packages of the Java language and does not include all the packages and
libraries available in the standard JRE like JAXB or the Servlet specification

Some of the following standard annotations are called Meta annotations; their targets are other annotations and contain informa-
tion about them:

• @Retention: This annotation annotates other annotations and it is used to indicate how to store the marked annotation. This
annotation is a kind of Meta annotation, since it is marking an annotation and informing about its nature. Possible values are:

– SOURCE: Indicates that this annotation is ignored by compiler and JVM (no available at run time) and it is only retained in
the source.

– CLASS: Indicates that the annotation is going to be retained by the compiler but ignored by the JVM and because of this,
not going to be available at run time.

– RUNTIME: Means that the annotation is going to be retained by the Java Virtual Machine and can be used in runtime via
reflection.

We will see several examples of this annotation in this tutorial.

• @Target: This one restricts the elements that an annotation can be applied to. Only one type is possible. Here is a list of
available types:

– ANNOTATION_TYPE means that the annotation can be applied to other annotation.

– CONSTRUCTOR can be applied to a constructor.

– FIELD can be applied to a field or property.

– LOCAL_VARIABLE can be applied to a local variable.

– METHOD can be applied to a method-level annotation.

– PACKAGE can be applied to a package declaration.

– PARAMETER can be applied to the parameters of a method.

– TYPE can be applied to any element of a class.

• @Documented: The annotated elements are going to be documented using the Javadoc tool. Per default annotations are not
documented. This annotation can be applied to other annotation.

• @Inherited: By default annotations are not inherited by subclasses. This annotation marks an annotation to automatic
inherit to all subclasses extending the annotated class. This annotation can be applied to class elements.

• @Deprecated: Indicates that the annotated element should not be used. This annotation gets the compiler to generate a
warning message. Can be applied to methods, classes and fields. An explanation about why this element is deprecated and
alternative usages should be provided when using this annotation.

Java Annotations Tutorial 9 / 27

• @SuppressWarnings: Indicates the compiler not to produce warnings for an specific reason or reasons. For example if we
do not want to get warnings because of unused private methods we can write something like:

@SuppressWarnings("unused")
private String myNotUsedMethod(){

...
}

Normally the compiler would produce a warning if this method is not used; using this annotation prevents that behavior. This
annotation expects one or more parameters with the warnings categories to avoid.

• @Override: Indicates the compiler that the element is overriding an element of the super class. This annotation is not
mandatory to use when overriding elements but it helps the compiler to generate errors when the overriding is not done
correctly, for example if the sub class method parameters are different than the super class ones, or if the return type does not
match.

• @SafeVarargs: Asserts that the code of the method or constructor does not perform unsafe operations on its arguments.
Future versions of the Java language will make the compiler to produce an error at compilation time in case of potential unsafe
operations while using this annotation. For more information about this one one SafeVarargs

http://docs.oracle.com/javase/7/docs/api/java/lang/SafeVarargs.html

Java Annotations Tutorial 10 / 27

Chapter 9

Java 8 and annotations

Java 8 comes out with several advantages. Also the annotations framework is improved. In this chapter we are going to explain
and provide examples of the 3 main topics introduced in the eighth Java update: the @Repeatable annotation, the introduction
of type annotation declarations and the functional interface annotation @FunctionalInterface (used in combination with
Lambdas).

• @Repeatable: indicates that an annotation annotated with this one can be applied more than once to the same element
declaration.

Here is an example of usage. First of all we create a container for the annotation that is going to be repeated or that can be
repeated:

/**
* Container for the {@link CanBeRepeated} Annotation containing a list of values

*/
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE_USE)
public @interface RepeatedValues
{

CanBeRepeated[] value();
}

Afterwards, we create the annotation itself and we mark it with the Meta annotation @Repeatable:

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE_USE)
@Repeatable(RepeatedValues.class)
public @interface CanBeRepeated
{

String value();
}

Finally we can see how to use it (repeatedly) in a given class:

@CanBeRepeated("the color is green")
@CanBeRepeated("the color is red")
@CanBeRepeated("the color is blue")
public class RepeatableAnnotated
{

}

If we would try to do the same with a non repeatable annotation:

Java Annotations Tutorial 11 / 27

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE_USE)
public @interface CannotBeRepeated
{

String value();
}

@CannotBeRepeated("info")
/*
* if we try repeat the annotation we will get an error: Duplicate annotation of non- ←↩

repeatable type

*
* @CannotBeRepeated. Only annotation types marked

*
* @Repeatable can be used multiple times at one target.

*/
// @CannotBeRepeated("more info")
public class RepeatableAnnotatedWrong
{

}

We would get an error from the compiler like:

Duplicate annotation of non-repeatable type

• Since Java 8 is also possible to use annotations within types. That is anywhere you can use a type, including the new operator,
castings, implements and throws clauses. Type Annotations allow improved analysis of Java code and can ensure even stronger
type checking. The following examples clarify this point:

@SuppressWarnings("unused")
public static void main(String[] args)
{

// type def
@TypeAnnotated
String cannotBeEmpty = null;

// type
List<@TypeAnnotated String> myList = new ArrayList<String>();

// values
String myString = new @TypeAnnotated String("this is annotated in java 8");

}

// in method params
public void methodAnnotated(@TypeAnnotated int parameter)
{

System.out.println("do nothing");
}

All this was not possible until Java 8.

• @FunctionalInterface: this annotation indicates that the element annotated is going to be a functional interface. A
functional interface is an interface that has just one abstract method (not a default one). The compiler will handle the annotated
element as a functional interface and will produce an error if the element does not comply with the needed requirements. Here
is an example of functional interface annotation:

Java Annotations Tutorial 12 / 27

// implementing its methods
@SuppressWarnings("unused")
MyCustomInterface myFuncInterface = new MyCustomInterface()
{

@Override
public int doSomething(int param)
{

return param * 10;
}

};

// using lambdas
@SuppressWarnings("unused")

MyCustomInterface myFuncInterfaceLambdas = (x) -> (x * 10);
}

@FunctionalInterface
interface MyCustomInterface
{
/*
* more abstract methods will cause the interface not to be a valid functional interface ←↩

and

* the compiler will thrown an error:Invalid ’@FunctionalInterface’ annotation;

* FunctionalInterfaceAnnotation.MyCustomInterface is not a functional interface

*/
// boolean isFunctionalInterface();

int doSomething(int param);
}

This annotation can be applied to classes, interfaces, enums and annotations and it is retained by the JVM and available in Run
time. Here is its declaration:

@Documented
@Retention(value=RUNTIME)
@Target(value=TYPE)

public @interface FunctionalInterface

For more information about this annotation http://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html.

http://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html
http://docs.oracle.com/javase/8/docs/api/java/lang/FunctionalInterface.html

Java Annotations Tutorial 13 / 27

Chapter 10

Custom annotations

As we mentioned several times in this tutorial, it is possible to define and implement custom annotations. In this chapter we are
going to show how to do this.

First of all, define the new annotation:

public @interface CustomAnnotationClass

This creates a new type of annotation called CustomAnnotationClass. The special word used for this purpose is @interface,
this indicates the definition of a custom annotation.

After this, you need to define a couple of mandatory attributes for this annotation, the retention policy and the target. There
are other attributes that can be defined here, but these are the most common and important ones. These are declared in form of
annotations of an annotation and were described in the chapter "Built in annotations" since they are annotations that came out of
the box with Java.

So we define these properties for our new custom annotation:

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface CustomAnnotationClass implements CustomAnnotationMethod

With the retention policy RUNTIME we indicate to the compiler that this annotation should be retained by the JVM and can be
analyzed in runtime using reflection. With the element type TYPE we are indicating that this annotation can be applied to any
element of a class.

Afterwards we define a couple of properties for this annotation:

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface CustomAnnotationClass
{

public String author() default "danibuiza";

public String date();

}

Above we have just defined the property author, with the default value "danibuiza" and the property date, without default value.
We should mention that all method declarations cannot have parameters and are not allowed to have a thrown clause. The return
types are restricted to String, Class, enums, annotations and arrays of the types mentioned before.

Now we can use our fresh created custom annotation in the following way:

Java Annotations Tutorial 14 / 27

@CustomAnnotationClass(date = "2014-05-05")
public class AnnotatedClass
{
...
}

In a similar way we can create an annotation to be used in method declarations, using the target METHOD:

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public @interface CustomAnnotationMethod
{

public String author() default "danibuiza";

public String date();

public String description();

}

This one can be used in a method declaration like:

@CustomAnnotationMethod(date = "2014-06-05", description = "annotated method")
public String annotatedMethod()

{
return "nothing niente";

}

@CustomAnnotationMethod(author = "friend of mine", date = "2014-06-05", description = " ←↩
annotated method")

public String annotatedMethodFromAFriend()
{

return "nothing niente";
}

There are many other properties that can be used with custom annotations, but target and retention policy are the most important
ones.

Java Annotations Tutorial 15 / 27

Chapter 11

Retrieving Annotations

The Java reflection API contains several methods that can be used to retrieve in runtime annotations from classes, methods and
other elements.

The interface that contains all these methods is AnnotatedElement and the most important ones are:

• getAnnotations(): Returns all annotations for the given element, also the ones that are not explicitly defined in the
element definition.

• isAnnotationPresent(annotation): Checks if the passed annotation in available or not in the current element.

• getAnnotation(class): Retrieves an specific annotation passed as parameter. Returns null if this annotation is not
present for the given element.

This class is implementing by java.lang.Class, java.lang.reflect.Method and java.lang.reflect.Field
among others, so can be used basically with any kind of Java element.

Now we are going to see an example of how to read the annotations present in a class or method using the methods listed above:

We write a program that tries to read all the annotations present in a class and its methods (we use for this example the classes
defined before):

public static void main(String[] args) throws Exception
{

Class<AnnotatedClass> object = AnnotatedClass.class;
// Retrieve all annotations from the class
Annotation[] annotations = object.getAnnotations();
for(Annotation annotation : annotations)
{

System.out.println(annotation);
}

// Checks if an annotation is present
if(object.isAnnotationPresent(CustomAnnotationClass.class))
{

// Gets the desired annotation
Annotation annotation = object.getAnnotation(CustomAnnotationClass.class) ←↩

;

System.out.println(annotation);

}
// the same for all methods of the class
for(Method method : object.getDeclaredMethods())

http://docs.oracle.com/javase/7/docs/api/java/lang/reflect/AnnotatedElement.html

Java Annotations Tutorial 16 / 27

{

if(method.isAnnotationPresent(CustomAnnotationMethod.class))
{

Annotation annotation = method.getAnnotation(←↩
CustomAnnotationMethod.class);

System.out.println(annotation);

}

}
}

The output of this program would be:

@com.danibuiza.javacodegeeks.customannotations.CustomAnnotationClass(getInfo=Info, author= ←↩
danibuiza, date=2014-05-05)

@com.danibuiza.javacodegeeks.customannotations.CustomAnnotationClass(getInfo=Info, author= ←↩
danibuiza, date=2014-05-05)

@com.danibuiza.javacodegeeks.customannotations.CustomAnnotationMethod(author=friend of mine ←↩
, date=2014-06-05, description=annotated method)

@com.danibuiza.javacodegeeks.customannotations.CustomAnnotationMethod(author=danibuiza, ←↩
date=2014-06-05, description=annotated method)

In the program above we can see the usage of the method getAnnotations() in order to retrieve all annotations for a given
object (a method or a class). We also showed how to check if an specific annotation is present and to retrieve it in positive case
using the methods isAnnotationPresent() and getAnnotation().

Java Annotations Tutorial 17 / 27

Chapter 12

Inheritance in annotations

Annotations can use inheritance in Java. This inheritance has nothing or almost nothing in common with what we know by
inheritance in an object oriented programming language where an inherited class inherits methods, elements and behaviors from
his super class or interface.

If an annotation is marked as inherited in Java, using the reserved annotation @Inherited, indicates that the class that is
annotated will pass this annotation to its subclasses automatically without need to declare the annotation in the sub classes. By
default, a class extending a super class does not inherit its annotations. This is completely in line with the objective of annotations,
which is to provide information about the code that they are annotating and not to modify its behavior.

We are going to see this using an example that makes thing clearer. First, we define a custom annotation that uses inheritance
automatically

@Inherited
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public @interface InheritedAnnotation
{

}

We have a super class called AnnotatedSuperClass with the @InheritedAnnotation annotation declared above:

@InheritedAnnotation
public class AnnotatedSuperClass
{

public void oneMethod()
{

}

}

A subclass extending this one:

public class AnnotatedSubClass extends AnnotatedSuperClass
{

@Override
public void oneMethod(){

}

}

Java Annotations Tutorial 18 / 27

The sub class AnnotatedSubClass shown above will automatically inherit the annotation @InheritedAnnotation.
We can see this using the following test with the method isAnnotationPresent() present in the every class:

System.out.println("is true: " + AnnotatedSuperClass.class.isAnnotationPresent(←↩
InheritedAnnotation.class));

System.out.println("is true: " + AnnotatedSubClass.class.isAnnotationPresent(←↩
InheritedAnnotation.class));

The output to these lines is:

is true: true
is true: true

We can see how the annotation is inherited by the sub class automatically with no need of declaring it.

If we try to use this kind of annotation in an interface like this:

@InheritedAnnotation
public interface AnnotatedInterface
{

public void oneMethod();

}

An implementation for it:

public class AnnotatedImplementedClass implements AnnotatedInterface
{

@Override
public void oneMethod()
{

}

}

And we check the result of the annotation inheritance using the isAnnotationPresent() method:

System.out.println("is true: " + AnnotatedInterface.class.isAnnotationPresent(←↩
InheritedAnnotation.class));

System.out.println("is true: " + AnnotatedImplementedClass.class.isAnnotationPresent(←↩
InheritedAnnotation.class));

The result of the previous program will be

is true: true
is true: false

This shows how inheritance works in relation with annotations and interfaces: it is just ignored. The implementing class do not
inherit the annotation although it is an inherit annotation; it only applies to classes like in the case of the AnnotatedSubClass
class above.

The @Inherited annotation is only applicable to classes and annotations present in the interfaces have no effect in the im-
plementing classes. The same happens with methods, variables, packages, etc. Only classes can be used in conjunction with
this annotation. A very good explanation can be found in the Javadoc of the @Inherited annotation: http://docs.oracle.com/-
javase/7/docs/api/java/lang/annotation/Inherited.html.

Annotations cannot inherit from other annotations; if you try to do this you will get a compilation error:

Annotation type declaration cannot have explicit superinterfaces

http://docs.oracle.com/javase/7/docs/api/java/lang/annotation/Inherited.html
http://docs.oracle.com/javase/7/docs/api/java/lang/annotation/Inherited.html

Java Annotations Tutorial 19 / 27

Chapter 13

Known libraries using annotations

In this chapter we are going to show how very well known Java libraries make usage of annotations. Several libraries like JAXB,
Spring Framework, Findbugs, Log4j, Hibernate, and Junit. . . (The list can be infinite) use them for several different things like
code quality analysis, unit testing, XML parsing, dependency injection and many others.

In this tutorial we are going to show some of these use cases:

13.1 Junit

This framework is used for unit testing in Java. Since its version 4 annotations are widely used and are one of the pillars of Junit
design.

Basically the Junit processor reads using reflection the classes and suites that may contain unit tests and execute them depending
on the annotations found at the beginning of each method or class. There are Junit annotations that modify the way a test is
executed; others are used exactly for test execution, for prevention of execution, changing order of execution, etc.

The list of possible annotations is very large but we are going to see here the most important ones:

• @Test: This annotation indicates Junit that the annotated method has to be executed as unit test. It is applicable for methods
only (using the target element type METHOD) and is retained in runtime by the Java Virtual Machine (using the retention policy
RUNTIME).

@Test
public void testMe()
{

//test assertions
assertEquals(1,1);

}

In the example above we can see how to use this kind of annotation in Junit.

• @Before: the before annotation is used to indicate Junit that the marked method should be executed before every test. This
is very useful for set up methods where test context are initialized. Is applicable to methods only:

@Before
public void setUp()
{

// initializing variables
count = 0;
init();

}

Java Annotations Tutorial 20 / 27

• @After: This annotation is used to indicate the Junit processor that all marked methods should be executed after every unit
test. This annotation is normally used for destroying, closing or finalizing methods where resources are cleared and reset:

@After
public void destroy()
{

// closing input stream
stream.close();

}

• @Ignore: This one indicates Junit that the methods marked should not be executed as unit test. Even if they are annotated as
test. They should be just ignored:

@Ignore
@Test
public void donotTestMe()
{

count = -22;
System.out.println("donotTestMe(): " + count);

}

This method should be used during development and debugging phases but it is not common to leave ignored tests once the code
is ready to go to production.

• @FixMethodOrder: Indicates what order of execution should be used, normally the Junit processor takes care of this and
the default execution order is completely unknown and random for the programmer. This annotation is not really recommended
since Junit methods and tests should be completely independent from each other and the order of execution should not affect
the results. However, there are cases and scenarios where the order of unit tests should follow some rules where this annotation
may be very useful.

@FixMethodOrder(MethodSorters.NAME_ASCENDING)
public class JunitAnnotated

There are other test suites and libraries making use of annotations like Mockito or JMock where annotations are used for the
creation of test objects and methods expectations.

For a complete list of available annotations in Junit https://github.com/junit-team/junit/wiki/Getting-started

13.2 Hibernate ORM

Hibernate is probably the most used library for object relational mapping in Java. it provides a framework for mapping object
model and relational databases. It makes use of annotations as part of its design.

In this chapter we are going to see a couple of annotations provided by Hibernate and to explain how its processor handles them.

The snippet bellow has the annotations @Entity and @Table. These are used to indicate the consumer (the Hibernate proces-
sor) that the annotated class is an entity bean and indicates what SQL table should be used for the objects of this class. Actually
this annotation just explains which one is the primary table; there are annotations for the secondary as well.

@Entity
@Table(name = "hibernate_annotated")
public class HibernateAnnotated

In the following piece of code we show how to indicate the Hibernate processor that the marked element is a table id with the
name "id" and that it should be auto generated (the typical auto increment SQL ids):

https://code.google.com/p/mockito/
http://jmock.org/
https://github.com/junit-team/junit/wiki/Getting-started

Java Annotations Tutorial 21 / 27

@Id
@GeneratedValue
@Column(name = "id")
private int id;

In order to specify a standard SQL table column we can write something like this before an element:

@Column(name = "description")
private String description;

This indicates that the marked element is a column with the name "description" in the table specified at the beginning of the class.

These annotations belong to the http://docs.oracle.com/javaee/6/api/javax/persistence/package-summary.html package from the
Java Enterprise Edition and basically it covers all the available annotations that hibernate uses (or at least the most common
ones).

13.3 Spring MVC

Spring is a framework widely used for implementing Java Enterprise applications. One of its most important features is the usage
of dependency injection in Java programs.

Spring uses annotations as an alternative to XML based configuration (the first Spring versions used only XML based configura-
tions). Currently both options are available; you can configure your projects using annotations and XML configuration files. In
my opinion both approaches have benefits and inconveniences.

Here we are just going to show two of the multiple annotations available in Spring. In the following example:

@Component
public class DependencyInjectionAnnotation
{

private String description;

public String getDescription()
{

return description;
}

@Autowired
public void setDescription(String description)
{

this.description = description;
}

}

In the snippet above we can find two kinds of annotations applied to the whole class and to a method respectively:

• @Component: Indicates that the element marked by this annotation, in this case a class, is a candidate for auto detection. This
means that the annotated class may be a bean and should be taken into consideration by the Spring container.

• @Autowired: The Spring container will try to perform byType auto wiring (this is a kind of property matching using the
elements type) on this setter method. It can be applied to constructor and properties as well and the actions the Spring container
takes in these cases are different.

For more information about dependency injection and the Spring framework in general please visit: http://projects.spring.io/-
spring-framework/.

http://docs.oracle.com/javaee/6/api/javax/persistence/package-summary.html
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/

Java Annotations Tutorial 22 / 27

13.4 Findbugs

This library is used in order to measure the quality of the code and provide a list of possibilities to improve it. It checks the code
against a list of predefined (or customized) quality violations. Findbugs provide a list of annotations that allow programmers to
change its default behavior.

Findbugs mainly reads the code (and its contained annotations) using reflection and decides what actions should be taken de-
pending on them.

One example is the annotation edu.umd.cs.findbugs.annotations.SuppressFBWarnings that expects a viola-
tion key as parameter (one or more values as parameter have to be provided, no need for the key, since it is the default "value"
key). It is very similar to the java.lang.SuppressWarnings one. It is used to indicate the Findbugs processor to ignore
specific violations while executing the code analysis.

Here is an example of use:

@SuppressFBWarnings("HE_EQUALS_USE_HASHCODE")
public class FindBugsAnnotated
{

@Override
public boolean equals(Object arg0)
{

return super.equals(arg0);
}

}

The class above overrides the equals()method of the Object class but does not do the same with the hashCode()method.
This is normally a problem because hashCode() and equals() should be override both of them in order not to have problems
while using the element as key in a HashMap for example. So Findbugs will create an error entry in the violations report for it.

If the annotation @SuppressFBWarnings with the value HE_EQUALS_USE_HASHCODE would not be there the FindBugs
processor would throw an error of the type:

Bug: com.danibuiza.javacodegeeks.findbugsannotations.FindBugsAnnotated defines equals and ←↩
uses Object.hashCode()

Bug: com.danibuiza.javacodegeeks.findbugsannotations.FindBugsAnnotated defines equals and ←↩
uses Object.hashCode()

This class overrides equals(Object), but does not override hashCode(), and inherits the implementation of hashCod
e() from java.lang.Object (which returns the identity hash code, an arbitrary value assigned to the object by the VM).
Therefore, the class is very likely to violate the invariant that equal objects must have equal hashcodes.

If you don’t think instances of this class will ever be inserted into a HashMap/HashTable, the recommended hashCode
implementation to use is:

public int hashCode() {
assert false : "hashCode not designed";
return 42; // any arbitrary constant will do
}

Rank: Troubling (14), confidence: High
Pattern: HE_EQUALS_USE_HASHCODE
Type: HE, Category: BAD_PRACTICE (Bad practice)

This error contains an explanation of the problem and hints about how to solve it. In this case the solution is basically to
implement the hashCode() method as well.

For a complete list of all FindBugs violations that can be used as value in the SuppressFBWarnings annotation (doc).

http://findbugs.sourceforge.net/bugDescriptions.html

Java Annotations Tutorial 23 / 27

13.5 JAXB

JAXB is a library used for conversion and mapping of XML files into Java objects and vice versa. Actually this library comes
with the standard JRE and there is no need to download it or configure it in any way. It can be used directly by importing the
classes in the package javax.xml.bind.annotation in your applications.

JAXB uses annotations to inform its processor (or the JVM) of the XML to code (and viceversa) conversion. For example there
are annotations used to indicate XML nodes in the code, XML attributes, values, etc. We are going to see an example:

First of all, we declare a class indicating that it should be a node in the XML:

import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlType;
@XmlType(propOrder = { "brand", "model", "year", "km" })
@XmlRootElement(name = "Car")
class Car
...

The annotations used here are @XmlType and @XmlRootElement. They inform the JAXB processor that the class Car is
going to be a node in the XML produced in the result of the conversion. The @XmlType indicates the order of the properties in
the resultant XML. JAXB will perform the proper actions based on these annotations.

Apart of a setters and getters for the desired properties, nothing else is needed in this class in order to make it available for
conversion. Now we need a consumer program that executes the conversion to XML:

Car car = new Car();
car.setBrand("Mercedes");
car.setModel("SLK");
car.setYear(2011);
car.setKm(15000);

Car carVW = new Car();
carVW.setBrand("VW");
carVW.setModel("Touran");
carVW.setYear(2005);
carVW.setKm(150000);

/* init jaxb marshaler */
JAXBContext jaxbContext = JAXBContext.newInstance(Car.class);
Marshaller jaxbMarshaller = jaxbContext.createMarshaller();

/* set this flag to true to format the output */
jaxbMarshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);

/* marshaling of java objects in xml (output to standard output) */
jaxbMarshaller.marshal(car, System.out);
jaxbMarshaller.marshal(carVW, System.out);

The output of this program will be something like:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Car>

<brand>Mercedes</brand>
<model>SLK</model>
<year>2011</year>
<km>15000</km>

</Car>
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Car>

<brand>VW</brand>
<model>Touran</model>
<year>2005</year>

Java Annotations Tutorial 24 / 27

<km>150000</km>
</Car>

There is a list of annotations that can be used in JAXB for XML to Java conversion. More information can be found in
https://jaxb.java.net/

https://jaxb.java.net/

Java Annotations Tutorial 25 / 27

Chapter 14

Summary

In this article we explained that annotations in Java are a very important feature available since the update 5, and we listed several
uses cases where they can be used. Basically annotations are metadata that contain information about the marked code. They do
not change or affect the code by any meaning and they can be used by 3rd applications called consumers in order to analyze the
code using reflection.

We listed the built in annotations that are available per default in Java, some of them also called meta annotations like @Target
or @Retention, or others like @Override or @SuppressWarnings, and the new features coming out in Java 8 related to
annotations like the @Repeteable annotation, the @FunctionalInterface annotation and the annotations by type.

We also shown a couple of code examples where annotations were used in combination with reflection and we mentioned and
described several real life libraries that are doing extensive use of annotations in Java like Junit, Spring or Hibernate.

Annotations are a very powerful mechanism in Java to analyze the Meta data of any kind of programs and can be applicable in
different scopes like validation, dependency injection or unit testing.

Java Annotations Tutorial 26 / 27

Chapter 15

Download

You can download the full source code of this tutorial here: customAnnotations

http://www.javacodegeeks.com/wp-content/uploads/2014/11/customAnnotations.zip

Java Annotations Tutorial 27 / 27

Chapter 16

Resources

Here is a list of very useful resources related to Java annotations:

• Official Java annotations site

• Wikipedia article about annotations in Java

• Java Specification Request 250

• Annotations white paper from Oracle

• Annotations API

http://docs.oracle.com/javase/tutorial/java/annotations/
http://en.wikipedia.org/wiki/Java_annotation
http://en.wikipedia.org/wiki/JSR_250
http://www.oracle.com/technetwork/articles/hunter-meta-096020.html
http://docs.oracle.com/javase/7/docs/api/java/lang/annotation/package-summary.html

	Overview
	Why annotations?
	Introduction
	Consumers
	Annotations syntax and annotation elements
	Where can be used
	Use cases
	Built in annotations
	Java 8 and annotations
	Custom annotations
	Retrieving Annotations
	Inheritance in annotations
	Known libraries using annotations
	Junit
	Hibernate ORM
	Spring MVC
	Findbugs
	JAXB

	Summary
	Download
	Resources

