Oracle9iAS Personalization

Programmer’s Guide

Release 2 (v9.0.2)

May 2002
Part No. A95245-02

ORACLE

Oracle9iAS Personalization Programmer’s Guide, Release 2 (v9.0.2)
Part No. A95245-02
Copyright © 2001, 2002 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are “commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i is a trademark or registered trademark of Oracle
Corporation. Other names may be trademarks of their respective owners.

Contents

SeNd US YOUTI COMMENTS ...t eee et ee e en e en s iX
P BT ACEttt ettt ettt Xi
a1 (=T Lo [0 I AN o I =T o ot SRR Xi
Documentation ACCESSIDIIITYccooiiiiiiie e Xi
) 1 0 (o1 10 1 ISR TRR SRR Xii
Where to Find More INfOrMationoceiiviiiie ittt st et sre b srresare e s ae e Xii
(©06))V/=T 011 T0] o [T xiii

1 Oracle9iAS Personalization Programming

OP AP STTUCTUTE ...ttt e e e b e e e e s e et e e e s s bbb e e e e e s b bbb e s e s s sabbbbesesssbbbbaeeessbbes 1-1
EXECULING OP PrOQIAMS . ..ottt sttt ettt sttt b et e et et b e be s bt sbesbeseesbeseeeeseeneenes 1-1
JAVAAOC FOr the OP APIS ..ottt et te e s b s be e be b e e besbeeateebeenns 1-2

Part| Recommendation Engine API

2 REAPI Overview

REAPT Prer@OUISITESiiiiiiiieiiiiesieieiete ettt sttt se et et eseaseetesseeseste e s eans e aeseenseneesenseenesrenrenes 2-1
REAPI Definitions and CONCEPLScoui ettt sttt sttt sttt s sbe e e e 2-2
REAPI End Users (CUustomers and ViSITOIS).......cc.cueiiiiiiiiinie e 2-2
LA o IAN o o] NTor= [0 g IS U T IS Yo ToY o o PP 2-2
REAPI Sessionful Web APPIICALIONSc.cooiiiiiiieise e e 2-3
REAPI Sessionless Web APpPlICAtiONS.cociiiiiiiiii e 2-3
REAPI Data COECLIONcciiiirciiiieceeess e 2-3

REAPI RECOMMENUATIONS ...ttt ettt ettt s tte e st be e et e s s st e e s s st e e e s st besanbansesabanaas 2-4

REAPT HOE PICKS ...ttt bbbttt st sttt nene 2-4
Before USING REAP ...ttt bbb bbbttt anas 2-4
REAP] DEIMO PrOQIAMuiiuiiitieiiitieee ettt sttt eat st sae s bt e b et e st e enbeebeenbenbeaeas 2-5
Creating REPFrOXYRT ODJECLScviiiicicire et ene s 2-5
Starting an REAPT SESSION ...ttt ettt be e 2-6
Creating Instances of REAPI SUPPOrting ClassSes........covieieriieiisiesie s seeseseeese s 2-6
Collecting Data for REAPI RecOmMMENAtiONS..........ccoceviiieiierieieisece e 2-7
(O] B (¢ W O 1ol s 11 o To SO USSP 2-7
Getting REAPI ReCOMMENAALIONSc.voveicrieicisee et 2-8
How REAPI Creates ReCOMMENTAtIONSc.ccerieieiieenieeneeee e 2-8
SCOMING FOF VISITOIS ...ttt et e b et e 2-8

Telo] gL I8 (0] G @A U 1) (0] 1 41T S 2-9
Making REAPI ReCOMMENAALIONS.c..ciiieriieeeceeese et siee e re e sre e seeee e 2-9
CloSING AN REAPT SESSIONc.viiiiiiiiiieiieiire sttt ettt et et ettt sbe b b 2-9
RemMOVING REPTOXYRT ODJECESoovciiiecicei ettt st sne e 2-9

3 REAPI Supporting Classes

e o 1 T LSS 3-1
LOCAtioN OF REAPT CIASSEScuviiieiiececti sttt sttt ettt sttt sttt ae s e e eneenesnenns 3-1
REAPI CategoryMembership INTErface ... 3-3
REAPI DataSource INEITaCEcccocveieiieicece sttt et sne e 3-3
REAPI FIltering INTErfaCe.......occviiie ittt e sne e 3-4
REAPI InterestDIimension INTEIfaCeccvii i 3-5
REAPI PersonalizationIndeX INtErfaceccoveveiviiiiiiiie e 3-5
REAPI ProfileDataBalance INtErfaCecccoveveieiiiiiiisie e 3-6
REAPI Profilelsage INTEITACEcoui it e 3-7
REAPI RecommendationAttribute INtErfaceccocveviveiiiie s 3-7
REAPI SOrtING INTEITACEcciiiiei et sne e 3-8
REAPT USEE INTEITACEcvviiiiiie ettt ettt sttt et et eenr e steene e beenas 3-8
Other SUPPOIrtiNg REAPT CIaSSESccvciiieisisiresesieseiese e esa e sre et stesse e saesaesaesassesnsesessees 3-9
(070] a1 (=1 01 41 (=10 4 KO F- S 3-9
(BT U7 11 (=10 0 IO - TSP 3-10
FIteriNgSEttiNgS ClaSS......vciviieiiiie ettt te s eesaens e e eneeneanens 3-10
1dentificatioNDALA ClaSS.......c.civiieiiieirire ettt nre e n e ereenes 3-11

1 0] 0 IO F TSR 3-12

ItEMDELAIDALA CIASS......eiiiiiiiiieisiiieie et st se s ebesrestesresteste e e seneeseeneanens 3-12
RecOMMENAALION CIASSccviiiiiiie e ettt re e anas 3-12
RecommendatioNCONTENT ClaSScccciciiiiiie et re e 3-13
RecomMMENdatioNLiSt ClaSS.......ccciviiiiririeieieeiee s e e sne e 3-13
TUNINGSETEINGS CIASS......ei ittt ettt ettt b e sb e st en et en e sesnesneas 3-13

4 Using REAPI

Recommendation ProXy CIaSSEScui ettt et sbe e 4-1
LOCation OF RE PrOXY CIaSSESciuiviiiieiiiee e s ste e seet e e sse s ste e eteste e stense e ensenaesenseenessessenes 4-2
RE Proxy Creation and Managementccvcvieiiriieiirieeeeseses s ste e se s 4-2

RE Data CONBCLION ..ot bbb e 4-2
REPTOXYMAaNAQET CIaSScveiviiieciie sttt sttt e e eneene e 4-3

[(0)14 Y20 1 =1 € o o L3S 4-3

RE Proxy Session ManN@QeMENTcouioiiiiieiiiiiiesiesie ettt sttt sbe s 4-3

RE Proxy Data Collection and Management..........c.ccciviirerierenenerneeesresesesesie e sesne s 4-3

Re Proxy Customer ReQISIratioNcccvviviicieecisese et 4-4

RE Proxy RECOMMENAATIONS.couiiiiiiiiiiieiet ettt e 4-4

L UL Lo TSI T 0 T =SSP 4-5
Meaning of Returned Value for Recommendations.............ccocevvvivvevenenciecnncnsese s 4-5

Rules and RECOMMENUALIONScoiiiiiiieeie ettt sb e e 4-6
RE Proxy Method USAge NOTESccveiiiieiiiiie sttt snesne s 4-6
It o] g [O =T A o] o FO TSROSO 4-6
(D1 e W 0o 1 1=To1 (T] o FO U TUTO USROS 4-6
AT TTBIMIS L.t b et e b e e b e bt eb et eb e ettt b 4-6
REMOVE TTBIMIS......ceiiee ettt r e ne e nr e 4-7

PEOXY ClBATION ...ttt bt b et bbbt bbbt eb e bt st s b et sbe e e ne et e b e 4-7
CACNE SIZE ... bbb et 4-7
INEEIVAL ... bbb b bbb et et ere e 4-8

Cr0oSS SEH IMETNOAS ... bbb sttt be b b ene 4-8
PrOXY DESIIUCTION ..ottt et ettt s r et et s e e neer e reaneerenrees 4-9

5 REAPI Examples and Usage

R o I =T o 3T TS 5-1
gy N e == T] o U L7 Vo 1= OSSP 5-1

Create an REPIOXY ODJECT... ..o e et 5-2

L ETC I (T o 0)Y 5-2
DESEIOY ThE PFOXY ...ttt et ettt eb et b e et e e b ene e sbeee e 5-3
Sessionful Web Application OULIINE ... e 5-3
Sessionless Web Application OULIINE ... 5-4
REProxyManager INteraction With JVIM ... s 5-5
Standalone Java APPHICALIONScoviviiiiie e 5-5
Java Server-Side MOAUIES..........cvii bbb 5-5
Using Multiple INStances Of REPIOXYcooiiiiiiiiiiiereeee e eb e 5-6
INIIAlIZAtION FAIl SAE ..o 5-6
Uninterrupted REAPT SEIVICEottt sttt st snesnens 5-7
(IoF:To =TT F=1 o Tod T o Vo HU OSSOSO URRRRSORPRN 5-8
Extracting Individual ReCOMMENAtIONSccovviiiiiiicceee e 5-8
Handling MUItiple CUITENCIESccvci ettt sre e 5-8
Recommendation ENQING USAQJEcccooiiiiiiiii ettt ettt sneanas 5-9
Using DemMOgraphic Data........cccoviiiiiiieiireieie ettt s sn e neens 5-10
Handling Time-Based ITEIMSccciieiiiiieie sttt ettt ne e 5-11

Part I Recommendation Engine Batch API

6 RE Batch API Overview

RE BatCh API Prer@QUISITES....c.vciiiie sttt st st sa e e e e e snenns 6-1
RE Batch API Definitions and CONCEPTLSoii i 6-2
RE Batch APl ENd USErs (CUSLOMELS)cviiiierieeiiiisesiesiesiesie e seesaeesse e sse e saestesseseessensanenss 6-2

RE Batch API RECOMMENUALIONSciiiiiiieeieiieie s 6-2
USING RE BAICH AP ...ttt b e bbbttt enas 6-2
Setting Up the RE Batch API ENVIFONMENT ..o 6-2
CUSLOMEE PrOfile DALtcvivieiiieiieecrie ettt nenes 6-3

Deploy a Package t0 an RE............oiiiiiiiie e 6-3

Sample RE BatCh APTUSAQJEc.ociviiciiiiesi ettt st sa e ene e 6-3
Creating an REBAtChPIrOXY ODJECT........c.ccvviiiieies et s s ere s 6-4
Creating Instances of RE BatCh AP] ODJECTScoiiiiiiiiiiescee e 6-4
Converting Data for RE BatCh APL........coooec et 6-4
Managing Customer Profiles for RE BatCh APcccccoiiieviicce e 6-4
Getting RE API Batch RecOmMMENdAtioNScociiiiiiiiiiiie et 6-4

vi

RATINGS TN OP ...ttt bbb bt e b e e bt e et e b beene e 6-5

Creating ReCOMMENAALIONS..........ccviiiiiieiicee et ere e snens 6-5
1o 41 0T LTRSS 6-5
Making RE Batch ReCOMMENAALIONScoeiiiiiiiiiii e e 6-5
Removing the REBAtChProXy ODJECT........ccooviieiiicisi et 6-5

7 RE Batch API Supporting Classes

e o 0 1 1 LSO 7-1
Location Of RE BAtCh APT CIaSSES........cciciiiiciecice ettt sttt e st e reste e snaesne s 7-2
EnumType Interfaces for RE BatCh AP ..o 7-2
CategoryMembership INtErTaCEcovcviviici e 7-3
DataSOUICE INTEITACEcuviie et s be et e st e e ae e st e enr e reeneesaeerees 7-4
INterestDIMENSION INTEITACE.........ccc et 7-4
PersonalizationINdex INTErfacecccovvveiiiecicicce e 7-5
ProfileDataBalance INTEITACE ..o e e re e 7-6
ProfilelUsage INTEITACEc..cv ittt eeene e 7-6
Y] o 1o TN L1 (=T - To! USSR 7-7
Other RE Batch AP SUPPOITING CIaSSES.......cciiuiiiiiiiiiiise ettt et 7-7
(DL ez 1 =] 0 0 IO - SRS 7-8
FIIteriNgSEttiNgS ClaSS......ccciviiiiieiie ittt st sttt e e e enesneere e 7-8
0= 0 T O - TS ST 7-9
[0 Tor= 11 [0 X O F- 1SS 7-10
TUNINGSELEINGS ClaSS....uiiuiiiiiiiisiie et sre st saeste e e en e senneenens 7-10

8 Using the Recommendation Engine Batch Proxy

REPTOXY BatCh OVEIVIBW ..ottt sttt sttt eneesenneenennenne s 8-1
Location of REProxXyBatCh CIaSSEScoiiiiiiiiiieie et 8-1
REProxyBatch Creation and ManagemeNtccccvvvererieeeenieeeese e s saeneeeee e 8-2
Customer Profile Managementc.coviiiiiiiiiine et eereenene s 8-2
REProxyBatch ReCOMMENTALIONS.coi ittt e 8-2

L L1 L0 TSI T T SRS 8-2
Meaning of Returned Value for Recommendations.............ccocvovvvivvevenencieesncnsnse s 8-2

Cross Sell Method UsSage NOTESc.ociiiiiiiiie et eae e 8-3
Recommendation Method Usage NOTEScccceveriiicieiniece e 8-3
REProxyBatch Rules and Recommendations...........ccoevvvveiiicicisie e 8-4

Vii

9 REProxyBatch APl Examples and Usage

REProxyBatCh API BasiC USAQE.......cccieiirieieiie ittt sttt ne et st snessesseseens 9-1
Code Sample: RECOMMENT TOP ..ocueiuiiiiiiieiiiie et et ebe e 9-2
Code Sample: Recommend CroSS Sell ... e 9-2

Recommendation ENGING USAQJEc.ccvvieiireieiirieriesieeeietesesie ettt sse e saessessesessesnsssesss 9-2

Handling MUItiple CUITENCIESoooiiiie it st 9-3

Using DemMOgraphiC Datal........c.ccveiiieiiiiie sttt s e e ene e srennes 9-4

Handling Time-Based ITEIMS ..ottt s e e sre e 9-4

A REAPI Sample Program

B REProxyBatch Sample Program

RE Batch Sample Program OVEIVIEW.........ccccviviiriereiceeieiesiesesesie e sse e s sse e ssessessesessesssssesses B-1
RE Batch Sample Program OUEIPUL..........coiiiiiieneee e e B-1
Executing the RE Batch Sample Program..........cccccviieiine s siesesee e seens B-1
RE Batch Sample Program COUEcoviiiiiiieiercse ettt sne e B-3
DATCINTEST.EXL ...ttt bbbt b et b et b e bbb e b et B-3
RS ST L (o g I =TS - Y - USSP B-5

Index

viii

Send Us Your Comments

Oracle9iAS Personalization Programmer’s Guide, Release 2 (v9.0.2)
Part No. A95245-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

. DARW NDOC@us. or acl e. com
« FAX:781-238-9893 Attn: Oracle9iAS Personalization Documentation
« Postal service:

Oracle Corporation

Oracle9iAS Personalization Documentation

10 Van de Graaff Drive

Burlington, Massachusetts 01803

US.A.

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

Preface

This manual describes how a Java programmer can use Oracle9iAS Personalization
(OP) Recommendation Engine API (REAPI) to collect data and obtain
recommendations in real time.

Intended Audience

This manual is intended for Java programmers who create and maintain Web sites
that use Oracle9iAS Personalization.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://ww. oracl e.com accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Xi

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Structure

This manual contains the following chapters and appendixes:

Chapter 1 Describes the OP APIs.

Chapter 2 Introduces REAPI.

Chapter 3 Describes the REAPI supporting classes.

Chapter 4 Describes the REAPI methods used to manage sessions, manage
data, and request recommendations.

Chapter 5 Contains examples of how to perform common tasks with the
REAPI.

Chapter 6 Introduces RE Batch API.

Chapter 7 Describes the RE Batch API supporting classes.

Chapter 8 Describes the RE Batch APl methods used to request
recommendations.

Chapter 9 Contains examples of how to perform common tasks with the
RE Batch API.

Appendix A Contains a complete example of REAPI use.

Appendix B Contains a complete example of RE Batch API use.

Where to Find More Information

The documentation set for Oracle9iAS Personalization at the current release consists
of the following documents:

= Oracle9i Application Server Installation Guide, Release 9.0.2 (the appropriate
version for your operating system).

= Oracle9iAS Release Notes, Release 9.0.2.

= Oracle9iAS Personalization Administrator’s Guide, Release 9.0.2.

Xii

= Oracle9iAS Personalization User’s Guide, Release 9.0.2.

« Oracle9iAS Personalization Programmer’s Guide, Release 9.0.2. Describes how to
use OP’s two APIs (this document).

Related Manuals
For more information about the database underlying OP, see

= Oracle9i Administrator’s Guide

Documentation Formats

Documentation for Oracle9iAS Personalization is provided in PDF and HTML
formats.

To view the PDF files, you will need

« Adobe Acrobat Reader 3.0 or later, which you can download from
http://ww. adobe. com

To view the HTML files, you will need
= Netscape 4.x or later, or

« Internet Explorer 4.x or later

Conventions

In this manual, Windows refers to the Windows95, Windows98, and the Windows
NT operating systems.

The SQL interface to Oracle9i is referred to as SQL. This interface is the Oracle9i
implementation of the SQL standard ANSI X3.135-1992, 1SO 9075:1992, commonly
referred to as the ANSI/ISO SQL standard or SQL92.

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The table below shows the conventions used in this manual and their meanings.

Convention Meaning

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

Xii

Xiv

Convention

Meaning

boldface text

italic text

<>

[]

Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

Boldface type in text indicates a term defined in the text, the glossary,
or in both locations.

Text or syntax in italics specify user-supplied names or data.
Angle brackets enclose user-supplied names.

Brackets enclose optional clauses from which you can choose one or
none.

1

Oracle9iAS Personalization Programming

Oracle9iAS Personalization provides two Java application program interfaces
(APIs):

« Recommendation Engine API (REAPI)
« Recommendation Engine Batch API (RE Batch API)

REAPI enables a Web application written in Java to collect and preprocess data used
to build OP models and to request recommendations. The recommendations are
returned in real time. REAPI is described in Part | of this manual.

RE Batch API enables a web application written in Java to request Oracle9iAS
Personalization-style recommendations in bulk mode. The recommendations are
written to table. RE Batch API does not return results in real time. REAPI Batch is
described in Part Il of this manual.

OP API Structure

The two OP APIs have the same components:
= Supporting classes, used to set constraints for the mining operations

= The proxy classes, used to obtain recommendations

Executing OP Programs

Before you can execute a program using either OP API, you must deploy and build
an OP package, as described in the Oracle9iAS Personalization User’s Guide.

Oracle9iAS Personalization Programming 1-1

Javadoc for the OP APlIs

Javadoc for the OP APIs

Detailed descriptions of the OP APIs are not included in this manual. The API calls
are documented by Javadoc; see the OP section of the Oracle9i Application Server
Documentation Library.

1-2 Oracle9iAS Personalization Programmer’s Guide

Part |

Recommendation Engine API

Part | describes the OP (Oracle9iAS Personalization) REAPI (Recommendation
Engine Application Programming Interface). The REAPI permits a Web application
to collect targeted data and to return recommendations during a session.

This part contains the following chapter:

« Chapter 2, "REAPI Overview"

« Chapter 3, "REAPI Supporting Classes"

. Chapter 4, "Using REAPI"

« Chapter 5, "REAPI Examples and Usage"

For a complete example of REAPI usage, see Appendix A.

For detailed descriptions of the REAPI classes, see the Javadoc in the OP section of
the Oracle9i Application Server Documentation Library.

2

REAPI Overview

The OP (Oracle9iAS Personalization) REAPI (Recommendation Engine Application
Programming Interface) enables a Web application written in Java to collect and
preprocess data used to build OP models and to request recommendations. The
recommendations are returned in real time.

OP also includes the Recommendation Engine Batch API, which returns bulk
recommendations.

REAPI was designed to be extensible, to minimize the number of API functions, to
be uniform, and to keep the number of arguments to a minimum.

Appendix A contains a complete example of REAPI use.
OP includes a demo program that helps you learn how the APl methods work.

REAPI classes and methods are described in detail in the Javadoc in the OP section
of the Oracle9i Application Server Documentation Library.

Note: REAPI and REAPI Demo are installed on the system where
Oracle9iAS is installed.

REAPI Prerequisites

Before you can use REAPI methods, OP must be installed and the appropriate
tables must be created and populated. If you plan to use existing data, the data
must be converted to use the appropriate schema. If you plan to use Hot Picks, you
must specify Hot Pick groups, as well as Hot Picks. If you are using one or more
taxonomies, they must be properly specified.

If you plan to request recommendations, you must build and deploy an OP package
before you request any recommendations. Use the OP Administrative Ul to do this.

REAPI Overview 2-1

REAPI Definitions and Concepts

For detailed information about how to install OP, see the Oracle9i Application Server
Installation Guide and the Oracle9iAS Personalization Administrator’s Guide. For
information about how to create and deploy packages, see Oracle9iAS
Personalization User’s Guide and the online help for the OP administrative Ul.

REAPI Definitions and Concepts

This section describes the collections of methods that make up the REAPI and
concepts and terms used in the description of the API.

REAPI End Users (Customers and Visitors)

End users (users of a Web site that uses OP for personalization services) are divided
into two groups: customers and visitors. A customer is a registered user, who can be
identified by a unique customer ID assigned by the Web application. A visitor is an
unregistered user; a visitor is usually assigned a visitor ID by the Web application.
A visitor can become a customer by completing registration. End users are specified
using the l denti fi cat i onDat a class.

Web Applications and Sessions

Some Web applications are stateful, that is, they maintains the state of the client
activities during a certain time period; other Web applications are stateless. Most
Web applications that support eCommerce are stateful or sessionful. A client session
often starts with a login and ends with either an explicit logout or when the session
times out. Oracle Personalization maintains its own session for data mining
purpose regardless of whether the application is stateful or stateless. If the
application is stateful, the session that OP maintains can be perfectly mapped as the
application’s session. (For an eCommerce application, the recommendation made to
the user is based on the user activities.) If the application does not maintain user
session, OP then tracks the user session on itself. In this case, the OP session starts
when a particular user ID appears in any REAPI method call the first time, and the
session ends when the session times out, that is, when the user ID remains inactive
for a preset time period.

In summary, the Web application that calls REAPI can be either of the following:
« sessionful (stateful), that is, it creates a session for each user visit to the Web site
= sessionless (stateless), that is, it does not create such a session

OP is always sessionful; it creates a session even if the Web application does not.

2-2 Oracle9iAS Personalization Programmer’s Guide

REAPI Definitions and Concepts

During the OP session, the Web application can collect data and/or request
recommendations.

REAPI Sessionful Web Applications
If the Web application is sessionful, OP will map its session to the application
session. To create a sessionful application, use one of the following methods:

cr eat eCust omer Sessi on to create a session for a customer (registered user)

creat eVi sit or Sessi on to create a session for a visitors (a user who isn’t
registered)

The Web application then uses the cr eat eSessi onf ul () method of the class
I denti fi cati onDat a to create identification data used during the session.

REAPI Sessionless Web Applications
If the Web application is sessionless, the recommendation engine (RE) will maintain
OP sessions by itself. An OP session will be created when the first REAPI method
(either data collection or recommendation request) issued for a given cust oner | d.
The RE will track user activity until the session is timed out, that is, until the given
cust omer | d is inactive for a specified period.

The Web application uses the cr eat eSessi onl ess() method of the class
I denti fi cati onDat a to create user identification for the session.

REAPI Data Collection

OP supports collecting several kinds of data: demographic data, purchasing, rating,
and navigation data. The Web application decides what kind of data to collect.

Note: Ratings in OP are in "ascending order of goodness", that is,
the higher the rating, the more the user prefers the item. Low rated
items are items that the user does not prefer. OP algorithms use
these assumptions, so it is important that ratings are in ascending
order of goodness.

Data for both visitors and customers can be either persisted (stored in the database)
or not. Data is collected in an RE and is persisted in the mining table repository
(MTR) database. A configuration parameter specifies whether or not to persist data.

REAPI Overview 2-3

Before Using REAPI

For more information about what data is persisted and when, see the discussion of
data synchronization in the Oracle9iAS Personalization Administrator’s Guide.

Data collection makes it possible to generate recommendations based on user
activity during the current session as well as historical data.

REAPI Recommendations
For both visitors and customers, recommendations are based on two kinds of data:

« Historical data, which is stored in the database and retrieved at the beginning of
the current session

« Data collected during the current session

REAPI Hot Picks

On some e-commerce sites, vendors promote certain products called “hot picks”;
the hot picks might, for example, be this week’s specials. The hot pick items are
grouped into Hot Pick Groups. The hot pick items and groups are specified by the OP
administrator in the Mining Table Repository (MTR); each hot picks group is
identified by a (long) integer.

Before Using REAPI

Before you can use REAPI, the following must be true:

= A recommendation engine farm containing at least one recommendation engine
must exist.

= A package must have been successfully deployed in the recommendation
engine farm.

Oracle9iAS Personalization User’s Guide and the online help for the OP
Administrative Ul explain how to perform these steps.

Some REAPI methods collect data in the recommendation engine (RE), which
resides in Oracle9i database; others retrieve recommendations.

You can then either collect data or get recommendations. You cannot get
recommendations until there is an existing deployed package, which is created
using the OP Administrative Ul. You cannot create a package until there is some
data available; this data can either be collected using the REAPI or converted from
existing data collected by your Web application and stored in an Oracle database.

2-4 Oracle9iAS Personalization Programmer’s Guide

Before Using REAPI

When you design an OP application, you must decide if there should be more than
one RE and, if there are several REs, how to use them. For a discussion of the design
considerations, see "Recommendation Engine Usage" in Chapter 5.

Recommendations may want to take income level (salary) into consideration; for
example, you may want to recommend items that the user can afford to buy. If the
users of the Web site live in several countries (for example, the Web site sells items
in Japan and India), see "Handling Multiple Currencies" in Chapter 5.

REAPI Demo Program

OP includes REAPI Demo that illustrates the use of many of the REAPI methods.
This sample program can be used to learn about REAPI calls and can also be used to
verify that OP is correctly installed.

After you have installed OP, start REAPI Demo by opening the following URL in
Netscape or Internet Explorer:

http://server/redeno/

where ser ver is the name of the system where Oracle9iAS is installed. The REAPI
test site is displayed.

To view the source code for the OP REAPI Demo, click "View Source Code."

For information about how run the demo, see the Oracle9iAS Personalization User’s
Guide. There are also some examples of how to perform typical tasks using REAPI
in Chapter 5 of this manual and a complete example using all REAPI functionality
in Appendix A.

Creating REProxyRT Objects

Before any recommendation or data collection requests can be processed using
REAPI methods, at least one REPr oxyRT object that connects to designated RE
must be created.

In a Web application environment, it is better to create all required proxies during
the initialization stage. This is a safe approach, because the application does not
have to process any recommendation requests after the application is initialized
successfully.

If it is not possible to create all required proxies during initialization, the proxies
may be created when the very first recommendation request is being processed. In
this case, the application code must handle race conditions properly when
numerous requests come up simultaneously. If numerous recommendation requests

REAPI Overview 2-5

Before Using REAPI

came up before the proxy exists, only one of the requests will create the proxy object
because creating a proxy is a synchronous process. Since it may take a few hundred
milliseconds to create a proxy object, many requests may be held up during the
time. Thus, a racing situation may occur. Although REAPI is multi-thread safe, such
a racing situation will not cause any problem for REPr oxy RT. However, it may
cause exceptions for the application.

See Chapter 5 for more information about proxies.

Starting an REAPI Session

If the Web application is sessionful, it must start a session. The Web application
must take care to specify a unique session ID for each application session. For an
example of how to do this, see Chapter 5.

If the Web application is sessionless, it does not have to start a session. (In this case
OP will start an internal session for a given user when the Web application makes
the first REAPI call.)

OP starts a session for each user, as defined by the user ID provided by the Web
application. If two people are using a site at the same time and they both use the
same user ID (and the application does not distinguish between different sessions),
then OP assigns the same session ID to both users. OP treats them as a single user.
After the OP session times out, OP assigns a new session ID when the user logs in
again.

Sessionful and sessionless applications get recommendations on behalf of a user.
User IDs must be unique.

Creating Instances of REAPI Supporting Classes

To use the REAPI, you must create instances of the objects used by the APl method
signatures. Use the REAPI supporting classes, described in Chapter 3, to create
these instances. It is always necessary, for example, to create an

I denti fi cati onDat a object. The following classes are frequently used in REAPI
signatures:

« ldentificationbData
« FilteringSettings
=« TuningSettings

= ltem

« Dataltem

2-6 Oracle9iAS Personalization Programmer’s Guide

Before Using REAPI

«» Recommendati on
» Recommendati on Cont ent

For examples, see Chapter 5 and the complete example in Appendix A.

Collecting Data for REAPI Recommendations

OP generates recommendations based on data describing past and/or current user
behavior.

If the Web application has user data stored in an Oracle table, the data must be
transformed and stored in the Mining Table Repository (MTR) before it can be used
to generate recommendations.

A Web application can also collect data during the current session. This data can be
used to make recommendations during the current session and it can be stored to
make recommendations in future sessions.

Use the following methods to collect and manage data during the current session:
addl tem();
addl tens();
renovel tem();
renovel tens();

These methods add information to or remove information from the OP
Recommendation Engine (RE) and its cache for a specified OP internal session ID.
The session ID is stored inthe | dent i fi cati onDat a passed in the REAPI
method.

OP Data Caching

When one of the OP data collection methods (addl t em() or addlt ens()) is
called, the user profile data is first saved in a buffer (the Data Collection Cache) on
the Application Server. The data collection cache is created as part of the
initialization of an REProxy object. The size of the data buffer is
custom-configurable and is specified by the input parameter cacheSi ze of the
method REPr oxyManager . cr eat ePr oxy() . The data saved in the buffer is
periodically saved (archived) in the database. The i nt er val of archive is set by
another the input parameter interval of the same method. The data collection cache
consists of two identical buffers; when one buffer is being archived, the other is
used for saving the incoming data. Thus the data collection operation runs without
interruption.

REAPI Overview 2-7

Before Using REAPI

Getting REAPI Recommendations

To get a recommendation, the Web application calls one of the following
recommendation methods:

« crossSell ForltenfFronHot Pi cks()
« crossSell ForltensFrontot Pi cks()
« rateltem)

« rateltens()

« reconmmendBottom tens()

« reconmmendCrossSel | Forltem()

« reconmmendCrossSel | Forltens()

« recommendFr ontHot Pi cks()

« recommendTopl tens()

« sel ect FronHot Pi cks()

These methods are used to get recommendations for either visitors or customers.

How REAPI Creates Recommendations

OP uses rule tables stored in the RE cache to calculate the recommendations
requested by the methods listed above. The specific rule table used depends upon
the REAPI method made. In general, the antecedents of the rules are matched
against the data in cache (both historical and current session data) and the
probabilities of the various consequents are computed. These items are then ordered
by probability, and nunber Of | t enrs (an APl argument) items are returned.

If there is enough memory in the RE database, the RE caches all rules associated
with a particular package deployed from the MTR to the RE, not just the most
recently used rules.

Scoring for Visitors: For visitors, only current session data is used. Usually only
navigational data (click stream) is persisted for visitors, but if the Web application
persists other kinds of data for visitors, that data will also be used for model
building. (OP builds a model when it creates a package.) The scoring of these
different methods uses only the data stored in the RE cache by addl t em()
methods.

2-8 Oracle9iAS Personalization Programmer’s Guide

Before Using REAPI

Scoring for Customers: For customers, the scoring is the same as for visitors. For
customers, historical data can also be used for scoring.

The OP Mining Table Repository (MTR) contains historical rating, transactional
data, and navigational data stored in both detailed and aggregated formats. The
MTR also contains demographic data. When scoring for customers, the RE retrieves
the demographic data and the aggregated version of the other data source types.

Making REAPI Recommendations

REAPI methods that make recommendations return the recommendations to the
Web application. The Web application then decides which recommendations to pass
to the user.

Closing an REAPI Session

A sessionful Web application should use cl oseSessi on() to close the OP session.
If there is no explicit cl oseSessi on() method, OP automatically closes the
session when it times out.

In a sessionless Web application, the OP session closes when it times out.

For either sessionless or sessionful Web applications, the time-out period is
specified as a configuration parameter.

See the Oracle9iAS Personalization Administrator’s Guide for information about
configuration parameters.

Removing REProxyRT Objects

If you wish to destroy proxies programmatically you can use one of the following
methods:

« destroyProxy(), which destroys one name proxy
« destroyAl | Proxi es(), which destroys all existing proxies.

Both methods forcefully remove proxies regardless of their active status. See
detailed discussion in Chapter 5 for different usage models.

REAPI Overview 2-9

Before Using REAPI

2-10 Oracle9iAS Personalization Programmer’s Guide

3

REAPI Supporting Classes

This chapter describes the supporting classes for the REPr oxy class. These classes
are used to create instances of the objects used by the methods described in
Chapter 4. You may be able to create one instance of many of these classes and use
that one instance as an argument for several calls.

All methods described in this chapter are public.

The supporting classes are divided into two categories:
n EnunType interfaces

n Other supporting classes

This chapter does not contained detailed descriptions of any of the classes. For
detailed information, see the Javadoc in the OP section of the Oracle9i Application
Server Documentation Library.

Ratings in OP

Ratings in OP are in "ascending order of goodness"”, that is, the higher the rating, the
more the user prefers the item. Low rated items are items that the user does not
prefer. OP algorithms use these assumptions, so it is important that ratings are in
ascending order of goodness.

Location of REAPI Classes

The following classes are in the or acl e. dnt . op. r e. base package:
n Dataltem

n Enum

REAPI Supporting Classes 3-1

REAPI EnumType Interfaces

n

n

FilteringSettings
Item

I tenLi st

Tuni ngSettings

Recomendat i onCont ent (oneclassinoracl e.dnt.op.re.reapi.rt)

To use the Enuminterfaces, you must include the following statement in your Java
program:

i mport oracle.dnt.op.re. base. Enum

REAPI EnumType Interfaces

Many of the REAPI methods reference attributes that can take on a finite number of
values. The interface Enumis used to implement the base class for these enumerated
constants.

The Enuminterface has a nested Enunilype class with the following general
methods:

n

int getld()
String toString()
String get Nane()

bool ean i sEqual (Enunilype)

The following interfaces extend EnuniTy pe:

Cat egor yMenber shi p

Dat aSour ce

Filtering

I nt er est Di nensi on

Per sonal i zat i onl ndex
Profi | eDat aBal ance
Profil eUsage
Recommendati onAttri bute
Sorting

User

3-2 Oracle9iAS Personalization Programmer’s Guide

REAPI EnumType Interfaces

REAPI CategoryMembership Interface
Cat egor yMenber shi pType is implemented as:

n Cat egoryMenber shi pType (a class that extends Enunilype)
n Cat egor yMenber shi p (an interface)
The class Cat egor yMenber shi p has the following methods:

Cat egor yMenber Shi pType get Type(Stri ng nane)

Cat egor yMenber Shi pType get Type(i nt)

Cat egor yMenber shi p specifies how categories in a list of categories should be
applied for filtering. For example, Enum Cat egor yMenber shi p. EXCLUDE

| TEVS specifies that items from the categories in the category list should be
excluded from the recommendations list. For details, see FilteringSettings Class
later in this chapter.

Cat egor yMenber shi p takes on the following values:

n Enum Cat egor yMenber shi p. EXCLUDE | TEMS

n Enum Cat egor yMenber shi p. | NCLUDE | TEMS

n Enum Cat egor yMenber shi p. EXCLUDE_CATEGCORI ES
» Enum Cat egor yMenber shi p. | NCLUDE_CATEGCORI ES
n Enum Cat egor yMenber shi p. LEVEL

n Enum Cat egor yMenber shi p. SUBTREE | TEMS

» Enum Cat egor yMenber shi p. SUBTREE_CATEGCORI ES
n Enum Cat egor yMenber shi p. ALL_| TEMS

» Enum Cat egor yMenber shi p. ALL_CATEGORI ES

The following statement assigns Enum Cat egor yMenber shi p. LEVEL to the
variable myEnum

Cat egor yMenber shi pType myEnum = Enum Cat egor yMenber shi p. LEVEL

REAPI DataSource Interface
Dat aSour ce is implemented as:

n Dat aSour ceType (aclass that extends Enunilype)

» Dat aSour ce (an interface)

REAPI Supporting Classes 3-3

REAPI EnumType Interfaces

The class Dat aSour ceType has the following methods:
Dat aSour ceType get Type(Stri ng nane)
Dat aSour ceType get Type(i nt)

Dat aSour ce specifies the type of data that is used when OP performs certain
operations. For example, Enum Dat aSour ce. DEMOGRAPHI C specifies that
demographic data should be used. The class Dataltem Class, described later in this
chapter, uses Dat aSour ce. Note that a given method may not support all values of
Dat aSour ce. For details, see the description of the methods in Chapter 4.

Dat aSour ce takes on the following values:

n Enum Dat aSour ce. DEMOGRAPHI C

n Enum Dat aSour ce. PURCHASI NG

n Enum Dat aSour ce. RATI NG

n Enum Dat aSour ce. NAVI GATI ON

n Enum Dat aSour ce. ALL

The following statement assigns Enum Dat aSour ce. ALL to the variable myEnum

Dat aSour ceType nyEnum = Enum Dat aSour ce. ALL;

REAPI Filtering Interface
Fi |l t eri ngisimplemented as:
n FilteringType (aclass that extends EnunType)
n Filtering (an interface)
Theclass Fi | t eri ngType has the following methods:
FilteringType get Type(String namne)
FilteringType get Type(int)

Fi | t eri ng is used to turn filtering on or off. See the description of the
FilteringSettings Class, later in this chapter for more information.

Fi | t eri ng takes on the following values:
n EnumFiltering. ON
n EnumFiltering. OFF

3-4 Oracle9iAS Personalization Programmer’s Guide

REAPI EnumType Interfaces

The following statement assigns Enum Fi | t er i ng. OFF to the variable nyEnum

FilteringType nmyEnum = Enum Fil teri ng. OFF;

REAPI InterestDimension Interface
I nt er est Di nensi on is implemented as:

n I nterestDi mensi onType (a class that extends EnuniType)
n I nterestDi mensi on (an interface)
The class | nt er est Di nensi onType has the following methods:
I nt erest D mensi onType get Type(String nane)
I nt erest D mensi onType get Type(i nt)

I nt er est Di nensi on indicates the type of interest that the user of the Web site has
in a given item. NAVI GATI ON indicates that the user is interested in the items.
PURCHASI NGindicates that the user purchased an item. RATI NGindicates that the
user likes the items. For more information, see the description of the
RecommendationList Class and TuningSettings Class later in this chapter.

I nt er est Di mensi on takes on the following values:
n Enum | nt er est Di mensi on. NAVI GATI ON

» Enum | nt er est Di mensi on. PURCHASI NG

n Enum | nt er est Di nensi on. RATI NG

The following statement assigns Enum | nt er est Di nensi on. PURCHASI NGto the
variable myEnum

I nt er est Di nensi on nyEnum = Enum I nt er est Di mensi on. PURCHASI NG

REAPI PersonalizationIndex Interface
Per sonal i zat i onl ndex is implemented as:

» Personalizationl ndexType (aclass that extends EnuniType)

n Personalizationl ndex (an interface)

The class Per sonal i zat i onl ndexType has the following methods:
Per sonal i zat i onl ndexType get Type(String nane)

Per sonal i zat i onl ndexType get Type(int)

REAPI Supporting Classes 3-5

REAPI EnumType Interfaces

Per sonal i zat i onl ndex specifies how "unusual” the recommendations returned
will be. For example, LOMNspecifies not unusual. For more information, see the
description of the TuningSettings Class later in this chapter.

Per sonal i zat i onl ndex takes on the following values:
n Enum Personal i zati onl ndex. LON

» Enum Personal i zati onl ndex. MEDI UM

n Enum Personal i zati onl ndex. H GH

The following statement assigns Enum Per sonal i zat i onl ndex. LOWto the
variable myEnum

Per sonal i zat i onl ndexType nyEnum = Enum Per sonal i zati onl ndex. LOW

REAPI ProfileDataBalance Interface
Pr of i | eDat aBal ance is implemented as:

» Profil eDat aBal anceType (a class that extends Enunilype)

» Profil eDat aBal ance (an interface)

The class Pr of i | eDat aBal anceType has the following methods:
Profi | eDat aBal anceType get Type(String nane)
Prof i | eDat aBal anceType get Type(int)

Pr of i | eDat aBal ance specifies whether to take data from the current session or
from history or to balance data between data from the current session and history

when making recommendations. For more information, see the description of the

TuningSettings Class later in this chapter.

Pr of i | eDat aBal ance takes on the following values:
n Enum Profil eDat aBal ance. H STORY

n Enum Profil eDat aBal ance. BALANCED

n Enum Profil eDat aBal ance. CURRENT

The following statement assigns Enum Pr of i | eDat aBal ance. BALANCED to the
variable myEnum

Profi | eDat aBal anceType myEnum = Enum Prof i | eDat aBal ance. BALANCED;

3-6 Oracle9iAS Personalization Programmer’s Guide

REAPI EnumType Interfaces

REAPI ProfileUsage Interface

Profi | eUsage is implemented as:

n Profil eUsageType (aclass that extends EnunType)

n Profil eUsage (an interface)

The class Pr of i | eUsageType has the following methods:
Profil eUsageType get Type(String nane)
Profil eUsageType get Type(int)

Pr of i | eUsage specifies whether the recommendation list can include or exclude
items in a customer’s profile. For more information, see the description of
TuningSettings Class later in this chapter.

Pr of i | eUsage takes on the following values:
n Enum Profil eUsage. | NCLUDE
n Enum Profil eUsage. EXCLUDE

The following statement assigns Enum Pr of i | eUsage. | NCLUDE to the variable
myEnum

Profil eUsageType myEnum = Enum Profi | eUsage. | NCLUDE;

REAPI RecommendationAttribute Interface
Recomendat i onAt t ri but e is implemented as:

» Recommendati onAttri but eType (aclass that extends Enunilype)

n Recommendati onAttri but e (an interface)

The class Reconmmendat i onAt tri but eType has the following methods:
Recommendat i onAttri but eType get Type(String nane)
Recomendat i onAttri but eType get Type(int)

Recommendat i onAt t ri but e indicates the attribute to be included in the returned
content; possible choices are type, ID, and prediction. For more information, see the
descriptions of the Contentltem Class and RecommendationContent Class later in
this chapter.

Recommendat i onAt t ri but e takes on the following values:

n Enum Recommendati onAttri bute. TYPE

REAPI Supporting Classes 3-7

REAPI EnumType Interfaces

n Enum Recommendati onAttri bute.|D
n Enum Recommendati onAttri but e. PREDI CTI ON

The following statement assigns Enum Reconmendat i onAt tri but e. URL to the
variable myEnum

Recommendat i onAttri but eType nyEnum = Enum Recommendati onAttri but e. TYPE;

REAPI Sorting Interface

Sor ti ng is implemented as:
n SortingType (aclass that extends EnuniType)
n Sorting (an interface)
The class Sor t i ngType has the following methods:
SortingType get Type(String nane)
SortingType get Type(int)
Sor t i ng indicates whether sorting is done (none implies no sorting), and, if sorting
is done, how it is done (ascending or descending). For more information, see the

discussions of the Contentltem Class and RecommendationContent Class later in
this chapter.

Sor t i ng takes on the following values:
n Enum Sorting. NONE
n Enum Sorti ng. DESCENDI NG

n Enum Sorting. ASCENDI NG
The following statement assigns Enum Sor t i ng. NONE to the variable myEnum

SortingType nyEnum = Enum Sorti ng. NONE;

REAPI User Interface

User is implemented as:

n User Type (a class that extends Enuniype)

n User (an interface)

The class User Type has the following methods:
User Type get Type(String nane)
User Type get Type(i nt)

3-8 Oracle9iAS Personalization Programmer’s Guide

Other Supporting REAPI Classes

UserType is either customer, a registered user of the calling Web site, or visitor, an
unregistered user. For more information see the description of the
IdentificationData Class later in this chapter.

User Type takes on the following values:

n Enum User. CUSTOMVER

n Enum User. VI SI TOR

The following statement assigns Enum User . CUSTOVER to the variable nyEnum
User TypeType nmyEnum = Enum User . CUSTOVER;

Other Supporting REAPI Classes
The other supporting classes are
n Contentltem
n Dataltem
n FilteringSettings
n ldentificationData
n ltem
n ltenDetail Data
n Recommendati on
n Reconmendat i onCont ent
n Recommendat i onLi st
n TuningSettings

These classes are described briefly in this document. For detailed descriptions, see
the Javadoc for OP.

Contentltem Class

This class encapsulates the information that should be included in the object
returned by a recommendation request. It describes the attributes to be included in
the recommendation list returned by a call as well as specifying whether the list
should be sorted according to one of the attributes. RecommendationContent Class,
described later in this chapter, is any array of items of type Cont ent | t em the

REAPI Supporting Classes 3-9

Other Supporting REAPI Classes

description of RecommendationContent Class explains how sorting order works
when multiple orders are specified.

This class contains the following methods:

n getContentAttribute()

n getSorting()

Dataltem Class

This class is a subclass of class | t em It encapsulates data about an item. This object
is used as an argument in the data collection methods addl t em() and
addl tems().

There are two kinds of methods provided with this class:

n A constructor for Dat al t em

n Methods that return attribute values:

n

n

get Dat aSour ce()
get Val ue()

FilteringSettings Class

This classe is used to specify the items to include or exclude when generating
recommendations.

Release 2 of OP supports category filtering only.

There are three kinds of methods provided with this class:

n Aconstructor for Fi | teri ngSetti ngs

n Methods that set the attributes values:

n

n

n

setltenFiltering(int taxononyl D)
setltenFiltering(int taxononyl D, |ong[] categorylList)
set | t emExcl usi on(int taxononyl D, |ong[] categorylList])

setltenSubTreeFiltering(int taxonomyl D, |ong[]
cat egorylist])

set Cat egor yExcl usi on(i nt taxononyl D, |ong[]
cat egorylist])

3-10 Oracle9iAS Personalization Programmer’s Guide

Other Supporting REAPI Classes

n setCategorySubTreeFiltering(int taxononylD, |ong[]
cat egorylist])

n setCategorylLevel Filtering(int taxonomylD, |ong[]
cat egorylist])

n setCategoryFiltering(int taxonomnyl D)

n setCategoryFiltering(int taxonomylD, |ong[]
cat egorylLi st)

n Methods that return attribute values:
n get Taxononyl ()
n getCategoryFiltering ()
n get Cat egorylList ()
n get Cat egor yMenber shi p()

Not all filtering settings can be used will all methods. In particular, the following
filtering setting cannot be used with the cross-sell methods:

n setCategorylLevel Filtering

n SetCategorySubtreeFiltering

n Sset Cat egor yExcl usi on

n setCategoryFiltering(int)

n setCategoryFiltering(int, long[])

|dentificationData Class
Identifies the user and/or the session.

There are two kinds of methods provided with this class:

n Methods that create | dent i fi cat i onDat a instances
n createSessionful (String appSessi onl D User Type user Type)
n CreateSessionless(String appSessi onl D, User Type user Type)

n Methods that return attribute values:
n getUserl D()

n get AppSessionl ()
n getUser Type()

REAPI Supporting Classes 3-11

Other Supporting REAPI Classes

The calling Web application should assign a user | Dto all users, both customers
(registered users) and visitors. 1Ds for customers must be unique. If IDs for visitors
are not unique, OP will not be able to make recommendations that are specific to a
given visitor; instead the same recommendations would be made for all visitors
who had the given ID.

Item Class

This class is used to represent items that can be recommended and for which data
can be collected. An item is uniquely represented by the combination of t ype and

| D. Item | Ds must be unique within a given t ype, but different t ypes can have the
same | Ds.

There are three kinds of methods provided with this class:
» A constructor that creates an | t eminstance
n Methods that return attribute values
n getType()
noogetl)
» A method that is a debugging aid

ItemDetailData Class

This class is created internally by OP as part of the result of recommendation
request. The calling Web application will have to examine the attributes to
determine what attributes and values they contain. See the description of
Recommendation Class later in this chapter for more details.

There are three methods:
n getAttribute()

n getVal ue()

n toString()

Recommendation Class

This class encapsulates information about a single recommended item. The
information about the item is stored in the at t r i but es array.

3-12 Oracle9iAS Personalization Programmer’s Guide

Other Supporting REAPI Classes

There are two methods:
n getAttributes()
n toString()

RecommendationContent Class

This class specifies the type of information that a recommendation request should
return.

There are two kinds of methods provided with this class:

» Two constructors that create Reconmendat i onCont ent instances depending
on how sorting is to be done

» A method that returns the content items

If multiple instances of the array are to be sorted, the sorting order follows the array
index order. That is, the result is sorted according to the attribute in the first array
entry marked to be sorted, followed by the attribute in the second entry marked to
be sorted, etc.

RecommendationList Class

A recommendation list is the collection of recommendations for a specific
I nt er est Di nensi on. Recommendat i onLi st is the class returned by all REAPI
methods that return recommendations.

The methods in this class permit the calling Web application to determine the
interest dimension type, to determine the actual number of recommendations
returned, and to get the individual recommendations.

TuningSettings Class

This class specifies settings to be applied when computing a recommendation. An
instance of this class is passed to all recommendation requests.

There are three kinds of methods provided with this class:
n A constructor that creates a Tuni ngSet t i ngs instance
n Methods that set attribute values

n Methods that return attribute values

REAPI Supporting Classes 3-13

Other Supporting REAPI Classes

The following methods set attribute values:

n

n

n

n

n

set Dat aSour ceType()

set | nt er est Di mensi on()
set Personal i zat i onl ndex()
set Profi | eDat aBal ance()

set Profil eUsage()

The following methods return attribute values:

n

n

n

get Dat aSour ceType()

get | nt er est D mensi on()
get Personal i zat i onl ndex()
get Profi | eDat aBal ance()
get Profil eUsage()

3-14 Oracle9iAS Personalization Programmer’s Guide

A4

Using REAPI

This chapter provides an overview of the methods that are used to manage the
recommendation engine proxy, to collect data, and to obtain recommendations,
followed by usage notes for some of the methods. The supporting classes for these
methods are described in Chapter 3.

For detailed descriptions of these methods, see the Javadoc in the OP section of the
Oracle9i Application Server Documentation Library.

For examples of how to uses these classes and methods, see Chapter 5 and the
complete example in Appendix A.

All these methods return results in real time. Usually they return recommendations
for a single user.

All methods described in this chapter are public.

Recommendation Proxy Classes

The real time recommendation proxy (REPr oxy RT) methods can be divided
according to function, as follows:

n Proxy creation and management (the proxy manager and related methods)
n Session management (create and close)

» Data collection (collect, preprocess, and store data in recommendation engine
(RE) tables)

» Recommendations (obtain various types of recommendations)

Using REAPI 4-1

Location of RE Proxy Classes

Location of RE Proxy Classes

To use the REPr oxyRT (and its exceptions), you must include the following
statements in your Java program:

import oracle.dnt.op.re.reapi.rt.*;
i mport oracle.dnt.op.re.reexception.?*;

All these classes reside on the system where Oracle9iAS is installed.

RE Proxy Creation and Management
REPr oxyManager handles a pool of REPr oxyRT instances. Using multiple

REPr oxyRT instances within a Web server, such as Oracle9i Application Server,
provides the following benefits:

» Fault tolerance (if one instance fails, there is another to use)

n Load distribution (the load can be spread among all proxy instances)

» Domain-dependent recommendations (each proxy instance is associated with a
specific RE)

Multiple proxy instances can result in the following issues:

n Collected data may be lost when an instance of the proxy fails and the
application shifts to another instance.

n A given customer must be connected to the same RE for all transactions during
a session.

The REProxyManager class also includes a caching mechanism that supports data
collection in the recommendation engine.

RE Data Collection

The REPr oxyRT class includes the Dat aCol | ect i on cache, which supports data
collection in the RE. Every time you create an REPr oxy RT object, the cache is built
as a subcomponent of the proxy object. When data is collected using the REAPI calls
addl t em() and addl t ens() , the data is stored in the cache (in the memory) and
is periodically flushed to RE schema. This "batch save" improves RE performance.
The cache is created when a new REPr oxy RT object is created. The refresh rate is
defined by an input parameter to REPr oxyManager . cr eat ePr oxy() .

Currently, only item and user ID data in the classes Dat al t emand
I denti fi cati onDat a are cached, and they are cached as current session data.

4-2 Oracle9iAS Personalization Programmer’s Guide

Location of RE Proxy Classes

REProxyManager Class

REPr oxyManager is a singleton implementation, that is, only one instance of the
REPr oxyManager class is created in a particular JVM instance, and the class is
loaded automatically.

The REPr oxyManager class is used to create and manage the instances of

REPr oxyRT. REPr oxyManager has only static public methods. REPr oxyManager
does not have a public constructor and hence cannot be created by the user.

REPr oxyManager maintains an REPr oxyRT pool and uses proxy names to
reference individual REPr oxyRT objects.

The following methods manage REPr oxy RT objects:
n CreateProxy

n get Proxy

n destroyAl | Proxies

n destroyProxy

For examples of how to use the proxy manager, see Chapter 5 and the complete
example in Appendix A.

Proxy Methods

All the recommendation requests are processed through class REPr oxyRT. Obtain a
REPr oxyRT object using cr eat ePr oxy or get Pr oxy before you perform any
recommendation tasks, such as handling sessions for a sessionful application,
collecting customer profile data, and getting recommendations.

RE Proxy Session Management
The following methods manage sessions:

n cr eat eCust onrer Sessi on
n CcreateVisitorSession

n ¢l oseSession

RE Proxy Data Collection and Management

The following methods collect, preprocess, and store data in RE tables. The collected
data can be persisted by setting appropriate configuration parameters:

n addltem

Using REAPI 4-3

Location of RE Proxy Classes

» addltens
n renovel tem

n renovel temns

Re Proxy Customer Registration

The following method permits you to change a visitor to a customer (registered
user):

n setVisitor ToCust oner

This method can be used in both sessionful or sessionless applications.

RE Proxy Recommendations
The following methods obtain and manage recommendations:
n rateltem
n rateltens
n recomendTopltens
n recomendBottomnl tens
n recomendFr onHot Pi cks
n recomendCrossSel |l Forltem
n recomendCrossSel | Forltens
n crossSel | ForltenfronmHot Pi cks
n crossSel |l ForltensFronHot Pi cks
n sel ect FronmHot Pi cks

Communicating the returned recommendations to the end user is the responsibility
of the calling Web application. The calling Web application must also decide which
recommendations to pass to the user. For example, the Web application may want to
check that an item is in stock before recommending the item.

The methods that return recommendations do not necessarily return a list of items.
IfyousetFilteringSettings. CategoryMenber shi p to one of the values

» Enum Cat egor yMenber shi p. EXCLUDE_CATEGCRI ES
» Enum Cat egor yMenber shi p. | NCLUDE_CATEGCRI ES

4-4 Oracle9iAS Personalization Programmer’s Guide

Location of RE Proxy Classes

» Enum Cat egor yMenber shi p. SUBTREE_CATEGCRI ES
» Enum Cat egor yMenber shi p. ALL_CATEGORI ES

then the recommendation methods (such as r econmendTopl t ens, etc.) return
categories.

Categories are components of a taxonomy. Taxonomies are defined in the following
tables in the mining table repository (MTR):

n MTR_TAXONOMY

n MTR_TAXONOMY_CATEGORY

n MTR_TAXONOMY_CATEGORY_ITEM
n MTR_CATERGORY

An appropriate taxonomy is crucial to the design of an OP application. For
information about how to create taxonomies, see Oracle9iAS Personalization
Administrator’s Guide.

Ratings in OP

Ratings in OP are in "ascending order of goodness", that is, the higher the rating, the
more the user prefers the item. Low rated items are items that the user does not
prefer. OP algorithms use these assumptions, so it is important that ratings are in
ascending order of goodness.

Meaning of Returned Value for Recommendations

The meaning of the value returned for recommendation instances where
ItenDetail Data. attri but e isequalto

Enum Recommendat i onAttri but e. PREDI CTI ONdepends on the value of
i nt erest Di mensi on as follows:

n Forlnterest D nensi on. RATI NG the expected rating for the item is
returned.

n Forlnterest D nensi on. PURCHASI NGor
I nt er est Di nensi on. NAVI GATI ON, the ranking is returned. The most
probable item is assigned a value of 1 and other items are assigned integer
values representing their rank according to how probable the item is.

Using REAPI 4-5

Rules and Recommendations

Rules and Recommendations

OP uses rule tables stored in the RE to generate the recommendations requested by
the recommendation methods. The rule tables are created when a package is built
and stored in the RE, that is, when the package is deployed. The specific rule table
used depends upon the REAPI call made. In general, the antecedents of the rules
are matched against the data in cache (both historical and current session data) and
the probabilities of the various consequents are computed. These items are then
ordered by probability, and nunber Of | t ens (an APl argument) items are
returned.

RE Proxy Method Usage Notes

For detailed descriptions of these methods, see the OP Javadoc included in the OP
section of the Oracle9i Application Server Documentation Library. This section provides
an overview of the methods and how to use them.

Session Creation

For both cr eat eCust oner Sessi on and cr eat eVi si t or Sessi on, the calling
Web application must provide session IDs that are unique among currently active
sessions. If either method is invoked with a session ID that is currently active at the
RE, an exception is thrown. However, a session ID can be reused as long as that
session ID is not already active at the RE. appSessi onl Dis synchronized to the
MTR by OP. (For more information about data synchronization, see the
administrator’s guide.) OP has no way to tell whether cust oner | Dand

appSessi onl Dare valid values; it is the responsibility of the calling Web
application to verify that these values are valid.

Data Collection

To collect data, use addl t emor addl t ens. Use r enovel t emorr enpvel t ens to
remove data from the local cache.

Add ltems

For both addl t emand addl t ens, items are cached locally first and synchronously
written to the RE; the frequency of the writes is specified as a configuration
parameter when OP is installed. It is important that the data synchronization
interval is frequent enough to support the Web applications’ requirements. For
more information about data synchronization, see the administrator’s guide.

4-6 Oracle9iAS Personalization Programmer’s Guide

RE Proxy Method Usage Notes

When an application needs to add several items at a time, it can either use several
addl t emcalls or one addl t ens call. When using addl t enrs, the application must
maintain the details of the items to be added until the call is made; in other words,
the application needs to keep the state. It may be simpler to issue several addl t em
calls.

addl t emand addl t ens are asynchronous, so the calling application does not need
to wait until either call saves the data to the database.

Data collected in the RE is automatically written to the MTR.

Remove ltems

renovei t emand r enovel t ens remove items that have not been written to the
MTR (permanent storage). Once data is written to the MTR, you cannot use these
methods to remove the data.

Proxy Creation

In cr eat ePr oxy, you must specify a cache size and an interval. This section
describes how to determine these values.

It takes experimentation to determine an optimum interval coupled with an
appropriate cache size.

A good way to configure cache size and interval is the following:
1. Set cache size to approximately 3027 kilobytes.

2. Setinterval according to the estimated data collection rate.
3. Test.

4. Adjust the archiveinterval.

Cache Size

The cache size is the size of the cache used by the recommendation engine, in
kilobytes.

There are several factors to consider when determining the cache size:

1. System resources: Since cache takes memory space, you must make sure that you have
enough memory to do what you want.

2. Archiveinterval: Thelonger the interval, the larger the cache size.

Using REAPI 4-7

RE Proxy Method Usage Notes

3. Maximum VArray size: The PL/SQL procedure that performs the archive uses VArrays,
and the maximum sizeis currently set at 5000. The archive can handle more than 5000
items, but the performance is much worse. Therefore, it is not recommended to have the
cache buffer larger than 5000. Each dataitem stored in the cache takes up about 340
bytes; so the maximum VArray size trand ates to 3.3 MBytes (the actual cache buffer
sizeis half of that since the cache has two buffers).

4. Datacollection rate, the most important factor: If the data collection rate is no more
than 100 items per second and the archive interval is 20 seconds, then a reasonable
cachesizeis 100 * 340 * 1.5* 20, which is approximately 2000 kilobytes. (This
calculation assumes a safety factor of 1.5 to ensure that no datais dropped.)

Interval

The interval determines how often the collected data is archived (flushed from the
memory to RE schema). There are several factors to consider when determining the
setting:

1. Datacollection volume and speed: The more frequent the data collection and the larger
the volume of data collected, the shorter interval should be

2. Cachesize: The smaller the cache, the shorter the interval.

3. Useof current session data: If you want to use the current session data to improve the
recommendation accuracy, the data should not be held in the cache for too long. If the
volume and speed of the data collection is not a problem, an interval of 10-30 seconds
may befine.

Cross Sell Methods

The comments in this section apply to cr ossSel | For | t enfr onHot Pi cks,
crossSel | Forlt enmsFrontHot Pi cks, reconmendCr ossSel | For |t em and
reconmendCr ossSel | For |t ens.

Interest dimension must be the same as that of the data source type of the input
item.

Data source type must be either navigational or purchasing. No other types are
supported.

The following filtering setting cannot be used with these methods:
n setCategorylLevel Filtering

n setCategorySubtreeFiltering

n set Cat egor yExcl usi on

4-8 Oracle9iAS Personalization Programmer’s Guide

RE Proxy Method Usage Notes

n setCategoryFiltering(int)
n setCategoryFiltering(int, long[])

Proxy Destruction

Destroy proxy objects with extreme caution. REPr oxyRT objects are shared by
many clients; therefore, destruction of a proxy may interrupt recommendation
services. The proxy destruction methods must be used very carefully. For Web
applications, REPr oxyRT objects should be treated as part of the server services;
they should not be unless it is absolutely necessary. Like other server components,
these objects only need to be destroyed when the server is shut down or taken
offline for maintenance purposes.

You can either destroy a specific proxy in the pool, using dest r oy Pr oxy, or all
proxies in the pool, using dest r oyAl | Pr oxi es.

Using REAPI 4-9

RE Proxy Method Usage Notes

4-10 Oracle9iAS Personalization Programmer’s Guide

D

REAPI Examples and Usage

This chapter provides examples of REAPI use. In some instances, we provide code
snippets; in others, we describe an approach for performing certain kinds of tasks
using OP.

REAPI Demo

OP includes REAPI Demo, a sample program that illustrates the use of many of the
REAPI methods. This sample program can be used to learn about REAPI calls and
can also used to verify that OP is correctly installed.

After you have installed OP, start REAPI Demo by opening the following URL in
Netscape or Internet Explorer:

http://server/redeno/

where ser ver is the name of the system where Oracle9iAS is installed. The REAPI
test site is displayed.

To view the source code for the OP REAPI Demo, click "View Source Code."

For information about how to install and run the demo, see the Oracle9iAS
Personalization User’s Guide.

REAPI Basic Usage

The REPr oxy methods described in Chapter 4 permit you to instrument your Web
site. To use REAPI calls, you must perform the following steps:

1. Getan REPr oxy object.

REAPI Examples and Usage 5-1

REAPI Basic Usage

2. Use the proxy instance as required in REAPI calls. The outline that your
program should follow depends on whether your Web application is sessionful
or sessionless.

3. Destroy the proxy object when it is no longer needed by any program that is
using it.

Create an REProxy Object

This section illustrates basic REPr oxy usage; for more information about REPr oxy
and other ways to use it see, "REProxyManager Interaction with JVM" and "Using
Multiple Instances of REProxy", later in this chapter.

The following code fragment creates an object named pr oxy: You use this object to
perform REAPI calls. Note that you must specify the username and password for
the RE schema.

final String proxyNane = "REL";
final String dbURL = "jdbc. oracl e. t hi n: @BSer ver . nyshop. com 1521: DBL1";

final String user = "nysel f";

final String pass\d = "secret";

final int cacheS ze = 2048; /1 2 nbytes

final int interval = 10000; /1 10 seconds

REPr oxy proxy;

try {

proxy = REProxyManager . creat ePr oxy(pr oxyNare,

dbURL,
user,
pass\,
cacheS xe,
interval);

} catch (Exception e) {
/1 exception handling here

}

Use the Proxy

After you’ve created a REPr oxy object and gotten an instance of it, you use the
proxy to specify REAPI calls, as, for example,

proxy. cl oseSessi on();

5-2 Oracle9iAS Personalization Programmer’s Guide

Sessionful Web Application Outline

The sequence of calls depends on whether the application is sessionful or
sessionless; see "Sessionful Web Application Outline" or "Sessionless Web
Application Outline" later in this chapter for details.

Destroy the Proxy

Destroy proxy objects with extreme caution. REPr oxyRT objects are shared by
many clients; therefore, destruction of a proxy may interrupt recommendation
services. The proxy destruction methods must be used very carefully. For Web
applications, REPr oxyRT objects should be treated as part of the server services;
they should not be unless it is absolutely necessary. Like other server components,
these objects only need to be destroyed when the server is shut down or taken
offline for maintenance purposes.

Sessionful Web Application Outline

The following outlines the required steps in the required order for a sessionful Web
application (an application that starts a session for each customer).

1. Create an REPr oxy object as described in "Create an REProxy Object”, earlier in
this chapter. You need to know the user name and password for the RE schema.
If the proxy already exists, call get Pr oxy.

2. Create a customer session or a visitor session.

proxy. creat eCust oner Sessi on(user | D, appSessionlD); //customer session

proxy. createVisitorSession(userl D, appSessionlD); //visitor session
3. Get identification data.

i dData = ldentificationData.createSessi onful (appSessi onl D);
4. Call REAPI methods: for example,

[*Set input paraneters. */

int nRec=10;

Tuni ngSettings tune = new Tuni ngSet ti ngs(Enum Dat aSour ec. NAVI GATI QN
Enum | nt er est O nensi on. NAVI GATI O\
BEnum Per sonal i zati onl ndex. H GH
Enum Prof i | eDat aBal ance. BALANCED,

Enum Prof i | elsage. EXCLUCE) ;

long [] catList ={1, 2, 3, 4};

FlteringSettings filters = new FilteringSettings();

filters.setltenkiltering(1l, catList);

Recommendat i onGontent r Cont ent = new Recormmendat i onCont ent (

REAPI Examples and Usage 5-3

Sessionless Web Application Outline

Enum Sorti ng. ASCEND NG ;
/*CGet a recommendation. */

try {
Recormendat i onLi st rLi st = proxy. recommendTopl t ens(i dDat a,

nRec, tune, filters, rContent);
/* Parse the results and pass recommendati ons to the user*/

5. Make other REAPI calls as required.

6. Close the session.
proxy. cl oseSessi on();

Sessionless Web Application Outline

The following outlines the required steps in the required order for a sessionless Web
application (an application that does not start a session for each customer). Note
that sessionless applications close when they time out.

1. Create an REPr oxy object as described in "Create an REProxy Object", earlier in
this chapter. You need to know the user name and password for the RE schema.
If the proxy already exists, call get Pr oxy.

2. Getidentification data.
idData = ldentificationData.createSessionl ess(custonerlD);

3. Call REAPI methods: for example,

[*Set input paraneters.*/
i nt nRec=10;
Tuni ngSettings tune = new Tuni ngSet t i ngs(Enum Dat aSour ec. NAVI GATI QN
Enum | nt er est O nensi on. NAVI GATI ON
Enum Per sonal i zati onl ndex. H GH
Enum Prof i | eDat aBal ance. BALANCED,
Enum Prof i | eUsage. EXCLUCE) ;
long [] catList ={1, 2, 3, 4};
FlteringSettings filters = new FilteringSettings();
filters.setltenkiltering(1l, catList);
Recomendat i onGontent rCont ent = new Reconmendat i onCont ent (
Enum Sorti nh. ASCEND NG ;
/*Get a recommendation. */
try {
Recormendat i onLi st rLi st = proxy. recommendTopl t ens(i dDat a,
nRec, tune, filters, rContent);
/* Parse the results and pass recommendati ons to the user*/

4. Make other REAPI calls as required.

5-4 Oracle9iAS Personalization Programmer’s Guide

REProxyManager Interaction with JVM

REProxyManager Interaction with JVM

REPr oxyManager is a singleton implementation, that is, only one instance of the
REPr oxyManager class is created in a given JVM instance and the class is
automatically loaded in the JVM instance. This behavior has implications about the
way your program behaves. The behavior is different depending on whether your
application is a standalone Java program or a Java server-side module. The same
principle may apply but different usage models for proxy management should be
considered

Standalone Java Applications

Suppose that you create a standalone Java application using REAPI calls that you
execute from the command line with a command such as

java nyapplication.cl ass
Such an application has the following characteristics:
« Itrunsinaseparate JVM instance.
« The REPr oxyManager instance is automatically loaded into the JVM instance.
« After the application finishes executing, the JVM instance goes away.

If you do not destroy the proxy before the program exits, the REPr oxy objects
remain in memory; they cannot be accessed because the JVM instance that created
them no longer exists.

To avoid memory leaks, you must destroy the proxy before the program ends.

Java Server-Side Modules

If REAPI is called from Java server-side modules, such as servlets or Java Server
Pages (JSPs), the REPr oxyManager class is loaded on the Oracle9i Application
Server where the modules reside.

The Web application that owns and uses the Java modules often starts when the
server boots up, and does not close until the server shuts down. In this
circumstance, you may create the proxies during the initiation of the Web
application or as soon as the first RE request is being processed, but never have to
worry about destroying the proxy. As long as the Web application is up and
running, the proxy will be used to serve ongoing recommendation requests.

Creation of a proxy is time consuming (a few hundred milliseconds on a Sun E450
server). It is therefore more efficient to never destroy a proxy until the server shuts

REAPI Examples and Usage 5-5

Using Multiple Instances of REProxy

down, for example, when the system administrator needs to bring the Web
application down for maintenance purposes.

If you choose to micro-manage proxies, that is, remove unused proxy objects, you
may do so by calling the destroy methods. However, be careful with destroying
methods, because both destroy methods will remove proxies forcefully, that is, they
do not check to see whether any other process is using the proxy.

Using Multiple Instances of REProxy

REPr oxyManager manages a pool of one or more proxies. This section illustrates
several ways to use multiple proxies:

« Initialization fail safe
« Ensuring that REAPI server is not interrupted

« Load balancing

Initialization Fail Safe

The following code fragment illustrates the way you might use two REs to prevent
utilization failure. This code assumes that the schema for normal recommendation
service is named "RE"; if "RE" fails, you will use a backup RE schema, named "RE_

BACKUP".
REProxy initProxy(...)
{
REPr oxy pr oxy;

[/ initialization
try {
if ((proxy = REProxyManager.get Proxy("RE')) = null)
proxy = REProxyManager . creat ePr oxy(" RE',
dbUR.,
user nane,
pass\Wd,
cacheS ze,
interval);
} catch (REProxylnitException rie) {
proxy = REProxyManager . creat ePr oxy(" RE_BACKUP',
dblRL1,
user nanel,
pass\Wd1,
cacheS ze,

5-6 Oracle9iAS Personalization Programmer’s Guide

Using Multiple Instances of REProxy

interval);
}

return proxy;

}

Uninterrupted REAPI Service

The following code fragment illustrates the way to guarantee that the
recommendation service does not fail when the regular RE server fails. The code
implements the class Never Fai | for this purpose.

class NeverFail () {
REProxy rel;
REPr oxy re2;

void initProxies() {
try {
if ((rel = REProxyManager. get Proxy("REL")) == null)
Sring dbUR.1="j dbc: oracl e: t hi n: @bl. nycor p. com 1521: orcl";
rel = REProxyManager . creat ePr oxy(" RE1",
dbURL1,
"userl",
"pwl”,
2048,
10000) ;
if ((re2 = REProxyManager. get Proxy("RE2")) == null)
String dbURL2="j dbc: oracl e: t hi n: @b2. nycor p. com 1521: or c2";
re2 = REPr oxyManager . creat ePr oxy(" RE2",
dbURL2,
"user 2",
"pu2,
2048,
10000) ;
} catch (REProxyl nitException rie) {
/1 exception handling
}
}

Recommendat i onLi st get Recormendati on() {
Recommendat i onLi st rList;

/] initialize input

try {
rList = rel.recormendTopltens(...);

REAPI Examples and Usage 5-7

Extracting Individual Recommendations

} catch (Exception e) {
rList = re2.recommendTopltens(...);
return rList;

}

return rList;
}
}

Load Balancing

The following code fragment illustrates a simple way to do load balancing so that
not all customers are handled by the same RE. This example assumes that
customers with odd IDs are processed using RE1 and those with even IDs are
processed using a different RE, RE2. To accomplish this, first create two different
proxies, RE1 and RE2, and then call get Recommendat i on() as follows:

Recommendat i onLi st get Recormendat i on() {
Recommendat i onLi st rLi st;

[l initialize input
try {
if ((idData.getWserl) %2) == 1)
rLi st = rel. recormendTopltens(...);
el se
rLi st = re2. recormendTopltens(...);

} catch (Exception e) {
/1 exception handling

return rList;

Extracting Individual Recommendations

Use the get At t ri but es method of the Recomrmendat i on class rather than
attempting to extract the individual recommendations from the array.

Handling Multiple Currencies

OP stores currency data in the demographic table (for example, someone’s income)
as numbers; that is, OP does not store any kind of label. Both ten dollars (US) and
ten pounds sterling (UK) are stored as "10".

5-8 Oracle9iAS Personalization Programmer’s Guide

Recommendation Engine Usage

There are several ways to ensure that currency data is interpreted correctly; the
solution that you pick for your application depends on how your application uses
currency data.

« Include a country code in customer demographics.

This solution allows the country to be taken into account, but it does not closely
associate the value with the country.

« Convert all currencies to a common currency such as Euros or United States
dollars.

This solution permits you to compare individual currency values in a
meaningful way (10 pounds sterling is more than $10 US) but does not permit
you preserve the difference between data such as a salary of $30,000 US in the
US, versus the same $30,000 US salary in Brazil. You need such information if,
for example, you want to recommend items to highly remunerated individuals
in both the US and Brazil; the salary in US dollars of highly remunerated
individuals will vary considerably from country to country.

This approach requires that you preprocess the data outside of OP before OP
creates recommendations.

= Bin currency values according to the mean to get relative values that can be
compared across countries.

This solution would permit you, for example, to determine the highly
remunerated individuals for a given country, but it requires that you determine
and maintain the bin boundaries appropriately.

This approach requires that you preprocess the data outside of OP before OP
creates recommendations.

Recommendation Engine Usage

Oracle9iAS Personalization requires at least one recommendation engine (RE) in at
least one recommendation engine farm. In general, you will want to use more than
one RE to get satisfactory recommendation performance. Most applications will use
multiple REs on different machines and subsequently different database instances.
See "Load Balancing" earlier in this chapter for an example of how you might code
one of these solutions.

Typically, for a given application, these REs will belong to the same RE farm. If a
physical system has multiple processors, and the processors can be leveraged
effectively by the database, the number of REs required for a given number of users

REAPI Examples and Usage 5-9

Using Demographic Data

can be reduced, perhaps even to one. See the administrator’s guide for more
information.

If your application has more than one RE available for use, it must determine which
one to use. Here are three possible solutions:

1. A given user of the Web site (either a visitor or a customer) is always handled
by the same Oracle9iAS/0OCA4] instance and that Oracle9iAS/OC4] instance is
configured to use one RE at all times. The application must route users to "their"
Oracle9iAS/0C4] instance and configure Oracle9iAS/OC4] instances to contact
specific REs. The REPr oxy class takes configuration arguments to specify
which RE to connect to. The application must determine how to get these
configuration arguments, either from an Or acl e9i AS/ OC4J. properties
file, or by being explicitly coded in the Web applications, or by some other
means.

2. Allow any Oracle9iAS/0OC4] instance to handle any customer. This requires
that a customer be "hashed" to a specific RE. It is important that the same
customer be routed to the same RE, at least within the session, since data is
cached for the user's session in the RE.

3. Provide a fail-over mechanism in the application to allow a different RE to be
contacted in the event the primary RE for a given customer cannot be contacted.
This can be applied in addition to either solutions 1 or 2 above. In this case, the
application specifies the primary RE and the backup RE (or the multiple backup
REs) and controls the logic to switch between REs. The same user session may
not always be routed to the same RE; however, the ability to get some kind of
recommendation will be maintained. Note that it may not be necessary to
implement such a solution, especially in a reasonably robust environment.

Using Demographic Data

The schema of the MTR_CUSTOMER table consists of 50 generic attributes that can
be mapped to any column in the site database. In order to support all different data
types, all attributes are of type VARCHAR. Therefore, the mapped columns should
be converted to strings. In this release of OP, these mapped columns are treated as
categorical or numerical only. If any of the mapped columns is a DATE attribute, it
should be converted to a number using the TO_NUMBER function. The converted
values can then be binned just like any other attribute by specifying the bin
boundaries.

There is binning for demographic data. The attributes that are binned can be of type
bool ean. In OP, the bin numbers are represented internally as integers, but the

5-10 Oracle9iAS Personalization Programmer’s Guide

Handling Time-Based Items

actual values are passed back to the calling applications. That is, the Web
application passes in the actual values and gets back actual values.

Handling Time-Based Items

For certain items, such as airline tickets, the price depends on when the item is
purchased. For example, an airline ticket for a Boston to London flight has one price
if it purchased 6 months before the date of the flight and a different price if it is
purchased two days before the date of the flight.

If the Web application assigns the same item ID to all tickets for the same trip,
regardless of when they are purchased, then the items should have different item
types, such as "6-month advance", "2-day advance", etc. Alternatively, the
application could define taxonomies on the items and get recommendations on the
categories.

If the application assigns different item 1Ds to the same flight purchased at different
times (so that a ticket purchased 6 months before the flight has an ID different from
a ticket for the same flight purchased 2 days before the flight), all tickets can have
the same item type. In this case recommending item IDs may not be appropriate;
therefore, the application should define a taxonomy and request recommendations
on the categories.

REAPI Examples and Usage 5-11

Handling Time-Based Items

5-12 Oracle9iAS Personalization Programmer’s Guide

Part ||

Recommendation Engine Batch API

Part Il describes the OP (Oracle9iAS Personalization) RE Batch API
(Recommendation Engine Batch Application Programming Interface) enables a web
application written in Java to request Oracle9iAS Personalization-style
recommendations in bulk mode.

This part contains the following chapter:

« Chapter 6, "RE Batch APl Overview"

« Chapter 7, "RE Batch API Supporting Classes"

« Chapter 8, "Using the Recommendation Engine Batch Proxy"
« Chapter 9, "REProxyBatch API Examples and Usage"

For a complete example of RE Batch API usage, see Appendix B

For detailed descriptions of the RE Batch API classes and methods, see the Javadoc
in the OP section of the Oracle9i Application Server Documentation Library. Note that
many of the batch methods and classes are REAPI methods and classes.

S

RE Batch API Overview

The OP (Oracle9iAS Personalization) RE Batch API (Recommendation Engine Batch
Application Programming Interface) enables an application written in Java to
request Oracle9iAS Personalization-style recommendations in bulk mode.

RE Batch API was designed to be extensible, to minimize the number of API
functions, to be uniform, and to keep the number of arguments to a minimum.

Chapter 9 contains examples of how to perform common tasks using RE Batch API.
Appendix B contains a complete example of RE Batch API usage.

RE Batch API classes and methods are described in detail in the Javadoc in the OP
section of the Oracle9i Application Server Documentation Library

Note: RE Batch API is installed on the system where Oracle9iAS is
installed.

RE Batch API Prerequisites

Before you can use RE Batch APl methods, OP must be installed and the
appropriate tables must be created and populated. Your database tables must be
converted to the OP schemas. It is important that the OP MTR is populated with
customer profiles. You should also create tables or views containing the customer
IDs for which you want recommendations.

If you are using one or more taxonomies, they must be properly specified.

RE Batch API Overview 6-1

RE Batch API Definitions and Concepts

At least one OP package must have been built and deployed. Use the OP
administrative interface to do this. For an example of how to create and deploy a
package, see Oracle9iAS Personalizaton User’s Guide.

Note: Do not deploy apackage while an RE Batch call isin progress; do
not start an RE Batch call while a deployment isin progress. Either of
these activities causes an exception.

RE Batch API Definitions and Concepts

This section describes the collections of methods that make up the RE Batch API
and concepts and terms used in the description of the API.

RE Batch API End Users (Customers)

End users (users of a Web site that uses OP for recommendations) are divided into
two groups: customers and visitors. A customer is a registered user, who can be
identified by a unique customer ID assigned by the Web application. The RE Batch
API makes recommendations for customers only.

RE Batch APl Recommendations

Recommendations are based on historical data, which is stored in the database and
retrieved when the customer profiles are loaded.

Using RE Batch API

Before you execute an RE Batch program, you must

n Set up the OP environment (create an RE, and create and deploy an OP
package)

» Create the tables used by the RE Batch methods

Setting Up the RE Batch APl Environment

Before you can execute RE Batch APl methods, the following must be true:

» Properly formatted customer profile data must be available in the Mining Table
Repository (MTR)

6-2 Oracle9iAS Personalization Programmer’s Guide

Using RE Batch API

» A recommendation engine (RE) farm containing at least one recommendation
engine must exist.

n A package must have been successfully built and then deployed in the
recommendation engine farm.

The OP administrator’s guide and the online help for the OP administrative GUI
explain how to perform these steps.

Customer Profile Data
Customer profile data resides in the MTR.

Deploy a Package to an RE

You cannot get recommendations until there is an existing deployed package, which
is created using the OP administrative interface. You must build a package before
you deploy it. You cannot build a package until there is some data available; data is
converted from existing data collected by your Web application and stored in an
Oracle database.

When you design an OP application, you must decide if there should be more than
one RE and, if there are several REs, how to use them. We recommend that the REs
used for bulk recommendations not be used for any other purpose. For a discussion
of the design considerations, see "Recommendation Engine Usage" in Chapter 9.

Note: If youtry to deploy a package an RE while abatch program is
running, the deployment will fail.

Recommendations may want to take income level (salary) into consideration; for
example, you may want to recommend items that the user can afford to buy. If the
items that are recommended have prices in several currencies (for example, items
are sold in Japan and India), see "Handling Multiple Currencies" in Chapter 9.

Sample RE Batch API Usage

OP includes a sample Java program that illustrates the use of many of the RE Batch
API methods; the program is in Appendix B. There are also some examples of how
to perform typical tasks in Chapter 9.

RE Batch API Overview 6-3

Using RE Batch API

Creating an REBatchProxy Object

Before you can use any of the RE Batch API methods, you must create at least one
REBat chPr oxy object; see Chapter 9 for details. The object establishes a JDBC
connection to a specified database and schema. The connection exists until it is
explicitly destroyed.

Creating Instances of RE Batch API Objects

To use the API, you must create instances of the objects used by the API method
signatures. Use the RE Batch API supporting classes, described in Chapter 8, to
create these instances. It is always necessary, for example to create filtering settings
and tuning sessions. For examples, see Chapter 9.

Converting Data for RE Batch API

OP generates recommendations based on data describing past user behavior.

User data stored in an Oracle table must be transformed and stored in the Mining
Table Repository (MTR) before it can be used to generate recommendations.

Managing Customer Profiles for RE Batch API

OP stores customer profiles in the Mining Table Repository (MTR). The profiles to
be used must be loaded into an RE before any recommendation requests are made.
The following methods manage load and unload customer profiles from an RE:

n |l oadCustonerProfil es()
n purgeCustomnerProfiles()

Before you load a set of customer profiles, you must create a table or a view
containing a list of the customer IDs that identify the profiles that you wish to load,
that is, a list of the customer IDs for which you want a recommendation.

Getting RE API Batch Recommendations

To get a recommendation, the application calls one of the following
recommendation methods:

n crossSell Forltem()
n rateltem)

n reconmendTopl t ens()

6-4 Oracle9iAS Personalization Programmer’s Guide

Using RE Batch API

These methods are used for getting recommendations for customers (registered
users).

Ratings in OP

Ratings in OP are in "ascending order of goodness", that is, the higher the rating, the
more the user prefers the item. Low-rated items are items that the user does not
prefer. OP algorithms use these assumptions, so it is important that ratings are in
ascending order of goodness.

Creating Recommendations

OP uses rule tables stored in the RE to calculate the recommendations requested by
the methods listed above. The specific rule table used depends upon the RE Batch
API method used. In general, the antecedents of the rules are matched against the
historical data and the probabilities of the various consequents are computed. These
items are then ordered by probability, and nunber O | t ens (an APl argument)
items are returned. The recommendations are written to a database table.

If there is enough memory in the RE database, the RE caches all rules associated
with a particular package deployed from the MTR to the RE, not just the most
recent rules.

Scoring: For scoring, all available historical data is used.

The OP Mining Table Repository (MTR) contains historical rating, transactional
data, and navigational data stored in both detailed and aggregated formats. The
MTR also contains demographic data. When scoring for customers, the RE retrieves
the demographic data and the aggregated version of the other data source types.

Making RE Batch Recommendations

RE Batch APl methods that make recommendations write the recommendations to a
database table. The schema used for the output depends on the method used. You
can extract the recommendations in many ways, for example, with an appropriate
SQL query, and then decide which recommendations to pass to the user.

Removing the REBatchProxy Object

Before you exit the application, you should destroy any proxy objects that you no
longer need.

RE Batch API Overview 6-5

Using RE Batch API

6-6 Oracle9iAS Personalization Programmer’s Guide

v

RE Batch API Supporting Classes

This chapter describes the supporting classes for the REPr oxyBat ch class. These
classes are used to create instances of the objects used by the methods described in
Chapter 8. You may be able to create one instance of many of these classes and use
that one instance as an argument for several calls.

Note: Except for Locat i on, these supporting classes are the same
as the ones that are used by REAPI. (Not all REAPI classes are used
by the RE Batch API.)

Before you issue any of the recommendation methods described in Chapter 8, you
must generate appropriate "FilteringSettings Class", TuningSettings Class, and
Location Class instances.

All methods described in this chapter are public.

This chapter does not contained detailed descriptions of any of the classes. For
detailed information, see the Javadoc in the OP section of the Oracle9i Application
Server Documentation Library.

The supporting classes are divided into two categories:
« EnunType interfaces

« Other supporting classes

Ratings in OP

Ratings in OP are in "ascending order of goodness", that is, the higher the rating, the
more the user prefers the item. Low-rated items are items that the user does not

RE Batch API Supporting Classes 7-1

Location of RE Batch API Classes

prefer. OP algorithms use these assumptions, so it is important that ratings are in
ascending order of goodness.

Location of RE Batch API Classes

The following frequently used classes are in the or acl e. dmt . r e. base
subdirectory:

« Dataltem

« Enum

« FilteringSettings
=« TuningSettings

For example, to use the Enuminterfaces, you must include the following statement
in your Java program:

i nport oracl e. dnt.op. re. base. Enum

EnumType Interfaces for RE Batch API

Many of the RE Batch APl methods reference attributes that can take on a finite
number of values. The interface Enumis used to implement the base class for these
"enumerations."

The Enuminterface has a nested Enunype class with the following general
methods:

int getld()
String toString()
String get Nane()
bool ean i sEqual (Enunilype)
The following interfaces extend EnuniTy pe:
« CategoryMenbership
- DataSource
= InterestDi nension
=« Personalizationl ndex

« Profil eDat aBal ance

7-2 Oracle9iAS Personalization Programmer’s Guide

EnumType Interfaces for RE Batch API

« Profil eUsage
« Sorting

CategoryMembership Interface
Cat egor yMenber shi pType is implemented as:

« Cat egoryMenber shi pType (a class that extends Enunilype)
« Cat egoryMenber shi p (an interface)
The class Cat egor yMenber shi p has the following methods:

Cat egor yMenber Shi pType get Type(Stri ng namne)

Cat egor yMenber Shi pType get Type(i nt)

Cat egor yMenber shi p specifies how categories in a list of categories should be
applied for filtering. For example, Enum Cat egor yMenber shi p. EXCLUDE_

| TEMVS specifies that items from the category should be excluded from the category
list. For details, see "FilteringSettings Class" later in this chapter.

Cat egor yMenber shi p takes on the following values:

« Enum Cat egor yMenber shi p. EXCLUDE_| TEMS

« Enum Cat egor yMenber shi p. | NCLUDE_| TEMS

« Enum Cat egor yMenber shi p. EXCLUDE_CATEGCRI ES
« Enum Cat egor yMenber shi p. | NCLUDE_CATEGCRI ES
« Enum Cat egor yMenber shi p. LEVEL

« Enum Cat egor yMenber shi p. SUBTREE_| TEMS

« Enum Cat egor yMenber shi p. SUBTREE_CATEGCRI ES
« Enum Cat egor yMenber shi p. ALL_I| TEMS

« Enum Cat egor yMenber shi p. ALL_CATEGORI ES

The following statement assigns Enum Cat egor yMenber shi p. LEVEL to the
variable myEnum

Cat egor yMenber shi pType myEnum = Enum Cat egor yMenber shi p. LEVEL;

RE Batch API Supporting Classes 7-3

EnumType Interfaces for RE Batch API

DataSource Interface
Dat aSour ce is implemented as:

« Dat aSour ceType (aclass that extends Enunilype)
« Dat aSour ce (an interface)
The class Dat aSour ceType has the following methods:
Dat aSour ceType get Type(String name)
Dat aSour ceType get Type(int)

Dat aSour ce specifies the type of data that is used when OP performs certain
operations. For example, Enum Dat aSour ce. DEMOGRAPHI C specifies that
demographic data. The method Dataltem Class, described later in this chapter, uses
Dat aSour ce. Note that a given method may not support all values of

Dat aSour ce. For details, see the description of the method in the Javadoc included
with OP.

Dat aSour ce takes on the following values:

= Enum Dat aSour ce. DEMOGRAPHI C

= Enum Dat aSour ce. PURCHASI NG

= Enum Dat aSour ce. RATI NG

= Enum Dat aSour ce. NAVI GATI ON

= Enum Dat aSour ce. ALL

The following statement assigns Enum Dat aSour ce. ALL to the variable myEnum

Dat aSour ceType nyEnum = Enum Dat aSour ce. ALL;

InterestDimension Interface
I nt er est Di nensi on is implemented as:

« I nterestDi nensi onType (aclass that extends EnuniType)

« | nterestDi nensi on (an interface)

Theclass | nt er est Di nensi onType has the following methods:
I nt erest D mensi onType get Type(String nane)

I nt erest D mensi onType get Type(i nt)

7-4 Oracle9iAS Personalization Programmer’s Guide

EnumType Interfaces for RE Batch API

I nt er est Di nensi on indicates the type of interest that the user of the Web site has
in a given item. NAVI GATI ON indicates that the user is interested in the items.
PURCHASI NGindicates that the user would like to purchase the items. RATI NG
indicates that the user likes the items. For more information, see the description of
"TuningSettings Class" later in this chapter.

I nt er est Di nensi on takes on the following values:
« Enum I nterest D mensi on. NAVI GATI ON

« Enum | nterest D nensi on. PURCHASI NG

« Enum | nterestDi nensi on. RATI NG

The following statement assigns Enum | nt er est Di nensi on. PURCHASI NGto the
variable myEnum

I nt erest Di mensi onType nyEnum = Enum | nt er est Di mensi on. PURCHASI NG,

Personalizationindex Interface
Per sonal i zat i onl ndex is implemented as:

« Personalizationl ndexType (aclass that extends EnuniType)
« Personalizationl ndex (an interface)
The class Per sonal i zat i onl ndexType has the following methods:
Per sonal i zat i onl ndexType get Type(String nane)
Per sonal i zat i onl ndexType get Type(int)

Per sonal i zat i onl ndex specifies how "unusual” the recommendations returned
will be. For example, LOWNspecifies not unusual. For more information, see the
description of "TuningSettings Class" later in this chapter.

Per sonal i zat i onl ndex takes on the following values:
« Enum Personalizationl ndex. LON

« Enum Personal i zati onl ndex. MEDI UM

« Enum Personalizationl ndex. H GH

The followi ng statenent assigns Enum.Personalizationlndex.LOW to the
variable myEnum

Per sonal i zat i onl ndexType nyEnum = Enum Per sonal i zati onl ndex. LON

RE Batch API Supporting Classes 7-5

EnumType Interfaces for RE Batch API

ProfileDataBalance Interface
Pr of i | eDat aBal ance is implemented as:

« Profil eDat aBal anceType (aclass that extends Enunilype)

« Profil eDat aBal ance (an interface)

The class Pr of i | eDat aBal anceType has the following methods:
Profi | eDat aBal anceType get Type(String name)
Profi | eDat aBal anceType get Type(int)

Pr of i | eDat aBal ance specifies whether to take data from the current session or
from history or to balance data between data from the current session and history
when making recommendations. For more information, see the description of
"TuningSettings Class" later in this chapter.

Pr of i | eDat aBal ance takes on the following values:
« Enum Profil eDat aBal ance. H STORY

Note: The only value of profile data balance that makes sense for
bulk recommendations is Enum Pr of i | eDat aBal ance. H STORY.
You must specify this value. (There is no current session data
available.)

The following statement assigns Enum Pr of i | eDat aBal ance. H STORY to the
variable myEnum

Prof i | eDat aBal anceType nyEnum = Enum Prof i | eDat aBal ance. H STORY;

ProfileUsage Interface
ProfileUsage is implemented as:

« Profil eUsageType (aclass that extends EnunType)

« Profil eUsage (an interface)

The class Pr of i | eUsageType has the following methods:
Profil eUsageType get Type(String nane)
Profil eUsageType get Type(int)

7-6 Oracle9iAS Personalization Programmer’s Guide

Other RE Batch API Supporting Classes

Pr of i | eUsage specifies whether the recommendation list can include or exclude items
in acustomer’s profile. For more information, see the description of "TuningSettings Class'
later in this chapter.

Pr of i | eUsage takes on the following values:
« Enum Profil eUsage. | NCLUDE
« Enum Profil eUsage. EXCLUDE

The following statement assigns Enum Pr of i | eUsage. | NCLUDE to the variable
my Enum

Profil eUsageType myEnum = Enum Profil eUsage. | NCLUDE;

Sorting Interface
Sor ti ng is implemented as:

« SortingType (aclass that extends EnuniType)

« Sorting (an interface)

The class Sor t i ngType has the following methods:
SortingType get Type(String namne)
SortingType get Type(int)

Sorti ng indicates whether sorting is done (none implies no sorting), and, if
sorting is done, how it is done (ascending or descending). For more information, see
the discussion of the Dataltem Class later in this chapter.

Sor t i ng takes on the following values:

« Enum Sorting. NONE

« Enum Sorti ng. DESCENDI NG

« Enum Sorting. ASCENDI NG

The following statement assigns Enum Sor t i ng. NONE to the variable myEnum

SortingType nyEnum = Enum Sorti ng. NONE;

Other RE Batch API Supporting Classes

The other supporting classes are
« Dataltem

RE Batch API Supporting Classes 7-7

Other RE Batch API Supporting Classes

« FilteringSettings
= Location
=« TuningSettings

Dataltem Class

This class is a subclass of class | t em It encapsulates data about an item.

There are two kinds of methods provided with this class:

= A constructor that creates a Dat al t eminstance

= Methods that return attribute values

The following methods return attribute values:

« get Dat aSource()

« getVal ue()

FilteringSettings Class

This class is used to specify the items to include or exclude when generating
recommendations.

Release 2 of OP supports category filtering only.

There are three kinds of methods provided with this class:

« Aconstructor for Fi | teri ngSettings

= Methods that set the attributes values:

setltenFiltering(int taxononyl D)
setltenFiltering(int taxononyl D, |ong[] categorylList)
set |t enExcl usi on(int taxononyl D, |ong[] categoryList])

setltenSubTreeFiltering(int taxonomyl D, |ong[]
cat egorylist])

set Cat egor yExcl usi on(i nt taxononyl D, |ong[]
cat egorylist])

set Cat egorySubTreeFil tering(int taxononylD, |ong[]
cat egorylist])

7-8 Oracle9iAS Personalization Programmer’s Guide

Other RE Batch API Supporting Classes

Item Class

« setCategorylLevel Filtering(int taxonomylD, |ong[]
cat egorylist])

« setCategoryFiltering(int taxonomnyl D)

« setCategoryFiltering(int taxonomylD, |ong[]
cat egorylLi st)

« Methods that return attribute values:
« get Taxononyl IX)
« getCategoryFiltering ()
« getCategorylList()
« get Cat egor yMenber shi p()

Not all filtering settings can be used will all methods. In particular, the following
filtering setting cannot be used with the cross-sell methods :

« setCategorylLevel Filtering

« sSetCategorySubtreeFiltering

« set Cat egor yExcl usi on

« setCategoryFiltering(int)

« setCategoryFiltering(int, long[])

This class is used to represent items that can be recommended and for which data
can be collected. An item is uniquely represented by the combination of t ype and

I D. Item | Ds must be unique within a given t ype, but different t ypes can have the
same | Ds.

There are two kinds of methods provided with this class:
= Aconstructor that creates an | t eminstance
= Methods that return attribute values

- getType()

« getlX)

RE Batch API Supporting Classes 7-9

Other RE Batch API Supporting Classes

Location Class

This class specifies the location of the input table or the location of the table
containing the results of an REPr oxyBat ch method. The schema for the table
depends on the call made. See the descriptions of the individual methods in the
Javadoc for details.

There are three kinds of methods provided with this class:
= Aconstructor that creates a Locat i on instance
= Methods that return attribute values

« get DatabaseURL()

« getDatabaseAlias()

« get SchemaNane()

« get Tabl eNane()

« getUser Nane()

« getPassword()

TuningSettings Class

This class specifies settings to be applied when computing a recommendation. An
instance of this class is passed to all recommendation requests.

There are three kinds of methods provided with this class:

« A constructor that creates an Tuni ngSet t i ngs instance
« Methods that set attribute values

= Methods that return attribute values

The following methods set attribute values:

« set DataSour ceType()

« setlnterestD nmension()

« setPersonalizationl ndex()

« setProfil eDat aBal ance()

« setProfil eUsage()

7-10 Oracle9iAS Personalization Programmer’s Guide

Other RE Batch API Supporting Classes

The following methods return attribute values:

« get Dat aSour ceType()

« getlnterestD nmension()

« getPersonalizationl ndex()
« getProfil eDat aBal ance()

« getProfil eUsage()

RE Batch API Supporting Classes 7-11

Other RE Batch API Supporting Classes

7-12 Oracle9iAS Personalization Programmer’s Guide

8

Using the Recommendation Engine Batch
Proxy

This chapter consists of an overview of the class and methods that are used to manage the
customer profiles and to obtain recommendations. The supporting classes for these methods
are described in Chapter 7.

For detailed descriptions of these methods, see the Javadoc in the OP section of the
Oracle9i Application Server Documentation Library.

All methods described in this chapter are public.

REProxy Batch Overview

The recommendation proxy (REPr oxyBat ch) methods can be divided according to
function, asfollows:

n Proxy creation and management, including customer profile management (load and
purge customer profiles)

» Recommendation methods (obtain recommendations)

For examples of how to use these classes and methods, see Chapter 9.

Location of REProxyBatch Classes

To use the REPr oxyBATCH (and its exceptions), you must include the following
statements in your Java program:

i mport oracle.dnt.op.re.reapi.batch.*;
i mport oracle.dnt.op.re.reexception.?*;

These classes are installed on the system where Oracle9iAS is installed.

Using the Recommendation Engine Batch Proxy 8-1

Location of REProxyBatch Classes

REProxyBatch Creation and Management

The REPr oxyBat ch. j ava class establishes the JDBC connection to the RE schema
where the methods execute. The connection continues to exist until the connection is
explicitly destroyed with thedest r oy () method. The class also includes customer profile
management methods.

Customer Profile Management

You must load customer profiles from the MTR to the RE before you can request
recommendations; after you are done, you should purge the |oaded profiles from the RE.
The methods are

n LoadCustonerProfiles();

n PurgeCustonerProfiles();

REProxyBatch Recommendations
The following methods obtain recommendations:

n crossSell Forltens
n rateltem
n recommendTopl tens

Communicating the returned recommendations to the end user is the responsibility of the
application. The recommendations are written to an output table; the schema of the output
table depends on the method called. For details, see the description of each method.

Ratings in OP

Ratings in OP are in "ascending order of goodness", that is, the higher the rating, the
more the user prefers the item. Low-rated items are items that the user does not
prefer. OP algorithms use these assumptions, so it is important that ratings are in
ascending order of goodness.

Meaning of Returned Value for Recommendations

The meaning of the value returned for recommendation instances where
ItenDetail Data. attri buteisequal to

Enum Recommendat i onAttri but e. PREDI CTI ON depends on the value of
i nt erest Di mensi on asfollows:

n ForlnterestD nensi on. RATI NG the expected rating for the item is returned.

8-2 Oracle9iAS Personalization Programmer’s Guide

Location of REProxyBatch Classes

For I nt er est Di mensi on. PURCHASI NGor

I nt er est Di nensi on. NAVI GATI ON, ascaled probability is returned. The most
probable item is assigned a value of 1 and other items are assigned values less than 1
that are proportional to how probable the items are compared to the most probable item.

Cross Sell Method Usage Notes
The comments in this section apply to r econmendCr ossSel | For |t ens.

Interest dimension must be the same as that of the data source type of the input
item.

Data source type must be either navigational or purchasing. No other types are
supported.

The following filtering setting cannot be used with this method:

n

n

n

n

n

set Cat egorylLevel Filtering

set Cat egorySubtreeFiltering

set Cat egor yExcl usi on

set Cat egoryFil tering(int)

set CategoryFiltering(int, long[])

Recommendation Method Usage Notes

recommendTopl t ens does not necessarily return a list of items. If you set
FilteringSettings. Cat egoryMenber shi p to one of the values

n

n

n

n

Enum Cat egor yMenber shi p. EXCLUDE_CATEGORI ES
Enum Cat egor yMenber shi p. | NCLUDE _CATEGORI ES
Enum Cat egor yMenber shi p. SUBTREE _CATEGORI ES
Enum Cat egor yMenber shi p. ALL_CATEGORI ES

then r ecommendTopl t ens returns a list of categories.

Categories are components of a taxonomy. Taxonomies are defined in the following
tables in the mining table repository (MTR):

n

n

n

MIR_TAXONOWY
MIR_TAXONOWY_CATEGORY
MIR_TAXONOWY_CATEGORY_| TEM

Using the Recommendation Engine Batch Proxy 8-3

REProxyBatch Rules and Recommendations

n MIR_CATEGORY

An appropriate taxonomy is crucial to the design of an OP application. For
information about how to create taxonomies, see Oracle9iAS Personalization
Administrator’s Guide, Release 9.0.2.

REProxyBatch Rules and Recommendations

OP uses rule tables stored in the RE to generate the recommendations requested by the
recommendation methods. The rule tables are created when a package is built and stored in
the RE when the package is deployed. The specific rule table used depends upon the RE
Batch API call made. In general, the antecedents of the rules are matched against the datain
cache (historical dataonly for RE Batch) and the probabilities of the various consegquents are
computed. These items are then ordered by probability, and nurber Of | t ens (an API
argument) items are returned.

8-4 Oracle9iAS Personalization Programmer’s Guide

9

REProxyBatch APl Examples and Usage

This chapter provides examples of REProxyBatch API use. In some instances, we provide
coding skeletons; in others, we describe an approach for solving certain kinds of problems
using OP.

REProxyBatch API Basic Usage

The REBatchProxy methods described in Chapter 8 permit to write Java programs that
generate recommendations.

Note: The RE Batch API classes are installed on the system where
OracleQiASisinstalled. Thetablesthat they use areinstalled on a different
system (the system where Oracle9i isinstalled.) The following steps must
be performed on the correct system.

To use REPr oxyBat ch API calls, you must perform the following steps:
1. Create and deploy a package to the RE that you will use for recommendations.
2. Create aninstance of REBat chPr oxy.

3. Create any required tables. (Alternatively, you can create the tables using SQL before
you execute the program.)

Load customer profiles.
Execute the desired recommendation methods.

Purge the customer profiles that you loaded in step 4.

N oo o &

Destroy the database connection that you created in step 2.

REProxyBatch APl Examples and Usage 9-1

Recommendation Engine Usage

You will now have a table containing the recommendations that you requested. You can use
SQL to examine the table.

Code Sample: Recommend Top
The following code sample illustrates obtaining a recommendation:

/'l Create an instance of REProxyBatch
/'l Create customer table

/'l Load customner profiles

/| Execute recomrend_top

/1 Purge custoner profiles | oaded above

/1 Destroy the database connection held by REProxyBatch

Code Sample: Recommend Cross Sell
The following code sample illustrates obtaining cross-sell recommendations:

/'l Create an instance of REProxyBatch
|/ Create ltenms table
/| Execute cross sell for itens

/1 Destroy the database connection held by REProxyBatch

Recommendation Engine Usage

REBat chPr oxy requires at least one recommendation engine (RE) in at least one
recommendation engine farm.

We recommend that the REs used for bulk recommendations not be used for any
other purpose.

Note: If youtry to deploy a package an RE while a batch program is
running, the deployment will fail.

In general, you may want to use more than one RE to get satisfactory recommendation
performance. Most applications will use multiple REs on different machines and
subsequently different database instances.

9-2 Oracle9iAS Personalization Programmer’s Guide

Handling Multiple Currencies

Typically, for a given application, these REs will belong to the same RE farm. If a physical
system has multiple processors, and the processors can be leveraged effectively by the
database, the number of REs required for a given number of users can be reduced, perhaps
even to one. See the administrator’s guide for more information.

If your application has more than one RE available for use, it must determine which one to
use. You can load different sets of customer profilesinto different REs, generate appropriate
recommendations, and them merge the recommendation tables, if desired.

Handling Multiple Currencies

OP stores currency data in the demographic table (for example, someone’s income)
as numbers; that is, OP does not store any kind of label. Both ten dollars (US) and
ten pounds sterling (UK) are stored as "10".

There are several waysto ensure that currency dataisinterpreted correctly; the solution that
you pick for your application depends on the way your application uses currency data.

« Include a country code in customer demographics.

This solution allows the country to be taken into account, but it does not closely
associate the value with the country.

« Convert all currencies to a common currency such as Euros or United States
dollars.

This solution permits you to compare individual currency valuesin a meaningful way
(10 pounds sterling is more than $10 US) but does not permit you preserve the
difference between data such as a salary of $30,000 USin the US, versus the same
$30,000 US salary in Brazil. You need such information if, for example, you want to
recommend items to highly remunerated individuals in both the US and Brazil; the
salary in US dollars of highly remunerated individuals will vary considerably from
country to country.

This approach requires that you preprocess the data outside of OP before OP creates
recommendations.

= Bin currency values according to the mean to get relative values that can be
compared across countries.

This solution would permit you, for example, to determine the highly remunerated
individuals for a given country, but it requires that you determine and maintain the bin
boundaries appropriately.

This approach requires that you preprocess the data outside of OP before OP creates
recommendations.

REProxyBatch APl Examples and Usage 9-3

Using Demographic Data

Using Demographic Data

The schema of the MTR_CUSTOMER table consists of 50 generic attributes that can be
mapped to any column in the site database. In order to support al different data types, all
attributes are of type VARCHAR. Therefore, the mapped columns should be converted to
strings. In this release of OP, these mapped columns are treated as categorical or numeric
only. If any of the mapped columnsis a DATE attribute, it should be converted to a number
using the TO_NUMBER function. The converted values can then be binned just like any
other attribute by specifying the bin boundaries.

Thereis binning for demographic data. The attributes that are binned can be of type

bool ean. In OP, the bin numbers are represented internally as integers, but the actual
values are passed back to the calling applications. That is, the Web application passesin the
actual values and gets back actual values.

Handling Time-Based ltems

For certain items, such as airline tickets, the price depends on when the item is purchased.
For example, an airline ticket for a Boston to London flight has one priceiif it purchased 6
months before the date of the flight and a different priceif it is purchased two days before
the date of the flight.

If the Web application assigns the same item ID to al tickets for the same trip, regardless of
when they are purchased, then the items should have different item types, such as"6 month
advance", "2 day advance", etc. Alternatively, the application could define taxonomies on
the items and get recommendations on the categories.

If the application assigns different item | Ds to the same flight purchased at different times
(so that aticket purchased 6 months before the flight has a different ID from aticket for the
same flight purchased 2 days before the flight), all tickets can have the same item type. In
this case recommending item IDs may not be appropriate; therefore, the application should
define ataxonomy and request recommendations on the categories.

9-4 Oracle9iAS Personalization Programmer’s Guide

A

REAPI Sample Program

This appendix contains Pr oxyTest . j ava, a sample Java program that illustrates
using REAPI.

Before you can execute this program, an appropriate model must be built and
deployed to an RE. If no data is returned, it may indicate that the model is not
sufficient for the data. The code is installed in ${ ORACLE_HOVE}/ dnt /reapi /rt/
on the system where Oracle9iAS is installed.

Note: REAPI is installed on the system where Oracle9iAS is
installed. It is simplest to run this program on that system.

/1 Qopyright (c) 2001, 2002 O acle Corp

NNy
I

/] Test programexercises the functionality of

Il REAP.

I

I/l Sep 1 creates a unique session |D

/] Sep 2 creates a proxy instance

/] Step 3 creates a sessi on

/] Step 4 creates settings data (ldentificationData, Tuni ngSettings,

/1 FilteringSettings, hotRick list, itemlist)

/I Sep 5 gets reconendations and ratings

I/l Sep 6 closes session

Il Step 7 destroys the proxy and flushes data cache
RNy,

i nport java. mat h. B gDeci nal ;

REAPI Sample Program A-1

i nport java.l ang. Long;

inport java.sql.*;

inport java.io.lCException;

inport java.io.StringWiter;

inport java.io.PrintWiter;

i nport oracl e. j devel oper.cm QMExcept i on;

inport oracle.dnt.op.re.reapi.rt.*;

inport oracle.dnt.op.re.reapi.batch. *;

inport oracle.dnt.op.re.reexception.*;

inport oracle.dnt.op.re. base. *;

inport oracle.dnt.oputil.exceptions. MessageLogExcepti on;
inport oracle.dnt.oputil.exceptions. SringTooLongExcepti on;

/**
* dass ProxyTest
* <p>
* @uthor Oacle Corporation
*/
public class ProxyTest
{
static bool ean bVer bose;
static final Sring SESS ONEX STS = "";
/**
* Qonstruct or
*/
public ProxyTest()
{
}

/**
* main
* @aramargs
*/
public static void main(Sring[] args) throws d assNot FoundException
{
long | Sart;
long | Total = 0;
Sring sProxyNane = "REPL";
Sring sdbURL = "j dbc: oracl e: t hi n: @er ver - nane: 1521: darwd00"; // sdbURL nust
be correct for your installation
Sring sWser = "REOL";
Sring sPass = "REPW;

int cSze =3000; // Koytes
int interval = 10000; // in mllisec

A-2 Oracle9iAS Personalization Programmer’s Guide

new ProxyTest ();

REPr oxyRT pr oxy;

/[l Sep 1: Geate a unique Session |ID
Sring custID="1";

java.util.Date tnp = new java. util.Date();
Long tnplnt = new Long(tnp. getTine());
Sring sessionlD = tnplnt.toXring();

Sring trace = null;

| Sart = SystemcurrentTineMI1is();
try

{
/[l Sep 2: Get a proxy instance.

if ((proxy = REProxyManager. get Proxy(sProxyName)) == null)
proxy = REProxyManager . creat ePr oxy(sProxyNane, sdbUR., slker, sPass,
cS ze, interval);

/Il Sep 3. create CP session
pr oxy. cr eat eQust orer Sessi on(cust | B, sessionl D) ;

/] Sep 4. create settings data
IdentificationData idData =
IdentificationData. createSessi onf ul (
sessi onl D,
Enum User . QSTOMER) ;

Tuni ngSettings tunings = new Tuni ngSet ti ngs(
Enum Dat aSour ce. NAVI GATI QN
Enum | nt er est O nensi on. NAVI GATI O\
Enum Per sonal i zat i onl ndex. H GH
Enum Prof i | eDat aBal ance. BALANCED,
Enum Prof i | eUsage. EXQLUCE) ;

long[] hotPickGoups ={1,2 3,456,710, 11};
long[] mcatList ={1,2,3,4,5};

FlteringSettings filters =
new FilteringSettings(1);
int taxonony=1;
filters.setltenkiltering(taxonony, mcatlList);
Recommendat i onGontent recContent = new
Recomrendat i onGont ent (Ehum Sorti ng. ASCENDI NG ;

REAPI| Sample Program

A-3

try{

//Qeate list of itens for testing
Dataltenj] itens = new Dataltenj4];
itens[0] = new Datalteng

"MM E',
72,
Enum Dat aSour ce. RATI NG
"1.5");

itens[1] = new Datalteng
"MM E',
287,
Enum Dat aSour ce. RATI NG
"1.5");

itens[2] = new Datalteng
"MOJ E',
122,
Enum Dat aSour ce. RATI NG
"1.5");

itens[3] = new Datalteng
"MOJ E',
1300,
Enum Dat aSour ce. RATI NG
"1.5");

int count = 1,

/] Step 5: Get reconendations and ratings and print themout.
/1 Note use of toString.
try{
Systemout . print | n("\ NHHHHHEAHHRAERHH " + count ++ + " FHEHHHHHHAHHHHRA)
//Call recommendBottonltens
Recommendat i onLi st es1l = proxy. recomendBot t om t ens(
i dDat a,
10,
t uni ngs,
filters,
recContent);
Systemout. println("");
esl.toString();
} catch(ErrorExecuti ngRE e) {
e. printStackTrace();

}

try{

A-4 Oracle9iAS Personalization Programmer’s Guide

Systemout . print | n("\ NHHHHHEAFHHFHERHH "+ count ++ + " FHEHHHHHHHAHHHAH")
[1CGll rateltens
Recommendat i onLi st es2 = proxy.rateltens(
i dDat a,
itens,
1,
t uni ngs,
recContent);
Systemout. println("");
Systemout. println(es2.toSring());
} catch(ErrorExecuti ngRE e) {
e. printStackTrace();

}

tryf{
Systemout . print | N("\ NFHHHHFAFHHRHERH# "+ count ++ + " HHEHHEHHHRABHHRI) |

/lcall sel ect Frontbt Pi cks
Recommendat i onLi st es3 = proxy. sel ect Frontbt P cks(

i dDat a,

10,

hot P ck@ oups,

t uni ngs,

filters,

recContent);

Systemout. println("");
Systemout. printin("");
Systemout. println(es3.toSring());
} catch(ErrorExecuti ngRE e) {

e. print S ackTrace();

}

tryf{
Systemout . print | N("\ NFHHHHRF-ABHHRAERH# " + count ++ + " HHEHHHHHHRABHHRI)

[/ Gl crossSel |l Forltenrontbt P cks
Recommendat i onLi st es4 = proxy. crossSel | For |t enfr ontbt B cks(
i dDat a,
itens[Q],
10,
hot P ck@ oups,
t uni ngs,
filters,
recContent);
Systemout. printin("");
Systemout. println(es4.toSring());

REAPI| Sample Program A-5

} catch(ErorExecuti ngRE e) {
e. print StackTrace();

}

try{
Systemout . print| n("\ NHHHHREARHHRHERHH "+ count ++ + " FHEHHHHHHHAHHHRA")

/1 Call recommendC ossSel | Forltem
Recommendat i onLi st es5 = proxy. recommendQ ossSel | For | t en
i dDat a,
itens[0],
10,
t uni ngs,
filters,
recContent);
Systemout. println("");
Systemout. println(es5.toSring());
} catch(ErrorExecuti ngRE e) {
e. printStackTrace();

}

try{
Systemout . print| N("\ NFHHHHFABHHRAERHH# " + count ++ + " HHEHHEHHERABHERI")

Recommendat i onLi st es6 = proxy. recommendQ ossSel | For |t ens(
i dDat a,
i tens,
10,
t uni ngs,
filters,
recContent);
Systemout. printin("");
Systemout. println(es6.toSring());
} catch(ErorExecuti ngRE e) {
e.print S ackTrace();

}

try{
Systemout . print | n("\ NHHHHHFARHHRAERHH# " + count ++ + " FHEHHHHHHAHHAHEHR")

Recommendat i onLi st es7 = proxy. crossSel | For |t ensFrontbt Pi cks(
i dDat a,
itens,
10,
hot P ck@& oups,
t uni ngs,
filters,
recContent);

A-6 Oracle9iAS Personalization Programmer’s Guide

Systemout. printin("");

Systemout. println(es7.toSring());

} catch(ErrorExecuti ngRE e) {
e.print SackTrace();

}

try{
Systemout . print | N("\ NFHHHHRAFHHRAE## "+ count ++ + " HHEHHHHHHRABHHR) |

float es9 = proxy.ratelteng

i dDat a,

itens[2],

1

t uni ngs,

recCont ent

)s

Systemout. printIn("");

Systemout. printIn("Result for reconend item " + es9);

} catch(ErorExecuti ngRE e) {
e. printStackTrace();

}

try{
Systemout . print | n("\ NHHHHHRF-AHHRAERHH " + count ++ + " FHEHHHHHHHAHHHAH")

Recommendat i onLi st es10 = proxy. r ecommendFr oniHot P cks(
i dDat a,
10,
hot P ck@ oups,
t uni ngs,
filters,
recContent);
Systemout. println("");
Systemout . println(esl10.toString());
} catch(ErrorExecuti ngRE e) {
e. print S ackTrace();

}

try{
Systemout . print | N("\ NFHHHHFABHHRAEH# " + count ++ + " HHEHHEHHERABHERI) |

Recommendat i onLi st es11 = proxy. recommendTopl t ens(
i dDat a,

10,

t uni ngs,

filters,

recContent);

REAPI| Sample Program A-7

Systemout. println("");
Systemout. println(esll.toSring());
} catch(ErrorExecuti ngRE e) {

e. print SackTrace();

}

} cat ch(BadDBMonnect i onExcepti on bdbe) {
bdbe. pri nt & ackTrace();

}catch (A assNot FoundException exc) {
exc. print S ackTrace();

}

/Il Step 6: Aose session
proxy. cl oseSessi on(i dDat a) ;

[l Sep 7: Call destroy proxy (wll flush data cache)
REPr oxyManager . dest r oyPr oxy(sProxyNane) ;

} catch (ErrorExecuti ngRE se) {
Systemerr. println(se);
} catch (Invalidl DExceptioniie) {
Systemerr.printin(iie);
} cat ch(BadDBMonnect i onExcepti on bdbe) {
bdbe. pri nt & ackTrace();
} catch (Exception e) {
Systemerr.println(e);
e. print StackTrace();

}

A-8 Oracle9iAS Personalization Programmer’s Guide

B

REProxyBatch Sample Program

The sample program for RE Proxy Batch consists of a Java program and a property
file. The sample program, property file, and the tables required to run it are
installed when you install OP.

RE Batch Sample Program Overview

The Java program REBat chTest . j ava and the property file bat cht est . t xt are
in the TBS directory on the system where you have installed OP.

REBat chTest . j ava REPr oxyBat ch allows you to execute a subset of
recommendation functions in bulk. (REPr oxyRT scores one user/item at a time.)
REPr oxyBat ch reads a list of items/customers to be scored from an input table
and writes the result to a new output table. This program reads its input from the
property file bat cht est . i ni .

RE Batch Sample Program Output

The input item details (for r at el t emand cr ossSel | For | t em are derived from
the OP demo data. But in OP, the model built on the same data is not guaranteed to
produce the same rules each time that it is run.Therefore, it is possible that the item
being rated cannot be rated with the current set of rules. The output tables will
either be empty (zero rows) or will contain fewer than expected records (if only
some of the items are valid cross-sell candidates etc.).

Executing the RE Batch Sample Program

Follow these steps to execute the sample program:
1. Install OP.

REProxyBatch Sample Program B-1

Executing the RE Batch Sample Program

2. The code and data for the sample program is installed into the following
directories when you install OP:

= Thefollowing code is installed in ${ ORACLE_HOVE} / dnt / r eapi / bat ch/
— batchtest.txt
— README. t xt
- REBatchTest.java

« The following items associated with the data used by the sample program
are installed in ${ ORACLE_HOVE} / dnt / r eapi / bat ch/ sanpl eDat a

— <create_batch_deno_input _tabl es. sql
— custoner _list_in.ctl
— custoner _list_in.txt
- itemlist_in.ctl
- itemlist_in.txt
— load_batch_denop_data. sh
3. Runthe shell script| oad_bat ch_denb_dat a. sh to load the following tables:

« custoner_list_in—Usedforl oadCust oner Profil e. (The output of
| oadCust oner Profi | e isused by recormendTopl t ens and
rateltem)

« itemlist _in—UsedbycrossSell Forltem

4. Compile the sample code. Your CLASSPATH variable should include the
following zip/jar files:

- ${ORACLE HOVE}/ dnt/ opreapi-batch.jar
- ${ORACLE_HOVE}/dnt/oputil.jar

It also needs to include JDBC related jar/zip files:
— ${ORACLE HOVE}/jdbc/lib/classesl2.zip

5. Change the property file to point to the appropriate entities. The comments in
the property file and the file README. t xt describes the exact changes that
must be made.

6. Run REBat chTest , with the property file name as an input parameter.

B-2 Oracle9iAS Personalization Programmer’s Guide

RE Batch Sample Program Code

RE Batch Sample Program Code

This section contains the code for the sample program and its property file.

batchtest.txt

The properties file for the sample program follows. Note that you must replace RE
details and input/output table details to reflect your installation.

HiH

#H# Input file for REProxyBatch sanpl e program

Before Running, you will need to replace the follow ng dumny strings with actual infornation:
#H#t 1. RE* details (U, Usernang, Password) to point to the RE

##t 2. Input and Qutput (Result) table details for each of the calls.

#A uni que nare for proxy
ProxyNane=REB 1

#Recommendat i on Engi ne details
REU | 5j dbc: or acl e: t hi n: @yDBU |
FEUser nane=REUser

REPasswor d=REPasswor d

#l nput custoner table |ocation

I nput. Ul 5 dbc: oracl e: thi n: @yDBU |
Input. Al i as=nyDBAl i as

I nput . Schena=User 1

I nput . Tabl e=custoner_|ist_in

| nput . User nane=User 1

| nput . Passwor d=Passwor d1

#Qustoner profile table

This table is created in RE by | oadQust oner Profile. Onhce created
it is used for recoomendTopltens and rateltem

Qust Profi | e=W_QUSTOMER PRCFI LE

#

Details for recommendTopl t ens

#

Nunber of itens to be reconmended per cust oner

TopN Nunber G | t ens=10

#Tuni ngSettings details

#val i d DataSourceTypes are ALL, DEMOERAPH C PURCHASI NG RATI NG NAM GATI ON
TopN Dat aSour ceType=ALL

#valid I nterestD nensi on: PURCHASI NG RATI NG NAM GATI QN

REProxyBatch Sample Program B-3

RE Batch Sample Program Code

TopN | nt er est D nensi on=PURCHAS NG

#val id Personalizationlndex: LOY MBOW H

TopN Per sonal i zat i onl ndex=MEDl UM

#+ Profil eDat aBal ance needs to be specified as part of the Tuni ngSettings obj ect
but its value is not used by REProxyBatch

#valid Profil eDataBal ance: H STARY, CURRENT, BALANCED

TopN Prof i | eDat aBal ance=H STCRY

#valid Profil elsage: | NOLLDE, EXQLUDE

TopN Prof i | eUsage=I NOLUDE

FlteringSettings details

TopN Taxonony=1

#Category list is a series of nunbers separated by "-"

TopN Cat egoryLi st =1-2-3-4-5

#Val i d Cat egor yMenber shi p: Excl udel t ens, Excl udeCat egories, |ncludeltens, |ncludeCategories,
level, SubTreeltens, SubTreeCategories, Alltens, Al Categories
TopN Cat egor yMenber =Al | | t ens

Result table details

TopNResul t. Ul 5 dbc: oracl e: t hi n: @yDBU |

TopNResul t. Ali as=ny[DBAl i as

TopNResul t . Scherma=User 2

TopNResul t . Tabl e=TopN RESULTS

TopNResul t . User nanme=User 2

TopNResul t . Passwor d=Passwor d2

#

Details for rateltem

#

#Tuni ngSettings detail s

Ratel . | t em D=417

Rat el . | t enType=MDA E

Rat el . Dat aSour ceType=RATI NG

Rat el . I nt er est O nensi on=RATI NG

Rat el . Per sonal i zat i onl ndex=LON

#+ Profil eDat aBal ance needs to be specified as part of the Tuni ngSettings obj ect
but its value is not used by REProxyBatch
Rat el . Profi | eDat aBal ance=H STCRY

Rat el . Profi | elUsage=I NOLUDE

Rat el . Taxonony=1

Result table details

Rat el Resul t. Wl = dbc: oracl e: t hi n: @yCBU |
Rat el Resul t . Al i as=nyCBAl i as

Rat el Resul t . Schema=User 3

Rat el Resul t . Tabl e=RATH TEM RESLLTS

Rat el Resul t . User nane=User 3

Rat el Resul t . Passwor d=Passwor d3

B-4 Oracle9iAS Personalization Programmer’s Guide

RE Batch Sample Program Code

#

Details for crossSell Forltem

#

#l nput itens table details

It enTabl e. Url 5 dbc: oracl e: t hi n: @yDBU |
ItenTabl e. Aias=nyDBAl i as

|t enTabl e. Schena=User 4

ItenTabl e. Tabl e=itemlist_in

| t enTabl e. User nane=User 4

| t enTabl e. Passwor d=User 4

Nunber of itens to be recommended per input item
XSel | . Nunber & | t ens=10

#Tuni ngSettings details

XSel | . Dat aSour ceType=NAV GATI CN

XSel | . I nt erest D nensi on=NAVI GATI ON

XSel | . Personal i zati onl ndex=H GH

Profil eDat aBal ance needs to be specified as part of the Tuni ngSettings obj ect
but its value is not used by REProxyBatch
XSel | . Profi | eDat aBal ance=H STCRY

XSel | . Profil esage=EXCLUDE

#H I teringSettings details

XSel | . Taxonony=1

XSel | . Gat egorylLi st=1-3-5-7-9

XSel | . Cat egor yMenber =Al | | t ens

Result table details

XSel | Resul t. Url =j dbc: oracl e: t hi n: @yDBU |
XSel | Resul t. Ali as=nyCBA as

XSel | Resul t. Schena=User 4

XSel | Resul t. Tabl e=XSH.L_RESULTS

XSel | Resul t . User nane=User 5

XSel | Resul t . Passwor d=Passwor d5

REBatchTest.java

The sample program follows. Note that you must replace RE details and
input/output table details to reflect your installation.

HiH

#H# Input file for REProxyBatch sanpl e program

#H## Before Running, you will need to replace the follow ng dumny strings with actual infornation:
#H# 1. RE* details (U, Usernang, Password) to point to the RE

#H# 2. Input and Qutput (Result) table details for each of the calls.

#A uni que nare for proxy

REProxyBatch Sample Program B-5

RE Batch Sample Program Code

ProxyNane=REB 1

#Reconmmendat i on Engi ne details
REU | 5j dbc: or acl e: t hi n: @yDBU |
FEUser nane=RBEUser

REPasswor d=REPasswor d

#l nput custoner table |ocation

I nput . Ul 5 dbc: oracl e: thi n: @yDBU |
Input. Al i as=nyDBAl i as

I nput . Schena=User 1

I nput . Tabl e=custoner _|ist_in

| nput . User nane=User 1

| nput . Passwor d=Passwor d1

#Qustoner profile table

This table is created in RE by | oadQust oner Profile. Onhce created
#it is used for reconmendTopltens and rateltem

Qust Profi | e=W_QUSTOMER PRCFI LE

#

Detail s for recommendTopl t ens

#

Nunber of itens to be recommended per custoner

TopN Nunber G | t ens=10

#Tuni ngSettings details

#val i d DataSourceTypes are ALL, DEMOERAPH C PURCHASI NG RATI NG NAM GATI ON
TopN Dat aSour ceType=ALL

#valid I nterestD nensi on: PURCHASI NG RATI NG NAM GATI ON

TopN I nt er est D nensi on=PURCHAS NG

#valid Personalizationlndex: LOY MBOW H

TopN Per sonal i zat i onl ndex=MeED UM

#+ Profil eDat aBal ance needs to be specified as part of the Tuni ngSettings obj ect
but its value is not used by REProxyBatch

#valid Profil eDat aBal ance: H STARY, CURRENT, BALANCED

TopN Prof i | eDat aBal ance=H STCRY

#valid Profil elsage: | NOLLDE, EXQLUDE

TopN Prof i | eUsage=I NOLUDE

FlteringSettings details

TopN Taxonony=1

#Category list is a series of nunbers separated by
TopN Cat egoryLi st =1-2-3-4-5

#Val i d Cat egor yMenber shi p: Excl udel t ens, Excl udeCat egories, |ncludeltens, |ncludeCategories,
level, SubTreeltens, SubTreeCategories, Alltens, Al Categories

TopN Cat egor yMenber =Al | | t ens

B-6 Oracle9iAS Personalization Programmer’s Guide

RE Batch Sample Program Code

Result table details

TopNResul t. Ul 5j dbc: or acl e: t hi n: @yDBU |
TopNResul t. Al i as=ny[CBAl i as

TopNResul t . Schema=User 2

TopNResul t. Tabl e=TopN RESULTS

TopNResul t . User nane=lser 2

TopNResul t . Passwor d=Passwor d2

#

Details for rateltem

#

#Tuni ngSettings details

Ratel . Item D=417

Rat el . | t enType=MDA E

Rat el . Dat aSour ceType=RATI NG

Rat el . | nt er est O nensi on=RATI NG

Rat el . Personal i zat i onl ndex=LON

Profil eDat aBal ance needs to be specified as part of the Tuni ngSettings obj ect
but its value is not used by REProxyBatch
Rat el . Profi | eDat aBal ance=H STCRY

Rat el . Profi | eUsage=I NOLUDE

Rat el . Taxonony=1

Result table details

Rat el Resul t. Wl 5j dbc: oracl e: t hi n: @yDBU |
Ratel Resul t. Al i as=ny[CBAl i as

Rat el Resul t . Schema=User 3

Rat el Resul t . Tabl e=RATH TEM RESULTS

Rat el Resul t . User nane=User 3

Rat el Resul t . Passwor d=Passwor d3

#

Details for crossSell Forltem

#

#l nput itens table details

It enTabl e. Url 5j dbc: or acl e: t hi n: @yDBU |
ItenTabl e. Ai as=nyDBAl i as

I t enTabl e. Schema=User 4

ItenTabl e. Tabl e=itemlist_in

I t enTabl e. User nane=User 4

I t enTabl e. Passwor d=User 4

Nunber of itens to be recommended per input item
XSel | . Nunber & | t ens=10

#Tuni ngSettings details

XSel | . Dat aSour ceType=NAVI GATI CN

XSel | . I nt erest O mensi on=NAVI GATI CN

REProxyBatch Sample Program B-7

RE Batch Sample Program Code

XSel | . Personal i zati onl ndex=H GH

Profil eDat aBal ance needs to be specified as part of the Tuni ngSettings obj ect
but its value is not used by REProxyBatch
XSel | . Profi | eDat aBal ance=H STCRY

XSel | . Profi| eUsage=EXCLUDE

#H I teringSettings details

XSel | . Taxonony=1

XSel | . Cat egorylLi st=1-3-5-7-9

XSel | . Cat egor yMenber =Al | | t ens

Result table details

XSel | Resul t. Wl =j dbc: oracl e: t hi n: @yDBU |
XSel | Resul t. Al i as=ny[CBA as

XSel | Resul t . Schema=ser 4

XSel | Resul t. Tabl e=XSH.L_RESULTS

XSel | Resul t . User name=User 5

XSel | Resul t . Passwor d=Passwor d5

B-8 Oracle9iAS Personalization Programmer’s Guide

A

accessibility
of documentation, xi
API structure, 1-1

B

batch
examples, 9-1
use, 9-1

batch proxy, 6-1
batch recommendations, 8-4

C
cache

data, 4-2
caching

data, 2-7

CategoryMembership, 7-3

CategoryMembership interface,

class
Contentitem, 3-9
Dataltem, 3-10,7-8
FilteringSettings, 3-10, 7-8
IdentificationData, 3-11
Item, 3-12,7-9
ItemDetailData, 3-12
Location, 7-10
Recommendation, 3-12
RecommendationList, 3-13
REProxyManager, 4-3
TuningSettings, 3-13, 7-10

3-3

classes

REAPI, 4-1

REProxyBatch, 8-1
code sample

REProxyBatch, 9-2
Contentltem class, 3-9
conventions

table of, xiii
cross sell, 4-8

usage notes, 8-3
currencies

handling, 5-8,9-3
customer profile management

REProxyBatch, 8-2
customer registration, 4-4
customers, 2-2,8-2

RE Batch API, 6-2,6-4

D

Index

data

RE Batch API, 6-4
data caching, 2-7,4-2
data collection, 2-3,4-2, 4-3, 4-6
data management, 4-3
Dataltem class, 3-10, 7-8
DataSource interface, 3-3,7-4
demographic data

using, 9-4
destroy a proxy, 5-3
document accessibility, xi

Index-1

E

end user

REAPI, 2-2
Enum interface, 3-2,7-2
EnumType interfaces

RE Batch, 7-2

REAPI, 3-2
examples

REAPI, 5-1

executing OP programs, 1-1
executing REAPI programs, 2-1, 2-4

F

filtering, 3-10, 7-8
Filtering interface, 3-4
FilteringSettings class, 3-10, 7-8

H

handling currencies, 5-8,9-3
handling time-based items, 5-11,9-4
hot picks

REAPI, 2-4

IdentificationData class, 3-11
individual recommendations, 5-8
initialization
RE Proxy, 5-6
InterestDimension interface, 3-5, 7-4
interface
CategoryMembership, 3-3,7-3
DataSource, 3-3,7-4
Filtering, 3-4
InterestDimension, 3-5, 7-4
Personalizationindex, 3-5, 7-5
ProfileDataBalance, 3-6, 7-6
ProfileUsage, 3-7,7-6
RecommendationAttribute, 3-7
Sorting, 3-8, 7-7
User, 3-8
Item class, 3-12,7-9
ItemDetailData class, 3-12

Index-2

J

java applications
standalone, 5-5
Java server-side modules, 5-5
Javadoc, 1-2
VM
proxy interaction, 5-5

L

load balancing
REAPI, 5-8
Location class, 7-10
location of REAPI classes, 3-1

M

multiple currencies, 5-8, 9-3
multiple instances
REProxy, 5-6

@)

OP data caching, 2-7
OP programs

how to execute, 1-1
OP ratings, 3-1

P

Personalizationindex interface, 3-5, 7-5

preface, Xi

conventions table, Xiii
prerequisites

RE Batch API, 6-1
ProfileDataBalance

interface, 7-6
ProfileDataBalance interface, 3-6
ProfileUsage interface, 3-7,7-6
proxy, 8-1

creation, 4-2, 8-2

destroying, 5-3

initialization, 5-6

management, 4-2, 8-2

using, 5-2

proxy creation, 4-7,8-1
proxy destruction, 4-9
proxy management, 8-1
proxy objects
REAPI, 2-5
removing, 2-9
ProxyBatch, 9-1

R

ratings, 8-2
OoP, 3-1
RE API Batch
getting recommendations, 6-4
RE Bacth API
data, 6-4
RE Batch API, 6-1
customer profiles, 6-4
customers, 6-2
environment, 6-2
example, 6-3
recommendations, 6-2, 6-4
using, 6-2
RE Batch API prerequisites, 6-1
RE Batch proxy, 8-1
RE Batch recommendations, 6-5
RE data collection, 4-2

RE Proxy, 4-2
usage notes, 4-6
RE usage, 5-9

REProxyBatch, 9-2
REAP recommendations, 2-8
REAPI

proxy objects, 2-5

using, 4-1
REAPI basic usage, 5-1
REAPI classes

location, 3-1
REAPI classes and methods, 4-1
REAPI data collection, 2-3
REAPI demo, 5-1
REAPI end users, 2-2
REAPI EnumType interfaces, 3-2
REAPI examples, 5-1
REAPI hot picks, 2-4

REAPI Overview, 2-1
REAPI prerequisites, 2-1,2-4
REAPI recommendations, 2-4, 2-8
making, 2-9
obtaining, 2-8
REAPI sample program, A-1
REAPI session
closing, 2-9
starting, 2-6
REAPI sessions, 2-2
REAPI supporting classes, 2-6, 3-1
REAPI usage, 5-1
REBatchProxy
creating, 6-4
REBatchProxy object
removing, 6-5
recommedations
RE Batch API, 6-5
Recommendation class, 3-12
recommendation engine usage, 5-9
REProxyBatch, 9-2
RecommendationAttribute interface, 3-7
RecommendationList class, 3-13
recommendations, 3-12, 4-6
creating, 2-8,6-5
RE Batch API, 6-2,6-5
REAPI, 2-4,4-4
REProxyBatch, 8-2,8-4
returned value, 8-2
usage notes, 8-3
REProxy
multiple instances, 5-6
REProxy object
creating, 5-2
using, 5-2
REProxyBatch
code sample, 9-2
demographic data, 9-4
examples, 9-1
recommendations, 8-4
rules, 8-4
usage, 9-1
REProxyBatch classes
location, 8-1
REProxyBatch overview, 8-1

Index-3

REProxyBatch sample program, B-1

REProxyManager

JVM interaction, 5-5
REProxyManager class, 4-3
REProxyRT

location of classes, 4-2
REProxyRT objects, 2-5

removing, 2-9
rules, 4-6

REProxyBatch, 8-4

S

sample program

REAPI, A-1

REProxyBatch, B-1
scoring

customers, 2-9

RE Batch API, 6-5

visitors, 2-8
server-side modules, 5-5
session

closing, 2-9
session creation, 4-6
session management, 4-3
sessionful, 2-2,2-3,5-3
sessionful web application, 5-3
sessionless, 2-2,2-3,5-4
sessionless web application, 5-4
sessions, 2-2

management, 4-3
Sorting interface, 3-8, 7-7
standalone java applications, 5-5
stateful, 2-2
stateless, 2-2
supporting classes

RE Batch, 7-1

REAPI, 3-1

T

time-based items, 5-11, 9-4
tuning, 3-13
TuningSettings class, 3-13, 7-10

Index-4

U

uninterrupted REAPI service,
usage
REAPI, 5-1
usage notes
RE Proxy, 4-6
User interface, 3-8
using a proxy, 5-2
using RE Batch API, 6-2

\Y,

5-7

visitors, 2-2

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure
	Where to Find More Information
	Conventions

	1 Oracle9iAS Personalization Programming
	OP API Structure
	Executing OP Programs
	Javadoc for the OP APIs

	Part I� Recommendation Engine API
	2 REAPI Overview
	REAPI Prerequisites
	REAPI Definitions and Concepts
	REAPI End Users (Customers and Visitors)
	Web Applications and Sessions
	REAPI Sessionful Web Applications
	REAPI Sessionless Web Applications
	REAPI Data Collection
	REAPI Recommendations
	REAPI Hot Picks

	Before Using REAPI
	REAPI Demo Program
	Creating REProxyRT Objects
	Starting an REAPI Session
	Creating Instances of REAPI Supporting Classes
	Collecting Data for REAPI Recommendations
	OP Data Caching

	Getting REAPI Recommendations
	How REAPI Creates Recommendations
	Scoring for Visitors:
	Scoring for Customers:

	Making REAPI Recommendations
	Closing an REAPI Session
	Removing REProxyRT Objects

	3 REAPI Supporting Classes
	Ratings in OP
	Location of REAPI Classes
	REAPI EnumType Interfaces
	REAPI CategoryMembership Interface
	REAPI DataSource Interface
	REAPI Filtering Interface
	REAPI InterestDimension Interface
	REAPI PersonalizationIndex Interface
	REAPI ProfileDataBalance Interface
	REAPI ProfileUsage Interface
	REAPI RecommendationAttribute Interface
	REAPI Sorting Interface
	REAPI User Interface

	Other Supporting REAPI Classes
	ContentItem Class
	DataItem Class
	FilteringSettings Class
	IdentificationData Class
	Item Class
	ItemDetailData Class
	Recommendation Class
	RecommendationContent Class
	RecommendationList Class
	TuningSettings Class

	4 Using REAPI
	Recommendation Proxy Classes
	Location of RE Proxy Classes
	RE Proxy Creation and Management
	RE Data Collection
	REProxyManager Class

	Proxy Methods
	RE Proxy Session Management
	RE Proxy Data Collection and Management
	Re Proxy Customer Registration
	RE Proxy Recommendations
	Ratings in OP
	Meaning of Returned Value for Recommendations

	Rules and Recommendations
	RE Proxy Method Usage Notes
	Session Creation
	Data Collection
	Add Items
	Remove Items

	Proxy Creation
	Cache Size
	Interval

	Cross Sell Methods
	Proxy Destruction

	5 REAPI Examples and Usage
	REAPI Demo
	REAPI Basic Usage
	Create an REProxy Object
	Use the Proxy
	Destroy the Proxy

	Sessionful Web Application Outline
	Sessionless Web Application Outline
	REProxyManager Interaction with JVM
	Standalone Java Applications
	Java Server-Side Modules

	Using Multiple Instances of REProxy
	Initialization Fail Safe
	Uninterrupted REAPI Service
	Load Balancing

	Extracting Individual Recommendations
	Handling Multiple Currencies
	Recommendation Engine Usage
	Using Demographic Data
	Handling Time-Based Items

	Part II� Recommendation Engine Batch API
	6 RE Batch API Overview
	RE Batch API Prerequisites
	RE Batch API Definitions and Concepts
	RE Batch API End Users (Customers)
	RE Batch API Recommendations

	Using RE Batch API
	Setting Up the RE Batch API Environment
	Customer Profile Data
	Deploy a Package to an RE

	Sample RE Batch API Usage
	Creating an REBatchProxy Object
	Creating Instances of RE Batch API Objects
	Converting Data for RE Batch API
	Managing Customer Profiles for RE Batch API
	Getting RE API Batch Recommendations
	Ratings in OP
	Creating Recommendations
	Scoring:

	Making RE Batch Recommendations
	Removing the REBatchProxy Object

	7 RE Batch API Supporting Classes
	Ratings in OP
	Location of RE Batch API Classes
	EnumType Interfaces for RE Batch API
	CategoryMembership Interface
	DataSource Interface
	InterestDimension Interface
	PersonalizationIndex Interface
	ProfileDataBalance Interface
	ProfileUsage Interface
	Sorting Interface

	Other RE Batch API Supporting Classes
	DataItem Class
	FilteringSettings Class
	Item Class
	Location Class
	TuningSettings Class

	8 Using the Recommendation Engine Batch Proxy
	REProxy Batch Overview
	Location of REProxyBatch Classes
	REProxyBatch Creation and Management
	Customer Profile Management

	REProxyBatch Recommendations
	Ratings in OP
	Meaning of Returned Value for Recommendations
	Cross Sell Method Usage Notes
	Recommendation Method Usage Notes

	REProxyBatch Rules and Recommendations

	9 REProxyBatch API Examples and Usage
	REProxyBatch API Basic Usage
	Code Sample: Recommend Top
	Code Sample: Recommend Cross Sell

	Recommendation Engine Usage
	Handling Multiple Currencies
	Using Demographic Data
	Handling Time-Based Items

	A REAPI Sample Program
	B REProxyBatch Sample Program
	RE Batch Sample Program Overview
	RE Batch Sample Program Output

	Executing the RE Batch Sample Program
	RE Batch Sample Program Code
	batchtest.txt
	REBatchTest.java

	Index

