
Ensuring Visibility
into Microservices
and Containers
How to capture the benefits of continuous application
development without unnecessary risks.

Introduction

As more enterprises embrace DevOps practices and move their workloads to the cloud,
application architects are increasingly looking to design choices that maximize the speed of
development and deployment. Two of the fastest growing are containers and microservices.

Named by Gartner1 in the top 10 technology trends impacting IT infrastructure and
operations, containers and microservices are playing a crucial role in cloud adoption and
application-driven innovation. Benefits include ease of implementation and operation;
acceleration of time-to-market; and streamlined, lower-resource processes.

This white paper describes how containers and microservices work, the benefits and
challenges of using them, and how a unified view of the enterprise stack and effective
application performance monitoring (APM) can help to fortify their benefits and address
their challenges.

DevOps: Collaborative Application Development
In the old-school development model, there was little integration of the separate functions within IT
operations. DevOps is an evolved model that facilitates collaboration among operations, development, and
quality assurance teams. They collaborate and communicate throughout the software development process.

DevOps is not a separate role held by a single person or group of individuals. Rather, it conceptualizes
the structure needed to help operations and development work closely together so that application
development and deployment is faster and high quality.

Ensuring Visibility Into Microservices and Containers | 2

Containers:
What Are They?

A container is a lightweight, standalone, executable software package that includes
everything needed to run it: code, runtime, system tools, system libraries, and settings.
Available for both Linux and Windows, containerized software will always run the same,
regardless of the environment. Architecturally, containers are similar to virtual servers;
however, unlike VMware or MS Hyper-V, they don’t need the overhead of a hypervisor
management layer to function.

Containers: What Are They? (continued)

This lack of external dependencies makes containers very easy to deploy when compared to
traditional application deployment models and a very good fit for DevOps and Continuous
Delivery (CD), which promote rapid development and frequent release cycles.

Containers also isolate software from its surroundings — for example, differences between
test and production environments — and help reduce conflicts running different software on
the same infrastructure.

Containers are currently dominating the application development scene, especially in (but
not limited to) cloud computing environments.2 Popular container platforms include Docker
and Kubernetes.

Benefits of a container-based architecture include:

• Faster development

• Flexible deployment

• Improved isolation

• Microservices architecture

• Cost savings

Virtualization

Virtual Machines

Containers

Server Hardware

Server Hardware

Hypervisor
Host Operating

System

App 1

App 1

App 2

App 2

Binary
Libraries

Binary
Libraries

Binary
Libraries

Binary
Libraries

Guest
OS

Guest
OS

Host
Operating

SystemContainers

Ensuring Visibility Into Microservices and Containers | 3

Microservices:
What Are They?

Microservices are a type of software architecture where application functionality is
implemented through the use of small, self-contained units working together through APIs.
Each service has a limited scope, concentrates on a particular task, and is highly independent.
Some key characteristics of a microservice architecture3 as defined by Martin Fowler are:

• Componentization: Microservices are independent units that are easily replaced or
upgraded. The units communicate with each other through remote procedure calls or
web services.

• Business capabilities: Legacy application development often splits teams into areas
like the “server-side team” and the “database team”. Microservices development is built
around business capability, with responsibility for a complete stack of technical functions,
plus UX and project management.

• Products rather than projects: Instead of focusing on a software project that is
delivered following completion, microservices treat applications as products of which
they take ownership. They establish an ongoing dialogue with a goal of continually
matching the app to the business function.

• Dumb pipes, smart endpoints: Microservice applications require that all logic be
maintained within the application and allow the transports for communicating between
services to be lightweight.

• Decentralized governance: Teams are encouraged to choose the right tool for their
own particular use case. However, some libraries may be shared among teams to avoid
duplicative work.

Ensuring Visibility Into Microservices and Containers | 4

Web
Application

Catalog
Application

Client Application

Web Service API

REST

Analytics
Application

REST

REST

REST

REST

Individual Development Teams

Business CapabilitiesIndividual Software Components

D
ec

en
tr

al
iz

ed
 G

ov
er

na
nc

e
Decoupled Releases

Dev Team Dev Team

Dev TeamDev Team

Dev Team

Ensuring Visibility Into Microservices and Containers | 5

Microservices: What Are They? (continued)

Microservices are changing how teams are structured, allowing organizations to create
teams centered on specific services, and giving them autonomy and responsibility in a
constrained area. This approach lets the company respond to fluctuating business demands
without interrupting core activities. These are great benefits, but there are also risks that
come with microservices proliferation.

Microservices architecture is much more complex than legacy systems. In turn, the environment
becomes more complicated because teams must manage and support many moving parts.

Some of the things enterprises must be concerned about include:

• As you add more microservices, you must ensure they can scale together. More
granularity means more moving parts, which increases complexity.

• When more services are interacting, the number of possible failure points increases.
Smart developers stay one step ahead and plan for failure, ensuring their service
remains operational in a diminished capacity if another service is down.

• Transitioning functions of a monolithic app to microservices creates many small
components that constantly communicate. Tracing performance problems across tiers
for a single business transaction can be difficult. This can be handled by correlating calls
with a variety of methods including custom headers, tokens, or IDs.

• Traditional logging is ineffective. You would produce too many logs to easily locate a
problem. Logging must be able to correlate events across several platforms.

Just as with containers, the expanded use of microservices brings challenges, but they are
challenges that can be effectively managed with the right APM solution.

Tech Summary
• Containers are isolated workload environments in a virtualized operating system. They speed up

workload processes and application delivery because they can be spun up quickly, easily scaled,
and provide a solution for application-portability challenges.

• Microservices are a type of software architecture that is lightweight and built on small, single-function,
self-contained code units working together through APIs. This makes a microservices-based architecture
easier to develop, test, and deploy than traditional application development architectures.

• Containers and microservices are often used together — for example, microservices are often
delivered in one or more containers — but they exist independently and have different purposes.

How AppDynamics Helps

Enterprises that fail to adequately monitor these new application architecture techniques
are risking a lot, from letting bad code releases slip through to making bad decisions based
on inaccurately tracked resource utilization. In terms of day-to-day application development,
there’s increased opportunity to be faster with solution releases and more informed about
application performance.

With a comprehensive understanding of how their applications are performing,
enterprises can:

• Find and fix problems faster and more easily

• Make better-informed business decisions about resource allocation

• Have total visibility into all assets and users

• Use the knowledge gained from APM to contribute to enterprise-level strategy planning

However, application performance monitoring is not just about managing technology and
providing analytics to IT teams and developers. Read more about the AppDynamics APM
solution below:

Comprehensive APM Solution: AppDynamics provides the ability to monitor the minute
details of every component of the enterprise IT stack. This visibility is essential for reducing
redundancies and wasted effort, finding the root cause of problems and swiftly adjusting, as
well as extracting product/platform data for meaningful strategic analysis.

Without a clear and detailed understanding of how each component of a software stack
works alone and in relation to other components, enterprise users cannot adjust their teams,
resources, and roadmaps when they need to be modified. AppDynamics’ diverse set of
reporting options makes data discovery and visibility easy for enterprise users.

Ensuring Visibility Into Microservices and Containers | 6

Ensuring Visibility Into Microservices and Containers | 7

How AppDynamics Helps (continued)

On-Demand Scalability: Understanding what is happening within your organization’s cloud
environment and Business Transactions helps you make real-time capacity decisions based
upon your company’s needs. With the AppDynamics platform, your enterprise can scale up
or down as needed based on an up-to-the-minute understanding of current performance.
Regardless of how the cloud/container/microservices landscape changes over the coming
years, the ability to monitor, understand, and act based on your application performance
data will be critical.

Native Container Monitoring Support: Most traditional monitoring solutions offer little
insight into KPI metrics related to container environments. This lack of visibility has obvious
implications for maintaining system performance and the time it takes to identify and
resolve application problems surfaced during the SDLC. Enterprises must address this
challenge by deploying the latest generation of application monitoring. Increasingly the
solution of choice is a platform such as AppDynamics, which provides specific support for
monitoring container internals.

By understanding all aspects of their application development infrastructure, enterprises
are better prepared to seize opportunities that will fuel their growth while protecting their
investments, intellectual property, and user relationships. Containers and microservices are
part of a transition to more agile, responsive, and targeted development teams. Grab their
benefits by encouraging their use, and do so confidently with the help of AppDynamics.

Check out our free eBook
How to Build (and Scale) with Microservices

How to build (and scale) with
microservices

1 Gartner. “The Top 10 Technology Trends Impacting Infrastructure Operations,” December 7, 2016

2 DZone/Cloud Zone. “Containers in the World of QA,” October 6, 2017

3 MartinFowler.com “Microservices - a Definition of This New Architectural Term,” March 25, 2014

https://www.appdynamics.com/lp/ebook-how-to-build-scale-with-microservices/
https://www.appdynamics.com/lp/ebook-how-to-build-scale-with-microservices/
http://www.gartner.com/smarterwithgartner/top-10-technology-trends-impacting-infrastructure-operations
https://dzone.com/articles/containers-in-the-world-of-qa
https://martinfowler.com/articles/microservices.html

