LINUX BAS
PROGRAMMING
COOKBOOK

Hot Recipes for BASH Development

Linux BASH Programming Cookbook

Linux BASH Programming Cookbook

Linux BASH Programming Cookbook ii
Contents

1 Linux Find Command Tutorial 1

1.1 Findbyfilename L e e e e 1

1.1.1 Byliteral name e e e e 1

1.1.2 Byregular eXpression v v v it e e e e e e e e e e e e e 1

1.2 Find by file properties o e e e e e e e e e e e 2

1.2.1 Throughtime e e e e 2

1211 Inminutes oo e e e e 2

122 Indays o e e e e e e e e 3

1.23 By permiSsions o i e e e e e e e e e e e e e e e e 3

1.24 Byfiletype o o e 3

125 BYSIZE . . o o e 4

1.3 Using conditions o0 e e e e e e e e e e e e e e 4

1.4 Executing actions with eXxec L e e 4

1.5 Useful and recurrent commands Lol e e e 5

1.6 Conclusion e 5

2 Linux Screen Command Tutorial 6

2.1 Installationo e e 6

2.2 Creatin@ @ SCTEEM v v v v v v v e 6

2.2.1 Creating windows inside SCIEENSt v v vt e e e e e e e 7

2.3 Screen commands OPHONS v v v vttt e e e e e e e e e e e e e 7

24 Keybindings o e e e e e e 8

2.5 Customizing SCIEEM vttt i it e e e e e e e e 9

2.5.1 Disabling Startup MesSage v vttt e e e e e e e e e e e e 9

2.5.2 Setting default windows for each session e 9

253 Keybindings e e e 10

2.6 SUMMATY o o e e e e e e e e e e e e 10

Linux BASH Programming Cookbook iii
3 Linux chown Example 11
3.1 Introduction e 11
3.1.1 Linux Machine e 11

32 Syntax . . . oo e 11

3.3 DeSCription v v vt e e e e e e e e e 11

34 OPLONS .« v v v o v e e e e e e e e e e 11

3.5 Examples . . .o e e e e 12
3.5.1 Change User Owner o i i i ittt e e e e 14

3.5.2 Copy ownership fromone filetoanother. L 14

3,53 Changethe groupofafile e 15

3.6 Conclusion e e e e e 16

4 Linux chmod Example 17
4.1 Linux permission SYSIEM oL e 17
4.2 Changing permiSsions o v v vttt e e e e e e e e e e e 18
4.2.1 Octal representation v v vt e e e e e e e e e e e e e e e e e e e 18

4.2.2 Symbolic representation oo e e e e e e e e e e e e e e e e 19

4.3 Special permiSSions e e e e e e e e 20
43,1 setuid ... oL L 20

432 setgid ..o e e e 21

433 StCKY e 21

44 Summary .. o.o. oLl e e e e e e e e e e 22

5 Linux Create User Example 23
5.1 Howusersare organized e e e e e e e 23

5.2 Using native binary: useradd L e e e e e 23
5.2.1 Setting apassword L e e e e e e 24

5.2.2 Creating the home directory L e 24

5.2.3 Setting a different home directory 25

5.2.4 Settingtheshell L e e e 25

5.25 Otheroptions e e 25

5.2.5.1 Specifying the primary groupo e e 25

5.2.5.2 Setting secondary Sroups i e e e e e e e e e e e e e e e e 25

5.2.5.3 Setting an expirationdate e 25

5.2.6 Setting personal information 26

5.3 Using a user-friendly wrapper for useradd: adduser L o 26
5.3.1 Changing the Options o 0 e e e e e e e e e e e 26

54 Summary ... e e 27

Linux BASH Programming Cookbook

6 Linux Add User to Group Example

6.1 How groups are organized e e e e e
6.2 NON-eXiSHNZ USETS . . .« . v v v v v e i e
6.2.1 Primary group L. e e
6.2.1.1 Changing default configuration of primary group assignment

6.2.2 Secondary Groups e e e e e e e e e e e e e e e e e e

6.3 EXISUNZ USEIS ot o it et e e e e e e e e e e e e e e e
6.3.1 Primary group e e e e e e e e
6.3.2 Secondary Sroups e e e e e

6.4 Giving users sudo PerMISSIONS v v v v v v i e
6.5 Summary e

7 Linux tar Examples
7.1 Createatararchive of adirectory e
7.2 Createazippedarchive L e e
7.3 Listthecontents of atararchive e
7.4 Extracttararchive contents e e
7.5 Extracttarbz2 archive CONtents L. e e e e e e
7.6 Extractasingle file from tararchive
7.7 Create a compressed archive of the current directory L e
7.8 Create an archive in a different directory L e
7.9 Extracta single directory from tar archive
7.10 Extract a single directory from tar.gz archive L
7.11 Check the size of the tar, tar.gz and tar.bz2 Archive File 0 .
7.12 Verify integrity of tar file L e
7.13 Find the difference between an archive and file system Lo L
7.14 Delete afile fromtarball e
7.15 Addafiletoan existing archive L. L e
7.16 Add adirectory to an existing archive L
7.17 Extract group of files from tar, tar.gz, tar.bz2 archives using regular expression
7.18 Untar multiple files from tar, tar.gz and tar.bz2 File
7.19 Restore files with tar oL e e e

7.20 Check the manual page fortar e

8 Linux sed Examples

8.1 Replacing String o e e e e e
8.2 Replacing the nth occurrence of a patterninaline L
8.3 Replacing all the occurrences of apatterninaline L o L.

8.4 Replacing from nth occurrence to all occurrences inaline. L.

Linux BASH Programming Cookbook v
8.5 Duplicating the replaced line with /pflag 40
8.6 Replacing string on a specific line number oL 41
8.7 Replacing stringonarangeof lines e 41
8.8 Replacing on a line which matches apattern L 41
8.9 Deleting lines e e e 42
8.10 Duplicating lin€S o e e e e e e e e e e e e e e e e e e 42
8.11 Changing the slash (/) delimiter e e 43
8.12 Using & asthe matched string 43
8.13 Using 1,2and soonto9 e 43
8.14 Running multiple sed commands L e e e e e e e 43
8.15 Printing only the replaced lines L 43
8.16 Using sed aS @IeP v v v v v i e e e e e e e e e e 44
8.17 Adding aline afteramatchisfound. L e 44
8.18 Adding alinebeforeamatch L e 45
8.19 Changingaline e 45
8.20 Transforming like trcommand 45
821 Mansed e 46

9 Linux cut Examples 47
9.1 Printing characters by position L e e e e e e 47
9.2 Printing characters by range L L L e 47
9.3 Printing fields using comma delimiter 47
9.4 Printing fields using space delimiter e 48
9.5 Displayingrange of fields L L e e 48
9.6 Displaying firstfield from file e 48
9.7 Displaying fields from Isttonth L 49
9.8 Displaying fields fromnth tolast e e e e 49
9.9 Ignoring lines that do not contain delimiter L. L 49
9.10 Inverting field selection e e 50
9.11 Specifying delimiter tobe used inoutput L 50
9.12 Printing bytes e e e e e e e e e e e e e 50
913 man cut e e e e 51

10 Linux curl Examples 52
10.1 Installation o o e e e e e e e 52
10.2 BaSICUSAZE . .« . o v o v v e e e e e e e e e e e e e 52
103 ReqUeSES . . . o o ot e e e e e e e e e e 53

10.3.1 GET . . . o 53
10.3.2 POST . . . o 53

Linux BASH Programming Cookbook vi

10.3.3 Custom requests: PUT and DELETE e 54
10.3.4 Addingextraheaders 54
10.4 FTP . . . 54
10.5 Other interesting Options L. L e e e e e 54
10.5.1 HTTP authentication L Lttt ettt e e e e e 55
10.5.2 Ignoring SSLEITOTS o v v v i e e e e e e e e e e e e e e e e e e e 55
10.5.3 Cookies o o oo 55
10.5.4 Making requests through proxy L 55
10.5.5 Download depending on the modificationtime 55

10.6 SUmMmary o e e e e e e e e e e e e 55

Linux BASH Programming Cookbook vii

Copyright (c) Exelixis Media P.C., 2016

All rights reserved. Without limiting the rights under

copyright reserved above, no part of this publication

may be reproduced, stored or introduced into a retrieval system, or
transmitted, in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior written
permission of the copyright owner.

Linux BASH Programming Cookbook viii

Preface

Bash is a Unix shell and command language written by Brian Fox for the GNU Project as a free software replacement for the
Bourne shell. First released in 1989, it has been distributed widely as it is a default shell on the major Linux distributions and OS
X.

Bash is a command processor that typically runs in a text window, where the user types commands that cause actions. Bash can
also read commands from a file, called a script. Like all Unix shells, it supports filename globbing (wildcard matching), piping,
here documents, command substitution, variables and control structures for condition-testing and iteration. The keywords, syntax
and other basic features of the language were all copied from sh. Other features, e.g., history, were copied from csh and ksh.
Bash is a POSIX shell, but with a number of extensions. (https://bit.ly/2bBmYap)

In this ebook, we provide a compilation of BASH programming examples that will help you kick-start your own projects. We
cover a wide range of topics, from user management and permissions setting, to specific commands like sed, tar, etc. With our
straightforward tutorials, you will be able to get your own projects up and running in minimum time.

https://bit.ly/2bBmYap

Linux BASH Programming Cookbook iX

About the Author

SCGs (System Code Geeks) is an independent online community focused on creating the ultimate Operating System developers
resource center; targeted at the technical architect, technical team lead (senior developer), project manager and junior developers
alike.

SCGs serve the OS developer, OS engineer and DevOps communities with daily news written by domain experts, articles,
tutorials, reviews, announcements, code snippets and open source projects.

You can find them online at https://www.systemcodegeeks.com/

https://www.systemcodegeeks.com/

Linux BASH Programming Cookbook 1/55

Chapter 1

Linux Find Command Tutorial

Linux find command is a powerful and flexible search tool that not only every system administrator must master, but also any
kind of Linux user. This tutorial will show how to use it to perform almost any type search with this useful command.

For this tutorial, Linux Mint 17.3 and £ind 4.4.2 have been used.

1.1 Find by file name

The syntax for find command is the following

find [path] [expression]

1.1.1 By literal name

To find, for example, README . t xt files in home directory, we would type the following:

find /home —-name README.txt

The —name expression is case sensitive. The following command will find every README . t xt file in the whole disk, not taking
into account the case sensitivity:

find / —-iname README.txt

1.1.2 By regular expression

Using regular expressions is useful mostly when we are looking for certain type of files.
For example, to find every . txt file in the home directory, the regular expression would be:

find /home -regextype posix—-extended -regex ".x\.txt"

Let’s see it carefully:

* With —~regextype we are specifying a regular expression type, posix—-extended, which is more widely implemented in
other systems than £ind ’s default one.

* And the regular expression itself:

— The . is a wild card for searching any character.

Linux BASH Programming Cookbook 2/55

— The ~ is for searching zero or more repetitions. Combined with ., will look for every file in the specified directory, because
every file will have at least a character, repeated zero or more times.

— Once that we have looked for every file, we have to filter the results. In this case, we are finding for every string ending in .
txt. Note that we have escaped the dot character, with ., since it’s a special character for regex.
Regular expressions can be as flexible as we want. We can find every .txt and .log files with the following command:

find /home -regextype posix—-extended -regex ".x (\.txt|\.log)"

What we are doing is to tell find to look for every file ending with the .txt substring or with the .log substring. The | character is
an or operand. And everything inside round braces, is for matching that exact substring.

We have seen how to match exact substrings. Now, let’s see how to match characters inside a range. For that, we will find files
that have numbers in their name:

find /home -regextype posix—-extended -regex ".x[0-9]"

The square brackets are for matching specific characters (not strings). And we can define ranges with the hyphen.
To end with this section, let’s see how we would find files that are composed by a date (supposing it in UK format):

find /home -regextype posix—extended -regex ".x[0-9]{2}-[0-9]1{2}-[0-9]{4}.x"

The curly braces are used for repetitions. So, we are looking for something with *XX—-XX-XXXX+ format.
Note: for finding files by their extension, there’s a shorter way using —name :

find /home -name "*.txt"

Which is a more appropriate option when we want to make a search specifying an unique file extension.

1.2 Find by file properties

Apart from the name, we can also find for some specific file properties. In this section we will see for which properties we can
make searches, and how.

1.2.1 Through time

1.2.1.1 In minutes

There are many cases in which we can be interested in finding by the time they have been modified (as same as when we sort by
modification time when using a GUI).

We can look for files that have been modified, for example, in the last 30 minutes:

find /home -mmin -30

Note that we are using a hyphen when specifying the minutes. Without it, £ ind would look for files that have been modificated
exactly 30 minutes ago:

find /home -mmin 30

For finding files by access time, is almost the same than for modification time, but with —amin expression instead of —mmin :

find /home —-amin -30

There’s another property for finding through the time, that is the change time. Don’t confuse it with modification time. The
change time is a status change (for example, permission or owner change).

As you probably have guessed, for finding by status change time, we have to use the —cmin expression:

find /home -cmin -30

Linux BASH Programming Cookbook 3/55

1.2.2 In days
We have seen how find files through time, specifying the time in minutes. But we can also make searches specifying the time in
days. For that, we have to change the »min suffix of the previous expressions, with «t ime suffix.

Take into account that the searches made with «t ime are always truncated. So, if we want to find modified files between the
current moment and the previous day, we have to type:

find /home -mtime O

1.2.3 By permissions

Finding files by permissions is so simple. We can look for files belonging to a certain user or group:

find /home -user julen
find /home -group development

And also by the permissions of the files:

find / -perm 777

The above command would find the files with exactly 777 permissions, which can be useful to find files with permissions that
should be fixed.

There is the dash prefix available, /, for finding files that match at least one of the specified permission bits. It’s easier to
understand seen in an example:

find / -perm /755

The above command would find files that are readable, writable or executable by the owner; readable or executable by the owner
group; or readable or executable by other users. Finds

Of course, we can also use the symbolic notation to find files by permissions:

find / -perm a=rwx

Which would be the equivalent to 777.

1.2.4 By file type

You may noticed that £ind also returns folders, for example. By default, find looks for every file that matches with the criteria,
regardless its type.

If we are only looking for a certain type of files, we have to specify it with -t ype:

find / -perm a=rwx —-type f

That command would only find the regular files.

find accepts the following values for this option:

e d: directory

* f: regular file

¢ I: symbolic link

* b: buffered block

* c: unbuffered character
e p: named pipe

¢ s: socket

Linux BASH Programming Cookbook 4/55

1.2.5 By size

Finding by size is specially useful when we can to free some space in the disk. And is pretty simple:

find /var/log -size +20M
The above command will find files bigger than 20 megabytes in /var/log directory, a typical directory whose size has to be

continuously watched by systems administrators.

‘We have several units to choose:

* b: 512-byte blocks (the one used by default, if no other unit is specified)
* c: bytes

* k: kilobytes

* M: megabytes

* G: gigabytes

1.3 Using conditions

find allows to use and, not and or boolean conditions.
Let’s see it with an example for each one:

find / -size +10M -and -name "*.txt"
find / -perm 777 -not -user root
find / -user developer —-or —group development

Which, respectively, mean: "find every file bigger than 10MB and with . t xt extension", "find every file with 777 permissions
that does not belong to root user", and "find every file that belongs to developer user or to development group".

Actually, the —and expression is not necessary to combine expressions with and logic.

find / -size +10M —-name "*.txt"

The command shown above would work as same as the previous one with —and.

1.4 Executing actions with exec

This is the most powerful feature of £ind. The —exec option allows us to execute commands for every found file.
A very typical use of —exec is for showing file information as we would do with 1 s command:

find / -size +500M -exec 1ls -1 {} \;

Apart from executing the command after —exec option, we have to add { }, where the file returned by £ ind will be placed, like
passing a parameter to the specified command. And the ; is to set the command end. We can chain multiple —~exec commands
after the command end.

Linux BASH Programming Cookbook

5/55

1.5 Useful and recurrent commands

To end with the tutorial, we will see some of the most common find commands.

Delete old and big log files

find / —-iname "x.log" -mtime +1 -size +10M —-exec rm {} \;

Fix 777 permissions

find / -perm 777 —-exec chmod 755 {} \;

Delete empty folders

find / -type d —-empty —-exec rm —-dir {} \;

Find 10 biggest files

find / -type f -exec 1ls -s {} \; | sort -n -r | head -10

Delete broken symbolic links

find / -xtype 1 —-exec rm {} \;

1.6 Conclusion

In this tutorial we have seen how to deal with Linux f£ind command, a very powerful tool for file search, from simple searches,
like by name or extension; to more advanced ones, using complex regular expressions or filtering by permissions, and also being

able to execute any commands for every search we make.

Linux BASH Programming Cookbook 6/55

Chapter 2

Linux Screen Command Tutorial

Screen is a window manager that allows to have several virtual terminals, several sessions and programs in text mode executing
simultaneously in the same console. In this tutorial we will see how to use it.

For this tutorial, Linux Mint 18 has been used.

2.1 Installation

If you don’t have installed Screen, you can install it easily with apt —get:

sudo apt-get update
sudo apt-get install screen

2.2 Creating a screen

To create a screen, we just have to execute the screen command:

screen

We will see an informative screen about the software itself. Just hit return to exit.

At this moment, a new screen will be generated inside the terminal window. You may have noticed it, since the buffer has been
cleared.

And that’s it!

This has created a pipe file for this session in /var/run/screen/S-<username>/ directory. The username I’m working
with is named julen, so, the directory is /var/run/screen/S-julen/.

In my case, the name for the session is 3360.pts-0.julen-VAIO. screen generates the sessions with the following
format:

<pid>.<tty>.<host>
You may be wondering how to exit the screen. You can obviously close the terminal, but that would leave the session alive. If

you want to kill it, you can execute the following command inside the session you want to kill:

exit

You will see that you return to the "original" shell, and that screen has told that, effectively, you have exited its screen:
[screen is terminating]

If you check the directory where screen saves the sessions, you will notice that the previous session has disappeared.

Linux BASH Programming Cookbook 7/55

2.2.1 Creating windows inside screens
We have seen that executing screen in the host computer, creates a new session, which is saved in /var/run/screen/S—
<username>/ directory. If we would execute screen n times in the host, we would have n sessions.

Inside each session, we can have other several screens, named windows. The windows are created, again, executing the screen
command. So, the following:

screen
We are know inside a screen session
screen

Would only create a session in /var/run/screen/S—<username>/:

11714 .pts-0.julen-VAIO

This is because, as we have said, executing screen inside a screen session will create a window inside that screen, not another
session.

In the next sections we will see the commands available for these screens.

2.3 Screen commands options

screen command has many inline options. The following table shows and explains them.

Linux BASH Programming Cookbook

8/55

Action
Create screen

Create screen with
name

Create detached
SCreen

Show screens

Reattach screen

Try to reattach
screen, create new
one if impossible

Specify a shell for the
screen

Create a window with
name

Delete screen

Delete all zcreens

Command

sCreen

sSCreen -5 <name:>

screen -5 <namex
-dms

screen -1s|-Tist

S Ccreen -r

<name | id>

screen -R
<name | id>

screen -s

<path/to/shell>

screen -t

<yri ndow-name>

screen -X -5
<name|id>= kill

rm Jvar/run
/screen
SS-3${USER} /=

2.4 Key bindings

Description
Creates a session, as we have already seen.

Creates a session with a specific name. This is, actually, the recommended way for creating
sessions, for having identified each session with a proper name.

This is for creating a screen that will be detached from its creation, for which -dms option is used.
When using this option, the -5 option is mandatory.

Shows the screen sessions. This can also be done looking at the directory where there are stored,
as we have seen before. But using this option (actually, one ofthem, -1s or -1ist)can be
considered better since more information aboutthe session is shown, apart from being easierfo

type.

Reattaches a detached session. Ifthere’s only one session detached, it's not necessary to specify
the name/id, screen is sman enough to deduce that will be that. If there's more than one session

detached, you will need to specify the session, with the name (if you used the -s option to create
the session), orthe id [tty.host format).

Tries to reattach a detached screen. Ifthe screen couldn't be reattached, a new session will be
created. Ifno name or id is specified, a new session will be created.

Creates a session with the specified shell. By default, the sessions are created with $easH value,
which will probably be sbin/bash .

By default, the created windows inside a session are named bash . We can specify a name that
can help us to have identified properly each window with this option.

Kills the screen session. This would be equivalent to removing the pipe file from /var/run
/screen/S—-<username; .

Mot actually a screen command, but serves forthis. As each user saves its sessions in different
directories, we have to use the fuser variable.

Figure 2.1: Most popular key bindings

When we are inside a screen and its windows, we have available some special key combinations to perform some actions, e.g.,
navigating through different windows.

These key bindings consist on pressing Ctrl + a, and then pressing the key(s) in question. Not at the same time: first, Ctrl + a;
then, release them; and finally, press the key in question.

The following table shows the most used key bindings.

Linux BASH Programming Cookbook

9/55

Action
Detach screen
Clear window
Create window

Show number and title of
current window

Lock window

List windows

Rename current window
Go to window n

Go to the next window

Go to the previous window

List windows and select where
to go

Select the window to go to
Kill the current window

Kill all the windows, and
terminate the session

Show help

Command

Ctrl+ad
Ciri+acC
Cirl+ac

Ctrl+aN

Cirl + a Ctrl + x

Ctrl+aw
Ctrl+aA
Ciri+an{0..9)
Cirl+an

Ctrl + a
backspace

Cirl +a =

Cirl+a*
Ctrl+ak

Ctrl + a\

Cirl+a?

2.5 Customizing Screen

Description

Detaches the screen.

Clears the window, just like with clear command.
Creates a new window in the screen.

Shows a message with the window number and title like: This is window n (title).

Locks the window. Just like locking the host. The password to unlock the window is, of course,
the passwaord of the user where the session is running in.

Shows a list of the windows of the current screen, with the number and the name of each one.
Shows a menu for introducing a new name for the current window.

Mavigates to the window.

Mavigates to the next window.

Mavigates to the previous window (the opposite of the previous command).

Shows a menu of the current windows, allowing to select to which window navigate to.

Prompts a menu for entering the window number to navigate to.
Kills the current window, asking for confirmation.

Kills all the window and the screen session, asking for confirmation.

Shows the key bindings.

Figure 2.2: Most popular key bindings

screen allows us to configure it as we want. It looks for the configuration in a file named . screenzrc in the user’s home
directory; or system wide, in /etc/screenrc.

2.5.1

Disabling startup message

You may already be tired of the startup message when you create a screen, that one about the version, copyright, etc. This can be
disabled with the following line in the configuration file:

startup_message off

2.5.2 Setting default windows for each session

One of the most interesting possibilities is defining a set of default windows for every screen session. For that, we just have to
write the commands we would execute, in the configuration file.

For example, let’s say that for every screen session we want, apart from a shell, a Python and PHP console. We could write
the following in the configuration file:

Linux BASH Programming Cookbook 10/55

screen -t Shell /bin/bash
screen -t Python /usr/bin/python3ve
screen -t PHP /usr/bin/php -a # Interactive mode.

select 0 # After creating the windows, go to the first one.

Now, for the configuration shown above, you would have, for each screen session, those three windows.

2.5.3 Key bindings

The remaining customization that is worth mentioning is the configuration of key bindings, for having a better experience.

A usual practice is to use the function keys (F1 - F12). For example, we could use them for accessing windows:

bindkey "~[[[A" select 1 # Fl1 -> window 1
bindkey "~ [0OQ" select 2 # F2 —-> window 2
bindkey "~ [OR" select 3 # F3 -> window 3
bindkey "7 [0OS" select 4 # F4 -> window 4
bindkey "~ [[15~" select 5 # F5 -> window 5
bindkey "~ [[17~" select 6 # F6 —-> window 6
bindkey ""[[18~" select 7 # F7 —-> window 7
bindkey "~ [[19~" select 8 # F8 —-> window 8
bindkey "A[[2O~ select 9 # F9 -> window 9
bindkey ""[[2 select 10 # F10 —> window 10
bindkey "A[[23~ prev # F11 —-> previous window
bindkey "7 [[24~" next # F12 -> next window

Note: if you want to know which key code corresponds to each keystroke, you can use showkey:

showkey -a

And then press a key to know its code.

2.6 Summary

In this tutorial we have seen how to use the Screen utility, for managing several virtual windows in the same terminal. We have
seen the command’s inline options, and also the special key combinations for when we are inside the virtual windows. To end up
with the tutorial, we have shown how we can customize Screen with the configuration file.

Linux BASH Programming Cookbook 11/55

Chapter 3

Linux chown Example

3.1 Introduction

In this example, we will see how to use the Unix-like system command chown

The chown command changes the owner and owning group of files.

3.1.1 Linux Machine

If you are on Windows OS, before we get into the details of this command, I would suggest you to have a Linux machine for
better understanding of the usage of this command.

Not necessarily you need to physically have a separate machine. You can very much have a virtual Linux machine on a virtual
box like Oracle VirtualBox.

3.2 Syntax
chown [_OPTION_]...[_OWNER_ J[:[_GROUP_]] _FILE_... chown [_OPTION_]...——reference=_RF
ILE_ _FILE_...

3.3 Description

chown changes the user and/or group ownership of each given file.
If only an owner is given, that user is made the owner of each given file, and the files’ group is not changed.

If the owner is followed by a colon and a group name, with no spaces between them, the group ownership of the files is changed
as well.

If a colon but no group name follows the user name, that user is made the owner of the files and the group of the files is changed
to that user’s login group.

If the colon and group are given, but the owner is omitted, only the group of the files is changed; in this case, chown performs the
same function as chgrp. If only a colon is given, or if the entire operand is empty, neither the owner nor the group is changed.

3.4 Options

Here is the list of options available to use with chown command

Linux BASH Programming Cookbook

12 /55

-c, --changes like verbose but report only when a change is made.

-f, --silent, --quiet suppress most error messages.

-v, --verbose output a diagnostic for every file processed.

--dereference affect the referenced file of each symbolic link rather than

the symbolic link itself. This is the default.

-h, --no-dereference

affect symbolic links instead of any referenced file. This is
useful only on systems that can change the ownership of a
symlink.

--from=CURRENT_OWNER:CURRENT_GROUP

change the owner and/or group of each file only if its
current owner and/or group match those specified here.
Either may be omitted, in which case a match is not
required for the omitted attribute.

--no-preserve-root

do not treat / (the root directory) in any special way. This is
the default.

--preserve-root

Do not operate recursively on /.

--reference=RFILE

use RFILE’s owner and group rather than specifying
OWNER:GROUP values

-R, --recursive

operate on files and directories recursively.

The following options modify how a hierarchy is traversed when the -R option is also specified. If more than one is specified,

only the final one takes effect.

-H if a command line argument is a symbolic link to a
directory, traverse it.

-L traverse every symbolic link to a directory encountered

-P do not traverse any symbolic links. This is the default.

--help display this help and exit.

--version output version information and exit.

Owner is unchanged if unspecified. Group is unchanged if unspecified, or changed to the login group if implied by a : following
a symbolic OWNER. OWNER and GROUP may be numeric as well as symbolic.

3.5 Examples

Please refer to the image shown below.

Linux BASH Programming Cookbook 13/55

total 46
drwxr-xr-x :

L F 2 2
drwxr-xr-x
1 rwnd rw rwx
drwxr-xr-x :
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x .

Figure 3.1: List Command Details

We will see the details of the information given above with yellow rectangle mark.
* 1st Character - File Type: First character specifies the type of the file.

In the picture above the d in the 1st character indicates that this is a directory.

Following are the possible file type options in the 1st character of the Is -1 output.

Field Explanation
e - normal file

e d directory

* s socket file

* 1link file

Field 1 - File Permissions:

The remaining 9 characters, in order, refer to the read/write/execute(rwx) permission for the user owner, the read/write/exe-
cute(rwx) permission for the group owner, and then the read/write/execute(rwx) permission for everyone else.

In this example, rwxr—xr-x indicates read-write-execute permission for user, read-execute permission for group, and read-
execute permission for others.

Field 2 - Number of links: Second field specifies the number of links for that file. In this example, 2 indicates 2 links to this file.
Field 3 - Owner: Third field specifies owner of the file. In this example, this file is owned by username root.

Field 4 - Group: Fourth field specifies the group of the file. In this example, this file belongs to "root" group.

Linux BASH Programming Cookbook 14 /55

Field 5 - Size: Fifth field specifies the size of file. In this example, 4096’ indicates the file size.

Field 6 - Last modified date & time: Sixth field specifies the date and time of the last modification of the file. In this example,
Jan 15 19:46 specifies the last modification time of the file.

Field 7 - File name: The last field is the name of the file/directory. In this example, the file name is gmr.

3.5.1 Change User Owner

Please refer the image shown below. In this the user owner of a folder has been changed to a new user.

Terminal - + X

File Edit View Search Terminal Help

drwxr-xr-x 2 root root 4096 Nov 28 19:49

drwxr-xr-x 4 root root 4096 Nov 28 19:54

Lrwxrwxrwx 1 root root 9 Jan 14 69:04 man ->

drwxr-xr-x 2 TOOU root 489b Wov 28 19:49

drwxr-xr-x 3 root root 4096 Jan 14 14:52 User owner of "projects’ folder
drwxr-xr-x 7 root root 4096 Nov 28 20:18 i< 'root’ here.

drwxr-xr-x 2 root root 4096 Nov 28 19:49

chown gmr projects

s - Here the user owner has been
total 44

drwxr-xr-x 2 root root 4096 Mov 28 20:14
drwxr-xr-x 2 root root 4096 MNov 28 19:49
drwxr-xr-» 2 root root 4096 MNov 28 19:49
drwxr-xr-x 2 gmr root 4096 Jan 15 19:46
drwxr-xr-» 2 root root 4096 MNov 28 19:49
drwxr-xr-x 4 root root 4096 MNov 28 19:54
T rw rwxr ool root g n 14 99:04 ma
drwxr-xr-» 2 root root 4u% ov 2o 19:49 .
drwxr-xr-x root root 4096 Jan 14 14:52 Tltis changed.
drwxr-xr-x root root 4096 Nov 28 20:18

drwxr-xr-x 2 root root 4896 MNov 28 19:49

changed to 'gmr’

Figure 3.2: Change Owner

But, user owner has been changed only for the directory projects. Ownership of the inner files or directories will remain the
same, unchanged.

If the flag -R is used, it will change the owner for inner files / directories also.
Recursively grant ownership of the directory projects, and all files and sub-directories, to user gmr.

chown —-R gmr projects

3.5.2 Copy ownership from one file to another

This can be done using the ‘-reference’ flag.

Linux BASH Programming Cookbook 15/55

chown --reference=file tmpfile

As shown below, ownership of javadocs folder has been copied to projects folder.

Terminal = + % |
File Edit View Search Terminal Help

drwxr-xr-x 2 gmr root 4096 Jan 15 19:46
drwxr-xr-x root root 4096 Nov 28 19:49
druxr-xr-x
drwxr-xr-x root root 2 ov 28 19:57

L rwx rwx rx root root - :84 man ->
drwxr-xr-x 2jgmr gmr 4 157
drwxr-xr-x root root 4 Nov . 149
drwxr-xr-x root root 4 4 14:52
drwxr-xr-x root root 4

drwxr-xr-x root root 4

total 48

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
L rw rwx rw
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

:84 man -=
:57
144
4:52

Figure 3.3: Copy ownership

3.5.3 Change the group of a file

Using chown command, the group (that a file belongs to) can also be changed.

Linux BASH Programming Cookbook

16/55

File Edit View
drwxr-xr-x ¢

L rw rwx rax

drwxr-xr-x .
drwxr-xr-x .

drwxr-xr-x
drwxr-xr-x

drwxr-xr-x .

total 48

drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
T rwnt rwx rwx
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

Search Termina

root root 4096
S]

root root 4096 Jan 16

Help

Terminal - +

Nov 28 19:54

e
16:57

root 4096 Nov 28 19:49

root 4096 Jan 14

14:52

root 4096 Nov 28 20:18
root 4896 Nov 28 19:49

root gmr 4096 Jan 16
root root £ oV 28
root root 4896 Jan
root root 4896 Nowv
root root 4096 Nov

Group name of 'projecis’ has

\ been changed from ‘rooi’to

-14 to ‘gmr’using chown
149 command

149

146

149

113

154

:84 man €=

16:57

14 14:52
28 208:18
28 19:49

Figure 3.4: Change group name

3.6 Conclusion

In this example, we have seen how to use Linux command chown with different options.

Linux BASH Programming Cookbook 17/55

Chapter 4

Linux chmod Example

One of the most critical jobs a system administrator has to continuously be dealing with is the permission administration. The
most small carelessness with the permissions can lead to a security hole in the system.

This example will show how are changed the permissions, a task for which chmod command is used

For this example, Linux Mint 17.3 has been used.

4.1 Linux permission system

What makes the Linux permission system so great is its simplicity, specially when it’s compared to others, such us Windows’. In
any case, we will see briefly how it works.

There are three main things that have to be understood: the elements the permissions are defined for, the actions that can be
performed, and who can perform them.

The elements are two:

¢ Files.

¢ Directories.
The actions are three:

e Read
e Write.

» Execute. Apart from for executing scripts and binaries, also corresponds to folders: to create files and other folders inside it.
And who can perform them, other three:

* The user that owns the file.
* The group that the user owning the file belongs to.

* Any other user that is not the owner and does not belong to the group the owner does.

To see how the permissions are organized, we can list the files in the terminal:

1ls -1

And we will see something similar to the following:

Linux BASH Programming Cookbook 18/55

-rw-r——-r—— 1 julen julen 0 Jun 26 14:20 file.txt
drwxr-xr-x 2 julen julen 4096 Jun 26 14:22 folder

The first section, 10 characters, are which correspond to permissions. Let’s examine it:

* The first character is for file type. — means that the file is a regular file, and d means that is a directory.

* The following nine characters are for read (r), write (w) and execute (x) permissions for the owner, the group of the owner,
and others, respectively.

4.2 Changing permissions

To change the permissions, the chmod command (contraction of change and mode) is used. The syntax is the following:

chmod permissions file [file 2] [file n]

The specification of the files seems quite obvious, but, how are