
10 Test Automation
Frameworks for
Cross-Browser Testing
A Comparison Guide for 2017

2

Table of Contents

Introduction

Market overview

Rationale behind using JavaScript

How to select the correct test framework?

Organizational fitness

Technical fit

High-level framework descriptions

Comparison table

Summary

Appendix

Recommended resources

Introduction
The goal of this document is to offer web development
teams a set of selection criteria for choosing the correct
web testing frameworks for each project. The paper
provides a market overview of cross-browser testing
tools, including a summary of the ten leading web
testing frameworks available on the market.

Key Findings:

1. The open-source community is very active and offers great code
samples, innovation and support. New tools are introduced constantly
and it’s worth tracking tool adoption, contributions and features to
stay ahead of the market.

2. JavaScript is the standard development language in web testing
3. Selenium is the core API for the leading web test automation

frameworks
4. BDD is a clear trend in web test automation and is supported by the

majority of tools
5. Protractor, WebDriver.IO, and NightwatchJS are the leading E2E web

testing frameworks
6. For unit testing purposes, PhantomJS, CasperJS and JSDOM are the

most common frameworks
7. To choose the right test framework, evaluate the six organizational

fit and six technical fit criteria.

3

Selenium WebDriver is the market leader
in adoption for testing web applications;
however, it is being used in conjunction
with a number of frameworks designed to
boost productivity and it does have gaps

with respect to what traditional testing tools
provide (e.g., object repository).

Non Selenium WebDriver frameworks are
out of scope.

JavaScript is The Leading
Web Development Language
Before looking at the landscape, it is important to understand that in the
desktop web market, JavaScript is the leading development language for
both developers and testers. Many leading web development frameworks
in the market are leveraging JavaScript. They include frameworks such as
AngularJS, React, Aurelia, Vue.JS, and others.

4

https://www.slant.co/topics/4306/~angular-js-alternatives
https://en.wikipedia.org/wiki/Comparison_of_JavaScript_frameworks

5

The tools that you select for your testing activities should
support specific practices such as Behavior Driven Development
(BDD), or back-end services, or other JavaScript frameworks
(such as Node.JS). What we see in the market is that various tools
best fit a specific practice, such as BDD, which can be technically
supported through different capabilities. The goal is choosing
tools matching both organizational and technical criteria.

Market Overview
Selenium and Protractor are seeing the largest number of downloads (Fig. 1).
However, there are other parameters and solutions to consider as part of your
tool selection. Sometimes the best solution is to build a tool stack strategy
that includes a combination of frameworks, each serving a different purpose.

Figure 1: Cross-browser testing tools download stats (Source: NPM Trends)

http://www.npmtrends.com/protractor-vs-nightwatch-vs-webdriverio-vs-casperjs-vs-robot-js-vs-buster-test-vs-chimp-vs-codeceptjs-vs-phantomjs-vs-jsdom

6

Here are the top 10 test frameworks (in no particular order). There are at least a dozen more
frameworks outside of these top ten. We include Selenium in this list but do not compare it to
the rest, simply because Selenium is the basis for most of these solutions.

As can be seen in Figure 1, Protractor, from an E2E testing perspective, has the largest number of
downloads, while JSDOM, from a unit testing perspective, is the most downloaded. These figures
alone are not sufficient to drive a concrete decision but they can help to understand trends in the
market. As we will see in the criteria section, a good decision needs to be based on a mixture of
technical considerations and organizational fit.

Often, teams find greatest
benefit using a set of test
frameworks rather than
using only one.

Nightwatch.JS

Buster.JS

Protractor

CodeceptJS

PhantomJS

Webdriver.IO

ChimpCasper.JS

Robot

JSDom

http://www.webdriverjs.com/protractor-vs-webdriverio-vs-nightwatch/

7

JavaScript is King
JavaScript is, by far, the leading dev language
for web. Most web development frameworks
are based on JavaScript; it ’s not surprising that
the associated test tools are also written in
and support this language.

In a recently conducted survey, JavaScript was
leading the preferred programming language
of 62% of respondents.

Among the key benefits of using JavaScript
for testing, these are the clearest:

1. Open-source is free

2. It ’s modular

3. It ’s backed by an active and
vibrant community

4. Your client-server is written in JavaScript
why not the tests?

a. This assumes that the test engineer
has proper test automation skills

Figure 2: Preferred programing language survey (Source: Stack Overflow)

How to Select the Correct Test
Framework for Your Needs?
When choosing a testing framework, consider both current organizational
and technical fit.
The following are 6 organizational fit
considerations and 6 technical-fit-related
considerations to help make the best choice
for your project

Organizational Fit
As part of the framework selection process,
each team needs to assess the following 6
considerations and bake them in to the overall
decision. The overall SDLC of a project is driven
by existing and defined practices (BDD, TDD,
waterfall etc.) and skills; therefore, the tool that
is selected should suit them.

1. Project Complexity
 – How complex is the website under test?
The more complex the tool is, the more
dependent your test automation architect
will be upon APIs and extensions to be able
to cover all functionalities and to manage
test assets.

2. Resources
 – Do you have within the team the right
skills and resources to accomplish your
objectives? Do you need to hire and train
new resources for the selected framework?

 – What are the budget constraints? Even
though most web testing frameworks are
open-source and free, people aren’t; these
tools test against real platforms like desktop
browsers and mobile devices, and setting up
a lab requires budget space.

 – What is the time frame for the project
and its release cadence? This will impact
tool selection due to fast ramp-up, available
support and documentation, and execution
speed (e.g. going with headless browser vs.
real browser, etc.) Also, how is reusability
being leveraged?

3. Existing Tech Stack (Devops, COE, etc.)
 – What kind of development framework is
my web site built on? What other tools does
the web site integrate with? What current CI
tools and test case/defect management
tools are being used within R&D?

4. Test Environment
 – What are the testing environment
requirements? Do you need to cover
performance metrics? Do you need to
capture network traffic data per execution?

Do you need to mimic different locations,
etc?

 – What are the platform coverage
requirements for the project? How many
browsers? Is mobile also part of the mix?

5. Test Types / Practices
 – What are the quality criteria for the
project, e.g., which testing types are
required for the project? This will impact
the decision-making for the various tools
(plugins, integrations)

 – How good is the tool at building a robust
object repository and identifying all object
locators (Angular objects, React etc.)?

 – Is the tool able to support things like visual
validation and testing of responsive web?

 – Which execution engine and test runners
are supported with the test framework?

6. Reporting
 – What kinds of reports and dashboards
should be provided to developers, testers,
and management?

8

https://mo.github.io/2017/07/20/javascript-e2e-integration-testing.html
https://www.slant.co/versus/5107/9648/~casperjs_vs_nightwatch-js

9

Technical Fit
When the organizational fit items are well defined, it is time to match them against the
relevant frameworks and assess their technical fit to the teams involved. Below, we define
6 technical fit considerations.

1. Community Size, Support
and Documentation
The tool should be well documented, have
an active community for resolving bugs,
and commercial support.

While there are various frameworks in the
open-source community, not all of them
are equal with respect to level of support,
continuous contribution, documentation, and
commercial support – can you call someone
when something doesn’t work? The number
of contributors, their skills and availability to
support are important criteria, as well as how
recently they contributed new code to the
project. We have seen that frameworks such
as Protractor and WebDriver.IO have, by far,
a larger number of contributors, branches
and support than tools such as Nightwatch.JS
and Chimp; however, as part of your decision
making, you need to look closely at what kinds
of contributions have been made and when
they were made.

2. SDLC Process Fit (Integration,
Plugins, Dev Methodology fit)
The tool should support the SDLC practices
for your web project, whether BDD or
other methods are utilized. In addition, it
should be easily extended and integrate
into various other tools (CI, IDE’s, Reporting,
Defect Management, etc.)

What we’ve learned during tool research is that
most tools have some level of BDD support.
Some have better support than others. There
are tools which allow running BDD-based
test automation as part of their integration,
while others implement their own unique
BDD syntax. In addition, a tool should play
nicely in the overall DevOps code pipeline.
Whether the team uses CircleCI, Jenkins, or
another continuous integration server, the test
frameworks should support it seamlessly. Also,
having the ability to extend the framework and
build more capabilities on top of it through
supported APIs is another consideration for

teams when selecting a framework. Lastly, test
automation is an ongoing project and, as with
code, it requires continuous support; therefore,
it is important to build the foundation on a
framework that can grow with your project and
add more capabilities as your project evolves.

3. Feedback Loop and Reporting
The tools should be able to provide
actionable reports with sufficient artifacts
for fast resolution of defects.

Dealing with a large amount of test data across
many platforms is a challenge for most of
the testing tools we evaluated. Some of these
tools offer plugins to support robust reporters,
such as Allure and others, and are also
integrated into a variety of test management
systems. Being able to get fast quality analysis
and reports through the test framework is a
critical requirement for fast release cadence,
test management, data driven decision making,
and efficiency.

4. Cloud and Automation at Scale
The tool should be able to support automation at scale
across browsers and mobile devices through integrations
with cloud providers.

Most web projects today are not only about desktop browsers. End
users consume web content from multiple screens, locations, and in
varying conditions. This reality requires a lab scaleable to support that
can provide on-demand access to the latest browser version, beta,
legacy web, mobile platforms, and various OS versions. These targets
should be easily tested in parallel through CI, execution engines such
as TestNG, or another grid configuration. Some of the frameworks
that were evaluated have OOB integrations to cloud providers, such
as Perfecto and others, and can be used to address these criteria.

5. Automation Coverage
The tool should provide enhanced test automation capabilities
for your web site, including network monitoring, memory and
performance profiling, visual navigation testing, and others.

As part of your test automation considerations, you need to make
sure that the selected tool or tools support your JavaScript framework
and can support additional types of testing other than functional test
automation: tests such as performance, responsive design validations,
internationalization and localization, and more. In many cases,
commercial tools that wrap the underlying open-source framework can
complement it with these additional capabilities which will also include
future enhancements to the framework.

As a nice example of how to leverage from the browser vendors’ built-
in capabilities, Figure 3 shows how Google implemented extended
testing capabilities within its browser which can also be used through
WebDriver for your automation scripts. Such examples can add network
monitoring, performance and code coverage capabilities to your testing.

10

Figure 3: Google Chrome Dev Tools Options

6. Automation Robustness and Maintainability
The tool should support automation best practices such as page object
model (POM), sync testing, and be easy to set up and maintain.

SYNC-based (e.g. Protractor, Codecept)
tools that have an object repository
allow for faster maintenance and easier
to read scripts; in addition, having a
synchronized test suite means that,
from a testing perspective, you don't
need to care about callbacks, or promises
— no “wait states” make for more robust
tests. A synchronized framework syncs
the test steps with your application so
that they will be executed properly,
and at the right time, only when the
application is ready and has processed
the previous step. There is less overhead
associated with waits, elements not
found, and broken CI/automation builds
when having this capability.

This does not mean that unsynchronized
frameworks won’t deliver the same
outcome, however; for that to happen,
teams will need to implement better
mechanisms based on implicit/explicit
waits, assertions, and more.

From a maintenance perspective, tools
that provide an automated wizard
to quickly setup your environment,
generate a config.js file for you, and
more, obviously save time in the overall
test automation development process,
and reduce manual configuration errors.
Lastly, tools that support different
approaches — data-driven, keyword-
driven, etc. — simplify the testing

11

http://www.seleniumeasy.com/selenium-tutorials/synchronization-in-selenium-webdriver

Test Framework Summaries

1212

Once both the organizational fit items and the technical fit are clearly set, let’s examine
these 10 frameworks at a high level and look at how they stack up against each other from
a technical standpoint.

The table below represents the current state; however, with the market moving fast, keep
in mind that even if your team has built a working strategy for their web product, it is always
recommended to revise and validate that it is still the best choice considering the progress
of the various communities and commercial tools.

Nightwatch.JS

Buster.JS

Protractor

CodeceptJS

PhantomJS

Webdriver.IO

ChimpCasper.JS

Robot

JSDom

CATEGORIES

Casper.JS Robot Buster.JS Nightwatch.JS WebDriver.IO Protractor Codecept.JS Phantom.JS JSDom Chimp

Automation
Coverage

Visual navigation
testing

No No No
With external

libraries
Using external

tools
Using external

tools
No No No No

Take screenshots Yes Yes Yes Yes Yes Yes Yes Yes No Yes

Network monitoring,
Har File

No No No
Yes (through Google

Chrome Driver)
Yes (through Google

Chrome Driver)
Yes (through Google

Chrome Driver)
Yes (through Google

Chrome Driver)
Yes No

Yes (through Google
Chrome Driver)

Memory
and Performance

Profiling
No No No

Yes (through Google
Chrome Driver)

Yes (through Google
Chrome Driver)

Yes (through Google
Chrome Driver)

Yes (through Google
Chrome Driver),

No No
Yes (through Google

Chrome Driver)

Code Coverage
Analysis

No No No Jacoco Jacoco Jacoco Jacoco No No Jacoco

Testing Types Unit testing/Headless E2E/Acceptance Unit Testing E2E/Acceptance E2E/Acceptance E2E/Acceptance E2E/Acceptance Unit, Headless Unit, Headless E2E/Acceptance

SDLC
Process Fit

Plugins/Integrations
Jira, Junit,

Cucumber, Gradle,
Maven, Ant

IntelliJ, Maven,
Jenkins, Other

eMacs, TextMate,
xUnit

Cucumber, IntelliJ,
Grunt, Jenkins,

TeamCity,
Hudson, Junit XML
reporting built-in

Community Plugins
available

Various community
plugins, Jenkins CI,

Jasmine, Mocha,
Cucumber, Visual

Studio, WebStorm,
Grunt

Jasmine, Qunit,
Travis CI, Jenkins,

TeamCity, Buster.JS
is built-in. This FW

uses QtWebKit

Mocha for test
execution

Karma

Mocha, Jasmine,
Cucumber, Meteor,
Most CI solutions,

Simian, Chai,
WebDriver.IO

BDD/ATDD Friendly Yes Yes, KDT Yes
Yes (Jasmine, Mocha,

Cucumber)
Yes (Jasmine, Mocha,

Cucumber)
Yes (Support Jasmine,

Mocha, Cucumber)
Mocha JavaScript

DSL language

No, Phantom tests
can be triggered from

BDD frameworks
No Yes

Dev Language
Support

JavaScript Java, Python JavaScript JavaScript JavaScript
JavaScript,
TypeScript

JavaScript JavaScript JavaScript JavaScript

Automation
Robustness and
Maintainability

Config File
Generation

No No No No Yes No No No No No

Page Object Model
Creation

No No No No Yes Yes Yes NA Yes No

Execution Speed Fast
Slower than

headless
Slower than

headless
Slower than

headless
Slower than

headless
Slower than

headless
Slower than

headless
Fast Fast

Slower than
headless

Sync No No No No Yes Yes Yes No No Yes (via wrappers)

Feedback Loop
and Reporting Reporters CMD, XUnit-XML Rebot (XML)

HTML, Built-in
reports, API for

custom reporter

HTML, Allure plugin,
Junit XML

Allure, Junit, HTML,
XML, Perfecto

Jasmine2HTML,
JUnit, Allure

CLI, XML, HTML
Jasmine reporters,

Karma reports
Built in console for

reporting

Relies on integrated
FW reports like

Mocha and others

Community
Strength

Documentation Casper.JS Robot Buster.JS Nightwatch.JS WebDriver.IO Protractor Codecept.JS Phantom.JS JSDom Chimp

Contributors 176 contributors 50 Contributors
20+ Contributors
(not that active)

59 contributors 250 contributors 234 contributors 81 contributors 147 contributors 202 contributors 40 Contributors

Cloud and
Automation

at Scale
Cloud Support No

Yes
(web and mobile)

No
Yes

(web and mobile)
Yes

(web and mobile)
Yes

(web and mobile)
Yes

(web and mobile)
No No Yes

1313

http://www.jacoco.org/jacoco/trunk/doc/
http://www.jacoco.org/jacoco/trunk/doc/
http://www.jacoco.org/jacoco/trunk/doc/
http://www.jacoco.org/jacoco/trunk/doc/
http://www.jacoco.org/jacoco/trunk/doc/
https://bitbucket.org/robotframework/robottools
https://bitbucket.org/robotframework/robottools
http://www.protractortest.org/#/
http://www.protractortest.org/#/
https://trac.webkit.org/wiki/QtWebKit
https://trac.webkit.org/wiki/QtWebKit
https://trac.webkit.org/wiki/QtWebKit
https://trac.webkit.org/wiki/QtWebKit
https://trac.webkit.org/wiki/QtWebKit
https://github.com/3zcurdia/casperbot
http://docs.busterjs.org/en/latest/overview/
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/TypeScript
https://en.wikipedia.org/wiki/TypeScript
http://docs.casperjs.org/en/latest/testing.html?highlight=report
http://robotframework.org/robotframework/
http://docs.busterjs.org/en/latest/modules/buster-test/reporters/
http://docs.busterjs.org/en/latest/modules/buster-test/reporters/
http://docs.busterjs.org/en/latest/modules/buster-test/reporters/
http://webdriver.io/guide/getstarted/v4.html
http://webdriver.io/guide/getstarted/v4.html
http://codecept.io/reports/
https://chimp.readme.io/docs/reporting
https://chimp.readme.io/docs/reporting
https://chimp.readme.io/docs/reporting
http://docs.casperjs.org/en/latest/
http://robotframework.org/
http://docs.busterjs.org/en/latest/
http://nightwatchjs.org/
http://webdriver.io/
http://www.protractortest.org/#/
http://codecept.io/
http://phantomjs.org/
https://www.npmjs.com/package/jsdom
https://chimp.readme.io/
https://github.com/casperjs/casperjs
https://github.com/robotframework/robotframework
https://github.com/busterjs
https://github.com/busterjs
https://github.com/nightwatchjs/nightwatch
https://github.com/webdriverio/webdriverio/
https://github.com/angular/protractor
https://github.com/codeception/codeceptjs/
https://github.com/ariya/phantomjs
https://github.com/tmpvar/jsdom
https://github.com/xolvio/chimp

Casper.JS is A navigation scripting & testing utility for PhantomJS and SlimerJS
headless browser tools. CasperJS allows you to build full navigation scenarios
using high-level functions and a straightforward interface – this makes the solution
very appealing and easy to start writing tests for folks who don’t have a strong
technical background. You can get started with this tool through this URL:
http://docs.casperjs.org/en/latest/quickstart.html

Pro’s
• Automation Coverage: Designed for unit

testing activities

• Automation Robustness: Fast feedback due
to fast execution time

• Automation Coverage: Seamlessly works with
Phantom and SlimerJS headless browsers

• SDLC Process Fit: Easy ramp-up from a skillset
perspective, BDD-based scripting

Con’s
• Automation Coverage: Not the best fit for E2E

testing scenarios

• SDLC Process Fit: Uses older headless
browser technologies, compared to recent
Chrome Blink- based headless browser

• Automation at Scale: Doesn’t cover
real desktop browsers OOB, needs to be
complemented by an E2E solution

Automation Coverage

Visual navigation testing No

Take screenshots Yes

Network monitoring, Har File No

Memory and Performance Profiling No

Code Coverage Analysis No

Testing Types Unit testing/Headless

SDLC Process Fit

Plugins/Integrations Jira, Junit, Cucumber,
Gradle, Maven, Ant

BDD/ATDD Friendly Yes

Dev Language Support JavaScript

Automation Robustness and Maintainability

Config File Generation No

Page Object Model Creation No

Execution Speed Fast

Sync No

Feedback Loop and Reporting

Reporters CMD, XUnit-XML

Community Strength

Documentation Casper.JS

Contributors 176 contributors

Cloud and Automation at scale

Cloud Support No

1414

http://docs.casperjs.org/en/latest/quickstart.html
http://docs.casperjs.org/en/latest/testing.html?highlight=report
http://docs.casperjs.org/en/latest/
https://github.com/casperjs/casperjs

Robot Framework is a test automation framework for acceptance testing and
acceptance test-driven development (ATDD). It has easy-to-use tabular test data
syntax and utilizes a keyword-driven testing approach. Its testing capabilities can
be extended with test libraries implemented either in Python or Java, and users can
create new higher-level keywords from existing ones using the same syntax that is
used for creating test cases.

Pro’s
• Automation Coverage: Designed for

acceptance testing activities (ATDD)

• SDLC Process Fit: Leverages keyword-driven
testing method making it easy to develop
readable scripts

• Community and Support: Large community
behind it, plenty of plugins and extensions

• Automation at Scale: Cross platform support
— supports testing of Android, MongoDB
and more.

Con’s
• SDLC Process Fit: Not fully embedded into

dev workflows, suitable more to QA

• SDLC Process Fit: Mostly based on Python,
less JavaScript focused – may be a skillset issue

• Automation Robustness: Uses WebDriver
as an external test library rather than fully
designed around it

• Feedback Loop and Reporting:
Limited reporting

• SDLC Process Fit: KDT is a less common
practice than BDD (source)

Automation Coverage

Visual navigation testing No

Take screenshots Yes

Network monitoring, Har File No

Memory and Performance Profiling No

Code Coverage Analysis No

Testing Types E2E/Acceptance

SDLC Process Fit

Plugins/Integrations IntelliJ, Maven,
Jenkins, Other

BDD/ATDD Friendly Yes, KDT

Dev Language Support Java, Python

Automation Robustness and Maintainability

Config File Generation No

Page Object Model Creation No

Execution Speed Slower than headless

Sync No

Feedback Loop and Reporting

Reporters Rebot (XML)

Community Strength

Documentation Robot

Contributors 50 Contributors

Cloud and Automation at scale

Cloud Support Yes (web and mobile)

1515

https://bitbucket.org/robotframework/webdemo
http://robotframework.org/robotframework/#standard-libraries
https://www.quora.com/What-are-the-reasons-for-robot-framework-not-widely-being-used
http://robotframework.org/robotframework/latest/libraries/Screenshot.html
https://bitbucket.org/robotframework/robottools
https://bitbucket.org/robotframework/robottools
http://robotframework.org/robotframework/
http://robotframework.org/
https://github.com/robotframework/robotframework

Buster.JS is a Node.JS testing toolkit that is highly extensible for reporting and
other purposes. This toolkit is built in to headless browser tools such as Phantom.
JS and JSDom. This tool fits testing of browsers and Node apps.

It is still being positioned as Beta — unclear if this will evolve. That means
less community behind it, perhaps technical limitations, no IDE plugins and
potentially some integration issues etc.

Buster.JS comes with built-in assertions and DSL support for adding app-specific
custom assertions.

In addition, Buster.JS comes with a few front-end plugins such as XUnit, as well as a
BDD plugin that enables automation engineers to write scenarios.

Pro’s
• Automation Coverage: Supports headless

browser testing and unit testing for Node
and browsers

• SDLC Process Fit: Friendly DSL-based scripting
technology that supports assertions

• SDLC Process Fit: Extensible and integrates
with many CI and reporting tools

Con’s
• Automation Robustness/Community and

Support: Still growing, currently in Beta –
might mean less experience, less stability,
less functionality

• Automation Robustness and
Maintainability: Async testing tool

• SDLC Process Fit: Requires setting up a proxy
server to cover testing against an application
server from your web tests

• Automation Coverage: Doesn’t fit a complete
E2E functional testing objective

Automation Coverage

Visual navigation testing No

Take screenshots Yes

Network monitoring, Har File No

Memory and Performance Profiling No

Code Coverage Analysis No

Testing Types Unit Testing

SDLC Process Fit

Plugins/Integrations eMacs, TextMate,
xUnit

BDD/ATDD Friendly Yes

Dev Language Support JavaScript

Automation Robustness and Maintainability

Config File Generation No

Page Object Model Creation No

Execution Speed Slower than headless

Sync No

Feedback Loop and Reporting

Reporters
HTML, Built-in

reports, API for
custom reporter

Community Strength

Documentation Buster.JS

Contributors 20+ Contributors
(not that active)

Cloud and Automation at scale

Cloud Support No

1616

http://docs.busterjs.org/en/latest/overview/
https://en.wikipedia.org/wiki/Domain-specific_language
http://docs.busterjs.org/en/latest/overview/
http://docs.busterjs.org/en/latest/modules/buster-test/reporters/
http://docs.busterjs.org/en/latest/modules/buster-test/reporters/
http://docs.busterjs.org/en/latest/modules/buster-test/reporters/
http://docs.busterjs.org/en/latest/
https://github.com/busterjs
https://github.com/busterjs

Automation Coverage

Visual navigation testing With external libraries

Take screenshots Yes

Network monitoring, Har File Yes (through Google
Chrome Driver)

Memory and Performance Profiling Yes (through Google
Chrome Driver)

Code Coverage Analysis Jacoco

Testing Types E2E/Acceptance

SDLC Process Fit

Plugins/Integrations

Cucumber, IntelliJ,
Grunt, Jenkins,

TeamCity, Hudson,
Junit XML reporting

built-in

BDD/ATDD Friendly Yes (Jasmine, Mocha,
Cucumber)

Dev Language Support JavaScript

Automation Robustness and Maintainability

Config File Generation No

Page Object Model Creation No

Execution Speed Slower than headless

Sync No

Feedback Loop and Reporting

Reporters HTML, Allure
plugin, Junit XML

Community Strength

Documentation Nightwatch.JS

Contributors 59 contributors

Cloud and Automation at scale

Cloud Support Yes (web and mobile)

1717

Figure 4: Nightwatch.JS sample code snippet & execution console side by side (source: nightwatch.js)

Nightwatch.js is an easy to use Node.js-based End-to-End (E2E) testing solution
for browser-based apps and websites. It uses the powerful W3C WebDriver API
to perform commands and assertions on DOM elements. The tool has a few
built-in plugins for Junit XML reporting that make it easy to send steps reports
to CI servers such as Jenkins, TeamCity and Hudson, as well as a Grunt plugin for
simple task execution. You can execute your tests against a local Selenium server
or against a cloud server such as Perfecto and others. This solution is one of the
main competitors to Protractor.

Pro’s
• Automation Coverage: Good for E2E

functional testing

• Feedback Loop and Reporting: Good
reporting plugins such as Allure and JUnit

• Automation at Scale and Cloud: Easily
integrated into cloud testing solutions
(e.g. Perfecto)
 – Uses Magellan.json for scaled browser
automation

• SDLC Process Fit: BDD friendly – comes with
a built-in BDD FW based on Chai, and also
supports Jasmine, Mocha and Cucumber

Con’s
• Community and Support: Community of

contributors is relatively small compared to
Protractor and WebDriver.IO

• Automation Robustness and
Maintainability: Async testing tool compared
to Protractor which is a sync-based framework
(built-in waits)

• SDLC Process Fit: Complex setup with a lot of
pre-requisites

• SDLC Process Fit: Nonstandard BDD
assertions compared to WebDriver.IO, which
supports Jasmine, Mocha etc. assertions that
are more common.

http://www.jacoco.org/jacoco/trunk/doc/
http://nightwatchjs.org/
https://github.com/nightwatchjs/nightwatch
http://nightwatchjs.org/
https://www.w3.org/TR/webdriver/
https://stackoverflow.com/questions/35981605/what-is-the-difference-between-nightwatch-js-and-webdriver-io
https://github.com/TestArmada/boilerplate-nightwatch/blob/master/magellan.json
https://medium.com/@adrian_lewis/top-5-most-rated-node-js-frameworks-for-end-to-end-web-testing-f8ebca4e5d44
http://nightwatchjs.org/api/
http://nightwatchjs.org/api/

WebDriver.IO is the leading
WebDriver binding for Node.JS.
The framework basically sends
requests to the Selenium server
via the WebDriver protocol and
manages the responses. Requests

are wrapped in useful commands for ease of
development and reuse for multiple test scenarios
of your web site and more.

The integrated test runner lets you write
asynchronous commands in a synchronous way so
that you don’t need to worry about how to handle
a promise to avoid race conditions. Additionally,
it takes away all the cumbersome setup work and
manages the Selenium session for you.

Working with elements on a page is very easy due
to its synchronous nature. When fetching or looping
over elements you can use just native JavaScript
functions. With the $ and $$ functions, WebdriverIO
provides useful shortcuts which can also be chained
to move deeper in the DOM tree without using
complex xPath selectors.

The WDIO framework is easily integrated into many
tools; therefore, during the config file setup, test
automation engineers can specify their tool
stack (Cucumber, Mocha, Jasmine, local vs. cloud,
Selenium grid, and more).

Pro’s
• Automation Coverage: Good for E2E functional

testing

• Fast Feedback and Reporting: Good reporting
plugins like Allure, Junit, Perfecto DigitalZoom™

• Automation at Scale and Cloud: Easily integrated
into cloud testing solutions (e.g. Perfecto) for
parallel testing

• Community and Support: Strong community
backing the technology — integrations, plugins,
support, documentation

• Automation Robustness and Maintainability:
Sync-based testing supported

• SDLC Process Fit: BDD-friendly through Jasmine,
Mocha, Cucumber and others — more standard
FW to choose vs. proprietary

• SDLC Process Fit: Adopted by new emerging tools
such as Chimp.JS

• Automation Robustness and Maintenance:
Config file generation wizard supported, speeds
up the testing setup (see image below)

Con’s
• SDLC Process Fit: Less fit for angular-specific

web sites; angular-specific object locating can be
challenging

• SDLC Process Fit: No TypeScript support
compared to Protractor, if this is a relevant
requirement — worth mentioning

Automation Coverage

Visual navigation testing Using external tools

Take screenshots Yes

Network monitoring, Har File Yes (through Google
Chrome Driver)

Memory and Performance
Profiling

Yes (through Google
Chrome Driver)

Code Coverage Analysis Jacoco

Testing Types E2E/Acceptance

SDLC Process Fit

Plugins/Integrations Community Plugins
available

BDD/ATDD Friendly Yes (Jasmine, Mocha,
Cucumber)

Dev Language Support JavaScript

Automation Robustness and Maintainability

Config File Generation Yes

Page Object Model Creation Yes

Execution Speed Slower than headless

Sync Yes

Feedback Loop and Reporting

Reporters Allure, Junit, HTML,
XML, Perfecto

Community Strength

Documentation WebDriver.IO

Contributors 250 contributors

Cloud and Automation at scale

Cloud Support Yes (web and mobile)

1818

Fig 5: WebDriver.IO built-in command-line configuration wizard

http://webdriver.io/
https://www.w3.org/TR/webdriver/
http://www.jacoco.org/jacoco/trunk/doc/
http://www.protractortest.org/#/
http://www.protractortest.org/#/
http://webdriver.io/guide/getstarted/v4.html
http://webdriver.io/guide/getstarted/v4.html
http://webdriver.io/
https://github.com/webdriverio/webdriverio/

Protractor is an end-to-end test framework for Angular and AngularJS
applications. Protractor runs tests against your application running in a real
browser, interacting with it as a user would. This framework is highly supported
by contributors from Google, the main leader behind AngularJS. This framework
that is built on top of Selenium and is the most widely adopted framework,
especially when testing Angular/AngularJS websites. In addition to many
extensions and plugins that Protractor has for things such as visual testing
and more, Protractor has a unique synchronization mechanism that can
automatically execute the next step in your test the moment the webpage

finishes pending tasks so you don’t have to worry about waiting for your test and web page
to sync.

Another great thing about Protractor is its ability to support BDD and Cucumber scripting. If
you’re leveraging BDD as part of your Angular/AngularJS website SDLC, then this framework
should be a great fit for you.

Pro’s
• Automation Coverage: Good for E2E

functional testing of Angular-based websites

• Fast Feedback and Reporting: Good
reporting plugins such as Allure, Junit,
Perfecto DigitalZoom™

• Automation at Scale and Cloud: Easily
integrated with cloud testing solutions
(e.g. Perfecto) for parallel testing

• Community and Support: Strong community
backing the technology — integrations, plugins,
support, documentation

• Automation Robustness and
Maintainability: Sync-based testing supported

• SDLC Process Fit: BDD-friendly through
Jasmine, Mocha, Cucumber and others —
more standard FW to choose vs. proprietary

• SDLC Process Fit: Supports
TypeScript development

Con’s
• Automation Robustness and

Maintainability: If there is an issue with
WebdriverJs layer (between Selenium and
Protractor), the Protractor team should wait
for the WebDriverJs team to fix that issue.

Automation Coverage

Visual navigation testing Using external tools

Take screenshots Yes

Network monitoring, Har File Yes (through Google
Chrome Driver)

Memory and Performance Profiling Yes (through Google
Chrome Driver)

Code Coverage Analysis Jacoco

Testing Types E2E/Acceptance

SDLC Process Fit

Plugins/Integrations

Various community
plugins, Jenkins CI,

Jasmine, Mocha,
Cucumber, Visual

Studio, WebStorm,
Grunt

BDD/ATDD Friendly Yes (Support Jasmine,
Mocha, Cucumber)

Dev Language Support JavaScript, TypeScript

Automation Robustness and Maintainability

Config File Generation No

Page Object Model Creation Yes

Execution Speed Slower than headless

Sync Yes

Feedback Loop and Reporting

Reporters Jasmine2HTML, JUnit,
Allure

Community Strength

Documentation Protractor

Contributors 234 contributors

Cloud and Automation at scale

Cloud Support Yes (web and mobile)

1919

http://www.protractortest.org/#/
https://en.wikipedia.org/wiki/AngularJS
http://www.jacoco.org/jacoco/trunk/doc/
https://en.wikipedia.org/wiki/TypeScript
http://www.protractortest.org/#/
https://github.com/angular/protractor
https://www.youtube.com/watch?v=Hz_dl7dcejk

Codecept.IO is a JavaScript acceptance testing solution for Node.JS. In this solution,
testing can be authored from an end-user perspective. Every command is
described as an action of a user visiting a site.

In addition, Codecept supports various helpers like WebDriverIO, Protractor,
Nightmare and Selenium WebDriver, enabling teams to extend their testing
use cases.

Pro’s
• Automation Coverage: Suits acceptance

testing in a DSL/BDD language
• Automation Robustness and

Maintainability: Synchronous test API’s for
more stable and linear tests

• SLDC Process Fit: Easy to write and
understand each test due to the unique
syntax the tests are written in

• SDLC Process Fit: Backend agnostic to
multiple WebDrivers that are used

• Automation Robustness and
Maintainability: Built-in dependency enables
creation of a POM

• Automation Robustness and
Maintainability/SDLC Process Fit: Uses
JavaScript DSL for the BDD-based test
authoring with common predefined functions

• Automation at Scale and Cloud: Among
the large set of helpers that Codecept uses,
there is also Appium to enable mobile
testing in addition to Web.

Con’s
• SDLC Process Fit: Not fully designed for

mobile app testing even though Appium
helper is available.

• SDLC Process Fit: Requires command
line and/or wrappers to execute scripts
in opposed to seamless IDE plugin

• Automation Robustness and
Maintainability: Async testing solution

• Community and Support: Relatively small
number of contributors

• Automation Coverage: Cannot perform
visual navigation testing (OCR based testing)

Automation Coverage

Visual navigation testing No

Take screenshots Yes

Network monitoring, Har File Yes (through Google
Chrome Driver)

Memory and Performance Profiling Yes (through Google
Chrome Driver),

Code Coverage Analysis Jacoco

Testing Types E2E/Acceptance

SDLC Process Fit

Plugins/Integrations

Jasmine, Qunit,
Travis CI, Jenkins,

TeamCity, Buster.JS is
built-in. This FW uses

QtWebKit

BDD/ATDD Friendly Mocha JavaScript
DSL language

Dev Language Support JavaScript

Automation Robustness and Maintainability

Config File Generation No

Page Object Model Creation Yes

Execution Speed Slower than headless

Sync Yes

Feedback Loop and Reporting

Reporters CLI, XML, HTML

Community Strength

Documentation Codecept.JS

Contributors 81 contributors

Cloud and Automation at scale

Cloud Support Yes (web and mobile)

2020

http://codecept.io/
http://codecept.io/helpers/Appium/
http://www.jacoco.org/jacoco/trunk/doc/
https://trac.webkit.org/wiki/QtWebKit
https://trac.webkit.org/wiki/QtWebKit
https://trac.webkit.org/wiki/QtWebKit
https://trac.webkit.org/wiki/QtWebKit
https://trac.webkit.org/wiki/QtWebKit
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language
http://codecept.io/reports/
http://codecept.io/
https://github.com/codeception/codeceptjs/

PhantomJS is a headless WebKit scriptable with a JavaScript API. It has fast and
native support for various web standards: DOM handling, CSS selector, JSON,
Canvas, and SVG. Among its key benefits are screen capturing, network monitoring
that captures an HAR file, as well as friendly script execution capabilities through
Jasmine, Mocha and other tools. It ’s important to understand that PhantomJS itself
is not a test framework, it is only used to launch the tests via a suitable test runner
(e.g. Buster.JS has Phantom.JS as a supported tool in its solution).

Since this is a headless (and local) testing solution, it is compatible with various web development
frameworks like jQuery, Bootstrap, CodeMirror, and others.

This tool is mostly beneficial for fast unit testing driven through CI or command line post code
commits for fast feedback, and less for larger UI functional web testing. Google recently launched
a Chrome headless browser that may be a suitable replacement for Phantom and which uses the
Blink rendering engine, compared to the WebKit one used by Phantom.

Pro’s
• Automation Coverage: Suits unit

testing, mostly
• Automation Coverage: Additional automation

artifacts such as HAR file and more
• Automation Coverage: Screen capture

capabilities
• Community and Support: Great

documentation and community support
• Automation Coverage: Strong APIs for

various testing capabilities (filesystem,
cookies, page size etc.)

Con’s
• Automation Coverage: Cannot fit an E2E

testing objective
• Automation at Scale and Cloud: Doesn’t

run on real browsers, automation at scale
is an issue

• SDLC Process Fit: Doesn’t support BDD as
a built-in capability, tests can be triggered
from BDD frameworks

• SDLC Process Fit: Outdated rendering engine
compared to Google’s headless solution

Automation Coverage

Visual navigation testing No

Take screenshots Yes

Network monitoring, Har File Yes

Memory and Performance Profiling No

Code Coverage Analysis No

Testing Types Unit, Headless

SDLC Process Fit

Plugins/Integrations Mocha for test
execution

BDD/ATDD Friendly
No, Phantom tests

can be triggered from
BDD frameworks

Dev Language Support JavaScript

Automation Robustness and Maintainability

Config File Generation No

Page Object Model Creation NA

Execution Speed Fast

Sync No

Feedback Loop and Reporting

Reporters Jasmine reporters,
Karma reports

Community Strength

Documentation Phantom.JS

Contributors 147 contributors

Cloud and Automation at scale

Cloud Support No

2121

http://phantomjs.org/quick-start.html
http://phantomjs.org/headless-testing.html
https://medium.com/points-san-francisco/replacing-phantomjs-for-headlesschrome-1e0b2baa5189
http://phantomjs.org/
https://github.com/ariya/phantomjs

JSDom is an in-JavaScript implementation of the DOM to be used with node.js. The
DOM is the document object model, which is the tree of nodes that make up the
UI for documents shown in web browsers. Among the leading contributors for this
open-source you’ll find developers from Google and whatwg.org. Because jsdom
is implemented in JavaScript, we can have a DOM-like API to work with or without
needing a browser. That means that we can run our tests in environments without
browsers, such as in Node or in continuous integration environments.

Pro’s
• SDLC Process Fit: Good for unit testing and

for fast feedback on specified subset of your
website implementation

• Community and Support: Large community
of contributors

• SDLC Process Fit: Implements the standard
WHATWG DOM

• SDLC Process Fit: Supports Mocha for
scripting in an easy and readable syntax

Con’s
• Automation Coverage: Cannot fit an E2E

testing objective

• Automation Coverage: Does not target real
browsers, doesn’t test at scale or in a cloud
based environment

• Automation Robustness and
Maintainability: Asynchronous script loading.
There is no way with JSDom to tell the user
when it's a good time to run your code and
inspect the resulting DOM structure since it
has no real way to know when the entire page
was loaded

• Automation Coverage: No screenshots or
visual testing support

• Fast Feedback Loop and Reporting: Limited
reporting capabilities, mostly leverages built-in
console for reports

Automation Coverage

Visual navigation testing No

Take screenshots No

Network monitoring, Har File No

Memory and Performance Profiling No

Code Coverage Analysis No

Testing Types Unit, Headless

SDLC Process Fit

Plugins/Integrations Karma

BDD/ATDD Friendly No

Dev Language Support JavaScript

Automation Robustness and Maintainability

Config File Generation No

Page Object Model Creation Yes

Execution Speed Fast

Sync No

Feedback Loop and Reporting

Reporters Built in console for
reporting

Community Strength

Documentation JSDom

Contributors 202 contributors

Cloud and Automation at scale

Cloud Support No

2222

https://www.npmjs.com/package/jsdom
https://dom.spec.whatwg.org/
http://www.pauleveritt.org/articles/pylyglot/jsdom/
https://www.npmjs.com/package/jsdom
https://github.com/tmpvar/jsdom

Chimp makes it super easy for developers to write automated tests by taking
away all the pain associated with setting up tools and allowing developers to
focus on building in quality. It does so by integrating and sprinkling magic over
the following tools:

• Mocha, Jasmine or Cucumber.js

• Selenium and WebdriverIO

• Chai or Jasmine assertion libraries inside your steps

• Built in Node.js, works for any web application (with special Meteor support)

Pro’s
• Automation Coverage: E2E/Acceptance

solution, BDD friendly, Mix of supported tools

• Automation Robustness and
Maintainability: Synchronized
testing solution

• SDLC Process Fit: Large set of integrations
to leading standard tools like Mocha, Jasmine,
Cucumber, and most CI tools

• SDLC Process Fit: Innovative approach to
agile/fast feedback loop through tools like
Simian and Meteor

• Automation at Scale and Cloud: integrations
to cloud supported for automation at scale

• Automation Coverage: Support for taking
web screenshots

• Fast Feedback Loop and Reporting:
Good assertions mechanism through Chai
and others

• Fast Feedback Loop and Reporting: Supports
debug mode for inspecting nodes through
breakpoints and more.

• Automation at Scale: Mobile testing support
through Appium

Con’s
• Automation Coverage: Doesn’t support

visual navigation testing

• Community and Support: Community
is ramping up, 40 contributors

• Fast Feedback Loop and Reporting:
Basic reporting, doesn’t provide a cross-
platform reporting dashboard

• SDLC Process Fit: Setup and configuration
seems complex

Automation Coverage

Visual navigation testing No

Take screenshots Yes

Network monitoring, Har File Yes (through Google
Chrome Driver)

Memory and Performance Profiling Yes (through Google
Chrome Driver)

Code Coverage Analysis Jacoco

Testing Types E2E/Acceptance

SDLC Process Fit

Plugins/Integrations

Mocha, Jasmine,
Cucumber, Meteor,
Most CI solutions,

Simian, Chai,
WebDriver.IO

BDD/ATDD Friendly Yes

Dev Language Support JavaScript

Automation Robustness and Maintainability

Config File Generation No

Page Object Model Creation No

Execution Speed Slower than headless

Sync Yes (via wrappers)

Feedback Loop and Reporting

Reporters
Relies on integrated

FW reports like
Mocha and others

Community Strength

Documentation Chimp

Contributors 40 Contributors

Cloud and Automation at scale

Cloud Support Yes

2323

https://chimp.readme.io
https://mochajs.org/
https://jasmine.github.io/edge/introduction.html
https://github.com/cucumber/cucumber-js
http://www.seleniumhq.org/
http://webdriver.io/
http://chaijs.com/
https://jasmine.github.io/edge/introduction.html#section-Expectations
https://www.meteor.com/
https://github.com/xolvio/chimp
https://github.com/domenic/chai-as-promised/
http://www.jacoco.org/jacoco/trunk/doc/
https://chimp.readme.io/docs/reporting
https://chimp.readme.io/docs/reporting
https://chimp.readme.io/docs/reporting
https://chimp.readme.io/
https://github.com/xolvio/chimp

Summary

2424

We have explored the web testing landscape
with a special focus on the Selenium WebDriver
API. Many open-source projects were
reviewed, illustrating unique benefits, pros
and cons. Choosing test frameworks should
be determined by the combination of applying
organizational and technical fit criteria.

While we mostly covered tools that offer
E2E functional testing and unit testing, it is
important to mention that there obviously
are also tools for API testing, such as SoapUI
and others, that were not in the scope of
this research.

With the key considerations of technical fit
and organizational fit in mind, Perfecto’s
Continuous Quality Lab in the cloud is
architected to provide support for teams
regardless of their open-source framework of
choice or their development practice method.
Perfecto’s lab offers a large set of desktop VMs

as well as smartphones and tablets in the cloud
that can be targeted from your Nightwatch,
WebDriverIO, Selenium, Protractor, Robot or
other framework that you choose, in order to
achieve automation at scale with maximum
availability. At the end of execution, quality
analysis is fast, with digital reporting that
offers side-by-side execution dashboard with
screenshots, testing artifacts such as HAR files,
performance measurements, logs, and more.
All tests can be orchestrated via CI engine
such as Jenkins, CircleCI, TeamCity, Bamboo
and others.

You should continuously evaluate the market
and adjust your tool stack according to both
market evolution and your own product’s
growth and its required capabilities; also, make
sure you have the correct match for your web
developers and testers.

25

Appendix
Recommended resources
The Top 8 Essential JavaScript Automation Frameworks — Joe Colantonio

Differences between nightwatch.js and webdriver.io — StackOverflow

Test frameworks comparison — Slant

Protractor vs. Webdriver.io vs. Nightwatch.JS — WebDriverJS.com

Top 5 most rated node.js frameworks for E2E web testing — Adrian Lewis on Medium

An overview of JavaScript testing in 2017 — Vitalik Zaidman on Medium

How to automate web testing using open-source frameworks — Perfecto’s slide share

Recommended JavaScript unit testing tools — Slant

https://www.joecolantonio.com/2016/06/14/top-8-essential-javascript-automation-frameworks/
https://stackoverflow.com/questions/35981605/what-is-the-difference-between-nightwatch-js-and-webdriver-io
https://www.slant.co/versus/9647/9648/~webdriverio_vs_nightwatch-js
http://www.webdriverjs.com/protractor-vs-webdriverio-vs-nightwatch/
https://medium.com/@adrian_lewis/top-5-most-rated-node-js-frameworks-for-end-to-end-web-testing-f8ebca4e5d44
https://medium.com/powtoon-engineering/a-complete-guide-to-testing-javascript-in-2017-a217b4cd5a2a
https://es.slideshare.net/perfectomobile/how-to-automate-web-app-testing-using-open-source-frameworks
https://www.slant.co/topics/1489/~javascript-unit-testing-tools

About Perfecto
Perfecto enables exceptional digital experiences. We help you transform your business and strengthen
every digital interaction with a quality—first approach to creating web and native apps, through a cloud—
based test environment called the Continuous Quality Lab™. The CQ Lab is comprised of real devices and
real end—user conditions, giving you the truest test environment available.

More than 1,500 customers, including 50% of the Fortune 500 across the banking, insurance, retail,
telecommunications and media industries rely on Perfecto to deliver optimal mobile app functionality
and end user experiences, ensuring their brand’s reputation, establishing loyal customers, and continually
attracting new users. For more information about Perfecto, visit www.perfectomobile.com, join our
community follow us on Twitter at @PerfectoMobile.

Get content just like this delivered to your inbox!

Eran Kinsbruner
Director, Mobile Evangelist at Perfecto Mobile

https://tescobank.perfectomobile.com/np-cas/login?service=https%3A%2F%2Ftescobank.perfectomobile.com%2Fnexperience%2Fj_spring_cas_security_check
https://www.perfectomobile.com/
https://twitter.com/perfectomobile
https://www.perfectomobile.com/resources/blog-subscription-page
https://www.perfectomobile.com/resources/blog-subscription-page

