
© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Coherence Training

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

2

Emergency Procedures

Administration

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

3

Breaks, Lunches, Internet etc...

Administration

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

4

Me

Introductions

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

5

You?

Introductions

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Content Sneak Peak...

6

• Caching: Back to Basics

• Coherence Topologies

• Coherence Deep Dive

• Beyond Caching - Data Grids

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Next Module...

7

• Caching (back to basics)

• To use Coherence we need...

! To understand caching

! To understand the challenges involved

! A common caching vocabulary

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Module 1: Caching (back to basics)

Caching & Terminology

Why Caching is Challenging

Local, Farm & Clustered Caching

What is Coherence?

Your First Coherence Experience

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Introduction

• Caching is a Ubiquitous Technology

! Desktop Applications

! Enterprise Systems

! Server Software

! Databases

! Operating Systems

! CPUs

! Memory

! Disks

! Networks

9

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Caching

• Goal:
Improve system performance when accessing high-latency Data
Sources

• How?
Maintain access efficient copies of data from a high-latency Data
Source in a Cache

• Why?
Accessing a low-latency copy instead of accessing a high-latency
Data Source dramatically improves system performance.

• Where?

10

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cache

11

Latencies not to scale!

A

B

C

D

CacheSystem

A

B

C

D

Database

latency

latency

Cache
Entry

A

'A' read
many times

Cache
Data

read

read

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Caching

• Cache: Contains copies of (some) data

• Caching: Act of maintaining copies

• Copies: Typically maintained in memory / on local disk

• Access: Typically Read-Only

• Latency: Interval between requesting and receiving

• Data Sources:
Disks, Databases, Other Systems & Software, Algorithms...

12

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

... or Caching is...

• Caching:
Protecting a high-latency Data Source from over utilization

• Used when:
System performance is directly impacted by Data Source latency

13

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Caching Terminology

14

• Cache Data:
The data held in a Cache from a Data Source

• Cache Entry (entry):
An individual element of Cached Data consisting of a Cache Value
and Cache Key.

• Cache Value (value):
Actual element of Data from a Data Source

• Cache Key (key):
A unique identifier for the Cache Entry in a Cache

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cache Window

15

Cache

Database

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Caching Terminology

16

• Cache Capacity:
The number of Cache Entries a Cache may hold

• Cache Size:
The number of Cache Entries in a Cache at a point in time

• Rule:
Cache Size ! Cache Capacity

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cache Entry Lifetime

17

• Entries have Lifetimes (in a Cache)

• Rationale:
Can’t keep all Data Source data in Cache!

• Systems typically only require recently used / accessed
data

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Caching Terminology

18

• Cache Entry Expiry:
Instant when an Entry violates an Expiration Policy governing Entry
lifetimes

• Expiration / Invalidation Policy:
A rule to determine when a Cache Entry Expires

Based on a time limit, access pattern (LRU/LFU) or Cache Size.

• Cache Entry Eviction / Invalidation:
The process to remove Expired Cache Entries from a Cache

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

19

Cache Consistency

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cache Consistency

20

A

B

C

D

Cache

A

B

C

D

Database

Inconsistent
Cache
Entry

Stale

Database
Value
Updated

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cache Consistency

21

• A Cache is ‘Consistent’ when Entries are logically
equivalent to underlying Data Source data.

• Stale Entry:

A Cache Entry that is older from its associated Data Source data.

• Caches may be partially consistent (or inconsistent)

• Challenges:

! Systems that depend on Consistent Caches!

! Inconsistent Caches may lead to unpredictable results

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cache Consistency

22

• Requirement is domain specific

! Not all Systems require Consistent Caches

! Partial / Complete inconsistency acceptable if understood

! Inconsistency possibly tolerable for short periods

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cache Consistency

23

• Tolerating Inconsistency:

! Internet Search Engines.... Google

! Delayed Market Prices... Bloomberg

! Email Applications... Outlook

! Internet Sites...

• Can your users tolerate inconsistency?

• Can parts of your systems be inconsistent?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

24

Avoiding Cache Inconsistency

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Avoiding Inconsistency

25

• Option 1: Don’t Cache

! Always refer to Data Sources for Data

! System and Data Source performance impact!

• Who does this?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Avoiding Inconsistency

26

• Option 2: Regularly Expiry Cache Entries

! Use small time frame for Expiry Policy

! Expire often to ‘catch updates’.

! The ‘refresh’ strategy

! Does not guarantee consistency

! Cache may not be effective

• Who does this?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Avoiding Inconsistency

27

• Option 3: Force Expiry

! Use ‘messaging’ to notify Cache of
Data Source updates

! ‘Push’ to force Entry Expiry

! Does not guarantee consistency

• Who does this?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Avoiding Inconsistency

28

• Option 4: Avoid behind-cache updates

! Best Option

! Update Cache first, then Data Source

! Does not guarantee consistency

! Now Data Source not up-to-date

! May not be architecturally possible

• Who does this? A

B

C

D

Cache

A

B

C

D

Database

Inconsistent
Cache
Entry

Stale

Database
Value
Updated

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

29

Why is this a Challenge?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

30

Reasoning About State

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

31

Identity Rule (I)

• All concepts / objects in a ‘system’ are uniquely
identifiable

• No two objects have the same identity

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

32

Referential Integrity Rule (RI)

• When multiple parties converse about an identifiable
object, the said object is the same for each party

• Parties naturally assume there is integrity when
referring to objects by their identity

• Integrity of a conversation between parties is
guaranteed by object identity

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

33

Singularity Rule (S)

• Only a single instance of an identifiable
object exists in a system.

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Caching Breaks Singularity!

• Caching Creates Copies!

• Caching breaks the Singularity Rule!

• We may not use standard reasoning about state!

• We deliberately build infrastructure to cope with this!

! eg: Ensuring copies are kept consistent

34

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Have you...

• Experienced data corruption due to staleness /
versioning?

• Wrote code to maintain the singularity rule?

• Used a ‘foreign key’?

• Used ‘messaging’ to invalidate system state?

• Used ‘triggers’ to notify of state changes?

35

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Breaking Singularity

• Singularity is broken when:

! System state is maintained in two or more places

! When we use Caching

! When we use a Database

! When we use Threads

• Broken Singularity means:

! We have to understand the ‘versions’ of system state

! We are tempted to use ‘transactions’

• Simplest way to avoid this

! Ensure all state in a single-threaded single process (JVM)

36

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

37

Everything is Broken!

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

38

Forms of Caching

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

39

Local Caching

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

40

Local Caching

• What we consider ‘normal’ when discussing Caches

• Cache is part of and internal to Application / Device

• Benefits:

! Easy to construct

! Use a Map-based Structure (Key, Value) pairs

• Constraints:

! Size is extremely limited!

! Does not guarantee consistency!

! In multi-threaded Applications, each thread may hold a copy
from Local Cache!

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Local Caching

41

B

C

D

Local CacheApplication

A

B

C

D

Database

Application Process

A

Step 2: SELECT 'A' FROM ...
(slow)

A
Step 3: put()

(cache for later)

Step 1: get('A')
(doesn't exist)

Step 4+: get('A')
(fast)

A

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Inconsistent Local Cache

42

A

B

C

D

CacheApplication

A

B

C

D

Database

Application Process

Inconsistent
Cache
Entry

A

Stale

Database
Value

Updated

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

43

Farm Caching

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Farm Caching

44

• Farm:
A collection of homogeneous applications / devices working
independently of each other

• Farm Caching:
Each member of farm has an independent Local Cache

• Who uses this?

• Where do you use it?

• Why do you use it?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Farm Caching

45

Database

Process 1 Process 2 Process 3 Process n

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Farm Caching

46

• Benefits:

! Same as Local Cache

! May now scale out

• Constraints:

! Same as Local Cache - but now worse - across Farm!

! Singularity broken between members (Incoherent)

! Members have own copies of Entries

! No cost savings in making copies to members

! Cache capacity doesn’t increase with Farm size

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Consistency & Coherency

47

• Consistent Cache:
Cache Entries logically consistent with Data Source

• Coherent Cache:
Associated Cache Entries across Members are logically consistent

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Consistency & Coherency

48

A

B

C

D

Database

Application Process 1

Inconsistent &
Incoherent

Cache
Entry

Application Process 2

Step 1: UPDATE SET VALUES 'A' ...

Step 2: put('A')

Consistent
& Incoherent

Cache
Entry

Stale

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Consistency & Coherency

49

• Coherent & Consistent:
Associated Entries coherent across Members and consistent with
Data Source

• Coherent & Inconsistent:
Associated Entries coherent across Members but (partially)
inconsistent with Data Source

• Incoherent & Inconsistent:
Associated Entries incoherent across Members and (partially)
inconsistent with Data Source

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

50

What is Acceptable?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

51

Clustered Caching

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Clustered Caching

52

• Cluster:
A collection of homogeneous applications / devices working
together to perform some task that involves sharing
information

• Clustered Caching:
Each Member of the Cluster shares the responsibility to
manage and provide Caching to an Application

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Clustered Caching

53

Process nProcess 2Process 1

Clustered Cache
(Application Infrastructure)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Clustered Caching

54

• Single System Image (SSI):

! Each Member logically has access to all Cache Entries

! Location of Entries typically transparent to Members

! Entries managed by Members

• Different Clustered Cache Topologies used to
implement SSI.

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Coherent Clustered Caching

55

• Coherent Clustered Cache:
All Cluster Members have access to same Cache Entries
(therefore coherent)

• Underlying Cache Topology ensures Coherency.

• Coherent and Consistent Cache behavior across
Cluster

• No 3rd Party Messaging Solution Required!

• Clustered Cache = Application Infrastructure

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Clustered Caching

56

• Benefits:

! May scale-out like Farm Caching

! Coherency guaranteed across Cluster Members

! While ensuring Coherency isn’t ‘free’, better than accessing
high-latency Data Source

• Constraints:

! Singularity still broken between Members due to network
latencies

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Clustered Caching Topologies

57

• Replicated:

! Each Member has complete copy of all Cache Entries

• Master / Slave:

! Master Member has copy of all Cache Entries

! Slave Member used for fail-over and recovery

• Distributed / Partitioned:

! Each Member owns a partition of the Cache Entries

! Requires mechanism to find Cache Entries in partitions*

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

58

Tangosol Coherence?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

59

What is Tangosol Coherence?

• Coherent Clustered Caching Solution

• Infrastructure for constructing Scalable Stateful
Applications

• Core Technology:

! Reliable, Scalable, Low-Latency Java-based Clustering
Infrastructure

! Service based implementation

! Supports many shared state programming models - like
clustered caching

! Best of breed IRIS solution for Distributed Applications

• Coherence Caching APIs built upon Core Technology

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

60

What is Tangosol Coherence?

• Coherence is an implementation of JCache (JSR107)

• Tangosol CEO (Cameron Purdy) is JSR Spec Lead

• Coherence provides more than Clustered Caching

! Analytics across Entries

! Transactions against Entries

! Query entries

! Event Handling of Entry modifications

! Processing Entries

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

61

Coherence Programming Model

• Core API based on Java Map data-structure API

! (key,value) pairs

! get, put, remove, contains, containsKey, size operations

! random access

! drop-in replacement for home-grown caches ;)

•

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

62

Coherence Programming Model

• Extensions to API to support

! Concurrency Control / Synchronization (locking) primitives

! Events, Queries, Processing, Aggregation etc.

! Storage of Cache Entries

• Term ‘map’ often used instead of ‘cache’

•

• Why?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

63

Exercise: Command Line Tool

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Coherence Command Line

64

• Provides ability to work with Clustered Caches

• Without writing an Application!

• Part of standard Coherence distribution

• in %TANGOSOL_HOME%/bin

• coherence.sh (*nix)

• coherence.cmd (windows)

• Training Versions (in class materials)

! coherence-training.sh

! coherence-training.cmd

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Coherence Command Line
prompt:~/coherence-home: .bin/coherence-training.sh

Map (?): help

Map (?): cache test

Map (test): put message “hello world”

null (why?)

Map (test): get message

hello world

Map (test): size

1

Map (test): bye

prompt:~/coherence-home:

65

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Coherence Command Line

66

• Now start two instances of coherence-training.sh

• What happens when you use get & put between
instances of the same Cache (map)?

• What happens to your data if you exit one of the
instances?

• What happens if you start another instance?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

67

Exercise: Cache Server

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Coherence Cache Server

68

• Head-less (no display / GUI / front-end) Application

• Stores Cache Data between Application Instances!

• Part of standard Coherence distribution

• in %TANGOSOL_HOME%/bin

• cache-server.sh (*nix)

• cache-server.cmd (windows)

• Training Versions (in class materials)

! cache-server-training.sh

! cache-server-training.cmd

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Coherence Cache Server
prompt:~/coherence-home: .bin/cache-server-training.sh

Group{Address=224.3.2.0, Port=32363, TTL=0}

MasterMemberSet (ThisMember=Member(Id=2, Timestamp=2006-12-12

17:33:41.455, Address=10.0.1.2:8089, MachineId=2818)

OldestMember=Member(Id=1, Timestamp=2006-12-12 17:28:06.053,

Address=10.0.1.2:8088, MachineId=2818))

Services (...)

^C (to stop)

prompt:~/coherence-home:

69

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Coherence Cache Server

70

• Shutdown coherence-training.sh instances

• Start two instances of cache-server-training.sh

• Start a new coherence-training.sh instance

• Put some data into your test cache

• What happens to your data if you exit all coherence-
training.sh instances?

• What happens if you start another instance?

• What happens if you start another cache-server-
training.sh?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Development Exercise

71

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Development Exercise

72

• Examine the CacheFactory class (see API)

• Construct a simple Console Application

• Use a CacheFactory to create a simple NamedCache

• Put some values (Strings) into it

• Get some values (Strings) from it

• What happens when your application exits?

• What happens when you use a Cache Server?

• What is the life-time of your values?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Setting up your IDE

• Add the following to your class path

! %TANGOSOL_HOME%/lib/coherence.jar

! %TANGOSOL_HOME%/lib/tangosol.jar

73

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Clustered Applications

74

• Clustered Caches manage state (as POJOs)

• Lifetime of POJOs in a Clustered Cache = lifetime of
Cluster

• Lifetime of Cluster ! Application Process Lifetime

! Unit tests may break because of this

• While single node clusters (across processes) are
possible, developers must test in a multi-node cluster!

• Remember the Network!

! Network is slow

! What is the latency between inter-process communication
across a network?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Questions

75

• Name two areas in your current systems that violate
IRIS

• How do you attempt to resolve this? (without
Coherence)

• How could Coherence help?

• What is the difference between a Cache Value and a
Cache Entry?

• What is Entry Invalidation?

• What is an Eviction Policy?

• What is the life-time of a Coherence Cache Entry?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Next Module

76

• Cache Topologies

• To use Coherence...

! We need to be aware of Cache Topologies

! Each Topology has it’s own performance and scalability
characteristics

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Module 2: Cache Topologies

Local, Replicated and Partitioned Topologies

Data Storage

Topology Composition

Near Topology

Cache Naming

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Local Topology

78

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Local Topology

• What:
Non-Clustered Per-Process Local Cache
Contains a local references of POJOs in Application Heap

• Why:
Replace in-house Cache implementations
Compatible & aligned with other Coherence Topologies

• How:
Based on SafeHashMap (high-performance, thread-safe)
Size Limited (if specified)

• Configurable Expiration Policies:
LFU, LRU, Hybrid (LFU+LRU), Time-based, Never, Pluggable

79

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Local Topology

80

B

C

D

Local CacheApplication

A

B

C

D

Database

Application Process

A

Step 2: SELECT 'A' FROM ...
(slow)

A
Step 3: put()

(cache for later)

Step 1: get('A')
(doesn't exist)

Step 4+: get('A')
(fast)

A

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Replicated Topology

81

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Replicated Topology

• What:
Bruce-force implementation of Clustered Caching

• Why:
Designed for extreme read performance

• How:
Replicate and maintain copies of all Entries in all Members
Zero latency access as all Entries are local to Members
Replication process transparent to developer

• Configurable Expiration Policies:
LFU, LRU, Hybrid (LFU+LRU), Time-based, Never, Pluggable

82

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Replicated Topology

83

Replicated Cache

Application Coherence ApplicationCoherence

Application Coherence

JVM 1 JVM 2

JVM 3

ApplicationCoherence

JVM 4

B

C D

A

B

C

B

C

A

get()

get()

get()

Replicated Cache

Replicated CacheReplicated CacheReplicated Cache

B

C D

A

B

D

A

C D

AA get()

Dget()

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Replicated Topology

84

Replicated Cache

Application Coherence ApplicationCoherence

Application Coherence

JVM 1 JVM 2

JVM 3

ApplicationCoherence

JVM 4

B

C D

A

B

C

A put()

Replicated Cache

Replicated CacheReplicated CacheReplicated Cache

B

C D

A

B

D

A

C D

A

Dput()

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Replicated Topology

• Cost Per Update

! Each Member must be updated!

! Not scaleable for heavy writes!

• Cost Per Entry

! Each Entry consumes Nx memory (N = #Members)

! 1x for each Member

! Not scalable for large caches!

• Any technology based on replication has these limits!

85

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Quick Quiz

• What happens if simultaneously...

! JVM 1 is updating A

! JVM 4 is reading A

86

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Race Conditions...

“A race condition or race hazard is a flaw in a system
or process whereby the output of the process is
unexpectedly and critically dependent on the sequence
or timing of other events” - wikipedia

The term originates with the idea of two threads racing
each other to influence the output first

87

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Topology

88

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Topology

• What:
Sophisticated approach for coherent scalable clustered caching

• Why:
Designed for extreme scalability

• How:
Transparently partition, distribute and backup cache entries across
Members

• Often referred to as ‘Distributed Topology’

• Configurable Expiration Policies:
LFU, LRU, Hybrid (LFU+LRU), Time-based, Never, Pluggable

89

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Topology

90

Backup

Logical

Primary

Application

Backup

Logical

Application

JVM 1 JVM 2

A

B

C D

get()

get()

Primary

Backup

Logical

Primary

Application Partitioned Cache

Backup

Logical

Application

JVM 3 JVM 4

AB

C D

Primary

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D get()

get()

Partitioned Cache

Partitioned Cache Partitioned Cache

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Topology

91

Backup

Logical

Primary

Application

Backup

Logical

Application

JVM 1 JVM 2

A

B

C D

put()

Primary

Backup

Logical

Primary

Partitioned Cache

Application

Backup

Logical

Application

JVM 3 JVM 4

AB

C D

Primary

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

C

put()

Partitioned Cache

Partitioned CachePartitioned Cache

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Topology

• Single System Image

! Each Member has logical access to all Entries

! At most 1 network-hop for Access

! At most 4 network-hops for Update

! Regardless of Cluster Size

• Linear Scaleability

! Cache Capacity Increases with Cluster Size

! Coherence Load-Balances Partitions across Cluster

! Point-to-Point Communication

! No multicast required

92

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Failover

93

Backup

Logical

Primary

Application

Backup

Logical

Application

JVM 1 JVM 2

A

B

C D

get()

get()

Primary

Backup

Logical

Primary

Application Partitioned Cache

Backup

Logical

Application

JVM 3 JVM 4

C

D

Primary

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D get()

get()

Partitioned Cache

Partitioned Cache Partitioned Cache

B

B

promoted

D

D
EA
D

B

A

backup

backup

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Failover

• Seamless Failover and Failback

! Backup ‘promoted’ to be Primary

! Primary ‘makes’ new Backup(s)

• Invisible to Application

! Apart from some latency on entry recovery

• Recovery occurs in Parallel

• Any Member can fail without data loss

• Configurable # backups

• No Developer or Infrastructure intervention

94

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Topology

• Benefits:

! Deterministic Access and Update Latency (regardless of
Cluster Size)

! Transparent Failover & Failback

! Cache Capacity Scales with Cluster Size Linearly

! Dynamically scalable without runtime reconfiguration

• Constraints:

! Cost of backup (but less than Replicated Topology)

! Cost of non-local Entry Access (across the network)
(solution next ;)

95

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Topology

• Lookup-free Access to Entries!

! Uses sophisticated ‘hashing’ to partition and load-balance
Entries onto Cluster Resources

! No registry is required to locate cache entries in Cluster!

! No proxies required to access POJOs in Cluster!

• Master / Slave pattern at the Entry level!

! A one-to-many recovery pattern (occurs in parallel)

! Not a sequential JVM-based one-to-one recovery pattern

• Cache still operational during recovery!
96

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Question: How could a JVM die?

97

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Data Storage

98

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Data Storage

• Sometime Members should not store Partitioned Data

! Members lifetime in the cluster is short

! Members join and leave frequently

• Each time Membership changes, Partitioning needs to
be re-assessed

• To reduce impact, Members may be ‘storage disabled’

99

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Data Storage

• Cache Client:
Member has storage disabled for Partitioned Topologies

• Cache Server:
Member has storage enabled for Partitioned Topologies

• Same Cache API

• Transparent to developer

• Storage is (re)configured outside of code

100

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Partitioned Data Storage

101

Backup

Logical

Primary

Application

Backup

Logical

Application

JVM 1 (localstorage=false) JVM 2 (localstorage=false)

get()

put()

Primary

Backup

Logical

Primary

Application Partitioned Cache

Backup

Logical

Application

JVM 3 (localstorage=true) JVM 4 (localstorage=true)

A

B

C D

Primary

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D get()

put()

Partitioned Cache

Partitioned Cache Partitioned Cache

A

B

D

C

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Topology Composition

102

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Topology Composition

103

• Coherence Cache Topologies may be ‘composed’ to
form new Cache Topologies to suit address system
requirements and SLAs.

• Base Topologies:

! Local, Replicated, Distributed, Extend*

• Composite Topologies:

! Near, Overflow (to disk)

! Allow other topologies to be ‘plugged in’ to form new
Topologies

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Near Topology

104

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Near Topology

• What:
Combine Front and Back topologies to provide L1 and L2 caching
(cache of a cache)

• Why:
Partitioned Topology may always go across the wire
Need a local cache (L1) over the Partitioned Topology (L2)
Best option for scalable performance!

• How:
Configure ‘front’ and ‘back’ topologies (covered later)

• Configurable Expiration Policies:
LFU, LRU, Hybrid (LFU+LRU), Time-based, Never, Pluggable

105

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Near Topology

106

Logical

Application

JVM 1

get()

get()

Partitioned Cache

Primary

Backup

C

A

B

C

D

Logical

A

B

C

D

B

C

Near Cache

Local
Cache

B

C

Logical

Application

JVM 2

Partitioned Cache

Primary

Backup

A

B

C

D

Logical

A

B

C

D

Near Cache

Local
Cache

A

C

Logical

Application

JVM 3

Partitioned Cache

Primary

Backup

B

C
A

B

C

D

Logical

A

B

C

D

A

D get()

get()

Near Cache

Local
Cache

A

D

Logical

Application

JVM 4

Partitioned Cache

Primary

Backup

A

B

C

D

Logical

A

B

C

D

Near Cache

Local
Cache

A B

D

D

A

B Bget()

D

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Near Topology

107

Logical

Application

JVM 1

get()

Partitioned Cache

Primary

Backup

C

A

B

C

D

Logical

A

B

C

D

Near Cache

Local
Cache

B

C

Logical

Application

JVM 2

Partitioned Cache

Primary

Backup

A

B

C

D

Logical

A

B

C

D

Near Cache

Local
Cache

A

C

Logical

Application

JVM 3

Partitioned Cache

Primary

Backup

B

C
A

B

C

D

Logical

A

B

C

D

D put()

Near Cache

Local
Cache

A

D

Logical

Application

JVM 4

Partitioned Cache

Primary

Backup

A

B

C

D

Logical

A

B

C

D

Near Cache

Local
Cache

A B

D

D

A

B

D

Cput()

C

D

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Near Topology Coherency

• Local Cache Coherency Options

! Seppuku: Event-Based ‘Kill Yourself ’ Invalidation

! Standard Expiry: LFU, LRU, Hybrid, Custom

• Notice: No messaging system required for invalidation!

! Built into infrastructure

! High-performance

108

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Near Topology

109

Logical

Application

JVM 1 (localstorage=false)

get()

Partitioned Cache

A

B

C

D

Logical

A

B

C

D

Near Cache

Local
Cache

B

C

Logical

Application

JVM 2 (localstorage=false)

Partitioned Cache

A

B

C

D

Logical

A

B

C

D

Near Cache

Local
Cache

A

C

Logical

Application

JVM 3 (localstorage=true)

Partitioned Cache

Primary

Backup

B

CA

B

C

D

Logical

A

B

C

D

D put()

Near Cache

Local
Cache

A

D

Logical

Application

JVM 4 (localstorage=true)

Partitioned Cache

Primary

Backup

A

B

C

D

Logical

A

B

C

D

Near Cache

Local
Cache

A B

D

D

A

B

D

Cput()

C

D

C

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Other Topologies

110

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Other Topologies

111

• Replace Front and Back Maps with other Maps

• Replace actual Map implementations with your own

• Examples:

! Handle ‘overflow’ by writing to disk

! Handle ‘cache misses’ by reading from Data Source

! Write to Data Source on ‘put’

! Use Extend* to connect to and access other Clusters

• Coherence is extremely configurable

• Configuration and Topologies virtually unlimited

• We’ll cover actual configuration later (entire module!)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Out-Of-The-Box Topologies

112

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Out-Of-The-Box

113

• Coherence Cache Configuration

! Maps Cache Names to Topologies

! Ships with out-of-the-box wildcard-based Cache Names

! Wildcard Cache Names map to out-of-the-box Topologies!

• No need to configure Coherence to use Topologies

• We’ll cover cache configuration later

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Out-Of-The-Box Cache Names

114

• dist-* (Partitioned/Distributed Topology)

• near-* (Near Topology)

• repl-* (Replicated Topology)

• opt-* (Optimistic Topology)

• local-* (Local Topology)

• * (Partitioned/Distributed Topology)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Coherence Command Line
prompt:~/coherence-home: .bin/coherence-training.sh

Map (?): help

Map (?): cache near-test

Map (near-test): put message “hello world”

null

Map (near-test): get message

hello world

Map (near-test): size

1

Map (near-test): bye

prompt:~/coherence-home:

115

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Development Exercise

116

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Development Exercise

117

• Develop an application to store phone numbers for a
collection of people

• Phone numbers can be Strings

• Names of people can be Strings

• Run your application with at least 4 Cache Servers

• Experiment with each Topology

• What are the performance characteristics for each?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Questions

118

• What is the Optimistic Topology?

• Under what scenarios would you use each of the
Topologies mentioned in this Module?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Next Module

119

• Coherence Deep Dive

! Caching APIs

! Object Serialization

! Concurrency Primitives

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Module 3: Coherence Deep Dive

The NamedCache Interface

Using CacheFactories

Caching Non-Primitive Objects

Serialization

Locking & Synchronization

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

NamedCache Interface

121

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

NamedCache Interface

• The NamedCache interface exposes Cache functions

! com.tangosol.net.NamedCache

• All Coherence Caches

! Are Named

! Have Lifetime scoped by the Cluster Instance in which they
exist (or member if local)

! Implement the NamedCache Interface

122

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

NamedCache Interface

• Two or more independent Cluster Instances may use
the same name for a Cache

! Cache Entries will not overlap!

123

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cluster Instance

• Cluster Instance (Cluster):
One or more Java processes running Coherence and
forming a Coherence Cluster

• Multiple Clusters may exist in the same Network

! eg: Personal, Development, Test, QA may all exist in the
same network

! Take care in configuring Clusters (later) to ensure they are
separate

• Each Cluster has Cluster Services

! Examine trace output from Coherence Cache Server!

124

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cluster Service

• Cluster Service (Service):
A Java Daemon running in each Member that provides
clustering services to Coherence

• Services provide infrastructure for Coherence features

! Cluster Service = managed membership

! Distributed Service = distributed cache management

! Replicated Service = replicated cache management

• Services are configurable (later)

125

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cluster Instance

• Each Cluster Instance must share a common Cluster
Service configuration

• Each JVM may only belong to a single Cluster Instance

! Mechanisms exist for accessing multiple Clusters from a
single JVM

126

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

NamedCache Interface

• Standards Based (JCache - JSR 107)

! Extends java.util.Map

! Like Map, get(...) and put(...) are not thread-safe

• Extensions to Map provide other features

! Locking & Synchronization, Storage Integration

! Queries, Events, Aggregation, Transactions (beyond caching)

• Implementation (topology) is specified through
configuration - swap out without code changes!

127

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

NamedCache Interface

void !clear()

boolean !containsKey(Object key)

boolean !containsValue(Object value)

Set entrySet()

Object get(Object key)

boolean !isEmpty()

Set keySet()

128

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

NamedCache Interface

Object put(Object key, Object value)

void !putAll(Map t)

Object remove(Object key)

int size()

Collection !values()

Map getAll(Collection colKeys)

Object put(Object oKey, Object oValue, long cMillis)

129

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

NamedCache Interface

void !destroy()

String getCacheName()

CacheService getCacheService()

void release()

130

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Question: What types of Cache
Services Are Available?

131

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cache Factories

132

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

CacheFactory

• Topology agnostic mechanism to access NamedCaches

• Mechanisms to manage underlying Cluster Instance

• Mechanisms to manage Membership lifecycle

• Mechanisms to work with NamedCaches
transactionally (covered later)

133

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

CacheFactory

static Cluster ensureCluster()

static void shutdown()

static NamedCache getCache(String sName)

static NamedCache getCache(String sName, ClassLoader loader)

134

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Question: Why is it important to
shutdown?

135

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Development Exercise

136

• Write an Application to determine the Services
currently running in a Cluster

• What are the types of Services?

• Does it make any difference if a Cache Service is
running as to the type of Services that are available?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Caching Non-Primitive Values

137

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Caching Non-Primitive Objects

138

• All Cache Keys and Values must be Serializable

! Each will be transmitted across a process boundary at
somepoint in time

• Some objects should not be Cached

! External resources like threads, file handles, connections,
streams etc.

! However, the content of the above may be Cached

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Serialization Refresher

139

• Implement java.io.Serializable Marker Interface

• Mark non-serializable fields as transient

• Declare a serialVersionUID

• Declare an accessible (usually public) no args
constructor

• (optional) Define writeObject and readObject to
handle special case class-base serialization
requirements.

• Recommended

! Implement hashcode(), equals() and toString()

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Serializable Person Class

140

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

High-Performance Serialization

141

• Java Serialization not fit for purpose!

! Designed to serialize entire graphs of Objects

! Designed to handle cyclic references

! Has a large overhead for each object, class and attribute

! Has a large overhead for deserialization

• Typical use of Coherence

! POJOs - not object graphs

! Minimal Composition Relationships (Parents + Children)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

High-Performance Serialization

142

• Coherence provides:

com.tangosol.io.ExternalizableLite

• ExternalizableLite extends java.io.Serializable

! So you must follow standard Serialization rules!

• Provides low-level access to byte-based serialization
stream (not object-based)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ExternalizableLite Interface

143

void readExternal(DataInput in)

void writeExternal(DataOutput out)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ExternalizableLite Interface

• ExternalizableLite Serialization

! Typically 6x faster

! Resulting serialization is
much smaller

! Emits less garbage for both
serialization and deserialization

• Trade-off for Performance (and size)

! Have to fully implement serialization for each attribute
(and ignore transient attributes)

! Have to understand impacts on versioning of classes

144

0ms

375ms

750ms

1,125ms

1,500ms

1,012ms

230ms
Serializable

ExternalizableLite

Time (ms)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ExternalizableLite Interface

145

• Where possible Coherence will use ExternalizableLite
implementations over Java Serialization

• com.tangosol.util.ExternalizableHelper provides helper
methods to serialize objects and collections with
ExternalizableLite

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ExternalizableLite Person Class

146

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ExternalizableHelper Class

147

• Provides methods to implement ExternalizableLite

• Read and Write:

! Primitive Types

! UTF Strings (safely)

! Common Composite Types (Arrays, Maps etc)

! Objects (with null support)

! ExternalizableLite objects

• Use where possible

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Development Exercise

• Develop an Application that serializes an Order object
using ExternalizableLite into a ‘dist-orders’ cache.

• Attributes of the Order class include;

! orderId

! orderDate

! portfolioId

! stockId

! side (buy / sell)

! quantityRequired

! desiredPrice

148

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cache Keys

149

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cache Keys

150

• Cache Keys must be Serializable or ExternalizableLite

• They should also correctly implement:

! hashCode()

! equals()

! toString()

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cache Key Recommendations

151

• Create your own Opaque Immutable Type-Safe Keys

! Don’t use Strings / Integers for all Keys!

! Helps with runtime type-safety

! Hides implementation (business keys) logic

! Ensures you capture requirements for IRIS Identity!

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Cache Key Recommendations

152

• Use Helpers / Factory Pattern to create Type-Safe Keys

! Control access to key creation

! Allow overloaded / polymorphic key creation

! Encapsulate creation in a ‘Business Service Layer’

! Future-Proof key implementation

! Enable multi-valued keys

! Enable Data Affinity (partitioning override)

! Data Affinity = keeping related data together (in a partition)

! Implement ExternalizableLite

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Person.Key Class

153

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Development Exercise

• Extend your previous application to create an
Order.Key class

• Instances of the Order.Key class will be used as keys
for Orders in a Cache.

154

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Locking & Synchronization

155

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Locking & Synchronization

156

• NamedCache additionally implements ConcurrentMap

• ConcurrentMap provides explicit locking and
synchronization primitives for Cache Entries

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ConcurrentMap Interface

157

boolean lock(Object oKey) //lock no wait

boolean lock(Object oKey, long cWaitMillis)

boolean unlock(Object oKey)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Locking Semantics

158

• Locks on block locks (Cluster-wide)

• Locking permitted on non-existent keys!

• Locking equivalent to synchronized(key)

! Cluster-wide-synchronization

! Synchronized doesn’t work across a Cluster!

• Lock owner may be:

! Thread of Member

! Member of Cluster

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Locking Semantics

159

• Re-entrant – but no entrance reference counting.

! Acquiring multiple locks (from the same lock owner) on
the same key ok.

! Only one ‘unlock’ required to unlock!

• Blocking

! Time limited or Infinite

• Non-Blocking

! Immediate Return

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Locking Semantics

160

• Maximum Lock Lease Time Configurable

• Server Failure:

! Locks ‘recovered’ and maintained on ‘failover server’

! Lock owners unaware of failure & recovery

! No loss of locks on Server failure

• Application / Client Failure:

! Locks released

! Always use try-catch-finally blocks around locks!

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Locking Semantics

161

• For repeatable reads (without Transactions)

! Lock before Get

! Do it consistently

• Or use a TransactionMap (covered later)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Locking Semantics

162

• If an application uses locks, ensure that it is done
consistently and respects locks!

• Locking follows Java synchronization semantics (but
across a cluster)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Quick Quiz

163

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Development Exercise

• Develop an Application that uses locks to update an
Order object in a cache

• To perform the update, reduce the desiredQuantity by
a set amount

• Create multiple threads to perform the update on a
number of orders.

164

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Questions

• How would you develop a cluster-safe counter using
locks?

• How do you attempt to lock an entry and wait an
indefinite period?

• How do you attempt to lock an entry and wait for the
default lease time?

• What may happen if locks aren’t in try-catch-finally
blocks?

• How many network hops are required to lock and
unlock an Object?

• What is repeatable read?
165

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Next Module

166

• Beyond Caching

! Observing Data Changes

! Querying Data

! Aggregating Data

! In-Place Processing of Data

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Module 4: Beyond Caching

ObservableMap Interface (Events)

QueryMap Interface (Queries + Analytics)

Continuous Queries (Queries + Analytics + Events)

InvocableMap Interface (Processing + Analytics)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ObservableMap Interface

168

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ObservableMap Interface

169

• Provides ability to “observe” changes in Cache Entries
! com.tangosol.util.ObservableMap

• Standard Bean Event Model (Listener Pattern)

! extends java.util.EventListener

• All NamedCaches implement ObservableMap

• History

! Originally designed to provide pluggable invalidation and
cache pruning (internal use)

! Now used for reacting to Entry changes

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ObservableMap Interface
void addMapListener(MapListener listener)

void addMapListener(MapListener listener,

 Filter filter,

 boolean fLite)

void addMapListener(MapListener listener,

 Object oKey,

 boolean fLite)

void removeMapListener(MapListener listener)

void removeMapListener(MapListener listener, Filter filter)

void removeMapListener(MapListener listener, Object oKey)

170

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

MapListener Interface
void entryDeleted(MapEvent mapEvent)

void entryInserted(MapEvent mapEvent)

void entryUpdated(MapEvent mapEvent)

171

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ObservableMap Interface

172

• Register MapListeners for...

! All cache events, those satisfying a Filter or a specific key

! Lite == network optimization. (reduce event payload)

• MapListener Interface implementations...

! Handlers for Insert, Update and Deleted Events

• MapEvent Class captures event information

! Id (event type), Entry Key, Old Value, New Value

! Lite means old and new values may not be present in event

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ObservableMap Interface
namedCache.addMapListener(new MapListener() {

! public void entryDeleted(MapEvent mapEvent) {

! ! //TODO... handle deletion event

! }

! public void entryInserted(MapEvent mapEvent) {

! ! //TODO... handle inserted event

! }

! public void entryUpdated(MapEvent mapEvent) {

! ! //TODO... handle updated event

! }

});

173

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

MapEvent Class
//Event Id’s (types of event)

static int ENTRY_DELETED

static int ENTRY_INSERTED

static int ENTRY_UPDATED

int getId() //the Id (type) for the event

Object getKey() //the key on which the event occurred

ObservableMap getMap() //map on which the event occurred

Object getNewValue() //may be null

Object getOldValue() //may be null

174

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

MapListener Implementations

175

• AbstractMapListener Class

! Empty implementations for each MapListener method

! Simplify your implementations by overriding default
implementations

• MultiplexingMapListener Class

! Introduces abstract onMapEvent method

! All MapListener methods delegated to onMapEvent

! Simplify your implementations by overriding onMapEvent

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

AbstractMapListener Class
namedCache.addMapListener(new AbstractMapListener() {

 //other MapListener methods implemented in super-class

! public void entryUpdated(MapEvent mapEvent) {

! ! //TODO... handle just the updated event

! }

});

176

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

MultiplexingMapListener Class
namedCache.addMapListener(new MultiplexingMapListener() {

! public void onMapEvent(MapEvent mapEvent) {

! ! //TODO... handle all event (use Id to determine type)

! }

});

177

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Event Publishing Semantics

178

• Events are delivered asynchronously to MapListeners
from Cache Entry Owners

! eg: In Partitioned Topology the Primary Partitions (Cache
Entry Owners) are responsible for event delivery

! Clients updating Cache, don’t pay cost of event delivery

! Event delivery is asynchronous from their point-of-view

! Option exists for synchronous delivery

• Filtering is performed by Cache Entry Owner(s)

! Only desired events delivered to MapListener
implementations!

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Event Publishing Semantics

179

Backup

Logical

Primary

Application

Backup

Logical

Application

JVM 1 JVM 2

A

B

C D

put()

Primary

Backup

Logical

Primary

Partitioned Cache

Application

Backup

Logical

Application

JVM 3 JVM 4

AB

C D

Primary

A

B

C

D

A

B

C

D

A

B

C

D

A

B

C

D

A

C

put()

Partitioned Cache

Partitioned CachePartitioned Cache

Map
Listener

Map
Listener

Map
Listener

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Event Publishing Semantics

180

• Event handlers are executed on Coherence owned
Service Threads

• MapListener instances may be registered many times to
handle different events (and on different caches)

• Consequently multiple events may be delivered to a
single event handler at any point in time

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Event Publishing Semantics

181

• Event delivery is not guaranteed when;

! Cluster repartitioning in progress

• Some possibilities:

! Update acknowledged + events delivered + then primary
fails (all ok)

! Update acknowledged + events not delivered + then
primary fails (no events delivered and not retried)

! Update acknowledged, events partially delivered + then
primary fails (some events delivered and not retired)

! Update completed (not acknowledged) + events partially
delivered + then primary fails (some events redelivered)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Event Publishing Semantics

182

• Order of event delivery is not guaranteed (from client
perspective) when;

! Using asynchronous event listeners AND

! Multiple service threads AND

! Multiple application threads

• Example (one of many)

! Place A in Cache A and B in Cache B (in that order)

! Cache A service threads are experiencing load

! Cache B service threads not experiencing load

! Insert events for Cache B arrive before Cache A

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Event Publishing Semantics

183

• Make listeners synchronous to guarantee event
delivery order

! Only from the point-of-view of the mutating client thread

! Use synchronous listeners with extreme care!

• Example:

! Clients A, B and C have synchronous listeners on Cache N

! Client A inserts X, Y & Z into a Cache N (in that order)

! Client A is guaranteed to receive events in the insert order

! Clients B and C may receive out of order events.

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Event Publishing Semantics

184

• Making Synchronous Listeners:

! Implement marker interface
MapListenerSupport.SynchronousListener

! Wrap Listener with
MapListenerSupport.WrapperSynchronousListener

! Example:

namedCache.addListener(

 new MapListenerSupport.WrapperSynchronousListener(

 ... your listener ...));

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Questions

• Identify another circumstance in which cache events
may be processed out of order.

• Where do MapListener classes need to be deployed?

185

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Filter Interface

186

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Filters

187

• Filters (com.tangosol.util.Filter) are used in many
Coherence interfaces, including ObservableMap,
QueryMap and InvocableMap

• Together with Indexes, Filters are a very flexible,
expressive, scalable and high-performance means to
find, view and manipulate data sets

• Typically Filters are always evaluated by the Cache
Entry Owners

! Scaleable (top a point) and minimize network traffic

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Filters

188

• Coherence provides a range of out-of-the-box Filters

! MapEventFilter (for MapEvents)

! Reflection-based Filters (for Cache Entries)

! AllFilter, AlwaysFilter, AndFilter, AnyFilter, ArrayFilter, BetweenFilter,
ClassFilter, ComparisonFilter, ContainsAllFilter, ContainsAnyFilter,
ContainsFilter, EqualsFilter, ExtractorFilter, GreaterEqualsFilter,
GreaterFilter, InFilter, InKeySetFilter, IsNotNullFilter, IsNullFilter,
KeyAssociatedFilter, KeyFilter, LessEqualsFilter, LessFilter, LikeFilter,
LimitFilter, MapEventFilter, NeverFilter, NotEqualsFilter, NotFilter,
NullFilter, OrFilter, PresentFilter, ValueChangeEventFilter, XorFilter ...

• ... or create your own!

• Coherence Filters may be dynamically composed at
runtime!

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

The Filter Interface

189

boolean evaluate(Object object)

NOTE: The type of “object” is dependent on the context

 in which the Filter is being used.

 eg: When used to register MapListeners, the type

 of object provided to the filter will be a MapEvent

 eg: When used for Cache Entries, the type of object

 provided to the filter will be an Entry

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Filtering MapEvents

190

• To filter MapEvents, ensure that the specified Filter
expects MapEvents!

! Otherwise you’ll get runtime type errors!

! eg: Don’t do this:

! addListener(new EqualsFilter(“getName”, “Brian”), ...);

! As the method “getName” doen’t exist on MapEvent

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Filtering MapEvents

191

• Recommendation:
Use com.tangosol.util.MapEventFilter class

• MapEventFilter provides ability to filter

! types of events, including masks

! specific changes in underlying cache Entries

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

The MapEventFilter Class

192

Event Filter Masks

static int E_ALL

Indicates that all events should be evaluated.

static int E_DELETED

Indicates that ENTRY_DELETED events should be evaluated.

static int E_INSERTED

Indicates that ENTRY_INSERTED events should be evaluated.

static int E_UPDATED

Indicates that ENTRY_UPDATED events should be evaluated.

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

The MapEventFilter Class

193

Event Filter Masks Continued

static int E_UPDATED_ENTERED

Indicates that ENTRY_UPDATED events should be evaluated, but

only if additionally specified filter evaluation is false for

the old value and true for the new value.

static int E_UPDATED_LEFT

Indicates that ENTRY_UPDATED events should be evaluated, but

only if additionally specified filter evaluation is true for

the old value and false for the new value.

static int E_UPDATED_WITHIN

Indicates that ENTRY_UPDATED events should be evaluated, but

only if additionally specified filter evaluation is true for

both the old and the new value.

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

The MapEventFilter Class

194

MapEventFilter Constructors

MapEventFilter(int nMask)

Construct a MapEventFilter that evaluates MapEvent objects

based on the specified combination of event types.

MapEventFilter(int nMask, Filter filter)

Construct a MapEventFilter that evaluates MapEvent objects

based on the specified combination of event types. The

specified filter processes Map.Entry and not MapEvent

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

MapEventFilter Examples

195

A filter that evaluates to true if an Employee object is

inserted into a cache with a value of Married property set to

true.

 new MapEventFilter(MapEventFilter.E_INSERT,

 new EqualsFilter("isMarried", Boolean.TRUE));

A filter that evaluates to true if any object is removed from

a cache.

 new MapEventFilter(MapEventFilter.E_DELETE);

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

MapEventFilter Examples

196

A filter that evaluates to true if there is an update to an

Employee object where either an old or new value of LastName

property equals to "Smith"

 new MapEventFilter(MapEventFilter.E_UPDATED,

 new EqualsFilter("LastName", "Smith"));

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Exercise

• Develop a simple chat client

• Develop a simple console application to display trades
that have been removed from a trades cache which had
a value over $1000

• Where do custom Filter classes need to be deployed?

197

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

QueryMap Interface

198

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

QueryMap Interface

199

• Use com.tangosol.util.QueryMap interface to search for
Values or Keys

• Use Filters to restrict searching and thus results

• Filtering occurs at Cache Entry Owner

! ie: In Partitioned Topology, Primary Partitions do the
filtering

• Use QueryMap interface to define Indexes to allow for
search optimization

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Parallel Query Execution

200

Result

Application

Backup

Application

JVM 1 JVM 2

B

Primary

Backup

Primary

Partitioned Cache

Application

Backup

Application

JVM 3 JVM 4

A

B

C

D

Primary

A

B

D

Partitioned Cache

Partitioned CachePartitioned Cache

A

C
D

Query
Execution

Query
Execution

Query
Execution

Query
Execution

Query
Execution

Result

A

Result

D

Result

B

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

QueryMap Interface

201

Set entrySet(Filter filter)

Return a set view of the entries that satisfy the criteria

expressed by the filter.

Set entrySet(Filter filter, Comparator comparator)

As above but iteration over the set will occur in ascending

ordered according to the comparator.

Set keySet(Filter filter)

Return a set view of the keys contained in this map for

entries that satisfy the criteria expressed by the filter.

void addIndex(ValueExtractor extractor, boolean fOrdered,

 Comparator comparator)

Add an index to a QueryMap.

void removeIndex(ValueExtractor extractor)

Remove an index from this QueryMap.

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

QueryMap Examples

202

A set containing all of the open trades

Set openTrades = trades.entrySet(

 new EqualsFilter("isOpen", BOOLEAN.TRUE));

A set containing people with a last name beginning with “Mac”

Set macPeople = people.entrySet(

 new LikeFilter("getLastName", “Mac%”));

A set of keys of people with a last name beginning with “Mac”

or “Mc”

Set macPeopleKeys = people.keySet(

 new OrFilter(

 new LikeFilter("getLastName", “Mac%”),

 new LikeFilter("getLastName", “Mc%”)));

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Indexes

203

• Coherence allows the definition of Indexes against
Caches to optimize searches (and other processing).

• Indexes act as a hint to cache implementations for
search optimization.

• Indexes may be ignored by a cache if indexes are not
supported or if the desired index already exists.

• Application can suggest indexes to Coherence even if
an index already exist (previously suggested)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Indexes

204

• Each application using Coherence may suggest the
same set of indexes when it starts

• There is no downside to an application blindly
suggesting indexes regardless of whether another
application has already suggested the same indexes

• Indexes are maintained by Cache Entry Owners

! ie: For Partitioned Topology, the Primary Partitions maintain
their own indexes

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Application of Indexes

205

Result

Application

Backup

Application

JVM 1 JVM 2

B

Primary

Backup

Primary

Partitioned Cache

Application

Backup

Application

JVM 3 JVM 4

A

B

C

D

Primary

A

B

D

Partitioned Cache

Partitioned CachePartitioned Cache

A

C
D

Query
Execution

Query
Execution

Query
Execution

Query
Execution

Query
Execution

Result

A

Result

D

Result

B

In
d
ex

In
d
ex

In
d
ex

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ValueExtractors

206

• Coherence uses com.tangosol.util.ValueExtractors to
determine the specific values from Entries to index

• Coherence doesn’t index all of your object attributes

! eg: You may be caching blobs or chunks of XML!

! You have to tell Coherence which parts of an Object to
index.

! Do this using ValueExtractors

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ValueExtractor Interface

207

Object extract(Object oTarget)

Extract a value from the passed object.

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ValueExtractors

208

• Coherence ships with a set of standard ValueExtractor
implementations

! ReflectionExtractor - uses reflection to determine a value
from the Entry

! ChainedExtractor - chain a series of extractors together
(evaluated left-to-right)

! IdentityExtractor - returns the object itself

! KeyExtractor - like the ReflectionExtractor but forces
values to be extracted from the Entry Key instead of the
Entry Value

• You may construct your own!

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Index Examples

209

Suggest an index for trades based on their portfolio. Ensure

the index is ordered, but use natural ordering (hence the

null).

trades.addIndex(

 new ReflectionExtractor(“getPortfolio”),

 true,

 null);

Suggest an index for trades based on their market. Don’t use

ordering.

trades.addIndex(

 new ReflectionExtractor(“getMarket”),

 false,

 null);

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Filtering with Custom Extractors

210

• If you implement your own ValueExtractor class...

• And want to use it for indexing...

• You must...

! Ensure that you correctly implement hashcode and equals

! Use it within your Filters

• Coherence will only use an index for filtering when...

! It can locate an appropriate identical ValueExtractor!

• Otherwise your index may not be used

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Questions

211

• If an Entry Key has two methods, getFirstName and
getLastName, how would you write a query to
determine only those Entry Values where the lastname
starts with “Mc”?

• Assuming Portfolios have a “getManager” method, how
would you create an index over the trades cache for
portfolio managers?

• What does the following index?
cache.addIndex(IdentityExtractor.INSTANCE,true,null);

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Questions

212

• If you create your own Filter and/or ValueExtractor
implementations, where should they be deployed?

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Continuous Query Cache

213

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Continuous Query Cache

214

• Provides the ability to construct and have automatically
maintained a locally managed, continuously up-to-date
view of a Cache
! com.tangosol.net.cache.ContinuousQueryCache

! Implements NamedCache

! Implements ObservableMap, QueryMap & InvocableMap

! “Local View” may contain Keys or entire Entries

! Ideal for “thick clients”

• Internal implementation combines the concepts of
Queries, Filters and MapListeners

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

ContinuousQueryCache Class

215

ContinuousQueryCache(NamedCache cache, Filter filter)

Create a locally materialized view of a NamedCache using a

Filter

ContinuousQueryCache(NamedCache cache,

 Filter filter,

 boolean fCacheValues)

Create a materialized view of a NamedCache using a Filter,

specifying whether entire values should be locally cached (or

just keys)

ContinuousQueryCache(NamedCache cache,

 Filter filter,

 MapListener listener)

Create a materialized view of a NamedCache using a Filter,

specifying a default listener to receive underlying cache

events

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Continuous Query Examples

216

Construct a continuous view of my trades

NamedCache myTrades =

 new ContinuousQueryCache(

 trades,

 new EqualsFilter(“getOwner”, myTraderId));

Construct a continuous view of pending orders over $1000

NamedCache pendingValuableOrders =

 new ContinuousQueryCache(

 orders,

 new AndFilter(

 new EqualsFilter(“isPending”, Boolean.True),

 new GreaterThanFilter(“getAmount”, 1000));

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

InvocableMap Interface

217

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

InvocableMap Interface

218

• Use com.tangosol.util.InvocableMap interface to Process
or Aggregate Entries

! Combine with Filters to restrict processing or aggregation!

• Filtering, Processing and Aggregation occurs at Cache
Entry Owner

! In Partitioned Topology, Primary Partitions do the work

! Indexing will automatically be used to optimize processing

positions.invokeAll(

 new EqualsFilter(“getTicker”, “ORCL”),

 new StockSplitProcessor(2.0));

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

InvocableMap Execution

219

Result

Application

Backup

Application

JVM 1 JVM 2

B

Primary

Backup

Primary

Partitioned Cache

Application

Backup

Application

JVM 3 JVM 4

A

B

C

D

Primary

A

B

D

Partitioned Cache

Partitioned CachePartitioned Cache

A

C
D

Invoke All
Execution

Invoke All
Execution

Invoke All
Execution

Invoke All
Execution

Invoke All
Execution

Result

A

Result

D

Result

B

In
d
ex

In
d
ex

In
d
ex

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Entry Processors

• com.tangosol.util.InvocableMap.EntryProcessors are agents
that perform processing against Entries directly where
they are being managed

! Requests are sent directly to owners to do work

• Equivalent to “agents” executing services in parallel on
the data in the cluster

• Processing...

! may mutate cache entries, including creating, updating or
removing, or

! just perform calculations, or anything else!

220

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

InvocableMap Interface

221

Object invoke(Object oKey,

 InvocableMap.EntryProcessor processor)

Invoke the passed EntryProcessor against the Entry specified

by the passed key, returning the result of the invocation

Map invokeAll(Collection keys,

 InvocableMap.EntryProcessor processor)

Invoke the passed EntryProcessor against the entries specified

by the passed keys, returning the result of the invocation for

each Entry

Map invokeAll(Filter filter,

 InvocableMap.EntryProcessor processor)

Invoke the passed EntryProcessor against the set of entries

that are selected by the given Filter, returning the result of

the invocation for each Entry

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

InvocableMap.EntryProcessor...

222

Object process(InvocableMap.Entry entry)

Process a Map.Entry object (yours to implement!)

Map processAll(Set setEntries)

Process a Set of InvocableMap.Entry objects (implementation

typically provided by a super-class)

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

InvocableMap.Entry Interface

223

Object getKey()

Return the key corresponding to this entry

Object getValue()

Return the value corresponding to this entry

boolean isPresent()

Determine if this Entry exists in the Map

void remove(boolean isSynthetic)

Remove this Entry from the Map if it is present in the Map

Object setValue(Object value)

Store the value corresponding to this entry

void setValue(Object value, boolean isSynthetic)

Store the value corresponding to this entry

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Entry Processors

• There are a number of provided EntryProcessors

! AbstractProcessor, CompositeProcessor,
ConditionalProcessor, ConditionalPut, ConditionalPutAll,
ConditionalRemove, ExtractorProcessor,
NumberIncrementor, NumberMultiplier, PreloadRequest,
PropertyProcessor, UpdaterProcessor, VersionedPut,
VersionedPutAll

224

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Entry Processors

• Usually you create your own custom implementations

! Simply sub-class
com.tangosol.util.processors.AbstractProcessor

class StockSplitProcessor extends AbstractProcessor {

 ...

 Object process(Entry entry) {

 Position position = (Position)entry.getValue();

 position.setAmount(position.getAmount() * factor));

 entry.setValue(position);

 return null;

 }

}

225

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Entry Processor Semantics

• EntryProcessors against the same key will be logically
queued

! This means lock-free (high through-put) processing!

• EntryProcessors can return any “serializable” value

! Including null if a result is not required

• You can invoke EntryProcessors against entries that
don’t yet exist

! Use Entry.isPresent() to determine if an entry exists

226

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Entry Processor Semantics

• Exceptions thrown within EntryProcessors will be
wrapped and re-thrown to application calling thread

• Failure to “set” or “remove” a value will mean no
Cache Entry mutation will occur!

• Cache Entries ONLY updated AFTER successful
execution (no Exceptions thrown) of the processors

227

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Entry Processor Semantics

• If fatal failure occurs during execution (eg: JVM death)...

! EntryProcessor execution will be rescheduled & executed
again (guaranteed to execute) by clients

• You MUST ensure EntryProcessors are IDEMPOTENT

! ie: If executed again, the EntryProcessor must produce the
same value (and external side-effects)

228

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Entry Processor Semantics

• EntryProcessors may invoke other EntryProcessors

! BUT: They must be against different cache services

! This is to avoid re-entrancy and deadlock

! This is very advanced and requires configuration*

229

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Questions

• Where do custom EntryProcessors need to be
deployed?

• How could you use an EntryProcessor to insert a value
into a Cache and set the time of insertion on the value
as it is placed in the Cache?

• How would you develop a solution to synthetically
remove entries from a trades cache that are older than
25 days?

230

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Entry Aggregators

• com.tangosol.util.InvocableMap.EntryAggregator are agents
that aggregate values from Entries

! Sum, Average, Count, Max, Min, Distinct, GroupBy, Having...

• Equivalent to “agents” executing services in parallel on
the data in the cluster

• Aggregation...

! must not mutate Entries

! is for data extraction and aggregation only!

231

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

InvocableMap Interface

232

Object aggregate(Collection keys,

 InvocableMap.EntryAggregator aggregator)

Perform an aggregating operation against the entries specified

by the passed keys

Object aggregate(Filter filter,

 InvocableMap.EntryAggregator aggregator)

Perform an aggregating operation against the set of entries

that are selected by the given Filter

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Aggregation Examples

233

The total value of the open orders

BigDecimal result =

 orders.aggregate(

 new EqualsFilter(“isOpen”, Boolean.True),

 new BigDecimalSum(“getValue”));

The categories of books on sale over $25

Set categories =

 stock.aggregate(

 new AndFilter(

 new EqualsFilter(“isOnSale”, Boolean.True),

 new GreaterThenFilter(“getPrice”, 25)),

 new DistinctValue(“getCategory”));

© Copyright 2007. Tangosol Inc.
No part of this document may be reproduced without authorization from Tangosol Inc.

Questions

• Where do custom EntryAggregators need to be
deployed?

• How could you use an EntryAggregator to return the
distinct first and last name of people in a cache?

• How could develop a solution to return all of the first
and last names of people in a cache?

234

