
Oracle9 i Application Server

Globalization Support Guide

Release 2 (9.0.2)

May 2002

Part No. A92110-02

Oracle9i Application Server Globalization Support Guide, Release 2 (9.0.2)

Part No. A92110-02

Copyright © 2002 Oracle Corporation. All rights reserved.

Primary Author: Cathy Baird

Contributors: Maher Al-Nubani, Christopher Barron, Cathy Godwin, Yuki Hirano, Pavana Jain, Laura
Nghiem, Frank Nimphius, Itsuo Okamoto, Theresa Robertson, Frank Rovitto, Richard Soule, Suhail
Shaker, Sanjay V. Singh, Barry Trute, Simon Wong

Graphic Artist: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle9iAS Dicoverer, PL/SQL, and Pro*C/C++ are
trademarks or registered trademarks of Oracle Corporation. Other names may be trademarks of their
respective owners.

Contents

Send Us Your Comments ... ix

Preface .. xi

Audience .. xii
Documentation Accessibility .. xii
Organization.. xii
Related Documentation .. xiii
Conventions.. xiv

1 Overview of Globalization Support in Oracle9 iAS

Globalizing Internet Applications .. 1-2
Globalization Concepts ... 1-2

Locale.. 1-2
Character Set ... 1-2
Unicode .. 1-3

Designing a Global Internet Application .. 1-3
Monolingual Internet Application Architecture .. 1-3
Multilingual Internet Application Architecture... 1-5
Using a Centralized Database... 1-7
iii

2 Developing Global Internet Applications for Oracle9 iAS

 Overview of Developing Global Internet Applications .. 2-2
Developing Locale-Aware Internet Applications ... 2-3

Determining the User’s Locale in Monolingual Applications ... 2-5
Determining the User’s Locale in Multilingual Applications .. 2-6
Locale Awareness in Java Applications .. 2-6

Locale Awareness in Monolingual Java Applications ... 2-7
Locale Awareness in Multilingual Java Applications .. 2-7

Locale Awareness in Perl and C/C++ Applications ... 2-8
Locale Awareness in Monolingual Perl and C/C++ Applications 2-8
Locale Awareness in Multilingual Perl and C/C++ Applications................................. 2-8

Locale Awareness in SQL and PL/SQL Applications... 2-9
Locale Awareness in Monolingual SQL and PL/SQL Applications 2-10
Locale Awareness in Multilingual SQL and PL/SQL Applications 2-10

Encoding HTML Pages .. 2-11
Choosing an HTML Page Encoding... 2-11

Choosing an HTML Page Encoding for Monolingual Applications............................ 2-12
Choosing an HTML Page Encoding for Multilingual Applications 2-13

Specifying the Page Encoding for HTML Pages .. 2-13
Specifying the Encoding in the HTTP Header .. 2-13
Specifying the Encoding in the HTML Page Header ... 2-14

Specifying the Page Encoding in Java Servlets and Java Server Pages............................... 2-14
Specifying the Page Encoding in SQL and PL/SQL Server Pages 2-15

Specifying the Page Encoding in PL/SQL and PSPs for Monolingual Environments.........

2-16
Specifying the Page Encoding in PL/SQL and PSPs for Multilingual Environments

2-16
Specifying the Page Encoding in Perl .. 2-17

Specifying the Page Encoding in Perl for Monolingual Applications 2-17
Specifying the Page Encoding in Perl for Multilingual Applications.......................... 2-17

Specifying the Page Encoding in Oracle9iAS Reports Services Applications 2-18
Specifying the Page Encoding in JSP Reports for the Web.. 2-18
Specifying the Page Encoding in HTML and XML Output for Paper Layout 2-19

Specifying the Page Encoding in HTML for Reports Services............................... 2-19
Specifying the Page Encoding in XML for Reports Services.................................. 2-19
iv

Handling HTML Form Input.. 2-20
Handling HTML Form Input in Java... 2-21
Handling HTML Form Input in PL/SQL ... 2-22

Handling HTML Form Input in PL/SQL for Monolingual Applications 2-22
Handling HTML Form Input in PL/SQL for Multilingual Applications 2-22

Handling HTML Form Input in Perl ... 2-23
Encoding URLs.. 2-24

Encoding URLs in Java .. 2-24
Encoding URLs in PL/SQL... 2-25
Encoding URLs in Perl... 2-26

Formatting HTML Pages to Accommodate Text in Different Languages.............................. 2-26
Accessing the Database Server... 2-27

Using JDBC to Access the Database... 2-28
Using PL/SQL to Access the Database ... 2-29
Using Perl to Access the Database ... 2-30
Using C/C++ to Access the Database ... 2-31

Using the OCI API to Access the Database ... 2-32
Using the Unicode API Provided with OCI to Access the Database 2-32
Using Unicode Bind and Define in Pro*C/C++ to Access the Database 2-34

Organizing the Content of HTML Pages for Translation ... 2-35
Translation Guidelines for HTML Page Content... 2-35
Organizing Static Files for Translation.. 2-36
Organizing Translatable Static Strings for Java Servlets and Java Server Pages 2-38

Retrieving Strings in Monolingual Applications.. 2-39
Retrieving Strings in Multilingual Applications... 2-39

Organizing Translatable Static Strings in C/C++ and Perl.. 2-40
Organizing Translatable Static Strings in Message Tables ... 2-41
Organizing Translatable Dynamic Content in Application Schema................................... 2-43

Locale Awareness in Oracle9iAS Forms Services... 2-44
Locale Awareness in a Monolingual Oracle9iAS Forms Services Application 2-45
Locale Awareness in a Multilingual Oracle9iAS Forms Services Application.................. 2-46

Locale Awareness in Oracle9iAS Reports Services .. 2-48
Locale Awareness in a Monolingual Oracle9iAS Reports Services Application............... 2-49
Locale Awareness in a Multilingual Oracle9iAS Reports Services Application 2-49

Locale Awareness in Oracle9iAS Discoverer .. 2-49
v

Locale Awareness in Oracle9iAS Clickstream Intelligence Applications 2-50

3 Configuring Oracle9 iAS for Global Application Deployment

About Manually Editing HTTP Server and OC4J Configuration Files 3-2
Configuring Oracle HTTP Server for Multilingual Support.. 3-3

Configuring the NLS_LANG Environment Variable.. 3-3
Setting NLS_LANG in a Monolingual Application Architecture 3-4
Setting NLS_LANG in a Multilingual Application Architecture 3-6

Configuring the Runtime Default Locale in a Monolingual Application Architecture 3-6
mod_jserv Runtime for Java... 3-7
mod_oc4j Runtime for Java .. 3-7
mod_plsql Runtime for PL/SQL and PL/SQL Server Pages.. 3-7
mod_perl Runtime for Perl Scripts ... 3-8
C/C++ Runtime... 3-8

Configuring Transfer Mode for mod_plsql Runtime .. 3-9
Configuring Oracle9iAS Portal for Multilingual Support.. 3-9
Configuring Oracle9iAS Single Sign-On for Multilingual Support 3-12
Configuring Oracle9iAS Forms Services for Multilingual Support 3-12
Configuring Oracle9iAS Reports Services for Multilingual Support 3-14
Configuring Oracle9iAS Discoverer for Multilingual Support ... 3-15
Configuring Oracle9iAS Clickstream Intelligence for Multilingual Support 3-16
Configuring Oracle9i Business Components for Java for Multilingual Support................. 3-16
Configuring a Centralized Database for Multilingual Support .. 3-17

4 A Multilingual Demo for Oracle9 iAS

Description of the World-of-Books Demo ... 4-2
Architecture and Design of the World-of-Books Demo .. 4-2

World-of-Books Architecture.. 4-2
World-of-Books Design.. 4-4
World-of-Books Schema Design... 4-5

Building, Deploying, and Running the World-of-Books Demo.. 4-7
How to Build the World-of-Books Demo.. 4-8
How to Deploy the World-of-Books Demo .. 4-9
How to Run the World-of-Books Demo.. 4-10
vi

Locale Awareness of the World-of-Books Demo .. 4-12
How World-of-Books Determines the User’s Locale .. 4-13
How World-of-Books Uses Locale Information in Localizer Methods 4-14
How World-of-Books Sorts Query Results ... 4-15
How World-of-Books Searches the Contents of Books ... 4-16

Encoding HTML Pages for the World-of-Books Demo ... 4-17
Handling HTML Form Input for the World-of-Books Demo .. 4-17
Encoding URLs in the World-of-Books Demo .. 4-18
Formatting HTML Pages in the World-of-Books Demo ... 4-19
Accessing the Database in the World-of-Books Demo.. 4-20
Organizing the Content of HTML Pages in the World-of-Books Demo................................ 4-20

Static Files for World-of-Books Online Help .. 4-21
Using Resource Bundles for the Content of World-of-Books HTML Pages 4-21

A Oracle9 i Application Server Supported Languages

Glossary

Index
vii

viii

Send Us Your Comments

Oracle9 i Application Server Globalization Support Guide, Release 2 (9.0.2)

Part No. A92110-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7407 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 2op3

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
ix

x

Preface

Oracle9i Application Server Globalization Support Guide describes how to design,

develop, and deploy Internet applications for a global audience.

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions
xi

Audience
Oracle9i Application Server Globalization Support Guide is intended for Internet

application developers and Webmasters who design, develop, and deploy Internet

applications for a global audience

To use this document, you need to have some programming experience and be

familiar with Oracle® databases.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.

Organization
This document contains:
xii

Chapter 1, "Overview of Globalization Support in Oracle9iAS"
This chapter defines concepts that are essential to understanding the rest of the

book. It also describes models for monolingual Internet application design and

multilingual Internet application design.

Chapter 2, "Developing Global Internet Applications for Oracle9iAS"
This chapter describes how to make Internet applications locale-aware and how to

present locale-appropriate data to users. It describes how to encode HTML pages,

handle HTML form input, and encode URLs so that clients in different locales can

exchange information with the application server. It describes how the application

server accesses the database with minimal character set conversion and data loss.

Chapter 3, "Configuring Oracle9iAS for Global Application Deployment"
This chapter describes how to configure Oracle9i Application Server (Oracle9iAS)

for global application deployment. It includes information about configuring the

database, Oracle HTTP Server, Oracle9iAS Portal, Oracle9iAS Discoverer,

Oracle9iAS Forms Services, and Oracle9iAS Reports Services for multilingual

support.

Chapter 4, "A Multilingual Demo for Oracle9iAS"
This chapter describes World-of-Books, the multilingual demo that is provided with

Oracle9i Application Server.

Appendix A, "Oracle9i Application Server Supported Languages"
This appendix contains a list of languages that Oracle9i Application Server

supports.

Glossary
The glossary defines terms that are related to globalization support for Oracle9iAS.

Related Documentation
For more information, see these Oracle resources:

■ The Oracle9i Application Server documentation set

■ Oracle9i Globalization Support Guide in the Oracle Database Documentation

Library

In North America, printed documentation is available for sale in the Oracle Store at
xiii

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase

documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed

documentation.

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

Conventions
This section describes the conventions used in the text and code examples of this

documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.

Italics Italic typeface indicates book titles or
emphasis.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.
xiv

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

UPPERCASE
monospace
(fixed-width
font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width
font)

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the data files and control files in the
/disk1/oracle/dbs directory.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
monospace
(fixed-width
font) italic

Lowercase monospace italic font
represents placeholders or variables.

You can specify the parallel_clause .

Run Uold_release .SQL where old_
release refers to the release you installed
prior to upgrading.

Convention Meaning Example
xv

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

{ } Braces enclose two or more items, one of
which is required. Do not enter the braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery ;

SELECT col1 , col2 , ... , coln FROM
employees;

 .

 .

 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;
xvi

Overview of Globalization Support in Oracl
1

Overview of Globalization Support in

Oracle9 iAS

This chapter contains the following topics:

■ Globalizing Internet Applications

■ Globalization Concepts

■ Designing a Global Internet Application
e9iAS 1-1

Globalizing Internet Applications
Globalizing Internet Applications
It is increasingly important for businesses to make their Internet applications

available with appropriate locale characteristics, such as language and currency

formats, to users around the world. The Oracle9i Application Server (Oracle9iAS) is

fully internationalized to provide a global platform for developing and deploying

Internet applications.

Building an Internet application or Web site for Oracle9iAS requires good

globalization practices in development and deployment. This book describes

recommended globalization practices.

Chapter 4 contains information about a multilingual demo that is included with

Oracle9iAS.

Globalization Concepts
You need to be familiar with the following concepts to understand the rest of this

book:

■ Locale

■ Character Set

■ Unicode

Locale
Locale refers to a language, a character set, and the region (territory) in which the

language is spoken. Information about the region includes formats for dates and

currency, for example. The primary languages of the United States and Great Britain

are both forms of English, but the two territories have different currencies and

different conventions for date formats. Therefore, the United States and Great

Britain are different locales.

Character Set
A character set defines the binary values that are associated with the characters that

make up a language. For example, the ISO-8859-1 character set can be used to

encode most Western European languages.
1-2 Oracle9i Application Server Globalization Support Guide

Designing a Global Internet Application
Unicode
Unicode is a universal character set that defines binary values for characters in

almost all languages. Unicode characters can be encoded as follows:

■ In 1 to 4 bytes in the UTF-8 character set

■ In 2 or 4 bytes in the UTF-16 character set

■ In 4 bytes in the UTF-32 character set

Designing a Global Internet Application
There are several approaches to designing global Internet applications. This book

discusses two approaches: monolingual and multilingual.

You can design a monolingual Internet application so that it supports several

instances. Each instance supports a different locale. Users with different locale

preferences must invoke the instance that serves their locale.

You can design a multilingual Internet application to support several locales with

one instance. All users, regardless of locale, can invoke the same instance.

Both designs include one centralized database that uses a Unicode character set.

This section contains the following topics:

■ Monolingual Internet Application Architecture

■ Multilingual Internet Application Architecture

■ Using a Centralized Database

Monolingual Internet Application Architecture
Figure 1–1 shows the design of a monolingual Internet application.
Overview of Globalization Support in Oracle9iAS 1-3

Designing a Global Internet Application
Figure 1–1 Monolingual Internet Application Architecture

The clients (in English, Japanese, Hebrew, and Thai locales) communicate with

separate instances of Oracle9iAS through HTTP connections. One instance of the

application runs in the same locale as one of the Oracle9iAS instances. For example,

English
Locale

Japanese
Locale

Hebrew
Locale

Monolingual
Application:

Japanese Locale

Shift-JIS

ISO-8859-1

ISO-8859-8

JAI6SJIS

Monolingual
Application:

English Locale

WE8MSWIN1252

Monolingual
Application:

Hebrew Locale

IW8MSWIN1255

HTTP

Oracle Net

Oracle
Unicode

Thai
Locale

TIS-620 TH8TISASCII

Browsers Customer
Database

Oracle9 iAS
Instance 1

Oracle9 iAS
Instance 2

Server A

Monolingual
Application:
Thai Locale

Oracle9 iAS
Instance 3

Oracle9 iAS
Instance 4

Server B
1-4 Oracle9i Application Server Globalization Support Guide

Designing a Global Internet Application
the English application runs in the same locale as Oracle9iAS Instance 1. The

English and Japanese applications and their Oracle9iAS instances are running on

Server A, and the Hebrew and Thai applications and their instances are running on

Server B. Each Oracle9iAS instance communicates with the Unicode database. The

instances communicate with the database through Oracle Net.

The client character set for the English locale, for example, is ISO-8859-1. The

instance of Oracle9iAS that is associated with the English locale, Instance 1, uses the

Oracle character set WE8MSWIN1252 to communicate with the database. The

database character set is a Unicode character set.

Table 1–1 shows the advantages and disadvantages of deploying monolingual

Internet applications. As the number of locales increases, the disadvantages

outweigh the advantages of the monolingual design. This type of application design

is suitable for customers who support only one or two locales.

Multilingual Internet Application Architecture
Figure 1–2 shows the design of a multilingual Internet application.

See Also: "Using a Centralized Database" on page 1-7

Table 1–1 Advantages and Disadvantages of Monolingual Internet Application Design

Advantages Disadvantages

You can separate the support of different
locales into different servers. This allows
locales to be supported in different time
zones. Work load can be distributed
accordingly.

There are more Oracle9iAS servers to
administer.

Writing the code is simpler than for a
multilingual Internet application.

The Internet application requires more testing
resources to certify it on each Oracle9iAS
instance.

You must configure Oracle9iAS for each
instance of the application.

You must maintain a server for each locale
regardless of the amount of work that is
demanded of it. Load-balancing is possible
only among a group of Oracle9iAS instances
that support the same locale.

Supporting multilingual content is difficult.
Overview of Globalization Support in Oracle9iAS 1-5

Designing a Global Internet Application
Figure 1–2 Multilingual Internet Application Architecture

The clients (in English, Japanese, Hebrew, and Thai locales) communicate with one

Oracle9iAS instance through HTTP connections. Each client can use a different

character set because Oracle9iAS is configured to support several locales

simultaneously. The Oracle9iAS instance and the database communicate through

Oracle Net. Both the Oracle9iAS instance and the database use Unicode character

sets. The Unicode character sets do not have to be the same.

See Also: "Using a Centralized Database" on page 1-7

English
Locale

Japanese
Locale

Hebrew
Locale

Thai
Locale

Multilingual
Application with
Dynamic Locale

Switching

Oracle9 iAS
Instance

Shift-JIS

ISO-8859-1

UTF-8

UTF-8

Oracle
Unicode

Unicode

HTTP

Oracle Net

Browsers Customer
Database

Server
1-6 Oracle9i Application Server Globalization Support Guide

Designing a Global Internet Application
In order to support several locales in a single application instance, an application

should:

■ Process character data in Unicode so that it can support data in any language

■ Dynamically detect the user’s locale and adapt to the locale by constructing

HTML pages in the correct language and cultural conventions

■ Dynamically determine the character set to use for HTML pages and convert

content from Unicode to the HTML page encoding and vice versa

Table 1–2 shows the advantages and disadvantages of deploying multilingual

Internet applications.

Using a Centralized Database
A centralized Unicode database is a feature of both the monolingual approach and

the multilingual approach to developing globalized Internet applications. Using a

centralized database has the following advantages:

■ It provides a complete view of your data. For example, you can query for the

number of customers worldwide or the worldwide inventory level of a product.

■ It is easier to manage a centralized database than several distributed databases.

The database character set should be Unicode. You can use Unicode to store and

manipulate data in several languages. Unicode is a universal character set that

defines characters in almost all languages in the world. Oracle9i databases can store

Unicode data in one of the following encoding forms:

Table 1–2 Advantages and Disadvantages of Multilingual Internet Application Design

Advantages Disadvantages

You can use one Oracle9iAS configuration,
which reduces maintenance costs.

Multilingual applications are more complex to
code than monolingual applications. They
must be able to detect locales dynamically and
use Unicode. This is costly if you only need to
support one or two languages.

Performance tuning and capacity planning
do not depend on the number of locales.

Supporting additional languages is
relatively easy. You do not need to add
more machines for the new locales.

You can test the application for several
locales in a single testing environment.

The application can support multilingual
content.
Overview of Globalization Support in Oracle9iAS 1-7

Designing a Global Internet Application
■ UTF-8: Each character is 1 to 4 bytes long.

■ UTF-16: Each character is either 2 or 4 bytes long.

■ UTF-32: Each character is 4 bytes long.

See Also:

■ "Configuring Oracle HTTP Server for Multilingual Support" on

page 3-3

■ Oracle9i Globalization Support Guide in the Oracle Database

Documentation Library
1-8 Oracle9i Application Server Globalization Support Guide

Developing Global Internet Applications for Oracl
2

Developing Global Internet Applications for

Oracle9 iAS

This chapter contains the following topics:

■ Overview of Developing Global Internet Applications

■ Developing Locale-Aware Internet Applications

■ Encoding HTML Pages

■ Handling HTML Form Input

■ Encoding URLs

■ Formatting HTML Pages to Accommodate Text in Different Languages

■ Accessing the Database Server

■ Organizing the Content of HTML Pages for Translation

■ Locale Awareness in Oracle9iAS Forms Services

■ Locale Awareness in Oracle9iAS Reports Services

■ Locale Awareness in Oracle9iAS Discoverer

■ Locale Awareness in Oracle9iAS Clickstream Intelligence Applications
e9iAS 2-1

Overview of Developing Global Internet Applications
 Overview of Developing Global Internet Applications
Building an Internet application for Oracle9iAS that supports different locales

requires good development practices. The application itself must be aware of the

user’s locale and be able to present locale-appropriate content to the user. Clients

must be able to communicate with the application server regardless of the client’s

locale, with minimal character set conversion. The application server must be able

to access the database server with data in many languages, again with minimal

character set conversion. Character set conversion decreases performance and

increases the chance of data loss because some characters may not be available in

the target character set.

Oracle9iAS supports the following programming languages and corresponding

Web development environments:

■ Java callable from the mod_oc4j module

Oracle9iAS Containers for J2EE (OC4J) is the Java2 Enterprise Edition (J2EE)

container that Oracle9iAS provides. The mod_oc4j module routes HTTP

requests to Java Servlets and JSPs running on the OC4J Servlet runtime.

■ Java callable from the mod_jserv module

The mod_jserv module routes HTTP requests to the corresponding Java

Servlets and Java Server Pages (JSPs) running on the Jserv Servlet runtime.

■ Perl callable from the mod_perl module

The standard mod_perl module provides fast execution of Perl scripts. The

mod_perl module routes HTTP requests to the Perl scripts running on the Perl

interpreter from within the mod_perl module.

■ PL/SQL callable from the mod_plsql module

The mod_plsql module is a gateway that routes HTTP requests from the Web

server to PL/SQL procedures or PL/SQL Server Pages (PSP) running in a

database.

■ C/C++ as CGI or shareable libraries

See Also: Oracle9i Globalization Support Guide in the Oracle

Database Documentation Library for more information about

character set conversion
2-2 Oracle9i Application Server Globalization Support Guide

Developing Locale-Aware Internet Applications
You can write C and C++ programs as CGI applications callable from the mod_
fastcgi module or as libraries callable from any of the above Web

development environments.

Developing Locale-Aware Internet Applications
Global Internet applications need to be aware of the user’s locale.

A monolingual application by definition serves users with the same locale. A user’s

locale is fixed in a monolingual application and is usually the same as the default

runtime locale of the programming environment.

In a multilingual application, the user’s locale can vary. Multilingual applications

should:

■ Dynamically detect the user’s locale

■ Construct HTML content in the language of the locale

■ Use the cultural conventions implied by the locale

Locale-sensitive functions, such as date formatting, are built into programming

environments such as C/C++, Java, and PL/SQL. Applications can use

locale-sensitive functions to format the HTML pages according to the cultural

conventions of the user’s locale.

Different programming environments represent locales in different ways. For

example, the French (Canada) locale is represented as follows:

See Also: Oracle HTTP Server Administration Guide for more

information about the modules

Note: In this chapter, encoding and page encoding refer to the

character set used in a particular programming environment.

Environment Representation Locale Explanation

Various ISO standard fr-CA fr is the language
code defined in the
ISO 639 standard. CA
is the country code
defined in the ISO
3166 standard.
Developing Global Internet Applications for Oracle9iAS 2-3

Developing Locale-Aware Internet Applications
Table 2–1 shows how different programming environments represent some

commonly used locales.

Java Java locale object fr_CA Java uses the ISO
language and
country code.

C/C++ POSIX locale name fr_CA on UNIX UNIX locale names
may include a
character set that
overrides the default
character set. For
example, the
de.ISO8859-15 locale
is used to support the
Euro symbol.

PL/SQL and SQL NLS_LANGUAGE and
NLS_TERRITORY
parameters

NLS_LANGUAGE=
"CANADIAN
FRENCH"

NLS_TERRITORY=
"CANADA"

See Also: "Setting
NLS_LANG in a
Multilingual
Application
Architecture" on
page 3-6.

Table 2–1 Locale Representations in Different Programming Environments

Locale ISO Java UNIX
NLS_LANGUAGE,
NLS_TERRITORY

Arabic (U.A.E.) ar ar ar ARABIC, UNITED ARAB
EMIRATES

Germany (German) de-DE de_DE de GERMANY, GERMAN

English (U.S.A) en en_US en_US AMERICAN, AMERICA

English (United Kingdom) en-GB en_GB en_UK ENGLISH, UNITED
KINGDOM

Greek el el el GREEK, GREECE

Spanish (Spain) es-ES es_ES es SPANISH, SPAIN

French (France) fr fr_FR fr FRENCH, FRANCE

French (Canada) fr-CA fr_CA fr_CA CANADIAN FRENCH,
CANADA

Hebrew he he he HEBREW, ISRAEL

Environment Representation Locale Explanation
2-4 Oracle9i Application Server Globalization Support Guide

Developing Locale-Aware Internet Applications
If you write applications for more than one programming environment, then locales

must be synchronized between environments. For example, Java applications that

call PL/SQL procedures should map the Java locales to the corresponding NLS_
LANGUAGE and NLS_TERRITORY values and change the parameter values to match

the user’s locale before calling the PL/SQL procedures.

This section contains the following topics:

■ Determining the User’s Locale in Monolingual Applications

■ Determining the User’s Locale in Multilingual Applications

■ Locale Awareness in Java Applications

■ Locale Awareness in Perl and C/C++ Applications

■ Locale Awareness in SQL and PL/SQL Applications

Determining the User’s Locale in Monolingual Applications
A monolingual application by definition serves users with the same locale. A user’s

locale is fixed in a monolingual application and is usually the same as the default

runtime locale of the programming environment.

Italian (Italy) it it it ITALIAN, ITALY

Japanese ja-JP ja_JP ja_JP JAPANESE, JAPAN

Korean ko-KR ko_KR ko_KR KOREAN, KOREA

Portuguese (Portugal) pt pt pt PORTUGUESE, PORTUGAL

Portuguese (Brazil) pt-BR pt_BR pt_BR BRAZILIAN PORTUGUESE,
BRAZIL

Turkish tr tr tr TURKISH, TURKEY

Thai th th th THAI, THAILAND

Chinese (Taiwan) zh-TW zh_TW zh_TW TRADITIONAL CHINESE,
TAIWAN

Chinese (P.R.C) zh-CN zh_CN zh_CN SIMPLIFIED CHINESE,
CHINA

Table 2–1 Locale Representations in Different Programming Environments(Cont.)

Locale ISO Java UNIX
NLS_LANGUAGE,
NLS_TERRITORY
Developing Global Internet Applications for Oracle9iAS 2-5

Developing Locale-Aware Internet Applications
Determining the User’s Locale in Multilingual Applications
Multilingual applications can determine a user’s locale dynamically in the

following ways:

■ Based on the user profile information from an LDAP directory server such as

the Oracle Internet Directory (OID)

The application can store the user profile in the OID server provided by

Oracle9iAS. The LDAP schema for the user profile should include a preferred

locale attribute. This method does not work if a user has not logged on before.

■ Based on the default ISO locale of the user’s browser

Every HTTP request sends the default ISO locale of the browser with the

Accept-Language HTTP header. If the Accept-Language header is NULL, then

the locale should default to English. The drawback of this approach is that the

Accept-Language header may not be a reliable source of information about the

user’s locale.

■ Based on user input

Users can select a locale from a list or a group of icons such as flags.

You can use these methods of determining the user’s locale together or separately.

After the application determines the locale, the locale should be:

■ Mapped to the locale representations that correspond to the programming

environments on which the application runs

■ Used in locale-sensitive functions

Locale Awareness in Java Applications
A Java locale object represents the corresponding user’s locale in Java. The Java

encoding used for the locale is required to properly convert Java strings to byte data

and vice versa.

Consider the Java encoding for the locale when you make the Java code aware of a

user’s locale. There are two ways to make a Java method sensitive to the Java locale

and the Java encoding:

■ Using the default Java locale and default Java encoding for the method

■ Explicitly specifying the Java locale and Java encoding for the method

See Also: Table 2–1 for common locale representations in

different programming environments
2-6 Oracle9i Application Server Globalization Support Guide

Developing Locale-Aware Internet Applications
These approaches are discussed in the following sections:

■ Locale Awareness in Monolingual Java Applications

■ Locale Awareness in Multilingual Java Applications

Locale Awareness in Monolingual Java Applications
Monolingual applications should run implicitly with the default Java locale and

default Java encoding so that the applications can be configured easily for a

different locale. For example, to create a date formatter using the default Java locale,

use the following method call:

DateFormat df = DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.FULL);
dateString = df.format(date); /* Format a date */

Locale Awareness in Multilingual Java Applications
You should develop multilingual applications such that they are independent of

fixed default locales or encodings. Explicitly specify the Java locale and Java

encoding that correspond to the current user’s locale. For example, specify the Java

locale object that corresponds to the user’s locale, identified by user_locale , in

the getDateTimeInstance() method:

DateFormat df = DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.FULL, user_
locale);
dateString = df.format(date); /* Format a date */

Note that the only difference between the example code for the monolingual

application and the multilingual application is the inclusion of user_locale .

Similarly, do not use encoding-sensitive methods that assume the default Java

encoding. For example, you should not use the String.getBytes() method in a

multilingual application because it is encoding-sensitive. Instead, use the method

that accepts encoding as an argument, which is String.getBytes(String
encoding) . Be sure to specify the encoding used for the user’s locale.

Do not use the Locale.setDefault() method to change the default locale

because:

■ It changes the Java default locale for all threads and makes your applications

unsafe to threads

■ It does not affect the Java default encoding
Developing Global Internet Applications for Oracle9iAS 2-7

Developing Locale-Aware Internet Applications
Locale Awareness in Perl and C/C++ Applications
Perl and C/C++ use the POSIX locale model for internationalized applications. The

implementation for monolingual and multilingual applications is discussed in the

following sections:

■ Locale Awareness in Monolingual Perl and C/C++ Applications

■ Locale Awareness in Multilingual Perl and C/C++ Applications

Locale Awareness in Monolingual Perl and C/C++ Applications
Monolingual applications should be sensitive to the default POSIX locale, which is

configured by changing the value of the LC_ALL environment variable or changing

the operating system locale from the Control Panel in Windows.

To run on the default POSIX locale, the applications should call the setlocale()
function to set the default locale to the one defined by LC_ALL and use the POSIX

locale-sensitive functions such as strftime() thereafter. Note that the

setlocale() function affects the current process and all the threads associated

with it, so any multithread application should assume the same POSIX locale in

each thread. The following example gets the current time in the format specific to

the default locale in Perl:

use locale;
use POSIX qw (locale_h);
...
$old_locale = setlocale(LC_ALL, "");
$dateString = POSIX::strftime("%c", localtime());
...

Locale Awareness in Multilingual Perl and C/C++ Applications
Multilingual applications should be sensitive to dynamically determined locales.

Call the setlocale() function to initialize the locale before calling locale-sensitive

functions. For example, the following C code gets the local time in the format of the

user locale identified by user_locale :

#include <locale.h>
#include <time.h>
 ...
 const char *user_locale = "fr";
 time_t ltime;
 struct tm *thetime;

See Also: Table 2–1 for a list of commonly used POSIX locales
2-8 Oracle9i Application Server Globalization Support Guide

Developing Locale-Aware Internet Applications
 unsigned char dateString[100];
 ...
 setlocale(LC_ALL, user_locale);
 time (<ime);
 thetime = gmtime(<ime);
 strftime((char *)dateString, 100, "%c", (const struct tm *)thetime))
 ...
You must map user locales to POSIX locale names for applications to initialize the

correct locale dynamically in C/C++ and Perl. The POSIX locales depend on the

operating system.

Locale Awareness in SQL and PL/SQL Applications
PL/SQL procedures run in the context of a database session whose locale is

initialized by the NLS_LANG parameter in the database access descriptor (DAD).

The NLS_LANG parameter specifies top-level NLS parameters, NLS_LANGUAGE and

NLS_TERRITORY, for the database session. Other NLS parameters, such as NLS_
SORT and NLS_DATE_LANGUAGE, inherit their values from these top-level

parameters. These NLS parameters define the locale of a database session.

There are two ways to make SQL and PL/SQL functions locale sensitive:

■ Basing the locale on the NLS parameters of the current database session

■ Explicitly specifying the NLS parameters

This section contains the following topics:

■ Locale Awareness in Monolingual SQL and PL/SQL Applications

■ Locale Awareness in Multilingual SQL and PL/SQL Applications

See Also:

■ "Configuring the NLS_LANG Environment Variable" on

page 3-3

■ PL/SQL User’s Guide and Reference

■ Oracle9i Database Reference in the Oracle Database

Documentation Library

■ Oracle9i Globalization Support Guide in the Oracle Database

Documentation Library

for more information about NLS parameters
Developing Global Internet Applications for Oracle9iAS 2-9

Developing Locale-Aware Internet Applications
Locale Awareness in Monolingual SQL and PL/SQL Applications
Generally speaking, the initial values of the NLS parameters inherited from NLS_
LANG are sufficient for monolingual PL/SQL procedures. For example, the

following PL/SQL code calls the TO_CHAR() function to get the formatted date,

which uses the current values of the NLS_DATE_FORMAT and NLS_DATE_
LANGUAGE parameters:

mydate date;
dateString varchar2(100);
...
select sysdate into mydate from dual;
dateString = TO_CHAR(mydate);

If the initial values of the NLS parameters are not appropriate, then use an ALTER
SESSION statement to overwrite them for the current database session. You can use

the ALTER SESSION statement with the DBMS_SQL package. For example:

cur integer;
status integer;
...
cur := dbms_sql.open_cursor;
dbms_sql.parse(cur, 'alter session set nls_date_format = 'Day Month, YYYY',

dbms_sql.native);
status := dbms_sql.execute(cur);

Locale Awareness in Multilingual SQL and PL/SQL Applications
Multilingual applications should use ALTER SESSION statements to change the

locale of the database session to the user’s locale before calling any locale-sensitive

SQL or PL/SQL functions. You can use the ALTER SESSION statement with the

DBMS_SQL package. For example:

cur integer;
status integer;
...
cur := dbms_sql.open_cursor;
dbms_sql.parse(cur, 'alter session set nls_language = ' NLS_LANGUAGE_of_user_

locale ', dbms_sql.native);
dbms_sql.parse(cur, 'alter session set nls_territory = ’ NLS_TERRITORY_of_

user_locale’ , dbms_sql.native);
status := dbms_sql.execute(cur);

Alternatively, applications can specify the NLS parameters in every SQL function

that accepts an NLS parameter as an argument. For example, the following PL/SQL

code gets a date string based on the language of the user’s locale:
2-10 Oracle9i Application Server Globalization Support Guide

Encoding HTML Pages
mydate date;
dateString varchar2(100);
...
select sysdate into mydate from dual;
dateString TO_CHAR(mydate, 'DD-MON-YYYY HH24:MI:SSxFF',
 'NLS_DATE_LANGUAGE= language ');
...
language specifies the Oracle language name for the user’s locale.

Encoding HTML Pages
The encoding of an HTML page is important information for a browser and an

Internet application. You can think of the page encoding as the character set used

for the locale to which an Internet application is serving. The browser needs to

know about the page encoding so that it can use the correct fonts and character set

mapping tables to display pages. Internet applications need to know about the

HTML page encoding so they can process input data from an HTML form. To

correctly specify the page encoding for HTML pages, Internet applications must:

■ Choose a page encoding

■ Encode HTML content in the desired encoding

■ Correctly specify the HTML pages with the encoding name

This section contains the following topics:

■ Choosing an HTML Page Encoding

■ Specifying the Page Encoding for HTML Pages

■ Specifying the Page Encoding in Java Servlets and Java Server Pages

■ Specifying the Page Encoding in SQL and PL/SQL Server Pages

■ Specifying the Page Encoding in Perl

■ Specifying the Page Encoding in Oracle9iAS Reports Services Applications

Choosing an HTML Page Encoding
This section contains the following topics:

■ Choosing an HTML Page Encoding for Monolingual Applications

■ Choosing an HTML Page Encoding for Multilingual Applications
Developing Global Internet Applications for Oracle9iAS 2-11

Encoding HTML Pages
Choosing an HTML Page Encoding for Monolingual Applications
The HTML page encoding is based on the user’s locale. If the application is

monolingual, it supports only one locale per instance. Therefore, you should encode

HTML pages in the native encoding for that locale. The encoding should be

equivalent to the Oracle character set specified by the NLS_LANG parameter in the

Oracle HTTP Server configuration file.

Table 2–2 lists the Oracle character set names for the native encodings of the most

commonly used locales, along with the corresponding Internet Assigned Numbers

Authority (IANA) encoding names and Java encoding names. Use these character

sets for monolingual applications.

See Also: "Setting NLS_LANG in a Monolingual Application

Architecture" on page 3-4

Table 2–2 Native Encodings for Commonly Used Locales

Language
Oracle Character Set
Name

IANA Encoding
Name

Java Encoding
Name

Western European WE8MSWIN1252 ISO-8859-1 ISO8859_1

Central European EE8MSWIN1250 ISO-8859-2 ISO8859_2

Japanese JA16SJIS Shift_JIS MS932

Traditional Chinese ZHT16MSWIN950 Big5 MS950

Simplified Chinese ZHS16GBK GB2312 GBK

Korean KO16MSWIN949 EUC-KR MS949

Arabic AR8MSWIN1256 ISO-8859-6 ISO8859_6

Hebrew IW8MSWIN1255 ISO-8859-8 ISO8859_8

Cyrillic CL8MSWIN1251 ISO-8859-5 ISO8859_5

Baltic BLT8MSWIN1257 ISO-8859-4 ISO8859_4

Greek EL8MSWIN1253 ISO-8859-7 ISO8859_7

Thai TH8TISASCII TIS-620 TIS620

Turkish TR8MSWIN1254 ISO-8859-9 ISO8859_9

Universal UTF8 UTF-8 UTF8
2-12 Oracle9i Application Server Globalization Support Guide

Encoding HTML Pages
Choosing an HTML Page Encoding for Multilingual Applications
Multilingual applications need to determine the encoding used for the current

user’s locale at runtime and map the locale to the encoding as shown in Table 2–2.

Instead of using different native encodings for different locales, you can use UTF-8

for all page encodings. Using the UTF-8 encoding not only simplifies the coding for

multilingual applications but also supports multilingual content. In fact, if a

multilingual Internet application is written in Perl, the best choice for the HTML

page encoding is UTF-8 because these programming environments do not provide

an intuitive and efficient way to convert HTML content from UTF-8 to the native

encodings of various locales.

There are limitations to using UTF-8 with the Netscape 4.x browser:

■ HTTP multipart requests cannot contain non-ASCII file names.

■ Localized versions of Windows NT 4.0 corrupt Asian characters in tool tips.

■ Users must manually specify the font to be used for UTF-8 pages in the user

preferences.

Netscape 6 resolves the second and third limitations.

Specifying the Page Encoding for HTML Pages
The best practice for monolingual and multilingual applications is to specify the

encoding of HTML pages returned to the client browser. The encoding of HTML

pages can tell the browser to:

■ Switch to the specified encoding

■ Return user input in the specified encoding

There are two ways to specify the encoding of an HTML page:

■ Specifying the Encoding in the HTTP Header

■ Specifying the Encoding in the HTML Page Header

If you use both methods, then specifying the encoding in the HTTP header takes

precedence.

Specifying the Encoding in the HTTP Header
Include the Content-Type HTTP header in the HTTP specification. It specifies the

content type and character set. The most commonly used browsers, such as
Developing Global Internet Applications for Oracle9iAS 2-13

Encoding HTML Pages
Netscape 4.0 and Internet Explorer 4.0 or later, correctly interpret this header. The

Content-Type HTTP header has the following form:

Content-Type: text/plain; charset=iso-8859-4

The charset parameter specifies the encoding for the HTML page. The possible

values for the charset parameter are the IANA names for the character encoding

that the browser supports. Table 2–2 shows commonly used IANA names.

Specifying the Encoding in the HTML Page Header
Use this method primarily for static HTML pages. Specify the character encoding in

the HTML header as follows:

<meta http-equiv="Content-Type" content="text/html;charset=utf-8">

The charset parameter specifies the encoding for the HTML page. The possible

values for the charset parameter are the IANA names for the character encoding

that the browser supports. Table 2–2 shows commonly used IANA names.

Specifying the Page Encoding in Java Servlets and Java Server Pages
For both monolingual and multilingual applications, you can specify the encoding

of an HTML page in the Content-Type HTTP header in a Java Server Page (JSP)

using the contentType page directive. For example:

<%@ page contentType="text/html; charset=utf-8" %>

This is the MIME type and character encoding that the JSP file uses for the response

it sends to the client. You can use any MIME type or IANA character set name that

is valid for the JSP container. The default MIME type is text/html , and the default

character set is ISO-8859-1. In the example, the character set is set to UTF-8. The

character set of the contentType page directive directs the JSP engine to encode

the dynamic HTML page and set the HTTP Content-Type header with the specified

character set.

For Java Servlets, you can call the setContentType() method of the Servlet API

to specify a page encoding in the HTTP header. The following doGet() function

shows how you should call this method:

public void doGet(HttpServletRequest req, HttpServletResponse res)throws
ServletException, IOException
{

 // generate the MIME type and character set header
2-14 Oracle9i Application Server Globalization Support Guide

Encoding HTML Pages
 res.setContentType("text/html; charset=utf-8");
 ...
 // generate the HTML page
 Printwriter out = res.getWriter();
 out.println("<HTML>");
 ...
 out.println("</HTML>");
}

You should call the setContentType() method before the getWriter() method

because the getWriter() method initializes an output stream writer that uses the

character set that the setContentType() method call specifies. Any HTML

content written to the writer and eventually to a browser is encoded in the encoding

that the setContentType() call specifies.

Specifying the Page Encoding in SQL and PL/SQL Server Pages
You can specify a page encoding for PL/SQL front-end applications and PL/SQL

Server Pages (PSP) in two ways:

■ Specify the page encoding in the NLS_LANG parameter in the corresponding

DAD. Use this method for monolingual applications so that you can change the

page encoding without changing the application code to support a different

locale.

■ Specify the page encoding explicitly from within the PL/SQL procedures and

PSPs. A page encoding that is specified explicitly overwrites the page encoding

inherited from the NLS_LANG character set. Use this method for multilingual

applications so that they can use different page encodings for different locales at

runtime.

The specified page encoding tells the mod_plsql module and the Web Toolkit to

tag the corresponding charset parameter in the Content-Type header of an HTML

page and to convert the page content to the corresponding character set.

This section includes the following topics:

■ Specifying the Page Encoding in PL/SQL and PSPs for Monolingual

Environments

See Also: "Configuring Transfer Mode for mod_plsql Runtime"

on page 3-9 for more information about configuring DADs
Developing Global Internet Applications for Oracle9iAS 2-15

Encoding HTML Pages
■ Specifying the Page Encoding in PL/SQL and PSPs for Multilingual

Environments

Specifying the Page Encoding in PL/SQL and PSPs for Monolingual
Environments
In order for monolingual applications to take the page encoding from the NLS_
LANG parameter, the Content-Type HTTP header should not specify a page

encoding. For PL/SQL procedures, the call to mime_header() , if any, should be

similar to the following:

owa_util.mime_header(’text/html’,false);

For PSPs, the content type directive should be similar to the following:

<%@ page contentType="text/html"%>

Without the page encoding specified in the mime_header() function call or the

content type directive, the Web Toolkit API uses the NLS_LANG character set as the

page encoding by default, and converts HTML content to the NLS_LANG character

set. Also, the Web Toolkit API automatically adds the default page encoding to the

charset parameter of the Content-Type header.

Specifying the Page Encoding in PL/SQL and PSPs for Multilingual
Environments
You can specify a page encoding in a PSP the same way that you specify it in a JSP

page. The following directive tells the PSP compiler to generate code to set the page

encoding in the HTTP Content-Type header for this page:

<%@ page contentType="text/html; charset=utf-8" %>

To specify the encoding in the Content-Type HTTP header for PL/SQL procedures,

use the Web Toolkit API in the PL/SQL procedures. The Web Toolkit API consists of

the OWA_UTL package, which allows you to specify the Content-Type header as

follows:

owa_util.mime_header('text/html', false, 'utf-8')

You should call the mime_header() function in the context of the HTTP header. It

generates the following Content-Type header in the HTTP response:

Content-Type: text/html; charset=utf-8

See Also: PL/SQL User’s Guide and Reference
2-16 Oracle9i Application Server Globalization Support Guide

Encoding HTML Pages
After you specify a page encoding, the Web Toolkit API converts HTML content to

the specified page encoding.

Specifying the Page Encoding in Perl
For Perl scripts running in the mod_perl environment, specify an encoding to an

HTML page in the HTTP Content-Type header as follows:

$page_encoding = 'utf-8';
$r->content_type("text/html; charset=$page_encoding");
$r->send_http_header;
return OK if $r->header_only;

This section contains the following topics:

■ Specifying the Page Encoding in Perl for Monolingual Applications

■ Specifying the Page Encoding in Perl for Multilingual Applications

Specifying the Page Encoding in Perl for Monolingual Applications
For monolingual applications, the encoding of an HTML page should be equivalent

to:

■ The character set used for the POSIX locale on which a Perl script runs

■ The Oracle character set specified by the NLS_LANG parameter if the Perl script

accesses the database

Specifying the Page Encoding in Perl for Multilingual Applications
For multilingual applications, Perl scripts should run in an environment where:

■ Both the NLS_LANGcharacter set and the character set used for the POSIX locale

are equivalent to UTF-8

■ The UTF8 Perl pragma is used

This pragma tells the Perl interpreter to encode identifiers and strings in the

UTF-8 encoding.

See Also: Oracle HTTP Server Administration Guide

See Also: Oracle HTTP Server Administration Guide for more

information about the UTF-8 pragma
Developing Global Internet Applications for Oracle9iAS 2-17

Encoding HTML Pages
This environment allows the scripts to process data in any language in UTF-8. The

page encoding of the dynamic HTML pages generated from the scripts, however,

could be different from UTF-8. If so, then use the UNICODE::MAPUTF8Perl module

to convert data from UTF-8 to the page encoding.

The following example illustrates how to use the UNICODE::MAPUTF8Perl module

to generate HTML pages in the Shift_JIS encoding:

use Unicode::MapUTF8 qw(from_utf8)
This shows how the UTF8 Perl pragma is specified
but is NOT required by the from_utf8 function.
use utf8;
...
$page_encoding = 'Shift_JIS';
$r->content_type("text/html; charset=$page_encoding");
$r->send_http_header;
return OK if $r->header_only;
...
#html_lines contains HTML content in UTF-8
print (from_utf8({ -string=>$html_lines, -charset=>$page_encoding}));
...

The from_utf8() function converts dynamic HTML content from UTF-8 to the

character set specified in the charset argument.

Specifying the Page Encoding in Oracle9 iAS Reports Services Applications
This section includes the following topics:

■ Specifying the Page Encoding in JSP Reports for the Web

■ Specifying the Page Encoding in HTML and XML Output for Paper Layout

Specifying the Page Encoding in JSP Reports for the Web
You can specify the page encoding in JSP or HTML with the Web Source Editor in

Reports Builder.

See Also: http://www.cpan.org to download the

UNICODE::MAPUTF8 Perl module

See Also: "Specifying the Encoding in the HTML Page Header"

on page 2-13 and "Specifying the Page Encoding in Java Servlets

and Java Server Pages" on page 2-14 for more information.
2-18 Oracle9i Application Server Globalization Support Guide

Encoding HTML Pages
Specifying the Page Encoding in HTML and XML Output for Paper Layout
In an Oracle9iAS Reports Services architecture, you must ensure that the output

data is correctly converted and displayed in the appropriate character set. Oracle

Net manages the conversion between the customer database and the Reports Server.

Report output is generated using the Reports Server character set.

Specifying the Page Encoding in HTML for Reports Services Specify the HTML page

encoding in the page header. For example, to specify a Japanese character set,

include the following tag in the page header:

<META http-equiv="Content-Type" content="text/html;charset=SHIFT_JIS">

Reports Builder puts this tag in your report via the Before Report Value and

Before Form Value properties. The default values for these properties are

similar to the following:

<html><head><meta http-equiv="Content-Type" content="text/html;charset=&Encoding"></head>

The IANA locale name that is equivalent to the NLS_LANG setting for Oracle9iAS

Reports Services is assigned to &Encoding dynamically at runtime. Thus you do

not need to modify your report or Oracle9iAS Reports Services settings to include

the proper locale.

Specifying the Page Encoding in XML for Reports Services Generally, when using XML,

you would specify the encoding for XML by including a statement similar to the

following as the Prolog at the first line in the outputted XML file:

<?xml version="1.0" encoding="SHIFT_JIS"?>

To set this Prolog in your report, you can specify the XML Prolog Value property

of your report in Reports Builder or use the SRW.SET_XML_PROLOG built-in.

See Also: "Specifying the Encoding in the HTML Page Header"

on page 2-14

See Also: Oracle9iAS Reports Services online help for more

information
Developing Global Internet Applications for Oracle9iAS 2-19

Handling HTML Form Input
Handling HTML Form Input
Applications generate HTML forms to get user input. For Netscape and Internet

Explorer browsers, the encoding of the input always corresponds to the encoding of

the forms for both POST and GET requests. In other words, if the encoding of a

form is UTF-8, input text that the browser returns is encoded in UTF-8. Thus

Internet applications can control the encoding of the form input by specifying the

corresponding encoding in the HTML form that requests information.

How a browser passes input in a POST request is different from how it passes input

in a GET request:

■ For POST requests, the browser passes input as part of the request body. 8-bit

data is allowed.

■ For GET requests, the browser passes input as part of a URL as an embedded

query string where every non-ASCII byte is encoded as %XX, where XX is the

hexadecimal representation for the binary value of the byte.

HTML standards allow named and numbered entities. These special codes allow

users to specify characters. For example, æ and æ both refer to the

character æ. Tables of these entities are available at

http://www.w3.org/TR/REC-html40/sgml/entities.html

Some browsers generate numbered or named entities for any input character that

cannot be encoded in the encoding of an HTML form. For example, the Euro

character and the character à (Unicode values 8364 and 224 respectively) cannot be

encoded in Big5 encoding and are sent as € and à when the

HTML encoding is Big5. However, the browser does not need to generate numbered

or named entities if the page encoding of the HTML form is UTF-8 because all

Note: Currently, some Oracle NLS_CHARSET values have no

equivalent IANA character set. The XML saved by Oracle9i Reports

Developer for reports with these character sets cannot be opened by

some XML viewers, such as Internet Explorer, unless you set

REPORTS_NLS_XML_CHARSETS to the following:

WINDOWS-950=BIG5;CSEUCKR=EUC-KR;

See also: Oracle9iAS Report Builder online help for more

information
2-20 Oracle9i Application Server Globalization Support Guide

Handling HTML Form Input
characters can be encoded in UTF-8. Internet applications that support page

encoding other than UTF-8 need to be able to handle numbered and named entities.

Handling HTML Form Input in Java
In most JSP and Servlet containers, including Apache JServ, the Servlet API

implementation assumes that incoming form input is in ISO-8859-1 encoding. As a

result, when the HttpServletRequest.getParameter() API is called, all

embedded %XX data in the input text is decoded, and the decoded input is

converted from ISO-8859-1 to Unicode and returned as a Java string. The Java string

returned is incorrect if the encoding of the HTML form is not ISO-8859-1. However,

you can work around this problem by converting the form input data. When a JSP

or Java Servlet receives form input in a Java string, it needs to convert it back to the

original form in bytes, and then convert the original form to a Java string based on

the correct encoding.

The following code converts a Java string to the correct encoding. The Java string

real is initialized to store the correct characters from a UTF-8 form:

String original = request.getParameter("name");
try
{
 String real = new String(original.getBytes("8859_1"),"UTF8");
}
catch (UnsupportedEncodingException e)
{
 String real = original;
}

In addition to Java encoding names, you can use IANA encoding names as aliases

in Java functions.

OC4J implements Servlet API 2.3, from which you can get the correct input by

setting the CharEncoding attribute of the HTTP request object before calling the

getParameter() function. Use the following code:

request.setCharacterEncoding("UTF8");
String real = request.getParameter("name");

See Also: Table 2–2 for mapping between commonly used IANA

and Java encoding names
Developing Global Internet Applications for Oracle9iAS 2-21

Handling HTML Form Input
Handling HTML Form Input in PL/SQL
The browser passes form input to PL/SQL procedures as PL/SQL procedure

arguments. When a browser issues a POST or a GET request, it first sends the form

input to the mod_plsql module in the encoding of the requesting HTML form. The

mod_plsql module then decodes all %XX escape sequences in the input to their

actual binary representations. It then passes the input to the PL/SQL procedure

serving the request.

You should construct PL/SQL arguments you use to accept form input with the

VARCHAR2 datatype. Data in VARCHAR2 are always encoded in the database

character set. For example, the following PL/SQL procedure accepts two

parameters in VARCHAR2:

procedure test(name VARCHAR2, gender VARCHAR2)
begin
...
end;

By default, the mod_plsql module assumes that the arguments of a PL/SQL

procedure are in VARCHAR2 datatype when it binds them. Using VARCHAR2 as the

argument datatype means that the module uses Oracle Character Set Conversion

facility provided in Oracle Callable Library to convert form input data properly

from the NLS_LANGcharacter set, which is also your page encoding, to the database

character set. The corresponding DAD specifies the NLS_LANG character set. As a

result, the arguments passed as VARCHAR2 should already be encoded in the

database character set and be ready to use within the PL/SQL procedures.

Handling HTML Form Input in PL/SQL for Monolingual Applications
For monolingual application deployment, the NLS_LANG character set specified in

the DAD is the same as the character set of the form input and the page encoding

chosen for the locale. As a result, form input passed as VARCHAR2 arguments

should be transparently converted to the database character set and ready for use.

Handling HTML Form Input in PL/SQL for Multilingual Applications
For multilingual application deployment, form input can be encoded in different

character sets depending on the page encodings you choose for the corresponding

locales. You can no longer use Oracle Character Set Conversion facility because the

character set of the form input is not always the same as the NLS_LANG character

set. Relying on this conversion corrupts the input. To resolve this problem, disable

Oracle Character Set Conversion facility by specifying the same NLS_LANG
character set in the corresponding DAD as the database character set. Once you
2-22 Oracle9i Application Server Globalization Support Guide

Handling HTML Form Input
disable the conversion, PL/SQL procedures receive form input as VARCHAR2
arguments. You must convert the arguments from the form input encoding to the

database character set before using them. You can use the following code to convert

the argument from ISO-8859-1 character set to UTF-8:

procedure test(name VARCHAR2, gender VARCHAR2)
begin

name := CONVERT(name, ’AMERICAN_AMERICA.UTF8’,
A.WE8MSWIN1252’)

gender := CONVERT(gender, ’AMERICAN_AMERICA.UTF8’,
AMERICAN_AMERICA.WE8MSWIN1252’)

...
end;

Handling HTML Form Input in Perl
In the Oracle HTTP Server mod_perl environment, GET requests pass input to a

Perl script differently than POST requests. It is good practice to handle both types of

requests in the script. The following code gets the input value of the name
parameter from an HTML form:

my $r = shift;
my %params = $r->method eq 'POST' ? $r->content : $r->args ;
my $name = $params{'name'} ;

For multilingual Perl scripts, the page encoding of an HTML form may be different

from the UTF-8 encoding used in the Perl scripts. In this case, input data should be

converted from the page encoding to UTF-8 before being processed. The following

example illustrates how the Unicode::MapUTF8 Perl module converts strings

from Shift_JIS to UTF-8:

use Unicode::MapUTF8 qw(to_utf8);
This is to show how the UTF8 Perl pragma is specified,
and is NOT required by the from_utf8 function.
use utf8;
...
my $page_encoding = 'Shift_JIS';
my $r = shift;
my %params = $r->method eq 'POST' ? $r->content : $r->args ;
my $name = to_utf8({-string=>$params{'name'}, -charset=>$page_encoding});
...

See Also: Configuring the NLS_LANG Environment Variable on

page 3-3
Developing Global Internet Applications for Oracle9iAS 2-23

Encoding URLs
The to_utf8() function converts any input string from the specified encoding to

UTF-8.

Encoding URLs
If HTML pages contain URLs with embedded query strings, you must escape any

non-ASCII bytes in the query strings in the %XX format, where XX is the

hexadecimal representation of the binary value of the byte. For example, if an

Internet application embeds a URL that points to a UTF-8 JSP page containing the

German name “Schloß,” then the URL should be encoded as follows:

http:// host.domain /actionpage.jsp?name=Schlo%c3%9f

Here, c3 and 9f represent the binary value in hexadecimal of the ß character in the

UTF-8 encoding.

To encode a URL, be sure to complete the following tasks:

■ Convert the URL into the encoding expected from the target object. This

encoding is usually the same as the page encoding used in your application.

■ Escape non-ASCII bytes of the URL into the %XX format.

Most programming environments provide APIs to encode and decode URLs. The

following sections describe URL encoding in various environments:

■ Encoding URLs in Java

■ Encoding URLs in PL/SQL

■ Encoding URLs in Perl

Encoding URLs in Java
If you construct a URL in a JSP or Java Servlet, you must escape all 8-bit bytes using

their hexadecimal values prefixed by a percent sign as described in "Encoding

URLs" on page 2-24. The URLEncoder.encode() function provided in JDK 1.1

and JDK 1.2 works only if you encode a URL in the Java default encoding. To make

it work for URLs in any encoding, add code to escape non-ASCII characters in a

URL into their hexadecimal representation based on the encoding of your choice.

The following code shows an example of how to encode a URL based on the UTF-8

encoding:

String unreserved = new String("/\\- _.!~*'()
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz 0123456789");
2-24 Oracle9i Application Server Globalization Support Guide

Encoding URLs
StringBuffer out = new StringBuffer(url.length());
for (int i = 0; i < url.length(); i++)
{

int c = (int) url.charAt(i);
if (unreserved.indexOf(c) != -1) {

if (c == ' ') c = '+';
out.append((char)c);
continue;

}
byte [] ba;
try {

ba = url.substring(i, i+1).getBytes("UTF8");
} catch (UnsupportedEncodingException e) {

ba = url.getBytes();
}
for (int j=0; j < ba.length; j++)
{

out.append("%" + Long.toHexString((long)(ba[j]&0xff)).toUpperCase());
}

}
String encodedUrl = out.toString();

Encoding URLs in PL/SQL
In Oracle9i, you can call the ESCAPE() function in the UTL_URL package to encode

a URL in PL/SQL. You can call the ESCAPE() function as follows:

encodedURL varchar2(100);
url varchar2(100);
charset varchar2(40);
...
encodedURL := UTL_URL.ESCAPE(url, FALSE, charset);

The url argument is the URL that you want to encode. The charset argument

specifies the character encoding used for the encoded URL. Use a valid Oracle

character set name for the charset argument. To encode a URL in the database

character set, always specify the charset argument as NULL.

See Also: Table 2–2 for a list of commonly used Oracle character

set names
Developing Global Internet Applications for Oracle9iAS 2-25

Formatting HTML Pages to Accommodate Text in Different Languages
Encoding URLs in Perl
You can encode a URL in Perl by using the escape_uri() function of the

Apache::Util module as follows:

use Apache::Util qw(escape_uri);
...
$escaped_url = escape_uri($url);
...

The escape_uri() function takes the bytes from the $url input argument and

encodes them into the %XX format. If you want to encode a URL in a different

character encoding, you need to convert the URL to the target encoding before

calling the escape_uri() function. Perl provides some modules for character

conversion.

Formatting HTML Pages to Accommodate Text in Different Languages
Design the format of HTML pages according to the following guidelines:

■ Allow table cells to resize themselves as the enclosed text expands, instead of

hard-coding the widths of the cells. The following is an example of hard-coding

the width of a cell:

<TD WIDTH="50">

If you must specify the widths of cells, then externalize the width values so that

translators can adjust them with the translated text.

■ Do not specify fonts directly in the HTML pages because they may not contain

glyphs for all languages that the application supports. Instead, each element

should inherit from a class in a cascading style sheet (CSS) that specifies fonts

and font sizes.

■ For bidirectional languages such as Arabic and Hebrew, the pages should have

a DIR attribute in the <HTML> tag to indicate that the direction of the language

displayed is from right to left. The <HTML DIR="RTL"> tag causes all

components of an HTML page to follow the direction of the HTML tag. To

make direction settings seamless to developers, set the direction in the CSS file

as follows:

HTML{ direction:rtl }

See Also: http://www.cpan.org for Perl character conversion

modules
2-26 Oracle9i Application Server Globalization Support Guide

Accessing the Database Server
CSS level 2 introduced the direction property, which is supported in Internet

Explorer 5.0.

■ Text alignment should be sensitive to the direction of the text. Instead of using

the absolute alignments such as LEFT and RIGHT, use the following

alignments:

– START, which is the leading alignment relative to the direction of the text

– END, which is the trailing alignment relative to the direction of the text

– CENTER, which centers the text regardless of the direction of the text

It is good practice to provide Cascading Style Sheets (CSS) for different locales or

groups of locales and use them to control HTML page rendering. Using a CSS

isolates the locale-specific formatting information from HTML pages. Applications

should dynamically generate CSS references in HTML pages corresponding to the

user’s locale so that the pages can be rendered with the corresponding

locale-specific formats. Locale-specific information in the CSS file should include:

■ Font names and sizes

■ Alignments (for bidirectional language support only)

■ Direction of text (for bidirectional language support only)

Accessing the Database Server
There are several methods by which Internet applications can access the database

server through Oracle9iAS. Any Java-based Internet applications that use

technologies such as Java Servlets, JSPs, and EJBs can use the Oracle JDBC drivers

for database connectivity.

Because Java strings are always Unicode-encoded, JDBC transparently converts text

data from the database character set to Unicode and vice versa. Java Servlets and

JSPs that interact with an Oracle database should make sure that:

■ The Java strings returned from the database are converted to the encoding of

the HTML page being constructed

■ Form inputs are converted from the encoding of the HTML form to Unicode

before being used in calling the JDBC driver

For non-Java Internet applications that use programming technologies such as Perl,

PL/SQL, and C/C++, text data retrieved from or inserted into a database are

encoded in the character set specified by the NLS_LANG parameter. The character
Developing Global Internet Applications for Oracle9iAS 2-27

Accessing the Database Server
set used for the POSIX locale should match the NLS_LANG character set so that data

from the database can be directly processed with the POSIX locale-sensitive

functions in the applications.

For multilingual applications, the NLS_LANG character set and the page encoding

should both be UTF-8 to avoid character set conversion and possible data loss.

This section includes the following topics:

■ Using JDBC to Access the Database

■ Using PL/SQL to Access the Database

■ Using Perl to Access the Database

■ Using C/C++ to Access the Database

Using JDBC to Access the Database
Use the Oracle JDBC drivers provided in Oracle9iAS for Oracle9i database access

when you use JSPs and Java Servlets. Oracle9iAS provides two client-side JDBC

drivers that you can deploy with middle-tier applications:

■ JDBC OCI driver, which requires the Oracle client library

■ JDBC Thin driver, which is a pure Java driver

Oracle JDBC drivers transparently convert character data from the database

character set to Unicode for the SQL CHARdatatypes and the SQL NCHARdatatypes.

As a result of this transparent conversion, JSPs and Java Servlets calling Oracle

JDBC drivers can bind and define database columns with Java strings and fetch

data into Java strings from the result set of a SQL execution.

You can use a Java string to bind the NAME and ADDRESS columns of a customer

table. Define the columns as VARCHAR2 and NVARCHAR2 datatypes, respectively.

For example:

String cname = request.getParameter("cname")
String caddr = request.getParameter("caddress");
OraclePreparedStatement pstmt = conn.prepareStatement("insert into" +
 "CUSTOMERS (NAME, ADRESS) values (?, ?) ");
pstmt.setString(1, cname);
pstmt.setFormOfUse(2, OraclePreparedStatement.FORM_NCHAR);
pstmt.setString(2, caddr);

See Also: "Configuring the NLS_LANG Environment Variable"

on page 3-3
2-28 Oracle9i Application Server Globalization Support Guide

Accessing the Database Server
pstmt.execute();

To bind a Java string variable to the ADDRESS column defined as NVARCHAR2, you

should call the setFormOfUse() method before the setString() method.

The Oracle JDBC drivers set the values for the NLS_LANGUAGE and NLS_
TERRITORY session parameters to the values corresponding to the default Java

locale when the database session was initialized. For monolingual applications, the

Java default locale is configured to match the user’s locale. Hence the database

connection is always synchronized with the user’s locale.

Using PL/SQL to Access the Database
PL/SQL procedures and PSPs use SQL to access data in the local Oracle9i database.

They can also use SQL and database links to access data from a remote Oracle9i
database.

For example, you can call the following PL/SQL procedure from the mod_plsql
module. It inserts a record into a customer table with the customer name column

defined as VARCHAR2 and the customer address column defined as NVARCHAR2:

procedure addcustomer(cname varchar2 default NULL, caddress nvarchar2 default
NULL) is
begin

....
if (cname is not null) then

caddr :=TO_NCHAR(address);
insert into customers (name, address) values (cname, caddr);
commit;

end if;
end;

Note that Apache mod_plsql does not support NVARCHAR argument passing. As a

result, PL/SQL procedures have to use VARCHAR2 for arguments and convert them

to NVARCHAR explicitly before executing the INSERT statement.

The example uses static SQL to access the customer table. You can also use the

DBMS_SQL PL/SQL package to access data in the database, using dynamic SQL.

See Also: Oracle9i JDBC Developer’s Guide and Reference in the

Oracle Database Documentation Library

See Also: Oracle9i Supplied PL/SQL Packages Reference in the

Oracle Database Documentation Library
Developing Global Internet Applications for Oracle9iAS 2-29

Accessing the Database Server
Using Perl to Access the Database
Perl scripts access Oracle9i databases using the DBI/DBD driver for Oracle. The

DBI/DBD driver is part of Oracle9iAS. It calls Oracle Callable Interface (OCI) to

access the databases. The data retrieved from or inserted into the databases is

encoded in the NLS_LANG character set. Perl scripts should:

■ Initialize a POSIX locale with the locale specified in the LC_ALL environment

variable

■ Use a character set equivalent to the NLS_LANG character set

This allows you to process data retrieved from the databases with POSIX string

manipulation functions.

The following code shows how to insert a row into a customer table in an Oracle9i
database through the DBI/DBD driver.

Use Apache::DBI;
...
Connect to the database
$constr = 'host=dlsun1304.us.oracle.com;sid=icachedb;port=1521' ;
$usr = 'system' ;
$pwd = 'manager' ;
$dbh = DBI->connect("dbi:Oracle:$constr", $usr, $pwd, {AutoCommit=>1}) ||
 $r->print("Failed to connect to Oracle: " . DBI->errstr);

prepare the statement
$sql = 'insert into customers (name, address) values (:n, :a)';
$sth = $dbh->prepare($sql);
$sth->bind_param(':n' , $cname);
$sth->bind_param(':a', $caddress);
$sth->execute();
$sth->finish();
$dbh->disconnect();

If the target columns are of the SQL NCHAR data types, then you need to specify the

form of use flag for each bind variable. For example, if the address column is of

NVARCHAR2 datatye, you need to add the $sth->func() function call before

executing the SQL statement:

use DBD::Oracle qw(:ora_forms);
...
$sql = 'insert into customers (name, address) values (:n, :a)';
$sth = $dbh->prepare($sql);
$sth->bind_param(':n', $cname);
$sth->bind_param(':a', $caddress);
2-30 Oracle9i Application Server Globalization Support Guide

Accessing the Database Server
$sth->func({ ':a' => ORA_NCHAR }, 'set_form');
$sth->execute();
$sth->finish();
$dbh->disconnect();

To properly process UTF-8 data in a multilingual application, Perl scripts should:

■ Use a POSIX locale associated with the UTF-8 character set

■ Use the UTF-8 Perl module to indicate that all strings in the Perl scripts are in

UTF-8

Using C/C++ to Access the Database
C/C++ applications access the Oracle9i databases with OCI or Pro*C/C++. You can

call OCI directly or use the Pro*C/C++ interface to retrieve and store Unicode data

in a UTF-8 database and in SQL NCHAR datatypes.

Generally, data retrieved from and inserted into the database is encoded in the

NLS_LANG character set. C/C++ programs should use the same character set for

their POSIX locale as the NLS_LANG character set. Otherwise, the POSIX string

functions cannot be used on the character data retrieved from the database, and the

character data encoded in the POSIX locale may be corrupted when it is inserted

into the database.

For multilingual applications, you may want to use the Unicode API provided in

the OCI library instead of relying on the NLS_LANG character set. This alternative is

good for applications written for platforms such as Windows NT/2000, which

implement the wchar_t datatype using UTF-16 Unicode. Using the Unicode API

for those platforms bypasses some unnecessary data conversions that using the

regular OCI API requires.

This section includes the following topics:

■ Using the OCI API to Access the Database

■ Using the Unicode API Provided with OCI to Access the Database

■ Using Unicode Bind and Define in Pro*C/C++ to Access the Database

Note: OCI libraries are part of Oracle9iAS. You do not need to

install the Oracle9i database client to use them.
Developing Global Internet Applications for Oracle9iAS 2-31

Accessing the Database Server
Using the OCI API to Access the Database
This example shows how to bind and define the VARCHAR2 and NVARCHAR2
columns of a customer table in C/C++. It uses OCI and is based on the NLS_LANG
character set. Note that the text datatype is a macro for unsigned char .

text *sqlstmt= (text *)"SELECT name, address FROM customers
 WHERE id = :cusid";
text cname[100]; /* Customer Name */
text caddr[200]; /* Customer Address */
text custid[10] = "9876"; /* Customer ID */
ub2 cform = SQLCS_NCHAR; /* Form of Use for NCHAR types */
...
OCIStmtPrepare (stmthp, errhp, sqlstmt,
 (ub4)strlen ((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
/* Bind the custid buffer */
OCIBindByName(stmthp, &bnd1p, errhp, (text*)":custid",
 (sb4)strlen((char *)":custid"),
 (dvoid *) custid, sizeof(cust_id), SQLT_STR,
 (dvoid *)&insname_ind, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0,(ub4 *)0, OCI_DEFAULT);

/* Define the cname buffer for VARCHAR */
OCIDefineByPos (stmthp, &dfn1p, errhp, (ub4)1, (dvoid *)cname,
 (sb4)sizeof(cname), SQLT_STR,
 (dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);

/* Define the caddr buffer for the address column in NVARCHAR2 */
OCIDefineByPos (stmthp, &dfn2p, errhp, (ub4)2, (dvoid *)caddr,
 (sb4)sizeof(caddr), SQLT_STR,
 (dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfn2p, (ub4) OCI_HTYPE_DEFINE, (void *) &cform, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_FORM, errhp);
...

Using the Unicode API Provided with OCI to Access the Database
You can use the Unicode API that the OCI library provides for multilingual

applications.

Turn on the Unicode API by specifying Unicode mode when you create an OCI

environment handle. Any handle inherited from the OCI environment handle is set

to Unicode mode automatically. By changing to Unicode mode, all text data

arguments to the OCI functions are assumed to be in the Unicode text (utext*)
2-32 Oracle9i Application Server Globalization Support Guide

Accessing the Database Server
datatype and in UTF-16 encoding. For binding and defining, the data buffers are

assumed to be utext buffers in UTF-16 encoding.

The program code for the Unicode API is similar to the code for the non-Unicode

OCI API except that:

■ All text datatypes are changed to the utext datatype, which is a macro of the

unsigned short datatype

■ All literal strings are changed to Unicode literal strings

■ All strlen() functions are changed to wcslen() functions to calculate the

string length in number of Unicode characters instead of bytes

The following Windows program shows how you can:

■ Create an OCI environment handle with Unicode mode turned on

■ Bind and define the name column in VARCHAR2 and the address column in

NVARCHAR2 of the customers table

utext *sqlstmt= (text *)L"SELECT name, address FROM customers
 WHERE id = :cusid";
utext cname[100]; /* Customer Name */
utext caddr[200]; /* Customer Address */
text custid[10] = "9876"; /* Customer ID */
ub1 cform = SQLCS_NCHAR; /* Form of Use for NCHAR types */
...
/* Use Unicode OCI API by specifying UTF-16 mode */
status = OCIEnvCreate((OCIEnv **)&envhp, OCI_UTF16, (void *)0,
 (void *(*) ()) 0, (void *(*) ()) 0, (void(*) ()) 0,
 (size_t) 0, (void **)0);
...
OCIStmtPrepare (stmthp, errhp, sqlstmt,
 (ub4)wcslen ((char *)sqlstmt),
 (ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
/* Bind the custid buffer */
OCIBindByName(stmthp, &bnd1p, errhp, (constant text*) L":custid",
 (sb4)wcslen(L":custid"),
 (dvoid *) custid, sizeof(cust_id), SQLT_STR,
 (dvoid *)&insname_ind, (ub2 *) 0, (ub2 *) 0,
 (ub4) 0,(ub4 *)0, OCI_DEFAULT);

/* Define the cname buffer for the name column in VARCHAR2 */
OCIDefineByPos (stmthp, &dfn1p, errhp, (ub4)1, (dvoid *)cname,
 (sb4)sizeof(cname), SQLT_STR,
 (dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);
Developing Global Internet Applications for Oracle9iAS 2-33

Accessing the Database Server
/* Define the caddr buffer for the address column in NVARCHAR2 */
OCIDefineByPos (stmthp, &dfn2p, errhp, (ub4)2, (dvoid *)caddr,
 (sb4)sizeof(caddr), SQLT_STR,
 (dvoid *)0, (ub2 *)0, (ub2 *)0, (ub4)OCI_DEFAULT);
OCIAttrSet((void *) dfn2p, (ub4) OCI_HTYPE_DEFINE, (void *) &cform, (ub4) 0,
 (ub4)OCI_ATTR_CHARSET_FORM, errhp);
...

Using Unicode Bind and Define in Pro*C/C++ to Access the Database
You can use Unicode bind and define in Pro*C/C++ for multilingual applications.

Pro*C/C++ lets you specify UTF-16 Unicode buffers for bind and define operations.

There are two ways to specify UTF-16 buffers in Pro*C/C++:

■ Use the utext datatype, which is an alias for the unsigned short datatype in

C/C++

■ Use the uvarchar datatype provided by Pro*C/C++. It will be preprocessed to

a struct with a length field and a utext buffer field.

struct uvarchar
{
 ub2 len; /* length of arr */
 utext arr[1] ; /* UTF-16 buffer */
};
typedef struct uvarchar uvarchar ;

In the following example, there are two host variables: cname and caddr . The

cname host variable is declared as a utext buffer containing 100 UTF-16 code units

(unsigned short) for the customer name column in the VARCHAR2 datatype. The

caddr host variable is declared as a uvarchar buffer containing 50 UCS2

characters for the customer address column in the NVARCHAR2 datatype. The len
and arr fields are accessible as fields of a struct.

#include <sqlca.h>
#include <sqlucs2.h>

main()
{
 ...
 /* Change to STRING datatype: */
 EXEC ORACLE OPTION (CHAR_MAP=STRING) ;
 utext cname[100] ; /* unsigned short type */
 uvarchar caddr[200] ; /* Pro*C/C++ uvarchar type */
2-34 Oracle9i Application Server Globalization Support Guide

Organizing the Content of HTML Pages for Translation
 ...
 EXEC SQL SELECT name, address INTO :cname, :caddr FROM customers;
 /* cname is NULL-terminated */
 wprintf(L"ENAME = %s, ADDRESS = %.*s\n", cname, caddr.len, caddr.arr);
 ...
}

Organizing the Content of HTML Pages for Translation
You should have the user interface (UI) and content presented in HTML pages

translated. Translatable sources for the content of an HTML page belong to the

following categories:

■ Static files such as HTML, images, and cascading style sheets (CSS)

■ Static UI strings stored as Java resource bundles used by Java Servlets and JSPs

■ Static UI strings stored as POSIX message files used by C/C++ programs and

Perl scripts

■ Static UI strings stored as relational data in a database used by PL/SQL

procedures and PL/SQL Server Pages

■ Dynamic content such as product information stored in the database

This section contains the following topics:

■ Translation Guidelines for HTML Page Content

■ Organizing Static Files for Translation

■ Organizing Translatable Static Strings for Java Servlets and Java Server Pages

■ Organizing Translatable Static Strings in C/C++ and Perl

■ Organizing Translatable Static Strings in Message Tables

■ Organizing Translatable Dynamic Content in Application Schema

Translation Guidelines for HTML Page Content
When creating translatable content, developers should follow these translation

guidelines:

■ Externalize to resource files all static and translatable UI strings used in

programs such as Java Servlets, Java Server Pages, Perl scripts, PL/SQL

procedures and PL/SQL Server Pages. These resource files can then be

translated independent of program code.
Developing Global Internet Applications for Oracle9iAS 2-35

Organizing the Content of HTML Pages for Translation
■ All dynamic text in an HTML page must be able to expand by at least 30%

without overlapping adjacent objects to allow for text expansion that can result

from translation. The HTML page should look acceptable after expanding

strings by 30%.

■ Avoid concatenating strings to form sentences at runtime. The concatenated

translated strings might not have the same meaning as the original strings. Use

the string formatting functions provided by different programming languages

to substitute runtime values for placeholders.

■ Avoid embedding text into images and graphics because they are often not easy

to translate.

■ JavaScript code must not include any translatable strings. JavaScript is hard to

translate. Instead, applications should externalize translatable strings, if any,

into resource files or message tables. Applications should construct JavaScript

code at runtime and replace the dynamic text with text corresponding to the

user’s locale.

■ Because translations are often not available in the initial release of an

application, it is important to make the application work when the

corresponding translation is not available by putting a fallback mechanism in

the application. The fallback mechanism can be as simple as using English

information or as complex as using the closest language available. For example,

the fr-CA locale is French (Canadian). The fallback for this language can be fr
(French) or en (English). A simple way to find the closest possible language is

to remove the territory part of the ISO locale name. It is up to the application

how the fallback mechanism behaves.

Organizing Static Files for Translation
You should organize translatable HTML, images, and CSS files into different

directories from non-translatable static files so that you can zip files under the

locale-specific directory for translation. There are many possible ways to define the

directory structure to hold these files. For example:

/docroot/images - Non-translatable images
/docroot/html - HTML common to all languages
/docroot/css - Style sheets common to all languages
/docroot/<lang> - Locale directory such as en, fr, ja etc.
/docroot/<lang>/images - Images specific for <lang>
/docroot/<lang>/html - HTMLs specific for <lang>
/docroot/<lang>/css - Style sheets specific for <lang>
2-36 Oracle9i Application Server Globalization Support Guide

Organizing the Content of HTML Pages for Translation
You can replace the <lang> placeholder with the ISO locale names. Based on the

above structure, you must write a utility function called getLocalizedURL() to

take a URL as a parameter and look for the available language file from this

structure. Whenever you reference an HTML, image, or CSS file in an HTML page,

the Internet application should call this function to construct the path of the

translated file corresponding to the current locale and fall back appropriately if the

translation does not exist. For example, if the path

/docroot/html/welcome.html is passed to the getLocalizedURL() function

and the current locale is fr_CA , then the function looks for the following files in the

order shown:

/docroot/fr_CA/html/welcome.html
/docroot/fr/html/welcome.html
/docroot/en/html/welcome.html
/docroot/html/welcome.html

The function returns the first file that exists. This function always reverts to English

when the translated version corresponding to the current locale does not exist.

For Internet applications that use UTF-8 as the page encoding, the encoding of the

static HTML files should also be UTF-8. However, translators usually encode

translated HTML files in the native encoding of the target language. To convert the

translated HTML into UTF-8, you can use the JDK native2ascii utility shipped

with Oracle9iAS.

For example, to convert a Japanese HTML file encoded in Shift_JIS into UTF-8:

1. Replace the value of the charset parameter in the Content-Type HTML header

in the <meta> tag with UTF-8.

2. Use the native2ascii utility to copy the Japanese HTML file to a new file

called japanese.unicode :

native2ascii -encoding MS932 japanese.html japanese.unicode

3. Use the native2ascii utility to convert the new file to Unicode:

native2ascii -reverse -encoding UTF8 japanese.unicode japanese.html

See Also:

■ Oracle9i SQLJ Developer’s Guide and Reference in the Oracle

Database Documentation Library

■ JDK documentation at http://www.javasoft.com

for more information about the native2ascii utility
Developing Global Internet Applications for Oracle9iAS 2-37

Organizing the Content of HTML Pages for Translation
Organizing Translatable Static Strings for Java Servlets and Java Server Pages
You should externalize translatable strings within Java Servlets and JSPs into Java

resource bundles so that these resource bundles can be translated independent of

the Java code. After translation, the resource bundles carry the same base class

names as the English bundles, but with the Java locale name as the suffix. You

should place the bundles in the same directory as the English resource bundles for

the Java resource bundle look-up mechanism to function properly.

Some people may disagree about externalizing JSP strings to resource bundles

because it seems to defeat the purpose of using JSPs. There are two reasons for

externalizing JSPs strings:

■ Translating JSPs is error-prone because they consist of Java code that is not

familiar to translators

■ The translation process should be separated from the development process so

that translation can take place in parallel to development on JSPs. This

eliminates the huge effort of merging the translated JSPs with the most

up-to-date JSPs that contain bug fixes to the embedded Java code.

Java supports two types of resource bundles: the list resource bundle and the

property resource bundle. It is good practice to use list resource bundles instead of

property resource bundles. The main reasons are:

■ List resource bundles are essentially Java programs that must be compiled.

Translation errors can be caught at compile time. Property resource bundles are

text files read directly from Java. Translation errors can only be caught at

runtime.

■ Property resource bundles expose all string data in your Internet application to

users. There are potential security and support issues for your application.

The following is an example of a list resource bundle:

import java.util.ListResourceBundle;
public class Resource extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }
 static final Object[][] contents =
 {

See Also: JDK documentation at http://www.javasoft.com

for more information about Java resource bundles
2-38 Oracle9i Application Server Globalization Support Guide

Organizing the Content of HTML Pages for Translation
 {"hello", "Hello World"},
 ...

 };
}

Translators usually translate list resource bundles in the native encoding of the

target language. Japanese list resource bundles encoded in Shift_JIS cannot be

compiled on an English system because the Java compiler expects source files that

are encoded in ISO-8859-1. In order to build translated list resource bundles in a

platform-independent manner, you need to run the JDK native2ascii utility to

escape all non-ASCII characters to Unicode escape sequences in the \uXXXX format,

where XXXX is the Unicode value in hexadecimal. For example:

native2ascii -encoding MS932 resource_ja.java resource_ja.tmp

Java provides a default fallback mechanism for resource bundles when translated

resource bundles are not available. An application only needs to make sure that a

base resource bundle without any locale suffix always exists in the same directory.

The base resource bundle should contains strings in the fallback language. As an

example, Java looks for a resource bundle in the following order when the fr_CA
Java locale is specified to the getBundle() function:

resource_fr_CA
resource_fr
resource_en_US /* where en_US is the default Java locale */
resource_en
resource (base resource bundle)

Retrieving Strings in Monolingual Applications
At runtime, monolingual applications can get strings from a resource bundle of the

default Java locale as follows:

ResourceBundle rb = ResourceBundle.getBundle("resource");
String helloStr = rb.getString("hello");

Retrieving Strings in Multilingual Applications
Because the user’s locale is not fixed in multilingual applications, they should call

the getBundle() method by explicitly specifying a Java locale object that

corresponds to the user’s locale. The Java locale object is called user_locale in

the following example:

ResourceBundle rb = ResourceBundle.getBundle("resource", user_locale);
Developing Global Internet Applications for Oracle9iAS 2-39

Organizing the Content of HTML Pages for Translation
String helloStr = rb.getString("hello");

Organizing Translatable Static Strings in C/C++ and Perl
For C/C++ programs and Perl scripts running on UNIX platforms, externalize static

strings in C/C++ or Perl scripts to POSIX message files. For programs running on

Windows platforms, externalize static strings to message tables in a database

because Windows does not support POSIX message files.

Message files (with the .po file extension) associated with a POSIX locale are

identified by their domain names. You need to compile them into binary objects

(with the .mo file extension) and place them into the directory corresponding to the

POSIX locale. The path name for the POSIX locale is implementation-specific. For

example, the UNIX msgfmt utility compiles a Canadian French message file,

resource.po , and places it into the /usr/lib/locale/fr_CA/LC_MESSAGES
directory on UNIX.

The following is an example of a resource.po message file:

See Also: "Organizing Translatable Static Strings in Message

Tables" on page 2-41

See Also: Operating system documentation for gettext ,

msgfmt , and xgettext
2-40 Oracle9i Application Server Globalization Support Guide

Organizing the Content of HTML Pages for Translation
domain "resource"
msgid "hello"
msgstr "Hello World"
...

Note that the encoding used for the message files must match the encoding used for

the corresponding POSIX locale.

Instead of putting binary message files into an implementation-specific directory,

you should put them into an application-specific directory and use the

binddomain() function to associate a domain with a directory. The following

piece of Perl script uses the Locale::gettext Perl module to get a string from a

POSIX message file:

use Locale::gettext;
use POSIX;
...
setlocale(LC_ALL, "fr_CA");
textdomain("resource");
binddomain("resource", "/usr/local/share");
print gettext("hello");

The domain name for the resource file is resource , the ID of the string to be

retrieved is hello , the translation to be used is Canadian French (fr_ca), and the

directory for the binary.mo files is /usr/locale/share/fr_CA/LC_
MESSAGES.

Organizing Translatable Static Strings in Message Tables
Message tables mainly store static translatable strings used by PL/SQL procedures

and PSPs. You can also use them for some C/C++ programs and Perl scripts. The

tables should have a language column to identify the language of static strings so

that accessing applications can retrieve messages based on the user’s locale. The

table structure should be similar to the one below:

CREATE TABLE messages
(msgid NUMBER(5)
, langid VARCHAR2(10)
, message VARCHAR2(4000)
);

See Also: http://www.cpan.org to download the

Locale:gettext Perl module
Developing Global Internet Applications for Oracle9iAS 2-41

Organizing the Content of HTML Pages for Translation
The primary key for this table consists of the msgid and langid columns. One

good choice for the values in these columns is the Oracle language abbreviations of

corresponding locales. Using the Oracle language abbreviation allows applications

to retrieve translated information transparently by issuing a query on the message

table.

To provide a fallback mechanism when the translation of a message is not available,

create the following views on top of the message table defined in the previous

example:

-- fallback language is English which is abbreviated as 'US'.
CREATE VIEW default_message_view AS
 SELECT msgid, message
 FROM messages
 WHERE langid = 'US';
/
-- create view for services, with fall-back mechanism
CREATE VIEW messages_view AS
SELECT d.msgid,
 CASE WHEN t.message IS NOT NULL
 THEN t.message
 ELSE d.message
 END AS message
FROM default_view d,
 translation t
WHERE t.msgid (+) = d.msgid AND
 t.langid (+) = sys_context('USERENV', 'LANG');

Messages should be retrieved from the messages_view view that provides the

logic to provide a fallback message in English by joining the default_message_
view view with the messages table. The sys_context() SQL function returns

the Oracle language abbreviation of the locale for the current database session. This

locale should be initialized to the user’s locale at the time when the session is

created.

To retrieve a message, an application should use the following query:

SELECT message FROM message_view WHERE msgid = 'hello';

See Also: Oracle9i Globalization Support Guide in the Oracle

Database Documentation Library for a list of Oracle language

abbreviations
2-42 Oracle9i Application Server Globalization Support Guide

Organizing the Content of HTML Pages for Translation
The NLS_LANGUAGE parameter of a database session defines the language of the

message that the query retrieves. Note that there is no language information needed

for the query with this message table schema.

In order to minimize the load to the database, you should set up all message tables

and their associated views on an Oracle9iAS instance as a front end to the database

where PL/SQL procedures and PSPs run.

Organizing Translatable Dynamic Content in Application Schema
An application schema stores translatable dynamic information that the application

uses, such as product names and product descriptions. The following shows an

example of a table that stores all the products of an Internet store. The translatable

information for the table is the product description and the product name.

CREATE TABLE product_information
 (product_id NUMBER(6)
 , product_name VARCHAR2(50)
 , product_description VARCHAR2(2000)
 , category_id NUMBER(2)
 , warranty_period INTERVAL YEAR TO MONTH
 , supplier_id NUMBER(6)
 , product_status VARCHAR2(20)
 , list_price NUMBER(8,2)
);

To store product names and product descriptions in different languages, create the

following table so that the primary key consists of the product_id and

language_id columns:

CREATE TABLE product_descriptions
 (product_id NUMBER(6)
 , language_id VARCHAR2(3)
 , translated_name NVARCHAR2(50)

, translated_description NVARCHAR2(2000)
);

Create a view on top of the tables to provide fallback when information is not

available in the language that the user requests. For example:

CREATE VIEW product AS
SELECT i.product_id
, d.language_id
, CASE WHEN d.language_id IS NOT NULL
 THEN d.translated_name
Developing Global Internet Applications for Oracle9iAS 2-43

Locale Awareness in Oracle9iAS Forms Services
 ELSE i.product_name
 END AS product_name
, i.category_id
, CASE WHEN d.language_id IS NOT NULL
 THEN d.translated_description
 ELSE i.product_description
 END AS product_description
, i.warranty_period
, i.supplier_id
, i.product_status
, i.list_price
FROM product_information i
, product_descriptions d
WHERE d.product_id (+) = i.product_id
AND d.language_id (+) = sys_context('USERENV','LANG');

This view performs an outer join on the product_information and

production_description tables and selects the rows with the language_id
equal to the Oracle language abbreviation of the current database session.

To retrieve a product name and product description from the product view, an

application should use the following query:

SELECT product_name, product_description FROM product
 WHERE product_id = '1234';

This query retrieves the translated product name and production description

corresponding to the value of the NLS_LANGUAGE session parameter. Note that you

do not need to specify any language information in the query.

Locale Awareness in Oracle9 iAS Forms Services
The Oracle9iAS Forms Services architecture includes:

■ A Java Client (browser)

■ Oracle9iAS Forms Services (middle tier)

■ The Oracle9i customer database (back end)

The Java Client is dynamically downloaded from Oracle9iAS when a user runs a

Forms Services session. The Java Client provides the user interface for the Forms

Services Runtime Engine. It also handles user interaction and visual feedback for

actions such as navigating between items or checking a checkbox.
2-44 Oracle9i Application Server Globalization Support Guide

Locale Awareness in Oracle9iAS Forms Services
Oracle9iAS Forms Services consists of the Forms Services Runtime Engine and the

Forms Listener Servlet. The Forms Services Runtime Engine is the process that

maintains a connection to the database on behalf of the Java Client. The Forms

Listener Servlet acts as a broker, taking connection requests from the Java Client

processes and initiating a Forms Services runtime process on their behalf.

The NLS_LANG parameter for Forms Services initializes the locale of Oracle9iAS

Forms Services. The NLS_LANGUAGE parameter derives its value from NLS_LANG
and determines the language of Forms messages. The NLS_TERRITORY parameter

also derives its value from NLS_LANGand determines conventions such as date and

currency formats.

By default, the NLS_LANG parameter for Oracle9iAS Forms Services initializes the

Java Client locale. The locale of the Java Client determines such things as button

labels on default messages and parts of strings in menus.

This section includes the following topics:

■ Locale Awareness in a Monolingual Oracle9iAS Forms Services Application

■ Locale Awareness in a Multilingual Oracle9iAS Forms Services Application

Locale Awareness in a Monolingual Oracle9 iAS Forms Services Application
A user’s locale is fixed in a monolingual Oracle9iAS Forms Services application and

is usually the same as the default Forms Services locale. When you develop a

monolingual Forms Services application, you must develop it to conform to the

intended user’s locale. The database character set should be a superset of the Forms

Services character set.

For example, a monolingual Forms Services application for a Japanese locale should

include Japanese text, Japanese button labels, and Japanese menus. The application

should also connect to a database whose character set is JA16SJIS, JA16EUC, or

UTF-8.

Alternatively, you can configure Forms Services to read the preferred language

settings of the browser. For example, if you have a human resources application

translated into 24 languages, then add an application entry in the formsweb.cfg
file like the following:

[HR]
default.env
[HR.DE]

See Also: Oracle9iAS Forms Services Deployment Guide
Developing Global Internet Applications for Oracle9iAS 2-45

Locale Awareness in Oracle9iAS Forms Services
DE.env
[HR.FR]
FR.env
.
.
.

When the Forms Servlet detects a language preference in the browser, it checks the

formsweb.cfg file to see if there is a translated version of the application.

For example, suppose the request is

http:// myserver.mydomain /servlet/f90servlet?config=HR and the

preferred language is German (DE). The Forms Servlet tries to read from the

application definitions in the following order:

HR.DE
HR.IT
HR.FR
.
.
.
HR

If the Forms Servlet cannot find any of those configurations, then it uses the HR
configuration (default.env).

This means that you can configure Forms to support multiple languages with one

URL. Each application definition can have its own environment file that contains

the NLS language parameter definition. You can also specify separate working

directory information and path information for each application.

Locale Awareness in a Multilingual Oracle9 iAS Forms Services Application
In a multilingual environment, the application can dynamically determine the

locale of Oracle9iAS Forms Services in two ways:

■ Based on the user’s profile

■ Based on the user’s input

When you develop a Forms Services application you must choose one of these

methods.

You can dynamically change the Forms Services locale that the NLS_LANG
parameter initializes by using an ALTER SESSION statement. To issue an ALTER
SESSION statement in a Forms Services application, you can use the FORMS_DDL
2-46 Oracle9i Application Server Globalization Support Guide

Locale Awareness in Oracle9iAS Forms Services
built-in from the WHEN-NEW-FORM-INSTANCE trigger. For example, the following

statement dynamically changes the NLS_CALENDAR setting:

FORMS_DDL(’ALTER SESSION SET NLS_CALENDAR=’’JAPANESE IMPERIAL’’’);

However, changing the Forms Services locale with an ALTER SESSION statement

does not change the text, labels, and menus of a Forms Services application. It also

does not confirm that the runtime character set is a superset of the Forms Services

character set.

You can configure multilingual Forms Services applications by using multiple

environment configuration files (EnvFile). For example, you can create a form

called form.fmx and translate it into Japanese and into Arabic using Oracle9i
Translator. Then save them as d:\form\ja\form.fmx (Japanese) and

d:\form\ar\form.fmx (Arabic). Finally, create two environment configurations

files, ja.env and ar.env, and specify the following in the appropriate environment

file:

The locale of the Java Client depends on the nlsLang parameter that you set in the

HTML file that invokes the Forms Services Application.

The Forms Applet defaults to the client’s operating system locale. If the locale of a

user’s client is set to en-US but the application server is set so that the NLS_LANG
parameter is FRENCH, then the user interface includes French button labels and

window titles because the language of the resource bundles depends on the server

setting. Use the NLSLANG Forms Applet parameter to change the user interface to

English without interfering with the server settings. If the NLSLANG Forms Applet

parameter is set to TRUEin the file that invokes the Forms Services application, then

the locale of Forms Applet is initialized as the Forms Services locale. If NLSLANG is
set to FALSE, then you can set the NLSLANG parameter separately for each

application that is configured in the formsweb.cfg file.

The Java client initially chooses font properties from font.properties.xx when

the JVM is initialized, where xx is the locale of the Java client. If the Forms Services

Form Environment File NLS_LANG FORMS90_PATH

d:\form\ja\form.fmx ja.env JAPANESE_JAPAN.JASJIS d:\form\ja

d:\form\ar\form.fmx ar.env ARABIC_EGYPT.ARMSWIN1256 d:\form\ar

See Also: "Configuring Oracle9iAS Forms Services for

Multilingual Support" on page 3-12
Developing Global Internet Applications for Oracle9iAS 2-47

Locale Awareness in Oracle9iAS Reports Services
locale is different from the Java client locale and nlsLang is set to true in the

HTML file, then Forms Services overwrites the Java client locale with the NLS_
LANG setting of Forms Services.

Locale Awareness in Oracle9 iAS Reports Services
The Oracle9iAS Reports Services architecture includes:

■ A client tier (browser)

■ A Reports Server (middle tier)

■ An Oracle9i customer database (back end)

Oracle9iAS Reports Services can run multiple reports simultaneously upon users’

requests. Reports Services enters requests for reports into a job queue and

dispatches them to a dynamic, configurable number of pre-spawned runtime

engines. The runtime engine connects to the database, retrieves data, and formats

output for the client.

The NLS_LANG setting for Reports Server initializes the locale of Reports Services.

The NLS_LANGUAGE parameter derives its value from the NLS_LANG parameter

and determines the language of the Reports Server messages. The NLS_TERRITORY
parameter derives its value from the NLS_LANG parameter and determines the date

and currency formats. For example, if NLS_LANG is set to JAPANESE_
JAPAN.JA16SJIS , then Reports Server messages are in Japanese and reports use

the Japanese date format and currency symbol.

Report output is generated in the Reports Services character set. The client needs to

be aware of the character set in which Reports Services generated the HTML or

XML.

This section contains the following topics:

■ Locale Awareness in a Monolingual Oracle9iAS Reports Services Application

■ Locale Awareness in a Multilingual Oracle9iAS Reports Services Application

See Also: "Specifying the Page Encoding in Oracle9iAS Reports

Services Applications" on page 2-18
2-48 Oracle9i Application Server Globalization Support Guide

Locale Awareness in Oracle9iAS Discoverer
Locale Awareness in a Monolingual Oracle9 iAS Reports Services Application
A user’s locale is fixed in a monolingual Oracle9iAS Reports Services application

and is usually the same as the locale of the Reports Server. The database character

set should be a superset of the Report Server character set.

Locale Awareness in a Multilingual Oracle9 iAS Reports Services Application
In a multilingual report, the application can dynamically determine the locale of the

Reports Server in two ways:

■ Based on the user’s profile

■ Based on the user’s input

When you develop a report you must choose one of these methods.

You can dynamically change the NLS_LANG parameter of the Reports Server using

an ALTER SESSION statement. To execute an ALTER SESSION statement from a

report, you can use the srw.do_sql built into the BeforeReport trigger. For

example, you can change the setting for the NLS_CALENDAR parameter as follows:

begin
?str:=’alter session set nls_calendar=’’JAPANESE IMPERIAL’’’;
 srw.do_sql(str);
 return (TRUE);
end;

Locale Awareness in Oracle9 iAS Discoverer
Oracle9iAS Discoverer can simultaneously support users with different locales.

Discoverer always uses UTF-8 encoding for communication between the client and

middle-tier services. Users may explicitly control the locale used for the user

interface, or they may allow Oracle9iAS Discoverer to automatically determine a

default. The order of precedence is:

See Also:

■ "Specifying the Page Encoding in Oracle9iAS Reports Services

Applications" on page 2-18 for more information about the

encoding of HTML, XML, and JSP report output

■ "Configuring Oracle9iAS Reports Services for Multilingual

Support" on page 3-14 for more information about specifying

NLS_LANG parameters from the command line
Developing Global Internet Applications for Oracle9iAS 2-49

Locale Awareness in Oracle9iAS Clickstream Intelligence Applications
1. Language and locale settings included in the URL for Oracle9iAS Discoverer

2. Language and locale settings specified in the Discoverer Connection (this is part

of the Oracle9iAS Discoverer integration with Oracle9iAS Single Sign-On).

3. Language and locale setting specified in the user’s browser

4. Language and locale of Oracle9i Application Server

For example, suppose a user goes to a URL for Oracle9iAS Discoverer that does not

specify the language or locale. Oracle9i Application Server is installed with a

default language and locale of Traditional Chinese - Hong Kong , so the

HTML page returned to the user is written in Traditional Chinese. That page

prompts the user to select a Discoverer Connection to use, and the connection has

the language and locale specified as English - U.S. Because the Discoverer

Connection settings take precedence over the Oracle9iAS settings, the Oracle9iAS

Discoverer user interface appears in the English language.

Locale Awareness in Oracle9 iAS Clickstream Intelligence Applications
Oracle9iAS Clickstream Intelligence installs language-dependent data into its

schema at installation. ClickStream does not support multiple languages on a single

instance. The use determines the language setting at installation.

The following restrictions apply to Oracle9iAS:

■ It only supports the Oracle9iAS HTTP listener in a multilingual environment.

■ It does not support multibyte file names and multibyte directory names in

URLs.

■ It only supports one character set per listener. The character set is specified in

the ClickStream Configurator screen.

Table 2–3 describes the locale awareness of ClickStream components.

Table 2–3 Locale Awareness of ClickStream Components

Component Locale Awareness

ClickStream Configurator Uses UTF-8 for encoding JSPs.

HTML Viewer by
Discoverer

The language preference of the initial window is based on the
preferred language setting of the browser. The user is then
required to choose a language in the login window. After the
user chooses a language, it determines the preferred locale.
2-50 Oracle9i Application Server Globalization Support Guide

Locale Awareness in Oracle9iAS Clickstream Intelligence Applications
Oracle Warehouse Builder
Bridge

Oracle Warehouse Builder metadata for ClickStream is
provided in English. Advanced users who want to extend the
dimensions that are provided should note the restriction. When
users import a newly created End User Layer (EUL) into
Discoverer, they should not overwrite the existing data because
the English data may be overwritten.

Table 2–3 Locale Awareness of ClickStream Components

Component Locale Awareness
Developing Global Internet Applications for Oracle9iAS 2-51

Locale Awareness in Oracle9iAS Clickstream Intelligence Applications
2-52 Oracle9i Application Server Globalization Support Guide

Configuring Oracle9iAS for Global Application Depl
3

Configuring Oracle9 iAS for Global

Application Deployment

This chapter contains the following topics:

■ About Manually Editing HTTP Server and OC4J Configuration Files

■ Configuring Oracle HTTP Server for Multilingual Support

■ Configuring Oracle9iAS Portal for Multilingual Support

■ Configuring Oracle9iAS Single Sign-On for Multilingual Support

■ Configuring Oracle9iAS Forms Services for Multilingual Support

■ Configuring Oracle9iAS Reports Services for Multilingual Support

■ Configuring Oracle9iAS Discoverer for Multilingual Support

■ Configuring Oracle9iAS Clickstream Intelligence for Multilingual Support

■ Configuring Oracle9i Business Components for Java for Multilingual Support

■ Configuring a Centralized Database for Multilingual Support
oyment 3-1

About Manually Editing HTTP Server and OC4J Configuration Files
About Manually Editing HTTP Server and OC4J Configuration Files
If you edit Oracle HTTP Server or OC4J configuration files manually, instead of

using the Enterprise Manager Web site, you must use the DCM command-line

utility dcmctl to notify the DCM repository of the changes. Otherwise, your

changes will not go into effect and will not be reflected in the Enterprise Manager

Web site. The commands are as follows:

■ To notify the DCM repository of changes made to Oracle HTTP Server

configuration files:

ORACLE_HOME/dcm/bin/dcmctl updateConfig ohs

■ To notify the DCM repository of changes made to OC4J configuration files:

ORACLE_HOME/dcm/bin/dcmctl updateConfig oc4j

■ To notify the DCM repository of changes made to Oracle HTTP Server and

OC4J configuration files:

ORACLE_HOME/dcm/bin/dcmctl updateConfig

Before you change configuration parameters, manually or using the Enterprise

Manager Web site, you can save the current state of Oracle HTTP Server and OC4J

configuration files and installed J2EE applications with the following command:

ORACLE_HOME/dcm/bin/dcmctl saveInstance -dir directory_name

You can then restore the state and back out of any subsequent changes that were

made using the following command:

ORACLE_HOME/dcm/bin/dcmctl restoreInstance [-dir directory_name]

See Also: Oracle9i Application Server Administrator’s Guide
3-2 Oracle9i Application Server Globalization Support Guide

Configuring Oracle HTTP Server for Multilingual Support
Configuring Oracle HTTP Server for Multilingual Support
This section contains the following topics related to configuring Oracle HTTP

Server for multilingual support:

■ Configuring the NLS_LANG Environment Variable

■ Configuring the Runtime Default Locale in a Monolingual Application

Architecture

■ Configuring Transfer Mode for mod_plsql Runtime

Configuring the NLS_LANG Environment Variable
The NLS_LANG environment variable controls the language, territory, and character

set used for database connections in an Internet application. Specify the value of

NLS_LANG in the following format, including the punctuation as shown:

language_territory.characterset

language , territory , and characterset must be valid Oracle language,

territory, and character set names. The specified language and territory are used to

initialize the locale that determines the default date and time formats, number

formats, and sorting sequence in a database session. The Oracle9i database converts

data to and from the specified character set when it is retrieved from or inserted

into the database.

Specify the NLS_LANG environment variable in the Oracle HTTP Server files.

See Also: Oracle9i Globalization Support Guide in the Oracle

Database Documentation Library for a list of valid Oracle language,

territory, and character set names

In the following Oracle HTTP Server file: Add the following line:

$ORACLE_HOME/Apache/Jserv/etc/jserv.properties wrapper.env=NLS_LANG= language_territory.characterset

$ORACLE_HOME/Apache/Apache/conf/httpd.conf PassEnv NLS_LANG

For UNIX platforms:

$ORACLE_HOME/Apache/Apache/bin/apachectl

NLS_LANG=${NLS_LANG=language_
territory.characterset }; export NLS_LANG
Configuring Oracle9iAS for Global Application Deployment 3-3

Configuring Oracle HTTP Server for Multilingual Support
In the ORACLE_HOME/Apache/modplsql/cfg/dads.conf file, specify the NLS_
LANG value for the database access descriptors (DADs). For example, you can

specify the NLS_LANG value for the /pls/scott DAD as follows:

<Location /pls/scott>
SetHandler pls_handler
Order deny,allow
Allow from all
PlsqlDatabasePassword tiger
PlsqlDatabaseUsername scott
PlsqlDocumentPath docs
PlsqlEnableConnectionPooling On
PlsqlNlsLanguage <NLS_LANG value>

</Location>

For Windows platforms, the Oracle9iAS installation initializes a default NLS_LANG
environment variable as the NLS_LANG registry key in the following location:

HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\HOMEn

The default NLS_LANG value defined in the registry applies to the corresponding

Oracle Home. The Oracle HTTP Server uses this default NLS_LANG value when

NLS_LANG values are not explicitly specified in the configuration files as described

above.

You should set the value of NLS_LANG differently depending on whether you are

deploying a monolingual or multilingual application. The following sections tell

how to set NLS_LANG:

■ Setting NLS_LANG in a Monolingual Application Architecture

■ Setting NLS_LANG in a Multilingual Application Architecture

Setting NLS_LANG in a Monolingual Application Architecture
Set the NLS_LANG environment variable to specify the language, territory, and

character set that correspond to the locale that its middle-tier server is configured to

$ORACLE_HOME/opmn/conf/opmn.xml <environment>
...
<prop name="NLS_LANG" value="language_territory_
characterset" />
...
</environment>

In the following Oracle HTTP Server file: Add the following line:
3-4 Oracle9i Application Server Globalization Support Guide

Configuring Oracle HTTP Server for Multilingual Support
serve. If most clients are running on Windows platforms, then it is a good practice

to use the NLS_LANG character set that corresponds to the Windows code page of

the locale. For example, when you configure the middle tier server to serve

Japanese clients, then specify the following value for NLS_LANG:

JAPANESE_JAPAN.JA16SJIS

JA16SJIS corresponds to code page 932 of the Japanese Windows operation system.

Table 3–1 lists the NLS_LANG values for the most commonly used locales.

Table 3–1 NLS_LANG Values for Commonly Used Locales

Locale NLS_LANG Value

Arabic (Egypt) ARABIC_EGYPT.AR8MSWIN1256

Arabic (U.A.E.) ARABIC_UNITED ARAB EMIRATES.AR8MSWIN1256

Chinese (Taiwan) TRADITIONAL CHINESE_TAIWAN.ZHT16MSWIN950

Chinese (P.R.C.) SIMPLIFIED CHINESE_CHINA.ZHS16GBK

Czech CZECH_CZECH REPUBLIC.EE8MSWIN1250

Danish DANISH_DENMARK.WE8MSWIN1252

Dutch DUTCH_THE NETHERLANDS.WE8MSWIN1252

English (United Kingdom) ENGLISH_UNITED KINGDOM.WE8MSWIN1252

English (U.S.A.) AMERICAN_AMERICA.WE8MSWIN1252

Finnish FINNISH_FINLAND.WE8MSWIN1252

French (Canada) CANADIAN FRENCH_CANADA.WE8MSWIN1252

French (France) FRENCH_FRANCE.WE8MSWIN1252

Germany (German) GERMANY_GERMAN.WE8MSWIN1252

Greek GREEK_GREECE.EL8MSWIN1253

Hebrew HEBREW_ISRAEL.IW8MSWIN1255

Hungarian HUNGARIAN_HUNGARY.EE8MSWIN1250

Italian (Italy) ITALIAN_ITALY.WE8MSWIN1252

Japanese JAPANESE_JAPAN.JA16SJIS

Korean KOREAN_KOREA.KO16MSWIN949

Norwegian NORWEGIAN_NORWAY.WE8MSWIN1252
Configuring Oracle9iAS for Global Application Deployment 3-5

Configuring Oracle HTTP Server for Multilingual Support
Setting NLS_LANG in a Multilingual Application Architecture
The language and territory components of the NLS_LANG parameter are not as

important in multilingual application architecture as they are in monolingual

application architecture. A multilingual application needs to handle different

locales dynamically and cannot rely on fixed settings. The application should

always use the UTF-8 character set so that Unicode data can be retrieved from and

inserted into the database. An example of a valid value for NLS_LANG in a

multilingual deployment is:

NLS_LANG=AMERICAN_AMERICA.UTF8

Configuring the Runtime Default Locale in a Monolingual Application Architecture
Only monolingual application designs require you to configure the runtime default

locale. This section describes how to initialize the runtime default locale for runtime

environments that Oracle9iAS supports:

■ mod_jserv Runtime for Java

■ mod_oc4j Runtime for Java

■ mod_plsql Runtime for PL/SQL and PL/SQL Server Pages

■ mod_perl Runtime for Perl Scripts

Polish POLISH_POLAND.EE8MSWIN1250

Portuguese (Brazil) BRAZILIAN PORTUGUESE_BRAZIL.WE8MSWIN1252

Portuguese (Portugal) PORTUGUESE_PORTUGAL.WE8MSWIN1252

Romanian ROMANIAN_ROMANIA.EE8MSWIN1250

Russian RUSSIAN_CIS.CL8MSWIN1251

Slovak SLOVAK_SLOVAKIA.EE8MSWIN1250

Spanish (Spain) SPANISH_SPAIN.WE8MSWIN1252

Spanish (Latin American) LATIN AMERICAN SPANISH_AMERICA.WE8MSWIN1252

Swedish SWEDISH_SWEDEN.WE8MSWIN1252

Thai THAI.THAILAND.TH8TISASCII

Turkish TURKISH_TURKEY.TR8MSWIN1254

Table 3–1 NLS_LANG Values for Commonly Used Locales (Cont.)

Locale NLS_LANG Value
3-6 Oracle9i Application Server Globalization Support Guide

Configuring Oracle HTTP Server for Multilingual Support
■ C/C++ Runtime

mod_jserv Runtime for Java
For UNIX platforms, the LANG or LC_ALL variable defines:

■ The POSIX (also known as XPG4) locale used for a process

■ How Java VM initializes its default locale

To configure the Java VM for JServ, define the LANG or LC_ALL environment

variable with a POSIX locale name in the jserv.properties file. For example, the

following line in jserv.properties defines Japanese (Japan) to be the default locale of

Java VM for Jserv on UNIX:

wrapper.env=LANG=ja_JP

The values for the LANG and LC_ALL environment variables should refer to the

same POSIX locale available in your operating system. The LC_ALL environment

variable always overrides the LANG environment variable if they are different.

The regional settings of the Control Panel control the default locale of the Java VM

for JServ on Windows platforms. Change the regional settings to the desired locale

from the Control Panel before starting Oracle HTTP Server.

mod_oc4j Runtime for Java
Define the LANG or LC_ALL environment variable with a POSIX locale name in

$ORACLE_HOME/opmn/conf/opmn.xml . For example, the following line within

the <environment> tags in opmn.xml defines Japanese (Japan) to be the default

locale of Java VM for OC4J on UNIX:

<environment>
...
<prop name="LANG" value="ja_JP" />
...
</environment>

The regional settings of the Control Panel control the default locale of the Java VM

for OC4J on Windows platforms. Change the regional settings to the desired locale

from the Control Panel before starting Oracle HTTP Server.

mod_plsql Runtime for PL/SQL and PL/SQL Server Pages
PL/SQL and PL/SQL Server Pages run on an Oracle9i database in the context of a

database session. Therefore, the NLS_LANG parameter controls the runtime default
Configuring Oracle9iAS for Global Application Deployment 3-7

Configuring Oracle HTTP Server for Multilingual Support
locale. The NLS_LANG parameter should be configured as described in "Setting

NLS_LANG in a Monolingual Application Architecture" on page 3-4.

mod_perl Runtime for Perl Scripts
Perl scripts run on the Perl interpreter that the mod_perl module provides. The

locale support in Perl is based on the POSIX locale available in the operating

system. It uses the underlying POSIX C libraries as a foundation. To configure the

Perl runtime default locale, follow the procedure described for the C/C++ runtime.

C/C++ Runtime
The C/C++ runtime uses the POSIX locale system that the operating system

provides. You can configure the locale system by defining the LC_ALL or LANG
environment variable. Define LC_ALL with a valid locale value that the operating

system provides. These values are different on different operating systems.

For UNIX platforms, define LC_ALL as follows:

■ In $ORACLE_HOME/Apache/Apache/conf/httpd.conf , add the following

line:

PassEnv LC_ALL

■ In $ORACLE_HOME/Apache/Apache/bin/apachectl , add the following

line:

LC_ALL=${LC_ALL= OS_locale }; export LC_ALL

For Windows platforms, the POSIX locale should inherit its value from the regional

settings of the Control Panel instead of being specified in the LC_ALL environment

variable. Change the regional settings to change the default runtime POSIX locale.

See Also:

■ "C/C++ Runtime"

■ Oracle HTTP Server Administration Guide for more information

about how Perl scripts use POSIX locales

See Also: Table 2–1 for a list of commonly used POSIX locales for

UNIX
3-8 Oracle9i Application Server Globalization Support Guide

Configuring Oracle9iAS Portal for Multilingual Support
Configuring Transfer Mode for mod_plsql Runtime
The transfer mode of each database access descriptor (DAD) of the mod_plsql
runtime enables PL/SQL to construct HTML content and process HTML form input

in different character sets. You must set the transfer mode with the appropriate

value.

It is important to configure the transfer mode for the mod_plsql module in the

$ORACLE_HOME/Apache/modplsql/cfg/dads.conf file where the DADs are

specified.

The mod_plsql module supports two transfer modes that you can configure in a

DAD:

■ CHAR mode: This is a default mode where dynamic HTML content is sent as

VARCHAR2 data from the database to mod_plsql . In this mode, the NLS_LANG
character set must be the same as that of the backend database character set.

■ RAW mode: Dynamic HTML content is sent as RAW data from the database to

mod_plsql and is subject to character set conversion in the database server

where the PL/SQL procedures and PSPs run. Character set conversion happens

only when the HTML page encoding is specified, either by the NLS_LANG
character set or by the charset parameter specified in the OWA_UTIL.MIME_
HEADER() function call.

You should turn on the RAW transfer mode in a DAD for both monolingual and

multilingual Internet applications as follows:

<Location /pls/scott>
SetHandler pls_handler
Order deny,allow
Allow from all

PlsqlDatabasePassword tiger
PlsqlDatabaseUsername scott
PlsqlDatabaseConnectString local
PlsqlDocumentPath docs
PlsqlEnableConnectionPooling On
PlsqlNlxLanguage AMERICAN_AMERICA.UTF8
PlsqlTransferMode RAW

</Location>

Configuring Oracle9 iAS Portal for Multilingual Support
Oracle9iAS Portal is translated into 29 different languages. This allows developers

to work in their own language when they build portals. In addition, the self-service
Configuring Oracle9iAS for Global Application Deployment 3-9

Configuring Oracle9iAS Portal for Multilingual Support
content management supports multiple languages so that end users can provide

documents and other content in different languages. Those who view the content

can see the version that corresponds to the language setting in the browser or to the

language they have selected in the set language portlet. See Appendix A for a list of

languages and abbreviations that are available for Oracle9iAS Portal.

To install languages when you install Oracle9iAS Portal, run the ptlasst.csh
script with -mode LANGUAGE for each language that you want Oracle9iAS Portal

to support. The ptlasst.csh script is located in the following directory:

$ORACLE_HOME/ora9ias/assistants/opca dir

Running the ptlasst.csh script with -mode LANGUAGE invokes the Oracle

Portal Configuration Assistant (OPCA) in the silent mode to install the language.

Usage information on the ptlasst.csh script is generated by running the script

without any parameters.

Table 3–2 shows ptlasst.csh script usage examples for different language

requirement scenarios.

Table 3–3 lists the supported parameters for the ptlasst.csh script in LANGUAGE
mode (-mode LANGUAGE).

Table 3–2 Option Usage with the ptlasst.csh Script

Scenario Usage

Full usage ptlasst.csh -mode LANGUAGE -s portal -sp portal
-o orasso -op orasso -c
myhost.domain.com:1521:mySID -lang us
-available-silent-verbose-sso_c
myhost.domain.com:1521:mySID

Portal and SSO are
installed on the same
database

ptlasst.csh -mode LANGUAGE -s portal -sp portal
-o orasso -op orasso -c
myhost.domain.com:1521:mySID -lang us
-available-silent-verbose

Language requirement is
only for the Portal
Repository

ptlasst.csh -mode LANGUAGE -s portal -sp portal
-c myhost.domain.com:1521:mySID -lang us
-available -silent -m portal -verbose

Language requirement is
only for the SSO
Repository

ptlasst.csh-mode LANGUAGE -o orasso -op orasso
-sso_c myhost.domain.com:1521:mySID -lang us
-available -silent -m sso -verbose
3-10 Oracle9i Application Server Globalization Support Guide

Configuring Oracle9iAS Portal for Multilingual Support
The character set for the mod_plsql gateway must be the same as the customer

database character set.

Table 3–3 Supported Parameters for ptlasst.csh in LANGUAGE Mode

Parameter Definition

-s Portal schema name. The default is portal .

-sp Portal schema password. The default is portal .

-c Connect string to the target database. The format should be
hostname:port:sid .

-o SSO schema name. The default is orasso .

-op SSO password. The default is orasso .

-sso_c Connect string to the target database where SSO is installed.
The format should be hostname:port:sid .

Note: If the Portal and SSO use the same database, argument
-c would take care of both the Portal and SSO connections.

-lang Abbreviation for the language to install. The default is us .

-m If sso , translations are only for SSO repository. If portal ,
translations are only for Portal repository. If not specified,
translations are installed for both. The default is not specified.

-available Sets whether the language will be available for user
translation.

-silent Runs the OPCA in the silent mode. The default is TRUE.

-verbose Enables the logging in detail mode. Even if there are errors in
the log file, the OPCA install would continue.

If this parameter is not set, logging information is in brief and
OPCA aborts the instal if it encounters any error of kind ORA-,
PLS-, or SP2. The default is TRUE.

Note: When you configure bidirectional languages (Arabic and

Hebrew), you must also execute the $ORACLE_
HOME/ora9ias/portal30/admin/plsql/nlsres/imginst.
sql script as the Portal schema owner.

See Also: Oracle9iAS Portal Configuration Guide
Configuring Oracle9iAS for Global Application Deployment 3-11

Configuring Oracle9iAS Single Sign-On for Multilingual Support
Configuring Oracle9 iAS Single Sign-On for Multilingual Support
Oracle9iAS Single Sign-On supports 29 languages. English is the only language

installed by default. The Single Sign-On login page does not display language

selection buttons if other languages were not installed. As a result, no product

accessed through Single Sign-On can run in non-English mode.

You need to install other languages in order to support these languages during

Single Sign-On login. To install additional languages, execute the following

command:

ORACLE_HOME/jdk/bin/java -jar ORACLE_HOME/sso/lib/ossoca.jar langinst lang make_
lang_avail ORACLE_HOME

In this command, lang specifies the abbreviation code for the language to be

installed. See Appendix A for a list of languages and their corresponding

abbreviations. The value of make_lang_avail specifies whether or not to make

the language available. Enter 1 to make the language available, 0 otherwise.

Configuring Oracle9 iAS Forms Services for Multilingual Support
The NLS_LANG environment variable controls the language, territory, and character

set that an Internet application uses for database connections. Specify the value of

NLS_LANG in the following format, including the punctuation as shown:

language_territory.characterset

language , territory , and characterset must be valid Oracle language,

territory, and character set names. The specified language and territory are used to

initialize the locale that determines the default date and time formats, number

formats, and sorting sequence in a database session. The Oracle9i Net converts data

to and from the specified character set when it retrieves data from or inserts data

into the database.

You can set the NLS_LANG environment variable in the $ORACLE_
HOME/forms90/server/default.env file. If you do not set the NLS_LANG
environment variable in the default.env file, then Forms Services uses the value set

as follows:

■ On UNIX: The NLS_LANG shell environment variable when Forms Server is

invoked

See Also: Oracle9iAS Single Sign-On Administrator’s Guide
3-12 Oracle9i Application Server Globalization Support Guide

Configuring Oracle9iAS Forms Services for Multilingual Support
■ On Windows: The NLS_LANG setting at the \\HKEY_LOCAL_
MACHINE\SOFTWARE\ORACLE\FormsServerOracle_HOME in the Win32

registry

You can have different NLS_LANG settings on the same Forms Services by

specifying an alternate environment file. Use the EnvFile parameter in the

zone.properties file. To do this:

1. Create two environment configuration files under $ORACLE_
HOME/forms90/server . For example, an American environment

configuration file (en.env) should contain the following lines:

NLS_LANG=AMERICAN_AMERICA.US7ASCII
FORMS90_PATH=d:\us
PATH=d:\ora90\bin

A Japanese environment configuration file (ja.env) should contain the following

lines:

NLS_LANG=JAPANESE_JAPAN.JA16SJIS
FORMS90_PATH=d:\jp
PATH=d:\ora90\bin

2. In the zone.properties file ($ORACLE_HOME/Apache/Jserv/servlets),

create a ListenerServlet alias that uses the file with the alternate environment

variable settings. For example, create a Listener Servlet for the Japanese

settings:

servlet.lservletJP.code=oracle.forms.servlet.ListenerServlet

3. In the zone.properties file ($ORACLE_HOME/Apache/Jserv/servlets), set

the configFile parameter for the ListenerServlet alias. The

ConfigFileName parameter specifies the physical path to the configuration

file that contains the alternate environment variables. For example:

servlet.lservletJP.initArgs=configFileName=d:\ora90/forms90/server/formsweb.
cfg

A sample zone.properties file for Windows might contain the following:

#for default setting (American)
servlet.lservlet.initArgs=envfile=d:\ora90\forms90\server\default.env
servlet.lservlet.code=servlet.oracle.forms.servlet.ListenerServlet

#ListenerServlet alias for Japanese environment variables
servlet.lservletJP.code=oracle.forms.servlet.ListenerServlet
Configuring Oracle9iAS for Global Application Deployment 3-13

Configuring Oracle9iAS Reports Services for Multilingual Support
servlet.lservletJP.initArgs=envfile=d:\ora90\forms90\server\JpRes.env

4. In the formsweb.cfg file ($ORACLE_HOME/forms90/server), set the envFile
parameter for the alternative setting. For example:

[ja]
envFile=ja.env

[en]
envFile=en.env

Then specify the configuration name in your URL for forms servlet as follows:

http://formsservermachine/forms90/f90servlet?config=ja
http://formsservermaching/forms90/f90servlet?config=en

Configuring Oracle9 iAS Reports Services for Multilingual Support
The NLS_LANG environment variable controls the language, territory, and character

set used for database connections in an Internet application. Specify the value of

NLS_LANG in the following format, including the punctuation as shown:

language_territory.characterset

language , territory , and characterset must be valid Oracle language,

territory, and character set names. The specified language and territory are used to

initialize the locale that determines the default date and time formats, number

formats, and sorting sequence in a database session. The Oracle9i Net converts data

to and from the specified character set when it retrieves data from or inserts data

into the database.

You can set the value of the NLS_LANG parameter as follows:

■ On UNIX: The NLS_LANG shell environment variable when Reports Services is

invoked

■ On Windows: Set it at \\HKEY_LOCAL_
MACHINE\SOFTWARE\ORACLE\%Reports9iORACLE_HOME% in the Win32

registry

See Also: Oracle9iAS Forms Services Deployment Guide

See Also: Oracle9i Globalization Support Guide in the Oracle

Database Documentation Library for more information about these

parameters
3-14 Oracle9i Application Server Globalization Support Guide

Configuring Oracle9iAS Discoverer for Multilingual Support
Configuring Oracle9 iAS Discoverer for Multilingual Support
Oracle9iAS Discoverer can simultaneously support users with different locales.

Users may explicitly control the locale used for the user interface, or they may allow

Oracle9iAS Discoverer to automatically determine a default. The order of

precedence for determining the language and locale is:

1. Language and locale settings included in the URL for Oracle9iAS Discoverer

2. Language and locale settings specified in the Discoverer Connection (this is part

of the Oracle9iAS Discoverer integration with Oracle9iAS Single Sign-On).

3. Language and locale setting specified in the user’s browser

4. Language and locale of Oracle9i Application Server

To configure the user interface of Oracle9iAS Discoverer to use a specific language

and locale, you must specify NLS parameters as part of the URL used to access

Discoverer. You can specify the following NLS parameters as part of the URL:

■ NLS_LANG

■ NLS_DATE_FORMAT

■ NLS_DATE_LANGUAGE

■ NLS_NUMERIC_CHARACTERS

■ NLS_SORT

There is one additional aspect of multilingual support configuration of which you

should be aware. Discoverer displays data and metadata from the database in the

language in which it was created. The user interface has been translated to multiple

languages and all necessary resources are already installed. However, the language

for the user interface may be different than the language of the information in the

database, as well as any Discoverer metadata the administrator defined on that

data.

For example, an administrator creates a folder in a Business Area and gives it a

Korean name using Korean characters. A Discoverer user with an American-English

locale sees all of the buttons, menus, and documentation in English. But if the user

views the Business Area with the Korean name, the folder is still displayed in

Korean. Discoverer does not dynamically translate the user’s data.

See also: Oracle9iAS Discoverer Configuration Guide for more

information on using URL parameters with Discoverer.
Configuring Oracle9iAS for Global Application Deployment 3-15

Configuring Oracle9iAS Clickstream Intelligence for Multilingual Support
To have both the user interface and the data in a specified language and locale, your

Discoverer metadata, the End User Layer (EUL), must also use that language and

locale. To truly support multiple languages, you must have multiple translations of

your EUL. Users can specify the appropriate EUL as part of their Discoverer

Connection. You may also specify the EUL in any URL used to access Discoverer.

See the Oracle9iAS Discoverer Configuration Guide for more information.

The rest of this section describes how to create a translated EUL, which requires the

Oracle9iAS Discoverer Administrator from the Internet Developer Suite (iDS).

To translate the EUL:

1. Use the Discoverer Administrator to export the EUL to an EEX file with

translation information. For example:

@dis5adm /connect eul_owner_name / password@dbname /export eex_file_name
/external_element dctrans.xml

In the exported EEX file, you can find the <OraTranslatability> element,

which tells you the attributes to translate and limitations for the attribute.

2. Extract the strings to translate. Based on the <OraTranslatability>
element, you can extract strings to a translatable file format like XLIFF and

translate them. You must use your own XML utility.

3. Merge the translated file with the original EEX file. You must use your own

XML utility.

4. Create a new EUL and import the translated EEX file.

Configuring Oracle9 iAS Clickstream Intelligence for Multilingual
Support

Specify the character set in the Oracle9iAS Clickstream Intelligence configurator

screen.

Specify the language when you install ClickStream. ClickStream does not support

multiple languages on a single instance.

Configuring Oracle9 i Business Components for Java for Multilingual
Support

You can set the following Oracle9i Business Components for Java (BC4J) properties:
3-16 Oracle9i Application Server Globalization Support Guide

Configuring a Centralized Database for Multilingual Support
■ jbo.default.language

■ jbo.default.country

Their default values are en and US, respectively.

You can set them at the command line, by modifying the jboserver.properties file, or

with an applet parameter tag. All sessions share this locale to display messages.

Configuring a Centralized Database for Multilingual Support
You can set up the centralized Oracle9i database to store Unicode data in the

following ways:

■ As UTF-8 in the SQL CHAR datatypes (CHAR, VARCHAR2, and CLOB)

■ As UTF-16 in the SQL NCHAR datatypes (NCHAR, NVARCHAR2, and NCLOB)

It is good practice to configure the centralized Oracle9i database to support:

■ UTF-8 in the SQL CHAR datatypes

Specify AL32UTF8 for the database character set when you create the

centralized database.

■ UTF-16 in the SQL NCHAR datatypes

Specify AL16UTF16 for the national character set when you create the

centralized database.

Example 3–1 shows part of a CREATE DATABASE statement that sets the

recommended database character set and national character set.

Example 3–1 Specifying the Database Character Set and the National Character Set

CREATE DATABASE myunicodedatabase
CONTROL FILE REUSE
LOGFILE ’/u01/oracle/ubfdb/redo01.log’ SIZE 1M REUSE
’/u01/oracle/utfdb/redo02.log’ SIZE 1M REUSE
DATAFILE ’/u01/oracle/utfdbsystem01.dbf’ SIZE 10M REUSE

See Also:

■ Oracle9i Globalization Support Guide in the Oracle Database

Documentation Library

■ Oracle9i SQL Reference in the Oracle Database Documentation

Library
Configuring Oracle9iAS for Global Application Deployment 3-17

Configuring a Centralized Database for Multilingual Support
AUTOEXTENT ON
NEXT 10M MAXSIZE 200M
CHARACTER SET UTF8
NATIONAL CHARACTER SET AL16UTF16
... ;
3-18 Oracle9i Application Server Globalization Support Guide

A Multilingual Demo for Oracle
4

A Multilingual Demo for Oracle9 iAS

This chapter describes the World-of-Books demo that is provided with Oracle9iAS.

This chapter contains the following topics:

■ Description of the World-of-Books Demo

■ Architecture and Design of the World-of-Books Demo

■ Building, Deploying, and Running the World-of-Books Demo

■ Locale Awareness of the World-of-Books Demo

■ Encoding HTML Pages for the World-of-Books Demo

■ Handling HTML Form Input for the World-of-Books Demo

■ Encoding URLs in the World-of-Books Demo

■ Formatting HTML Pages in the World-of-Books Demo

■ Accessing the Database in the World-of-Books Demo

■ Organizing the Content of HTML Pages in the World-of-Books Demo
9iAS 4-1

Description of the World-of-Books Demo
Description of the World-of-Books Demo
The World-of-Books (WOB) demo demonstrates how to write a multilingual Web

application and deploy it on the Oracle9iAS J2EE container. The application consists

of the following Web sites:

■ An online store that sells books in different languages

■ An online Chinese book supplier administration site that represents book

supplier A

■ An online global book supplier administration site that represents book

supplier B

The online bookstore is a multilingual Web application that interacts with

customers. It allows customers to view books, check prices, and place orders. The

application uses HTTP connections to send orders as XML documents to the

suppliers. The online book supplier administration sites are Web applications that

the book suppliers use to get orders from the bookstore, to send order status reports

to the bookstore, and to notify the bookstore about newly available books.

The online bookstore supports 60 locales. Customers in these locales can use the

online bookstore with their preferred language and cultural conventions. The online

book supplier administration sites are in English only.

Architecture and Design of the World-of-Books Demo
The WOB demo serves customers with different locale preferences. It is mainly

written in Java, using Java Servlets, Java beans, and Java Server Pages (JSPs). It uses

the Unicode capabilities available in Java, XML, JDBC, and the Oracle9i database to

support multilingual data and a multilingual user interface.

This section contains the following topics:

■ World-of-Books Architecture

■ World-of-Books Design

■ World-of-Books Schema Design

World-of-Books Architecture
Figure 4–1 shows the architecture of the WOB demo.
4-2 Oracle9i Application Server Globalization Support Guide

Architecture and Design of the World-of-Books Demo
Figure 4–1 World-of-Books Architecture

The application architecture can be summarized as follows:

■ Java Server Pages (JSPs) generate dynamic content in UTF-8 encoded HTML

pages.

■ Java Servlets and Java Beans implement the business logic.

■ The Oracle9i database stores book and customer information.

– Oracle Text enables locale-sensitive, full-text searches on the contents of

books.

– The SQL NVARCHAR2 datatype stores multilingual book information.

■ The Oracle JDBC driver (either OCI or the Thin driver) accesses Unicode data

stored in the Oracle9i database. The data can be encoded in UTF-8 if the target

column is of a SQL CHAR datatype, or the data can be encoded in UTF-16 if the

target column is of a SQL NCHAR datatype.

■ The document format for communications between the online bookstore and

the book suppliers is UTF-8 encoded XML.

Figure 4–1 shows the WOB application on Oracle9iAS. The processing character set

for the WOB application is UTF-16. The application uses XML messages to

English
Customer

UTF-8

Japanese
Customer

UTF-8

German
Customer

UTF-8

Oracle9 i
Database

Oracle9 i Application Server
Online Bookstore

Internet

Oracle
HTTP
Server

JDBC

XSQL Utility

JSP / Java Servlet

UTF-16UTF-8

Multilingual
Book
Supplier

Chinese
Book
Supplier

XML in
UTF-8

XML in
UTF-8
A Multilingual Demo for Oracle9iAS 4-3

Architecture and Design of the World-of-Books Demo
communicate with the Chinese book supplier and the multilingual book supplier.

The XML messages are encoded in the UTF-8 character set. English, Japanese, and

German customers connect to the WOB application through the Internet. The

application serves all of the customers HTML pages encoded in the UTF-8 character

set.

World-of-Books Design
Table 4–1 shows the Java programs that contain most of the internationalization

features for the WOB application. The programs are located in $WOB_
HOME/src/oracle/wob2/wob .

The Language and Country classes are used only by the LocaleUtil class to

represent a language and a country. The Localizer bean calls the LocaleUtil class for

all static information about locale and character set, such as the default language

and the default encoding used for the user interface of the bookstore. The LocaleUtil

class reads the properties resource bundle, wob.properties, to initialize all static

information for the online bookstore. The wob.properties file is located in

$ORACLE_HOME/j2ee/demo/globalization/etc .

Most of the JSPs for the online bookstore include the header.jsp file, which uses the

Localizer Java bean to keep locale information for a session. JSPs call the Localizer

Java bean to perform all locale-sensitive operations such as formatting a date,

encoding a URL, and converting HTML form parameters to Java strings. Some JSPs

also call the LocaleUtil static class to get information such as the list of available

languages and the list of currencies used for a specific country.

Table 4–1 Java Programs that Contain Internationalization Features for the
World-of-Books Application

Java Program Purpose

beans/Localizer.java Contains all locale-related information and locale-sensitive
methods for a specific user session

LocaleUtil.java Contains methods for retrieving static information such as the
list of supported languages and the list of supported countries

Language.java Contains information about a language and its properties such
as the writing direction (right to left or left to right)

Country.java Contains information about a country and its properties such
as currency and date formats
4-4 Oracle9i Application Server Globalization Support Guide

Architecture and Design of the World-of-Books Demo
The programs for the World-of-Books demo are located $WOB_HOME, which is the

WOB demo home directory defined as

$ORACLE_HOME/j2ee/home/demo/globalization .

World-of-Books Schema Design
The database schema for the WOB demo consists of the following tables:

■ customers : Stores the user profile for each WOB user

■ books : Stores the information about each book

■ docs : Stores the content of each book so that customers can search the content

of the books

Table 4–2 describes the customer table. When a registered user is logged in, the

online bookstore uses the locale preferences in the customer table in the Localizer

bean.

Table 4–3 describes the books table. The NVARCHAR2 datatype is used for the title,

author, short description, and publisher of the book. By storing this information as

Unicode in the NVARCHAR2 datatype, the WOB demo can support books in

Note: Environment variable references, such as $ORACLE_HOME,
are shown in UNIX format. For Windows environments, use the

%ORACLE_HOME% notation.

Table 4–2 Description of the customer Table

Column Datatype Description

custid VARCHAR2(50) User’s name (This is the primary key.)

locale VARCHAR2(10) User’s preferred locale, in ISO locale format (for
example, en-US)

currency1 VARCHAR2(10) ISO locale whose default primary currency is used by
the user

currency2 VARCHAR2(10) ISO locale whose default dual currency is used by the
user

timezone VARCHAR2(50) User’s time zone (for example, Asia/Hong Kong)

encoding VARCHAR(40) User’s HTML page encoding (for example, UTF-8)
A Multilingual Demo for Oracle9iAS 4-5

Architecture and Design of the World-of-Books Demo
languages from around the world. The nsort column is used for queries about

books so that the list is returned in an order appropriate for the locale.

Table 4–4 describes the docs table. It stores the contents of the books.

Indexes have been built for these tables. The following SQL files are used to create

these tables and build the corresponding indexes. They are located in the $WOB_
HOME/schema directory:

■ customers.sql

■ books.sql

■ docs.sql

Table 4–3 Description of the books Table

Column Datatype Description

langid NUMBER(3) Language of the book

bookid NUMBER (10) Unique identifier of the book (This is the primary key.)

nsort VARCHAR2(30) Locale-sensitive sorting sequence used in the
NLSSORT() SQL function for the book

title NVARCHAR(300) Book title

author NVARCHAR(300) Book author

descpt NVARCHAR(2000) Short description of the book

publisher NVARCHAR(200) Name of the book’s publisher

Table 4–4 Description of the docs Table

Column Datatype Description

bookid NUMBER(10) Unique identifier of the book (This is the primary key.)

langid NUMBER(3) Language of the book

mimetype VARCHAR2(50) MIME type of the book

language VARCHAR2(30) Language of the contents of the book, using Oracle’s
NLS language naming convention

format VARCHAR2(10) Format of the contents of the book (TEXT or BINARY)

cset VARCHAR2(30) Character set of the contents of the book

doc BLOB Contents of the book
4-6 Oracle9i Application Server Globalization Support Guide

Building, Deploying, and Running the World-of-Books Demo
Oracle Text requires the language , format , cset , and doc columns of the docs
table to build a full-text search index on the docs table. The ctxidx.sql and

ctxsys.sql scripts are used to set up the full-text search index. They are located in

$WOB_HOME/schema/ctx .

Building, Deploying, and Running the World-of-Books Demo
The source code and the build files of the World-of-Books demo are in the WOB

demo home directory located in $WOB_HOME. Table 4–5 shows the directory

structure under $WOB_HOME.

See Also: Oracle9i Globalization Support Guide in the Oracle

Database Documentation Library for more information about

building a full-text search index

Note: Environment variable references, such as $ORACLE_HOME,
are shown in UNIX format. For Windows environments, use the

%ORACLE_HOME% notation.

Table 4–5 World-of-Books Directory Structure

Directory/Files Description

docroot Contains all static files such as HTML files, JSPs, and
images

docroot/wob Contains static files for the online bookstore Web
application

docroot/suppa Contains static files for the Chinese book supplier
administration application

docroot/suppb Contains static files for the global book supplier
administration application

src/oracle/demo/wob2 Contains all Java programs

src/oracle/demo/wob2/wob Contains Java programs for the online bookstore
application

src/oracle/demo/wob2/supp Contains Java programs shared by the two online
supplier applications

build.xml Builds the WOB demo
A Multilingual Demo for Oracle9iAS 4-7

Building, Deploying, and Running the World-of-Books Demo
This section contains the following topics:

■ How to Build the World-of-Books Demo

■ How to Deploy the World-of-Books Demo

■ How to Run the World-of-Books Demo

How to Build the World-of-Books Demo

To build the WOB demo:

1. Go to the $ORACLE_HOME/j2ee/home/demo/globalization directory.

2. Update the suppa.properties, suppb.properties, and wob.properties files in the

$WOB_HOME/etc directory.

■ Replace <J2EE_HOME> with the full path where OC4J is installed. It should

be $ORACLE_HOME/j2ee/home.

■ Replace <HOSTNAME> with the host name of your machine.

■ Replace <PORT> with the port number of your default Web site. By default,

this should be 7778 .

README.TXT Contains useful information for building and
deploying the WOB demo

schema Contains SQL files to create and populate the database
schema that the WOB demo uses

j2ee_config Contains J2EE deployment files for the WOB demo

etc Contains the configuration files for the WOB demo
applications

Note: Commands for setting environment variables are based on

the C shell convention. For Windows platforms, use the SET
command at the DOS prompt to set environment variables.

Additionally, replace forward slashes with backslashes in all

directory paths.

Table 4–5 World-of-Books Directory Structure (Cont.)

Directory/Files Description
4-8 Oracle9i Application Server Globalization Support Guide

Building, Deploying, and Running the World-of-Books Demo
3. Set up the JAVA build environment by defining the JAVA_HOME and

CLASSPATH environment variables. Oracle9iAS bundles JDK under

$ORACLE_HOME/jdk so that you can use it for your JAVA_HOME.

You can also use your own JDK. For example:

% setenv ORACLE_HOME yourOracleHome
% setenv JAVA_HOME $ORACLE_HOME/jdk
% setenv J@EE_HOME $ORACLE_HOME/j2ee
% copy $ORACLE_HOME/rdbms/jlib/xsul2.jar to $ORACLE_HOME/j2ee/home/lib

Make sure that $ORACLE_HOME/bin is in your path directory. For example:

% setenv PATH $ORACLE_HOME/bin:$PATH

4. Ensure that an Oracle9i database is available to load the schema and data for

the WOB demo by defining the TWO_TASK environment variable to point to

your database. For example, if you can access the database from SQLPlus with

the connect string iasdb , you can define the TWO_TASK environment variable

as follows:

% setenv TWO_TASK iasdb

5. Build the WOB demo by entering the ANT command from the $WOB_HOME
directory.

% ant

The build process performs the following tasks:

■ Compiles all Java programs

■ Packages all of the static files and Java classes into an EAR file and a WAR

file, which are used for deployment

■ Creates the WOB schema and populate it with the seed data that is

provided

6. If you enabled Oracle Text in your database, then you can set up full text

searches on book content by building the full text search index.

% ant setupctx

How to Deploy the World-of-Books Demo
To deploy the WOB demo on Oracle9iAS J2EE:
A Multilingual Demo for Oracle9iAS 4-9

Building, Deploying, and Running the World-of-Books Demo
1. Add data sources through Oracle Enterprise Manager. The data source

attributes can be found in the following file:

ORACLE_HOME/j2ee/home/demo/globalization/j2ee_config/datasources.xml

■ Replace <HOSTNAME> with the database server’s hostname.

■ Replace <PORT> with the database server’s port number.

■ Replace <ORACLE_SID> with the database server’s Oracle SID.

After the data sources are added through Oracle Enterprise Manager, your

J2EE_HOME/config/data-sources.xml file should contain entries that

correspond to those in globalization/j2ee_
config/data-sources.xml .

2. Deploy the application J2EE_HOME/demo/globalization/lib/g11n.ear
through Oracle Enterprise Manager, or the dcmctl command utility as

demonstrated below:

dcmctl deployApplication -file J2EE_HOME/demo/globalization/lib/g11n.ear
-application g11n -component home

where home is the default OC4J instance onto which the demo is deployed.

3. You can verify this by visiting the pages listed below on a Web browser. In

order to view a particular language, your operating system should have that

language installed.

Main site: http://<host>:<port>/g11n/imap.html

WOB site: http://<host>:<port>/g11n/wob/jsp/welcome.jsp

Supplier A: http://<host>:<port>/g11n/suppA/html/frame.html

Supplier B: http://<host>:<port>/g11n/suppB/html/frame.html

How to Run the World-of-Books Demo
The online bookstore requires one of the following browsers:

■ Internet Explorer 5.0 or above

■ Netscape 4.7 or above

The book supplier administration applications require Internet Explorer 5.0 or

above.

To run the WOB demo, start the browser and enter the following URL:
4-10 Oracle9i Application Server Globalization Support Guide

Building, Deploying, and Running the World-of-Books Demo
http:// host_name :7778/g11n/imap.html

You should see a screen similar to the following:

Select a link to start the desired application.

You can navigate the online bookstore as a registered customer or as a visitor.

If you click the Supplier B image, the following screen appears:

World-O-Books image: Online bookstore application

Supplier A image: Chinese book supplier administration

Supplier B image: Global book supplier administration
A Multilingual Demo for Oracle9iAS 4-11

Locale Awareness of the World-of-Books Demo
The links on the Supplier B administration site are as follows:

Locale Awareness of the World-of-Books Demo
The World-of-Books online bookstore is fully aware of the user’s locale. The

application determines the user’s locale and uses this locale to format dynamic

HTML pages according to the user’s language and cultural conventions.

This section contains the following topics:

Update Catalog: Allows the supplier to send new book information to the

online bookstore to update the bookstore catalog. It sends

an XML file to the online bookstore.

Order Table: Allows the supplier to check for customer orders sent from

the online bookstore and can update the order status.

Clean up: Restores the data to the initial state. All previous orders

and newly added books are deleted.

XML dir: Lists the XML documents that have been sent to and from

the online bookstore

Home: Returns to the WOB home page
4-12 Oracle9i Application Server Globalization Support Guide

Locale Awareness of the World-of-Books Demo
■ How World-of-Books Determines the User’s Locale

■ How World-of-Books Uses Locale Information in Localizer Methods

■ How World-of-Books Sorts Query Results

■ How World-of-Books Searches the Contents of Books

How World-of-Books Determines the User’s Locale
The online bookstore determines the user’s locale using three methods in the

following order:

■ If a customer has logged into the bookstore, it examines the locale associated

with the customer’s user profile and uses it as the preferred locale.

■ Allows the user to enter the locale from the bookstore’s user interface.

■ Examines the Accept-Language HTTP header sent from the browser.

The Localizer bean has two properties, AcceptLang and localeOverride . The

AcceptLang property indicates the Accept-Language header of the current HTTP

request. The localeOverride property indicates whether a user has explicitly

selected a locale, which is passed as a GET request parameter of the current HTTP

request. The header.jsp file initializes the values of these properties as follows:

<jsp:useBean id="my" class="oracle.demo.wob2.wob.beans.Localizer"
scope="session" />
<jsp:setProperty name="my" property="AcceptLang"
value="<%=request.getHeader(\"Accept-Language\") %>" />
<jsp:setProperty name="my" property="localeOverride" value="<%=
request.getParameter(\"v_override\") %>" />

This initialization causes the setAcceptLang() and setlocaleOverride()
methods of the Localizer bean to initialize the Localizer associated with the current

HTTP request with the appropriate locale information. The application determines

the current user’s locale as follows:

1. If the user has already been logged in to the current HTTP session, it uses the

locale preference in the user profile. The isLoggedIn() method of the

Localizer determines whether the current user is logged in.

2. Else if the localeOverride property is not NULL, it uses the locale that this

property indicates as the user locale.

3. Else if the AcceptLang property is not NULL, it uses the locale that this

property indicates as the user locale.
A Multilingual Demo for Oracle9iAS 4-13

Locale Awareness of the World-of-Books Demo
4. Else it uses the default locale indicated by the default_language property from

the wob.properties resource bundle. This default locale is initialized in

LocaleUtil.java .

The displayFlags() method in the Localizer generates the HTML content that

enables users to enter a locale by clicking one of the displayed flags. The header.jsp

file calls this method.

How World-of-Books Uses Locale Information in Localizer Methods
After the Localizer is initialized with the user’s locale, all methods of the Localizer

are sensitive to the locale. Table 4–6 shows examples of locale-sensitive methods

defined in the Localizer.

Other locale-sensitive functions are described in the following sections.

Table 4–6 Examples of Locale-Sensitive Methods of the Localizer Bean

Method Example of Use

String formatDate() The following JSPs use the formatDate() method:

■ welcome.jsp formats the system date that the welcome
page displays

■ History.jsp formats the date of the order history

■ setting.jsp formats the date to be displayed when a
registered user updates the user profile

String getCurrency() Changeprofile1.jsp gets the primary currency symbol to
be displayed for the user profile modification screen.

String
getDualCurrency()

Changeprofile1.jsp gets the alternate or dual currency
symbol to be displayed for the user profile modification screen.

String getTimeZone() myaccount.jsp displays the time zone of the current user.

String
getDirection()

setting.jsp displays the direction that text is written, based
on the current user.

String getMessage() Most of the JSPs use this method to get the translated message
that corresponds to the current locale from a resource bundle.

String
getNLSLanguage()

search.jsp gets the Oracle language name used for the
current locale and for submitting a language-sensitive search.
4-14 Oracle9i Application Server Globalization Support Guide

Locale Awareness of the World-of-Books Demo
How World-of-Books Sorts Query Results
The order in which books are listed in the result of a query is sensitive to the current

user’s locale. The search template is as follows:

SELECT books.bookid,
 langmap.language,
 books.title,
 books.author,
 substr(books.descpt, 1, 50)
 FROM books, langmap
 WHERE <specific search criteria>
 books.langid = langmap.langid AND
 nlssort(books.title, 'NLS_SORT = '|| books.nsort) IS NOT NULL
 ORDER BY langord(books.langid, ' Oracle_NLS_language '),
 nlssort(books.title, 'NLS_SORT='||books.nsort);

The langmap table maps language IDs to Oracle NLS language names and Oracle

sort names used in the NLSSORT SQL function. The $WOB_
HOME/schema/langmap.sql file creates the langmap table.

The SELECT statement orders the books with the ORDER BY clause as follows:

1. It groups the books by their languages, using the first sort key that the

langord PL/SQL function returns. The langord function returns the smallest

key value when the Oracle NLS language that corresponds to the current user’s

locale matches the language of the book. Thus the books are grouped so that the

first group consists of books whose language corresponds to the user’s locale.

2. Within each language group, it orders the books by the sort key that the

NLSSORT SQL function returns. The NLSSORT function generates sort keys

based on the linguistic order specified by the NLS_SORT parameter. The value

of the NLS_SORT parameter is stored in the nsort column of the books table.

Thus the books in the sorted group are ordered by the Oracle sort sequence

name stored in the nsort column.

The application also orders lists in the user interface using locale information. For

example, it uses the displayLanguageOptions() method of the Localizer bean

to construct a list of languages so users can select a language. The

displayLanguageOptions() method collates the languages in the list based on

the locale-specific Java collator. This collator is constructed using the current locale

represented by the Localizer bean. The following code gets the collation key of each

language name in the current user’s locale:

String[] languages = localeutil.getSupportedLanguagesArray();
 CollationKey[] keys = new CollationKey[languages.length];
A Multilingual Demo for Oracle9iAS 4-15

Locale Awareness of the World-of-Books Demo
 for (int i = 0; i < languages.length; i++)
 {
 keys[i] = collator.getCollationKey(getMessage(languages[i])
 + " [" + languages[i]);
 }

After the keys array is filled with collation keys, the array is sorted based on the

binary value of each key. The other methods that collate drop-down lists are

displayCountryOptions() , displayCurrencyOptions() , and

displayScriptCountryVars() .

How World-of-Books Searches the Contents of Books
The online bookstore allows users to search the contents of books in a

locale-sensitive manner. The following query searches the contents of the books

from the docs table:

SELECT books.bookid,
 langmap.language,
 books.title,
 books.author,
 substr(books.descpt, 1, 50)
 FROM books, langmap, docs
 WHERE contains(docs.doc, ’ search_key ’, 0) > 0 AND
 books.langid = langmap.langid AND
 nlssort(books.title, ’NLS_SORT = ’|| books.nsort) IS NOT NULL

 ORDER BY langord(books.langid, ’ Oracle_NLS_language ’),
 nlssort(books.title, ’NLS_SORT=’||books.nsort);

The contains(docs.doc, ’search_key’, 0) function in the WHERE clause

returns a positive value when the search key is found in the contents of a document

stored in the doc column of the docs table. The rest of the query is similar to the

query used for the book search.

Oracle Text by default uses the language of the search key as defined by the NLS_
LANGUAGE session parameter. To conduct the search in a language-sensitive

manner, search.jsp issues an ALTER SESSION statement to change the value of

the NLS_LANGUAGEparameter to the value that the user specifies before submitting

the content search query. The ALTER SESSION statement is as follows:

ALTER SESSION SET NLS_LANGUAGE=language ;
4-16 Oracle9i Application Server Globalization Support Guide

Handling HTML Form Input for the World-of-Books Demo
Calling the getParameter("v_language") method of the HTTPServletRequest

object obtains the language value, where v_language is a form input parameter

from the advanced search screen.

Encoding HTML Pages for the World-of-Books Demo
In the online bookstore, an attribute of the Localizer bean stores the encoding used

for HTML pages. The default_encoding property of the wob.properties
resource bundle initializes the attribute with the default page encoding. By default,

the online bookstore uses UTF-8 as the HTML page encoding to provide support for

multilingual content.

To enforce UTF-8 as the page encoding in JSPs, define the appropriate Content-Type

header. For the online bookstore, put the Content-Type page directive into

header.jsp as follows:

<%@ page contentType="text/html;charset=UTF-8" %>

You only need to put this directive into header.jsp because all other JSPs that

produce HTML output include header.jsp.

The online bookstore allows users to override the default encoding with the

preferred encoding from the user profile. The user can choose a preferred page

encoding from the user profile modification page. After the user logs in, the

encoding attribute of the current Localizer bean is updated to the preferred

encoding. To set the encoding in JSPs, header.jsp checks whether the user has

logged in and calls the HTTPServletResponse.setContentType() method to

overwrite the Content-Type header defined in the JSP page directive with the

preferred encoding. The code is as follows:

<% if (my.isLoggedIn())
 response.setContentType("text/html; charset=" + my.getEncoding());
%>

The getEncoding() method of the Localizer bean (my) returns the preferred

encoding from the current user’s profile.

Handling HTML Form Input for the World-of-Books Demo
The online bookstore accepts multilingual text as HTML form input. The input can

be a search key when the user wants to search for a book, or it can be a user name at

login. The browser sends form input as a sequence of bytes in the same encoding as

the HTML form. Converting the input to Java strings encoded as Unicode requires
A Multilingual Demo for Oracle9iAS 4-17

Encoding URLs in the World-of-Books Demo
the page encoding information. Because the page encoding is stored as an attribute

of the Localizer, the conversion function is encapsulated in the Localizer class.

The translateParameter() method of the Localizer bean converts form input

from the encoding indicated in the encoding attribute of the bean to a Java string.

The method is as follows:

public String translateParameter(parameter_string)
{
 try {
 byte[] paramBytes = param.getBytes("ISO-8859-1");
 return new String(paramBytes, getEncoding());
 } catch (UnsupportedEncodingException e)
 {
 // return the same string if exception
 }
 return param;
}

The getEncoding() method of the Localizer bean returns the page encoding for

HTML forms.

The JSPs call the translateParameter() method where form input is processed.

For example, the following files call this method:

■ search.jsp uses it to get a search key

■ updateprofile.jsp uses it to get new user profile information

■ login.jsp uses it to get the user name

Encoding URLs in the World-of-Books Demo
All URLs that are embedded in an HTML page must be encoded. They must use the

same encoding as the HTML page. The Localizer bean is the best place to

encapsulate the encodeURL() method. This method encodes a URL according to

the encoding attribute of the Localizer.

The following JSPs call the encodeURL() method:

■ Item.jsp

■ OrderItem.jsp

■ Search.jsp
4-18 Oracle9i Application Server Globalization Support Guide

Formatting HTML Pages in the World-of-Books Demo
All embedded URLs for the online bookstore are encoded in ASCII and do not need

to be encoded. The encodeURL() method is called to illustrate the concept of

encoding URLs.

Formatting HTML Pages in the World-of-Books Demo
The online bookstore uses the following locale-sensitive text formatting elements

for HTML pages:

■ Font family

■ Writing direction

■ Text alignment

To support multiple locales simultaneously, the online bookstore externalizes these

elements to a locale-specific cascading style sheet (CSS) instead of hard-coding them

in JSPs. The CSS file structure is the same as the static HTML file structure for the

WOB online help. The CSS files are as follows:

■ $WOB_HOME/docroot/wob/css/style.css (the default CSS)

■ $WOB_HOME/docroot/wob/css/ar/style.css

■ $WOB_HOME/docroot/wob/css/he/style.css

■ $WOB_HOME/docroot/wob/css/iw/style.css

■ $WOB_HOME/docroot/wob/css/ja/style.css

■ $WOB_HOME/docroot/wob/css/zh/style.css

In $WOB_HOME/docroot/wob/jsp/header.jsp , the getLocalizedURL()
method of the Localizer bean gets the full path of the CSS that corresponds to the

current locale. If there is no CSS that is specific to the locale, then the application

uses the default CSS.

The following is the CSS for Arabic text:

html { direction: rtl }
h3 { font-size: 100%;
 text-align: end;
 font-weight: bold;
 color: #FFFFFF }

The Arabic CSS defines the writing direction of the HTML page as right to left

(RTL). The text is always aligned to the end of the writing direction.
A Multilingual Demo for Oracle9iAS 4-19

Accessing the Database in the World-of-Books Demo
The following is the CSS for Japanese text:

html { direction: ltr }
h3 { font-size: 100%;
 text-align: end;
 font-family: "MS Gothic", "MS Mincho", "Times New Roman"…
 font-weight: bold;
 color: #FFFFFF }
tr { font-family: "MS Gothic", "MS Mincho", "Times New Roman",…
 font-size: 12pt; }
p { font-family: "MS Gothic", "MS Mincho" "Times New Roman",…
 font-size: 12pt}

The Japanese CSS defines the writing direction as left to right (LTR). The text is

aligned to the end of the writing direction. The font families that are used for

displaying Japanese text are MS Gothic and MS Mincho. These are Japanese

Microsoft Windows fonts. If you do not specify the font family in the CSS, then the

application uses the default font of the browser.

Accessing the Database in the World-of-Books Demo
The WOB demo uses the Oracle JDBC driver to access an Oracle9i database. The

JDBC driver transparently converts the data stored in the database to and from Java

strings. No special handling is necessary to access Unicode data stored in the

database in most cases.

There is one case in which you need special data handling. When a Java string is

bound to a column of the NVARCHAR datatype in an INSERT or UPDATE SQL

statement, you should call the setFormOfUse() method of the

OraclePreparedStatement class to tell JDBC that the target column is of the

NVARCHAR datatype. The setFormOfUse() method is called in

$WOB_HOME/src/orcalc/demo/wob2/supp/beans/insertItem.java when

a new book is inserted into the books table.

Organizing the Content of HTML Pages in the World-of-Books Demo
The online bookstore consists of the following translatable content:

■ Online help as static HTML and image files

■ Strings or messages stored for use in composing an HTML page

■ Dynamic book information such as the book name and author
4-20 Oracle9i Application Server Globalization Support Guide

Organizing the Content of HTML Pages in the World-of-Books Demo
This section contains the following topics:

■ Static Files for World-of-Books Online Help

■ Using Resource Bundles for the Content of World-of-Books HTML Pages

Static Files for World-of-Books Online Help
The static HTML files for the WOB online help are located in $ORACLE_
HOME/j2ee/demo/globalization/docroot/wob/help . The English version

of the online help is stored at the top level of the help directory. The translated help

for each locale is stored in the corresponding help/ locale_name directory. For

example, the Japanese online help is stored in the help/ja_JP directory.

The current user’s locale determines which help subdirectory the application uses.

The Localizer bean stores the user’s current locale. The getLocalizedURL()
method returns the correct path of an HTML file that corresponds to the user’s

locale. Given the relative help path of ../help/index.html and the current

locale of ja_JP , this method checks for existence of the following files in the order

they are listed and returns the first one it finds:

■ $WOB_HOME/docroot/wob/help/ja_JP/index.html

■ $WOB_HOME/docroot/wob/help/ja/index.html

■ $WOB_HOME/docroot/wob/help/index.html

The header.jsp file calls this method to get the correct path for every translated

HTML file and uses the result to construct the HREFtag to reference the appropriate

online help.

Using Resource Bundles for the Content of World-of-Books HTML Pages
A list resource bundle stores all translatable messages that comprise the online

bookstore user interface. The resource bundle is located in

$ORACLE_HOME/j2ee/demo/globalization/src/oracle/demo/wob2/wob
/resource/MessageBundle.java . This resource bundle is translated into 27

languages, and the translated resource bundle names have suffixes that correspond

to the Java locale name.

The getMessage() method of the Localizer bean gets a translated message from

the resource bundle that corresponds to the current locale. Most JSPs call this

method.
A Multilingual Demo for Oracle9iAS 4-21

Organizing the Content of HTML Pages in the World-of-Books Demo
4-22 Oracle9i Application Server Globalization Support Guide

Oracle9i Application Server Supported Langu
A

Oracle9 i Application Server Supported

Languages

The following languages are supported by Oracle9i Application Server:

Language Oracle9 iAS Portal Language Abbreviation

ARABIC ar

BRAZILIAN PORTUGUESE ptb

CANADIAN FRENCH frc

CATALAN

CZECH cs

DANISH dk

DUTCH nl

FINNISH sf

FRENCH f

GERMAN d

GREEK el

HEBREW iw

HUNGARIAN hu

ITALIAN i

JAPANESE ja

KOREAN ko

LATIN AMERICAN SPANISH esa
ages A-1

NORWEGIAN n

POLISH pl

PORTUGUESE pt

ROMANIAN ro

RUSSIAN ru

SIMPLIFIED CHINESE zhs

SLOVAK sk

SPANISH e

SWEDISH s

THAI th

TRADITIONAL CHINESE zht

TURKISH tr

Language Oracle9 iAS Portal Language Abbreviation
A-2 Oracle9i Application Server Globalization Support Guide

Glossary

character set

Defines the binary values that are associated with the characters that make up a

language. For example, you can use the ISO-8859-1 character set to encode most

Western European languages.

database access descriptor (DAD)

Describes the connect string and Oracle parameters of a target database to which an

Oracle HTTP Server mod_plsql module connects.

encoding

The character set used in a particular programming environment for the locale to

which an Internet application is serving. See page encoding, character set.

locale

Refers to a language and the region (territory) in which the language is spoken.

Information about the region includes formats for dates and currency, for example.

page encoding

The character set an HTML page uses for the locale to which an Internet application

is serving.

Unicode

A universal character set that defines binary values for characters in almost all

languages. Unicode characters can be encoded in 1 to 4 bytes in the UTF-8 character

set, in 2 to 4 bytes in the UTF-16 character set, and in 4 bytes in the UTF-32 character

set.
Glossary-1

Glossary-2

Index

A
accessing the database server, 2-27

ALTER SESSION statement

in monolingual applications, 2-10

in multilingual applications, 2-10

Apache::Util module, 2-26

B
BC4J, configuring for multilingual support, 3-16

bidirectional languages

formatting HTML pages, 2-26

Business Components for Java (BC4J), configuring

for multilingual support, 3-16

C
cascading style sheets, 2-26

C/C++

database access, 2-31

database access in multilingual

applications, 2-31

translatable strings, 2-40

C/C++ runtime, configuring, 3-8

CHAR datatypes, 3-17

character set, definition, 1-2

CharEncoding attribute, 2-21

charset argument, 2-25

charset parameter, 2-14

ClickStream

components

ClickStream Configurator, 2-50

HTML Viewer, 2-50

Oracle Warehouse Builder Bridge, 2-50

configuring for multilingual support, 3-16

locale awareness, 2-50

usage restrictions, 2-50

configuring NLS_LANG

in Oracle HTTP Server files, 3-3

on UNIX platforms, 3-3

on Windows platforms, 3-4

configuring Oracle HTTP Server for multilingual

support, 3-3

configuring Oracle9iAS Portal for multilingual

support, 3-9

configuring the NLS_LANG environment

variable, 3-3

Content-Type HTTP header, 2-14

CREATE DATABASE statement, 3-17
Index-1

D
database

centralized, 1-7

configuring, 1-7

database access

C/C++, 2-31

Java, 2-27

JDBC, 2-28

multilingual non-Java applications, 2-28

OCI API, 2-32

Perl, 2-30

PL/SQL, 2-29

Unicode API, 2-32

Unicode bind and define in Pro*C/C++, 2-34

World-of-Books demo, 4-20

database character set

setting in the CREATE DATABASE

statement, 3-17

database server

accessing, 2-27

demo

See World-of-Books demo, 4-2

Discoverer

configuring Java Plus for multilingual

support, 3-15

locale awareness, 2-49, 2-50

doGet() function, 2-14

E
encoding

UTF-16, 1-8

UTF-32, 1-8

UTF-8, 1-8

encoding HTML pages, 2-11

encoding URLs, 2-24

Java, 2-24

Perl, 2-26

PL/SQL, 2-25

World-of-Books demo, 4-18

entities

named and numbered, 2-20

ESCAPE() function, 2-25

escape_uri() function, 2-26

F
fonts

specifying in HTML pages, 2-26

Forms Services

configuring for multilingual support, 3-12

locale awareness, 2-44

locale awareness in a monolingual

application, 2-45

locale awareness in a multilingual

application, 2-46

from_utf8() function, 2-18

G
GET requests, 2-20

getDateTimeInstance() method, 2-7

getParameter() function, 2-21

getWriter() method, 2-15

H
HTML form input

encoding, 2-20

Java, 2-21

named and numbered entities, 2-20

Perl, 2-23

Perl in multilingual applications, 2-23

PL/SQL, 2-22

PL/SQL monolingual applications, 2-22

PL/SQL multilingual applications, 2-22

World-of-Books demo, 4-17
Index-2

HTML page encoding

choosing for monolingual applications, 2-12

choosing for multilingual applications, 2-13

in PL/SQL and PSPs, monolingual

environments, 2-16

in PL/SQL and PSPs, multilingual

environments, 2-16

named and numbered entities, 2-20

specifying, 2-13

specifying in Java servlets and Java Server

Pages, 2-14

specifying in Perl, 2-17

specifying in Perl for monolingual

applications, 2-17

specifying in Perl for multilingual

applications, 2-17

specifying in PL/SQL and PL/SQL Server

Pages, 2-15

specifying in the HTML page header, 2-14

specifying in the HTTP header, 2-13

World-of-Books demo, 4-17

HTML pages

concatenating strings, 2-36

embedding text into images, 2-36

fallback mechanism for translation, 2-36

formatting for bidirectional languages, 2-26

formatting in World-of-Books demo, 4-19

formatting to accommodate text in different

languages, 2-26

JavaScript code, 2-36

organizing content for translation, 2-35

organizing static files for translation, 2-36

space for dynamic text, 2-36

specifying fonts, 2-26

translatable C/C++ and Perl strings, 2-40

translatable dynamic content in application

schema, 2-43

translatable strings in message tables, 2-41

translation guidelines, 2-35

user interface strings, 2-35

HTTP Content-Type header, 2-17

HttpServletRequest.getParameter() API, 2-21

I
IANA encoding names for commonly used

locales, 2-12

J
Java

accessing the database, 2-27

encoding URLs, 2-24

HTML form input, 2-21

organizing translatable static strings, 2-38

Java encoding names for commonly used

locales, 2-12

Java Server Pages

specifying HTML page encoding, 2-14

Java servlets

specifying HTML page encoding, 2-14

JDBC

database access, 2-28

L
LANG environment variable, 3-7, 3-8

languages

supported by Oracle9iAS, A-1

LC_ALL environment variable, 2-8, 3-7, 3-8

locale

as ISO standard, 2-3

as Java locale object, 2-3, 2-4

as NLS_LANGUAGE and NLS_TERRITORY

parameters, 2-4

as POSIX locale name, 2-4

based on the default ISO locale of the user’s

browser, 2-6

changing operating system locale, 2-8

common representations in different

programming environments, 2-4

definition, 1-2

determined by user input, 2-6

determining user’s locale in multilingual

applications, 2-6

using user profile information from an LDAP

directory server, 2-6
Index-3

locale awareness

in multilingual Perl and C/C++

applications, 2-11

in Oracle9iAS ClickStream applications, 2-50

in Oracle9iAS Discoverer applications, 2-49,

2-50

World-of-Books demo, 4-12

determining locale, 4-13

localizer methods, 4-14

Locale.setDefault() method, 2-7

localizer methods, World-of-Books demo, 4-14

M
message tables

translatable strings, 2-41

mod, 2-17

mod_jserv runtime for Java, configuring, 3-7

mod_oc4j, 3-7

mod_oc4j runtime for Java, configuring, 3-7

mod_perl environment, 2-17

mod_perl runtime for Perl scripts, configuring, 3-8

mod_plsql module

datatypes, 2-22

HTML form input in monolingual

applications, 2-22

mod_plsql runtime for PL/SQL and PL/SQL Server

Pages, configuring, 3-7

monolingual applications

advantages, 1-5

architecture, 1-3

disadvantages, 1-5

multilingual applications

advantages, 1-7

architecture, 1-5

database access with C/C++, 2-31

database access with Perl, 2-31

database access with Unicode API, 2-32

database access with Unicode bind and define in

Pro*C/C++, 2-34

disadvantages, 1-7

HTML form input in Perl, 2-23

N
native encodings for commonly used locales, 2-12

native2ascii utility, 2-37

NCHAR datatypes, 3-17

NLS_LANG parameter, 2-9

configuring, 3-3

configuring in Oracle HTTP Server files, 3-3

configuring on UNIX platforms, 3-3

configuring on Windows platforms, 3-4

setting in a monolingual application

architecture, 3-4

setting in a multilingual application

architecture, 3-6

values for commonly used locales, 3-5

O
OCI API

database access, 2-32

Unicode API, 2-32

Oracle character set names for commonly used

locales, 2-12

Oracle HTTP Server

configuring for multilingual support, 3-3

Oracle9iAS BC4J, configuring for multilingual

support, 3-16

Oracle9iAS ClickStream

components

ClickStream Configurator, 2-50

HTML Viewer, 2-50

Oracle Warehouse Builder Bridge, 2-50

configuring for multilingual support, 3-16

locale awareness, 2-50

usage restrictions, 2-50

Oracle9iAS Discoverer

configuring Java Plus for multilingual

support, 3-15

HTML Viewer, 2-50

locale awareness, 2-49, 2-50

Oracle9iAS Forms Services

configuring for multilingual support, 3-12

locale awareness, 2-44

Oracle9iAS Portal

configuring for multilingual support, 3-9
Index-4

Oracle9iAS Reports Services

locale awareness, 2-48

Oracle9iAS Single Sign-On

configuring for multilingual support, 3-12

P
Perl

database access, 2-30

database access in multilingual

applications, 2-31

encoding URLs, 2-26

HTML form input, 2-23

HTML form input in multilingual

applications, 2-23

specifying HTML page encoding, 2-17

specifying HTML page encoding for monolingual

applications, 2-17

specifying HTML page encoding for multilingual

applications, 2-17

translatable strings, 2-40

PL/SQL

database access, 2-29

encoding URLs, 2-25

HTML form input, 2-22

HTML form input in monolingual

applications, 2-22

HTML form input in multilingual

applications, 2-22

PL/SQL and PL/SQL Server Pages

specifying HTML page encoding, 2-15

Portal

configuring for multilingual support, 3-9

POSIX locale names, 3-7

POST requests, 2-20

Pro*C/C++

database access, 2-34

programming environments supported by

Oracle9iAS, 2-2

R
Reports Server

configuring for multilingual support, 3-14

Reports Services

locale awareness, 2-48

locale awareness in a monolingual

application, 2-49

locale awareness in a multilingual

application, 2-49

page encoding in HTML output, 2-19

page encoding in XML output, 2-19

specifying the page encoding, 2-18

runtime default locale, configuring in a monolingual

application architecture, 3-6

S
schema

translatable content, 2-43

Servlet API, 2-21

setContentType() method, 2-14

setlocale() function

monolingual applications, 2-8

multilingual applications, 2-8

setting NLS_LANG parameter

in a monolingual application architecture, 3-4

in a multilingual application architecture, 3-6

Single Sign-On

configuring for multilingual support, 3-12

String.getBytes() method, 2-7

String.getBytes(String encoding) method, 2-7

strlen() function, 2-33

supported languages, A-1

T
text datatypes, 2-33

to_utf8() function, 2-24

translation

organizing HTML page content, 2-35
Index-5

U
Unicode API

database access, 2-32

Unicode bind and define

database access, 2-34

Unicode data

storing in the database, 3-17

Unicode, definition, 1-3

UNICODE::MAPUTF8 Perl module, 2-18

url argument, 2-25

URLs

encoding, 2-24

encoding in Java, 2-24

encoding in Perl, 2-26

encoding in PL/SQL, 2-25

encoding in World-of-Books demo, 4-18

with embedded query strings, 2-24

utext datatype, 2-33, 2-34

UTF-16 encoding, 1-8

UTF-32 encoding, 1-8

UTF-8 encoding, 1-8, 2-23

for HTML pages, 2-13

limitations with Netscape 4.x browser, 2-13

UTL_URL package, 2-25

uvarchar datatype, 2-34

W
wcslen() function, 2-33

Web Toolkit API, 2-16

World-of-Books demo

architecture, 4-2

building, 4-8

database access, 4-20

deploying, 4-9

design, 4-4

directory structure, 4-7

encoding URLs, 4-18

formatting HTML pages, 4-19

HTML form input, 4-17

HTML page encoding, 4-17

locale awareness, 4-12

determining locale, 4-13

localizer methods, 4-14

online help, 4-21

organizing HTML content, 4-20

organizing static files, 4-21

overview, 4-2

resource bundles, 4-21

running, 4-10

schema design, 4-5

books table, 4-5

customers table, 4-5

docs table (book content), 4-6

searching book contents, 4-16

sorting query results, 4-15

source file location, 4-7
Index-6

	Contents
	Send Us Your Comments
	Preface
	1 Overview of Globalization Support in Oracle9iAS
	Globalizing Internet Applications
	Globalization Concepts
	Locale
	Character Set
	Unicode

	Designing a Global Internet Application
	Monolingual Internet Application Architecture
	Multilingual Internet Application Architecture
	Using a Centralized Database

	2 Developing Global Internet Applications for Oracle9iAS
	Overview of Developing Global Internet Applications
	Developing Locale-Aware Internet Applications
	Determining the User’s Locale in Monolingual Applications
	Determining the User’s Locale in Multilingual Applications
	Locale Awareness in Java Applications
	Locale Awareness in Monolingual Java Applications
	Locale Awareness in Multilingual Java Applications

	Locale Awareness in Perl and C/C++ Applications
	Locale Awareness in Monolingual Perl and C/C++ Applications
	Locale Awareness in Multilingual Perl and C/C++ Applications

	Locale Awareness in SQL and PL/SQL Applications
	Locale Awareness in Monolingual SQL and PL/SQL Applications
	Locale Awareness in Multilingual SQL and PL/SQL Applications

	Encoding HTML Pages
	Choosing an HTML Page Encoding
	Choosing an HTML Page Encoding for Monolingual Applications
	Choosing an HTML Page Encoding for Multilingual Applications

	Specifying the Page Encoding for HTML Pages
	Specifying the Encoding in the HTTP Header
	Specifying the Encoding in the HTML Page Header

	Specifying the Page Encoding in Java Servlets and Java Server Pages
	Specifying the Page Encoding in SQL and PL/SQL Server Pages
	Specifying the Page Encoding in PL/SQL and PSPs for Monolingual Environments
	Specifying the Page Encoding in PL/SQL and PSPs for Multilingual Environments

	Specifying the Page Encoding in Perl
	Specifying the Page Encoding in Perl for Monolingual Applications
	Specifying the Page Encoding in Perl for Multilingual Applications

	Specifying the Page Encoding in Oracle9iAS Reports Services Applications
	Specifying the Page Encoding in JSP Reports for the Web
	Specifying the Page Encoding in HTML and XML Output for Paper Layout
	Specifying the Page Encoding in HTML for Reports Services
	Specifying the Page Encoding in XML for Reports Services

	Handling HTML Form Input
	Handling HTML Form Input in Java
	Handling HTML Form Input in PL/SQL
	Handling HTML Form Input in PL/SQL for Monolingual Applications
	Handling HTML Form Input in PL/SQL for Multilingual Applications

	Handling HTML Form Input in Perl

	Encoding URLs
	Encoding URLs in Java
	Encoding URLs in PL/SQL
	Encoding URLs in Perl

	Formatting HTML Pages to Accommodate Text in Different Languages
	Accessing the Database Server
	Using JDBC to Access the Database
	Using PL/SQL to Access the Database
	Using Perl to Access the Database
	Using C/C++ to Access the Database
	Using the OCI API to Access the Database
	Using the Unicode API Provided with OCI to Access the Database
	Using Unicode Bind and Define in Pro*C/C++ to Access the Database

	Organizing the Content of HTML Pages for Translation
	Translation Guidelines for HTML Page Content
	Organizing Static Files for Translation
	Organizing Translatable Static Strings for Java Servlets and Java Server Pages
	Retrieving Strings in Monolingual Applications
	Retrieving Strings in Multilingual Applications

	Organizing Translatable Static Strings in C/C++ and Perl
	Organizing Translatable Static Strings in Message Tables
	Organizing Translatable Dynamic Content in Application Schema

	Locale Awareness in Oracle9iAS Forms Services
	Locale Awareness in a Monolingual Oracle9iAS Forms Services Application
	Locale Awareness in a Multilingual Oracle9iAS Forms Services Application

	Locale Awareness in Oracle9iAS Reports Services
	Locale Awareness in a Monolingual Oracle9iAS Reports Services Application
	Locale Awareness in a Multilingual Oracle9iAS Reports Services Application

	Locale Awareness in Oracle9iAS Discoverer
	Locale Awareness in Oracle9iAS Clickstream Intelligence Applications

	3 Configuring Oracle9iAS for Global Application Deployment
	About Manually Editing HTTP Server and OC4J Configuration Files
	Configuring Oracle HTTP Server for Multilingual Support
	Configuring the NLS_LANG Environment Variable
	Setting NLS_LANG in a Monolingual Application Architecture
	Setting NLS_LANG in a Multilingual Application Architecture

	Configuring the Runtime Default Locale in a Monolingual Application Architecture
	mod_jserv Runtime for Java
	mod_oc4j Runtime for Java
	mod_plsql Runtime for PL/SQL and PL/SQL Server Pages
	mod_perl Runtime for Perl Scripts
	C/C++ Runtime

	Configuring Transfer Mode for mod_plsql Runtime

	Configuring Oracle9iAS Portal for Multilingual Support
	Configuring Oracle9iAS Single Sign-On for Multilingual Support
	Configuring Oracle9iAS Forms Services for Multilingual Support
	Configuring Oracle9iAS Reports Services for Multilingual Support
	Configuring Oracle9iAS Discoverer for Multilingual Support
	Configuring Oracle9iAS Clickstream Intelligence for Multilingual Support
	Configuring Oracle9i Business Components for Java for Multilingual Support
	Configuring a Centralized Database for Multilingual Support

	4 A Multilingual Demo for Oracle9iAS
	Description of the World-of-Books Demo
	Architecture and Design of the World-of-Books Demo
	World-of-Books Architecture
	World-of-Books Design
	World-of-Books Schema Design

	Building, Deploying, and Running the World-of-Books Demo
	How to Build the World-of-Books Demo
	How to Deploy the World-of-Books Demo
	How to Run the World-of-Books Demo

	Locale Awareness of the World-of-Books Demo
	How World-of-Books Determines the User’s Locale
	How World-of-Books Uses Locale Information in Localizer Methods
	How World-of-Books Sorts Query Results
	How World-of-Books Searches the Contents of Books

	Encoding HTML Pages for the World-of-Books Demo
	Handling HTML Form Input for the World-of-Books Demo
	Encoding URLs in the World-of-Books Demo
	Formatting HTML Pages in the World-of-Books Demo
	Accessing the Database in the World-of-Books Demo
	Organizing the Content of HTML Pages in the World-of-Books Demo
	Static Files for World-of-Books Online Help
	Using Resource Bundles for the Content of World-of-Books HTML Pages

	A Oracle9i Application Server Supported Languages
	Glossary
	Index

