

PostgreSQL Database Handbook i

PostgreSQL Database Handbook

PostgreSQL Database Handbook ii

Contents

1 Introduction and installation 1

1.1 What’s PostgreSQL? . 1

1.2 Installing PostgreSQL . 1

1.3 Populating the database with data . 2

1.4 Configuring phppgadmin in Linux . 3

1.5 PostgreSQL Windows client . 6

2 Commands and datatypes 8

2.1 PostgreSQL commands . 8

2.1.1 Getting help . 8

2.1.2 Displaying databases and tables . 9

2.2 PostgreSQL data types . 10

2.3 Enumerated types . 12

2.4 Summary . 12

3 VACUUM Command Example 13

3.1 Updating and removing rows . 13

3.2 Introducing VACUUM . 15

3.3 Summary . 17

4 PostgreSQL indexes example 18

4.1 Introducing indexes . 18

4.2 Examples . 18

4.3 Unique indexes . 21

4.4 Multicolumn indexes . 21

4.5 Summary . 21

5 Database Creation and Data Population 22

5.1 Creating a new database . 22

5.2 Populating the database . 24

5.3 More queries . 25

5.4 Summary . 26

PostgreSQL Database Handbook iii

6 Common Table Expressions 27

6.1 Definition of Common Table Expressions (CTE) . 27

6.2 Non-recursive Common Table Expressions . 27

6.3 Summary . 31

7 Hot-Standby Database Replication Tutorial 32

7.1 Step 0 - Change hostnames and IP addresses as needed . 32

7.2 Step 1 - Configuring the master . 33

7.3 Step 2 - Configuring the slave . 33

7.4 Step 3 - Performing the replication . 34

7.5 Step 4 - Testing the replication . 34

7.6 Troubleshooting . 35

8 Backup, Restore and Migration 36

8.1 Backup, restore, and migration strategies . 36

8.2 Installing Barman . 36

8.2.1 Step 1 - Create a dedicated PostgreSQL user in oldserver . 36

8.2.2 Step 2 - Create the .pgpass file in newserver . 37

8.2.3 Step 3 - Set up key-based authentication . 38

8.2.4 Step 4 - Configure Barman . 38

8.2.5 Step 5 - Configure PostgreSQL . 39

8.2.6 Step 6 - Test the Barman configuration . 39

8.2.7 Step 7 - Perform the backup . 40

8.2.8 Step 8 - Restore the backup on newserver . 41

8.3 Automating backups . 43

9 Connect to PostgreSQL using PHP 44

9.1 Installing the software . 44

9.2 Connecting to the database server . 45

9.3 Writing the application . 46

9.4 Creating a mobile-friendly web page . 48

9.5 Summary . 50

PostgreSQL Database Handbook iv

Copyright (c) Exelixis Media P.C., 2016

All rights reserved. Without limiting the rights under
copyright reserved above, no part of this publication
may be reproduced, stored or introduced into a retrieval system, or
transmitted, in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior written
permission of the copyright owner.

PostgreSQL Database Handbook v

Preface

PostgreSQL, often simply Postgres, is an object-relational database management system (ORDBMS) with an emphasis on exten-
sibility and standards-compliance. As a database server, its primary function is to store data securely, and to allow for retrieval
at the request of other software applications. It can handle workloads ranging from small single-machine applications to large
Internet-facing applications with many concurrent users.

PostgreSQL is developed by the PostgreSQL Global Development Group, a diverse group of many companies and individual
contributors. It is free and open-source software, released under the terms of the PostgreSQL License, a permissive free-software
license. (https://en.wikipedia.org/wiki/PostgreSQL)

In this ebook, we provide a compilation of PostgreSQL tutorials that will help you set up and run your own database management
system. We cover a wide range of topics, from installation and configuration, to custom commands and datatypes. With our
straightforward tutorials, you will be able to get your own projects up and running in minimum time.

https://en.wikipedia.org/wiki/PostgreSQL

PostgreSQL Database Handbook vi

About the Author

Gabriel Canepa is a Linux Foundation Certified System Administrator (LFCS-1500-0576-0100) and web developer from Villa
Mercedes, San Luis, Argentina.

He works for a worldwide leading consumer product company and takes great pleasure in using FOSS tools to increase produc-
tivity in all areas of his daily work.

When he’s not typing commands or writing code or articles, he enjoys telling bedtime stories with his wife to his two little
daughters and playing with them, the great pleasure of his life.

PostgreSQL Database Handbook 1 / 50

Chapter 1

Introduction and installation

With all the Relational Database Management Systems (RDBMs) out there, it may be somewhat difficult to identify the best
solution for your needs and to take an informed decision as to which one to choose. Thus, in this series we will provide an
introduction to PostgreSQL and share some of the reasons why you may want to consider this solution when exploring the
available technologies for a database implementation.

1.1 What’s PostgreSQL?

PostgreSQL, also known by its alias Postgres, is a cross-platform object-relational database management system (ORDBMs
for short). Its development started in the University of California at Berkeley in the mid `80s with a project they named simply
POSTGRES, which did not feature SQL as query language at first. In the mid `90s, two students added SQL to the code inherited
from the university, and PostgreSQL was born as an open-source project. Today, PostgreSQL has been long known (and has a
strong reputation for) for being able to handle significant workloads with a large number of concurrent users. In addition, it
provides bindings for many programming languages, making it an ideal solution for a client-server environment.

1.2 Installing PostgreSQL

In this article we will explain how to install a PostgreSQL server in Ubuntu Server 16.04 (IP address 192.168.0.54), how to load
a sample database, and how to install a client application (which will serve as an administrative tool) for Linux and Windows.

Step 1 - Launch a terminal and install the server and the web-based administration tool:

sudo aptitude install postgresql phppgadmin

Step 2 - Verify that the database service is running and listening on port 5432:

systemctl is-active postgresql
sudo netstat -npltu | grep postgres

The first command should indicate that unit postgresql is Active, and the second command should show that the service is
listening on the right port, as shown in Fig. 1.1:

Figure 1.1: Verifying that PostgreSQL is running and listening on port 5432

PostgreSQL Database Handbook 2 / 50

Step 3 - Switch to the postgres Linux account and create a new role for queries:

The installation process created a new Linux account named postgres. By default, this is the only account with permissions to
access the database prompt initially.

To switch to the postgres account, do

sudo -i -u postgres

And run the following command to create a new database role named gacanepa (enter the password twice when you’re prompted
to do so):

createuser gacanepa --no-createdb --no-superuser --no-createrole --pwprompt

Although the options in the above command are self-explanatory, let’s just say that this particular role will not be allowed to
create databases or roles, and will not have superuser privileges. Other options for the createuser command are available in its
man page (which you can access from the Linux command prompt as man createuser).

Step 4 - Create a new database

While you’re still logged on as postgres, create a database:

createdb World_db

1.3 Populating the database with data

Once we have created the database, it’s time to populate it with actual data we can later query:

Step 5 - Download a sample database

The wiki links to several sample databases that we can download and use. For this example, we will download and install the
world database, which contains countries, cities, and spoken languages, among other data.

wget https://pgfoundry.org/frs/download.php/527/world-1.0.tar.gz[https://pgfoundry.org/frs/ ←↩
download.php/527/world-1.0.tar.gz]

tar xzf world-1.0.tar.gz

Step 6 - Restore the database dump:

The database dump file is located at dbsamples-01/world inside the current working directory, as shown in Fig. 1.2:

cd dbsamples-0.1/world
psql World_db < world.sql

Figure 1.2: Locating the database dump file to restore

https://wiki.postgresql.org/wiki/Sample_Databases

PostgreSQL Database Handbook 3 / 50

As the tables are created and populated with data, the output should be similar to Fig. 1.3:

Figure 1.3: Restoring the database contents from the dump file

After completing the above 6 steps, we now have a fully-setup PostgreSQL database.

1.4 Configuring phppgadmin in Linux

In order to allow remote (LAN) access to the web-based administration tool, follow these steps:

Step 7 - Integrate phppgadmin with Apache

Open /etc/apache2/conf-enabled/phppgadmin.conf, and comment out the following line:

Require local

then add

Require all granted

just below (see Fig. 1.4 for details)

PostgreSQL Database Handbook 4 / 50

Figure 1.4: Configuring access permissions for phppgadmin

Step 8 - Grant SELECT permissions on World_db

Switch to the postgres Linux account and open the database prompt by typing

psql

Then connect to the World_db database:

\c World_db;

Finally, grant SELECT permissions to role gacanepa, and exit (q) the database prompt:

GRANT SELECT ON ALL TABLES IN SCHEMA public TO gacanepa;
\q

See Fig. 1.5 for details:

Figure 1.5: Connecting to a database and granting SELECT permissions to a role

Step 9 - Restart Apache and PostgreSQL

We are almost there. Let’s restart Apache and PostgreSQL:

PostgreSQL Database Handbook 5 / 50

systemctl restart {apache2,postgresql}

Step 10 - Login to phppgadmin

Point your web browser to 192.168.0.54/phppgadmin and click on PostgreSQL in the left hand section. Next, enter the role and
password you created in Step 3 above, as shown in Fig. 1.6:

Figure 1.6: Logging on to phppgadmin

Once there, click on the World_db database and then enter a SQL query of your choice (see Fig. 1.7):

SELECT A.name "City", A.district "District",
B.name "Country", C.language "Language"
FROM city A JOIN country B ON A.countrycode=B.code
JOIN countrylanguage C ON A.countrycode=C.countrycode
WHERE A.name=’Rosario’ AND C.isofficial=’TRUE’;

PostgreSQL Database Handbook 6 / 50

Figure 1.7: Our first query to the PostgreSQL database through phppgadmin

Click Execute at the bottom. The results should be as shown in Fig. 1.8:

Figure 1.8: The results of our first query

1.5 PostgreSQL Windows client

If you are using Microsoft Windows, in addition to phppgadmin (which you can access through a web browser), you can also
install a client application named pgAdmin in order to connect to the database server. You can download it from the pgAdmin
PostgreSQL tools page at https://www.pgadmin.org/download/windows.php. The installation will only take a few clicks.

Although it is better known in Windows environments, pgAdmin is also available for Mac OS X as well.

When you’re done with the installation, make sure the following lines are present in the configuration files. Otherwise, you will
NOT be able to connect to the database server from a machine other than where you installed and running.

In /etc/postgresql/9.5/main/postgresql.conf:

listen_addresses = ’*’

will ensure the database server is listening on all interfaces, and because of the following line in /etc/postgresql/9.5/main/pg_hba.conf:

host all all 192.168.0.0/24 md5

https://www.pgadmin.org/download/windows.php

PostgreSQL Database Handbook 7 / 50

you can now connect to the database server from any machine in the 192.168.0.0/24 network.

Once you added the above lines, open pgAdmin from Start→ All programs→ pgAdmin III. Then click on File→ Add server
and fill the connection details (see Fig. 1.9). If you fill the password box as shown below, the credentials will be saved in plain
text in your user profile. If you are using a shared computer that is probably not a good idea, so you may want to leave that field
blank if that’s the case:

Figure 1.9: Configuring access to our database server through pgAdmin

Congratulations! You have successfully installed a PostgreSQL database server and are now able to access it both from a web
interface and using a client application.

PostgreSQL Database Handbook 8 / 50

Chapter 2

Commands and datatypes

In our previous post (PostgreSQL: Introduction and installation) we explained how to install and use a desktop and a web-based
client to query a sample database we created and populated. We also introduced two basic commands to connect to a database (c
followed by the database name) and to quit (q) the PostgreSQL prompt.

2.1 PostgreSQL commands

In this tutorial we will introduce you to other useful PostgreSQL-specific (psql for short from now on) commands. To do so, let’s
open the psql prompt by switching to the postgres Linux account and typing psql in the command line.

2.1.1 Getting help

Once in the psql prompt, type help and press Enter. The output should be similar to Fig. 2.1:

Figure 2.1: Accessing the built-in PostgreSQL help

The above figure shows the following tips - make sure you remember because they will come in handy more than once. If you
need help with SQL commands, first off type h to view a list of the available options. Once you have identified the command

https://www.systemcodegeeks.com/linux/postgresql-introduction-installation/

PostgreSQL Database Handbook 9 / 50

you need help with, use q to return to the psql prompt and then type h followed by the SQL command you have chosen. For
example, let’s say we chose ALTER USER. To see the help for that command, do

\h ALTER USER

as shown in Fig. 2.2:

Figure 2.2: Getting help about SQL commands

On the other hand, if you get stuck with a database management task, do ? and you will see the available psql commands grouped
by categories, as seen in Fig. 2.3 (some of them are highlighted in yellow - the output is truncated for the sake of space):

Figure 2.3: Getting help with psql commands

As before, type q to exit the help and return to the psql prompt.

2.1.2 Displaying databases and tables

If you find yourself examining a database server you haven’t previously worked with, or if you are not familiar with the structure
of a given database, you may want to start off by listing the databases and their respective tables.

PostgreSQL Database Handbook 10 / 50

To list the databases, simply do l

To view the tables in the World_db database (which is the one we imported in our previous tutorial), connect to it and type dt

Keep in mind that you can switch from a given database to another (Alberdi in the following example) with c Alberdi

The above commands are shown in Fig. 2.4 below:

Figure 2.4: Listing databases and tables

With the psql commands above we have learned to how to list databases and switch between one and another, how to list tables,
and how to get help if we get stuck along the way.

2.2 PostgreSQL data types

As a preparation to creating our own databases and tables from scratch (which we will cover in an upcoming tutorial), we need
to know how what are the allowed built-in, general-purpose data types for table fields. The PostgreSQL 9.5 documentation lists
the following data types and more:

a) Numeric types (with corresponding storage sizes and ranges) are listed in Fig. 2.5:

https://www.postgresql.org/docs/9.5/static/datatype.html

PostgreSQL Database Handbook 11 / 50

Figure 2.5: Numeric data types

You will often choose a numeric type for fields that will store amounts of items, grade results, etc.

b) Character types (see Fig. 2.6):

These types are used to store regular (English) text or character strings, typically resulting from user interaction.

Figure 2.6: Character data types

c) Date/time types (see Fig. 2.7):

These data types are used to indicate the date and or time when an event has been recorded in the database. If you require to store
the time zone, there’s a dedicated type for that as well.

Figure 2.7: Date time data types

d) Binary type (see Fig. 2.8):

You will often use this type to indicate true/false, active/inactive, and enabled/disabled statuses.

PostgreSQL Database Handbook 12 / 50

Figure 2.8: Binary data type

Knowing the allowed ranges for each data type is essential to choosing the right type for fields. It is also critical as far as disk
usage is concerned, as a 2-byte integer (smallint) will occupy less space than a 4-byte one (integer). As a rule of thumb, only
use a "larger" data type if and only if a smaller type is not likely to scale well with the expected use and growth of the database
in terms of record numbers.

Also, the length of character fields must be taken into account while planning -for example- a web application that will gather
data through forms or other types of input. While in certain cases users should not be allowed to enter text of indefinite length,
you should plan ahead so that they can still enter all that is necessary. Although form validation and sanitization are out of
the scope of this tutorial, you definitely will want to make sure that your application does not present security holes and is not
abuse-prone.

The use of data types, among other things, contributes to data consistency in a table by ensuring that a given field will only accept
the type of data it is configured to store.

2.3 Enumerated types

Besides the general purpose data types, PostgreSQL allows us to create our own data types in the form of static, ordered set of
values (for example, the months of the year, or the days of the week), similarly to the enum type supported in several programming
languages. We will see the benefit of enumerated types when we create our first database and start inserting data into it.

2.4 Summary

Now that you have learned how to use basic psql commands and have reviewed the most used data types, we are better prepared
to dive deeper into PostgreSQL database administration. Stay tuned for the next tutorial!

PostgreSQL Database Handbook 13 / 50

Chapter 3

VACUUM Command Example

In the previous tutorials of this series (“PostgreSQL: Introduction and installation” and “PostgreSQL commands and datatypes”)
we explained how to load a sample database (World_db) into our PostgreSQL server and how to get help with both SQL and psql
commands.

In real-world scenarios, you will need to perform CRUD (Create, Read, Update, and Delete) operations on database tables all
the time. In this post we will learn how to do U (updates) and D (deletes), and show how to clean up the database by removing
the left overs resulting from these operations. As we will see in a moment, PostgreSQL provides an effective garbage collector
for this.

Without going into the nitty-gritty of what happens under the hood, we can mention briefly that the previous versions of updated
records or deleted table entries are not actually removed from the database. Think about the need to rollback a given transaction
and this will make sense. They are just “not visible” anymore by regular means, and they keep contributing to the amount of used
hard disk space until a clean-up is performed using the VACUUM psql command. Let’s take a look at it in greater detail later.

3.1 Updating and removing rows

Using the World_db database, let’s update by 7% the population of all cities in the city table. Before we do that, let’s take a look
at the impact this operation would have on the current data by using a basic SELECT statement.

Before a mass update or removal, using SELECT to print the records that will be impacted by that operation is a wise thing to
do. Among other things, this can help you prevent undesired results (and the associated later regret), especially if you forget to
add a WHERE clause to the operation.

We will print the city name, its current population, and the population after our proposed update. To round the population increase
to the nearest integer, we will use the ROUND function as shown in Fig. 3.1:

https://www.systemcodegeeks.com/databases/postgresql/postgresql-introduction-installation/
https://www.systemcodegeeks.com/databases/postgresql/postgresql-commands-datatypes/
https://www.postgresql.org/docs/9.5/static/functions-math.html#FUNCTIONS-MATH-FUNC-TABLE

PostgreSQL Database Handbook 14 / 50

Figure 3.1: Displaying the results of a preliminar SQL query before updating

SELECT name AS "Name", population AS "Current population", ROUND(population * 1.07) AS " ←↩
New population" FROM city ORDER BY name;

With the AS keyword you can create an alias for the associated field so that the results of the query will use it as header. As you
can see in Fig. 3.1, we renamed name and population to Name and Current population, respectively. In addition, we named
the results of the mathematical operation as New population.

Now let’s do the actual update. In this case we will not use a WHERE clause as we actually want to update all cities. This will
result in the population update of all 4079 cities currently present in the city table, as we can see in Fig. 3.2:

Figure 3.2: Updating the city table

UPDATE city SET population = ROUND(population * 1.07);

Now let’s delete all Australian cities where the Id is greater than 135 (this will exclude Canberra, the capital, which is referenced
in the country table). As before, use a SELECT first to examine the records that will be deleted:

SELECT name FROM city WHERE countrycode=’AUS’;

If you’re OK with it, then proceed with the DELETE operation:

PostgreSQL Database Handbook 15 / 50

DELETE FROM city WHERE Id BETWEEN 136 AND 143;

Refer to Fig. 3.3 for details:

Figure 3.3: Selecting records before deleting them

On tables that are heavily updated or where removals are performed constantly, this will translate into a lot of wasted disk space.
Keep in mind that when you perform an update on a table or remove a record, the original is kept in the database.

3.2 Introducing VACUUM

To formally introduce VACUUM, let’s use what we learned in PostgreSQL commands and data types to display the help about
this command (see Fig. 3.4):

https://www.systemcodegeeks.com/databases/postgresql/postgresql-commands-datatypes/

PostgreSQL Database Handbook 16 / 50

Figure 3.4: Displaying help about VACUUM

\h VACUUM;

All of the below commands can be applied to the entire database (no arguments) or a single table (name the table at the end of
the command).

To collect the garbage present in the database, just do

VACUUM;

However, that will not free up the space used by the old records back to the operating system - it will only clean up the old records
and then make the space available to be reused by the same table. On the other hand,

VACUUM FULL;

will ensure that whatever space is freed up will be returned to the operating system.

Additionally,

VACUUM FULL VERBOSE;

will also display messages about what’s going on.

That said, let’s perform a full, verbose vacuum on the city table (refer to Fig. 3.5 for details):

Figure 3.5: Performing a FULL, VERBOSE VACUUM

VACUUM FULL VERBOSE city;

As you can see above, VACUUM located and removed the space left behind by the deletion of the 8 records from the city table
earlier. On large scale updates and removals, this will translate into considerable space disk savings.

As good as the VACUUM command is, having to run it manually could become a tedious task. Thus, by default, there’s an
AUTOVACUUM daemon that is enabled and does the job for you automatically while the database server is running. You can

PostgreSQL Database Handbook 17 / 50

find more details about its operations in the AUTOVACUUM PARAMETERS section of the main configuration file /etc/
postgresql/9.5/main/postgresql.conf.

You can verify that the AUTOVACUUM process is running with:

ps aux | grep autovacuum | grep -v grep

3.3 Summary

Freeing up space in tables that are constantly updated or where records are often deleted not only will help you save space, but
also improve the performance of queries performed on the table. Following the instructions shared in this article you will be
contributing to the health of your database and saving valuable storage space.

PostgreSQL Database Handbook 18 / 50

Chapter 4

PostgreSQL indexes example

In our previous article we discussed how to free up disk space by vacuuming tables with frequent updates and deletes. Under the
hood, this procedure also helps to improve the performance of other CRUD operations performed on those tables. In this tutorial
we will explain how to optimize SELECT queries with WHERE clauses using indexes in PostgreSQL tables.

4.1 Introducing indexes

The best way to introduce the concept and the use of indexes in a database is using a book analogy. If you buy a new book for
a college class, you will most likely start by looking at the index at the end of the book for a particular topic. There is no doubt
that this would be a much faster way to find the information that you need than thumbing through the book from the beginning.

Likewise, in the context of databases, an index is an actual structure that references the information found in a given table.

Particularly in PostgreSQL, an index consists of a copy of the indexed data along with the corresponding reference to its location.
Thus, insert and update queries are expected to become slower on columns with indexes. That said, the first rule of thumb
is: “Avoid at the extent possible creating indexes on columns with frequent bulk inserts or updates. Use indexes on columns
that are mostly read-only or where the volume of insert / update operations is low.” Additionally, indexes can also improve the
performance of update operations that use WHERE clauses.

4.2 Examples

Let’s return to the book analogy for a moment and use the World_db database to illustrate the need for indexes. Let’s modify a
little the query that we used as an introductory example in the first article of this series:

SELECT A.Id, A.name "City", A.district "District", B.name "Country", C.language "Language", ←↩
CASE WHEN C.isofficial=’TRUE’ THEN ’Yes’ WHEN C.isofficial=’FALSE’ THEN ’No’ END " ←↩

Official language?" FROM city A JOIN country B ON A.countrycode=B.code JOIN ←↩
countrylanguage C ON A.countrycode=C.countrycode WHERE A.Id=72;

The above query will return all records where the Id column in the city table is 72. Since we are performing a JOIN operation
with other tables it is to be expected that we will get more than one result. In this case, we got 3 different records based on the
different languages associated with this city, as you can see in Fig. 4.1:

https://www.systemcodegeeks.com/databases/postgresql/postgresql-vacuum/
https://www.systemcodegeeks.com/databases/postgresql/postgresql-introduction-installation/

PostgreSQL Database Handbook 19 / 50

Figure 4.1: Our initial query

If SELECT operations like the above query are performed frequently searching by city.Id, it makes sense to create an index on
that column in order to improve the overall performance. Before we do that, Let’s do an EXPLAIN ANALYZE on this query by
prepending this operation to the query itself. This will perform the query and indicate the execution time (see details highlighted
in yellow in Fig. 4.2):

Figure 4.2: Running EXPLAIN ANALYZE against the SQL query

As you can see, EXPLAIN ANALYZE says 3 rows were returned and gives us information about each step of our query. The
execution time was 0.191 ms.

Let’s now create the index on the city.Id column as follows. Please note that your indexes must ideally have a descriptive name
(cityId_idx in this case, which fairly indicates that it is associated with the city.Id column):

CREATE INDEX cityId_idx ON city(Id);

Then repeat the EXPLAIN ANALYZE plus the query. Results are shown in Fig. 4.3:

PostgreSQL Database Handbook 20 / 50

Figure 4.3: Running EXPLAIN ANALYZE against the SQL query AFTER creating an index

We can see that the use of the newly-created index was able to reduce the execution time by ~17% (0.159 ms compared to 0.191
ms).

On top of that, please refer to the figures in Fig. 4.4 that correspond to each query:

Figure 4.4: Estimated and actual startup and completion times before and after using an index

While the number of rows returned by each query was the same, the numbers inside parentheses show a performance increase.
The first number (0.085 in the first case and 0.053 in the second) represents the estimated start-up time of the associated query
step whereas the second number (0.130 and 0.098) indicates the actual execution time of such step.

The PostgreSQL documentation specifically states that learning how to use and interpret the EXPLAIN command is an art, and
as such, it takes time to understand and master. We used it here to analyze our query and demonstrate the bounties of having an
index in a table, but there is much more to EXPLAIN than that.

https://www.postgresql.org/docs/9.5/static/using-explain.html

PostgreSQL Database Handbook 21 / 50

4.3 Unique indexes

There is a special type of index called unique. When it is used, it guarantees that the associated table will not have more than one
row with the same value and thus will helps us maintain data integrity and improve performance. Instead of a regular index, we
could have created an unique index in the city.Id column above as follows:

CREATE UNIQUE INDEX cityId_idx ON city(Id);

You can also delete existing indexes in PostgreSQL as follows:

DROP INDEX cityId_idx;

Fairly easy, isn’t it?

In this sense, an unique index will prevent a record with the same Id to be inserted into the table if no previous constraint (such
as an primary key) exists on that column.

4.4 Multicolumn indexes

If you are likely to use more than one column in a SELECT query with a WHERE clause frequently, you may considering using
a multicolumn index on them. The syntax is similar to the case of a single index:

CREATE INDEX index ON table (column1, column2);

where column1 and column2 are the columns where the index will be created. Feel free to add more columns if needed.

4.5 Summary

In this article we have discussed the need for indexes to improve performance on SELECT queries that use WHERE clauses. If
you keep in mind the book analogy presented at the beginning, you will remember the fundamental concept behind using indexes.

PostgreSQL Database Handbook 22 / 50

Chapter 5

Database Creation and Data Population

In the first tutorial of this series (PostgreSQL: Introduction and installation tutorial) we explained how to download a sample
database and import it into our PostgreSQL server. This approach, although appropriate at the time, did not show how to create a
database of our own from scratch - which is an essential skill that every database administrator (DBA) or developer who intends
to use PostgreSQL must has. In addition, under regular circumstances there are multiple database user accounts with different
access permissions based on their respective assigned tasks. For that reason, we will also cover the topic of user creation here.

One important principle in database administration consists in creating as many users as needed depending on the required access
privileges, but restricting such at a minimum. In other words, it is not wise to use the same database account for all applications
since as that represents a serious security issue: if different accounts with different access permissions are used for separate
applications, a compromised account will not necessarily has a negative impact on the others.

5.1 Creating a new database

To being, let’s switch to the postgresql Linux account and enter the psql prompt.

sudo -i -u postgres
psql

As we have explained previously, at this point we are not connected to any database.

Inside the database we were about to create, we will add two tables where we will store the actual information in an organized
manner. Our database will be called BookstoreDB and the two tables will be AuthorsTBL and BooksTBL with the following
fields in them (if you feel you need to brush up your memory about data types, feel free to refer to PostgreSQL commands and
datatypes):

Figure 5.1: Table AuthorsTBL

https://www.systemcodegeeks.com/databases/postgresql/postgresql-introduction-installation/
https://www.systemcodegeeks.com/databases/postgresql/postgresql-commands-datatypes/
https://www.systemcodegeeks.com/databases/postgresql/postgresql-commands-datatypes/

PostgreSQL Database Handbook 23 / 50

Figure 5.2: Table BooksTBL

A primary key is a field in a table that is unique for each record, whereas a foreign key is a field that points to a primary key in
another table. When performing operations on the table where the foreign key exists, it is required that the value used for such
field exists as the primary key in the other table.

However, we will begin by creating a database role (also known as username) so that in the next step we will use it as owner of
the database:

CREATE ROLE scg;

That said, let’s create the new database as follows:

CREATE DATABASE BookstoreDB OWNER scg;

The expected output is shown in Fig. 5.3:

Figure 5.3: Creating a role and use it as owner of a new database

Next, we will connect to our newly-created database and create the tables:

\c bookstoredb;

CREATE TABLE AuthorsTBL (
AuthorID SERIAL PRIMARY KEY,
AuthorName VARCHAR(100),
LastPublishedDate DATE
);

CREATE TABLE BooksTBL (
BookID SERIAL PRIMARY KEY,
BookName VARCHAR(100),
AuthorID SERIAL,
FOREIGN KEY (AuthorID) REFERENCES AuthorsTBL (AuthorID)
);

Now the next step consists of populating the database with actual data.

PostgreSQL Database Handbook 24 / 50

5.2 Populating the database

Since BooksTBL contains a foreign key that points to AuthorsID in AuthorsTBL, we will need to create a few records in that
table first using the INSERT statement as follows. Note that each value must match the right field and data type:

INSERT INTO AuthorsTBL (AuthorName, LastPublishedDate) VALUES (’J. K. Rowling’, ’2011-07-11 ←↩
’);

INSERT INTO AuthorsTBL (AuthorName, LastPublishedDate) VALUES (’John Doe’, ’2015-08-29’);

Afterwards, we can use the SELECT statement to query the AuthorsTBL. Note how the AuthorID field was populated automati-
cally since its data type was set to serial and primary key (see Fig. 5.4):

Figure 5.4: Inserting records and querying the database

Next, let’s insert some records into the BooksTBL table. If we try to insert a record with an AuthorID that does not exist in
AuthorsTBL we will get an error as you can see in Fig. 5.5:

INSERT INTO BooksTBL (BookName, AuthorID) VALUES (’Harry Potter’, 3);
INSERT INTO BooksTBL (BookName, AuthorID) VALUES (’Harry Potter and the philosophers stone’ ←↩

, 1);
INSERT INTO BooksTBL (BookName, AuthorID) VALUES (’Harry Potter and the half-blood prince’, ←↩

1);
INSERT INTO BooksTBL (BookName, AuthorID) VALUES (’Whatever’, 2);
INSERT INTO BooksTBL (BookName, AuthorID) VALUES (’Whatever returns’, 2);

PostgreSQL Database Handbook 25 / 50

Figure 5.5: Inserting data with a non-existent foreign key causes an error

As you can see, an insert with a foreign key referencing a non-existent primary key in AuthorsTBL fails.

5.3 More queries

The classic SELECT statement as used earlier will return all the fields in a given table (that is what the star sign * stands for).
We can also restrict the number of fields by listing them after the SELECT. For example, we can do

SELECT AuthorName FROM AuthorsTBL;

to retrieve only the AuthorName. Of course, that’s going to be of little use, but it is worth mentioning.

We can also choose to combine records from both tables using a JOIN. This operation allow us to return a set of records from
two or more tables as if they were stored in a single one. To illustrate, we will list all book titles along with the author name and
perform the JOIN on the field that both tables have in common (AuthorID):

SELECT BooksTBL.BookName, AuthorsTBL.AuthorName FROM BooksTBL JOIN AuthorsTBL ON BooksTBL. ←↩
AuthorID=AuthorsTBL.AuthorID;

If we only want to return those books where J. K. Rowling is the author, we can add a WHERE clause and either use AuthorID=1
or AuthorName=J. K. Rowling in the filter. Usually, integers are preferred in WHERE clauses, so we will go with

SELECT BooksTBL.BookName, AuthorsTBL.AuthorName FROM BooksTBL JOIN AuthorsTBL ON BooksTBL. ←↩
AuthorID=AuthorsTBL.AuthorID WHERE AuthorsTBL.AuthorID=1;

You can view the result of the above queries in Fig. 5.6:

https://www.postgresql.org/docs/9.5/static/tutorial-join.html

PostgreSQL Database Handbook 26 / 50

Figure 5.6: Using JOINs and WHERE clauses to refine searches

You can view other examples of querying in each of the previous articles in this series.

5.4 Summary

In this article we have explained how to create a database role and make it the owner of a database during creation. In addition,
we showed how to create tables -taking into consideration the available datatypes- and how to populate and query them. By using
JOINs and WHERE clauses you will be able to retrieve the necessary information as if it was all in the same table.

PostgreSQL Database Handbook 27 / 50

Chapter 6

Common Table Expressions

In our previous article we explained how to use JOINs to create more advanced SELECT queries. However, there are instances
when using this technique to retrieve data from two or more tables does not satisfy our requirements or makes the query difficult
to read - for example, if we need several JOINs or a subquery to return the desired information.

To solve this, standard SQL (note that this is not something exclusive to PostgreSQL), introduced the concept of Common Table
Expressions (best known as CTE for short) in order to simplify this type of queries. In this article we will explain what CTEs are
and how to use them.

6.1 Definition of Common Table Expressions (CTE)

Formally speaking, a CTE is a temporary result set that is created through the use of a WITH clause and is valid only during
the execution of a given query. Another distinguishing feature of a CTE is that it can either reference itself (recursive CTE) or
not (non-recursive CTE), providing the flexibility that common queries do not provide. A recursive CTE is often used when a
calculation needs to be reported as part of the final result set, whereas a non-recursive one is usually utilized for a regular query.
Additionally, its definition -meaning the fields it returns- is not stored as a separate database object.

Although Common Table Expressions can be used in SELECT, INSERT, UPDATE, or DELETE operations, we will only use the
first type as it is the easiest to understand. Once you feel comfortable with using CTEs that involve SELECTs only, refer to the
official PostgreSQL 9.5 documentation to learn how to use them with the other operation types.

All of these new concepts will better sink in as we illustrate them through examples, so let’s begin.

6.2 Non-recursive Common Table Expressions

As usual, we will use the World_db database we installed in the first article of this series. To begin, let’s consider the following
query:

SELECT A.name "City", A.district "District",
B.name "Country", C.language "Language"
FROM city A JOIN country B ON A.countrycode=B.code
JOIN countrylanguage C ON A.countrycode=C.countrycode
WHERE A.name=’Rosario’ AND C.isofficial=’TRUE’;

As you can probably guess by now, it will return the city name, the district, the country, and the official language where the city
name is Rosario. If you look carefully, this query uses 2 JOINs - not a bad thing in itself, but the readability certainly could use
some improvements.

Our first example of a Common Table Expression will be rather basic but does the job of introducing the concept:

https://www.systemcodegeeks.com/databases/postgresql/postgresql-database-creation/
https://www.postgresql.org/docs/9.5/static/queries-with.html
https://www.postgresql.org/docs/9.5/static/queries-with.html
https://www.systemcodegeeks.com/databases/postgresql/postgresql-introduction-installation/

PostgreSQL Database Handbook 28 / 50

WITH t AS (
SELECT A.name City, A.district District,
A.countrycode CountryCode, B.name Country
FROM city A JOIN country B ON A.countrycode=B.code)
SELECT t.City, t.District, t.Country, C.language
FROM t JOIN countrylanguage C on t.CountryCode = C.countrycode
WHERE t.City=’Rosario’ AND C.isofficial=’TRUE’;

Before we go into PostgreSQL and run the above query, let’s split it into two parts to explain what is happening.

Step 1 - Define the CTE using the WITH clause. For simplicity, we will name the CTE as t, but you can use other name if you
want.

WITH t AS (
SELECT A.name City, A.district District,
A.countrycode CountryCode, B.name Country
FROM city A JOIN country B ON A.countrycode=B.code)

If we were to do a SELECT * FROM t; at this point, we would get all the cities with their corresponding district and country.
You may well be saying to yourself, “Then I don’t see what’s the point in using CTEs” - but wait, Step 2 will shed some light on
the why.

Step 2 - Select the fields from the CTE and perform a JOIN with another table. As the CTE can be considered a temporary
result set, we can perform JOINs on other tables. However, in this case we can use the more descriptive names given by the CTE
instead of the original table names (are you seeing the readability improvements already?). Since both the city and country tables
contain a field called name, the CTE allows us to refer to the city and country names as City and Country instead.

SELECT t.City, t.District, t.Country, C.language
FROM t JOIN countrylanguage C on t.CountryCode = C.countrycode
WHERE t.City=’Rosario’ AND C.isofficial=’TRUE’;

As you can see in Fig. 6.1, the result is identical to the original query:

PostgreSQL Database Handbook 29 / 50

Figure 6.1: A non-recursive Common Table Expression

Recursive Common Table Expressions

A recursive CTE references itself usually via a WITH clause referring to its own output. To better illustrate through an example,
we are going to create a new database and table named College and CollegeClasses, respectively, and populate the former with
dummy data as follows:

CREATE TABLE CollegeClasses (
ClassID serial PRIMARY KEY,
ClassDescription VARCHAR NOT NULL,
ClassParentID INT
);

INSERT INTO CollegeClasses (
ClassDescription,
ClassParentID
)
VALUES
(’Calculus 1’, NULL),
(’Algebra 1’, 1),
(’Analytic Geometry’, 1),
(’Physics 1’, 1),
(’Statistics’, 1),
(’Algebra 2’, 2),
(’Discrete Math’, 2),
(’Programming 1’, 2),

PostgreSQL Database Handbook 30 / 50

(’Programming 2’, 2),
(’Advanced Geometry’, 3),
(’Control systems’, 3),
(’English as a Second Language 1’, 3),
(’Literature’, 3),
(’Physics 2’, 4),
(’Calculus 2’, 4),
(’Graphs and Math’, 7),
(’English as a Second Language 2’, 7),
(’Basic algorithms’, 8),
(’Advanced algorithms’, 8),
(’Programming with C’, 8);

In this case we’re interested in retrieving a list of classes and their children down to a given level. For example, we will start with
Algebra 1 (ClassID=2) and descend down to the last class that depends on it:

WITH RECURSIVE classes AS (
SELECT
ClassID,
ClassParentID,
ClassDescription
FROM
CollegeClasses
WHERE
ClassID = 2
UNION
SELECT
e.ClassID,
e.ClassParentID,
e.ClassDescription
FROM
CollegeClasses e
INNER JOIN classes s ON s.ClassID = e.ClassParentID
) SELECT * FROM classes;

This query, as in the previous section, deserves a detailed explanation. Let’s begin by saying a recursive CTE consists of 4
components:

#1 - A non-recursive query. In this case, it is a query to retrieve the CollegeClass information where ClassID=2:

SELECT ClassID, ClassParentID, ClassDescription
FROM CollegeClasses WHERE ClassID = 2

#2 - The UNION or UNION ALL operator. Any of these operators allows us to combine one or more result sets into a single
one. The choice of one above the other will depend on whether you want to avoid duplicates (if any) or return them, respectively.

#3 - The recursive term. Note that the classes temporary table references itself in this part of the CTE:

SELECT e.ClassID, e.ClassParentID, e.ClassDescription
FROM CollegeClasses e INNER JOIN classes s ON s.ClassID = e.ClassParentID

#4 - The final statement, which is executed once the iterations in Part 3 have finished. In this case,

SELECT * FROM classes;

That said, let’s take a look at the result of the query (see Fig. 6.2) and examine it to see if it meets our expectations:

PostgreSQL Database Handbook 31 / 50

Figure 6.2: A recursive CTE

As we can see, the result set begins with ClassID=2, and shows all its children (ClassID=6, 7, 8, and 9). Then it shows all the
children of this last set as well.

You will want to use a recursive CTE if you need to retrieve information in the form of a hierarchical tree. It is precisely the
keyword RECURSIVE at the top of the query which allows the CTE to reference itself.

6.3 Summary

In this article we have explained how to create recursive and non-recursive Common Table Expressions in PostgreSQL. As you
pursue the study of this topic, keep in mind that using CTEs is not a matter of improving performance, but readability and
maintainability.

PostgreSQL Database Handbook 32 / 50

Chapter 7

Hot-Standby Database Replication Tutorial

In the previous articles of this series, we have learned several PostgreSQL database management skills. So far, those skills have
only included working with one database on one machine only. Today we will explain how to set up database replication, with a
master machine and a slave one, in order to provide redundancy.

In particular, we will use an approach known as hot standby, that allows to run read-only queries on a replicated database (residing
on a separate machine) while the main one is under maintenance. Hot Standby is available in PostgreSQL starting with version
9.0.

Given the nature of the topic at hand, we will need an extra Ubuntu server. We will call it “slave” and will change its hostname to
ubuntu-slave and set its IP address to 192.168.0.55. The master server (192.168.0.54 - the one we have been using until now) will
be renamed to ubuntu-master. We will begin this article by outlining step by step the prerequisites for the setup, so you should
not run into any significant issues.

If you’re using a VirtualBox-based VM to follow along with this series, you can easily clone it as we explained in Cloning,
exporting, importing, and removing virtual machines in VirtualBox (don’t forget to check the Reinitialize the MAC address of
all network cards box). Otherwise, you may need to install an Ubuntu 16.04 server instance from scratch.

7.1 Step 0 - Change hostnames and IP addresses as needed

In the master machine, do:

hostnamectl set-hostname ubuntu-master

Next, edit /etc/hosts as follows:

127.0.0.1 ubuntu-master
192.168.0.55 ubuntu-slave

In the slave machine:

hostnamectl set-hostname ubuntu-slave

Then edit /etc/network/interfaces and make sure the configuration for enp0s3 (the main NIC) looks as follows:

iface enp0s3 inet static
address 192.168.0.55
netmask 255.255.255.0
gateway 192.168.0.1
dns-nameservers 8.8.8.8 8.8.4.4

Next, edit /etc/hosts as follows:

https://www.systemcodegeeks.com/category/databases/postgresql/
https://www.systemcodegeeks.com/virtualization/virtualbox/cloning-exporting-importing-removing-virtual-machines-virtualbox/
https://www.systemcodegeeks.com/virtualization/virtualbox/cloning-exporting-importing-removing-virtual-machines-virtualbox/

PostgreSQL Database Handbook 33 / 50

127.0.0.1 ubuntu-slave
192.168.0.54 ubuntu-master

Finally, restart the network service on both machines

systemctl restart networking

and logout, then log back in to apply changes.

Now we’re ready to talk.

7.2 Step 1 - Configuring the master

To begin, we will create a dedicated user (repuser in this case) and we will limit the number of simultaneous connections to 1.
Enter the psql command prompt and do:

CREATE USER repuser REPLICATION LOGIN CONNECTION LIMIT 1 ENCRYPTED PASSWORD ’rep4scg’;

In /etc/postgresql/9.5/main/postgresql.conf, make sure the following settings and values are included:

listen_addresses = ’localhost,192.168.0.54’
wal_level = ’hot_standby’
max_wal_senders = 1
hot_standby = on

and in /etc/postgresql/9.5/main/pg_hba.conf:

hostssl replication repuser 192.168.0.55 md5

Next, switch to user postgres, generate a public key and copy it to the slave. This will allow the master to replicate automatically
to the slave:

ssh-keygen -t rsa
ssh-copy-id 192.168.0.55

When prompted to enter the password for user postgres in the slave machine, do so before proceeding.

Now restart the database service:

sudo systemctl restart postgresql

7.3 Step 2 - Configuring the slave

Make sure the database service is stopped before proceeding. Otherwise, you’re in for a nasty database corruption in a few
moments.

systemctl stop postgresql

Then edit /etc/postgresql/9.5/main/postgresql.conf and make sure the following settings / values are included:

listen_addresses = ’localhost,192.168.0.55’
wal_level = ’hot_standby’
max_wal_senders = 1
hot_standby = on

Finally, add the following line to /etc/postgresql/9.5/main/pg_hba.conf:

hostssl replication repuser 192.168.0.54 md5

PostgreSQL Database Handbook 34 / 50

7.4 Step 3 - Performing the replication

This step consists in two sub-steps:

3a- In the master, run the following commands to start an initial backup of all databases currently residing in our server, excluding
the logs (you can choose a different backup identification instead of Initial backup). If the destination files exist, they will be
updated in place; additionally, the data will be compressed during the transfer - this may come in handy if you have several large
databases (otherwise, feel free to ignore the -z option of rsync).

psql -c "select pg_start_backup(’Initial backup’);"
rsync -cvaz --inplace --exclude=*pg_xlog* /var/lib/postgresql/9.5/main/ 192.168.0.55:/var/ ←↩

lib/postgresql/9.5/main/
psql -c "select pg_stop_backup();"

3b- In the slave, create a .conf file with the connection info to the master server. We will name it recovery.conf and save it in /
var/lib/postgresql/9.5/main:

standby_mode = ’on’
primary_conninfo = ’host=192.168.0.54 port=5432 user=repuser password=rep4scg’

where user and password need to match the credentials created at the beginning of Step 1.

Now we can proceed to start the database server in the slave:

sudo systemctl start postgresql

and test the replication in the next step.

7.5 Step 4 - Testing the replication

In the master, we will switch to user postgres and execute a simple query to SELECT and then update a record from the city
table in the World_db database. At the same time, we will query that same record in the slave before and after performing the
UPDATE in the master. Refer to Fig. 7.1 for more details:

sudo -i -u postgres
psql
\c World_db;

then

SELECT name, countrycode, population FROM city WHERE name=’Brisbane’;
UPDATE city SET population=1402568 WHERE name=’Brisbane’;

PostgreSQL Database Handbook 35 / 50

Figure 7.1: Database replication in action

As you can see, the slave was updated automatically the population for Brisbane was changed in the master. If you attempt to
perform an UPDATE from the slave, it will fail with the following error: “ERROR: cannot execute UPDATE in a read-only
transaction.”

7.6 Troubleshooting

If the database service refuses to start successfully, you will not be able to run psql in the Linux command line. In that case, you
will have to troubleshoot using the following resources:

systemctl -l status postgresql@9.5-main
journalctl -xe
tail -f /var/log/postgresql/postgresql-9.5-main.log

That’s all folks! You should have a PostgreSQL hot standby replication in place.

PostgreSQL Database Handbook 36 / 50

Chapter 8

Backup, Restore and Migration

Since hardware can fail and human error may occur, having frequent backups and knowing how to restore them are important
skills that every system administrator should have. Additionally, you will need to know how to migrate PostgreSQL databases
from one machine to another in case you purchase new, more powerful servers. Thus, in this tutorial we will discuss how to
perform these critical operations using a test environment with two Ubuntu 16.04 (server edition) virtual machines. We will
name these VMs newserver (192.168.0.54) and oldserver (192.168.0.55), where the same PostgreSQL version (9.5) has been
installed on both. We assume we will migrate the World_db database on oldserver over to newserver.

8.1 Backup, restore, and migration strategies

Traditionally, PostgreSQL database administrators used shell scripts and cron jobs to back up their databases. Although this
approach was considered efficient a decade (or so) ago, today there are tools that make this process hassle-free and easier to
maintain. Among these tools, Barman (Backup and Recovery Manager), a Python-based open source solution developed and
maintained by 2ndQuadrant (a firm that specializes in PostgreSQL services) stands out.

8.2 Installing Barman

More accurately, Barman is a backup, restore, and disaster recovery tool for PostgreSQL. We will install it on the virtual machine
that we called newserver (192.168.0.54) to migrate the databases from oldserver (192.168.0.55).

That said, let’s install Barman:

sudo aptitude update && sudo aptitude install barman

Once the installation has completed successfully, proceed with the following steps.

8.2.1 Step 1 - Create a dedicated PostgreSQL user in oldserver

In order for barman (which has been installed in newserver) to communicate with the PostgreSQL instance running on oldserver,
we need to create a dedicated database user. To do so, run the following command as postgres on oldserver and enter the desired
password for the new database user. Also, when you’re prompted to confirm if the account should have superuser privileges,
enter y and press Enter

createuser --interactive -P barman

Then test the connection from newserver. We will check the connection against the postgres database, but you can use other
database (in that case, you’ll have to modify the SQL query inside single quotes):

psql -c ’SELECT version()’ -U barman -h 192.168.0.55 postgres

https://www.pgbarman.org/

PostgreSQL Database Handbook 37 / 50

Refer to Fig. 8.1 for details:

Figure 8.1: Creating a dedicated user account and testing the connection

Throughout this article, we will use the word Barman to refer to the program itself, whereas the all-lowercase barman will
represent either the command associated with the program or an account.

8.2.2 Step 2 - Create the .pgpass file in newserver

As part of the installation of Barman on newserver, a Linux account called barman was created. To set its password, do

sudo passwd barman

and enter the desired password. Then, switch user to barman:

sudo -i -u barman

and create the .pgpass file for user barman:

echo "192.168.0.55:5432:*:barman:password" >> ~/.pgpass

The actual format for the .pgpass file is hostname:port:database:username:password. If an asterisk is used in any of the first four
fields, it will match everything. Please note that username here represents the PostgreSQL user we created in Step 1, not the
Linux account we just referred to. The official documentation for this file can be found here.

This file can contain passwords to be used if a connection requires one (in this case, barman will use it to talk to the PostgreSQL
instance on oldserver).

https://www.postgresql.org/docs/current/static/libpq-pgpass.html

PostgreSQL Database Handbook 38 / 50

8.2.3 Step 3 - Set up key-based authentication

In order to perform backups without user intervention we will need to set up and copy SSH keys for passwordless authentication.
Barman will make use of this method to copy data through rsync.

On newserver, switch to user barman and generate the keys

ssh-keygen -t rsa

(choose the default destination file for the public key and an empty passphrase).

Next, copy the public key to the authorized keys of user postgres on oldserver:

ssh-copy-id postgres@192.168.0.55

This will allow barman on newserver to connect to oldserver as user postgres. To test if the connection can be made without
password, as expected, you can run the following command (on success, it will not return anything):

ssh postgres@192.168.0.55 -C true

You’ll also need to allow barman to SSH into localhost as the local user postgres:

ssh-copy-id postgres@localhost
ssh postgres@localhost -C true

Finally, on oldserver log in as postgres and do

ssh-keygen -t rsa

and copy the resulting key to the list of authorized keys for user barman on newserver:

ssh-copy-id barman@192.168.0.54

Again, test the connection before proceeding:

ssh barman@192.168.0.54 -C true

8.2.4 Step 4 - Configure Barman

On newserver, open the Barman main configuration file (/etc/barman.conf) and uncomment this line by removing the leading
semicolon:

;configuration_files_directory = /etc/barman.d

should read

configuration_files_directory = /etc/barman.d

(if /etc/barman.d does not exist, you’ll have to create it with mkdir /etc/barman.d)

And create a file named oldserver.conf with the following contents (the word inside square brackets represents the name that
barman will use to identify the connection details):

[oldserver]
description = "Our old PostgreSQL server"
conninfo = host=192.168.0.55 user=barman dbname=World_db
ssh_command = ssh postgres@192.168.0.55
retention_policy = RECOVERY WINDOW OF 2 WEEKS

where most variables are self-explanatory with the exception of retention_policy. This variable is used to determine for how
long backups should be kept (2 weeks in this case). This should be modified based on the expected activity and growth of the
database, and the available space on the filesystem where backups will be kept.

PostgreSQL Database Handbook 39 / 50

8.2.5 Step 5 - Configure PostgreSQL

On oldserver:

Add this line to /etc/postgresql/9.5/main/pg_hba.conf:

host all all 192.168.0.54/24 trust

Then make sure the following variables on /etc/postgresql/9.5/main/postgresql.conf have the indicated values:

wal_level = archive
archive_mode = on
archive_command = ’rsync -a %p barman@192.168.0.54:/var/lib/barman/oldserver/incoming/%f’

As you will probably guess, the directory in the rsync connection string represents the directory where the backup files for
oldserver will be kept on newserver.

On newserver, make sure the following variable on /etc/postgresql/9.5/main/postgresql.conf has the indicated value:

data_directory = ’/var/lib/postgresql/9.5/data’

If the directory called data does not exist under /var/lib/postgresql/9.5, create it before proceeding (that is where the data files
will be stored on newserver)

Then restart the postgresql service to activate the latest changes:

sudo systemctl restart postgresql

8.2.6 Step 6 - Test the Barman configuration

Once PostgreSQL has been configured on oldserver to allow connections from newserver, we are ready to test the configuration.
To do so, switch to user barman on newserver and do

barman check oldserver
barman list-server

The first command will check the SSH and PostgreSQL connections, whereas the second one will show the list of configured
PostgreSQL servers we wish to back up.

The output should be as follows (see Fig. 8.2):

Figure 8.2: Checking the barman connection from newserver to oldserver

PostgreSQL Database Handbook 40 / 50

8.2.7 Step 7 - Perform the backup

Once all of the items in the output of barman check oldserver return OK, we are ready to perform our first backup with
the following command (see Fig. 8.3):

barman backup oldserver

The output should be similar to Fig. 8.3:

Figure 8.3: Creating our first backup with barman

Once the backup has completed we can identify it with the help of

barman list-backup oldserver

which will list all the backups we have performed for oldserver. To view details about a specific backup, we’ll use

barman show-backup oldserver backup_id

where backup_id is the backup identification (20161015T120420 in Fig. 8.4).

PostgreSQL Database Handbook 41 / 50

Figure 8.4: Checking backups

8.2.8 Step 8 - Restore the backup on newserver

As we can see in Fig. 8.5, the World_db database can’t be found on newserver. To migrate a backup, we will stop the postgresql
service

sudo systemctl stop postgresql

and run the following command as user barman:

barman recover --remote-ssh-command "ssh postgres@localhost" oldserver 20161015T142346 /var ←↩
/lib/postgresql/9.5/data

Note how barman makes use of the SSH keys to connect as user postgres to localhost in order to load the backup with id
20161015T142346 to the data directory. The result is shown in Fig. 8.5:

PostgreSQL Database Handbook 42 / 50

Figure 8.5: Restoring a backup with barman

After the recovery or migration is complete, start the postgresql service with a user with sudo access

sudo systemctl start postgresql

and check the World_db database as user postgres:

sudo -i -u postgres
psql
\c World_db

Now let’s run queries against the database, as shown in Fig. 8.6:

PostgreSQL Database Handbook 43 / 50

Figure 8.6: Querying the database we migrated

Congratulations! You have successfully set up a very effective method to back up, restore, and migrate PostgreSQL databases.

8.3 Automating backups

In order to automate the backup process, switch to user barman and open the crontab file:

sudo -i -u barman
crontab -e

Then add the following two lines in it in order to execute a backup of oldserver each day at 12:45 pm

45 12 * * * /usr/bin/barman backup oldserver

Please note that this is a basic Barman / PostgreSQL setup, so I strongly suggest to check the official Barman docs here.

https://www.pgbarman.org/documentation/

PostgreSQL Database Handbook 44 / 50

Chapter 9

Connect to PostgreSQL using PHP

After we have learned how to set up and configure PostgreSQL for a variety of scenarios, having a database and populating it
with data will not be of any use until we can retrieve it and use it in some way. Today, using a mobile-friendly web application
is the most common way to accomplish this goal.

In this tutorial we will explain how to connect to our PostgreSQL database server using PHP, a popular server-side scripting
language, how to retrieve data, and how to display it in a web page. Using this foundation, you will be able to go on to create
more robust applications that make use of PostgreSQL and PHP.

9.1 Installing the software

As we just mentioned, we will use PHP to connect to the database server and to display the results of a query in a web page.
Before we even start writing the application, we will need to install PHP and some additional packages - including the Apache
web server. To do this in an Ubuntu 16.04 server with IP 192.168.0.54, use the following command:

sudo aptitude update && sudo aptitude install apache2 postgresql-contrib php7.0-pgsql

After the installation is complete, create a php file named info.php under /var/www/html with the following three lines. This will
help us to verify that PHP has been installed along with the PostgreSQL dependencies:

<?php
phpinfo();
?>

Then browse to 192.168.0.54/info.php and look for the section with the PostgreSQL details. You should find that the
PDO driver is enabled and that PHP is supporting our RDBMS, as shown in Fig. 9.1:

PostgreSQL Database Handbook 45 / 50

Figure 9.1: Checking the status of PostgreSQL-related PHP components

Now we’re ready to start writing our simple, yet functional PHP-based application.

9.2 Connecting to the database server

The first thing that we must do is ensure PHP can connect to the database server. Create a file named con.php under /var/www/html
with the following contents:

<?php

// Connection details
$conn_string = "host=localhost port=5432 dbname=World_db user=scg password=MyPassword ←↩

options=’--client_encoding=UTF8’";

// Establish a connection with MySQL server
$dbconn = pg_connect($conn_string);

// Check connection status. Exit in case of errors
if(!$dbconn) {
echo "Error: Unable to open database\n";
} else {
echo "Opened database successfully\n";
}

// Close connection
pg_close($dbconn);

?>

For security purposes, set the appropriate ownership to the Linux account postgres (the user the database service runs as) and add
the www-data account to the postgres group. This will allow Apache to read this file:

PostgreSQL Database Handbook 46 / 50

sudo chown postgres:postgres /var/www/html/con.php

sudo chmod 660 /var/www/html/con.php
sudo usermod -a -G postgres www-data

Now go to 192.168.0.54/con.php and make sure the connection to the database is successful before proceeding:

Figure 9.2: Verifying database connection via PHP

If you get a blank page instead of the confirmation message shown in Fig. 2, inspect the Apache logs to troubleshoot. A missing
semicolon or a misplaced quote can cause the connection to fail.

9.3 Writing the application

To begin, we will comment out the following line in con.php:

echo "Opened database successfully\n";

and insert the following lines below it. Please note that we will use a very simple query that will retrieve city names and the district
it belongs to in Argentina (you will later be able to change it to a more complicated query using Common Table Expressions, for
example):

$query = "SELECT name, district FROM city WHERE countrycode=’ARG’";
$cities = pg_query($query) or die(’Query failed: ’ . pg_last_error());
$myarray = array();
while ($row = pg_fetch_assoc($cities)) {
$myarray[] = $row;
}

// Encode response into JSON array
echo json_encode($myarray);

The con.php file should now look as seen in Fig. 9.3:

PostgreSQL Database Handbook 47 / 50

Figure 9.3: The connection file

Save the changes and grant privileges on the city table for the scg user. Note that you’ll have to do this from the PostgreSQL
prompt:

GRANT ALL PRIVILEGES ON TABLE city TO scg;

Next, go to 192.168.0.54/con.php. You should see the results of the query in JSON format (see Fig. 9.4):

PostgreSQL Database Handbook 48 / 50

Figure 9.4: Query results in JSON format

JSON stands for JavaScript Object Notation. It is a lightweight data-interchange format that is easy for humans to read and write
and for machines to parse and generate.

Now that we have successfully 1) connected to the database server, and 2) retrieved records into a JSON array, we will explain
how to display this information into a mobile-friendly web page.

9.4 Creating a mobile-friendly web page

Most web developers nowadays use a robust HTML5/CSS/Javascript framework called Bootstrap to write mobile-friendly appli-
cations very easily. Though a full discussion about Bootstrap (and the HTML5-related technologies) is out of the scope of this
article, it is sufficient to say that one of its distinguishing characteristics is that it divides the viewport in a 12-column grid.

It is up to the developer to decide how many columns will be assigned to a particular piece of content for xs (extra small, i.e. cell
phones), sm (small, i.e. tablets and ipads), md (medium, i.e. laptops), and lg or large devices (high resolution monitors). In this
tutorial we will assume that we desire to show the city and district fields using 6 columns each in small devices (sm) and up. For
extra small screens, city will stack on top of district, as we will see later.

To do this, create a file named index.php in the same location as con.php and insert the following lines into it:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Mobile friendly page with PostgreSQL and PHP</title>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap. ←↩

min.css">

PostgreSQL Database Handbook 49 / 50

</head>
<body>

<div class="row">
<div class="col-md-6" id="city" style="text-align: center">City
District
</div>
</div>
</body>
<script src="https://code.jquery.com/jquery-3.1.1.min.js"</script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"</script>
</html>
<script>
$(document).ready(function(){
$.ajax({
url: ’con.php’,
datatype: ’json’,
type: ’POST’,
success: function(data){
var output = $.parseJSON(data);
for(var i =0;i < output.length;i++)
{
var item = output[i];
$("#city").append("
"+item.name);
$("#district").append("
"+item.district);
}
}}
);
});
</script>

As you can see, this simple page uses a well-known Javascript library called jQuery to make an Ajax call to con.php and retrieve
the results. Again, an adequate discussion about jQuery, Ajax, and Javascript is out of the scope of this article, but you can find
some very valuable information on W3schools.

When you browse to 192.168.0.54/index.php, the result should be similar to Fig. 9.5:

https://www.w3schools.com/jquery/

PostgreSQL Database Handbook 50 / 50

Figure 9.5: Displaying the web page with the results of the query

Feel free to resize your browser’s window to see the visualization changes as the viewport changes.

9.5 Summary

If you followed this tutorial carefully, congratulations! You have set connected to your PostgreSQL server using PHP and
displayed data from your database in a mobile-friendly web page. Hopefully this will give you the foundation to create more
sophisticated applications.

	Introduction and installation
	What's PostgreSQL?
	Installing PostgreSQL
	Populating the database with data
	Configuring phppgadmin in Linux
	PostgreSQL Windows client

	Commands and datatypes
	PostgreSQL commands
	Getting help
	Displaying databases and tables

	PostgreSQL data types
	Enumerated types
	Summary

	VACUUM Command Example
	Updating and removing rows
	Introducing VACUUM
	Summary

	PostgreSQL indexes example
	Introducing indexes
	Examples
	Unique indexes
	Multicolumn indexes
	Summary

	Database Creation and Data Population
	Creating a new database
	Populating the database
	More queries
	Summary

	Common Table Expressions
	Definition of Common Table Expressions (CTE)
	Non-recursive Common Table Expressions
	Summary

	Hot-Standby Database Replication Tutorial
	Step 0 - Change hostnames and IP addresses as needed
	Step 1 - Configuring the master
	Step 2 - Configuring the slave
	Step 3 - Performing the replication
	Step 4 - Testing the replication
	Troubleshooting

	Backup, Restore and Migration
	Backup, restore, and migration strategies
	Installing Barman
	Step 1 - Create a dedicated PostgreSQL user in oldserver
	Step 2 - Create the .pgpass file in newserver
	Step 3 - Set up key-based authentication
	Step 4 - Configure Barman
	Step 5 - Configure PostgreSQL
	Step 6 - Test the Barman configuration
	Step 7 - Perform the backup
	Step 8 - Restore the backup on newserver

	Automating backups

	Connect to PostgreSQL using PHP
	Installing the software
	Connecting to the database server
	Writing the application
	Creating a mobile-friendly web page
	Summary

