

Table of Contents

3

4

6

7

8

9

10

11

12

13

14

16

17

18

19

Introduction .

What’s Driving the Shift to RWD? .

6 RWD Test Plan Building Blocks .

Add Visual Testing to Your Test Automation Code .

Do Client-side Performance Testing .

Test Your Navigation Across Platforms .

Integrate Real User Conditions into Your Testing .

Implement Accessibility Testing Continuously .

Use Analytics to Establish Your Digital Test Coverage Plan

Advanced Topics for RWD .

Headless Browsers Role in the Context of Cross-Browser Testing

Optimize Performance and Security through HAR File Analysis

Use In-Browser Capabilities to Increase Test Productivity

Create Actionable Test Reports for RWD .

Summary: Answering the RWD Challenge .

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 2

https://www.perfectomobile.com/

13%
Retail

18%
Media
(News)

16%
Travel

Fig. 1: Percentage of responsive
websites in a few key markets
(source: Forrester Research)

Responsive web design (RWD) is an

approach to web design that provides

an optimal viewing and interaction

experience — easy reading,

navigation — across a wide range

of devices (from desktop computer

monitors to mobile phones)

Introduction

Responsive web design (RWD) is becoming the preferred method for
developing websites that look and work consistently on all devices
(see Fig. 1). The idea behind this strategy is to give all users a seamless
digital experience no matter what device, browser, screen size or
orientation (portrait vs. landscape) they use. It also means ensuring
that the functionality, performance and visual layout of websites are
consistent across all digital platforms and various user conditions.

At first, this may seem like a no brainer, but when you factor in the
importance of user experience (UX), the continuous testing of new
features, and guaranteeing your website is working optimally on all
browsers, devices, OSes and carrier networks, RWD is actually
daunting and time consuming. Understanding how a responsive
website behaves and looks across all digital platforms is a great
challenge for many app development and QA teams.

This guide — written for developers, QA managers and line of business groups — outlines some
of the key challenges of developing, testing and maintaining responsive websites. It provides
a practical set of lessons on how to deal with these challenges and succeed in delivering great
responsive websites.

Applying these lessons to your day-to-

day DevTest activity will enable you to:

• Deliver better user experiences (UX)

• Achieve shorter time to market

• Enhance software development life cycle
(SDLC) processes

• Bridge the gap between marketing, IT and
DevTest

• Meet business goals

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 3

https://www.perfectomobile.com/

What’s Driving the Shift to RWD?

The answer is simple. In today’s world, there’s no
longer a difference between website usability and
the platform used to consume data and services.
According to Criteo’s State of Mobile Commerce
report, 4 out of 10 transactions today take place
on multiple devices (Fig. 2). In that context, 48% of
users today complain that the websites they use
are not optimized for their smartphones
and tablets.

By that measure, delivering a great user
experience across all digital platforms is critical
to driving more traffic and meeting business
goals. Organizations that wish to be ready for
new device and operating system releases should
select RWD as their app development method
because responsive sites are, by definition,
designed to work on any device and platform.

31%

Cross-Device
Mobile

Transactions

% of users who used multiple devices in path of purchase

Users Completed Purchase On:

U.S. Cross-Device Share of

eCommerce Transactions

35%
Smartphone

43%
Tablet

37%
Desktop

Cross-Device Share of Retail

Transactions & Mobile Share of

Cross-Device Transactions, Q4 2015

Cross-Device
Desktop

Transactions

69%

Single-Device
Transactions

37% Cross-Device

Transactions

Fig. 2: Multi Screen transitioning statistics (Source:
Criteo State of Mobile Commerce Report 2015

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 4

https://www.perfectomobile.com/

“Context” is a key success factor for RWD adoption. If your website is used primarily on a large
desktop, it makes sense to display as much content on the screen as possible, but what happens
when users consume the data on a mobile device or a system with a smaller viewport?

It probably means that less relevant content needs to be hidden and creative elements and fonts
need to be resized. The same considerations need to be made about the location from which
a user is accessing your site. When connected via a strong Wi-Fi, your site may be optimized,
but what happens when network connectivity is diminished or the website relies on delivering
location-based content? The context of your site will factor into how you approach RWD.

Another reason for the shift to RWD is that it helps assure quality and fast website updates across
all digital platforms. Because mobile and web evolved in parallel, many organizations created
siloed teams with different skill sets. They often relied on the same tools but disconnected
roadmaps and different release schedules. This disconnect prevents web and mobile DevTest
teams from having control over the entire digital portfolio. When developing for different
platforms, it’s hard to assess the quality of every digital viewport and function across web and
mobile because different teams are executing different test cases instead of running tests
side by side.

The RWD approach is seen as the most efficient because it consolidates efforts, synchronizes the
digital teams and reduces the R&D budget.

So how do you test for RWD?

What’s Driving the Shift to RWD?

Because mobile and web evolved in parallel, many organizations
created siloed teams with different skill sets. They often relied on
the same tools but disconnected roadmaps and different release
schedules. This disconnect prevents web and mobile DevTest teams
from having control over the entire digital portfolio.

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 5

https://www.perfectomobile.com/

6 RWD Test Plan Building Blocks

Here are the top six areas that need to be covered in an RWD test plan.

Test Scenario Test Description

Visual Testing
Assure RWD content looks right on any screen

and platform.

Client side performance
testing

Test and measure the time it takes your website’s

objects to render on screens and optimize the

content size accordingly.

Navigation testing
Assure that the site performs the expected function

correctly (i.e. Log-in functions well across web and

mobile platforms).

User condition testing
Test your site across platforms for real user

conditions such as incoming calls, ads, popups

and other interruptions.

 Accessibility testing

Comply with the accessibility standards across

mobile and web, and assure that your RWD site

adheres to the guidelines through voice, visual

and other engagement methods.

Platform coverage

Use analytics to test your website against all

relevant devices, browsers and OS versions

covering screen sizes and resolutions in various

conditions and locations.

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 6

https://www.perfectomobile.com/

A responsive website will display content differently when screens resize and user conditions
change. With this layer of complexity, app development and testing teams must combine various
validations to make sure that when context changes, the
viewports also change and the content being displayed
is accurate, not truncated, and does not cause usability
glitches.

The way to achieve this is to build in a cross-platform test
automation strategy that can identify all DOM objects on
desktop and mobile web browsers. You must also add
relevant UI check point validations that can compare the
visual display on the screens when events occur (Fig. 3.1,
3.2). These validations will quickly highlight issues and
shorten the feedback loop to the developers, resulting in
faster resolution.

Some important check points to consider, from a visual
standpoint, when testing responsive websites:

• Alignment of text, controls and images

• Text, images, controls and frames do not
run into the edges of the screen

• Font size, style and color are consistent
for each type of text

• Typed text (data entry) scrolls and
displays properly

• Pages should be readable on all resolutions
and screen orientations

• Content defined ‘important’ needs to be
visible in all breakpoints

Fig. 3.1: Visual object identification is
important as part of responsive website
testing (Source: starecat.com)

Fig. 3.2: Visual truncation when switching to
landscape mode (UPS Mobile App, iPad 3)

1. Add Visual Testing to Your Test Automation Code

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 7

https://www.perfectomobile.com/

One aspect of a RWD test plan that will assure a great user experience is web performance.
Because RWD is targeting a large variety of combinations (Safari on specific Mac OS versions, IE
browser on Windows XP, etc.), dev and test teams should test the time it takes content and images
to load on the various viewports. Teams will also want to look carefully at the overall website
performance and how it varies on different platforms and under specific network conditions.

Two of the most common issues with RWD sites are:

• The lack of large content compression in the website, which causes slow page load times.

• Failure to measure the object sizes and make sure they are customized to the screen sizes
on which they appear.

The average website includes nearly 400 different objects (Fig. 4), so any wrong screen size
allocation for an image results in longer website load times. With that many objects in play, it’s
easy to see how poor responsive web design can have a negative impact on user experience.

When we looked at a leading responsive site, we found that the original size properties of an
image on that site was 611 x 435, while on a device that accessed the responsive site, the actual
dimensions were only 274 x 195. This translated into that image loading slowly on that specific
mobile device.

2. Do Client Side Performance Testing

30%

1-400 401-800 801-1200 1201-1600 1601-2000 2001-2400 2401-2800

30%

17%

9%
5% 3% 2%

The average website includes nearly 400
different ob ects so any wrong screen si e
allocation for an image results in longer
website load times.

Fig 4.: Average number of Web Objects per website (Source: HTTPArchive.org)

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 8

https://www.perfectomobile.com/

As more consumers and brands go digital, responsive web users will most likely use your site
across different devices and OS platforms. They will either start from a smartphone, move to a
tablet and then to a desktop browser, or sometimes even reach your RWD site from a
non-responsive site. From a testing perspective, these kinds of user paths need to be covered as
part of navigation testing.

Navigation testing is done to assure that a user can comfortably complete a full end-to-end run
through your site. As part of the process, you need to make sure that the screen orientations in
mobile and desktops work well so that nothing breaks when moving from portrait to landscape
and vice versa. Testing screen orientations and other navigation elements such as shortcuts,
menus and other web elements can improve the user experience when users access the site from
a smaller screen.

When moving between screen sizes and devices and resizing windows, Google recommends
the following best practices for breakpoints (the points at which your site is not displaying
information correctly on certain screen sizes):

• Create breakpoints based on content, never on specific devices, products or brands

• Design for the smallest mobile device first, then progressively enhance the experience as
more screen real estate becomes available

• Keep lines of text to a maximum of 70–80 characters

Another tip is to test what happens when users transition between responsive and non-responsive
web environments.

Fig. 5: Responsive Perfecto Homepage (Source: Perfecto)

3. Test Your Navigation Across Platforms

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 9

http://responsivenavigation.net/
https://www.perfectomobile.com/

Now that you’re testing for mobile and desktop combinations, you need to guarantee that these
environments also mimic your users’ daily, real-world conditions. We recommend you start by
collaborating with marketing and business groups on target user data, including insight into who
your target user is, where they live, and what are their network conditions.

Testing ideal “happy path” scenarios (i.e. strong Wi-Fi, full battery, no competing apps) will provide
very limited insights into how your app will actually behave under real user conditions, so
consider creating personas (profiles of your target customers) that account for complex, real-
world environments.

Instead of running only functional
tests such as log-in, search,
payment and checkout under
generic conditions, we recommend
you also test responsive websites
against user conditions including
location, preferred device(s),
network coverage and other apps
running in the background. This will
help ensure that your content is laid
out correctly on any viewport.

By definition, RWD requires constant network connection, so it’s key to test real-world conditions
with both Internet connectivity and without, and test for the poor connectivity that occurs when
moving through tunnels and switching to airplane mode.

In today’s competitive landscape, websites are also exposed to interruptions caused by web add-
ons and adware popups. Pop-up interruptions are one of the most common web “user conditions”
to test for, as they can block user flows within the web page and cover up important content.

In such cases, dev and testing teams need to assess the user impact of pop-ups. We all know they
can be quite disruptive. Unfortunately, blocking the ads does not solve the problem because the
ad vendor will sense that ad blockers are on and will pop up on a different page.

As part of user condition testing, and especially for mobile, we recommend mimicking popups and
add-ons as well as incoming events such as calls and security alerts. Assess their impact on the
user experience and make sure they do not cover any critical web content.

4. Integrate Real User Conditions into Your Testing

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 10

https://www.perfectomobile.com/

5. Implement Accessibility Testing Continuously

Web accessibility means opening accessibility of the web to everyone, specifically those who have
disabilities, allowing them to perceive, understand, navigate and interact with the Web. These
disabilities cover all levels, including auditory, physical, speech, cognitive and neurological. Most
Websites have some sort of accessibility barrier that makes it difficult for a person with a disability
to use their site. web accessibility assists making sure that people with all disabilities do not face
these roadblocks when accessing the web.

Organizations are struggling today to automate and perform per each release cycle the required
accessibility tests according to WCAG and other requirements. While for web, there are tools such
as WAVE and others, for mobile, that involves more advanced interfaces like voice, and sensors, it
is much harder to comply and automate all of the requirements. Even if automation is a challenge,
it is critical to at least manually perform most of accessibility tests on your RWD at critical product
milestone to assure no regressions found when a new browser OS is introduced or a new mobile
OS is released.

With that, it is important to
follow the innovations in
the marketplace and the
open-source community
and identify new tools that
can help reduce some of the
manual tests. An example
of such tool, is the built-
in Chrome developer tool
called Lighthouse. Using the
tool to perform audit on
your web page, can produce
useful accessibility and
quality reports related to
your RWD site (see example
to right).

Fig. 6: Google Lighthouse DevTool (Source: Google Developer portal)

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 11

https://www.w3.org/WAI/WCAG20/quickref/
https://dynomapper.com/blog/27-accessibility-testing/246-top-25-awesome-accessibility-testing-tools-for-websites
https://developers.google.com/web/tools/lighthouse/
https://www.perfectomobile.com/

6. Use Analytics to Establish Your Digital Test Coverage Plan

Responsive web relies on optimizing user experience across a huge digital landscape that consists
of thousands of desktops (Fig. 7) and mobile combinations.

The key to defining the right digital test coverage plan lies in leveraging various analytical sources
— some are available within the organization developing the RWD, while in other cases you’ll need
to find a vendor.

As noted earlier, web development and testing teams should obtain the most recent mobile
and web traffic analysis. This information will give DevTest teams data about popular locations,
browsers, and mobile OS/devices that were used to access their website. But while this is a great
start, it’s not enough to build a test coverage plan because it does not factor in the larger market,
your competitors or the newest platforms and configurations. However, solid traffic analysis will at
least give you an understanding of all the browsers and mobile platforms you need to consider for
your test coverage plan.

To stay on top of market changes, we recommend the following best practices:

• Continuously test using a sanity automation test suite that includes RWD supported
platforms and a feedback loop between Dev and Test.

 - Make sure to include functional, performance and usability aspects in your sanity tests

 - Consider testing on beta versions for both mobile and desktop OSes to reduce risks

• Review the market trends and tune your test coverage accordingly. It’s critical to include
desktop and mobile beta OS versions in your coverage plan. Retire irrelevant setups and
make room for new platforms and beta OS versions as needed.

Fig. 7: The Web Coverage Matrix (Source: Perfecto)

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 12

http://info.perfectomobile.com/factors-magazine.html
https://www.perfectomobile.com/

Covering the site navigation, visual and performance are a critical piece of the testing activities for
a RWD site. The constrains projects have today around time, budget and resources drives both
developers and testers to optimize the quality-related activities throughout the entire DevOps
pipeline.

In a recent ebook that covers the “10 Test Automation Frameworks for Cross Browser Testing”, we’ve
found some key insights around the desktop browser marketplace and what they can offer. Some
of the findings can specifically impact the overall RWD testing strategy.

In addition to the ebook referenced above, here are some additional related activities that can
help in the quality assurance process:

1. Headless browsers in the context of cross-browser testing

2. Optimize performance and security through HAR file analysis

3. Use in-browser capabilities to increase test productivity

Advanced Topics in Testing RWD Sites

Nightwatch.JS

Buster.JS Protractor

CodeceptJS

PhantomJS

Webdriver.IO

ChimpCasper.JS

Robot

RobotJS

JSDom

Fig. 8: Top 10 Test Frameworks (Source: Perfecto)

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 13

http://info.perfectomobile.com/10_Test_Automation_Frameworks_for_Cross_Browser_Testing.html?utm_source=emailhouse?utm_content=eBook?utm_medium=Email-house?utm_campaign=10-test-automation-frameworks
https://www.perfectomobile.com/

Headless browsers are serving a unique goal as part of the overall quality validation, however the
usage of such tools should be tuned to the right maturity level of the RWD site, as well as to the
type of tests you wish to author and execute.

Headless browser tools like PhantomJS, JSDOM, FireFox headless, and the newly introduced
Puppeteer project from Google, are helping developers and testers to perform unit tests, basic
functional tests as well as security and network traffic analysis validation hat does not require the
full blown browser UI.

While PhantomJS is becoming obsolete, and the desktop browser vendors like Google and Mozilla,
are taking ownership for these tools, the value remains the same.

1. Headless Browsers Role in the Context of Cross-Browser Testing

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 14

http://phantomjs.org/
https://github.com/tmpvar/jsdom
https://developer.mozilla.org/en-US/Firefox/Headless_mode
https://github.com/GoogleChrome/puppeteer/blob/master/README.md
https://www.perfectomobile.com/

1. Headless Browsers Role in the Context of Cross-Browser Testing

Headless Browsers are beneficial because of the following:

• Zero environment setup and quick test code development – reduces overall test cycle

• Fast feedback and robust executions – less flakiness, more test automation productivity,
faster CI cycles

• Leverage Java/JavaScript/Selenium WebDriver to code against headless browser – familiar
tools and scripting languages for test automation engineers and developers

 - Get specific insights from your RWD site around:

 - Page load performance

 - Page rendering through screenshots

 - Network traffic validations through HAR file

 - Basic navigation and functional steps

Headless Browsers are not suitable for the following:

• Limited UI testing, text truncations,
viewport look and feel

• No E2E testing tool – can’t cover
efficiently complex test scenarios
as well as objects operations (clicks,
swipes, etc.)

• Multi-platform testing including
mobile are not the goal for headless
browsers

• Parallel testing and automation at
scale aren’t supported

Fig. 9: Page Rendering Code Snippet Using PhantomJS (Source: Perfecto)

var page = require (‘webpage’).create();
 page.viweportSize = { width: 1024, height: 768 };
page.clipRect = { top: 0, left: 0, width: 1024, height: 768 };
page.open (‘http://www.perfectomobile.com’, function (status)
{
console.log(“Status: ” + status);
if(status === “success”);
 page.render(‘Perfecto.png’)’
}
phantom.exit();
});

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 15

https://www.perfectomobile.com/

Fig. 10: Webpage HAR File Network Traffic Example (Source: Perfecto)

2. Optimize Performance and Security through HAR File Analysis

Leveraging a HAR file to analyze the network traffic of your RWD site serves an important aspect
regarding security and performance of your site. Teams can generate quite fast such a network
traffic file, and analyze the various requests and everything that goes through your backend
services and more.

Tools like PhantomJS would be able to generate such file, as well as other open-source tools.
The use of these tools by developers, performance engineers and test engineers can increase
the quality productivity and insights to reduce performance bottlenecks when loading the wrong
resources, as well as identify security vulnerabilities through network traffic requests.

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 16

https://confluence.atlassian.com/kb/generating-har-files-and-analysing-web-requests-720420612.html
https://www.perfectomobile.com/

Desktop browsers can offer today advanced capabilities around performance analysis, test
coverage, logs and other useful insights that can enhance the overall coverage—take advantage of
these, they’re free. As demonstrated in the following screenshot taken from Chrome 62 browser,
Google is offering a nice set of tools that can dovetail into your existing test automation suite.

Among the key features, there are performance and network recording capabilities that can allow
users to record a session that can then be easily analyzed from event log perspective, load timing,
call tree and visual graphics with additional insights. There are other tools including coverage,
memory analysis, security and certificates validity, audit of the web site to provide accessibility
insights, and many more.

Fig. 11: Google Chrome Developer Tools - Performance Tool Example (Source: Perfecto)

3. Use In-Browser Capabilities to Increase Test Productivity

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 17

https://www.perfectomobile.com/

Create Actionable Test Reports for RWD

One of the biggest struggles for RWD dev and test teams is identifying specific bugs. Even when
they do identify the bugs, reproducing them is a huge challenge. For DevTest teams to efficiently
develop, test and run through the continuous SDLC, they must have a deep, actionable,
side-by-side synchronized report for all digital platforms that shows which browser/OS
combination was affected by the bug.

We’ve touched upon the importance of UI and visual validation as part of RWD test automation,
but including validations of failure in reports makes a big difference in the time it takes to resolve
bugs.

What should a RWD test report include?

• A side-by-side synchronized view of
test results across all the platforms
you are testing your website against

• The ability to filter only the failed
combinations (Fig. 12)

• Actionable information from the
failed test with:

 - Screenshots

 - Platform debug logs

 - Network logs

 - Video

 - Network traffic log (HAR file)

 - Test history and suite health

 - CI Health through dashboard

 - Link test failures to defects (e.g. Jira integration)

A robust, detailed report gives app development, testing and agile teams the information they
need to quickly troubleshoot any issue. When adding new platforms and beta versions to testing
cycles, teams should be able to easily filter and examine the results of new platforms against
previous tests.

Fig. 12: Perfecto’s Multi-platform Heatmap (Source: Perfecto)

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 18

https://www.perfectomobile.com/

Summary: Answering the RWD Challenge

Expanding your digital footprint across every browser, device and user scenario will depend on
following best practices, and using the rights tools and processes.

We’ve discussed some of the best practices (Fig. 13), but delivering great responsive websites goes
beyond that. We don’t want to discount the important of the right image formats, the best CSS
and other coding practices, and proper page design. These, by themselves, require a great deal of
planning and execution.

But when it comes to testing, we believe that a successful RWD release begins with an optimized
test plan that covers the right platforms. Once a digital quality test plan is in place and teams are
acitvely managing and maintaining it, you should adopt a continous quality stragety that relies on
robust test automation including both visual objects analysis and DOM native object identification.

Teams that have access to a test report for all digital platforms will be able to address RWD issues,
and maintain the RWD code to support new features, new platforms and other market changes as
they occur.

We guarantee that if you have the right test environment, your responsive web journey will be a
rewarding one for both you and your users.

Fig. 13: RWD Test Plan Building Blocks (Source: Perfecto)

Implement Accessibility
Testing Continuously

Integrate Real User Conditions
into Your Testing

Do Client-Side
Performance Testing

Add Visual Testing to Your
Test Automation Code

Test Your Navigation
Across Platforms

Use Analytics to Establish Your
Digital Test Coverage Plan

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 19

https://www.perfectomobile.com/

About Perfecto

Perfecto's Continuous Quality Lab enables DevOps teams to accelerate
development, achieve continuous testing and monitoring and drive fast feedback

through actionable analytics for web, mobile & IoT apps. More than 3,000
customers rely on Perfecto’s cloud based Continuous Quality Lab as their digital

apps test environment and for authoring test automation executed on real
browsers, smart phones and devices under real end-user conditions. For more

information about Perfecto, Perfecto, visit perfectomobile.com, join our
community, or follow us on Twitter at @PerfectoMobile.

Perfecto | Complete Guide to Building a Responsive Web Testing Strategy 20

https://www.perfectomobile.com/
https://community.perfectomobile.com/?types%5B%5D=question&feed=recent
https://twitter.com/perfectomobile
https://www.perfectomobile.com/

