Oracle9

Case Studies - XML Applications

Release 1 (9.0.1)

June, 2001
Part No. A88895-01

ORACLE

Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)
Part No. A88895-01

Copyright © 2001, Oracle Corporation. All rights reserved.
Primary Author: Shelley Higgins

Graphics: Valerie Moore

Contributing Authors: Sandeepan Banerjee, Robert Dell’immagine, Robert Hall, Karun K, Murali
Krishnaprasad, Olivier LeDiouris, Paul Nock, Ami Parekh, Rajesh Raheja, Carol Roston, Frank Rovitto,
Mark Scardina, Manh-Kiet (Allen) Yap

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle, Oracle Store, and SQL*Plus are registered trademarks, and ConText, JDeveloper, Net8, Oracle
Call Interface, Oracle interMedia, Oracle Spatial, Oracle WebDB, Oracle8i, Oracle9i, PL/SQL, Pro*C, and
Pro*C/C++ are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

SeNA US YOUI COMIMENES oo et e et et et ettt ettt et et ettt ettt ettt et et ettt ee e

o =) =01 <

ADOUL ThIS GUITE......ciiieii bbb ettt be st e

8 o 1T o o S PRSS
Feature Coverage and AVailability ... s
How this Manual iS OFganizZed...........ccoe it
(R F-1CTo o ot U] g g1 o) v= 11 To] o IS
HOW to Order thisS MANUALcoiiiiceee s
Downloading Release Notes, Installation Guides, White Papers,.........c.ccccoorninieneneneienennns
How to Access this Manual ON-LiNe ..o s
CONVENTIONS ...ttt b et b bt e h bt bt b bt b bbbt
Documentation ACCESSIDIIITYcuiiiiiii e e

What's New in Oracle XML-Enabled Technology?

XML Features Introduced with Oracle9i, Release 1 (9.0.1)ccocoiiiiiniiiinieni e
XML Features Introduced with Oracle8i Release 3 (8.1.7) ...c..cccvvvireieniiiniieieisese e

Part | Introducing Oracle XML-Enabled Technology

1 Oracle XML-Enabled Technology

WAL IS XIMIL 2.ttt ettt st st ettt e e e e e st e s e e seeneaneebeaneanenreneennens
What are Oracle XML-Enabled Technologies?.........cccccvviieiiiiiiiesese e
Oracle XML COMPONENTSoiuiitiii ittt sttt bbb ettt e st b e s e beebesbesbesbeneas

1-2
1-2
1-2

Storing and Retrieving XML Data from Oraclei.........ccccccvviiiiiiiiiie i 1-4

XML Support in the DAtabase ..o 1-5
XML aNd URI DALA TYPES ..vvcureverieiiestesiesiestesie e ssesieseeseeseesessessessessessessessssasssessessssssssssessessessessenes 1-5
EXeNSIDIILY @nNd XIMILoouiiiiicecee ettt te e sreanes 1-7
Oracle TEXE SEAICNING.....ci it 1-7

Oracle-Based XML APPHICALIONS........ccciiiiieieiceese e re e nrennen 1-7

Oracle XML-Enabled Technology Components and FEatUresc.coeveeiiiciinieniiincneniens 1-8
Indexing and Searching XML Documents with Oracle Text (interMedia Text) 1-8
Messaging Hubs and Middle Tier COMPONENTSccccvoviivrererieiinieseseeseeeeee e 1-9
Back-End to Database to Front-End Integration ISSUESccccveviiieiieiieve e 1-10
Oracle XDKs Provide the Two Most Common APIs: DOM and SAX......cccoceveinineennne. 1-10
Writing Custom XML APPLCALIONScceieieieicicice s ene s 1-11

The Oracle Suite of Integrated Tools and COMPONENTScccviiiiinininene e 1-11
Oracle JDeveloper and Oracle Business Components for Java (BCA4J).........ccccovervireennas 1-11
Oracle9i Internet File System (Oracle 9iFS or 9iFS) ... 1-12
OFACIE POITAL ... bbb bbb bbbttt be b e 1-13
OraCle EXCRANGE. ...ttt ettt b et b et ene e 1-13
XIMIL GALEBWVAYevieueiieeeiesieesiesiee e etee e estestees e sseeseesseenseaseesteaseesaeesaesteessesteessenneenseeneenseeneeneeanees 1-13
METAAALA AP ...t bbb e bbbt b bbb 1-14
Other XIML INITATIVESoueeiice ettt ene e 1-14

Oracle XML Samples aNd DEMOScccciiviieieiecieeeese ettt st e ne e erenne s 1-15

What Is Needed to Run Oracle XML COMPONENTSccooiiiriieiininienienienie e 1-15
ReqUIremMENTS fOr XDK ..ot 1-15

Which XML Components are Included with Oracle9i Database and Oracle9i Application
Server? 1-15

XML TECNNICAI SUPPOIT ...t bbb bbbt b et 1-16

Modeling and Design Issues for Oracle XML Applications

XML Data can be Stored as Generated XML or Composed XML........ccccoeviiniiininininnnennn, 2-2
GENEIATEA XIMIL ...ttt b et st b ettt e e st et e ne e b e et e ebeebesbenbennen 2-2
Composed (AUthOred/Native) XIMILc.cociciiicccese e snen 2-3
Using a Hybrid XML Storage Approach for Better Mapping Granularity.............ccccoceennene. 2-5

A Hybrid Approach Allows for User-Defined Storage Granularity..........ccccccoeeniieneennen 2-5

Hybrid Storage AQVantagesS........ccccvueieieriirieieieeie et ess e e nesresresnesnenes 2-6
Transforming Generated XIMILoocvo it 2-7

Combining XML Documents and Data USIiNg VIEWSccccceveeiiiiene e 2-7

Using XSLT to Transform QUErY RESUITS..........cceoiiiiiiiiee e 2-7
Indexing and Querying TransformMationsccocviiviiiirienine e 2-8
INAEXING APPIOACNESottt ettt b et st sbe b b e 2-8
XML Schemas and Mapping 0f DOCUMENLScoeiiiiiieiiieiie et 2-8
XMLSchema Example 1: Defining a Simple Data TYPe.....ccccvvriererereiereeeeesese e e 2-9

XMLSchema Example 2: Using XMLSchema to Map Generated XML Documents to
Underlying Schema 2-9

General XML: Design Issues for Data Exchange Applicationsccccccovnvniinccncnenn 2-11
Generating a Web Form from XML Data Stored in the Database............cccccccevvvivecviivnnnnnne 2-11
Sending XML Data from a Web Form to the Database............ccccceveviviieinie v, 2-12

Sending XML Documents Applications-to-Application ... 2-12

Loading XML iNt0 @ Database.........cccccueiiiieieieicces et 2-13
(0T (o 1@] it I 0T T [T OSSR 2-14
Loading XML Documents Into LOBs With SQL*Loader...........c.cccoveiireiiniineinciieieeas 2-14

Applications that Use Oracle XML -EnabledTechnologycccccoevviieiincrciciecce e 2-17

Content and Document Management with Oracle XML-Enabled Technology.................... 2-17
Customizing Presentation Of Datacccoeiriiiriinieieeee e 2-17

Scenario 1. Content and Document Management: Publishing Composite Documents Using

XML-Enabled OracleTEChNOIOQYccccviiiiiiiieeiee s ane 2-19

Scenario 2. Content and Document Management: Delivering Personalized Information Using

(@1 Tod 130 4 AV | B 1 =Tol o T oo 2SSOSR 2-21

Scenario 3. Content Management: Using Oracle XML Technology to Customize Data Driven

APPIICATIONS ...ttt bbbt bbbt b et bbbttt et 2-24

Business-to-Business and Business-to-Consumer MesSaging......cccccovvvveriereneerveresiesesnnenns 2-25

Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using XML 2-25

Scenario 5. B2B Messaging: Using Oracle XML Components and Advanced Queueing for an

Online INventory APPHICAtION. ..ot e 2-27

Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for

[\ IRT LA EYANo] o] Tor: A o) T LY (=10 | Ui o] o 2-29

Part Il Managing Content and Documents with XML

3 Oracle9i AS Wireless Edition and XML

Introducing Oracle9i AS Wireless Edition (Portal-to-Go)ccccvvvereiereciciese e 3-2
Oracle9i AS Wireless Edition (Portal-To-GO0) FEAtUIES..........cccveveiieeie it 3-3

vi

What'’s Needed to Run Oracle9i AS Wireless EAItioNccccoeveiiiiie e 3-4

Oracle9i AS Wireless Edition: Supported Devices and Gateways..........ccoccovveereieneieneieneneas 3-4
How Oracle9i AS Wireless Edition WOIKS ..o e 3-5
Oracle9i AS Wireless EAition COMPONENTScoiiiiiiiiiiiine et 3-6
Oracle9i AS Wireless EQItioN SEIVICES........cicii ittt s 3-6
Oracle9i AS Wireless EAition AdaPLersS........cccovveereeieiesiese s sse s 3-7
Oracle9i AS Wireless Edition TransSfOrMEersScccooiiiiiiiiinenesee e 3-8

Exchanging Data via XML: Source to XML, XML to Target with Oracle9i AS Wireless Edition .
3-9

D= Tod AT T @0] =T o | PSSP 3-10
L070] 01V 7=Ta A1 o o 1R 10 10,4 1Y/ | SO SPS 3-11
Why Use an Intermediate XML FOrMAL?ccooiiiiiiiiiieeiecsee e 3-12
Using the SIMple RESUIE DTDociiiiiiceeee st ene s 3-12
Adapters Map the Source Content to the DTD Element...........cccoeiiiiiiniiiiciicinenee 3-15
SAMPIE AAPLEN CIASSEScviiveiiiieiitete bbbttt bbb 3-16
Oracle9i AS Wireless Edition Adapter Example 1: Greeting Users by Name.................... 3-17
Transforming XML to the Target Markup LANQUAGEcceieiriieiinenenee e 3-20
Oracle9i AS Wireless Edition: Java TranSTOrMErsS ... 3-20

Oracle9i AS Wireless Edition Java Transformer Example 1: Converting Simple Result
Elements to Another Format 3-21

Oracle9i AS Wireless Edition: XSL Stylesheet TransfOrmers..........ccccvovevevveiecvece e 3-23

Oracle9i AS Wireless Edition XSL Stylesheet Transformer Example 1: Converting Simple
Result Documents to Plain Text 3-23

Each Markup Language Requires a Unique Transformer........ccccocveevevevcieneeseeinsiesnsennnns 3-24

Oracle9i AS Wireless Edition Stylesheet Transformer Example 2: Customizing a WML1.1
Transformer Stylesheet 3-25

Oracle9i AS Wireless Edition Stylesheet TransformerExample 3: XSL Java Extension ... 3-27

Oracle9i AS Wireless Edition Case Study 1: Extending Online Drugstore’s Reach............. 3-30
Oracle9i AS Wireless Edition Case Study 2: Expanding Bank Servicesccccoceoeevnenienn 3-31
Oracle9i AS Wireless Edition Case Study 3:0nline AUCtion Sitescccccevvienvieneiencenne 3-31

Customizing Presentation with XML and XSQL: Flight Finder

XML Flight Finder Sample Application: INtrodUCTIONccoeiiiiiiiiiisees 4-2
What's Needed to Run XML FIIght FINAET.......cccooiiiiiececec e 4-2
HOW FHIGNT FINAEN WOTKS ...ttt sttt e enre s 4-3
Flight Finder Queries the Database — Converts Results to XML.........ccccocoocoiiinciinncnne, 4-6

Using XSQL Servlet to Process Queries and Output Result as XMLccccccoviiiiininnnnens 4-6

Formatting XML With SEYIESNEETSccoiiiiiiii s 4-9
One Stylesheet, ONe Target DEVICEcovveieieieeieese et sre e 4-9
Many Stylesheets, Many Target DEVICES.........ccccviviii i 4-11
LOCAIIZING OULPUL........ooiiiiiitiieieiete ettt ettt et r et sb et eb e an e 4-13

XML 10 DAADASE ...ttt bbbt 4-16
1 TaKing the USEI'S INPULcoiiiiiie ettt 4-16
2 Assign Values Acquired From User to Code Parameters.........ccocoeeveveneeieneeinienennens 4-18
3 Let User Know if Operation SUCCEEAEcccviviiieieiine e 4-19

Using Oracle9i Application Server Wireless Edition (Portal-to-Go)ccccccoeeeviiiiiinnnn 4-20

Customizing Content with XML: Dynamic News Application

Introduction to the Dynamic News ApPliCatioN ..ot 5-2
Dynamic NEWS MaIN TASKScciiiiiiiiieiiiitinieie ettt ettt sn e sn e 5-2
Overview of the Dynamic News APPLICAtiON ..o 5-2
Dynamic News SQL Example 1: Item Schema, Nisetup.Sqlccocooeieiiiiiiiiiiece e 5-4
DYNaMIC NEWS SEIVIEES.ottt ettt se et sr et nn e sb e ar e 5-4
How Dynamic News WOrks: Bird’s EYE VIEW.........cccccvviiieiiiiiie s 5-5
] = 1 o o T 1= USSP 5-7
SEMI-DYNAIMIC PAGES. .. .cuiiiiiiiiiitet bbbt b et bttt 5-9
(1D)7 T L g ol = Vo =S 5-11
Personalizing CONTENT.........coi it b e e sbeebesra e resraeseenreens 5-13
1 Get ENA-USEE PrefErENCESoceiiieitiei ettt 5-13

From a Client-Side COOKIEc.ciiiiiiiiiiicii et 5-13

QUENYING the DAtabaseccceeiiiie et ae e sre e sreenes 5-14
2 Pull News Items from the Database..........ccoooeiiiiiii e 5-17
3 Combine News Items to Build @ DOCUMENT ..o e 5-19
4 CuStomMIZiNg PreSeNtatioNcccoiiiiiiiiiie ettt sb e esne s 5-20
Importing and EXPOrting NEWS ITEMScooiiiiiiiiee e 5-23

Using Oracle9i Internet File System (9iFS) to Build XML Applications

Introducing Oracle9i Internet File System (90FS) ... 6-2
WOrking With XIMIL iN QIFSoviiice et ne e nnennen 6-2

SUPPIY 8@ DOCUMENT DESCIIPTON ...t ettt sae s 6-2
USING the IFS PAISEIS.......iiiiiiitiieeiee ettt bbbt b et b ettt 6-3

Vii

Standard 9iFS Parsers and CUSIOM PArSEISccovvviiiiiie ettt et 6-3

USING 9IFS STANAAIT PAISEISc.oiveiiiieiiieeiste ettt ettt et 6-4

ooV T 0T @ o)1 o] 1 6-4
USING QIFS CUSTOM PAISEIS......ciuiciiciicie ettt sttt e e e et be st et e saesbesseesteaneesreassesaeeseesreeeesreens 6-5
HOW 9IFS XML Parsing WOTKScccoiiiiiicie e 6-5
WIriting a Parser APPLICALION ..o sne e 6-6
ReNdering XIML IN GIFS.........ciiioiccse ettt ste e e s te e e s e e aestaeeesreens 6-7
XML and BUSiNeSS INTEIIIGENCE.coiiiiiiie s 6-7
Configuring 9iFS With XIML FIlES ...c..ccuiieiceecc e nne 6-7

Part Il XML Data Exchange

7

viii

Customizing Discoverer 4i Viewer with XSL

DiSCOVEIErdi VIEWET: OVEIVIEWoiiuiiiiiiiiiiieiisieic ettt sttt sttt sttt et 7-2
DiSCOVErEr 4l VIEBWET: FEATUIESccuiiiii ittt bbbttt sttt sbe s 7-3
Discoverer 4i Viewer: ArChIitECIUIE........ccoii i 7-4
HOW DiSCOVEIEr 4i VIBWET WOTKS ..ottt ettt 7-5
Replicating Discoverer APPlICAtION SEIVET ...t e 7-6
Using Discoverer 4i Viewer for Customized Web Applications ... 7-7
Step 1: BroWSEr SENAS URLcuviiiiiiii ettt e ene s 7-7
Step 2: Servlet GENErates XIML ..ottt ettt 7-7
Discoverer XML Example 1: Three Workbook Report Data............ccocoeviennensenseieenee 7-8
Step 3: XSLT Processor Applies an XSL Stylesheet...........ccoovvovivieniinie s 7-8
Step 4: XSLT Processor GenerateS HTIMLcoo oo 7-8
Customizing Style by Modifying an XSL Stylesheet File: style.XSl........cccccovviniiniiieinnnn 7-10
Discoverer 4i Viewer: Customization Example Using XML and XSLcccecevevviviiviinnnnnnne 7-10
STEP 1: THE XML FHlE. ...ttt 7-10
Step 2: XSL File, eXamMPIeL.XSI ..o 7-11
StEP 3: XIMLAXSL = HTIML ..o it st st nne e nne e 7-12
Step 4: Customizing the XSL Stylesheet (eXample2.XSI).......ccccoviiiineiineneieeceecee, 7-13
Frequently Asked Questions (FAQS): DiSCOVErer 4i VIEWENcccveeiernennensenee e 7-18
EXPIAINING SEIVIETS ..c.eiiice it eeneere e neenenns 7-18
How Discoverer 4i Viewer Communicates With BrOWSEI'Scocovererineneieiiieceeseaias 7-18
Discoverer 4i VIEWEr aNd XIML.......ccooiiiiiiieieeeese ettt sne s 7-19
AISCOAIV.XIMI . bbbttt b et b et eb e e b e ebe e b e 7-19

DISCOVEIEN 41 QNG XSLo'. oottt b e e e s st e s st e e s sbae e s sabeessabaeeanes 7-19

SUPPOITEA XSLT PrOCESSOIScuiviritisietirieiertetesteseste sttt sttt sttt bbb 7-20
DS I Lo [(o SO 7-20
CUSLOMIZING STYIESNEELS........eiieiee e et sre s 7-20
Viewing Changes to a Modified Stylesheet ... 7-21
Browser Displays BIanK SCIEENccciieierieicieeeieceee sttt e snenne s 7-21
More information 0N XIML and XSLcoiiiiiiiii s 7-22
Discoverer VIieWer XIML'S DT Dccciiiiiiiieie ettt st 7-22

Online B2B XML Application: Step by Step

Introduction to the Online B2B XML APPLICALION ..ot 8-3
Requirements for Running the Online B2B XML Applicationccccccoevvevveiiieicnsinninnesnnn, 8-3
Building the Online B2B XML Application: OVEIrVIEWccccooeieiiinieiiieeeieesesese e 8-3
Why Transform Data tO XIML?........cooiiiiieee ettt 8-5
Why Use Advanced QUEUEING (AQ)? ..cvoiiieieieeeese st se e e et e e esesas e s e ssessessessessessessens 8-6
Online B2B XML Application: Main COMPONENTScccoiririiiniieneeee e 8-7
Overview of Tasks to Run the Online B2B XML Application ..o 8-8
Task 1. Set Up Your Environment to Run the Online B2B XML Application 8-10
Task 2. Run the B2B APPHCAIONcviiiiiiiicic s 8-11
Task 3. End the B2B ApPlication SESSIONcccoiiriiinieirieiieiese e 8-11
Online B2B XML Application: Setting Up the Database Schema..........cc.ccoceevveiiivccviininnnnns 8-12
SQL Code Calling SEQUEINCEccoiiiiriiitiiteie sttt bbb e bbbt be st b sne 8-13
Create and Build the Retailer and Supplier SChemasccocoiiiiiniiic 8-14
SQL Example 1: Set up the Retailer and Supplier Environment — BuildAll.sql 8-14
SQL Example 2: Create and Populate the Retailer-Supplier Schema — BuildSchema.sql..........
8-15
Create the AQ Environment and Queue Tables ... 8-20
SQL Example 3: Set Up the Environment for AQ — mKAQUSser.sqlcccoevvveveveivinnnnns 8-20
SQL Example 4: Call the AQ Queue Creation Scripts — mKQ.sql.........coccoeiiiiiiinincnncne 8-21

SQL (PL/SQL) Example 5: Create Table, AppOne_QTab — mkQueueTableAppl.sqgl... 8-21
SQL (PL/SQL) Example 6: Create Table, AppTwo_QTab — mkQueueTableApp2.sql.. 8-21
SQL (PL/SQL) Example 7: Create Table, AppThree_QTab — mkQueueTableApp3.sql 8-21
SQL (PL/SQL) Example 8: Create Table, AppFour_QTab — mkQueueTableApp4.sql.. 8-22
Create the Broker Schema Including XSL Stylesheet Table........c.cccccovviiiiiiciciciecciee 8-22
SQL Example 9: Create Broker Schema — mKkSSTables.sql ... 8-22

SQL (PL/SQL) Example 10: Input XSL data into CLOB. Populate the Broker Schema —
setup.sql 8-24
Cleaning Up Your Environment and Preparing to Rerun Applicationcc.cccovevneenen 8-25

SQL Example 11: Stops and Drops Queue Applications. Starts Queue Applications —
reset.sql 8-26

STOP QUEUE SQL SCHIPTS .. .eeueitietiitiiie ittt sttt b e bbbt ebe e 8-27
Drop QUEUE SQL SCHIPTS.eeitiiitirieiirietisteiest ettt bbb 8-27
Create QUEUE SQL SCIIPLS ...vouiciciie sttt sttt ene s e e neenenns 8-27
Start QUEUE SQL SCIIPTS.c.eiiiiiitiie ittt sttt se ettt ebe e 8-28
(o [0] 01 fo [=] -] o | LT TP S ST ST TSP P PP PRT P UPTUUPTPPRTPURTPR 8-28
Online B2B XML Application: Data Exchange FIOWccccooviviiiicienenccceeseee e 8-30
Retailer-SUupplier TraNSACTIONScoiiiiie ettt sne s 8-31
Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalogc.ccccoeuennee 8-31
Step 2. Retailer PIAaceS OFUENocv i ne e 8-31
Step 3. Retailer Confirms and Commits to Sending the Order.........cccoceveieneiccienieene, 8-31

Step 4. AQ Broker-Transformer Transforms the XML Document According to the Supplier’s
Format 8-32

Step 5. Supplier Application Parses Incoming Reformatted XML Order Document. Inserts
Order into the Supplier Database 8-33

Step 6. Supplier Application Alerts Supplier of Pending Order..........ccccooeiiiiiiininncne. 8-33

Step 7. AQ Broker-Transformer Transforms the XML Order According to Retailer’s Format..
8-33

Step 8. Retailer Application Updates the Ord and Line_Item Tablesccccoevvevvevennne, 8-34
Running the B2B XML Application: Detailed Procedurec.ccocoviiiiiniicieiiiceccee, 8-34
Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog...........c.cc.ccceeveuennee. 8-35

XSQL Script Example 2: Checking the ID of Users Logging In: getlogged.xsql........... 8-40

XSQL Script Example 1: Displays First Hi-Tech Mall Screen — index.xsql 8-41

XSQL Script Example 3: Lists Catalog Products — inventory.Xsqglcccccveeniinnnne. 8-42

XSQL Script Example 4: Enter a Quantity — order.Xsqlccccocvvvvvevencneiccceiese e, 8-44
Step 2. Retailer P1aCeS OFAEro e 8-47
Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order......
8-48

XSQL Script Example 5: Starts B2B Process — placeorder.Xsgl........ccocevevevevcveiennannnn, 8-48

Java Example 1: Action Handler Called by placeOrder.xsql — RetailActionHandler.java

8-50

Java Example 2: Maintains Session Context for Retail ActionHandler .java —
SessionHolder.java 8-68

Step 4. AQ Broker-Transformer Transforms XML Document According to Supplier’s Format ..
8-69
Step 5. Supplier Application Parses the XML Document and Inserts the Order into the

SUPPHIET DATADASE ..ot bbbttt 8-73
Step 6a. Supplier Application Alerts Supplier of Pending Orderccccocevvveiivvccnsiniinnnnns 8-74
Step 6b. Supplier Decides to Ship the Product(s) to the Retailer...........cccccoeoeviiiinennne 8-76
Step 6¢. Supplier Application Generates a New XML Message to Send to AQ Broker... 8-78
Step 7. AQ Broker-Transformer Transforms XML Order into Retailer’s Format.................. 8-79
Step 8. Retailer Application Updates the Ord Table and Displays the New Order Status to
RETATIETttt bbbt bbb bbbt s bt b e b e bt e 8-81
To Stop the B2B XML APPIICATIONcvoiiiiiiiiiecreese e 8-82
Check Your Order Status Directly Using vieworder.sglccccvovveverenenicieiesinensieseseens 8-82
Java Examples - Calling SEOUENCE..........coi i 8-83
XSL and XSL Management SCIIPTS.curiiriiirieinieisieisiese ettt 8-85
XSL Stylesheet Example 1: Converts Results to HTML — htmIXsl.......ccooeeviviiiivininne 8-85
XSL Stylesheet Example 2: Converts Results for Palm Pilot Browser — pp.xsl................ 8-91
Java Example 3: Stylesheet Management— GUIInterface.java..........ccooveineincnncinennas 8-97
Java Example 4: GUlInterface_ AboutBoxPanel.java..........cccccoovovienieninnienencnereseeeeesens 8-114
Java Example 5: GUISEYIESNERT.JAVAcccoiiiiiiieieieece e 8-115
XML Process and Management SCHIPTSoocviiriiiirieseisee e 8-117
Java Example 6: MaindXMLIODMLV2.JAVA.........ccccceeieriiieisiesesese s 8-117
Java EXample 7: ParSErTEST.JAVAccccuiiiiiiiiiieiie ettt 8-120
Java Example 8: TableINDOCUMENTJAVA........ccoiiiiiiiiiiese e 8-122
Java Example 9: XIMLFIAME.JAVA........ccccvvivieiirerieieceiesese et ae e sneeresneens 8-123
Java Example 10: XIMLPTrOAUCET JAVA........cccoiiiiiiiieiieieeeeese et 8-124
Java Example 11: XMLEIODMLVZ2.JAVA........ccoiiiiiiieiieitsenesie et 8-126
Java EXample 12; XIMLGEN.JAVA.......ccccviiieiieriieieseceieseeeeesese e ste e sse e saessensesaesessessessenns 8-134
Java Example 13: XIMLUTILJAVA ..ot 8-136
Java Example 14: XSLTWIAPPEL JAVA ...c.coveirieiiieinieisieit sttt 8-137
Other Scripts Used in the B2B XML AppPlication ... 8-142
XML Example 1: XSQL Configuration — XSQLCoNfig.Xmlccccovvvniiininiiiicn 8-142
Java Example 15: Message Header Script — MessageHeaders.java..........ccoceovveeinennnen. 8-149
Java Example 16: Hold Constants for Use by Message Broker — AppCste.java............ 8-150
RETAIIET SCIIPTS ..ottt bbb bbbt et e et ebe et 8-150

Java Example 17: Retailer Waits for Status Update Sent from Supplier — UpdateMaster.java
8-150

Xi

Xii

AQ Broker-Transformer and Advanced QUEUING SCriPLS......ccocivrireninineneiee e 8-157

Java Example 18: AQ Broker Listens on One AQ Thread — BrokerThread.java............ 8-158
Java Example 19: MeSSageBrOKEI.JAVA.......ccccveieierieieiceee e e eneans 8-163
Java Example 20: AQREAET JAVAccceiuiiiiiiieieieee e 8-169
Java Example 21: AQWIILEI JAVAc.ooveuiiieiiiciinieiset ettt 8-171
Java Example 22;: B2BMESSAQE.JAVA.......cceiueruirieierieieieriaeassstesessessessessessessessessessessssesssssenses 8-174
Java Example 23: ReadStruCtAQ JAVAc..couiiiiiiieieiieiieeie sttt 8-175
Java Example 24: SOPAIQUEUESJAVAc.coveuiriiiiriiiiiisiecieet s 8-176
Java Example 25; WriteStrUCtAQ . JAVAccvevverieieieieieeee st e et e e enenns 8-177
S U] o] o] L T=T gl g 1 0] TSSO TP PO U SOUTURURP 8-180
Java Example 26: SUPPHEIFIamME.JAVA.cccoviiiiiriiiiieiiese s 8-180

Java Example 27: Agent Wakes Up with Order Received from Retailer —
SupplierWatcher.java 8-186

Service Delivery Platform (SDP) and XML

Oracle Service Delivery PlatfOrm ... 9-2
SDP BUSINESS SOTUTIONS.....cuiitiitiitiitiiteite ettt ettt sb e bbb 9-2
Phone NUMDBer POrtabilitycccoooiiiiii e 9-2
The Number Portability PrOCESS ... 9-4
What Happens Behind the Scenes When You Order a New Telephone Service. 9-4
What Happens Behind the Scenes When You Change Local Service Providers................. 9-4
XML is the Data Format. Advanced Queuing is Used at Each Point...........cccccccevvivivcnnnnn 9-5
Why XML is Used for this MeSSagingccccviieiiieiie et 9-6
Number Portability Allows Fast CONfigUIiNgccoeoireiiiiiiniiiceeeee e 9-7
What are EXternal AdAPLEIS?ccviiiiiiiicee e e e re e snennas 9-7
Terms Used in ThiS ChapLer ..o bbb 9-8
Wireless Number Portability (WINP) ..o 9-8
INPAC L.ttt 9-9
S V] [1 (=TT Y S 9-10
Asymmetric Digital SUDSCriber Line (ADSL) ...ttt 9-10
o101l @ A= o (O 1= =T o1 S 9-13
Bandwidth EXchange (PrOtOLYPE)ccoiiiiiiiiiie et 9-13
Number Portability and Messaging Architecture within SDP...........ccccccovoniiniiniincnn, 9-15
Communication ProtoCOl AAPLETcccivieiiriiieereee e ees 9-16
(O] o [T gl o o Tot= Ty o I = o 1 1= USSR 9-17

WOTKFIOW ENQINE.. .ottt e e s ae et e saeenteeneenreanees 9-17

FUITITIMENT ENQINE ..ot 9-17
A= o Y = T =T T PSS 9-18
SDP REPOSITONY ...ttt ettt b bbb bbb bt e e et e b e bt bt ebeebesbe b 9-19
Requirements for Building a Phone Number Portability Application...........c.ccccocovennens 9-19
Provisioning a Network EIEBMENT ... 9-21
Using Internet Message Studio (iMessage) to Create an Application Message Set............ 9-22
(000 [©1=T o 1T =1 o] o [OOSR URPRTRRN 9-22
DefiNiNG MESSAJE SELScvvciii ettt e e e e ereereaneerenns 9-23
(O] [[o T I T =T Y/ =T F= Vo LT PSSR 9-26

A An XML Primer

WAL IS XIMIL?...cei ettt sttt b et b et et b et et et et e be st et e st et e sberesbesenaereas A-2
W3C XML ReCOMMENAALIONScoiiiiiiiieieieieeees sttt be st sresbe st nnen A-2
XML FRATUIES ...ttt aR e s et et R e n e m e n e r e r e an e r e nre s A-4
HOW XML Differs From HTIMILooiiiii et s A-5
Presenting XML UsiNg StYIESNEETS ... A-8
eXtensible Stylesheet Language (XSL).....cciiviriiiiiiesnre e A-8
Cascading Style SNEEtS (CSS) ...t sreesre s A-9
Extensibility and Document Type Definitions (DTD) ... A-9
Well-Formed and Valid XML DOCUMENTSccoviiiiirineiieienieie e A-10
WY USE XIMIL? ...ttt b et b ettt ettt ettt b A-11
AdAItIONA]l XIML RESOUICEScuiitiiiiiieie ittt sttt sttt st be e e e s e e et eseetesseasesteneees A-12
Glossary
Index

Xiii

Xiv

Send Us Your Comments

Oracle9/ Case Studies - XML Applications, Release 1 (9.0.1)
Part No. A88895-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

Electronic mail: infodev_us@.oracle.com

FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager
Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood City, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.

XV

XVi

Preface

The Preface has the following sections:

About this Guide

Audience

Feature Coverage and Availability

How this Manual is Organized

Related Documentation

How to Order this Manual

Downloading Release Notes, Installation Guides, White Papers,...
How to Access this Manual On-Line

Conventions

Documentation Accessibility

Xvii

About this Guide

xViii

This manual provides case studies and applications that use Oracle9i’s
XML-enabled database technology. It describes different ways that XML data can be
stored, managed, queried, and exchanged in the database using Oracle
XML-enabled technology.

This manual describes several scenarios that are based on actual business
applications. The case studies are presented according to their main function,
namely, whether they are primarily used for one or both of the following high level
tasks:

« XML-Based Content and/or Document Management, see Part I, "Managing
Content and Documents with XML".

« XML Data Exchange in Business--to-Business (B2B), Business-to-Consumer
(B2C), Application-to-Application (A2A), or Peer-to-Peer(P2P) applications. See
Part 111, "XML Data Exchange". A detailed application is described in,

Chapter 8, "Online B2B XML Application: Step by Step". This explains how to
build an XML B2B data exchange and customized presentation application.

Composed or Decomposed (Generated) XML
In general, XML documents are processed in one of two ways:

« Ascomposed XML documents, stored in LOBs

« Asdecomposed XML document fragments, stored in relational tables, with the
XML tags mapped to their respective columns in the database tables. The
decomposed or fragmented XML documents can then be regenerated into
composed XML documents

Oracle XML-Enabled Technology

The main Oracle XML-enabled technology components are the XML Developer Kits
(XDKSs). These are available in four language implementations:

« Java. XDK for Java, XDK for Javabeans, and XML SQL Utility for Java
« PL/SQL. XDK for PL/SQL and XML SQL Utility for PL/SQL

« C.XDKforC

« C++. XDK for C++

See:
« Oracle9i Application Developer’s Guide - XML
« Oracle9i XML Reference

This is the first edition of this manual. A number of helpful chapters, waiting in the
wings, did not make it into this edition. If you have, or know of any interesting
XML Oracle database case studies that you would like to contribute, or would like
to see included here, please inform the author through infodev_us@oracle.com.

Audience

This guide is intended for developers building XML applications on Oracle9i.

Prerequisite Knowledge

An understanding of XML and XSL is helpful but not essential for using this
manual. References to good sources for more information are included in
Appendix A, "An XML Primer", and in the FAQ section at the end of Chapter 3 in
Oracle9i Application Developer’s Guide - XML.

Many examples provided here are in either SQL, Java, PL/SQL, C, or C++, hence a
working knowledge of one or more of these languages is presumed.

Feature Coverage and Availability

The information in this manual represents a snapshot of information on Oracle
XML-enabled technology components. These change rapidly. To view the latest
information, refer to Oracle Technology Network (OTN) at:
http://otn.oracle.com/tech/xml

How this Manual is Organized

This manual is organized into 3 parts and 9 chapters. It includes an appendix, index
and glossary.

« PART 1 Introducing Oracle XML-Enabled Technology.

* Chapter 1, "Oracle XML-Enabled Technology" has introductory and
basic information about using Oracle9i’s XML components, XML
support in the database, using XMLType and URI-Reference, XML SQL

Xix

XX

Utility (XSU), and how to apply Oracle Text to search and retrieve
information from XML documents.

Chapter 2, "Modeling and Design Issues for Oracle XML Applications”
introduces you to the various ways that XML can be stored in the
database, XML design issues, and loading XML into the database. It
also presents some actual business scenarios and describes the XDK
and other Oracle XMl enabled components you can consider using.

« PART Il Managing Content and Documents with XML

*

Chapter 3, "Oracle9i AS Wireless Edition and XML" describes Wireless
Edition (portal-to-go) components an how they are used to extract
content from a web site, convert this to XML, and transform the data for
display on any device.

Chapter 4, "Customizing Presentation with XML and XSQL: Flight
Finder" describes how the Flight Finder application generates XML to
and from the database and uses XSQL Servlet to process queries and
output results as XML. It also discusses how Flight Finder formats the
XML data using XSL stylesheets. This application and demo is also
available on Oracle Technology Network (OTN).

Chapter 5, "Customizing Content with XML: Dynamic News
Application” describes the Dynamic News application, the three custom
servlets used in the application, and how XML SQL Utility (XSU)
accesses news content from Oracle9i. The application offers three levels
of user customization — static, semi-dynamic, and dynamic. This
chapter also includes some detail on customizing presentations.

Chapter 6, "Using Oracle9i Internet File System (9iFS) to Build XML
Applications” introduces you to the 9iFS and focuses on 9iFS’s XML
support.

« PART Il XML Data Exchange

*

Chapter 7, "Customizing Discoverer 4i Viewer with XSL" describes how
Discovererd4i (9i) can be used to customize web applications to make the
best use of your business intelligence, forms, and reports. The chapter
includes some detail on using XSL stylesheets to customize your
presentation.

Chapter 8, "Online B2B XML Application: Step by Step"” describes in
detail one way to build and implement a B2B online catalog XML
application using XSQL Servlet and Advanced Queueing (AQ). It
includes scripts for transforming the resulting XML messages for

different user devices. An extension and simplified version of this
application is also available at http://http:otn.oracle.com/tech/xml

* Chapter 9, "Service Delivery Platform (SDP) and XML" introduces you
to the Phone Number Portability application. The chapter summarizes
how XML messaging can be used by various telecommunications
products and systems and designed in iMessage Studio, Event
Manager, and Adapters.

Related Documentation
For more information, see these Oracle resources:
= Oracle9i Application Developer’s Guide - XML

« Oracle9i New Features for information about the differences between Oracle9i
and the Oracle9i Enterprise Edition and the available features and options. That
book also describes all the features that are new in Oracle9i.

« The JDeveloper Guide

« Oracle9i Application Developer’s Guide - Fundamentals

= Oracle8i Application Developer’s Guide - Advanced Queuing
« Oracle9i Supplied PL/SQL Packages Reference

« Oracle Integration Server Overview

= Oracle9i XML Reference

How to Order this Manual
In North America, printed documentation is available for sale in the Oracle Store at:
http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from:

http/Amww.oraclebookshop.conm/

Other customers can contact their Oracle representative to purchase printed
documentation.

XXi

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http:/otn.oracle.comv/docs/index.htm

Downloading Release Notes, Installation Guides, White Papers,...

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http:/otn.oracle.com/membership/index.htm

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http:/on.oracle.comvdocs/index.htm

How to Access this Manual On-Line

You can find copies of or download this manual from any of the following
locations:

« On the Document CD that accompanies your Oracle9i software CD

« From Oracle Technology Network (OTN) at
http://otn.oracle.com/docs/index.htm, under Data Server (or whatever other
product you have). For example, select Oracle9i > General Documentation
Release 1 (9.0.1) (or whatever other section you need to specify). Select HTML
then select HTML or PDF for your particular of interest, such as, “Oracle
Documentation Library”. Note that you may only be able to locate the prior
release manuals at this site.

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

XXii

« Conventions in Text

« Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example
Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in index-organized table.
a glossary, or both.
Italics Italic typeface indicates book titles or Oracle9i Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUMBER
monospace elements supplied by the system. Such column.
(fixed-width elements include parameters, privileges, .
font) datatypes, RMAN keywords, SQL E&%?SF@@% nlqjs ntge database by using the
keywords, SQL*Plus or utility commands, '
packages and methods, as well as Query the TABLE_NAMEolumn in the USER_
system-supplied column names, database TABLESdata dictionary view.
?g’lfs"ts and structures, usernames, and ;¢ 16 pRMS_STATSSENERATE_STATS
) procedure.
lowercase Lowercase monospace typeface indicates Enter sqlplus to open SQL*Plus.
monospace executables, filenames, directory names, . e .
(fixed-width and sample user-supplied elements. Such The password is specified in the orapwd file.
font) elements include computer and database Back up the datafiles and control files in the

names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

/disk1/oracle/dbs

The department_id
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

directory.
, department_name

Connect as oe user.

The JRepUtil
methods.

class implements these

XXili

Convention Meaning Example

lowercase Lowercase monospace italic font You can specify the parallel_clause
monospace represents placeholders or variables.

(fixed-widlth Run Uold_release .SQL where old_

font) italic

release refers to the release you installed
prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospaced (fixed-width) font and separated
from normal text as shown in this example:

SELECT usemame FROM dba_users WHERE usemame ='MIGRATE;,

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[1 Brackets enclose one or more optional DECIMAL (digits [, precision)
items. Do not enter the brackets.

{} Braces enclose two or more items, one of {ENABLE | DISABLE}

Other notation

XXiV

which is required. Do not enter the braces.

A vertical bar represents a choice of two {ENABLE | DISABLE}

or more options within brackets or braces.

Enter one of the options. Do not enter the [COMPRESS | NOCOMPRESS]
vertical bar.

Horizontal ellipsis points indicate either:

« That we have omitted parts of the CREATE TABLE ... AS subquery ;
code that are not directly related to
the example
SELECT col1 , col2 , ..., coln FROM

« That you can repeat a portion of the employees;

code

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

You must enter symbols other than acctbal NUMBER(11,2);

brackets, braces, vertical bars, and ellipsis acct CONSTANT NUMBER(4) := 3:
points as shown.

Convention

Meaning Example

Italics

UPPERCASE

lowercase

Italicized text indicates placeholders or CONNECT SYSTEMystem_password

variables for which you must supply _
particular values. DB_NAME = database _name

Uppercase typeface indicates elements SELECT last_name, employee_id FROM
supplied by the system. We show these employees;

terms in uppercase in ord_er to distinguish SELECT * FROM USER TABLES:

them from terms you define. Unless terms -
appear in brackets, enter them in the DROP TABLE hr.employees;
order and with the spelling shown.

However, because these terms are not

case sensitive, you can enter them in

lowercase.

Lowercase typeface indicates SELECT last_name, employee_id FROM
programmatic elements that you supply. employees;

For example, lowercase indicates names
of tables, columns, or files. salplus hr/hr
Note: Some programmatic elements use a CREATE USER mjones IDENTIFIED BY ty8MUS9;
mixture of UPPERCASE and lowercase.

Enter these elements as shown.

Documentation Accessibility

Oracle's goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program web site at

http://www.oracle.com/accessibility/.

Reading Code Examples

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.

XXV

XXVi

What's New in Oracle XML-Enabled
Technology?

This section describes the new features in the following releases:
« XML Features Introduced with Oracle9i, Release 1 (9.0.1)
« XML Features Introduced with Oracle8i Release 3 (8.1.7)

XML Features Introduced with Oracle9 |, Release 1 (9.0.1)

Here are the new XML features in Oracle9i Release 1 (9.0.1):

XDK for Java
« XML Schema Processor for Java

« XML Parser for Java— DOM 2.0 and SAX 2.0 support
« Improved XSLT performance

« XML Schema Class Generator for Java support

See: Oracle9i Application Developer’s Guide - XML, “Using XML
Schema Processor for Java

= XSQL

« Support for Database Bind Variables. Now both lexical substitution and
true database bind variables are supported for improved performance.

XXVil

« Support for PDF Output Using Apache FOP. Combine XSQL Pages with
the Apache FOP processor to produce Adobe PDF output from any XML
content.

« Trusted Host Support for XSLT Stylesheets. New security features insure
that stylesheets cannot be executed from non-trusted hosts.

« Full Support for Non-Oracle JDBC Drivers. Now all query, insert, update,
and delete features with both Oracle and Non-Oracle JDBC drivers.

« Process Dynamically Constructed XSQL Pages. The XSQLRequest API can
now process programmatically constructed XSQL pages.

« Use a Custom Connection Manager. You can now implement your own
Connection Manager to handle database connections in any way you like.

« Produce Inline XML Schema. You can now optionally produce an inline
XML Schema that describes the structure of your XML query results.

« Set Default Date Format for Queries. You can now supply a date format
mask to change the default way date data is formatted.

« Write Custom Serializers. You can create and use custom serializers that
control what and how the XSQL page processor will return to the client.

« Dynamic Stylesheet Assignment. Assign stylesheets dynamically based on
parameters or the result of a SQL query

« Update or Delete Posted XML. In addition to inserting XML, now updating
and deleting is supported as well.

« Insert or Update Only Targeted Columns. You can now explicitly list what
columns should be included in any insert or update request

« Page-Request Scoped Obijects. Your action handlers can now get/set objects
in the page request context to share state between actions within a page.

« Access to ServletContext. In addition to accessing the HttpRequest and
HttpResponse objects, you can access the ServletContext as well.

See Also: Oracle9i Application Developer’s Guide - XML, “XSQL
Pages Publishing Framework”
« XDK for Java Beans

- DBViewer Bean (new). Displays database queries or any XML by applying
XSL stylesheets and visualizing the resulting HTML in a scrollable swing
panel.

XXViii

DBAccess Bean (new). DB Access bean maintains CLOB tables that hold
multiple XML and text documents.

See: Oracle9i Application Developer’s Guide - XML, “Using XML
Transviewer Beans”

XDK for C

XML Parser for C— DOM 1.0 plus DOM CORE 2.0 (a subset of DOM)
XML Schema Processor for C

Improved XSLT performance

See: Oracle9i Application Developer’s Guide - XML, “Using XML
Schema Processor for C”

XDK for C++

XML Parser for C++ — DOM 1.0 plus DOM CORE 2.0 (a subset of DOM)
XML Schema Processor for C++

Improved XSLT performance

See: Oracle9i Application Developer’s Guide - XML,,"Using XML
Schema Processor for C++”

XDK for PL/SQL

Improved XSLT performance

XML SQL Utility (XSU) Features

Ability to generate XML Schema given an SQL Query
Support for XMLType and Uri-ref
Ability to generate XML as a stream of SAX2 callbacks

XML attribute support when generation XML from the database. This
provides an easy way of specifying that a particular column or group of
columns should be mapped to an XML attribute instead of an XML
element.

XSU is also considered part of the XDK for Java and XDK for PL/SQL.

XXiX

XXX

See: Oracle9i Application Developer’s Guide - XML, “XML SQL
Utility (XSU)”

Database XML Related Enhancements

Extensible Markup Language (XML) is a standard format developed by the World
Wide Web Consortium (W3C) for representing structured and unstructured data on
the Web. Universal Resource Identifiers (URIs) identify resources such as Web pages
anywhere on the Web. Oracle provides types to handle XML and URI data, as well
as a class of URIs called DBUri-REF s to access data stored within the database
itself. It also provides a new set of types to store and access both external and
internal URIs from within the database.

XMLType.This (new) Oracle-supplied type can be used to store and query XML
data in the database. XMLType has member functions you can use to access,
extract, and query the XML data using XPath expressions. XPath is another
standard developed by the W3C committee to traverse XML documents. Oracle
XMLType functions support a subset of the W3C XPath expressions. Oracle also
provides a set of SQL functions (including SYS_XMLGEMNNd SYS_XMLAGYand
PL/SQL packages (including DBMS_XMLGBRNb create XMLType values from
existing relational or object relational data.

XMLType is a system-defined type, so you can use it as an argument of a
function or as the datatype of a table or view column. When you create a
XMLType column in a table, Oracle internally uses a CLOBto store the actual
XML data associated with this column. As is true for all CLOBdata, you can
make updates only to the entire XML document. You can create an Oracle Text
index or other function-based index on a XMLType column.

URI Datatypes. Oracle supplies a family of URI types—UriType , DBUriType ,
and HttpUriType —which are related by an inheritance hierarchy. UriType is
an object type and the others are subtypes of UriType .

« You can use HttpUriType to store URLSs to external web pages or to files.
It accesses these files using HTTP (Hypertext Transfer Protocol).

« DBUriType can be used to store DBUri-REF s, which reference data inside
the database. Since UriType is the super type, you can create columns of
this type and store DBUriType or HttpUriType type instances in this
column. Doing so lets you reference data stored inside or outside the
database and access the data consistently.

DBUTri-REF s use an XPath-like representation to reference data inside the
database. If you imagine the database as a XML tree, then you would see
the tables, rows, and columns as elements in the XML document. For

instance, the sample human resources user hr would see the following
XML tree:

<HR>
<EMPLOYEES>
<ROW>
<EMPLOYEE_|D>205</EMPLOYEE_ID>
<LAST_NAME>Higgins</LAST_NAME>
<SALARY>12000</SALARY>
..<l-other columns —>
</ROW>
... <l- other rows —
<EMPLOYEES>
<l other tables..—>
<HR>
<I- other user schemas on which you have some privilege on..—>

The DBUri-REF is simply an XPath expression over this virtual XML
document. So to reference the SALARYvalue in the EMPLOYEE$able for the
employee with employee number 205, we can write a DBUri-REF as,

HREMPLOYEES/ROWEMPLOYEE_ID=205)SALARY
Using this model, you can reference data stored in CLOBcolumns or other
columns and expose them as URLS to the external world. Oracle provides a

standard URI servlet that can interpret such URLSs. You can install and run
this servlet under the Oracle Servlet engine.

« UriFactoryType. UriFactoryType is a factory type, which is a type that can
create and return other object types. When given a URL string,
UriFactoryType can create instances of the various subtypes of the
UriTypes . It analyzes the URL string, identifies the type of URL (HTTP,
DBUri , and so on) and creates an instance of the subtype.

See: Oracle9i Application Developer’s Guide - XML,
« “Database Support for XML”
« “Database Uri-references”

« “Searching XML Data with Oracle Text”

Advanced Queueing (AQ) Features
New Advanced Queueing features include enhanced XML messaging options:

« Internet-Data-Access-Presentation (IDAP)

XXXi

XXX

AQXMLServlet for use with HTTP and SMTP access
XMLType Queues

XML AQ message transformation

See: Oracle9i Application Developer’s Guide - XML, “Exchanging
XML Data Using Oracle AQ”

Metadata API

Metadata API (new) provides a centralized, simple and flexible means for
performing the following tasks:

Extracting complete definitions of database objects (metadata) as either
XML or creation DDL

Transforming metadata via industry-standard XSLT (XML Stylesheet
Transformation language).

Generating SQL DDL to recreate the database objects

Metadata API is available on Oracle9i whenever the instance is operational. It is
not available on Oracle Lite. It includes the (new) DBMS_METADATA PL/SQL
supplied package.

See: Oracle9i Application Developer’s Guide - XML, “Using
Metadata API”.

Oracle Text (inter Media Text/Context) Features

The new section group, PATH_SECTION_GROUP, enables new and more
sophisticated section searching for XML documents:

The new Oracle Text operators are:

* HASPATHY() operator
* INPATHY() operator

Oracle Text’s PATH_SECTION_GROUP features include the following support:

Case sensitivity

Searching multi-tag paths with direct parentage ensured
Path searching to wildcard levels

Searching to reference top-level tags

Attribute value sensitive searching, searching by section existence

See: Oracle9i Application Developer’s Guide - XML, “Searching XML
Data with Oracle Text”

Phone Number Portability (SDP)
« Expanded support for new applications including ADSL and wireless

See: Chapter 9, "Service Delivery Platform (SDP) and XML"

Xxxiii

XML Features Introduced with Oracle8 1/ Release 3 (8.1.7)

New XML features introduced in Oracle8i, Release 3 (8.1.7) were enhanced and
improved versions of the following components:

« XDK forJava

« XDKforC

« XDK for C++

« XDK for PL/SQL
. XML SQL Utility

XXXIV

Part |

Introducing Oracle XML-Enabled
Technology

Part | of the book introduces you to Oracle XML-enabled technology and features. It
contains the following chapters:

Chapter 1, "Oracle XML-Enabled Technology"
Chapter 2, "Modeling and Design Issues for Oracle XML Applications"

1

Oracle XML-Enabled Technology

This chapter describes the following sections:

What is XML ?

Storing and Retrieving XML Data from Oracle9i

XML Support in the Database

Oracle-Based XML Applications

Oracle XML-Enabled Technology Components and Features
The Oracle Suite of Integrated Tools and Components
Oracle XML Samples and Demos

What Is Needed to Run Oracle XML Components

XML Technical Support

Oracle XML-Enabled Technology 1-1

What is XML ?

What is XML ?

Appendix A, "An XML Primer", provides some introductory information about
XML, the W3C XML recommendations, differences between HTML and XML, and
other XML syntax topics. It also discusses reasons why XML, the internet standard
for information exchange is such an appropriate and necessary language to use in
database applications.

What are Oracle XML-Enabled Technologies?

XML models structured and semi-structured data. Oracle9i supports structured and
semi-structured data, as well as complex and unstructured data. Oracle9i is
XML-enabled in that it natively handles the storage, query, presentation, and
manipulation of XML data.

Oracle XML Components
Oracle XML components are comprised of the following:

« Database XML support

XMLType - a new datatype to store, query, and retrieve XML documents
SYS_XMLGENSQL function to create XML documents
SYS_XMLAGGSQL function to aggregate multiple XML documents
DBMS_XMLGEMN built-in package to create XML from SQL queries
URI support - store and retrieve global and intra-database references

Text support - Supports XPath on XMLType and text columns

« XML Developer’s Kit (XDK) for Java

XML Parser for Java and XSLT Processor
XML Schema Processor for Java

XML Class Generator for Java

XSQL Servlet

XML SQL Utility (XSU) for Java

« XDK for Java Beans

XML Transviewer Beans
* DOMBuilder Bean

1-2 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

What is XML ?

* XSLTransformer Bean

* DBAccessBean

* TreeViewer Bean

* SourceViewer Bean

* XMLTransformPanel Bean

* DBViewer Bean

XDK for C

XML Parser for C

XML Schema Processor for C

XDK for C++

XML Parser for C++
XML Schema Processor for C++

XML Class Generator for C++

XDK for PL/SQL

XML Parser for PL/SQL
XML SQL Utility (XSU) for PL/SQL

Some typical XML-based business solution are:

Business Data Exchanges with XML

Buyer-Supplier Transparent Trading Automation
Seamless integration of partners and HTTP-based data exchange

Database inventory access and integration of commercial transactions and
flow

Self-service procurement, such as using Oracle iProcurement
Data mining and reporting with Oracle Discoverer 3i Viewer
Oracle Exchange and Applications

Phone number portability

Content and Document Management with XML

Personalized publishing and portals

Oracle XML-Enabled Technology 1-3

Storing and Retrieving XML Data from Oracle9i

— Customized presentation. Dynamic News case study, Portal-to-Go, and
Flight Finder

Oracle Development Tools and Frameworks

XSQL Servlet and Pages, Oracle9i Internet File System (9iFS), JDeveloper, Business
Components for Java (BC4J), Oracle Portal (WebDB), Oracle9iAS Reports Services,
and Oracle9i Dynamic Services can all be used to build XML applications.

Note: XSQL Servlet and Pages are part of the Oracle XDK for Java.

Database and Middle Tier

XML applications can either reside on the database or on a middle tier, such as
Oracle9i Application Server, Apache Server, or other Java enabled Web servers.

Data Stored in the Database

Data is stored as relational tables utilizing object views or as XML documents in
XMLType columns and CLOBs. Oracle Text (interMedia Text) can be used to
efficiently search XML documents stored in XMLType or CLOB columns.

Storing and Retrieving XML Data from Oracle9 |

XML has emerged as the standard for data interchange on the Web and Oracle9i is
XML-enabled to natively store, search, and retrieve XML in the following formats:

« Asdecomposed XML documents. That is, when the XML documents are stored
in their constituent fragments. Here the XML data is stored in object relational
form and you can use XML SQL Utility (XSU) or SQL functions and packages to
generate the whole (composed) XML documents from these object relational
instances.

You can also use XSU or SQL functions, such as Extract() , and TABLE
functions, to convert the XML back to its object relational (decomposed) form.

« Ascomposed, or "whole" XML documents. Store XML data in XMLType or
CLOB/BLOB columns and use XMLType functions such as Extract() and
ExistsNode() or Oracle Text indexing to search these documents.

1-4 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Support in the Database

XML Support in the Database
Oracle9i provides the following XML support:

« Generation of XML Documents. Oracle9i supports the generation of XML on
the client or server, where existing object-relational data can be used to generate
the corresponding XML. XML can be generated from query results or as part of
the SQL query itself using the XSU (XML SQL Utility) Java or PL/SQL API.

In this release, Oracle extends the XML support in the server:
— By providing new SQL functions for XML generation and aggregation
— By providing a C version of the XML SQL Utility, linked to the server

« Storage, Querying, and Retrieval of XML documents. Before this release you
could use, for example, XSU to store, query, and retrieve XML documents. Now,
with this release you can use the new datatype, XMLType.

XMLType stores XML documents as Character Large Objects (CLOBSs). Oracle
Text (interMedia Text) indexing can then be used to index the XMLType columns
and query them using the CONTAINSoperator and an XPath-like syntax.
XMLType also supports member functions that can be used to extract fragments
from the XML document.

See: Oracle9i Case Studies - XML Applications:, "Database Support for
XML", under "Indexing XMLType columns".

XML and URI Data Types

Oracle9i provides new types to handle XML and URI data. The Extensible Markup
Language (XML) is a standard format developed by the World Wide Web
Consortium (W3C) for representing structured and un-structured data on the Web.

URIs or Universal Resource Identifiers are used to identify resources such as web
pages anywhere on the web. Oracle9i provides a new class of URIs to access data
stored in the database itself, called DBUFri-refs. It also provides a new set of types to
store and access both external and internal URIs from the database.

XMLType

The Oracle supplied type, XMLType, can be used to store and query XML data in
the database. XMLType provides member functions to access, extract and query the
XML data using XPath expressions. XPath is another standard developed by the
W3C committee to traverse XML documents. In Oracle9i, XMLType functions only
support a limited subset of the XPath expressions. Oracle9i also provides a set of

Oracle XML-Enabled Technology 1-5

XML Support in the Database

SQL functions such as SYS_XMLGEN,SYS_XMLAG@Gnd other PL/SQL packages
(DBMS_XMLGENbD create these XMLType values from existing relational or object
relational data.

See: Oracle9i Application Developer’s Guide - XML
« "Database Support for XML"

« "Searching XML Data with Oracle Text"
« "Exchanging XML Data Using Oracle AQ"

« Oracle9i Application Developer’s Guide - Advanced Queuing, or
information about using XMLType with Oracle Advanced
Queuing

URI Data Types
Oracle9i supplies the following family of Uri types:

« UriType
« DBUriType
« HttpUriType

These are related by an inheritance hierarchy. UriType is an abstract type and the
DBUriType and HttpUriType are subtypes of this type.

« HttpUriType can be used to store URLSs to external web pages or files. It
accesses these files using the HTTP protocol (Hyper Text Transfer Protocol).

« DBUriType can be used to store DBUri-refs which reference data inside the
database.

Since UriType is the super type, you can create columns of this type and store
DBUriType or HttpUriType instances in this column. This allows you to
reference data stored inside or outside the database and access them consistently.
DBUri-ref uses an XPath like representation to reference data inside the database.
Using this, you can reference data stored in CLOBs or other columns and expose
them as URLSs to the external world. Oracle9i provides a standard servlet than can
be installed and run under the Oracle Servlet engine which can interpret such
URLs.

1-6 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Oracle-Based XML Applications

See: Oracle9i Application Developer’s Guide - XML, "Database
Uri-references”

Extensibility and XML

Oracle’s extensibility enables special indexing on XML, including Oracle Text
indexes for section searching, special operators to process XML, aggregation of
XML, and special optimization of queries involving XML.

Oracle Text Searching

XML text stored in LOBs can be indexed using the extensibility indexing interface.
Oracle9i provides operators such as CONTAINSand WITHIN that you can use to
search within the XML text for substring matches.

See: Oracle9i Application Developer’s Guide - XML "'Searching XML
Data with Oracle Text"

Oracle-Based XML Applications

There are many potential uses of XML in Internet applications. This manual focuses
on the following two database-centric application areas where Oracle’s XML
components are well suited.

Content and Document Management

Content and document management includes customizing data presentation. These
applications typically process mostly authored XML documents. Several case
studies are described in the manual.

See: Content and Document Management Chapters in Oracle9i
Case Studies - XML Applications:

« "Customizing Content with XML: Dynamic News Application”
= "Oracle9i AS Wireless Edition and XML"

« "Customizing Presentation with XML and XSQL: Flight Finder"

Business-to-Business (B2B) or Business-to-Consumer (B2C) Messaging

B2B and B2C messaging involves exchanging data between business applications.
These applications typically process generated XML documents or a combination of
generated and composed XML documents.

Oracle XML-Enabled Technology 1-7

Oracle XML-Enabled Technology Components and Features

See: The following chapters in this manual:
« "Exchanging XML Data Using Oracle AQ"

« "Customizing Discoverer 4i Viewer with XSL"
= "Service Delivery Platform (SDP) and XML"

« "How Oracle Exchange Uses XML"

« "B2B XML Application: Step by Step"

The remaining sections of this manual, describe how to use the Oracle XML
components, Oracle development tools, and how to build Web-based, database
applications with these tools.

Oracle XML-Enabled Technology Components and Features

Oracle9i is well-suited for building XML database applications. Oracle
XML-enabled technology has the following features:

« Indexing and Searching XML Documents with Oracle Text (interMedia Text)
« Messaging Hubs and Middle Tier Components

« Back-End to Database to Front-End Integration Issues

« Oracle XDKs Provide the Two Most Common APIs: DOM and SAX

« The Oracle Suite of Integrated Tools and Components

« Oracle XML Samples and Demos

Indexing and Searching XML Documents with Oracle Text (inter Media Text)

Oracle Text (interMedia Text) provides powerful search and retrieval options for
XML stored in CLOBs and other documents. It can index and search XML
documents and document sections as large as 4 Gigabytes each stored in a column
in a table.

Oracle Text XML document searches include hierarchical element containership,

doctype discrimination, and searching on XML attributes. These XML document
searches can be used in combination with standard SQL query predicates or with
other powerful lexical and full-text searching options.

XML documents or document sections saved into text CLOBs in the database can be
enabled for indexing by Oracle Text’s text-search engine. Developers can pinpoint

1-8 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Oracle XML-Enabled Technology Components and Features

searches to data within a specific XML hierarchy as well as locate name-value pairs
in attributes of XML elements.

Since Oracle Text is seamlessly integrated into the database and the SQL language,
developers can easily use SQL to perform queries that involve both structured data
and indexed document sections.

See Also: «Oracle9i Text Reference

Messaging Hubs and Middle Tier Components
Also included in Oracle XML are the following components:

« XML-Enabled Messaging Hubs. These hubs are vital in business-to-business
applications that interface with non-Oracle systems.

« Middle Tier Systems: XML-enabled application, web, or integrated servers, such
as Oracle9i Application Server.

Oracle JVM (Java Virtual Machine)

Built from the ground up on Oracle Multi-threaded Server (MTS) architecture,
Oracle JVM (Jserver) is a Java 1.2 compliant virtual machine that data server shares
memory address space. This allows the following:

« Javaand XML-processing code to run with in-memory data access speeds using
standard JDBC interfaces.

« Natively compile Java byte codes to improve performance of server-side Java,
with linear scalability to thousands of concurrent users. Oracle XDK
components are preloaded and natively compiled.

Oracle JVM supports native CORBA and EJB standards as well as Java Stored
Procedures for easy integration of Java with SQL and PL/SQL.

Oracle9j Application Server

Oracle9i Application Server (Oracle9iAS), offers services for both intranet and
internet Web applications. It is integrated with Oracle9i and offers advanced
services such as data caching and Oracle Portal. Oracle9iAS also provides other
services including Oracle Advanced Queueing, Oracle Message Broker, Oracle
Workflow, Oracle9i Reports Services, Dynamic Services, and more.

Oracle XML-Enabled Technology 1-9

Oracle XML-Enabled Technology Components and Features

See Also: http://otn.oracle.com/products/

Back-End to Database to Front-End Integration Issues

A key development challenge is integrating back-end ERP and CRM systems from
multiple vendors, with systems from partners in their supply chain, and with
customized data warehouses.

Such data exchange between different vendors’ relational and object-relational
databases is simpler using XML. One example of a data exchange implementation
using XML and AQ is provided in .

Oracle XML Technology and Oracle XML-enabled tools, interfaces, and servers
provide building blocks for most data and application integration challenges.

Higher Performance Implications
Not only are these building blocks available, but their use results in higher
performance implementations for the following reasons:

« Processing database data and XML together on the same server helps eliminate
network traffic for data access.

« Exploiting the speed of the Oracle9i query engine and Oracle JVM, Oracle9i
Application Server, or OIS further enhances data access speed.

« XDK for C components can be used for their native XML capabilities and higher
performance

Hence developers can build XML-based Web solutions that integrate Java and
database data and facilities in many ways.

Oracle XDKs Provide the Two Most Common APIs: DOM and SAX

Oracle XDKs are implemented in four languages, Java, C, C++, and PL/SQL. The
Java version runs directly on Oracle JVM (Java virtual machine). It supports the
XML 1.0 specification and is used as a validating or non-validating parser.

The parser provides the two most common APIs that developers need for
processing XML documents:

« DOM 1.0 and 2.0: W3C-recommended Document Object Model (DOM)
interface. This provides a standard way to access and edit a parsed document’s
element contents.

« SAX1l.0and 2.0: Simple API for XML interface.

1-10 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

The Oracle Suite of Integrated Tools and Components

For more information, see The following chapters in the manual, Oracle9i
Application Developer’s Guide - XML.

Writing Custom XML Applications

Writing custom applications that process XML documents can be simpler in an
Oracle9i environment. This enables you to write portable standards-based
applications and components in your language of choice that can be deployed on
any tier.

The XML parser is part of the Oracle9i platform on every operating system where
Oracle9i is ported.

Oracle XML Parser is also implemented in PL/SQL. Existing PL/SQL applications
can be extended to take advantage of Oracle XML technology.

The Oracle Suite of Integrated Tools and Components

Oracle9i provides an integrated suite of tools and components for building
e-business applications:

« Oracle JDeveloper and Oracle Business Components for Java (BC4J)
« Oracle9i Internet File System (Oracle 9iFS or 9iFS)

« Oracle Portal

« Oracle Exchange

This suite of tools ensure that exchanging data and document objects is simplified
for application development and that multiple serializations is eliminated.

Oracle JDeveloper and Oracle Business Components for Java (BC4J)

Oracle JDeveloper is an integrated environment for building, deploying, and
debugging applications leveraging Java and XML on Oracle9i. It facilitates working
in Java 1.1 or 1.2 with CORBA, EJB, and Java Stored Procedures. With it you can do
the following:

« Directly access Oracle XML components to build multitier applications
« Quickly create and debug Java Servlets that serve XML information
« Build portable application logic with JDeveloper and BC4J components

Examples of applications built using Oracle JDeveloper include:

Oracle XML-Enabled Technology 1-11

The Oracle Suite of Integrated Tools and Components

« iProcurement (Self Service Applications) including Self-Service Web-Expensing.

« Content Delivery for PDAs. See the chapter, "Oracle9i AS Wireless Edition and
XML".

« Online Marketplaces

« Retailer - Supplier transaction using XML and AQ messaging. See "B2B XML
Application: Step by Step".

See "Using JDeveloper to Build Oracle XML Applications™ in Oracle9i Application
Developer’s Guide - XML, for more information on using JDeveloper to build XML
applications.

Oracle Business Components for Java (BC4J) Business Components for Java (BC4J) is an
Oracle9i application framework for encapsulating business logic into reusable
libraries of Java components and reusing the business logic through flexible,
SQL-based views of information.

Note: Oracle JDeveloper and BC4J are not included with Oracle9i.
Only the BC4J runtime is included. You can download JDeveloper
from OTN.

Oracle9i Internet File System (Oracle 9iFS or 9iFS)

Access to Oraclei Internet File System (9iFS) facilitates organizing and accessing
documents and data using a file- and folder-based model through standard
Windows and Internet protocols such as SMB, HTTP, FTP, SMTP, and IMAPA4.

9iFs facilitates building and administering Web-based applications. It is an
application interface for Java and can load a document, such as a Powerpoint file,
into Oracle9i and display the document from a Web server, such as Oracle9i
Application Server or Apache Web Server.

See Also: Using Internet File System (iFS) to Build XML
Applications"

9iFS is a simple way for developers to work with XML, where iFS serves as the
repository for XML. 9iFS automatically parses XML and stores content in tables and
columns. 9iFS renders the content when a file is requested delivering select
information, for example, on the Web.

For more information see http://otn.oracle.com/products/ifs/

1-12 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

The Oracle Suite of Integrated Tools and Components

Oracle Portal

Oracle Portal can, for example, input XML-based Rich Site Summary (RSS) format
documents, and merge the information with an XSL stylesheet. The result can be
rendered in a browser. This design efficiently separates the rendition of information
from the information itself and allows for easy customization of the look and feel
without risk to data integrity.

Oracle Portal is software for building and deploying enterprise portals, the Web
sites that power an e-business. The browser interface delivers an organized,
personalized view of business information, Web content, and applications needed
by each user. It includes site-building and self-service Web publishing functionality
of WebDB 2.2 and adds new enterprise portal features such as single sign-on,
personalization, and content classification. Oracle Portal uses Oracle9i and is
deployed on and packaged with Oracle9i Application Server.

Portlets: Portlets are reusable interface components that provide access to
Web-based resources. Any Web page, application, business intelligence report,
syndicated content feed, hosted software service or other resource can be accessed
through a portlet, allowing it to be personalized and managed as a service of Oracle
Portal. Companies can create their own portlets and select portlets from third-party
portlet providers. Oracle provides a Portal Developer's Kit (PDK) for developers to
easily create portlets using PL/SQL, Java, HTML, or XML.

See Also: Oracle9i Application Developer’s Guide - XML, "Using the
PDK for Visualizing XML Data in Oracle Portal” for an introduction
to Oracle Portal’s PDF and URL Services.

Oracle Exchange

XML Gateway

The Oracle Exchange platform is based on Oracle9i. It offers all necessary business
transactions to support an entire industry's or a company's supply chain. Oracle
Exchange is based on Oracle's e-Business Suite, which supports a supply chain from
the initial contact with the prospect, to manufacturing planning and execution, to
post-sales ongoing service and support.

Oracle Exchange uses XML as its data exchange format and message payload, and
Advanced Queueing.

XML Gateway is a set of services that allow you to easily integrate with the Oracle
e-Business Suite, to create and consume XML messages triggered by business

Oracle XML-Enabled Technology 1-13

The Oracle Suite of Integrated Tools and Components

Metadata API

events. It also integrates with Oracle Advanced Queuing to enqueue/dequeue
messages which are then transmitted to/from business partners through any
message transport service, including Oracle Message Broker.

Metadata API provides a centralized, simple, and flexible means for performing the
following tasks:

« Extracting complete definitions of database objects (metadata) as either XML or
creation DDL

« Transforming metadata via industry-standard XML Stylesheet Transformation
language (XSLT).

« Generating SQL DDL to recreate the database objects

Metadata API is available on Oracle9i whenever the instance is operational. It is not
available on Oracle Lite.

See Also: Oracle9i Application Developer’s Guide - XML, "Using
Metadata API"

Other XML Initiatives

Besides these tools, the following initiatives are underway.

XML Metadata Interchange (XMI): Managing and Sharing Tools and Data
Warehouse Metadata

Support for XML Metadata Interchange (XMI) specification proposed by Oracle,
IBM, and Unisys. This enables application development tools and data
warehousing tools from Oracle and others to exchange common metadata, ensuring
that you can choose any tool without having to modify your application and
warehouse design.

Advanced Queueing XML Support: Using the Internet for Reliable, Asynchronous
Messaging

Oracle Advanced Queueing (AQ) now allows reliable propagation of asynchronous
messages, including messages with XML documents, document sections, or even
fragments as their payload, over secure HTTP. This enables dynamic trading and
eliminates delays and startup costs to establish inter-company or inter-agency links.

1-14 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

What Is Needed to Run Oracle XML Components

See: Oracle9i Application Developer’s Guide - XML, Exchanging
XML Data Using Oracle AQ"

Oracle XML Samples and Demos

This manual contains examples that illustrate the use of Oracle XML components.
The examples do not conform to one schema. Where examples are available for
download or supplied with the SORACLE_HOME/rdbms/demo or SORACLE _
HOME/xdk/.../lsample , this is indicated.

What Is Needed to Run Oracle XML Components

Oracle8i and higher includes native support for internet standards, including Java
and XML. You can run Oracle XML components and applications built with them
inside the database itself using Oracle JServer, a built-in Java Virtual Machine.

Use Oracle Lite to store and retrieve XML data, for devices and applications that
require a smaller database footprint.

Oracle XML components can be downloaded for free from
http://otn.oracle.com/tech/xml

Requirements for XDK

The following are requirements for XDK for Java and XDK for PL/SQL:
« XDK for Java requires JDK/JRE 1.1 or high VM for Java
« XDK for PL/SQL requires Oracle8x or higher, or PL/SQL cartridge

Requirements are also discussed in the XDK chapters, chapters 19 through 29, and
Appendixes C though G.

Which XML Components are Included with Oracle9i Database and Oracle9i
Application Server?

Table 1-1 lists the XDK component versions included with Oracle9i Database and
Oracle9i Application Server (Oracle9iAS):

Oracle XML-Enabled Technology 1-15

XML Technical Support

Table 1-1 Oracle9i and Oracle9iAS XDK Component Supplied Versions

Oracle9 j Database Oracle9 /AS
Rel. 1(9.0.1) Rel.--prellimary version

XDK Component nos. only
XDK for Java

XML Parser for Java and XSLT Processor 9.0.1.0.0 9.0.1.0.0

XML Schema Processor for Java 9.0.1.0.0 9.0.1.0.0

XML Class Generator for Java 9.0.1.0.0 9.0.1.0.0

XSQL Servlet 9.0.1.0.0 9.0.1.0.0

XML SQL Utility (XSU) for Java 9.0.1.0.0 9.0.1.0.0
XDK for Java Beans

XML Transviewer Beans 9.0.1.0.0 9.0.1.0.0
XDK for C

XML Parser for C and XSLT Processor 9.0.1.0.0 9.0.1.0.0

XML Schema Processor for C 9.0.1.0.0 9.0.1.0.0
XDK for C++

XML Parser for C++ and XSLT Processor 9.0.1.0.0 9.0.1.0.0

XML Schema Processor for C++ 9.0.1.0.0 9.0.1.0.0

XML Class Generator for C++ 9.0.1.0.0 9.0.1.0.0
XDK for PL/SQL

XML Parser for PL/SQL and XSLT Processor 9.0.1.0.0 9.0.1.0.0

XML SQL Utility (XSU) for PL/SQL 9.0.1.0.0 9.0.1.0.0

XML Technical Support

Besides your regular channels of support through your customer representative or
consultant, technical support for Oracle XML-enabled techologies is available free
through the Discussions option on Oracle Technology Network (OTN):

http://otn.oracle.com/tech/xml

1-16 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Technical Support

You do not need to be a registered user of OTN to post or reply to XML-related
guestions on the OTN technical discussion forum. To use the OTN technical forum
follow these steps:

1. In the left-hand navigation bar, of the OTN site select Support > Discussions.
2. Click on Enter a Technical Forum.

3. Scroll down to the Technologies section. Select XML.

4

Post any questions, comments, requests, or bug reports there.

Download the Latest Software From OTN

You will find the latest information about the Oracle XML components and can
download them from OTN:

http://otn.oracle.com/software/tech/xm |

At the top, under Download Oracle Products, Drivers, and Utilities, in the Select a
Utility or Driver pull down menu, scroll down and select any of the XML utilities
listed. For the latest XML Parser for Java and C++, select v2.

Oracle XML-Enabled Technology 1-17

XML Technical Support

1-18 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Modeling and Design Issues for Oracle XML
Applications

This chapter contains the following sections:

« XML Data can be Stored as Generated XML or Composed XML

« Generated XML

« Composed (Authored/Native) XML

« Using a Hybrid XML Storage Approach for Better Mapping Granularity
« Transforming Generated XML

« General XML: Design Issues for Data Exchange Applications

« Sending XML Documents Applications-to-Application

« Loading XML into a Database

« Applications that Use Oracle XML -EnabledTechnology

« Content and Document Management with Oracle XML-Enabled Technology

« Business-to-Business and Business-to-Consumer Messaging

Modeling and Design Issues for Oracle XML Applications 2-1

XML Data can be Stored as Generated XML or Composed XML

XML Data can be Stored as Generated XML or Composed XML
XML data can be stored in Oracle9i in the following ways:

« Generated XML, where the XML data is stored across object-relational tables or
as views in the database. This data can then be generated back into XML
format, dynamically, when necessary

« Composed (Authored/Native) XML, where the XML document is stored as is in
CLOBs

Generated XML

XML can be generated from object-relational tables and views. The benefits of using
object-relational tables and views as opposed to pure relational structures are
discussed below.

Generated XML is used when the XML is an interchange format and existing
business data is wrapped in XML structures (tags). This is the most common way of
using XML in the database. Here, XML is used only for the interchange process
itself and is transient.

Generated XML Examples

Examples of this kind of document include sales orders and invoices, airline flight
schedules, and so on.

Oracle, with its object-relational extensions has the ability to capture the structure of
the data in the database using object types, object references, and collections. There
are two options for storing and preserving the structure of the XML data in an
object-relational form:

« Store the attributes of the elements in a relational table and define object views
to capture the structure of the XML elements

« Store the structured XML elements in an object table

Once stored generated, in the object-relational form, the data can be easily updated,
queried, rearranged, and reformatted as needed using SQL.

Object-Relational Storage for Generated XML Documents

Complex XML documents can be stored as object-relational instances and indexed
efficiently. Such instances fully capture and express the nesting and list semantics of
XML. With Oracle’s extensibility infrastructure, new types of indices, such as path
indices, can be created for faster searching through XML documents.

2-2 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Composed (Authored/Native) XML

XML SQL Utility (XSU) Stores XML and Converts SQL Query Results into XML

XML SQL Utility (XSU) provides the means to store an XML document by mapping
it to the underlying object-relational storage, and conversely, provides the ability
retrieve the object-relational data as an XML document.

XSU converts the result of an SQL query into XML by mapping the query alias or
column names into the element tag names and preserving the nesting of object
types. The result can be in text or a DOM (Document Object Model) tree. The
generation of the latter avoids the overhead of parsing the text and directly realizes
the DOM tree.

See: Oracle9i Application Developer’s Guide - XML, "XML SQL
Utility (XSU)"

Composed (Authored/Native) XML

Oracle8i and higher support the storage of large objects or LOBs as character LOBs
(CLOB), binary LOBs (BLOB), or externally stored binary files (BFILE). LOBs are
used to store composed (Authored/Native) XML documents.

Storing Composed XML Data in CLOBs or BFILEs

If the incoming XML documents do not conform to one particular structure, then it
might be better to store such documents in CLOBs. For instance, in an XML
messaging environment, each XML message in a queue might be of a different
structure.

CLOBs store large character data and are useful for storing composed XML
documents.

BFILEs are external file references and can also be used, although they are more
useful for multimedia data that is not accessed often. In this case the XML is stored
and managed outside Oracle, but can be used in queries on the server. The
metadata for the document can be stored in object-relational tables in the server for
fast indexing and access.

Storing an intact XML document in a CLOB or BLOB is a good strategy if the XML
document contains static content that will only be updated by replacing the entire
document.

« Composed XML examples include written text such as articles, advertisements,
books, legal contracts, and so on. Documents of this nature are known as
document-centric and are delivered from the database as a whole. Storing this

Modeling and Design Issues for Oracle XML Applications 2-3

Composed (Authored/Native) XML

kind of document intact within Oracle gives you the advantages of an
industry-proven database and its reliability over file system storage.

« Storage Outside the database. If you choose to store an XML document outside
the database, you can still use Oracle features to index, query, and efficiently
retrieve the document through the use of BFILES, URLSs, and text-based
indexing.

Oracle Text (inter Media Text) Indexing Enables Fine Grain Searching of XML
Element Content

Oracle allows the creation of Oracle Text (interMedia Text) indexes on LOB
columns, in addition to URLSs that point to external documents. This indexing
mechanism works for XML data as well.

Oracle8i and Oracle9i recognize XML tags, and section and sub-section text
searching within XML elements’ content. The result is that queries can be posed on
unstructured data and restricted to certain sections or elements within a document.

Oracle Text Example: Searching Text and XML Data Using CONTAINS

This Oracle Text (interMedia Text) example presume you have already created the
appropriate index.

SELECT*
FROM purchaseXMLTab
WHERE CONTAINS(po_xml,’street WITHIN addr’) >=1;

See Also: Oracle9i Application Developer’s Guide - XML, "Searching
XML Data with Oracle Text", for more information on Oracle Text.
Advantages of Using Composed (Authored) XML Storage

CLOB storage is ideal if the structure of the XML document is unknown or
dynamic.

Disadvantages of Using Composed XML Storage

Much of the SQL functionality on object-relational columns cannot be exploited.
Concurrency of certain operations such as updates may be reduced. However, the
exact copy of the document is retained.

2-4 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Using a Hybrid XML Storage Approach for Better Mapping Granularity

Using a Hybrid XML Storage Approach for Better Mapping Granularity
The previous section described the following:

« How structured XML documents (Generated) can be mapped to
object-relational instances

« How composed XML documents (Authored) can be stored in LOBs
However, in many cases, you need better control of the mapping granularity.

For example, when mapping a text document, such as a book, in XML, you may not
want every single element to be expanded and stored as object-relational. Storing
the font and paragraph information for such documents in an object-relational
format may not be useful with respect to querying.

On the other hand, storing the whole text document in a CLOB reduces the effective
SQL queriability on the entire document.

A Hybrid Approach Allows for User-Defined Storage Granularity

The alternative is to have user-defined granularity for such storage. In the book
example, you may want the following:

« To query on top-level elements such as chapter, section, title, and so on. These
elements can be stored in object relational tables.

« To query the book’s contents in each section. These sections can be stored in a
CLOB.

You can specify the granularity of mapping at table definition time. The server can
automatically construct the XML from the various sources and generate queries
appropriately.

Figure 2-1 illustrates this hybrid approach to XML storage.

Modeling and Design Issues for Oracle XML Applications 2-5

Using a Hybrid XML Storage Approach for Better Mapping Granularity

Figure 2—1 Hybrid XML Storage Approach: Querying Top Level Elements in Tables
While Contents are in a CLOB

XML Document

<?xml version = '1.0'?>
<BOOK>
<TITLE>Oracle PL/SQL</TITLE>
<AUTHOR>Steve Feuerstein<k/AUTHOR>
<TABLE_OF_CONTENTS>
<CHAPTER>
<CHAPTER_NUM>1</CHAPTER_NUM> il
<TITLE>Introduction</TITLE> e
<SECTIONS> Top level
elements Table_of Contents Details

.<.S.ECTIONS> mapped to
</CHAPTER> columns Chapter Chapter no = "1"
Title Section no = "1"

Object_Relational Storage

</TABLE_OF_CONTENTS>
<DETAILS>
<CHAPTER no="1">
<SECTION no="1" name"What is PL/SQL?">
PL/SQL is a programming language that |
Oracle supports. |
</SECTION> These can be
. tables or
</CHAPTER> \ 4 views
</DETAILS>
</BOOK>

LOB storage

PL/SQL is a programming
language that Oracle
supports.

Hybrid Storage Advantages

The advantages of the hybrid storage approach for storing XML documents are the
following:

« It gives the flexibility of storing useful and queryable information in
object-relational format while not decomposing the entire document.

« Saves time in reconstructing the document, since the entire document is not
broken down.

« Enables text searching on those parts of the document stored in LOBs

2-6 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Transforming Generated XML

Transforming Generated XML

XML generated from the database is in a canonical format that maps columns to
elements and object types to nested elements. However, applications might require
different representations of the XML document in different circumstances.

When the XML Document Structure Needs Transforming

If an XML document is structured, but the structure of the XML document is not
compatible with the structure of the underlying database schema, you must
transform the data into the correct format before writing it to the database. You can
achieve this in one of the following ways:

» Use XSL stylesheets or other programming approaches
« Store the data-centric XML document as an intact single object

« Define object views corresponding to the various XML document structure and
define instead-of triggers to perform the appropriate transformation and
update the base data.

Combining XML Documents and Data Using Views

Finally, if you have a combination of structured and unstructured XML data, but
still want to view and operate on it as a whole, you can use Oracle views.

Views enable you to construct an object on the fly by combining XML data stored in
a variety of ways. You can do the following:

« Store structured data, such as employee data, customer data, and so on, in one
location within object-relational tables.

« Store related unstructured data, such as descriptions and comments, within a
CLOB.

When you need to retrieve the data as a whole, simply construct the structure from
the various pieces of data with the use of type constructors in the view's select
statement. XML SQL Utility then enables retrieving the constructed data from the
view as a single XML document.

Using XSLT to Transform Query Results

This involves querying on the original document and transforming the result into a
form required by the user or application. For instance, if an application is talking to

Modeling and Design Issues for Oracle XML Applications 2-7

Transforming Generated XML

a cellular phone using WML, it might need to transform the XML generated into
WML or other similar standard suitable for communicating with the cellular phone.

This can be accomplished by applying XSLT transformations on the result XML
document. The XSLT transformations can be pushed into the generation phase itself
as an optimization. A scalable, high performance XSLT transformation engine
within the database server would be able to handle large amounts of data.

Indexing and Querying Transformations

You may need to create indexes and query on transformed views of an XML
document. For example, in an XML messaging environment, there could be
purchase order messages in different formats. You may want to query them
canonically, so that a particular query can work across all purchase order messages.

In this case, the query is posed against the transformed view of the documents. You
can create functional indexes or use regular views to achieve this.

Indexing Approaches

Native implementation for the extract() and existsNode() member functions
is to parse the XML document, perform path traversal, and extract the fragment.
However, this is not a performance-enhancing or scalable solution.

A second approach is to use Oracle Text (interMedia Text) indexing.

See Also:

« Oracle9i Application Developer’s Guide - XML, "Searching XML
Data with Oracle Text", for more information on Oracle Text.

« Oracle9i Text Developer’s Guide

You can also build your own indexing mechanism on an XMLType column using
the extensibility indexing infrastructure.

See Also: Oracle9i Data Cartridge Developer’s Guide

XML Schemas and Mapping of Documents

W3C has chartered a schema working group to provide a new, XML based notation
for structural schema and datatypes as an evolution of the current Document Type
Definition (DTD) based mechanism. XML schemas can be used for the following:

2-8 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Transforming Generated XML

« XML-Schemal: Constraining document structure (elements, attributes,
namespaces)

« XMLSchema2: Constraining content (datatypes, entities, notations)

Datatypes themselves can either be primitive (such as bytes, dates, integers,
sequences, intervals) or user-defined (including ones that are derived from existing
datatypes and which may constrain certain properties -- range, precision, length,
mask -- of the basetype.) Application-specific constraints and descriptions are
allowed.

XML Schema provides inheritance for element, attribute, and datatype definitions.
Mechanisms are provided for URI references to facilitate a standard, unambiguous
semantic understanding of constructs. The schema language also provides for
embedded documentation or comments.

For example, you can define a simple data type as shown in the following example.

XMLSchema Example 1: Defining a Simple Data Type

This is an example of defining a simple data type in XMLSchema:

<datatype name="positivelnteger”
basetype="integer’/>
<minExclusive> 0 </minExclusive>
</datatype>

It is clear even from the simple example above that XMLSchema provides a number
of important new constructs over DTDs, such as a basetype, and a minimum value
constraint.

When dynamic data is generated from a database, it is typically expressed in terms
of a database type system. In Oracle, this is the object-relational type system
described above, which provides for much richness in data types, such as
NULL-ness, variable precision, NUMBER(7,2), check constraints, user-defined
types, inheritance, references between types, collections of types and so on. XML
Schema can capture a wide spectrum of schema constraints that go towards better
matching generated documents to the underlying type-system of the data.

XMLSchema Example 2: Using XMLSchema to Map Generated XML Documents to
Underlying Schema
Consider the simple Purchase Order type expressed in XML Schema:
<type name="Address" >

Modeling and Design Issues for Oracle XML Applications 2-9

Transforming Generated XML

<element name="street" type="string" />

<elementname="city" type="string" />

<element name="state" type="string" />

<elementname="zp" type="string" />
<type>

<type name="Customer”>
<element name="custNo”
type="positivelnteger’/>
<element name="custName” type="string" />
<element name="custAddr” type="Address" />
<ftype>

<type name="tems™>
<element name="lineltem” minOccurs="0" maxOccurs="*">
<type>
<element name="lineltemNo" type="positivelnteger” />
<element name="lineltemName” type="string” />
<element name="lineltemPrice” type="number" />
<element name="LineltemQuan™>
<datatype basetype="integer’>
<minExclusive>0</minExclusive>
</datatype>
<element>
<type>
</element>
<ftype>

<type name="PurchaseOrderType">
<element name="purchaseNo"
type="positivelnteger" />
<element name="purchaseDate" type="date" />
<element name="customer” type="Customer” />
<element name="lineltemList" type="tems" />

<type>

These XML Schemas have been deliberately constructed to match closely the
Object-Relational purchase order example described above in"XML Example 2:
XML Document Produced from Generic Mapping”. The point is to underscore the
closeness of match between the proposed constructs of XML Schema with
SQL:1999-based type systems. Given such a close match, it is relatively easy to map
an XML Schema to a database Object-Relational schema, and map documents that
arevalid according to the above schema to row objects in the database schema. In

2-10 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

General XML: Design Issues for Data Exchange Applications

fact, the greater expressiveness of XML Schema over DTDs greatly facilitates the
mapping.
The applicability of the schema constraints provided by XML Schema is not limited

to data-driven applications. There are more and more document-driven
applications that exhibit dynamic behavior.

A simple example might be a memo, which is routed differently based on
markup tags.

A more sophisticated example is a technical service manual for an
intercontinental aircraft. Based on complex constraints provided by XML
Schema, one can ensure that the author of such a manual always enters a valid
part-number, and one might even ensure that part-number validity depends on
dynamic considerations such as inventory levels, fluctuating demand and
supply metrics, or changing regulatory mandates.

General XML: Design Issues for Data Exchange Applications

This section describes the following XML design issues for applications that
exchange data.

Generating a Web Form from XML Data Stored in the Database
Sending XML Data from a Web Form to the Database

Generating a Web Form from XML Data Stored in the Database
To generate a Web form’s infrastructure, you can do the following:

1.

Use XML SQL Utility to generate a DTD based on the schema of the underlying
table being queried.

Use the generated DTD as input to the XML Java Class Generator, which will
generate a set of classes based on the DTD elements.

Write Java code that use these classes to generate the infrastructure behind a
Web-based form. Based on this infrastructure, the Web form can capture user
data and create an XML document compatible with the database schema.This
data can then be written directly to the corresponding database table or object
view without further processing.

Modeling and Design Issues for Oracle XML Applications 2-11

Sending XML Documents Applications-to-Application

Sending XML Data from a Web Form to the Database

One way to ensure that data obtained via a Web form will map to an underlying
database schema is to design the Web form and its underlying structure so that it
generates XML data based on a schema-compatible DTD. This section describes
how to use the XML SQL Utility and the XML Parser for Java to achieve this. This
scenario has the following flow:

1. Alava application uses the XML SQL Utility to generate a DTD that matches
the expected format of the target object view or table.

2. The application feeds this DTD into the XML Class Generator for Java, which
builds classes that can be used to set up the Web form presented to the user.

3. Using the generated classes, the web form is built dynamically by a JavaServer
Page, Java servlet, or other component.

4. When a user fills out the form and submits it, the servlet maps the data to the
proper XML data structure and the XML SQL Utility writes the data to the
database.

You can use the DTD-generation capability of the XML SQL Utility to determine
what XML format is expected by a target object view or table. To do this, you can
perform a SELECT * FROM an object view or table to generate an XML result.

This result contains the DTD information as a separate file or embedded within the
DOCTYPHag at the top of the XML file.

Use this DTD as input to the XML Class Generator to generate a set of classes based
on the DTD elements. You can then write Java code that use these classes to
generate the infrastructure behind a Web-based form. The result is that data
submitted via the Web form will be converted to an XML document that can be
written to the database.

Sending XML Documents Applications-to-Application

There are numerous ways to transmit XML documents among applications. This
section presents some of the more common approaches.

Here you can assume the following:
« The sending application transmits the XML document
« The receiving application receives the XML document

File Transfer. The receiving application requests the XML document from the
sending application via FTP, NFS, SMB, or other file transfer protocol. The

2-12 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Loading XML into a Database

document is copied to the receiving application's file system. The application reads
the file and processes it.

HTTP. The receiving application makes an HTTP request to a servlet. The servlet
returns the XML document to the receiving application, which reads and processes
it.

Web Form. The sending application renders a Web form. A user fills out the form
and submits the information via a Java applet or Javascript running in the browser.
The applet or Javascript transmits the user's form in XML format to the receiving
application, which reads and processes it. If the receiving application will
ultimately write data to the database, the sending application should create the
XML in a database compatible format. One way to do this using Oracle XML
products is described in the section Sending XML Data from a Web Form to a
Database.

Advanced Queuing. An Oracle database sends an XML document via Net Services,
HTTP or SMTP, and JDBC to the one or more receiving applications as a message
through Oracle Advanced Queueing (AQ). The receiving applications dequeue the
XML message and process it.

See Also:

« Oracle9i Application Developer’s Guide - XML, "Exchanging XML
Data Using Oracle AQ"

« Chapter 8, "Online B2B XML Application; Step by Step"

« Oracle9i Application Developer’s Guide - Advanced Queuing

Loading XML into a Database
You can use the following options to load XML data or DTD files into Oracle9i:
« Use PL/SQL stored procedures for LOB, such as DBMS_LOB
« Write Java (Pro*C, C++) custom code
« Use SQL*Loader
« Use Oracle interMedia
« XML SQL Utility (XSU)

You can also use Oracle9i Internet File System (9iFS) to put an XML document into
the database. However, it does not support DTDs. It does however support XML
Schema, the standard that will replace DTDs.

Modeling and Design Issues for Oracle XML Applications 2-13

Loading XML into a Database

Using SQL*Loader

You can use SQL*Loader to bulk load LOBs.

See:

« Oracle9i Utilitiesfor a detailed description of using SQL*Loader
to load LOBs.

« Oracle9i Application Developer’s Guide - Large Objects (LOBS) ,
Chapter 4, "Managing LOBs", "Using SQL*Loader to Load
LOBs", for a brief description and examples of using
SQL*Loader.

Loading XML Documents Into LOBs With SQL*Loader

— LOBFILE

Because LOBs can be quite large, SQL*Loader can load LOB data from either the
main datafile (inline with the rest of the data) or from LOBFILEs. Figure 2-2 shows
the LOBFILE syntax.

Figure 2-2 The LOBFILE Syntax

J,—, CHARACT ERSET
->.—>—| - ']
0 COHSTANT -)Qilmamg—) O

LOB data can be lengthy enough that it makes sense to load it from a LOBFILE. In
LOBFILEs, LOB data instances are still considered to be in fields (predetermined
size, delimited, length-value), but these fields are not organized into records (the
concept of a record does not exist within LOBFILES). Therefore, the processing
overhead of dealing with records is avoided. This type of organization of data is
ideal for LOB loading.

There is no requirement that a LOB from a LOBFILE fit in memory. SQL*Loader
reads LOBFILEs in 64K chunks. To load physical records larger than 64K, you can
use the READSIZE parameter to specify a larger size.

It is best to load XMLType columns or columns containing XML data in CLOBs,
using LOBFILEs.

2-14 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Loading XML into a Database

« When the XML is valid. If the XML data in the LOBFILE is large and you know
that the data is valid XML, then use direct-path load since it bypasses all the
XML validation processing.

« When the XML needs validating. If it is imperative that the validity of the XML
data be checked, then use conventional path load, keeping in mind that it is not
as efficient as a direct-path load.

A conventional path load executes SQL INSERT statements to populate tables in an
Oracle database. A direct path load eliminates much of the Oracle database
overhead by formatting Oracle data blocks and writing the data blocks directly to
the database files.

A direct-path load does not compete with other users for database resources, so it
can usually load data at near disk speed. Considerations inherent to direct path
loads, such as restrictions, security, and backup implications, are discussed in
Chapter 9 of Oracle9i Utilities

Figure 2-3 illustrates SQL*Loader’s direct-path load and conventional path loads.

Tables to be loaded must already exist in the database. SQL*Loader never creates
tables. It loads existing tables that either already contain data or are empty.

The following privileges are required for a load:
« You must have INSERT privileges on the table to be loaded.

« You must have DELETEprivilege on the table to be loaded, when using the
REPLACEr TRUNCATBption to empty out the table's old data before
loading the new data in its place.

See Also: Oracle9i Utilities Chapters 7 and 9 for more
information about loading and examples.

Modeling and Design Issues for Oracle XML Applications 2-15

Loading XML into a Database

Figure 2-3 SQL*Loader: Direct-Path and Conventional Path Loads

S0 Loadar S0 Loadar Uszar Procaszas
Writa Database Ganarate 200 Ganarate S0L
Block Commands Commands
I
Direct Corventionsl |
Peth Peth
Oracle Server
SQL Command Processing
Space Managamant
______________ Qmmmmmmm— e — -
:| (3at new extents : Find partial bocks
| Adjust high watar mark | Fill partial blocks
' 4
|
Buffer Cache Managemeant | ¥
- Manage quaues
- Resolve contantion Buffer cache
Road Database I ¥ Write Databaza
Bloc ks Blocks
Y
P | Datebese

2-16 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Content and Document Management with Oracle XML-Enabled Technology

Applications that Use Oracle XML -EnabledTechnology

There are many potential uses for XML in Internet applications. Two
database-centric application areas where Oracle’s XML components are well-suited
are:

« "Content and Document Management with Oracle XML-Enabled Technology™,
including customizing data presentation

« "Business-to-Business and Business-to-Consumer Messaging" for data exchange
in inter system or intra system applications

or any combinations of these. This manual focuses on these two application areas,
in Part Il, "Managing Content and Documents with XML" and Part Ill, "XML Data
Exchange", respectively.

Business applications scenarios for each of these two areas are described later in this
chapter.

Content and Document Management with Oracle XML-Enabled
Technology

Customizing Presentation of Data

XML is increasingly used to enable customized presentation of data for different
browsers, devices, and users. By using XML documents along with XSL stylesheets
on either the client, middle-tier, or server, you can transform, organize, and present
XML data tailored to individual users for a variety of client devices, including the
following:

« Graphical and non-graphical Web browsers
« Personal digital assistants (PDASs), such as the Palm Pilot
« Digital cell phones and pagers

In doing so, you can focus your business applications on business operations,
knowing you can accommodate differing output devices easily.

Using XML and XSL also makes it easier to create and manage dynamic Web sites.
You can change the look and feel simply by changing the XSL stylesheet, without
having to modify the underlying business logic or database code. As you target new
users and devices, you can simply design new XSL stylesheets as needed. This is
illustrated in Figure 2—4.

Modeling and Design Issues for Oracle XML Applications 2-17

Content and Document Management with Oracle XML-Enabled Technology

Figure 2—4 Content Management: Customizing Your Presentation

Java-enabled

22| XML-Formatted

2III] SQL Queries
~ | (xsqlfile)
Cell XSQL Servlet
Phone Servlet runs in a
servlet-compatible
web server, as listed below
SQL Queries
_ XSQL Servlet > XML-SQL
— XML Parser | | xML-sQL SQL Queries Uti\I]ity for
for Java o — ava
Personal
Digital
Assistant
\4 Data Query
— returns
E Oracle9 i

H.A

— L=

i
=

Browser N
Query Result
Transformed by
o

Java program or

XSL stylesheet
for target device
Graphical or

non-graphical
browser

i

See Also: Oracle9i Application Developer’s Guide - XML,"Using
XML Parser for Java"

Consider the following content management scenarios that use Oracle’s XML
components:

2-18 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Scenario 1. Content and Document Management: Publishing Composite Documents Using XML-Enabled OracleTechnology

« Scenario 1. Content and Document Management: Publishing Composite
Documents Using XML-Enabled OracleTechnology

« Scenario 2. Content and Document Management: Delivering Personalized
Information Using Oracle XML Technology

« Scenario 3. Content Management: Using Oracle XML Technology to Customize
Data Driven Applications

Each scenario includes a brief description of the business problem, solution, main
tasks, and Oracle XML components used.

These scenarios are illustrated with case studies in Part Il, "Managing Content and
Documents with XML"

Scenario 1. Content and Document Management: Publishing Composite
Documents Using XML-Enabled OracleTechnology

Problem

Company X has numerous document repositories of SGML and XML marked up
text fragments. Composite documents must be published dynamically.

Solution

The bottom line is that the database application design must begin with a good
database design. In other words, Company X must first use good data modeling
and design guidelines. Then object views can more readily be created against the
data.

Use XMLType to store the documents in XML format, where the relational data is
updatable. Use Oracle9i’s Internet File System (9iFS) as the data repository
interface. 9iFS helps implement XML data repository management and
administration tasks.

Company X can use XSL stylesheets to assemble the document sections or
fragments and deliver the composite documents electronically to users. One
suggested solution is to use Arbortext and EPIC for single sourcing and authoring
or multichannel publishing. Multichannel publishing facilitates producing the same
document in many different formats, such as HTML, PDF, WORD, ASCII text,
SGML, and Framemaker.

Modeling and Design Issues for Oracle XML Applications 2-19

Scenario 1. Content and Document Management: Publishing Composite Documents Using XML-Enabled OracleTechnology

See Also: http://www.arbortext.com for more information about
the Arbortext and EPIC. products.

See Figure 2-5.

Main Tasks Involved
These are the main tasks involved in Scenario 1’s solution:

1. Design your database with care. Decide on the XML tags and elements to use.

2. Store these sections or fragments in XMLType columns in CLOBs in the
database.

3. Create XSL Stylesheets to render the sections or fragments into complete
documents.

Oracle XML Components Used
« XML Parser with XSLT

=« XSQL Servlet and XSU to move sections or fragments into and out of the
database

2-20 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Scenario 2. Content and Document Management: Delivering Personalized Information Using Oracle XML Technology

Figure 2-5 Scenatrio 1. Using XSL to Create and Publish Composite Documents

Document fragments
in XML
XML
II____L__*
XSQL Servlet Composite Ready for viewing
Document or publishin
sl PO B S TS I LN
Processor*
A 7
XML L _r-v-
%
- L - r-
3

XSL stylesheets

*XSL-T Processor
can also be used to
break up composite
documents into
document
fragment.

Scenario 2. Content and Document Management: Delivering
Personalized Information Using Oracle XML Technology

Problem

A large news distributor receives data from various news sources. This data must
be stored in a database and sent to all the distributors and users on demand so that
they can view specific and customized news at any time, according to their contract
with the news distributor. The distributor uses XSL to normalize and store the data
in a database. The stored data is used to back several Websites and portals. These
Websites and portals receive HTTP requests from various wired and unwired
clients.

Solution

Use XSL stylesheets with the XSQL Servlet to dynamically deliver appropriate
rendering to the requesting service. See Figure 2-6. See also, Oracle9iAS Dynamic
Services and Oracle Syndication Server (OSS) chapters in Oracle9i Application
Developer’s Guide - XML.

Modeling and Design Issues for Oracle XML Applications 2-21

Scenario 2. Content and Document Management: Delivering Personalized Information Using Oracle XML Technology

See Also:
« Chapter 3, "Oracle9i AS Wireless Edition and XML"

« Chapter 5, "Customizing Content with XML: Dynamic News
Application”

Main Tasks Involved
These are the main tasks involved in Scenario 2:

1. Data model for database schema is designed for optimum output.

2. XSL Stylesheets are created for each information source to transform to
normalized format. It is then stored in the database.

3. XSL Stylesheets are created along with XSQL pages to present the data on a web
site.

Oracle XML Components Used
« XML Parser for Java v2

« XML SQL Utility (XSU)
« XSQL Servlet

2-22 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Scenario 2. Content and Document Management: Delivering Personalized Information Using Oracle XML Technology

Figure 2—6 Scenatrio 2. Oracle XML Components Deliver Customized News

Information
International | XML Middle Tier
News Service
XSQL Servlet
D i XML
Nevx?smseesR/?ce | XML Parser Normalize
> XML | XML-SQL
XSL-T Utility
Weather XML L Processor (XSU)
Reports >
International | XML
News Service
stylesheets
l]
{3
4_WML ‘ q‘ —
—_ U SQL
Cell User / Application Request
Phone
Web Server A 4
- —p | XSQL Serviet
<—> XSL-T SQL
Processor [*SY < >
>
Personal A
Digital
Assistant
HTML
Browser <
stylesheets

T

Graphical or i ;

non-graphical
browser

Modeling and Design Issues for Oracle XML Applications 2-23

Scenario 3. Content Management: Using Oracle XML Technology to Customize Data Driven Applications

Scenario 3. Content Management: Using Oracle XML Technology to
Customize Data Driven Applications

Problem
Company X needs data interactively delivered to a thin client.

Solution

Queries are sent from the client to databases whose output is rendered dynamically
through one or more XSL stylesheets, for sending to the client application. The data
is stored in a relational database in LOBs and materialized in XML.

Main Tasks Involved
See Chapter 7, "Customizing Discoverer 4i Viewer with XSL", and also the Reports9i

chapter in Oracle9i Application Developer’s Guide - XML.

Oracle XML Components Used
« XML Parser for Java and XSLT Processor

2-24 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using XML

Business-to-Business and Business-to-Consumer Messaging

A challenge for business application developers is to tie together data generated by
applications from different vendors and different application domains. Oracle
XML-enabled technology makes this kind of data exchange among applications
easier to do by focusing on the data and its context without tying it to specific
network or communication protocols.

Using XML and XSL transformations, applications can exchange data without
having to manage and interpret proprietary or incompatible data formats.

Consider the following business-to-business and business-to-consumer (B2B/B2C)
messaging scenarios that use Oracle XML components:

« Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using
XML

« Scenario 5. B2B Messaging: Using Oracle XML Components and Advanced
Queueing for an Online Inventory Applicationn

« Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for
Multi-Application Integration

Each scenario briefly describes the problem, solution, main tasks used to resolve the
problem and Oracle XML components used.

These scenarios are illustrated with case studies in Part Ill, "XML Data Exchange".

Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design

Using XML

Problem

Company X needs to build an online shopping cart, for products coming from
various vendors. Company X wants to receive orders online and then based upon
which product is ordered, transfer the order to the correct vendor.

Solution

Use XML to deliver an integrated online purchasing application. While a user is
completing a new purchase requisition for new hardware, they can go directly to
the computer manufacturer’s Web site to browse the latest models, configuration
options, and prices. The user’s site sends a purchase requisition reference number
and authentication information to the vendor’s Web site.

Modeling and Design Issues for Oracle XML Applications 2-25

Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using XML

At the vendor site, the user adds items to their shopping cart, then clicks on a
button to indicate that they are done shopping. The vendor sends back the contents
of the shopping cart to the Company X’s application as an XML file containing the
part numbers, quantities, and prices that the user has chosen.

Items from the shopping cart are automatically added to the new purchase
requisition as line items.

Customer orders (in XML) are delivered to the appropriate vendor databases for
processing. XSL is used to transform and divide the shopping cart for compliant
transfers. Data is stored in a relational database and materialized using XML. See
Figure 2—-7.

See Also: Chapter 8, "Online B2B XML Application: Step by
Step”, for examples of similar implementations.

« Oracle9i Application Developer’s Guide - XML, the Advanced
Chapter chapter (9) for some basic information about using
XML with Advanced Queueing

« Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle XML Components Used
« Oracle XML Parser

« XML SQL Utility
« XSQL Servlet

2-26 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Scenario 5. B2B Messaging: Using Oracle XML Components and Advanced Queueing for an Online Inventory Application

Figure 2—7 Scenatrio 4. Using Oracle’s XML Components for an Online Multivendor
Shopping Cart

XML messages Warehouse Inventory
Look up table Database
Sports Wear | Stock request e S
Retailer —> Inventory
needed | soL XML-SOL
| > Utility
Golf Club Return request e
Retailer —> Free
Inventory
Tennis Racket | Stock order —
Retailer — Free
Inventory XML
4 Inventory
AQ Message is
Broker Needed
Message Queue _I
Processing v

- Stock Status Displayed XSQL Servlet
- Transaction Acknowledgement Displayed XSL-T

Processor

XSL
stylesheets

Scenario 5. B2B Messaging: Using Oracle XML Components and
Advanced Queueing for an Online Inventory Application

Problem

A client/server and server/server application stores a data resource and inventory
in a database repository. This repository is shared across enterprises. Company X
needs to know every time the data resource is accessed, and all the users and
customers on the system need to know when and where data is accessed.

Modeling and Design Issues for Oracle XML Applications 2-27

Scenario 5. B2B Messaging: Using Oracle XML Components and Advanced Queueing for an Online Inventory Application

Solution

When a resource is accessed or released this triggers an availability XML message.
This in turn transforms the resource, using XSL, into multiple client formats
according to need. Conversely, a resource acquisition by one client sends an XML
message to other clients, signalling its removal. Messages are stored in LOBs. Data
is stored in a relational database and materialized in XML. See Figure 2-8.

See Also: Chapter 8, "Online B2B XML Application: Step by
Step", in this manual, for examples of similar implementations.

« Oracle9i Application Developer’s Guide - XML, the Advanced
Chapter chapter (9) for some basic information about using
XML with Advanced Queueing

« Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle XML Components Used
« XML Parser

« XSLT Processor

2-28 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for Multi-Application Integration

Figure 2-8 Scenatrio 5. Using Oracle’s XML Components and Advanced Queueing in
an Online Inventory Application

Client Tier Middle Tier or Oracle8 i Server Tier
Virtual Middle-Tier

° - Queries database
- Submits order Web Sales

|] 5
\lqeu—_) N | ¢—mm—— Application

Customer

AN

- Product Database
Dynamically Information, prices,

enerated ——| Customer
\g/’veb Form ——| order as product codes
——| XML

- Presents data via
XSL stylesheet

- Queries customer db

- Approve or reject

order Accounting

B
&qeu_ —p | BN | —————p ‘Application

/

AN

Accountant
Accounting Database
Dynamically Customers billing information,
generated ——| Approved accounting histories
Web Form ——| orderas

XML

/

Presents shipping

data using XSL

Ship product stylesheet Inventory
to

. B
C LB s <43 | and Shipping
l | customer Application

Shipping Clerk

Shipping Database
Product inventory
and localization
in warehouse

Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and
AQ for Multi-Application Integration

Problem
Company X needs several applications to communicate and share data to integrate

Modeling and Design Issues for Oracle XML Applications 2-29

Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for Multi-Application Integration

the business work flow and processes.

Solution

XML is used as the message payload. It is transformed via the XSLT Processor,
enveloped and routed accordingly. The XML messages are stored in an AQ Broker
Database in LOBs. Oracle Workflow is used to facilitate management of message
and data routing and transformation. This solution also utilizes content
management, here presentation customization using XSL stylesheets. See

Figure 2-9.

Main Tasks Involved

1. The user or application places a request. The resulting data is pulled from the
corporate database using XSU.

2. Datais transformed by XSLT Processor and sent to the AQ Broker.

3. AQ Broker reads this message and determines accordingly what action is
needed. It issues the appropriate response to Application 1, 2, and 3, for further
processing.

See Also: Chapter 8, "Online B2B XML Application: Step by
Step”, for examples of similar implementations.

« Oracle9i Application Developer’s Guide - XML, the Advanced
Chapter chapter (9) for some basic information about using
XML with Advanced Queueing

« Oracle9i Application Developer’s Guide - Advanced Queuing

Oracle XML Components Used
« XML Parser

« XSLT Processor
« XML SQL Utility (XSU)

2-30 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for Multi-Application Integration

Figure 2-9 Scenatrio 6. Using Oracle’s XML Components and Advanced Queueing in
for Multi-Application Integration

&1

User / Client /

Application LOBs
XML Parser
Corporate xmLsQL XM [xsLT
HQ Utility Processor
Database
AQ Broker XML
<

Lob
Lob Hiob || XML Messages

stored in LOBs

AQ JAQ JAQ
v
Application Application
1 3
Stock 4 v 4 Request
status for sales
request Application analysis
2 results
from
satellite
ALERT stores
satellite
iteovzes of Data sent to AQ Broker
stock determines
arrivals - Which action occurs
- Which action
v v receives data

Modeling and Design Issues for Oracle XML Applications 2-31

Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for Multi-Application Integration

2-32 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Part |

Managing Content and Documents with
XML

Part 1l of this manual describes case studies that show ways to implement
XML-based content and document management.

Part Il contains the following chapters:

« Chapter 3, "Oracle9i AS Wireless Edition and XML"

« Chapter 4, "Customizing Presentation with XML and XSQL.: Flight Finder"
« Chapter 5, "Customizing Content with XML: Dynamic News Application”

« Chapter 6, "Using Oracle9i Internet File System (9iFS) to Build XML
Applications"

3

Oracle9/ AS Wireless Edition and XML

This chapter contains the following sections:

Introducing Oracle9i AS Wireless Edition (Portal-to-Go)
Oracle9i AS Wireless Edition (Portal-To-Go) Features

What’s Needed to Run Oracle9i AS Wireless Edition

Oracle9i AS Wireless Edition: Supported Devices and Gateways
How Oracle9i AS Wireless Edition Works

Oracle9i AS Wireless Edition Components

Exchanging Data via XML: Source to XML, XML to Target with Oracle9i AS
Wireless Edition

Extracting Content

Converting to XML

Sample Adapter Classes

Transforming XML to the Target Markup Language

Oracle9i AS Wireless Edition: Java Transformers

Oracle9i AS Wireless Edition: XSL Stylesheet Transformers

Oracle9i AS Wireless Edition Case Study 1: Extending Online Drugstore’s Reach
Oracle9i AS Wireless Edition Case Study 2: Expanding Bank Services

Oracle9i AS Wireless Edition and XML 3-1

Introducing Oracle9i AS Wireless Edition (Portal-to-Go)

Introducing Oracle9i AS Wireless Edition (Portal-to-Go)

Oracle9i Application Server Wireless Edition (Oracle9i AS Wireless Edition) allows
carriers, enterprises, and Internet companies to wirelessly enable any new or
existing Internet applications or content for any wireless Internet device - including
Smartphones, pagers, PDAs, and so on.

OracleMobile, a division of Oracle Corp., is a wireless application service provider
(WASP) with a complete service offering for wireless Web site creation and hosting
based on Oracle9i Application Server Wireless Edition technology.

Oracle9i Application Server Wireless Edition

Content Adapters convert any content to XML. Transformers convert the XML to
any markup language supported by any device (HTML, WML, HDML, VoiceXML,
VoxML, SMS, etc.). Oracle9i AS Wireless Edition's open architecture and use of
XML technology ensures support of current and emerging standards. Oracle9i AS
Wireless Edition provides for location based services, wireless messaging, wireless
m-commerce, and extensive personalization for users and devices.

Most Web clients are PCs, but according to the Meta Group, “By 2003, over 50% of
internet access will be by non-PCs.”

Oracle9i AS Wireless Edition (Portal-to-Go) enables the following services:

« Itallows virtually any wireless device to access any existing Web or database
application or content, including secure e-business applications.

« Itenables wireless carriers to become broad-range e-commerce service
providers.

Portal-to-Go, a component of the Oracle Internet Platform, is a server product that
provides everything you need to deliver Web content to any capable device. It
transforms existing content to a device's native format, and provides a portal
interface for the end-user.

XML is the Key

XML is the key for content providers to reach an audience of mobile users with data
delivered in many different formats. XML isolates the source content format from
the target device format, enabling content providers to take data from any source
and deliver it to any target. Use these XML-based techniques in applications that
convert data from one format to another, such as:

« Enterprise application integration

3-2 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Oracle9i AS Wireless Edition (Portal-To-Go) Features

Customization of content delivery based on user profile

Content and services aggregation in the form of a marketplace supplier
exchanges

Portal-to-Go Components
Oracle9i AS Wireless Edition portals contain:

Content Adapters - Transforms any content to independent XML
Content Transformers - Transforms XML to device-specific markup language

Service Designer - Specifies how web services are designed and managed. The
services deliver data to mobile devices.

Personalized Portal - Allows users to personalize services they access

Request Manager - Recognizes user devices and services request

This chapter describes how Oracle9i AS Wireless Edition uses XML to make Web
content available to any device. It describes a stock quote service and the role XML
takes as an intermediate format for the data exchange.

Oracle XML Components

XML Parser for Java v2 is used in Oracle9i AS Wireless Edition Adapters and
Transformers. The XSLT package of the XML Parser for Java is also used.

Oracle9/ AS Wireless Edition (Portal-To-Go) Features

The Oracle9i AS Wireless Edition features include the following support:

Apache and Apache JServ.
All mobile devices.

Customization of device output, such as explicit settings of output variable
names.

Handling of single-byte, multi-byte and fixed-width encoding schemes (and
special characters, such as “$”).

Oracle9iAS Wireless includes a scalable, user-customizable notification engine
that 'pushes’ information to any messaging-enabled device (SMS, e-mail, and so
on).

Comprehensive support for the development of 'Location Based Services'.

Oracle9i AS Wireless Edition and XML 3-3

What's Needed to Run Oracle9i AS Wireless Edition

Filtering services for simple automatic filtering and translation of all existing
content.

Flexible portal and personalization features out of the box, simplifying the
wireless user’s experience including location marks, bookmarks and object
control.

Advanced transaction and database logging, event management and
performance monitoring.

See Also:

« Oracle9i AS Wireless Edition Installation Guide, for more details
on repository upgrades.

« http://otn.oracle.com/products/iaswe/

What's Needed to Run Oracle9i AS Wireless Edition

Oracle9i AS Wireless Edition requires the following:

Oracle8i, Release 8.1.5 or above
One of the following servers:

« Oracle9i Application Server
Java Configuration Requirements

= Service Designer. The Oracle9i AS Wireless Edition Service Designer
requires JDK 1.2.2. You can install JDK 1.2.2 from the Oracle9i AS Wireless
Edition CD-ROM.

« Web Integration Developer. The Web Integration Developer includes its
own Java Virtual Machine (JVM). It does not require any Java setup.

« Server Component. The Oracle9i AS Wireless Edition server component
runs with JDK 1.1 or 1.2. JDK 1.2 has improved performance.

Oracle9i AS Wireless Edition: Supported Devices and Gateways

Transformers

Oracle9i AS Wireless Edition provides transformers for the latest WAP-compliant
devices from the following vendors:

Alcatel

3-4 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

How Oracle9i AS Wireless Edition Works

Ericsson (including R320)
Motorola (including Timeport)
Neopoint (including NP1000)
Nokia (including 7100)

Samsung

You can also create your own transformers and extend Oracle9i AS Wireless Edition
support to other devices.

WAP Gateways

Oracle9i AS Wireless Edition has been successfully tested with the following WAP
gateways:

Phone.com UP.link Gateway
Nokia WAP Gateway

Ericsson WAP Gateway
Infinite Technologies WAPL.te

How Oracle9i AS Wireless Edition Works

Figure 3-1 shows how Oracle9i AS Wireless Edition (Portal-to-go) works. When an
end-user requests an Oracle9i AS Wireless Edition service, this is what happens:

1.

a & DN

6.

Oracle9i AS Wireless Edition’s Request Manager performs user-level
preprocessing, including authentication.

Request Manager sends a request to the corresponding Master Service.
Master Service invokes an adapter to retrieve the requested content.
Adapter returns the content in XML.

Transformer converts the XML content into a format appropriate for the target
device.

Request Manager returns the information to the device.

XML and related technologies are at the core of Oracle9i AS Wireless Edition’s
functionality, as follows:

XML separates presentation and content

Oracle9i AS Wireless Edition and XML 3-5

Oracle9i AS Wireless Edition Components

A DTD maps XML tags to User Interface (Ul) elements

XSL stylesheets define rules for formatting, sorting, and filtering results

Figure 3—-1 How Oracle9i AS Wireless Edition Works

HTML
or other format
Cell o e 9
A Swn T dE M pumdl
] MANAGET | 4 Service
@ Required e XML e XML
format Adapter Data Source
- web pages
Transformer - JDBC-enabled
data source
- database
Personal - XML source
Digital .
Assistant

Oracle9i AS Wireless Edition Components

Oracle9i AS Wireless Edition Services

A Oracle9i AS Wireless Edition service encapsulates a unit of information requested
by, and delivered to, a Oracle9i AS Wireless Edition client. Examples of services
include:

Stock quotes
News
Maps

Email

You can build services from an existing Web site, a query to any database, or any
XML source.

3-6 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Oracle9i AS Wireless Edition Components

Master Service

A Master Service is a Oracle9i AS Wireless Edition object that implements a service
and invokes a specific adapter. The end-user typically sees a service as a menu item
on a handset or a link on a Web page. End-users invoke Master Services by
choosing menu items in their device interface. The Master Service returns the
following kinds of data:

« Static text, such as a movie review

« Anapplication, such as an airline booking system

Figure 3-2 How an End-User Sees Services as Menu Items. Master Service is Invoked
When You Select a Menu Item

Menu items

Portal-to-go
Cliant—g |

{§ scoft
-9 my Home
E-_] news
&, Phonebook
% SF Yellow Page
%, ry Mail
I} Gold Members
& E-_] Travel
o] Finance
, ® _1Business

-
My Home

Traveal
Financea

Business

By mapping an Adapter to device Transformers, master services link Oracle9i AS
Wireless Edition content sources to the delivery platforms. Each Master Service is
based on one Adapter. A Master Service creates its own instance of the Adapter it
uses. Therefore, several services can use the same type of Adapter, and each can
pass the Adapter its service-specific argument values.

Oracle9i AS Wireless Edition Adapters

A Oracle9i AS Wireless Edition Adapter is a Java application that retrieves data
from an external source and renders it in Oracle9i AS Wireless Edition XML. When
invoked by a Master Service, an Adapter returns an XML document that contains
the service content. Adapters provide the interface between the Oracle9i AS
Wireless Edition server and the content source.

Oracle9i AS Wireless Edition and XML 3-7

Oracle9i AS Wireless Edition Components

An Adapter does the following:

« Connects to a data source

« Retrieves content

« Converts the content to Oracle9i AS Wireless Edition XML

Oracle9i AS Wireless Edition provides pre-built Adapters for popular content
sources, including Web pages and JDBC-enabled data sources, and adapters you
can modify to work with other content sources.

All adapters must generate Oracle9i AS Wireless Edition XML. This is a
well-formed, valid XML document that complies with the Oracle9i AS Wireless
Edition DTD.

Oracle9i AS Wireless Edition Transformers

Oracle9i AS Wireless Edition Transformers are Java programs or XSL-T stylesheets
that convert an XML document into the target or another Oracle9i AS Wireless
Edition format. They can also rearrange, filter, and add text. The Transformers
enable you to present content in a format best suited to your target device. Oracle9i
AS Wireless Edition supplies transformers for the following markup languages:

« WML 1.1 - The wireless markup language defined by the WAP Forum.

« Tiny HTML - A subset of HTML, suitable for handheld devices (not phones)
such as Palm Pilots.

« VoxML - The Motorola markup language that enables voice interaction with
applications.

« TTML - The Tagged Text Mark-up Language is a subset of HTML developed by
Nokia.

« HDML - The Handheld Devices Markup Language is designed specifically for
handheld devices.

« Plain Text - Converts content for Short Message Service-capable devices and
email applications.

Figure 3-3 illustrates these markup languages and their derivation.

3-8 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Exchanging Data via XML: Source to XML, XML to Target with Oracle9i AS Wireless Edition

Figure 3-3 Oracle9i AS Wireless Edition Supports Several HTML- and XML-based
Markup Languages

SGML
/ Structure \
HTML XSL XML
Data + Presentation Data
Presentation
HTML TTML VoxML WML \\/,((’)'I‘é%%,'\\,"'t
openwave Nokia Motorola WAP Forum Forum

Use Transformers to optimize content presentation for any device, and support new
device platforms. In most cases, you can simply modify or re-use an existing
Transformer.

Exchanging Data via XML: Source to XML, XML to Target with Oracle9i
AS Wireless Edition

With XML as an intermediate format, you can take data from any source and
deliver it to any device. Suppose you have a Web application that provides stock
guotes and headlines, and you want to deliver the information to a mobile phone
and a PDA (Personal Digital Assistant, such as a Palm Pilot).

Because each device has specific requirements for formatting content, you cannot
send the same data to each device. How would you do it? Oracle9i AS Wireless
Edition defines an intermediate data format in XML. It also provides tools that
allow content providers to perform the following tasks:

« Extract source content
« Convert source content to XML

« Transform XML to the markup language for each device

Oracle9i AS Wireless Edition and XML 3-9

Extracting Content

Extracting Content

Hand-held devices cannot display as much information as a desktop monitor, so
you have to be selective. Figure 3-4 shows two, deliberately undecipherable, Web
pages from a Stock Data application.

« A —Thefirst page is a form where you enter a company's ticker symbol. For
example, ORCL is the ticker symbol for Oracle Corporation.

« B — The second page displays the stock price, and other information about the
company.

Both pages are full of ads, buttons, hyperlinks, related articles, and more. Your first
step would be to identify the elements of a Web page that you want to make
accessible to your service.

You then can use the Web Integration Adapters to convert your content to XML.

3-10 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Converting to XML

Figure 3—4 Extracting Elements from HTML Pages For Display on Wireless Devices

L W g T et e e) i i
o MM 15 I Wl W G G L TE 8 s
VN S MR R Tl VRN NE el TR G

Ticker Symbol: N ——]t smal T memd
(et o el e
| Get Quotes button | b, 2 T Waalnne M 22, S, P

rﬂd Rt e, Site Tugi ot Madiad Fasi
* Sy Lasttd Mackry Trmms
- M

Extracting content: e (e ﬁﬂ.t&.‘.]
Web pages Aand B

Paortals- n-?c's have tog

mich detail for display on

wireless devices.

Web Integration Developar B

can extract only those
elemants from HTML
forms and pages to build
menus and display data
on wirelass davicas

Feptegmm b i T i

e b —]
— T—
Vises Bd il in el [ofamses Cadessiis Ssiel Diuds Xz Se)

Waiias K11 iy KV - MB Rhabow Bcped _

ORCL I B Pty s i
" Oracle surges. E——)

* NASDAQ ends highet et e 11 R St il

TP

= LS ﬂDEkﬂhﬂllm- - E I'HI-II-.-"..“..-HG:IH

Converting to XML

A Oracle9i AS Wireless Edition Adapter retrieves content from the source. In the
example illustrated here, it pulls specific quotes and headlines from a Web page.

Then the Adapter converts the content to XML.

Oracle9i AS Wireless Edition and XML 3-11

Converting to XML

Why Use an Intermediate XML Format?

Why not go straight to the target device format? Two reasons: flexibility and
extensibility. To go straight from source to target, you must effectively create an
adapter and transformer for each source-target pair. With XML as an intermediate
format, you only need one adapter for each source, and one transformer for each
device. For example if there are, say two content sources and three target devices

« Source to Target, without XML: You will need six adapter-transformer pairs,
namely twelve components altogether

« Source to Target, with XML: You will need only five components altogether,
two adapters and three transformers.

Using the Simple Result DTD

Adapter output must be XML to be generic. The key is to define an XML document
type that can represent any data type you might want to display on any device. The
document type is defined by a Document Type Definition (DTD). A DTD is a file
that provides a grammar for a class of XML documents by describing the elements
it can contain.

To create a truly universal intermediate data format, Oracle9i AS Wireless Edition
uses the Simple Result DTD. Elements in the Simple Result DTD represent the
elements of an abstract user interface. These include the following:

« Textitems

« Menus
« Forms
« Tables

Figure 3-5 illustrates the Simple Result DTD content model.

3-12 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Converting to XML

Figure 3-5 Simple Result DTD Content Model

— SimpleContainer -|

SimpleResult

[4 SimpleText H SimpleTextltem |
J-I SimpleMenu H SimpleMenultem |J

-I SimpleFormitem |

—| SimpleForm

-I SimpleFormSelect H SimpleFormOption

-I SimpleTableHeader | SimpleCol

—| SimpleTable

-| SimpleTableBody H SimpleRow

Following is a portion of SimpleResult.dtd that shows the elements used in our
Stock Data example.

<
Entity: "GENATTR" contains generic attributes for most elements.
Attribs: "name” is the name of the element.

"title" is the fitle of the element.

-
<IENTITY % GENATTR "
name CDATA #IMPLIED
titte CDATA #IMPLIED
">

<l-

Element "SimpleResult' is the result element.
Usage: This element contains the result.
Children: "SimpleText"is a text resullt.

-
<IELEMENT SimpleResult ((SimpleContainer|SimpleText|SimpleMenul|

SimpleForm|SimpleTable|Simplelmage|SimpleBreak)+)>
<IATTLIST SimpleResult %GENATTR;>

Oracle9i AS Wireless Edition and XML 3-13

Converting to XML

<-

Element "SimpleText" for displaying one or more blocks of text.
Usage: Used for plain text.

Children: "SimpleTextltem" is a block of text.

-

<IELEMENT SimpleText (SimpleTextltem+)>
<IATTLIST SimpleText %GENATTR;>

<

Element: "SimpleTextitem" is a block of text

Usage: Holds one block of text - normally a single paragraph.
Children: "#PCDATA"is the actual text.

-

<I[ELEMENT SimpleTextltem (#PCDATA)>
<IATTLIST SimpleTextltem %GENATTR;>

<l-
Element: "SimpleForm" for displaying one or more input fields.
Usage: Asadata-entry form.
Children: "SimpleFormltem"” for each input field.
Attribs: "target"is the link target for this form.
"section” is the section identifier

*rxxex A special case for the WIDL adapter *****

-
<IELEMENT SimpleForm ((SimpleFormltem|SimpleFormSelect)+)>
<IATTLIST SimpleForm %GENATTR;
target CDATA #REQUIRED
section CDATA #IMPLIED>
<l-
Element: "SimpleFormitem" is a single input item in a simple form.
Usage: For getting input from a user.
Children: "#PCDATA" contains pre-filed input from the server.

*ekxek This overrides the default attribute, ****x**

Attribs: "default’ provides a default value for optional fields.

**xx% The default value should only be used if the field is empty:.

3-14 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Converting to XML

"mandatory" indicates that the form item is mandatory.

"maxLength" provides a maximum input length.

-

<IELEMENT SimpleFormitem (#PCDATA)>

<IATTLIST SimpleFormltem %GENATTR,;
default CDATA #IMPLIED
mandatory(yes|no) "no"
maxLength CDATA #IMPLIED>

Adapters Map the Source Content to the DTD Element

Oracle9i AS Wireless Edition Adapters map the source content to the appropriate
Simple Result element.

« Input bindings specify any data required to complete the request through form
<input> tags and variables in the service URL.

« Output bindings are the results returned to the requester. They select only the
relevant pieces of HTML for the service and device.

For example, Table 3-1 shows the XML for an input form (text label, input field, and
submit button) and results page (ticker symbol, stock price, and headlines)
generated by a hypothetical StockData Adapter.

Oracle9i AS Wireless Edition and XML 3-15

Sample Adapter Classes

Table 3-1 XML for Input and Results Page Generated by StockData Adapter

XML for Input Page

X

ML Results Page: Quote and Headlines Page

<SimpleResult>
<SimpleText>
<SimpleTextltem name = "TickerField">
Ticker Symbol:
</SimpleTextltem>
</SimpleText>
<SimpleForm title="Input Form">
<SimpleFormlitem name="Ticker">
</SimpleFormltem>
<SimpleFormButton hame="submitBtn">
Get Quote
</SimpleFormButton>
</SimpleForm>
</SimpleResult>

<SimpleResult>
<SimpleText title="Quote Results">
<SimpleTextltem name="Ticker">
ORCL
</SimpleTextltem>
<SimpleTextltem name="Price">
90 3/8
</SimpleTextltem>
</SimpleText>
<SimpleText title="Headlines">
<SimpleTextltem name = "Headlinel">
* Oracle surges.
</SimpleTextltem>
<SimpleTextltem name = "Headline2">
* NASDAQ closes higher.
</SimpleTextltem>
<SimpleTextltem name = "Headline3">
* US stocks bolt ahead.
</SimpleTextltem>
</SimpleText>

</SimpleResult>

Sample Adapter Classes

The following code example shows how Adapters are implemented in Java. You
can it to create your own Adapters for custom content sources.

"Oracle9i AS Wireless Edition Adapter Example 1: Greeting Users by Name" is a
simple, but complete, Adapter implementation that greets users by name.

3-16 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Sample Adapter Classes

Oracle9i AS Wireless Edition Adapter Example 1: Greeting Users by Name

Consider a simple Adapter for a service that greets users by name. It has the
following inputs:

« Aninitialization parameter, the string used for the greeting
« An input parameter, the name of the user

Example 2’s Adapter uses the invoke method to build a Simple Result document
using methods in the following packages:

« org.w3c.dom .Element

« org.w3c.dom.Text

The invoke method performs the following tasks:
1. Creates the root result element

2. Creates a SimpleText element. Sets its title attribute, and appends the element to
the root element. As defined in the Simple Result DTD, a SimpleTextltem is a
required child element of SimpleText.

3. Retrieves the input parameter value, appends it to the result document
4. Returns the result
Here is the Adapter implementation:

import orgw3c.dom.Element;

import orgw3c.dom.Text,

import oracle.panama.Argument;

import oracle. panama.Arguments;

import oracle. panama.ServiceRequest;

import oracle. panama.adapter.Adapter;

import oracle. panama.adapter.AdapterDefinition;
import oracle.panama.adapter.AdapterException;
import oracle.panama.adapter.AdapterHelper;

public class HelloAdapter implements Adapter {
private boolean initialized = false;
private String greeting ="Hello";
public static final String GREETING ="greeting”;
public static final String NAME ="name";

I/ Called once, when the adapter is instantiated.

public void init (Arguments args) throws AdapterException {
synchronized (this) {

Oracle9i AS Wireless Edition and XML 3-17

Sample Adapter Classes

ifinitialized) {
inialized = true;
greeting = args.getinputValue(GREETING);
}
}

}
public Element invoke (ServiceRequest sr)

throws AdapterException {
Element resuft = XML.makeElement("SimpleResult”);
Element st = XML.makeElement('SimpleText");
stsetAttribute (‘titie",
"Oracle Portal-to-Go Server HelloAdapter Sample”);
resultappendChild (st);
Element sti = XML.makeElement("SimpleTextitemn");
sti.setAttribute (‘name”, "message”);
sti.setAttribute ('ile”, "Portal-to-Go says:");
st.appendChild (sti);
Il SenviceRequest sr contains input parameters (ike NAME, below).
String name = sr.getArguments().getinputValue(NAME);
Text txt = XML.makeText(greeting + """ + name +"1);
sti.appendChild (txt);
retum result;
}
I/ This method enables master services to determine
I/the initialization parameters used by the adapter.
private AdapterDefinition initDef = null;
public AdapterDefinition getinitDefinition() {
if (initDef == null) {
synchronized (this) {
if (inttDef == null) {
initDef = AdapterHelper.createAdapterDefinition();
initDef.createlnit Argument. SINGLE_LINE,

GREETING,
"Greeting phrase”,
null);
}
}
}
retum initDef,

}
/I This method defines the adapter’s runtime input parameters.

private AdapterDefinition adpDef = null;
public AdapterDefinition getAdapterDefinition() throws AdapterException {
if (@dpDef==null) {
synchronized (this) {

3-18 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Sample Adapter Classes

if (adpDef == null) {
if (initDef == null)
throw new AdapterException ("Adapter is
not properly initialized");
adpDef = initDef;
adpDef.createlnput(Argument.SINGLE_LINE,
NAME,
"Name to greet’,
null);
}
}
}
retum adpDef;
}
}

When invoked with an input parameter of "Dolly", the above Adapter returns the
following XML result:

<SimpleResuit>
<SimpleText tile="Oracle Portal-to-Go Server Hello Sample™>
<SimpleTextitem name="message" tile="Portal-to-Go says:">
Hello Doliy!
</SimpleTextitem>
</SimpleText>
</SimpleResuit>

Oracle9i AS Wireless Edition and XML 3-19

Transforming XML to the Target Markup Language

Transforming XML to the Target Markup Language

Oracle9i AS Wireless Edition Transformers convert XML documents into the
markup language for the target device. By using a generic internal XML format,
such as SimpleResult, to represent information, you can take full advantage of each
client device's Ul capabilities.

The Transformers use the SimpleResult DTD to map abstract Ul elements to the
target format. You can implement a Transformer using Java or XSL-T, depending
on what you need to do:

« XSL -T. XSL Style sheets can include complex pattern matching and result
handling logic. They typically include literal result elements, such as the
target format markup tags. Oracle9i AS Wireless Edition uses XSL style sheets
by default. See "Oracle9i AS Wireless Edition XSL Stylesheet Transformer
Example 1: Converting Simple Result Documents to Plain Text".

« Java.lJava lets you add device-specific behavior, such as a Repeat function for a
VOX device, which isn't needed for a device that writes to the screen. See
"Oracle9i AS Wireless Edition Java Transformer Example 1. Converting Simple
Result Elements to Another Format".

Oracle9i AS Wireless Edition: Java Transformers
You can create Java Transformers using either of the following two interfaces:

« Document Object Model (DOM) interface, which manipulates the tree-based
document object model

« Simple API for XML (SAX) interface, which interacts directly with events in the
parsing process.

These two interfaces are illustrated in Figure 3-6.

3-20 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Oracle9i AS Wireless Edition: Java Transformers

Figure 3-6 The DOM and SAX Interfaces

SAX DOM

! | <course> | | <course> |

[<Name> | <Name> | Java 101 |
E | sava 101 | LI <pept> | eecs |
' [<oes |

; | EEcs | v

Oracle9i AS Wireless Edition includes a Java Transformer that converts Simple
Result documents to plain text. The Transformer does not create markup tags in the
resulting document, but it does apply simple text formatting elements, such as line
breaks and tabs.

Oracle9i AS Wireless Edition Java Transformer Example 1: Converting Simple Result
Elements to Another Format

Though simple, this example shows how you can convert Simple Result elements
into another format.

package oracle.panama.core.xform;

import org:w3c.dom.NodeList;

import orgw3c.dom.Element;

import oracle.panama.PanamaException;

import oracle.panama.core.LogicalDevice;

import oracle.panama.core.Service;

import oracle. panama.Arguments;

import oracle. panama.core.parm.PanamaRequest;
import oracle.panama.core.parm.AbstractRequest;

public class SimpleResultToText implements Transform {
public SimpleResultToText() {}

private String format(Element el) {

if (el == null) {
retum™,

Oracle9i AS Wireless Edition and XML 3-21

Oracle9i AS Wireless Edition: Java Transformers

}

StringBuffer buf = new StringBuffer();

String name = el.getTagName();

if (name = null && name.length() > 0) {
buf.append(name);

} buf.append(":");

buf.append(el.getNodeValue();

retum buf.toString();

}

public String transform(Element element, LogicalDevice device)
throws PanamaException {
PanamaRequest req = AbstractRequest.getCurrentRequest();
Service service = reg.getService();
StringBuffer buf =
new StringBuffer((service ==null) ?™"': service.getName();
NodeList list = element.getElementsByTagName(*");
Elementel;
String teg;
boolean newRow = false;
for (inti=0;i
€l = (Element)list.itemn(j);
tag = el.getTagName();
if (tag.equals("'SimpleRow)) {
newRow =true;
buf.append(n’);
}else f (tag.equals('SimpleCal") {
if (newRow) {
buf.append(*t’)
}else{
newRow =false;

}
buf.append(format(el));

}else if (tag.equals("'SimpleText") ||
tag.equals("'SimpleForm”) ||
tag.equals('SimpleMenu)) {

newRow =true;
buf.append(n”);

}else if (tag.equals('SimpleTextitemn") ||
tag.equals('SimpleFormitem”) ||
tag.equals("'SimpleMenuitem')) {

if (InewRow) {
buf.append(n");
}else{

3-22 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Oracle9i AS Wireless Edition: XSL Stylesheet Transformers

newRow =false;
}
buf.append(format(el));

}
retum buf.toString();
}
}

Oracle9i AS Wireless Edition: XSL Stylesheet Transformers

XSL stylesheets are XML documents that specify the processing rules for other
XML documents. An XSL stylesheet, like a Java Transformer, is specific to a
particular DTD, and should handle all elements declared in that DTD. When it
finds an element in a source document, it follows the rules defined for the element
to format its content.

Oracle9i AS Wireless Edition XSL Stylesheet Transformer Example 1: Converting
Simple Result Documents to Plain Text

This XSL Transformer example is included in the Oracle9i AS Wireless Edition
initial repository and is the XSL version of the Java Transformer shown above. It
converts Simple Result documents to plain text.

<xslstylesheet xmins:xsi="http:/Amww.w3.org/XSL/ Transformy/1.0">
<xsltemplate match="/">
<xslapply-templates></xsl:apply-templates>
</xsltemplate>
<xsltemplate match="SimpleTextltem | SimpleFormitem | SimpleMenultem®>
<xsltext>
</xsltext>
<xslvalue-of select=""></xsl:value-of>
</xsltemplate>
<xsltemplate match="SimpleRow>
<xsltext></xsltext>
<xslfor-each select="/SimpleCol">
<xsltext></xsltext>
<xslvalue-of select="."></xsl:value-of>
</xslfor-each>
</xsltemplate>
</xslstylesheet>

Oracle9i AS Wireless Edition and XML 3-23

Oracle9i AS Wireless Edition: XSL Stylesheet Transformers

In this example. the XSL stylesheet performs the following tasks:

1. Selects a Simple Result element using pattern-matching semantics. The
element "/", for example, matches the document's root element.

2. Uses apply-templates to process the contents of that element.

3. Descends the source element tree, selecting and processing each sub-element.
Character instructions, such as value-of and for-each , manipulate the
content of matching elements.

« The value-of element extracts the actual content of the element.

« Thefor-each element applies iterative processing.

Each Markup Language Requires a Unique Transformer

Each unique markup language requires a unique Transformer. The Stock Data
example assumes that the PDA and cell phone use different markup languages
(Tiny HTML and WML), so we need two Transformers. Once they're built, though,
these Transformers can process content from any Adapter that generates Simple
Result XML.

Table 3-2 lists the Adapter’s SimpleResult XML code and the markup language
generated by two transformers:

« Tiny HTML for the PDA, which can format and display both quotes and
headlines

« WML for the cell phone, which can only display quotes.

3-24 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Oracle9i AS Wireless Edition: XSL Stylesheet Transformers

Table 3-2 Using Unique Transformers to Transform the Adapter’s Simple Result XML

Adapter’s Simple Result XML

Unique Transformers

<SimpleResult>
<SimpleText title="Quote">
<SimpleTextltem name="Ticker">

ORCL

</SimpleTextltem>

<SimpleTextltem name="Price">
90 3/8

</SimpleTextltem>

</SimpleText>

<SimpleText title="Headlines">
<SimpleTextltem name = "Headline1">
* Oracle surges.
</SimpleTextltem>
<SimpleTextltem name = "Headline2">
* NASDAQ closes higher.
</SimpleTextltem>
<SimpleTextltem name = "Headline3">
* US stocks bolt ahead.
</SimpleTextltem>
</SimpleText>

</SimpleResult>

Tiny HTML for PDA
<html>
<p>Quote</p>
<p>Ticker: ORCL</p>
<p>Price: 90 3/8</p>
<p>Headlines:</p>
<p>* Oracle surges.</p>
<p>* NASDAQ closes higher.</p>
<p>* US stocks bolt ahead.</p>
</html>

WML for Cell Phone
<?xml version "1.0"?>
<IDOCTYPE WML PUBLIC "-//WAPFORUM/DTD WML
1.0//EN" "http:/www.wapforum.org.DTD.wml.xml">
<WML>
<CARD NAME="QUQOTE_CARD" TITLE="Quote Card">
ORCL
90 3/8
</CARD>
</WML>

Oracle9i AS Wireless Edition Stylesheet Transformer Example 2: Customizing a

WML1.1 Transformer Stylesheet

WML Browsing on Phone.com Browsers

When using the Phone.com browser the navigation model requires you to select the
[Link] option before proceeding. You can customize the stylesheet to change this
behavior. For example, you can add the following to the WML1.1 Transformer

stylesheet:;

Oracle9i AS Wireless Edition and XML 3-25

Oracle9i AS Wireless Edition: XSL Stylesheet Transformers

| The SimpleForm Mapping

+—>

<xsltemplate match="SimpleForm">
<p>

<xslvariable name="theTarget">
<xslvalue-of select="@target />
<xslfor-each select="SimpleFormitem | SimpleFormSelect™>
<xsltext>8#38;</xsltext>
<xslvalue-of select="@name'/>
<xsltext>=$(</xsltext>

<xslvalue-of select="@name'/>
<xsltext>)</xsltext>

</xslfor-each>

</xslvariable>
<xsl-apply-templates/>

<l- Ensure [Link] is selected —
<select>

<option>

<onevent type="onpick>

<go href="{$theTarget}' />
</onevent>

<xsl.choose>

<xslwhen test="boolean(@submit)>
<xslvalue-of select="@submit'/>
<fxslwhen>
<xsl.otherwise>Submit</xsl:otherwise>
</xsl:.choose>

</option>

</select>

<p>

<I- Ensure [LinK] is selected ends —
<—
<ahref="{$theTarget}>
<xsl:choose>
<xslwhen test="boolean(@submit)">
<xslvalue-of select="@submit'/>
</xslwhen>
<xslotherwise>Submit</xsl:otherwise>
</xsl:choose>
<Ja>

<p>

—>

3-26 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Oracle9i AS Wireless Edition: XSL Stylesheet Transformers

</xsltemplate>

Oracle9i AS Wireless Edition Stylesheet TransformerExample 3: XSL Java Extension

The SimpleResult XML has been extended by adding a new element called
SimpleDB. This element is used to execute your INSERT, UPDATE, and DELETE
statements on any database or your PLSQL on an Oracle database.

For example, you can use this feature for an advanced billing system, where the cost
is defined by the content provider. You can also use all the database standard
features (UTL_SMTP, UTL_FILE...) to extend the master services capabilities.

To do this, a new Java class has been created called,

oracle.panama.core.xform.MyXslExtension, with a method called
processDB()
To test this feature, copy MyXslExtension.class to

%ORACLE_HOME%/panama/server/classes/oracle/panama/core/xform and
add onto your device transformer the following header:

<xslstylesheet version="1.0"
xmins:xsi="http/Amwv.w3.0rg/1999/XSL/ Transform'

xmins:p2g="http:/Ammv.oracle.com/XSL/Transformjava/oracle.panama.core.xform.XSL
Java'" exclude-result-prefixes="p2g"

xmins:myxsi="http:/Amwv.oracle.com/XSL/Transform/javaloracle. panama.core. xform.M
yXslExtension">

Then add the following statement to your transformer body:

<l- Execute SmpleDB—>

<xsltemplate match="SimpleDB">
<xslvalue-of select="p2g:processDB(.)'/>

</xsltemplate>

or

<l- Bypass SmpleDB—>

<xsltemplate match="SimpleDB">
<xsl:apply-template/>

</xsltemplate>

<xsltemplate match="SimpleDBitem"/>

Oracle9i AS Wireless Edition and XML 3-27

Oracle9i AS Wireless Edition: XSL Stylesheet Transformers

Here's an example of SimpleResult, generated by a Result Transformer, with the
SimpleDB element:

<SimpleResult>
<SimpleContainer>
<SimpleText>
<SimpleTextitem>Symbol : ORCL</SimpleTextitem>
<SimpleTextitem>Value (USD): 76 15/32</SimpleTextitem>
<SimpleTextitem>Value (HKD): 592.59</SimpleTextitem>
</SimpleText>
<SimpleDB jdbc="jdbc:oracle:thin:@hkpsnt3.hk.oracle.com:1521:orcl"
user="scott" password="tiger">
<SimpleDBltem type="SQL">
insertinto quote values (orcl,ORCL', 76 15/32',null, null)
</SimpleDBltem>
<SimpleDBltem type="PLSQL">
begin
insertinto quote values (orcl,ORCL', 76 15/32'null sysdate);
end;
</SimpleDBltem>
</SimpleDB>
</SimpleContainer>
</SimpleResult>

This is just an example and of course your can add your own extension by creating
other Java methods.

MyXslExtension.java

I/ Alen MK. YAP - Sales Consultant
Il Oracle System Hong Kong Ltd.
/l Email : Manh-Kiet Yap@oracle.com

I/ File : MyXslExtension java
I/ Date : 28/09/2000

package oracle.panama.core.xform;

import oracle.panama.core xml.XML;
import oracle.panama.core.admin.L;

import orgw3c.dom*;

import java.sgl.;

public class MyXslExtension
{

3-28 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Oracle9i AS Wireless Edition: XSL Stylesheet Transformers

private static String getTextValue(Element element)
{
Node node = element.getfFirstChildy();
ifinode '= null && node.getNodeType() = 3)
retum node.getNodeValue();
else
reum™;

}

public static String processDB (NodeList nlist) {
Element element = (Element) nlistitem(Q);

String out = new String();

boolean fail = false;

String jdbc_conn = element.getAttribute(jdbc™);

String jdbc_user = element getAttribute('user”);

String jdbc_pass = element.getAttribute("password');

ty{

Connection conn = DriverManager.getConnection (jdbc_conn,jdbc

user,jdbc_pass);

NodeList nodelist = element.getElementsByTagName("SimpleDBltem");
for(inti=0; i < nodelistgetLength(); i++)

{
Element st = (Element)nodelistitem(i);

if ((element.getAttribute(type").equals("SQL")) {//SQL
ty{
PreparedStatement pstmt=null;
pstmt = conn.prepareStatement(getTextValue(st));
pstmt.executeUpdate();
pstmt.close();
}
catch (SQLException €) {

L.e("SQL falls : "+e);
out.concat(getTextValue(st+\nSQL fails \n "+e+1n');
fai=true;

}
}
else {//PLSQL
ty{
CallableStatement plstmt = conn.prepareCall (getTextValue(st));
plstmt.execute();

Oracle9i AS Wireless Edition and XML

3-29

Oracle9i AS Wireless Edition Case Study 1: Extending Online Drugstore’s Reach

pistmt.close();

}
catch (SQLException €) {

fail=true;

Le('PLSQL fails : "+€);

outconcat{getTextValue(sty+\nPLSQL fais \n e+,
}
}

}

conn.commit();

conn.close();

if (fall) retum (out);

else retum ("DB actions successfully completed.”);

}
catch (SQLException €) {
Le(e),
retum ("DB actions failed');
}

}

public MyXslExtension()
{
}

}

Oracle9i AS Wireless Edition Case Study 1: Extending Online
Drugstore’s Reach

An online drugstore is using Oracle® Oracle9i AS Wireless Edition wireless Internet
software to extend its reach to customers, providing convenience and
around-the-clock access to its online drugstore through hand-held devices.

Oracle Oracle9i AS Wireless Edition extends the existing Internet site to hand-held
wireless devices. In this case Oracle9i AS Wireless Edition integrates with the online
store, which is built on Oracle Internet Platform. The solution allows consumers to
purchase the full line of drugstore products from virtually anywhere.

Oracle9i AS Wireless Edition renders any Internet content devices independent,
hence allowing existing content designed for PCs to be made accessible from
virtually any device connected to the Internet, such as personal digital assistants
(PDAS), wireless application protocol (WAP) phones, or even pagers.

3-30 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Oracle9i AS Wireless Edition Case Study 3:0Online Auction Sites

Oracle9i AS Wireless Edition Case Study 2: Expanding Bank Services

A bank is now offering online services to its customers through mobile phones and
uses the Oracle wireless Internet server product, Oracle® Oracle9i AS Wireless
Edition.

The bank’s customers have access to financial quotes, a search facility for finding
the nearest branch office, a loan repayment calculator, an events calendar, and
weather reports from either their WAP (wireless application protocol)-enabled
phones, or standard GSM phones.

The bank is also adding transactional banking services to their wireless Internet
offering. With this, the bank’s new WAP platform will also allow access to the
bank’s online information and services through customer mobile phones.

Oracle9i AS Wireless Edition Case Study 3:0nline Auction Sites

Online auction sites can extend their accessibility and usability to their customers
by offering them an option for shopping from cell phone, PDAs, or other mobile
devices.

Oracle9i AS Wireless Edition and XML 3-31

Oracle9i AS Wireless Edition Case Study 3:0nline Auction Sites

3-32 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Customizing Presentation with XML and
XSQL: Flight Finder

This chapter contains the following sections:

« XML Flight Finder Sample Application: Introduction

« What’s Needed to Run XML Flight Finder

« What’s Needed to Run XML Flight Finder

« Flight Finder Queries the Database — Converts Results to XML

« Using XSQL Servlet to Process Queries and Output Result as XML
« Formatting XML with Stylesheets

« XML to Database

« Using Oracle9i Application Server Wireless Edition (Portal-to-Go)

Customizing Presentation with XML and XSQL: Flight Finder 4-1

XML Flight Finder Sample Application: Introduction

XML Flight Finder Sample Application: Introduction

XML Flight Finder fetches data about airline flights and customizes the results for
the client device (PC, cell phone, PDA,...). It is built on Oracle9i and leverages
Oracle XSQL Servlet, hence this application can submit SQL queries and define
output formats using XML, XSL, and XSQL text files — no Java programming is
required, and there is no code to compile. This application is easy to build,
customize, and maintain.

Download the source code for XML Flight Finder to study and modify. You can also
read an article that describes how the Flight Finder uses Oracle XML products and
technologies, and there's a page of links to sites where you can download software
that lets you simulate, for example, a cell phone on your PC.

This information and the application download is also available at:
« http://otn.oracle.com/sample_code/index.htm

« http://otn.oracle.com/tech/xml/xsql_serviet/index.htm then select Sample
Code

What's Needed to Run XML Flight Finder

To build and run the XML Flight Finder application you need the following:
« Java 1.2 or higher.

« Oracle8i 8.1.5 or higher.

« A version of SQL*Plus compatible with your database.

« Oracle XSQL Servlet (includes Web-to-Go personal Web server for Windows
NT). Download the latest version from OTN.

« Flight Finder files. Download fly.zip.

« A Web browser. For best results, use one that can process XML (such as Internet
Explorer 5).

« (Optional) Software that simulates other devices (such as a cell phone) on a
computer.

« (Optional) Apache or Oracle9i Application Server. While Web-to-Go is all you
need to run the Flight Finder on your own machine under Windows NT, you
can also run the Flight Finder under Apache or Oracle9i Application Server.

4-2 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

How Flight Finder Works

How Flight Finder Works

Flight Finder queries the database for information about flights from one city to
another, then returns the results in a format customized for your end-user's device.
Built on Oracle9i, Flight Finder uses the following products and technologies:

« SQL, the standard for accessing business data

« Oracle XSQL Servlet, which processes queries defined in XSQL pages. XSQL
pages are XML documents that contain SQL code. XSQL Servlet outputs the
result set as XML.

« XSLT, which defines an open standard for transforming XML for target devices.

This chapter describes how Flight Finder application was implemented. You can use
these techniques in any Web-based application that:

« Receives requests from any client device on the Web.
« Delivers database content to multiple devices.
« Writes input from multiple devices back to the database.

Figure 4-1 shows how Flight Finder works.

Customizing Presentation with XML and XSQL: Flight Finder 4-3

How Flight Finder Works

Figure 4-1 XML Flight Finder

XSL Stylesheets

Parse XSQL page (4] -

and query
database Oracle9 i
> [-= 9> EEEL XSQL Servlet
<o = — XML
Personal XSQL Page —
Digital ——— —_
Assistant —[< =
Web Server Customized
\
XML S
Browser Stylesheets
a7

Graphical or i ;

non-graphical

browser

Client
Ora form,

specify start point
and destination

1. Using any supported client device, an end-user fills out a form to specify a
starting point and a destination. The form's source code specifies an XSQL page
to execute when the end-user submits the form.

2. The Web server invokes the XSQL Servlet with an XSQL Page.

3. The XSQL Servlet parses the XSQL page and queries the database.

4. The database returns the query results, which the XSQL Servlet converts to an

XML document.

5. The XSQL Servlet transforms the XML by applying an XSL stylesheet
appropriate for the end-user's client device.

4-4 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

How Flight Finder Works

6. The Web server returns the customized document to the client.

With Oracle9i, you can run Oracle XML components and applications built with
them inside the database. For devices and applications that require a smaller
database footprint, you can use Oracle9i Lite to store and retrieve XML data. You
can also run these components on a middle tier such as Oracle9i Application Server,
or on the client.

Customizing Presentation with XML and XSQL: Flight Finder 4-5

Flight Finder Queries the Database — Converts Results to XML

Flight Finder Queries the Database — Converts Results to XML

This section describes how Flight Finder queries the database and converts the
result set to an XML document. Flight Finder application consists of XSQL Pages
and XSL stylesheets:

« XSQL Pages define queries
= XSL stylesheets format the query results.

There is no Java code in the Flight Finder--it delegates processing chores to Oracle
XSQL Servlet.

Flight Finder stores flight data in two tables, AIRPORTS and FLIGHTS.
« In AIRPORTS, the CODE column is the primary key.

« InFLIGHTS, the CODE column is the primary key, and the CODE_FROM and
CODE_TO columns are foreign keys that reference AIRPORTS.CODE.

The following SQL code shows the structures of these tables (column names in bold
are primary keys, column names in italics are foreign keys).

create table airports

code varchar2(3),
name varchar2(64)

)

create table flights
(

code varchar2(6),
code_from varchar2(3),
code_tovarchar2(3),
schedule date,
status varchar2(1),
gate varchar2(2)
)

Using XSQL Servlet to Process Queries and Output Result as XML
XSQL Servlet processes SQL queries and outputs the result set as XML.

It is implemented as a Java servlet and takes as input an XSQL page. This is an XML
file containing embedded SQL queries. It uses XML Parser for Java and XML- SQL
Utility for Java to perform many of its operations.

4-6 Oracle9/ Case Studies - XML Applications, Release 1 (9.0.1)

Flight Finder Queries the Database — Converts Results to XML

For example, the following code is from fly.xsq|l . It is XML with some special
<xsql> tags for the XSQL Servlet to interpret.

flightFinderResult tag defines a structure that assigns values to parameters in
a query. The tag also identifies a namespace for defining the xsql keyword and tells
the XSQL servlet to use the (predefined) database connection named fly.

The code uses the <xsql:query> tag to define a query (the XSQL Servlet
download includes a Help System that describes the syntax and options for each
XSQL tag). The code uses two other parameters (FROM and TO) in the body of the
guery statement to store the names of cities chosen by the end-user.

Note: XSQL pages use the XSLT syntax {@param} to indicate a
parameter.

Figure 4-2 shows the Flight Finder browser form and how it is used to enter FROM
information (Los Angeles) and TO information (San Francisco).

Figure 4-2 Using XSQL Servlet to Process Queries and Output Result as XML:
Entering FROM and TO on the Flight Finder Browser Form

. [Inl Faporitan [| Halp Figgdrmm E_'llq:..'-‘lo.c.al\. 'l-
e QAN QED D v O

ORACLE

Flight Fnder

FROM
Wihsre s yem departing frem} IWI M
Wihere ae y 5":-"WI
N TO

Fistch Flet foomlnble Flights |

<?ml version="1.0"?>
<flightFinderResult xmins:xsg="um:oracle-xsql" connection="fly"'

lang="english">
<xsglset-stylesheetparam name="lang" value="{@lang} />

Customizing Presentation with XML and XSQL: Flight Finder 4-7

Flight Finder Queries the Database — Converts Results to XML

<xsgl:query tag-case="upper>
<I[CDATAl
select F.code, F.code_from, Al.name as "depart_airport’,
F.code_to, To_char(F.schedule, HH24:MI) as "Sched",
A2.name as "amive_airport’,
Decode(F.Status, ‘A, ‘Available', B, 'Full’, ‘Available’)
as "Stat",F.Gate
from flights I, airports A1, airports A2
where to_number(To_Char(F.schedule, HH24MI')) >
to_number(To_Char(sysdate, HH24MI)) and
F.code_from ={@FROM} and F.code_to={@TO} and
F.code_from = Al.code and F.code_to =A2.code

>
<xsqgl:query>
<flightFinderResult>

The listing below shows a portion of the XML returned by the XSQL Servlet by
processing the following URL. This is case-sensitive.

http:/localhost: 7070/fly xsql?FROM=LAX&TO=SFO&xml-stylesheet=none

This URL tells the server to invoke the XSQL Servlet and process the file fly.xsql
to find flights from LAX (Los Angeles) to SFO (San Francisco) without applying a
stylesheet (a useful debugging technique because it shows the raw XML code,
including error messages, if any, from the database).

The result is an XML document containing data from the rows in the result set (the
following excerpt shows only the first row).

Tags ROWSET and ROW are defined by the XSQL Servlet. The tags for each row in
a rowset (for example, CODE, CODE_FROM, and DEPART_AIRPORT) come from
the names of columns in database tables.

<?xmlversion="1.0" 7>
<flightFinderResult lang="english">
<ROWSET>
<ROW NUM="1">

<CODE>0OAQ307</CODE>
<CODE_FROM>LAX</CODE_FROM>
<DEPART_AIRPORT>Los Angeles</DEPART_AIRPORT>
<CODE_TO>SFO</CODE_TO>
<SCHED>12:04</SCHED>
<ARRIVE_AIRPORT>San Francisco</ARRIVE_AIRPORT>
<STAT>Available</STAT>

4-8 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Formatting XML with Stylesheets

<GATE>05</GATE>
<ROW>

</ROWSET>
<flightFinderResult>

An XML document contains data and tags that describe the data, but no
information about how to format the data for presentation. This may seem like a
limitation at first glance, but it's actually a feature, and it's what makes XML so
flexible. Once you have data in an XML document, you can format it any way you
like.

Formatting XML with Stylesheets

Flight Finder applies an XSLT transformation to render the XML results in a format
suitable for the end-user's client device. This section describes the process.

For general information about the relationships between XML, XSLT, and XSQL
Servlet, see XSQL Pages and XSQL Servlet Release Notes on Oracle Technology
Network (OTN), http://otn.oracle.com/tech/xml

One Stylesheet, One Target Device

Flight Finder uses XSL stylesheets to format the XML documents that represent
query results. A stylesheet is itself an XML document that specifies how to process
the nodes of another XML document. The processing instructions are defined in
structures called templates, and a stylesheet formats a document by applying these
templates to selected nodes.

For example, the foregoing XML document contains hodes named ROWSET, ROW,
CODE, and so on. The following code (from flyHTMLdefault.xsl) shows how the
stylesheet selects the CODE, DEPART_AIRPORT, and ARRIVE_AIRPORT nodes for
each ROW in a ROWSET, and it applies templates to format the output.

<?xml version="1.0"?>
<xslstylesheet xmins:xsi="http/Amwv.w3.0rg/1999/XSL/Transform" version=1.0>

<xsltemplate match="/">
<htmi>

<xslfor-each select="lightFinderResut ROWSET/ROW">

<>
<td><xslapply-templates select="CODE"/></td>

Customizing Presentation with XML and XSQL: Flight Finder 4-9

Formatting XML with Stylesheets

<td><xsl:apply-templates select="DEPART_AIRPORT/><fd>
<td><xslapply-templates select="ARRIVE_AIRPORT"/></td>

<tr>
</xsl-for-each>

<htmi>
</xsltemplate>
<xsltemplate match="CODE">Fly Oracle Airlines <xslvalue-of select="."/>
</xsltemplate>
<xsltemplate match="DEPART _AIRPORT">Leaving <xslvalue-of select=""f>
</xsltemplate>
<xsltemplate match="ARRIVE_AIRPORT">
for <xslvalue-of select="">
</xsltemplate>

</xslstylesheet>

In this example, the formatting is simple: it just prepends a string to the contents of
each node. For example, when the XSLT processor gets to the CODE node, it
prepends the string "Fly Oracle Airlines " to the value of that node. The resulting
HTML looks like this:

<IDOCTYPE HTML PUBLIC "/M3C//DTD HTML 4.0 Transitional/EN">
<HTML>

<TR>

<TD>Hly Oracle Airines OA0309</TD>
<TD>Leaving Los Angeles</TD>
<TD>for San Francisco</TD>

<TR>
<HTML>

In a browser (enter the URL
http://localhost:7070/fly/fly.xsgl?FROM=LAX&TO=SFO&xml-stylesheet=flyHTM
Ldefault.xsl).

Figure 4-3 shows the results displayed on the browser after the stylesheet has been
applied to the XML.

4-10 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Formatting XML with Stylesheets

Figure 4-3 Flight Finder: Results After Formatting the XML with Stylesheets

o - LWL ga] Mk - Mt st Lok [Tol =]
Ble G few Fgeder Qook Belo | addes [@] L10R5F0LE -.a.-.l.-.-.n.n-..'lr_.w.a.-j-

b DN AEAI I

Oracle Airlines available Flights

T3, iR e

Fllqghi = F s L L] Sranis Bsgaiding
Fly Crache djrbmes OSINE Leparg Los Arsgebes Jor San Francico o 1414 Seadabbe Gabe 06
Fly Orache Al ATNI0 Lewsrg Los Angeles dor San Francaco st 15 04 Soaiabie Gata 05

Fly Orache Sl

T30 Leaving Lo Angeles to0 Son Franciaco o 1604 femdabis Gebe 05
Fly Orache Aabnes O3 Leaardg Los Angebes Jor Ban Franomoo o 1004 Seadabls Gabe 05

Fly Cracle Sty O3 Lawsrg Los Angibes 300 San Franomoo s 18004 Segdable Gebs 05
Fly Cracle Sstmes OA0314 Lewand Los Ardeies 300 San Francicco o 1904 Avndable Gats 05
Fly Oracle Asines OAI3S Loavrg Los Angeies T San Franosco 8 004 Sealebls Gate 05

Many Stylesheets, Many Target Devices

XSL stylesheets are the key to multiple devices, languages, and user interfaces. You
can include multiple <?xml-stylesheet?> tags at the top of an XSQL Page, and
each of those tags can define media and href attributes to associate a user agent
with an XSL stylesheet (an HTTP request includes a user-agent header that
identifies the device making the request). A processing instruction without a media
attribute matches all user agents so it can be used as the fallback/default.

For example, the following XML code comes from fly.xsql. It includes several
<?xml-stylesheet?> tags, including one that maps the stylesheet flyVox.xsl

to the Motorola Voice Browser agent, and one that maps the flyPP.xsl stylesheet
to the HandHTTP (Palm Pilot) agent.

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsI" media="MSIE 5.0" href="flyHTML xsI"?>
<?xml-stylesheet type="text/xsl" media="Motorola \Voice Browser"
href="fiyVox xsl"?>

<?xml-stylesheet type="text/xsI" media="UP.Browser" href="fyW\WML xsl"?>
<?xml-stylesheet type="text/xsl" media="HandHT TP" href="flyPP xsI"?>
<?xml-stylesheet type="text/xsl" href="flyH TMLdefault xsI"?>

<flightFinderResult xmins:xsgl="um:oracle-xsgl" connection="fiy"
lang="english">

<xsgl:stylesheetparam name="lang" value="{@lang} />
<xsgl:query tag-case="upper">

Customizing Presentation with XML and XSQL: Flight Finder 4-11

Formatting XML with Stylesheets

</xsgl:query>

<fightFinderResult>

The two listings below show the XSLT code to format one result set row each for a
Palm Pilot (flyPP.xsl) and a voice browser device (flyVox.xsl).

XSLT Code From flyPP.xsl:

<xslfor-each select="fiightFinderResuty ROWSET/ROW">
<tr>

<td>
<a>
<xslattribute name="href>
#<xslvalue-of select="CODE"/>
</xslattribute>
<xslvalue-of select="CODE"/>
<Ja>
<fc>
<td><xslapply-templates select="SCHED"/></td>

<td><xslapply-templates select="GATE"/></td>
<fr>

</xslfor-each>

<xsltemplate match="CODE">
<xslvalue-of select=""/>
</xsltemplate>
<xsltemplate match="SCHED'">
at <xslvalue-of select="">
</xsltemplate>
<xsltemplate match="GATE >

gate <xslvalue-of select="."/>
</xsltemplate>

XSLT Code from flyVox.xsl:

<xslfor-each select="fightFinderResutROWSET/ROW">
<step><xslattribute name="name">
step<xslvalue-of select="position()"/>

</xslattribute>

<prompt>

4-12 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Formatting XML with Stylesheets

<xslapply-templates select="CODE'/>
<xslapply-templates select="SCHED"/>,
<xsltext>Do you take that one?</xsltext>
</prompt>
<input type="OPTIONLIST" name="FLIGHT>
<xsl:choose>
<xslwhen test="position() = @NUM">
<option>
<xslattribute name="next">
#<xslvalue-of select="CODE"/>
<Ixslattribute>
<xsltext>Yes</xsltext>
</option>
<xslif test="position() ⁢ last()">
<option>
<xslattribute name="next">#step<xsl.value-of select="position() + 1'/>
<Ixslattribute>
<xsltext>Next</xsltext>
</option>
</xslif>
<xslif test="position() > 1">
<option>
<xslattribute name="next">#step<xsl:value-of select="position() - 1'"/>
<Ixslattribute>
<xsltext>Previous</xsltext>
</option>
</xslif>
</xslwhen>
</xsl:choose>
<finput>
</step>
</xslfor-each>

Localizing Output

When you invoke the Flight Finder through its portal (index.html), you can choose
a language for prompts and labels.

The Flight Finder supports in English, French, Spanish, and German. To do this, it
uses a parameter to identify the end-user's language of choice and passes it from
HTML to XSQL to XSL, then it selects the appropriate text from a file of translated

Customizing Presentation with XML and XSQL: Flight Finder 4-13

Formatting XML with Stylesheets

messages. For example, here is an overview of how the application tracks a user's
language preference (French) and selects a label in that language:

1. index.html (The user clicks a link to choose a language):

Francais

2. index.xsql (The XSQL Page stores the user's choice in a parameter):

<xsql:set-stylesheet-param name="lang" value="{@lang} >

3. flyHTML.xsl (The stylesheet uses the language choice parameter to select a

message from the message file):

<xslvalue-of select= "document(messages.xml)messages/msg[@id=101 and

@lang=$lang]'/>

4. messages.xml (The message file stores the translated messages):

<msg id="101" lang="french">Prochains vols sur Oracle Airlines</msg>

The following listings show these steps in context.

index.html displays HREF links that invoke index.xsql with URLSs for each

supported language.

For Web-to-Go
<l- Assumes default install to c:\xsgl and Flight Finder files in c:\xsgl\fly

-
<ub>
<litype="disc">
English
<fi>
<litype="disc">
Français
<fli>
<litype="disc*>
Español

<litype="disc'>
Deutsch
<fi>

4-14 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Formatting XML with Stylesheets

Next, the user's choice is extracted from the URL and plugged into a parameter in
index.xsql. If the URL does not specify a language, a line in the following code sets
it to English by default. This XSQL Page also defines a query (not shown here),
which the XSQL Servlet sends to the database.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xslI" media="Mozilla" href="indexHTML xsI"?>

<index xmins:xsgl="um:oracle-xsql" connection="fly" lang="english">
<xsgl:set-stylesheet-param name="lang" value="{@lang} />

<findex>

When the database returns the query results, the XSQL Servlet formats them by
applying an XSLT transformation. The following code is from the stylesheet
flyHTML.xsl. It includes a line that opens the message file (messages.xml) and
selects message 101 for a specified language.

<?xml version="1.0"?>
<xslstylesheet xmins:xsi="http/Amwv.w3.0rg/1999/XSL/Transform" version=1.0>
<xsloutput media-type="texthtml" method="html"/>
<xslparam name="lang" select="@lang/>
<xsltemplate match="/">
<html>

<body>

<- Next available fiights —
<xslvalue-of select=
"document(messages.xml)messagesimsg[@id=101 and @lang=$lang]’>
</body>
<htmk>
</xsltemplate>

<ixslstylesheet>

The XML code below comes from messages.xml. In this file, a message represents
information (such as a label or a prompt) that the Flight Finder sends to the client.
Messages are identified by ID numbers, and each message is translated into each
supported language. The code below shows four translations of message 101.
Notice that translations can include code for international character sets, as in the

Customizing Presentation with XML and XSQL: Flight Finder 4-15

XML to Database

German version of the message. You may need to set your browser to display such
characters; for example, in Internet Explorer, choose View > Encoding > Western
European (Windows).

<?xmlversion="1.0"?>
<messages>

<msg id="101" lang="english">Oracle Aifines available flights</msg>
<msg id="101" lang="french">Prochains vols sur Oracle Airlines</msg>
<msg id="101" lang="spanish">Proximos vuelos sobre Oracle Ailines</msg>
<msg id="101" lang="geman">Mö,gliche Füge mit Oracle Airines</msg>

</messages>

XML to Database

This section describes how the Flight Finder takes input from a user, converts it to
XML, then writes it to the database.

1 Taking the User's Input
The first step is getting user input.

Figure 4-4 shows an HTML form that displays the results of a query about flights
from Los Angeles to San Francisco, and provides drop-down lists of customer
names and flight codes. The user chooses a name and a code, then clicks the OK
button to book that flight for that customer, and the application writes the
information to the database. This part of the application is only implemented for
HTML and English.

4-16 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML to Database

Figure 4-4 Flight Finder: HTML Form Displaying Results of a Query About Flights
From Los Angeles, to San Francisco

Bl E& % Ppeaban Jooh Hek J-HlllEhn-'-'lo-cal-:-:lmhwd-h\h-:d j-

da n DR AEd G e E0ca G0 @A FEe T =

Oracle Airlines available flights

Ersglich wrsion
Faur ned Teghts
Fligha & Fiass To &1 Saates Beadding
Fligiht Oiecla Allines OADIT Laaing Los Asgalas ar 1784 Availabla gara ¥5
Fligiht Oiecla Allines 0ADIT Laasing Los Asgalas ar 1884 Availabla gara ¥5
Flight Oiecla Aslines 0ADFH Laasing Los Asgalas ar 1984 Availabla gara ¥5
Fligiht Digcla Adlings OADIS Ladsing Lok Amgalas al 20 Agailabla gata ¥5
Fligiht Digcla Adlings OADNTHE Ladving Lo Amgalas al 2188 Agailabla gata #5
Fligiht Diacla Adlings OADT Ladving Lok Amgalas al 22848 Availabla gaa #5

Fag

Cutogrstre] Fron Fher -
FlightZ s DWAMIT2 "|

K|

Here is the code from fly.xsql that populates drop-down lists named
CustomerName and FlightCode with values from the database. The <form> tag
includes an action attribute that specifies bookres.xsql as the file to execute to
process the values when the user submits the form.

The file flyHTML.xsl (not listed), provides the XSLT instructions for formatting
the form as shown in the figure above.

<form action="bookres.xsq" method="post">
<field name="CustomerName">
<xsgl:query rowset-element="dropDownList"
row-element="listElem">
<[CDATA[
select unique name as "listitem”
from customers
order by name
I
</xsql:query>
<ffield>

Customizing Presentation with XML and XSQL: Flight Finder 4-17

XML to Database

<field name="HightCode">
<xsgl:query rowset-element="dropDownList"
row-element="listElem">
<|[CDATAl
select F.code as "listitemn”,
F.code as "itemid",
Al.name as "depart_airport’,
A2.name as "arive_airport"
fromfights F,
airports Al,
airports A2
whereto_number(To_Char(F.schedule, HH24MI)) >
to_number(To_Char(sysdate, HH24MI)) and
F.code_from ={@FROM} and
F.code_to={@TO} and
F.code_from=Al.code and
F.code_to=A2.code
>
</xsgl:query>
<ffield>
<sendRequest type="button" label="OK'/>
<fform>

2 Assign Values Acquired From User to Code Parameters

After getting values from the user, the next step is to assign those values to
parameters in code. The following code comes from bookres.xsq|l

It stores the user's choices in parameters named CustomerName and FlightCode,
and defines parameters named cust and code for passing the values to XSLT

stylesheets. It also uses the <xsqgl:dml> tag to define a SQL statement that inserts a
row into the CUSTOMERS table.

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsI" media="Mozilla" href="bookresHTML xsI"?>
<?xml-stylesheet type="text/xsI" media="MSIE 5.0" href="bookresHTML xsI"?>
<bookFlight xmins:xsgl="um:oracle-xsql" connection="fly>
<xsgl:set-stylesheet-param name="cust" value="{@CustomerName} />
<xsql:set-stylesheet-param name="code" value="{@FlightCode} />
<xsgl:dmb>
<|[CDATAl
insert into customers values
({@CustomerName}, tripseq. NEXTVAL, {@FlightCode})

4-18 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML to Database

>
</xsgl:dmi>

</bookFlight>

3 Let User Know if Operation Succeeded

The last step is to let the user know whether the operation succeeded, in this case,
whether the flight was booked as shown in.

Figure 4-5 Flight Finder: Notifying User that Flight Was Booked

#=3 Flight Finder - Microsaft Internet Explarer

File Edit Wiew Favorites Tools Help
& - @[QG

Booked flight #0A0312 for Fran Flyer.

Home Page

&] Done

The following code is from bookresHTML.xsl

It declares parameters named cust and code to store values passed to it from
bookres.xsql, then it uses those parameters to display a message to the user. The
XSLT syntax for using such parameters is $param.

<?xml version="1.0"?>
<xslstylesheet xmins:xsi="http:/imww.w3.0rg/1999/XSL/Transform'* version="1.0">
<xsl:output media-type="texthtml"/>
<xslparam name="cust'/>
<xslparam name="code"/>
<xsltemplate match="/">
<html>
<head>

Customizing Presentation with XML and XSQL: Flight Finder 4-19

Using Oracle9i Application Server Wireless Edition (Portal-to-Go)

<tite>Flight Finder<fitie>

<head>

<body>
Booked flight #<xsl:value-of select="$code'/>
for <xsl:value-of select=$cust/>.
<hrf>

<xslapply-templates select="bookFlight/retumHome"/>

</body>
<htmb>

</xsltemplate>

</xsl:stylesheet>

Using Oracle9i Application Server Wireless Edition (Portal-to-Go)

Instead of writing XSQL and XSL code yourself, you can use Oracle9i Application
Server (AS) Wireless Edition (Oracle Portal-to-Go).

A component of the Oracle Internet Platform, Oracle9i AS Wireless Edition provides
everything you need to deliver Web content to any capable device. It transforms
existing content to a device's native format, and it provides a portal interface for the
end-user and can be developed on Oracle JDeveloper.

Oracle9i AS Wireless Edition uses XML to isolate content acquisition from content
delivery.

A Oracle9i AS Wireless Edition portal includes the following components:
« Services that deliver data to mobile devices
« Adapters that convert HTML and RDBMS content to XML

« Transformers that convert XML to the appropriate markup language, including
HTML, WML, TinyHTML, and voice mark-up language (VoxML).

For more information, including white papers, product documentation, and a free,
downloadable version of the software, visit OTN's Oracle9i AS Wireless Edition
page at http://otn.oracle.com/products/iaswe.

See Also: Chapter 3, "Oracle9i AS Wireless Edition and XML".

4-20 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Customizing Content with XML: Dynamic
News Application

This chapter contains the following sections:

« Introduction to the Dynamic News Application
« Dynamic News Main Tasks

« Overview of the Dynamic News Application

« Dynamic News SQL Example 1: Item Schema, nisetup.sql
« Dynamic News Servlets

« How Dynamic News Works: Bird’s Eye View

« Static Pages

« Semi-Dynamic Pages

« Dynamic Pages

« Personalizing Content

« 1 Get End-User Preferences

= 2 Pull News Items from the Database

« 3 Combine News Items to Build a Document

« 4 Customizing Presentation

« Importing and Exporting News Items

Customizing Content with XML: Dynamic News Application 5-1

Introduction to the Dynamic News Application

Introduction to the Dynamic News Application

The Dynamic News application uses Oracle XML platform components together
with the Oracle9i database to build a web-based news service. It combines Java,
XML, XSL, HTML, and Oracle9i.

« With news items in the database, you can personalize content by executing
queries based on user input.

« XML, XSL, and HTML allow you to customize the presentation for multiple
platforms.

« The Dynamic News application pregenerates XML documents when possible to
improve performance.

Problem: To customize news received at a browser according to user requests.

Solution: The solution uses Oracle XML Components, Oracle9i database, and
custom servlets. The solution is described in this chapter.

Oracle XML Components Used: XML Parser for Java, XML SQL Utility (XSU) for
Java

Dynamic News Main Tasks
Dynamic News application shows you how to do the following tasks:
« Store news headlines in the database
« Output the news in XML
« Apply XSL stylesheets to format new headlines

Overview of the Dynamic News Application

Dynamic News pulls news items (headlines) from the database to build HTML
pages. The HTML pages are customized according to user preferences.

The pages present lists of items, with each item hyperlinked to a
complete article. Each news item has attributes including:

« Category, such as Sports or Technology
« Subcategory, such as Baseball or Software

« Type, such as Feature or Review.

5-2 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Overview of the Dynamic News Application

Three Levels of Customization: Static, Semi-Dynamic, and Dynamic
Dynamic News uses these attributes to offer three levels of customization:

« Static
« Semi-dynamic
« Dynamic

Table 5-1 describes these usage choices.

Table 5-1 Dynamic News: Three Levels of Customization

Customization
Level

Description

Static

Static pages are not customized.

IAn end-user at this level gets a page listing all items from each category, sub-category,
and type.

IThe news system administrator uses the Administration servlet to generate static XML
documents periodically (for example, every hour on the hour).

The application could build such pages on demand, but it's faster to serve up a
pregenerated page than to run a query and build the same page for each user who
requests it.

Semi-Dynamic

Semi-dynamic pages combine pregenerated lists of items.

/An end-user chooses one or more categories, and Dynamic News builds a page listing the
items from those categories. The news admin uses the Administration servlet periodically
to pregenerate the lists of items in each category.

Like static pages, semi-dynamic pages are built from pregenerated documents to improve
performance.

Dynamic

Dynamic pages are built when end-users request them. Content comes directly from the
database; nothing is pregenerated.

First, an end-user invokes a servlet to choose categories, sub-categories, and types. Next,
Dynamic News queries the database for items matching that criteria and uses the result
set to build an XML document. Then, as with static and semi-dynamic pages, it applies an
IXSLT transformation to generate HTML.

Customizing Content with XML: Dynamic News Application 5-3

Dynamic News SQL Example 1: Iltem Schema, nisetup.sql

Note: The term “dynamic” and “static” refer to the page contents

not its behavior.

Dynamic News SQL Example 1: ltem Schema, nisetup.sq

Here's the SQL from nisetup.sql, that defines the structure of a news item:

)

CREATE TABLE newsNEWS_[TEMS
(ID NUMBER NOT NULL,

TILE VARCHAR2(200),

URL VARCHAR2(200),
DESCRIPTION VARCHAR2(2000),
ENTRY DATE DATE,
CATEGORY ID NUMBER,
SUB_CATEGORY _ID NUMBER,
TYPE ID NUMBER,
SUBMITTED_BY_ID NUMBER,
EXPIRATION_DATE DATE, A
APPROVED_FLAG VARCHAR2(L)

Dynamic News Servlets

provide entry points to the application logic:

Table 5-2 Dynamic News Servlets

Table 5-2 lists the servlets used in the Dynamic News application. These servlets

Servlet

Description

ile Name

Administration

« Adds news items to the database.
« Maintains lists of users, types, and categories.

« Generates XML and HTML for a static
(non-customized) news page.

xmlnews/admin/AdminServlet.java

Semi-Dynamic

Generates lists of news items in categories
chosen by the end-user.

xmlnews/dynamic/SemiDynam
icServlet.java

Dynamic

Retrieves news items from the database to
generate custom pages based on end-user
preferences.

xmlnews/dynamic/DynamicServlet.
java

5-4 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

How Dynamic News Works: Bird's Eye View

How Dynamic News Works: Bird's Eye View

Generating XML Documents to Build HTML Pages
Dynamic News generates XML documents to build HTML pages:

Static Pages: Built from XML documents pregenerated at intervals set by the
news system administrator.

Semi-Dynamic Pages: Built from pregenerated XML documents that list the
items in categories chosen by the user.

Dynamic Pages: Built on demand from XML documents that list items by
categories, subcategories, and types chosen by the user.

Figure 5-1 gives an overview of how Dynamic News performs these steps:

1.

Calls Oracle XML SQL Utility (XSU). This queries the database for news items
and writes the results to an XML document. This happens as follows:

« In batch mode for Static pages
« Inbatch mode for Semi-Dynamic pages
« On demand for Dynamic pages

Uses the XSL-T Processor of the Oracle XML Parser for Java to transform the
XML into HTML via one of three XSL stylesheets: one for Netscape Navigator,
one for Internet Explorer, or a general stylesheet for all other browsers.

Delivers the HTML page to the user through a Web server.

Customizing Content with XML: Dynamic News Application 5-5

How Dynamic News Works: Bird's Eye View

Figure 5-1 Dynamic News

N
N

News (=P

Database

XML
T Document

XML Parser

iill
v

XSL-T
Processor

@ xvso
Utility

ik

* HTML
XSL Stylesheets page

Dynamic
News
Servlet

5-6 Oracle9/ Case Studies - XML Applications, Release 1 (9.0.1)

Static Pages

Static Pages

Dynamic News generates static pages to display all available news items. These
pages are built at intervals set by the news system administrator, for example, every
hour on the hour; otherwise, they don't change.

When to Use Static Pages?

Static pages are useful in any application where data doesn't change very often. For
example, when publishing daily summaries from ERP or customer applications.
Because the content is static, it's more efficient to pregenerate a page than to build
one for each user who requests it.

How Static Pages Works

The admin executes a batch process, implemented from the Administration servlet,
that queries the database and generates an XML document. When an end-user
invokes Dynamic News to display all news, a servlet gets the browser type from the
user-agent header of the HTTP request, then reads the XML document, and applies
the appropriate XSL stylesheet.

Finally, it returns an HTML page formatted for the end-user's browser, as shown in
Figure 5-2.

Another approach would be to apply XSL stylesheets as part of the batch process,
generating one HTML file for each stylesheet. In this case, you end up with more
files to manage, but the runtime servlet is smaller.

Customizing Content with XML: Dynamic News Application 5-7

Static Pages

Figure 5-2 Dynamic News: Static Pages - Generating XML Documents

Executes batch process to

[4
‘! o generate updated news XML
documents at intervals
l | eg. every hour

Administrator

Dynamic News

Admin Servlet

XSL stylesheets

o B Browser type
=T displayed
News dis|
< p

I
I
N I
| I
| I
Queries the I XML applied according !
< database I document to user's browser !
. I
| — I
| > p— !
| _— |
| I
Oracle9 / or other database | |
| I
| I
R ts N ' |
equests News I
[> I
L . |
I > !
T
I
I

User

5-8 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

I
IMIE

Semi-Dynamic Pages

Semi-Dynamic Pages

The application builds semi-dynamic pages by combining pregenerated lists. The
lists of items per category are pregenerated by the administrator (one XML file for
each category), but pages that contain them are customized for each user. End-users
choose categories such as Sports, Business, and Entertainment.

When to Use Semi-Dynamic Pages

The semi-dynamic approach is useful when the data doesn't change very often and
you want to give the end-user a relatively small number of choices. An application
that offers more choices has to pregenerate more documents, and benefits degrade
proportionally.

How Semi-Dynamic Pages Work
Figure 5-3 shows how semi-dynamic generation works. There are two phases:

« Phase 1 - Static Processing Phase: An administrator uses the Administration
Servlet periodically to pregenerate XML files and store them in CLOBs in the
database. You could also store them in a simple flat-file system, trading the
benefits of the database for potential performance gains.

« Phase 2 - Dynamic Processing Phase: This phase begins when an end-user
requests news items from specified categories. A servlet pulls CLOBs from the
database and combines them into one XML document. It stores user preferences
both in the database and in a client-side cookie, and reads them from the cookie
where possible to improve performance. It then transforms the XML document
into an HTML page using a XSL stylesheet matched to the end-user's browser.
As with static pages, the servlet gets the browser type from the user-agent
header of the HTTP request.

Customizing Content with XML: Dynamic News Application 5-9

Semi-Dynamic Pages

Figure 5-3 Dynamic News: Semi-Dynamic Pages - Generating XML Documents

—_— e e e e e e m ==y

Oracle9 i Pre-generate
and store news
category XML
files in
database
CLOBs.

Admin Servlet

Executes the
generation of
an XML file for

Gets end-user preferences from
cookie or CLOBs in database.
Combines corresponding XML

Apply XML stylesheet based on
browser type.

| |
| |
| |
| |
| |
each news | documents from database into |
category | one XML file. |
chosen. | |
® ! | Semi-Dynamic Servlet :
q‘ = XSL stylesheets
|
\- I | : HTML | News (4] =
o T — | Displayed
Administrator ! > — b _ D
: f— | End User /
| | Browser
| I Requests news
| | from specified
| < | categories e
| |
| < : Browser type
: |
| |
| |

5-10 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Dynamic Pages

Dynamic Pages

The application builds dynamic pages on demand by pulling items directly from
the database. End-users access the “Create/Edit User Preference Page” to choose
categories, subcategories, and types (for example, Entertainment - Movies -
Review).

When to Use Dynamic Pages

Dynamic pages are useful for delivering up-to-the-minute information, such as
breaking news. They are also useful for delivering historical data, such as the
closing price of any specified stock on any day in the last 10 years. It would be
impractical to pregenerate documents for every possible request, but
straightforward and efficient to pull the figures from the database.

How Dynamic Pages Works

Figure 5-4 shows how dynamic generation works. Unlike the other runtime
models, the administrator does not pregenerate XML documents. Instead, the
Dynamic Servlet queries the database for news items based on the end-user's
customization choices.

The servlet stores user preferences both in the database and in a client-side cookie,
and reads them from the cookie where possible to improve performance. Using the
query results, the servlet generates an XML file and transforms it using an XSL
stylesheet into an HTML page for the user's browser. As with the other approaches,
the application gets the browser type from the user-agent header of the HTTP
request.

Customizing Content with XML: Dynamic News Application 5-11

Dynamic Pages

Figure 5-4 Dynamic News: Dynamic Pages - Generating XML Documents

Dynamic Servlet

9) XML XSL
Oracle Queries document stylesheets
database
< p—
Gene{?tes J—
XML files j—
(3] g

News Database

- Queries news database
- Generates XML files
- Transforms XML files using

XSL stylesheets

I
|\||| =

News e

D|sp|ayed

q

End User /
Browser
Requests news
(customized
preferences)

A A

5-12 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Browser type
No pregeneration of
XML documents by
Administrator

1 Get End-User Preferences

Personalizing Content

Oracle9i makes Dynamic News flexible. Because news items are stored in the
database, Dynamic News can customize content on demand. The code examples in
this section show how the application personalizes pages by retrieving news items
in categories specified by the end-user. The main tasks are:

1. Getend-user preferences.

2. Pull news items from the database.

3. Combine news items to build a document.
4

After assembling personalized content, the application customizes presentation
of the page, formatting it for the end-user's browser as described later in this
document.

1 Get End-User Preferences

Logic for processing preferences is distributed throughout the application, which
stores the data both in the database and in client-side cookies. The application reads
preference data from a cookie whenever possible to improve performance. If it can't
get the data from a cookie (for example, because the end-user is visiting the site for
the first time, or the end-user's browser does not accept cookies), the application
reads preference data from the database.

From a Client-Side Cookie

The two methods below show how the application processes preference data stored
in a cookie. Both methods come from xmlnews.common.UserPreference. Here's a
sample cookie:

DynamicServiet=3$0$0#4$2$1*+242

The cookie uses dollar signs to separate preference values, pound signs to separate
categories, and three asterisks as a token to separate user ID and preference data.
The sample cookie above shows that user 242 wants items from categories 3 and 4.
In category 3, the user wants items of all types in all subcategories (a value of 0
selects all items). In category 4, the user wants items from subcategory 2 only, and
within that subcategory, only items of type 1.

The sample application processes such cookies in two steps:

1. First, getNewsCookie gets the “DynamicServiet” cookie from the browser that
issued the HTTP request.

Customizing Content with XML: Dynamic News Application 5-13

1 Get End-User Preferences

2. Then loadPreferenceFromCookie parses it to get a String that contains that
user's ID and preferences.

public Cookie getNewsCookie(HttpSenvietRequest request)
throws Exception {
Cookie cf] = request.getCookies();
Cookie |_retumCookie = null;
for (inti=0; (c'= null) && (i < clength); i++) {
if (c[i].getName().equals('DynamicSenviet’)) {
|_retumCookie = ci];
}
}
retum|_retumCookie;
}
public Vector loadPreferenceFromCookie(Cookie p_cookie) throws Exception {
Vector|_prefld = new Vector(2);
String|_Preferences =p_cookie.getValue();
StringTokenizer |_stToken = new StringTokenizer(l_Preferences, "**");
String |_userld="",;
while (|_stToken.hasMoreTokens()) {
I/ First Token is User Preference.
| _Preferences =|_stToken.nextToken();
1/ Second Token is User ID.
| userld =|_stToken.nextToken();
}
|_prefid.addElement(|_Preferences);
|_prefid.addElement(_userld);

retum |_prefid;
}
Querying the Database
If it can't read preferences from a cookie, the application queries the database. The
class xmlnews.common.GenUtility implements methods that connect to the

database and fetch news categories, sub-categories, and types.

The semi-dynamic servlet and the dynamic servlet both call these methods and the
methods loadInitalPreference and constructUserPreference . These are
both implemented in xmInews/common/UserPreference.java.

Method loadInitalPreference calls getSubCategories , then loops through
the result set, combining category values with separator characters to build a
preference string.

public String loadinitialPreference(Vector p_category, Vector p_subcategory,
Vector p_types, Connection p_con)

5-14 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

1 Get End-User Preferences

throws Exception {
GenUtility m_general = new GenUftility();

for (inti=0; i< p_category.size(); i++) {
String |_catf] = (String [[) p_category.elementA();
|_category =1 cat{O];
Vector |_subcategory =m_general.getSubCategories(p_con,|_cat{0]);

for(int| j=0,1 k=01 j<|_subcategory:size(): | j++, |_k++)
{

Il Append the next preferences to the constructed string
|_userPref=|_userPref+'#+_category+'$+_subCat+"$'+_typeStr,
}
}

retum|_userPref;

}

public static Vector getSubCategories(Connection p_conn, String p_categoryid)
throws Exception {
Vector|_subCats = new Vector();

PreparedStatement |_pstmt =p_conn.prepareStatement(
"Select id, name from sub_categories where category_id="?");
| pstmt.setString(1, p_categoryld);
ResultSet| rset=| pstmt.executeQuery();

while (I_rsetnext()) {
String[] |_subCat = new String[2];
| subCat{0] = new String(l_rset.getString(1));
| subCat{1] = new String(l_rset.getString(2));
|_subCats.addElement(_subCat);
}

|_pstmt.close();

retum |_subCats;

}

For example, the following code comes from
xmlnews.dynamic.DynamicServlet.service

It calls these methods to read end-user preferences from the database, then uses the
preferences to build an HTML page.

public void service(HttpServietRequest p_request,

Customizing Content with XML: Dynamic News Application 5-15

1 Get End-User Preferences

HttpSenvietResponse p_ response)
throws ServietException {

I The following are declared elsewhere as class variables
I and initialized in the senviet's init method.
/1 GenUtility m_general = null;

/I'm_general = new GenUiility();
Il UserPreference m_userPreference = null;
IIm_userPreference = new UserPreference();

I/'f the database connection has been closed, reopen it
if (M_connection = null || m_connection.isClosed())
m_connection =m_general.dbConnection();

String |_preference =m_userPreference.loadinitialPreference(
m_general.getCategories(m_connection),
nul, m_general.getTypes(m_connection),

m_connection);

m_userPreference =m_userPreference.constructUserPreference
(I_preference,m_status);

/I Display the Dynamic Page
this.sendDynamicPage(_browserType, p_response,
| _userName, m_userPreference,
m_senetPath +"?REQUEST_TYPE=SET_ADVANCED_USER_PREFS",
m_sendetPath +"?REQUEST_TYPE=LOGIN_REQUEST",
m_senietPath +"?REQUEST_TYPE=LOG_OUT_REQUEST",
m_senvietPath);

5-16 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

2 Pull News Items from the Database

2 Pull News Items from the Database

The following code, from

xmlnews.admin.AdminServlet.performGeneration and
xmlnews.admin.AdminServlet.staticProcessingHtml , shows how the
application queries the database for news items in each available category and
converts each result set to a XML document.

The database stores the XML for each category as a CLOB (Character Large OBject),
so the application can handle very long lists.

public void performGeneration(String p_user, String p_genType,
HitpSenvietResponse p_response)
throws ServietException, IOException {

try{
String |_fileSep = System.getProperty(file.separator”);
String|_message =", // Holds status message

if (p_genType.equals('BATCH_GEN")) {// Batch Generation
String |_htmiFile = "BatchGeneration”;

String |_xslFile ="BatchGeneration”;

String | xmiFile ="BatchGeneration”;

Il Generate the XML and HTML content and save itin afile
this.staticProcessingHtmI(
m_dynNewsEnv.m_dynNewsHomeH_fileSepH_htmiFile+"html",
m_dynNewsEnv.m_dynNewsHome+H_fileSep+m_dynNewsEnv.m_batchGenXSL,
m_dynNewsEnv.m_dynNewsHomeH _fileSep+ xmliFile+"xml"

)
.

The method xmlnews.admin.AdminServlet.staticProcessingHtml

defines and executes a query to fetch the news items. Then it uses the Oracle XML
SQL Utility (XSU) to build an XML document from the result set and create an
HTML page by applying an XSLT transformation.

public void staticProcessingHtmI(String p_htmiFile,String p_xsffile,
String p_xmlfile) throws Exception {
String |_query ="select aid, atile, a.URL, a. DESCRIPTION, " +
"to_char@ENTRY_DATE, DD-MON-YYYY'), a.CATEGORY_ID, b.name,
aSUB_CATEGORY_ID, cname, a.Type_Id, d.name, "+

Customizing Content with XML: Dynamic News Application 5-17

2 Pull News Items from the Database

"a.Submited By Id, e.name, to_char(a.expiration_date, DD-MON-YYYY'),
aapproved flag" +

"from news_items a, categories b, sub_categories ¢, types d, users e where " +

"a.category_idis not nulland a.sub_category _id is not null and "+

"atype_idis not nulland a. EXPIRATION_DATE is not null and "+

"acategory_id=b.id ANDa.SUB_CATEGORY_ID=cid ANDaType ID=d.id
AND" +

"aSUBMITTED _BY_ID=e.id AND"+

"aEXPIRATION_DATE > SYSDATE AND "+

"aAPPROVED_FLAG =\VA\ ORDER BY h.name, c.name";

Statement |_stmt=m_connection.createStatement();
ResultSet|_resutt=1_stmtexecuteQuery(l_query);
/I Construct the XML Document using Oracle XML SQL Utility
XMLDocument | xmiDocument=m_xmlHandler.constructXMLDoc(l_result);
|_stmt.close();

Il Getthe HTML String by applying corresponding XSL to XML.
String |_htmiString = m_xmiHandler.applyXSLtoXML(_xmiDocument,p_xsffile);

File | fle = new File(p_htmiFile);

FileOutputStream |_fileout = new FileOutputStream(]_file);

FileOutputStream | xmifileout = new FileOutputStream(new File(p_xmiffile));.
| fileoutwrite(l_htmiString.getBytes());

| xmiDocument.print(_xmifileout);

| fleout.close();
| xmifileout.close();
}

5-18 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

3 Combine News Items to Build a Document

3 Combine News Items to Build a Document

The final step in personalizing content is converting XML documents into HTML
pages according to end-user preferences.

The following code comes from
xmlnews.generation.SemiDynamicGenerate.dynamicProcessing

It retrieves the CLOBs corresponding to categories chosen by the user, converts
each CLOB to an XML document, then combines them into one XML document.
The process of converting the XML document to an HTML page is described in the
next section.

public XMLDocument semiDynamicProcessingXML(Connection p_conn, UserPreference p_
prefs)
throws Exception

{

String |_htmiString = nul ;

XMLDocument | combinedXMLDocument =null ;

XMLDocument]] | XMLAray = new XMLDocument]p_prefsm_categories.size()];

int|_arraylndex=0;

PreparedStatement |_selectStmt =p_conn.prepareStatement(
" SELECT PREGEN_XML FROM CATEGORIES_CLOB WHERE CATEGORY_ID =
),
Il Process each preference.
for (; |_amaylndex <p_prefs.m_categories.size(); +H_arraylndex
|_selectStmt.setString(1, p_prefs.m_categories.elementAt(_
arraylndex).toString();
OracleResultSet|_selectRst = (OracleResultSet)l
selectStmt.executeQuery();
if (_selectRstnext() {
CLOB|_clob=1_selectRst.getCLOB(L);
| XMLAmay[l_arrayindex] = convertFileToXML(_clob.getAsciiStream());
}else
| XMLAray[l arrayindex]=null;
}
|_selectStmt.close();

XMLDocHandler | xmiHandler = new XMLDocHandler();

| combinedXMLDocument =|_xmiHandler.combineXMLDocunemts(l_XMLArray);
retum | combinedXMLDocument ;

Customizing Content with XML: Dynamic News Application 5-19

4 Customizing Presentation

4 Customizing Presentation

After fetching news items from the database, Dynamic News converts them to XML
documents. XML separates content from presentation, making it easy to build
custom HTML pages.

Dynamic News uses different XSL stylesheets to convert XML documents into
HTML pages customized for various browsers:

« One for Netscape Navigator

= One for Microsoft Internet Explorer

« Ageneric stylesheet for other browsers.
It's a four-step process:

1. Get the user's browser type.

2. Get news items.

3. Build an XML document.

4. Convert XML to HTML.

Each time it receives an HTTP request, the application inspects the user-agent
header to find out what kind of browser made the request. The following lines from
xmlnews.dynamic.DynamicServlet.service show how the servlet creates a
RequestHandler object (implemented in xmInews/common/RequestHandler.java)
and parses the request to get the browser type. Then the servlet uses this
information to return an HTML page based on the end-user's preferences and
browser type.

public void service(HttpServietRequest p_request, HitpSenietResponse p_
response)
throws SenvietException {

Il nstantiate a Request Handler (declared elsewhere)

m_regHandler = new RequestHandler(m_userPreference, m_generalm_
status);

RequestParams|_reqParams =m_regHandler.parseRequest(p_request, m_
connection);

String |_browserType =1 _reqParams.m_browserType;

I/ Display the Dynamic Page
this.sendDynamicPage(_browserType,p_response,l_userName,m _
userPreference,
m_senetPath+"?REQUEST_TYPE=SET_ADVANCED USER _

5-20 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

4 Customizing Presentation

PREFS",
m_senvietPath+*?REQUEST TYPE=LOGIN REQUEST",
m_senvietPath+*?REQUEST TYPE=LOG_OUT REQUEST",
m_senietPath);

}

The code that actually extracts the browser type from the user-agent header resides
in xmInews.common.GenUtility.getBrowserType , Which follows:

public String getBrowserType(HttpServietRequest p_request) throws
Exception {

Il Get all the Header Names associated with the Request
Enumeration |_enum = p_request.getHeaderNames();

Sting|_Version =null;
String |_browValue =nul;
String |_browserType = null;

while (|_enum.hasMoreElements()) {
String |_name = (String)l_enum.nextElementy();
if (_name.equalsignoreCase(user-agent))
|_browValue =p_requestgetHeader(_name);
}

I/ If the value contains a String "MSIE" then it is Intemet Explorer
if (_browValue.indexOf('MSIE") > 0) {
StringTokenizer |_st = new StringTokenizer(_bronValue, ";");
Il Parse the Header to get the browser version.
|_browserType ="IE";
while (I_sthasMoreTokens()) {
String |_tempStr=1_stnextToken();
if (_tempStr.indexOf'MSIE") > 0) {
StringTokenizer |_st1 = new StringTokenizer(_tempStr, ");
|_stl.nextToken();
| Version=I_stl.nextToken();
}

I the value contains a String "en’* then it is Netscape
}else if (I_browValue.indexOf('en) > 0) {
|_browserType ="NET";
String |_tVersion =1_browValue.substring(8);
int]_tempind =1_tVersion.indexOf(T");
|_Version =|_tVersion.substring(0, |_templnd);

Customizing Content with XML: Dynamic News Application 5-21

4 Customizing Presentation

}

I/ Retum the Browser Type and Version after concatenating
retum|_browserType +|_Version;

}

After getting the end-user's browser type, the DynamicServlet's service method
passes it to xmInews.dynamic.DynamicServlet.sendDynamicPage

This method generates HTML by fetching XML documents from the database and

converting them to HTML by applying an XSL stylesheet appropriate for the
end-user's browser type.

public void sendDynamicPage(String p_browserType,HttpSenietResponse p_response,
String p_userName,UserPreference p_pref,String p_userPrefURL,
String p_signOnURL,String p_logout,
String p_senetPath) throws Exception {
String |_finaHTML ="; // Holds the html
if (;p_browserType.startsWith('IE4") || (p_browserType.startsWith('IES"))) {
I/ Send the XML and XSL as parameters to get the HTML string.
| finaHTML =m_handler.applyXSLtoXML(
this.dynamicProcessingXML(m_connection, p_pref),
m_dyEnv.m_dynNewsHome + "/DynamiclE.xs!"
)
String |_thisbit =m_general.postProcessing(l_finaHTML,p_userName,
p_userPrefURL,p_signOnURL,p_logoutp_senvietPath);
PrintWhiter |_output =p_response.getWhiter();
| output.print(_thisbit);
|_output.close();
}
else if (p_browserType.startsWith("NET4") ||
(p_browserType startsWith("'NET5")) {
I/ Do the same thing, but apply the stylesheet "/DynamicNS xsl"

/I'When the Browser is other than IE or Netscape.
}else{
I/ Do the same thing, but apply the stylesheet "/Dynamic.xsl"

}

The key methods are:

« xmlnews.dynamic.DynamicServlet.dynamicProcessingXML

5-22 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Importing and Exporting News Items

This queries the database for news items that match the end-user's preferences.
It converts the result set into an XML document by calling
xmlnews.common.XMLDocHandler.constructXMLDoc

« xminews.common.XMLDocHandler.applyXSLtoXML

This converts an XML document into HTML using a specified XSL stylesheet. It
uses XSL Transformation capabilities of Oracle XML Parser Version 2.0. More
specifically, it uses the Document Object Model (DOM) parser to create a tree
that represents the structure of the XML document. To build the final HTML
string, it creates an element to serve as the root of the tree, then appends the
parsed DOM document.

Importing and Exporting News Items

Dynamic News can also import and export XML documents that conform to the
Resource description framework Site Summary (RSS) standard. Developed by
Netscape as a way to share data channels, RSS is used at Web sites such as
my.netscape.com and slashdot.org.

An application can use RSS to syndicate its news pages (making them available to
RSS hosts) and to aggregate news from other RSS sites. For example, Dynamic
News includes the xmlnews.admin.RSSHandler class. It uses a specified DTD
to parse and extract news items from a specified file, and then it stores the items in a
hashtable. The class also provides a method that returns the elements in that
hashtable.

Customizing Content with XML: Dynamic News Application 5-23

Importing and Exporting News Items

5-24 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Using Oracle9i Internet File System (9iFS) to
Build XML Applications

This chapter contains the following sections:
« Introducing Oracle9i Internet File System (9iFS)
« Working with XML in 9iFS

« Using the 9iFS Parsers

« Using 9iFS Standard Parsers

« Using 9iFS Custom Parsers

« How 9iFS XML Parsing Works

« Writing a Parser Application

« Rendering XML in 9iFS

« XML and Business Intelligence

« Configuring 9iFS with XML Files

Using Oracle9i Internet File System (9iFS) to Build XML Applications 6-1

Introducing Oracle9i Internet File System (9iFS)

Introducing Oracle9i Internet File System (9iFS)

Oracle9i Internet File System (9iFS) facilitates organizing and accessing documents
and data using a file- and folder-based metaphor through standard Windows and
Internet protocols such as SMB, HTTP, FTP, SMTP, or IMAP4.

iFs aids in the building and administering of web-based applications. It is an
application interface for Java and can load a document, such as a Powerpoint.PPT
file, into Oracle9i, and display the document from a web server, such as Oracle9i
Application Server.

Working with XML in 9iFS

iFS is a simple way for developer's to work with XML, where 9iFS serves as the
repository for XML. 9iFS can perform the following tasks on XML documents:

« Automatically parse XML and store content in tables and columns
« Render the XML file’s content
When a file is requested, it delivers select information, for example, on the web.

iFS also supports an extensible way of defining new file types and provides built-in
support for defining, parsing, and rendering file types that are XML documents.

Rather than just store the XML data, 9iFS makes it possible to unlock the full
potential of XML for implementing business intelligence, generating dynamic
content, and sharing data across applications.

Supply a Document Descriptor

In 9iFS, when registering an XML-based file type, you supply a document
descriptor that specifies the following:

« Your file type’s XML document structure
« How it should be stored in the database

For example, you can save your document in its complete form in a Large Object
(LOB) in the database.

9iFS document descriptors use an XML-based syntax to describe the structure (or
“schema”) of its XML-based file types.

When a file is saved or sent to 9iFsS, it recognizes the document as one of your file
types, parses its XML, and stores the data in tables as you have specified in the
document descriptor.

6-2 Oracle9/ Case Studies - XML Applications, Release 1 (9.0.1)

Using the 9iFS Parsers

The same information is used to render, that is, reassemble for delivery, the XML
document when a particular instance of your filetype is requested through any 9iFS
supported protocols.

See Also:
« http://otn.oracle.com/products/ifs/

« Oracle9i Internet File System Developer's Guide.

Using the 9i FS Parsers

When you drop a new XML file, whose structure 9iFS understands, into a folder,
Oracle XML Parser for Java can dissect the XML file and store the separate
attributes in the 9iFS schema. By defining an 9iFS subclass, you are specifying
which attributes go into which columns. You can also let 9iFS make a default
attribute-to-column mapping.

Once parsed, the attributes originally within the file become attributes of the file,
This is extra metadata that you can edit and use as search criteria in the file system.

Consider an XML-based company standard insurance claim form. You can instruct
9iFSto parse the XML insurance claim files, extracting the attribute tag information
from each file and storing these chunks separately in a table.

You can then search on the XML attributes, such as region or agent, as you would
for any attribute in a file. The data is now also available for use by a relational
application, such as insurance industry analytical tools.

Because the XML file has been parsed does not mean that this is the end of that file.
When someone opens the original XML file, the XML renderer reconstructs it. See
"Rendering XML in 9iFS" on page 6-7.

Standard 9iFS Parsers and Custom Parsers

In 9iFS your XML application will require a custom parser if the document format
produced by the application needs it.

When Must 9iFS Parser be Explicitly Invoked?

9iFS parser is invoked depending on how the documents produced by your
application are entered into 9iFS.

« If the XML documents are uploaded using protocol servers, 9iFS XML parser
will be invoked automatically by the protocol servers.

Using Oracle9i Internet File System (9iFS) to Build XML Applications 6-3

Using 9iFS Standard Parsers

« If the XML documents are uploaded by an application, you must explicitly
invoke either the 9iFS XML parser or a custom parser.If not, the XML
documents will be read in as raw data, instead of being parsed into objects.

« If your application defines a custom class that produces documents in a format
other than XML, create a custom parser using the classes and methods provided
as part of the 9iFS Java API.

The custom parser will create 9iFS repository objects of your custom class.

For example, assume you have defined a Memo class that subclasses the
Document class. The Memo class includes the following custom attributes: To,
From, Date, and Text (the content of the memao).

To store Memo objects in 9iFS requires a parser.

« If the Memo documents are in XML, you can use the 9iFS
SimpleXmlParser() to extract the attributes

« If the Memo documents are stored in a special format, create a custom
parser and specify how to extract the attributes

Using 9iFS Standard Parsers

9iFS offers several standard parsers for creating applications in 9iFS. Table 6-1 lists
the 9iFS standard parser classes.

Table 6-1 9iFS Standard Parser Classes

Class Description

SimpleXmlParser Creates an object in the 9iFS repository from an XML
document body. Used as the default parser for all XML
documents stored in 9iFS. SimpleXmlParser extends

XmlParser.
XmiParser A base class for custom XML parser development.
SimpleTextParser Provided as a starting point for developers who need to create

a custom parser. The SimpleTextParser uses a simple
name=value syntax.

ClassSelectionParser Adds custom attributes to all files of a specified format.
Performs no actual parsing.

Parsing Options
The following parsing options are provided by 9iFS:

6-4 Oracle9/ Case Studies - XML Applications, Release 1 (9.0.1)

How 9iFS XML Parsing Works

« SimpleXmlParser for minimal customization. It works for FTP, SMB, the
Windows interface, and the 9iFS Web user interface using Upload via Drag and
Drop.

« ClassSelectionParser. Does not perform actual parsing. It allows you to add one
or more custom attributes to files with a specific file extension, such as all .doc
files, before the files are stored in the repository. Maps class to a specific file
format.

Using 9iFS Custom Parsers

If parsing non-XML documents, such as .doc or .xIs documents, or if you have
defined a custom type, such as .vcf for Vcards, you must write a custom parser to
create database objects from these documents. To create a custom parser, you can
either subclass an existing 9iFS parser or create a custom class from scratch,
implementing the oracle.9iFS.beans.parsers.Parser interface.

How 9iFS XML Parsing Works

When you place an XML representation of a document in 9iFS,
SimpleXmlParser() is called to create the document object.

Assume gking.vcf document instance has been converted to an XML file,
gking.xml , and that the end user is using the 9iFS Windows interface.

1. Assume next that you have dragged an instance of the XML document, such as
gking.xml, into 9iFS folder, ZiFS/system/vcards.

2. SMB performs a parser lookup based on the file extension, .xml. SMB is a
protocol that lets you access 9iFS through Microsoft Windows 95, Windows 98,
and Windows NT clients. You can drag files into and out of Oracle 9iFS, or they
can edit them directly in 9iFS.

3. Because this is an XML file, the parser lookup finds a match and invokes the
SimpleXmlParser()

4. Because the Vcard custom class definition file was previously stored in 9iFS, the
SimpleXmlParser() recognizes gking.xml as a Vcard document.

5. SimpleXmlParser() parses gking.xml |, creating a Vcard object called
gking.

Using Oracle9i Internet File System (9iFS) to Build XML Applications 6-5

Writing a Parser Application

If the gking.vcf document instance had been used instead, the result of the
parser lookup in Step 2 would be that SMB would invoke the custom parser,
VcardParser.

Writing a Parser Application
To write a parser application you will need to carry out the following steps
1. Write the Parser Class
2. Deploy the Parser
3. Invoke the Parser (in the parser application)
4

Write a ParserCallback (optional)
See Also: http://otn.oracle.com/products/ifs

For more information about parsers, see the following classes in the 9iFS Javadoc:

oracle.ifs.beans.parsers.SimpleXmlParser
oracle.ifs.beans.parsers. XmiParser
oracle.ifs.beans.parsers.SimpleTextParser

6-6 Oracle9/ Case Studies - XML Applications, Release 1 (9.0.1)

Configuring 9iFS with XML Files

Rendering XML in 9iFS

By default, the 9iFS XML renderer reconstructs the original file, including the
XML attribute tags. When you double-click the file, 9iFS reconstructs it, then
opens it in whatever XML editor you use.

It is important to be able to reconstruct the file, but you can more creative things
with the file. For example, if you parse the XML-based insurance claim, you
may want to show only some sections of the original file to customers when
they access it through a web-based self-service application. You may also want
to calculate values, such as totals, counts, and averages, from the contents of the
file, then add the results of these calculations to the file. Or you may want to
change the format of the file, displaying it as RTF or HTML instead of
less-readable XML.

All these tasks can be accomplished through the 9iFS renderer. The parsed
contents of an XML file are waiting in 9iFS for dynamic reassembly, showing
whatever range, format, or type of information you need for your users or your
applications. By writing and registering a new renderer for a certain class of
XML file, you can change how 9iFS displays those files.

See Also: http://otn.oracle.com/products/iFS. Select “The XSL
Custom Renderer Sample Application” then select “technical brief”,
for a detailed application how to write an 9iFS Custom Renderer.

XML and Business Intelligence

Configuring

Since parsed XML files store each attribute's data in a separate, identifiable column
in the 9iFS schema, Oracle 9iFS makes it possible for your data mining applications
to tap into the business intelligence previously locked in your XML files.

To return to the insurance claim example, business intelligence is stored in each
claim, and the aggregate value of all the information in all claims stored in the
system is greater than the sum of the parts. Managers can track trends in real time
as agents insert or update claim files? This is possible using 9iFsS file parsing files
and feeding the parsed file contents to data mining tools.

9iFS with XML Files

To configure 9iFS, you can write XML to customize the file system. For example, a
feature of Oracle 9iFS SDK is the ability to subclass files and folders. If you need to
identify your XML-based purchase orders as a separate type of file for your
applications, you can define an 9iFS subclass. Creating this subclass is as simple as:

Using Oracle9i Internet File System (9iFS) to Build XML Applications 6-7

Configuring 9iFS with XML Files

1. Writing an XML file that follows the 9iFS syntax for defining subclasses
2. Dragging and dropping this XML file into any folder in 9iFS

These types of configuration files remove the need to write complicated scripts to
deploy an application. Instead, you drag and drop all the necessary files, including
the XML configuration files, into the new 9iFS instance.

6-8 Oracle9/ Case Studies - XML Applications, Release 1 (9.0.1)

Part |l

XML Data Exchange

Part 111 of this manual describes case studies that show ways to implement XML
data exchangest.

Part 111 contains the following chapters:

« Chapter 7, "Customizing Discoverer 4i Viewer with XSL"
« Chapter 8, "Online B2B XML Application: Step by Step"
« Chapter 9, "Service Delivery Platform (SDP) and XML"

Oracle9i Application Developer’s Guide - XML also describes other examples,
applications, and FAQs.

v

Customizing Discoverer 4i Viewer with XSL

This chapter contains the following sections:

« Discoverer4i Viewer: Overview

« Discoverer 4i Viewer: Features

« Discoverer 4i Viewer: Architecture

« How Discoverer 4i Viewer Works

« Using Discoverer 4i Viewer for Customized Web Applications

« Customizing Style by Modifying an XSL Stylesheet File: style.xsl

« Discoverer 4i Viewer: Customization Example Using XML and XSL

« Frequently Asked Questions (FAQSs): Discoverer 4i Viewer

Customizing Discoverer 4i Viewer with XSL 7-1

Discoverer4i Viewer: Overview

Discoverer4i Viewer: Overview

XML Components Used: Oracle XML Parser for Java, Version 2

What is Discoverer?

Discoverer Business Intelligence solutions transform an organization’s data into
information. Oracle Discoverer for the Web allows you to access this information
using a Web browser interface.

What is Discoverer 4i Viewer?

Oracle Discoverer 4i Viewer makes the information available anywhere on the
Internet or Intranet, and allows the information to be transparently embedded in
Web pages or accessed from corporate Portals. Oracle Discoverer 4i Viewer can be
customized, to fit any Web site using standard Web Technologies such as XML and
XSL.

Discoverer allows you to make queries, while Reports lets you publish reports in
different formats, including HTML, Adobe's Portable Document Format (PDF), and
XML.

Customizing Oracle Discoverer™ 4i Viewer
This chapter provides customization examples and describes strategies for using
Discoverer 4i Viewer.

« XML and XSL: Discoverer4i Viewer uses industry standard XML to represent
data and application states, and the XSL style sheet language to format the User
Interface. Standard XSL tools can be used to customize the User Interface or to
produce a complete embedded Business Intelligence application.

« HTML: You can specify HTML formatting attributes in a single customization
file. Fonts, colors, and graphics are easily changed especially if you are familiar
with HTML formatting.

Discoverer4i Viewer can be driven and accessed by middle-tier B2B applications.

More Information on Discoverer 4i Viewer
For more information on Discoverer4i Viewer see:

http://technet.oracle.com/docs/products/discoverer/doc_index.htm

7-2 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Discoverer 4i Viewer: Features

Discoverer 4i Viewer: Features

Discoverer 4i Viewer allows you to:

Run Reports

Dynamically run reports saved in the database.
Enter parameters at runtime.

Run scheduled reports.

Cancel a query.

Page between dimension values on the page axis.
Change workbook and database options.

Print reports.

Export reports to various file formats such as HTML, Excel, and other PC
file formats.

Analyse Data

Perform drill down analysis.
Drill through different levels of summarized data.

Drill out to data held in other applications, such as web pages, MS Word
documents, and so on.

Pivot data from one axis to another to arrange it for efficient analysis and
comparison

Control Queries

Control query execution time. If a query is still running when the time
threshold is reached, the query is automatically terminated.

Display a query estimate. If a query is predicted to take longer than a
predefined time threshold, Discoverer Viewer warns you and allows you to
determine if the query should be run.

Automatically redirect queries to summary tables. Requests for
summarized data are automatically redirected to a summary table
containing pre-summarized data.

Secure Data Access

Leverage the security features of the web server and database.

Customizing Discoverer 4i Viewer with XSL 7-3

Discoverer 4i Viewer: Architecture

« Go through multiple firewalls
« Support SSL, x.509 and other standard web security protocols
« Support disconnected access to the data
« Use Browser Options to:
« Bookmark favorite reports
« Embed reports in other web pages
« Change font sizes and link styles by changing browser options

« Export output to other formats, such as Excel for further spreadsheet
analysis.

« View reports offline (Internet Explorer 5)

Discoverer 4i Viewer uses no Java and no frames, enabling even low
specification browsers to be used. Where JavaScript is enabled, Discoverer uses
it to 'enhance’ the user interface. But JavaScript is not required and the user
interface degrades gracefully if JavaScript is not enabled.

« Discoverer reports can be embedded:

« Inexisting Web Pages by specifying a URL that defines the workbook and
worksheet to be included. When the link is clicked the database is queried
and the latest data is displayed in HTML.

« Inportals such as Oracle Portal (also known as iPortal and previously
known as WebDB) and can take on the look and feel of the hosting portal.

« Used to build complete custom Web applications or deliver data to other
middle tier web systems.

Discoverer 4i Viewer can be used in the following ways:
« Asastandalone Business Intelligence tool
« To integrate database output into your Web site and portal

« Customized to fit in with your Web site look and feel, to incorporate your
companies logo or other artwork, or to build custom Discoverer applications for
the Web.

Discoverer 4i Viewer: Architecture

The Discoverer 4i Viewer architecture is shown in Figure 7-1.

7-4 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

How Discoverer 4i Viewer Works

Discoverer 4i Viewer components are listed below;

Oracle Discoverer Application Server: The engine for Discoverer Web solutions
Web Server and servlet container, such as, Apache and Apache JServ (JVM)
Oracle XML Parser for Java v2. This includes the XSLT Processor

Discoverer 4i Viewer Servlet

Discoverer Server interface, a Java module

Oracle9i database

How Discoverer 4i Viewer Works

See Figure 7-1 to understand how Discoverer 4i Viewer works:

1.

Discoverer 4i Viewer is invoked via a URL from a standard Web Browser, just
like any other Web Site. The URL is processed by the 4i Viewer Servlet running
on the Web Server.

The servlet uses Discoverer Server Interface (Model) to communicate with the
Discoverer Application Server. Discoverer Server Interface and Discoverer
Application Server are both also used by Discoverer Plus:

Discoverer Server Interface. This is an applet but here it is running on the Web
Server, rather than in the client’s JVM as in Discoverer Plus. The 4i Viewer
Servlet communicates with Discoverer Application Server using Corba IIOP
protocol.

Discoverer 4i Viewer andDiscoverer Plus use the same Discoverer Application
Server.

Discoverer 4i Viewer Servlet interprets the HTTP request from the client
browser, and makes the necessary calls to the Discoverer Application Server.
The server response is represented in XML generated by the servlet and is sent
to the XML/XSL processor (XSLT Processor).

This combines the XML with an XSL configuration file that defines the
representation of the User Interface and,

XSLT Processor generates HTML to send back to the browser.

It is the XSL file that allows the User Interface of Discoverer 4i Viewer to be
customized for individual sites.

Customizing Discoverer 4i Viewer with XSL 7-5

How Discoverer 4i Viewer Works

Figure 7-1 Discoverer 4i Viewer Architecture

Discoverer 4i Viewer

Web Server

XML Parser
O HTvL
Browser QR XSL-T
Processor

Client

HTTP XML

XSL
stylesheets

4i Viewer
Servlet

Discoverer
Server Interface
(Model)

4

lIIOP

] . Discoverer
grf%%eegr’ 25Ny | Application

database Server

End User Layer /
Application Data

Replicating Discoverer Application Server

The Web Server and the Discoverer 4i Viewer Servlet container can be replicated
using standard web farming and virtual hosting techniques.

In a real system there would be many users using each web and application server.

Discoverer allows you to determine exactly how you want the load spread across
available machines.

7-6 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Using Discoverer 4i Viewer for Customized Web Applications

Using Discoverer 4i Viewer for Customized Web Applications

Discoverer 4i Viewer generates HTML by using the following XML components:
« XML, which describes the information available

« XSLT Processor and XSL stylesheets which define how that information should
be represented in HTML

XSL configuration file (stylesheet) defines simple attributes, such as the fonts and
colors to use, but it also defines the layout of each page, and the interactions with
the user. By customizing the XSL stylesheet, specific Discoverer applications can be
built and delivered on the Web.

Note: The application described here was run on the Internet
Explorer 5.x browser.

Step 1: Browser Sends URL

After login, assume a Discoverer Viewer has asked for a list of workbooks that these
workbooks are allowed to be opened in order to analyse their business. The URL
issued is http://ukpl14910.uk.oracle.com/disco/discodiv?us=video&db=Disco

The URL specifies the machine the servlets are installed on, the username, and
database connection string to use. The password is not normally shown on the URL
for security reasons.

Step 2: Servlet Generates XML

Discoverer 4i Viewer Servlet processes the URL. It instructs the Discoverer
Application Server to check the security setting for this user and return details of
the workbooks that this user is allowed to access.

Security settings are held in the End User Layer tables in the database. After this
information is returned from the Discoverer Application Server, the servlet
generates the following XML in which you can see information about the three
workbooks being returned:

» Store and Band Analysis workbook
« Video Sales Analysis workbook

« Annual Sales Report workbook

Customizing Discoverer 4i Viewer with XSL 7-7

Using Discoverer 4i Viewer for Customized Web Applications

Discoverer XML Example 1: Three Workbook Report Data

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xs!" href="examplel.xsI"?>
<discoverer version="3.5.8.12" login_method="discoverer">
<account name="myname@mydatabase" ref="MYNAME%o40mydatabase>
<user>MYNAME</user>
<database>mydatabase</database>
<eul default="true" name="myeul">
<workbook name="Store and Band Analysis" ref="Store~20and~20Band~20Analysis™>
<description>Shows sales by Store, broken into sales bands</description>
<Mvorkbook>
<workbook name="Video Sales Analysis" ref="Video~20Sales~20Analysis >
<description>General purpose analysis of the business</description>
<orkbook>
<workbook name="Annual Sales Report' ref="Annual~20Sales~20Report™>

<description>Shows yearly and quarterly sales of products</description>
<Mvorkbook>

<leu>
<faccount>
</discoverer>

Note: There is no information in the XML about how these

workbooks names and descriptions should be displayed to the user.
This is the function of the XSL file.

Step 3: XSLT Processor Applies an XSL Stylesheet

XSL is the industry standard stylesheet language defined by W3C. It allows a

selection of elements from an XML file to be combined with an HTML template to
generate HTML output for a Web Browser.

Discoverer 4i Viewer User Interface is entirely defined in XSL. This means it can be
customized or copied to define alternative User Interface (Ul) styles using standard

Web development tools, such as HTML editors, XSL editors, or even simple text
editors.

Step 4: XSLT Processor Generates HTML
The XSL and XML .

7-8 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Using Discoverer 4i Viewer for Customized Web Applications

Using the XML generated in Step 2 and the standard Discoverer 4i Viewer XSL
configuration file (stylesheet), these are combined in the XSLT processor in the XML
Parser for Java,v2. This then generates the HTML version of the XML document.

This HTML is sent back to the browser in response to the initial URL.

In Discoverer 4i Viewer, the generated HTML does not use frames and therefore
makes minimal demands on the browser or internet device. Hence it is easy to
integrate with other web applications or portals. Where JavaScript is enabled,
Discoverer uses it to 'enhance’ the user interface. But JavaScript is not required and
the user interface degrades gracefully if JavaScript is not enabled.

Customizing Discoverer 4i Viewer with XSL 7-9

Customizing Style by Modifying an XSL Stylesheet File: style.xsl

Customizing Style by Modifying an XSL Stylesheet File: style.xsl

You need to be able to easily modify fonts and colors to fit in with your corporate
standards, or to display the company logo to add branding. These global changes

can be made in a single XSL stylesheet file "style.xsl" that defines special ‘tags’ for
each style that can be modified. For example:

« Inserting Logos: To insert a logo change the following line :

<xslvariable name="logo_src"> </xsl:variable name>
to

<xslvariable name="logo_src"> httpmww.mycompany.comimages/mylogo.gif
</xslvariable name>

« Changing the Text Color: To change the color of the text, change the following
line and add the appropriate color code.

<xslvariable name="text_color">#000000</xsl.variable>

Many global style changes can be made in this way, but the overall operation of the
User Interface remains unchanged. This is only one way of customizing Discoverer

4i Viewer. In fact, using XSL allows a complete customized application to be made,
as the next example shows.

Discoverer 4i Viewer: Customization Example Using XML and XSL

You can use the XML and XSL fragments below to experiment with customization
in a Web Browser.

Step 1: The XML File

The data is a standard XML file, similar to the previous "Discoverer XML Example
1™
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xs!" href="examplel.xsI"?>
<discoverer version="3.5.8.12" login_method="discoverer>
<account name="myname@mydatabase" ref="MYNAME%o40mydatabase'>
<user>MYNAME</user>
<database>mydatabase</database>
<eul default="true" name="myeul">
<workbook name="Store and Band Analysis" ref="Store~20and~20Band~20Analysis">
<description>Shows sales by Store, broken into sales bands</description>

7-10 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Discoverer 4i Viewer: Customization Example Using XML and XSL

<fworkbook>
<workbook name="Video Sales Analysis" ref="Video~20Sales~20Analysis™>
<description>General purpose analysis of the business</description>
<forkbook>
<workbook name="Annual Sales Report' ref="Annual~20Sales~20Report™>
<description>Shows yearly and quarterly sales of products</description>
<fworkbook>
<leu>
</account>
</discoverer>

The XML file starts by specifying the XML version. The 2nd line specifies the XSL
file to be applied to process the data, "examplel.xsl" and the rest of the file is
generated from the Discoverer 4i Viewer.

The first two lines have been added here so that you can type the text into a file
using a text editor and then open it in a Web Browser to see the results visually as
the XSL is changed. Save the file with the extension "xml" if you want to try this.

Step 2: XSL File, examplel.xsl
XSL file, "examplel.xsl", looks like this :

<?xml version="1.0" encoding="UTF-8"?>
<xslstylesheet version="1.0" xmins:xsl="http:/Ammw.w3.0rg TRAWD-xsI">
<xsltemplate match="/">
<htmb>
<body bgcolor="#ffffff" link="#663300" text="#000000">
<i>Choose a Workbook:</i>

<table border="2">
<xsl-for-each select="/discoverer/account/eulivorkbook >
<>
<td width="242">

<xslvalue-of select="@name"/>

<ftd>
<td>
<xslvalue-of select="description/>
<fd>
<fr>
</xslfor-each>
<table>

<lbody>

Customizing Discoverer 4i Viewer with XSL 7-11

Discoverer 4i Viewer: Customization Example Using XML and XSL

<htmi>
</xsltemplate>
</xslstylesheet>

Step 3: XML+XSL = HTML

Figure 7-2 shows what you see on a Browser when the XML file is opened in the
Browser, the Browser reads in the XSL stylesheet (examplel.xsl), and generates
HTML.

Figure 7-2 List of Workbooks Viewed on Browser, XML+ examplel.xsl=HTML —
Before Modification

Choose a Workbaok :

IStore and Band Analysis |Shows sales by Store, broken into sales bands
I"u'ideo Sales Analysis |Ganeral purpose analysis of the Business
IAnnuaI Sales Report |Sh-::-ws vearly and quarterly sales of products

Table 7-1 examines the XSL file, examplel.xsl, from line 5. It describes how the
HTML is generated. The file starts by specifying the XML version. The 2nd line says
that this file is a stylesheet. The HTML template starts with the <HTML> tag on line

4,

Table 7-1 Explaining examplel1.xsl — Before Modifying the XSL File

examplel.xsl code The code means ...
<body bgcolor="#ffffff" link="#663300" text="#000000"> This line defines the colors to be used
<p><i>Choose a Workbook :</i> This is just more HTML. It sets a bold italic font and

inserts the text "Choose a workbook :"

<table border="2"> An HTML table is started, with a 2 line border.

7-12 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Discoverer 4i Viewer: Customization Example Using XML and XSL

Table 7-1 Explaining examplel.xsl (Cont.) — Before Modifying the XSL File (Cont.)

examplel.xsl code

The code means ...

<xsl:for-each select="discoverer/account/eul/workbook">

This is the first real XSL code. It means :

Go through the XML data file and for each workbookinfo
tag perform all the following steps until you reach the
end tag : </xsl:for-each>.

So for every workbook that appears in the XML file the
following XSL is processed, and a row is inserted into the
HTML table for every workbook found :

<tr>
<td width="242">

<xsl:value-of select="@name"/>

<tr> starts a new row in the table

<td> defines the table data to be inserted for the first
column. The width of the column is set to 242 pixels and
the font is set to sans-serif.

The XSL line inserts the text from the XML file for the

 <NAME> tag under each workbookinfo section.
<ftd>
<td> These lines define the 2nd column in the HTML table
. _n P and insert the text for the workbook description using
<xsl: - = . A .
xslvalue-of select="description"’> the <DESCRIPTION> tab in the XML file. So each row in
</td> the HTML table will contain the workbook name, made

<[tr>

into a link to click on, and the workbook description as
text. Since there are three workbooks in the XML file,
there will be three rows in the table.

Note:

« This example is not exactly how the Discoverer 4i Viewer shows
the list of workbooks. It has been simplified here for clarity, but
it illustrates how the XSL stylesheet controls the appearance of
the output. See Figure 7-4 for a more typical rendition.

« In Discoverer 4i Viewer, the XML and XSL are combined in the
XSLT Processor on the middle tier, and not in the Web

Browser.

Step 4: Customizing the XSL Stylesheet (example2.xsl)
The XSL stylesheet is modified as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmins:xs="http/Amww.w3.0rg TRAWD-xsI >

Customizing Discoverer 4i Viewer with XSL 7-13

Discoverer 4i Viewer: Customization Example Using XML and XSL

<xsltemplate match="/">
<htmb>
<body bgcolor="ffff" link="#663300" text="#000000">
<table border="0">
<>
<td>width="500" height="100" background="disco_banner.gif>

Performance Reports
<ffont>
<ftd>
<fr>
<table>
<table border="0">
<xslfor-each select="/discoverer/faccount/eulivorkbook'>
<>
<td>

<xsl:attribute name="alt">
<xslvalue-of select="description"/>
</xslattribute>
<fimg>
<Ja>

<ffont>
<td>
<td>

<xslvalue-of select="@name"/>
<ffont>
<fd>
<fr>
</xsl-for-each>
<table>
</body>
<htmb>
</xsltemplate>
</xslstylesheet>

When this is combined with the same XML, it appears as shown in Figure 7-3.

7-14 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Discoverer 4i Viewer: Customization Example Using XML and XSL

Figure 7-3 Displayed Workbook List Using Same XML with a Modified XSL
Stylesheet

Performance reports

4 Store and Band Analysis

—LFS‘}"DWS sales by Store, broken into sales bands]|

Wideo Sales Analysis

Annual Sales Report

Now the appearance of the User Interface is completely different, as it takes on a
more graphical look and feel. Instead of text links there are graphical buttons for

running the reports, each with a dynamic ‘tool tip’ that pops up when you position
the mouse over the button.

The modified XSL file is described in Table 7-2.

Figure 7-4 shows a typical web-based rendition of this sample application.

Customizing Discoverer 4i Viewer with XSL 7-15

Discoverer 4i Viewer: Customization Example Using XML and XSL

Table 7-2 Explaining example2.xsl — After Modifying the XSL File

example2.xsl code

The code means ...

<table border="0">
<tr>

<td width="500" height="100" background="disco_banner.gif">

Performance reports
<[font>
<ftd>
<ftr>
<[table>

These lines create a table and insert a graphic
and the heading "Performance Reports"

<table border="0">
<xsl:for-each select="discoverer/account/eul/workbook">

This starts the main table that the workbook
names will be displayed in, as before, but now
there is no border around the table and the
rows are defined differently:

<tr>
<td>

<xsl:attribute name="alt">
<xsl:value-of select="description"/>
</xsl:attribute>
<fimg>
<fa>

<[font>

The first table data column is defined as a
hyperlink again, but this time with the image
"button2.gif* as an image, rather than a text
link. The font used is "sans-serif".

To get a "tooltip" to appear over an image the
HTML "alt" attribute is used.

Normally the alt attribute is used with a
simple text string :

<img src="button2.gif" alt="Tooltip text to appear when a
mouse is over the image">

but since we want the tool tip to be dynamic
we generate the alt tag by getting the text from
the <description> tab in the XML file. The
<xsl:attribute> tag does this.

<xsl:value-of select="description"/> The second data
column selects the name of the workbook to
display, by using XSL to get it from the XML
file as before.

7-16 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Discoverer 4i Viewer: Customization Example Using XML and XSL

Figure 7-4 Discoverer 4i Viewer. Typical Web-Based Rendition as a Business
Solution

B hscmenim i Viswsr Vidan 5 sl Anskaiy -3 Bl wa i adaa | s ke bain| - Hicican® |nismel [epleie

| F ES Wew Fpols Tek beb
..ﬂdﬂlﬂjﬂl{'n*#'ﬂﬂ.

Ak 7 Rebgsh Home | Feoch Fawsiss Mol Wyl Sue Fad Bl
L e Vo 'uou'am:--i (ks e mmﬁhmeMcM~mmmmw-=mn*s-a-ut:-n-l-!-.:- w--l:j e Il-h'

e

Video Sales Analysis

R |

e shéeds

Salmr BB | -
Dpart=ant | Heserage | Jurs | Laser | Bracko | Vides §'v'icke Fum
Feantal | Dis Resnal | Eale
Feng
¥ Ragian | F Cicy
[N e e) i
B Chricags Jalif Jri o | ¥ s BEARI Q) BiJakE | BEIA
[=Ter— [s] wone] wsn]] we] s | wo
¥ Cullss = B B wil scpal wram | mesm
¥ Lamdaeils : yHal el sl AET] RIGAR) 806 Ad7 | e R
F Ktinewapshio | FTAY WOTOQ 40 T ey | 86 RE7 | AvE B | a0 s]

Customizing Discoverer 4i Viewer with XSL 7-17

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

Explaining Servlets

Question
What is a servlet?

Answer

Servlets are modules of Java code that run in a server application (hence the name
"Servlets", similar to "Applets" on the client side) to answer client requests. Servlets
are not tied to a specific client-server protocol but they are most commonly used
with HTTP and the word "Servlet" is often used in the meaning of "HTTP Servlet".

Servlets make use of the Java standard extension classes in the packages
javax.servlet (the basic Servlet framework) and javax.servlet.http (extensions of the
Servlet framework for Servlets that answer HTTP requests). Since Servlets are
written in the highly portable Java language and follow a standard framework, they
provide a means to create sophisticated server extensions in a server and operating
system independent way.

Typical uses for HTTP Servlets include:
« Processing and storing data submitted by an HTML form.

« Providing dynamic content, such as returning the results of a database query to
the client.

« Managing state information on top of the stateless HTTP, such as for an online
shopping cart system which manages shopping carts for many concurrent
customers and maps every request to the right customer.

How Discoverer 4i Viewer Communicates with Browsers

Question
What does Discoverer 4i Viewer use to communicate with the user’s browser?

Answer
HTTP and HTML.

7-18 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

Discoverer 4i Viewer and XML

discodiv.xml

Question
How is XML used by Discoverer 4i Viewer?

Answer

XML is generated by the middle-tier and represents the application state.
Discoverer 4iViewer Servlet interprets an HTTP request from the user’s browser,
and makes the necessary calls to the Discoverer Server.

The server response is represented in XML generated by the Servlet. XSL is applied
to this XML, producing the HTML that is displayed by the users browser.

By using XML and XSL together, the underlying data and the look and feel are
separated allowing easy customization.

Question
What does the disco4iv.xml file do?

Answer

You can use discodiv.xml file to configure various options to make Discoverer 4i
Viewer behave the way you want to. For example, you can specify the Discoverer
Session that it should connect to.

Discoverer 4i and XSL

Question
How is XSL used by Discoverer 4i Viewer?

Answer

Discoverer 4i Viewer uses XSL (or more specifically XSLT) to transform the XML
generated by the middle-tier into the HTML that is sent to the user’s browser. By
editing the XSL files, you gain complete control over the style and presentation of
the ULI.

Customizing Discoverer 4i Viewer with XSL 7-19

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

Supported XSLT Processors

XSL Editors

Question
What XSL processors can be used by Discoverer 4i Viewer?

Answer

Discoverer 4i Viewer can be configured to use Oracle XSLTProcessor. This is the
default and part of the XDK for Java.

Question
What tools are available to edit XSL Stylesheets?

Answer

You can use any text editor to edit XSL files however the following applications are
designed especially for editing XSL:

« eXcelon Stylus
« IBM XSL Editor
« XML Spy

Customizing Stylesheets

Question
What is commonly changed in order to customize a stylesheet?

Answer
To customize a styelsheet, edit the following items:

« discodiv.xsl to define the types of HTML pages and the rules for when they are
displayed

« page_layouts.xsl to define the overall layout of each type of HTML page

« gui_components.xsl to define the look of each GUI component used in the page
layouts

7-20 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

style.xsl to define the style of various fonts used in Discoverer 4i Viewer
errors.xsl to create your own custom error messages

functions.xsl (not recommended) to change the behavior of the core functions
used by the other XSL files

scripts.xsl (not recommended) to change the JavaScript used to enhance the Ul

render_table.xsl (not recommended) to change how the table/crosstab is
rendered

Viewing Changes to a Modified Stylesheet

Question
When | customize my own XSL Stylesheet, why can’t | see my changes?

Answer

By default, the XSLT Processor caches the XSL files in its memory for better
performance. You have two options for viewing the changes:

Restart the servlet (by restarting the web server) every time you want to see
your new changes. This makes the servlet re-read the XSL files from disk.

Disable XSL caching. To do this, add the following line to the <document>
section of the discodiv.xml file and restart the web server.

<argument name="xsl_cache">false</argument>

Browser Displays Blank Screen

Question
Why does my browser display a blank screen?

Answer
This is usually because you have done either of the following:

Called an XSL template that does not exist

Tried to use a variable that does not exist

Customizing Discoverer 4i Viewer with XSL 7-21

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

More information on XML and XSL

Question
Where can | find more information on XML and XSL?

Answer
« http://java.sun.com/docs/books/tutorial/servlets/|

« http://www.w3.0rg/Style/XSL/

« http://www.w3.org/ XML/

« http://www.builder.com/Authoring/ZXmlSpot/?tag=st.cn.srl.ssr.bl_xml

« http://zvon.vscht.cz/ZHTMLonly/XSLTutorial/Books/Book1/bookinOne.html

« http://www.arbortext.com/Think_Tank/Norm_s_Column/lssue_One/Issue_
One.html

« http://www.dpawson.co.uk/xsl/sect21.html

Discoverer Viewer XMLs DTD

Question
What is the structure of the Discoverer Viewer XML?

Answer

The XML documents generated by Discoverer Viewer conform to the following
DTD:

<?xml version="1.0" encoding="UTF-8"?>
<IELEMENT account (error*, user?, database?, connect?, role*, eult, option*,
version*)>
<IATTLIST account
name CDATA#MPLIED
mv_summaries_supported (true | false) "true”
ref CDATA#IMPLIED
>

<IELEMENT axes (axisy*>

<IELEMENT axis (ten*)>
<IATTLIST axis

7-22 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

position (M | x |y | z) #BREQUIRED
>

<IELEMENT background_color EMPTY>
<IATTLIST background_color

red CDATA#REQUIRED

green CDATA#REQUIRED

blue CDATA#REQUIRED
>

<IELEMENT cel EMPTY>
<IATTLIST cell

result CDATA#REQUIRED
>

<IELEMENT chart (page_item*, dimiimage_map)>
<IATTLIST chart

name CDATA#REQUIRED

height CDATA#REQUIRED

width CDATA#REQUIRED
>

<IELEMENT command (#PCDATA)>
<IATTLIST command

name CDATA#REQUIRED

ref CDATA#MPLIED

implied (true | false) "false”

valid (true | false) "true”
>

<IELEMENT connect (#PCDATA)>
<IELEMENT data (value, qdr?)>
<IELEMENT database (#PCDATA)>
<IELEMENT date (#PCDATA)>
SIATTLIST date

ref CDATA#IMPLIED
>

<IELEMENT description (#PCDATA)>
<IELEMENT error (#PCDATA | command)*>
<IATTLIST emor

code CDATA#REQUIRED

Customizing Discoverer 4i Viewer with XSL 7-23

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

severity CDATA#MPLIED
>

<IELEMENT discoverer (session, request, account*, export*, locale?, version*)>
<IATTLIST discoverer

login_method (application | discoverer) "discoverer"
>

<IELEMENT diil (4PCDATA)>
<IATTLIST dill

ref CDATA#MPLIED
>

<IELEMENT drill_path (4PCDATA)>
<IATTLIST dril_path
name CDATA#REQUIRED
hierarchy_name CDATA#MPLIED
direction (collapse | up | down) #REQUIRED
level CDATA#REQUIRED
ref CDATA#REQUIRED
>

<IELEMENT edge (item™*, edge_row*)>
<IATTLIST edge

placement (page | side | top) #REQUIRED
>

<IELEMENT edge_row (value®)>

<IELEMENT eul (workbook*, version*)>
<IATTLIST eul

name CDATA#REQUIRED

default (frue | false) "false”

ref CDATA#IMPLIED
>

<IELEMENT export (#PCDATA)>
<IATTLIST export
name CDATA#REQUIRED
ref CDATA#IMPLIED
format CDATA#REQUIRED
>

<IELEMENT font EMPTY>
<IATTLIST font

7-24 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

name CDATA#REQUIRED

size CDATA#REQUIRED

bold (true | false) ‘false”

italic (true | false) "false™

strikeout (true | false) 'false”

underiine (true | false) "false”
>

<IELEMENT foreground_color EMPTY>
<IATTLIST foreground_color

red CDATA#REQUIRED

green CDATA#REQUIRED

blue CDATA#REQUIRED
>

<IELEMENT format (background_color, foreground_color, graphic_bar_color?, font)>
<IATTLIST format

id CDATA#REQUIRED

description CDATA #IMPLIED

display_name CDATA#MPLIED

horizontal_alignment (left | center | default | right) #REQUIRED

vertical_alignment (bottom | center | top | lower_bound | upper_bound)
#REQUIRED

graphic_bar_visible (true | false) ‘false”

word_wrap (true | false) "false™
>

<IELEMENT format_map (format)>

<IELEMENT graphic_bar_color EMPTY>
<IATTLIST graphic_bar_color

red CDATA#REQUIRED

green CDATA#REQUIRED

blue CDATA#REQUIRED
>

<IELEMENT group (value*, group*, data*)>

<IELEMENT item (drill_path®, sort)>
<IATTLIST item
name CDATA#REQUIRED
key CDATA#REQUIRED
id CDATA#MPLIED
format_class CDATA#MPLIED
heading CDATA#MPLIED

Customizing Discoverer 4i Viewer with XSL 7-25

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

>
<IELEMENT layout (row*)>

<IELEMENT locale (#PCDATA)>
<IATTLIST locale
language CDATA#REQUIRED
country CDATA#REQUIRED
>

<IELEMENT measure_edge (item+)>

<IATTLIST measure_edge
placement CDATA#REQUIRED
level CDATA#REQUIRED

>

<IELEMENT option (#PCDATA)>
<IATTLIST option
name (aq | fid | msa | nad | nv | qif | il | gpw | grl | ot | rpp | usd)
#REQUIRED
enable (true | false) "false”
>

<IELEMENT page_item (drill_path*, sort*, value+)>
<IATTLIST page_item

name CDATA#REQUIRED

ref CDATA#MPLIED

key CDATA#IMPLIED

id CDATA#IMPLIED

format_class CDATA#IMPLIED

heading CDATA#MPLIED
>

<IELEMENT parameter (value, prompt)>
<IATTLIST parameter
name CDATA#REQUIRED
ref CDATA#MPLIED
description CDATA#IMPLIED
lov_exists (true | false) "false”
muttivalued (true | false) 'false”
wildcard_supported (true | false) "false”
type CDATA#REQUIRED
>

<IELEMENT prompt (#4PCDATA)>

7-26 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

<IELEMENT g (#PCDATA)>

<IELEMENT query (parameter*, axes, sheet_data?, chart?, drill?)>
<IATTLIST query

version CDATA#REQUIRED

status CDATA #REQUIRED

step CDATA#REQUIRED

elapsed CDATA#IMPLIED

estimate CDATA#REQUIRED
>

<IELEMENT request (error*, commanad*)>
<IATTLIST request
source CDATA#REQUIRED
parameters CDATA#MPLIED
>

<IELEMENT role (#PCDATA | security_group)*>
<IATTLIST role

name CDATA#REQUIRED

ref CDATA#MPLIED

current (frue | false) "false”
>

<IELEMENT row (celty>
<IELEMENT security_group (#PCDATA)>

<IELEMENT session EMPTY>
<IATTLIST session

id CDATA#REQUIRED
>

<IELEMENT sheet_data (page_item®*, format_map?, edge*, measure_edge?, group*,
errort)>
<IATTLIST sheet_data
name CDATA#REQUIRED
row_range_begin CDATA#REQUIRED
row_range_end CDATA#REQUIRED
total_rows CDATA#REQUIRED
mode (inline | outiine) #REQUIRED
>

<IELEMENT sheet_layout (axis+)>

Customizing Discoverer 4i Viewer with XSL 7-27

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

<IELEMENT sort EMPTY>
<IATTLIST sort
type (none | group | hidden | page) #REQUIRED
direction (hi_lo|lo_hi) #REQUIRED
line_width CDATA #IMPLIED
spaces CDATA#MPLIED
level CDATA#MPLIED
>

<IELEMENT time (#PCDATA)>
<IATTLIST time

ref CDATA#MPLIED
>

<IELEMENT title (4PCDATA)>
<IELEMENT user (#PCDATA)>

<IELEMENT value (#PCDATA | drill_path)*>
<IATTLIST value
current (true | false) "false”
default (rue | false) "false”
wildcard (true | false) "false”
ref CDATA#MPLIED
format_class CDATA#MPLIED
item_class CDATA #IMPLIED
type (item | spacing | total) iIMPLIED
id CDATA#MPLIED
data CDATA#MPLIED
label CDATA#MPLIED
>

<IELEMENT version EMPTY>

<IATTLIST version
component CDATA#REQUIRED
product CDATA#REQUIRED
version CDATA#REQUIRED

>

<IELEMENT workbook (description?, worksheet*, date?, ime?)>
<IATTLIST workbook

name CDATA#REQUIRED

ref CDATA#MPLIED

7-28 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

<IELEMENT worksheet (description?, sheet_layout?, tile?, layout?, query*)>
<IATTLIST worksheet

name CDATA#REQUIRED

ref CDATA#REQUIRED
>

<IELEMENT dimimage_map (GraphMap)>
<IATTLIST dimimage_map

xmins:dim CDATA#REQUIRED
>

<l-
The GraphMap and related entities are provided by the Bl Beans team.
-
<IELEMENT GraphMap (DataLine | DataMarker | TwoDMarker | StockMarker |
AreaMarker | ThreeDMarker | LegendMarker |
LegendText| MarkerText | PieLabel | Slice | SliceLabel | O1TickLabel |
X1TickLabel | O1Tite | X1Tite |
Y1TickLabel | YATitle | Y2TickLabel | Y2Title | ZTickLabel | ZTite | Tite
| Subtitie | Footnote)*>

<IELEMENT DataLine (Group, Series, Tooltip?, Geometry)>

<IELEMENT DataMarker (Group, Series, Tooltip?, Geometry)>
<IELEMENT TwoDMarker (Group, Series, Tooltip?, Geometry)>
<IELEMENT StockMarker (Group, Series, Tooltip?, Geometry)>
<IELEMENT AreaMarker (Group, Series, Tooltip?, Geometry)>
<IELEMENT ThreeDMarker (Group, Series, Toolip?,Geometry)>
<IELEMENT LegendMarker (Series, Geometry)>

<IELEMENT LegendText (Series, Geometry)>

<IELEMENT MarkerText (Group, Series, Geometry)>
<IELEMENT PieLabel (Group, Geometry)>

<IELEMENT Slice (Group, Series, Tooliip?, Geometry)>
<IELEMENT SliceLabel (Group, Series, Geometry)>
<IELEMENT O1TickLabel (Group, Geometry)>

<IELEMENT X1TickLabel (Geometry)>

<IELEMENT O1Title (Geometry)>

<IELEMENT X1Title (Geometry)>

<IELEMENT Y1TickLabel (Geometry)>

<IELEMENT Y1Tite (Geometry)>

<IELEMENT Y2TickLabel (Geometry)>

<IELEMENT Y2Title (Geometry)>

<IELEMENT ZTickLabel (Series, Geometry)>

<IELEMENT ZTitle (Series, Geometry)>

Customizing Discoverer 4i Viewer with XSL 7-29

Frequently Asked Questions (FAQs): Discoverer 4i Viewer

<IELEMENT Title (Geometry)>
<IELEMENT Subtitle (Geometry)>
<IELEMENT Footnote (Geometry)>
<IELEMENT Group (#PCDATA)>
<IELEMENT Series (#PCDATA)>
<IELEMENT Tooltip (Line)*>

<IELEMENT Line ##PCDATA)>
<IELEMENT Geometry (Vertex)>
<IELEMENT Vertex EMPTY>

<IATTLIST Vertex x CDATA#REQUIRED>
<IATTLIST Vertexy CDATA#REQUIRED>

7-30 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

8

Online B2B XML Application: Step by Step

This chapter contains the following topics:

Introduction to the Online B2B XML Application

Requirements for Running the Online B2B XML Application

Building the Online B2B XML Application: Overview

Why Transform Data to XML?

Why Use Advanced Queueing (AQ)?

Online B2B XML Application: Main Components

Overview of Tasks to Run the Online B2B XML Application

Online B2B XML Application: Setting Up the Database Schema

« SQL Code Calling Sequence

« Create and Build the Retailer and Supplier Schemas

« Create the AQ Environment and Queue Tables

« Create the Broker Schema Including XSL Stylesheet Table

« Cleaning Up Your Environment and Preparing to Rerun Application
Online B2B XML Application: Data Exchange Flow

Retailer-Supplier Transactions

Running the B2B XML Application: Detailed Procedure

« Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog
« Step 2. Retailer Places Order

Online B2B XML Application: Step by Step 8-1

« Step 3. "Validate” Commits the Transaction. Retailer Application Produces
the XML Order

« Step 4. AQ Broker-Transformer Transforms XML Document According to
Supplier’s Format

« Step 5. Supplier Application Parses the XML Document and Inserts the
Order into the Supplier Database

« Step 6a. Supplier Application Alerts Supplier of Pending Order

« Step 7. AQ Broker-Transformer Transforms XML Order into Retailer’s
Format

« Step 8. Retailer Application Updates the Ord Table and Displays the New
Order Status to Retailer

« Java Examples - Calling Sequence

« XSL and XSL Management Scripts

« XML Process and Management Scripts

« Other Scripts Used in the B2B XML Application

« Retailer Scripts

« AQ Broker-Transformer and Advanced Queuing Scripts

« Supplier Scripts

8-2 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Building the Online B2B XML Application: Overview

Introduction to the Online B2B XML Application

This chapter describes all the steps and scripts you need to build an online B2B
XML application.

A modified version of this application is available on Oracle Technology Network
(OTN) site: http://otn.oracle.com/tech/xml, under "WebStore B2B Demo". This
modifed version adds support for multiple Suppliers and Retailers, and can be
expanded for a larger B2B online data exchange than is described in this chaper.
You can also download the scripts from this OTN site.

Requirements for Running the Online B2B XML Application
The following lists requirements to build and run the online B2B XML application:
« Client:

« Operating system: Windows NT. The three .bat files used in this application
are Windows specific. However you could rewrite these in shell script for
UNIX systems, for exmple.

« Tools: JDeveloper 3.1 or higher: 208Mb
« XML and XSL editors: Any editor. You can also use any text editor

« Browser: Such as IE5.0, Netscape 5, or higher, and a PDA browser, such as
HandWeb.

« Middle Tier:
« Development environment needs 513Kb
« Runtime environment only needs 135Kb
« XSQL Servlet including the XML Parser for Java and XSU for Java
« HTTP Listener
« Server:

« Any Oracle and Java enabled server, such as Oracle8i Release 3 (8.1.7) or
higher

Building the Online B2B XML Application: Overview

This XML application and demo illustrate a content management and B2B
Messaging implementation. The main transactions in this application are as follows:

Online B2B XML Application: Step by Step 8-3

Building the Online B2B XML Application: Overview

A Retailer (R) places an order from any device, such as a browser, cell phone, or
PDA (Personal Digital Assistant)

The Supplier (S) is alerted that an order is received. After verifying inventory
and the retailer’s credit, the Supplier then clicks on the "Ship" button.

The Retailer and Supplier can then view the order’s shipping status from any
device

Problem

Retailers (R) need to automate the ordering of goods from several suppliers
(Supplier (S)) and be able to place the order view the order status from any device.

Solution
This solution implements the following:

Oracle XML components. To transform the HTML (or other format) order data
received from the Retailer’s web site into XML documents.

Oracle8i or higher Database(s). This solution assumes both the Retailer and
Supplier are storing their data in Oracle8i or higher databases.

An AQ Broker -Transformer. This AQ application manages the flow of orders
between the Retailer and Supplier. The Retailer submits the order in an AQ
gueue. The interested Supplier picks up (READS or dequeues) the order from
the queue. AQ is also used to extract intelligence regarding the flow of orders.
Each order is an XML message. This message is transformed into formats
recognizable by both the Retailer and Supplier.

Tasks Identified
The main tasks are shown in Figure 8-2.

1.

The Retailer enters an order from their Browser, Personal Digital Assistant
(PDA), or cell phone.

When the Retailer validates his order, the order is transformed into XML using
the XSQL Servlet.

The Retailer application sends the XML order to the AQ Broker.

AQ messaging is used to send the XML order data. The retailer views their
order status as "Pending”. AQ Broker reformats the XML order into a format
understood by the Supplier.

The Supplier application inserts the order into the Supplier database.

8-4 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Why Transform Data to XML?

6. The Supplier application parses the order and sends an alert to the Supplier that
an order has been received and is waiting processing.

7. Once the Supplier hits "Shipped" on his screen, AQ messaging is used to return
the XML order status data to the AQ Broker. The AQ Broker transforms the
returned XML Order status into a format recognized by the Retailer.

8. The Supplier receives the reformatted XML order status message. The Retailer
application updates the Retailer database with the new order status. The
Retailer views the order status, which is now "Shipped".

The detailed tasks involved, screens viewed, and scripts used, are described in
"Running the B2B XML Application: Detailed Procedure". and illustrated in
Figure 8-2, "Online B2B XML Application: Main Components”

XML and Oracle Components Used

« XSQL Servlet. This includes the XML-SQL Utility (XSU), XML Parser for Java
Version 2, and XSLT Processor

« Oracle8i Release 3 (8.1.7) or higher or Oracle9i

Tools Used
JDeveloper

Note: No pre-authored (static or composed) XML documents are
used in this B2B XML application. All XML documents in this
application are dynamically generated (decomposed) from the
database.

Why Transform Data to XML?

Retailers and Suppliers use many different formats.

Because Retailers use different order form formats, the Retailer’s order data is
transformed into XML so that any Supplier can recognize and process their orders.

Suppliers use different formats for their order status and acknowledgement data.
This data is converted to XML so that any Retailer can recognize the order status
and acknowledgement.

Online B2B XML Application: Step by Step 8-5

Why Use Advanced Queueing (AQ)?

Note: This solution uses a finite set of two predetermined
customer order document formats.

Retailer’s Order Data: The order data, stored in the Retailer Database R, is
transformed by the AQ Broker using the appropriate XSL stylesheet into a
format recognized by the specific Supplier.

Supplier’s Order Status Data: This data is transformed by the AQ Broker using
the appropriate XSL stylesheet into a format recognized by the specific Retailer.

Note: The Transformer API and associated tables can reside
anywhere, including the Retailer’s or Supplier database.

Figure 8-1 illustrates the overall flow of the Retailer-Supplier transaction. The
Retailer enters the order.

In an ideal world, if the order document format of every Retailer and every
Supplier were the same, the process would be simply as shown in A.

In the real world, order document formats of each Retailer and Supplier
typically differ. Making these transactions seamless is possible by converting
the data to XML. By applying XSL stylesheets the data format can then
customized and displayed by any device and in multiple formats.

Why Use Advanced Queueing (AQ)?

Using AQ in this application has the following advantages:

AQ manages the flow of orders from Retailers to Suppliers and order status
updates and acknowledgements from Suppliers to Retailers.

AQ separates the Retailer from Supplier so that any Retailer can place their order
in the same queue and any Supplier can simply pick up the orders from that
same queue. In other words it facilitates a simple implementation of a
many-to-many scenario.

AQ can also extract intelligence about the orders being processed

8-6 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Online B2B XML Application: Main Components

Figure 8-1 Why Transform Data to XML?: Retailer’s Order Data Can be recognized by
Any Supplier - Supplier’s Order Status and Acknowledgement Can be Recognized by

any Retailer
In an ideal world, all
Retailer retailers and suppliers Supplier
have the same data
format
0 Order sent >
Database Order status returned Database
R < S
No document
formatting is
needed
Retailer AQ broker Supplier
(Order Management)
Transformer
XML Order sent ‘I XML order sent
e Database > Database
R y s
XML Order status XML Order status

returned returned

In the real world:

- Retailers and suppliers use different
data formats

- Transformation of data between
R and S is needed

- Data can be easily transformed to and
from XML.

Online B2B XML Application: Main Components

Figure 8-2 shows the main components used in this online B2B XML application.
The Retailer orders good from a Supplier and receives a confirmation from the
Supplier that the goods have been shipped. The detailed transaction diagram of the
process is illustrated in Figure 8-5.

Online B2B XML Application: Step by Step 8-7

Overview of Tasks to Run the Online B2B XML Application

‘g

Personal
Digital
Assistant

Browser

Figure 8-2 Online B2B XML Application: Main Components

Retailer AQ Broker- Supplier
Transformer
Retailer AQ Broker Supplier
Application Reformatted Application
e e XML order e XML order 6
— —
Reformatted XML order
- XML order supplied

Browser

Transformer
Database
T

Retailer
Database
R

Supplier
Database
S

<~

Overview of Tasks to Run the Online B2B XML Application

The schemas used in the B2B XML application you are about to build, are illustrated
in Figure 8-3.

To run the B2B XML application carry out the following tasks as described:

« Task 1. Set Up Your Environment to Run the Online B2B XML Application
« Task 2. Run the B2B Application

« Task 3. End the B2B Application Session

The details for running the B2B XML application including what you will see on
your browser, are provided in "Running the B2B XML Application: Detailed
Procedure” on page 8-34. You will also see typical screenshots of what the Retailer
and Supplier see.

8-8 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Overview of Tasks to Run the Online B2B XML Application

Figure 8-3 BZ2B XML Retailer (Customers) and Supplier Schema

Customers Suppliers

id (pk) - - - ---|id (pk)
name name

status web_site
web_site

Inventory item
Ord y

customer_id (fk)

i id (PK)
S (pk) T description
OrderDate . brioe
contactName ' Enhand
trackingNo ' d

status : supplier_id (fk)

Line_item

id (pk)
quantity

item_id

ord_id (fk)
discount

Figure 8—-4 B2B XML AQ Broker Schema: Stylesheets

Applications Stylesheets

- code varchar(16) not null (pk) -|- - ——& appFrom varchar2(16) notnull (pk) (fk)

descr varchar(16)) appTo varchar2(16) notnull (pk) (fk)
T op varchar2(16) notnull (pk) (fk)

xsl clob

Tasks

code_app (pk) (k) |f_____

code (pk)

descr

Online B2B XML Application: Step by Step 8-9

Overview of Tasks to Run the Online B2B XML Application

Task 1. Set Up Your Environment to Run the Online B2B XML Application

1.

2
3.
4

Start your Apache or other Web Server.
Start your Browser, such as IE5
Log on

To set up all the schemas you will need to run the B2B XML application, follow
these steps:

Create the Retailer and Supplier schemas. See "Online B2B XML Application:
Main Components”

« Connect to the database however you like.

« Run buildAll.sql. The script will ask you for your system password to
create the requested users.

Create the AQ Schema

« Onaconvenient machine, run the SQL script, mkAQUser.sgl.

« Connected as agMessBrok/aqgMessBrok, run the script, mkQ.sql
Create the XSL Tables

« Still connected, run the script, mkSSTables.sql

« Run setup.sql to install the XSL Stylesheets in the database.

« Test it by running the GUIStylesheet java class, after changing the
connections as described in the next step.

Modify the connections
« Modify the JIDBC Connection parameters in the following files:
* AppCste.java
* retail.bat
* supplier.bat
* PlaceOrder.xsql

« Finally, modify XSQLConfig.xml to create a connection named retail on
retailer/retailer.

« Recompile all the files before going on.

Before running the B2B XML application, run the script named reset.sql to reset
the AQ environment.

8-10 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Overview of Tasks to Run the Online B2B XML Application

9. Modify and run the three bat files for the Broker, Suppler, and Retailer

« Modify the .bat files: There are three mains used and these are launched
from the following .bat files:

* Broker.bat for the message broker

* Supplier.bat for the supplier

* Retail.bat for the retailer

First modify the .bat files for your environment as follows:

* verbose: If set to y or true, gives a lot of detail about the received
messages.

* step: If set to y or true, asks the user to hit return after each processing
step. If step has a numeric value, it'll be considered, in milliseconds, as
the time to wait between each step before going on

Retail.bat and Supplier.bat also accept a -dbURL parameter,
describing the URL used to get you connected to the database in question.
The default URL is : jdbc:oracle:thin:@localhost:1521:ORCL.

Task 2. Run the B2B Application

1. Run broker.bat, supplier.bat, and retailer.bat
2. Check the StyleSheet utility by running GUIStylesheet.class
These stylesheets are used by the Broker to process the documents it receives.

Details for running the B2B XML application including what you will see on your
browser, are provided in "Running the B2B XML Application: Detailed Procedure".

Task 3. End the B2B Application Session
1. To finish the B2B XML application

Run the Java class, stopAllQueues, or the script named stopQ.bat

2. Stop Apache or your Web Server.

Online B2B XML Application: Step by Step 8-11

Online B2B XML Application: Setting Up the Database Schema

Online B2B XML Application: Setting Up the Database Schema

The following schema scripts are provided here in the order in which they should
be executed:

« Create and Build the Retailer and Supplier Schemas

« SQL Example 1: Set up the Retailer and Supplier Environment —
BuildAll.sql

« This calls, SQL Example 2: Create and Populate the Retailer-Supplier
Schema — BuildSchema.sql

« Create the AQ Environment and Queue Tables
« SQL Example 3: Set Up the Environment for AQ — mkAQUser.sql
« SQL Example 4: Call the AQ Queue Creation Scripts — mkQ.sql. This calls:

* SQL (PL/SQL) Example 5: Create Table, AppOne_QTab —
mkQueueTableAppl.sql

* SQL (PL/SQL) Example 6: Create Table, AppTwo_QTab —
mkQueueTableApp2.sql

* SQL (PL/SQL) Example 7: Create Table, AppThree_QTab —
mkQueueTableApp3.sql

* SQL (PL/SQL) Example 8: Create Table, AppFour_QTab —
mkQueueTableApp4.sql

» Create the Broker Schema Including XSL Stylesheet Table
« SQL Example 9: Create Broker Schema — mkSSTables.sql.
This calls:

« SQL (PL/SQL) Example 10: Input XSL data into CLOB. Populate the Broker
Schema — setup.sql

« Cleaning Up Your Environment and Preparing to Rerun Application

« SQL Example 11: Stops and Drops Queue Applications. Starts Queue
Applications — reset.sql

8-12 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

SQL Code Calling Sequence

SQL Code Calling Sequence

The following list provides the SQL example code calling sequence. The .sgl
extension for each file has been omitted. The notation "<---" implies "calls", for
example, BuildAllsgl <----- BuildSchema implies that BuildAllsgl calls BuildSchema.

BuildAll.sgl <---- BuildSchema.sq]l
mkAQuser.sql

mkQ.sql

« <---- mkQueueTableAppl
» <---- mkQueueTableApp2
« <---- mkQueueTableApp3
» <----mkQueueTableApp4
mKkSSTables.sql <---- setup.sql
reset.sql

» <---- stopQueueAppl

» <---- stopQueueApp2

» <---- stopQueueApp3

» <---- stopQueueApp4

« <----dropQueueAppl

» <----dropQueueApp2

« <----dropQueueApp3

» <----dropQueueApp4

» <---- createQueueAppl

« <---- createQueueApp2

« <---- createQueueApp3

» <---- createQueueApp4

» <---- startQueueAppl

. <---- startQueueApp2

. <---- startQueueApp3

Online B2B XML Application: Step by Step 8-13

Create and Build the Retailer and Supplier Schemas

. <---- startQueueApp4

Create and Build the Retailer and Supplier Schemas

These schema scripts set up the Retailer and Supplier environment, users,
tablespaces, quota, and so on. They also create and then populate the schemas.

« SQL Example 1: Set up the Retailer and Supplier Environment — BuildAll.sql.
This calls:

« SQL Example 2: Create and Populate the Retailer-Supplier Schema —
BuildSchema.sql

SQL Example 1: Set up the Retailer and Supplier Environment — BuildAll.sql

BuildAll.sql sets up the environment for the Retailer and Supplier schema. It
calls BuildSchema.sql ~ which creates the Retailer and Supplier schemas and then
populates them with data.

— buildall.sgl builds all the schemas

accept sysPswd prompt ‘Enter the system password

>'hide

accept cStr prompt ‘Enter the connect sting if any, including "@" sign (ie
@atp-1)>

connect system/&sysPswd&cStr

drop user retailer cascade

/

drop user supplier cascade

/

col tablespace_name head "Available Tablespaces"

select tablespace_name from dba_tablespaces

/

prompt

accept userThsp prompt What is the DEFAULT Tablespace name ? >'
accept tempThsp prompt What is the TEMPORARY Tablespace name ?>'

prompt

create user retailer identified by retailer

default tablespace &userTbsp

temporary tablespace &tempTbsp

quota unlimited on &userThsp

/

grant connect, resource, create any directory to retailer

8-14 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Create and Build the Retailer and Supplier Schemas

/

create user supplier identified by supplier
default tablespace &userThsp

temporary tablespace &empThsp

quota unlimited on &userThsp

/

grant connect, resource, create any directory to supplier
/

prompt Now populating Supplier, hit [Retum]
pause

connect supplier/supplier&cStr
@buidSchema

prompt Now populating Retailer, hit [Retum]
pause

connect retailer/retailer&cStr
@buildSchema

prompt done!

SQL Example 2: Create and Populate the Retailer-Supplier Schema —
BuildSchema.sq

BuildSchema.sql is called from BuildAll.sql . It creates, populates, and builds
the Retailer and Supplier schema.

This script creates and populates the following five tables:
=« Customers

« Suppliers

« Inventory_item

« Ord

« Line_item

See Figure 8-3 for an illustration of this schema.

- buildSchema.sgl drops then creates all the tables for the B2B XML Application
drop trigger line_item_insert_trigger;

drop table line_itern;

drop table ord;

drop table customer;

drop table inventory_item;

Online B2B XML Application: Step by Step 8-15

Create and Build the Retailer and Supplier Schemas

drop table supplier;

drop sequence ord_seq;

drop sequence customer_seq;
drop sequence line_item_seq;

drop sequence supplier_seq;
drop sequence inventory_item_seq;

prompt
prompt Creating sequences...

prompt

prompt

prompt Creating sequence ORD_SEQ
create sequence ord_seq start with 101;

prompt Creating sequence CUSTOMER_SEQ
create sequence customer_seq start with 201;

prompt Creating sequence LINE_ITEM_SEQ
create sequence line_item_seq start with 1001;

prompt Creating sequence SUPPLIER_SEQ
create sequence supplier_seq start with 301;

prompt Creating sequence INVENTORY_ITEM_SEQ
Create sequence inventory_item_seq start with 401;

prompt
prompt
prompt Creating tables...
prompt
prompt

—*ex Create table CUSTOMERS

prompt Creating table CUSTOMER
create table customer(
id number,
name varchar2(30),
status varchar2(8),
web_site varchar2(40),
constraint
customer_pk
primary key (id)

8-16 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Create and Build the Retailer and Supplier Schemas

— *44x Cregte table SUPPLIERS **

prompt Creating table SUPPLIER
create table supplier(
id number,
name varchar2(30),
web_site varchar2(40),
constraint
supplier_pk
primary key (id)

—#4x Create table INVENTORY _ITEM #x
prompt Creating table INVENTORY_ITEM
create table inventory _item(
id number,
description varchar2(30),
price number(8,2),
onhand number,
supplier_id number,
constraint
inventory_item_pk
primary key (id),
constraint
supplied_by
foreign key (supplier_id) references supplier
)

— ®4x Cregte table ORD
prompt Creating table ORD
create table ord (
id number,
orderDate date,
contactName varchar2(30),
trackingNo varchar2(20),
status varchar2(10),
customer_id number,
constraint
ord_pk
primary key (id),
constraint
order_placed by
foreign key (customer_id) references customer

Online B2B XML Application: Step by Step 8-17

Create and Build the Retailer and Supplier Schemas

)

prompt Creating table LINE_ITEM
create table line_item(
id number,
quantty number,
tem id number,
ord id number,
discount number,
constraint
line_item_pk
primary key (i),
constraint
item_ordered_on
foreign key (ord_id) references ord,
constraint
order_for_item
foreign key (tem_id) references inventory_item

)

prompt

prompt

prompt Inserting data..

prompt

prompt

prompt Inserting values into SUPPLIER and INVENTORY_ITEM
prompt

insertinto supplier values(supplier_seq.nextval, DELL ', http:/dell.com);
insertinto inventory_item values(inventory_item_seq.nextval, Optiplex GXPro',
1500, 27, supplier_seg.cunrval);

insertinto inventory_item values(inventory_item_seq.nextval,Inspiron 7000,
2500, 49, supplier_seq.cunval);

insertinto inventory_item values(inventory_item_seq.nextval, PowerEdge 6300,
7500, 16, supplier_seq.cunval);

insertinto inventory _item values(inventory_item_seq.nextval, Inspiron 3000,
2500, 0, supplier_seq.cunval);

insertinto inventory_item values(inventory_item_seq.nextval,Inspiron 2000,
2500, 0, supplier_seq.cunval);

insert into supplier values(supplier_seq.nextval, 'HP', 'http:/hp.com);
insertinto inventory_item values(inventory_item_seq.nextval, LaserJet 6MP,
899, 123, supplier_seq.currval);

insertinto inventory_item values(inventory_item_seq.nextval, ‘Jomada 2000,
450, 1198, supplier_seq.cunval);

8-18 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Create and Build the Retailer and Supplier Schemas

insertinto inventory_item values(inventory_item_seq.nextval, HP 12C', 69,

801, supplier_seq.cunmval);

insert into inventory_item values(inventory_item_seq.nextval, 'LaserJet 2, 69,
3, supplier_seq.cunval);

insertinto inventory _item values(inventory_item_seq.nextval,Jaz PCMCIA
adapter, 125, 54, supplier_seq.curval);

insertinto inventory_item values(inventory_item_seq.nextval,8860 Digital
phone', 499, 12, supplier_seq.cunval);

insertinto inventory_item values(inventory_item_seq.nextval, Jaz carrying
bag}, 20, 66, supplier_seq.cunval);

insertinto supplier values(supplier_seq.nextval, Intel,
"http:/Amaw.intel.com);

prompt Inserting values into CUSTOMER

prompt

insertinto ord values(ord_seq.nextval,sysdate, George',AX||ord_seg.curmval,
‘Pending’, 201);

insertinto line_item values (line_item_seq.nextval, 2, 410,0rd_seg.cunval, 0);
insertinto line_item values (line_item_seq.nextval, 1, 402,ord_seg.curmval, 0);
insertinto line_item values (line_item_seq.nextval, 1, 406,ord_seg.curmval, 0);

insertinto ord values(ord_seq.nextval,sysdate, Elaine’, AX]jord_seq.cunval,
‘BackOrdered, 0);
create trigger line_item _insert_trigger

before insert on line_item for each row

begin

select line_item_seq.nextval into :new.id from dual ;

end;

/

commit;

Online B2B XML Application: Step by Step 8-19

Create the AQ Environment and Queue Tables

Create the AQ Environment and Queue Tables
Run the AQ schema scripts as follows:
« SQL Example 3: Set Up the Environment for AQ — mkAQUser.sql
« SQL Example 4: Call the AQ Queue Creation Scripts — mkQ.sql. This calls:

« SQL (PL/SQL) Example 5: Create Table, AppOne_QTab —
mkQueueTableAppl.sql

« SQL (PL/SQL) Example 6: Create Table, AppTwo_QTab —
mkQueueTableApp2.sql

« SQL (PL/SQL) Example 7: Create Table, AppThree_QTab —
mkQueueTableApp3.sql

« SQL (PL/SQL) Example 8: Create Table, AppFour_QTab —
mkQueueTableApp4.sql

SQL Example 3: Set Up the Environment for AQ — mkAQUser.sq

The following SQL script sets up the environment for using AQ, creates user
aqMessBrok, creates default and temporary tablespace, grants execute privileges on
the AQ PL/SQL packages dbms_agadm and dbms_aq to aqgMessBrok.

setver off

setscanon

prompt Creating environment for Advanced Queuing

accept mgrPsw prompt ‘Please enter the SYSTEM password

>'hide

acceptcStr prompt Please enter the the DB Alias if any, WITH the @ sign (ie
@Ora8i)>'

connect system/&mgrPsw&cStr

col tablespace_name head "Available Tablespaces"

select tablespace_name from dba_tablespaces

/

Prompt

accept userThsp prompt What is the DEFAULT Tablespace name ? >'
accept tempThsp prompt What is the TEMPORARY Tablespace name ?>'

prompt

prompt Creating agMessBrok
create user agMessBrok identified by agMessBrok
defautt tablespace &userThsp

temporary tablespace &empTbsp

8-20 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Create the AQ Environment and Queue Tables

quota unlimited on &userThsp

/grant connect, resource, aq_administrator_role, create any directory to
agMessBrok

/grant execute on dbms_agadm to agMessBrok

/grant execute on dbms_aq to agMessBrok

/

SQL Example 4: Call the AQ Queue Creation Scripts — mkQ.sq|

This script calls four scripts to create the AQ queue tables.

@mkQueueTableAppl
@mkQueueTableApp2
@mkQueueTableApp3
@mkQueueTableApp4

SQL (PL/SQL) Example 5: Create Table, AppOne_QTab — mkQueueTableAppl.sql

This script is called from mkQ.sql. It calls the dbms_agadm.create_queue_table
procedure to create queue table 1, AppOne_QTab.

execute dbms_agadm.create_queue_table (queue_table =>'AppOne_QTab), queue_
payload_type =>"RAW);

SQL (PL/SQL) Example 6: Create Table, AppTwo_QTab — mkQueueTableApp2.sq

This script is called from mkQ.sql. It calls the dbms_agadm.create_queue_table
procedure to create queue table 2, AppTwo_QTab.

execute doms_agadm.create_queue_table (queue_table =>'AppTwo_QTab), queue
payload_type =>RAW);

SQL (PL/SQL) Example 7: Create Table, AppThree_QTab — mkQueueTableApp3.sql

This script is called from mkQ.sql. It calls the dbms_agadm.create_queue_table
procedure to create queue table 3, AppThree_QTab.

execute doms_agadm.create_queue_table (queue_table =>'AppThree_QTab), queue_
payload _type =>RAWY);

Online B2B XML Application: Step by Step 8-21

Create the Broker Schema Including XSL Stylesheet Table

SQL (PL/SQL) Example 8: Create Table, AppFour_QTab — mkQueueTableApp4.sql

This script is called from mkQ.sql. It calls the dbms_agadm.create_queue_table
procedure to create queue table 4, AppFour_QTab.

execute doms_agadm.create_queue_table (queue_table => ‘AppFour_QTab), queue
payload_type =>'RAW);

Create the Broker Schema Including XSL Stylesheet Table

Run the following scripts to create and populate the stylesheets, tasks, and
applications tables:

« SQL Example 9: Create Broker Schema — mkSSTables.sql.
This calls:

« SQL (PL/SQL) Example 10: Input XSL data into CLOB. Populate the Broker
Schema — setup.sql

SQL Example 9: Create Broker Schema — mkSSTables.sq|

Run mkSSTables.sql to create the Broker schema. It creates and populates the
following three tables:

« Stylesheets

« Tasks

« Applications

This schema is illustrated in Figure 8-4. This script then calls setup.sql

prompt Building Stylesheets management tables.

prompt Must be connected as agMessBrok (iike the borker)
accept cStr prompt ‘ConnectString (WITH @ sign, like @Ora8i) >
connect agMessBroklagMessBrok&cStr

drop table styleSheets
/

drop table tasks

/

drop table applications

/

create table applications
(

8-22 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Create the Broker Schema Including XSL Stylesheet Table

code varchar2(16) not null,
descr varchar2(256)
)
/
alter table applications
add constraint PK_APP
/ primary key (code)
create table tasks
(
code_app varchar2(16) not null,
code varchar2(16) not null,
descr varchar2(256)
)
/
alter table tasks
add constraint PK_TASKS
} primary key (code_app,code)
alter table tasks
add constraint TASK_FK_APP
foreign key (code_app)
references applications(code) on delete cascade
/
create table styleSheets
(
appFrom varchar2(16) not null,
appTo varchar2(16) not null,
op varchar2(16) not null,
xsl clob
)
/
alter table styleSheets
add constraint PK_SS
primary key (appFrom,appTo,op)
/

alter table styleSheets
add constraint SS_FK_FROM
foreign key (appFrom)
references applications(code)

/

alter table styleSheets
add constraints SS_FK_TASK
foreign key (appTo,0p)
references tasks(code_app,code)

Online B2B XML Application: Step by Step 8-23

Create the Broker Schema Including XSL Stylesheet Table

/
@setup

SQL (PL/SQL) Example 10: Input XSL data into CLOB. Populate the Broker Schema —
setup.sql

setup.sql installs stylesheet data into the XSL column (CLOB) of the stylesheets
table. This script creates a procedure, loadlob . The script also uses PL/SQL
packages dbms_lob and dbms_output

prompt Instaliing the stylesheets
—accept cStr prompt ‘ConnectString (WITH @ sign, like @Ora8i) >*
— connect aqMessBroklagMessBrok&cStr
prompt Creating LoadLob procedure
create or replace procedure loadLob (imgDir in varchar2,
fname in varchar2,
app_Fromin varchar2,
app_Toinvarchar2,
oper invarchar2) as
tempClob CLOB;
fleONOS BFILE := bfilename(imgDir, fname);
ignore INTEGER;
begin
dbms_lob.fileopen(fileOnOS, dbms _lob.ile_readonly);
selectxsl|
into tempClob
from StyleSheets S
where SAPPFROM =app_Fromand
SAPPTO=app Toand
S.OP = oper
for UPDATE;
dbms_outputput_line(Extemal file size is: ' || doms_lob.getlength(fleOnOS));
dbms_lob.loadfromfiletempClob, fleOnOS, doms_lob.getiength(fleOnOS));
doms_lobfileclose(fleOnOsS);
doms_outputput_line(Intemal CLOB size is: || doms_lob.getliength(tempClob));
exception
When Others then
dbms_outputput_line(Oooops: ' || SQLERRMY;
end LoadLob;
/
show errors
set scan off

create or replace directory "LOB_DIR" as 'D:xml817\references\olivier_new'

8-24 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Cleaning Up Your Environment and Preparing to Rerun Application

{nsert into applications values (RETAIL, ‘Origin)

{nsert into applications values (SUPPLY", 'Destination)

{nsen into tasks values (SUPPLY", NEW ORDER, 'Insert a new Order’)

{nsert into tasks values (RETAIL, 'UPDATE ORDER, 'Update an Order Status)
/

set serveroutput on

begin
insert into StyleSheets values (RETAIL, SUPPLY',NEW ORDEREMPTY_CLOB());
loadLob(LOB_DIR!, ‘onexsl, RETAIL,SUPPLY',NEW ORDERY);
insert into StyleSheets values (SUPPLY',RETAIL',UPDATE ORDER ,EMPTY_CLOB();
loadLob(LOB_DIR!, twoxs!,'SUPPLY'RETAIL,UPDATE ORDER));

exception
when others then
dbms_output.put_line(Error Occurred :* || chr(10) || SQLERRM);

end;

/

commit

/

Cleaning Up Your Environment and Preparing to Rerun Application
Run reset.sql to clean up your environment and rerun this application.

« SQL Example 11: Stops and Drops Queue Applications. Starts Queue
Applications — reset.sql

This calls the following 16 PL/SQL scripts:
« stopQueueAppl.sql
« stopQueueApp2.sql
« stopQueueApp3.sql
« stopQueueApp4.sql
« dropQueueAppl.sql
« dropQueueApp2.sql
« dropQueueApp3.sql

Online B2B XML Application: Step by Step 8-25

Cleaning Up Your Environment and Preparing to Rerun Application

« dropQueueApp4.sql
« createQueueAppl.sql
« createQueueApp2.sql
« createQueueApp3.sql
« createQueueApp4.sql
« startQueueAppl.sql
« startQueueApp2.sql
« startQueueApp3.sql
« startQueueApp4.sql

SQL Example 11: Stops and Drops Queue Applications. Starts Queue Applications —
reset.sql

reset.sql script first stops all four queue applications by calling the
stopQueueAppl through 4, then drops them by calling dropQueueAppl through 4,
and restarts them by calling startQueueApp1 through 4.

The script also prompts you to Hit Return to Exit.

connect agMessBrok/lagMessBrok
start stopQueueAppl
start stopQueueApp2
start stopQueueApp3

start stopQueueApp4
start dropQueueAppl

start dropQueueApp2
start dropQueueApp3
start dropQueueApps4
start createQueueAppl
start createQueueApp2
start createQueueApp3
start createQueueApp4
start startQueueAppl
start startQueueApp2
start startQueueApp3
start startQueueApp4
prompt Press [Retum] to exit !
pause

exit

8-26 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Cleaning Up Your Environment and Preparing to Rerun Application

Stop Queue SQL Scripts

These four scripts are called from reset.sql. They use PL/SQL procedure dbms_
agadm.stop_queue to stop the queues.

stopQueueAppl.sql
execute doms_agadm.stop_queue(queue_name=>'AppOneMsgQueue);

stopQueueApp2.sql
execute doms_agadm.stop_queue(queue_name=>AppTwoMsgQueue);

stopQueueApp3.sql
execute dbms_agadm.stop_queue(queue_name=>'AppThreeMsgQueue);

stopQueueApp4.sql
execute doms_agadm.stop_queue(queue_name=>"AppFourMsgQueue);

Drop Queue SQL Scripts

These four scripts are called from reset.sql . They use PL/SQL procedure dbms_
agadm.drop_queue to drop the queues.

dropQueueAppl.sql
execute doms_agadm.drop_queue (queue_name=>'AppOneMsgQueue);
dropQueueApp2.sql
execute dbms_agadm.drop_queue (queue_name=>AppTwoMsgQueue);
dropQueueApp3.sql
execute dbms_agadm.drop_queue (queue_name=>AppThreeMsgQueue));
dropQueueApp4.sql
execute dbms_agadm.drop_queue (queue_name=>AppFourMsgQueue);
Create Queue SQL Scripts
These four scripts are called from reset.sql . They use PL/SQL procedure, doms_

agadm.create_queue to create the queues.

Online B2B XML Application: Step by Step 8-27

Cleaning Up Your Environment and Preparing to Rerun Application

createQueueAppl.sql

execute dbms_agadm.create_queue (queue_name=>AppOneMsgQueue’, queue_
table=>/AppOne_QTab);

createQueueApp2.sql

execute dbms_agadm.create_queue (queue_name=>AppTwoMsgQueue', queue_
table=>'AppTwo_QTab);

createQueueApp3.sql

execute dbms_agadm.create_queue (queue_name=>'AppThreeMsgQueue, queue_
table=>'AppThree_QTab);

createQueueApp4.sql

execute doms_agadm.create_queue (Queue_name=>AppFourMsgQueue’, queue_
table=>'AppFour_QTab);

Start Queue SQL Scripts

These four scripts are called from reset.sql . They use PL/SQL procedure, dbms_
agadm.start_queue to start the queues.

startQueueAppl.sql
execute dbms_agadm.start_queue(queue_name=>AppOneMsgQueue);

startQueueApp2.sql
execute dbms_agadm.start_queue (queue_name=>AppTwoMsgQueue);

startQueueApp3.sql
execute doms_agadm.start_queue (queue_name=>AppThreeMsgQueue);

startQueueApp4.sql
execute doms_agadm.start_queue (queue_name=>'AppFourMsgQueue);

dropOrder.sql

This SQL script deletes orders from the Retailer-Supplier database Customers table
according to the customer’s ID.

8-28 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Cleaning Up Your Environment and Preparing to Rerun Application

setver off
accept CustName prompt ‘Drop all for customer named >

Delete LINE_ITEM
Where .ORD_IDin
(Select O.ID
FromORD O
Where O.CUSTOMER_IDin
(SelectC.ID
From CUSTOMER C
Where Upper(C.NAME) = Upper(&CustName)))
/
Delete ORD O
Where O.CUSTOMER _IDin
(SelectC.ID
From CUSTOMER C
Where Upper(C.NAME) = Upper(&CustName))
/

Online B2B XML Application: Step by Step 8-29

Online B2B XML Application: Data Exchange Flow

Online B2B XML Application: Data Exchange Flow

Figure 8-5 shows the detailed transaction diagram of the process when the Retailer
orders good from a Supplier and receives a confirmation from the Supplier that the

goods have been shipped.

Figure 8-5 Inter-Business Data Exchange: Using XML and AQ to send Retailer’s
Order to a Supplier and Receive Order Status and Acknowledgement from the Supplier

Retailer AQ Broker- Supplier
Transformer
On commit, e Alert Suppliers of
produce order pending.
"XML order" S decides to ship.
Retailer browses Retailer Transforms XML
supplier's catalog places document to Browser
(in R database) order Supplier's
format
AQ Broker
< : From: ? p
Retailer To: 5 Ship
Application b -
Task: ? S App. A
Personal XSL-T Reformatted XML
Digital XSQL |y on Processor » | xML order [P | Parser
Assistant Serviet
Handler ’ *
. 7 / e Update S
Parse XML siaét%%aBsg
) XML document. Order
Browser < XML order Insert order Status is
) into S changed to
Query XSL Via database. 'shipped'.
stylesheets JDBC stylesheets
Transaction
inserts into
database
Retailer Transformer Supplier
Database | Database Database
R il S
Status =
shipped v
stylesheets
Reformatted XML Order

XML Order l 0 Shipped l

Update form

Update Order

Request Master Transform the XML
Table in R Order according to
Database Retailer's format

8-30 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Retailer-Supplier Transactions

Retailer-Supplier Transactions

Figure 8-5 shows the business flow of the Retailer - Supplier transactions. These
transactions are summarized here.

Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog
Step 2. Retailer Places Order
Step 3. Retailer Confirms and Commits to Sending the Order

Step 4. AQ Broker-Transformer Transforms the XML Document According to
the Supplier’s Format

Step 5. Supplier Application Parses Incoming Reformatted XML Order
Document. Inserts Order into the Supplier Database

Step 6. Supplier Application Alerts Supplier of Pending Order

Step 7. AQ Broker-Transformer Transforms the XML Order According to
Retailer’s Format

Step 8. Retailer Application Updates the Ord and Line_Item Tables

The detailed transactions and how to run the B2B XML application is provided in
"Running the B2B XML Application: Detailed Procedure" on page 8-34.

Step 1. Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

The following Retailer transactions occur:

1.
2.

The Retailer logs in from their web site using XSQL.

Retailer browses the Supplier’s on-line catalog. Retailer selects a product and
guantity.

Step 2. Retailer Places Order

When the Retailer places the order, the Retailer then needs to either confirm the
order and cost, by clicking on "Place Order", or cancel "Give Up" the order.

Step 3. Retailer Confirms and Commits to Sending the Order

If Retailer confirms the order by clicking on, "Place Order", this triggers the
generation of an XML document containing the order data. The Retailer application
sends this XML order document to the Supplier by way of the AQ
Broker-Transformer application.

Online B2B XML Application: Step by Step 8-31

Retailer-Supplier Transactions

The Action Handler "XSQL Script Example 5: Starts B2B Process — placeorder.xsqgl"
of the XSQL Servlet is the key component in the whole process. It ensure that this
transaction is inserted into the retailer database table, Ord.

The Action Handler also sends the XML order on to the AQ Broker-Transformer.

Step 4. AQ Broker-Transformer Transforms the XML Document According to the
Supplier's Format

When the AQ Broker-Transformer receives the XML document the following
actions transpire:

1. The AQ Broker-Transfomer waits for the queue [READS] from the Retailer that
they have sent an order. See Figure 8-6.

Figure 8-6 Online B2B XML Application: AQ Messaging Flow

Waiting for Queue

AQ Message
Broker

Retailer Supplier

" There are 4 queues
Waiting for Queue Byoker reads and
writes at the
same time

@ Reads Queue
O writes to Queue

2. The AQ Broker receives the XML document order message, and determines the
following information from the message:

« FROM: From where the message is coming (from which Retailer)
« TO: To where the message is going (to which Supplier)
« OPERATION or TASK: What operation is needed to process this message

3. The AQ Broker-Transformer refers to the Stylesheets table and according to the
From, To, and Task criteria, selects the appropriate XSL stylesheet. The
stylesheets are stored in CLOBs in the Stylesheets table in the XSL column. AQ
Broker-Transformer accesses the database and stylesheets by means of JDBC.

8-32 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Retailer-Supplier Transactions

4. XSLT Processor is informed by AQ Broker-Transformer application to apply the
selected and retrieved XSL stylesheet to the XML document containing the
order data. The XSLT Processor outputs the reformatted XML order.

5. AQ Broker-Transformer uses AQ to send [WRITE] the transformed XML
document to the "TO" Supplier destination.

Note: Ifa DTD (XML Schema) is used, it would be applied before
processing in the AQ Broker phase. In this example, for simplicity,
we assume that the document is always sent in the same format.

The schema used by the AQ Broker-Transformer is shown inFigure 8-4.

Step 5. Supplier Application Parses Incoming Reformatted XML Order Document.
Inserts Order into the Supplier Database

When the Supplier receives the reformatted XML order document from the AQ
Broker-Transformer, the following protocols transpire:

1. The Supplier waits for the queue from the AQ Broker-Transformer that a order
is pending from a Retailer. The Supplier dequeues the AQ message.

2. The Supplier parses the XML document and INSERTSs the order into the
Supplier database by means of JDBC.

Step 6. Supplier Application Alerts Supplier of Pending Order

When the Supplier application has inserted the XML document into the Supplier
database the following actions transpire:

1. Supplier Application Alerts the Supplier of the Order. The order status is kept
at "pending".

2. The Supplier, after checking if the product(s) ordered are available, and the
Retailer’s credit, decides to ship the product(s). Supplier clicks on "Ship".

3. The Supplier application updates the Supplier database Ord table’s status
column to "shipped".

Step 7. AQ Broker-Transformer Transforms the XML Order According to Retailer’s
Format

1. AQ Broker-Transformer waits [READS] for a queue from the Supplier.

Online B2B XML Application: Step by Step 8-33

Running the B2B XML Application: Detailed Procedure

When the XML Order Shipped document is received, the AQ
Broker-Transformer refers to the Stylesheets table in the Transformer database,
and according to the From, To, and Task criteria, selects the appropriate XSL
stylesheet. The stylesheets are stored in CLOBs in the Stylesheets table in the
XSL column. AQ Broker-Transformer accesses the database and stylesheets by
means of JDBC.

AQ Broker-Transformer uses AQ to send [WRITE] the reformatted XML order
update document to the "TO" Retailer destination.

Step 8. Retailer Application Updates the Ord and Line_Item Tables

1.

Retailer application updates the Retailer database with new "shipped" order
status information. The Ord table is updated.

This information is viewed by the Retailer from any device. The status is seen as
"Shipped".

Running the B2B XML Application: Detailed Procedure

Figure 8-5 shows the detailed transaction and flow of the B2B XML application. The
XML order document is sent from the Retailer through the AQ Broker-Transformer,
to the Supplier and back to the Retailer.

Before running the B2B XML application, ensure that you have run the schema
creation scripts described in "Overview of Tasks to Run the Online B2B XML
Application”.

The following steps explain the process and how to run this application.

Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog
Step 2. Retailer Places Order

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the
XML Order

Step 4. AQ Broker-Transformer Transforms XML Document According to
Supplier’s Format

Step 5. Supplier Application Parses the XML Document and Inserts the Order
into the Supplier Database

Step 6a. Supplier Application Alerts Supplier of Pending Order

Step 7. AQ Broker-Transformer Transforms XML Order into Retailer’s Format

8-34 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 1. Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

« Step 8. Retailer Application Updates the Ord Table and Displays the New Order
Status to Retailer

Step 1. Retailer Browses the Supplier's OnLine "Hi-Tech Mall* Catalog

See Figure 8-5 for the detailed procedural flow of the B2B XML application.

Note: We assume here that a copy of the Supplier’s catalog is in
the Retailer’s database.

1. Check the StyleSheet utility to ensure it works by invoking SS.bat
Stylesheet Batch File: SS.bat

@echo off

@echo Stylesheet Util

D:\dev31\avalhinjava -mx50m -classpath "D:xmi81 7\references\olivier_new;
Di\dev31\ib\dev-it.zip;

D:\dev31\dbclib\oracle8.1.6\classes111.zip;
D:\dev31\ib\connectionmanager.zip;

D:\dev31)\ib;

D:\dev31\ib\oraclexsgljar;

D:\dev3\ib\oraclexmisgljar;

Di\jdev3ibxmlparserv2_2027 jar;

D:\jdev31\fclib\swingall jar;

D:\dev31\swdk-1.0.1\ib\servietjar;

D:\Ora8irdbmsljib\agapill jar;

D:\Ora8ivdbmsljib\agapi.jar;

D:XMLWorkshopWmicomp.jar;

Didev31\avalib\classes.zip" B2BDemo.StyleSheetUtil. GUIStylesheet

Using this utility you can browse the actual table, Stylesheets , in which the

stylesheets are stored. These stylesheets are used by the AQ Broker-Transformer
to process the documents it received. See Figure 8-7.

Online B2B XML Application: Step by Step 8-35

Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog

Figure 8—7 Checking the StyleSheet Utility

[Style Sheets Management =l E3
File Help
B

X5 Style Sheel

=Tl wversion="1.0"7=

=il stylesheet xminsxsl="http s w3 araf1 9995 LMransform®
version="1.0"=

=x¥sltemplate match="M=
=ROWESET=
=xslfor-each select="Resultslordview"=
=ROW=<xslattribute name="kLIM"==xslvalue-of select="position "= =Msl attribute=

=xslapph-templates select="Id|Orderdate|Contacthame[Trackingno|Status|Custan
=IROVY=

=fhistfor-each=
=[ROWVYSET=
=Mzl templates

=xsltermplate match="1d"=
=|D==xslvalue-of select=""r==/D=
=fsltemplates

(4]

| IF 3 L=t PPN T PO | N P N

L)

Fron Application :,RI_:_FAIL :
To Application : SUPPLY
Operation : NEW ORDER

Enter Query New = s Validate

Ready Tor 2 recornds

8-36 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 1. Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

2. Start the Retailer application by running retailer.bat. See Figure 8-8.

Figure 8-8 Starting the Retailer Application

“ retail bat

Betail Side

JOBE Connection opened

]l Session successtully created.
Successful getlueueTable
Successful getllueue

3. Start the AQ Broker-Transformer application by running broker.bat. See
Figure 8-9.

Figure 8-9 Starting the AQ Broker-Transformer Application

& Broker.bat

FOKER” .
JOBC Connection opened

A} Session successfully created.
JOBC Connection opened

A Session successfully created.
Successful getfQueueTable
Successful getueue

JOBC Connection opened

] Session successfully created.
JOBC Connection opened

A Session successfully created.
Successful getfQueueTable
Successful getueue

< ThreadsOnTheirWayS >

4. Start the Supplier application by running supplier.bat. See Figure 8-10.

Online B2B XML Application: Step by Step 8-37

Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog

Figure 8-10 Starting the Supplier Application: "Supplier Watcher”

& Supplier_bat | O] x]

Supplier

JOBE Connection opened

] Session successtully created.
Successful getQueueTable
Successful get{ueue

JOBE Connection opened

Al Session successtully created.

The three batch files for the Retailer, AQ Broker-Transformer (Broker), and
Supplier applications are listed here:

retailer.bat

@echo off

@echo Retail Side

D:\dev31\avalinjava -mx50m -classpath
"Dxmi817\references\Ora817DevGuide;

Di\jdev31\ib\dev-t.zip;

D:\dev31\dbclib\oracle8.1.6\classes111.zip;
D:\[dev31\ib\connectionmanager.zip;

D:\dev31\ib;

D:\dev31\ib\oraclexsgljar;

D:\dev3\ib\oraclexmisgljar;

Di\jdev3ibxmlparserv2_2027 jar;

D:\dev31\fclib\swingall jar;

D:\dev31\swdk-1.0.1\ib\senvietjar;

D:\Ora8ivdbmsljib\agapill ar;

D:\Ora8ivdbmsljib\agapi.jar;

D:XMLWorkshopWmilcomp.jar;

Di\jdev31\avalib\classes.zip" B2BDemo.Retailer.UpdateMaster -step=1000
-verbose=y -dbURL=jdbc:oracle:thin:@atp-1.us.oracle.com:1521:ORCL

broker.bat

@echo off
@echo Broker
Di\dev31\javalbinjava -mx50m -classpath

8-38 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 1. Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

"D:xmlI817\references\Ora817DevGuide;
D:\dev31\ib\dev-1t.zip;
D:\dev31\dbclibloracle8.1.6\classes111.zip;
D:\dev31\ib\connectionmanager.zip;
Di\jdev31\ib;D:\dev3\ib\oraclexsal jar;
D:\dev3\ib\oraclexmisgljar;
D:\dev3\ibmiparsernv2_2027 jar;
D:\dev31\fclib\swingall jar;
D:\dev31\swdk-1.0.1\ib\senvietjar;
D:\Ora8ivdbmsljib\agapill ar;
D:\Ora8\rdbmsljib\agapi jar;
D:\XMLWorkshopmicomp jar;
D:\dev31\avalib\classes.zip" B2BDemo.Broker.MessageBroker -step=1000
-verbose=y

supplier.bat

@echo off

@echo Supplier

Di\jdev31\javalbinjava -mx50m -classpath
"D:xmlI817\references\Ora817DevGuide;

D:\dev31\ib\dev-rt.zip;

D:\dev31\dbclibloracle8.1.6\classes111.zip;
D:\dev31\ib\connectionmanager.zip;
Di\jdev31\ib;D:\dev3\ib\oraclexsal jar;

D:\dev3\ib\oraclexmisgl jar;

D:\dev3\ibmiparserv2_2027 jar;

D:\dev31\fclib\swingall jar;

D:\dev31\swdk-1.0.1\ib\senviet jar;

D:\Ora8ivdbmsljib\agapill ar;

D:\Ora8\rdbmsljib\agapi jar;

D:\XMLWorkshopmicomp jar;

Di\dev31\avalib\classes.zip" B2BDemo.Supplier.SupplierWatcher -step=1000
-verbose=y -dbURL=dbc:oracle:thin:@atp-1.us.oracle.com:1521:ORCL

Finally, start the Client, from a browser, a PDA such as Palm Pilot, cell phone, or
other device.

[Retailer] Log in. You will see a Welcome! screen. See Figure 8-11.

Online B2B XML Application: Step by Step 8-39

Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog

XSQL Script Example 2: Checking the ID of Users Logging In: getlogged.xsql

<?xmlversion="1.0"?>

<

| Second script to be called.

| Check if the user in known in the database.

| SAuthor: olediour@us $

| $Revision: 1.1 $

+—>

<?xml-stylesheet type="text/xsI' media="HandHTTP" href="PP.xgI"?>
<?xml-stylesheet type="text/xsI' media="Mozila" href="HTMLxsl'?>

<loginResutt xmins:xsgl="um:oracle-xsql"
connection="retail"
custName="XXX">
<pageTite>Hi-Tech Mall</pageTitie>
<xsgl:query tag-case="upper>
<|[CDATA]
select C.ID, CNAME
from CUSTOMER C
where Upper(C.NAME) = Upper({@custName})
>
<xsgl:no-rows-query>
Select {@custName} as "unknown' from dual
</xsgl:no-rows-query>
</xsql:query>
<nextStep>inventory xsgl</nextStep>
<retumHome>index xsql</retumHome>

<floginResult>

This XSQL script calls the following XSL scripts:
« pp-xsl. See "XSL Stylesheet Example 1: Converts Results to HTML — html.xsl"

« html.xsl. See "XSL Stylesheet Example 2: Converts Results for Palm Pilot
Browser — pp.xsl”

8-40 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog

Figure 8-11 [Retailer]: Logging in from a Browser or PDA

jfsﬁa Edt Mew Faveies Tocs Hep ‘ =
[2 -7 -2 B 3713 e
] ‘Back meard ' el | Links 48 He

: ltﬁﬁdﬁ%’@ http {/olediour-lap.uz. oracle.comd/D0raB1 7 findes. :-:SI:|| 151 fg@‘ﬁg

Hi-Tech Mall

| Your ID O]

@] Dere.

7. [Retailer]: Click on 'Please Enter the Mall'.

XSQL Script Example 1: Displays First Hi-Tech Mall Screen — index.xsq
<?xml version="1.0"?>

<l
| This is the entry point in the application.

Online B2B XML Application: Step by Step 8-41

Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog

| Notice that this script does not access the database.

| $Author: olediour@us $

| $Revision: 1.1$

+—>

<?xml-stylesheet type="text/xsI" media="HandHTTP" href="PP.xgl"?>
<?xml-stylesheet type="text/xsl' media="Mozila" href="HTMLxsl"?>

<index xmins:xsgl="um:oracle-xsgl">
<pageTitle>Hi-Tech Mall</pageTite>
<form action="getl_ogged.xsql' method="post">
<field type="text" name="custName" prompt="Your ID"/>
<button type="submit' label="Log In"/>
<florm>
</index>

8. [Retailer]: The resulting screen displays the Hi-Tech Mall Catalog product
listing. Click on the product you are interested in. See Figure 8-12.

XSQL Script Example 3: Lists Catalog Products — inventory.xsql

<2xml version="1.0"?>

<

| This is the third script called.

| It produces the catalog from the Retailer's database.

I

| SAuthor: olediour@us $

| $Revision: 1.1 $

+—>

<?xml-stylesheet type="text/xsI' media="HandHTTP" href="PP.xgI"?>
<?xml-stylesheet type="text/xsI' media="Mozila" href="HTMLxslI'?>

<inventory xmins:xsg="um:oracle-xsql"
connection="retail"
custid="000">
<pageTite>Hi-Tech Mall</pageTitie>
<form action="orderxsql" method="post">
<hiddenFields>
<xsglinclude-param name="custid'/>
<hiddenFields>
<theMart>
<xsglquery tag-case="upper">
<|[CDATA]
select LID,

8-42 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 1. Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

.DESCRIPTION,
1.PRICE,
SNAME
from INVENTORY_ITEM |,
SUPPLIER S
where .SUPPLIER ID=S.ID
1>
<xsglno-rows-query>
Select No items ! as "Wow'" from dual
</xsgl:no-rows-query>
</xsql:query>
<ftheMart>
<fform>
<retumHome>index xsgl</retumHome>

<finventory>

Figure 8-12 [Retailer] Enter the Hi-Tech Mall (Mart) Catalog

JﬁddTESSl?El http:# folediour-lap. us aracle. comdOral 7Anventon, seglfoust d=212 L‘ o Go

Hi-Tech Mall

This is the Mart content

Prod= Product Price Supphed by
401 Optplex G3FPro 1500 DELL
402 Inspiron 7000 2500 DELL
403 PowerEdge 6300 7200 DELL
404 Inspiron 3000 2500 DELL
405 Inspiron 2000 2500 DELL

9. [Retailer]: Enter the quantity you need and click the "Place Order" button. See
Figure 8-13.

Online B2B XML Application: Step by Step 8-43

Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog

Figure 8-13 [Retailer]: Enter the Quantity and Click on "Place Order”

| Ele Ede Wiew Favortes Tock Hep |E
n : P A » o»
‘ @ 0= 9 9 el Links @ He
| Back e Stop Refiesh Home | Seawch |
_|-'5‘=E|E|IESS ITEI Folediourdap.uz. araclecom/0rall 7Aarder segl?custl d=2128prodld=410 L‘ -(‘> Go
Hi-Tech Mall
Thank you Oliv for shopping with us !
Please enter the quantity
!La_ptop lock at $25 each supplied by DELL i
| Cuantity ||1 |
| Flace Order |
&
‘&1 Dere. o | T Localintanet 7

10. [Retailer] Click "Go On", or "Give Up". See Figure 8-14.

XSQL Script Example 4: Enter a Quantity — order.xsq|

<?xmlversion="1.0"?>

<l-

| This is the fourth script called.

| It prompts you to enter a quantity.
I

| $Author: olediour@us $

| $Revision: 1.1$
+—>

8-44 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 1. Retailer Browses the Supplier's OnLine "Hi-Tech Mall" Catalog

<?xml-stylesheet type="text/xsI' media="HandHTTP" href="PP.xg["?>
<?xml-stylesheet type="text/xsI' media="Mozila" href="HTMLxsI'?>

<order xmins:xsgl="um:oracle-xsql"
connection="retail"
custld="000"
prodid="000">
<pageTite>Hi-Tech Mall</pageTitie>
<xsglquerytag-case ="upper’
rowset-element=""
row-element ="cust™>
<|[CDATAl
select C.ID,
CNAME
from CUSTOMER C
where C.ID ={@custd}f
>
<xsglno-rows-query>
Select {@custid} as "unknown™ from dual
</xsgl:no-rows-query>
</xsql.query>

<xsgl:query tag-case="upper"
rowset-element="'
row-element="prod">
<|[CDATAl
selectLID,
.DESCRIPTION,
1.PRICE,
SNAME
from INVENTORY_ITEM |,
SUPPLIER S
where .SUPPLIER ID=S.ID and
11D = {@prodidy
>
<xsglno-rows-query>
Select {@prodid} as "unknown" from dual
</xsgl:no-rows-query>
</xsql.query>

<retumHome>index xsgl</retumHome>
</order>

Online B2B XML Application: Step by Step 8-45

Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog

Figure 8-14 [Retailer}: Click "Go On"

J File Edit ‘ew Favotes Took Help

‘ -, = @ | 2] ﬁ 'ﬁ i s @EH('»
| Back fEamitard Stop Refresh Home | Ssach
JﬁddIESSI@ hitp:/olediour-lap. uz.oracle. com/Ora81 7 /place0rder: mzql ;l .'f?.[i::t- |

=)

Hi-Tech Mall

About to mnsert vour Order for 1 ttem(s)

Go on |
Give up |

8-46 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 2. Retailer Places Order

Step 2. Retailer Places Order

The Retailer selects "Go On", then the application checks the order, perhaps the
retailer’s credit history, and then validates the order by selecting "Validate". See

Figure 8-15 and Figure 8-16.

Figure 8-15 [Retailer]: Click "Validate"

a Retail Application - Microzoft Internet Explorer provided by MSH

J File Edt ‘“ew Favoites Took Help

[y e i ; \ » aen S
‘) e x @ L% ﬁ ﬁ Linka. 4 Hi
Back fEamiiard Stop Refresh Home | Seach |
_|~'5':£||:|IESS I?é'l hittp: # folediour-lap. g oracle. comdOradl 7 /placelrder kegl Ll .'(:?.GJ::- |

Hi-Tech Mall

Inzert Successtul

Yalicate |

Cancel

=

Online B2B XML Application: Step by Step 8-47

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

Figure 8-16 [Retailer]: Commit Successful. Table Ord has Been Updated

| Fle Edi View Favortes Took Help |m

o i i : g ot > i il
‘ - . = 8] A ﬁ Lirks: @8 He
| Back feamiiEr Stop Refresh Home Search |
].fh.gld[ess !?é'l http://olediour-lap.us. oracle. com/0ra81 7 Aplacelrder xzql :] n‘(';}.GD-

=
Hi-Tech Mall

C ottt successfull for order #526 from Crd

Back to Login

Step 3. "Validate" Commits the Transaction. Retailer Application
Produces the XML Order

1. Once "Validate" is clicked, this triggers the main B2B process by means of the
XSQL Servlet Action Handler. This is the end of client’s interaction.

The following scripts are executed by the B2B application (demo):
« XSQL Script Example 5: Starts B2B Process — placeorder.xsql

« Java Example 1: Action Handler Called by placeOrder.xsql —
Retail ActionHandler.java

« Java Example 2: Maintains Session Context for Retail ActionHandler.java —
SessionHolder.java

XSQL Script Example 5: Starts B2B Process — placeorder.xsq

<?xml version="1.0"?>

<l-

| This is the fifth and last, but not least, script called.
| This script actually fires the whole B2B process.

8-48 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

| It uses the Action Handler facility of XSQL Serviet.

I

| $Author: olediour@us $

| $Revision: 1.1 $

+—->

<?xml-stylesheet type="text/xsl" media="HandHTTP" href="PP.xsl"?>
<?xml-stylesheet type="text/xsI' media="Mozila" href="HTMLxslI'?>

<placeOrder xmins:xsgl="um:oracle-xsq"

connection="retail"

dbUr =jdbc:oracle:thin:@atp-1.us.oracle.com:1521:0ORCL"

usemame ='retailer"

password ="retailer"

entty ="Ord"

operation ="insert"

custld ="

odd ="

prodid ="

ay ="
<xsglinclude-request-params/>
<pageTite>Hi-Tech Mall</pageTite>
<pageSeparator/>

<xsgl:action handler ="B2BDemo.XSQLActionHandler.RetailActionHandler"
doun ="{@dbUr}'
usemame ={@usemame}’
password ="{@password}'
entty ={@entity}"
operation ="{@operation}"
custid ="{@custid}"'
odd ={@ordid}"
prodid ="{@prodid}"
ay ={@ay’>
<pageSeparator/>
<bottomLinks>
<alink href="placeQOrder.xsql?operation=rollback >Rollback</aLink>
<hbottomLinks>
<retumHome>index xsgl</retumHome>
</placeOrder>

Online B2B XML Application: Step by Step 8-49

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

Java Example 1: Action Handler Called by placeOrder.xsql —
RetailActionHandler.java

Note: This example traverses almost 20 pages.

package B2BDemo.XSQLActionHandler;

e

* Action Handler called by the placeOrder.xsql script.

* Actually fires the B2B process itself.

* Uses SessionHolder to maintain transaction state.

*

* @see SessionHolder

* @see placeOrderxsql

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Comp.
¥

import oracle xml.xsgl*;

import oracle xml.xsgl.actions. XSQLIncludeXSQLHandler;
import javax.serviethttp.*;

import javax.senvet*;

import orgw3c.dom.*;

import java.sgl.*;
import javalio.*;

import oraclexml.parser.v2.*,

import B2BDemo.AQUIilL*;
import B2BDemo.*;
import B2BDemo. XMLUHl.*;

public class RetailActionHandler extends XSQLActionHandlerimpl
{

private static final boolean verbose =false;

private static final boolean debugFile =false;

private Connection actionConnection = null;

private String appud - =",

private String appUser =",
private String appPassword =",

public static final String DBURL ~ ="dbUH";
public static final String USERNAME ="usemame”;

8-50 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

public static final String PASSWORD ="password",
public static final String OPERATION ="operation”;
public static final String ENTITY ="entity",

public static final Sting ORDID ~ ="ordlId",

public static final String ORDERDATE ="orderDate”;
public static final String CONTACTNAME ="contactName";
public static final String TRACKINGNO ="trackingNo";
public static final String STATUS ~ ="status",

public static final String CUSTID ~ ="custid";

public static final Sting QTY ="qty'";
public static final String PRODID = "prodid";

public static final String SELECT = "select”,
public static final String INSERT ~ ="insert";
public static final Sting BEGIN ~ ="begin";
public static final Sting COMMIT = "commit";
public static final String ROLLBACK ="rollback’,

XSQLActionHandler nestedHandler = null;
String operation = null;

Stingentity =null;
Stingordld =null;
String orderDate = nul;
String contactName =nulll;
String trackingNo = null;
Stingstatus =nul;
Stingcustid =nul;
String qty =nul;
Stingprodid =nul;

HitpSenvetRequest request =null;
HitpSenvietResponse response =nul;
HitpSession session =null;
public void initXSQLPageRequest xspRequest, Element action)
{
super.init(xspRequest, action);
/I Retrieve the parameters

if (verbose)

Online B2B XML Application: Step by Step 8-51

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

appUr = getAttributeAllowingParam(DBURL, action);
appUser = getAttributeAllowingParam(USERNAME, action);
appPassword = getAttributeAllowingParam(PASSWORD, action);

operation = getAttributeAllowingParam(OPERATION, action);
entity = getAttributeAllowingParam(ENTITY, action);

odld =getAtrbuteAllowingParam(ORDID, action);

orderDate = getAttributeAllowingParam(ORDERDATE, action);

contactName = getAttributeAllowingParam(CONTACTNAME, action);

trackingNo = getAttributeAllowingParam(TRACKINGNO, action);

status =getAttributeAllowingParam(STATUS, action);

custid = getAttrbuteAllowingParam(CUSTID, action);

prodid = getAttributeAllowingParam(PRODID, action);

qy =getAtributeAllowingParam(QTY, action);

I

if (verbose)

{
System.out.printin("OrdID >" + ordid);
System.out.printin(*CustiD > " + custid);
System.out.printin(*ProdID >" + prodid);

}

final String HOLDER_NAME ="XSQLActionHandler.connection”,

try

{
if (xspRequestgetRequestType().equals('Serviet))
{

XSQLSenetPageRequest xspr = (XSQLSenetPageRequest)xspRequest;
HitpSenietRequestreq = xspr.getHitpSenvietRequest();
session = req.getSession(true); // true : Create if missing !!!
if (verbose)
System.outprintin("Session Id =" + session.getld() + " - new : " +
session.isNew());
SessionHolder sh = (SessionHolder) session.getValue(HOLDER_NAME);
if (sh ==null)
{
if (verbose)
System.out printin(‘New SessionHandler > Getting connected at"' +
(new java.util. Date()));
actionConnection = getConnected(appUr, appUser, appPassword);
sh = new SessionHolder(actionConnection);
session.putValue(HOLDER_NAME, sh);

8-52 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

}
actionConnection = sh.getConnection();
if (verbose)
{
System.out.printin("Reusing Connection at " + (new java.util. Date()) +
"- Opened at " + sh.getOpenDate().toString());
System.outprinin('Driver :"+
actionConnection.getMetaData().getDriverName());
System.out.printin("Sessionld : " + session.getld());
System.out.prinin(*AutoCommit ; " +
actionConnection.getAutoCommit());
}
}

catch (Exception €)
{
System.err.printin("Error in retrieving session context \n" + €);
e.printStackTrace();
}
}

I The resultis the out parameter
public void handleAction(Node resutt) throws SQLException
{
XSQLPageRequest xpr = getPageRequest();
if (xpr.getRequestType().equals("Serviet))
{
Il Get the serviet context and components
XSQLSenetPageRequest xspr = (XSQLServietPageRequest)xpr;
request = xspr.getHttpSenietRequest();
response = xspr.getHttpServietResponse();

Document doc =null;

I/ Display CLASSPATH
XMLDocument myDoc = new XMLDocument();

try

{
Element root = myDoc.createElement(root');

myDoc.appendChild(root);

Element cp = myDoc.createElement('ClassPath');
root.appendChild(cp);

/I The textis a descendant of its node

Online B2B XML Application: Step by Step 8-53

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

Node cpTxt = myDoc.create TextNode("text#');
cpTxtsetNodeValue(System.getProperty(java.class.path'));
cp.appendChild(cpTxt);

Element e = myDoc.getDocumentElementy();
e.getParentNode().removeChild(e);
resuttappendChild(e); // Append child to resutt before retuming it.
}
catch (Exception €)
{
System.err.printin("Building XMLDoc");
e.printStackTrace();
}
try
/Il Add a node to hold operation value
XMLDocument xmiDoc = new XMLDocument();
Element elmt =xmlIDoc.createElement(requiredOperation’);
xmiDoc.appendChild(elmt);
Node theText = xmiDoc.create TextNode(text#");
theText.setNodeValue(operation);
elmt.appendChild(theText);
Il Append to result
Element e = xmiDoc.getDocumentElement();
e.getParentNode().removeChild(e);
resuttappendChild(e); // Append child to result before retuming it.
}
catch (Exception €)
{
System.err.printin(“Building XMLDoc (2)');
e.printStackTrace();
}
try
{
// Dispatch
if (operation.equals(SELECT))
F doc =manageSelect() */;
else if (operation.equals(INSERT))
doc = managelnsert();
else if (operation.equals(BEGIN))
doc =doBegin();
else if (operation.equals(COMMIT))
doc = doCommit();
else if (operation.equals(ROLLBACK))

8-54 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

doc = doRollback();

else // Wrong operation

{
XMLDocument xmiDoc = new XMLDocument();
Element elmt = xmlIDoc.createElement(“unknownOperation”);
xmiDoc.appendChild(elmt);
Node theText = xmIDoc.create TextNode(text#");
theText.setNodeValue(operation);
elmtappendChild(theText);
1l Append to result
Element e = xmiDoc.getDocumentElement();
e.getParentNode().removeChild(e);
result.appendChild(e); / Append child to resutt before retuming it.

}

}
catch (Exception ex)

{

I/ file:/fhis.reportEmor(e);
XMLDocument xmiDoc = new XMLDocument();
Element eimt =xmlIDoc.createElement(‘operationProblem”);
xmiDoc.appendChild(elmt);
Node theText = xmiDoc.create TextNode(text#”);
theText.setNodeValue(ex.toString());
elmtappendChild(the Text);
/I Append to result
Element e = xmiDoc.getDocumentElement();
e.getParentNode().removeChid(e);
resuttappendChild(e); // Append child to result before retuming it.

}
try

if (doc = null)
{
Element e = doc.getDocumentElement();
e.getParentNode().removeChild(e);
result.appendChild(e); // Append child to resutt before retuming it.
}
}
catch (Exception €)
{
try
{
SenletOutputStream out = response.getOutputStream();
outprintin(e.toString();

Online B2B XML Application: Step by Step 8-55

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

}
catch (Exception ex) {}

}

}
else //Command line ?
{
System.out.prinin("Request type is [+ xpr.getRequestType() +'T");
}
}

/kk
* Removed because uselezss in this demo.
*
private Document manageSelect() throws Exception
{
Document doc =null;
String cStmt=""

if (custid = null && custid.length() > 0)
vo.setWhereClause('Customer_Id ="+ custid +™};
else
vo.setWhereClause(null);
vo.executeQuery();
doc = data.getXMLDocument(); // Query implicitly executed !
retum doc;
}
¥
private Document managelnsert() throws Exception

{
Document doc = null;

if (entity.equals("Ord"))
doc = insertinOrd();

else if (entity.equals(‘Lineltem))
doc =insertinLine();

else

{
doc = new XMLDocument();
Element elmt = doc.createElement("operationQuestion’);
Attr attr = doc.createAttribute('op Type");
attr.setValue(insert");
elmt.setAttributeNode(attr);
doc.appendChild(elmt);
Node txt = doc.create TextNode("text#');
elmt.appendChild(xt);

8-56 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

txt.setNodeValue("Don't know what to do with " + entity);
}

retum doc;

}

private Document insertinOrd()
{
Document doc = null;
if (custid = null || custid.length() = 0)
{
doc = new XMLDocument();
Element elmt = doc.createElement("operationProblem"?);
Altr attr = doc.createAttribute(‘op Type");
atir.setValue('Ordinsert”);
elmt.setAttributeNode(attr);
doc.appendChild(elmt);
Node txt = doc.create TextNode("text#');
elmtappendChild(txt);
txt.setNodeValue("Some element(s) missing for ord insert (custld)”);

else

String seqStmt ="select Ord_Seq.nextVal from dual”;
String seqval="",
try

{
Statement stmt = actionConnection.createStatement();

ResultSet rSet = stmt.executeQuery(seqStmt);
while (rSetnext()
seqVal = rSetgetString(1);
rSet.close();
stmt.close();
}
catch (SQLException €)
{
System.err.printin("Error reading ORD_SEQ Sequence : "' + e.toString());
}
I 1 2 3 4
String cStmt ="insertinto ORD values (?, sysdate, ?, 'AX'|| 2,
'Pending, ?)",
try
{
if (verbose)
System.out.printin(‘Inserting Order # " + seqVal);
PreparedStatement pStmt = actionConnection.prepareStatement(cStmt);

Online B2B XML Application: Step by Step 8-57

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

pStmt.setString(1, seqVal);
pStmt.setString(2, "Ora817"); // Default value !
pStmt.setString(3, segVal);
pStmt.setString(4, custd);
pStmt.execute();
pStmt.close();
il
try

{
Statement stmt = actionConnection.createStatement();

ResultSet rSet = stmt.executeQuery("'SELECT * FROM ORD WHERE ID ="+
seqval);
inti=0;
while (rSetnext()
i+
if (verbose)
System.out.printin(i +" record found for " + seqVal);

rSet.close();

stmt.close();
}
catch (SQLException €)
{

System.err.printin(*Error : "' + e.toString());
}
*
doc = new XMLDocument();
Element eimt = doc.createElement(“operationResult’);
Attr attr = doc.createAttribute(“opType'");
attr.setValue(insert";
elmt.setAttributeNode(attr);

attr = doc.createAttribute("Step”);
attr.setValue(entity);
elmt.setAttributeNode(attr);

doc.appendChild(elmt);

Node txt = doc.create TextNode(text#);

elmt.appendChild(pxt);

txt.setNodeValue("About to insert your Order for " + gty + " item(s)');

Element nextElmt = doc.createElement("nextStep”);
elmtappendChild(nextEimt);

attr = doc.createAttribute("Label");

attr.setValue('Go on’);
nextEimt.setAttributeNode(attr);

8-58 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

attr = doc.createAttribute("Action”);
nextElmt. setAtiibuteNode(attr);
attr.setValue('placeOrder.xsql');
Element pList = doc.createElement(prmList’);
nextElmt.appendChild(pList);

I viewobject

Element prm = doc.createElement(‘prm");
pListappendChid(pm);

attr = doc.createAttribute("name”);
attr.setValue('entity”);
prm.setAttributeNode(attr);

attr = doc.createAttribute(value');
attr.setValue('Lineltem’);
prm.setAtributeNode(attr);

Il custid

prm = doc.createElement('prm’”);
pList.appendChild(prm);

attr = doc.createAttribute(“name’);
attr.setValue('custid”);
prm.setAtributeNode(attr);

attr = doc.createAttribute(value');
attr.setValue(custid);
prm.setAttributeNode(attr);

Il prodid

prm = doc.createElement('prm’);
pListappendChid(pm);

attr = doc.createAttribute("name”);
attr.setValue('prodid");
prm.setAttributeNode(attr);

attr = doc.createAttribute(value');
attr.setValue(prodid);
prm.setAttributeNode(attr);

aty

prm = doc.createElement("prm’”);
pList.appendChild(prm);

attr = doc.createAttribute(“name’);
attr.setValue('qty’);
prm.setAttributeNode(attr);

attr = doc.createAttribute(value');
attr.setValue(qty);
prm.setAttributeNode(attr);
/lordid

prm = doc.createElement("prm’);
pListappendChid(pm);

Online B2B XML Application: Step by Step 8-59

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

attr = doc.createAttribute(“name’);
attr.setValue(“ordld");
prm.setAttributeNode(attr);

attr = doc.createAttribute('value');
attr.setValue(seqVal);
prm.setAttributeNode(attr);

nextElmt = doc.createElement(‘nextStep”);
elmtappendChild(nextEimt);

attr = doc.createAttribute("Label");
attr.setValue("Give up");
nextEimt.setAttributeNode(attr);

attr = doc.createAttribute("Action);
nextEimt.setAttributeNode(attr);
attr.setValue("placeOrder.xsql');
pList = doc.createElement("prmList’);
nextElmt.appendChild(pList);
I/ viewobject
prm = doc.createElement("'prm’);
pListappendChid(pm);
attr = doc.createAttribute("name”);
attr.setValue(“operation");
prm.setAttributeNode(attr);
attr = doc.createAttribute(value');
attr.setValue(rollback’);
prm.setAtributeNode(attr);

}

catch (Exception €)

doc = new XMLDocument();

Element eimt = doc.createElement("operationProblem’?);
Attr attr = doc.createAttribute(“opType");
attr.setValue(insert";

elmt.setAttributeNode(attr);

attr = doc.createAttribute('Step”);
attr.setValue(entity);
elmt.setAttributeNode(attr);

doc.appendChild(elmt);

Node txt = doc.create TextNode(text#);
elmt.appendChild(xt);
txtsetNodeValue(e.toString());

if (verbose)

8-60 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

System.out.printin("Error : " + e.toString());
Element prm = doc.createElement(‘parameters”);
elmt.appendChild(prm);
1D
Element prmVal = doc.createElement('ID");
prm.appendChild(prmVal);
txt = doc.create TextNode(text#);
prmVal.appendChild(xt);
txt.setNodeValue(ordid);

//CUSTOMER_ID
prmVal = doc.createElement('CUSTOMER_ID'Y);
prm.appendChild(prmVal);
txt = doc.create TextNode(text#);
prmVal.appendChild(txt);
txt.setNodeValue(custid);
}
}

retum doc;

}

private Document insertinLine()
{
Document doc = null;
if (custid == null || custid.length() == 0 ||
gty =null || qtylength() =0 ||
prodid == null || prodid.length() =0 |
ordid ==null || ordid.length() =0)
{
doc = new XMLDocument();
Element elmt = doc.createElement(‘operationProblem’?);
Altr attr = doc.createAttribute(‘op Type");
attr.setValue(inelnsert”);
elmt.setAttributeNode(attr);
doc.appendChild(elmt);
Node txt = doc.create TextNode("text#');
elmtappendChild(bxt);
txt.setNodeValue("Some element(s) missing for line insert (* +
((custld =null || custid.length() == 0)?"custid ") +
((aty ==null]| oty length() = 0)?'cty ") +
((prodid = null || prodid.length() = 0)?"prodid ") +
((ordid =nul || ordid.length() == 0)?"ordId "*) +""
)

Element subEImt = doc.createElement(custld”);
elmt.appendChild(subEImt);

Online B2B XML Application: Step by Step 8-61

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

txt = doc.create TextNode(text#);
subElmt.appendChild(txt);
txt.setNodeValue(custld);

subElmt = doc.createElement('qty’);
elmtappendChild(subEImt);

txt = doc.create TextNode(text#);
subElmt.appendChild(txt);
txtsetNodeValue(qty);

subElmt = doc.createElement(‘prodid");
elmtappendChild(subEImt);

txt = doc.create TextNode(text#);
subElmt.appendChild(txt);
txt.setNodeValue(prodid);

subElmt = doc.createElement(‘ordld");
elmtappendChild(subEImt);
txt = doc.create TextNode(text#);
subElmt.appendChild(txt);
txt.setNodeValue(ordld);
}
else
{
if (verbose)
System.out printin(“Inserting line : Ord>"+ ordid + ", Prod>" + prodid
+, Q>+),
/‘k*
try
{
Staterment stmt = actionConnection.createStatement();
ResultSet rSet = simt.executeQuery("SELECT * FROM ORD WHERE ID ="+
ordid);
inti=0;
while (rSetnext()
-
System.out.printin(i + " record found for " + ordid);
rSet.close();
stmt.close();
}
catch (SQLException €)

{
System.er.printin(‘Error : " + e.toString();

¥

8-62 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

String cStmt ="insertinto line_item values (Line_item_seq.nextVal, ?, 2,
?,0)"
try

{
PreparedStatement pStmt = actionConnection.prepareStatement(cStmt);

pStmt.setSting(1, qty);
pStmt.setString(2, prodid);
pStmt.setString(3, ordid);
pStmt.execute();
pStmt.close();

doc = new XMLDocument();

Element eimt = doc.createElement("operationResult”);
Alir attr = doc.createAttribute(‘op Type");
attr.setValue(insert;

elmt.setAttributeNode(attr);

attr = doc.createAttribute('Step”);
attr.setValue(entity);
elmt.setAttributeNode(attr);

doc.appendChid(elmt);

Node txt = doc.create TextNode(' text#);
elmt.appendChild(bxt);
txt.setNodeValue('Insert Successful’);

Element nextElmt = doc.createElement("nextStep”);
elmt.appendChild(nextElImt);

attr = doc.createAttribute('Label”);
attr.setValue('Validate");
nextEimt.setAttributeNode(attr);

attr = doc.createAttribute("Action”);
nextEimt.setAttributeNode(att);
attr.setValue("placeOrderxsql");

Element pList = doc.createElement(“prmList’);
nextEimt.appendChild(pList);

I/ operation

Element prm = doc createElement("prm"Y);
pList.appendChild(pm);

attr = doc.createAttribute("name’);
atir.setValue(“operation”);
prm.setAttributeNode(attr);

attr = doc.createAttribute(value');
attr.setValue('commit’);

Online B2B XML Application

: Step by Step 8-63

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

prm.setAttributeNode(attr);
/fordld

prm = doc.createElement(prm");
pList.appendChid(pm);

attr = doc.createAttribute("name’);
attr.setValue(“ordld'");
prm.setAttributeNode(attr);

attr = doc.createAttribute(value');
attr.setValue(ordid);
prm.setAttributeNode(attr);

nextElmt = doc.createElement(‘nextStep");
elmt.appendChild(nextElmt);

attr = doc.createAttribute("Label");
attr.setValue('Cancel”);
nextEimt.setAttributeNode(attr);

attr = doc.createAttribute("Action”);
nextEimt.setAttributeNode(attr);
attr.setValue(placeOrderxsql');
pList = doc.createElement(“prmlList”);
nextEimt.appendChild(pList);
I/ operation
prm = doc.createElement('prm’);
pListappendChid(pm);
attr = doc.createAttribute(“name”);
attr.setValue('operation”);
prm.setAttributeNode(attr);
attr = doc.createAttribute('value');
attr.setValue('rollback’);
prm.setAttributeNode(attr);

}

catch (Exception €)

if (verbose)
System.out.printin("Error when inserting " + e.toString());

doc = new XMLDocument();

Element eimt = doc.createElement(“operationProblem?);
Attr attr = doc.createAttribute(“opType'");
attr.setValue(insert";

elmt.setAttributeNode(atr);

attr = doc.createAttribute("Step”);
attr.setValue(entity);

8-64 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

elmt.setAttributeNode(attr);
doc.appendChild(elmt);

Node txt = doc.create TextNode(text#");
elmtappendChild(tx);
txtsetNodeValue(e.toSting());

Element prm = doc.createElement(‘parameters”);
elmt.appendChild(prm);
1D
Element prmVal = doc.createElement("ORD_ID');
prm.appendChild(prmVal);
txt = doc.create TextNode(text#);
prmVal.appendChild(txt);
txt.setNodeValue(ordid);
Ty
prmVal = doc.createElement('QTY");
prm.appendChild(prmVal);
txt = doc.create TextNode(text#);
prmVal.appendChild(xt);
txt.setNodeValue(qty);
JITEM_ID
prmVal = doc.createElement('ITEM_ID");
prm.appendChild(prmVal);
txt = doc.create TextNode(text#);
prmVal.appendChild(xt);
txt.setNodeValue(prodid);
}
}

retum doc;

}

private Document doCommit() throws Exception
{
Document doc =null;
actionConnection.commit();

doc = new XMLDocument();

Element eimt = doc.createElement(“operationResult’);
Attr attr = doc.createAttribute('op Type");
attr.setValue(‘commit’);

elmt.setAttributeNode(attr);

doc.appendChild(elmt);

Node txt = doc.create TextNode(dummy’);
elmt.appendChild(txt);

Online B2B XML Application: Step by Step 8-65

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

txt.setNodeValue("Commit successfull for order #' + ordid + " from "' +
entity);

if (ordld '= null && ordlid.length() > 0)

{
I Generate XML Document to send to AQ
/I Start from Ord with Ordld value -

AQWriter agw = null;

agw = new AQWriter(AppCste. AQuser,
AppCste AQpswd,
AppCste. AQDBUH,
"AppOne_QTab’,
"AppOneMsgQueue’);

String doc2send = XMLGen.retumbDocument(actionConnection, ordid);
I/ sending XMLDoc in the Queue
try
{
if (verbose)
System.out.printin("Doc : " + doc2send);
if (debugFile)
{
BufferedWhiter bw = new BufferedWiiter(new FileWriter('debug.tt));
bw.write('Rows in " + entity);
bw.write(doc2send);
bw.flush();
bw.close();
}

}
catch (Exception ex) {

agw.writeQ(new B2BMessage(MessageHeaders. APP_A,
MessageHeaders. APP_B,

MessageHeaders. NEW_ORDER,
doc2send));
aqw-flushQ(); / Commit!

}

retum doc;

}

private Document doRollback() throws Exception
{

8-66 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

Document doc = null;
actionConnection.rollback();

doc = new XMLDocument();

Element eimt = doc.createElement("operationResult’);
Attr attr = doc.createAttribute(‘op Type");
attr.setValue(rollback’);

elmt.setAttributeNode(attr);

doc.appendChild(elmt);

Node txt = doc.create TextNode(' dummy’);
elmt.appendChild(bxt);

txt.setNodeValue('Rollback successfull’);

retum doc;

}

private Document doBegin() throws Exception
{
Document doc = null;
actionConnection.setAutoCommit(false);

doc = new XMLDocument();

Element eimt = doc.createElement("operationResult’);
Attr attr = doc.createAttribute(‘'op Type");
attr.setValue("begin’);

elmt.setAtiributeNode(attr);

doc.appendChild(elmt);

Node txt = doc.create TextNode(' dummy');
elmt.appendChild(bxt);

txt.setNodeValue('Begin successfull);

retum doc;

}

private static Connection getConnected(String connURL,
String userName,
String password)
{
Connection conn=null;
try

{
DriverManager.registerDriver(new oracle jabc.driver.OracleDriver());

conn = DriverManager.getConnection(connURL, userName, password);
conn.setAutoCommit(false);
}

Online B2B XML Application: Step by Step 8-67

Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order

catch (Exception €)

{
System.err.printin(e);
System.exit(1);

}

retum conn;

}
}

Java Example 2: Maintains Session Context for RetailActionHandler.java —
SessionHolder.java

I Copyright (c) 2000 Oracle Corporation

package B2BDemo.XSQLActionHandler;

e

* Used to maintain the connection context from the XSQL Action Handler.
* Also closes the connection when serviet expires.
*

* @see RetailActionHandler

il

import javax.serviet*;

import javax.senviethttp.*;

import java.sgl.;

public class SessionHolder implements HttpSessionBindingListener

{
private Connection c;
private java.util. Date d = null;

public SessionHolder(Connection conn)

{
System.out printin("New SessionHandler");

this.c = conn;
this.d = new java.util. Date();
}

public Connection getConnection()
{

retum this.c;

}

public java.util. Date getOpenDate()

{
retum this.d;

8-68 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 4. AQ Broker-Transformer Transforms XML Document According to Supplier’s Format

}

public void valueBound(HttpSessionBindingEvent event)

{
System.outprinin(\nvalueBound ! " + eventgetName() + "\nat " + (new
java.util.Date()) +"\nfor " + event.getSession().getid();
}

public void valueUnbound(HttpSessionBindingEvent event)

{
System.out printin(\nvalueUnbound ! " + eventgetName() + "\nat " + (new
java.util.Date()) + "\nfor " + event.getSession().getld());
eventgetSession().removeValue('XSQLActionHandler.connection”);
if (this.c = null)
{
try{this.c.close(); }
catch (Exception €)

System.out printin("Problem when closing the connection from " +
eventgetName() +
"for"+
event.getSession().getid() +
A+
e);

Step 4. AQ Broker-Transformer Transforms XML Document According to
Supplier's Format

1. AQ Broker-Transformer application is alerted that an XML order is pending.

2. An XML document containing the details of your order has been produced
using the XML-SQL Utility. This document has been sent to the AQ
Broker-Transformer for propagation, using Advanced Queuing.

The AQ Broker application knows the following, based on its Stylesheet table:
« Who it comes from: Retailer

« Who it goes to: Supplier

Online B2B XML Application: Step by Step 8-69

Step 4. AQ Broker-Transformer Transforms XML Document According to Supplier's Format

« What its for: NEW ORDER

These elements are used to select the correct stylesheet from Stylesheet table.
XSLT Processor processes the transformation. See Figure 8-17.

Scripts:
« MessageBroker. java calls BrokerThread.java which calls

« BrokerThread.java calls AQReader.java and AQWriter.java

AQReader.java and AQWriter.java both use B2BMessages.java for
their message structure.

Figure 8-17 [AQ Broker]: Viewing the retailer.bat, broker.bat, and supplier.bat Consoles (1 of 3)

gclies sprmed

s waccewsfully crowbed.
Full wetllasacTable
efull griflacas

oker.bat
1scount (#

1>

“Resultsy>
lrdUiew num=""1"}
£Id>526<7 Id>

<OrderdateXx2000-06-22 D8:4%:40.0
{Contactnamer*0ra817</Contactname
<Trackingno*A8526</Trackingno?
<Status>Pending</Status?
<CustomerId*212</Customer Id>
{Lineltemliews
4Lineltemliew ROW num="1">
<Id>2153<7 Id>
Lluantity>1</Quantity>
SItemId>&10<f TtemId>
0rdId>526</0rdId>
‘Discount>0</Discount>
<fLineltemliew ROUE:
<ALineTteml1ew:
< irdUiew:
</Results>

[Hit return to cuntinye]_

v‘l l ﬂ;

8-70 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 4. AQ Broker-Transformer Transforms XML Document According to Supplier’s Format

3. Hit [Return] in the AQ Broker Console.

4. The correct stylesheet is found inside the Stylesheets table according to contents
in the AppFrom, AppTo, and Op columns. The XSL Transformation proceeds
using the selected stylesheet. We now have a reformatted XML document ready
for the Supplier.

Note: Here XML + XSL = XML

5. Again hit [Return] in the AQ Broker Console. See Figure 8-18. The broker.bat
screen changes as it has been transforming. The result is obtained after the XSLT
transformation.

See the "AQ Broker-Transformer and Advanced Queuing Scripts" section for code
listings that run the AQ Broker-Transformer and the Advanced Queuing process.

Figure 8-18 [AQ Broker]: Viewing the retailer.bat, broker.bat, and supplier.bat Consoles (2 of 3)

"% Supplier_bat

gclies sprmed

Broker bat _ [O] x] : |
[Result : ‘| B]
<ROMSET: o |
<ROW HUM=""1"> iR

<ID>526</102 |

<ORDERDATE>2000-06-22 08:42:40.0 i

<COHTACTHAME > 0ra817</COHTAC THAME } ps gt i

STRACKIHGHO > ARS26 </ TRACK IMGHO > IMER 1D IMER 1D

<STATUS>Pending</STATUS>

SCUSTOMER_ID:212<ACUSTOMER_ID> |

<ITEMS>] i

<ITEM_ROW HUM="1"3} T i
<I0>2153</1D>]] I
— <QUANTITYA1</QUANTITY? R0 T

SITEM_ID>410</ ITEM_ID:>]] 1< /10)

<ORD_ID>526</0RD_ID> B

<DISCOUNT>D</DISCOUNT:
</ ITEM_ROW: B

</ ITEMS> B
<FROW>
</ ROWSET> ; & p ; =
Transformation done. I L8 |
[Hit return to continue] il |
Al 1 Wl

Online B2B XML Application: Step by Step 8-71

Step 4. AQ Broker-Transformer Transforms XML Document According to Supplier's Format

The newly reformatted XML document is sent to the Supplier by means of
Advanced Queuing [WRITE].

Note: The AQ Broker and Supplier .bat screens should look the
same as both applications are processing the same XML document
at this moment.

Figure 8-19 Sample XML Document Output From AQ Broker-Transformer

E\Eﬁ Meszzage Broker Hi=]
<L #xml = -
“Results>-
<0rdyiew num=""1">
<Id-14z
< /I
<0rderdate-2000-07-07 09:41:14.0
</0rderdate-
<Contactname>=0radl?y
< /Contactname>-
<Trackingmo-ix]14z2
< /Trackingno-
<S5tatus>Fending
< /Status>-
<CustomerId-Z01
</Customer Td-
<Lineltem\iew-
“Lineltemyiew ROW num="1">
<Id-1059
</ Id-
<luantity>3
< /Quantity>-
<Itemld-404
< /Itemld>-
<0rdId-14:

8-72 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 5. Supplier Application Parses the XML Document and Inserts the Order into the Supplier Database

Step 5. Supplier Application Parses the XML Document and Inserts the
Order into the Supplier Database

1. The XML document is received by the Supplier application. It now needs to be
parsed for the data it contains, and this data is then inserted into the database.

2. Hit [Return] in the Supplier’s Console. See Figure 8-20.

Figure 8-20 [AQ Broker]: Viewing the retailer.bat, broker.bat, and supplier.bat Consoles (3 of 3)

Iu.-lL Fi _,|
Ligsm epemed CHBSE 13

cessfmlly erpsted. CHly W=

wear Takbe £ IHEERRLY [HE
#ful geifacas COEIEADRATE - FRAP-08-3F PH-&P-40, 0
CCWH AL PERHL sl 2 00T DA il TR
-:IllHImHia-lliiu.errlJrnrﬂ:-
KT "r“'!!‘lll CAETTE
CCHSTISEN_§R>7 ?-e.-'ﬂn“t [H]
':IrIHI:-

H "'I -liu--r:r
ey LEL
lﬂ1|l'|"|-'|-|'.|'|lll|t1l'l':-
CHTTH, T3 AT -

ptitree = Supplier.bat

P <ROW HUM="1"7
gl <ID5526</ 10> -t
<ORDERDATE>2000-06-22 08:49:40.
Toomstarnation dome, | <CONTACTHAME> 0ra217</ CONTAC THAME
- <TRACK THGHO>AZ526</ TRACK THGHO>
<STATUS>Pending</STATUSS
<CUSTOMER_ID>212</CUSTOMER 1D}
<ITEMS >
SITEM_ROM HUM="1"}
<I0>2153</ 10>
<QUANTITY> 1</ QUANTITY?
<ITEM_ID>410</ ITEM_ID>
<ORD_ID¥526</0RD_ID>
<DISCOUHT>0</DISTOUNT>
</ TTEM_ROWS
</ TTEMS>
</ ROV
<7 ROVSET>

[Hit return to continue]
Inserting
Document processed.

Online B2B XML Application: Step by Step 8-73

Step 6a. Supplier Application Alerts Supplier of Pending Order

Step 6a. Supplier Application Alerts Supplier of Pending Order

1. The document is processed and the data is inserted. The Supplier application
Watcher program sends a wake up message that an order is pending! See
Figure 8-21.

2. Click OK in the Supplier’s Watcher dialog box. See Figure 8-22.

Scripts:
« SupplierWatcher.java calls SupplierFramer.java

Figure 8-21 The Supplier Application Alerts Supplier of Pending Order: "Wake Up!"

Supplier Watcher H=] .
Waiting for Orders

(@ |23 Wake Up ! L,]

Bt Grder

Mew Order Pending |-

SR UIFOeT

8-74 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 6a. Supplier Application Alerts Supplier of Pending Order

Figure 8-22 [Supplier]: retail.bat, broker.bat, and supplier.bat Consoles: After Clicking OK to Wake Up

TE 1T
simlly eroatred.
Full wetllasacTable
Luipriafml grifacas

M=
B

roker.bat

<ORDERDATE-2000-D6-22 na:uy:un.nzﬂ

SCOHTAC THAME> 0raB817</CONTAC THAME
<TRACKIHGHO>ARS26</TRACK THGHO >
<STATUS>Pending</STATUS
<CUSTOMER_ID>212</CUSTOMER_ID>
{ITEMS>
<ITEM_ROW HUM="1"3
<I0:2153</710>
SQUANHTITY>1</QUANTITY>
SITEM_ID>G10<FITEM TN
<ORD_ID>526</0RD_ID>
<DISCOUNT>D</DISCOUNT
</ ITEM_ROW:
<FITEMS>
</ROW>
<SROWSET>

Transformation done.
[Hit return to continue]
Successful getflueueTahle
Successful getfueue

4]

Online B2B XML Application: Step by Step 8-75

Step 6a. Supplier Application Alerts Supplier of Pending Order

Step 6b. Supplier Decides to Ship the Product(s) to the Retailer

1. You, the supplier, decide to ship this order. Click "Ship Order" in the dialog box.
See Figure 8-23 and Figure 8-24.

Scripts: Still using SupplierWatcher.java

Figure 8-23 [Supplier]: Decides to Ship the Order

E;,E Supplier Watcher =]

Order [526] to process for [Oliv]

Ship Order|

8-76 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 6a. Supplier Application Alerts Supplier of Pending Order

Figure 8-24 [Supplier]: Viewing the retailer.bat, broker.bat, and supplier.bat Consoles on "Ship Order”

Broker.bat

<I0x2153</ 10
SOQUANTITY> 1</ QUANTITY
SITEM_ID:410<7 ITEM_ID:
<ORD_ID>526<70RD_ID>
LDISCOUNT:D</DISCOUNT:
£FITEM_ROW:
</ ITEMS>
LSROW
<SROWSET>

Transformation done.
[Hit return to continue]
Successful getQueueTable
Successful getlueue
Successfull dueue

Supply to Retail Recieved
[From > SUPPLY

To > RETAIL

Type > UFDATE ORDER
IContent >
<SHIP>526</SHIF>

[Hit return to continue]
e Lo

[<ITEM_ROW HOM="1>

STRACK INGHOG-ARS26</ TRACK THGHO >
LETATUS:Pending<7STATUS
<CUSTOMER_ID>212</CUSTOMER_ID:
LITEMS>
<ITEM_ROW HUM="1"3
<ID>X153</10
SQUANTITY 1</ QUANTITY:
SITEM_TD:410<7 1TEM_IDG
<ORD_ID-526</0RD_ID
SDISCOUNT>D<SDISCOUNT
</ ITEM ROW:
</ ITEMS>
< ROME>
<SROWSET>

[Hit return to continue]

Inserting

Document processed.
Successful getflueueTable
Successful get{ueue

Online B2B XML Application: Step by Step 8-77

Step 6a. Supplier Application Alerts Supplier of Pending Order

Step 6¢. Supplier Application Generates a New XML Message to Send to AQ Broker

1. The Supplier application shipping order generates a new message, sent to the
broker.

2. Hit [Return] in the Broker’s Console. See Figure 8-25.

Figure 8-25 [Supplier]: retailer.bat, broker.bat, and supplier.bat Consoles - Form New XML Document

1%
I
I

ol 144 10
SRERAT ETY 14 QUAHT I TR
<ITEW [R470cF ITEW [0}
TR TRETEC/REN TTD
1 ut:: PR LSEMEHTY
</ I TEM_Ani>
oF [TERE>
RN
/L T

Framufarnalaom dane.

Bil FrUarm Do obed inere]
scersaial geileessiakils
sccemaful geifm=nes
accewsfull ddacar

apily e I-ruul R i wavad
Fras » SNFFL

I ¥ II.1III.

Fppr ¥ H'IIIE TEniE

Famlenl

CEHEFY LHH’III:HI .
[0l refimrs §= cEsionae) -
ni— " e

8-78 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 7. AQ Broker-Transformer Transforms XML Order into Retailer's Format

Step 7. AQ Broker-Transformer Transforms XML Order into Retailer’s
Format

1. Asin Step 4, a stylesheet is chosen from AQ Broker-Transformer database and
applied to the XML order document to produce a reformatted XML document.

2. Hit [Return] in the Broker’s Console. See Figure 8-26.

Figure 8-26 [AQ Broker]: retailer.bat, broker.bat, and supplier.bat Consoles - Reformat XML Document

inm spemed I.:-.".' Broker.bat
Ily erewted

.1n.|1 ikl rocessing From t

Ful qrillacar Length to read from DB - 319
Read:
<7aml version="1.0"7}

“xsl:stylesheet xmlns:usl="http:f wns.
version="1.0">

‘xsl:template match="*} @] comment(]}]
{usl:copyr
<uslzapply-templates select="=@
{fuslicopy
<fuslztemplater

“fuslostylesheet>

Result :
<SHIP>S526</SHIP>

Transformation done.
[Hit return to continue]

A e _*I_:,g

3. The document is sent to the Retailer application.

4. Hit[Return] in Retailer’s Console. See Figure 8-27. This parses the XML order.

Online B2B XML Application: Step by Step 8-79

Step 7. AQ Broker-Transformer Transforms XML Order into Retailer's Format

Figure 8-27 [AQ Broker]: retailer.bat, broker.bat, and supplier.bat Consoles - Sending XMLMessage

Tich P48 i
rea Bl ll__r\-lul fram B 2 TR

& retail bat : 1

Retail Side mucanhits: /e,
JOBE Connection opened ;

R Session successfully created. :
Successful getlueveTable lprletan spleciatede
I Successful getfoeue
Successfull djueue

Recieved

From > SUPPLY

To > RETAIL

Type > UPDATE ORDER _
Content > |]
<SHIP>526</S5HIP> - (ginee

i L e L LR

B

[Hit return to continue]_

8-80 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Step 8. Retailer Application Updates the Ord Table and Displays the New Order Status to Retailer

Step 8. Retailer Application Updates the Ord Table and Displays the
New Order Status to Retailer

1. Retailer application updates the Retailer database "Pending " status with the
new "shipped" order status information. The Ord table is updated.

2. This information is viewed by the Retailer from any device. The status is seen as
"Shipped". See Figure 8-28.

Scripts:
UpdateMaster.java . This receives the message and parses it.

Figure 8-28 [Retailer]: retailer.bat, broker.bat, and supplier.bat Consoles - Updates Status to Shipped

& retail bat
fetail Side

JOBE Connection opened
A Session successfully created. S

Successful getQueueTable : g ik ey Hat
Successful getlflueue : TEM

5 ss5full dijueue i
H:EE:::d“ i : <xslistylesheet xmlns:ixs1="http:/ um.

From > SUPPLY : version="1_0">
T » RETAIL :
T;pe > UPDATE ORDER : {xsl:template match=""%] @] comment{]}]
Content » : <xsl:copu’
LSHIP>526</SHIP> : <xsl:apply-templates select="#!@
' j {Frslzcopy’
[Hit return to continue] : {/xsl:template>
Updati :
ﬁgn:alﬂgdatg 526 : “fusl-stulesheet>
Done ! :
Result =
<SHIP>526</S5HIF>

Transformation done.
[Hit return to continue]
Successful getQueueTahle
Successful getfueue

1]

That's it!

Online B2B XML Application: Step by Step 8-81

Step 8. Retailer Application Updates the Ord Table and Displays the New Order Status to Retailer

To Stop the B2B XML Application

To stop the B2B XML application (demo), run Java Example 3: stopQ.bat.

Java Example 3: stopQ.bat

@echo off

@echo stopping all Qs

D\ dev31\avalbin\java -mx50m -classpath
"D:xmi81 7\references\Ora817DevGuide;
D:\dev31\ib\dev-1t.zip;
D:\dev31\dbclib\oracle8.1.6\classes111.zip;
D:\jdev31\ib\connectionmanager.zip;
D:\dev31\ib;D:\dev3\ib\oraclexsgl jar;
D:\dev31\ib\oraclexmisgl jar;
D\dev3N\ibxmiparserv2_2027 jar;
D:\dev31\fclib\swingall.jar;
Di\jdev31\swdk-1.0.1\ib\serviet jar;
D:\Ora8\rdbmsljib\agapill jar;
D:\Ora8ivdbmsljib\agapi jar;
D:XMLWorkshopwmilcomp,jar;
D:\dev31\avalib\classes.zip" B2BDemo.AQUIl.StopAllQueues

Check Your Order Status Directly Using vieworder.sql

8-82

To view your order status directly from the database run this SQL script.

setver off
select O.ID as "Order#’,
O.OrderDate as "Order Date",
O.Status as "Status”
FromORD O,
CUSTOMERC
Where O.CUSTOMER_ID=C.Dand
Upper(C.NAME) = Upper(&CustName));

Oracle9/ Case Studies - XML Applications, Release 1 (9.0.1)

Java Examples - Calling Sequence

Java Examples - Calling Sequence

The following list provides the Java examples’ calling sequence. The .java extension
for each file has been omitted. The notation "<---" implies "calls", for example,
AQReader <----- B2BMessage implies that AQReader calls B2BMessage.

AQReader <---- B2BMessage

AQWriter <---- B2BMessage

UpdateMaster

» <---- AQReader <----B2BMessage

« <---- B2BMessage

. e MessageHeaders

« XMLFrame

SupplierWatcher

» <----SupplierFrame
* <---- AQReader <---- B2BMessage
* <----XML2DMLV2 <---- TableInDocument
* <---- TableInDocument
* <---- AQWriter <---- B2BMessage
* <---- B2BMessage
* <---- MessageHeaders

« <---- XMLFrame

MessageBroker

« <---- AppCste

» <---- BrokerThread
* <---- XSLTWrapper
* <---- AQWriter <---- B2BMessage
* <---- AQReader <---- B2BMessage

« <---- AQReader <---- B2BMessage

» <---- AQWriter <---- B2BMessage

Online B2B XML Application: Step by Step 8-83

Java Examples - Calling Sequence

« <---- XMLFrame (called by MessageBroker)

. Retail ActionHandler <---- SessionHolder

8-84 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

XSL and XSL Management Scripts

To prevent over complicating the listing of examples in the section, "Running the
B2B XML Application: Detailed Procedure”, the XSL examples are listed separately.

« XSL Stylesheet Example 1: Converts Results to HTML — html.xsl

» XSL Stylesheet Example 2: Converts Results for Palm Pilot Browser — pp.xsl
« Java Example 3: Stylesheet Management— GU I Interface.java

« Java Example 4: GUlInterface_AboutBoxPanel.java

« Java Example 5: GUIStylesheet.java

XSL Stylesheet Example 1: Converts Results to HTML — html.xsl

<2xml version="1.0"?>
<l-

| $Author: olediour@us $
| $Date: 04-May-2000

| sl for html

| $Revision: 1.1 $

+—>

<xslstylesheet xmins:xsi="http:/Amwwv.w3.0rg/1999/XSL/Transform"
version="1.0">

<xsloutput media-type="texthtml" method="html" encoding="ISO-8859-1"/>

<xsltemplate match="/">
<htmi>
<head>
<tite>Retail Application<fitie>
<thead>
<body>
<xslif test="/fpageTitle">
<h2><xslvalue-of select="llpageTitle"/><h2>
</xslif>
<xsl.choose>
<xslwhen test="loginResuit>
<xsl:apply-templates select="loginResult'/>
</xslwhen>
<xslwhen test="index>
<xslapply-templates select="index />
</xslwhen>
<xslwhen test="inventory">

Online B2B XML Application: Step by Step 8-85

XSL and XSL Management Scripts

<xslapply-templates select="inventory' />
</xslwhen>
<xslwhen test="order">
<xsl:apply-templates select="order"/>
</xslwhen>
<xslwhen test="placeCQrder">
<xslapply-templates select="placeOrder"/>
</xslwhen>
<xslothenwise>
<p align="center">
<h3>This kind of XML Document cannot be processed...<h3>
<Ip>
</xslotherwise>
</xsl.choose>
</body>
<htmi>
</xsltemplate>

<xsltemplate match="loginResult">
<xslif test="ROWSET/ROW/unknown>
<table width="98%">
<tr>
<td bgcolor="yellow'" align="center">
<xslvalue-of select="ROWSET/ROW/unknown'/> is not allowed to log in I</td>
<fr>
<fable>
</Ixslif>
<xslif test="ROWSET/ROW/NAME">
<p align="center">
<h2>Welcome <xslvalue-of select="ROWSET/ROW/NAME"/> I<h2>
<Ip>
<p align="center">
<a>
<xslattribute name="href">
<xslvalue-of select="nextStep'/>?custid=<xsl:value-of select="ROWSET/ROW/ID'/>
</xslattribute>
Please enter the Mall !
<la>
<p>
<Ixslif>
<p>
<a><xslattribute name="href"><xsl.value-of
select="retumHome"/></xslattribute>Back to Login
<lp>
</xsltemplate>

8-86 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

<xsltemplate match="index">
<xslfor-each select="form>
<center>

<form>
<xslattribute name="action"><xsl:value-of select="/@action"/></xsl:attribute>

<xsl:attribute name="method"><xsl:value-of select="/@method"/></xsl:atiribute>
<xdlif test="/field">
<table width="98%" border="1">
<xsl-for-each select="/field">
<r>
<td align="right ><xsl:value-of select="/@prompt /></td>
<td>
<input>
<xsl:choose>
<xslwhen test="/@type = text">
<xslattribute name="type">text</xsl:attribute>
<fxslwhen>
</xsl.choose>
<xslattribute name="name">
<xslvalue-of select="/@name"/></xsl:attribute>
<finput>
<ftd>
<fr>
</xslfor-each>
<fable>
<xslif>
<xsl:if test="/button>
<>
<xsl:for-each select="/button">
<input>
<xsl.choose>
<xslwhen test="/@type = 'submit™>
<xsl:attribute name="type">submit</xsl:attribute>
<xslwhen>
</xsl:choose>
<xsl:attribute name="value">
<xslvalue-of select="/@label"/>
</xsl:attribute>
<finput>
</xslfor-each>
<p>
</xslif>
<fform>
<[center>

Online B2B XML Application: Step by Step 8-87

XSL and XSL Management Scripts

</xslfor-each>
<xsltemplate>

<xsltemplate match="inventory">
<h2>This is the Mart content</h2>
<table>
<>
<th>Prod #</th>
<th>Product<th>
<th>Price</th>
<th>Supplied by</th>
<fr>
<xsl:for-each select="formtheMartROWSET/ROW">
<>
<td><xslvalue-of select="ID"/><fd>
<>
<a>
<xslattribute name="href">
<xslvalue-of
select=".,/../../..form/@action"/>?custid=<xsl:value-of
select="./..../..florm/hiddenFields/custid"/>&prodid=<xsl:value-of
select="ID"/>
</xsl:attribute>
<xslvalue-of select="DESCRIPTION"/>
<Ja>
<fic>
<td><xslvalue-of select="PRICE"/></td>
<td><xslvalue-of select="NAME"/></td>
<fr>
</xsl-for-each>
<fable>
<p>
<a><xslattribute name="href ><xsl:value-of
select="retumHome"/></xsl:attribute>Back to Login
<p>
</xsltemplate>

<xsltemplate match="order">
<center>
<h2>Thank you <xsl:value-of select="CUST/NAME'/> for shopping with us
<h2>
<hrf>
<h2>Please enter the quantity<h2>
<form action="placeOrder.xsq" method="post ">
<input type="hidden" name="prodId">

8-88 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

<xslatfribute name="value">
<xslvalue-of select="PROD/ID"/>
</xslattribute>
<finput>
<input type="hidden" name="custld">
<xslattribute name="value">
<xslvalue-of select="CUST/ID"/></xsl:attribute>
<finput>
<table border="1">
<>
<td colspan="2"><xsl:value-of select="PROD/DESCRIPTION"/>
at $<xslvalue-of select="PROD/PRICE"/> each
supplied by <xsl:value-of select="PROD/NAME"/></td>

<tr>
<td align="right >Quantity</td>
<td><input type="text"' name="gty"/></td>
<>
<ftable>
<p><input type="submit" value="Place Order"/></p>
<fflorm>
</center>
<p>
<a><xslattribute name="href">
<xslvalue-of select="retumHome">
</xslattribute>Back to Login
<p>
</xsltemplate>

<xsltemplate match="placeOrder">
<xslif test="operationResult">
<table width="98%">
<tr><td align="center>

<xslvalue-of select="operationResult/text()"/>
</fd></fr>
<tr>
<{d align="center">
<xslfor-each select="operationResulnextStep">
<form method="post">
<xslattibute name="action"><xsl:value-of
select="/@Action"/></xsl:atribute>
<xslif test="prmList">
<xslfor-each select="prmList/prm">
<input type="hidden">

Online B2B XML Application: Step by Step 8-89

XSL and XSL Management Scripts

<xslattribute name="name"><xsl:value-of
select="/@name"/></xsl:attribute>
<xslatiribute name="value"><xsl.value-of
select="/@value"/></xsl:attibute>
<finput>
</xslfor-each>
</xslif>
<input type="submit>
<xslatiribute name="value"><xsl.value-of
select="/@Label'></xslattribute>
<finput>
<form>
<xslfor-each>
<fto>
<fr>
<ftable>
<Ixslif>
<xslif test="xsqgl-emor">
<table width="98%">
<tr><td><xsl:value-of select="xsgl-error/@action’/><td></tr>
<tr><td><xsl:value-of select="xsql-error/statement /><fd></tr>
<tr><td><xsl:value-of select="xsgl-errorimessage'/><td></tr>
<table>
<Ixslif>
<xslif test="operationProblem">
<table width="98%">
<>
<td colspan="2" align="center">
<xsl:value-of
select="operationProblem/text()'/><ffont>
<fto>
<fr>
<xsl:for-each select="operationProblem/parameters/*>
<tr>
<td align="right"><xsl:value-of select="name()"/><fd>
<td align="left"><xslvalue-of select="."/></td>
<fr>
</xsl-for-each>
<ftable>
</xslif>
<xslif test="bottomLinks">
<xsl:choose>
<xslwhen test="operationResult">
</xslwhen>
<xslotherwise>

8-90 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

<p dign="center>
<xsl:for-each select="bottomLinks/aLink>
[<a><xslatiribute name="href ><xsl.value-of
select="/@href'></xsl:attribute><xsl:value-of select="."/>]
</xslfor-each>
<p>
</xslotherwise>
<xsl:choose>
</xslif>
<xsl.choose>
<xslwhen test="operationResult/nextStep">
<fxslwhen>
<xsl.otherwise>
<xslif test="retumHome">
<p>
<a><xslattribute name="href><xsl:value-of
select="retumHome"/></xsl:attribute>Back to Login
<p>
</xslif>
</xsl:otherwise>
</xsl.choose>
</xsltemplate>

</xsl:stylesheet>

XSL Stylesheet Example 2: Converts Results for Palm Pilot Browser — pp.xsl

<?xml version="1.0"?>

<

| $Author: olediour@us $

| $Date: 04-May-2000

| xsl for html (Palm Pilot, HandWeb browser)
| $Revision: 1L.1$

>

<xslstylesheet xmins:xsi="http:/Amww.w3.0rg/1999/XSL/Transform”

version="1.0">

<xsloutput media-type="texthtml" method="html" encoding="1ISO-8859-1"/>

<xsltemplate match="/">
<htmi>
<head>
<tite>Retail Application<fitie>
<fhead>

Online B2B XML Application: Step by Step 8-91

XSL and XSL Management Scripts

<body>
<xslif test="/pageTite">
<h2><xslvalue-of select="/pageTitle"/><h2>
</xslif>
<xslchoose>
<xshwhen test="loginResult>
<xslapply-templates select="loginResult’/>
</xslwhen>
<xslwhen test="index">
<xsl:apply-templates select="index/>
</xslwhen>
<xslwhen test="inventory>
<xslapply-templates select="inventory'/>
</xslwhen>
<xslwhen test="order">
<xsl.apply-templates select="order"/>
</xslwhen>
<xshwhen test="placeOrder">
<xsl:apply-templates select="placeOrder"/>
</xslwhen>
<xslotherwise>
<p dlign="center>
<h3>This kind of XML Document cannot be processed...<h3>
<lp>
</xslotherwise>
</xsl:choose>
</body>
<htmb>
</xsltemplate>

<xsltemplate match="loginResult>
<xslif test="ROWSET/ROW/unknown">
<table width="98%">
<tr><td bgcolor="yellow" align="center"><xsl.value-of
select="ROWSET/ROW/unknown"/> is not allowed to log in '</td><fr>
<ftable>
</xslif>
<xslif tes="ROWSET/ROW/NAME">
<p align="center'>
<h2>Welcome <xslvalue-of select="ROWSET/ROW/NAME"/> I<h2>
<lp>
<p align="center">
<a>
<xslattribute name="href"><xsl:value-of
select="nextStep"/>?custid=<xsl:value-of

8-92 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

select="ROWSET/ROWI/ID"/></xsl:attribute>
Please enter the Mall !
<fa>
<p>
</xslif>
<p>
<a><xslattribute name="href"><xsl.value-of
select="retumHome"/></xslatfribute>Back to Login
<p>
</xsltemplate>

<xsltemplate match="index">
<xsl-for-each select="form">
<center>
<form>
<xsl:attribute name="action"><xsl.value-of
select="/@action"/></xsl:attribute>
<xslattribute name="method"><xsl:value-of
select="/@method"/></xsl:attribute>
<xdlif test="/field">
<table width="98%" border="1">
<xsl:for-each select="ffield">
<r>
<td align="right><xsl:value-of select="/@prompt'/><fd>
<to>
<input>
<xsl:choose>
<xslwhen test="/@type = text">
<xslattribute name="type">text</xslattribute>
</xslwhen>
</xsl.choose>
<xsl:atribute name="name"><xsl.value-of
select="/@name"/></xsl:attribute>
<finput>
<hd>
<fr>
</xslfor-each>
<fable>
<fxslif>
<xslif test="/button">
<>
<xsl:for-each select="/button">
<input>
<xsl:choose>
<xslwhen test="/@type = 'submit™>

Online B2B XML Application: Step by Step 8-93

XSL and XSL Management Scripts

<xslatiribute name="type">submit</xsl:attribute>
<xslwhen>
</xsl.choose>
<xsl:attribute name="value"><xsl.value-of
select="/@label"/></xsl:atribute>
<finput>
</xslfor-each>
<p>
<fxslif>
<fform>
<[center>
</xslfor-each>
</xsltemplate>

<xsltemplate match="inventory">
<h2>This is the Mart content</h2>
<xsl:for-each select="fom/theMar/ROWSET/ROW">
<xslvalue-of select="ID"/>
<xsltext> </xsltext>
<form method="post>
<xslattribute name="action">
<xslvalue-of select="....././.form/@action'/>
</xslattribute>
<input type="hidden" name="custld">
<xslattribute name="value"><xsl:value-of
select="../../../. fform/iddenFields/custid"/></xsl:attribute>
<finput>
<input type="hidden" name="prodId">
<xsl:attribute name="value"><xsl.value-of
select="ID"/></xsl:attribute>
<finput>
<input type="submit">
<xsl:attribute name="value"><xsl.value-of
select="DESCRIPTION"/></xsl:attribute>
<finput>
<fform>
<xsltext> @ $</xsltext><xslvalue-of select="PRICE"/><xsl:text>
each</xsltext>
<xsltext> Supplied by </xsltext><xsl:value-of select="NAME"/>

</xsl-for-each>
<p>
<a><xslattribute name="href"><xsl.value-of
select="retumHome"/></xslatfribute>Back to Login
<p>

8-94 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

</xsltemplate>

<xsltemplate match="order">
<center>
<h2>Thank you <xsl:value-of select="CUST/NAME'/> for shopping with us
<h2>
<hr>
<h2>Please enter the quantity</h2>
<form action="placeOrder.xsq" method="post">
<input type="hidden" name="prodld">
<xslattribute name="value"><xsl.value-of
select="PROD/ID"f></xsl:atfribute>
<finput>
<input type="hidden" name="custld">
<xslattibute name="value"><xsl.value-of
select="CUST/D"/></xsl:attribute>
<finput>
<p>
<xslvalue-of select="PROD/DESCRIPTION"/>
at $<xslvalue-of select="PROD/PRICE"/> each
supplied by <xslvalue-of select="PROD/NAME"/>
<brf>
Quantity :
<brf>
<input type="text' name="qty"/>
<p>
<p><input type="submit" value="Place Order"/></p>
<fform>
</center>
<p>
<a><xslattribute name="href ><xsl:value-of
select="retumHome"/></xslatfribute>Back to Login
<p>
</xsl.template>

<xsltemplate match="placeOrder">
<xslif test="operationResult">
<center>

<xslvalue-of select="operationResultftext()"/>

<brf>

<xslfor-each select="operationResul/nextStep">

<form method="post>
<xslattribute name="action"><xsl:value-of
select="/@Action"/></xsl:atfribute>

<xslif test="prmList">

Online B2B XML Application: Step by Step 8-95

XSL and XSL Management Scripts

<xsl-for-each select="prmListjprm">
<input type="hidden">
<xslattribute name="name"><xsl.value-of
select="/@name"/></xsl:attribute>
<xsl:attribute name="value"><xsl.value-of
select="/@value"/></xsl:attribute>
<finput>
</xslfor-each>
</xslif>
<input type="submit">
<xsl:attribute name="value"><xsl.value-of
select="/@Label'/></xsl:attribute>
<finput>
<fform>
</xsl-for-each>
</center>
</xslif>
<xslif test="operationProblem">
<table width="98%">
<tr><td align="center"><xsl.value-of
select="operationProblem"/><fd></r>
<fable>
</xslif>
<xslif test="bottomLinks">
<xsl.choose>
<xslwhen test="operationResult">
</xslwhen>
<xsl.otherwise>
<p align="center">
<xsl-for-each select="bottomLinks/aLink'>
[<a><xslatiribute name="href"><xsl.value-of
select="/@href /></xslattribute><xsl:value-of select="."/>]
</xsl-for-each>
<p>
</xsl:otherwise>
</xsl:choose>
</xslif>
<xsl:choose>
<xslwhen test="operationResult/nextStep">
</xslwhen>
<xsl.otherwise>
<xslif test="retumHome">
<p>
<a><xsl:attribute name="href"><xsl:value-of
select="retumHome"/></xsl:attribute>Back to Login

8-96 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

<>
<Ixslif>
</xslotherwise>
</xsl:choose>
</xsltemplate>

</xslstylesheet>

Java Example 3: Stylesheet Management— GUlInterface.java

This script creates and manages the GUI and stylesheets used in the B2B XML
application.

package B2BDemo.StyleSheetUtil;

/‘k*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

import javax.swing.*;

import java.awt*,

import java.awtevent,

import java.sgl.*;

import java.util.;

I needed for new CLOB and BLOB classes
import oracle.sgl.;

import oracle jdbc.driver;

import java.beans.*,

import javax.swing.event.;

import B2BDemo.*;
import B2BDemo XMLUil.*;

public class GUInterface extends JFrame
{
private boolean lite =false; // Use O8iLite
private boolean inserting = false;

private final static int UPDATE = 1;
private final static int INSERT =2,

private final static int ENTER_QUERY =1,
private final static int EXEC_QUERY =2;

int queryState = ENTER_QUERY;

Online B2B XML Application: Step by Step 8-97

XSL and XSL Management Scripts

String sqiStmt ="Select APPFROM, " +
APPTO,"+
OP,"+
" XSL"+
"From styleSheets";

private static String connURL = AppCste. AQDBUI;
private static String userName = AppCste.AQuser;
private static String password = AppCste.AQpswd;
private Connection conn = null;

private Vector recVect = null;
intcurRec=0;
XsIRecord thisRecord = null;

BorderlLayout borderLayoutl = new BorderLayout();
JPanel jPanell = new JPanel();

JMenuBar menuBarl = new JMenuBar();

JMenu menuFile = new JMenu();

JMenultem menuFileExit = new JMenultem();
JMenu menuHelp = new JMenu();

JMenultem menuHelpAbout = new JMenultem();
JLabel statusBar = new JLabel();

JToolBar toolBar = new JToolBar();

JButton buttonOpen = new JButton();

JButton buttonClose = new JButton();

JButton buttonHelp = new JButton();

Imagelcon imageOpen;

Imagelcon imageClose;

ImagelconimageHelp;

JPanel jPanel2 = new JPanel();

BorderL_ayout border_ayout? = new BorderLayout();
JButton firstButton = new JButton();

JPanel jPanel3 = new JPanel();

JPanel jPanel4 = new JPanel();

BorderLayout borderLayout3 = new BorderLayouit();
Borderl_ayout borderl_ayout4 = new BorderlLayout();
JPanel jPanel5 = new JPanel();

JTextFeld fromAppValue = new JTextFeld();
JLabel fromApp = new JLabel();

JPanel jPanel6 = new JPanel();

BorderLayout borderLayout5 = new BorderLayouit();
JLabel jLabel2 = new JLabel();

JScrollPane jScrollPanel = new JScrollPane();

8-98 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

JTextArea XSLStyleSheet = new JTextArea();
JButton previousButton = new JButton();
JButton nextButton = new JButton();
JButton lastButton = new JButton();

JButton validateButton = new JButton();
GridLayout gridLayout1 = new GridLayout();
JLabel toApp =new JLabel();

JTextFeld toAppValue = new JTextFeld();
JLabel operationLabel = new JLabel();
JTextField opValue = new JTextField();
JButton newButton = new JButton();
JButton deleteButton = new JButton();
JButton queryButton = new JButton();

public GUInterface()
{
super();
try
{
jpInit();
buttonOpen.seticon(imageOpen);
buttonClose.setlcon(imageClose);
buttonHelp.setlcon(imageHelp);

catch (Exception €)
{
e.printStackTrace();
}
}

private void getConnected() throws Exception
{
try
{
if (lite)
{
Class forName('oracle.lite.poljdbc.POLIDBCDriver');
conn = DriverManager.getConnection(jdbc:Polite:POLite", "system”,
"manager’);
}

else

Class.forName (‘oracle.jdbc.driver.OracleDriver”);
conn = DriverManager.getConnection (connURL, userName, password);
}

Online B2B XML Application: Step by Step 8-99

XSL and XSL Management Scripts

}
catch (Exception €)

System.err.printin("Get connected failed : " + e);
throw e;
}
}

private void jbinit() throws Exception
{
if (conn ==null)
{
try { getConnected(); }
catch (Exception €)
{
JOptionPane.showMessageDialog(null, e.toString(),
"Connection”,
JOptionPane. ERROR_MESSAGE),
System.exit(1);
}
}
imageOpen = new Imagelcon(GUInterface.class.getResource(openfile.gif'));
imageClose = new Imagelcon(GUInterface.class.getResource("closefile.gif'));
imageHelp = new Imagelcon(GUInterface.class.getResource("help.gif));
this.setTitle("Style Sheets Management”);
this.getContentPane().setlayout(border_ayoutl);
this.setSize(new Dimension(511, 526));
jPanell.setLayout(borderLayout2);
menuFile.setText("File");
menuFileExitsetText("Exit");
menuFileExitaddActionListener(new ActionListener() {
public void actionPerformed(ActionEvent €) {
fileExit_ActionPerformed(e);
}
b
menuHelp.setText('Help');
menuHelpAbout.setText(‘About’);
menuHelpAbout.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent €) {
helpAbout_ActionPerformed(e);
}
b
statusBar.setText('Initializing...");
buttonOpen.setTooTipText("Open File");
buttonClose.setToolTipText("Validate modifications”);

8-100 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

buttonHelp.setToolTipText("About Style Sheet Manager");
firstButton.setText('<<");

jPanel5.setLayout(gridLayoutl);

fromApp.setText('From Application :");
fromApp.setHorizontalAlignment(SwingConstants. RIGHT);
jLabel2 setText("XSL Style Sheet);
previousButton.setText('<');

nextButton.setText(">");

lastButton.setText(">>");

validateButton.setText("Validate');

gridLayoutl.setRows(4);

toApp.setText(To Application :);

toApp.setHorizontal Alignment(SwingConstants.RIGHT);
operationLabel.setText("Operation :);
operationLabel.setHorizontalAlignment(SwingConstants.RIGHT);
jPanel6.setLayout(borderLayouts);
jPaneld.setLayout(borderLayoutd);
jPanel3.setLayout(borderLayout3);
menuFile.add(menuFileExit);

menuBarl.add(menuFile);
menuHelp.add(menuHelpAbout);
menuBarl.add(menuHelp);

this.setIMenuBar(menuBarl);
this.getContentPane().add(statusBar, BorderLayout SOUTH);
toolBar.add(buttonOpen);

toolBar.add(buttonClose);

toolBar.add(buttonHelp);
this.getContentPane().add(toolBar, Border_ayout NORTH);
this.getContentPane().add(jPanell, BorderLayout. CENTERY);
jPanell.add(Panel2, BorderLayout. SOUTH);
jPanel2.add(queryButton, null);

jPanel2.add(newButton, null);

jPanel2.add(firstButton, null);

jPanel2.add(previousButton, null);

jPanel2.add(nextButton, null);

jPanel2.add(lastButton, null);

jPanel2.add(validateButton, null);
jPanel2.add(deleteButton, null);

jPanell.add(jPanel3, BorderLayout. CENTER);
jPanel3.add(jPanel4, BorderLayout NORTH);
jPanel3.add(jPanel5, BorderLayout. SOUTH);
jPanel5.add(fromApp, null);

jPanel5.add(fromAppValue, null);

jPanel5.add(toApp, null);

jPanel5.add(toAppValue, null);

Online B2B XML Application: Step by Step 8-101

XSL and XSL Management Scripts

jPanel5.add(operationLabel, null);
jPanel5.add(opValue, null);

jPanel3.add(jPanel6, BorderLayout. CENTERY);
jPanel6.add(jLabel2, BorderLayout NORTH);
jPanel6.add(jScrollPanel, BorderLayout. CENTERY);
jScrollPanel.getViewport().add(XSLStyleSheet, null);

I
statusBar.setText('Connected...”);
/I Building Vector of record.
queryButton.setText("Enter Query’’);
queryButton.setActionCommand('query’);
queryButton.addActionListener(new java.awtevent.ActionListener()
{
public void actionPerformed(ActionEvent €)
{
queryButton_actionPerformed(e);
}
b
buttonClose.addActionListener(new java.awt.event.ActionListener()
{
public void actionPerformed(ActionEvent €)
{
buttonClose_actionPerformed(e);
}
D
deleteButton.setText('Delete”);
deleteButton.setToolTipText("Delete the current record");
deleteButton.addActionListener(new java.awt.event ActionListener()
{
public void actionPerformed(ActionEvent €)
{
deleteButton_actionPerformed(e);
}
b
newButton.setText('New');
newButton.setToolTipText('Create a new record');
newButton.addActionListener(new java.awt.eventActionListener()
{
public void actionPerformed(ActionEvent €)
{
newButton_actionPerformed(e);
}
;
validateButton.setToolTipText('Validate your modifications');

8-102 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

opValue setEditable(false);
toAppValue. setEditable(false);
fromAppValue.setEditable(false);
validateButton.addActionListener(new java.awtevent. ActionListener()
{
public void actionPerformed(ActionEvent €)
{
validateButton_actionPerformed(e);
}
D
lastButton.addActionListener(new java.awteventActionListener()
{
public void actionPerformed(ActionEvent €)
{
lastButton_actionPerformed(e);
}
D
firstButton.addActionListener(new java.awt.eventActionListener()
{
public void actionPerformed(ActionEvent €)
{
firstButton_actionPerformed(e);
}
D
previousButton.addActionListener(new java.awt.event ActionListener()

{
public void actionPerformed(ActionEvent €)

{
previousButton_actionPerformed(e);
}
b
nextButton.addActionListener(new java.awt.eventActionListener()
{
public void actionPerformed(ActionEvent €)
{
nextButton _actionPerformed(e);
}
D
lastButton.setActionCommand(last’);
lastButton.setToolTipText("Last record”);
nextButton.setActionCommand('next’);
nextButton.setToolTipText('Next record”);
previousButton.setActionCommand(‘previous”);
previousButton.setToolTipText(Previous record");
firstButton.setActionCommand(first’);

Online B2B XML Application: Step by Step 8-103

XSL and XSL Management Scripts

firstButton.setToolTip Text("First record");

Il Execute query and build vector
executeQuery(sqlStmt);

updateStatusBar();
}

void executeQuery(String theSglStmt)
{

recVect =new Vector();

try

{
Statement stmt = conn.createStatement();

ResultSet rSet = stmt.executeQuery(theSqlStmt);
CLOB clob=nul;
while (rSetnext()

clob = ((CracleResultSet)rSet).getCLOB(4);
String strLob = dumpClob(conn, clob);
XslRecord xsIRecord = new XsIRecord(rSet.getString(1),
rSet.getSting(2),
rSetgetString(3),
strLoby);
recVectaddElement(xslRecord);
}
rSet.close();
stmt.close();
I/ Populate form with first record
firstButton.setEnabled(false);
previousButton.setEnabled(false);
nextButton.setEnabled(false);
lastButton.setEnabled(false);
if (recVect.size() > 0)
{
curRec=1;
displayRecord(currRec);
}
if (recVectsize() > 1)
{
nextButton.setEnabled(true);
lastButton.setEnabled(true);

}

catch (Exception €)

8-104 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

{

JOptionPane.showMessageDialog(null, e.toString(),

"Executing request”,

JOptionPane ERROR_MESSAGE),

System.exit(1);
}
}

void displayRecord(int mk)

XslRecord xsIRecord = (XsIRecord)recVect.elementAt(mk-1);
thisRecord = new XsIRecord(xsIRecord FROM,

xslRecord.TO,

xslRecord. TASK,

xslRecord.XSL);
XSLStyleSheet.setText(xslRecord XSL);
fromAppValue.setText(xsiRecord. FROM);
toAppValue.setText(xsIRecord. TO);
opValue.setText(xslRecord. TASK);

XSLStyleSheetrequestFocus();
XSLStyleSheet setCaretPosition(0);

// Buttons
firstButton.setEnabled(false);
previousButton.setEnabled(false);
nextButton.setEnabled(false);
lastButton.setEnabled(false);
if (mk > 1)
{
firstButton.setEnabled(true);
previousButton.setEnabled(true);
}
if (k < recVect.size())
{
nextButton.setEnabled(true);
lastButton.setEnabled(true);
}
}

void updateStatusBar()
{

}

statusBar.setText("Ready for " + recVectsize() + " records”);

Online B2B XML Application: Step by Step 8-105

XSL and XSL Management Scripts

private static String dumpClob(Connection conn, CLOB clob) throws Exception
{
String retumString =",

OracleCallableStatement cStmt1 = (OracleCallableStatement) conn.prepareCall
("oegin ? := dbms_lob.getLength (?); end;");

OracleCallableStatement cStmt2 = (OracleCallableStatement) conn.prepareCall
("begindbms_lob.read (?, ?, ?, ?); end;”);

cStmtl.registerOutParameter (1, Types.NUMERIC);

cStmt1.setCLOB (2, clob);

cStmtl.execute ();

long length = cStmt1.getLong (2);
longi=0;
int chunk = 80;

while (i < length)

cSIMt2.setCLOB (1, clob);

cStmt2.setlong (2, chunk);
cStmt2.registerOutParameter (2, Types.NUMERIC);
cStmt2.setLong (3,i+ 1);
cStmt2.registerOutParameter (4, Types.VARCHAR);
cStmt2.execute ();

longread_this_time =cStmt2.getLong (2);
retumString += cStmt2.getString (4);
Il System.out.print ("Read " +read_this_time +" chars: ");
Il System.out.printin (string_this_time);
i+=read this time;
}
cStmtl.close ();
cStmt2.close ();
retum retumString;
}

static void filClob (Connection conn, CLOB clob, String str) throws
SQLException

OracleCallableStatement cStmt =
(CracleCallableStatement) conn.prepareCall (*begin doms_lob.write (?, ?,
?,?);, end;”);

inti=0;

8-106 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

int chunk = 80;
int length = str.length();

long ¢, ii;

System.out prinin(‘Length: " + length + "\n" + str);
while (i < length)
{
cStmt.setClob (1, clob);
c=chunk;
cStmt.setLong (2, ¢);
i=i+1;
cStmt.setlong (3, i);
cStmt.setString (4, str.substring(, i + chunk));
cStmt.execute ();
i +=chunk;
if (length - i < chunk)
chunk = length - ;
}
cStmt.close ();

}

void fileExit_ActionPerformed(ActionEvent €)
{'rf (conn '=null
{try{conn.close(); } catch (Exception ex) {
}}System-eﬂt(o);

void helpAbout_ActionPerformed(ActionEvent €)

{
JOptionPane.showMessageDialog(this, new GUInterface_AboutBoxPanell(),

"About", JOptionPane.PLAIN._ MESSAGE);
}

void nextButton_actionPerformed(ActionEvent €)

checkRecordChange();

cunRec+,

displayRecord(currRec);
}

void previousBution_actionPerformed(ActionEvent €)
{

Online B2B XML Application: Step by Step 8-107

XSL and XSL Management Scripts

checkRecordChange();

cunrRec—;

displayRecord(cunRec);
}

void firstButton_actionPerformed(ActionEvent)

checkRecordChange();

curRec=1,;

displayRecord(cunrRec);
}

void lastButton_actionPerformed(ActionEvent €)

checkRecordChange();

cunRec =recVectsize();

displayRecord(currRec);
}

void validateButton_actionPerformed(ActionEvent €)
{

validateRec();
}

void validateRec()
{
thisRecord = new XsIRecord(fromAppValue.getText(),
toAppValue.getText(),
opValue.getText(),
XSLStyleSheet.getText();
if (saveChanges(thisRecord, (inserting?INSERT:UPDATE)))
JOptionPane.showMessageDialog(null, "All right!");

}
void deleteRec()
{
thisRecord = new XsIRecord(fromAppValue.getText(),
toAppValue.getText(),
opValue.getText(),
XSLStyleSheet.getText();
String sqiStmt = "delete styleSheets where fromApp=2and" +
" toApp =?and"+
" op =7
try
{

8-108 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

PreparedStatement pStmt = conn.prepareStatement(sqlStmt);
pStmt.setString(1, thisRecord. FROM);
pStmt.setString(2, thisRecord. TO);
pStmt.setString(3, thisRecord. TASK);
pStmt.execute();
conn.commit();
System.out.printin('Deleted !');
pStmt.close();
I/ Delete from vector...
recVectremoveElementAt(cunRec - 1);
updateStatusBar();
if (cumRec >= recVectsize())
currRec—;
displayRecord(currRec);
JOptionPane.showMessageDialog(null, "All right!");
}
catch (SQLException sglE)
{
JOptionPane.showMessageDialog(hull, sgIE.toString(),
"Deleting record",
JOptionPane ERROR_MESSAGE),
}
catch (Exception €)
{
JOptionPane.showMessageDialog(nul, e.toString(),
"Deleting record",
JOptionPane ERROR_MESSAGE),
}
}

void checkRecordChange()
{
thisRecord = new XsIRecord(fromAppValue.getText(),
toAppValue.getText(),
opValue.getText(),
XSLStyleSheet.getText();
if (tthisRecord.equals((XsIRecord)recVect.elementAt(currRec-1)))
{
int result = JOptionPane.showConfirmDialog(null, "Record has changedinDo
you want to save the modifications ?");
if (result = JOptionPane.YES_OPTION)
{
saveChanges(thisRecord, UPDATE);
JOptionPane.showMessageDialog(null, "All right!");
}

Online B2B XML Application: Step by Step 8-109

XSL and XSL Management Scripts

}
}

boolean saveChanges(XslRecord rec,
int operation)
{
boolean ret = true;
if (operation == this. UPDATE)
{
String theSgIStmt = "update styleSheets set xsl =? where appFrom=? and
appTo=?andop="?"
try
{
PreparedStatement pStmt = conn.prepareStatement(theSqiStmt);
pStmt.setString(1, rec.XSL);
pStmt.setString(2, rec.FROM);
pStmt.setString(3, rec. TO);
pStmt.setString(4, rec. TASK);
pStmt.execute();
conn.commit();
System.out.printin(*Updated I');
pStmt.close();
/I Reinsertin vector...
recVect.setElementAt(rec, curRec - 1);
}
catch (SQLException sqlE)
{
JOptionPane.showMessageDialog(null, sglE.toString(),
"Saving record’,
JOptionPane. ERROR_MESSAGE),
ret =false;

else
{
System.out.printin(‘Inserting new record");
String sqiStmt ="insert into styleSheets " +
" (appFrom, "+
appTo, "+
op, "+
xsl "+
" Jvalues "+
22,27
String sglGetlob = "select xsl from styleSheets " +
"Where appFrom=7?and" +

8-110 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

appTo =?and"+
op =7
try
{
PreparedStatement pStmt = conn.prepareStatement(sglStmt);
pStmt.setString(1, rec.FROM);
pStmt.setString(2, rec.TO);
pStmt.setString(3, rec. TASK);
pStmt.setSting(4, ™); // Nullin the LOB, will be filed later
pStmt.execute();
System.out printin(“inserted ");
pStmt.close();

PreparedStatement filLOBStmt = conn.prepareStatement(sglGetlLob);
filLOBSmt.setString(1, rec. FROM);

fiLOBStmt.setString(2, rec. TO);

filLOBStmt.setString(3, rec. TASK);

ResultSet lobRSet = filLOBStmt.executeQuery();

while (lobRSet.next())

CLOB clob = ((OracleResuitSet)lobRSet).getCLOB(L);
filClob(conn, clob, rec.XSL);
}

conn.commit();

// Add in vector...
recVectaddElement(rec);
cunRec =recVectsize();
displayRecord(currRec);
}
catch (SQLException sqlE)
{
JOptionPane.showMessageDialog(null, sglE.toString(),
"Inserting record"”,
JOptionPane. ERROR_MESSAGE),
ret =false;
}

inserting =false;

fromAppValue setEditable(false);
toAppValue.setEditable(false);
opValue.setEditable(false);

}
updateStatusBar();

Online B2B XML Application: Step by Step 8-111

XSL and XSL Management Scripts

retum ret;
}

void buttonClose_actionPerformed(ActionEvent)
{
validateRec();

}

void newButton_actionPerformed(ActionEvent)

{
fromAppValue.setEditable(true);
toAppValue.setEditable(true);
opValue setEditable(true);
inserting = true;
XSLStyleSheet.setText(™);
fromAppValue.setText(™);
toAppValue.setText(");
opValue.setText(");

}

void deleteButton_actionPerformed(ActionEvent)

deleteRec();
}
void queryButton_actionPerformed(ActionEvent €)
{

if (queryState —ENTER_QUERY)

{

queryState = EXEC_QUERY,;
queryButton.setText("Execute Query”);
fromAppValue setEditable(true);
toAppValue.setEditable(true);
opValue.setEditable(true);

XSLStyleSheet setEditable(false);
statusBar.sefText('Entering query’);
XSLStyleSheet.setText("™);
fromAppValue.setText(");

toAppValue.setText(");
opValue.setText(");

newButton.setEnabled(false);

firstButton.setEnabled(false);
previousButton.setEnabled(false);

8-112 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

nextButton.setEnabled(false);
lastButton.setEnabled(false);
validateButton.setEnabled(false);
deleteButton.setEnabled(false);

else

queryState = ENTER_QUERY;
gueryButton.setText("Enter Query");
statusBar.setText("Executing query”);

fromAppValue setEditable(false);
toAppValue setEditable(false);
opValue.setEditable(false);
XSLStyleSheet setEditable(true);

newButton.setEnabled(true);
firstButton.setEnabled(true);
previousButton.setEnabled(true);
nextButton.setEnabled(true);
lastButton.setEnabled(true);
validateButton.setEnabled(true);
deleteButton.setEnabled(true);

I Execute query

String stmt = sgIStmt;

boolean firstCondition = true;

if fromAppValue.getText().length() > 0)
{

fromAppValue.getText() +"");
firstCondition = false;
}
if (toAppValue.getText().length() > 0)
{

toAppValue.getText() +™");
firstCondition = false;
}
if (opValue.getText().length() > 0)
{
stmt += ((firstCondition?" where " and ") + "op like ' +
opValue.getText() +™");
firstCondition = false;
}

Online B2B XML Application: Step by Step 8-113

XSL and XSL Management Scripts

executeQuery(stmt);
updateStatusBar();
displayRecord(cunRec);
}
}
}

Java Example 4: GUIInterface_AboutBoxPanel.java

package B2BDemo.StyleSheetUtil;

Pex

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
¥

import java.awt™;

import javax.swing.*;

import javax.swing.border.*;

import oracle jdeveloper.layout*;

public class GUInterface_AboutBoxPanell extends JPanel
{

JLabel jLabell =new JLabel();

JLabel jLabel2 = new JLabel();

JLabel jLabel3 = new JLabel();

JLabel jLabel4 = new JLabel();

GridBaglLayout gridBagLayoutl = new GridBagLayout();

Border borderl = new EtchedBorder();

public GUInterface_AboutBoxPanel1()
{
try
{
jpinit(;

catch (Exception €)
{
e.printStackTrace();
}
}

private void jbinit() throws Exception

{

jLabell.setText("Stored Style Sheets management.");
jLabel2.setText("Olivier LE DIOURIS";

8-114 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XSL and XSL Management Scripts

jLabel3.setText('Copyright (c) 1999';

jLabeld.setText("Oracle Corp.");

this.setlayout(gridBaglLayoutl);

this.setBorder(borderl);

this.add(jLabel1, new GridBagConstraints2(0, 0, 1, 1, 0.0, 0.0,
GridBagConstraints WEST, GridBagConstraints. NONE, new Insets(5,5,0,5),0,0));

this.add(jLabel2, new GridBagConstraints2(0, 1, 1, 1, 0.0, 0.0,

GridBagConstraints. WEST, GridBagConstraints. NONE, new Insets(0,5,0,5),0,0));

this.add(jLabel3, new GridBagConstraints2(0, 2, 1, 1, 0.0, 0.0,

GridBagConstraints. WEST, GridBagConstraints.NONE, new Insets(0,5,0,5),0,0));

this.add(jLabel4, new GridBagConstraints2(0, 3, 1, 1,0.0, 0.0,

GridBagConstraints WEST, GridBagConstraints. NONE, new Insets(0,5,5,5),0,0));

Java Example 5: GUIStylesheet.java

package B2BDemo.StyleSheetUtil;

/\k*

* A grapical utility to manipulate the stylesheets stored in the database,

*in the AQ Schema. The stylsheets will be used to transform the incoming
* documentinto the outgoing one.

*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
¥

import java.awt;

import java.awtevent,

import javax.swing.*;
Iimport oracle.bali.ewt.border.UIBorderFactory;
Iimport oracle.bali.ewt.olaf. OracleLookAndFeel;

public class GUIStylesheet

{
private static final boolean useBali = false;

public GUIStylesheet()
{
Frame frame = new GUInterface();
/[Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
if (rameSize height > screenSize.height)

{
frameSize height = screenSize.height;

Online B2B XML Application: Step by Step 8-115

XSL and XSL Management Scripts

}

if (rameSize.width > screenSize width)

frameSize width = screenSize width;
}
frame.setlocation((screenSizewidth - frameSizewidth)/2, (screenSize.height

- frameSize.height)/2);

frame.addWindowdListener(new WindowAdapter() { public void
windowClosing(WindowEvent e) { System.exit(0); }});

frame.setVisible(true);

}

public static void main(String(] args)
{
new GUIStylesheet();

}
}

8-116 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

XML Process and Management Scripts

The XML process and management scripts used in the B2B XML application are as
follows:

« Java Example 6: MainAXMLtoDMLV2 java
« Java Example 7: ParserTest.java

« Java Example 8: TableInDocument.java

« Java Example 9: XMLFrame.java

« Java Example 10: XMLProducer.java

« Java Example 11: XMLtoDMLvV2.java

« Java Example 12: XMLGen.java

« Java Example 13: XMLUtil.java

« Java Example 14: XSLTWrapper.java

Java Example 6: Main4XMLtoDMLv2.java

package B2BDemo. XMLUKil;

P

* Amain for tests

*The XMLtoDMLV2 utility takes an XML document that can contain

* data to be inserted in several tables.

*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

import javaio*;

import java.net*;

public class MaindXMLtoDMLV2 extends Object
{

Il Manage user inpLt...

private static BufferedReader _stdin = new BufferedReader(new
InputStreamReader(System.in));

private static String _buf="",

private static String _userinput(String prompt) throws Exception
{
String retString;

System.out.print(prompt);
try{ retString =_stdin.readLine(); }

Online B2B XML Application: Step by Step 8-117

XML Process and Management Scripts

catch (Exception €)
{
System.out.printin(e);
throw(e);
}
retum retString;
}
Il for tests
public static void main(String args]])
{
XMLtoDMLV2 x2d = new XMLtoDMLV2("scott’, "tiger",

“jdbc:oracle:thin:@olediour-lap.us.oracle.com:1521:0ra8');

String xmidocname =",

try {xmidocname = userinput("XML file name >"); }
catch (Exception) {

String xmidoc = readURL (createURL (xmidocname));

TableinDocument d[] = new TableinDocument]2];
d[0] = new TablelnDocument('ROWSET", "ROW", "DEPT);
d[1] = new TablelnDocument('EMP", "EMP_ROW", "EMP");

fry

{
x2d.insertFromXML(d, xmidoc);

System.out.prinin(xmidocname + " processed.”);

}
catch (Exception €)

System.err printin(*Ooopsin’” + €);
}

try{_buf=_userinput("End of task..."); } catch (Exceptionioe) {
}

public static URL createURL(String fleName)

{
URL ur=nul;

try

{
url = new URL(fleName);

}
catch (MalformedURLException ex)
{

8-118 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

File f = new File(fleName);

try
{
String path = f.getAbsolutePath();
/ This is a bunch of weird code that is required to
/I make a valid URL on the Windows platform, due
/o inconsistencies in what getAbsolutePath retums.
String fs = System.getProperty(file.separator”);
if (fslength() = 1)
{

char sep =fs.charAt(Q);
if (sep =)
path = path.replace(sep, /);
if (path.charAt(0) '= /)
path =+ path;
}
path ="file://" + path,;
url =new URL(path);
}
catch (MalformedURLException €)
{
System.err.printin(*Cannot create url for; " + fleName);
System.exit(0);
}
}

retum ur;

}

public static String readURL(URL url)
{
URLConnection newURLConn;
BufferedinputStream newBuff;
int nBytes;
byte aByte[];
String resultBuff ="

aByte =new byte[2];
try

{
Il System.out.printin('Calling * + url.toString());
try

{
newURLConn = ur.openConnection();

newBUff = new BufferedinputStream(newURLConn.getinputStream());
resutBuff="",

Online B2B XML Application: Step by Step 8-119

XML Process and Management Scripts

while ((nBytes = newBuff.read(@Byte, 0, 1)) '=-1)
resultBuff = resuttBuff + (char)aByte[0);
}
catch (IOException €)
{
System.err.printin(ur.toString() + "\n : newURLConn failed \n" + €);
}

catch (Exception) {
retum resultBuff;
}

private static String userinput(String prompt) throws Exception
{

String retString;

System.out print(prompt);

try { retString = _stdin.readLine(); }

catch (Exception €)

System.out.printin(e);
throw(e);
}
retum retString;
}
}

Java Example 7: ParserTest.java
package B2BDemo. XMLUKil;

import orgxml.sax.*;
import javalio.®;
import java.util.*;
import java.net;
import java.sqgl.*;

import oraclexml.sgl.query.*;
import oracle xml.sgl.dml;

import orgw3c.dom.*;

import oracle xml.parser.v2.*;
import org.xml.sax*;

e

8-120 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

* Just a main for tests.

* Show how to retrieve the ID and CUSTOMER _ID fro an XML document
*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
il

public class ParserTest extends Object

{

static DOMParser parser = new DOMParser();

static String XMLDoc =
"<ROWSET>"+
" <ROW NUM="I\>" +
" <ID>23321</ID>"+
<ORDERDATE>2000-05-03 00:00:00.0</ORDERDATE>" +
" <CONTACTNAME>JDevBCAJ</CONTACTNAME>" +
" <TRACKINGNO>AX23321</TRACKINGNO>"+
" <STATUS>Pending</STATUS>"+
<ITEMS>"+
<ITEM_ROW NUM=\"1\">"+
<ID>1242</ID>" +
" <QUANTITY>2</QUANTITY>" +
" <ITEM_ID>403</ITEM_ID>"+
" <ORD_ID>23321</ORD_ID>"+
<DISCOUNT>0</DISCOUNT>" +
</ITEM_ROW>"+
<ITEMS>"+
" <ROW>"+
"</ROWSET>"
P
* Constructor
#
public ParserTest()
{
}

public static void main(String[] args)
{
parser.setValidationMode(false);
try
{
parser.parse(new InputSource(new
ByteArrayinputStream(XMLDoc.getBytes()));
XMLDocument xml = parser.getDocument();
XMLElement elmt = (XMLElement)xml.getDocumentElement();

Online B2B XML Application: Step by Step 8-121

XML Process and Management Scripts

NodeList nl = elmt.getElementsByTagName('ID"); // ORD ID
for (inti=0; i<nl.getlength(); i++)
{
XMLElement ordid = (XMLElement)nl.item(j);
XMLNode theText = (XMLNode)ordld.getFirstChild();
String ordidValue = theText.getNodeValue();
System.out.printin(ordidValue);
break;
}
nl = elmt.getElementsByTagName('CUSTOMER_ID"); / CUSTOMER ID
for (inti=0; i<nl.getlLength(); i++)
{
XMLElement ordid = (XMLElement)nl.item(i);
XMLNode theText = (XMLNode)ordid.getFirstChild();
String custidValue = theText.getNodeValue();
System.out printin(custidValue);
}
}
catch (SAXParseException €)
{
System.out.printin(e.getMessage();
}
catch (SAXException €)
{
System.out.printin(e.getMessage());

catch (Exception €)
{
System.out.printin(e.getMessage();
}
}
}

Java Example 8: TablelInDocument.java

package B2BDemo.XMLUl;

/A-k

* This class is used by the XMLtoDMLV2 java class

* It describes the matching between an XML document and a SQL table.
* Created to managed multi-evel XML documents (Master-Details)

*

* @see XMLtoDMLv2

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

8-122 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

public class TablelnDocument extends Object

public String rowSet="ROWSET";
public Stingrow ="ROW";
public String table ="";

public TablelnDocument (String rset,
Stingr,
String)
{
this.rowSet =rset;
thisrow =r,
thistable =ft;
}
}

Java Example 9: XMLFrame.java

I Copyright (c) 2000 Oracle Corporation
package B2BDemo. XMLUKil;

import javax.swing.*;
import java.awt*;
import oracle xml.srcviewer.*;

import orgw3c.dom*;
import oracle xml.parser.v2.%;
import org.xml.sax*;

/‘k*
* A Swing-based top level window class.
* Implements the Code View of the Transviewer Bean.
* Used in the demo to enhance the XML code propagated from one
* component to another.
*

* @author Olivier LE DIOURIS
'l
public class XMLFrame extends JFrame
{
Borderl_ayout border_ayoutl = new BorderlLayout();
JPanel jPanell = new JPanel();
BorderLayout borderLayout2 = new BorderLayout();
XMLSourceView xmiSourceViewPanel = new XMLSourceView();

Online B2B XML Application: Step by Step 8-123

XML Process and Management Scripts

private String frameTitle =",
private XSLTWrapper xsltw = new XSLTWrapper();
P

* Constructs a new instance.
*
public XMLFrame(String fTitle)
{

super();

this frameTitle = fTitle;

try

{

jolnit();
}
catch (Exception €)

e.printStackTrace();
}
}

P

* Iniializes the state of this instance.

*

private void jbinit() throws Exception

{
this.getContentPane().setLayout(borderLayoutl);
this.setSize(new Dimension(400, 300));
jPanell.setLayout(borderLayout2);
this.setTitle(this.frameTitle);
this.getContentPane().add(jPanell, BorderLayout. CENTERY);
jPanell.add(xmiSourceViewPanel, BorderLayout CENTER);

}

public void setXMLDocument(String xmiContent) throws Exception

{
xmiSourceViewPanel.setXMLDocument(xstw.parseDocument(xmiContent));

}
}

Java Example 10: XMLProducer.java

package B2BDemo. XMLUIil;

/**

* A Wrapper around the XML SQL Utility
*Could be called from any java object

8-124 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

*to produce an XML document after a SQL query,

*not only from a senviet.

*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
il

e

¥

import java.sgl.;

import oracle xml.sgl.query.*;

public class XMLProducer
{
Connection conn =null;
String rowset = null;
String row = null;

public XMLProducer(Connection conn)
{
this.conn = conn;

}

public String getXMLString(ResultSet rSet)
{

retum getXMLSting(rSet, "N");
}

public String getXMLString(ResultSet rSet,
String DTD)
{
String finalDoc =",

y
{
boolean dtdRequired =false;
if (OTD '=null && DTD length() > 0 && DTD.toUpperCase().equals("'Y"))
didRequired =true;
1 The SKillt /i
OracleXMLQuery oXmig = new OracleXMLQuery(conn, rSet); //
Il oXmlg.useUpperCaseTagNames(); I
if (this.rowset = null)
oXmig.setRowsetTag(this.rowset);
if (this.row = null)
oXmig.setRowTag(this.row);
finalDoc = oXmlg.getXMLString(dtdRequired); Ik
i Thats it A

Online B2B XML Application: Step by Step 8-125

XML Process and Management Scripts

}
catch (Exception €)

{
System.err.printin(e);
}

retum finalDoc;
}

public void setRowset(String rSet)
{
this.rowset = rSet;
}
public void setRow(String row)
{
this.row =row;
}
}

Java Example 11: XMLtoDMLv2.java

package B2BDemo. XMLUKil;
e
* This class takes an XML document as input to execute
* aninsertinto the database.
Multi level XML documents are supported, but not if
one element has several sons as
<elem1>
<eleml11/>
<elem12/>
<elem1>

*
*
*
*
*
*

*

* @see TablelnDocument

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
¥

import org.xml.sax.*,

import java.io*;

import java.util.*;

import java.net;

import java.sgl.*;

import oracle xml.sgl.query.*;
import oracle xml.sgl.dml.;

import orgw3c.dom*;

8-126 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

import oracle xml.parser.v2.%;
import org.xml.sax.*;

pulblic class XMLtoDMLv2 extends Object
{
static DOMParser parser = new DOMParser();
Connection conn=null;
String usemame =",
String password =",
String connURL ="

public XMLtoDMLV2(String usemame,
String password,
String connURL)

{

this.usemame = usemame;

this.password = password;

this.connURL =connURL;
}

public void insertFromXML(TablelnDocument tinDoc]],
String document) throws Exception
{
if (conn == null)
getConnected();

String xmiString =",

try

{xmiString = readURL (createURL(document)); }
catch (Exception €)

{xmiString = document; }

Il System.out.printin(’xmi2Insert = \n" + xmiString);

/I The retumed String is tumed into an XML Document
XMLDocument xmiDoc = parseDocument(xmiString);
/I And we take a reference on the root of this document
XMLElement e = (XMLElement) xmiDoc.getDocumentElement();

I/ Let's walk thru the ROW nodes
NodeList nl = e.getChildrenByTagName(tinDoc[0].row); / "ROW"
Il System.out.printin(This document has " + nl.getLength() + " ROW(S)");

Vector sgiStmt = new Vector();
scanLevel(0, tinDoc, nl, sgiStmt);

Online B2B XML Application: Step by Step 8-127

XML Process and Management Scripts

/I Now execute all the statements in the Vector, in reverse order (FK...)
inti = sqlStmt.size();
Enumeration enum = sglStmt.elements();
while (i>0)
{
=
String s = (String)sglStmt.elementA();
Il System.out.printin("Executing " + s);
executeStatement(s);
}
}

I/ This one is recursive

private int scanLevel(int level,
TablelnDocument tinDoc]],
NodeList nl,
Vector sgIStmt) throws Exception

int nbRowProcessed = 0;

Vector columnNames = new Vector();
Vector columnValues = nul;

String[] colTypes = null;

String columns =", values =",
/lLoopintree...
boolean first_oop =true;
for (int i=0; i<nl.getLength(); i++) // Loop on all rows of XML doc
{
columnValues = new Vector();
XMLElement aRow = (XMLElement) nlitem(j);
Il StingnumVal =aRow.getAttribute(‘'num®);
Il System.out.prinin('NUM =" + numVal);
NodeList nlRow = aRow.getChildNodes();
Il System.out.printin(‘a Row has " + nlRow.getl_ength() + " children');
for (int j=0; j<nIRow.getLength(); j++)
{
XMLElement anXMLElement = (XMLElement)niRow.item(j);
if @ XMLElement.getChildNodes().getLength() = 1 &&
(Ilevel == (tinDoc.length - 1) || (level < (tnDoc.length - 1) &&
l(@nXMLElement.getNodeName().equalstinDocllevel+1].rowSet)))))
{
Il System.out.prinin(‘'Element " + (+1) +"="+
anXMLElementgetNodeName());
Il System.outprint@nXMLElement.getNodeName());

8-128 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

if (firstLoop)
columnNames.addElement(@anXMLElement.getNodeName());
/I Value
XMLNode nodeValue = (XMLNode) anXMLElement.getFirstChild();
Il System.out.printin(t’ + nodeValue.getNodeValue());
columnValues.addElement(nodeValue.getNodeValue());
}
else
{
Il System.out.prinin@nXMLElement.getNodeName() + " has " +
anXMLElement.getChildNodes().getLength() +" children');
I System.out.printin(*Comparing " + anXMLElementgetNodeName() + " and "
+ tinDoc[leveh+1].rowSet);
if (evel < (inDoc.length - 1) &&
anXMLElementgetNodeName().equals(tinDocllevel+1].rowSet))
{
Il System.out.printin("Searching for " + tinDoc[level+1].row);
NodeListni2 =
anXMLElement.getChildrenByTagName(tinDocflevel+1].row); / "ROW"
if (N2 == null)
System.out.printin('NI2 is null for " + tinDocflevel+1].row);
scanLevel(evel + 1, inDoc, ni2, sgiStmt);
}
}
}
/I System.outprintin(INSERT INTO " + tableName + " (" + columns + ") VALUES
(" +values +"));
try
{
if (firstLoop)
{
firstLoop = false;
String selectStmt="SELECT "
boolean comma =false;
Enumeration cNames = columnNames.elements();
while (cNames.hasMoreElements()
{
columns += ((comma?”, ") + (String)cNames.nextElement();
if (‘comma)
comma=true;
}
selectStmt += columns;
selectStmt += (* FROM " + tinDocflevel]table + " WHERE 1 = 2); / No
row retrieved
Statement stmt = conn.createStaternent();

Online B2B XML Application: Step by Step 8-129

XML Process and Management Scripts

Il System.out.printin('Executing: " + selectStmt);
ResultSet rSet = stmt.executeQuery(selectStmt);
ResultSetMetaData rsmd = rSet.getMetaData();
colTypes = new String[rsmd.getColumnCount()];
for (int ¢i=0; ci<(rsmd.getColumnCount()); ci++)

{
Il System.out.printin("Col " + (ci+1) + " + rsmd.getColumnName(ci+1)
+"," + rsmd.getColumnTypeName(ci+1));
colTypes[ci] = rsmd.getColumnTypeName(ci+1);
}
rSet.close();
stmt.close();
}
// Build Value Part
intvi=0;
Enumeration cVal = columnValues.elements();
boolean comma = false;
while (cVal hasMoreElements())
{
if (comma)
values +=",",
comma=true;
if (colTypes|vil.equals('DATE")
values +=('TO_DATE(SUBSTR(");
values += ("' + cVal.nextElement() +"™;
if (colTypes|vil.equals('DATE")
values +=(", 1, 19), YYYY-MM-DD HH24:MI:SS)");
Vit
}
/1Go!
/I System.outprintin('Stmt" + "INSERT INTO " + tinDocllevelltable + " (*
+ columns +") VALUES (" + values +")");
sgiSmtaddElement("INSERT INTO " + tinDocflevelltable + " (* + columns
+")VALUES (" + values +")";
nbRowProcessed++;
}
catch (Exception execE)
{
Il System.em.printin(*Executing " + execE);
throw execE;

}

values="",

}
Il System.out.printin("End of Loop");
retum nbRowProcessed;

8-130 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

}

public static XMLDocument parseDocument(String documentStream) throws
Exception
{
XMLDocument retumXML = null;
try
{
parser.parse(new InputSource(new
ByteArayinputStream(documentStream.getBytes())));
retumXML = parser.getDocument();

}
catch (SAXException saxE)

{
/I System.err.prinin("Parsing XML\n" + "SAX Exception\n" +
saxE.toString());
Il System.em.printin('For:\n" + documentStream + "\nParse failed SAX : " +
saxE);
throw saxE;

catch (IOException €)
{
Il System.err.printin("Parsing XML\n" + "Exception:\n" + e.toString());
I System.err.printin(*Parse failed : " + €);
throwe;
}
retum retumXML;
}
I/ Create a URL from a file name
private static URL createURL(String fleName) throws Exception
{
URL url =null;
try
{
url = new URL(fleName);

}
catch (MalformedURLException ex) / It is not a valid URL, maybe afile...

File f=new File(fleName);
try
{
String path = f.getAbsolutePath();
/I This is a bunch of weird code that is required to
/I make a valid URL on the Windows platform, due
o inconsistencies in what getAbsolutePath retums.

Online B2B XML Application: Step by Step 8-131

XML Process and Management Scripts

String fs = System.getProperty(file.separator”);
if (fs.length() = 1)

{
char sep =fs.charAt(Q);
if(sep!=7)
path = path.replace(sep, 7);
if (path.charAt(0) ="/
path =1+ pah
}
path = "file://" + path;
url = new URL(path);

}
catch (MalformedURLException €)

{
Il System.em.printin("Cannot create ur for: " + fleName);
throwe; //Its notafie either...

}
}

retum ur;

}

private static String readURL(URL url) throws Exception
{

URLConnection newURLConn;

BufferedinputStream newBuff;

int NBytes;

byte aByte[;

String resultBuff ="

aByte = new byte[2];
try

{
Il System.out.printin('Calling " + url.toString());
try
{
newURLConn = url.openConnection();
newBuff = new BufferedinputStream(newURLConn.getinputStream());
resuttBuff="",
while ((nBytes = newBuff.read(@Byte, 0, 1)) I=-1)
resultBuff = resuftBuff + (char)aByte[O];
}
catch (IOException €)
{
Il System.em.prinin("Opening locatorn” + e toString());
Il System.em.printin(ur.toString() + "\n : newURLConn failed \n" + €);

8-132 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

throw e;

}

catch (Exception €)

{

1l System.err prinin(*Read URL\n" + e toSting());
throwe;

}
retum resultBuff,

}

private void executeStatement(String strStmt) throws SQLException, Exception
{
if (conn ==null)
throw new Exception("Connection is null”);
try

{
Statement stmt = conn.createStatementy();

stmt.execute(srStmt);
stmt.close();

}

catch (SQLException €)

{
System.err.printin(‘Failed to execute statementin” + strStm);
throwe;

}

}

private void getConnected() throws Exception
{
try

{
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());

conn = DriverManager.getConnection(connURL, usemame, password);

catch (Exception €)

{
/I System.err.printin(e);

throwe;

}
}
public Connection getConnection()
{

retum conn;

}

Online B2B XML Application: Step by Step 8-133

XML Process and Management Scripts

Java Example 12: XMLGen.java
package B2BDemo. XMLUIil;

import java.sgl.*;
e
*This class is used by the Action Handler called by the XSQL Serviet
*in placeOrder.xsql. It generates the original XML Document to be
*sent to the broker
*
* @see B2BMessage
* @see XMLProducer
* @see RetailActionHandler
* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
i
public class XMLGen extends Object
{
static Connection conn = null;
I/ Default connection parameters
static String appURL = "jdbcoracle:thin:@localhost1521:0RCL"
static String appUser ="retailer";
static String appPassword ="retailer”;

static String XMLStImt =
"SELECT O.ID as\"d\"," +
" O.ORDERDATE as\'Orderdate\", " +
O.CONTACTNAME as \'"Contactname\"," +
O.TRACKINGNO as \'Trackingno\"," +
" O.STATUS as\'Status\’," +
" O.CUSTOMER_ID as\'"Customerld\"," +
CURSOR (SELECT LID as\d\'," +
L.QUANTITY as\'Quantip\’, " +
LITEM_ID as\'ttemid\"," +
LORD_IDas\'OrdId\"" +
" L.DISCOUNT as \'Discount\""' +
FROMLINE_ITEML"+
WHERE LORD_ID =0Q.ID) as \'LineltemView\" " +
"FROMORDO"+
"WHEREO.ID="7",

public static String retumDocument (Connection ¢, String ordid)
{

8-134 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

String XMLDoc =",
y

if (¢ '=null)

conn=c,
if (conn == null)

_getConnected(appURL, appUser, appPassword);
XMLProducer xmip = null;
xmlp = new XMLProducer(conny); // The XML Producer
xmip.setRowset('Results');
xmip.setRow("OrdView'");
PreparedStatement stmt = conn.prepareStatement(XMLStmt);
stmt.setString(1, ordid);
ResultSet rSet = simt.executeQuery();

XMLDoc =xmlp.getXMLSting(rSet, "Y");
rSet.close();
stmt.close();
if (¢ == null)
{
conn.close();
conn=null;
}

}
catch (SQLException €)

returmn XMLDoc;
}

private static void _getConnected(String connURL,
String userName,
String password)
{
try
{
DriverManager.registerDriver(new oracle jabc.driver.OracleDriver());
conn = DriverManager.getConnection(connURL, userName, password);

catch (Exception €)
System.err.printin(e);
System.exit(1);

}
}

Online B2B XML Application: Step by Step 8-135

XML Process and Management Scripts

public static void main (String[] args) / Just for test !!
{
System.out printn(retumDocument(null, “28004'));
}
}

Java Example 13: XMLUtil.java

package B2BDemo. XMLUKil;
e
* Matches a record of the Stylesheet table in the AQ Schema.
*
* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*
!
public class XsIRecord
{
public String FROM;
public String TO;
public String TASK;
public String XSL;

public XsIRecord(String FROM,
String TO,
String TASK,
String XSL)
{
this.FROM = FROM;
this.TO=TO;
this. TASK = TASK;
this.XSL =XSL;
}

public boolean equals(XsIRecord X)

if (this. FROM.equals(x. FROM) &&
this.XSL.equals(x XSL) &&
this. TASK equals(x. TASK) &&
this. TO.equals(x.TO))
retum true;
else
retum false;
}
}

8-136 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

Java Example 14: XSLTWrapper.java

package B2BDemo. XMLUKil;
Pex

*Wraps some parser features.
*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

import java.net;

import javalio*;

import orgw3c.dom.*;
import oracle xml.parser.v2.*;
import org.xml.sax;

i
*This class is a wrapper for the XSL Transformer provided with the
*Oracle XML Parser for Java V2.

*

* |t processes XSL Transformations from Strings, files or URL as well.
*

* @author Olivier Le Diouris. Partner Services. Oracle Corp.
* @version 1.0

#
public class XSLTWrapper

{
DOMParser parser;

Stringxml =",

Stingxsl ="
String result ="

private static boolean _debug =false;

public XSLTWrapper()

{
parser = new DOMParser();

}

public void process() throws Exception
if (xml.length() = 0)

throw new Exception("XML Document is empty’);
if (xsl.length() == 0)

Online B2B XML Application: Step by Step 8-137

XML Process and Management Scripts

throw new Exception("XSL Document is empty”);
resutt = processTransformation(xml, xsl);

}

public void putXml(String xml) throws Exception
{
if (_debug) System.outprintn("Recieved XML : \n" + xml);
thisxml =xml;
}
public void putXsi(String xsl) throws Exception
{
this.xsl = xsl;
if (_debug) System.outprintin("Recieved XSL: \n" + xsl);

}
public String getXmi() throws Exception
{

retum xml;

}
public String getXsl() throws Exception
{
retum xs;
}
public String getProcessResult() throws Exception
{

retum result;

}

/I Tums a String into an XMLDocument
public XMLDocument parseDocument(String documentStream) throws Exception
{
XMLDocument retumXML = nul;
try
{
parser.parse(new InputSource(new
ByteAmayinputStream(documentStream.getBytes())));
retumXML = parser.getDocument();

}
catch (SAXException saxE)

{
if (_debug) System.em.prinin('For\n" + documentStream + "\nParse failed
SAX: "+ saxE);
throw new Exception('Parsing XML\n" + "SAX Exception\n" +
saxE.toString());

catch (IOException €)

8-138 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

{

if (_debug) System.err.printin(‘Parse failed : " + €);

throw new Exception('Parsing XML\n" + "[OException:\n" + e.toString();
}
retum retumXNL,;

}

private XMLDocument processXML(XMLDocument xml,
XMLDocument xslDoc) throws Exception
{
XMLDocument out = nul;
URL xsIURL = nul;

try
{
parser.setPreserveWhitespace(true);
parser.setValidationMode(false); // Validation. Should be an option.
/instantiate a stylesheet
XSLStylesheet xsl = new XSLStylesheet(xsiDoc, xsIURL);
XSLProcessor processor = new XSLProcessor();

I/ display any wamings that may occur
processor.showWamings(true);
processor.setEmorStream(System.err);

I/ Process XSL
DocumentFragment result = processor.processXSL(xsl, xml);

I/ create an output document to hold the result
out =new XMLDocument();
F
I/ create a dummy document element for the output document
Element root = out.createElement('root);
outappendChild(root);
Il append the transformed tree to the dummy document element
root.appendChild(result);
*
outappendChild(resutt);
I print the transformed document
I/ out.print(System.out);
}
caich (Exception €)

ByteArrayOutputStream baos = new ByteArrayOutputStream();
PrintWhiter pw = new PrintWhiter(baos);

Online B2B XML Application: Step by Step 8-139

XML Process and Management Scripts

e.printStackTrace(pw);
e.printStackTrace();
throw new Exception('ProcessXML\n" + baos.toString());
}
retum(out);
}

P
* XML String and XSL String as input
* Input Strings may content :
* the name ofa URL
* the name of a file (on the local file system)
* the document itself
* XML String as output.
*
public String processTransformation(String xmiStream,
String xsIStream) throws Exception
{
String xmiContent =",
String xslContent =",

try

{xmiContent = readURL (createURL (xmlIStream)); }
catch (Exception €)

{xmiContent =xmlStream; }

try

{xslContent = readURL (createURL (xsIStream)); }
catch (Exception €)

{xslContent =xsIStream; }

if (_debug) System.outprintin(“xmliStream =" + xmiContent);
if (_debug) System.outprinin(xsiStream =" + xsiContent);

XMLDocument xml = parseDocument(xmiContent);
XMLDocument xsl = parseDocument(xsiContent);

XMLDocument out = processXML(xml, xsl);
ByteArrayOutputStream baos = new ByteArayOutputStream();

try
{outprint(oaos); }
catch (IOException ioE)

if (_debug) System.err.printin("Exception:” + ioE);
throw new Exception("XML Processing throws IOException\n” +

8-140 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

XML Process and Management Scripts

ioE.toString());

}
retum (baos.toString();
}

I/ Create a URL from a file name
private static URL createURL(String fleName) throws Exception
{

URL ur=nul;

try

{
url = new URL(fleName);

}
catch (MalformedURLEXxception ex) / It is not a valid URL, maybe afie...
{
File f=new File(fleName);
try
{
String path = f.getAbsolutePath();
/I This is a bunch of weird code that is required to
/I make a valid URL on the Windows platform, due
[0 inconsistencies in what getAbsolutePath retums.
String fs = System.getProperty(file.separator”);
if (fslength) = 1)
{

char sep =fs.charAt(0);
if(sep!=1)

path = path.replace(sep, 7);
if (path.charA(0) =)

path =/ + path;

}
path ="file://* + path;
url = new URL (path);

}

catch (MalformedURLException €)

{
if (_debug) System.err.printin(‘Cannot create ur for: " + fleName);
throwe; //Its notafie either...

}

}

retum ur;

}

private static String readURL(URL url) throws Exception
{

Online B2B XML Application: Step by Step 8-141

Other Scripts Used in the B2B XML Application

URLConnection newURLConn;
BufferedinputStream newBuff;
int nBytes;

byte aByte[];

String resultBuff ="

aByte = new byte[2];

t{]y

Il System.out.printin(‘Calling " + url.toString());
try

{
newURLConn = ur.openConnection();

newBUff = new BufferedinputStream(newURLConn.getinputStream());
resultBuff ="
while ((nBytes = newBuff.read(aByte, 0, 1)) '=-1)
resultBuff = resultBuff + (char)aByte[0];
}
catch (IOException €)
{
Il System.em.prinin("Opening locatorn” + e toString());
Il System.em.prinin(ur.toString() + "\n : newURLConn failed \n" + €);
throw e;

}

catch (Exception €)

{

Il System.err.prinin('Read URL\N" + e.toString());
throwe;

}
retum resultBuff;

}
}

Other Scripts Used in the B2B XML Application

XML Example 1: XSQL Configuration — XSQLConfig.xml

<?xml version="1.0" 7>

<

| $Author: smuench $

| $Date: 2000/03/14 10:36:42 $

8-142 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Other Scripts Used in the B2B XML Application

| $Source: C:\evsroot/xsalisre/XSQLConfigxmly $
| $Revision: 111 $
+—>

<XSQLConfig>

<l-

I

| This section defines configuration settings
| specific to the XSQL Senvet

I

+—>
<senlet>

<

I

| Sets the size (in bytes) of the buffered output stream.
| If your senvlet engine already buffers /O to the

| Serviet Output Stream, then you can setto O

| to avoid additional buffering.

I

| <output-buffer-size>10000</output-buffer-size>

I

+->

<output-buffer-size>0</output-buffer-size>

<

I

| Add <media-type> elements as shown below to cause
| the XSQL Senviet to *suppress* sending the "charset=XXX"
| portion of the Media/Content-type.

I

| For example, sending a character set for 'image/svg’”

| documents seems to confuse current SVG plugins.

I

| <suppress-mime-charset>

| <media-type>image/svg</media-type>

| </lsuppress-mime-charset>

+->

<suppress-mime-charset>
<media-type>image/svg</media-type>
</suppress-mime-charset>

</serviet>

Online B2B XML Application: Step by Step 8-143

Other Scripts Used in the B2B XML Application

<

I

| This section defines XSQL Page Processor configuration settings.
I

+>
<processor>

<l-

I

| Connection definitions (see <connectiondefs> below)
| are cached when the XSQL Page Processor is initialized.
I

| Setto "yes" to cause the processor to

| reread the XSQLConfig.xml file to reload

| connection definitions if an attempt is made

| to request a connection name that's not in the

| cached connection list. The "yes" setting is useful

| during development when you might be adding new

| <connection> definitions to the file while the

| senvlet is running. Set to "no” to avoid reloading

| the connection definition file when a connection name
| is not found in the in-memory cache.

+->

<reload-connections-on-error>yes</reload-connections-on-emor>

<l-

I

| Set the default value of the Row Fetch Size

| for retrieving information from SQL queries

| from the database. Only takes effect if you

| are using the Oracle JDBC Driver, ctherwise
| the setting is ignored. Useful for reducing

| network roundtrips to the database from

| the senviet engine running in a different tier.

I

| <default-fetch-size>50</default-fetch-size>
I

+—>

<default-fetch-size>50</default-fetch-size>

<l-

8-144 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Other Scripts Used in the B2B XML Application

I
| Set the value of the XSQL LRU Cache for XSQL Pages

| This determines the maximum number of stylesheets

| that will be cached. Least recently used sheets get

| "bumped" out of the cache if you go beyond this number.
I

| <page-cache-size>25</page-cache-size>

I

+->

<page-cache-size>25</page-cache-size>

<

I

| Set the value of the XSQL LRU Cache for XSL Stylesheets.
| This determines the maximum number of stylesheets

| that will be cached. Least recently used sheets get

| "bumped" out of the cache if you go beyond this number.

I

| <stylesheet-cache-size>25</stylesheet-cache-size>

+->

<stylesheet-cache-size>25</stylesheet-cache-size>

<

I
| Set the parameters controliing stylesheet pools.

I

| Each cached stylesheet is actually a cached pool
| of stylesheet instances. These values control

| The initial number of stylesheet instances in the

| pool, the number that will be added/incremented
| when under-load the pool must be grown, and

| the number of seconds that must transpire without
| activity before a stylesheet instance will be

| dropped out of the pool to shrink it back towards

| its initial number.

I

| <stylesheet-pool>

| <inial>1</initial>

| <increment>1</fincrement>

| <timeout-seconds>60</timeout-seconds>

| </stylesheet-pool>

I

Online B2B XML Application: Step by Step 8-145

Other Scripts Used in the B2B XML Application

+—>

<stylesheet-pool>
<initial>1</finitial>
<increment>1</increment>
<timeout-seconds>60<fimeout-seconds>

<Istylesheet-pool>

<l-

I

| Set the parameters controlling database connection pools.

I

| When used, each named connection defined can have a pool of
| connection instances to share among requests. These values
| control The initial number of stylesheet instances in the pool,

| the number that will be added/incremented when under-load the
| pool must be grown, and the number of seconds that must

| transpire without activity before a stylesheet instance will be

| dropped out of the pool to shrink it back towards its initial

| number.

I

| If the "dump-allowed" element has the value "yes"

| then a browser-based status report that dumps the

| current state of the connection pools is enabled.

I

| <connection-pool>

| <iniial>2</initial>

| <increment>1</increment>

| <timeout-seconds>60</timeout-seconds>

| <dump-allowed>no</dump-allowed>

| </connection-pool>

I

+—>

<connection-pool>
<initial>2</initial>
<increment>1</increment>
<timeout-seconds>60</imeout-seconds>
<dump-allowed>no</dump-allowed>
</connection-pool>

<

I
| Include timing information (in Miliseconds)

8-146 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Other Scripts Used in the B2B XML Application

| <timing-info>

| <page>yes</page>
| <action>yes</action>
| <fiming-info>

I

+->

<timing-info>
<page>no</page>
<action>no</action>

<ftiming-info>

</processor>

<l-

I

| This section defines HTTP Proxy Server name

| and port for use by the <xsglinclude-xml>

| action. If you intend to use <xsglinclude-xmk>

| toinclude XML from URL's outside a firewall,

| uncomment the:

I

| <http>

| <proxyhost>your-proxy-server.yourcompany.com</proxyhost>
| <proxyport>80</proxyport>

-

| section below and change the proxyhost and proxyport
| as appropriate. If left commented out, then the XSQL

| Page processor does not use a proxy server.

+>

<

<http>
<proxyhost>your-proxy-server.yourcompany.com</proxyhost>
<proxyport>80</proxyport>

<http>

-
<l-

| This section defines convenient "nicknames" for

Online B2B XML Application: Step by Step 8-147

Other Scripts Used in the B2B XML Application

| one or more database connections. You can include
| any number of <connection> elements inside of

| the <connectiondefs> element. XSQL Pages refer to
| these connections by their name in the "connection”

| attribute on the document element of the page.

I

+->
<connectiondefs>

<connection name="demo'>
<usemame>scott</usemame>
<password>tiger</password>
<dbur>jdbc:oracle:thin:@localhost:1521:0RCL</dburt>
<driver>oracle.jdbc.driver.OracleDriver</driver>

</connection>

<connection name="xmlbook">
<usemame>xmlbook</usemame>
<password>xmlbook</password>
<dbur>jdbc:oracle:thin:@localhost:1521:0RCL</dburt>
<driver>oracle.jdbc.driver.OracleDriver</driver>

</connection>

<connection name="lite">
<usemame>system</usemame>
<password>manager</password>
<dburi>jdbc:Palite:POlite</dburt>
<driver>oracle lite.polidbc.POLIDBCDriver</driver>

</connection>

<connection name="retail">
<usemame>retailer</usemame>
<password>retailer</password>
<dburi>jdbc:oraclethin: @atp-1.us.oracle.com:1521:ORCL</dburt>
<driver>oracle.jdbc.driver.OracleDriver</driver>

</connection>

</connectiondefs>

<

I

| This section registers pre-defined element names and
| handler classes for user-defined XSQL page actions

I
| The section looks like:

I
| <actiondefs>

8-148 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Other Scripts Used in the B2B XML Application

| <action>

| <elementhame>myAction</elementname>

| <handlerclass>mypackage MyActionHandler</handlerclass>
| </action>

|

| <actiondefs>

I

| Action Handler classes must implement the interface

| oraclexmlxsgl. XSQLActionHandler.

I

| Once registered here, user-defined actions can be

| used in the same way as buitt-in XSQL actions, for example
| including the <xsgl:myAction> element in your page.
I
+—>
<actiondefs>

<action>

<elementname>param</elementname>

<handlerclass>oracle xml.xsgll.actions.ExampleGetParameterHandler</handlerclass>
</action>
<action>
<elementname>current-date</elementname>

<handlerclass>oracle xml.xsgl.actions.ExampleCurrentDBDateHandler</handlerclass>
</action>
</actiondefs>

</XSQLConfig>

Java Example 15: Message Header Script — MessageHeaders.java
The message header script is given here:

package B2BDemo;

/:*Describes the headers used in the messages

*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

pijblic class MessageHeaders extends Object

{
public static Sring APP_ A ="RETAIL",
public static String APP_B ="SUPPLY",

Online B2B XML Application: Step by Step 8-149

Retailer Scripts

public static Sting BROKER ~ ="BROKER";

public static String EXIT ="EXIT,

public static Sting NEW_ORDER ="NEW ORDER";

public static Sting UPDATE_ORDER ="UPDATE ORDER"
}

Java Example 16: Hold Constants for Use by Message Broker — AppCste.java

package B2BDemo;
Pex

*Holds the constants to be used by the Message Broker

*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

public class AppCste extends Object

public final static String AQDBUH =
"idbc:oracle:thin:@atp-1.us.oracle.com:1521:0RCL";
public final static String AQuser ="agMessBrok";
public final static String AQpswd ="agMessBrok";

}

Retailer Scripts
The Retailer uses the following scripts:

« Java Example 17: Retailer Waits for Status Update Sent from Supplier —
UpdateMaster.java

Java Example 17: Retailer Waits for Status Update Sent from Supplier —
UpdateMaster.java

package B2BDemo.Retaller;
Pex

*

*This class implements the component waiting on the retailer side for
* the status update made by the Supplier after shipping.

*The recieved document s parsed and its content is used to make
*the convenient update in the database.
*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.

*

*

8-150 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Retailer Scripts

import javaio®;

import java.util.*;
import java.net;
import java.sgl.;

import oracle xml.sgl.query*;
import oracle xml.sgl.dml*;

import orgw3c.dom.¥;
import oracle xml.parserv2.*,
import org.xml.sax.;

import B2BDemo.AQUIil*;
import B2BDemo.*;
import B2BDemo. XMLUHl.*;

import java.awt;

import java.awtevent;

import javax.swing.*;

Jfimport oracle.bali.ewt.border.UIBorderFactory;
Iimport oracle.bali.ewt.olaf. OracleLookAndFeel;

public class UpdateMaster extends Object
{

private BufferedReader stdin = new BufferedReader(hew
InputStreamReader(System.in));

private static boolean stepByStep = false;
private static boolean verbose =false;
private static Integer pauseTime = null;

AQReader aqr;

private static final String userName ="retailer”;

private static final String password ="retailer”;

private static Stingur = "jdbc:oracle:thin:@localhost:1521:0RCL"; //
This is the default value !

private static Connection conn = null;

String cunOrdid ="
DOMParser parser = new DOMParser();
P

* Constructor
¥

Online B2B XML Application: Step by Step 8-151

Retailer Scripts

public UpdateMaster()

{
XMLFrame frame = new XMLFrame("Retailer”);
/‘k*
try

{
OracleLookAndFeel.setColorScheme(Color.cyan);

/I OracleLookAndFeel.setColorScheme(Titanium"?);
UlManager.setlookAndFeel(new OracleLookAndFeel());
SwingUtilities.updateComponentTreeUl(frame);
frame.setBackground(UIManager.getColor("darkintensity"));

}
catch (Exception €)

System.err.printin(*Exception for Oracle Look and Feel" +e);
}
*
/ICenter the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
if (rameSize.height > screenSize.height)

frameSize.height = screenSize.height;
}
Jiad
if (rameSize.width > screenSize width)
{
frameSize.width = screenSize.width;
}
*
frameSize.width = screenSize.width / 3;

Il frame.setlocation((screenSizewidth - frameSizewidth)2, (screenSize.height
- frameSize.height)/2);

frame.setlocation(0, (screenSize.height - frameSize.height)/2);
Il frame.addWindowListener(new WindowAdapter() { public void
windowClosing(WindowEvent €) { System.exit(0); } });

frame.setVisible(true);

I nitialize AQ reader
agr = new AQReader(AppCste. AQuser,
AppCste AQpswd,
AppCste AQDBUH,
"AppFour_QTab",
"AppFourMsgQueue”);

8-152 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Retailer Scripts

boolean go =true;
while (go)

String ordidValue ="
B2BMessage sm = aqr.readQ();
if (verbose)
System.out printin(‘Recieved\nFrom > " + sm.getFrom() +
"\nTo >"+smgetTo() +
"\nType >"+sm.getType() +
"“\nContent >\n" + sm.getContent();
else
System.out printin(‘Recieved\nFrom > " + sm.getFrom() +
"\nTo >"+smgetTo() +
"\nType >"+sm.getType();
String xmIDoc = sm.getContent();
if (xmIDoc = null && xmiDoc.length() > 0)
{
try { frame.setXMLDocument(sm.getContent()); }
catch (Exception €)

{
e.printStackTrace();
}

}

Ef (StepByStep)

if (pauseTime = null)
{

System.out.printin("Waiting for " + pauseTime.longValue() + "

milliseconds');
try { Thread.sleep(pauseTime.longValue()); } catch
(InterruptedException €) {}
}

else
try { String s =_userinput('Hit retum to continue]'); } catch
(Exceptione) {
}

if (sm.getType().equals(MessageHeaders.EXIT))
go=false;
else
{
System.out printin("Updating”);
try
{
parser.parse(new InputSource(new

Online B2B XML Application: Step by Step 8-153

Retailer Scripts

ByteArrayinputStream(sm.getContent(). getBytes())));
XMLDocument xml = parser.getDocument();
XMLElement elmt = (XMLElement)xml.getDocumentElement();
NodeList nl = eimt.getElementsByTagName('SHIP"); // ORD ID
for (inti=0; i<nl.getLength(); i++)
{
XMLElement ordid = (XMLElement)nl.item(i);
XMLNode theText = (XMLNode)ordid.getFirstChild();
cunOrdid = theTextgetNodeValue();
System.out.printin("Gonna update " + cunOrdid);
try
{
if (conn ==null)
getConnected(ur, userName, password);
String strStmt = "update ORD set STATUS ="Shipped where ID="7",
PreparedStatement pStmt = conn.prepareStatement(strStmt);
pStmt.setString(1, cumOrdid);
pStmt.execute();
conn.commit();
pStmt.close();
System.outprintin('Done I');
}
catch (SQLException €)
{
System.out.printin("Pb updating the ORD\n" + e.toString());
}

}

}
catch (SAXParseException €)

{
System.out.printin(e.getMessage();

catch (SAXException €)
{
System.out.printin(e.getMessage());

caich (Exception €)
{
System.out.printn(e.getMessage();
}
}

}
frame.setVisible(false);
System.exit(0);

8-154 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Retailer Scripts

}
private static void getConnected(String connURL,
String userName,
String password)
{
try
{

DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
conn = DriverManager.getConnection(connURL, userName, password);

}
catch (Exception €)

System.err.printn(e);
System.exit(1);
}
}

private String _userinput(String prompt) throws Exception
{

String retString;

System.out.print(prompt);

try { retString = stdin.readLine(); }

catch (Exception €)

System.out.printin(e);
throw(e);

}

retum retString;

}

private static void setRunPrm(String[] prm)
{
for (inti=0; ipm.length; i++)

if (prmii].toLowerCase().startsWith("-verbose'))
verbose = isolatePrmValue(prmi], "-verbose');

else if (prm(i].toLowerCase().startsWith(*-help™)

{
System.out printin('Usage is™");
System.out printin(\java B2BDemo.Retailer.MessageBroker");
System.out prinin(\tparameters can be -dbURL -verbose, -step, -help');
System.out.printin(tdbURL contains a string like

jdbc:oracle:thin:@localhost1521:0RCL");

System.out printin(*tparameters values can be (except for -help):');

Online B2B XML Application: Step by Step 8-155

Retailer Scripts

System.out printin(\ttone - equivalent to ‘y");
System.out.printn(\tty’);

System.out printin(\true - equivalent to 'y™);

System.out printin(\tm");

System.out printin(\ttfalse - equivalent to 'n");

System.out printin(\t¢-step can take a value in miliseconds”);
System.exit(0);

}
else if (prm[i].toLowerCase().startsWith(*-step™)
{
String s = getPrmValue(prm[i], "-step”);
try
{
pauseTime = new Integer(s);
System.out.printin(Timeout " + pauseTime);
stepByStep =true;
}
catch (NumberFormatException nfe)
{
pauseTime = null;
if (s.toUpperCase().equals("Y") || s.toUpperCase().equals(TRUE"))
stepByStep =true;
else
stepByStep =false;
}

}
else if (prm[i]-toLowerCase().startsWith(-dburl'))
{
url = getPrmValue(prmii], -dbURL";
}
else
System.err.printin("Unknown parameter [+ prm[i] + "], ignored.”);
}
}

private static boolean isolatePrmValue(String s, String p)
{
boolean ret=true;

if slength() > (plength() + 1)) /+1 : "="
{

if (.indexOf("=") >-1)
{
String val = s.substring(s.indexOf("=") + 1);
if (val.toUpperCase().equals("Y") || val.toUpperCase().equals(TRUE'))
ret=true;

8-156 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

AQ Broker-Transformer and Advanced Queuing Scripts

else if (val.toUpperCase().equals('N") ||
val.toUpperCase().equals('FALSE")
ret="false;
else
{

System.err.printin("Unrecognized value for " + p +", setto y");
ret=true;

}
}
}

retum ret;

}

private static String getPrmValue(String s, String p)
{
Sting ret="",

if (slength() > (p.length() + 1)) / +1 : "="
{

if (3indexOf("'=") >-1)
{
ret = s.substring(s.indexOf('=") + 1);
}
}

retum ret;

}

T
*main
* @paramargs
*
public static void main(String(] args)
if (args.length > 0)
setRunPrm(args);

UpdateMaster updateMaster = new UpdateMaster();
}

}

AQ Broker-Transformer and Advanced Queuing Scripts

The AQ-Broker-Transformer uses the following scripts:

Java Example 18: AQ Broker Listens on One AQ Thread — BrokerThread.java

Online B2B XML Application: Step by Step 8-157

AQ Broker-Transformer and Advanced Queuing Scripts

« Java Example 19: MessageBroker.java
« Java Example 20: AQReader.java

« Java Example 21: AQWriter.java

« Java Example 22: B2BMessage.java

« Java Example 23: ReadStructAQ.java
« Java Example 24: StopAllQueues.java

« Java Example 25: WriteStructAQ.java

Java Example 18: AQ Broker Listens on One AQ Thread — BrokerThread.java
package B2BDemo.Broker;

import java.sgl.;

import oracle. AQ ¥,
import javaio®;

import oracle.sql*;

import oracle jdbc.driver*;

import B2BDemo.AQUIiL*;
import B2BDemo. XMLUHl.*;
import B2BDemo.*;

Pex
*This class implements a thread listening on one AQ.
*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
%

/
public class BrokerThread extends Thread
{

private BufferedReader stdin = new BufferedReader(new
InputStreamReader(System.in));

private static boolean stepByStep =false;
private static boolean verbose =false;

AQReader agReader;
AQWiiter aqWhiter;
String threadName;
XSLTWrapper wrapper;
Connection conn;
Integer pause;

8-158 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

AQ Broker-Transformer and Advanced Queuing Scripts

XMLFrame frame;

i

* Constructor

¥

public BrokerThread(String name,
AQReader aq,
AQWiriter aqw,
XSLTWrapper wrap,
Connectionc,
booleanv,
boolean s,
Integer p,
XMLFramef)

this.agReader = aq;
this.agWiriter = aqw;
this.threadName = name;
thiswrapper =wrap;
this.conn=c;

this.verbose =v;
this.stepByStep=s;
this.pause =p;
this.frame =f;

}

public void run()

{
boolean go =true;
while (go)
{

B2BMessage sm = this.agReader.readQ();

if (verbose)

System.out printin(this.threadName + * Recieved\nFrom > " + sm.getFrom()

else

‘nTo >"+sm.getTo() +
"\nType >"+sm.getType() +
"\nContent >\n" + sm.getContent());

System.out printin(this.threadName + " RecievedinFrom > " + sm.getFrom()

“\nTo >"+smgetTo() +
"\nType >" + sm.getType();

String xmIDoc = sm.getContent();
if (xmIDoc '= null && xmiDoc.length() > 0)

Online B2B XML Application: Step by Step 8-159

AQ Broker-Transformer and Advanced Queuing Scripts

{
try { this.frame.setXMLDocument(sm.getContent()); }
catch (Exception €)
{
e.printStackTrace();
}
}
Ef (stepByStep)
if (pause !=null)
{
System.out.printin("Waiting for " + pause.longValue() +"
miliseconds’);
try{ Thread sleep(pause.longValue()); } catch (InterruptedException
ef
}
else
try { String s =_userinput('Hit retum to continue]); } catch
(Exceptione) {
}

if (sm.getType().length() >= MessageHeaders.EXIT length() &&
sm.getType().equals(MessageHeaders.EXIT))
go=false;
else

/l Transform!
String processedXMLDoc ="
String xsIDoc = getXSL(sm.getFrom(),
sm.getTo(),
sm.getType();
if (verbose)
System.out.printin(*Read:\n" + xsIDoc);
try
{
processedXMLDoc =wrapper.process Transformation(sm.getContent(),
xsiDoc FdefaultStyleSheet*/);
if (verbose)
System.out.printin(\nResult \n" + processedXMLDaoc);
System.out.printin(Transformation done."y;

catch (Exception €)

{
System.err printin(*Ooops..\n');
e.printStackTrace();

}

8-160 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

AQ Broker-Transformer and Advanced Queuing Scripts

'Ef (StepByStep)

if (pause = null)
{
System.out printin(*Waiting for " + pause.longValue() +"
miliseconds”);
try { Thread.sleep(pause.longValue()); } catch (InterruptedException
ef
}
else
try { String s =_userinput(THit retum to continue]); } catch
(Exceptione) {}
}

Il Send new document to destination
this.agWiriterwriteQ(new B2BMessage(sm.getrom(),
sm.getTo(),
sm.getType(),
processedXMLDoc));
this.aqwhiterflushQ();
}

}
if (rame.isVisible()

frame.setVisible(false);
System.exit(0);
}

private String getXSL(String from,
String to,
String task)
{
if (verbose)
System.out.printin("Processing From " +from +"t0 " +to +"for" +
task);
String xsl="",
String stmt ="SELECT XSL FROM STYLESHEETS WHERE APPFROM =? AND APPTO =?
AND OP =7,

try

{
PreparedStatement pStmt = conn.prepareStatement(stmt);

pStmt.setString(1, from);
pStmt.setString(2, to);
pStmt.setString(3, task);

ResultSet rSet = pStmt.executeQuery();

Online B2B XML Application: Step by Step 8-161

AQ Broker-Transformer and Advanced Queuing Scripts

while (rSetnext()
xsl=_dumpClob(conn, ((OracleResultSet)rSet).getCLOB(1));
rSet.close();
pStmt.close();
}
catch (SQLEXxception €)
{
catch (Exception €)
{

retum xsl;

}

static String_dumpClob (Connection conn, CLOB clob)
throws Exception

{
String reumStr="",

OracleCallableStatement cStmt1 =
(OracleCallableStatement)
conn.prepareCall ("begin ? := dbms_lob.getLength (?); end;");
OracleCallableStatement cStmt2 =
(OracleCallableStatement)
conn.prepareCall ("begin doms_lob.read (?, ?, ?, ?); end;”);

cStmtl.registerOutParameter (1, Types.NUMERIC);
cStmtl.setClob (2, clob);
cStmtl.execute ();

long length = cStmt1.getLong (1);
longi=0;
int chunk = 100;
if (verbose)
System.out.printin("Length to read from DB : " + length);

while (i < length)

{
cStmt2.setClob (1, clob);
cStmi2.setl_ong (2, chunk);
cStmt2.registerOutParameter (2, Types.NUMERIC);
cStmt2.setLong (3,i+1);
cStmt2.registerOutParameter (4, Types.VARCHAR);
cStmt2.execute ();

long readThisTime = cStmt2.getLong (2);
String stringThisTime = cSimt2.getString (4);

8-162 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

AQ Broker-Transformer and Advanced Queuing Scripts

Il System.outprint ('Read " +read_this_time +" chars:");
retumStr += stringThisTime;
i +=readThisTime;
}

cStmtl.close ();
cStmit2.close ();

retum retumStr;
}

private String _userinput(String prompt) throws Exception
{
String retString;
System.out print(prompt);
try { retString = stdin.readLine(); }
catch (Exception €)
{
System.out.printin(e);
throw(e);
}
retum retString;
}
}

Java Example 19: MessageBroker.java

package B2BDemo.Broker;

/\k*

* Implements the AQ Broker-Transformer.

*This "Message Broker" uses 4 message queues, provided by
* Oracle8i Advanced Queuing.

* AQ Broker uses the threads described in BrokerThread

* Each thread is waiting on one queue, and wiiting on ancther.
*The message broker uses - for this demo - two threads :

* One from retailer to supplier

* One from supplier to retailer

*2 Threads := 4 queues

*

*\When amessage is recieved, the broker knows :
* where it comes from (origin)

* where it goes to (destination)

* what for (operation)

Online B2B XML Application: Step by Step 8-163

AQ Broker-Transformer and Advanced Queuing Scripts

*Those three elements are used as the primary key for the

* stylesheet table (belonging to the AQ schema) to fetch the

* right SXSL Stylesheet from the database, in order to tum

*the incoming document into an outgoing one fitting the requirements
* of the destination application.

*

* @see BrokerThread

* @see B2BMessage

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
ki

import java.sgl.*;

import oracle AQ.*;

import javaio®;

import java.awt*;

import java.awtevent,

import javax.swing.*;

import oracle.sgl.;

import oracle jdbc.driver*;

Iimport oracle.bali.ewt.border.UIBorderFactory;

Jfimport oracle.bali.ewt.olaf.Oraclel ookAndFeel;

import B2BDemo.AQUIil*;
import B2BDemo.*
import B2BDemo. XMLUHL*;

public class MessageBroker extends Object
{
private static boolean stepByStep =false;
private static boolean verbose =false;
private static Integer pauseTime = null;

XSLTWrapper wrapper = null;

I/ To get the style sheet from its CLOB
Connection conn=null;

String userName = AppCste. AQuser;
String password = AppCste. AQpswd;
Sting dbUn = AppCste AQDBUI;

public MessageBroker()

{
XMLFrame frame = new XMLFrame("Message Broker");

P

try
{

8-164 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

AQ Broker-Transformer and Advanced Queuing Scripts

OracleLookAndFeel.setColorScheme(Color.cyan);

/I OracleLookAndFeel.setColorScheme(Titanium");
UlManager.setlookAndFeel(new OracleLookAndFeel());
SwingUtiliies.updateComponentTreeUl(frame);
frame.setBackground(UIManager.getColor(“darkintensity"));

catch (Exception €)
{
System.err.printin(*Exception for Oracle Look and Feel" +e);
}
*
/ICenter the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
if (frameSize.height > screenSize.height)

{
frameSize height = screenSize.height;

}

P

if (rameSize.width > screenSize width)

{

frameSize width = screenSize width;

}

*

frameSize.width = screenSize.width / 3;
/I frame.setl ocation((screenSizewidth - frameSizewidth)/2, (screenSize.height
- frameSize.height)/2);

frame.setlocation(frameSize.width, (screenSize.height -
frameSize height)/2);
Il frame.addWindowListener(new WindowAdapter() { public void
windowClosing(WindowEvent €) { System.exit(0); } });

frame.setVisible(true);

AQReader agr=null;

AQWriter aqw = nulll;

I Initialize AQ reader and writer

agw = new AQWiiter(AppCste. AQuser,
AppCste. AQpswd,
AppCste. AQDBUI,
"AppTwo_QTab",
"AppTwoMsgQueue';

agr = new AQReader(AppCste.AQuser,
AppCste. AQpswd,
AppCste.AQDBUH,
"AppOne_QTab",

Online B2B XML Application: Step by Step 8-165

AQ Broker-Transformer and Advanced Queuing Scripts

"AppOneMsgQueue');
wrapper = new XSLTWrapper();
if (conn ==null)

_getConnected();

BrokerThread retail2supply = new BrokerThread("Retail to Supply”,
aqr,
aqw,
wrapper,
conn,
verbose,
stepByStep,
pauseTime,
frame);
agw = new AQWiiter(AppCste AQuser,
AppCste.AQpswd,
AppCste. AQDBUI,
"AppFour_QTab",
"AppFourMsgQueue’);
agr = new AQReader(AppCste. AQuser,
AppCste.AQpswd,
AppCste.AQDBUH,
"AppThree_QTab",
"AppThreeMsgQueue");
BrokerThread supply2retail = new BrokerThread("Supply to Retall",
aqr,
aqw,
Wrapper,
conn,
verbose,
stepByStep,
pauseTime,
frame);

retail2supply.start();
supply2retail start();

System.out printin(*<ThreadsOnTheinVay/>");
}

private void _getConnected()
{
try

{
Class.forName (“oracle.jdbc.driver.OracleDriver”);

8-166 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

AQ Broker-Transformer and Advanced Queuing Scripts

conn = DriverManager.getConnection (dbUH, userName, password);
catch (Exception €)

System.out.printin('Get connected failed : "' + €);
System.exit(1);
}
}

private static void setRunPm(String[] prm)

{
for (int i=0; i<prm.length; i++)

if (prmif].toLowerCase().startsWith("-verbose')
verbose = isolatePrmValue(prmi], “-verbose';
else if (prm(i].toLowerCase().startsWith(*-help"))
{
System.out printin(‘Usage is™");
System.out printin(*java Intel.iDevelop.MessageBroker);
System.out.printin(*\tparameters can be -verbose, -step, -help”);
System.out printin(\tparameters values can be (except for -help).");
System.out prinin(\tnone - equivalent to 'y™);
System.out.printn("\tty’’);
System.out printin(\tttrue - equivalent to ‘y™);
System.out printin(tm");
System.out. printin(\ttfalse - equivalent to 'n™);
System.out prinin(\tt-step can take a value in miliseconds");
System.exit(0);
}
else if (prm[i]-toLowerCase().startsWith(*-step)
{
String s = getPrmValue(prm[i, "-step”);
try
{
pauseTime = new Integer(s);
System.out.printin(Timeout " + pauseTime);
StepByStep = true;

catch (NumberFormatException nfe)
{

pauseTime = null;

if (s.toUpperCase().equals('Y") || s.toUpperCase().equals(TRUE"))
stepByStep = true;

else
stepByStep =false;

Online B2B XML Application: Step by Step 8-167

AQ Broker-Transformer and Advanced Queuing Scripts

}
}

else
System.err.printin("Unknown parameter [+ prm[i] + "], ignored.");
}
}

private static boolean isolatePrmValue(String s, String p)
{
boolean ret=true;

if (slength() > (p.length() + 1)) / +1 : "="
{

if (3indexOf("'=") >-1)
{
String val = s.substring(s.indexOf("=") + 1);
if (val.toUpperCase().equals("Y") || val.toUpperCase().equals(TRUE")
ret=true;
else if (val.toUpperCase().equals('N") ||
valtoUpperCase().equals('FALSE")
ret="false;
else
{
System.err.printin(*Unrecognized value for " + p +", setto y);
ret=true;
}
}
}

retum ret;

}

private static String getPrmValue(String s, String p)
{
String ret =",
if (slength() > (plength() + 1)) // +1 : ="
{
if (S.indexOf("=") >-1)
{

ret = s.substring(s.indexOf(*=") + 1);
}
}

retum ret;

}

public static void main(String argsf])
{

8-168 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

AQ Broker-Transformer and Advanced Queuing Scripts

Il java B2BDemo.OrderEntry.MessageBroker -verbose[=[yjtrue|njfalse]]
-step[=fyftrue|nifelse] -help
if (args.length > 0)
setRunPm(args);

new MessageBroker();
}
}

Java Example 20: AQReader.java

package B2BDemo.AQUI;

P

*This class is a wrapper around the Advanced Queuing facility of Oracle 8i.
* Used to dequeue a message.

*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

import java.sgl.*;

import oracle AQ.¥;

import javaio®;

public class AQReader extends Object
{

Connection conn =null;
AQSession agSess = null;

String userName ="
String gTableName ="
StinggName =",

AQQueueTable agTable = null;
AQQueue aq =nul

public AQReader(String userName,
String password,
String ur,
String gTable,
String gName)

this.userName = userName;

this.gTableName =qTable;

this.gName =gName;

agSess = createSession(userName, password, ur);

Online B2B XML Application: Step by Step 8-169

AQ Broker-Transformer and Advanced Queuing Scripts

agTable = agSess.getQueueTable(userName, gTableName);
System.out printin(“Successful getQueueTable™);
/IHandletoq

aq =agSess.getQueue(userName, gName);

System.out printin(“Successful getQueue");

}
public AQSession createSession(String userName,
String pswd,
String url)
{
try
{

DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());
conn = DriverManager.getConnection(ur, userName, pswd);
System.out.printin(" JDBC Connection opened");
conn.setAutoCommit(false);
I/ Load Oracle 8i AQ Driver
Class.forName("oracle. AQ.AQOracleDriver”);
Il Create the AQ Session
agSess = AQDriverManager.createAQSession(conn);
System.out.printin(“AQ Session successfully created.");

}

catch (Exception €)

System.out.printin("Exception : "' + €);
e.printStackTrace();

}
retum agSess,

}

public B2BMessage readQ() throws AQEXxception
{

AQMessage message;

AQRawPayload rawPayload,

/I Read with REMOVE option

AQDequeueOption dgOption = new AQDequeueOption();
dgOption.setDequeueMode(AQDequeueOption. DEQUEUE_REMOVE);
message = ag.dequeue(dqOption);

System.out printin(*Successfull dQueue”);
rawPayload = message.getRawPayload();

8-170 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

AQ Broker-Transformer and Advanced Queuing Scripts

fry

conn.commit(); // Commit the REMOVE
}
catch (Exception sgle)
{
System.err printin(sgle-toString());
}

retum (B2BMessage)deserializeFromByteArray(rawPayload.getBytes();
}

private static Object deserializeFromByteArray (byte[] b)
{
ByteArayinputStream inputStream = new ByteArrayinputStream(b);
try
{
ObjectinputStream ois = new ObjectinputStream(inputStream);
retum ois.readObject();

catch (Exception €)

System.err.printin('deserializeFromByteArray failed :" + €);
retum null;
}
}
}

Java Example 21: AQWriter.java

package B2BDemo.AQUI;

il

*This class is a wrapper around the Advanced Queuing facility of Oracle 8i.
*Used to enqueue a message.

*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

import java.sgl.;

import oracle AQ.%;

import java.io®,

public class AQWriter extends Object
{

Connection conn =null;

Online B2B XML Application: Step by Step 8-171

AQ Broker-Transformer and Advanced Queuing Scripts

AQSession agSess = null;

Sting userName ="
String gTableName ="
StinggName =",

public AQWriter(String userName,
String password,
String u,
String gTable,
String gName)
{

this.userName = userName;

this.gTableName =qTable;

this.gName = gName;

agSess = createSession(userName, password, ur);
}

public void flushQ()
{

if (conn !=null)

try { conn.commit(); } catch (SQLException €) {}
}
}

public void closeConnection()
{
if (conn !=null)
{
try{ conn.close(); }
catch (SQLException €)
{
}
}

public AQSession createSession(String userName,
String pswd,
String ur)
{
try
{
DriverManager.registerDriver(hew oracle jdbc.driver.OracleDriver());
conn = DriverManager.getConnection(url, userName, pswd);
System.out.printin("JDBC Connection opened');

8-172 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

AQ Broker-Transformer and Advanced Queuing Scripts

conn.setAutoCommit(false);
I Load Oracle 8i AQ Driver
Class.forName("oracle. AQ.AQOracleDriver”);
Il Create the AQ Session
agSess = AQDriverManager.createAQSession(conn);
System.out.printn(“AQ Session successfully created.");
}
catch (Exception €)
{
System.outprintin('Exception : " + €);
e.printStackTrace();
}
retum agSess,
}

public void writeQ(B2BMessage sm) throws AQEXxception
{

AQQueueTable gTable;

AQQueue q;

gTable = agSess.getQueueTable(userName, qTableName);
System.out printin("Successful getQueueTable');
/IHandletoq

g =agSess.getQueue(userName, gName);

System.out. printin(*Successful getQueue;

I Q s identified, let's write
AQMessage message;
AQRawPayload rawPayioad,

message = g.createMessage();
byte[] bAray = serializeToByteArray(sm);
rawPayload = message.getRawPayload();
rawPayload.setStream(bArray, bArray length);
AQENqueueOption eqOption = new AQEnqueueOption();
g.enqueue(egOption, message);

}

private static byte[] serializeToByteArray (Object 0)
{
ByteArayOutputStream outStream = new ByteArayOutputStream();
try
{
ObjectOutputStream oos = new ObjectOutputStream(outStream);
oos.writeObject(0);

Online B2B XML Application: Step by Step 8-173

AQ Broker-Transformer and Advanced Queuing Scripts

retum outStream.toByteArray/();

}

catch (Exception €)

{
System.err.printin('serialize2ByteArray failed : " + €);
retum null;

}

}
}

Java Example 22: B2BMessage.java

package B2BDemo.AQUI;

P

*This class decsribes the structure of the messages used in this demo
* Subject to changes in 817

*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*
import java.io.Serializable;

public class B2BMessage extends Object implements Serializable
{

String from;

String to;

String type;

String content;

public B2BMessage(String f,
Stingt,
Sting typ,
String ¢)
{
thisfrom =f;
thisto =t
thistype =typ;
this.content=c;

}

public String getFrom()
{retum this.from; }
public String getTo()
{retumthis:to; }

public String getType()

8-174 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

AQ Broker-Transformer and Advanced Queuing Scripts

{retum this.ype; }
public String getContenty()
{retum this.content; }

}

Java Example 23: ReadStructAQ.java

package B2BDemo.AQUI;

Pex

* A main for tests - Not used in the demo itself.

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

import java.sgl.;

import oracle AQ.%;

import java.io®,

import B2BDemo.*

public class ReadStructAQ extends Object
{
public static void main(String[] args)
{
AQReader agr = new AQReader(AppCste.AQuser,
AppCste AQpswd,
AppCste. AQDBUH,
"objMsgsStruct QTab",
"structMsgQueue”);
I Loop while EXIT is not recieved
boolean goLoop =true;
while (goLoop)
{
B2BMessage sm = aqr.readQ();
System.out.printin("Recieved\nFrom > " + sm.getFrom() +
"nTo >"+sm.getTo() +
"\nType >" +sm.getType() +
"\nContent >\n" + sm.getContent());
if (sm.getType().equals('EXIT"))
goLoop =false;
}
System.out printin("<bye/>");
}
}

Online B2B XML Application: Step by Step 8-175

AQ Broker-Transformer and Advanced Queuing Scripts

Java Example 24: StopAllQueues.java
package B2BDemo.AQUI;

import B2BDemo.*;

/**
* Used in the demo to stop the queues and the applications waiting on them.

*

* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*
public class StopAllQueues extends Object

{
/*A—

* Constructor
*
public StopAllQueues()
{
AQWHiter agwl = new AQWiter(AppCste.AQuser,
AppCste. AQpswd,
AppCste. AQDBUI,
"AppOne_QTab",
"AppOneMsgQueue");
agwl.writeQ(new B2BMessage(MessageHeaders. APP_B,
MessageHeaders. APP_A,
MessageHeaders.EXIT,
)
agwl.flushQ();
AQWriter agw2 = new AQWhiter(AppCste. AQuser,
AppCste. AQpswd,
AppCste AQDBUH,
"AppTwo_QTab",
"AppTwoMsgQueue');
agw2.writeQ(new B2BMessage(MessageHeaders. APP_B,
MessageHeaders APP_A,
MessageHeaders.EXIT,
)
agqw2flushQ();
AQWriter agw3 = new AQWhiter(AppCste.AQuser,
AppCste.AQpswd,
AppCste. AQDBUI,
"AppThree_QTab",
"AppThreeMsgQueue");
agqw3writeQ(new B2BMessage(MessageHeaders. APP_B,
MessageHeaders. APP_A,

8-176 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

AQ Broker-Transformer and Advanced Queuing Scripts

MessageHeaders.EXIT,
)
aqw3fiushQ();
AQWHiter agw4 = new AQWiter(AppCste.AQuser,
AppCste AQpswd,
AppCste. AQDBUH,
"AppFour_QTal",
"AppFourMsgQueue”);
agw4writeQ(new B2BMessage(MessageHeaders. APP_B,
MessageHeaders. APP_A,
MessageHeaders.EXIT,
)
agw4-flushQ();
}

/kk
*main
* @param args
*
public static void main(String[] args)
{
StopAllQueues stopAllQueues = new StopAllQueues();
}
}

Java Example 25: WriteStructAQ.java

package B2BDemo.AQUI;

/**

* A Main for tests - Not used in the demo itself.
* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

e

* A main for tests

*

import java.sgl.*;

import oracle AQ.¥;

import javaio.®;

import B2BDemo.*;

public class WhiteStructAQ extends Object
{

Online B2B XML Application: Step by Step 8-177

AQ Broker-Transformer and Advanced Queuing Scripts

private static BufferedReader stdin = new BufferedReader(new
InputStreamReader(System.in));

static AQWhiter agw = null;

public static void main(String[] args)
{
try
{
agw = new AQWriter(AppCste. AQuser,
AppCste. AQpswd,
AppCste. AQDBUH,
"objMsgsStruct QTab",
"structMsgQueue”);
Sting messSubject ="
StingmessTxt =",
Sting messOrigin-+ ="
String messDestination ="";
try
{
messOrigin -~ =userinput('Message Origin -~ >");
messDestination = userinput('Message Destination >");
messSubject =userinput("Message Subject >");
messTxt =userlnput('Message Text ~ >");
} catch (Exception e)}

II\White the queue
B2BMessage sm = new B2BMessage(messOrigin,
messDestination,
messSubject,
messTxt);
agwwriteQ(sm);
try { String s = userinput("Written"); }
catch (Exception ne) {}
agw.closeConnection();
try { String s = userinput('Closed I); }
catch (Exception ne) {}
}
catch (Exception €)

System.err.prinin("Arghh : " +);
e.printStackTrace();

try { String s = userinput("..."); }
catch (Exception ne) {}

8-178 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

AQ Broker-Transformer and Advanced Queuing Scripts

}
}

private static String userinput(String prompt) throws Exception
{
String retString;
System.out print(prompt);
try { retString = stdin.readLine(); }
catch (Exception €)
{
System.outprintin(e);
throw(e);
}
retum retString;

}

Online B2B XML Application: Step by Step 8-179

Supplier Scripts

Supplier Scripts
The Supplier uses the following scripts:
« Java Example 26: SupplierFrame.java

« Java Example 27: Agent Wakes Up with Order Received from Retailer —
SupplierWatcher.java

Java Example 26: SupplierFrame.java
package B2BDemo.Supplier;

import javax.swing.*;
import java.awt*;
import java.awtevent;

import java.io*;

import java.util.*;
import java.net;
import java.sgl.*;

import oracle xml.sgl.query.*;
import oracle xml.sgl.dml.,

import orgw3c.dom*;
import oracle xml.parser.v2.%;
import org.xml.sax.*;

import B2BDemo.AQUIil.*;
import B2BDemo.*
import B2BDemo.XMLUHl.*;

P
*This class implements the Frame suggesting to ship the order."

* @see SupplieWatcher in the same package.
* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*

/
public class SupplierFrame extends JFrame
{

private BufferedReader stdin = new BufferedReader(new
InputStreamReader(System.in));

private static boolean stepByStep =false;

private static boolean verbose =false;

8-180 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Supplier Scripts

private static Integer pause =null;
private XMLFrame frame =null;

AQReader aq;
XMLtoDMLV2 x2d = null;

String userName = "supplier”;

String password = "supplier”;
Stingud =nul;

String cunOrdid =",
DOMParser parser = new DOMParser();
AQWiter agw = null;

BorderLayout borderLayoutl = new BorderLayout();
JPanel jPanell = new JPanel();

BorderLayout borderLayout2 = new BorderLayouit();
JPanel southPanel = new JPanel();

JButton shipButton = new JButton();

JPanel centerPanel = new JPanel();

JLabel ordMessage = new JLabel();

P
* Constructs a new instance.
*
public SupplierFrame(boolean v, boolean s, Integer p, XMLFrame f, String ur)
{
super();
this.verbose =v;
this.stepByStep =s;
this.pause =p;
thisframe =f;
this.ud =ur;
try
{
jolnit();

catch (Exception €)
{
e.printStackTrace();
}
}

Online B2B XML Application: Step by Step 8-181

Supplier Scripts

P
* |Initializes the state of this instance.
*
private void jbinit() throws Exception
{
this.getContentPane().setLayout(borderLayoutl);
this.setSize(new Dimension(400, 300));
shipButton.setText("Ship Order”);
shipButton.setEnabled(false);
shipButton.addActionListener(new java.awt.event ActionListener()

{

public void actionPerformed(ActionEvent €)
{
shipButton_actionPerformed(e);

}
b
ordMessage.setText("Waiting for Orders”);
ordMessage.setFont(new Font('Dialog", 1, 20));
jPanell.setl ayout(borderLayout?);
this.setTitle("Supplier Watcher”);
this.getContentPane().add(jPanell, BorderLayout CENTER);
jPanell.add(southPanel, BorderLayout SOUTH);
southPanel.add(shipButton, null);
jPanell.add(centerPanel, BorderLayout CENTER);
centerPanel.add(ordMessage, null);

}

public void enterTheL oop()
{
I/ Initialize AQ reader
agr = new AQReader(AppCste. AQuser,
AppCste. AQpswd,
AppCste. AQDBUH,
"AppTwo_QTab",
"AppTwoMsgQueue';
/l Initialize XSL Transformer
x2d = new XMLtoDMLv2(userName,
password,
url);
I Initialize the AQ Wiiter
agw = new AQWiriter(AppCste. AQuser,
AppCste. AQpswd,
AppCste.AQDBUH,
"AppThree_QTab",

8-182 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Supplier Scripts

"AppThreeMsgQueue");

boolean go =true;
while (go)
{
String ordidValue =",
String custidValue =",
B2BMessage sm = aqr.readQ();
if (verbose)
System.out printin(*Recieved\nFrom > " + sm.getFrom() +
"\nTo >"+sm.getTo() +
"“\nType >"+sm.getType() +
"\nContent >\n" + sm.getContent();
else
System.out printin("Recieved\nFrom > " + sm.getFrom() +
"\nTo >"+sm.getTo() +
"“\nType >" + sm.getType();
String xmIDoc = sm.getContent();
if (xmIDoc = null && xmiDoc length() > 0)

try { this.frame.setXMLDocument(sm.getContent()); }
catch (Exception €)
{
e.printStackTrace();
}
}
if (stepByStep)
{

if (pause !=null)
{
System.out.printin(*Waiting for * + pause.longValue() +"
miliseconds”);
try{ Thread.sleep(pause.longValue()); } catch (InterruptedException
e
}
else
try { String s =_userinput('Hit retum to continue]); } catch
(Exceptione) {}
}
if (sm.getType().equals(MessageHeaders.EXIT))
go =false;
else
{
System.out printin(‘Inserting”);
TablelnDocument d[] = new TablelnDocument2];

Online B2B XML Application: Step by Step 8-183

Supplier Scripts

d[0] = new TablelnDocument('ROWSET", "ROW", "ORD");
d[1] = new TableinDocument('MEMS", "ITEM_ROW", "LINE_ITEM");
try
{
String XMLDoc = sm.getContent();
x2d.insertFromXML(d, XMLDoc);
System.out.printin('Document processed.”);
//'\We want to read elements
parser.setValidationMode(false);
try
{
parser.parse(new InputSource(new
ByteArrayinputStream(XMLDoc.getBytes()));
XMLDocument xml = parser.getDocument();
XMLElement elmt = (XMLElement)xml.getDocumentElement();
NodeList nl= elmt.getElementsByTagName('ID"); / ORD ID
for (inti=0; i<nl.getLength(); i++)
{
XMLElement ordid = (XMLElement)nl.item(i);
XMLNode theText = (XMLNode)ordld.getFrstChild();
ordldValue = theText.getNodeValue();
cunOrdid = ordidValue;
break; // Just the first one !!!
}
nl =elmtgetElementsByTagName('CUSTOMER_ID"); // CUSTOMER ID
for (inti=0; i<nl.getLength(); i++)
{
XMLElement ordid = (XMLElement)nl.item();
XMLNode theText = (XMLNode)ordid.getFirstChild();
custidValue = theText.getNodeValue();
}
}
catch (SAXParseException €)
{
System.out printin(e.getMessage());
}
catch (SAXException €)
{
System.out printin(e.getMessage());
}
catch (Exception €)
{
System.out printin(e.getMessage();
}
}

8-184 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Supplier Scripts

catch (Exception €)

System.err.prinin(‘OCoopsn” + €);
}
this.shipButton.setEnabled(true);
String custName =",
ty

{
PreparedStatement pStmt = x2d.getConnection().prepareStatement("Select
C.NAME from CUSTOMER C where C.ID=7?";
pStmt.setString(1, custidValue);
ResultSet rSet = pStmt.executeQuery();
while (rSetnext()
custName =rSet.getString(L);
rSet.close();
pStmt.close();
}
catch (SQLException €)
¢

this.ordMessage.setText("Order [' + ordidValue + "] to process for [+
custName +'TY);
JOptionPane.showMessageDialog(this, "New Order Pending !", "Wake Up ",
JOptionPane INFORMATION_MESSAGE);
}
}
frame.setVisible(false);

}
void shipButton_actionPerformed(ActionEvent €)

/I Send message

String doc2send = "<SHIP>" + cunOrdid + "</SHIP>",

Il sending XMLDoc in the Queue

agwwiteQ(new B2BMessage(MessageHeaders. APP_B,
MessageHeaders APP_A,
MessageHeaders.UPDATE_ORDER,
doc2send));

aqwflushQ(); # Commit!

// Disable Button
this.shipButton.setEnabled(false);

/I display wait message
this.ordMessage.setText("\Waiting for orders...");

Online B2B XML Application: Step by Step 8-185

Supplier Scripts

private String _userinput(String prompt) throws Exception
{

String retString;

System.out print(prompt);

try { retString = stdin.readLine(); }

catch (Exception €)

System.out.printin(e);
throw(e);
}
retum retString;
}
}

Java Example 27: Agent Wakes Up with Order Received from Retailer —
SupplierWatcher.java

package B2BDemo.Supplier;

import java.awt*;

import java.awtevent;

import javax.swing.*;

Jfimport oracle.bali.ewt.border.UIBorderFactory;
Jfimport oracle.bali.ewt.olaf.OracleL ookAndFeel;

import B2BDemo. XMLUHl.*;

e
*This class implements the agent waiting on the queue where the orders are
delivered.
*When amessage is read, the agent "wakes up" and suggests to ship the order.
* Shipping the order will then fire a new B2B process to update the status of
*the order in the Retaller database.
*
* @author Olivier LE DIOURIS - Partner Technical Services - Oracle Copr.
*
!
public class SupplielWatcher
{
private static boolean stepByStep =false;
private static boolean verbose =false;

8-186 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Supplier Scripts

private static Integer pauseTime = null;
private static Stingur = "jdbc:oraclethin:@localhost1521:0RCL"; /f
Default value

/kk

* Constructor

*

public SupplierWatcher()

{
XMLFrame xmlFrame = new XMLFrame("Supplier");
I
try

{
OracleLookAndFeel.setColorScheme(Color.cyan);

/I OracleLookAndFeel.setColorScheme(Titanium"?);
UlManager.setlookAndFeel(new OracleLookAndFeel());
SwingUtiliies.updateComponentTreeUl(xmlIFrame);
xmiFrame.setBackground(UIManager.getColor("darkintensity));

}
catch (Exception €)

System.err.printin(*Exception for Oracle Look and Feel" +e);
}
*
/ICenter the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = xmlFrame.getSize();
if (frameSize.height > screenSize.height)

frameSize height = screenSize.height;
}
e
if (rameSize.width > screenSize width)
{
frameSize.width = screenSize.width;
}
¥
frameSize.width = screenSize.width / 3;
I xmlFrame.setl_ocation((screenSize width - frameSize width)/2,
(screenSize height - frameSize.height)/2);
xmlFrame.setlocation((2 * frameSize.width), (screenSize.height -
frameSize height)/2);
Il xmlFrame.addwindowListener(new WindowAdapter() { public void
windowClosing(WindowEvent €) { System.exit(0); } });
xmlFrame.setVisible(true);

Online B2B XML Application: Step by Step 8-187

Supplier Scripts

SupplierFrame frame = new SupplierFrame(verbose, stepByStep, pauseTime,
xmlFrame, url);

I

try

{
OracleLookAndFeel.setColorScheme(Color.cyan);

/I OracleLookAndFeel.setColorScheme(' Titanium'?);
UlManager.setl_ookAndFeel(new Oraclel ookAndFeel());
SwingUtiiies.updateComponentTreeUl(frame);
frame.setBackground(UIManager.getColor("darkintensity"));

catch (Exception €)

{
System.err.printin(*Exception for Oracle Look and Feel" +e);

*
/ICenter the window
screenSize = Tookit.getDefaultToolkit().getScreenSize();
frameSize = frame.getSize();
if (rameSize.height > screenSize.height)
{
frameSize.height = screenSize.height;
}
if (rameSize width > screenSize.width)
{
frameSize.width = screenSize.width;
}
frame.setl_ocation((screenSize.width - frameSizewidth)2, (screenSize.height
- frameSize.height)/2);
Il frame.addWindowListener(new WindowAdapter() { public void
windowClosing(WindowEvent €) { System.exit(0); } });
frame.setVisible(true);

frame.enterTheL.oop();
frame.setVisible(false);
xmlFrame.setVisible(false);
System.exit(1);
}
private static void setRunPm(String[] prm)
{
for (inti=0; iprm.length; i++)

if (orm[il.toLowerCase().startsWith("-verbose'"))
verbose = isolatePrmValue(pm[i], "-verbose");

8-188 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Supplier Scripts

else if (prm[i].toLowerCase().startsWith(*-help™)

{
System.out printin('Usage iB2BDemo.Supplier. MessageBroker');

System.out prinin(\tparameters can be -dbURL -verbose, -step, -help');

System.out. printin(tdbURL contains a string like
jdbc:oracle:thin:@localhost:1521:ORCL");
System.out printin(*\tparameters values can be (except for -help):');
System.out printin(\ttone - equivalent to y™);
System.out.printn("\tty’’);
System.out printin(\tttrue - equivalent to 'y™);
System.out printin(\tm");
System.out printin(\ttfalse - equivalent to 'n");
System.out printin(\t¢-step can take a value in miliseconds”);
System.exit(0);
}
else if (prm[i].toLowerCase().startsWith('-step™))
{
String s = getPrmValue(pm[i], "-step”);
try
{
pauseTime = new Integer(s);
System.out.printin(Timeout " + pauseTime);
StepByStep =true;

}
catch (NumberFormatException nfe)
{
pauseTime = null;
if (s.toUpperCase().equals("Y") || s:toUpperCase().equals(TRUE"))
stepByStep =true;
else
stepByStep =false;
}

}
else if (prm[i].toLowerCase().startsWith("-dburl"))

url = getPrmValue(prmii, "-dbURL");
}
else
System.err.printin("Unknown parameter [+ prm[i] + "], ignored.”);
}
}

private static boolean isolatePrmValue(String s, String p)

{
boolean ret=trug;

Online B2B XML Application: Step by Step 8-189

Supplier Scripts

if (slength() > (plength() + 1)) // +1 : "="
{
if (S.indexOf('=") >-1)
{
String val = s.substring(s.indexOf("'=") + 1);
if (val.toUpperCase().equals("Y") || val.toUpperCase().equals(TRUE")
ret=true;
else if (val.toUpperCase().equals('N") ||
val.toUpperCase().equals('FALSE'))
ret=false;
else
{
System.err.printin("Unrecognized value for " + p +", setto y");
ret=true;
}
}
}

retum ret;

}

private static String getPrmValue(String s, String p)
{

Sting ret="",

if (Slength() > (p.length() + 1)) /+1 :"="

{

if (sindexOf("=") >-1)
{

ret = s.substring(s.indexOf("=") + 1);
}

}
retum ret;

}

/kk
*main
* @paramargs
*
public static void main(String(] args)
{
if (args.length > 0)
setRunPrm(args);

fry

{
UlManager.setl ookAndFeel(UIManager.getSystemLookAndFeelClassName());

8-190 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Supplier Scripts

}
catch (Exception €)

e.printStackTrace();
}
new SupplielWatcher();
}
}

Online B2B XML Application: Step by Step 8-191

Supplier Scripts

8-192 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

9

Service Delivery Platform (SDP) and XML

This chapter contains the following sections:

Oracle Service Delivery Platform

SDP Business Solutions

Phone Number Portability

The Number Portability Process

Wireless Number Portability (WNP)

NPAC

Service Gateway

Asymmetric Digital Subscriber Line (ADSL)
Voice Over IP (Clarent)

Bandwidth Exchange (Prototype)

Number Portability and Messaging Architecture within SDP

Requirements for Building a Phone Number Portability Application

Provisioning a Network Element

Using Internet Message Studio (iMessage) to Create an Application Message Set

Using Timer Manager

Service Delivery Platform (SDP) and XML 9-1

Oracle Service Delivery Platform

Oracle Service Delivery Platform

This chapter introduces you to the Oracle Service Delivery Platform (SDP).

SDP Business Solutions

Many solutions using Business-to-Business XML message payloads can be built on
the Service Delivery Platform (SDP). These include the following:

« Phone Number Portability

« Wireless Number Portability and Data Service Automation
« NPAC

« Service Gateway

« ADSL

« Voice over IP

Other possible solutions include Bandwidth Exchange and Carrier Pre-Selection.

Phone Number Portability

Phone Number Portability (Number Portability) is a mechanism by which
consumers can keep their telephone numbers when they switch between
telecommunication service providers, move from one physical location to another
or change their services. The concept is driven by regulatory authorities working to
jump start competition, citing that consumers are more interested in moving
between service providers when they can keep their telephone numbers. Number
Portability is widely cited as a key driver for the explosive growth in the US
competitive long distance market.

The Number Portability message-based application uses iMessage Studio, Event
Manager, and Adapters. The application uses XML as the message payload to
communicate between two service providers using a Business-to-Business protocol
that is common in the telecommunications industry.

Number Portability application illustrates the messaging and event management
features of the Oracle Service Delivery Platform (OSDP or SDP) in Oracle CRM
Applications 11i. This is a CRM feature.

9-2 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Phone Number Portability

Figure 9—1 Number Portability and Related Architecture

1 2

No No
Portability Portability Other 3rd
Admin Admin Party Org
Center Center/ (non US)

- - TITTTTTTTTIT]
Oracle Service Oracle Service ervice

® ._ Delivery Platform Delivery Platform NP-SCP [m— STP Provide
\qeu—— L'SOA LSMS

Service Provider
Customer Care

TTITTTITTTITT
NP-SCP STP
[ENRNRRNNNNRN]

Operational
Links

——— SS7

Links

Service Delivery Platform (SDP) and XML 9-3

The Number Portability Process

The Number Portability Process

Number Portability performs the following tasks:

1.

Links the XML or DTD elements to either a SQL table or a PL/SQL stored
function.

Dynamically creates and builds the stored procedure in the background. It also
enqueues the XML message for further processing. It builds the XML by
extracting/querying values from the table or by dynamically executing the
stored function associated with the element.

At run time the user or program executes this dynamically executed procedure
which then has the intelligence to create the XML message and enqueue it for
further processing.

Number Portability product serves as a work flow manager. It is used for
provisioning services requested by customers.

What Happens Behind the Scenes When You Order a New Telephone Service

For example, when you order a new telephone service, the telephone company
takes the order and captures the order information using the Oracle Order
Management application.

Here is the flow of events that transpire. The Number Portability application is used
in all of the following steps and serves as an instance in the process:

1.
2.

A customer places an order for a service such as a new telephone installation

The Provisioning application captures the sales order and starts the specified
validating and authorization process

The Provisioning application then communicates with external systems. For
example, it checks the customer credit rating or interacts with a third party for
other actions.

This communication could use a protocol defined between the two systems in
XML format. Oracle Work Flow is used so that consultants can configure and
view business process in a graphical format even at runtime.

What Happens Behind the Scenes When You Change Local Service Providers

Number Portability is also in action when you switch local telephone service
providers. Here is the process:

1.

A customer contacts the local service provider.

9-4 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

The Number Portability Process

2. The local service provider validates your request with your old service
provider. This is done through an independent third mediating party. In the
United States, this third party mediator is the NPAC (Number Portability
Administration Center).

3. When switching long distance carriers, the mediating party comes online via
voice. When switching local provider service, this is done through electronic
messaging.

4. The new service provider sends a message to NPAC so that it NPAC can
validate the request and then an approval or authorization can be granted to the
new service provider so that they can gain this new customer.

5. NPAC sends a message to the old provider (“donor”). The donor reviews and
approves the order and sends a message back to NPAC again using XML.

6. NPAC sends the authorization to the new service provider (“recipient”).

7. The order is now approved on both sides.

Note: All the messaging taking place here uses XML as the main
format within the SDP Number Portability product. If another
protocol is required, then a custom Adapter could be plugged in to
perform the transformation using XSL or custom code.

8. On the actual day that the customer wants to switch, NPAC sends a broadcast
message to all the telephone service providers throughout the country. At this
time, all telephone carriers and companies must update their network elements
(network databases) in the process within the system.

XML is the Data Format. Advanced Queuing is Used at Each Point

XML is the data format used for all the messaging. Advanced Queueing (AQ) is
used at each point in the process (and system) as shown in Figure 9-2.

The “Message Builder” module creates and enqueues the XML messages. The
Communication Protocol Adapter (“Adapter”) starts dequeueing the messages and
sends them to the external systems.

AQ is essentially used simply to store the messages in queues. It serves as a First In
First Out (FIFO) queueing system. The protocol used to send the messages differs
with every system and is end-user specified, such as Flat File/CORBA,....

To summarize then:

Service Delivery Platform (SDP) and XML 9-5

The Number Portability Process

« When an order is received to switch local or long distance carriers, the order
request is sent as XML or transformed messages to NPAC

« On approval and authorization to make the change, NPAC sends an XML

message to all telephone carriers throughout the country. These carriers then
provision their own network elements.

Figure 9-2 Messaging Using Advanced Queuing

Adapters

B

#|

|

> —

Why XML is Used for this Messaging

XML is used because it is a flexible format that can be modified or transformed into
any other format required.

For example, one country may need a flat file message format to distribute the
messages and provision (update) their network elements (databases). It is a simple

matter to use XSL or custom code to transform the generated XML into the required
flat file format.

9-6 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

The Number Portability Process

This Number Portability application has been successfully deployed in Belgium
where it is used in this manner. Belgium requires a flat file message format.

Number Portability Allows Fast Configuring

The Number Portability product allows consultants to:

« Implement the product quickly by configuring an XML message DTD in the
application

« Assign different nodes of the XML message to an Oracle data source, an SQL
guery or a stored procedure.

« Nest SQL queries

For example, you can get a list of depts and all emps in each dept in an XML
message by performing the following:

1. Writing two queries in the Number Portability application
2. Configuring the message in the supplied GUI with no coding at all

Advanced Queueing in Number Portability will use XML messages as a standard
format for communication between the database and external system adapters.

What are External Adapters?
External adapters are Java programs that “listen” to the following:

« Database pipe for commands to perform
« Advanced Queuing (AQ) for messages to process (in multiple threads)

The commands are sent in XML to the method,
performControlMessageProcessing. This allows for a dynamic number of
parameters to be passed to the adapter.

For example, to start an adapter with a default of three threads for performance, the
STARTUP command could be as follows:

<COMMAND>
<MESSAGE_CODE>STARTUP</MESSAGE_CODE>
<INITIAL_THREADS>5</NITIAL_THREADS>
</COMMAND>

This gives more control and flexibility to you if you need to customize adapters.

You can also define your own commands. You are not restricted in any way when
parsing XML messages.

Service Delivery Platform (SDP) and XML 9-7

Wireless Number Portability (WNP)

See Also:
« PL/SQL User’s Guide and Reference

« "Oracle Number Portability 11i User’s Guide" for information on
the user interface and iMessage Studio.

« Implementing Oracle SDP Number Portability

Terms Used in This Chapter

The following terms are used in this chapter:

» GSM — Global System for Mobile Communication. This is an internationally
accepted digital cellular telephony standard which requires frequencies in the
900M band to allow for roaming.

« NPAC — Number Portability Administration Center
» NRC — Number Registration Center. Another name for NPAC.
» SDP — Oracle Service Delivery Platform (SDP)

Wireless Number Portability (WNP)

The Inter-Carrier Communication process in a Wireless Number Portability (WNP)
solution must take in to consideration, communication between the following:

« Wireless and Wireless Providers
« Wireless and Wireline providers.

Communication between wireless providers can be further divided according to the
following carrier type porting:

« Porting between GSM carriers
« Porting between cellular carriers

« Porting between GSM and cellular carriers

Mobile Directory Number (MDN) and Mobile Subscriber Identity (MSID)

In a wireless system, a subscriber can be identified by the Mobile Directory Number
(MDN) and Mobile Subscriber Identity (MSID). The MDN is portable and dialable.
MSID is not-portable and not-dialable, and is used to identify the home service
provider of a roamer. The MSID is also re-usable.

9-8 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

NPAC

NPAC

In the GSM world (in North America) the MDN is a 10-digit telephone number and
is referred to as the MSISDN (Mobile Subscriber ISDN). The MSID of a GSM carrier
is a 1-15 digit number referred to as the IMSI (International Mobile Subscriber
Identity).

In the cellular world the MDN and MSID (referred to as MIN - Mobile Identification
Number) are both 10-digit directory numbers (in the past both numbers have been
the same).

A WNP solution must be able to support all these types of porting requests.

See Also: The Porting Process - Reference CTIA Numbering
Advisory Working Group Report On Wireless Intercarrier
Communications Version 2.0.

In many countries where number portability is mandated, an organization such as
Number Porting Administration Center (NPAC) controls the cut over of service
from one operator to another. It also records information about ported numbers,
and provides a centralized point from which porting information can be
distributed.

Having a centralized and impartial body to oversee the porting process provides
the following benefits:

« There is a single national record of ported number. This database facilitates
access to all information regarding ported numbers for a new network operator.
The database also allows synchronization function in case any single operator’s
internal database became corrupted or out of sync (disaster recovery).

= lItrelieves the recipient or donor to inform all other operators of the ported
number (only the last two models provide this).

In addition to the above, a centralized database can be a reference for civic service
organizations, such as:

« Directory Service Providers

« Emergency Services,...

Service Delivery Platform (SDP) and XML 9-9

Service Gateway

Service Gateway

When offering a service to subscribers involves two Telecommunications Operators
(TO), or Service Providers (SP), they must be able to interconnect their separate
OSSs. This would require a number of policies about:

« The extent to which business processes of one partner influence those of
another and

= The extent to which one partner can autonomously change information held by
the other.

At the heart of this set of requirements is the need for co-operating organizations to
control the integrity of their data.

Service gateway offers flow-through functionality for inter-enterprise processes
while enabling:

« Seamless Service: While the service is provided by cooperation of more than
one provider, it needs to seem seamless to the end customer.

« Autonomy: Even though the service providers cooperate in providing a service,
they must maintain their autonomy.

« Simplicity: Configuring new services, tracking down services, and making
changes to the business process must not be complex.

« Technology Choice: The cooperating entities must be allowed to choose any
technology based on their own criteria. So the service gateway must be
technology agnostic.

Standards Adherence: The gateway must follow common practices and standards
whether set by regulatory organizations, industry forums and standard bodies, or
by market conditions.

Asymmetric Digital Subscriber Line (ADSL)

ADSL is an Asymmetric Digital Subscriber Line.

ADSL Business Procedure
A typical ADSL business process occurs as follows:

1. Pre-qualify check
2. Pre-order feasibility check
3. Create Order

9-10 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Asymmetric Digital Subscriber Line (ADSL)

Perform loop qualification check

Provision DSL line

Verify DSL loop

Deliver DSL CPE

Schedule and Install DSL CPE

Test DSL CPE with DSL and ATM connection
10. Test IP service with DSL line

© © N o g &

11. Publish order completion message

ADSL Benefits
The following are ADSL benefits

« Time to market: Since DSL solutions provide predefined/preconfigured
business flows, data, configuration, and interfaces, customers can implement or
modify DSL services fast.

« Benefits to the customer are large as DSL services are gaining momentum in the
communications space.

DSL in a Nutshell

The DSL technology is a new technology platform that is leading customers into the
future. DSL is a broadband digital connection made directly to the customer
premises using existing copper telephone lines. With DSL technology, businesses
can take advantage of a large suite of services designed to enhance the use of the
Internet and the productivity of its users. The DSL network components consist of a
multi services DSLAM located at the CO and a DSL remote transceiver unit (DSL
modem) located at the customer premises. The DSLAM provides backhaul services
for packet, cell and/or circuit-based applications through the concentration of the
DSL lines onto T1/E1, T3/E3 or ATM outputs. The DSL modem maintains a digital
link from customer business to the network. This modem can drive ordinary
telephone lines at speeds far beyond conventional dial-up modems (up to 7+
Mbps). This modem plugs into existing local area network or can be attached to a
PC using a special cable.

There are many varieties of DSL technology, collectively called xDSL.:

« ADSL - Asymmetric Digital Subscriber Line - This technology reports a
downstream speed, but its upstream speed is a fraction of the downstream.
Primarily used in residential applications and many providers do not guarantee

Service Delivery Platform (SDP) and XML 9-11

Asymmetric Digital Subscriber Line (ADSL)

its bandwidth levels. ADSL supplies three separate frequency channels over the
same phone line. Phone conversations are carried on one channel, data from a
Network Service Provider (NSP) to the end-user is transferred downstream on
one channel, and the third channel carries data upstream from the end-user to
the Network Service Provider.

SDSL - Symmetric Digital Subscriber Line - This technology provides the same
bandwidth in both directions, upstream and downstream. That means whether
you're uploading or downloading information, you have the same high-quality
performance. SDSL provides transmission speeds within a T1/E1 range, of up
to 1.5 Mbps at a maximum range of 12,000 - 18,000 feet from a central office,
over a single-pair copper wire. This option is ideal for small- and medium-sized
businesses that have an equal need to download and upload data over the
Internet.

RADSL - Rate Adaptive Digital Subscriber Line - This technology automatically
adjusts the access speed based upon the condition of the line.

IDSL - ISDN Digital Subscriber Line - This technology is symmetrical, similar to
SDSL, but operates at slower speeds and longer distances.

HDSL - High-Data-Rate Digital Subscriber Line - This technology is
symmetrical, but is mainly deployed for PBX over a T-1 line.

VDSL- Very-High-Rate Digital Subscriber Line - This is a high-speed
technology, but has a very limited range.

Using DSL technology, service providers can provide a series of end-to-end,
business managed solutions to give customer the leading edge with Core Internet
Services, Web Hosting, Enhanced email, managed equipment, Virtual Private
Networks and Server Based Applications. This should help customer to operate
better and faster and maximizes the use of customer resources.

Examples of the DSL-based services can be provided are:

Web hosting -manage the day-to-day technical administration of customer Web
site so customer can concentrate on core business.

Enhanced email - access email anytime, anywhere. Enables sending/receiving
through common email clients. Email accessibility via the web from any
computer with Internet connectivity.

High-speed access to Internet-based video

Remote local area network access or corporate network access

9-12 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Bandwidth Exchange (Prototype)

« DNS Management - ensure proper handling of customer Web identity and
management of customer system.

« Home shopping

\Voice Over IP (Clarent)

The Clarent VolIP system consists of the following components:

« Command Centers (CCC) that interface with Call Managers (CM) Gateways
(GW)

« Customer/Provisioning Database, CM that interface with CPE
« Gateway that interfaces with PSTNSs, IP networks, and other gateways

The Customer/Provisioning Database contains Customer, Routing (Trunks), Rating,
and other tables, that the CCC uses to activate a customer.

For example, suppose Service Provider X, uses the Clarent Network to provide
VoIP service to its customers. If a customer requests VoIP service, then X must enter
all the information required to activate the customer in Clarent’s
Customer/Provisioning database. This information will be used by the CC to
activate VoIP service for that customer.

Currently customer/route/rating data is added, one-by-one, via Clarent Assist.

Clarent Assist is an HTML screen which can be used to add, modify and delete
rows in the Clarent Customer/Provisioning database.

Bandwidth Exchange (Prototype)

The Communications Services Exchange Prototype (called “The Exchange” within
herein) is intended to be a Telco solution using the SDP engine. The Exchange is an
Internet Community that will be used to sell, purchase and facilitate wholesale
communications services between peer Service Providers as well as large
Companies & Corporations. The Exchange only facilitates transactions between
Buyers and Sellers; Both Buyers and Sellers can be large corporations who buy or
sell services from each other or from Service Providers other than their own; the
corporations still belong to their incumbent Service Providers even after they
exchange the services with other Service Providers. Once Buyers and Sellers agree
and close the transaction, options are available for them to choose to provision and
activate the exchanged services through a Service Fulfillment capability provided
by The Exchange.

Service Delivery Platform (SDP) and XML 9-13

Bandwidth Exchange (Prototype)

The Exchange functionality and platform will be based on Oracle e-Business
Internet Procurement application (refer to “Oracle Exchange”). Any additional
functionality required will be developed by the SDP Telco Solution. The major
components and functions of The Exchange are comprise of the following:

Registration and Profiling Management - based on Oracle Exchange. Major
functions include: marketplace administrator reviews and approves
participants, security rules at the business function and data access level, users
manage their own personal profiles and preferences)

Products & Services Catalog - based on Oracle Exchange and CRM Product
Catalog. Major functions include: self-service tools, XML open interfaces, create
and maintain catalog.

Service Level Agreement (SLA) - based on Oracle Exchange. Major functions
include: Create and distribute RFIs and RFQs (Bids) with SLA on Service
Bulletins, Maintain standard template for SLAs, Bid analysis and award, single
of multiple rounds of bidding, download/upload Service Bulletins, event
driven notifications

Security - based on Oracle Exchange. Major functions: end user/company data
security, connectivity

Buyer and Seller Self-Service - based on Oracle Exchange. Major functions:
HTML based inquiry and transactional capability, review and accept new
orders, enable every buyer and seller or member to participate in the
marketplace.

Service Configurator - new for The Exchange. Major functions: automatically
populate or an input capability (may be a file) for the seller to provide service
configuration data, maintain (view, add, change and delete) service
configurator,

Service fulfillment - new for The Exchange. Major functions: convert Oracle
Exchange order to provisionable service order accepted by SDP, use SDP
fulfillment engine to provision and activate or remove network elements based
on the service configuration,

9-14 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Number Portability and Messaging Architecture within SDP

Number Portability and Messaging Architecture within SDP

The Number Portability and messaging architecture in the Oracle Service Delivery
Platform (SDP) framework comprises the following components. Event Manager is
the core component.

Communication Protocol Adapter
Order Processing Engine
Workflow Engine

Fulfillment Engine

Event Manager

SDP Repository

Figure 9-3 and Figure 9-4 illustrate the Number Portability overall workflow.

Figure 9-3 Number Portability Workflow (1 of 2)

Stat

Uodate Porting
Stahus fu:r‘ f'trtir‘g [d
U Test Mesg Ack 2
<Diefaddts
» [e @ U Test Mesa Ak
Creae Faorting Order Send Meszage Subscribe bo
dzknosdedoements

Service Delivery Platform (SDP) and XML 9-15

Number Portability and Messaging Architecture within SDP

Figure 9—4 Number Portability Workflow (2 of 2)

o -5

St SMS Undate Potting
Prwisiani;] Done Statue for Poring |c
a

“wiak For Flow

ard Updae Status

T T e =l

Create or bodfy Froeeizion or b odify Erd [Success|

S kS Prrting Prowziored FE =
Records

Communication Protocol Adapter

Communication Protocol Adapter interfaces between SDP and external systems. It
handles the following message flow:

« Incoming orders are taken by the appropriate Communication Protocol
Adapter and passed to SDP.

« Out going messages are passed from SDP to an external system.
It supports the following adapters:

« File/FTP. This supports a batch mode processing.

« HTTP

« Script

« Interactive Adapter, such as, Telnet sessions

9-16 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Number Portability and Messaging Architecture within SDP

Order Processing Engine

Orders from an order management system are converted to SDP Work Items or
logical line items. Orders are also created internally from processing the messages.

These line items created are analyzed by Dependency Manager or Order Analyzer.
It creates a final set of Normalized Work Items for execution.

Workflow Engine

This module specifies the actual flow of actions (known as Fulfillment Actions) to
be executed to satisfy an application functionality. This module can re-use the
Fulfillment Actions to customize any new functionality such as NP Service Provider
Mediation or the NRC itself.

The Workflow Engine would determine the Fulfillment Actions to execute for each
Work Item and determine the Network Elements that it would need to talk to. The
Workflow engine also picks and executes an appropriate fulfillment procedure
based on the fulfillment element type, software version of the fulfillment element
type and the adapter type.

The fulfillment procedures then use the Internet Message Studio generated code to
send and process messages. Once it gets an event notification of the outcome of the
execution of the Fulfillment Action (by the Event Manager), the engine would
proceed to complete the Work Item and pick the next Work Item in the queue for
the given order. This component uses the Oracle Workflow engine.

Fulfillment Engine

The Fulfillment Actions and the Network Elements on which they need to be
applied are used by SDP’s provisioning engine to determine which Fulfillment
Program to execute.This essentially uses the PL/SQL engine in the database
currently to execute user defined procedures.

The Fulfilment Engine has the following main features:
« Allows for Network Element Provisioning
« Tight Integration with Oracle Provisioning
« Provisioning Protocol Adapters
« Interactive (e.g. Telnet)
« Script (any executable e.g. PERL)
« HTTP

Service Delivery Platform (SDP) and XML 9-17

Number Portability and Messaging Architecture within SDP

« Standard Activities for NP SMS Functionality

« Support for Served Number Ranges Setup
See Figure 9-5.

Figure 9-5 Oracle Provisioning Integration in Number Portability (NP)

Timer Manager

#|

|

Event Manager

The Event Manager is a generic Publish-Subscribe module which registers interest
of various subscribers to different event types. The subscriber could be the SDP
Translator (in which case the event gets propagated as a new order), Workflow
Engine (in which case the event restarts a Workflow which is waiting on an external
event) or an API. Event Manager builds asynchronous application messaging. It has

a versatile set of API's which can be used by a developer to build asynchronous
message based application.

9-18 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Requirements for Building a Phone Number Portability Application

SDP Repository

The core SDP repository allows the user to create orders and configure network
elements. An example would be Work Item, Fulfillment Action, Fulfillment
Program and Network Element definitions. The NP database contains entities for
storing NP specific data such as, Subscription Version, Service Providers, Routing
Numbers,...

Requirements for Building a Phone Number Portability Application

To build a Number Portability application, you need the following:

Oracle Applications 11i

Oracle SDP Number Portability 11i Release 2

Oracle8i Release 8.1.5 Enterprise Edition or above with the Objects Option
Oracle8 Release 8.0.5 / 8.1.5 and above JDBC Drivers

Oracle Developer Release 6.0.5 Runtime or above

Oracle Workflow 2.5.0 Cartridge (Standalone Version!)

Oracle9i Application Server 1.0.1 and above

JDK 7/ JRE 1.1.7 and above

JDK 1.1 and above Enabled Browser

(Netscape 4.5+ / MS IE 5.0 recommended for XML)

Figure 9-6 shows the Number Portability environment. The servers on the bottom
of the figure are from left to right, a Forms Server, Oracle9i Application Server, and
the SDP Adapter Server. This is just schematic. The servers could reside on one
machine.

Service Delivery Platform (SDP) and XML 9-19

Requirements for Building a Phone Number Portability Application

Figure 9—-6 Number Portability Environment

€. -
>

Client Browser

-

Application Servers 4.0 SDP 3i
Client code area
Forms 6

9-20 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Provisioning a Network Element

Provisioning a Network Element

There are other network elements in the telephone system that can be provisioned
(updated) besides individual end-user phone numbers. Examples of other network
elements, include switches, Service Control Points (SCP), routers, LDAP servers,....

Here is another example of how the SDP Provisioning application is used:
1. Allocal telephone service provider requests to have a switch provisioned
2. A Mediation Layer talks to the switches

3. Service Delivery Platform (SDP) which may be an XML-enabled legacy system,
sends a message to the Mediation Layer.

4. SDP receives a response back from the Mediation Layer once the provisioning
(updating) has completed.

This messaging also uses XML as the message payload and Advanced Queueing
(AQ). Here AQ is used mainly as storage medium for the XML queues. Future
releases may use the JMS interface over AQ to provide a standard interface.

Service Delivery Platform (SDP) and XML 9-21

Using Internet Message Studio (iMessage) to Create an Application Message Set

Using Internet Message Studio (/Message) to Create an Application
Message Set

Internet Message Studio (iMessage) utility is used to define the message set of the
Number Portability application or enterprise. It provides for an easy way to
develop a message based application and generates all the necessary code to
construct, publish, validate and process application messages.

It also enables sharing of messages between applications and prevents redefining
the same message in various applications across the enterprise. The application can
execute the generated procedures at run time for all its messaging needs. It also
provides the necessary hooks or customization points for including business
specific logic. Messages are generated using standard XML.

Message Builder (iMessage) Features
The SDP Message Builder (iMessage) has the following features:

« GUI based message definition using iMessage Studio
« Support for Oracle XML Parser/Uftilities in future release
« Messages and Events pre-defined at site configuration
« Supports messages, events and timers
» Uses Internet Standard XML Message Format
« Works with XML “Dekagrams” for all messages
« Automatic Optimized Code Generation
« Minimal Coding for Processing and Validation Logic

« Specify message data source in SQL, PL/SQL Functions or SDP Order /
Work Item / FA Parameters declaratively

= Generates Send(), Publish(), Process(), Validate(), Fire() based on Message
Type

« Planned integration with “Oracle XML Gateway” and Oracle Integration Server
(OIS)

Code Generation

For every message defined, the iMessage creates a package with the name of the
message and the following procedures as part of the package.

9-22 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Using Internet Message Studio (iMessage) to Create an Application Message Set

CREATE_MSG()
SEND()

PUBLISH()

VALIDATE()
PROCESS()
DEFAULT_PROCESS()

Defining Message Sets

Figure 9-7, "Using iMessage’s Data Source Window to Define the Data Source for
XML Message Elements (in Oracle Developer Forms)" shows how you can use
iMessage to define an XML message. This screenshot also illustrates the XML
message elements and structure as well as the associated source SQL query.

A number of steps are involved when using iMessage to define your XML message
sets. These include the following:

Defining Messages. Messages can be defined by specifying all the elements
(attributes) and their structural relationships. Other constraints like mandatory
or optional, maximum data length and default values can also be specified.

Adding Message Details. The Type Field. The Internet Message Studio can also
be used to define application events. The key difference between messages and
events are that messages are used for communication between application
systems and events can be used to broadcast or multi-cast state changes in
business objects. In addition, the studio also helps to define timer messages.

Events defined using the Internet Message Studio are published to both
external and internal application systems. "Internal applications” can register a
PL/SQL callback procedure via the "event Publisher" screens or the above
defined API and will get executed when an event is published. "External
Applications"” by definition do not register callback procedures but will have an
adapter running to relay the published event to the remote system. External
applications can register for an event using the default subscribers screen. A
good example for internal applications is Oracle’s SDP and Installed Base
running on a single Oracle instance.

Description. The description provides the context in which the message will be
used.

Display Name. The Display Name is the descriptive name of the message.

Service Delivery Platform (SDP) and XML 9-23

Using Internet Message Studio (iMessage) to Create an Application Message Set

« Adding Message Elements

« Building Message Structure. The structure of the message defines the
hierarchical relationship of the message elements. Only predefined elements
can be part of this hierarchy. Please refer to the user guide for more information
on building the message structure. The message structure can be viewed as an
inverted tree, with the root as the top most element.

« Root Element. By default the Internet Message Studio includes ‘MESSAGE’ as a
root element and the message being defined is the child of the root element.
Please note that the root element is not visible and is implicitly defined by the
Internet Message Studio. The root element should never be deleted. Elements
not in the structure will not appear in the message.

« Defining Data Source. The next step in defining a message is to define the data
source for message elements. Message elements can get their values from
PL/SQL function calls and SQL queries. In addition, data can also be obtained
as SDP Order parameters, SDP Work Item parameters or a Fulfillment Action
parameters. See Table 9-7.

9-24 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Using Internet Message Studio (iMessage) to Create an Application Message Set

Figure 9—-7 Using iMessage’s Data Source Window to Define the Data Source for XML
Message Elements (in Oracle Developer Forms)

Data Source

P'EH:EIIM | Data Source
—([NEW SP_DUE DATE Cardinality [
- ((yDONCR_SP_ID

—((RECIPIENT SP_ID
([ORDER_RESULT
~(DROUTING_NUMBER e NEW. 5P DUE_DATE|
([N CUSTOMER_NAME REC CODE,
L ((HADDRESS_LINET ROUTING_NUMBER,

Editljr' e s

T¥Pe | SQL Query

Reference ’

MEW_SP_DIUE_DATE,DON_CODE, REC_CODE,
ROUTING_NUMBER,

CUSTOMER_MAME,

ADDRESS_LINET,

PRICE_PER_MIMNUTE PRICE_PER_CALL,
PRICE_CODE

FROM ¥NP SV S04 VL

bl HEEE WNaE

Supported SDP datatypes include the following:

« PL/SQL Functions. A PL/SQL function can be executed at runtime to obtain the
value of a message element. The specified PL/SQL function call can pass
arguments by referring to any of the defined message elements. The PL/SQL
function can also refer to any of the selected columns defined as a data source

Service Delivery Platform (SDP) and XML 9-25

Using Timer Manager

on some upper level message elements. The function should be specified in the
source field of the user interface and the return type should be same as the type
specified for the message element.

SQL Queries. A SQL query can be used to derive data for the message elements.
Columns in the SQL query can be used as a reference for other message
elements provided these message elements are defined at a lower level in the
tree hierarchy.

Other data types include the following:

SDP Order Parameters
SADP Work Item Parameters

SDP Fulfilment Action Parameters

Using Timer Manager

The Timer Manager has the following main features:

Uses XML Message Builder to define Timers
Supports Multiple Types of Timers

Process Timers (explicit Fire and Remove)
Window Timers (implicit Fire after a “Delay”)
Message Timers (fire timers related to a message)
Easy integration with external SLA systems

API hooks to determine Delay and Interval
Timer API and Standard Workflow Activities

Fire(), Remove(), CheckTimerStatus(), Restart(), Recalculate(),
StartRelatedTimers() etc.

Useful for Jeapordy Management
Define Jeapordy Events as Timers

Send Notifications or start workflows on timer expiration

9-26 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

Using Timer Manager

Figure 9-8 Timers Using Advanced Queueing

Adapters

[—

|

¥

> —

Service Delivery Platform (SDP) and XML 9-27

Using Timer Manager

9-28 Oracle9i Case Studies - XML Applications, Release 1 (9.0.1)

A

An XML Primer

This Appendix contains the following sections:

What is XML?

W3C XML Recommendations

XML Features

How XML Differs From HTML

Presenting XML Using Stylesheets

Extensibility and Document Type Definitions (DTD)
Why Use XML?

Additional XML Resources

An XML Primer A-1

What is XML?

What is XML?

XML, eXtensible Markup Language, is the standard way to identify and describe
data on the web. It is widely implementable and easy to deploy.

XML is a human-readable, machine-understandable, general syntax for describing
hierarchical data, applicable to a wide range of applications, databases, e-commerce,
Java, web development, searching, and so on.

Custom tags enable the definition, transmission, validation, and interpretation of
data between applications and between organizations.

W3C XML Recommendations

The World Wide Web Consortium (W3C) XML recommendations are an
ever-growing set of interlocking specifications.

XML 1.0 was recommended by W3C in February 1998. It has resulted
numerous additional W3C Working Groups, a Java Platform Extension Expert
Group, and the XML conversion of numerous data interchange standards such
as Electronic Data Interchange (EDI). The next version of HTML will be an XML
application known as XHTML.

XML Namespaces. Another W3C recommendation aimed at removing element
ambiguity in multi-namespace well-formed XML applications.

XML Query. The W3C standards effort to specify a query language for XML
documents.

XML Schema. The W3C standards effort to add simple and complex datatypes
to XML documents and replace the functionality of DTDs with an XML Schema
definition XML document.

XSL. XSL consists of two W3C recommendations:
« XSL Transformations for transforming one XML document into another

« XSL Formatting Objects for specifying the presentation of an XML
document

XPath. XPath is the W3C recommendation that specifies the data model and
grammar for navigating an XML document utilized by XSL-T, XLink, and XML
Query.

XPointer. XPointer is the W3C recommendation that specifies the identification
of individual entities or fragments within an XML document using XPath

A-2 Oracle9i Application Developer’'s Guide - XML, Release 1 (9.0.1)

W3C XML Recommendations

navigation. This W3C proposed recommendation is defined at
http://www.w3.0rg/ TR/WD-xptr

« DOM. The W3C recommendation that specifies the Document Object Model of
an XML Document including APIs for programmatic access.

The XML family of applications is illustrated in Figure A-1.

Figure A-1 The XML Family of Applications (’Including XML-Based Standards’)

Kiand TNX

XML HTML 4.0
1
1
1
1
1
x lw) ps) x x X [%)] x x x (2] x < (@] m
T o)] C be) £ < T T n £ < >| = z
2 < ul z o [(o) = o] [= = fr = o &
= = > %) <) %) I o
z 2} o
5 el ~ < Qo < =1
m = n 3 - o
Pyl 8 3 o
s o 2
2] ié
-
P x [Py o) > | 0 m 3w
@® k< S @ x < = > =1 op
g £ & 3 5 3 s |z 3 R
S T @ 2 =2 |2 = 2=
s 3 - & g 5 |8 2 2
o = g = 2 = =
z < 3 [3 @ >]
o) Q@) = » > = < = =
) = Q [Z o S] S S
g 2 s » 3 = S 12 3z o
oS @) o 23 = = ° L
=3 < 3 5 I = Iy 9
s & s 3 o 32 S 12 g
n © 2 x C9 e |e Q
) 7] < £ o c [k=l
3 - Q 5 S Q =
S = 2 =) o
S Q (1] g =]
o % ‘Qx "
= g
=
S
b Non W3C Grammars
a
o |
Q
«Q
@

An XML Primer

A-3

XML Features

XML Features

The following bullets describe XML features:

Data Exchange, From Structured to Unstructured Data: XML enables a
universal standard syntax for exchanging data. XML specifies a rigorous,
text-based way to represent the structure inherent in data so that it can be
authored and interpreted unambiguously. Its simple, tag-based approach
leverages developers’ familiarity of HTML but provides a flexible, extensible
mechanism that can handle the gamut of "digital assets" from highly structured
database records to unstructured documents and everything in between. " W3C

SGML Was Designed Specifically for Documents - XML is Designed for
Potentially Any Data: The SGML markup language was specifically designed
for documents. Web-centric XML is like a toolkit that can be used to write other
languages. It is not designed for documents only. Any data that can be
described in a tree can be programed in XML.

A Class of Data Objects - A Restricted Form of SGML: www.o0asis-open.org
describes XML as follows: "... XML, describes a class of data objects called XML
documents and partially describes the behavior of computer programs which
process them. XML is an application profile or restricted form of SGML, the
Standard Generalized Markup Language. By construction, XML documents are
conforming SGML documents."

XML’s Many Uses...: A W3C.org press release describes XML as follows: "...
XML is primarily intended to meet the requirements of large-scale Web content
providers for industry-specific markup, vendor-neutral data exchange,
media-independent publishing, one-on-one marketing, workflow management
in collaborative authoring environments, and the processing of Web documents
by intelligent clients.

Metadata. XML is also finding use in certain metadata applications.

Internationalization. "XML is fully internationalized for both European and
Asian languages, with all conforming processors required to support the
Unicode character set in both its UTF-8 and UTF-16 encoding..." Its primary use
is for electronic publishing and data interchange..."

Parsed or Unparsed Storage Entities: From the W3C.org XML specification
proposal: "... XML documents are made up of storage units called entities,
which contain either parsed or unparsed data. Parsed data is made up of
characters, some of which form the character data in the document, and some of
which form markup. Markup encodes a description of the document's storage
layout and logical structure.

A-4 Oracle9i Application Developer’'s Guide - XML, Release 1 (9.0.1)

How XML Differs From HTML

« XML Processor Reads XML Documents. "... XML provides a mechanism to
impose constraints on the storage layout and logical structure. A software
module called an XML processor is used to read XML documents and provide
access to their content and structure. It is assumed that an XML processor is
doing its work on behalf of another module, called the application...."

« Open Internet Standard. XML is gaining wide industry support from other
vendors besides, like IBM, Sun, Microsoft, Netscape, SAP, CISCO and others, as
a platform- and application-neutral format for exchanging information.

Although this manual is not intended to expound on XML syntax, a brief overview
of some key XML topics is presented here. You can refer to the many excellent
resources listed in "Additional XML Resources" for more information on XML
syntax.

How XML Differs From HTML

Like HTML, XML is a subset of SGML (Structured Generalized Markup Language),
optimized for delivery over the web.

Unlike HTML, which tags elements in web pages for presentation by a browser, e.g.
<bold>Oracle</bold>, XML tags elements as data, e.g.
<company>Oracle</company>. For example, you can use XML to give context to
words and values in web pages, identifying them as data instead of simple textual
or numeric elements.

The following example is in HTML code. This is followed by the corresponding
XML example. The examples show employee data:

« Employee number

. Name
« Job
« Salary

HTML Example 1

<table>
<tr><td>EMPNO</d><td>ENAME</td><td>JOB</td><td>SAL </td></tr>
<Ir><td>7654<td><td>MARTIN<Ad><td>SAL ESMAN</td><td>1250</td></fr>
<tr><td>7788</td><td>SCOTT<Ad><td>ANAL Y ST</td><td>3000</td></tr>
<ftable>

An XML Primer A-5

How XML Differs From HTML

XML Example 1

In the XML code, note the addition of XML data tags and the nested structure of the
elements.

<?xml version="1.0"?>

<EMPLIST>
<EMP>
<EMPNO>7654</EMPNO>
<ENAME>MARTIN</ENAME>
<JOB>SALESMAN</JOB>
<SAL>1250</SAL>
<EMP>
<EMP>
<EMPNO>7788</EMPNO>
<ENAME>SCOTT</ENAME>
<JOB>ANALYST</JOB>
<SA[>3000</SAL>
<EMP>

</EMPLIST>

HTML Example 2

Consider the following HTML that uses tags to present data in a row of a table. Is
"Java Programming" the name of a book? A university course? A job skill? You
cannot be sure by looking at the data and tags on the page. Imagine a computer
program trying to figure this out!

<HTML>
<BODY>
<TABLE>
<TR>
<TD>Java Programming</TD>
<TD>EECS</TD>
<TD>Paul Thompson</TD>
<TD>Ron
Uma
Lindsay</TD>
<TR>
</TABLE>
</BODY>
<HTML>

The analogous XML example has the same data, but the tags indicate what
information the data represents, not how it should be displayed. It’s clear that "Java
Programming” is the Name of a Course, but it says nothing about how it should be
displayed.

A-6 Oracle9i Application Developer’'s Guide - XML, Release 1 (9.0.1)

How XML Differs From HTML

XML Example 2

<?xml version="1.0"?>
<Course>
<Name>Java Programming</Name>
<Department>EECS</Department>
<Teacher>
<Name>Paul Thompson</Name>
</Teacher>
<Student>
<Name>Ron</Name>
</Student>
<Student>
<Name>Uma</Name>
</Student>
<Student>
<Name>Lindsay</Name>
</Student>
</Course>

XML and HTML both represent information:

« XML represents information content

« HTML represents the presentation of that content

Summary of Differences Between XML and HTML
Figure 9-1 summarizes, how XML differs from HTML.

Table 9-1 XML and HTML Differences

XML

HTML

Represents information content
Has user-defined tags

All start tags must have end tags

Attributes must be single or double
quoted

Empty elements are clearly indicated

Element names and attributes are case
sensitive

Represents the presentation of the content
Has a fixed set of tags defined by standards.

Current browsers relax this requirement on tags
<P>, , and so on.

Current browsers relax this requirement on tags

Current browsers relax this requirement on tags

Element names and attributes are not case
sensitive.

An XML Primer A-7

Presenting XML Using Stylesheets

Presenting XML Using Stylesheets

A key advantage of using XML as a datasource is that its presentation (such as a web
page) can be separate from its structure and content.

« Presentation. Applied stylesheets define its presentation. XML data can be
presented in various ways, both in appearance and organization, simply by
applying different stylesheets.

« Structure and content: XML data defines the structure and content.

Stylesheet Uses
Consider these ways of using stylesheets:

« Adifferent interface can be presented to different users based on user profile,
browser type, or other criteria by defining a different stylesheet for each
presentation style.

« Stylesheets can be used to transform XML data into a format tailored to the
specific application that receives and processes the data.

Stylesheets can be applied on the server or client side. The XSL-Transformation
Processor (XSL-T Processor) transforms one XML format into XML or any other
text-based format such as HTML. Oracle XML Parsers all include an XSL-T
Processor.

How to apply stylesheets and use the XSL-T Processor is described in the following
sections in Oracle9i Application Developer’s Guide - XML.:

. "Using XSL and XSLT"
« "Using XML Parser for Java"

In this manual, see Chapter 7, "Customizing Discoverer 4i Viewer with XSL".

eXtensible Stylesheet Language (XSL)

eXtensible Stylesheet Language (XSL), the stylesheet language of XML is another
W3C recommendation. XSL provides for stylesheets that allow you to do the
following:

=« Transform XML into XML or other text-based formats such as HTML

« Rearrange or filter data

A-8 Oracle9i Application Developer’'s Guide - XML, Release 1 (9.0.1)

Extensibility and Document Type Definitions (DTD)

« Convert XML data to XML that conforms with another Document Type
Definition (DTD), an important capability for allowing different applications to
share data

Cascading Style Sheets (CSS)

Cascading Style Sheets (CSS1), a W3C specification was originally created for use
with HTML documents. With CSS you can control the following aspects of your
document’s appearance:

« Spacing. Element visibility, position, and size

« Colors and background

« Fonts and text

CSS2 was published by W3C in 1998 and includes the following additional features:
« System fonts and colors

« Automatic numbering

« Supports paged media

« Tables and aural stylesheets

"Cascading’ here implies that you can apply several stylesheets to any one
document. On a web page deploying CSS, for example, three stylesheets can apply
or cascade:

1. User’s preferred stylesheet takes precedence
2. Cascading stylesheet

3. Browser stylesheet

See Also: Oracle9i Application Developer’s Guide - XML, "Using
XSL and XSLT"

Extensibility and Document Type Definitions (DTD)

Another key advantage of XML over HTML is that it leaves the specification of the
tags and how they can be used to the user. You construct an XML document by
creating your own tags to represent the meaning and structure of your data.

Tags may be defined by using them in an XML document or they may be formally
defined in a Document Type Definition (DTD). As your data or application

An XML Primer A-9

Extensibility and Document Type Definitions (DTD)

requirements change, you can change or add tags to reflect new data contexts or
extend existing ones.

The following is a simple DTD for the previous XML example:

<IELEMENT EMPLIST (EMP)>
<IELEMENT EMP (EMPNO, ENAME, JOB, SAL)>
<IELEMENT EMPNO (#PCDATA)>

<IELEMENT ENAME (4PCDATA)>

<IELEMENT JOB (#PCDATA)>

<IELEMENT SAL (#PCDATA)>

Note: The DOCTYPE declaration is only used when the DTD is
embedded in XML code.

Well-Formed and Valid XML Documents

Well-Formed XML Documents

An XML document that conforms to the structural and notational rules of XML is
considered well-formed. A well-formed XML document does not have to contain or
reference a DTD, but rather can implicitly define its data elements and their
relationships. Well-formed XML documents must follow these rules:

« Document must start with the XML declaration, <?xml version="1.0">
« All elements must be contained within one root element
« All elements must be nested in a tree structure without overlapping

« All non-empty elements must have start and end tags

Valid XML Documents

Well-formed XML documents that also conform to a DTD are considered valid.
When an XML document containing or referencing a DTD is parsed, the parsing
application can verify that the XML conforms to the DTD and is therefore valid,
which allows the parsing application to process it with the assurance that all data
elements and their content follow rules defined in the DTD.

A-10 Oracle9i Application Developer's Guide - XML, Release 1 (9.0.1)

Why Use XML?

Why Use XML?

XML, the internet standard for information exchange is useful for the following
reasons:

Solves Data Interchange Problems. It facilitates efficient data communication
where the data:

« Isin many different formats and platforms

« It must be sent to different platforms

« Must appear in different formats and presentations
« Must appear on many different end devices

In short, XML solves application data interchange problems. Businesses can now
easily communicate with other businesses and workflow components using
XML. See Chapters 2 through 20 for more information and examples of how
XML solves data interchange problems.

Web-based applications can be built using XML which helps the interoperation
of web, database, networking, and middleware. XML provides a structured
format for data transmission.

Industry-Specific Data Objects are Being Designed Using XML. Organizations
such as OAG and XML.org are using XML to standardize data objects on a
per-industry basis. This will further facilitate business-to-business data
interchange.

Database-Resident Data is Easily Accessed, Converted, and Stored Using XML.
Large amounts of business data resides in relational and object-relational tables
as the database provides excellent data queriability, scalability and availability.
This data can be converted from XML format and stored in object-relational and
pure relational database structures or generated from them back to XML for
further processing.

Other Advantages of Using XML
Other advantages of using XML include the following:

You can make your own tags
Many tools support XML
XML is an Open standard

An XML Primer A-11

Additional XML Resources

« XML parsers built according to the Open standard are interoperable parsers
and avoid vendor lock-in. XML specifications are widely industry approved.

« In XML the presentation of data is separate from the data’s structure and
content. It is simple to customize the data’s presentation. See "Presenting XML
Using Stylesheets" and "Customizing Your Data Presentation”.

« Universality -- XML enables the representation of data in a manner that can be
self-describing and thus universally used

« Persistence -- Through the materialization of data as an XML document this
data can persist while still allowing programmatic access and manipulation.

« Platform and application independence

« Scalability

Additional XML Resources

Here are some additional resources for information about XML:

« The Oracle XML Handbook, Ben Chang, Mark Scardina, et.al., Oracle Press
« Building Oracle XML Applications, Steve Muench, O’Reilly

« XML Bible, Elliotte Rusty Harold, IDG Books Worldwide

= XML Unleashed, Morrison et al., SAMS

« Building XML Applications, St.Laurent and Cerami, McGraw-Hill

« Building Web Sites with XML, Michael Floyd, Prentice Hall PTR

« Building Corporate Portals with XML, Finkelstein and Aiken, McGraw-Hill
« XML in a Nutshell, O’Reilly

« Learning XML - (Guide to) Creating Self-Describing Data, Ray, O’Reilly

« http://www.xml.com/pub/rg/46

« http://www.xml.org/xmlorg_resources/index.shtml

« http://www.xmlmag.com/

« http://www.webmethods.com/

« http://www.infoshark.com/default2.htm

« http://www.clarient.org/

A-12 Oracle9i Application Developer's Guide - XML, Release 1 (9.0.1)

Additional XML Resources

http://www.xmlwriter.com/
http://webdevelopersjournal.com/articles/why_xml.html
http://www.w3schools.com/xml/
http://www.w3scripts.com/xml/default.asp
http://www.xml101.com/examples/

http://www.w3.0org/ TR/REC-xml
http://msdn.microsoft.com/xml/default.asp
http://www.w3.0rg/ TR lists W3C technical reports
http://www.w3.0rg/xml is the W3C XML activity overview page
http://www.xml.com includes latest industry news about xml

http://www.xml-cml.org has information about Chemical Markup Language
(CML). CML documents can be viewed and edited on the Jumbo browser.

http://www.loc.gov/ead/ Encoded Archival Description (EAD) information
developed for the US Library of Congress.

http://www.docuverse.com/xIf for information about Extensible Log Format
(XLF) a project to convert log files into XML log files to simplify log file
administration.

http://www.w3.0rg/Math for information about MathML which provides a
way of interchanging equations between applications.

http://www.naa.org Newspaper Association of America (naa) classified ads
format for easy exchange of classified ads.

http://www.w3.0org/AudioVideo/ for information about Synchronized
Multimedia Integration Language (SMIL).

Oracle is an official sponsor of OASIS. OASIS, http://www.oasis-open.org, is
the world’s largest independent, non-profit organization dedicated to the
standardization of XML applications. It promotes participation from all
industry, and brings together both competitors and overlapping standards
bodies.

An XML Primer A-13

Additional XML Resources

A-14 Oracle9i Application Developer's Guide - XML, Release 1 (9.0.1)

Glossary

API
Application Program Interface. See application program, definition interface.

application program interface (API)

A set of public programmatic interfaces that consist of a language and message
format to communicate with an operating system or other programmatic
environment, such as databases, Web servers, JVMs, and so forth. These messages
typically call functions and methods available for application development.

application server

A server designed to host applications and their environments, permitting server
applications to run. A typical example is OAS, which is able to host Java, C, C++,
and PL/SQL applications in cases where a remote client controls the interface. See
also Oracle Application Server.

attribute

A property of an element that consists of a name and a value separated by an equals
sign and contained within the start tags after the element name. In this example,
<Price units="USD’>5</Price>, units is the attribute and USD is its value, which
must be in single or double quotes. Attributes may reside in the document or DTD.
Elements may have many attributes but their retrieval order is not defined.

BC4J
Business Components for Java.

Glossary-1

Glossary-2

Business-to-Business (B2B)

A term describing the communication between businesses in the selling of goods
and services to each other. The software infrastructure to enable this is referred to as
an exchange.

Business-to-Consumer (B2C)

A term describing the communication between businesses and consumers in the
selling of goods and services.

BFILES

External binary files that exist outside the database tablespaces residing in the
operating system. BFILES are referenced from the database semantics, and are also
known as External LOBs.

Binary Large Object (BLOB)

A Large Object datatype whose content consists of binary data. Additionally, this
data is considered raw as its structure is not recognized by the database.

BLOB
See Binary Large Obiject.

callback

A programmatic technique in which one process starts another and then continues.
The second process then calls the first as a result of an action, value, or other event.
This technique is used in most programs that have a user interface to allow
continuous interaction.

cartridge

A stored program in Java or PL/SQL that adds the necessary functionality for the
database to understand and manipulate a new datatype. Cartridges interface
through the Extensibility Framework within Oracle 8 or 8i. interMedia Text is just
such a cartridge, adding support for reading, writing, and searching text documents
stored within the database.

CDATA
See character data.

CDF

Channel Definition Format. Provides a way to exchange information about channels
on the internet.

CGl
See Common Gateway Interface.

CSS
Cascading Style Sheets.

character data (CDATA)

Text in a document that should not be parsed is put within a CDATA section. This
allows for the inclusion of characters that would otherwise have special functions,
such as &, <, >, etc. CDATA sections can be used in the content of an element or in
attributes.

Common Gateway Interface (CGI)

The generic acronym for the programming interfaces enabling Web servers to
execute other programs and pass their output to HTML pages, graphics, audio, and
video sent to browsers.

child element

An element that is wholly contained within another, which is referred to as its
parent element. For example <Parent><Child></Child></Parent> illustrates a
child element nested within its parent element.

Class Generator

A utility that accepts an input file and creates a set of output classes that have
corresponding functionality. In the case of the XML Class Generator, the input file is
a DTD and the output is a series of classes that can be used to create XML
documents conforming with the DTD.

CLASSPATH
The operating system environmental variable that the JVM uses to find the classes it
needs to run applications.

client-server

The term used to describe the application architecture where the actual application
runs on the client but accesses data or other external processes on a server across a
network.

Glossary-3

Glossary-4

Character Large Object (CLOB)

The LOB datatype whose value is composed of character data corresponding to the
database character set. A CLOB may be indexed and searched by the interMedia
Text search engine.

CLOB
See Character Large Object.

command line

The interface method in which the user enters in commands at the command
interpreter’s prompt.

Common Object Request Broker APl (CORBA)

An Object Management Group standard for communicating between distributed
objects across a network. These self-contained software modules can be used by
applications running on different platforms or operating systems. CORBA objects
and their data formats and functions are defined in the Interface Definition
Language (IDL), which can be compiled in a variety of languages including Java, C,
C++, Smalltalk and COBOL.

Common Oracle Runtime Environment (CORE)

The library of functions written in C that provides developers the ability to create
code that can be easily ported to virtually any platform and operating system.

CORBA
See Common Object Request Broker.

Database Access Descriptor (DAD)

A DAD is a named set of configuration values used for database access. A DAD
specifies information such as the database name or the SQL*Net V2 service hame,
the ORACLE_HOME directory, and NLS configuration information such as
language, sort type, and date language.

datagram
A text fragment, which may be in XML format, that is returned to the requester
embedded in an HTML page from a SQL query processed by the XSQL Servlet.

DOCTYPE

The term used as the tag name designating the DTD or its reference within an XML
document. For example, <IDOCTYPE person SYSTEM "person.dtd"> declares the

root element name as person and an external DTD as person.dtd in the file system.
Internal DTDs are declared within the DOCTYPE declaration.

Document Object Model (DOM)

An in-memory tree-based object representation of an XML document that enables
programmatic access to its elements and attributes. The DOM object and its
interface is a W3C recommendation. It specifies the Document Object Model of an
XML Document including the APIs for programmatic access. DOM views the
parsed document as a tree of objects.

Document Type Definition (DTD)

A set of rules that define the allowable structure of an XML document. DTDs are
text files that derive their format from SGML and can either be included in an XML
document by using the DOCTYPE element or by using an external file through a
DOCTYPE reference.

DOM
See Document Object Model.

DTD
See Document Type Definition.

EDI
Electronic Data Interchange.

Enterprise Java Bean (EJB)

An independent program module that runs within a JVM on the server. CORBA
provides the infrastructure for EJBs, and a container layer provides security,
transaction support, and other common functions on any supported server.

element

The basic logical unit of an XML document that may serve as a container for other
elements as children, data, attributes, and their values. Elements are identified by
start-tags, <name> and end-tags</name> or in the case of empty elements,
<name/>.

empty element

An element without text content or child elements. It may only contain attributes
and their values. Empty elements are of the form <name/> or <name></name>
where there is no space between the tags.

Glossary-5

Glossary-6

entity

A string of characters that may represent either another string of characters or
special characters that are not part of the document’s character set. Entities and the
text that is substituted for them by the parser are declared in the DTD.

eXtensible Markup Language (XML)

An open standard for describing data developed by the W3C using a subset of the
SGML syntax and designed for Internet use. Version 1.0 is the current standard,
having been published as a W3C Recommendation in February 1998.

eXtensible Stylesheet Language (XSL)

The language used within stylesheets to transform or render XML documents.
There are two W3C recommendations covering XSL stylesheets—XSL
Transformations (XSLT) and XSL Formatting Objects (XSLFO).

XSL

(W3C) eXtensible Stylesheet Language, XSL consists of two W3C recommendations
- XSL Transformations for transforming one XML document into another and XSL
Formatting Obijects for specifying the presentation of an XML document. XSL is a
language for expressing stylesheets. It consists of two parts:

« A language for transforming XML documents (XSLT), and
« An XML vocabulary for specifying formatting semantics (XSL:FO).

An XSL stylesheet specifies the presentation of a class of XML documents by
describing how an instance of the class is transformed into an XML document that
uses the formatting vocabulary.

eXtensible Stylesheet Language Formatting Object (XSLFO)

The W3C standard specification that defines an XML vocabulary for specifying
formatting semantics.

eXtensible Stylesheet Language Transformation (XSLT)

Also written as XSL-T. The XSL W3C standard specification that defines a
transformation language to convert one XML document into another.

HTML

See Hypertext Markup Language.

HTTP
See Hypertext Transport Protocol.

hypertext

The method of creating and publishing text documents in which users can navigate
between other documents or graphics by selecting words or phrases designated as
hyperlinks.

Hypertext Markup Language (HTML)

The markup language used to create the files sent to Web browsers and that serves
as the basis of the World Wide Web. The next version of HTML will be called
XHTML and will be an XML application.

Hypertext Transport Protocol (HTTP)

The protocol used for transporting HTML files across the Internet between Web
servers and browsers.

IDE

See Integrated Development Environment.
iFS

See Internet File System.

Integrated Development Environment (IDE)

A set of programs designed to aide in the development of software run from a
single user interface. JDeveloper is an IDE for Java development as it includes an
editor, compiler, debugger, syntax checker, help system, and so on to permit Java
software development through a single user interface.

Internet File System (/FS)

The Oracle file system and Java-based development environment that either runs
inside the Oracle8i database or on a middle tier and provides a means of creating,
storing, and managing multiple types of documents in a single database repository.
Internet Inter-ORB Protocol (IIOP)

The protocol used by CORBA to exchange messages on a TCP/IP network such as
the Internet.

Glossary-7

Glossary-8

instantiate

A term used in object-based languages such as Java and C++ to refer to the creation
of an object of a specific class.

inter Media

The term used to describe the collection of complex data types and their access
within Oracle8i. These include text, video, time-series, and spatial data types.

Java

A high-level programming language developed and maintained by Sun
Microsystems where applications run in a virtual machine known as a JVM. The
JVM is responsible for all interfaces to the operating system. This architecture
permits developers to create Java applications and applets that can run on any
operating system or platform that has a JVM.

Java Bean

An independent program module that runs within a JVM, typically for creating
user interfaces on the client. The server equivalent is called an Enterprise Java Bean
(EJB). See also Enterprise Java Bean.

Java Database Connectivity (JDBC)

The programming API that enables Java applications to access a database through
the SQL language. JDBC drivers are written in Java for platform independence but
are specific to each database.

Java Developer’s Kit (JDK)

The collection of Java classes, runtime, compiler, debugger, and usually source code
for a version of Java that makes up a Java development environment. JDKs are
designated by versions, and Java 2 is used to designate versions from 1.2 onward.

Java Runtime Environment (JRE)

The collection of complied classes that make up the Java virtual machine on a
platform. JREs are designated by versions, and Java 2 is used to designate versions
from 1.2 onward.

Java Server Page (JSP)

An extension to the servlet functionality that enables a simple programmatic
interface to Web pages. JSPs are HTML pages with special tags and embedded Java
code that is executed on the Web or application server providing dynamic

functionality to HTML pages. JSPs are actually compiled into servlets when first
requested and run in the server’s JVM.
Java virtual machine (JVM)

The Java interpreter that converts the compiled Java bytecode into the machine
language of the platform and runs it. J)VMs can run on a client, in a browser, in a
middle tier, on a Web, on an application server such as OAS, or in a database server
such as Oracle 8i.

JDBC

See Java Database Connectivity.

JDeveloper

Oracle’s Java IDE that enables application, applet, and servilet development and
includes an editor, compiler, debugger, syntax checker, help system, etc. In version
3.1,JDeveloper has been enhanced to support XML-based development by
including the Oracle XDK for Java integrated for easy use along with XML support
in its editor.

JDK

See Java Developer’s Kit.

JServer

The Java Virtual Machine that runs within the memory space of the Oracle8i
database. In Oracle 8i Release 1 the JVM was Java 1.1 compatible while Release 2 is
Java 1.2 compatible.

JVM
See Java virtual machine.

LAN
See local area network.

local area network (LAN)

A computer communication network that serves users within a restricted
geographical area. LANSs consist of servers, workstations, communications
hardware (routers, bridges, network cards, etc.) and a network operating system.

listener
A separate application process that monitors the input process.

Glossary-9

Glossary-10

Large Object (LOB)

The class of SQL data type that is further divided into Internal LOBs and External
LOBs. Internal LOBs include BLOBs, CLOBS, and NCLOBs while External LOBs
include BFILES. See also BFILES, Binary Large Object, Character Large Object.

LOB
See Large Object.

namespace

The term to describe a set of related element names or attributes within an XML
document. The namespace syntax and its usage is defined by a W3C
Recommendation. For example, the <xsl:apply-templates/ > element is identified as
part of the XSL namespace. Namespaces are declared in the XML document or DTD
before they are used be using the following attribute syntax:-
xmlins:xsl="http://www.w3.org/ TR/WD-xsl".

NCLOB
See national character Large Object.

mode
In XML, the term used to denote each addressable entity in the DOM tree.

national character Large Object

The LOB datatype whose value is composed of character data corresponding to the
database national character set.

NOTATION

In XML, the definition of a content type that is not part of those understood by the
parser. These types include audio, video, and other multimedia.

N-tier

The designation for a computer communication network architecture that consists
of one or more tiers made up of clients and servers. Typically two-tier systems are
made up of one client level and one server level. A three-tier system utilizes two
server tiers, typically a database server as one and a Web or application server along
with a client tier.

OAG
Open Applications Group.

OAl

Oracle Applications Integrator. Runtime with Oracle iStudio development tool that
provides a way for CRM applications to integrate with other ERP systems besides
Oracle ERP. Specific APIs must be "message enabled.” It uses standard extensibility
hooks to generate or parse XML streams exchanged with other application systems.
In development.

OAS
See Oracle Application Server.

OASIS
See Organization for the Advancement of Structured Information.

Object View

A tailored presentation of the data contained in one or more object tables or other
views. The output of an Object View query is treated as a table. Object Views can be
used in most places where a table is used.

object-relational

The term to describe a relational database system that can also store and manipulate
higher-order data types, such as text documents, audio, video files, and
user-defined objects.

Object Request Broker (ORB)

Software that manages message communication between requesting programs on
clients and between objects on servers. ORBs pass the action request and its
parameters to the object and return the results back. Common implementations are
CORBA and EJBs. See also CORBA.

OE
Oracle Exchange.

Oracle Application Server (OAS)

The Oracle server that integrates all the core services and features required for
building, deploying, and managing high-performance, n-tier, transaction-oriented
Web applications within an open standards framework.

Oracle Integration Server (OIS)

The Oracle server product that serves as the messaging hub for application
integration. OIS contains an Oracle 8i database with AQ and Oracle Workflow and

Glossary-11

Glossary-12

interfaces to applications using Oracle Message Broker to transport XML-formatted
messages between them.

ORACLE_HOME
The operating system environmental variable that identifies the location of the
Oracle database installation for use by applications.

oIS
See Oracle Integration Server.

ORB
See Object Request Broker.

Organization for the Advancement of Structured Information (OASIS)

An organization of members chartered with promoting public information
standards through conferences, seminars, exhibits, and other educational events.
XML is a standard that OASIS is actively promoting as it is doing with SGML.
parent element

An element that surrounds another element, which is referred to as its child
element. For example, <Parent><Child></Child></Parent> illustrates a parent
element wrapping its child element.

parser

In XML, a software program that accepts as input an XML document and
determines whether it is well-formed and, optionally, valid. The Oracle XML Parser
supports both SAX and DOM interfaces.

Parsed Character Data (PCDATA)

The element content consisting of text that should be parsed but is not part of a tag
or nonparsed data.

PCDATA
See Parsed Character Data.

PDAs
Personal Digital Assistants, such as Palm Pilot.

RDF
Resource Definition Framework.

PL/SQL

The Oracle procedural database language that extends SQL to create programs that
can be run within the database.

prolog

The opening part of an XML document containing the XML declaration and any
DTD or other declarations needed to process the document.

PUBLIC
The term used to specify the location on the Internet of the reference that follows.

renderer
A software processor that outputs a document in a specified format.

result set
The output of a SQL query consisting of one or more rows of data.

root element

The element that encloses all the other elements in an XML document and is
between the optional prolog and epilog. An XML document is only permitted to
have one root element.

SAX

See Simple API for XML.

Simple API for XML (SAX)

An XML standard interface provided by XML parsers and used by event-based
applications.

schema

The definition of the structure and data types within a database. It can also be used
to refer to an XML document that support the XML Schema W3C recommendation.
servlet

A Java application that runs in a server, typically a Web or application server, and
performs processing on that server. Servlets are the Java equivalent to CGI scripts.

session
The active connection between two tiers.

Glossary-13

Glossary-14

SGML
See Structured Generalized Markup Language.

Structured Generalized Markup Language (SGML)
An 1SO standard for defining the format of a text document implemented using

markup and DTDs.

Structured Query Language (SQL)
The standard language used to access and process data in a relational database.

Server-side Include (SSI)

The HTML command used to place data or other content into a Web page before
sending it to the requesting browser.

Secure Sockets Layer (SSL)

The primary security protocol on the Internet, which utilizes a public key/private
key form of encryption between browsers and servers.

SQL

See Structured Query Language.

SSI
See Server-side Include.

SSL
See Secure Sockets Layer.

Stylesheet

In XML, the term used to describe an XML document that consists of XSL
processing instructions used by an XSL processor to transform or format an input
XML document into an output one.

SYSTEM

The term used to specify the location on the host operating system of the reference
that follows.

tag

A single piece of XML markup that delimits the start or end of an element. Tags
start with < and end with >. In XML, there are start-tags (<name>), end-tags
(</name>), and empty tags (<name/>).

TCP/IP

See Transmission Control Protocol/Internet Protocol.

thread

In programming, a single message or process execution path within an operating
system that supports multiple operating systems, such as Windows, UNIX, and
Java.

Transmission Control Protocol/Internet Protocol (TCP/IP)

The communications network protocol that consists of the TCP which controls the
transport functions and IP which provides the routing mechanism. It is the standard
for Internet communications.

Transviewer

The Oracle term used to describe the Oracle XML Java Beans included in the XDK
for Java. These beans include an XML Source View Bean, Tree View Bean,
DOMParser Bean, Transformer Bean, and a TransViewer Bean.

user interface (Ul)

The combination of menus, screens, keyboard commands, mouse clicks, and
command language that defines how a user interacts with a software application.

Uniform Resource Identifier (URI)
The address syntax that is used to create URLs and XPaths.

Uniform Resource Locator (URL)

The address that defines the location and route to a file on the Internet. URLs are
used by browsers to navigate the World Wide Web and consist of a protocol prefix,
port number, domain name, directory and subdirectory names, and the file name.
For example http://technet.oracle.com:80/tech/xml/index.htm specifies the
location and path a browser will travel to find OTN’s XML site on the World Wide
Web.

URI
See Uniform Resource ldentifier.

Glossary-15

Glossary-16

URL
See Uniform Resource Locator.

valid

The term used to refer to an XML document when its structure and element content
is consistent with that declared in its referenced or included DTD.

W3C
See World Wide Web Consortium (W3C).

WAN
See wide area network.

Web Request Broker (WRB)

The cartridge within OAS that processes URLs and sends them to the appropriate
cartridge.

well-formed

The term used to refer to an XML document that conforms to the syntax of the XML
version declared in its XML declaration. This includes having a single root element,
properly nested tags, and so forth.

wide area network (WAN)

A computer communication network that serves users within a wide geographic
area, such as a state or country. WANSs consist of servers, workstations,
communications hardware (routers, bridges, network cards, etc.), and a network
operating system.

Working Group (WG)

The committee within the W3C that is made up of industry members that
implement the recommendation process in specific Internet technology areas.
World Wide Web Consortium (W3C)

An international industry consortium started in 1994 to develop standards for the
World Wide Web. It is located at www.w3c.org.

Wrapper

The term describing a data structure or software that wraps around other data or
software, typically to provide a generic or object interface.

XML Developer’s Kit (XDK)

The set of libraries, components and utilities that provide software developers with
the standards-based functionality to XML-enable their applications. In the case of
the Oracle XDK for Java, the kit contains an XML Parser, XSL Processor, XML Class
Generator, the Transviewer Java Beans and the XSQL Servlet.

XLink

The XML Linking language consisting of the rules governing the use of hyperlinks
in XML documents. These rules are being developed by the XML Linking Group
under the W3C recommendation process. This is one of the three languages XML
supports to manage document presentation and hyperlinks (XLink, XPointer, and
XPath).

XML
See eXtensible Stylesheet Language.

XML query

The W3C'’s effort to create a standard for the language and syntax to query XML
documents.

XML schema

The W3C'’s effort to create a standard to express simple data types and complex
structures within an XML document. It addresses areas currently lacking in DTDs,
including the definition and validation of data types. Oracle XML Schema Processor
automatically ensures validity of XML documents and data used in e-business
applications, including online exchanges. It adds simple and complex datatypes to
XML documents and replaces DTD functionality with an XML Schema definition
XML document.

XPath

The open standard syntax for addressing elements within a document used by XSL
and XPointer. XPath is currently a W3C recommendation. It specifies the data
model and grammar for navigating an XML document utilized by XSLT, XLink and
XML Query.

XPointer

The term and W3C recommendation to describe a reference to an XML document
fragment. An XPointer can be used at the end of an XPath-formatted URI. It
specifies the identification of individual entities or fragments within an XML
document using XPath navigation.

Glossary-17

Glossary-18

XSL
See eXtensible Stylesheet Language.

XSLFO
See eXtensible Stylesheet Language Formatting Obiject.

XSLT
See eXtensible Stylesheet Language Transformation.

XSQL

The designation used by the Oracle Servlet providing the ability to produce
dynamic XML documents from one or more SQL queries and optionally transform
the document in the server using an XSL stylesheet.

A

Action Handler, 8-50
Advanced Queueing, uses, 8-6
Advanced Queuing Script, 8-157
API, Glossary-1
AppCste.java, 8-150
application message set
creating, 9-22
Application Program Interface,
definition, Glossary-1
application server, Glossary-1
applications, 2-17
communicating XML documents, 2-12
AQ Broker-Transformer, 8-32
AQ Queue Creation Scripts, 8-21
AQ schema scripts, 8-20
AQReader.java, 8-169
AQWriter.java, 8-171
attribute, definition, Glossary-1
authored XML, 2-2

B

B2B messaging, 2-25, 2-27, 2-29

B2B XML Application, 8-3

B2B XML Application, requirememts, 8-3
B2B, definition, Glossary-2
B2BMessage.java, 8-174

B2C messaging, 2-25

B2C, definition, Glossary-2

BC4J, definition, Glossary-1

Binary Large Obiject, definition, Glossary-2
Blank Screen, cause, 7-21

Index

BLOB, definition, Glossary-2
Broker Schema, creating, 8-22
Broker Schema, populating, 8-24
BrokerThread.java, 8-158
Broker-Transformer, 8-69
BuildAll.sgl, 8-14
BuildSchema.sql, 8-15
Business Components for Java,
definition, Glossary-1
Business-to-Business, Glossary-2
Business-to-Consumer, definition, Glossary-2

C

callback, definition, Glossary-2
Calling Sequence, SQL, 8-13
cartridge, definition, Glossary-2
Cascading Style Sheets, definition, Glossary-3
CDATA, definition, Glossary-3
CGl, defintion, Glossary-3
Changes to a Modified Stylesheet, Viewing, 7-21
Changing the Text Color, 7-10
Channel Definition Format, definition, Glossary-2
Class Generator, definition, Glossary-3
CLASSPATH, definition, Glossary-3
Cleaning Up Your Environment, 8-25
client-server, definition, Glossary-3
CLOB, definition, Glossary-4
Common Object Request Broker API,
definition, Glossary-4
Common Oracle Runtime Environment,
definition, Glossary-4
Content and document management, 2-17
content management, 2-17

Index-1

conventional path load, 2-15
CORBA, definition, Glossary-4
CORE, definition, Glossary-4
Create Queue SQL Scripts, 8-27
customizing presentation, 5-20
customizing presentation of data
data presention

customizing data, 2-17

Customizing Stylesheets, 7-20

D

DAD, definition, Glossary-4
data exchange applications, 2-11
Data Exchange Flow B2B Application, 8-30
database

XML supportin, 1-5
Database Access Descriptor, definition, Glossary-4
datagram, definition, Glossary-4
demos, 1-15
design issues, 2-11
direct-path load, 2-15
disco3iv.xml, 7-19
disco3iv.xsl, 7-20
Discoverer 3i Viewer Architecture, 7-4
Discoverer 3i Viewer, customizing, 7-2
Discoverer Application Server, Replicating, 7-6
Discoverer Business Intelligence, definition, 7-2
Discoverer FAQs, 7-18
Discoverer reports, 7-3
Discoverer Server Interface, 7-5
Discoverer3i Viewer, 7-2
DOCTYPE, definition, Glossary-4
document management, 2-17
document mapping, 2-8
Document Object Model, definition, Glossary-5
Document Type Definition, definition, Glossary-5
DOM

in the Dynamic News application, 5-23
DOM, definition, Glossary-5
Drop Queue SQL Scripts, 8-27
dropOrder.sql, 8-28
Drops Queue Applications, 8-26
DTD, definition, Glossary-5
Dynamic News Application, 5-2

Index-2

how it works, 5-5
main tasks, 5-2
overview, 5-2
servlets, 5-4
dynamic pages, 5-11

E

Editors, XSL, 7-20
EJB, definition, Glossary-5
Electronic Data Interchange, definition, Glossary-5
element, definition, Glossary-5
empty element, definition, Glossary-5
end-user preferences, 5-13
Enterprise Java Bean, definition, Glossary-5
entity, definition, Glossary-6
errors.xsl, 7-21
etailer, 8-150
eXcelon Stylus, 7-20
eXtensible Markup Language
XML, A-2
eXtensible Stylesheet Language Formatting Object,
definition, Glossary-6
eXtensible Stylesheet Language Transformation,
definition, Glossary-6
eXtensible Stylesheet Language,
definition, Glossary-6
extracting XML, 1-4

F

FAQs Discoverer, 7-18
Flight Finder
sample application overview, 4-2
stylesheets
using, to format XML, 4-9
flight finder, 4-1
formatting XML with stylesheets, 4-9
how it works, 4-3
introduction, 4-2
queries, 4-6
XML to database, 4-16
Frequently Asked Questions Discoverer, 7-18
functions.xsl, 7-21

G

generated XML, 2-2,2-7

Glossary, Glossary-1

GSM, Global System for Mobile
Communication, 9-8

gui_components.xsl, 7-20

H

HandWeb, 8-3

Hold Constants, Message Broker, 8-150

HTML, 7-18

HTML, definition, Glossary-7

HTTP, 7-18

HTTP Listener, 8-3

HTTP, definition, Glossary-7

hybrid storage, 2-5

Hypertext Markup Language,
definition, Glossary-7

Hypertext Transport Protocol,
definition, Glossary-7

hypertext, definition, Glossary-7

IBM XSL Editor, 7-20

IDE, definition, Glossary-7

IIOP, definition, Glossary-7

iMessage (Internet Message Studio, 9-22

Inserting Logos, 7-10

instantiate, definition, Glossary-8

Integrated Development Environment,
definition, Glossary-7

Integrated tools, 1-11

interMedia, definition, Glossary-8

Internet File System, definition, Glossary-7

Internet Message Studio (iMessage), 9-22

J

Java Bean, definition, Glossary-8

Java Database Connectivity, definition, Glossary-8
Java Runtime Environment, definition, Glossary-8
Java, definition, Glossary-8

JDBC, definition, Glossary-8, Glossary-9

JDeveloper, 8-3

JDeveloper, definition, Glossary-9
JDK, definition, Glossary-8

JRE, definition, Glossary-8
JServer, definition, Glossary-9
JSP, definition, Glossary-8

JVM, definition, Glossary-9

L

LAN, definition, Glossary-9

listener, definition, Glossary-9

loading XML documents, 2-14

LOB, definition, Glossary-10

LOBFILE, syntax, 2-14

local area network, definition, Glossary-9
Logos, Inserting, 7-10

M

management

content and document, 2-17
Management Scripts, 8-117
MessageBroker.java, 8-163
MessageHeaders.java, 8-149
messaging

B2B and B2C, 2-25

phone number portability, 9-1
messaging architecture, 9-15
mkAQUser.sql, 8-20
mkQ.sql, 8-21
mkSSTables.sql, 8-22
mode, definition, Glossary-10

N

naa, Newspaper Association of America, A-13
namespace, definition, Glossary-10
national character Large Object,
definition, Glossary-10
network element
provisioning, 9-21
news items, 5-17,5-19
exporting, 5-23
importing, 5-23

Index-3

NOTATION, definition, Glossary-10
N-tier, definition, Glossary-10
number portability, 9-15

number portability process, 9-4

O

OAG, definition, Glossary-10

OAl, definition, Glossary-11

OAS, definition, Glossary-11

OASIS, definition, Glossary-12

Object View, definition, Glossary-11
object-relational, definition, Glossary-11

OE, definition, Glossary-11

OIS, definition, Glossary-11

Open Applications Group, definition, Glossary-10
Oracle Application Server, definition, Glossary-11
Oracle Exchange, definition, Glossary-11

Oracle Integration Server, definition, Glossary-11
Oracle XML, 1-2

Oracle XSL -TProcessor, 7-20

ORACLE_HOME, definition, Glossary-12

ORB, definition, Glossary-11

P

page_layouts.xsl, 7-20
parent element, definition, Glossary-12
parser, definition, Glossary-12
ParserTest.java, 8-120
PCDATA, definition, Glossary-12
PDA browser, 8-3
Personal Digital Assistant, definition, Glossary-12
personalizing content, 5-13
phone number portability messaging, 9-2
PL/SQL, definition, Glossary-13
Portal-to-Go, 4-20

components, 3-6

convertto XML, 3-11

exchanging data via XML, 3-9

extracting content, 3-10

features, 3-3

how it works, 3-5

introduction, 3-2

Java transformers, 3-20

Index-4

sample adapter classes, 3-16

study 1, 3-30

study 2, 3-31

supported devices and gateways, 3-4

target markup language, 3-20

transforming XML, 3-20

what’s needed, 3-4

XSL stylesheet transformers, 3-23
Process and Management Scripts, 8-117
prolog, definition, Glossary-13
provisioning network element, 9-21
PUBLIC, definition, Glossary-13

Q

Queue Creation Scripts, 8-21

ReadStructAQ.java, 8-175

renderer, definition, Glossary-13

Replicating Discoverer Application Server, 7-6

Reports, Discoverer, 7-3

reset.sgl, 8-25, 8-26

Resource Definition Framework,
definition, Glossary-12

Resource Description Framework Site Summary
(RSS), 5-23

result set, definition, Glossary-13

Retailer Places Order, 8-47

Retailer Schema, 8-14

Retailer Scripts, 8-150

Retailer-Supplier Schema, 8-15

Retailer-Supplier Transactions, 8-31

root element, definition, Glossary-13

Running the B2B XML Application, 8-34

S

samples, 1-15
SAX, definition, Glossary-13
Schema scripts, 8-20
schema, deffinition, Glossary-13
SDP

messaging architecture, 9-15

number portability, 9-15
SDP (Service Delivery Platform), 9-15
Secure Data Access, 7-3
semi-dynamic pages, 5-9
sending XML data, 2-12
Server-side Include, definition, Glossary-14
Service Delivery Platform (SDP), 9-15
servlet, definition, Glossary-13
Servlets, 7-18
servlets

Dynamic News Application, 5-4
Servlets, definition, 7-18
session, definition, Glossary-13
setup.sql, 8-24
SGML, definition, Glossary-14
Simple API for XML, definition, Glossary-13
Simple Result DTD, 3-12
SQL Calling Sequence, 8-13
SQL*Loader

conventional path load, 2-15

direct-path load, 2-15

LOBFILE, 2-14
SQL, definition, Glossary-14
SSI, definition, Glossary-14
SSL, 7-4
SSL, definition, Glossary-14
Start Queue SQL Scripts, 8-28
Starts Queue Applications, 8-26
static pages, 5-7
Stop Queue SQL Scripts, 8-27
StopAllQueues.java, 8-176
Stopping the B2B XML Application, 8-82
Stops and Drops Queue Applications, 8-26
storing

XML in the Database, 4-16
storing XML, 1-4
Stylesheet Table, XSL, 8-22
Stylesheet, definition, Glossary-14
Stylesheets, Customizing, 7-20
style.xsl, 7-10, 7-21
Stylus, 7-20
Supplier Schema, 8-14
SupplierFrame.java, 8-180
SupplierWatcher.java, 8-186
SYSTEM, definition, Glossary-14

T

tag, definition, Glossary-15

TCP/IP, definition, Glossary-15

Text Color, Changing, 7-10

thread, definition, Glossary-15
transformations, 2-7

Transformer API, 8-6

Transforming Data to XML, reasons for, 8-5
Transviewer, definition, Glossary-15

U

Ul, definition, Glossary-15
Uniform Resource ldentifier,
definition, Glossary-15
Uniform Resource Locator, definition, Glossary-15
URI, definition, Glossary-15
URL, definition, Glossary-15
user interface, definition, Glossary-15

\%

valid, definition, Glossary-16
Viewer, Discoverer, 7-2
Viewing Changes to a Stylesheet, 7-21

W

W3C XML Recommendations
Recommendations, W3C, A-2
W3C, definition, Glossary-16
WAN, definition, Glossary-16
Web Request Broker, definition, Glossary-16
Web to database, 2-12
well-formed, definition, Glossary-16
WG, definition, Glossary-16
why use Oracle8i XML?, 1-8
wide area network, definition, Glossary-16
wireless edition, 4-20
WiIreless Edition (WE)
adapter classes, 3-16
Wireless Edition (WE)
adapters, 3-7
Java transformers, 3-20
overview, 3-2

Index-5

portal-to-go components, 3-2

Simple Result DTD, 3-12

transformers, 3-8

XSL stylesheet transformers, 3-23
Wireless Edition(WE)

supported devices and gateways, 3-2
Workbooks, 7-12
World Wide Web Consortium,

definition, Glossary-16

Wrapper, definition, Glossary-16
WRB, definition, Glossary-16
WriteStructAQ.java, 8-177

X

XDK, definition, Glossary-17
XLink, definition, Glossary-17
XML
authored, 2-2
customizing presentation, 4-1
design issues, 2-11
generated, 2-2
Oracle XML, 1-2
XML data
sending, 2-12
XML Developer’s Kit, definition, Glossary-17
XML documents
communicating, 2-12
XML Family, A-3
XML features
features of XML, A-4
XML flight finder sample application, 4-2
XML messaging
phone number portability, 9-1
XML Namespaces
Namespaces, XML, A-2
XML Query
Query, XML, A-2
XML query, definition, Glossary-17
XML references, 7-22
XML Schema, A-2
XML schema, definition, Glossary-17
XML schemas, 2-8
XML, definition, Glossary-6
XML, loading, 2-14

Index-6

XML-Based Standards, A-3
XMLType

database support, 1-5
XPath, A-2
XPath, definition, Glossary-17
XPointer, A-2
XPointer, definition, Glossary-17
XSL, 7-22
XSL Editor, IBM, 7-20
XSL Editors, 7-20
XSL Management Scripts, 8-85
XSL Stylesheet Table, 8-22
XSL -TProcessor, 7-20
XSL, definition, Glossary-6
XSLFO, definition, Glossary-6
XSL-T Processors, 7-20
XSLT, definition, Glossary-6
XSQL Servlet, 8-3

processing queries in Flight Finder,
XSQL, definition, Glossary-18
XSQLConfig.xml, 8-142

4-6

	Send Us Your Comments
	Preface
	About this Guide
	Audience
	Feature Coverage and Availability
	How this Manual is Organized
	Related Documentation
	How to Order this Manual
	Downloading Release Notes, Installation Guides, White Papers,...
	How to Access this Manual On-Line
	Conventions
	Documentation Accessibility

	What’s New in Oracle XML-Enabled Technology?
	XML Features Introduced with Oracle9i, Release 1 (9.0.1)
	XML Features Introduced with Oracle8i Release 3 (8.1.7)

	Part I� Introducing Oracle XML-Enabled Technology
	1 Oracle XML-Enabled Technology
	What is XML ?
	What are Oracle XML-Enabled Technologies?
	Oracle XML Components

	Storing and Retrieving XML Data from Oracle9i
	XML Support in the Database
	XML and URI Data Types
	Extensibility and XML
	Oracle Text Searching

	Oracle-Based XML Applications
	Oracle XML-Enabled Technology Components and Features
	Indexing and Searching XML Documents with Oracle Text (interMedia Text)
	Messaging Hubs and Middle Tier Components
	Back-End to Database to Front-End Integration Issues
	Oracle XDKs Provide the Two Most Common APIs: DOM and SAX
	Writing Custom XML Applications

	The Oracle Suite of Integrated Tools and Components
	Oracle JDeveloper and Oracle Business Components for Java (BC4J)
	Oracle9i Internet File System (Oracle 9iFS or 9iFS)
	Oracle Portal
	Oracle Exchange
	XML Gateway
	Metadata API
	Other XML Initiatives

	Oracle XML Samples and Demos
	What Is Needed to Run Oracle XML Components
	Requirements for XDK
	Which XML Components are Included with Oracle9i Database and Oracle9i Application Server?

	XML Technical Support

	2 Modeling and Design Issues for Oracle XML Applications
	XML Data can be Stored as Generated XML or Composed XML
	Generated XML
	Composed (Authored/Native) XML
	Using a Hybrid XML Storage Approach for Better Mapping Granularity
	A Hybrid Approach Allows for User-Defined Storage Granularity
	Hybrid Storage Advantages

	Transforming Generated XML
	Combining XML Documents and Data Using Views
	Using XSLT to Transform Query Results
	Indexing and Querying Transformations
	Indexing Approaches
	XML Schemas and Mapping of Documents
	XMLSchema Example 1: Defining a Simple Data Type
	XMLSchema Example 2: Using XMLSchema to Map Generated XML Documents to Underlying Schema

	General XML: Design Issues for Data Exchange Applications
	Generating a Web Form from XML Data Stored in the Database
	Sending XML Data from a Web Form to the Database

	Sending XML Documents Applications-to-Application
	Loading XML into a Database
	Using SQL*Loader
	Loading XML Documents Into LOBs With SQL*Loader

	Applications that Use Oracle XML -EnabledTechnology
	Content and Document Management with Oracle XML-Enabled Technology
	Customizing Presentation of Data

	Scenario 1. Content and Document Management: Publishing Composite Documents Using XML-Enabled Ora...
	Scenario 2. Content and Document Management: Delivering Personalized Information Using Oracle XML...
	Scenario 3. Content Management: Using Oracle XML Technology to Customize Data Driven Applications
	Business-to-Business and Business-to-Consumer Messaging
	Scenario 4. B2B Messaging: Online Multivendor Shopping Cart Design Using XML
	Scenario 5. B2B Messaging: Using Oracle XML Components and Advanced Queueing for an Online Invent...
	Scenario 6. B2B Messaging: Using Oracle XML-Enabled Technology and AQ for Multi-Application Integ...

	Part II� Managing Content and Documents with XML
	3 Oracle9i AS Wireless Edition and XML
	Introducing Oracle9i AS Wireless Edition (Portal-to-Go)
	Oracle9i AS Wireless Edition (Portal-To-Go) Features
	What’s Needed to Run Oracle9i AS Wireless Edition
	Oracle9i AS Wireless Edition: Supported Devices and Gateways
	How Oracle9i AS Wireless Edition Works
	Oracle9i AS Wireless Edition Components
	Oracle9i AS Wireless Edition Services
	Oracle9i AS Wireless Edition Adapters
	Oracle9i AS Wireless Edition Transformers

	Exchanging Data via XML: Source to XML, XML to Target with Oracle9i AS Wireless Edition
	Extracting Content
	Converting to XML
	Why Use an Intermediate XML Format?
	Using the Simple Result DTD
	Adapters Map the Source Content to the DTD Element

	Sample Adapter Classes
	Oracle9i AS Wireless Edition Adapter Example 1: Greeting Users by Name

	Transforming XML to the Target Markup Language
	Oracle9i AS Wireless Edition: Java Transformers
	Oracle9i AS Wireless Edition Java Transformer Example 1: Converting Simple Result Elements to Ano...

	Oracle9i AS Wireless Edition: XSL Stylesheet Transformers
	Oracle9i AS Wireless Edition XSL Stylesheet Transformer Example 1: Converting Simple Result Docum...
	Each Markup Language Requires a Unique Transformer
	Oracle9i AS Wireless Edition Stylesheet Transformer Example 2: Customizing a WML1.1 Transformer S...
	Oracle9i AS Wireless Edition Stylesheet TransformerExample 3: XSL Java Extension

	Oracle9i AS Wireless Edition Case Study 1: Extending Online Drugstore’s Reach
	Oracle9i AS Wireless Edition Case Study 2: Expanding Bank Services
	Oracle9i AS Wireless Edition Case Study 3:Online Auction Sites

	4 Customizing Presentation with XML and XSQL: Flight Finder
	XML Flight Finder Sample Application: Introduction
	What’s Needed to Run XML Flight Finder
	How Flight Finder Works
	Flight Finder Queries the Database — Converts Results to XML
	Using XSQL Servlet to Process Queries and Output Result as XML

	Formatting XML with Stylesheets
	One Stylesheet, One Target Device
	Many Stylesheets, Many Target Devices
	Localizing Output

	XML to Database
	1 Taking the User’s Input
	2 Assign Values Acquired From User to Code Parameters
	3 Let User Know if Operation Succeeded

	Using Oracle9i Application Server Wireless Edition (Portal-to-Go)

	5 Customizing Content with XML: Dynamic News Application
	Introduction to the Dynamic News Application
	Dynamic News Main Tasks
	Overview of the Dynamic News Application
	Dynamic News SQL Example 1: Item Schema, nisetup.sql
	Dynamic News Servlets
	How Dynamic News Works: Bird’s Eye View
	Static Pages
	Semi-Dynamic Pages
	Dynamic Pages
	Personalizing Content
	1 Get End-User Preferences
	From a Client-Side Cookie
	Querying the Database

	2 Pull News Items from the Database
	3 Combine News Items to Build a Document
	4 Customizing Presentation
	Importing and Exporting News Items

	6 Using Oracle9i Internet File System (9iFS) to Build XML Applications
	Introducing Oracle9i Internet File System (9iFS)
	Working with XML in 9iFS
	Supply a Document Descriptor

	Using the 9iFS Parsers
	Standard 9iFS Parsers and Custom Parsers

	Using 9iFS Standard Parsers
	Parsing Options

	Using 9iFS Custom Parsers
	How 9iFS XML Parsing Works
	Writing a Parser Application
	Rendering XML in 9iFS
	XML and Business Intelligence
	Configuring 9iFS with XML Files

	Part III� XML Data Exchange
	7 Customizing Discoverer 4i Viewer with XSL
	Discoverer4i Viewer: Overview
	Discoverer 4i Viewer: Features
	Discoverer 4i Viewer: Architecture
	How Discoverer 4i Viewer Works
	Replicating Discoverer Application Server

	Using Discoverer 4i Viewer for Customized Web Applications
	Step 1: Browser Sends URL
	Step 2: Servlet Generates XML
	Discoverer XML Example 1: Three Workbook Report Data
	Step 3: XSLT Processor Applies an XSL Stylesheet
	Step 4: XSLT Processor Generates HTML

	Customizing Style by Modifying an XSL Stylesheet File: style.xsl
	Discoverer 4i Viewer: Customization Example Using XML and XSL
	Step 1: The XML File
	Step 2: XSL File, example1.xsl
	Step 3: XML+XSL = HTML
	Step 4: Customizing the XSL Stylesheet (example2.xsl)

	Frequently Asked Questions (FAQs): Discoverer 4i Viewer
	Explaining Servlets
	How Discoverer 4i Viewer Communicates with Browsers
	Discoverer 4i Viewer and XML
	disco4iv.xml
	Discoverer 4i and XSL
	Supported XSLT Processors
	XSL Editors
	Customizing Stylesheets
	Viewing Changes to a Modified Stylesheet
	Browser Displays Blank Screen
	More information on XML and XSL
	Discoverer Viewer XML’s DTD

	8 Online B2B XML Application: Step by Step
	Introduction to the Online B2B XML Application
	Requirements for Running the Online B2B XML Application
	Building the Online B2B XML Application: Overview
	Why Transform Data to XML?
	Why Use Advanced Queueing (AQ)?
	Online B2B XML Application: Main Components
	Overview of Tasks to Run the Online B2B XML Application
	Task 1. Set Up Your Environment to Run the Online B2B XML Application
	Task 2. Run the B2B Application
	Task 3. End the B2B Application Session

	Online B2B XML Application: Setting Up the Database Schema
	SQL Code Calling Sequence
	Create and Build the Retailer and Supplier Schemas
	SQL Example 1: Set up the Retailer and Supplier Environment — BuildAll.sql
	SQL Example 2: Create and Populate the Retailer-Supplier Schema — BuildSchema.sql

	Create the AQ Environment and Queue Tables
	SQL Example 3: Set Up the Environment for AQ — mkAQUser.sql
	SQL Example 4: Call the AQ Queue Creation Scripts — mkQ.sql
	SQL (PL/SQL) Example 5: Create Table, AppOne_QTab — mkQueueTableApp1.sql
	SQL (PL/SQL) Example 6: Create Table, AppTwo_QTab — mkQueueTableApp2.sql
	SQL (PL/SQL) Example 7: Create Table, AppThree_QTab — mkQueueTableApp3.sql
	SQL (PL/SQL) Example 8: Create Table, AppFour_QTab — mkQueueTableApp4.sql

	Create the Broker Schema Including XSL Stylesheet Table
	SQL Example 9: Create Broker Schema — mkSSTables.sql
	SQL (PL/SQL) Example 10: Input XSL data into CLOB. Populate the Broker Schema — setup.sql

	Cleaning Up Your Environment and Preparing to Rerun Application
	SQL Example 11: Stops and Drops Queue Applications. Starts Queue Applications — reset.sql
	Stop Queue SQL Scripts
	Drop Queue SQL Scripts
	Create Queue SQL Scripts
	Start Queue SQL Scripts
	dropOrder.sql

	Online B2B XML Application: Data Exchange Flow
	Retailer-Supplier Transactions
	Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog
	Step 2. Retailer Places Order
	Step 3. Retailer Confirms and Commits to Sending the Order
	Step 4. AQ Broker-Transformer Transforms the XML Document According to the Supplier’s Format
	Step 5. Supplier Application Parses Incoming Reformatted XML Order Document. Inserts Order into t...
	Step 6. Supplier Application Alerts Supplier of Pending Order
	Step 7. AQ Broker-Transformer Transforms the XML Order According to Retailer’s Format
	Step 8. Retailer Application Updates the Ord and Line_Item Tables

	Running the B2B XML Application: Detailed Procedure
	Step 1. Retailer Browses the Supplier’s OnLine "Hi-Tech Mall" Catalog
	XSQL Script Example 2: Checking the ID of Users Logging In: getlogged.xsql
	XSQL Script Example 1: Displays First Hi-Tech Mall Screen — index.xsql
	XSQL Script Example 3: Lists Catalog Products — inventory.xsql
	XSQL Script Example 4: Enter a Quantity — order.xsql

	Step 2. Retailer Places Order
	Step 3. "Validate" Commits the Transaction. Retailer Application Produces the XML Order
	XSQL Script Example 5: Starts B2B Process — placeorder.xsql
	Java Example 1: Action Handler Called by placeOrder.xsql — RetailActionHandler.java
	Java Example 2: Maintains Session Context for RetailActionHandler.java — SessionHolder.java

	Step 4. AQ Broker-Transformer Transforms XML Document According to Supplier’s Format
	Step 5. Supplier Application Parses the XML Document and Inserts the Order into the Supplier Data...
	Step 6a. Supplier Application Alerts Supplier of Pending Order
	Step 6b. Supplier Decides to Ship the Product(s) to the Retailer
	Step 6c. Supplier Application Generates a New XML Message to Send to AQ Broker

	Step 7. AQ Broker-Transformer Transforms XML Order into Retailer’s Format
	Step 8. Retailer Application Updates the Ord Table and Displays the New Order Status to Retailer
	To Stop the B2B XML Application
	Check Your Order Status Directly Using vieworder.sql

	Java Examples - Calling Sequence
	XSL and XSL Management Scripts
	XSL Stylesheet Example 1: Converts Results to HTML — html.xsl
	XSL Stylesheet Example 2: Converts Results for Palm Pilot Browser — pp.xsl
	Java Example 3: Stylesheet Management— GUIInterface.java
	Java Example 4: GUIInterface_AboutBoxPanel.java
	Java Example 5: GUIStylesheet.java

	XML Process and Management Scripts
	Java Example 6: Main4XMLtoDMLv2.java
	Java Example 7: ParserTest.java
	Java Example 8: TableInDocument.java
	Java Example 9: XMLFrame.java
	Java Example 10: XMLProducer.java
	Java Example 11: XMLtoDMLv2.java
	Java Example 12: XMLGen.java
	Java Example 13: XMLUtil.java
	Java Example 14: XSLTWrapper.java

	Other Scripts Used in the B2B XML Application
	XML Example 1: XSQL Configuration — XSQLConfig.xml
	Java Example 15: Message Header Script — MessageHeaders.java
	Java Example 16: Hold Constants for Use by Message Broker — AppCste.java

	Retailer Scripts
	Java Example 17: Retailer Waits for Status Update Sent from Supplier — UpdateMaster.java

	AQ Broker-Transformer and Advanced Queuing Scripts
	Java Example 18: AQ Broker Listens on One AQ Thread — BrokerThread.java
	Java Example 19: MessageBroker.java
	Java Example 20: AQReader.java
	Java Example 21: AQWriter.java
	Java Example 22: B2BMessage.java
	Java Example 23: ReadStructAQ.java
	Java Example 24: StopAllQueues.java
	Java Example 25: WriteStructAQ.java

	Supplier Scripts
	Java Example 26: SupplierFrame.java
	Java Example 27: Agent Wakes Up with Order Received from Retailer — SupplierWatcher.java

	9 Service Delivery Platform (SDP) and XML
	Oracle Service Delivery Platform
	SDP Business Solutions
	Phone Number Portability
	The Number Portability Process
	What Happens Behind the Scenes When You Order a New Telephone Service
	What Happens Behind the Scenes When You Change Local Service Providers
	XML is the Data Format. Advanced Queuing is Used at Each Point
	Why XML is Used for this Messaging
	Number Portability Allows Fast Configuring
	What are External Adapters?
	Terms Used in This Chapter

	Wireless Number Portability (WNP)
	NPAC
	Service Gateway
	Asymmetric Digital Subscriber Line (ADSL)
	Voice Over IP (Clarent)
	Bandwidth Exchange (Prototype)
	Number Portability and Messaging Architecture within SDP
	Communication Protocol Adapter
	Order Processing Engine
	Workflow Engine
	Fulfillment Engine
	Event Manager
	SDP Repository

	Requirements for Building a Phone Number Portability Application
	Provisioning a Network Element
	Using Internet Message Studio (iMessage) to Create an Application Message Set
	Code Generation
	Defining Message Sets

	Using Timer Manager

	A An XML Primer
	What is XML?
	W3C XML Recommendations
	XML Features
	How XML Differs From HTML
	Presenting XML Using Stylesheets
	eXtensible Stylesheet Language (XSL)
	Cascading Style Sheets (CSS)

	Extensibility and Document Type Definitions (DTD)
	Well-Formed and Valid XML Documents

	Why Use XML?
	Additional XML Resources

	Glossary
	Index

