JAVA SERVLET
TUTORIAL

THE ULTIMATE GUIDE

Java Servlet Tutorial

Java Servlet Tutorial

Java Servlet Tutorial ii
1 Introduction 1
1.1 Servlet Process o . . e e 1
1.2 METItS .« . o o o o e e e e e e e 1
2 Life Cycle 3
3 Container 5
3.1 SEIVICES . . o v o i e e e 5
3.2 Servlet Container Configurations L 5
4 Demo: To start with 6
5 Filter 12
5.1 Interface L 12
5.2 Exampleo e e e 13
6 Session 19
6.1 Session Handling o . L e e e 19
6.2 Mechanisms of Session Handling 19
6.3 Example e 20
7 Exception Handling 23
7.1 Error Code Configuration i it e e e e e 23
7.2 Exception-Type Configuration e e 23
8 Debugging 24
8.1 Message Logging e e e e e 24
8.2 JavaDebugger. e e e e 24
83 Headers e 24
8.4 Refresh 24
9 Internationalization 26
9.1 Methods e 26
0.2 Example L e 26

Java Servlet Tutorial iii

10 Reference 29

11 Conclusion 30

12 Download 31

Java Servlet Tutorial

Copyright (c) Exelixis Media P.C., 2015

All rights reserved. Without limiting the rights under

copyright reserved above, no part of this publication

may be reproduced, stored or introduced into a retrieval system,
transmitted, in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior written
permission of the copyright owner.

or

Java Servlet Tutorial v

Preface

Java Servlets is a Java based web technology. Java Servlet technology provides Web developers with a simple, consistent
mechanism for extending the functionality of a Web server and for accessing existing business systems.

A servlet can almost be thought of as an applet that runs on the server side-without a face. Java servlets make many Web
applications possible.

Java Servlets comprise a fundamental part of the Java Enterprise Edition (Java EE). Please note that Java Servlets have to be
executed inside a Servlet compatible “Servlet Container” (e.g. web server) in order to work.

This tutorial works as a comprehensive, kick-start guide for your Java Servlet based code.

Java Servlet Tutorial Vi

About the Author

Kaushik has 16 years of experience as a technical architect and software consultant in enterprise application and product develop-
ment. He has interest in new technology and innovation area along with technical writing. His main focus is on web architecture,
web technologies, java/j2ee, Open source, big data and semantic technologies.

He has demonstrated his expertise in requirement analysis, architecture design & implementation, technical use case preparation,
and software development. His experience has spanned in different domains like Insurance, banking, airlines, shipping, document
management etc.

Kaushik worked with a wide variety of technologies starting from Mainframe (IBM S/390), midrange (AS/400), web technologies
and open source area. He has worked with clients like IBM, Lexmark, United Airlines and many more.

Java Servlet Tutorial 1/31

Chapter 1

Introduction

Servlet is a Java programming language class, part of Java Enterprise Edition (Java EE). Sun Microsystems developed its first
version 1.0 in the year 1997. Its current Version is Servlet 3.1.

Servlets are used for creating dynamic web applications in java by extending the capability of a server. It can run on any web
server integrated with a Servlet container.

1.1 Servlet Process

The process of a servlet is shown below:

SERVER
BROWSER Client request
—
—
Client
Serverresponse

Figure 1.1: servlet processing of user requests

* A Request is sent by a client to a servlet container. The container acts as a Web server.
» The Web server searches for the servlet and initiates it.
* The client request is processed by the servlet and it sends the response back to the server.

* The Server response is then forwarded to the client.

1.2 Merits

* Servlets are platform independent as they can run on any platform.

Java Servlet Tutorial 2/31

* The Servlet API inherits all the features of the Java platform.

It builds and modifies the security logic for server-side extensions.
* Servlets inherit the security provided by the Web Server.

 In Servlet, only a single instance of the requests runs concurrently. It does not run in a separate process. So, it saves the
memory by removing the overhead of creating a new process for each request.

Java Servlet Tutorial 3/31

Chapter 2

Life Cycle

Servlet lifecycle describes how the servlet container manages the servlet object.

* Load Servlet Class
* Servlet Instance is created by the web container when the servlet class is loaded

e init ():This is called only once when the servlet is created. There is no need to call it again and again for multiple requests.

public void init () throws ServletException ({

* service (): Itis called by the web container to handle request from clients. Here the actual functioning of the code is done.
The web container calls this method each time when request for the servlet is received.

It calls doGet (), doPost (), doTrace (), doPut (), doDelete () and other methods
e doGet ():

public void doGet (HttpServletRequest request,HttpServlietResponse response)
throws ServletException, IOException {

// code

}

e doPost ():

public void doPost (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
// code

* destroy (): Itis used to clean resources and called before removing the servlet instance.

public void destroy ()

Java Servlet Tutorial 4/31

Serviet

Servlet Instance is
created after
loading servliet

init{} method
is called

service [} method is called by
the web container to handle
request from clients

V)

Figure 2.1: Servlet Life Cycle

Java Servlet Tutorial 5/31

Chapter 3

Container

It is known as servlet engine which manages Java Servlet components on top of a web server to the request send by the client.

3.1 Services

Servlet Container provides the following services:

It manages the servlet life cycle.

* The resources like servlets, JSP pages and HTML files are managed by servlet container.
* It appends session ID to the URL path to maintain session.

* Provides security service.

* Itloads a servlet class from network services, file systems like remote file system and local file system.

3.2 Servlet Container Configurations

The servlet container can be configured with the web server to manage servlets in three ways listed below:

* Standalone container
* In-process container
* Out-process container

Standalone container: In this type the Web Server functionality is taken by the Servlet container. Here, the container is strongly
coupled with the Web server.

In-Process container: In this the container runs within the Web server process.

Out-Process container: In this type there is a need to configure the servlet container to run outside the Web server process. It is
used in some cases like if there is a need to run Servlets and Servlet container in different process/systems.

Java Servlet Tutorial 6/ 31

Chapter 4

Demo: To start with

Here is an example showing Demo Servlet. Follow these steps to start with your first Servlet Application in NetBeansIDE.

Step 1: Open NetBeansIDE — File — New Project— WebApplication — Set Project name as WebApplicationServiletDemo

G New Web Application

Steps Mame and Location
1. Choose Project Bro : - . 5
pect MName: EDADDRCA DoNServiee emo
2. HMame and Location b
3. Server and Settngs Project Location: | C:\UkerstDemo oouments NetBeansProjects Browse. ..

4. Frameworks
Project Folder: srstDemo ocuments e tBeansProjects WebaApphcationSerde tDemo

Lise Dedicated Folder for Storing Libranies

< Back | mext> | Cancel Help

Figure 4.1: Create new WebApplication project in NetBeansIDE: WebApplicationServletDemo

Step 2: Now click on Next > as shown above. This will create new project with the following directory structure.

Java Servlet Tutorial

7/31

Step 3: Create new servlet application by Right Clicking on Project Directory— New — Servlet

Figure 4.2:

=N': "W ehApplicationServietDemo
-1 Web Pages

3-[)) META-DN

), WEB-INF

[@ index.htmi

H-|jp Libraries

#-|& Configuration Fies

{a Source Packages
EE] <default package >

Project Directory after creating new project

[Y
i3 WebPy K *E Folder
Ll ME 2 Pl
we Euld
5]
& i Clean and Build —
— @ Wb Serace Cleent..
I S Clean @
RESTHul Web Serveces Tresn Patter...
B Generate levadac 3 i
B Lbra B eve Ol
i Confgy Fun |8 Wek Service from WSDL.
Dplory 2 Tener Session Bean
Debug B Entity Classes fom Database..
Piohle = i -
Harvigannr B Test F BF JF5F Pages lvom Entaty Clatoei—
4 o Bam Tet AR=F& | [d] HTML-.
Open Regueed Prajects |8 Entaty Clans-
Close 2 Secuon Bean
L Web Serace.
Fename..
i Orthar
Copy—
Delete Dilete
Find_ CElsF fpus 3 | HTTP Server Moniios
beapect and Tesnafoem...
Werngning L]
Husory L
Punpestion

Figure 4.3: Adding Servlet file

Step 4: Add the Servlet Class Name as "ServletDemo" and click on Next.

Java Servlet Tutorial 8/31

) New Sendet =
Steps Name and Location
L Choose Fie Type Class Mame: ServetDemo

2. MName and Location
3. Configure Serviet Deployment

Project: WebApphcatonServie tDemo
Locabion: Source Padkages -
Fm: -

Created File: scuments e tBearsProjectsWebApplcabonServietDems are java\ServietDemo. java

8, Warning: 1t is highly recommended that you do not place Java dasses in the default package.

Figure 4.4: Adding Servlet Class Name

Step 5: Now, Configure Servlet Deployment by checking "Add information to deployment descriptor (web.xml)" and adding
URL Pattern (the link visible) as ServietDemo. This step will generate web.xml file in WEB-INF folder.

Steps Configure Servict Deployment

Begater the Serviet with B applcaton by ghang Bew Serviet an nternal name (Sorviet Faame]). Then

{1
2. Pl e Lo Doy
3 Conigurs Serehet tmwl‘;'wm that lenbfy the LIRLE that rrvolo Bhe Serviet. Separate mulbple patterns wash
D by et .
T i nfornaion o deploymeent descriptor {eeeds. oml)

Chacks M : o e Moy

et P Tl Rl

L Patterri{nlc Fmr e e

e bl Eacs B e Bere

o | Fier

Figure 4.5: Configuring Servlet Deployment

Step 6: Click on Finish as shown above, this will add ServletDemo.java servlet under project directory. Check the changes under

Java Servlet Tutorial 9/ 31

Directory Structure:

- @ WebApplicationServietDemo
3| }3 WebPages
7-[)) META-INF

H- s WHEB-INF
[@] index.html
3\ fg Source Packages

- |:| <default package >
|&] ServietDemo.java
-\ jp Libraries
+-E) 10K 1.7 (Default)
#-[ER Apache Tomcat 8.0.3.0
& Configuration Files

+

Figure 4.6: Changes under project directory after configuring

Here is the code for deployment descriptor (web.xml) with URL-patter as /ServietDemo:
Listing 1: web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://www.w3. <
org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee <+
http://xmlns. jcp.org/xml/ns/javaee/web-app_3_1.xsd">
<servlet>
<servlet—-name>ServletDemo</servlet-name>
<servlet-class>ServletDemo</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>ServletDemo</servlet-name>
<url-pattern>/ServletDemo</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
</web-app>

Here,

<servlet-name>: name given to Servlet
<servlet-class>: servlet class
<servlet-mapping>: maps internal name to URL
<url-pattern>: link displays when Servlet runs

The hyperlink Next is mentioned as ServletDemo. So, when the user will click on it, the page will redirect to ServletDemo servlet
whose url-pattern is mentioned as ServetDemo:

Listing 2: index.html

<html>
<head>
<title>Welcome</title>
<meta charset="UTF-8">

Java Servlet Tutorial 10/ 31

<meta name="viewport" content="width=device-width, initial-scale=1.0">

</head>

<body>

<h2>Welcome</h2>

We’re still under development stage. Stay Tuned for our website’s new design and learning <=
content.

Next

</body>

</html>

Listing 3: ServletDemo.java

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;
public class ServletDemo extends HttpServlet ({

protected void processRequest (HttpServletRequest request, HttpServletResponse <=
response)
throws ServletException, IOException {
response.setContentType ("text/html; charset=UTF-8") ;
try (PrintWriter out = response.getWriter()) {
out.println ("<!DOCTYPE html>");

out .println ("<html>");
out.println ("<head>");
out.println("<title>Servlet ServletDemo</title>");
out .println ("</head>");
out.println ("<body>");
(

out.println("<hl>Servlet ServletDemo at " + request.getContextPath <
() + "</hli>");

out.println ("</body>");

out.println ("</html>");

@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {
response.setContentType ("text/html; charset=UTF-8") ;
PrintWriter out = response.getWriter();
try f
/* TODO output your page here. You may use following sample code. <
*/

out.println ("<!DOCTYPE html>");

(
out.println ("<html>");
out.println ("<head>");
out.println("<title>Servlets</title>");
out .println ("</head>");
out.println ("<body>");

out.println("
<h2>First Demo Servlet application</h2>
 ¢
Here, the URL-pattern is ServletDemo in web.xml. So, the address <«
is <i>WebApplicationServletDemo/ServletDemo</i>.");
out.println("

Previous Page") ¢
;
out.println("</body>");
out.println ("</html>");

finally

Java Servlet Tutorial 11/ 31

{

out.close();

}

(— = localhost-8

Welcome

We're still under development stage. Stay Tuned for our website's new design and learning content.

Next

Figure 4.7: Output showing index.html welcome page

{' localhost

First Demo Servlet application

Here, the URL-pattern 15 ServletDemeo in web.xml. So, the address 15 WebdpplicarionServietDemo/ServietDemo.

Previous Page

Figure 4.8: Output showing redirection to ServletDemo.java

Java Servlet Tutorial 12/ 31

Chapter 5

Filter

Filters transform the content of requests, responses, and header information from one format to another. These are reusable
codes.

* Filter class is declared in the deployment descriptor.

* It is used to write reusable components.

* The request is process before it is called using filters.

* It can be used under a web application for some tasks like:

Validation

Compression

Verification

Internationalization

5.1 Interface

It consists of these 3 filters:

Interfaces

Y

Filter l FilterChain | FilterConfig

Figure 5.1: Filter API Interfaces

Filter

This is the initial and basic interface which all filter class should implement. Java.servlet.Filter interface has the
following methods:

Java Servlet Tutorial

13 /31

Methods

Description

init (FilterConfigq)

This method initializes a filter

doFilter (ServletRequest,
ServletResponse, FilterChain)

This method encapsulates the service logic on
ServletRequest to generate ServletResponse. FilterChain is
to forward request/response pair to the next filter.

destroy ()

It destroys the instance of the filter class.

Filter Config

Its object is used when the filters are initialized. Deployment descriptor (web.xml) consists of configuration information. The
object of FilterConfig interface is used to fetch configuration information about filter specified in web.xml. Its methods are

mentioned below:

Methods

Description

getFilterName ()

It returns the name of filter in web.xml

getInitParameter (String)

It returns specified initialization parameter’s value from
web.xml

getInitParameterNames ()

It returns enumeration of all initialization parameters of
filter.

getServletContext ()

It returns ServletContext object.

FilterChain

It stores information about more than 1 filter (chain). All filters in this chain should be applied on request before processing of a

request.

5.2 Example

This is an example showing filters application in NetBeansIDE. Create a WebApplication project WebApplicationFilterDemo in
the same ways as shown under Demo section. New Filter can be added in the web application by Right Clicking on Project

Directory — New — Filter

Java Servlet Tutorial

14 /31

Mew & Folder...
: i Sendet..
Build N
Clean and Build = bt :
@ Web Service Client...
B W —— Clean
@ s Mlemal s G 2 bovad &Y RESTful Web Services from Patterns...
L Web Pages enerate Javadoc :
o
- [META-E = Java Class...
#-[)) weB-vw Run ¥ Web Service from WSDL...
|#] index.hitm Deploy |#] Timer Session Bean...
N Scurce Packag Debug & Entity Classes from Database...
-3 Mrre Profile B JEp..
- | Configuration Files h F LR _
i webappicationServietDe est RESTful Web Services g¥] J5F Pages from Entity Classes...
5 WebPages Test Alt+F6 | [d] HTML..
i META-NF 3 - !
3 WEB-DF Open Required Projects B Enbly Clas
? ; ;;* el Close & Session Bean...
¥ w.h =,
1 Source Packages = ™ Web Senvice..
ENAME...
i chink Other...
B senviewemos Move.
—_—u Copy...
Navigator & * Server Monitor
E h;rﬂ Delete Dalete
Find... Ctrl=F
Inzpect and Transform...

Figure 5.2: Add new Filter to web application

) Mew Filter

Steps

Choone File Type

Name and Location
Configure Filter Deployment
Filtesr Irut P armebers

Padcage: -

Created File: C:iserDemo \Doouments e tBeansProjects iWebApphca bonFilterDema e \gavaewFin

Wrap Reguest and Respongse Objects

1\ Warning: It is highly recommended that you do not place Java dasses in the default package.

Cancel

<Back | [_Mext> |

Figure 5.3: Add Class Name as NewFilter and click on Next

Java Servlet Tutorial 15/ 31

Configure Filter Deployment by checking "Add information to deployment descriptor (web.xml)". Now, the Next button is
disabled here due to an error highlighted in Figure 13. The error "Enter at least one URL pattern" can be solved by clicking on
llNerl.

Configure Filber Deployment

Choose File Type Register the Filter with the applcation by giving the Filter an internal name. Describe when the Filter is
Name and Location imvoked by listing the HTTP request path patterns or Serviets to which the Fiter applies. Order this
Configure Filter Filter's mappings relative to any other Flter invocation.

Deployment

Fiter Init Parameters [¥] Add information to deployment descriptor (web.sml)

Class Name: MawFiter
Filter Name: MewFiter
Filter Mappings:

Fiter name

aErrtet at beast one URL pattern.

Figure 5.4: Configure Filter Deployment by checking "Add information to deployment descriptor(web.xml)"

Now, filter is mapped by adding URL-pattern as shown in Figure 15.

Java Servlet Tutorial

Steps Configure Filter Deployment
1. Chooss Fie Type Register the Filter with the application by giving the Filter an internal name. Describe when the Fiter is
2. Name and Location invoked by isting the HTTP request path patterns or Serviets to which the Fiter applies, Order this
3. Configure Filter Filter's mappings relative to any other Filter invocation,
Deployment
4. Filter Init Parameters ’ e - "
ﬁ:] Filter Mapping B |
Filter Name: NewFilter I
@ URL: [*fiter1 -
Serviet: | <Mo serviets registered > - o E
Dispaitch Conditions
sate
fave Lp
ok || cance |
L y Move Down
1
@ Enter at least one URL pattern,

After adding new filter and clicking on OK, the error will get resolved. Now, add init-parameter with name and value. Then

Figure 5.5: Filter mapping

click Finish.
) M Filner B -WMUBPFE - Fahw B - =

Shepe Fillter Tnit Parameters

1. Chooss Fie T

5 — Lum\ Sy ary mul par s ters for e Flber

3. Configure Piter Deployment [TR Sy u————

A, Fillber Init Paramebers 5
Flams Wasksm | e]
L a
pevParam _________JEE gat...]

== _I
[Lxoex] (ot] [concel.]

Figure 5.6: Adding init-parameter

Java Servlet Tutorial 17 /31

Listing 4: web.xml
The Filter NewFilter can be applied to every servlet as /* is specified here for URL-pattern.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://www.w3. <
org/2001/XMLSchema-instance" xsi:schemalLocation="http://xmlns.jcp.org/xml/ns/javaee <+
http://xmlns. jcp.org/xml/ns/javaee/web-app_3_1.xsd">
<filter>
<filter—-name>NewFilter</filter—-name>
<filter-class>NewFilter</filter-class>
<init-param>
newParam</param—name>
<param-value>valueOne</param-value>
</init-param>
</filter>
<filter-mapping>
<filter-name>NewFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
</web-app>

Listing 5: NewFilter.java

import java.io.x;

import javax.servlet.x;
import javax.servlet.http.x*;
import java.util.x;

public class NewFilter implements Filter ({
public void init (FilterConfigfilterConfig) {
// init parameter
String value = filterConfig.getInitParameter ("newParam") ;
// displaying init parameter value

System.out.println ("The Parameter wvalue: " + value);

public void doFilter (ServletRequest request, ServletResponse response, FilterChain <&
chain)
throws IOException, ServletException {

// IP address of the client machine.
String remoteAddress = request.getRemoteAddr () ;

// Returns the remote address
System.out.println ("Remote Internet Protocl Address: "+ remoteAddress);

chain.doFilter (request, response) ;

public void destroy() {

Java Servlet Tutorial 18/ 31

13-Nov-2014 14:43:16.441 INFO [http-nio-8084-exec-48]) org.apache.catalina.core.StandardC
“ontext.reload Reloading Context with name [/WebApplicationFilterDemo] 1s completed :

The Paramster walue: valueOne
Bemote Internet Protocl Address: 0:0:0:0:0:0:0:1

Figure 5.7: Showing console output

Java Servlet Tutorial 19/ 31

Chapter 6

Session

It is a collection of HTTP requests between client and server. The session is destroyed when it expires and its resources are back
to the servlet engine.

6.1 Session Handling

It is a means to keep track of session data. This represents the data transferred in a session. It is used when session data from
one session may be required by a web server for completing tasks in same or different sessions. Session handling is also known
assession tracking.

6.2 Mechanisms of Session Handling

There are four mechanisms for session handling:

URL rewriting: The session data required in the next request is appended to the URL path used by the client to make the next
request.

Query String: A string appended after the requested URI is query string. The string is appended with separator as ‘7’ character.
Example 1): http://localhost:8080/newproject/login?user=testé& passwd=abcde

Path Info: 1t is the part of the request URI. Session data can be added to the path info part of the request URI.

Example 2): http://localhost:8080/newproject/myweb/login; user=test& passwd=abcde

Hidden form field: A type of HTML form field which remains hidden in the view. Some other form fields are: textbox, password
etc. This approach can be used with form-based requests. It is just used for hiding user data from other different types of users.

Example 3: <input type="hidden" username="name" value="nameOne"/>

Cookies: It is a file containing the information that is sent to a client by a server. Cookies are saved at the client side after being
transmitted to clients (from server)through the HTTP response header.

Cookies are considered best when we want to reduce the network traffic. Its attributes are name, value, domain, version number,
path, and comment. The package javax.servlet .http consists of a class names Cookie.

Some methods in javax.servlet.http.Cookie class are listed below:

* setValue (String)
* getValue ()

* getName ()

Java Servlet Tutorial 20/ 31

* setComment (String)
* getComment ()

* setVersion (String)
* getVersion ()

* setDomain (String)
* setPath (String)

* getPath ()

* setSecure (boolean)

* getSecure (boolean)

HTTP session: It provides asession management service implemented through HttpSession object.

Some HttpSession object methods are listed here; this is referred from the official Oracle Documentation:

Method Description

public Object getAttribute (String name) It returns the object bound with the specified name in this
session or null if no object is bound under the name.

public Enumeration getAttributeNames () It returns Enumeration of String objects containing the
names of all the objects bound to this session.

public String getId() It returns a string containing the unique identifier assigned
to this session.

public long getCreationTime () It returns the time when this session was created, measured
in milliseconds since midnight January 1, 1970 GMT.

public long getLastAccessedTime () It returns the last time the client sent a request associated
with this session.

public int getMaxInactiveInterval () It returns the maximum time interval, in seconds that the
servlet container will keep this session open between client
accesses.

public void invalidate () It Invalidates this session then unbinds any objects bound
to it.

public boolean isNew () It returns true if the client does not yet know about the
session or if the client chooses not to join the session.

6.3 Example

Session Information like session id, session creation time, last accessed time and others is printed under this example.
Listing 6: ServletSession.java

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Date;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import Jjavax.servlet.http.HttpSession;

public class ServletSession extends HttpServlet {

@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)

https://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpSession.html

Java Servlet Tutorial 21/31

throws ServletException, IOException {
// session object creation

HttpSessionnewSession = request.getSession (true);
// Session creation time.
Date cTime = new Date (newSession.getCreationTime());

// The last time the client sent a request.
Date 1Time = new Date(newSession.getLastAccessedTime());

/+ sets the time, in seconds, between client requests before the servlet container
invalidates this session */

newSession.setMaxInactiveInterval (1 » 60 % 60);

String str = "Website | Session";

response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();

String document =
"<!doctype html public \"-//w3c//dtd html 4.0 " +
"transitional//en\">\n";
out.println (document +
"<html>\n" +
"<head><title>" + str + "</title></head>\n" +
"<body bgcolor=\"#bbf5£f0\">\n" +
"<h2>Website: Displaying Session Information</h2>\n" +
" \n" +

" \1’1 "oy
n

|Unique identifier assigned to this session\n" +
" |" + newSession.getId() + ""

+ vv\nu +
"\nll +
" | The time when this session was created\n" +

" " + cTime +
" n

+ "\n" +

vv\nu +

" | The last time the client sent a request associated with this session\n"
+ " " 4+ 1Time +

n” "
+ "\nll +

"</tr>\n" +

"\nu +

" | the maximum time interval, in seconds that the servlet container will <
keep this session open between client accesses.\n" +
" |" + newSession.getMaxInactiveInterval () +
A\l n
+ "\n" +
"‘____ _______ __\nn +
"</body></html>");

Java Servlet Tutorial

22/ 31

Amit's Website: Displaying Session Information

\Unique identifier assigned to this session

[A50433572783 71 9EFASBF TBE4E02787
The time when this session was created

'VIHNM 12 1&6:54:10 IST 2014

h’dm 12 17:31:00 IST 2014
?nnemﬁmiumﬂ'n seconds that the serviet container will keep this session open between client accesses. bm

[The last time the client sent a request associated with this session

Figure 6.1: Displaying output

Java Servlet Tutorial 23/ 31

Chapter 7

Exception Handling

Exceptions are used to handle errors. It is a reaction to unbearable conditions. Here comes the role of web.xml i.e. deployment
description which is used to run JSP and servlet pages. The container searches the configurations in web.xml for a match. So, in
web.xml use these exception-type elements for match with the thrown exception type when a servlet throws an exception.

7.1 Error Code Configuration

The /HandlerClass servlet gets called when an error with status code 403 occurs as shown below:
Listing 7: For Error code 403

<error-page>
<error—-code>403</error-code>
<location>/HandlerClass</location>
</error-page>

7.2 Exception-Type Configuration

If the application throws IOException, then /HandlerClass servlet gets called by the container:
Listing 8: For Exception Type IOException

<error-page>
<exception-type>java.io.IOException</exception-type >
<location>/HandlerClass</location>

</error-page>

If you want to avoid the overhead of adding separate elements, then use java.lang.Throwable as exception-type:
Listing 9: For all exceptions mention java.lang.Throwable:

<error-page>
<exception-type>java.lang.Throwable</exception-type >
<location>/HandlerClass</location>

</error-page>

Java Servlet Tutorial 24/ 31

Chapter 8

Debugging

Client-server interactions are in large number in Servlets. This makes errors difficult to locate. Different ways can be followed
for location warnings and errors.

8.1 Message Logging

Logs are provided for getting information about warning and error messages. For this a standard logging method is used. Servlet
API can generate this information using log() method. Using Apache Tomcat, these logs can be found in TomcatDirectory/logs.

8.2 Java Debugger

Servlets can be debugged using JDB Debugger i.e. Java Debugger. In this the program being debugged is sun.servlet.http.HttpServer.
Set debugger’s class path for finding the following classes:
* servlet.http.HttpServer

* server_root/servlets and server_root/classes: Through this the debugger sets breakpoints in a servlet.

8.3 Headers

Users should have some information related to structure of HTTP headers. Issues can be judged using them which can further
locate some unknown errors. Information related to HTTP headers can help you in locating errors. Studying request and response
can help in guessing what is not going well.

8.4 Refresh

Refresh your browser’s web page to avoid it from caching previous request. At some stages, browser shows request performed
previously. This is a known point but can be a problem for those who are working correctly but unable to display the result

properly.
Listing 21: ServletDebugging.java

Here, Servlet Debugging is shown which displays the errors in Tomcat log.

Java Servlet Tutorial 25/ 31

import java.io.IOException;

import java.io.PrintWriter;

import javax.servlet.ServletContext;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ServletDebugging extends HttpServlet {
@Override
protected void doGet (HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// parameter "name"
String strpm = request.getParameter ("name");

ServletContext context = getServletContext ();

// checks if the parameter is set or not

if (strpm == null || strpm.equals(""))

context.log("No message received:", new IllegalStateException ("Sorry, the
parameter is missing."));

else

context.log("Here is the visitor’s message: " +strpm);

"12-Mov-2014 15:13:10.%02 SEVERE [http-nio-B08&-exec-45] org.apache.catalina.core.ApplicationContext
.log No message received: '

java.lang.IllegalStateException: Sorry, the parameter is missing.

Figure 8.1: Output as visible in Apache Tomcat log

Java Servlet Tutorial 26/ 31

Chapter 9

Internationalization

For building a global website, some important points are considered which includes language related to user’s nationality. Inter-
nationalization isenabling a website for providing content translated in different languages according to user’s nationality.

9.1 Methods

For finding visitors local region and language, these methods are used:

Method Description

String getCountry () Returns the country code.

String getDisplayCountry () Returns a name for the visitors’ country.

String getLanguage () Returns the language code.

String getDisplayLanguage () Returns a name for the visitors’ language.

String getISO3Country () Returns a three-letter abbreviation for the visitors country.
String getISO3Language () Returns a three-letter abbreviation for the visitors language.

9.2 Example

The example displays the current locale of a user. Following project is created in NetBeansIDE:

Project Name: WebApplicationInternationalization

Project Location: C:\Users\Test\Documents\NetBeansProjects
Servlet: ServletLocale

URL Pattern: /ServletLocale

Listing 22: ServletLocale.java

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Locale;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ServletLocale extends HttpServlet ({
@Override

protected void doGet (HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException {

Java Servlet Tutorial 27 /31

//Get the client’s Locale
Locale newloc = request.getLocale();
String country = newloc.getCountry();

// Set response content type
response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();

// this sets the page title and body content
String title = "Finding Locale of current user";
String docType =
"<!doctype html public \"-//w3c//dtd html 4.0 " +
"transitional//en\">\n";
out.println (docType +
"<html>\n" +
"<head><title>" + title + "</title></head>\n" +
"<body bgcolor=\"#C0COCO\">\n" + "<h3>" + country + "</h3>\n" +
"</body></html>") ;

Listing23: index.html with location hyperlink as URL-pattern - ServletLocale

<html>

<head>

<title>User’s Location</title>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-scale=1.0">

</head>

<body>
<p>Click on the following link for finding the locale of visitor:
Location

</body>

</html>

Listing24: web.xml with URL-pattern as /ServietLocale

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.1" xmlns="http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi="http://www.w3. <
org/2001/XMLSchema-instance" xsi:schemalocation="http://xmlns.jcp.org/xml/ns/javaee <+
http://xmlns. jcp.org/xml/ns/javaee/web-app_3_1.xsd">
<servlet>
<servlet-name>ServletLocale</servlet—-name>
<servlet-class>ServletLocale</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>ServletLocale</servlet—-name>
<url-pattern>/ServletLocale</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
</web-app>

Java Servlet Tutorial

28/ 31

E User's Location =

@ localhost:3084

Click on the following link for finding the locale of visitor:

Location
Figure 9.1: Displaying index.html
o Finding Locale of current u.., \ +
é localhost:8084,/WebApplicationInternationalization,/ServletLocale

Figure 9.2: Displaying the locale as output

Java Servlet Tutorial 29/ 31

Chapter 10

Reference

Websites

* Official Oracle Documentation
e Sun Developer Network

* Free NetBeans Download

* Free Apache Download

¢ Free Java Download
Books

» Head First Servlets and JSP: Passing the Sun Certified Web Component Developer Exam, by Bryan Basham, Kathy Sierra ,
Bert Bates

* Servlet and JSP (A Tutorial), by Budi Kurniawan

https://docs.oracle.com/javaee/7/api/javax/servlet/http/package-summary.html
http://java.sun.com/reference/docs/
https://netbeans.org/downloads/
http://tomcat.apache.org/download-80.cgi
http://www.java.com/en/download/index.jsp

Java Servlet Tutorial 30/ 31

Chapter 11

Conclusion

Servlet is fast in performance and easy to use when compared with traditional Common Gateway Interfaces (CGI). Through this
guide you can easily learn the concepts related to Java Servlets. The project codes are developed under NetBeansIDE, so you
will get an idea about some of its amazing user-friendly features as well.

Java Servlet Tutorial 31/ 31

Chapter 12

Download

You can download the full source code of this tutorial here: Servlet_Project_Code

http://www.javacodegeeks.com/wp-content/uploads/2014/12/Servlet_Project_Code.zip

	Introduction
	Servlet Process
	Merits

	Life Cycle
	Container
	Services
	Servlet Container Configurations

	Demo: To start with
	Filter
	Interface
	Example

	Session
	Session Handling
	Mechanisms of Session Handling
	Example

	Exception Handling
	Error Code Configuration
	Exception-Type Configuration

	Debugging
	Message Logging
	Java Debugger
	Headers
	Refresh

	Internationalization
	Methods
	Example

	Reference
	Conclusion
	Download

