
How to build (and scale) with
microservices

2

How to build (and scale) with microservices

Table of contents
Chapter 1: Introduction to microservices ... 3

Chapter 2: Microservices as a business initiative .. 7

Chapter 3: Migrating to microservices .. 10

Chapter 4: Challenges in visibility and monitoring ... 14

Chapter 1: Introduction to microservices

4

Chapter 1: Introduction to microservices

Microservices are a type of software architecture where large applications are made up
of small, self-contained units working together through APIs that are not dependent
on a specific language. Each service has a limited scope, concentrates on a particular
task and is highly independent. This setup allows IT managers and developers to build
systems in a modular way. In his book, “Building Microservices,” Sam Newman said
microservices are small, focused components built to do a single thing very well.

Martin Fowler’s “Microservices - a Definition of This New Architectural Term” is one of
the seminal publications on microservices. He describes some of the key characteristics
of microservices as:

– Componentization: Microservices are independent units that are easily replaced or
upgraded. The units use services to communicate with things like remote procedure
or web service requests.

– Business capabilities: Legacy application development often splits teams into areas
like the “server-side team” and the “database team.” Microservices development is
built around business capability, with responsibility for a complete stack of functions
such as UX and project management.

– Products rather than projects: Instead of focusing on a software project that is
delivered following completion, microservices treat applications as products of which
they take ownership. They establish an ongoing dialogue with a goal of continually
matching the app to the business function.

– Dumb pipes, smart endpoints: Microservice applications contain their own logic.
Resources that are often used are cached easily.

– Decentralized governance: Tools are built and shared to handle similar problems on
other teams.

History of microservices
The phrase “Micro-Web-Services” was first used at a cloud computing conference by
Dr. Peter Rodgers in 2005, while the term “microservices” debuted at a conference of
software architects in the spring of 2011. More recently, they have gained popularity
because they can handle many of the changes in modern computing, such as:

– Mobile devices
– Web apps
– Containerization of operating systems
– Cheap RAM
– Server utilization
– Multi-core servers
– 10 Gigabit Ethernet
The concept of microservices is not new. Google, Facebook, and Amazon have
employed this approach at some level for more than ten years. A simple Google search,
for example, calls on more than 70 microservices before you get the results page.

Also, other architectures have been developed that address some of the same issues
microservices handle. One is called Service-Oriented Architecture (SOA), which provides
services to components over a network, with every service able to exchange data
with any other service in the system. One of its drawbacks is the inability to handle
asynchronous communication.

How microservices differ from service-oriented architecture
Service-oriented architecture (SOA) is a software design where components deliver
services through a network protocol. This approach gained steam between 2005 and
2007 but has since lost momentum to microservices. As microservices began to move
to the forefront a few years ago, a few engineers called it “fine-grained SOA.” Still
others said microservices do what SOA should have done in the first place.

SOA is a different way of thinking than microservices. SOA supports Web Services
Definition Language (WSDL), which defines service end points rigidly and is strongly
typed while microservices have dumb connections and smart end points. SOA is
stateless; microservices are stateful and use object-oriented programming (OOP)
structures that keep data and logic together.

Some of the difficulties with SOA include:

– SOA is heavyweight, complex and has multiple processes that can reduce speed.
– While SOA initially helped prevent vendor lock-in, it eventually wasn’t able to move

with the trend toward democratization of IT.
– Just as CORBA fell out of favor when early Internet innovations provided a

better option to implement applications for the Web, SOA lost popularity when
microservices offered a better way to incorporate web services.

Web
Application

Catalog
Application

Client Application

Web Service API

REST

REST

Analytics
Application

REST

REST

REST

Individual Development Teams

Business CapabilitiesIndividual Software Components

De
ce

nt
ra

liz
ed

 G
ov

er
na

nc
e

Decoupled Releases

Dev Team Dev Team

Dev TeamDev Team

Dev Team

5

Chapter 1: Introduction to microservices

Problems microservices solve
Larger organizations run into problems when monolithic architectures cannot be scaled,
upgraded or maintained easily as they grow over time. Microservices architecture is an
answer to that problem. It is a software architecture where complex tasks are broken
down into small processes that operate independently and communicate through
language-agnostic APIs.

Monolithic applications are made up of a user interface on the client, an application on
the server, and a database. The application processes HTTP requests, gets information
from the database, and sends it to the browser. Microservices handle HTTP request/
response with APIs and messaging. They respond with JSON/XML or HTML sent to the
presentation components. Microservices proponents rebel against enforced standards of
architecture groups in large organizations but enthusiastically engage with open formats
like HTTP, ATOM and others.

As applications get bigger, intricate dependencies and connections grow. Whether you
are talking about monolithic architecture or smaller units, microservices let you split
things up into components. This allows horizontal scaling, which makes it much easier to
manage and maintain separate components.

The relationship of microservices to DevOps
Incorporating new technology is just part of the challenge. Perhaps a greater obstacle
is developing a new culture that encourages risk-taking and taking responsibility for an
entire project “from cradle to crypt.” Developers used to legacy systems may experience
culture shock when they are given more autonomy than ever before. Communicating
clear expectations for accountability and performance of each team member is vital.

DevOps is critical in determining where and when microservices should be utilized. It is
an important decision because trying to combine microservices with bloated, monolithic
legacy systems may not always work. Changes cannot be made fast enough. With
microservices, services are continually being developed and refined on-the-fly. DevOps
must ensure updated components are put into production, working closely with internal
stakeholders and suppliers to incorporate updates.

The move toward simpler applications
As DreamWorks’ Doug Sherman said on a panel at the Appsphere 15 Conference, the
film-production company tried an SOA approach several years ago but ultimately found
it counterproductive. Sherman’s view is that IT is moving toward simpler applications.
At times, SOA seemed more complicated than it should be; microservices were seen as
an easier solution than SOA, much like JSON was considered to be simpler than XML
and people viewed REST as simpler than SOAP. We are moving toward systems that are
easier to build, deploy and understand. While SOA was initially designed with that in
mind, it ended up being more complex than needed.

Another panelist, Allan Naim, product manager at Google, agreed. He explained that
SOA is geared for enterprise systems because you need a service registry, a service
repository and other components that are expensive to purchase and maintain. They are
also closed off from each other. Microservices handle problems that SOA attempted to
solve more than a decade ago, yet they are much more open.

How microservices differ among different platforms
Microservices is a conceptual approach, and as such it is handled differently in each
language. This is a strength of the architecture because developers can use the
language they are most familiar with. Older languages can use microservices by using a
structure unique to that platform. Here are some of the characteristics of microservices
on different platforms:

Java
– Avoids using Web Archive or Enterprise Archive files
– Components are not auto-deployed. Instead, Docker containers or Amazon Machine

Images are auto-deployed.
– Uses fat jars that can be run as a process

PHP
REST-style PHP microservices have been deployed for several years now because they
are:

– Highly scalable at enterprise level
– Easy to test rapidly

Python
Easy to create a Python service that acts as a front-end web service for microservices in
other languages such as ASP or PHP

Lots of good frameworks to choose from, including Flask and Django

Important to get the API right for fast prototyping

Can use Pypy, Cython, C++ or Golang if more speed or efficiency is required

6

Chapter 1: Introduction to microservices

Node.js
Node.js is a natural for microservices because it was made for modern web applications.
Its benefits include:

– Takes advantage of JavaScript and Google’s high-performance, open-source V8
engine

– Machine code is optimized dynamically during runtime
– HTTP server processes are lightweight
– Nonblocking, event-driven I/O
– High-quality package management
– Easy for developers to create packages
– Highly scalable with asynchronous I/O end-to-end

.NET
In the early 2000s, .NET was one of the first platforms to create applications as services
using Simple Object Access Protocol (SOAP), a similar goal of modern microservices.
Today, one of the strengths of .NET is a heavy presence in enterprise installations. Here
are two examples of using .NET microservices:

– Building a .NET self-hosted web service using Open Web Interface for .NET (OWIN).
You can then use it to incorporate microservices.

– Setting up a fictional Human Resources firm

Responding to a changing market
The shift to microservices is clear. The confluence of mobile computing, inexpensive
hardware, cloud computing and low-cost storage is driving the rush to this exciting new
approach. In fact, organizations do not have any choice. Matt Miller’s article in The Wall
Street Journal sounded the alarm; “Innovate or Die: The Rise of Microservices” explains
that software has become the major differentiator among businesses in every industry
across the board. The monolithic programs common to many companies cannot change
fast enough to adapt to the new realities and demands of a competitive marketplace.

Service-oriented architecture attempted to address some of these challenges but
eventually failed to achieve liftoff. Microservices arrived on the scene just as these
influences were coming to a head; they are agile, resilient and efficient, qualities many
legacy systems lack. Companies like Netflix, Paypal, Airbnb and Goldman Sachs have
heeded the alarm and are moving forward with microservices at a rapid pace.

Chapter 2: Microservices as a business initiative

8

Chapter 2: Microservices as a business initiative

For microservices to work in an organization, there must be a business initiative
attached to it. Questions arise among IT professionals on whether microservices are
suited only for giant Web applications like Google and Facebook. However, scale is only
one of the business benefits of microservices.

In today’s computing environment, innovation and speed are critical. The movement
toward microservices is generated by the need to create new software that can
enhance and improve a monolithic system but is separate from it. This decoupling from
the legacy system provides the freedom to experiment with new approaches and rapidly
iterate changes and modifications.

Traditional systems cannot move at that speed, and that may leave companies
disadvantaged. At the Appsphere 15 conference, Boris Scholl from Microsoft shared
a situation they once had with a monolithic system. It had become so complex that
when they added new code, the system would stop working, and it took two days for
engineers to figure out why. It is too slow.

Companies are trying to decide where microservices fit in with their traditional systems.
Developers used to worry simply about coding, but now with the modular approach
to technology, they need to widen their view of all the technologies involved and how
they work together. They now share responsibility and accountability for the project as
a whole -- the micro view of their direct assignment, say coding the UX; and the macro
view of the final product, a home banking app for example.

Code must be monitored the minute it is deployed. The feedback loop is instantaneous.
DevOps may be monitoring 50 different microservices. The data is available right away,
but that means IT teams must also continuously monitor, tweak and adjust on-the-fly. It
is a challenge.

The business case for microservices
Allan Naim, Product Manager of Container Engine and Kubernetes at Google, told
the audience during the panel discussion at Appsphere 15 that it is not easy for IT
organizations to incorporate microservices, so they must have an associated business
initiative. Often business objectives originate with CEO and Board of Directors. From
there, the CMO or the CSO begin to implement them, and it forces the IT staff to start
working with microservices. Naim said he sees a time in the not too distant future
where every organization, no matter the industry or segment of the market, will
ultimately become a software company. That is because the customer data is becoming
as valuable as their product or service.

To leverage that asset, organizations must act quickly, changing their offerings based
on a constantly evolving landscape. Legacy apps have a hard time adjusting to the
new demands of the market such as mobility and the Internet of Things. Competition,
especially in the form of aggressive startups that look to disrupt industries, is forcing
organizations to integrate microservices architecture with their legacy systems, whether
the data is in a relational database or not.

From highly specialized to highly adaptable
It comes down to the need to provide the highest-quality software to large amounts
of customers as quickly as possible. Microservices are not only changing the way
companies write code; they are changing the companies themselves. For example, in a
monolithic system, the roles of each team member tended to be highly specialized.

In the world of microservices, that approach is highly devalued. Instead, it is better for
each team member to be free to operate on different parts of the application without
interruption. Rather than hand off development to the next stage, the application is
constantly being monitored and modified as it is being developed.

Homegrown analytics and monitoring tools
Another development resulting from these market pressures is that IT teams have
started building their own tools. Netflix created its own monitoring system. In fact, they
custom made some non-unified tools, a very different approach than that taken by
companies like Facebook and Google.

For example, they built their analytics software to process huge volumes of data. How
much volume are we talking about? Consider this eye-opening statistic: Networking
provider Sandvine reports that just over 30 percent of the traffic on the Web during
prime time are Netflix customers streaming movies.

The development of microservices is changing more than software code itself. It
is making an enormous impact on how organizations think through their business
processes, what products they bring to market and how they are going to support their
products with customers in the marketplace.

Because of the explosion of mobile devices and the always shifting wants and needs
of consumers, IT professionals have to adapt just as quickly. Microservices architecture
is the vehicle in which they are creating rapid change. It is changing not only the
technology but also how organizations evaluate business opportunities. On another
level, it is altering the organization of talent, encouraging a culture of innovation,
expanding the scope of individual responsibility and empowering smart people to take
chances.

Agility and speed are paramount
Large firms such as Condé Nast and Gilt have always been able to handle large volumes
of customer data. However, they see the future and are adapting their legacy systems
to utilize microservices architecture. They want to get rid of dependencies and be able
to test and deploy code changes quickly. Similar changes across enterprises are helping
them become more adaptable to customer needs. It is also pushing them to adopt
greater use of the cloud to operate with more agility and speed.

Microservices architecture has a similar mindset as other fast development
methodologies like agile software. Fast-moving Web properties like Netflix are constantly
looking for greater simplicity and the ability to make changes rapidly without going
through numerous committees. The code is small, and every software engineer makes
production changes on an ongoing basis.

9

Chapter 2: Microservices as a business initiative

Sea change in software development
That is why microservices architecture is a natural fit for Web languages such as Node.js
that work well in small components. You want to be able to move rapidly and integrate
changes to applications quickly. Because microservices are self-contained, it is easy to
make changes to a code base and replace or remove services. Instead of rewriting an
entire module and trying to propagate across a massive legacy code base, you simply
add on a microservice. Any other services that want to tap into the functionality of the
additional service can do so without delay.

This is a sea change in how traditional software development takes place. The speed at
which code changes in mobile apps and modern websites is way too fast for the legacy
software development system. Constantly evolving apps require a new way of thinking.

Changes in organizations
Back in the 1980s, the role of IT departments began to change with the debut of the
personal computer. Every year, PCs became more powerful, and technology staff not
only supported individual business functions, but they also had to maintain complete
processes. Technology and data were moving closer to the center of the business.

By the 1990s, the IT department had become a critical system in every major company.
If the computer systems were down for any length of time, it created bottlenecks for
every department of the company.

Data-driven design
With microservices, the data inherent to each microservice can only be tapped through
its API. The data in the microservice is private. This allows them to be loosely coupled
so they can operate and evolve on an independent basis. This creates two challenges:
maintaining consistency across several services and implementing queries that grab
information from multiple services. With data-driven design, you can experiment and
create transactions that cover multiple services consistently.

Unfortunately, many companies still maintain the old software engineering model.
However, today they are under pressure to shorten the time to bring new Web and
mobile applications to consumers. Speed has become the “coin of the realm.”

Changing culture in traditional IT departments
The rise of microservices is changing a culture in IT that is deeply ingrained. There has
always been a division between software development and operations. Now software
development is integrated much more tightly with DevOps. Over many years, IT
departments had established standards on which technologies they would run. Since
these technologies represented serious investments in time and capital, they budgeted
carefully for capacity, upgrades and security.

In the brave new world of microservices, department leaders must make significant
changes in their organization, so developers play a bigger role in monitoring the
software creation during its lifecycle, from development through to production.
Interestingly, a similar development happened decades ago when data centers were so
complex; Only a select few IT engineers could operate all of the disparate functions. In
many cases, the staff maintaining applications were the same people that built them.

Breaking down barriers
In effect, microservices is breaking down barriers between the development of
software and its operation. That means that any firm that is considering implementing
microservices on any substantial level needs to evaluate if they are ready to operate
with this new approach.

It does not mean that legacy systems are being disregarded for the new kid in town.
In many cases, the traditional system is doing an excellent job for the organization, so
changing it without a business case would be folly.

However, the larger trends of cloud computing, mobile device adoption, and low-cost
bandwidth are forever changing the way consumers buy and interact with software
applications. The pace of change is dizzying, and the need for speed in application
development is greater than ever before.

Chapter 3: Migrating to microservices

11

Chapter 3: Migrating to microservices

We are rushing headlong into an always-on, digital-centric, mobile world. Organizations
that fail to modify their approach to technology will be left by the wayside as others
incorporate highly flexible and scalable architectures that adapt quickly and efficiently to
the demands of the modern marketplace.

The rapid rise in popularity of microservices was driven by these market influences.
In just a few short years, companies have implemented various configurations of
technologies to offer the best user experience.

Microservices challenges
One of the primary challenges when considering migrating to microservices is that
monolithic legacy systems cannot be changed overnight. DevOps and IT managers
must decide where and when they can incorporate microservices into their existing
applications. This means a whole new way of thinking must be embraced. In the “Four-
Tier Engagement Platform” for Forrester Research, Ted Schadler, Michael Facemire, and
John McCarthy say it is time to move the technology industry to a four-tier architecture.

In an article for Infoworld, Patrick Nommensen summarized the Four-Tier Architecture.
As he explains, the dramatic changes in computing, including the incredible market
penetration of mobile devices, means developers must take an entirely new approach
to thinking about application development. The Four-Tier approach is broken down into
different layers:

– Client tier: The delivery of customer experience through mobile clients and the
Internet of Things.

– Delivery tier: Optimizes user experience by device while personalizing content by
monitoring user actions.

– Aggregation tier: Aggregates data from the services tier while performing data
protocol translation.

– Services tier: The portfolio of external services such as Twilio and Box, as well as
existing data, services, and record systems already in-house.

Perhaps the biggest difference with this new approach is the separation of the client
tier. With this model, the layers underneath are constantly changing based on real-time
interaction with users. This method is already being used by high-profile applications
such as Uber and Netflix.

Figure 1: Four-tier architecture

Tools you need
All well and good, but what tools do you need to achieve what these sites have done?
The first consideration is that you must decide on a microservices architecture. Figure
out how the services will interact before trying to optimize their implementation. Next,
while microservices architectures provide much speed, you have to continually optimize
those speed gains. This means that you have to be flexible in the tools that you use to
deploy the architecture.

Netflix grows their own
The beauty of microservices is they free developers from having to use internal
languages or frameworks like Java/Spring or Ruby on Rails. Components can be created
with Ruby, Java or JavaScript/Node. Programmers can stick with languages and
development tools they know, like and trust, which boosts productivity and satisfaction
on the job.

Some companies are building their own tools. It is hard to believe now, but Netflix used
to be run on a single war file. They had to use a wide variety of tools, many of which
they created when they designed their microservices set-up. It allowed them to be
flexible and fast. Here are several of the tools they made:

– Slalom: An internal utility that lets a service figure out what the dependencies are --
both upstream and downstream, the level of contribution to service demand, and the
health of the request.

– Mogul: This utility takes data from the company’s Atlas monitoring framework,
determines various correlations between metrics and chooses those that might be
responsible for fluctuations in demand on specific microservices.

– Vector: An on-instance framework which monitors performance by exposing specific
metrics to every developer’s browser. Netflix added their user interface to an existing
framework called Performance Copilot.

The reason the company developed many of these tools is that existing commercial
tools did not meet the demand they place on their systems. This is another
consideration you must examine when deploying microservices: Can existing commercial
tools meet your needs, and/or will you have to develop your own tools?

A practical approach to migration
So how do you handle a migration to microservices? Owen Garret shared with InfoWorld
a practical, three-step approach.

1. Componentize: Choose a component from your existing applications, and create a
microservices implementation on a pilot basis.

2. Collaborate: Share the techniques and lessons learned from the pilot in Stage One
with all stakeholders, programmers, and developers on the team. This gets them on
board with new processes and initiatives.

3. Connect: Complete the application and connect to users in a real-world scenario.

Client Delivery Aggregation Services

Four-Tier Architecture

The delivery of
customer experience
through mobile clients

and the Internet of
Things.

Optimizes user
experience by device
while personalizing

content by monitoring
user actions.

Aggregates data from
the services tier while

performing data
protocol translation.

The portfolio of
external services such
as Twilio and Box, as
well as existing data,
services, and record
systems already in-

house.

12

Figure 2: Three-step approach to migrating

Data coupling
Microservices architecture is loosely coupled with data often communicated through
APIs. It is not unusual for one microservice to have less than a couple of hundred lines
of code and manage a single task. Loose coupling relies on three things:

1. Limited scope and focused intelligence built-in.
2. Intelligence set apart from the messaging function.
3. Tolerance for a wide variety of modifications of microservices with similar functions

-- changes are not forced or coordinated.
The APIs translate a specification that creates a contract which indicates what service
is provided and how other programs are supposed to use it. Using APIs to decouple
services creates a tremendous amount of freedom and flexibility.

New service platforms
Platforms for microservices are evolving rapidly. New platforms are emerging while more
established platforms are modifying their approach. Examples include:

– Microsoft’s Azure BizTalk Microservices lets clients using Azure build microservices
applications in their choice of cloud. It is part of a greater effort to move Azure to a
model of small components.

– Gilliam is a Platform as a Service (PaaS) custom made for creating, deploying and
scaling microservices. It creates a Docker image of every code repository onsite.

– LSQ is a PaaS with pre-made templates, documentation editor, and NPM package
manager. It includes a development environment, assembly and testing area, and
cloud deployment.

– Pivotal is a native cloud platform that focuses on developing microservices for
companies like Ford, Allstate, Mercedes Benz, GE, Humana, and Comcast.

Open source
As Allen Naim, Product Manager of Kubernetes, told a panel-discussion audience at
AppSphere ‘15, many of the components for microservices are open source. That
makes it much simpler to get them to work together, and the ROI is much better than
service-oriented architecture (SOA). Chris Morgan, Product Management Director of
the OpenShift Partner Ecosystem at Red Hat, agreed. Red Hat was built on open-source
code from the beginning, and Morgan said he is excited that many microservices are
open source. Old rivals that would never share ideas or code are now collaborating on
projects every day. He said they are even friends with Microsoft now, something he
could not say only a few years ago.

Examples
What are some examples of companies using microservices right now? They include:

– Netflix: As mentioned, Netflix moved rapidly from a single war file to full
indoctrination of microservices.

– The Guardian: According to Martin Fowler in his seminal article, “Microservices - a
definition of this new architectural term,” the Guardian newspaper website is a prime
example of a firm enhancing their monolithic architecture with microservices. They
maintain the core monolith system but use microservices to add new components
using the monolith API. This approach is especially well-suited to new pages that are
temporary in nature, such as special events.

– Gilt Groupe: An online shopping site, Gilt uses a massive microservices architecture
with multiple disparate teams working on different services at the same time. One
significant change they made was to eliminate their architecture team in favor of
engineers making architectural decisions in the individual teams.

Microservices to help legacy apps
Consider a legacy system coded in C and running on multiple mainframes. It has been
running for years without any major hiccups and delivers the core competency of
the business reliably. Should you attempt to rewrite the code to accommodate new
features? A gradual approach is recommended because new microservices can be
tested quickly without interrupting the reliability of the current monolithic structure. You
can easily use microservices to create new features through the legacy API. Another
approach is to modularize the monolithic architecture so that it can still share code and
deployments, but move modules into microservices independently if needed.

Boris Scholl, Principal Program Manager for Azure Compute at Microsoft, told his panel
discussion audience at Appsphere 15 that Microsoft uses two approaches. Azure is a
completely open platform which runs almost everything, including rivals like Red Hat and
Kubernetes. In addition, the Azure service fabric adds a layer on top that provides rapid
management and orchestration, as well as reliable actors and collection.

Chapter 3: Migrating to Microservices

Component

CollaborateConnect

13

Chapter 3: Migrating to microservices

People and processes
The deployment of microservices involves more than incorporating new technology. You
must adopt new processes and team dynamics to make the transition effective over
time. Often managers break applications down by technology, assigning responsibility
to different teams. With microservices, applications are separated into services that
are grouped by business capability. All software such as user experience, external
connections, and storage are implemented within each business domain. Team members
handle full application development from user interfaces down to databases.

This change in structure affect the people within it. Developers used to monolithic
systems may have a difficult time switching from a world of one language to a
multi-language land of new technologies. Microservices frees them up to be more
autonomous and responsible for the “big picture.”

However, operating in this new found freedom can be overwhelming for programmers
with years of experience in the old ways of doing things. Your must be constantly aware
of your team’s ability to change. They may need time to adjust to new guidelines and
procedures. Clear communication is the key. Detail their responsibilities in this new
style of working and why they are important. Unless you have buy-in from your team
members at the start, making adjustments later may be difficult at best and dead on
arrival at worst.

New era of computing
We are in a new era of computing based on ultra-fast data processing. Events are
monitored, analyzed and processed as they happen. We can make timely decisions
based on this continually updated flow of data, resulting in better service for clients,
improved operations and instant monitoring of business performance against
predetermined targets.

Microservices are not a panacea. There are potential drawbacks such as code
duplication, mismatch of interfaces, operations overhead and the challenge of
continuous testing of multiple systems. However, the benefits of creating loosely
coupled components by independent teams using a variety of languages and tools
far outweigh the disadvantages. In our current computing environment, speed and
flexibility are the keys to success -- microservices deliver both.

Chapter 4: Challenges in visibility and monitoring

15

Transitioning to microservices creates significant challenges for organizations. This
article examines some of the obstacles you will face, how other companies handled
them and the ultimate benefits of your efforts.

Microservices architecture
Microservices architecture is much more complex than legacy systems. In turn, the
environment becomes more complicated because teams have to manage and support
many moving parts. Some of the things you must be concerned about include:

– As you add more microservices, you have to be sure they can scale together. More
granularity means more moving parts which increases complexity.

– When more services are interacting, you increase possible failure points. Smart
developers stay one step ahead and plan for failure.

– Transitioning functions of a monolithic app to microservices creates many small
components that constantly communicate. Tracing performance problems across
tiers for a single business transaction can be difficult. This can be handled by
correlating calls with a variety of methods including custom headers, tokens or IDs.

– Traditional logging is ineffective because microservices are stateless, distributed and
independent -- you would produce too many logs to easily locate a problem. Logging
must be able to correlate events across several platforms.

There are other considerations including:

1. Operations and Infrastructure: The development group has to work closer with
operations more than ever before. Otherwise, things will spin out of control due to
the multitude of operations going on at once.

2. Support: It is significantly harder to support and maintain a microservices setup
than a monolithic app. Each one may be made from a wide variety of frameworks
and languages. The infinite complexities of support influence decisions on adding
services. If a team member wants to create a new service in an esoteric language,
it impacts the whole team because they have to make sure it can work with the
existing setup.

3. Monitoring: When you add additional new services, your ability to maintain and
configure monitoring for them becomes a challenge. You will have to lean on
automation to make sure monitoring can keep up with the changes in the scale of
services.

4. Security of Application: The proliferation of services in this architecture creates
more soft targets for hackers, crackers and criminals. With a variety of operating
systems, frameworks and languages to keep track of, the security group has their
hands full making sure the system is not vulnerable.

5. Requests: One way to send data between services is using request headers. Request
headers can contain details like authentication that ultimately reduce the number
of requests you need to make. However, when this is happening across a myriad of
services, it can increase the need for coordination with members of other teams.

6. Caching: Caching helps reduce the number of requests you’ll need to make.
Caching requests that involve a multitude of services can grow complicated quickly,
necessitating communication from different services and their development teams.

7. Fault Tolerance: The watchword with microservices is “interdependence.” Services
have to be able to withstand outright failures and inexplicable timeouts. Failures
can multiply quickly, creating a cascading effect through some services, potentially
spiking services needlessly. Fault tolerance in this environment is much more
complicated than a monolithic system.

De Facto stewards of the monolith
When Phil Calçado was at SoundCloud, one of the challenges he ran into with migrating
to microservices was that the code base of the monolithic system had grown so large
and complex that nobody understood all of it. Different team members knew sections
and became de facto stewards of their area of expertise. Others had to wait around
until the resident experts were available to make changes. It was time-consuming and
cumbersome.

They also had so many team members working on microservices that they did not
have enough staff available to review changes. This shows why, when it comes to
microservices, managing staffing issues is as complex and challenging - perhaps more
so - than code and technology obstacles.

Componentize, collaborate and connect
Owen Garrett wrote an essay for Infoworld in June of 2015 where he stated there are
three different stages of microservices deployment: componentize, collaborate and
connect.

1. Componentize: Typically in this stage, engineers figure out what new technology
pilot project they want to work on. The same approach works when implementing
microservices. Working with a system of pilots allows you to figure out new ways of
working and new technologies. You must set goals that fit your current needs while
realizing you will run into problems. The benefit is that you will be able to use that
negative feedback when you create new projects.

 Choose a section of an existing monolithic app you believe can be moved to a
microservice without much difficulty. Create an API to tap into this service, and then
build a microservice. Using the tools that are familiar to your engineers, you want
to create a microservice that you can develop, test and deploy. You will begin to
develop a system of continuous delivery you can tweak and modify.

2. Collaboration: Solving technical challenges is one factor. For example, traditional
logging makes it hard to pinpoint performance issues. However, getting team
members to collaborate is the larger goal of the transition process. The knowledge
you gain when you develop the pilot project should be shared across the entire
development staff. This gets them on board with the process and makes it much
easier to gain their support when you expand your microservices development.

 Each team must have a complete skillset to create a service. This includes the data,
presentation, and logic -- from beginning to end. Collaboration comes down to
sharing technology standards and APIs.

3. Connection: Building the individual components of a microservice is only the
beginning. They must be connected, and a wholly completed program must be
presented to end users. In this way, microservices are more flexible and adaptable
than previous approaches such as service-oriented architecture (SOA).

Chapter 4: Challenges in visibility and monitoring

16

Chapter 4: Challenges in visibility and monitoring

Devs in the spotlight
In old-school, traditional development, there was little integration of the separate
functions within the operation of the IT department. DevOps is the evolution of
collaboration where the operations, development and quality assurance teams
collaborate and communicate throughout the software development process.

DevOps is not a separate role held by a single person or group of individuals. Rather, it
conceptualizes the structure needed to help operations and development work closely
together. With a microservices architecture, developers are responsible for creating a
system to deliver the final product successfully.

Devs must evolve
Along with the continuing migration of large and small organizations to microservices,
devs must also evolve. Because it is so easy to deploy microservices, developers
are getting involved in code deployments and production monitoring. This contrasts
with the traditional scenario where developers would write code and “throw it over
the fence” for another team (DevOps) to deploy and maintain. Today, developers
and DevOps are merging into smaller application teams responsible for three main
components: building, deployment and monitoring.

Microservices are changing how teams are structured, allowing organizations to create
teams centered on specific services and giving them autonomy and responsibility
in a constrained area. This approach lets the company rapidly adjust in response to
fluctuating business demand, without interrupting core activities. It also makes it easier
to onboard new staff quickly.

Devs may have to handle some additional challenges including:

– A shortage of developers with JavaScript experience that know how to put together
microservices architectures.

– Understanding and implementing services for the Internet of Things.
– The ability to help companies introduce technology into business planning and

strategy.
– Teaching business leaders how open APIs can augment their current business lines

and open new opportunities in the marketplace.
– How to simplify the development stack, choose the right technology and push back

when vendors offer unproductive middleware.
– Learn from industry leaders like Netflix, and decide which implementations of

microservices will best serve their organizations.
– Understand that many vendors have still not created a stable microservices platform.
– Be able to handle the pressure of managing and operating possibly hundreds of

individual microservices at the same time.
– Manage an increasingly complex network of teams including operations, architects,

coders, quality assurance and integrators that still may not completely understand
the microservices approach.

Beginning the transition
Once you launch the transition process, you’ll notice that new challenges emerge that
you did not expect, including:

– How much of the workload should be moved to microservices?
– Should you allow code to be migrated to different services?
– How do you decide what the boundaries of each microservice will be while the

operation is running?
– How do you monitor the performance of microservices?

appdynamics.com
© 2016 Copyright AppDynamics

