
In-Memory Databases
The Catalyst Behind
Real-Time Trading Systems

Infrastructure software to support real-time applications, such as securities
trading, is now commercially available. The In-Memory Database (IMDB)
is a key part of this infrastructure. Unlike the custom-built variants they
replace, commercial products based on IMDB technology go beyond just
high performance, adding message-processing interfaces, industry-standard
APIs, transactions, fault-tolerant failover and recovery, event publishing,
and connections to back-office RDBMSs.

Today's downsized development teams have enough on their hands simply
dealing with application-level changes. They no longer need to code "below
the application", nor is that a prudent strategy compared with today's proven
commercial options.

In-Memory Databases
The Catalyst Behind Real-Time
Trading Systems

Infrastructure software to support real-time applications, such as securities
trading, is now commercially available. The In-Memory Database (IMDB) is
a key part of this infrastructure. Unlike the custom-built variants they
replace, commercial products based on IMDB technology go beyond just high
performance, adding message-processing interfaces, industry-standard APIs,
transactions, fault-tolerant failover and recovery, event publishing, and
connections to back-office RDBMSs.

Today’s downsized development teams have enough on their hands simply
dealing with application-level changes. They no longer need to code “below
the application”, nor is that a prudent strategy compared with today’s proven
commercial options.

Introduction: The Insatiable Need for Speed
For securities trading systems, the prolonged bear market has done nothing to
lower the volume of trades processed. Of course, monetary trading volume is
way down, as are the average spreads in the U.S. markets post-decimalization.
But the systems are working as hard as they ever have to route, match, and track
trade orders. Indeed, Nasdaq’s reported statistics indicate that we’re still
operating at about the same share trading volume as the heady days of late 2000
(see Figure 1).

Nasdaq Share Volume

0

500,000,000

1,000,000,000

1,500,000,000

2,000,000,000

2,500,000,000

Ju
l-0

0

O
ct

-0
0

Ja
n-

01

A
pr

-0
1

Ju
l-0

1

O
ct

-0
1

Ja
n-

02

A
pr

-0
2

Ju
l-0

2

O
ct

-0
2

Ja
n-

03

A
pr

-0
3

D
ai

ly
 A

ve
ra

ge

Figure 1
Trading Systems are Working as Hard as Ever
Despite the down market, the volume of trades
completed today is almost as high as it has ever been,
as shown by this chart of Nasdaq’s daily trading
volume from mid-2000 through mid-May 2003.
Monetary trading volume has decline by 50 – 70%,
making profitability the key goal for each trade. How
quickly a trade is executed and at what price have
become all-important to investors. Consequently, so
are the speed and quality of the trading systems
handling their business.

What’s behind this are some significant changes in trading strategies and habits,
including the explosive popularity of hedge funds and a dramatic increase in
program trading. Many investors have resorted to short term buy then sell
tactics, reflecting the uncertainty of the markets. How quickly a trade is
executed and at what price have become all-important. Consequently, so are the
speed and quality of the trading systems handling their business.

So what happens when markets return to some semblance of “normalcy”? Many
scenarios would suggest that trading volumes are going to increase. Today, and
more so tomorrow, global investment banks and securities exchanges must be
prepared for highly volatile markets, where trading volumes could surge to over
1,000 trades per second. Because of these extreme volumes, combined with the
competitive urgency to provide immediate response, and the constant drive for
differentiation, many of the largest trading firms are committed to developing
their trading applications in-house.
How quickly a trade is executed and

at what price have become all-

important. Consequently, so are the

speed and quality of the trading

systems.

The Build-It-All Dilemma
Until recently, commercial infrastructure software to support such demanding
applications did not exist, forcing project teams to develop software “below the
application” in order to achieve high performance without sacrificing reliability.
These efforts almost always included the staging of time-critical data in
memory, to avoid the delays inherent in even the fastest RDBMS.

In-memory data drives functions such as pricing, order routing, order
matching, position-keeping, trader alerts, program trading, and risk
analysis. A firm’s competitiveness depends on its ability to keep pace with the
market through these key functions. Without optimum performance, trading
strategies are marginalized and price improvement is challenging.

It’s easy to understand why trading firms felt obliged to develop in-memory data
management technology. There were no commercial options and, until a few
years ago, profitable trading operations easily funded such development and
maintenance. Even so, this was challenging work, far different from
applications development. Not only did the infrastructure need to perform, it
had to be rock-solid reliable and never lose a trade. As such, these
implementations were modest in functionality and “hard-wired” into the
applications to minimize complexity. They worked, but weren’t easily or
quickly changed, and came at a high cost.

The “Do More With Less” Era
The securities industry has been rocked with change since the start of this
century. Recession and decimalization have conspired to undermine the spread-
based business model. Among other changes, new regulations, new trading
strategies, and new trade execution venues have forced continual enhancements
to trading systems. Down-sized development teams are being asked to rebuild
both applications and infrastructure on tight schedules. For most firms, this
equation doesn’t balance.

“Economics are pushing banks away from

proprietary development, to using more

vendor-based products and finally to

consolidating their vendor relationships

around unique and strategic vendors.”

—Larry Tabb, CEO, The Tabb Group

Window on the future of fintech, (May, 2003)

The stakes are high, for the economics of securities trading dictates
consolidation – both for economies of scale and natural migration – toward
those firms that provide the lowest trading cost, the richest choice of services,
and the greatest likelihood of price improvement.

Financial firms can no longer afford to build infrastructure software, nor can
their systems be competitive with the basic features that accompany home-
grown technologies. Today’s trading operation demands more – flexibility,
rock-solid reliability, replicated sites that are synchronized for disaster
recovery, pre-trade analytics, event-driven alerts, real-time position
keeping. These are fundamental issues of competitiveness.

Commercial In-Memory Database (IMDB) products, with the additional
functionality that surrounds them, can substantially reduce the risk and time to
completion for these projects. Developers can focus on retooling their
application logic, and take advantage of infrastructure software that’s purpose-
built for real-time, highly-reliable systems. The support of common industry-

standard interfaces by IMDB products enables easier integration and future
flexibility. Down-sized development teams now have a good chance of a
successful outcome.

Infrastructure Software for Real-Time Applications
The dilemma just described isn’t confined to capital markets applications. Other
industries, such as telecommunications, travel and logistics, and factory
automation, have also had performance-demanding applications that required
the development of supporting infrastructure software.

The fundamental problem is that infrastructure software has historically been
commercialized for the “enterprise” mass market. The goal of enterprise
software is to be “good enough” for as many companies and applications as
possible. Demanding applications, such as securities trading, aren’t the focus of
these products. Over time, this gap inevitably expands, as vendors overload
their products with checklist features designed for even broader applicability.
This is the case with the RDBMS and Application Server product categories
today. These products are rarely used in the front-office trading infrastructures
of the largest brokerages and exchanges (see Figure 2).

Ev
en

t “
Ve

lo
cit

y”
 (E

ve
nt

s /
 se

c)

Processing Complexity per EventVery Low Very High

10’s

100’s

1,000’s

10,000’s

100,000’s

Real-Time
Applications

Network
Mediation

Equity
Trading Fixed

Income
Trading

Derivatives
Trading

Ticker Plant

Pre-Paid
Billing

Fraud Mgmt Airline
Operations

Enterprise
Applications

Ev
en

t “
Ve

lo
cit

y”
 (E

ve
nt

s /
 se

c)

Processing Complexity per EventVery Low Very High

10’s

100’s

1,000’s

10,000’s

100,000’s

10’s

100’s

1,000’s

10,000’s

100,000’s

Real-Time
Applications

Network
Mediation

Equity
Trading Fixed

Income
Trading

Derivatives
Trading

Ticker Plant

Pre-Paid
Billing

Fraud Mgmt Airline
Operations

Enterprise
Applications

Figure 2
Demanding Applications Require a Different
Supporting Infrastructure
Applications that must process a thousand or more
simple business events per second (or several hundred
complex events) require a supporting infrastructure
that goes beyond the level of conventional enterprise
infrastructure software. In capital markets
applications, ticker plants represent the highest volume
of simple events, whereas fixed-income trading
represents the most complex processing. Equities and
derivatives trading systems fall in between those
extremes.

Keep it Focused
The ideal commercial infrastructure software for supporting trading systems
would contain key portions of an RDBMS (for data management) and an
Application Server (for integration and fault tolerance) – focused on maximizing
performance and availability, and enabling the developer to concentrate on
writing business logic only. In addition, this infrastructure should be suitable for
the popular and emerging hardware platforms, from multi-processor systems
running Unix, Linux, or Windows, to new building-block blade server
configurations.

The In-Memory Database was developed as a core technology in response to the
need for real-time infrastructure software. Many of the functions desired in a
real-time infrastructure software solution involve data management
functionality, or are a natural extension of it. The balance of this paper is a
survey of the attributes and applications of the In-Memory Database, and the
evolution of additional functionality that, over time, should result in a generally
complete solution for real-time infrastructure software.

The In-Memory Database (IMDB)
The profound improvements in computer architectures over the last decade gave
rise to In-Memory Database technology. CPU performance (as measured by
circuit density) has been doubling, on average, every year and a half. Memory
chips have doubled in capacity at half the cost in the same intervals. Today, a
gigabyte of physical memory for a server costs around $400. Relatively small
servers come with 32 gigabytes of standard memory, with the capacity to exceed
100 gigabytes. Ten years ago it would have been difficult, perhaps impossible,
to find a computer with such memory capacity, and the price would have been
out of reach for all but a few (see Figure 3).

 Memory Pricing Over Time

$5,000,000

$40,000

$3,000

$400
$100

$1,000

$10,000

$100,000

$1,000,000

$10,000,000

1977 1986 1998 2003

Pr
ice

 p
er

 G
ig

ab
yt

e

Figure 3
Memory Prices are no Longer an Issue
Memory pricing and density have followed the
microprocessor technology curve over time. The
graph at right shows actual prices for 1 gigabyte of
RAM for a server computer on the year specified.
Today’s price for a gigabyte of RAM for an Itanium2
server (and almost any server) is $400. Once
prohibitive, the cost of RAM is no longer a factor in
the consideration of production-scale In-Memory
Databases for front-office applications. Back-office
systems and data warehouses are still largely the
domain of disk-based databases, which may store
hundreds of gigabytes of historical data that’s rarely
accessed.

Magnetic disk performance has increased much more slowly. Thus, the
performance gap between CPUs and disks has widened substantially. That’s not
news to most computer users. It’s well known that data management software,
such as an RDBMS, will attempt to hold as much of the data in memory as it
can, in order to avoid the performance penalty of disk access.

What most people don’t realize is that the conventional RDBMS products have
been successful in their quest to remove the disk bottleneck. Over the years,
RDBMS products have become very sophisticated at predicting what data
should stay in memory the longest, and when new data should be pulled from
disk into memory. These algorithms are generally correct 75% or more of the
time, so there’s rarely a performance penalty due to applications waiting on disk
drives. And if the database is small enough to fit entirely in memory, an
RDBMS will let you do that too.

So if disk I/O isn’t the performance issue, why shouldn’t an RDBMS be suitable
for real-time applications? As software professionals know, there’s always a
performance bottleneck somewhere. In adding logic to outsmart the disk
problem, the RDBMS vendors have made CPU bandwidth their bottleneck.
Ever wonder why an RDBMS needs its own server platform, instead of sharing
In adding logic to outsmart the disk

problem, the RDBMS vendors have

made CPU bandwidth their

bottleneck.

one with applications and other software products? Even when the entire
database is in memory, an RDBMS will still crank through the same CPU-
consuming algorithms as always, because it’s central to their design.

This dilemma was not lost on the software researchers. In the 1990s, they
invented new designs for database systems, focused on using the smallest
amount of CPU necessary. Knowing that hardware systems would have liberal
memory, they designed these architectures with memory-resident data, which
removed the need for CPU-consuming logic designed to get around the disk
bottleneck. By relying on the data always being in memory, these researchers
were able to redesign data and index structures in ways that further reduced the

processing required. Disks were still used in these designs, simply to provide
persistence and recovery of the data in case of system failures, much like tape
drives previously backed up disk drives.

The end result of In-Memory Database technology is a significant reduction in
the amount of CPU needed to complete standard database operations – as
compared to a fully-cached RDBMS. The actual difference depends on exactly
what work is being done. Read operations (e.g. reference data lookups) exhibit
the greatest speedup. Write operations, which probably entail some logging of
changes to disk to guarantee recoverability, could be slowed down somewhat by
the disk operation. In practice, applications are almost never only reads or only
The end result of In-Memory

Database technology is a significant

reduction in the amount of CPU

needed to complete standard

database operations.

writes, but rather a mixture. Processing a trade order involves a mixture of
reads, updates, and inserts, for example. It is not unusual for an IMDB to
perform 10 times faster (or said differently, to use 1/10 the CPU) as compared to
the same application using a cached RDBMS.

To be clear, an IMDB, though able to access large amounts of in-memory data
compared to a few years ago, is still nowhere the equal of an RDBMS in terms
of database capacity. In many cases where an IMDB is appropriate, a back-
office RDBMS will exist as well, either providing reference data for the IMDB,
and/or receiving completed transactions from the IMDB (see Figure 4).

Pe
rfo

rm
an

ce

Data Store Size

IMDB

RDBMS

Reference
Data

Completed
Transactions

Business Events
(e.g. trade orders)

Pe
rfo

rm
an

ce

Data Store Size

IMDB

RDBMS

Reference
Data

Completed
Transactions

Business Events
(e.g. trade orders) Figure 4

The Relationship Between an IMDB and
RDBMS in a Trading Application
An IMDB is often deployed in conjunction with an
RDBMS. The IMDB is used to capture and process
transactions in real-time, perhaps using reference
data pre-loaded from the RDBMS for validation
checking. Completed transactions are eventually
moved from the IMDB to the RDBMS for long-term
storage.

It wasn’t until the late 1990’s that commercial products based on In-Memory
Database technology became available, and not until more recently that they
reached the level of customer usage and functional completeness that would
warrant widespread consideration. Inevitably, as computing technologies
evolve, so should software architectures. It’s surprising that large industries
such as capital markets and telecom were unable to procure commercial
solutions until now, and that it’s taken a recession and structural upheaval to
force companies to evaluate their make vs. buy options. Technology self-
sufficiency created a self-fulfilling proposition, it would seem.

The comparison of an IMDB with an RDBMS is instructive, but in the case of
large trading systems, not the relevant comparison. As previously mentioned,
custom caches and in-memory data structures are used in such systems already.
Assuming they are well implemented, they should perform adequately, albeit in
a limited context (primarily read operations, or minor updating).

Compared to custom in-memory solutions, application development is where a
commercial IMDB product has a clear advantage. IMDB products provide
standard programming interfaces, just like an RDBMS, which insulate the
application code from the workings of the IMDB. As a result, there is an
abundance of development talent that would be productive quickly with an

IMDB. Custom in-memory solutions rarely include a programming layer that
insulates one application from the other, or even insulates the application code
from the in-memory logic. Applications and data structures tend to be hard-
wired together, making them hard to disentangle later on if features need to be
added. Applications that use an IMDB product can be easily modified and new
ones added, without affecting other applications. This degree of flexibility is
invaluable in today’s changing securities climate.

Data integrity and functional richness are the other major advantages of an
IMDB product. It’s one thing to develop a read-only in-memory cache, but
quite another to develop a read/write transactional version, with multi-user
locking, logging, recovery, and change replication for high-availability. Indeed,
the cost of an IMDB product may be less than the cost of a few trades lost to a
fragile custom implementation.

The Larger Picture
A complete infrastructure for real-time trading systems goes beyond data
management. Ideally, developers should only have to write the business logic of
their trading applications, and the infrastructure would take care of everything
else.

For most applications, that means integration with messaging middleware,
transaction scheduling and execution, transparent connections to a back-office
RDBMS, outbound data publishing (for trader alerts, program trading, or real-
time data snapshots), and automatic failover and recovery with guarantees of no
lost data or messages. A tall order, but certainly achievable when starting with a
foundation of well-conceived IMDB technology. In the near future, there
should be little reason for financial firms to code “below the application” in
order to support their business applications.

Assessing the Value
An investment in a commercial IMDB product can generate a tremendous ROI,
if it’s used proactively to help shape a firm’s business model. Creating and
launching new products and services, aggressively seeking out price
improvement, automating alerts and varying program trading strategies – such
elements of an aggressive trading strategy are easily supported by an IMDB
product.

An investment in a commercial

IMDB can generate a tremendous

ROI, if it’s used proactively to help

shape a firm’s business model.

Calculate the value of a few percentage increases in market share because your
organization has introduced unique and powerful new services ahead of the
market. The value can be surprising, even with a small trading operation Add
to that the extra assurance of using commercially-hardened software, with a
dedicated support organization and a regular stream of enhancements. Then
consider the application improvements you can make using the engineers who
would otherwise be developing or supporting custom-built infrastructure
software.

This is not a question of make versus buy cost comparisons. It’s really a market
share and market positioning question. Do you want to take market share or
relinquish it? In today’s trading environment, that’s the fundamental strategic
question.

Copyright © 2005 TimesTen, Inc. All rights reserved. TimesTen, MicroLogging and Direct

Data Access are trademarks or registered trademarks of TimesTen Inc. All other

trademarks and registered trademarks are the property of their respective owners.

Copyright © 2005 TimesTen, Inc. All rights reserved. TimesTen, MicroLogging and Direct Data Access are trade-
marks or registered trademarks of TimesTen Inc. All other trademarks and registered trademarks are the property
of their respective owners.

TimesTen, Inc. www.timesten.com

Corporate Headquarters:
800 West El Camino Real ° Mountain View, CA 94040 ° USA
800.970.1248 ° 650.526.5100 ° fax 650.526.5199

EMEA Headquarters:
500 Chiswick High Road ° London, W4 5RG ° UK
+44 (0) 20 8956 2532 ° fax +44 (0) 20 8956 2536

