
Oracle9i

SQLJ Developer’s Guide and Reference

Release 1 (9.0.1)

June 2001

Part No. A90212-01

Oracle9i SQLJ Developer’s Guide and Reference, Release 1 (9.0.1)

Part No. A90212-01

Copyright © 1999, 2001 Oracle Corporation. All rights reserved.

Primary Author: Brian Wright

Contributing Authors: Janice Nygard, Ekkehard Rohwedder

Contributors: Brian Becker, Alan Thiesen, Lei Tang, Julie Basu, Pierre Dufour, Jerry Schwarz, Risto
Lankinen, Cheuk Chau, Vishu Krishnamurthy, Rafiul Ahad, Jack Melnick, Tim Smith, Thomas Pfaeffle,
Tom Portfolio, Ellen Barnes, Susan Kraft, Sheryl Maring, Angie Long

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and JDeveloper, Oracle Net, Oracle Objects, Oracle9i, Oracle8i, Oracle8,
Oracle7, Oracle9i Lite, PL/SQL, Pro*C, SQL*Net, and SQL*Plus are trademarks or registered trademarks
of Oracle Corporation. Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments .. xv

Preface... xvii

Intended Audience ... xvii
Structure ... xvii
Related Documents.. xix
Conventions... xxii
Documentation Accessibility .. xxiii

1 Overview

Introduction to SQLJ .. 1-2
Basic Concepts... 1-2
Java and SQLJ versus PL/SQL ... 1-3

Overview of SQLJ Components .. 1-4
SQLJ Translator and SQLJ Runtime... 1-4
SQLJ Profiles.. 1-5

Overview of Oracle Extensions to the SQLJ Standard .. 1-7
Basic Translation Steps and Runtime Processing... 1-9

Translation Steps .. 1-9
Summary of Translator Input and Output ... 1-12
Runtime Processing.. 1-15

Alternative Deployment Scenarios ... 1-16
Running SQLJ in Applets .. 1-16
Introduction to SQLJ in the Server... 1-20
 iii

Using SQLJ with Oracle Lite ... 1-22
Alternative Development Scenarios ... 1-24

SQLJ Globalization Support .. 1-24
SQLJ in JDeveloper and Other IDEs .. 1-24
Windows Considerations .. 1-25

2 Getting Started

Assumptions and Requirements.. 2-2
Assumptions About Your Environment ... 2-2
Requirements for Using Oracle SQLJ .. 2-3
Supported JDK Versions.. 2-4
Oracle SQLJ Backwards Compatibility.. 2-6
Oracle JVM Configuration... 2-7

Checking the Installation and Configuration ... 2-8
Check for Installed Directories and Files .. 2-8
Set the Path and Classpath .. 2-8
Verify Installation of sqljutl Package ... 2-10

Testing the Setup... 2-11
Set Up the Runtime Connection ... 2-11
Create a Table to Verify the Database.. 2-13
Verify the JDBC Driver .. 2-13
Verify the SQLJ Translator and Runtime .. 2-14
Verify the SQLJ Translator Connection to the Database... 2-14

3 Basic Language Features

Overview of SQLJ Declarations ... 3-2
Rules for SQLJ Declarations .. 3-2
Iterator Declarations ... 3-3
Connection Context Declarations... 3-4
Declaration IMPLEMENTS Clause .. 3-5
Declaration WITH Clause.. 3-6

Overview of SQLJ Executable Statements ... 3-9
Rules for SQLJ Executable Statements... 3-9
SQLJ Clauses.. 3-10
Specifying Connection Context Instances and Execution Context Instances 3-11
iv

Executable Statement Examples ... 3-12
PL/SQL Blocks in Executable Statements... 3-14

Java Host Expressions, Context Expressions, and Result Expressions................................... 3-15
Overview of Host Expressions ... 3-15
Basic Host Expression Syntax ... 3-16
Examples of Host Expressions.. 3-18
Overview of Result Expressions and Context Expressions.. 3-20
Evaluation of Java Expressions at Runtime .. 3-21
Examples of Evaluation of Java Expressions at Runtime ... 3-23
Restrictions on Host Expressions ... 3-32

Single-Row Query Results—SELECT INTO Statements ... 3-33
SELECT INTO Syntax .. 3-33
Examples of SELECT INTO Statements .. 3-34
Examples with Host Expressions in SELECT-List... 3-34
SELECT INTO Error Conditions .. 3-35

Multi-Row Query Results—SQLJ Iterators ... 3-36
Iterator Concepts .. 3-36
General Steps in Using an Iterator ... 3-40
Named Iterators Versus Positional Iterators Versus Result Set Iterators........................... 3-40
Using Named Iterators .. 3-42
Using Positional Iterators .. 3-47
Using Iterators and Result Sets as Host Variables... 3-51
Using Iterators and Result Sets as Iterator Columns... 3-54

Assignment Statements (SET) .. 3-57
Stored Procedure and Function Calls ... 3-59

Calling Stored Procedures... 3-59
Calling Stored Functions ... 3-60
Using Iterators and Result Sets as Stored Function Returns.. 3-62

4 Key Programming Considerations

Selection of the JDBC Driver ... 4-2
Overview of the Oracle JDBC Drivers... 4-2
Driver Selection for Translation ... 4-4
Driver Selection and Registration for Runtime.. 4-5

Connection Considerations .. 4-6
 v

Single Connection or Multiple Connections Using DefaultContext 4-6
Closing Connections... 4-10
Multiple Connections Using Declared Connection Context Classes 4-12
More About the Oracle Class .. 4-12
More About the DefaultContext Class .. 4-14
Connection for Translation.. 4-17
Connection for Customization.. 4-18

Null-Handling ... 4-19
Wrapper Classes for Null-Handling .. 4-19
Examples of Null-Handling .. 4-20

Exception-Handling Basics ... 4-22
SQLJ and JDBC Exception-Handling Requirements ... 4-22
Processing Exceptions .. 4-23
Using SQLException Subclasses... 4-25

Basic Transaction Control .. 4-26
Overview of Transactions.. 4-26
Automatic Commits versus Manual Commits... 4-26
Specifying Auto-Commit as You Define a Connection... 4-27
Modifying Auto-Commit in an Existing Connection .. 4-28
Using Manual COMMIT and ROLLBACK ... 4-28
Effect of Commits and Rollbacks on Iterators and Result Sets .. 4-29

Summary: First Steps in SQLJ Code ... 4-30
Import Required Classes.. 4-30
Register JDBC Drivers and Set Default Connection .. 4-31
Set Up Exception Handling... 4-31
Set Up Host Variables, Execute SQLJ Clause, Process Results .. 4-32
Example of Single-Row Query using SELECT INTO.. 4-33
Set Up a Named Iterator .. 4-34
Example of Multiple-Row Query Using Named Iterator ... 4-35

Other Programming Considerations ... 4-38
Naming Requirements and Restrictions ... 4-38
Statement Caching Methods ... 4-41

5 Type Support

Supported Types for Host Expressions... 5-2
vi

Summary of Supported Types.. 5-2
Supported Types and Requirements for JDBC 2.0 .. 5-7
Unsupported Types.. 5-8
Wrapping PL/SQL BOOLEAN, RECORD, and TABLE Types... 5-9
Backwards Compatibility for Previous Oracle JDBC Releases .. 5-10

Support for Streams ... 5-12
General Use of SQLJ Streams.. 5-12
Using SQLJ Streams to Send Data.. 5-13
Retrieving Data into Streams—Precautions ... 5-16
Using SQLJ Streams to Retrieve Data.. 5-17
Processing SQLJ Streams... 5-19
Examples of Retrieving and Processing Stream Data ... 5-20
SQLJ Stream Objects as Output Parameters and Function Return Values 5-22
Stream Class Methods.. 5-24

Support for JDBC 2.0 LOB Types and Oracle Type Extensions ... 5-25
Package oracle.sql... 5-26
Support for BLOB, CLOB, and BFILE.. 5-26
Support for Oracle ROWID... 5-33
Support for Oracle REF CURSOR Types .. 5-36
Support for Other Oracle9i Datatypes... 5-38
Extended Support for BigDecimal ... 5-38

6 Objects and Collections

Oracle Objects and Collections.. 6-2
Introduction to Objects and Collections.. 6-2
Oracle Object Fundamentals ... 6-4
Oracle Collection Fundamentals .. 6-4
Object and Collection Datatypes .. 6-5

Custom Java Classes... 6-6
Custom Java Class Interface Specifications .. 6-6
Custom Java Class Support for Object Methods.. 6-10
Custom Java Class Requirements .. 6-11
Compiling Custom Java Classes... 6-17
Reading and Writing Custom Data ... 6-18
Additional Uses for ORAData Implementations ... 6-18
 vii

User-Defined Types .. 6-20
Creating Object Types .. 6-20
Creating Collection Types ... 6-22

JPublisher and the Creation of Custom Java Classes .. 6-25
What JPublisher Produces ... 6-25
Generating Custom Java Classes .. 6-29
JPublisher INPUT Files and Properties Files .. 6-39
Creating Custom Java Classes and Specifying Member Names.. 6-41
JPublisher Implementation of Wrapper Methods.. 6-42
JPublisher Custom Java Class Examples ... 6-43
Extending Classes Generated by JPublisher ... 6-47

Strongly Typed Objects and References in SQLJ Executable Statements 6-53
Selecting Objects and Object References into Iterator Columns .. 6-54
Updating an Object... 6-55
Inserting an Object Created from Individual Object Attributes .. 6-57
Updating an Object Reference .. 6-57

Strongly Typed Collections in SQLJ Executable Statements ... 6-59
Accessing Nested Tables—TABLE syntax and CURSOR syntax .. 6-60
Inserting a Row that Includes a Nested Table .. 6-60
Selecting a Nested Table into a Host Expression ... 6-61
Manipulating a Nested Table Using TABLE Syntax ... 6-63
Selecting Data from a Nested Table Using a Nested Iterator... 6-64
Selecting a VARRAY into a Host Expression ... 6-66
Inserting a Row that Includes a VARRAY .. 6-67

Serialized Java Objects .. 6-68
Serializing Java Classes to RAW and BLOB Columns .. 6-68
SerializableDatum—An ORAData Implementation ... 6-71
SerializableDatum in SQLJ Applications .. 6-74
SerializableDatum (Complete Class) ... 6-75

Weakly Typed Objects, References, and Collections ... 6-77
Support for Weakly Typed Objects, References, and Collections 6-77
Restrictions on Weakly Typed Objects, References, and Collections 6-78

7 Advanced Language Features

Connection Contexts .. 7-2
viii

Connection Context Concepts .. 7-2
Connection Context Logistics ... 7-4
More About Declaring and Using a Connection Context Class .. 7-5
Example of Multiple Connection Contexts... 7-7
Implementation and Functionality of Connection Context Classes...................................... 7-9
Use of the IMPLEMENTS Clause in Connection Context Declarations............................. 7-11
Semantics-Checking of Your Connection Context Usage... 7-12
Data Source Support .. 7-13

Execution Contexts ... 7-16
Relation of Execution Contexts to Connection Contexts .. 7-16
Creating and Specifying Execution Context Instances ... 7-17
Execution Context Synchronization... 7-18
ExecutionContext Methods ... 7-19
Relation of Execution Contexts to Multithreading .. 7-23

Multithreading in SQLJ... 7-25
Iterator Class Implementation and Advanced Functionality... 7-27

Implementation and Functionality of Iterator Classes.. 7-27
Use of the IMPLEMENTS Clause in Iterator Declarations... 7-28
Support for Subclassing of Iterator Classes .. 7-29
Result Set Iterators.. 7-30
Scrollable Iterators .. 7-30

Advanced Transaction Control ... 7-38
SET TRANSACTION Syntax .. 7-38
Access Mode Settings... 7-39
Isolation Level Settings .. 7-39
Using JDBC Connection Class Methods ... 7-40

SQLJ and JDBC Interoperability ... 7-42
SQLJ Connection Context and JDBC Connection Interoperability 7-42
SQLJ Iterator and JDBC Result Set Interoperability .. 7-47

Support for Dynamic SQL .. 7-52
Meta Bind Expressions... 7-52
SQLJ Dynamic SQL Examples .. 7-55

8 Translator Command Line and Options

Translator Command Line and Properties Files ... 8-2
 ix

SQLJ Options, Flags, and Prefixes.. 8-3
Command-Line Syntax and Operations.. 8-10
Properties Files for Option Settings ... 8-14
SQLJ_OPTIONS Environment Variable for Option Settings ... 8-18
Order of Precedence of Option Settings .. 8-18

Basic Translator Options.. 8-20
Basic Options for Command Line Only .. 8-20
Options for Output Files and Directories.. 8-27
Connection Options.. 8-31
Reporting and Line-Mapping Options .. 8-42
Options for Code Generation, Column Optimizations, and Parameter Optimizations... 8-49

Advanced Translator Options... 8-56
Prefixes that Pass Option Settings to Other Executables .. 8-56
Flags for Special Processing .. 8-61
Semantics-Checking Options .. 8-66

Translator Support and Options for Alternative Environments.. 8-72
Java and Compiler Options ... 8-72
Customization Options .. 8-80

9 Translator and Runtime Functionality

Internal Translator Operations ... 9-2
Code-Parsing and Syntax-Checking .. 9-2
Semantics-Checking ... 9-2
Code Generation ... 9-5
Java Compilation .. 9-9
Profile Customization .. 9-11

Functionality of Translator Errors, Messages, and Exit Codes ... 9-13
Translator Error, Warning, and Information Messages .. 9-13
Translator Status Messages ... 9-16
Translator Exit Codes ... 9-16

SQLJ Runtime.. 9-17
Runtime Packages... 9-18
Categories of Runtime Errors.. 9-19

Globalization Support in the Translator and Runtime ... 9-21
Character Encoding and Language Support .. 9-21
x

SQLJ and Java Settings for Character Encoding and Language Support........................... 9-24
Oracle SQLJ Extended Globalization Support ... 9-27
Manipulation Outside of SQLJ for Globalization Support... 9-31

10 Profiles and Customization

More About Profiles... 10-2
Creation of a Profile During Code Generation... 10-2
Sample Profile Entry .. 10-3

More About Profile Customization... 10-5
Overview of the Customizer Harness and Customizers .. 10-5
Steps in the Customization Process ... 10-6
Creation and Registration of a Profile Customization .. 10-7
Customization Error and Status Messages ... 10-9
Functionality of a Customized Profile at Runtime .. 10-10

Oracle-Specific Code Generation (No Profiles).. 10-11
Advantages and Disadvantages of Oracle-Specific Code Generation.............................. 10-11
Environment Requirements for Oracle-Specific Code Generation 10-12
Coding Considerations and Limitations with Oracle-Specific Code Generation 10-13
Translator/Customizer Usage Changes with Oracle-Specific Code Generation............ 10-15
Server-Side Considerations with Oracle-Specific Code Generation 10-16

Customization Options and Choosing a Customizer .. 10-17
Overview of Customizer Harness Options... 10-17
General Customizer Harness Options... 10-19
Customizer Harness Options for Connections... 10-23
Customizer Harness Options that Invoke Specialized Customizers 10-25
Overview of Customizer-Specific Options ... 10-28
Oracle Customizer Options... 10-29
Options for Other Customizers .. 10-40
SQLJ Options for Profile Customization ... 10-40

Use of JAR Files for Profiles ... 10-41
JAR File Requirements... 10-41
JAR File Results... 10-42

SQLCheckerCustomizer for Profile Semantics-Checking.. 10-43
Invoking SQLCheckerCustomizer with the Customizer Harness verify Option 10-43
SQLCheckerCustomizer Options ... 10-44
 xi

11 SQLJ in the Server

Introduction to Server-Side SQLJ.. 11-2
Creating SQLJ Code for Use within the Server .. 11-3

Database Connections within the Server .. 11-3
Coding Issues within the Server... 11-4
Default Output Device in the Server.. 11-5
Name Resolution in the Server ... 11-6
SQL Names Versus Java Names... 11-7

Translating SQLJ Source on a Client and Loading Components .. 11-8
Loading Classes and Resources into the Server ... 11-8
Loaded Class and Resource Schema Objects .. 11-10
Publishing the Application After Loading Class and Resource Files 11-13
Summary: Running a Client Application in the Server .. 11-13

Loading SQLJ Source and Translating in the Server ... 11-15
Loading SQLJ Source Code into the Server .. 11-16
Option Support in the Server Embedded Translator .. 11-18
Loaded Source and Generated Class and Resource Schema Objects................................ 11-21
Error Output from the Server Embedded Translator.. 11-24
Publishing the Application After Loading Source Files ... 11-25

Dropping Java Schema Objects ... 11-26
Additional Considerations.. 11-27

Java Multithreading in the Server .. 11-27
Recursive SQLJ Calls in the Server... 11-27
Verifying that Code is Running in the Server .. 11-29

Additional Vehicles for SQLJ in the Server... 11-30
Enterprise JavaBeans .. 11-30
CORBA Server Objects... 11-31

12 Sample Applications

Demo Directories .. 12-2
Properties Files .. 12-3

Runtime Connection Properties File .. 12-3
SQLJ Translator Properties File .. 12-3

Basic Samples .. 12-6
Named Iterator—NamedIterDemo.sqlj... 12-6
xii

Positional Iterator—PosIterDemo.sqlj ... 12-10
Host Expressions—ExprDemo.sqlj .. 12-14

Object, Collection, and ORAData Samples... 12-21
Definition of Object and Collection Types.. 12-21
Oracle Objects—ObjectDemo.sqlj .. 12-28
Oracle Nested Tables—NestedDemo1.sqlj and NestedDemo2.sqlj 12-37
Oracle VARRAYs—VarrayDemo1.sqlj and VarrayDemo2.sqlj... 12-45
General Use of ORAData—BetterDate.java.. 12-49

Advanced Samples ... 12-54
REF CURSOR—RefCursDemo.sqlj .. 12-54
Multithreading—MultiThreadDemo.sqlj.. 12-57
Interoperability with JDBC—JDBCInteropDemo.sqlj ... 12-59
Multiple Connection Contexts—MultiSchemaDemo.sqlj... 12-61
Data Manipulation and Multiple Connection Contexts—QueryDemo.sqlj 12-62
Subclassing Iterators—SubclassIterDemo.sqlj ... 12-65
Dynamic SQL—DynamicDemo.sqlj .. 12-68

Performance Enhancement Samples... 12-78
Prefetch Demo—PrefetchDemo.sqlj .. 12-78
Update Batching—BatchDemo.sqlj.. 12-83

Applet Sample ... 12-87
Generic Applet HTML Page—Applet.html.. 12-87
Generic Applet SQLJ Source—AppletMain.sqlj .. 12-88

Server-Side Sample .. 12-94
SQLJ in the Server—ServerDemo.sqlj.. 12-94

JDBC Versus SQLJ Sample Code... 12-95
JDBC Version of the Sample Code ... 12-95
SQLJ Version of the Sample Code.. 12-99

A Performance and Debugging

Performance Enhancement Features ... A-2
Row Prefetching.. A-3
Statement Caching.. A-4
Update Batching ... A-11
Column Definitions .. A-22
Parameter Size Definitions .. A-23
 xiii

AuditorInstaller Customizer for Debugging... A-26
Overview of Auditors and Code Layers ... A-26
Invoking AuditorInstaller with the Customizer Harness debug Option A-27
AuditorInstaller Runtime Output .. A-28
AuditorInstaller Options ... A-29
Full Command-Line Examples ... A-33

Additional SQLJ Debugging Considerations ... A-34
SQLJ -linemap Flag... A-34
Server-Side debug Option ... A-35
Developing and Debugging in JDeveloper... A-35

B SQLJ Error Messages

Translation Time Messages ... B-2
Runtime Messages .. B-47
xiv

Send Us Your Comments

Oracle9i SQLJ Developer’s Guide and Reference, Release 1 (9.0.1)

Part No. A90212-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: jpgcomment_us@oracle.com
■ FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
xv

xvi

Preface

This preface introduces you to the Oracle9i SQLJ Developer’s Guide and Reference,
discussing the intended audience, structure, and conventions of this document. A
list of related Oracle documents is also provided.

Intended Audience
This manual is intended for anyone with an interest in SQLJ programming but
assumes at least some prior knowledge of the following:

■ Java

■ SQL

■ Oracle PL/SQL

■ JDBC

■ Oracle databases

Although general knowledge of SQL and JDBC is sufficient, any knowledge of
Oracle-specific SQL and JDBC features would be helpful as well.

See "Related Documents" on page xix below for the names of Oracle documents that
discuss SQL and JDBC.

Structure
The two major aspects of using SQLJ are:

■ creating your SQLJ source code

■ running the SQLJ translator
 xvii

Chapters 3 through 7 provide information about programming features, with
chapters 3 and 4 covering the most important aspects.

Chapter 8 provides information about translator options and features.

In all, this document consists of the following chapters and appendixes:

■ Chapter 1, "Overview"—Introduces SQLJ concepts, components, and processes.
Discusses possible alternative deployment or development scenarios.

■ Chapter 2, "Getting Started"—Guides you through the steps of testing and
verifying the installation of an Oracle database, Oracle JDBC drivers, and
Oracle SQLJ.

■ Chapter 3, "Basic Language Features"—Discusses SQLJ programming features
you must have for basic applications. Focuses largely on standard SQLJ
constructs, as opposed to Oracle extended functionality.

■ Chapter 4, "Key Programming Considerations"—Discusses key issues to
consider as you write your source code, such as connections, null-handling, and
exception-handling.

■ Chapter 5, "Type Support"—Lists Java types that Oracle SQLJ supports,
discusses the use of stream types, and discusses Oracle datatype extensions and
the Java types that correspond to them.

■ Chapter 6, "Objects and Collections"—Discusses Oracle SQLJ support of
user-defined object and collection types, including use of the Oracle JPublisher
utility to generate corresponding Java types.

■ Chapter 7, "Advanced Language Features"—Discusses additional SQLJ
programming features you may need for more advanced applications.

■ Chapter 8, "Translator Command Line and Options"—Documents
command-line syntax, properties files, and options for the Oracle SQLJ
translator.

■ Chapter 9, "Translator and Runtime Functionality"—Discusses the functionality
of translator operations, translator and runtime error messages, and
globalization support.

■ Chapter 10, "Profiles and Customization"—Describes SQLJ profiles (used in
implementing SQL operations); documents options you can specify during
translation regarding the customization of your profiles for particular
environments.
xviii

■ Chapter 11, "SQLJ in the Server"—Discusses how to create and load SQLJ
applications to run in the server, typically as stored procedures or functions.
This includes optional use of the server-side embedded translator.

■ Chapter 12, "Sample Applications"—Contains source code for a range of fully
functional SQLJ sample applications. Oracle provides these applications in the
demo directory on the product CD.

■ Appendix A, "Performance and Debugging"—Briefly discusses performance
tuning and refers to other useful documentation; discusses debugging
scenarios, focusing on the AuditorInstaller utility that is provided with
Oracle SQLJ.

■ Appendix B, "SQLJ Error Messages"—Lists Oracle SQLJ translator and runtime
error messages, their causes, and what actions you should take in response.

Related Documents
This section lists other documentation of interest.

See the following additional documents available from the Oracle Java Platform
group:

■ Oracle9i JDBC Developer’s Guide and Reference

This book covers programming syntax and features of Oracle’s implementation
of the JDBC standard (for Java Database Connectivity). This includes an
overview of the Oracle JDBC drivers, details of Oracle’s implementation of
JDBC 1.22 and 2.0 features, and discussion of Oracle JDBC type extensions and
performance extensions.

■ Oracle9i JPublisher User’s Guide

This book describes how to use the Oracle JPublisher utility to translate object
types and other user-defined types to Java classes. If you are developing SQLJ
or JDBC applications that use object types, VARRAY types, nested table types,
or object reference types, then JPublisher can generate custom Java classes to
map to them.

■ Oracle9i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle9i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle Java platform as a whole, rather than to
a particular product (such as JDBC, SQLJ, or EJBs) is in this book.
 xix

■ Oracle9i Servlet Engine Developer’s Guide

This book documents use of the Oracle9i Servlet Engine, the servlet container in
Oracle9i.

■ Oracle JavaServer Pages Developer’s Guide and Reference

This book covers the use of JavaServer Pages technology to embed Java code
and JavaBean invocations inside HTML pages. Both standard JSP features and
Oracle-specific features are described.

■ Oracle9i Java Tools Reference

This book documents Java-related tools and utilities for use with Oracle9i or in
deploying applications to Oracle9i (such as the session shell and loadjava
tools).

■ Oracle9i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in
Oracle9i. With stored procedures (functions, procedures, triggers, and SQL
methods), Java developers can implement business logic at the server level,
thereby improving application performance, scalability, and security.

■ Oracle9i Enterprise JavaBeans Developer’s Guide and Reference

This book describes Oracle’s Enterprise JavaBeans implementation and
extensions.

■ Oracle9i CORBA Developer’s Guide and Reference

This book describes Oracle’s CORBA implementation and extensions.

You can also refer to the following documents from the Oracle Server Technologies
group.

■ Oracle Net Services Administrator’s Guide

This book contains information about the Oracle8 Connection Manager and
Oracle Net network administration in general.

■ Oracle9i Globalization Support Guide

This book contains information about Oracle Globalization Support
environment variables, character sets, and territory and locale settings. In
addition, it contains an overview of common globalization issues, typical
scenarios, and related considerations for OCI and SQL programmers.
xx

■ Oracle Advanced Security Administrator’s Guide

This book describes features of the Oracle Advanced Security Option (formerly
known as ANO or ASO).

■ Oracle9i Application Developer’s Guide - Fundamentals

This book introduces basic design concepts and programming features in using
Oracle9i and creating data-access applications.

■ Oracle9i Application Developer’s Guide - Large Objects (LOBs)

This book describes general functionality and features of "large objects" (LOBs)
in Oracle9i.

■ Oracle9i Application Developer’s Guide - Object-Relational Features

This book contains general information about structured objects and other
object-relational features in Oracle9i.

■ Oracle9i Supplied Java Packages Reference

This book documents Java packages available as part of Oracle9i.

■ Oracle9i Supplied PL/SQL Packages and Types Reference

This book documents PL/SQL packages available as part of Oracle9i.

■ PL/SQL User’s Guide and Reference

This book explains the concepts and features of PL/SQL, Oracle’s procedural
language extension to SQL.

■ Oracle9i SQL Reference

This book contains a complete description of the content and syntax of the SQL
commands and features used to manage information in an Oracle database.

■ Oracle9i Database Reference

This book contains general reference information about Oracle9i.

■ Oracle9i Database Error Messages

This book contains information about error messages that can be passed by
Oracle9i.

Documentation from the following Oracle groups may also be of interest.

■ Oracle9i Application Server Documentation Library

■ Oracle Application Server, Release 4.0.8.2 Developer’s Guide
 xxi

■ Oracle JDeveloper online help

For documentation of SQLJ standard features and syntax, refer to ANSI
specification X3.135.10-1998:

■ Information Technology - Database Languages - SQL - Part 10: Object Language
Bindings (SQL/OLB)

You can obtain this from ANSI through the following Web site:

http://www.ansi.org/

(Click on "Electronic Standards Store" and search for the above specification
number.)

Conventions
This document uses UNIX syntax for file paths (for example:
/myroot/myfile.html). If you are using some other kind of operating system,
then substitute the appropriate syntax.

This document uses [Oracle Home] to indicate your Oracle home directory.

In addition, this document uses the following conventions:

Convention Meaning

italicized regular text Italicized regular text is used for emphasis or to indicate
a term that is being defined or will be defined shortly.

. . . Horizontal ellipsis points in sample code indicate the
omission of a statement or statements or part of a
statement. This is done when you would normally
expect additional statements or code to appear, but such
statements or code would not be related to the example.

code text Code text within regular text indicates class names,
object names, method names, variable names, Java types,
Oracle datatypes, file names, and directory names.

italicized_code_text Italicized code text in a program statement indicates
something that must be provided by the user.

<italicized_code_text > Angle brackets enclosing italicized code text in a
program statement indicates something that can
optionally be provided by the user.
xxii

In this document, it was not feasible to use more standard conventions, such as
square brackets [] to enclose optional items to be provided, because of the
particulars of SQLJ coding syntax.

For example, in the following statement the square brackets and curly brackets are
part of SQLJ coding syntax, but the angle brackets indicate that connctxt_exp,
execctxt_exp, and results_exp are optional entries. You must provide a SQL
operation, however.

#sql <[<connctxt_exp><,><execctxt_exp>]> <results_exp> = { SQL operation };

And in the following SQLJ command line option (-user), the angle brackets
indicate that conn_context_class and the password (with preceding slash) are
optional entries. You must provide a username, however.

-user<@conn_context_class>=username</password>

Documentation Accessibility
Oracle’s goal is to make our products, services, and supporting documentation
accessible to the disabled community with good usability. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For additional information, visit the Oracle
Accessibility Program Web site at:

http://www.oracle.com/accessibility/

JAWS, a Windows screen reader, may not always correctly read the code examples
in this document. The conventions for writing code require that closing braces
should appear on an otherwise empty line; however, JAWS may not always read a
line of text that consists solely of a bracket or brace.
 xxiii

xxiv

 Ove
1

Overview

This chapter provides a general overview of SQLJ features and scenarios. The
following topics are discussed:

■ Introduction to SQLJ

■ Overview of SQLJ Components

■ Overview of Oracle Extensions to the SQLJ Standard

■ Basic Translation Steps and Runtime Processing

■ Alternative Deployment Scenarios

■ Alternative Development Scenarios
rview 1-1

Introduction to SQLJ
Introduction to SQLJ
This section introduces the basic concepts of SQLJ and discusses the complementary
relationship between Java and PL/SQL in Oracle applications.

Basic Concepts
SQLJ enables applications programmers to embed SQL operations in Java code in a
way that is compatible with the Java design philosophy. A SQLJ program is a Java
program containing embedded SQL statements that comply with the ISO-standard
SQLJ Language Reference syntax. Oracle9i SQLJ supports the SQLJ ISO standard
specification. The standard covers only static SQL operations—those that are
predefined and do not change in real-time as a user runs the application (although
the data values that are transmitted can change dynamically). Oracle SQLJ also
offers extensions to support dynamic SQL operations—those that are not predefined,
where the operations themselves can change in real-time. (It is also possible to use
dynamic SQL operations through JDBC code or PL/SQL code within a SQLJ
application.) Typical applications contain much more static SQL than dynamic SQL.

SQLJ consists of both a translator and a runtime component and is smoothly
integrated into your development environment. The developer runs the translator,
with translation, compilation, and customization taking place in a single step when
the sqlj front-end utility is run. The translation process replaces embedded SQL
with calls to the SQLJ runtime, which implements the SQL operations. In standard
SQLJ this is typically, but not necessarily, performed through calls to a JDBC driver.
To access an Oracle database, you would typically use an Oracle JDBC driver. When
the end user runs the SQLJ application, the runtime is invoked to handle the SQL
operations.

The Oracle SQLJ translator is conceptually similar to other Oracle precompilers and
allows the developer to check SQL syntax, verify SQL operations against what is
available in the schema, and check the compatibility of Java types with
corresponding database types. In this way, errors can be caught by the developer
instead of by a user at runtime. The translator checks the following:

■ syntax of the embedded SQL

■ SQL constructs, against a specified database schema to ensure consistency
within a particular set of SQL entities (optional)

It verifies table names and column names, for example.

■ datatypes, to ensure that the data exchanged between Java and SQL have
compatible types and proper type conversions
1-2 SQLJ Developer’s Guide and Reference

Introduction to SQLJ
The SQLJ methodology of embedding SQL operations directly in Java code is much
more convenient and concise than the JDBC methodology. In this way, SQLJ reduces
development and maintenance costs in Java programs that require database
connectivity.

Java and SQLJ versus PL/SQL
Java (including SQLJ) in Oracle applications does not replace PL/SQL. Java and
PL/SQL are complementary to each other in the needs they serve.

While PL/SQL and Java can both be used to build database applications, the two
languages were designed with different intents and, as a result, are suited for
different kinds of applications:

■ PL/SQL is a better solution for SQL-intensive applications. PL/SQL is
optimized for SQL, and so SQL operations are faster in PL/SQL than in Java.
Also, PL/SQL uses SQL datatypes directly, while Java applications must
convert between SQL datatypes and Java types.

■ Java, with its superior programming model, is a better solution for
logic-intensive applications. Furthermore, Java’s more general type system is
better suited than PL/SQL for component-oriented applications.

Oracle provides easy interoperability between PL/SQL and Java, ensuring that you
can take advantage of the strengths of both languages. PL/SQL programs can
transparently call Java stored procedures, enabling you to build component-based
Enterprise JavaBeans and CORBA applications. PL/SQL programs can have
transparent access to a wide variety of existing Java class libraries through trivial
PL/SQL call specifications.

Java programs can call PL/SQL stored procedures and anonymous blocks through
JDBC or SQLJ. In particular, SQLJ provides syntax for calling stored procedures and
functions from within a SQLJ statement, and also supports embedded PL/SQL
anonymous blocks within a SQLJ statement.

Note: Using PL/SQL anonymous blocks within SQLJ statements
is one way to support dynamic SQL in a SQLJ application. (See
"Dynamic SQL—DynamicDemo.sqlj" on page 12-68 for a sample.)
However, Oracle9i SQLJ includes extensions to support dynamic
SQL directly. (See "Support for Dynamic SQL" on page 7-52.
 Overview 1-3

Overview of SQLJ Components
Overview of SQLJ Components
This section introduces the main SQLJ components and the concept of SQLJ profiles.

SQLJ Translator and SQLJ Runtime
Oracle SQLJ consists of two major components:

■ Oracle SQLJ translator—This component is a precompiler that developers run
after creating SQLJ source code.

The translator, written in pure Java, supports a programming syntax that allows
you to embed SQL operations inside SQLJ executable statements. SQLJ
executable statements, as well as SQLJ declarations, are preceded by the #sql
token and can be interspersed with Java statements in a SQLJ source code file.
SQLJ source code file names must have the .sqlj extension. Here is a sample
SQLJ statement:

#sql { INSERT INTO emp (ename, sal) VALUES (’Joe’, 43000) };

The translator produces a .java file and, for standard SQLJ code generation,
one or more SQLJ profiles, which contain information about your SQL
operations. SQLJ then automatically invokes a Java compiler to produce
.class files from the .java file.

■ Oracle SQLJ runtime—Assuming standard SQLJ code generation, this
component is invoked automatically each time an end user runs a SQLJ
application.

The SQLJ runtime, also written in pure Java, implements the desired actions of
your SQL operations, accessing the database using a JDBC driver. The generic
SQLJ standard does not require that a SQLJ runtime use a JDBC driver to access
the database; however, Oracle SQLJ does require a JDBC driver, and, in fact,
requires an Oracle JDBC driver if your application is customized with the
default Oracle customizer (see below), or if Oracle-specific code generation is
used.

For more information about the runtime, see "SQLJ Runtime" on page 9-17.

Note: Alternatively, there is an Oracle-specific code generation
setting that results in translation directly into Oracle JDBC code. In
this case, no profiles are produced. See "Oracle-Specific Code
Generation (No Profiles)" on page 10-11.
1-4 SQLJ Developer’s Guide and Reference

Overview of SQLJ Components
In addition to the translator and runtime, there is a component known as the
customizer. A customizer tailors your SQLJ profiles (if any) for a particular
database implementation and vendor-specific features and datatypes. By default,
the Oracle SQLJ front end invokes an Oracle customizer to tailor your profiles for an
Oracle database and Oracle-specific features and datatypes.

When you use the Oracle customizer during translation, your application will
require the Oracle SQLJ runtime and an Oracle JDBC driver when it runs.

SQLJ Profiles
With standard SQLJ code generation, SQLJ profiles are serialized Java resources (or,
optionally, classes) generated by the SQLJ translator, which contain details about the
embedded SQL operations in your SQLJ source code. The translator creates these
profiles, then either serializes them and puts them into binary resource files, or puts
them into .class files (according to your translator option settings).

Overview of Profiles
SQLJ profiles are used (assuming standard SQLJ code generation) in implementing
the embedded SQL operations in your SQLJ executable statements. Profiles contain
information about your SQL operations and the types and modes of data being
accessed. A profile consists of a collection of entries, where each entry maps to one
SQL operation. Each entry fully specifies the corresponding SQL operation,
describing each of the parameters used in executing this instruction.

SQLJ generates a profile for each connection context class in your application,
where, typically, each connection context class corresponds to a particular set of
SQL entities you use in your database operations. (There is one default connection
context class, and you can declare additional classes.) The SQLJ standard requires
that the profiles be of standard format and content. Therefore, for your application
to use vendor-specific extended features, your profiles must be customized. By
default, this occurs automatically, with your profiles being customized to use
Oracle-specific extended features.

Note: As an alternative, Oracle SQLJ supports a setting for
Oracle-specific code generation. In this case, the translator
generates Oracle JDBC calls directly, and details of your embedded
SQL operations are embodied in the JDBC calls. There are no
profiles in this case. See "Oracle-Specific Code Generation (No
Profiles)" on page 10-11.
 Overview 1-5

Overview of SQLJ Components
Profile customization allows vendors to add value in two ways:

■ Vendors can support their own specific datatypes and SQL syntax. (For
example, the Oracle customizer maps standard JDBC PreparedStatement
method calls in translated SQLJ code to OraclePreparedStatement method
calls, which provide support for Oracle type extensions.)

■ Vendors can improve performance through specific optimizations.

For example, you must customize your profile to use Oracle objects in your SQLJ
application.

Binary Portability
SQLJ-generated profile files feature binary portability. That is, you can port them as is
and use them with other kinds of databases or in other environments if you have
not employed vendor-specific datatypes or features. This is true of generated
.class files as well.

Notes:

■ By default, SQLJ profile file names end in the .ser extension,
but this does not mean that all .ser files are profiles. Any
serialized object uses that extension, and a SQLJ program unit
can use serialized objects other than its profiles. (Optionally,
profiles can be converted to .class files instead of .ser files.)

■ A SQLJ profile is not produced if there are no SQLJ executable
statements in the source code.
1-6 SQLJ Developer’s Guide and Reference

Overview of Oracle Extensions to the SQLJ Standard
Overview of Oracle Extensions to the SQLJ Standard
With Oracle9i (and in Oracle8i release 8.1.7), Oracle SQLJ supports the SQLJ ISO
specification. Because the SQLJ ISO standard is a superset of the SQLJ ANSI
standard, it requires a JDK 1.2 or later environment that complies with J2EE. The
SQLJ ANSI standard requires only JDK 1.1.x. The Oracle SQLJ translator accepts a
broader range of SQL syntax than the ANSI SQLJ Standard specifies.

The ANSI standard addresses only the SQL92 dialect of SQL, but allows extension
beyond that. Oracle SQLJ supports Oracle’s SQL dialect, which is a superset of
SQL92. If you need to create SQLJ programs that work with other DBMS vendors,
avoid using SQL syntax and SQL types that are not in the standard and, therefore,
may not be supported in other environments. (On your product CD, the directory
[Oracle Home]/sqlj/demo/components includes a semantics-checker that
you can use to verify that your SQLJ statements contain only standard SQL.)

For general information about Oracle SQLJ extensions, see Chapter 5, "Type
Support", and Chapter 6, "Objects and Collections".

Oracle SQLJ Type Extensions
Oracle SQLJ supports the Java types listed below as extensions to the SQLJ
standard. Do not use these or other types if you may want to use your code in other
environments. To ensure that your application is portable, use the Oracle SQLJ
-warn=portable flag. (See "Translator Warnings (-warn)" on page 8-43.)

Using any of the following extensions requires Oracle customization or
Oracle-specific code generation during translation, as well as the Oracle SQLJ
runtime and an Oracle JDBC driver when your application runs.

■ instances of oracle.sql.* classes as wrappers for SQL data (see "Support for
JDBC 2.0 LOB Types and Oracle Type Extensions" on page 5-25)

■ custom Java classes (classes that implement the oracle.sql.ORAData
interface or the JDBC standard java.sql.SQLdata interface), typically
produced by the Oracle JPublisher utility to correspond to SQL objects, object
references, and collections (see "Custom Java Classes" on page 6-6)

Note, however, that the SQLData interface is standard. Classes that implement
it are likely supported by other vendors’ JDBC drivers and databases.

■ stream instances (AsciiStream, BinaryStream, and UnicodeStream) used
as output parameters (see "Support for Streams" on page 5-12)

■ iterator and result set instances as input or output parameters anywhere (the
standard specifies them only in result expressions or cast statements; see "Using
 Overview 1-7

Overview of Oracle Extensions to the SQLJ Standard
Iterators and Result Sets as Host Variables" on page 3-51 and "Using Iterators
and Result Sets as Stored Function Returns" on page 3-62)

■ Unicode character types—NString, NCHAR, NCLOB, NcharAsciiStream, and
NcharUnicodeStream (see "Oracle SQLJ Extended Globalization Support" on
page 9-27)

Oracle SQLJ Functionality Extensions
In addition to the type extensions listed above, Oracle SQLJ supports the following
extended functionality:

■ Oracle-specific code generation

This generates JDBC code directly. No profiles are produced and much of the
SQLJ runtime functionality is bypassed during program execution. See
"Oracle-Specific Code Generation (No Profiles)" on page 10-11.

■ dynamic SQL in SQLJ statements

See "Support for Dynamic SQL" on page 7-52.

■ scrollable result set iterators with additional navigation methods, and FETCH
syntax from result set iterators and scrollable result set iterators

See "Scrollable Iterators" on page 7-30.
1-8 SQLJ Developer’s Guide and Reference

Basic Translation Steps and Runtime Processing
Basic Translation Steps and Runtime Processing
This section introduces the following:

■ basic steps of the Oracle SQLJ translator in translating SQLJ source code

■ a summary of translator input and output

■ runtime processing when a user runs your application

For more detailed information about the translation steps, see "Internal Translator
Operations" on page 9-2.

SQLJ source code contains a mixture of standard Java source together with SQLJ
class declarations and SQLJ executable statements containing embedded SQL
operations.

SQLJ source files have the .sqlj file name extension. The file name must be a legal
Java identifier. If the source file declares a public class (maximum of one), then the
file name must match the name of this class. If the source file does not declare a
public class, then the file name should match the first defined class.

Translation Steps
After you have completed your .sqlj file, you must run SQLJ to process the files.
(For coding the .sqlj file, basic SQLJ programming features and key
considerations are discussed in Chapter 3 and Chapter 4.) The following example,
for the source file Foo.sqlj whose first public class is Foo, shows SQLJ being run
in its simplest form, with no command-line options:

sqlj Foo.sqlj

What this command actually runs is a front-end script or utility (depending on the
platform) that reads the command line, invokes a Java virtual machine (JVM), and
passes arguments to it. The JVM invokes the SQLJ translator and acts as a front end.

This document refers to running the front end as "running SQLJ" and to its
command line as the "SQLJ command line". For information about command-line
syntax, see "Command-Line Syntax and Operations" on page 8-10.

From this point the following sequence of events occurs, presuming each step
completes without fatal error.

1. The JVM invokes the SQLJ translator.

2. The translator parses the source code in the .sqlj file, checking for proper
SQLJ syntax and looking for type mismatches between your declared SQL
 Overview 1-9

Basic Translation Steps and Runtime Processing
datatypes and corresponding Java host variables. (Host variables are local Java
variables used as input or output parameters in your SQL operations. "Java
Host Expressions, Context Expressions, and Result Expressions" on page 3-15
describes them.)

3. The translator invokes the semantics-checker, which checks the syntax and
semantics of embedded SQL statements. It also can optionally check the use of
database elements in your code against an appropriate database schema.

The developer can use online or offline checking, according to SQLJ option
settings. If online checking is performed, then SQLJ will connect to a specified
database schema to verify that the database supports all the database tables,
stored procedures, and SQL syntax that the application uses, and that the host
variable types in the SQLJ application are compatible with datatypes of
corresponding database columns.

4. For standard SQLJ code generation, the translator processes your SQLJ source
code, converts SQL operations to SQLJ runtime calls, and generates Java output
code and one or more SQLJ profiles. A separate profile is generated for each
connection context class in your source code, where a different connection
context class is typically used for each interrelated set of SQL entities that you
use in your operations.

For Oracle-specific code generation, SQL operations are converted directly into
Oracle JDBC calls and no profiles are produced. See "Oracle-Specific Code
Generation (No Profiles)" on page 10-11.

Generated Java code is put into a .java output file containing the following:

■ any class definitions and Java code from your .sqlj source file

■ class definitions created as a result of your SQLJ iterator and connection
context declarations (see "Overview of SQLJ Declarations" on page 3-2)

■ a class definition for a specialized class (known as the profile-keys class) that
SQLJ generates and uses in conjunction with your profiles (standard SQLJ
code generation only)

■ calls to the SQLJ runtime (for standard SQLJ code generation) or to Oracle
JDBC (for Oracle-specific code generation) to implement the actions of your
embedded SQL operations

(The SQLJ runtime, in turn, uses the JDBC driver to access the database. See
"SQLJ Runtime" on page 9-17 for more information.)

Generated profiles (for standard SQLJ code generation only) contain
information about all the embedded SQL statements in your SQLJ source code,
1-10 SQLJ Developer’s Guide and Reference

Basic Translation Steps and Runtime Processing
such as actions to take, datatypes being manipulated, and tables being accessed.
When your application is run, the SQLJ runtime accesses the profiles to retrieve
your SQL operations and pass them to the JDBC driver.

By default, profiles are put into .ser serialized resource files, but SQLJ can
optionally convert the .ser files to .class files as part of the translation.

5. The JVM invokes the Java compiler, which is usually, but not necessarily, the
standard javac provided with the Sun Microsystems JDK.

6. The compiler compiles the Java source file generated in step 4 and produces
Java .class files as appropriate. This will include a .class file for each class
you defined, a .class file for each of your SQLJ declarations, and a .class
file for the profile-keys class.

7. For standard SQLJ code generation, the JVM invokes the Oracle SQLJ
customizer or other specified customizer.

8. For standard SQLJ code generation, the customizer customizes the profiles
generated in step 4.

Notes:

■ The preceding is a very generic example. It is also possible to
specify pre-existing .java files on the command line to be
compiled (and to be available for type resolution as well), or to
specify pre-existing profiles to be customized, or to specify
.jar files containing profiles to be customized. See "Translator
Command Line and Properties Files" on page 8-2 for more
information.

■ SQLJ generates profiles and the profile-keys class only if your
source code includes SQLJ executable statements, and only if
you use standard SQLJ code generation.

■ For standard SQLJ code generation, if you use the Oracle
customizer during translation, your application will require the
Oracle SQLJ runtime and an Oracle JDBC driver when it runs,
even if your code does not use Oracle-specific features.

■ For Oracle-specific code generation, your application will
require an Oracle JDBC driver when it runs, even if your code
does not use Oracle-specific features.
 Overview 1-11

Basic Translation Steps and Runtime Processing
Summary of Translator Input and Output
This section summarizes what the SQLJ translator takes as input, what it produces
as output, and where it puts its output.

Input
In its most basic operation, the SQLJ translator takes one or more .sqlj source files
as input in its command line. The name of your main .sqlj file is based on the
public class it defines, if it defines one, or else on the first class it defines if there are
no public class definitions. Each public class you define must be in its own .sqlj
file.

If your main .sqlj file defines class MyClass, then the source file name must be:

MyClass.sqlj

This must also be the file name if there are no public class definitions but MyClass
is the first class defined.

When you run SQLJ, you can also specify numerous SQLJ options in the command
line or properties files.

For more information about SQLJ input, including additional types of files you can
specify in the command line, see "Translator Command Line and Properties Files"
on page 8-2.

Output
The translation step produces a Java source file for each .sqlj file in your
application, and (with standard SQLJ code generation) at least one application
profile (presuming your source code uses SQLJ executable statements).

SQLJ generates source files and profiles as follows:

■ Java source files will be .java files with the same base names as your .sqlj
files.

Note: This discussion mentions iterator class and connection
context class declarations. Iterators are similar to JDBC result sets;
connection contexts are used for database connections. For more
information about these class declarations, see "Overview of SQLJ
Declarations" on page 3-2.
1-12 SQLJ Developer’s Guide and Reference

Basic Translation Steps and Runtime Processing
For example, MyClass.sqlj defines class MyClass and the translator
produces MyClass.java.

■ The application profile files, if generated, contain information about the SQL
operations of your SQLJ application. There will be one profile for each
connection class that you use in your application. The profiles will have names
with the same base name as your main .sqlj file, plus the following
extensions:

_SJProfile0.ser
_SJProfile1.ser
_SJProfile2.ser
...

For example, for MyClass.sqlj the translator produces:

MyClass_SJProfile0.ser

The .ser file extension reflects the fact that the profiles are serialized. The
.ser files are binary files.

The compilation step compiles the Java source file into multiple class files. For
standard SQLJ code generation there are at least two class files: one for each class
you define in your .sqlj source file (minimum of one), and one for a class, known
as the profile-keys class, that the translator generates and uses with the profiles to
implement your SQL operations (presuming your source code uses SQLJ executable
statements). Additional .class files are produced if you declared any SQLJ
iterators or connection contexts (see "Overview of SQLJ Declarations" on page 3-2).
Also, separate .class files will be produced for any inner classes or anonymous
classes in your code. For Oracle-specific code generation, no profiles or profile-keys
class are produced. For information about Oracle-specific code generation, see
"Oracle-Specific Code Generation (No Profiles)" on page 10-11.

The .class files are named as follows:

■ The class file for each class you define consists of the name of the class with the
.class extension.

Note: There is a translator option, -ser2class, that instructs the
translator to generate profiles as .class files instead of .ser files.
Other than the file name extension, the naming is the same.
 Overview 1-13

Basic Translation Steps and Runtime Processing
For example: MyClass.sqlj defines MyClass, the translator produces the
MyClass.java source file, and the compiler produces the MyClass.class
class file.

■ The profile-keys class that the translator generates is named according to the
base name of your main .sqlj file, plus the following:

_SJProfileKeys

So the class file has the following extension:

_SJProfileKeys.class

For example, for MyClass.sqlj, the translator together with the compiler
produce:

MyClass_SJProfileKeys.class

■ The translator names iterator classes and connection context classes according
to how you declare them. For example, if you declare an iterator MyIter, there
will be a MyIter.class class file.

The customization step alters the profiles but produces no additional output.

Output File Locations
By default, SQLJ places generated .java files in the same directory as your .sqlj
file. You can specify a different .java file location, however, using the SQLJ -dir
option.

By default, SQLJ places generated .class and .ser files in the same directory as
the generated .java files. You can specify a different .class and .ser file
location, however, using the SQLJ -d option. This option setting is passed to the
Java compiler so that .class files and .ser files will be in the same location.

For either the -d or -dir option, you must specify a directory that already exists.
For more information about these options, see "Options for Output Files and
Directories" on page 8-27.

Note: It is not necessary to reference SQLJ profiles or the
profile-keys class directly. This is all handled automatically.
1-14 SQLJ Developer’s Guide and Reference

Basic Translation Steps and Runtime Processing
Runtime Processing
This section discusses runtime processing during program execution, considering
both standard SQLJ code generation and Oracle-specific code generation.

Processing for Standard SQLJ Generated Code
When a user runs the application, the SQLJ runtime reads the profiles and creates
"connected profiles", which incorporate database connections. Then the following
occurs each time the application must access the database:

1. SQLJ-generated application code uses methods in a SQLJ-generated
profile-keys class to access the connected profile and read the relevant SQL
operations. There is a mapping between SQLJ executable statements in the
application and SQL operations in the profile.

2. The SQLJ-generated application code calls the SQLJ runtime, which reads the
SQL operations from the profile.

3. The SQLJ runtime calls the JDBC driver and passes the SQL operations to it.

4. The SQLJ runtime passes any input parameters to the JDBC driver.

5. The JDBC driver executes the SQL operations.

6. If any data is to be returned, the database sends it to the JDBC driver, which
sends it to the SQLJ runtime for use by your application.

Processing for Oracle-Specific Generated Code
When you translate with the translator setting -codegen=oracle, your program
at runtime will execute the following:

■ Oracle-specific APIs in the SQLJ runtime that ensure batching support and
proper creation and closing of Oracle JDBC statements

■ direct calls into the Oracle JDBC APIs for registering, passing, and retrieving
parameters and result sets

See "Oracle-Specific Code Generation (No Profiles)" on page 10-11.

Note: Passing input parameters (step 4) can also be referred to as
"binding input parameters" or "binding host expressions". The
terms host variables, host expressions, bind variables, and bind
expressions are all used to describe Java variables or expressions that
are used as input or output for SQL operations.
 Overview 1-15

Alternative Deployment Scenarios
Alternative Deployment Scenarios
Although this manual mainly discusses writing for client-side SQLJ applications,
you may find it useful to run SQLJ code in the following scenarios:

■ from an applet

■ in the server (optionally running the SQLJ translator in the server as well)

■ against Oracle Lite

Running SQLJ in Applets
Because the SQLJ runtime is pure Java, you can use SQLJ source code in applets as
well as applications. There are, however, a few considerations, as discussed below.

For an example, see "Applet Sample" on page 12-87.

For applet issues that apply more generally to the Oracle JDBC drivers, see the
Oracle9i JDBC Developer’s Guide and Reference, which includes discussion of firewalls
and security issues as well.

General Development and Deployment Considerations
The following general considerations apply to the use of Oracle SQLJ applets.

■ You must package all the SQLJ runtime packages with your applet:

sqlj.runtime
sqlj.runtime.ref
sqlj.runtime.profile
sqlj.runtime.profile.ref
sqlj.runtime.error

as well as the following if you used Oracle customization:

oracle.sqlj.runtime
oracle.sqlj.runtime.error

These classes are included with your Oracle installation in one of several
runtime libraries in the [Oracle Home]/lib directory (see "Requirements for
Using Oracle SQLJ" on page 2-3).

■ You must specify a pure Java JDBC driver, such as the Oracle JDBC Thin driver,
for your database connection.
1-16 SQLJ Developer’s Guide and Reference

Alternative Deployment Scenarios
■ You must explicitly specify a connection context instance for each SQLJ
executable statement in an applet. This is a requirement because you could
conceivably run two SQLJ applets in a single browser and, thus, in the same
JVM. (For information about connections, see "Connection Considerations" on
page 4-6.)

■ You may want to use the translator setting -codegen=oracle to generate
Oracle-specific code. This will eliminate the use of Java reflection at runtime,
thereby increasing portability across different browser environments. For
information about the -codegen option, see "Code Generation (-codegen)" on
page 8-49. For general information about Oracle-specific code generation, see
"Oracle-Specific Code Generation (No Profiles)" on page 10-11.

General End User Considerations
When end users run your SQLJ applet, classes in their classpath may conflict with
classes that are downloaded with the applet.

Oracle, therefore, recommends that end users clear their classpath before running
the applet.

Java Environment and the Java Plug-in
Here are some additional considerations regarding the Java environment and use of
Oracle-specific features.

■ SQLJ requires the runtime environment of JDK 1.1.x or higher. Users cannot run
SQLJ applets in browsers employing JDK 1.0.x, such as Netscape Navigator 3.x
and Microsoft Internet Explorer 3.x, without a plug-in or some other means of
using JRE 1.1.x instead of the browser’s default JRE.

One option is to use a Java plug-in offered by Sun Microsystems. For
information, refer to the following Web site:

http://www.javasoft.com/products/plugin

■ Some browsers, such as Netscape Navigator 4.x, do not support resource files
with a .ser extension, which is the extension employed by the SQLJ serialized
object files that are used for profiles. The Sun Microsystems Java plug-in,
however, supports .ser files.

Alternatively, if you do not want to use the plug-in, Oracle SQLJ offers the
-ser2class option to convert .ser files to .class files during translation.
See "Conversion of .ser File to .class File (-ser2class)" on page 8-64 for more
information.
 Overview 1-17

Alternative Deployment Scenarios
■ Applets using Oracle-specific features require the Oracle SQLJ runtime to work.
The Oracle runtime consists of the classes in the SQLJ runtime library file under
oracle.sqlj.*. The Oracle SQLJ runtime library requires the Java Reflection
API (java.lang.reflect.*); the runtime11, runtime12, and
runtime12ee runtime libraries must use the Reflection API only in the
circumstances outlined below. Most browsers do not support the Reflection API
or impose security restrictions, but Sun’s Java plug-in provides support for the
Reflection API.

With standard SQLJ code generation, the following SQLJ language features
always require the Java Reflection API (java.lang.reflect.*), regardless
of the version of the SQLJ runtime you are using:

– the CAST statement

– REF CURSOR parameters or REF CURSOR columns being retrieved from
the database as instances of a SQLJ iterator

– retrieval of java.sql.Ref, Struct, Blob, or Clob objects

– retrieval of SQL objects as instances of Java classes implementing the
oracle.sql.ORAData or java.sql.SQLData interfaces

Note: These considerations do not apply to Oracle-specific code
generation, where no profiles are produced.

Note: The term "Oracle-specific features" refers both to the use of
Oracle type extensions (discussed in Chapter 5, "Type Support")
and the use of SQLJ features that require your application to be
customized to work against an Oracle database (for example, this is
true of the SET statement, discussed in Chapter 3, "Basic Language
Features").
1-18 SQLJ Developer’s Guide and Reference

Alternative Deployment Scenarios
■ Consider using the runtime11 library for your applets. Doing so permits you
to use Oracle-specific features and Oracle-specific customization.

■ If your applet does not use any Oracle-specific features, you can distribute it
with the generic SQLJ runtime library, runtime-nonoracle. To support this,
do not customize the applet during translation (for standard code generation)
and do not use Oracle-specific code generation. Set -profile=false when
you translate the code. (See "Profile Customization Flag (-profile)" on
page 8-62.) If you neglect to set -profile=false, then the default Oracle
customizer will load Oracle-specific runtime classes. This will result in your
applet requiring the Oracle runtime even though it does not use Oracle-specific
features.

The preceding issues can be summarized as follows, focusing on users with Internet
Explorer and Netscape browsers:

■ Distribute your applet with the runtime11 and classes111 libraries. In this
case, the SQLJ and JDBC versions must match. For example, to use the SQLJ
9.0.0 runtime, you must have the Oracle 9.0.0 JDBC driver.

■ If you use object types, JDBC 2.0 types, REF CURSORs, or the CAST statement
in your SQLJ statements, then you must adhere to your choice of the following:

– The browser in which you run supports JDK 1.1 or higher and permits
reflection.

or:

– You run your applet through a browser Java plug-in.

Notes:

■ An exception to the preceding is if you use SQLJ in a mode that
is fully compatible with ISO. That is, if you use SQLJ in an
environment that complies with J2EE and you translate and run
your program with the SQLJ runtime12ee library, and you
employ connection context type maps as specified by ISO. In
this case, instances of java.sql.Ref, Struct, Blob,
Clob, and SQLData are being retrieved without the use of
reflection.

■ Also, if you use Oracle-specific code generation (translator
setting -codegen=oracle), you will eliminate the use of
reflection in all of the instances listed above.
 Overview 1-19

Alternative Deployment Scenarios
or:

– You use the -codegen=oracle setting when you translate your applet.

■ If your applet does not use Oracle-specific features, then you can compile it
without customization (-profile=false) and distribute it with the generic
SQLJ runtime, runtime-nonoracle.

Introduction to SQLJ in the Server
In addition to its use in client applications, SQLJ code can run within a target
Oracle9i database or middle-tier database cache in stored procedures, stored
functions, triggers, Enterprise JavaBeans, or CORBA objects. Server-side access
occurs through an Oracle JDBC driver that runs inside the server itself.
Additionally, the Oracle9i database has an embedded SQLJ translator so that SQLJ
source files for server-side use can optionally be translated directly in the server.

The two main areas to consider, which Chapter 11, "SQLJ in the Server", discusses in
detail are:

■ creating SQLJ code for use within the server

Coding a SQLJ application for use within the target Oracle9i database is similar
to coding for client-side use. What issues do exist are due to general JDBC
characteristics, as opposed to SQLJ-specific characteristics. The main differences
involve connections:

– You have only one connection.

– The connection is to the database in which the code is running.

– The connection is implicit (does not have to be explicitly initialized, unlike
on a client).

– The connection cannot be closed—any attempt to close it will be ignored.

Additionally, the JDBC server-side driver used for connections within the server
does not support auto-commit mode.

Note: For an example of a generic SQLJ applet (not using
Oracle-specific features), see "Applet Sample" on page 12-87.
1-20 SQLJ Developer’s Guide and Reference

Alternative Deployment Scenarios
■ translating and loading SQLJ code for server-side use

You can translate and compile your code either on a client or in the server. If
you do this on a client, you can then load the class and resource files into the
server from your client machine, either pushing them from the client using the
Oracle loadjava utility or pulling them in from the server using SQL
commands. (It is convenient to have them all in a single .jar file first.)

Alternatively, you can translate and load in one step, using the embedded
server-side SQLJ translator. If you load a SQLJ source file instead of class or
resource files, then translation and compilation are done automatically. In
general, loadjava or SQL commands can be used for class and resource files
or for source files. From a user perspective .sqlj files are treated the same as
.java files, with translation taking place implicitly.

See "Loading SQLJ Source and Translating in the Server" on page 11-15 for
information about using the embedded server-side translator.

Note: There is also a server-side Thin driver for connecting to one
server from code that runs in another. This case is effectively the
same as using a Thin driver from a client and is coded in the same
way. See "Overview of the Oracle JDBC Drivers" on page 4-2.

Note: The server-side translator does not support the Oracle SQLJ
-codegen option. For Oracle-specific generated code to run in the
server, you must translate on a client and load the individual
components into the server. Also note restrictions on
interoperability when running code generated with different
settings. For more information, see "Translating SQLJ Source on a
Client and Loading Components" on page 11-8 and "Oracle-Specific
Code Generation (No Profiles)" on page 10-11.
 Overview 1-21

Alternative Deployment Scenarios
Using SQLJ with Oracle Lite
You can use SQLJ on top of Oracle Lite. This section provides a brief overview of
this functionality. For more information, refer to the Oracle Lite Java Developer’s
Guide.

Overview of Oracle Lite and Java Support
Oracle Lite is a lightweight database that offers flexibility and versatility that larger
databases cannot. It requires only 350K to 750K of memory for full functionality,
natively synchronizes with the Palm Computing platform, and can run on Windows
NT (3.51 or higher), Windows 95, and Windows 98. It offers an embedded
environment that requires no background or server processes.

Oracle Lite is compatible with Oracle9i, Oracle8i, Oracle8, and Oracle7. It provides
comprehensive support for Java, including JDBC, SQLJ, and Java stored procedures.
There are two alternatives for access to Oracle Lite from Java programs:

■ native JDBC driver

This is intended for Java applications that use the relational data model,
allowing them direct communication with the object-relational database engine.

Use the relational data model if your program has to access data that is already
in SQL format, must run on top of other relational database systems, or uses
very complex queries.

■ Java Access Classes (JAC)

This is intended for Java applications that use either the Java object model or
the Oracle Lite object model, allowing them to access persistent information
stored in Oracle Lite, without having to map between the object model and the
relational model. Use of JAC also requires a persistent Java proxy class to model
the Oracle Lite schema. This can be generated by Oracle Lite tools.

Use the object model if you want your program to have a smaller footprint and
run faster and you do not require the full capability of the SQL language.

There is interoperability between Oracle Lite JDBC and JAC, with JAC supporting
all types that JDBC supports, and JDBC supporting JAC types that meet certain
requirements.
1-22 SQLJ Developer’s Guide and Reference

Alternative Deployment Scenarios
Requirements to Run Java on Oracle Lite
Note the following requirements if you intend to run a Java program on top of
Oracle Lite:

■ Windows NT 3.51 or higher, Windows 95, or Windows 98

■ Oracle Lite 3.0 or higher

■ JDK 1.1.x or higher

■ Java Runtime Environment (JRE) that supports Java Native Interface (JNI)

The JREs supplied with JDK 1.1.x and higher, Oracle JDeveloper, and Symantec
Visual Cafe support JNI.

Support for Oracle Extensions
Oracle Lite 4.0.x. includes an Oracle-specific JDBC driver and Oracle-specific SQLJ
runtime classes (including the Oracle semantics-checkers and customizer), allowing
use of Oracle-specific features and type extensions.
 Overview 1-23

Alternative Development Scenarios
Alternative Development Scenarios
The discussion in this book assumes that you are coding manually in a UNIX
environment for English-language deployment. However, you can use SQLJ on
other platforms and with IDEs. There is also globalization support for deployment
to other languages. This section introduces these topics:

■ globalization support

■ SQLJ in IDEs

■ Windows considerations

SQLJ Globalization Support
Oracle SQLJ support for native languages and character encodings is based on
Java’s built-in globalization support capabilities.

The standard user.language and file.encoding properties of the JVM
determine appropriate language and encoding for translator and runtime messages.
The SQLJ -encoding option determines encoding for interpreting and generating
source files during translation.

For information, see "Globalization Support in the Translator and Runtime" on
page 9-21.

SQLJ in JDeveloper and Other IDEs
Oracle SQLJ includes a programmatic API so that it can be embedded in integrated
development environments (IDEs) such as Oracle JDeveloper. The IDE takes on a
role similar to that of the sqlj script used as a front end in Solaris, invoking the
translator, semantics-checker, compiler, and customizer.

Oracle JDeveloper is a Windows NT-based visual development environment for
Java programming. The JDeveloper Suite enables developers to build multi-tier,
scalable Internet applications using Java across the Oracle Internet Platform. The
core product of the suite—the JDeveloper Integrated Development
Environment—excels in creating, debugging, and deploying component-based
applications.

The Oracle JDBC OCI and Thin drivers are included with JDeveloper, as well as
drivers to access Oracle Lite.

JDeveloper’s compilation functionality includes an integrated Oracle SQLJ
translator so that your SQLJ application is translated automatically as it is compiled.
1-24 SQLJ Developer’s Guide and Reference

Alternative Development Scenarios
Information about JDeveloper is available at the following URL:

http://technet.oracle.com

Windows Considerations
Note the following if you are using a Windows platform instead of Solaris:

■ This manual uses Solaris/UNIX syntax. Use platform-specific file names and
directory separators (such as "\" on Windows) that are appropriate for your
platform, because your JVM expects file names and paths in the
platform-specific format. This is true even if you are using a shell (such as ksh
on NT) that permits a different file name syntax.

■ For Solaris, Oracle SQLJ provides a front-end script, sqlj, that you use to
invoke the SQLJ translator. On Windows, Oracle SQLJ instead provides an
executable file, sqlj.exe. Using a script is not feasible on Windows platforms
because .bat files on these platforms do not support embedded equals signs
(=) in arguments, string operations on arguments, or wildcard characters in file
name arguments.

■ How to set environment variables is specific to the operating system. There may
also be OS-specific restrictions. In Windows 95, use the Environment tab in
the System control panel. Additionally, since Windows 95 does not support
the "=" character in variable settings, SQLJ supports the use of "#" instead of "="
in setting SQLJ_OPTIONS, an environment variable that SQLJ can use for
option settings. Consult your operating system documentation regarding
settings and syntax for environment variables, and be aware of any size
limitations.

■ As with any operating system and environment you use, be aware of specific
limitations. In particular, the complete, expanded SQLJ command line must not
exceed the maximum command-line size, which is 250 characters for Windows
95 and 4000 characters for Windows NT. Consult your operating system
documentation.

■ On Windows, it is possible that the SQLJ translation process will suspend
during compilation. If you encounter this problem, use the translator -passes
option, which is discussed in "SQLJ Two-Pass Execution (-passes)" on page 8-78.

Refer to the Windows platform README file for additional information.
 Overview 1-25

Alternative Development Scenarios
1-26 SQLJ Developer’s Guide and Reference

 Getting S
2

Getting Started

This chapter guides you through the basics of testing your Oracle SQLJ installation
and configuration and running a simple application.

Note that if you are using an Oracle database and Oracle JDBC driver, you should
also verify your JDBC installation according to the Oracle9i JDBC Developer’s Guide
and Reference.

This chapter discusses the following topics:

■ Assumptions and Requirements

■ Checking the Installation and Configuration

■ Testing the Setup
tarted 2-1

Assumptions and Requirements
Assumptions and Requirements
This section discusses basic assumptions about your environment and requirements
of your system so that you can run Oracle SQLJ.

Assumptions About Your Environment
The following assumptions are made about the system on which you will be
running Oracle SQLJ.

■ You have a standard Java environment that is operational on your system. This
would typically be using a Sun Microsystems JDK, but other implementations
of Java will work. Make sure you can run Java (typically java) and your Java
compiler (typically javac).

To translate and run Oracle SQLJ applications on a Sun JDK, you must use a
JDK 1.2.x (or higher) or JDK 1.1.x version, with an appropriate JDBC driver. The
Oracle JDBC Thin and OCI drivers work with any of these JDK versions.

For more information, see "Supported JDK Versions" on page 2-4.

■ You can already run JDBC applications in your environment.

If you are using an Oracle database and Oracle JDBC driver, then you should
complete the steps in Chapter 2, "Getting Started", of the Oracle9i JDBC
Developer’s Guide and Reference.You can also refer to Chapter 1, "Overview", of
that document for information about the Oracle JDBC drivers and how to
decide which is appropriate for your situation.

Note: A Java runtime environment (JRE), such as the one installed
with Oracle9i, is not by itself sufficient for translating SQLJ
programs. A JRE is sufficient, however, for running SQLJ programs
that have already been translated and compiled.
2-2 SQLJ Developer’s Guide and Reference

Assumptions and Requirements
Requirements for Using Oracle SQLJ
The following are required to use Oracle SQLJ:

■ a JDBC driver implementing the standard java.sql JDBC interfaces from Sun
Microsystems

Oracle SQLJ works with any JDBC driver that complies with standards.

■ a database system that is accessible using your JDBC driver

■ class files for the SQLJ translator and SQLJ profile customizer

Translator-related classes are available in the file:

[Oracle Home]/sqlj/lib/translator.zip (or .jar)

■ class files for the SQLJ runtime

Several SQLJ runtime versions are available. You must select a runtime version
that is compatible with your Java environment and JDBC driver (these are all in
[Oracle Home]/sqlj/lib).

– runtime12.zip (or .jar)—for use with Oracle9i JDBC drivers under
JDK 1.2.x or higher, providing full SQLJ ISO functionality

– runtime12ee.zip (or .jar)—for use with Oracle9i JDBC drivers in a
J2EE environment (including JDK 1.2.x or higher), providing full SQLJ ISO
functionality

– runtime11.zip (or .jar)—for use with Oracle9i JDBC drivers under
JDK 1.1.x

– runtime.zip (or .jar)—for use with older Oracle JDBC drivers and any
JDK environment (intended for Oracle JDBC release 8.1.7 and prior)

Notes: If you are using a non-Oracle JDBC driver, you must do
the following:

■ Modify connect.properties, as discussed in "Set Up the
Runtime Connection" on page 2-11.

■ Modify the sample applications, as discussed in "Driver
Selection and Registration for Runtime" on page 4-5, so that
your driver is registered before the call to the
Oracle.connect() method.
 Getting Started 2-3

Assumptions and Requirements
– runtime-nonoracle.zip (or .jar)—for use with non-Oracle JDBC
drivers and any JDK environment

Special Notes Regarding the SQLJ Libraries Be aware of the following:

■ For SQLJ ISO-compliant support for JDBC 2.0 types such as java.sql.Ref,
Clob, Blob, Struct, and SQLData, use the runtime12 or runtime12ee
library with JDK1.2 or J2EE and an Oracle9i (or 8.1.7) JDBC driver.

■ For Oracle-specific code generation, use the runtime11, runtime12, or
runtime12ee library.

■ Certain features, such as Oracle-specific code generation, are not supported by
the generic runtime ZIP/JAR file, which is intended mainly for backwards
compatibility, or by the runtime-nonoracle ZIP/JAR file.

■ The runtime-nonoracle library provides the highest portability across
different Java and JDBC environments, but does not support Oracle-specific
functionality.

■ The runtime library provides the highest flexibility across different Java and
Oracle JDBC environments, but does not support all SQLJ ISO functionality.

■ In SQLJ release 8.1.6 and earlier, there was only one runtime library, and the
runtime ZIP/JAR file was a subset of the translator ZIP/JAR file. In
Oracle9i this is no longer the case. You must now specify both a runtime file and
the translator file in your classpath.

■ If you will be running only SQLJ applications that have already been translated,
compiled, and customized, you will not need the translator ZIP/JAR file.

■ The translator ZIP file and all runtime ZIP files are uncompressed for
maximum portability. JAR files are compressed, however.

Supported JDK Versions
Oracle9i SQLJ works in any JDK 1.1.x or higher Java environment. There is only one
SQLJ translator file, translator.zip or .jar, for use in any JDK environment
and with any JDBC driver. There are several choices for the SQLJ runtime file
(runtime12, runtime12ee, runtime11, runtime, or runtime-nonoracle, all
.zip or .jar). Choose one according to your JDBC driver and Java environment,
as discussed above in "Requirements for Using Oracle SQLJ".
2-4 SQLJ Developer’s Guide and Reference

Assumptions and Requirements
General JDK MIgration Notes
Note the following regarding migration of SQLJ source code:

■ If you translate under JDK 1.1.x, Oracle supports running the application under
either JDK 1.1.x or JDK 1.2 or later. (This assumes that you do not have any
JDBC code that uses the oracle.jdbc2 package, which Oracle SQLJ does not
support. Oracle JDBC used this package to support JDBC 2.0 types under JDK
1.1.x.)

■ If you translate under JDK 1.2, Oracle supports running the application under
JDK 1.2 or higher.

Be sure to use an appropriate version of the JDBC driver. See "Path and Classpath
for Oracle JDBC" on page 2-9.

Note that in Oracle9i, neither Oracle SQLJ nor Oracle JDBC support JDK 1.0.2.
(Release 8.1.6 was the last Oracle JDBC release to support JDK 1.0.2, while Oracle
SQLJ has never supported JDK 1.0.2.) This includes applets running in browsers
that use JDK 1.0.2 except where special preparations have been made. (This chapter
does not discuss applets. Refer to "Running SQLJ in Applets" on page 1-16.)

JDK Migration Issues Regarding Type Maps
The type for JDBC type maps changed between JDK 1.1.x and JDK 1.2.x, from
java.util.Dictionary to java.util.Map.

The getTypeMap() method of all SQLJ connection context classes returns a type
map instance. Unfortunately, there is a limitation in the Java type system when you
implement an interface, such that an implemented method must return exactly the
type specified in the interface. Consider the following method signature:

java.util.Hashtable getTypeMap() { ... }

Notes:

■ If an application compiles under both JDK 1.1.x and JDK 1.2,
and if JDK 1.2 was used to compile it, then the application will
likely not run under JDK 1.1.x. You should use JDK 1.1.x to
compile an application that will run under 1.1.x.

■ Oracle JDBC releases 8.1.5 and prior do not support JDK 1.2.x.
 Getting Started 2-5

Assumptions and Requirements
This would seem to be an ideal solution to the migration issue, because Hashtable
extends Dictionary and implements Map, but it is not acceptable to the Java type
system.

This has the following consequences if your SQLJ code declares connection context
types:

■ If you compile under JDK 1.1.x, the generated code will return Dictionary
instances. The code should run under both JDK 1.1.x and JDK 1.2.x or higher.
(Modifications were made to the SQLJ runtime so that if the interface method is
not found, Java reflection is used.)

■ If you compile under JDK 1.2.x or higher, you will not be able to run under JDK
1.1.x (java.util.Map just was not defined in JDK 1.1.x).

■ If you translate .sqlj files under JDK 1.1.x, the generated .java files will not
compile under JDK 1.2.x or higher. (This is relevant if you run SQLJ with the
-compile=false setting, in order to translate and compile separately.)
Likewise, if you translate under JDK 1.2.x or higher, the generated .java files
will not compile under JDK 1.1.x.

Oracle SQLJ Backwards Compatibility
Be aware of the following regarding Oracle SQLJ backwards compatibility:

■ Code generated with an earlier release of the SQLJ translator will:

– continue to run against the current runtime (.zip or .jar) library

– continue to be compilable against the current runtime (.zip or .jar)
library

■ Standard translator output (code generated with -codegen=iso) can be
created and executed against an earlier Oracle JDBC release using the current
runtime (.zip or .jar) library.

■ Oracle-specific translator output (code generated with -codegen=oracle)
must be created and executed using the runtime11, runtime12, or
runtime12ee library.

Note: With default settings, JPublisher-generated .sqlj source
code declares connection context types. See the Oracle9i JPublisher
User’s Guide for more information, particularly information about
the JPublisher -context option.
2-6 SQLJ Developer’s Guide and Reference

Assumptions and Requirements
Furthermore:

– Such code will be executable under future releases of Oracle JDBC and
SQLJ.

– Such code, however, will not be executable under previous releases of
Oracle JDBC and the Oracle SQLJ runtime. In these circumstances, you will
have to retranslate the code.

– If such code was translated and compiled under JDK 1.2.x, it will not run
under JDK 1.1.x. Re-translate it under JDK 1.1.x.

Also remember that Oracle-specific generated code is not portable.

Oracle JVM Configuration
This manual presumes that system configuration issues are outside the duties of
most SQLJ developers. Therefore, configuration of the Oracle Java virtual machine
(JVM) is not covered here. For information about setting Java-related configuration
parameters (such as JAVA_POOL_SIZE), see the Oracle9i Java Developer’s Guide.

If you need information about configuring the multi-threaded server, dispatcher, or
listener (which may be particularly relevant if you are coding Enterprise JavaBeans
or CORBA objects), see the Oracle Net Services Administrator’s Guide.

Note: Regarding Oracle JDBC backward compatibility to prior
database releases, any given Oracle JDBC driver release is
compatible with any Oracle database release from 7.3.4 up to the
release number of the JDBC driver. For more information see the
Oracle9i JDBC Developer’s Guide and Reference.
 Getting Started 2-7

Checking the Installation and Configuration
Checking the Installation and Configuration
Once you have verified that the above assumptions and requirements are satisfied,
you must check your Oracle SQLJ installation.

Check for Installed Directories and Files
Verify that the following directories have been installed and are populated.

Directories for Oracle JDBC
If you are using one of the Oracle JDBC drivers, refer to the Oracle9i JDBC
Developer’s Guide and Reference for information about JDBC files that should be
installed on your system.

Directories for Oracle SQLJ
Installing the Oracle9i Java environment will include, among other things, installing
a sqlj directory under your [Oracle Home] directory. The sqlj directory
contains the following subdirectories:

■ demo (demo applications, including some referenced in this chapter)

■ doc

■ lib (.zip/.jar files containing class files for SQLJ)

In addition, directly under [Oracle Home] is the following directory, containing
utilities for all Java product areas:

■ bin

Check that all these directories have been created and populated, especially lib
and bin.

(The structure is similar if you download SQLJ from a Web site, such as the Oracle
Technology Network http://technet.oracle.com address. The bin directory,
with both SQLJ and JPublisher executable files, is directly under the sqlj
directory.)

Set the Path and Classpath
Make sure your PATH and CLASSPATH environment variables have the necessary
settings for Oracle SQLJ (and Oracle JDBC if applicable).
2-8 SQLJ Developer’s Guide and Reference

Checking the Installation and Configuration
Path and Classpath for Oracle JDBC
If you are using one of the Oracle JDBC drivers, you will need the Oracle JDBC
classes ZIP/JAR file that is appropriate for your environment.

JDK 1.1.x-compatible classes are in classes111.zip or .jar; JDK 1.2.x (or
higher) compatible classes are in classes12.zip or .jar. Presuming you use a
Sun Microsystems JDK, make sure the appropriate ZIP/JAR file name is in your
classpath setting.

For more information about required path and classpath settings for Oracle JDBC,
refer to the Oracle9i JDBC Developer’s Guide and Reference.

Path and Classpath for Oracle SQLJ
Set your PATH and CLASSPATH variables as follows for Oracle SQLJ.

Path Setting To be able to run the sqlj script (which invokes the SQLJ translator)
without having to fully specify its path, verify that your PATH environment variable
has been updated to include the following:

[Oracle Home]/bin

Use backward slashes for Windows. Replace [Oracle Home] with your actual
Oracle Home directory.

Classpath Setting Update your CLASSPATH environment variable to include the
current directory as well as the following (either .zip or .jar):

[Oracle Home]/sqlj/lib/translator.zip

Use backward slashes for Windows. Replace [Oracle Home] with your actual
Oracle Home directory.

In addition, you must include one of the following runtime libraries in your
classpath (either .zip or .jar):

[Oracle Home]/sqlj/lib/runtime12.zip
[Oracle Home]/sqlj/lib/runtime12ee.zip
[Oracle Home]/sqlj/lib/runtime11.zip
[Oracle Home]/sqlj/lib/runtime.zip
[Oracle Home]/sqlj/lib/runtime-nonoracle.zip

See "Requirements for Using Oracle SQLJ" on page 2-3 regarding which runtime
library to use for your JDBC driver and Java environment.
 Getting Started 2-9

Checking the Installation and Configuration
Verify Installation of sqljutl Package

The package sqljutl is required for online checking of stored procedures and
functions in an Oracle database. For Oracle release 8.1.5 and later, it should have
been installed automatically under the SYS schema during installation of your
database’s server-side JVM. To verify the installation of sqljutl, issue the
following SQL command (from SQL*Plus, for example):

describe sys.sqljutl

This should result in a brief description of the package. If you get a message
indicating that the package cannot be found, then you must install it manually. To
do so, use SQL*Plus to run the sqljutl.sql script, which is located as follows:

[Oracle Home]/sqlj/lib/sqljutl.sql

(The sqljutl package is installed in the SYS schema.)

Consult your installation instructions if necessary.

Important: You will not be able to run the SQLJ translator if you
do not add a runtime library. You must specify a runtime library as
well as the translator library in your classpath.

To see if SQLJ is installed correctly, and to see version information
for SQLJ, JDBC, and Java, execute the following command:

sqlj -version-long

Note: This step is relevant only for online checking during
translation, and is applicable only if you are using SQLJ stored
procedures or functions with a pre-8.1.5 Oracle database (or an 8.1.5
or later database that was installed without a server-side JVM).
2-10 SQLJ Developer’s Guide and Reference

Testing the Setup
Testing the Setup
You can test your database, JDBC, and SQLJ setup using demo applications defined
in the following source files:

■ TestInstallCreateTable.java

■ TestInstallJDBC.java

■ TestInstallSQLJ.sqlj

■ TestInstallSQLJChecker.sqlj

There is also a Java properties file, connect.properties, that helps you set up
your database connection. You must edit this file to set appropriate user, password,
and URL values.

These demo applications are provided with your SQLJ installation in the demo
directory:

[Oracle Home]/sqlj/demo

You must edit some of the source files as necessary and translate and/or compile
them as appropriate (as explained in the following subsections).

The demo applications provided with the Oracle SQLJ installation refer to tables on
an Oracle account with user name scott and password tiger. Most Oracle
installations have this account. You can substitute other values for scott and
tiger if desired.

Set Up the Runtime Connection
This section describes how to update the connect.properties file to configure
your Oracle connection for runtime. The file is in the demo directory and looks
something like the following:

Users should uncomment one of the following URLs or add their own.
(If using Thin, edit as appropriate.)
#sqlj.url=jdbc:oracle:thin:@localhost:1521:ORCL
#sqlj.url=jdbc:oracle:oci:@
#
User name and password here

Note: Running the demo applications requires that the demo
directory be the current directory and that the current directory
(".") be in your classpath, as described earlier.
 Getting Started 2-11

Testing the Setup
sqlj.user=scott
sqlj.password=tiger

(User scott and password tiger are used for the demo applications.)

There is also a listing of connect.properties in "Runtime Connection Properties
File" on page 12-3.

Connecting with an Oracle JDBC Driver
With the Oracle9i release, use "oci" in the connect string for the Oracle JDBC OCI
driver in any new code. For backwards compatibility, however, "oci8" or "oci7" are
still accepted, so you do not have to change existing code.

If you are using the JDBC Thin driver, then uncomment the thin URL line in
connect.properties and edit it as appropriate for your Oracle connection. Use
the same URL that was specified when your JDBC driver was set up.

Connecting with a non-Oracle JDBC Driver
If you are using a non-Oracle JDBC driver, then add a line to
connect.properties to set the appropriate URL, as follows:

sqlj.url=your_URL_here

Use the same URL that was specified when your JDBC driver was set up.

You must also register the driver explicitly in your code (this is performed
automatically in the demo and test programs if you use an Oracle JDBC driver). See
"Driver Selection and Registration for Runtime" on page 4-5.

In addition, in the SQLJ demo programs, you must replace the following code:

Oracle.connect(url, user, password);

with the following:

DriverManager.registerDriver(new yourdriver());
Connection conn = DriverManager.getConnection(url, user, password);
conn.setAutoCommit(false);
DefaultContext.setDefaultContext(new DefaultContext(conn));
2-12 SQLJ Developer’s Guide and Reference

Testing the Setup
Create a Table to Verify the Database
The following tests assume a table called SALES. If you compile and run
TestInstallCreateTable as follows, it will create the table for you if the
database and your JDBC driver are working and your connection is set up properly
in the connect.properties file:

javac TestInstallCreateTable.java
java TestInstallCreateTable

If you do not want to use TestInstallCreateTable, you can instead create the
SALES table using the following command in a command-line processor (such as
SQL*Plus):

CREATE TABLE SALES (
 ITEM_NUMBER NUMBER,
 ITEM_NAME CHAR(30),
 SALES_DATE DATE,
 COST NUMBER,
 SALES_REP_NUMBER NUMBER,
 SALES_REP_NAME CHAR(20));

Verify the JDBC Driver
If you want to further test the Oracle JDBC driver, use the TestInstallJDBC
demo.

Verify that your connection is set up properly in connect.properties as
described above, then compile and run TestInstallJDBC:

javac TestInstallJDBC.java
java TestInstallJDBC

The program should print:

Hello, JDBC!

Note: If you already have a table called SALES in your schema
and do not want it altered, edit
TestInstallCreateTable.java to change the table name.
Otherwise, your original table will be dropped and replaced.
 Getting Started 2-13

Testing the Setup
Verify the SQLJ Translator and Runtime
Now translate and run the TestInstallSQLJ demo, a SQLJ application that has
similar functionality to TestInstallJDBC. Use the following command to
translate the source:

sqlj TestInstallSQLJ.sqlj

After a brief wait you should get your system prompt back with no error output.
Note that this command also compiles the application and customizes it to use an
Oracle database.

On Solaris, the sqlj script is in [Oracle Home]/bin, which should already be in
your path as described above. (On Windows, use the sqlj.exe executable in the
bin directory.) The SQLJ translator ZIP/JAR file has the class files for the SQLJ
translator and runtime. It is located in [Oracle Home]/sqlj/lib and should
already be in your classpath as described above.

Now run the application:

java TestInstallSQLJ

The program should print:

Hello, SQLJ!

Verify the SQLJ Translator Connection to the Database
If the SQLJ translator is able to connect to a database, then it can provide online
semantics-checking of your SQL operations during translation. The SQLJ translator
is written in Java and uses JDBC to get information it needs from a database
connection that you specify. You provide the connection parameters for online
semantics-checking using the sqlj script command line or using a SQLJ properties
file (called sqlj.properties by default).

While still in the demo directory, edit the file sqlj.properties and update,
comment, or uncomment the sqlj.password, sqlj.url, and sqlj.driver
lines, as appropriate, to reflect your database connection information, as you did in
the connect.properties file. For some assistance, see the comments in the
sqlj.properties file.
2-14 SQLJ Developer’s Guide and Reference

Testing the Setup
Following is an example of what the appropriate driver, URL, and password
settings might be if you are using the Oracle JDBC OCI driver (the user name will
be discussed next):

sqlj.url=jdbc:oracle:oci:@
sqlj.driver=java.sql.Connection
sqlj.password=tiger

Online semantics-checking is enabled as soon as you specify a user name for the
translation-time connection. You can specify the user name either by uncommenting
the sqlj.user line in the sqlj.properties file or by using the -user
command-line option. (The user, password, URL, and driver options all can be set
either on the command line or in the properties file. This is explained in
"Connection Options" on page 8-31.)

You can test online semantics-checking by translating the file
TestInstallSQLJChecker.sqlj (located in the demo directory) as follows (or
using another user name if appropriate):

sqlj -user=scott TestInstallSQLJChecker.sqlj

This should produce the following error message if you are using one of the Oracle
JDBC drivers:

TestInstallSQLJChecker.sqlj:41: Warning: Unable to check SQL query. Error
returned by database is: ORA-00904: invalid column name

Edit TestInstallSQLJChecker.sqlj to fix the error on line 41. The column
name should be ITEM_NAME instead of ITEM_NAMAE. Once you make this change,
you can translate and run the application without error using the following
commands:

sqlj -user=scott TestInstallSQLJChecker.sqlj
java TestInstallSQLJChecker

If everything works, this prints:

Hello, SQLJ Checker!
 Getting Started 2-15

Testing the Setup
2-16 SQLJ Developer’s Guide and Reference

 Basic Language Fea
3

Basic Language Features

This chapter discusses basic SQLJ language features and constructs that you use in
coding your application.

SQLJ statements always begin with a #sql token and can be broken into two main
categories: 1) declarations, used for creating Java classes for iterators (similar to
JDBC result sets) or connection contexts (designed to help you strongly type your
connections according to the sets of SQL entities being used); and 2) executable
statements, used to execute embedded SQL operations.

For more advanced topics, see Chapter 7, "Advanced Language Features".

This chapter discusses the following topics.

■ Overview of SQLJ Declarations

■ Overview of SQLJ Executable Statements

■ Java Host Expressions, Context Expressions, and Result Expressions

■ Single-Row Query Results—SELECT INTO Statements

■ Multi-Row Query Results—SQLJ Iterators

■ Assignment Statements (SET)

■ Stored Procedure and Function Calls
tures 3-1

Overview of SQLJ Declarations
Overview of SQLJ Declarations
A SQLJ declaration consists of the #sql token followed by the declaration of a class.
SQLJ declarations introduce specialized Java types into your application. There are
currently two kinds of SQLJ declarations, iterator declarations and connection context
declarations, defining Java classes as follows:

■ Iterator declarations define iterator classes. Iterators are conceptually similar to
JDBC result sets and are used to receive multi-row query data. An iterator is
implemented as an instance of an iterator class.

■ Connection context declarations define connection context classes. Each
connection context class is typically used for connections whose operations use
a particular set of SQL entities (tables, views, stored procedures, and so on).
That is to say, instances of a particular connection context class are used to
connect to schemas that include SQL entities with the same names and
characteristics. SQLJ implements each database connection as an instance of a
connection context class.

(SQLJ includes the predefined sqlj.runtime.DefaultContext connection
context class. If you only require one connection context class, you can use
DefaultContext, which does not require a connection context declaration.)

In any iterator or connection context declaration, you may optionally include the
following clauses:

■ implements clause—Specifies one or more interfaces that the generated class
will implement.

■ with clause—Specifies one or more initialized constants to be included in the
generated class.

These are described in "Declaration IMPLEMENTS Clause" on page 3-5 and in
"Declaration WITH Clause" on page 3-6.

Rules for SQLJ Declarations
SQLJ declarations are allowed in your SQLJ source code anywhere that a class
definition would be allowed in standard Java. The only limitation is that you cannot
have a declaration inside a method block under JDK 1.1.x. For example:

SQLJ declaration; // OK (top level scope)

class Outer
{
 SQLJ declaration; // OK (class level scope)
3-2 SQLJ Developer’s Guide and Reference

Overview of SQLJ Declarations
 class Inner
 {
 SQLJ declaration; // OK (nested class scope)
 }

 void func()
 {
 SQLJ declaration; // OK in JDK 1.2.x; ILLEGAL in JDK 1.1.x (method block)
 }
}

Iterator Declarations
An iterator declaration creates a class that defines a kind of iterator for receiving
query data. The declaration will specify the column types of the iterator instances,
which must match the column types being selected from the database table.

Basic iterator declarations use the following syntax:

#sql <modifiers> iterator iterator_classname (type declarations);

Modifiers are optional and can be any standard Java class modifiers such as
public, static, etc. Type declarations are separated by commas.

There are two categories of iterators—named iterators and positional iterators. For
named iterators, you specify column names and types; for positional iterators, you
specify only types.

The following is an example of a named iterator declaration:

#sql public iterator EmpIter (String ename, double sal);

Note: As with standard Java, any public class should be declared
in one of the following ways (this is a requirement if you are using
the standard javac compiler provided with the Sun Microsystems
JDK):

■ Declare it in a separate source file. The base name of the file
should be the same as the class name.

or:

■ Declare it at class-level scope or nested-class-level scope. In this
case, it may be advisable to use public static modifiers.
 Basic Language Features 3-3

Overview of SQLJ Declarations
This statement results in the SQLJ translator creating a public EmpIter class with a
String attribute ename and a double attribute sal. You can use this iterator to
select data from a database table with corresponding employee name and salary
columns of matching names (ENAME and SAL) and datatypes (CHAR and NUMBER).

Declaring EmpIter as a positional iterator, instead of a named iterator, would be
done as follows:

#sql public iterator EmpIter (String, double);

For more information about iterators, see "Multi-Row Query Results—SQLJ
Iterators" on page 3-36.

Connection Context Declarations
A connection context declaration creates a connection context class, whose instances
are typically used for database connections that use a particular set of SQL entities.

Basic connection context declarations use the following syntax:

#sql <modifiers> context context_classname;

As for iterator declarations, modifiers are optional and can be any standard Java
class modifiers. The following is an example:

#sql public context MyContext;

As a result of this statement, the SQLJ translator creates a public MyContext class.
In your SQLJ code you can use instances of this class to create database connections
to schemas that include a desired set of entities, such as tables, views, and stored
procedures. Different instances of MyContext might be used to connect to different
schemas, but each schema might be expected, for example, to include an EMP table,
a DEPT table, and a TRANSFER_EMPLOYEE stored procedure.

Declared connection context classes are an advanced topic and are not necessary for
basic SQLJ applications that use only one interrelated set of SQL entities. In basic
scenarios, you can use multiple connections by creating multiple instances of the
sqlj.runtime.ref.DefaultContext class, which does not require any
connection context declarations.

See "Connection Considerations" on page 4-6 for an overview of connections and
connection contexts.

For information about creating additional connection contexts, see "Connection
Contexts" on page 7-2.
3-4 SQLJ Developer’s Guide and Reference

Overview of SQLJ Declarations
Declaration IMPLEMENTS Clause
When you declare any iterator class or connection context class, you can specify one
or more interfaces to be implemented by the generated class.

Use the following syntax for an iterator class:

#sql <modifiers> iterator iterator_classname implements intfc1,..., intfcN
 (type declarations);

The portion implements intfc1,..., intfcN is known as the implements
clause. Note that in an iterator declaration, the implements clause precedes the
iterator type declarations.

Here is the syntax for a connection context declaration:

#sql <modifiers> context context_classname implements intfc1,..., intfcN;

The implements clause is potentially useful in either an iterator declaration or a
connection context declaration, but is more likely to be useful in iterator
declarations—particularly in implementing the sqlj.runtime.Scrollable or
sqlj.runtime.ForUpdate interface. Scrollable iterators are supported in Oracle
SQLJ (see "Scrollable Iterators" on page 7-30); positioned updates or deletes are not
currently supported.

For more information about the implements clause, see "Use of the IMPLEMENTS
Clause in Iterator Declarations" on page 7-28 and "Use of the IMPLEMENTS Clause
in Connection Context Declarations" on page 7-11.

The following example uses an implements clause in declaring a named iterator
class (presume you have created a package, mypackage, that includes an iterator
interface, MyIterIntfc).

#sql public iterator MyIter implements mypackage.MyIterIntfc
 (String ename, int empno);

The declared class MyIter will implement the mypackage.MyIterIntfc
interface.

Note: The SQLJ implements clause corresponds to the Java
implements clause.
 Basic Language Features 3-5

Overview of SQLJ Declarations
This next example declares a connection context class that implements an interface
named MyConnCtxtIntfc (presume it, too, is in the package mypackage).

#sql public context MyContext implements mypackage.MyConnCtxtIntfc;

Declaration WITH Clause
In declaring a connection context class or iterator class, you can use a with clause
to specify and initialize one or more constants to be included in the definition of the
generated class. Most of this usage is standard, although Oracle adds one kind of
extended functionality for iterator declarations.

Standard WITH Clause Usage
In using a with clause, the constants that are produced are always public
static final. Use the following syntax for an iterator class:

#sql <modifiers> iterator iterator_classname with (var1=value1,..., varN=valueN)
 (type declarations);

The portion with (var1=value1,..., varN=valueN) is the with clause. Note
that in an iterator declaration, the with clause precedes the iterator type
declarations.

Where there is both a with clause and an implements clause, the implements
clause must come first. Note that parentheses are used to enclose with lists, but not
implements lists.

Here is the syntax for a connection context declaration using a with clause:

#sql <modifiers> context context_classname with (var1=value1,..., varN=valueN);

And here is an example:

#sql public context MyContext with (typeMap="MyPack.MyClass");

The declared class MyContext will define the attribute typeMap that will be
public static final of the type String and initialized to the value
"MyPack.MyClass". This value is the fully qualified class name of a
ListResourceBundle implementation that provides the mapping between SQL
and Java types for statements executed on instances of the MyContext class.

Here is another example (see the note about sensitivity below):

#sql public iterator MyAsensitiveIter with (sensitivity=ASENSITIVE)
 (String ename, int empno);
3-6 SQLJ Developer’s Guide and Reference

Overview of SQLJ Declarations
This declaration sets the cursor sensitivity to ASENSITIVE for a named iterator
class.

The following example uses both an implements clause and a with clause (see the
note about holdability immediately below).

#sql public iterator MyScrollableIterator implements sqlj.runtime.Scrollable
 with (holdability=true) (String ename, int empno);

The implements clause must precede the with clause.

This declaration implements the interface sqlj.runtime.Scrollable and
enables the cursor holdability for a named iterator class (but holdability is
not currently meaningful to Oracle9i).

The following standard constants on iterator declarations are not supported in
Oracle SQLJ. They mostly involve cursor states and can take only particular values,
as follows:

■ holdability (true/false)

■ updateColumns (a String literal containing a comma-separated list of
column names)

An iterator declaration having a with clause that specifies updateColumns must
also have an implements clause that specifies the sqlj.runtime.ForUpdate
interface.

Oracle SQLJ supports the following standard constants on connection context
declarations.

■ sensitivity (SENSITIVE/ASENSITIVE/INSENSITIVE, to define the
sensitivity of a scrollable iterator)

■ returnability (true/false, to define whether an iterator can be returned
from a Java stored procedure or function)

■ typeMap (a String literal defining the name of a type map properties
resource)

■ dataSource (a String literal defining the name under which a data source is
looked up in the InitialContext

See "Data Source Support" on page 7-13 for information about SQLJ support for
data sources)
 Basic Language Features 3-7

Overview of SQLJ Declarations
The following standard constants on connection context declarations are not
currently supported in Oracle SQLJ:

■ path (a String literal defining the name of a path to be prepended for
resolution of Java stored procedures and functions)

■ transformGroup (a String literal defining the name of a SQL
transformation group that may be applied to SQL types)

Oracle-Specific WITH Clause Usage
In addition to standard with clause usage in a connection context declaration to
associate a type map with the connection context class, Oracle allows you to use a
with clause to associate a type map with the iterator class in an iterator declaration.
Here is an example:

#sql iterator MyIterator with (typeMap="MyTypeMap") (Person pers, Address addr);

If you use Oracle-specific code generation (through the translator setting
-codegen=oracle), and you use type maps in your application, then your iterator
and connection context declarations must use the same type map(s). See "Coding
Considerations and Limitations with Oracle-Specific Code Generation" on
page 10-13 for more information.

Note: A predefined set of standard SQLJ constants can be defined
in a with clause; however, not all of these constants are meaningful
to Oracle9i or to the Oracle SQLJ runtime. Attempts to define
constants other than the standard constants (as in the example
above) is legal with Oracle9i, but may not be portable to other SQLJ
implementations and will generate a warning if you have the
-warn=portable flag enabled. For information about this flag,
see "Translator Warnings (-warn)" on page 8-43.
3-8 SQLJ Developer’s Guide and Reference

Overview of SQLJ Executable Statements
Overview of SQLJ Executable Statements
A SQLJ executable statement consists of the #sql token followed by a SQLJ clause,
which uses syntax that follows a specified standard for embedding executable SQL
statements in Java code. The embedded SQL operation of a SQLJ executable
statement can be any SQL operation supported by your JDBC driver (such as DML,
DDL, and transaction control).

Rules for SQLJ Executable Statements
A SQLJ executable statement must follow these rules:

■ It is permitted in Java code wherever Java block statements are permitted (in
other words, it is permitted inside method definitions and static initialization
blocks).

■ Its embedded SQL operation must be enclosed in curly braces: {...}.

■ It must be terminated with a semi-colon (";").

Notes:

■ It is recommended that you not close the SQL operation (inside
the braces) with a semi-colon. The parser will detect the end of
the operation when it encounters the closing curly brace of the
SQLJ clause.

■ Everything inside the curly braces of a SQLJ executable
statement is treated as SQL syntax and must follow SQL rules,
with the exception of Java host expressions (which are
described in "Java Host Expressions, Context Expressions, and
Result Expressions" on page 3-15).

■ During examination of SQL operations, only DML operations
(such as SELECT, UPDATE, INSERT, and DELETE) can be parsed
and checked for syntax and semantics by the SQLJ translator
using a database connection. DDL operations (such as
CREATE..., or ALTER...), transaction-control operations
(such as COMMIT and ROLLBACK), or any other kinds of SQL
operations cannot.
 Basic Language Features 3-9

Overview of SQLJ Executable Statements
SQLJ Clauses
A SQLJ clause is the executable part of a statement (everything to the right of the
#sql token). This consists of embedded SQL inside curly braces, preceded by a Java
result expression if appropriate (such as result below):

#sql { SQL operation }; // For a statement with no output, like INSERT
...
#sql result = { SQL operation }; // For a statement with output, like SELECT

A clause without a result expression, such as in the first example, is known as a
statement clause. A clause that does have a result expression, such as in the second
example, is known as an assignment clause.

A result expression can be anything from a simple variable that takes a
stored-function return value, to an iterator that takes several columns of data from a
multi-row SELECT (where the iterator can be an instance of an iterator class or
subclass).

A SQL operation in a SQLJ statement can use standard SQL syntax only, or can use
a clause with syntax specific to SQLJ (see Table 3–1 and Table 3–2 below).

For reference, Table 3–1 lists supported SQLJ statement clauses, and Table 3–2 lists
supported SQLJ assignment clauses. Details of how to use the various kinds of
clauses are discussed elsewhere, as indicated. The two entries in Table 3–1 are
general categories for statement clauses that use standard SQL syntax or Oracle
PL/SQL syntax, as opposed to SQLJ-specific syntax.

Table 3–1 SQLJ Statement Clauses

Category Functionality More Information

SELECT INTO clause Select data into Java host
expressions.

"Single-Row Query Results—SELECT
INTO Statements" on page 3-33

FETCH clause Fetch data from a
positional iterator.

"Using Positional Iterators" on page 3-47

COMMIT clause Commit changes to the
data.

"Using Manual COMMIT and
ROLLBACK" on page 4-28

ROLLBACK clause Cancel changes to the
data.

"Using Manual COMMIT and
ROLLBACK" on page 4-28

SET TRANSACTION
clause

Use advanced transaction
control for access mode
and isolation level.

"Advanced Transaction Control" on
page 7-38
3-10 SQLJ Developer’s Guide and Reference

Overview of SQLJ Executable Statements
Specifying Connection Context Instances and Execution Context Instances
If you have defined multiple database connections and want to specify a particular
connection context instance for an executable statement, use the following syntax:

#sql [conn_context_instance] { SQL operation };

"Connection Considerations" on page 4-6 discusses connection context instances.

If you have defined one or more execution context instances (of the class
sqlj.runtime.ExecutionContext) and want to specify one of them for use

procedure clause Call a stored procedure. "Calling Stored Procedures" on
page 3-59

assignment clause Assign values to Java host
expressions.

"Assignment Statements (SET)" on
page 3-57

SQL clause Use standard SQL syntax
and functionality: UPDATE,
INSERT, DELETE.

Oracle9i SQL Reference

PL/SQL block Use BEGIN..END or
DECLARE..BEGIN..END
anonymous block inside
SQLJ statement.

"PL/SQL Blocks in Executable
Statements" on page 3-14

PL/SQL User’s Guide and Reference

Table 3–2 SQLJ Assignment Clauses

Category Functionality More Information

query clause Select data into a SQLJ
iterator.

"Multi-Row Query Results—SQLJ
Iterators" on page 3-36

function clause Call a stored function. "Calling Stored Functions" on page 3-60

iterator conversion
clause

Convert a JDBC result set
to a SQLJ iterator.

"Converting from Result Sets to Named
or Positional Iterators" on page 7-47

Note: A SQLJ statement is referred to by the same name as the
clause that makes up the body of that statement. For example, an
executable statement consisting of #sql followed by a SELECT
INTO clause is referred to as a SELECT INTO statement.

Table 3–1 SQLJ Statement Clauses (Cont.)

Category Functionality More Information
 Basic Language Features 3-11

Overview of SQLJ Executable Statements
with an executable statement, use the following syntax (similar to that for
connection context instances):

#sql [exec_context_instance] { SQL operation };

You can use an execution context instance to provide status or control of the SQL
operation of a SQLJ executable statement. (This is an advanced topic.) For example,
you can use execution context instances in multithreading situations where multiple
operations are occurring on the same connection. See "Execution Contexts" on
page 7-16 for information.

You can also specify both a connection context instance and an execution context
instance:

#sql [conn_context_instance, exec_context_instance] { SQL operation };

Executable Statement Examples
Examples of elementary SQLJ executable statements appear below. More
complicated statements are discussed later in this chapter.

Elementary INSERT
The following example demonstrates a basic INSERT. The statement clause does not
require any syntax specific to SQLJ.

Consider a subset of the standard EMP table:

CREATE TABLE EMP (
 ENAME VARCHAR2(10),
 SAL NUMBER(7,2));

Use the following SQLJ executable statement (that uses only standard SQL syntax)
to insert Joe as a new employee into the EMP table, specifying his name and salary.

#sql { INSERT INTO emp (ename, sal) VALUES (’Joe’, 43000) };

Notes:

■ Include square brackets around connection context instances
and execution context instances—they are part of the syntax.

■ If you specify both a connection context instance and an
execution context instance, the connection context instance
must come first.
3-12 SQLJ Developer’s Guide and Reference

Overview of SQLJ Executable Statements
Elementary INSERT with Connection Context or Execution Context Instances
The following examples use ctx as a connection context instance (an instance of
either the default sqlj.runtime.ref.DefaultContext or a class that you have
previously declared in a connection context declaration) and execctx as an
execution context instance:

#sql [ctx] { INSERT INTO emp (ename, sal) VALUES (’Joe’, 43000) };

#sql [execctx] { INSERT INTO emp (ename, sal) VALUES (’Joe’, 43000) };

#sql [ctx, execctx] { INSERT INTO emp (ename, sal) VALUES (’Joe’, 43000) };

A Simple SQLJ Method
This example demonstrates a simple method using SQLJ code, demonstrating how
SQLJ statements interrelate with and are interspersed with Java statements. The
SQLJ statement uses standard INSERT INTO table VALUES syntax supported by
Oracle SQL. The statement also uses Java host expressions, marked by colons (:), to
define the values. (Host expressions are used to pass data between your Java code
and SQL instructions. They are discussed in "Java Host Expressions, Context
Expressions, and Result Expressions" on page 3-15.)

public static void writeSalesData (int[] itemNums, String[] itemNames)
 throws SQLException
{
 for (int i =0; i < itemNums.length; i++)
 #sql { INSERT INTO sales VALUES(:(itemNums[i]), :(itemNames[i]), SYSDATE) };
}

Notes:

■ The throws SQLException is required. For information
about exception-handling, see "Exception-Handling Basics" on
page 4-22.

■ SQLJ function calls also use a VALUES token, but these
situations are not related semantically.
 Basic Language Features 3-13

Overview of SQLJ Executable Statements
PL/SQL Blocks in Executable Statements
PL/SQL blocks can be used within the curly braces of a SQLJ executable statement
just as SQL operations can, as in the following example:

#sql {
 DECLARE
 n NUMBER;
 BEGIN
 n := 1;
 WHILE n <= 100 LOOP
 INSERT INTO emp (empno) VALUES(2000 + n);
 n := n + 1;
 END LOOP;
 END
};

This example goes through a loop that inserts new employees in the EMP table,
creating employee numbers 2001-2100. (It presumes data other than the employee
number will be filled in later.)

Simple PL/SQL blocks can also be coded in a single line:

#sql { <DECLARE ...> BEGIN ... END };

Using PL/SQL anonymous blocks within SQLJ statements is one way to use
dynamic SQL in your application. (See "Dynamic SQL—DynamicDemo.sqlj" on
page 12-68 for a sample.) You can also use dynamic SQL directly through Oracle
SQLJ extensions (see "Support for Dynamic SQL" on page 7-52), or through JDBC
code within a SQLJ application (see "SQLJ and JDBC Interoperability" on page 7-42).

Notes:

■ It is recommended that you not close a PL/SQL block with a
semi-colon after the END. The parser will detect the end of the
block when it encounters the closing curly brace of the SQLJ
clause.

■ Remember that using PL/SQL in your SQLJ code would
prevent portability to other platforms, because PL/SQL is
Oracle-specific.
3-14 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions
Java Host Expressions, Context Expressions, and Result Expressions
This section discusses three categories of Java expressions used in SQLJ code: host
expressions, context expressions, and result expressions. Host expressions are the most
frequently used and merit the most discussion. (Another category of expressions,
called meta bind expressions, are used specifically for dynamic SQL operations and
use syntax similar to that of host expressions. See "Support for Dynamic SQL" on
page 7-52.)

SQLJ uses Java host expressions to pass arguments between your Java code and
your SQL operations. This is how you pass information between Java and SQL.
Host expressions are interspersed within the embedded SQL operations in SQLJ
source code.

The most basic kind of host expression, consisting of only a Java identifier, is
referred to as a host variable.

A context expression specifies a connection context instance or execution context
instance to be used for a SQLJ statement.

A result expression specifies an output variable for query results or a function
return.

(Result expressions and the specification of connection context instances and
execution context instances were first introduced in "Overview of SQLJ Executable
Statements" on page 3-9.)

Overview of Host Expressions
Any valid Java expression can be used as a host expression. In the simplest case,
which is typical, the expression consists of just a single Java variable. Other kinds of
host expressions include the following:

■ arithmetic expressions

■ Java method calls with return values

■ Java class field values

■ array elements

■ conditional expressions (a ? b : c)

■ logical expressions

■ bitwise expressions
 Basic Language Features 3-15

Java Host Expressions, Context Expressions, and Result Expressions
Java identifiers used as host variables or in host expressions can represent any of the
following:

■ local variables

■ declared parameters

■ class fields (such as myclass.myfield)

■ static or instance method calls

Local variables used in host expressions can be declared anywhere that other Java
variables can be declared. Fields can be inherited from a superclass.

Java variables that are legal in the Java scope where the SQLJ executable statement
appears can be used in a host expression in a SQL statement, presuming its type is
convertible to or from a SQL datatype.

Host expressions can be input, output, or input-output.

See "Supported Types for Host Expressions" on page 5-2 for information about data
conversion between Java and SQL during input and output operations.

Basic Host Expression Syntax
A host expression is preceded by a colon (":"). If the desired mode of the host
expression (input, output, or input-output) is not the default, then the colon must be
followed (before the host expression itself) by IN, OUT, or INOUT, as appropriate.
These are referred to as mode specifiers. The default is OUT if the host expression is
part of an INTO-list or is the assignment expression in a SET statement. Otherwise,
the default is IN. (When using the default, you can still include the mode specifier if
desired.)

Any OUT or INOUT host expression must be assignable (an l-value, meaning
something that can logically appear on the left side of an equals sign).

The SQL code that surrounds a host expression can use any vendor-specific SQL
syntax; therefore, no assumptions can be made about the syntax when parsing the
SQL operations and determining the host expressions. To avoid any possible
ambiguity, any host expression that is not a simple host variable (in other words,
that is more complex than a non-dotted Java identifier) must be enclosed in
parentheses.
3-16 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions
To summarize the basic syntax:

■ For a simple host variable without a mode specifier, put the host variable after
the colon, as in the following example:

:hostvar

■ For a simple host variable with a mode specifier, put the mode specifier after
the colon, and put white space (space, tab, newline, or comment) between the
mode specifier and the host variable, as in the following example:

:INOUT hostvar

The white space is required to distinguish between the mode specifier and the
variable name.

■ For any other host expression, enclose the expression in parentheses and place it
after the mode specifier, or after the colon if there is no mode specifier, as in the
following examples:

:IN(hostvar1+hostvar2)
:(hostvar3*hostvar4)
:(index--)

White space is not required after the mode specifier in the above example,
because the parenthesis is a suitable separator, but it is allowed.

An outer set of parentheses is needed even if the expression already starts with
a begin-parenthesis, as in the following examples:

:((x+y).z)
:(((y)x).myOutput())

Syntax Notes

■ White space is always allowed after the colon as well as after the mode
specifier. Wherever white space is allowed, you can also have a comment—any
of the following in the SQL namespace:

– SQL comments after the colon and before the mode specifier

– SQL comments after the colon and before the host expression if there is no
mode specifier

– SQL comments after the mode specifier and before the host expression
 Basic Language Features 3-17

Java Host Expressions, Context Expressions, and Result Expressions
or in the Java namespace:

– Java comments within the host expression (inside the parentheses)

■ The IN, OUT, and INOUT syntax used for host variables and expressions is not
case sensitive; these tokens can be uppercase, lowercase, or mixed.

■ Do not confuse the IN, OUT, and INOUT syntax of SQLJ host expressions with
similar IN, OUT, and IN OUT syntax used in PL/SQL declarations to specify the
mode of parameters passed to PL/SQL stored functions and procedures.

Usage Notes

■ A simple host variable can appear multiple times in the same SQLJ statement,
as follows ("output" refers to OUT or INOUT variables, as applicable):

– If the host variable appears only as an input variable, then there are no
restrictions or complications.

– If at least one appearance of the host variable is as an output variable in a
PL/SQL block, then you will receive a portability warning if the translator
-warn=portability flag is set. SQLJ runtime behavior in this situation is
vendor-specific. The Oracle SQLJ runtime uses value semantics (as opposed
to reference semantics) for all occurrences of the host variable. For
information about the -warn=portability flag, see "Translator Warnings
(-warn)" on page 8-43.

– If at least one appearance of the host variable is as an output variable in a
stored procedure call, stored function call, SET statement, or INTO-list, then
you will not receive any warning. SQLJ runtime behavior in this situation is
standardized, using value semantics.

■ If a host expression other than a simple host variable appears multiple times in
a SQLJ statement, then each appearance is treated completely independently of
the other appearances, using value semantics.

For examples of Oracle SQLJ runtime evaluation of host expressions, see "Examples
of Evaluation of Java Expressions at Runtime" on page 3-23.

Examples of Host Expressions
The following examples will help clarify the preceding syntax discussion. (Some of
these examples use SELECT INTO statements, which are described in "Single-Row
Query Results—SELECT INTO Statements" on page 3-33.)
3-18 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions
1. In this example, two input host variables are used—one as a test value for a
WHERE clause, and one to contain new data to be sent to the database.

Presume you have a database employee table EMP with an ENAME column for
employee names and a SAL column for employee salaries.

The relevant Java code that defines the host variables is also shown in the
example.

String empname = "SMITH";
double salary = 25000.0;
...
#sql { UPDATE emp SET sal = :salary WHERE ename = :empname };

IN is the default, but you can state it explicitly as well:

#sql { UPDATE emp SET sal = :IN salary WHERE ename = :IN empname };

As you can see, ":" can immediately precede the variable when not using the IN
token, but ":IN" must be followed by white space before the host variable.

2. This example uses an output host variable in a SELECT INTO statement, where
you want to find out the name of employee number 28959.

String empname;
...
#sql { SELECT ename INTO :empname FROM emp WHERE empno = 28959 };

OUT is the default for an INTO-list, but you can state it explicitly as well:

#sql { SELECT ename INTO :OUT empname FROM emp WHERE empno = 28959 };

This looks in the EMPNO column of the EMP table for employee number 28959,
selects the name in the ename column of that row, and outputs it to the
empname output host variable, which is a Java string.

3. This example uses an arithmetic expression as an input host expression. The
Java variables balance and minPmtRatio are multiplied, and the result is
used to update the minPayment column of the creditacct table for account
number 537845.

float balance = 12500.0;
float minPmtRatio = 0.05;
...
#sql { UPDATE creditacct SET minPayment = :(balance * minPmtRatio)
 WHERE acctnum = 537845 };
 Basic Language Features 3-19

Java Host Expressions, Context Expressions, and Result Expressions
Or, to use the IN token:

#sql { UPDATE creditacct SET minPayment = :IN (balance * minPmtRatio)
 WHERE acctnum = 537845 };

4. This example shows use of the output of a method call as an input host
expression and also uses an input host variable. This statement uses the value
returned by getNewSal() to update the SAL column in the EMP table for the
employee (in the ENAME column) who is specified by the Java empname
variable. Java code initializing the host variables is also shown.

String empname = "SMITH";
double raise = 0.1;
...
#sql {UPDATE emp SET sal = :(getNewSal(raise, empname))
 WHERE ename = :empname};

Overview of Result Expressions and Context Expressions
A context expression is an input expression that specifies the name of a connection
context instance or an execution context instance to be used in a SQLJ executable
statement. Any legal Java expression that yields such a name can be used.

A result expression is an output expression used for query results or a function
return. It can be any legal Java expression that is assignable, meaning that it can
logically appear on the left side of an equals sign (this is sometimes referred to as an
l-value).

The following examples can be used for either result expressions or context
expressions:

■ local variables

■ declared parameters

■ class fields (such as myclass.myfield)

■ array elements

Result expressions and context expressions appear lexically in the SQLJ space,
unlike host expressions, which appear lexically in the SQL space (inside the curly
brackets of a SQLJ executable statement). Therefore, a result expression or context
expression must not be preceded by a colon.
3-20 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions
Evaluation of Java Expressions at Runtime
This section discusses the evaluation of Java host expressions, connection context
expressions, execution context expressions, and result expressions when your
application executes.

Here is a simplified representation of a SQLJ executable statement that uses all these
kinds of expressions:

#sql [connctxt_exp, execctxt_exp] result_exp = { SQL with host expression };

Java expressions can be used as any of the following:

■ connection context expression (optional; evaluated to specify the connection
context instance to be used)

■ execution context expression (optional; evaluated to specify the execution
context instance to be used)

■ result expression (when appropriate; to receive results from a stored function,
for example)

■ host expression

For standard SQLJ generated code, evaluation of Java expressions does have side
effects in a Java program because they are evaluated by Java, not by the SQL engine.
Furthermore, the order of evaluation of these expressions can be critical if any of the
expressions have side effects.

The following is a summary (for standard generated code) of the overall order of
evaluation, execution, and assignment of Java expressions for each statement that
executes during runtime.

1. If there is a connection context expression, then it is evaluated immediately
(before any other Java expressions are evaluated).

2. If there is an execution context expression, then it is evaluated after any
connection context expression, but before any result expression.

Note: The following discussion does not apply to Oracle-specific
generated code, produced through the SQLJ translator
-codegen=oracle setting. Specifically, behavior will differ for
OUT, INOUT, or result expressions that have side effects. See
"Oracle-Specific Code Generation (No Profiles)" on page 10-11 for
more information.
 Basic Language Features 3-21

Java Host Expressions, Context Expressions, and Result Expressions
3. If there is a result expression, then it is evaluated after any context expressions,
but before any host expressions.

4. After evaluation of any context or result expressions, host expressions are
evaluated from left to right as they appear in the SQL operation. As each host
expression is encountered and evaluated, its value is saved to be passed to SQL.

Each host expression is evaluated once and only once.

5. IN and INOUT parameters are passed to SQL, and the SQL operation is
executed.

6. After execution of the SQL operation, the output parameters—Java OUT and
INOUT host expressions—are assigned output in order from left to right as they
appear in the SQL operation.

Each output host expression is assigned once and only once.

7. The result expression, if there is one, is assigned output last.

"Examples of Evaluation of Java Expressions at Runtime" on page 3-23, has a series
of examples that clarifies this sequence and discusses a number of special
considerations.

Once the expressions in a statement have been evaluated, input and input-output
host expressions are passed to SQL and then the SQL operation is executed. After
execution of the SQL operation, assignments are made to Java output host
expressions, input-output host expressions, and result expressions as follows:

1. OUT and INOUT host expressions are assigned output in order from left to right.

2. The result expression, if there is one, is assigned output last.

Note that during runtime all host expressions are treated as distinct values, even if
they share the same name or reference the same object. The execution of each SQL
operation is treated as if invoking a remote method, and each host expression is
taken as a distinct parameter. Each input or input-output parameter is evaluated
and passed as it is first encountered, before any output assignments are made for
that statement, and each output parameter is also taken as distinct and is assigned
exactly once.

Note: Host expressions inside a PL/SQL block are all evaluated
together before any statements within the block are executed. They
are evaluated in the order in which they appear, regardless of
control flow within the block.
3-22 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions
It is also important to remember that each host expression is evaluated only once.
An INOUT expression is evaluated when it is first encountered. When the output
assignment is made, the expression itself is not re-evaluated, nor are any side-effects
repeated.

In discussing the evaluation order of host expressions, several points must be
highlighted, as covered in "Examples of Evaluation of Java Expressions at Runtime"
below.

Examples of Evaluation of Java Expressions at Runtime
This section discusses some of the subtleties of how Java expressions are evaluated
when your application executes, providing examples. (Some of these examples use
SELECT INTO statements, which are described in "Single-Row Query
Results—SELECT INTO Statements" on page 3-33; some use assignment statements,
which are described in "Assignment Statements (SET)" on page 3-57; and some use
stored procedure and function calls, which are described in "Stored Procedure and
Function Calls" on page 3-59.)

Prefix Operators Act Before Evaluation; Postfix Operators Act After Evaluation
When a Java expression contains a Java postfix increment or decrement operator,
the incrementation or decrementation occurs after the expression has been
evaluated. Similarly, when a Java expression contains a Java prefix increment or
decrement operator, the incrementation or decrementation occurs before the
expression is evaluated.

This is equivalent to how these operators are handled in standard Java code.

Consider the following examples.

Example 1: postfix operator

int indx = 1;
...
#sql { ... :OUT (array[indx]) ... :IN (indx++) ... };

This example is evaluated as follows:

#sql { ... :OUT (array[1]) ... :IN (1) ... };

The variable indx is incremented to 2 and will have that value the next time it
is encountered, but not until after :IN (indx++) has been evaluated.
 Basic Language Features 3-23

Java Host Expressions, Context Expressions, and Result Expressions
Example 2: postfix operators

int indx = 1;
...
#sql { ... :OUT (array[indx++]) ... :IN (indx++) ... };

This example is evaluated as follows:

#sql { ... :OUT (array[1]) ... :IN (2) ... };

The variable indx is incremented to 2 after the first expression is evaluated, but
before the second expression is evaluated. It is incremented to 3 after the second
expression is evaluated and will have that value the next time it is encountered.

Example 3: prefix and postfix operators

int indx = 1;
...
#sql { ... :OUT (array[++indx]) ... :IN (indx++) ... };

This example is evaluated as follows:

#sql { ... :OUT (array[2]) ... :IN (2) ... };

The variable indx is incremented to 2 before the first expression is evaluated. It
is incremented to 3 after the second expression is evaluated and will have that
value the next time it is encountered.

Example 4: postfix operator

int grade = 0;
int count1 = 0;
...
#sql { SELECT count INTO :count1 FROM staff
 WHERE grade = :(grade++) OR grade = :grade };

This example is evaluated as follows:

#sql { SELECT count INTO :count1 FROM staff
 WHERE grade = 0 OR grade = 1 };

The variable grade is incremented to 1 after :(grade++) is evaluated and has
that value when :grade is evaluated.
3-24 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions
Example 5: postfix operators

int count = 1;
int[] x = new int[10];
int[] y = new int[10];
int[] z = new int[10];
...
#sql { SET :(z[count++]) = :(x[count++]) + :(y[count++]) };

This example is evaluated as follows:

#sql { SET :(z[1]) = :(x[2]) + :(y[3]) };

The variable count is incremented to 2 after the first expression is evaluated,
but before the second expression is evaluated; it is incremented to 3 after the
second expression is evaluated, but before the third expression is evaluated; it is
incremented to 4 after the third expression is evaluated and will have that value
the next time it is encountered.

Example 6: postfix operator

int[] arr = {3, 4, 5};
int i = 0;
...
#sql { BEGIN
 :OUT (arr[i++]) := :(arr[i]);
 END };

This example is evaluated as follows:

#sql { BEGIN
 :OUT (a[0]) := :(a[1]);
 END };

The variable i is incremented to 1 after the first expression is evaluated, but
before the second expression is evaluated; therefore, output will be assigned to
arr[0]. Specifically, arr[0] will be assigned the value of arr[1], which is 4.
After execution of this statement, array arr will have the values {4, 4, 5}.

IN versus INOUT versus OUT Makes No Difference in Evaluation Order
Host expressions are evaluated from left to right. Whether an expression is IN,
INOUT, or OUT makes no difference in when it is evaluated; all that matters is its
position in the left-to-right order.
 Basic Language Features 3-25

Java Host Expressions, Context Expressions, and Result Expressions
Example 7: IN versus INOUT versus OUT

int[5] arry;
int n = 0;
...
#sql { SET :OUT (arry[n]) = :(++n) };

This example is evaluated as follows:

#sql { SET :OUT (arry[0]) = 1 };

One might expect input expressions to be evaluated before output expressions,
but that is not the case. The expression :OUT (arry[n]) is evaluated first
because it is the left-most expression. Then n is incremented prior to evaluation
of ++n, because it is being operated on by a prefix operator. Then ++n is
evaluated as 1. The result will be assigned to arry[0], not arry[1], because 0
was the value of n when it was originally encountered.

Expressions in PL/SQL Blocks Are Evaluated Before Statements Are Executed
Host expressions in a PL/SQL block are all evaluated in one sequence, before any
have been executed.

Example 8: evaluation of expressions in a PL/SQL block

int x=3;
int z=5;
...
#sql { BEGIN :OUT x := 10; :OUT z := :x; END };
System.out.println("x=" + x + ", z=" + z);

This example is evaluated as follows:

#sql { BEGIN :OUT x := 10; :OUT z := 3; END };

Therefore, it would print "x=10, z=3".

All expressions in a PL/SQL block are evaluated before any are executed. In
this example, the host expressions in the second statement, :OUT z and :x,
are evaluated before the first statement is executed. In particular, the second
statement is evaluated while x still has its original value of 3, before it has been
assigned the value 10.
3-26 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions
Example 9: evaluation of expressions in a PL/SQL block (with postfix)

Consider an additional example of how expressions are evaluated within a
PL/SQL block.

int x=1, y=4, z=3;
...
#sql { BEGIN
 :OUT x := :(y++) + 1;
 :OUT z := :x;
 END };

This example is evaluated as follows:

#sql { BEGIN
 :OUT x := 4 + 1;
 :OUT z := 1;
 END };

The postfix increment operator is executed after :(y++) is evaluated, so the
expression is evaluated as 4 (the initial value of y). The second statement, :OUT
z := :x, is evaluated before the first statement is executed, so x still has its
initialized value of 1. After execution of this block, x will have the value 5 and z
will have the value 1.

Example 10: statements in one block versus separate SQLJ executable statements

This example demonstrates the difference between two statements appearing in
a PL/SQL block in one SQLJ executable statement, and the same statements
appearing in separate (consecutive) SQLJ executable statements.

First, consider the following, where two statements are in a PL/SQL block.

int y=1;
...
#sql { BEGIN :OUT y := :y + 1; :OUT x := :y + 1; END };

This example is evaluated as follows:

#sql { BEGIN :OUT y := 1 + 1; :OUT x := 1 + 1; END };

The :y in the second statement is evaluated before either statement is executed,
so y has not yet received its output from the first statement. After execution of
this block, both x and y have the value 2.

Now, consider the situation where the same two statements are in PL/SQL
blocks in separate SQLJ executable statements.
 Basic Language Features 3-27

Java Host Expressions, Context Expressions, and Result Expressions
int y=1;
#sql { BEGIN :OUT y := :y + 1; END };
#sql { BEGIN :OUT x := :y + 1; END };

The first statement is evaluated as follows:

#sql { BEGIN :OUT y := 1 + 1; END };

Then it is executed and y is assigned the value 2.

After execution of the first statement, the second statement is evaluated as
follows:

#sql { BEGIN :OUT x := 2 + 1; END };

This time, as opposed to the PL/SQL block example above, y has already
received the value 2 from execution of the previous statement; therefore, x is
assigned the value 3 after execution of the second statement.

Expressions in PL/SQL Blocks Are Always Evaluated Once Only
Each host expression is evaluated once, and only once, regardless of program flow
and logic.

Example 11: evaluation of host expression in a loop

int count = 0;
...
#sql {
 DECLARE
 n NUMBER
 BEGIN
 n := 1;
 WHILE n <= 100 LOOP
 :IN (count++);
 n := n + 1;
 END LOOP;
 END
};

The Java variable count will have the value 0 when it is passed to SQL
(because it is operated on by a postfix operator, as opposed to a prefix operator),
then will be incremented to 1 and will hold that value throughout execution of
this PL/SQL block. It is evaluated only once as the SQLJ executable statement is
parsed and then is replaced by the value 1 prior to SQL execution.
3-28 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions
Example 12: evaluation of host expressions in conditional blocks

This example demonstrates how each expression is always evaluated,
regardless of program flow. As the block is executed, only one branch of the
IF...THEN...ELSE construct can be executed. Before the block is executed,
however, all expressions in the block are evaluated, in the order that the
statements appear.

int x;
...
(operations on x)
...
#sql {
 DECLARE
 n NUMBER
 BEGIN
 n := :x;
 IF n < 10 THEN
 n := :(x++);
 ELSE
 n := :x * :x;
 END LOOP;
 END
};

Say the operations performed on x resulted in x having a value of 15. When the
PL/SQL block is executed, the ELSE branch will be executed and the IF branch
will not; however, all expressions in the PL/SQL block are evaluated before
execution, regardless of program logic or flow. So x++ is evaluated, then x is
incremented, then each x is evaluated in the (x * x) expression. The
IF...THEN...ELSE block is, therefore, evaluated as follows:

IF n < 10 THEN
 n := 15;
ELSE
 n := :16 * :16;
END LOOP;

After execution of this block, given an initial value of 15 for x, n will have the
value 256.
 Basic Language Features 3-29

Java Host Expressions, Context Expressions, and Result Expressions
Output Host Expressions Are Assigned Left to Right, Before Result Expression
Remember that OUT and INOUT host expressions are assigned in order from left to
right, and then the result expression, if there is one, is assigned last. If the same
variable is assigned more than once, then it will be overwritten according to this
order, with the last assignment taking precedence.

Example 13: multiple output host expressions referencing the same variable

#sql { CALL foo(:OUT x, :OUT x) };

If foo() outputs the values 2 and 3, respectively, then x will have the value 3
after the SQLJ executable statement has finished executing. The right-hand
assignment will be performed last, thereby taking precedence.

Example 14: multiple output host expressions referencing the same object

MyClass x = new MyClass();
MyClass y = x;
...
#sql { ... :OUT (x.field):=1 ... :OUT (y.field):=2 ... };

After execution of the SQLJ executable statement, x.field will have a value of
2, not 1, because x is the same object as y, and field was assigned the value of
2 after it was assigned the value of 1.

Example 15: results assignment taking precedence over host expression assignment

This example demonstrates the difference between having the output results of
a function assigned to a result expression and having the results assigned to an
OUT host expression.

Consider the following function, with an input invar, an output outvar, and a
return value:

CREATE FUNCTION fn(invar NUMBER, outvar OUT NUMBER)
 RETURN NUMBER AS BEGIN
 outvar := invar + invar;
 return (invar * invar);
 END fn;

Note: Some of these examples use stored procedure and function
calls, whose syntax is explained in "Stored Procedure and Function
Calls" on page 3-59.
3-30 SQLJ Developer’s Guide and Reference

Java Host Expressions, Context Expressions, and Result Expressions
Now consider an example where the output of the function is assigned to a
result expression:

int x = 3;
#sql x = { VALUES(fn(:x, :OUT x)) };

The function will take 3 as the input, will calculate 6 as the output, and will
return 9. After execution, the :OUT x will be assigned first, giving x a value of
6. But finally the result expression is assigned, giving x the return value of 9
and overwriting the value of 6 previously assigned to x. So x will have the
value 9 the next time it is encountered.

Now consider an example where the output of the function is assigned to an
OUT host variable instead of to a result expression:

int x = 3;
#sql { BEGIN :OUT x := fn(:x, :OUT x); END };

In this case, there is no result expression and the OUT variables are simply
assigned left to right. After execution, the first :OUT x, on the left side of the
equation, is assigned first, giving x the function return value of 9. Proceeding
left to right, however, the second :OUT x, on the right side of the equation, is
assigned last, giving x the output value of 6 and overwriting the value of 9
previously assigned to x. So x will have the value 6 the next time it is
encountered.

Note: Some unlikely cases have been used in these examples to
explain the concepts of how host expressions are evaluated. In
practice, it is not advisable to use the same variable in both an OUT
or INOUT host expression, or in an IN host expression inside a
single statement or PL/SQL block. The behavior in such cases is
well defined in Oracle SQLJ, but this practice is not covered in the
SQLJ specification, so code written in this manner will not be
portable. Such code will generate a warning from the Oracle SQLJ
translator if the portable flag is set during semantics-checking.
 Basic Language Features 3-31

Java Host Expressions, Context Expressions, and Result Expressions
Restrictions on Host Expressions
Do not use "in", "out", and "inout" as identifiers in host expressions unless they are
enclosed in parentheses. Otherwise, they might be mistaken for mode specifiers.
This is case-insensitive.

For example, you could use an input host variable called "in" as follows:

:(in)

or:

:IN(in)
3-32 SQLJ Developer’s Guide and Reference

Single-Row Query Results—SELECT INTO Statements
Single-Row Query Results—SELECT INTO Statements
When only a single row of data is being returned, SQLJ allows you to assign
selected items directly to Java host expressions inside SQL syntax. This is done
using the SELECT INTO statement.

SELECT INTO Syntax
The syntax for a SELECT INTO statement is as follows:

#sql { SELECT expression1,..., expressionN INTO :host_exp1,..., :host_expN
 FROM table <optional clauses> };

where:

■ expression1 through expressionN are expressions specifying what is to be
selected from the database. These can be any expressions valid for any SELECT
statement. This list of expressions is referred to as the SELECT-list.

In a simple case, these would be names of columns from a database table.

It is also legal to include a host expression in the SELECT-list (see the examples
below).

■ host_exp1 through host_expN are target host expressions, such as variables
or array elements. This list of host expressions is referred to as the INTO-list.

■ table is the name of the database table, view, or snapshot from which you are
selecting the data.

■ optional clauses are any additional clauses you want to include that are
valid in a SELECT statement, such as a WHERE clause.

A SELECT INTO statement must return one, and only one, row of data, otherwise
an error will be generated at runtime.

The default is OUT for a host expression in an INTO-list, but you can optionally state
this explicitly:

#sql { SELECT column_name1, column_name2 INTO :OUT host_exp1, :OUT host_exp2
 FROM table WHERE condition };

Trying to use an IN or INOUT token in the INTO-list will result in an error at
translation time.
 Basic Language Features 3-33

Single-Row Query Results—SELECT INTO Statements
Examples of SELECT INTO Statements
The examples below use a subset of the standard EMP table:

CREATE TABLE EMP (
 EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 HIREDATE DATE);

The first example is a SELECT INTO statement with a single host expression in the
INTO-list:

String empname;
#sql { SELECT ename INTO :enpname FROM emp WHERE empno=28959 };

The second example is a SELECT INTO statement with multiple host expressions in
the INTO-list:

String empname;
Date hdate;
#sql { SELECT ename, hiredate INTO :empname, :hdate FROM emp
 WHERE empno=28959 };

Examples with Host Expressions in SELECT-List
It is legal to use Java host expressions in the SELECT-list as well as in the INTO-list.

For example, you can select directly from one host expression into another (though
this is of limited usefulness):

...
#sql { SELECT :name1 INTO :name2 FROM emp WHERE empno=28959 };
...

Notes:

■ Permissible syntax for expression1 through expressionN,
the table, and the optional clauses is the same as for any SQL
SELECT statement. For information about what is permissible
in Oracle SQL, see the Oracle9i SQL Reference.

■ There can be any number of SELECT-list and INTO-list items,
as long as they match—one INTO-list item per SELECT-list
item, with compatible types.
3-34 SQLJ Developer’s Guide and Reference

Single-Row Query Results—SELECT INTO Statements
More realistically, you might want to perform an operation or concatenation on the
data selected, as in the following examples (assume Java variables were previously
declared and assigned, as necessary):

...
#sql { SELECT sal + :raise INTO :newsal FROM emp WHERE empno=28959 };
...

...
#sql { SELECT :(firstname + " ") || emp_last_name INTO :name FROM myemp
 WHERE empno=28959 };
...

In the second example, presume MYEMP is a table much like the standard EMP table
but with an EMP_LAST_NAME column instead of an ENAME column. In the SELECT
statement, firstname is prepended to " " (a single space), using a Java host
expression and Java string concatenation (the + operator). This result is then passed
to the SQL engine, which uses SQL string concatenation (the || operator) to
append the last name.

SELECT INTO Error Conditions
Remember that SELECT INTO statements are intended for queries that return
exactly one row of data only.

A SELECT INTO query that finds zero rows or multiple rows will result in an
exception, as follows:

■ A SELECT INTO finding now rows will return an exception with a SQL state of
2000, representing a "no data" condition.

■ A SELECT INTO finding multiple rows will return an exception with a SQL
state of 21000, representing a cardinality violation.

These exceptions are listed under "Runtime Messages" on page B-47. You can
retrieve the SQL state through the getSQLState() method of the
java.sql.SQLException class, as described in "Retrieving SQL States and Error
Codes" on page 4-24.

This is vendor-independent behavior that is specified in the SQLJ ISO standard.
There is no vendor-specific error code in these cases (the error code equals 0).
 Basic Language Features 3-35

Multi-Row Query Results—SQLJ Iterators
Multi-Row Query Results—SQLJ Iterators
A large number of SQL operations are multi-row queries. Processing multi-row
query-results in SQLJ requires a SQLJ iterator, which is generally a strongly typed
version of a JDBC result set and is associated with the underlying database cursor.
SQLJ iterators are used first and foremost to take query results from a SELECT
statement.

Additionally, Oracle SQLJ offers extensions that allow you to use SQLJ iterators and
result sets in the following ways:

■ as OUT host variables in executable SQL statements

■ as INTO-list targets, such as in a SELECT INTO statement

■ as a return type from a stored function call

■ as column types in iterator declarations (essentially, nested iterators)

For information about usage as stored function returns, see "Using Iterators and
Result Sets as Stored Function Returns" on page 3-62, after stored procedures and
stored functions have been discussed. The other uses listed above are documented
later in this section.

For information about advanced iterator topics, see "Iterator Class Implementation
and Advanced Functionality" on page 7-27. This section discusses how iterator
classes are implemented and what advanced functionality is available, such as
interoperability with JDBC result sets and subclassing of iterators.

Iterator Concepts
Using a SQLJ iterator declaration, as described in "Overview of SQLJ Declarations"
on page 3-2, results in a strongly typed iterator. This is the typical usage for
iterators, and takes particular advantage of SQLJ semantics-checking features
during translation.

It is also possible, and at times advantageous, to use weakly typed iterators. There
are generic classes you can instantiate to use a weakly typed iterator.

Note: To use a SQLJ iterator in any of these ways, its class must be
declared as public. If you declared it at the class level or
nested-class level, then it might be advisable to declare it as
public static.
3-36 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators
This section primarily introduces features of strongly typed iterators, but concludes
with a brief introduction to weakly typed iterators.

Introduction to Strongly Typed Iterators
Before using a strongly typed iterator object, you must declare an iterator class. An
iterator declaration specifies a Java class that SQLJ constructs for you, where the
class attributes define the types (and, optionally, the names) of the columns of data
in the iterator.

A SQLJ iterator object is an instantiation of such a specifically declared iterator
class, with a fixed number of columns of predefined type. This is as opposed to a
JDBC result set object, which is a standard java.sql.ResultSet instance and
can, in principle, contain any number of columns of any type.

When you declare an iterator, you specify either just the datatypes of the selected
columns, or both the datatypes and the names of the selected columns:

■ Specifying the names and datatypes defines a named iterator class.

■ Specifying just the datatypes defines a positional iterator class.

The datatypes (and names, if applicable) that you declare determine how query
results will be stored in iterator objects you instantiate from that class. SQL data
retrieved into an iterator object are converted to the Java types specified in the
iterator declaration.

When you query to populate a named iterator object, the names and datatypes of
the SELECT-fields must match the names and types of the iterator columns
(case-insensitive). The order of the SELECT-fields is irrelevant—all that matters is
that each SELECT-field name matches an iterator column name. In the simplest
case, the database column names directly match the iterator column names. For
example, data from an ENAME column in a database table can be selected and put
into an iterator ename column. Alternatively, you can use an alias to map a
database column name to an iterator column name if the names differ. Furthermore,
in a more complicated query, you can perform an operation between two columns
and alias the result to match the corresponding iterator column name. (These last
two cases are discussed in "Instantiating and Populating Named Iterators" on
page 3-44.)

Because SQLJ iterators are strongly typed, they offer the benefit of Java
type-checking during the SQLJ semantics-checking phase.
 Basic Language Features 3-37

Multi-Row Query Results—SQLJ Iterators
As an example, consider the following table:

CREATE TABLE EMPSAL (
 EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 OLDSAL NUMBER(10),
 RAISE NUMBER(10));

Given this table, you can declare and use a named iterator as follows.

Declaration:

#sql iterator SalNamedIter (int empno, String ename, float raise);

Executable code:

class MyClass {
 void func() throws SQLException {
 ...
 SalNamedIter niter;
 #sql niter = { SELECT ename, empno, raise FROM empsal };

 ... process niter ...
 }
}

This is a simple case where the iterator column names match the table column
names. Note that the order of items in the SELECT statement does not matter when
you use a named iterator—data is matched by name, not position.

When you query to populate a positional iterator object, the data is retrieved
according to the order in which you select the columns. Data from the first column
selected from the database table is placed into the first column of the iterator, and so
on. The datatypes of the table columns must be convertible to the types of the
iterator columns, but the names of the database columns are irrelevant, as the
iterator columns have no names.

Given the EMPSAL table above, you can declare and use a positional iterator as
follows.

Declaration:

#sql iterator SalPosIter (int, String, float);

Executable code:

class MyClass {
 void func() throws SQLException {
3-38 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators
 ...
 SalPosIter piter;
 #sql piter = { SELECT empno, ename, raise FROM empsal };

 ... process piter ...
 }
}

Note that the order of the data items in the SELECT statement must be the same as
in the iterator.

The processing differs between named iterators and positional iterators, as
described in "Accessing Named Iterators" on page 3-45 and "Accessing Positional
Iterators" on page 3-48.

General Iterator Notes In addition to the preceding concepts, be aware of the
following general notes about iterators:

■ SELECT * syntax is allowed in populating an iterator, but is not recommended.
In the case of a positional iterator, this requires that the number of columns in
the table be equal to the number of columns in the iterator, and that the types
match in order. In the case of a named iterator, this requires that the number of
columns in the table be greater than or equal to the number of columns in the
iterator and that the name and type of each iterator column match a database
table column. (If the number of columns in the table is greater, however, a
warning will be generated unless the translator -warn=nostrict flag is set.
For information about this flag, see "Translator Warnings (-warn)" on
page 8-43.)

■ Positional and named iterators are distinct and incompatible kinds of Java
classes. An iterator object of one kind cannot be cast to an iterator object of the
other kind.

■ Unlike a SQL cursor, an iterator instance is a first-class Java object (it can be
passed and returned as a method parameter, for example) and can be declared
using Java class modifiers, such as public or private.

■ SQLJ supports interoperability and conversion between SQLJ iterators and
JDBC result sets. For information, see "SQLJ Iterator and JDBC Result Set
Interoperability" on page 7-47.

■ Generally speaking, the contents of an iterator is determined only by the state of
the database at the time of execution of the SELECT statement that populated it.
Subsequent UPDATE, INSERT, DELETE, COMMIT, or ROLLBACK operations have
 Basic Language Features 3-39

Multi-Row Query Results—SQLJ Iterators
no effect on the iterator or its contents. This is further discussed in "Effect of
Commits and Rollbacks on Iterators and Result Sets" on page 4-29.

The exception to this is if you declare an iterator to be scrollable and "sensitive"
to changes in the data. See "Declaring Scrollable Iterators" on page 7-31 and
"Scrollable Iterator Sensitivity" on page 7-31.

Introduction to Weakly Typed Iterators
In case you would rather not declare an iterator class, Oracle SQLJ permits you to
use a weakly typed kind of iterator. Such iterators are known as result set iterators.
To use a plain (non-scrollable) result set iterator, instantiate the
sqlj.runtime.ResultSetIterator class. To use a scrollable result set iterator,
instantiate the sqlj.runtime.ScrollableResultSetIterator class.
(Scrollable iterators are described in "Scrollable Iterators" on page 7-30.)

The drawback to using result set iterators, compared to strongly typed iterators, is
that SQLJ cannot perform as much semantics-checking for your queries.

For more information, see "Result Set Iterators" on page 7-30.

General Steps in Using an Iterator
Five general steps are involved in using SQLJ named or positional iterator:

1. Use a SQLJ declaration to define the iterator class (in other words, to define the
iterator type).

2. Declare a variable of the iterator class.

3. Populate the iterator variable with the results from a SQL query, using a
SELECT statement.

4. Access the query columns in the iterator (how to accomplish this differs
between named iterators and positional iterators, as explained below).

5. When you finish processing the results of the query, close the iterator to release
its resources.

Named Iterators Versus Positional Iterators Versus Result Set Iterators
There are advantages and appropriate situations for each kind of SQLJ iterator.

Named iterators allow greater flexibility. Because data selection into a named
iterator matches SELECT-fields to iterator columns by name, you need not be
concerned about the order in your query. This is less prone to error, as it is not
3-40 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators
possible for data to be placed into the wrong column. If the names do not match, the
SQLJ translator will generate an error when it checks your SQL statements against
the database.

Positional iterators offer a familiar paradigm and syntax to developers who have
experience with other embedded-SQL languages. With named iterators you use a
next() method to retrieve data, while with positional iterators you use FETCH
INTO syntax similar to that of Pro*C, for example. (Each fetch implicitly advances to
the next available row of the iterator before retrieving the next set of values.)

Positional iterators do, however, offer less flexibility than named iterators, because
you are selecting data into iterator columns by position, instead of by name. You
must be certain of the order of items in your SELECT statement. You also must
select data into all columns of the iterator, and it is possible to have data written
into the wrong iterator column if the type of that column happens to match the
datatype of the table column being selected.

Access to individual data elements is also less convenient with positional iterators.
Named iterators, because they store data by name, are able to have convenient
accessor methods for each column (for example, there would be an ename()
method to retrieve data from an ename iterator column). With positional iterators,
you must fetch data directly into Java host expressions with your FETCH INTO
statement, and the host expressions must be in the correct order.

Finally, if you do not want to declare strongly typed iterator classes for your
queries, you can choose the alternative of using weakly typed result set iterators.
Result set iterators are most convenient when converting JDBC code to SQLJ code.
You must balance this consideration against the fact that result set iterators (either
ResultSetIterator instances or ScrollableResultSetIterator instances)
do not allow complete SQLJ semantics-checking during translation. With named or
positional iterators, SQLJ verifies that SELECT-list types match the Java types into
which the data will be materialized. With result set iterators, this is not possible. See
"Result Set Iterators" on page 7-30 for more information.

Comparative Iterator Notes Be aware of the following notes regarding SQLJ iterators:

■ In populating a positional iterator, the number of columns you select from the
database must equal the number of columns in the iterator. In populating a
named iterator, the number of columns you select from the database can never
be less than the number of columns in the iterator, but can be greater than the
number of columns in the iterator if you have the translator -warn=nostrict
flag set. Unmatched columns are ignored in this case. For information about
this flag, see "Translator Warnings (-warn)" on page 8-43.
 Basic Language Features 3-41

Multi-Row Query Results—SQLJ Iterators
■ Although the term "fetching" often refers to fetching data from a database,
remember that a FETCH INTO statement for a positional iterator does not
necessarily involve a round trip to the server, depending on the row-prefetch
value. This is because you are fetching data from the iterator, not the database.
If the row-prefetch value is 1, however, then each fetch does involve a separate
trip to the database. (The row-prefetch value determines how many rows are
retrieved with each trip to the database. See "Row Prefetching" on page A-3.)

■ Result set iterators use the same FETCH INTO syntax used with positional
iterators, and are subject to the same restriction at runtime—the size (number of
data items) of the SELECT-list must match the number of variables that are
assigned data in the FETCH statement.

Using Named Iterators
When you declare a named iterator class, you declare the name as well as the
datatype of each column of the iterator.

When you select data into a named iterator, the SELECT-fields must match the
iterator columns in two ways:

■ The name of each SELECT-field, either a table column name or an alias, must
match an iterator column name (case-insensitive, so ename would match
ENAME).

■ The type of each iterator column must be compatible with the datatype of the
corresponding SELECT-field, according to standard JDBC type mappings.

The order in which attributes are declared in your named iterator class declaration
is irrelevant. Data is selected into the iterator based on name alone.

A named iterator has a next() method to retrieve data row by row, and an
accessor method for each column to retrieve the individual data items. The accessor
method names are identical to the column names. (Unlike most accessor method
names in Java, accessor method names in named iterator classes do not start with
"get".) For example, a named iterator object with a column sal would have a
sal() accessor method.
3-42 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators
Declaring Named Iterator Classes
Use the following syntax to declare a named iterator class:

#sql <modifiers> iterator classname <implements clause> <with clause>
 (type-name-list);

In this syntax, modifiers is an optional sequence of legal Java class modifiers,
classname is the desired class name for the iterator, and type-name-list is a
list of the Java types and names equivalent to (convertible from) the column types
and column names in a database table.

The implements clause and with clause are optional, specifying interfaces to
implement and variables to define and initialize, respectively. These are discussed
in "Declaration IMPLEMENTS Clause" on page 3-5 and "Declaration WITH Clause"
on page 3-6.

Now consider the following table:

CREATE TABLE PROJECTS (
 ID NUMBER(4),
 PROJNAME VARCHAR(30),
 START_DATE DATE,
 DURATION NUMBER(3));

You might declare the following named iterator for use with this table:

#sql public iterator ProjIter (String projname, int id, Date deadline);

This will result in an iterator class with columns of data accessible using the
following provided accessor methods: projname(), id(), and deadline().

Note: The following restrictions apply in naming the columns of a
named iterator:

■ Column names cannot use Java reserved words.

■ Column names cannot have the same name as utility methods
provided in named iterator classes, such as the next(),
close(), getResultSet(), and isClosed() methods. For
scrollable named iterators, this includes additional methods
such as previous(), first(), and last(). (See "The
Scrollable Interface" on page 7-32 and "Scrollable Named
Iterators" on page 7-33.)
 Basic Language Features 3-43

Multi-Row Query Results—SQLJ Iterators
Instantiating and Populating Named Iterators
Declare a variable of the ProjIter positional iterator type from the preceding
section and populate it with a SELECT statement.

Continuing to use the PROJECTS table and ProjIter iterator defined in the
preceding section, note that there are columns in the table whose names and
datatypes match the id and projname columns of the iterator, but you must use an
alias and perform an operation to populate the deadline column of the iterator.
Here is an example:

ProjIter projsIter;

#sql projsIter = { SELECT start_date + duration AS deadline, projname, id
 FROM projects WHERE start_date + duration >= sysdate };

This calculates a deadline for each project by adding its duration to its start date,
then aliases the results as deadline to match the deadline iterator column. It
also uses a WHERE clause so that only future deadlines are processed (deadlines
beyond the current system date in the database).

Similarly, you must create an alias if you want to use a function call. Suppose you
have a function MAXIMUM() that takes a DURATION entry and an integer as input
and returns the maximum of the two. (For example, you could input a 3 to make
sure each project has at least a three-month duration in your application.)

Now presume you are declaring your iterator as follows:

#sql public iterator ProjIter2 (String projname, int id, float duration);

Note: As with standard Java, any public class should be declared
in one of the following ways (this is a requirement if you are using
the standard javac compiler provided with the Sun Microsystems
JDK):

■ Declare it in a separate source file. The base name of the file
should be the same as the class name.

or:

■ Declare it at class-level scope or nested-class-level scope, with
public static modifiers.
3-44 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators
You could use the MAXIMUM() function in your query, with an alias for the result, as
follows:

ProjIter2 projsIter2;

#sql projsIter2 = { SELECT id, projname, maximum(duration, 3) AS duration
 FROM projects };

Generally, you must use an alias in your query for any SELECT-field whose name is
not a legal Java identifier or does not match a column name in your iterator.

Remember that in populating a named iterator, the number of columns you select
from the database can never be less than the number of columns in the iterator. The
number of columns you select can be greater than the number of columns in the
iterator (unmatched columns are ignored), but this will generate a warning unless
you have the SQLJ -warn=nostrict option set.

Accessing Named Iterators
Use the next() method of the named iterator object to step through the data that
was selected into it. To access each column of each row, use the accessor methods
generated by SQLJ, typically inside a while loop.

Whenever next() is called:

■ If there is another row to retrieve from the iterator, next() retrieves the row
and returns true.

■ If there are no more rows to retrieve, next() returns false.

The following is an example of how to access the data of a named iterator, repeating
the declaration, instantiation, and population used under "Instantiating and
Populating Named Iterators" on page 3-44.

Presume the following iterator class declaration:

#sql public iterator ProjIter (String projname, int id, Date deadline);

Note: Each iterator has a close() method that you must always
call when you finish retrieving data from the iterator. This is
necessary to close the iterator and free its resources.
 Basic Language Features 3-45

Multi-Row Query Results—SQLJ Iterators
Populate and then access an instance of this iterator class as follows:

// Declare the iterator variable
ProjIter projsIter;

// Instantiate and populate iterator; order of SELECT doesn’t matter
#sql projsIter = { SELECT start_date + duration AS deadline, projname, id
 FROM projects WHERE start_date + duration >= sysdate };

// Process the results
while (projsIter.next()) {
 System.out.println("Project name is " + projsIter.projname());
 System.out.println("Project ID is " + projsIter.id());
 System.out.println("Project deadline is " + projsIter.deadline());
}

// Close the iterator
projsIter.close();
...

Note the convenient use of the projname(), id(), and deadline() accessor
methods to retrieve the data. Note also that the order of the SELECT items does not
matter, nor does the order in which the accessor methods are used.

Remember, however, that accessor method names are created with the case exactly
as in your declaration of the iterator class. The following will generate compilation
errors.

Declaration:

#sql iterator Cursor1 (String NAME);

Executable code:

...
Cursor1 c1;
#sql c1 = { SELECT NAME FROM TABLE };
while (c1.next()) {
 System.out.println("The name is " + c1.name());
}
...

The Cursor1 class has a method called NAME(), not name(). You would have to
use c1.NAME() in the System.out.println statement.

For a complete sample of using a named iterator, see "Named
Iterator—NamedIterDemo.sqlj" on page 12-6.
3-46 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators
Using Positional Iterators
When you declare a positional iterator class, you declare the datatype of each
column but not the column name. The Java types into which the columns of the
SQL query results are selected must be compatible with the datatypes of the SQL
data. The names of the database columns or SELECT-fields are irrelevant.

Because names are not used, the order in which you declare your positional iterator
Java types must exactly match the order in which the data is selected.

To retrieve data from a positional iterator once data has been selected into it, use a
FETCH INTO statement followed by an endFetch() method call to determine if
you have reached the end of the data (as detailed under "Accessing Positional
Iterators" on page 3-48).

Declaring Positional Iterator Classes
Use the following syntax to declare a positional iterator class:

#sql <modifiers> iterator classname <implements clause> <with clause>
 (position-list);

In this syntax, modifiers is an optional sequence of legal Java class modifiers, and
the position-list is a list of Java types compatible with the column types in a
database table.

The implements clause and with clause are optional, specifying interfaces to
implement and variables to define and initialize, respectively. These are discussed
in "Declaration IMPLEMENTS Clause" on page 3-5 and "Declaration WITH Clause"
on page 3-6.

Now consider the following table, a subset of the standard EMP table:

CREATE TABLE EMP (
 EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 SAL NUMBER(7,2));

And consider the following positional iterator declaration:

#sql public iterator EmpIter (String, int, float);

This example defines Java class EmpIter with unnamed String, int, and float
columns. Note that the table columns and iterator columns are in a different
order—the String corresponds to ENAME and the int corresponds to EMPNO. The
 Basic Language Features 3-47

Multi-Row Query Results—SQLJ Iterators
order of the iterator columns determines the order in which you must select the
data, as shown in "Instantiating and Populating Positional Iterators" below.

Instantiating and Populating Positional Iterators
Declare a variable of the EmpIter positional iterator type from the preceding
section and populate it with a SELECT statement.

Instantiating and populating a positional iterator is no different than doing so for a
named iterator, except that you must be certain that your SELECT-fields are in the
proper order.

The three datatypes in the EmpIter iterator class are compatible with the types of
the EMP table, but be careful how you select the data, because the order is different.
The following will work, because the SELECT-fields are in the same order as the
iterator columns, as declared above in "Declaring Positional Iterator Classes":

EmpIter empsIter;

#sql empsIter = { SELECT ename, empno, sal FROM emp };

Remember that in populating a positional iterator, the number of columns you
select from the database must equal the number of columns in the iterator.

Accessing Positional Iterators
Access the columns defined by a positional iterator using SQL FETCH INTO syntax.

The INTO part of the command specifies Java host variables that receive the results
columns. The host variables must be in the same order as the corresponding iterator
columns. Use the endFetch() method provided with all positional iterator classes
to determine whether the last fetch reached the end of the data.

Note: As with standard Java, any public class should be declared
in one of the following ways (this is a requirement if you are using
the standard javac compiler provided with the Sun Microsystems
JDK):

■ Declare it in a separate source file. The base name of the file
should be the same as the class name.

or:

■ Declare it at class-level scope or nested-class-level scope, with
public static modifiers.
3-48 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators
The following is an example, repeating the declaration, instantiation, and
population used under "Instantiating and Populating Positional Iterators" above.

Note that the Java host variables in the SELECT statement are in the same order as
the columns of the positional iterator, which is mandatory.

First, presume the following iterator class declaration:

#sql public iterator EmpIter (String, int, float);

Populate and then access an instance of this iterator class as follows:

// Declare and initialize host variables
int empnum=0;
String empname=null;
float salary=0.0f;

// Declare an iterator instance
EmpIter empsIter;

Notes:

■ The endFetch() method initially returns true before any
rows have been fetched, then returns false once a row has
been successfully retrieved, then returns true again when a
FETCH finds no more rows to retrieve. Therefore, you must
perform the endFetch() test after the FETCH INTO statement.
If your endFetch() test precedes the FETCH INTO statement,
then you will never retrieve any rows, because endFetch()
would be true before your first FETCH and you would
immediately break out of the while loop.

■ The endFetch() test must be before the results are processed,
however, because the FETCH does not throw a SQL exception
when it reaches the end of the data, it just triggers the next
endFetch() call to return true. If there is no endFetch()
test before results are processed, then your code will try to
process null or invalid data from the first FETCH attempt after
the end of the data had been reached.

■ Each iterator has a close() method that you must always call
once you finish retrieving data from it. This is necessary to
close the iterator and free its resources.
 Basic Language Features 3-49

Multi-Row Query Results—SQLJ Iterators
#sql empsIter = { SELECT ename, empno, sal FROM emp };

while (true) {
 #sql { FETCH :empsIter INTO :empnum, :empname, :salary };
 if (empsIter.endFetch()) break; // This test must be AFTER fetch,
 // but before results are processed.
 System.out.println("Name is " + empname);
 System.out.println("Employee number is " + empnum);
 System.out.println("Salary is " + salary);
}

// Close the iterator
empsIter.close();
...

The empname, empnum, and salary variables are Java host variables whose types
must match the types of the iterator columns.

Do not use the next() method for a positional iterator. A FETCH operation calls it
implicitly to move to the next row.

For a complete sample of using a positional iterator, see "Positional
Iterator—PosIterDemo.sqlj" on page 12-10.

Positional Iterator Navigation with the next() Method
The positional iterator FETCH clause discussed in the previous section performs a
movement—an implicit next() call—before it populates the host variables (if any).
As an alternative, Oracle SQLJ supports using a special FETCH syntax in
conjunction with explicit next() calls in order to use the same movement logic as
with JDBC result sets and SQLJ named iterators. Using this special FETCH syntax,
the semantics differ—there is no implicit next() call before the INTO-list is
populated.

See "From JDBC Result Sets to SQLJ Iterators — FETCH CURRENT Syntax" on
page 7-35 for more information.

Note: Host variables in a FETCH INTO statement must always be
initialized because they are assigned in one branch of a conditional
statement. Otherwise, you will get a compiler error indicating they
may never be assigned. (FETCH can assign the variables only if
there was a row to be fetched.)
3-50 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators
Using Iterators and Result Sets as Host Variables
SQLJ supports SQLJ iterators and JDBC result sets as host variables, as illustrated in
the examples below.

As you will see from the following examples, using iterators and result sets is
fundamentally the same, with differences in declarations and in accessor methods
to retrieve the data.

For the examples in this section, consider the following tables—subsets of the
standard DEPT and EMP tables:

CREATE TABLE DEPT (
 DEPTNO NUMBER(2),
 DNAME VARCHAR2(14));

CREATE TABLE EMP (
 EMPNO NUMBER(4),
 ENAME VARCHAR2(10),
 SAL NUMBER(7,2),
 DEPTNO NUMBER(2));

Example: Use of Result Set as OUT Host Variable This example uses a JDBC result set as
an output host variable.

...
ResultSet rs;
...
#sql { BEGIN
 OPEN :OUT rs FOR SELECT ename, empno FROM emp;
 END };

Notes:

■ Additionally, SQLJ supports iterators and result sets as return
variables for stored functions. This is discussed in "Using
Iterators and Result Sets as Stored Function Returns" on
page 3-62.

■ The Oracle JDBC drivers do not currently support result sets as
input host variables. There is a setCursor() method in the
OraclePreparedStatement class, but it raises an exception
at runtime if called.
 Basic Language Features 3-51

Multi-Row Query Results—SQLJ Iterators
while (rs.next())
{
 String empname = rs.getString(1);
 int empnum = rs.getInt(2);
}
rs.close();
...

This example opens the result set rs in a PL/SQL block to receive data from a
SELECT statement, selects data from the ENAME and EMPNO columns of the EMP
table, then loops through the result set to retrieve data into local variables.

Example: Use of Iterator as OUT Host Variable This example uses a named iterator as an
output host variable.

Declaration:

#sql public <static> iterator EmpIter (String ename, int empno);

(The public modifier is required, and static may be advisable if your
declaration is at class level or nested-class level.)

Executable code:

...
EmpIter iter;
...
#sql { BEGIN
 OPEN :OUT iter FOR SELECT ename, empno FROM emp;
 END };

while (iter.next())
{
 String empname = iter.ename();
 int empnum = iter.empno();

 ...process/output empname and empnum...
}
iter.close();
...

This example opens the iterator iter in a PL/SQL block to receive data from a
SELECT statement, selects data from the ENAME and EMPNO columns of the EMP
table, then loops through the iterator to retrieve data into local variables.
3-52 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators
Example: Use of Iterator as OUT Host Variable for SELECT INTO This example uses a
named iterator as an output host variable, taking data through a SELECT INTO
statement. (OUT is the default for host variables in an INTO-list. For information
about SELECT INTO statements and syntax, see "Single-Row Query
Results—SELECT INTO Statements" on page 3-33.)

Declaration:

#sql public <static> iterator ENameIter (String ename);

(The public modifier is required, and static may be advisable if your
declaration is at class level or nested-class level.)

Executable code:

...
ENameIter enamesIter;
String deptname;
...

#sql { SELECT dname, cursor
 (SELECT ename FROM emp WHERE deptno = dept.deptno)
 INTO :deptname, :enamesIter FROM dept WHERE deptno = 20 };

System.out.println(deptname);
while (enamesIter.next())
{
 System.out.println(enamesIter.ename());
}
enamesIter.close();
...

This example uses nested SELECT statements to accomplish the following:

■ Select the name of department number 20 from the DEPT table, selecting it into
the output host variable deptname.

■ Query the EMP table to select all employees whose department number is 20,
selecting the resulting cursor into the output host variable enamesIter, which
is a named iterator.

■ Print the department name.

■ Loop through the named iterator printing employee names. This prints the
names of all employees in the department.
 Basic Language Features 3-53

Multi-Row Query Results—SQLJ Iterators
In most cases, using SELECT INTO is more convenient than using nested iterators if
you are retrieving a single row in the outer SELECT, although that option is also
available as discussed below (such as in "Example: Named Iterator Column in a
Positional Iterator" on page 3-56). Also, with nested iterators, you would have to
process the data to determine how many rows there are in the outer SELECT. With
SELECT INTO you are assured of just one row.

Using Iterators and Result Sets as Iterator Columns
Oracle SQLJ includes extensions that allow iterator declarations to specify columns
of type ResultSet or columns of other iterator types declared within the current
scope. In other words, iterators and result sets can exist within iterators in Oracle
SQLJ. These column types are used to retrieve a column in the form of a cursor. This
is useful for nested SELECT statements that return nested table information.

The following examples are functionally identical—each uses a nested result set or
iterator (result sets or iterators in a column within an iterator) to print all the
employees in each department in the DEPT table. The first example uses result sets
within a named iterator, the second example uses named iterators within a named
iterator, and the third example uses named iterators within a positional iterator.

Here are the steps:

1. Select each DNAME (department name) from the DEPT table.

2. Do a nested SELECT into a cursor to get all employees from the EMP table for
each department.

3. Put the department names and sets of employees into the outer iterator (iter),
which has a name column and an iterator column. The cursor with the
employee information for any given department goes into the iterator column
of that department’s row of the outer iterator.

4. Go through a nested loop that, for each department, prints the department
name and then loops through the inner iterator to print all employee names for
that department.

Example: Result Set Column in a Named Iterator This example uses a column of type
ResultSet in a named iterator.

Declaration:

#sql iterator DeptIter (String dname, ResultSet emps);
3-54 SQLJ Developer’s Guide and Reference

Multi-Row Query Results—SQLJ Iterators
Executable code:

...
DeptIter iter;
...
#sql iter = { SELECT dname, cursor
 (SELECT ename FROM emp WHERE deptno = dept.deptno)
 AS emps FROM dept };

while (iter.next())
{
 System.out.println(iter.dname());
 ResultSet enamesRs = iter.emps();
 while (enamesRs.next())
 {
 String empname = enamesRs.getString(1);
 System.out.println(empname);
 }
 enamesRs.close();
}
iter.close();
...

Example: Named Iterator Column in a Named Iterator This example uses a named iterator
that has a column whose type is that of a previously defined named iterator (nested
iterators).

Declarations:

#sql iterator ENameIter (String ename);
#sql iterator DeptIter (String dname, ENameIter emps);

Executable code:

...
DeptIter iter;
...
#sql iter = { SELECT dname, cursor
 (SELECT ename FROM emp WHERE deptno = dept.deptno)
 AS emps FROM dept };

while (iter.next())
{
 System.out.println(iter.dname());
 ENameIter enamesIter = iter.emps();
 Basic Language Features 3-55

Multi-Row Query Results—SQLJ Iterators
 while (enamesIter.next())
 {
 System.out.println(enamesIter.ename());
 }
 enamesIter.close();
}
iter.close();
...

Example: Named Iterator Column in a Positional Iterator This example uses a positional
iterator that has a column whose type is that of a previously defined named iterator
(nested iterators). This uses the FETCH INTO syntax of positional iterators. This
example is functionally equivalent to the previous two.

Note that because the outer iterator is a positional iterator, there does not have to be
an alias to match a column name, as was required when the outer iterator was a
named iterator in the previous example.

Declarations:

#sql iterator ENameIter (String ename);
#sql iterator DeptIter (String, ENameIter);

Executable code:

...
DeptIter iter;
...
#sql iter = { SELECT dname, cursor
 (SELECT ename FROM emp WHERE deptno = dept.deptno)
 FROM dept };
while (true)
{
 String dname = null;
 ENameIter enamesIter = null;
 #sql { FETCH :iter INTO :dname, :enamesIter };
 if (iter.endFetch()) break;
 System.out.println(dname);
 while (enamesIter.next())
 {
 System.out.println(enamesIter.ename());
 }
 enamesIter.close();
}
iter.close();
...
3-56 SQLJ Developer’s Guide and Reference

Assignment Statements (SET)
Assignment Statements (SET)
SQLJ allows you to assign a value to a Java host expression inside a SQL operation.
This is known as an assignment statement and is accomplished using the following
syntax:

#sql { SET :host_exp = expression };

The host_exp is the target host expression, such as a variable or array index. The
expression could be a number, host expression, arithmetic expression, function
call, or other construct that yields a valid result into the target host expression.

The default is OUT for a target host expression in an assignment statement, but you
can optionally state this explicitly:

#sql { SET :OUT host_exp = expression };

Trying to use an IN or INOUT token in an assignment statement will result in an
error at translation time.

The preceding statements are functionally equivalent to the following PL/SQL
code:

#sql { BEGIN :OUT host_exp := expression; END };

Here is a simple example of an assignment statement:

#sql { SET :x = foo1() + foo2() };

This statement assigns to x the sum of the return values of foo1() and foo2()
and assumes that the type of x is compatible with the type of the sum of the outputs
of these functions.

Consider the following additional examples:

int i2;
java.sql.Date dat;
...
#sql { SET :i2 = TO_NUMBER(substr(’750 etc.’, 1, 3)) +
 TO_NUMBER(substr(’250 etc.’, 1, 3)) };
...
#sql { SET :dat = sysdate };
...

The first statement will assign to i2 the value 1000 (750 + 250). (The substr() calls
take the first three characters of the strings, or ’750’ and ’250’. The TO_NUMBER()
calls convert the strings to the numbers 750 and 250.)
 Basic Language Features 3-57

Assignment Statements (SET)
The second statement will read the database system date and assign it to dat.

An assignment statement is especially useful when you are performing operations
on return variables from functions stored in the database. You do not need an
assignment statement to simply assign a function result to a variable, because you
can accomplish this using normal function call syntax as explained in "Stored
Procedure and Function Calls" on page 3-59. You also do not need an assignment
statement to manipulate output from Java functions, because you can accomplish
that in a normal Java statement. So you can presume that foo1() and foo2()
above are stored functions in the database, not Java functions.
3-58 SQLJ Developer’s Guide and Reference

Stored Procedure and Function Calls
Stored Procedure and Function Calls
SQLJ provides convenient syntax for calling stored procedures and stored functions
in the database. These procedures and functions could be written in Java, PL/SQL,
or any other language supported by the database.

A stored function requires a result expression in your SQLJ executable statement to
accept the return value, and can optionally take input, output, or input-output
parameters as well.

A stored procedure does not have a return value but can optionally take input,
output, or input-output parameters. A stored procedure can return output through
any output or input-output parameter.

Calling Stored Procedures
Stored procedures do not have a return value but can take a list with input, output,
and input-output parameters. Stored procedure calls use the CALL token, as shown
below. The word "CALL" is followed by white space and then the procedure name.
There must be a space after the CALL token to differentiate it from the procedure
name. There cannot be a set of outer parentheses around the procedure call (this
differs from the syntax for function calls, as explained in "Calling Stored Functions"
on page 3-60).

#sql { CALL PROC(<PARAM_LIST>) };

PROC is the name of the stored procedure, which can optionally take a list of input,
output, and input-output parameters. PROC can include a schema or package name
as well, such as SCOTT.MYPROC().

Presume that you have defined the following PL/SQL stored procedure:

CREATE OR REPLACE PROCEDURE MAX_DEADLINE (deadline OUT DATE) IS
 BEGIN
 SELECT MAX(start_date + duration) INTO deadline FROM projects;
 END;

Note: Remember that instead of using the following
procedure-call and function-call syntax, you can optionally use
JPublisher to create Java wrappers for PL/SQL stored procedures
and functions, then call the Java wrappers as you would any other
Java methods. JPublisher is discussed in "JPublisher and the
Creation of Custom Java Classes" on page 6-25. For additional
information, see the Oracle9i JPublisher User’s Guide.
 Basic Language Features 3-59

Stored Procedure and Function Calls
This reads the table PROJECTS, looks at the START_DATE and DURATION columns,
calculates start_date + duration in each row, then takes the maximum
START_DATE + DURATION total and selects it into DEADLINE, which is an output
parameter of type DATE.

In SQLJ, you can call this MAX_DEADLINE procedure as follows:

java.sql.Date maxDeadline;
...
#sql { CALL MAX_DEADLINE(:out maxDeadline) };

For any parameters, you must use the host expression tokens IN (optional/default),
OUT, and INOUT appropriately to match the input, output, and input-output
designations of the stored procedure. Additionally, the types of the host variables
you use in the parameter list must be compatible with the parameter types of the
stored procedure.

Calling Stored Functions
Stored functions have a return value and can also take a list of input, output, and
input-output parameters. Stored function calls use the VALUES token, as shown
below. This syntax consists of the word "VALUES" followed by the function call. In
standard SQLJ, the function call must be enclosed in a set of outer parentheses, as
shown. In Oracle SQLJ, the outer parentheses are optional. When using the outer
parentheses, it does not matter if there is white space between the VALUES token
and the begin-parenthesis. (A VALUES token can also be used in INSERT INTO
table VALUES syntax supported by Oracle SQL, but these situations are unrelated
semantically and syntactically.)

#sql result = { VALUES(FUNC(<PARAM_LIST>)) };

In this syntax, result is the result expression, which takes the function return
value. FUNC is the name of the stored function, which can optionally take a list of

Note: If you want your application to be compatible with Oracle7,
do not include empty parentheses for the parameter list if the
procedure takes no parameters. For example:

#sql { CALL MAX_DEADLINE };

not:

#sql { CALL MAX_DEADLINE() };
3-60 SQLJ Developer’s Guide and Reference

Stored Procedure and Function Calls
input, output, and input-output parameters. FUNC can include a schema or package
name, such as SCOTT.MYFUNC().

Referring back to the example in "Calling Stored Procedures" on page 3-59, consider
defining the stored procedure as a stored function instead, as follows:

CREATE OR REPLACE FUNCTION GET_MAX_DEADLINE RETURN DATE IS
 deadline DATE;
 BEGIN
 SELECT MAX(start_date + duration) INTO deadline FROM projects;
 RETURN deadline;
 END;

In SQLJ, you can call this GET_MAX_DEADLINE function as follows:

java.sql.Date maxDeadline;
...
#sql maxDeadline = { VALUES(GET_MAX_DEADLINE) };

The result expression must have a type compatible with the return type of the
function.

In Oracle SQLJ, the following syntax (outer parentheses omitted) is also allowed:

#sql maxDeadline = { VALUES GET_MAX_DEADLINE };

For stored function calls, as with stored procedures, you must use the host
expression tokens IN (optional/default), OUT, and INOUT appropriately to match
the input, output, and input-output parameters of the stored function. Additionally,
the types of the host variables you use in the parameter list must be compatible
with the parameter types of the stored function.

Note: If you want your stored function to be portable to
non-Oracle environments, then you should use only input
parameters in the calling sequence, not output or input-output
parameters.

If you want your application to be compatible with Oracle7, then
do not include empty parentheses for the parameter list if the
function takes no parameters. For example:

#sql maxDeadline = { VALUES(GET_MAX_DEADLINE) };

not:

#sql maxDeadline = { VALUES(GET_MAX_DEADLINE()) };
 Basic Language Features 3-61

Stored Procedure and Function Calls
Using Iterators and Result Sets as Stored Function Returns
SQLJ supports assigning the return value of a stored function to an iterator or result
set variable, provided that the function returns a REF CURSOR type.

The following example uses an iterator to take a stored function return. Using a
result set is similar.

Example: Iterator as Stored Function Return This example uses an iterator as a return
type for a stored function, using a REF CURSOR type in the process. (REF CURSOR
types are described in "Support for Oracle REF CURSOR Types" on page 5-36.)

Presume the following function definition:

CREATE OR REPLACE PACKAGE sqlj_refcursor AS
 TYPE EMP_CURTYPE IS REF CURSOR;
 FUNCTION job_listing (j varchar2) RETURN EMP_CURTYPE;
END sqlj_refcursor;

CREATE OR REPLACE PACKAGE BODY sqlj_refcursor AS
 FUNCTION job_listing (j varchar) RETURN EMP_CURTYPE IS
 DECLARE
 rc EMP_CURTYPE;
 BEGIN
 OPEN rc FOR SELECT ename, empno FROM emp WHERE job = j;
 RETURN rc;
 END;
END sqlj_refcursor;

Use this function as follows.

Declaration:

#sql public <static> iterator EmpIter (String ename, int empno);

(The public modifier is required, and static may be advisable if your
declaration is at class level or nested-class level.)

Executable code:

EmpIter iter;
...
#sql iter = { VALUES(sqlj_refcursor.job_listing(’SALES’)) };
3-62 SQLJ Developer’s Guide and Reference

Stored Procedure and Function Calls
while (iter.next())
{
 String empname = iter.ename();
 int empnum = iter.empno();

 ... process empname and empnum ...
}
iter.close();
...

This example calls the job_listing() function to return an iterator that contains
the name and employee number of each employee whose job title is "SALES". It
then retrieves this data from the iterator.
 Basic Language Features 3-63

Stored Procedure and Function Calls
3-64 SQLJ Developer’s Guide and Reference

 Key Programming Consider
4

Key Programming Considerations

This chapter discusses key issues to consider before developing and running your
SQLJ application, then provides a summary and sample applications. The following
topics are discussed:

■ Selection of the JDBC Driver

■ Connection Considerations

■ Null-Handling

■ Exception-Handling Basics

■ Basic Transaction Control

■ Summary: First Steps in SQLJ Code

■ Other Programming Considerations
ations 4-1

Selection of the JDBC Driver
Selection of the JDBC Driver
You must consider which JDBC driver will be appropriate for your situation and
whether it may be advantageous to use different drivers for translation and
runtime. You must choose or register the appropriate driver class for each and then
specify the driver in your connection URL.

Overview of the Oracle JDBC Drivers
Oracle provides the following JDBC drivers:

■ OCI driver for client-side use with an Oracle client installation

■ Thin driver, a 100% Java driver for client-side use, particularly with applets
(does not require an Oracle client installation)

■ server-side Thin driver, which is functionally the same as the client-side Thin
driver, but is for code that runs inside an Oracle server and needs to access a
remote server, including middle-tier scenarios

■ server-side internal driver for code that runs inside the target server (that is,
inside the Oracle server that it must access)

Oracle provides JDK 1.2.x-compatible and JDK 1.1.x-compatible versions of the
client-side drivers. There are only JDK 1.2.x-compatible versions of the server-side
drivers, because the Oracle JVM is a JDK 1.2.x environment.

The rest of this section provides a brief overview of each driver. For more
information about the drivers and about which might be most appropriate for your
particular situation, see the Oracle9i JDBC Developer’s Guide and Reference.

Remember that your choices may differ between translation time and runtime. For
example, you may want to use the Oracle JDBC OCI driver at translation time for
semantics-checking but the Oracle JDBC Thin driver at runtime.

Core Functionality The core functionality of all these drivers is the same. They
support the same feature set, syntax, programming interfaces, and Oracle
extensions.

All Oracle JDBC drivers are supported by the oracle.jdbc.OracleDriver class.

Note: Your application will require an Oracle JDBC driver if you
use the Oracle customizer or Oracle-specific code generation on
your application, even if your code does not actually use
Oracle-specific features.
4-2 SQLJ Developer’s Guide and Reference

Selection of the JDBC Driver
OCI Driver The Oracle JDBC OCI driver accesses the database by calling the Oracle
Call Interface (OCI) directly from Java, providing the highest compatibility with the
different Oracle 7, 8, 8i, and 9i versions. These drivers support all installed Oracle
Net adapters, including IPC, named pipes, TCP/IP, and IPX/SPX.

The use of native methods to call C entry points makes the OCI driver dependent
on the Oracle platform, requiring an Oracle client installation that includes Oracle
Net. Therefore it is not suitable for applets.

"Connect strings" for the OCI driver is of the following form (where tns is an
optional TNS alias or full TNS specification):

jdbc:oracle:oci:@<tns>

(For backwards compatibility, "oci7" or "oci8" is still acceptable, instead of "oci".)

Thin driver The Oracle JDBC Thin driver is a platform-independent, 100% pure Java
implementation that uses Java sockets to connect directly to the Oracle server from
any Oracle or non-Oracle client. It can be downloaded into a browser
simultaneously with the Java applet being run.

The Thin driver supports only TCP/IP protocol and requires a TNS listener to be
listening on TCP/IP sockets from the database server. When the Thin driver is used
with an applet, the client browser must have the capability to support Java sockets.

Connect strings for the Thin driver are typically of the following form (though there
is also a longer form):

jdbc:oracle:thin:@host:port:sid

Server-Side Thin Driver The Oracle JDBC server-side Thin driver offers the same
functionality as the client-side Thin driver, but runs inside Oracle9i and accesses a
remote server. This is useful in accessing a remote Oracle server from an Oracle
server acting as a middle tier, or, more generally, to access one Oracle server from
inside another, such as from any Java stored procedure or Enterprise JavaBeans.

Connect strings for the server-side Thin driver are the same as for the client-side
Thin driver.
 Key Programming Considerations 4-3

Selection of the JDBC Driver
Server-Side Internal Driver The Oracle JDBC server-side internal driver provides
support for any Java code that runs inside the target Oracle9i instance where the
SQL operations are to be performed. The server-side internal driver allows the
Oracle JVM to communicate directly with the SQL engine. The server-side internal
driver is the default JDBC driver for SQLJ code running as a stored procedure,
stored function, trigger, Enterprise JavaBean, or CORBA object in Oracle9i.

Connect strings for the server-side internal driver are of the following form:

jdbc:oracle:kprb:

(If your SQLJ code uses the default connection context, SQLJ will automatically use
this driver for code running in the Oracle JVM.)

Driver Selection for Translation
Use SQLJ option settings, either on the command line or in a properties file, to
choose the driver manager class and specify a driver for translation.

Use the SQLJ -driver option to choose any driver manager class other than
OracleDriver, which is the default.

Specify the particular JDBC driver to choose (such as Thin or OCI for Oracle) as part
of the connection URL you specify in the SQLJ -url option.

For information about these options, see "Connection Options" on page 8-31.

You will typically, but not necessarily, use the same driver that you use in your
source code for the runtime connection.

Note: In order to leave the originating database when using the
server-side Thin driver, the user account must have
SocketPermission assigned. See the Oracle9i JDBC Developer’s
Guide and Reference for more information. See the Oracle9i Java
Developer’s Guide for general information about
SocketPermission and other permissions.

Note: Remember that the -driver option does not choose a
particular driver. It registers a driver class with the driver manager.
One driver class might be used for multiple driver protocols (such
as OracleDriver, which is used for all of the Oracle JDBC
protocols).
4-4 SQLJ Developer’s Guide and Reference

Selection of the JDBC Driver
Driver Selection and Registration for Runtime
To connect to the database at runtime, you must register one or more drivers that
will understand the URLs you specify for any of your connection instances, whether
they are instances of the sqlj.runtime.ref.DefaultContext class or of any
connection context classes that you declare.

If you are using an Oracle JDBC driver and create a default connection using the
standard Oracle.connect() method (discussed below, under "Single Connection
or Multiple Connections Using DefaultContext" on page 4-6), then SQLJ handles
this automatically—Oracle.connect() registers the
oracle.jdbc.OracleDriver class.

If you are using an Oracle JDBC driver, but do not use Oracle.connect(), then
you must manually register the OracleDriver class, as follows:

DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

If you are not using an Oracle JDBC driver, then you must register some
appropriate driver class, as follows:

DriverManager.registerDriver(new mydriver.jdbc.driver.MyDriver());

In any case, you must also set your connection URL, user name, and password. This
is described in "Single Connection or Multiple Connections Using DefaultContext"
on page 4-6. That section also further discusses the Oracle.connect() method.

Note: As an alternative to using the JDBC driver manager in
establishing JDBC connections, you can use data sources. You can
specify a data source in a with clause, as described in "Declaration
WITH Clause" on page 3-6. For general information about data
sources, see the Oracle9i JDBC Developer’s Guide and Reference.
 Key Programming Considerations 4-5

Connection Considerations
Connection Considerations
When deciding what database connection or connections you will need for your
SQLJ application, consider the following:

■ Will you need just one database connection or multiple connections?

■ If using multiple connections (possibly to multiple schemas), will each
connection use SQL entities of the same name—tables of the same name,
columns of the same name and datatypes, stored procedures of the same name
and signature, and so on?

■ Will you need different connections for translation and runtime, or will the
same suffice for both?

A SQLJ executable statement can specify a particular connection context instance
(either of DefaultContext or of a declared connection context class) for its
database connection. Alternatively, it can omit the connection context specification
and, thereby, use the default connection (an instance of DefaultContext that you
previously set as the default).

Single Connection or Multiple Connections Using DefaultContext
This section discusses scenarios where you will use connection instances of only the
DefaultContext class.

This is typical if you are using a single connection, or multiple connections that use
SQL entities with the same names and datatypes.

Single Connection
For a single connection, typically use one instance of the DefaultContext class,
specifying the database URL, user name, and password when you construct your
DefaultContext object.

You can use the connect() method of the oracle.sqlj.runtime.Oracle class
to accomplish this. This method has several signatures, including ones that allow
you to specify user name, password, and URL, either directly or using a properties
file. In the example that follows, the properties file connect.properties is used.

Note: If your operations will use different sets of SQL entities,
then you will typically want to declare and use additional
connection context classes. This is discussed in "Connection
Contexts" on page 7-2.
4-6 SQLJ Developer’s Guide and Reference

Connection Considerations
Oracle.connect(MyClass.class, "connect.properties");

Assume MyClass is the name of your class. There is an example of
connect.properties in [Oracle Home]/sqlj/demo, and also in "Set Up the
Runtime Connection" on page 2-11.

If you use connect.properties, you must edit it appropriately and package it
with your application. In this example, you must also import the
oracle.sqlj.runtime.Oracle class.

Alternatively, you can specify user name, password, and URL directly:

Oracle.connect("jdbc:oracle:thin:@localhost:1521:orcl", "scott", "tiger");

In this example, the connection will use the JDBC Thin driver to connect user
scott (password tiger) to a database on the machine localhost through port
1521, where orcl is the SID (Oracle session ID) of the database to connect to on that
machine.

Either of these examples creates a special static instance of the DefaultContext
class and installs it as your default connection. It is not necessary to do anything
with that DefaultContext instance directly.

Once you have completed these steps, you do not need to specify the connection for
any of the SQLJ executable statements in your application if you want them all to
use the default connection.

Note that in using a Thin driver, the URL must include the hostname, port number,
and SID, as in the preceding example, and the database must have a listener
running at the specified port. In using the OCI driver, you can specify an SID, or no
SID if you intend to use the client’s default account. Alternatively, you can use
name-value pairs (see the Oracle9i JDBC Developer’s Guide and Reference for more
information). The first example here will connect to the database with SID orcl; the
second example will connect to the client’s default account:

jdbc:oracle:oci:@orcl
jdbc:oracle:oci:@

Note: The connect.properties file is searched for relative to
the specified class. In the example, if MyClass is located in
my-package, then connect.properties must be found in the
same package location, my-package, as MyClass.class.
 Key Programming Considerations 4-7

Connection Considerations
Multiple Connections
For multiple connections, you can create and use additional instances of the
DefaultContext class, while optionally still using the default connection created
under "Single Connections" above.

You can use the Oracle.getConnection() method to instantiate
DefaultContext, as in the following examples.

First, consider a case where you want most statements to use the default connection
created above, but other statements to use a different connection. You must create
one additional instance of DefaultContext:

DefaultContext ctx = Oracle.getConnection (
 "jdbc:oracle:thin:@localhost2:1521:orcl2", "bill", "lion");

(Or ctx could also use the scott/tiger schema, if you want to perform multiple
sets of operations on the same schema.)

Notes:

■ Oracle.connect() will not set your default connection if
one had already been set. In that case, it returns null. (This
functionality allows you to use the same code on a client or in
the server.) If you do want to override your default connection,
use the static setDefaultContext() method of the
DefaultContext class, as described in the next section.

■ The Oracle.connect() method defaults to a false setting
of the auto-commit flag; however, it also has signatures to set it
explicitly. See "More About the Oracle Class" on page 4-12. For
general information about auto-commit functionality, see "Basic
Transaction Control" on page 4-26. (In Oracle JDBC, the
auto-commit flag defaults to true.)

■ You can optionally specify getClass(), instead of
MyClass.class, in the Oracle.connect() call, as long as
you are not calling getClass() from a static method. The
getClass() method is used in some of the SQLJ demo
applications.

■ You can access the static DefaultContext instance, which
corresponds to your default connection, as follows:

DefaultContext.getDefaultContext();
4-8 SQLJ Developer’s Guide and Reference

Connection Considerations
When you want to use the default connection, it is not necessary to specify a
connection context:

#sql { SQL operation };

This is actually an understood shortcut for the following:

#sql [DefaultContext.getDefaultContext()] { SQL operation };

When you want to use the additional connection, specify ctx as the connection:

#sql [ctx] { SQL operation };

Next, consider situations where you want to use multiple connections where each of
them is a named DefaultContext instance. This allows you to switch your
connection back and forth, for example.

The following statements establish multiple connections to the same schema (in
case you want to use multiple Oracle sessions or transactions, for example).
Instantiate the DefaultContext class for each connection you will need:

DefaultContext ctx1 = Oracle.getConnection (
 "jdbc:oracle:thin:@localhost1:1521:orcl1", "scott", "tiger");
DefaultContext ctx2 = Oracle.getConnection (
 "jdbc:oracle:thin:@localhost1:1521:orcl1", "scott", "tiger");

This creates two connection context instances that would use the same schema,
connecting to scott/tiger on SID orcl1 on the machine localhost1, using the
Oracle JDBC Thin driver.

Now consider a case where you would want multiple connections to different
schemas. Again, instantiate the DefaultContext class for each connection you
will need:

DefaultContext ctx1 = Oracle.getConnection (
 "jdbc:oracle:thin:@localhost1:1521:orcl1", "scott", "tiger");
DefaultContext ctx2 = Oracle.getConnection (
 "jdbc:oracle:thin:@localhost2:1521:orcl2", "bill", "lion");

This creates two connection context instances that both use the Oracle JDBC Thin
driver but use different schemas. The ctx1 object connects to scott/tiger on
SID orcl1 on the machine localhost1, while the ctx2 object connects to
bill/lion on SID orcl2 on the machine localhost2.
 Key Programming Considerations 4-9

Connection Considerations
There are two ways to switch back and forth between these connections for the
SQLJ executable statements in your application:

■ If you switch back and forth frequently, then you can specify the connection for
each statement in your application:

#sql [ctx1] { SQL operation };
...
#sql [ctx2] { SQL operation };

or:

■ If you use either of the connections several times in a row within your code
flow, then you can periodically use the static setDefaultContext() method
of the DefaultContext class to reset the default connection. This way, you
can avoid specifying connections in your SQLJ statements.

DefaultContext.setDefaultContext(ctx1);
#sql { SQL operation }; // These three statements all use ctx1
#sql { SQL operation };
#sql { SQL operation };
...
DefaultContext.setDefaultContext(ctx2);
#sql { SQL operation }; // These three statements all use ctx2
#sql { SQL operation };
#sql { SQL operation };

Closing Connections
It is advisable to close your connection context instances when you are done,
preferably in a finally clause (in case your application terminates with an
exception) of a try block.

Note: Remember to include the square brackets around the
connection context instance name; they are part of the syntax.

Note: Because the preceding statements do not specify connection
contexts, at translation time they will all be checked against the
default connection context.
4-10 SQLJ Developer’s Guide and Reference

Connection Considerations
The DefaultContext class (as well as any other connection context class) includes
a close() method. Calling this method closes the SQLJ connection context
instance and, by default, also closes the underlying JDBC connection instance and
the physical connection.

In addition, the oracle.sqlj.runtime.Oracle class has a static close()
method to close the default connection only.

In the following example, presume ctx is an instance of any connection context
class:

...
finally
{
 ctx.close();
}
...

or (if the finally clause is not within a try block in case a SQL exception is
encountered):

...
finally
{
 try { ctx.close(); } catch(SQLException ex) {...}
}
...

Or, to close the default connection, the Oracle class also provides a close()
method:

...
finally
{
 Oracle.close();
}
...

Always commit or roll back any pending changes before closing the connection.
Whether there would be an implicit COMMIT operation as the connection is closed is
not specified in the JDBC standard and may vary from vendor to vendor. For
Oracle, there is an implicit COMMIT when a connection is closed, and an implicit
ROLLBACK when a connection is garbage-collected without being closed, but it is
not advisable to rely on these mechanisms.
 Key Programming Considerations 4-11

Connection Considerations
Multiple Connections Using Declared Connection Context Classes
For multiple connections that use different sets of SQL entities, it is advantageous to
use connection context declarations to define additional connection context classes.
Having a separate connection context class for each set of SQL entities that you use
allows SQLJ to do more rigorous semantics-checking of your code.

This situation is somewhat advance, however. See "Connection Contexts" on
page 7-2 for more information.

More About the Oracle Class
Oracle SQLJ provides the oracle.sqlj.runtime.Oracle class to simplify the
process of creating and using instances of the DefaultContext class.

The static connect() method instantiates a DefaultContext object and installs
this instance as your default connection. You do not need to assign or use the
DefaultContext instance returned by connect(). If you had already
established a default connection, then connect() returns null.

The static getConnection() method simply instantiates a DefaultContext
object and returns it. You can use the returned instance as desired.

Both methods register the Oracle JDBC driver manager automatically if the
oracle.jdbc.OracleDriver class is found in your classpath.

The static close() method closes the default connection.

Signatures of the Oracle.connect() and Oracle.getConnection() Methods
Each method has signatures that take the following parameters as input:

■ URL (String), user name (String), password (String)

■ URL (String), user name (String), password (String), auto-commit flag
(boolean)

■ URL (String), java.util.Properties object containing properties for the
connection

Note: It is also possible to close a connection context instance
without closing the underlying connection (in case the underlying
connection is shared). See "Closing Shared Connections" on
page 7-46.
4-12 SQLJ Developer’s Guide and Reference

Connection Considerations
■ URL (String), java.util.Properties object, auto-commit flag (boolean)

■ URL (String) fully specifying the connection, including user name and
password

The following is an example of the format of a URL string specifying user name
(scott) and password (tiger) when using the Oracle JDBC drivers, in this
case the Thin driver:

"jdbc:oracle:thin:scott/tiger@localhost:1521:orcl"

■ URL (String), auto-commit flag (boolean)

■ java.lang.Class object for the class relative to which the properties file is
loaded, name of properties file (String)

■ java.lang.Class object, name of properties file (String), auto-commit flag
(boolean)

■ java.lang.Class object, name of properties file (String), user name
(String), password (String)

■ java.lang.Class object, name of properties file (String), user name
(String), password (String), auto-commit flag (boolean)

■ JDBC connection object (Connection)

■ SQLJ connection context object

These last two signatures inherit an existing database connection. When you inherit
a connection, you will also inherit the auto-commit setting of that connection.

The auto-commit flag specifies whether SQL operations are automatically
committed. For the Oracle.connect() and Oracle.getConnection()
methods only, the default is false. If that is the setting you want, then you can use
one of the signatures that does not take auto-commit as input. (However, anytime
you use a constructor to create an instance of a connection context class, including
DefaultContext, you must specify the auto-commit setting.) In Oracle JDBC, the
default for the auto-commit flag is true.

The auto-commit flag is discussed in "Basic Transaction Control" on page 4-26.

Some examples of connect() and getConnection() calls are under "Single
Connection or Multiple Connections Using DefaultContext" on page 4-6.
 Key Programming Considerations 4-13

Connection Considerations
Optional Oracle.close() Method Parameters
In using the Oracle.close() method to close the default connection, you have
the option of specifying whether or not to close the underlying physical database
connection. By default it is closed. This is relevant if you are sharing this physical
connection between multiple connection objects, either SQLJ connection context
instances or JDBC connection instances.

To keep the underlying physical connection open:

Oracle.close(ConnectionContext.KEEP_CONNECTION);

To close the underlying physical connection (default behavior):

Oracle.close(ConnectionContext.CLOSE_CONNECTION);

KEEP_CONNECTION and CLOSE_CONNECTION are static constants of the
ConnectionContext interface.

For more information about using these parameters and about shared connections,
see "Closing Shared Connections" on page 7-46.

More About the DefaultContext Class
The sqlj.runtime.ref.DefaultContext class provides a complete default
implementation of a connection context class. As with classes created using a
connection context declaration, the DefaultContext class implements the
sqlj.runtime.ConnectionContext interface. (This interface is described in
"Implementation and Functionality of Connection Context Classes" on page 7-9.)

The DefaultContext class has the same class definition that would have been
generated by the SQLJ translator from the declaration:

#sql public context DefaultContext;

DefaultContext Methods
The DefaultContext class has four methods of note:

■ getConnection()—Gets the underlying JDBC connection object. This is
useful if you want to have JDBC code in your application (which is one way to
use dynamic SQL operations, for example). You can also use the
setAutoCommit() method of the underlying JDBC connection object to set
the auto-commit flag for the connection.
4-14 SQLJ Developer’s Guide and Reference

Connection Considerations
■ setDefaultContext()—This is a static method that sets the default
connection your application uses; it takes a DefaultContext instance as
input. SQLJ executable statements that do not specify a connection context
instance will use the default connection that you define using this method (or
that you define using the Oracle.connect() method).

■ getDefaultContext()—This is a static method that returns the
DefaultContext instance currently defined as the default connection for your
application (through earlier use of the setDefaultContext() method).

■ close()—Like any connection context class, the DefaultContext class
includes a close() method to close the connection context instance.

The getConnection() and close() methods are specified in the
sqlj.runtime.ConnectionContext interface.

DefaultContext Constructors
It is typical to instantiate DefaultContext using the Oracle.connect() or
Oracle.getConnection() method. If you want to create an instance directly,
however, there are five constructors for DefaultContext, which take the
following parameters as input:

■ URL (String), user name (String), password (String), auto-commit
(boolean)

■ URL (String), java.util.Properties object, auto-commit (boolean)

■ URL (String fully specifying connection and including user name and
password), auto-commit setting (boolean)

Note: On a client, getDefaultContext() returns null if
setDefaultContext() was not previously called. However, if a
data source object has been bound under "jdbc/defaultDataSource"
in JNDI, then the client will use this data source object as its default
connection. (For information about Oracle SQLJ support for data
sources and JNDI, see "Data Source Support" on page 7-13.)

In the server, getDefaultContext() returns the default
connection (the connection to the server itself).
 Key Programming Considerations 4-15

Connection Considerations
The following is an example of the format of a URL string specifying user name
(scott) and password (tiger) when using the Oracle JDBC drivers, in this
case the Thin driver:

"jdbc:oracle:thin:scott/tiger@localhost:1521:orcl"

■ JDBC connection object (Connection)

■ SQLJ connection context object

The last two inherit an existing database connection. When you inherit a
connection, you will also inherit the auto-commit setting of that connection.

Following is an example of constructing a DefaultContext instance:

DefaultContext defctx = new DefaultContext
 ("jdbc:oracle:thin:@localhost:1521:orcl", "scott", "tiger", false);

It is important to note that connection context class constructors, unlike the
Oracle.connect() method, require an auto-commit setting.

Notes:

■ To use any of the first three constructors above, you must first
register your JDBC driver. This happens automatically if you
are using an Oracle JDBC driver and call Oracle.connect().
Otherwise, see "Driver Selection and Registration for Runtime"
on page 4-5.

■ Connection context classes that you declare generally have the
same constructor signatures as the DefaultContext class.
However, if you declare a connection context class to be
associated with a data source, a different set of constructors is
provided. (See "Data Source Support" on page 7-13 for more
information.)

■ When using the constructor that takes a JDBC connection
object, do not initialize the connection context instance with a
null JDBC connection.

■ The auto-commit setting determines whether SQL operations
are automatically committed. For more information, see "Basic
Transaction Control" on page 4-26.
4-16 SQLJ Developer’s Guide and Reference

Connection Considerations
Optional DefaultContext close() Method Parameters
When you close a connection context instance (of the DefaultContext class or
any other class), you have the option of specifying whether or not to close the
underlying physical connection. By default it is closed. This is relevant if you are
sharing the physical connection between multiple connection objects, either SQLJ
connection context instances or JDBC connection instances. The following examples
presume a DefaultContext instance defctx.

To keep the underlying physical connection open:

defctx.close(ConnectionContext.KEEP_CONNECTION);

To close the underlying physical connection (default behavior):

defctx.close(ConnectionContext.CLOSE_CONNECTION);

KEEP_CONNECTION and CLOSE_CONNECTION are static constants of the
ConnectionContext interface.

For more information about using these parameters and about shared connections,
see "Closing Shared Connections" on page 7-46.

Connection for Translation
If you want to use online semantics-checking during translation, you must specify a
database connection for SQLJ to use—these are referred to as exemplar schemas and
are further discussed in "Connection Context Concepts" on page 7-2

You can use different connections for translation and runtime; in fact, it is often
necessary or preferable to do so. It might be necessary if you are not developing in
the same kind of environment that your application will run in. But even if the
runtime connection is available during translation, it might be preferable to create
an account with a narrower set of resources so that your online checking will be
tighter. This would be true if your application uses only a small subset of the SQL
entities available in the runtime connection. Your online checking would be tighter
and more meaningful if you create an exemplar schema consisting only of SQL
entities that your application actually uses.

Use the SQLJ translator connection options (-url, -user, and -password), either
on the command line or in a properties file, to specify a connection for translation.

For information about these options, see "Connection Options" on page 8-31.
 Key Programming Considerations 4-17

Connection Considerations
Connection for Customization
Generally speaking, Oracle customization does not require a database connection;
however, Oracle SQLJ does support customizer connections. This is useful in two
circumstances:

■ If you are using the Oracle customizer with the optcols option enabled, a
connection is required. This option allows iterator column type and size
definitions for performance optimization.

■ If you are using the SQLCheckerCustomizer, a specialized customizer that
performs semantics-checking on profiles, a connection is required if you are
using an online checker (which is true by default).

For information about the Oracle customizer optcols option (for standard code
generation), see "Oracle Customizer Column Definition Option (optcols)" on
page 10-31. (For Oracle-specific code generation, the SQLJ translator has an
-optcols option with the same functionality.)

The SQLCheckerCustomizer is invoked through the Oracle customizer harness
verify option. See "SQLCheckerCustomizer for Profile Semantics-Checking" on
page 10-43.

Use the customizer harness user, password, url, and driver options to specify
connection parameters for whatever customizer you are using, as appropriate. See
"Customizer Harness Options for Connections" on page 10-23.
4-18 SQLJ Developer’s Guide and Reference

Null-Handling
Null-Handling
Java primitive types (such as int, double, or float) cannot have null values,
which you must consider in choosing your result expression and host expression
types.

Wrapper Classes for Null-Handling
SQLJ consistently enforces retrieving SQL nulls as Java nulls, in contrast to JDBC,
which retrieves nulls as 0 or false for certain datatypes. Therefore, do not use Java
primitive types in SQLJ for output variables in situations where a SQL null may be
received, because Java primitive types cannot take null values.

This pertains to result expressions, output or input-output host expressions, and
iterator column types. If the receiving Java type is primitive and an attempt is made
to retrieve a SQL null, then a sqlj.runtime.SQLNullException is thrown and
no assignment is made.

To avoid the possibility of null values being assigned to Java primitives, use the
following wrapper classes instead of primitive types:

■ java.lang.Boolean

■ java.lang.Byte

■ java.lang.Short

■ java.lang.Integer

■ java.lang.Long

■ java.lang.Double

■ java.lang.Float

In case you must convert back to a primitive value, each of these wrapper classes
has an xxxValue() method. For example, intValue() returns an int value from
an Integer object and floatValue() returns a float value from a Float
object. Do this as in the following example, presuming intobj is an Integer
object:

int j = intobj.intValue();
 Key Programming Considerations 4-19

Null-Handling
Examples of Null-Handling
The following examples show the use of the java.lang wrapper classes to handle
null data.

Example: Null Input Host Variable In the following example, a Float object is used to
pass a null value to the database. You cannot use the Java primitive type float to
accomplish this.

Example:

int empno = 7499;
Float commission = null;

#sql { UPDATE emp SET comm = :commission WHERE empno = :empno };

Example: Null Iterator Rows In the following example, a Double column type is used
in an iterator to allow for the possibility of null data.

For each employee in the EMP table whose salary is at least $50,000, the employee
name (ENAME) and commission (COMM) are selected into the iterator. Then each row
is tested to determine if the COMM field is, in fact, null. If so, it is processed
accordingly.

Presume the following declaration:

#sql iterator EmployeeIter (String ename, Double comm);

Example:

EmployeeIter ei;
#sql ei = { SELECT ename, comm FROM emp WHERE sal >= 50000 };

while (ei.next())

Notes:

■ SQLNullException is a subclass of the standard
java.sql.SQLException class. See "Using SQLException
Subclasses" on page 4-25.

■ Because Java objects can have null values, there is no need in
SQLJ for indicator variables such as those used in other host
languages (C, C++, and COBOL for example).
4-20 SQLJ Developer’s Guide and Reference

Null-Handling
{
 if (ei.comm() == null)
 System.out.println(ei.ename() + " is not on commission.");
}
ei.close();
...

Note: To execute a WHERE-clause comparison against null
values, use the following SQL syntax:

...WHERE :x IS NULL
 Key Programming Considerations 4-21

Exception-Handling Basics
Exception-Handling Basics
This section covers the basics of handling exceptions in your SQLJ application,
including requirements for error-checking.

SQLJ and JDBC Exception-Handling Requirements
Because SQLJ executable statements result in JDBC calls through sqlj.runtime,
and JDBC requires SQL exceptions to be caught or thrown, SQLJ also requires SQL
exceptions to be caught or thrown in any block containing SQLJ executable
statements. Your source code will generate errors during compilation if you do not
include appropriate exception-handling.

Handling SQL exceptions requires the SQLException class, which is included in
the standard JDBC java.sql.* package.

Example: Exception Handling This example demonstrates the kind of basic
exception-handling required of SQLJ applications, with a main method with a
try/catch block, and another method which is called from main and throws
exceptions back to main when they are encountered.

/* Import SQLExceptions class. The SQLException comes from
 JDBC. Executable #sql clauses result in calls to JDBC, so methods
 containing executable #sql clauses must either catch or throw
 SQLException.
 */
import java.sql.* ;
import oracle.sqlj.runtime.Oracle;

// iterator for the select

#sql iterator MyIter (String ITEM_NAME);

public class TestInstallSQLJ
{
 //Main method
 public static void main (String args[])
 {
 try {
 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 // set the default connection to the URL, user, and password
4-22 SQLJ Developer’s Guide and Reference

Exception-Handling Basics
 // specified in your connect.properties file
 Oracle.connect(TestInstallSQLJ.class, "connect.properties");

 TestInstallSQLJ ti = new TestInstallSQLJ();
 ti.runExample();
 } catch (SQLException e) {
 System.err.println("Error running the example: " + e);
 }

 } //End of method main

 //Method that runs the example
 void runExample() throws SQLException
 {
 //Issue SQL command to clear the SALES table
 #sql { DELETE FROM SALES };
 #sql { INSERT INTO SALES(ITEM_NAME) VALUES (’Hello, SQLJ!’)};

 MyIter iter;
 #sql iter = { SELECT ITEM_NAME FROM SALES };

 while (iter.next()) {
 System.out.println(iter.ITEM_NAME());
 }
 }
}

Processing Exceptions
This section discusses ways to process and interpret exceptions in your SQLJ
application. During runtime, exceptions may come from any of the following:

■ SQLJ runtime

■ JDBC driver

■ RDBMS

Errors originating in the SQLJ runtime are listed in "Runtime Messages" on
page B-47.

Errors originating in the Oracle JDBC driver are listed in the Oracle9i JDBC
Developer’s Guide and Reference. Errors originating in the Oracle RDBMS are listed in
the Oracle9i Database Error Messages reference.
 Key Programming Considerations 4-23

Exception-Handling Basics
Printing Error Text
The example in the previous section showed how to catch SQL exceptions and
output the error messages, which is repeated again here:

...
try {
...
} catch (SQLException e) {
 System.err.println("Error running the example: " + e);
}
...

This will print the error text from the SQLException object.

You can also retrieve error information using the SQLException class
getMessage(), getErrorCode(), and getSQLState() methods, as described
in the next section.

Printing the error text as in this example prints the error message with some
additional text, such as "SQLException".

Retrieving SQL States and Error Codes
The java.sql.SQLException class and subclasses include the getMessage(),
getErrorCode(), and getSQLState() methods. Depending on where the
exception originated and how error exceptions are implemented there, these
methods provide additional information as follows:

■ String getMessage()

If the error originates in the SQLJ runtime or JDBC driver, this method returns
the error message with no prefix. If the error originates in the RDBMS, it returns
the error message prefixed by the ORA number.

■ int getErrorCode()

If the error originates in the SQLJ runtime, this method returns no meaningful
information. If the error originates in the JDBC driver or RDBMS, it returns the
five-digit ORA number as an integer.

■ String getSQLState()

If the error originates in the SQLJ runtime, this method returns a string with a
five-digit code indicating the SQL state. If the error originates in the JDBC
driver, it returns no meaningful information. If the error originates in the
RDBMS, it returns the five-digit SQL state. Your code should be prepared to
handle a null return.
4-24 SQLJ Developer’s Guide and Reference

Exception-Handling Basics
The following example prints the error message as in the preceding example, but
also checks the SQL state.

...
try {
...
} catch (SQLException e) {
 System.err.println("Error running the example: " + e);
 String sqlState = e.getSQLState();
 System.err.println("SQL state = " + sqlState);
}
...

Using SQLException Subclasses
For more specific error-checking, use any available and appropriate subclasses of
the java.sql.SQLException class.

SQLJ provides one such subclass, the sqlj.runtime.NullException class,
which you can catch in situations where a null value might be returned into a Java
primitive variable. (Java primitives cannot handle nulls.)

For batch-enabled environments, there is also the standard
java.sql.BatchUpdateException subclass. See "Error Conditions During
Batch Execution" on page A-21 for further discussion.

When you use a SQLException subclass, catch the subclass exception first, before
catching a SQLException, as in the following example:

...
try {
...
} catch (SQLNullException ne) {
 System.err.println("Null value encountered: " + ne); }
 catch (SQLException e) {
 System.err.println("Error running the example: " + e); }
...

This is because a subclass exception can also be caught as a SQLException. If you
catch SQLException first, then execution would not drop through for any special
processing you want to use for the subclass exception.
 Key Programming Considerations 4-25

Basic Transaction Control
Basic Transaction Control
This section discusses how to manage data updates.

For information about SQLJ support for more advanced transaction control
functions—access mode and isolation level—see "Advanced Transaction Control"
on page 7-38.

Overview of Transactions
A transaction is a sequence of SQL operations that Oracle treats as a single unit. A
transaction begins with the first executable SQL statement after any of the
following:

■ connection to the database

■ COMMIT (committing data updates, either automatically or manually)

■ ROLLBACK (canceling data updates)

A transaction ends with a COMMIT or ROLLBACK operation.

Automatic Commits versus Manual Commits
In using SQLJ or JDBC, you can either have your data updates automatically
committed, or commit them manually. In either case, each COMMIT operation starts
a new transaction. You can specify that changes be committed automatically by
enabling the auto-commit flag, either when you define a SQLJ connection, or by
using the setAutoCommit() method of the underlying JDBC connection object of
an existing connection. You can use manual control by disabling the auto-commit
flag and using SQLJ COMMIT and ROLLBACK statements.

Enabling auto-commit may be more convenient, but gives you less control. You
have no option to roll back changes, for example. In addition, some SQLJ or JDBC
features are incompatible with auto-commit mode. For example, you must disable
the auto-commit flag for update batching or SELECT FOR UPDATE syntax to work
properly.

Note: In Oracle9i, all DDL commands (such as CREATE and
ALTER) include an implicit COMMIT. This will commit not only the
DDL command, but any preceding DML commands (INSERT,
DELETE, UPDATE) that had not yet been committed or rolled back.
4-26 SQLJ Developer’s Guide and Reference

Basic Transaction Control
Specifying Auto-Commit as You Define a Connection
When you use the Oracle.connect() or Oracle.getConnection() method
to create a DefaultContext instance and define a connection, the auto-commit
flag is set to false by default. There are signatures of these methods, however, that
allow you to set this flag explicitly. The auto-commit flag is always the last
parameter.

The following is an example of instantiating DefaultContext and using the
default false setting for auto-commit mode:

Oracle.getConnection (
 "jdbc:oracle:thin:@localhost:1521:orcl", "scott", "tiger");

Or you can specify a true setting:

Oracle.getConnection (
 "jdbc:oracle:thin:@localhost:1521:orcl", "scott", "tiger", true);

For the complete list of signatures for Oracle.connect() and
Oracle.getConnection(), see "More About the Oracle Class" on page 4-12.

If you use a constructor to create a connection context instance, either of
DefaultContext or of a declared connection context class, you must specify the
auto-commit setting. Again, it is the last parameter, as in the following example:

DefaultContext ctx = new DefaultContext (
 "jdbc:oracle:thin:@localhost:1521:orcl", "scott", "tiger", false);

For the complete list of signatures for DefaultContext constructors, see "More
About the DefaultContext Class" on page 4-14.

If you have reason to create a JDBC Connection instance directly, then the
auto-commit flag is set to true by default if your program runs on a client, or
false by default if it runs in the server. (You cannot specify an auto-commit setting
when you create a JDBC Connection instance directly, but you can use the
setAutoCommit() method to alter the setting, as described in "Modifying
Auto-Commit in an Existing Connection" below.)

Note: Auto-commit functionality is not supported by the JDBC
server-side internal driver.
 Key Programming Considerations 4-27

Basic Transaction Control
Modifying Auto-Commit in an Existing Connection
There is typically no reason to change the auto-commit flag setting for an existing
connection, but you can if desired. You can do this by using the setAutoCommit()
method of the underlying JDBC connection object.

You can retrieve the underlying JDBC connection object by using the
getConnection() method of any SQLJ connection context instance (whether it is
an instance of the DefaultContext class or of a connection context class you have
declared).

You can accomplish these two steps at once, as follows. In these examples, ctx is a
SQLJ connection context instance:

ctx.getConnection().setAutoCommit(false);

or:

ctx.getConnection().setAutoCommit(true);

Using Manual COMMIT and ROLLBACK
If you disable the auto-commit flag, then you must manually commit any data
updates.

To commit any changes (such as updates, inserts, or deletes) that have been
executed since the last COMMIT operation, use the SQLJ COMMIT statement, as
follows:

#sql { COMMIT };

To roll back (cancel) any changes that have been executed since the last COMMIT
operation, use the SQLJ ROLLBACK statement, as follows:

#sql { ROLLBACK };

Do not use the COMMIT or ROLLBACK commands when auto-commit is enabled.
This will result in unspecified behavior (or perhaps SQL exceptions).

Important: Do not alter the auto-commit setting in the middle of a
transaction.
4-28 SQLJ Developer’s Guide and Reference

Basic Transaction Control
Effect of Commits and Rollbacks on Iterators and Result Sets
COMMIT operations (either automatic or manual) and ROLLBACK operations do not
affect open result sets and iterators. The result sets and iterators will still be open,
and usually all that is relevant to their content is the state of the database at the time
of execution of the SELECT statements that populated them.

This also applies to UPDATE, INSERT, and DELETE statements that are executed
after the SELECT statements—execution of these statements does not affect the
contents of open result sets and iterators.

Consider a situation where you SELECT, then UPDATE, then COMMIT. A
non-sensitive result set or iterator populated by the SELECT statement will be
unaffected by the UPDATE and COMMIT.

As a further example, consider a situation where you UPDATE, then SELECT, then
ROLLBACK. A non-sensitive result set or iterator populated by the SELECT will still
contain the updated data, regardless of the subsequent ROLLBACK.

Notes:

■ All DDL statements in Oracle SQL include an implicit COMMIT
operation. There is no special SQLJ functionality in this regard;
such statements follow standard Oracle SQL rules.

■ If auto-commit mode is off and you close a connection context
instance from a client application, then any changes since your
last COMMIT will be committed (unless you close the connection
context instance with KEEP_CONNECTION, which is explained
in "Closing Shared Connections" on page 7-46).

Note: An exception to this is if you declared an iterator class with
sensitivity=SENSITIVE. In this case, changes to the underlying
result set may be seen whenever the iterator is scrolled outside of
its window size. For more information about scrollable iterators,
see "Scrollable Iterators" on page 7-30. For more information about
the underlying scrollable result sets, see the Oracle9i JDBC
Developer’s Guide and Reference
 Key Programming Considerations 4-29

Summary: First Steps in SQLJ Code
Summary: First Steps in SQLJ Code
The best way to summarize the SQLJ executable statement features and
functionality discussed to this point is by examining short but complete programs.
This section presents two such examples.

The first example, presented one step at a time and then again in its entirety, uses a
SELECT INTO statement to perform a single-row query of two columns from a
table of employees. If you want to run the example, make sure to change the
parameters in the connect.properties file to settings that will let you connect
to an appropriate database.

The second example, slightly more complicated, will make use of a SQLJ iterator for
a multi-row query.

Import Required Classes
Import any JDBC or SQLJ packages you will need.

You will need at least some of the classes in the java.sql package:

import java.sql.*;

You may not need all the java.sql package, however. Key classes there are
java.sql.SQLException and any classes that you refer to explicitly (for
example, java.sql.Date, java.sql.ResultSet).

You will need the following package for the Oracle class, which you typically use
to instantiate DefaultContext objects and establish your default connection:

import oracle.sqlj.runtime.*;

If you will be using any SQLJ runtime classes directly in your code, import the
following packages:

import sqlj.runtime.*;
import sqlj.runtime.ref.*;

If your code does not use any SQLJ runtime classes directly, however, it will be
sufficient to have them in your classpath as described in "Set the Path and
Classpath" on page 2-8.

(Key runtime classes include ResultSetIterator and ExecutionContext in
the sqlj.runtime package, and DefaultContext in the sqlj.runtime.ref
package.)
4-30 SQLJ Developer’s Guide and Reference

Summary: First Steps in SQLJ Code
Register JDBC Drivers and Set Default Connection
Declare the SimpleExample class with a constructor that uses the static
Oracle.connect() method to set the default connection. This also registers the
Oracle JDBC drivers. If you are using a non-Oracle JDBC driver, you must add code
to register it (as mentioned in the code comments below).

This uses a signature of connect() that takes the URL, user name, and password
from the connect.properties file. An example of this file is in the directory
[Oracle Home]/sqlj/demo and also in "Set Up the Runtime Connection" on
page 2-11.

public class SimpleExample {

 public SimpleExample() throws SQLException {
 /* If you are using a non-Oracle JDBC driver, add a call here to
 DriverManager.registerDriver() to register your driver. */
 // Set default connection (as defined in connect.properties).
 Oracle.connect(getClass(), "connect.properties");
 }

The main() method is defined in "Set Up Exception Handling" below.

Set Up Exception Handling
Create a main() that calls the SimpleExample constructor and then sets up a
try/catch block to handle any SQL exceptions thrown by the runExample()
method (which performs the real work of this application):

...
public static void main (String [] args) {

 try {
 SimpleExample o1 = new SimpleExample();
 o1.runExample();
 }
 catch (SQLException ex) {
 System.err.println("Error running the example: " + ex);
 }
}
...

The runExample() method is defined in "Set Up Host Variables, Execute SQLJ
Clause, Process Results" below.
 Key Programming Considerations 4-31

Summary: First Steps in SQLJ Code
You can also use a try/catch block inside a finally clause when you close the
connection (presuming the finally clause is not already inside a try/catch
block in case of SQL exceptions):

finally
{
 try { Oracle.close(); } catch(SQLException ex) {...}
}

Set Up Host Variables, Execute SQLJ Clause, Process Results
Create a runExample() method that performs the following:

1. Throws any SQL exceptions to the main() method for processing.

2. Declares Java host variables.

3. Executes a SQLJ clause that binds the Java host variables into an embedded
SELECT statement and selects the data into the host variables.

4. Prints the results.

Here is the code:

void runExample() throws SQLException {

 System.out.println("Running the example--");

 // Declare two Java host variables--
 Float salary;
 String empname;

 // Use SELECT INTO statement to execute query and retrieve values.
 #sql { SELECT ename, sal INTO :empname, :salary FROM emp
 WHERE empno = 7499 };

 // Print the results--
 System.out.println("Name is " + empname + ", and Salary is " + salary);
 }
} // Closing brace of SimpleExample class

This example declares salary and ename as Java host variables. The SQLJ clause
then selects data from the ENAME and SAL columns of the EMP table and places the
data into the host variables. Finally, the values of salary and empname are printed
out.
4-32 SQLJ Developer’s Guide and Reference

Summary: First Steps in SQLJ Code
Note that this SELECT statement could select only one row of the EMP table, because
the EMPNO column in the WHERE clause is the primary key of the table.

Example of Single-Row Query using SELECT INTO
This section presents the entire SimpleExample class from the previous
step-by-step sections. Because this is a single-row query, no iterator is required.

// Import SQLJ classes:
import sqlj.runtime.*;
import sqlj.runtime.ref.*;
import oracle.sqlj.runtime.*;

// Import standard java.sql package:
import java.sql.*;

public class SimpleExample {

 public SimpleExample() throws SQLException {
 /* If you are using a non-Oracle JDBC driver, add a call here to
 DriverManager.registerDriver() to register your driver. */
 // Set default connection (as defined in connect.properties).
 Oracle.connect(getClass(), "connect.properties");
 }

 public static void main (String [] args) throws SQLException {

 try {
 SimpleExample o1 = new SimpleExample();
 o1.runExample();
 }
 catch (SQLException ex) {
 System.err.println("Error running the example: " + ex);
 }
 }

 finally
 {
 try { Oracle.close(); } catch(SQLException ex) {...}
 }

 void runExample() throws SQLException {

 System.out.println("Running the example--");

 Key Programming Considerations 4-33

Summary: First Steps in SQLJ Code
 // Declare two Java host variables--
 Float salary;
 String empname;

 // Use SELECT INTO statement to execute query and retrieve values.
 #sql { SELECT ename, sal INTO :empname, :salary FROM emp
 WHERE empno = 7499 };

 // Print the results--
 System.out.println("Name is " + empname + ", and Salary is " + salary);
 }
}

Set Up a Named Iterator
The next example will build on the previous example by adding a named iterator
and using it for a multiple-row query.

First, declare the iterator class. Use object types Integer and Float, instead of
primitive types int and float, wherever there is the possibility of null values.

#sql iterator EmpRecs(
 int empno, // This column cannot be null, so int is OK.
 // (If null is possible, use Integer.)
 String ename,
 String job,
 Integer mgr,
 Date hiredate,
 Float sal,
 Float comm,
 int deptno);

Later, instantiate the EmpRecs class and populate it with query results.

EmpRecs employees;

#sql employees = { SELECT empno, ename, job, mgr, hiredate,
 sal, comm, deptno FROM emp };

Then use the next() method of the iterator to print the results.

 while (employees.next()) {
 System.out.println("Name: " + employees.ename());
 System.out.println("EMPNO: " + employees.empno());
 System.out.println("Job: " + employees.job());
4-34 SQLJ Developer’s Guide and Reference

Summary: First Steps in SQLJ Code
 System.out.println("Manager: " + employees.mgr());
 System.out.println("Date hired: " + employees.hiredate());
 System.out.println("Salary: " + employees.sal());
 System.out.println("Commission: " + employees.comm());
 System.out.println("Department: " + employees.deptno());
 System.out.println();
 }

Finally, close the iterator when you are done.

employees.close();

Example of Multiple-Row Query Using Named Iterator
This example uses a named iterator for a multiple-row query that selects several
columns of data from a table of employees.

Aside from use of the named iterator, this example is conceptually similar to the
previous single-row query example.

// Import SQLJ classes:
import sqlj.runtime.*;
import sqlj.runtime.ref.*;
import oracle.sqlj.runtime.*;

// Import standard java.sql package:
import java.sql.*;

// Declare a SQLJ iterator.
// Use object types (Integer, Float) for mgr, sal, And comm rather
// than primitive types to allow for possible null selection.

#sql iterator EmpRecs(
 int empno, // This column cannot be null, so int is OK.
 // (If null is possible, Integer is required.)
 String ename,
 String job,
 Integer mgr,
 Date hiredate,
 Float sal,
 Float comm,
 int deptno);

// This is the application class.
 Key Programming Considerations 4-35

Summary: First Steps in SQLJ Code
public class EmpDemo1App {

 public EmpDemo1App() throws SQLException {
 /* If you are using a non-Oracle JDBC driver, add a call here to
 DriverManager.registerDriver() to register your driver. */
 // Set default connection (as defined in connect.properties).
 Oracle.connect(getClass(), "connect.properties");
 }

 public static void main(String[] args) {

 try {
 EmpDemo1App app = new EmpDemo1App();
 app.runExample();
 }
 catch(SQLException exception) {
 System.err.println("Error running the example: " + exception);
 }
 }

 finally
 {
 try { Oracle.close(); } catch(SQLException ex) {...}
 }

 void runExample() throws SQLException {
 System.out.println("\nRunning the example.\n");

 // The query creates a new instance of the iterator and stores it in
 // the variable ’employees’ of type ’EmpRecs’. SQLJ translator has
 // automatically declared the iterator so that it has methods for
 // accessing the rows and columns of the result set.

 EmpRecs employees;

 #sql employees = { SELECT empno, ename, job, mgr, hiredate,
 sal, comm, deptno FROM emp };

 // Print the result using the iterator.

 // Note how the next row is accessed using method ’next()’, and how
 // the columns can be accessed with methods that are named after the
 // actual database column names.

 while (employees.next()) {
4-36 SQLJ Developer’s Guide and Reference

Summary: First Steps in SQLJ Code
 System.out.println("Name: " + employees.ename());
 System.out.println("EMPNO: " + employees.empno());
 System.out.println("Job: " + employees.job());
 System.out.println("Manager: " + employees.mgr());
 System.out.println("Date hired: " + employees.hiredate());
 System.out.println("Salary: " + employees.sal());
 System.out.println("Commission: " + employees.comm());
 System.out.println("Department: " + employees.deptno());
 System.out.println();
 }

 // You must close the iterator when it’s no longer needed.
 employees.close() ;
 }
}

 Key Programming Considerations 4-37

Other Programming Considerations
Other Programming Considerations
This section covers miscellaneous programming considerations not covered
previously in this chapter:

■ Naming Requirements and Restrictions

■ Statement Caching Methods

Naming Requirements and Restrictions
There are four areas to consider in discussing naming requirements, naming
restrictions, and reserved words:

■ the Java namespace, including additional restrictions imposed by SQLJ on the
naming of local variables and classes

■ the SQLJ namespace

■ the SQL namespace

■ source file names

Java Namespace—Local Variable and Class Naming Restrictions
The Java namespace applies to all your standard Java statements and declarations,
including the naming of Java classes and local variables. All standard Java naming
restrictions apply, and you should avoid use of Java reserved words.

In addition, SQLJ places minor restrictions on the naming of local variables and
classes.

Local Variable Naming Restrictions Some of the functionality of the SQLJ translator
results in minor restrictions in naming local variables.

The SQLJ translator replaces each SQLJ executable statement with a statement
block, where the SQLJ executable statement is of the standard syntax:

#sql { SQL operation };

Note: Naming restrictions particular to host variables are
discussed in "Restrictions on Host Expressions" on page 3-32.
4-38 SQLJ Developer’s Guide and Reference

Other Programming Considerations
SQLJ may use temporary variable declarations within a generated statement block.
The name of any such temporary variables will include the following prefix:

 __sJT_

(There are two underscores at the beginning and one at the end.)

The following declarations are examples of those that might occur in a
SQLJ-generated statement block:

int __sJT_index;
Object __sJT_key;
java.sql.PreparedStatement __sJT_stmt;

The string __sJT_ is a reserved prefix for SQLJ-generated variable names. SQLJ
programmers must not use this string as a prefix for the following:

■ names of variables declared in blocks that include executable SQL statements

■ names of parameters to methods that contain executable SQL statements

■ names of fields in classes that contain executable SQL statements, or whose
subclasses or enclosed classes contain executable SQL statements

Class Naming Restrictions Be aware of the following minor restrictions in naming
classes in SQLJ applications:

■ You must not declare class names that may conflict with SQLJ internal classes.
In particular, a top-level class cannot have a name of the following form if a is
the name of an existing class in the SQLJ application:

a_SJb (where a and b are legal Java identifiers)

For example, if your application class is Foo in file Foo.sqlj, then SQLJ
generates a profile-keys class called Foo_SJProfileKeys. Do not declare a
class name that conflicts with this.

■ A class containing SQLJ executable statements must not have a name that is the
same as the first component of the name of any package that includes a Java
type used in the application. Examples of class names to avoid are java, sqlj,
and oracle (case-sensitive). As another example, if your SQLJ statements use
host variables whose type is abc.def.MyClass, then you cannot use abc as
the name of the class that uses these host variables.

To avoid this restriction, follow Java naming conventions recommending that
package names start in lowercase and class names start in uppercase.
 Key Programming Considerations 4-39

Other Programming Considerations
SQLJ Namespace
The SQLJ namespace refers to #sql class declarations and the portion of #sql
executable statements outside the curly braces.

Avoid using the following SQLJ reserved words as class names for declared
connection context classes or iterator classes, in with or implements clauses, or in
iterator column type declaration lists:

■ iterator

■ context

■ with

For example, do not have an iterator class or instance called iterator or a
connection context class or instance called context.

Note, however, that it is permissible to have a stored function return variable whose
name is any of these words.

SQL Namespace
The SQL namespace refers to the portion of a SQLJ executable statement inside the
curly braces. Normal SQL naming restrictions apply here. See the Oracle9i SQL
Reference for more information.

Note, however, that host expressions follow rules of the Java namespace, not the
SQL namespace. This applies to the name of a host variable and to everything
between the outer parentheses of a host expression.

File Name Requirements and Restrictions
SQLJ source files have the .sqlj file name extension. If the source file declares a
public class (maximum of one), then the base name of the file must match the name
of this class (case-sensitive). If the source file does not declare a public class, then
the file name must still be a legal Java identifier, and it is recommended that the file
name match the name of the first defined class.

For example, if you define the public class MySource in your source file, then your
file name must be:

MySource.sqlj

Note: Restrictions particular to the naming of iterator columns are
discussed in "Using Named Iterators" on page 3-42.
4-40 SQLJ Developer’s Guide and Reference

Other Programming Considerations
Statement Caching Methods
To alter the statement cache size or disable statement caching when generating
Oracle-specific code, you must use method calls in your code instead of using the
customizer stmtcache option (because profile customization is not applicable with
Oracle-specific code generation). The sqlj.runtime.ref.DefaultContext
class, as well as any connection context class you declare, now has the following
static methods:

■ setDefaultStmtCacheSize(int)

■ int getDefaultStmtCacheSize()

and the following instance methods:

■ setStmtCacheSize(int)

■ int getStmtCacheSize()

By default, statement caching is enabled.

You might also want to use these methods with standard code generation, to disable
or alter implicit JDBC statement caching behavior. They defer to methods of the
same name in the underlying JDBC connection object.

See "Connection Context Methods for Statement Cache Size" on page A-5 for more
information. (This is a subsection under "Statement Caching" on page A-4, which
provides an overview of statement caching.)

For information about Oracle-specific code generation, see "Oracle-Specific Code
Generation (No Profiles)" on page 10-11.

Note: These file naming requirements follow the Java Language
Specification and are not SQLJ-specific. These requirements do not
directly apply in Oracle9i, but it is still advisable to adhere to them.
 Key Programming Considerations 4-41

Other Programming Considerations
4-42 SQLJ Developer’s Guide and Reference

 Type Su
5

Type Support

This chapter documents datatypes supported by Oracle SQLJ, listing supported
SQL types and the Java types that correspond to them, including information about
backwards compatibility to Oracle8 and Oracle7. This is followed by details about
support for streams and Oracle type extensions. SQLJ "support" of Java types refers
to types that can be used in host expressions.

For information about Oracle SQLJ support for user-defined types—SQL objects,
object references, and collections—see Chapter 6, "Objects and Collections".

This chapter covers the following topics:

■ Supported Types for Host Expressions

■ Support for Streams

■ Support for JDBC 2.0 LOB Types and Oracle Type Extensions
pport 5-1

Supported Types for Host Expressions
Supported Types for Host Expressions
This section summarizes the types supported by Oracle SQLJ, including
information about new support for JDBC 2.0 types, and backwards compatibility for
the 8.0.x and 7.3.x Oracle JDBC drivers.

For a complete list of legal Java mappings for each Oracle SQL type, see the
reference information in the Oracle9i JDBC Developer’s Guide and Reference.

Summary of Supported Types
Table 5–1 lists the Java types that you can use in host expressions when employing
the Oracle JDBC drivers. This table also documents the correlation between Java
types, SQL types whose typecodes are defined in the class
oracle.jdbc.OracleTypes, and datatypes in Oracle9i.

SQL data output to a Java variable is converted to the corresponding Java type. A
Java variable input to SQL is converted to the corresponding Oracle datatype.

Where objects, object references, and arrays are referred to as "JPub-generated", this
refers to the Oracle JPublisher utility that can be used in defining Java classes to
correspond to Oracle9i objects, object references, and arrays. The JPublisher utility is
discussed in "JPublisher and the Creation of Custom Java Classes" on page 6-25 and
documented in further detail in the Oracle9i JPublisher User’s Guide.

Note: SQLJ (and SQL) perform implicit conversions between SQL
and Java types. Although this is generally useful and helpful, it can
produce unexpected results. Do not rely on translation-time
type-checking alone to ensure the correctness of your code.

Note: The OracleTypes class simply defines a typecode, which
is an integer constant, for each Oracle datatype. For standard JDBC
types, the OracleTypes value is identical to the standard
java.sql.Types value.
5-2 SQLJ Developer’s Guide and Reference

Supported Types for Host Expressions
Table 5–1 Type Mappings for Supported Host Expression Types

Java Type OracleTypes Definition Oracle Datatype

STANDARD JDBC 1.x TYPES

boolean BIT NUMBER

byte TINYINT NUMBER

short SMALLINT NUMBER

int INTEGER NUMBER

long BIGINT NUMBER

float REAL NUMBER

double FLOAT, DOUBLE NUMBER

java.lang.String CHAR
VARCHAR
LONGVARCHAR

CHAR
VARCHAR2
LONG

byte[] BINARY
VARBINARY
LONGVARBINARY

RAW
RAW
LONGRAW

java.sql.Date DATE DATE

java.sql.Time TIME DATE

java.sql.Timestamp TIMESTAMP DATE

java.math.BigDecimal NUMERIC
DECIMAL

NUMBER
NUMBER

STANDARD JDBC 2.0 TYPES

java.sql.Blob BLOB BLOB

java.sql.Clob CLOB CLOB

java.sql.Struct STRUCT STRUCT

java.sql.Ref REF REF

java.sql.Array ARRAY ARRAY

custom object classes implementing
java.sql.SQLData

STRUCT STRUCT

JAVA WRAPPER CLASSES

java.lang.Boolean BIT NUMBER
 Type Support 5-3

Supported Types for Host Expressions
java.lang.Byte TINYINT NUMBER

java.lang.Short SMALLINT NUMBER

java.lang.Integer INTEGER NUMBER

java.lang.Long BIGINT NUMBER

java.lang.Float REAL NUMBER

java.lang.Double FLOAT, DOUBLE NUMBER

SQLJ STREAM CLASSES

sqlj.runtime.BinaryStream LONGVARBINARY LONG RAW

sqlj.runtime.AsciiStream LONGVARCHAR LONG

sqlj.runtime.UnicodeStream LONGVARCHAR LONG

ORACLE EXTENSIONS

oracle.sql.NUMBER NUMBER NUMBER

oracle.sql.CHAR CHAR CHAR

oracle.sql.RAW RAW RAW

oracle.sql.DATE DATE DATE

oracle.sql.ROWID ROWID ROWID

oracle.sql.BLOB BLOB BLOB

oracle.sql.CLOB CLOB CLOB

oracle.sql.BFILE BFILE BFILE

oracle.sql.STRUCT STRUCT STRUCT

oracle.sql.REF REF REF

oracle.sql.ARRAY ARRAY ARRAY

custom object classes implementing
oracle.sql.ORAData

STRUCT STRUCT

custom reference classes implementing
oracle.sql.ORAData

REF REF

custom collection classes implementing
oracle.sql.ORAData

ARRAY ARRAY

Table 5–1 Type Mappings for Supported Host Expression Types (Cont.)

Java Type OracleTypes Definition Oracle Datatype
5-4 SQLJ Developer’s Guide and Reference

Supported Types for Host Expressions
The following points relate to type support for standard SQLJ features:

■ JDBC and SQLJ do not support Java char and Character types. Instead, use
the Java String type to represent character data.

■ Do not confuse the supported java.sql.Date type with java.util.Date,
which is not directly supported. The java.sql.Date class is a wrapper for
java.util.Date that allows JDBC to identify the data as a SQL DATE and
adds formatting and parsing operations to support JDBC escape syntax for date
values.

■ Remember that all numeric types in Oracle9i are stored as NUMBER. Although
you can specify additional precision when you declare a NUMBER during table
creation (you can declare the total number of places and the number of places to
the right of the decimal point), this precision may be lost when retrieving the
data through the Oracle JDBC drivers, depending on the Java type that you use
to receive the data. (An oracle.sql.NUMBER instance would preserve full
information.)

■ The Java wrapper classes (such as Integer and Float) are useful in cases
where null values may be returned by the SQL statement. Primitive types (such

any other custom Java classes
implementing oracle.sql.ORAData (to
wrap any oracle.sql type)

any any

GLOBALIZATION SUPPORT

oracle.sql.NCHAR CHAR CHAR

oracle.sql.NString CHAR
VARCHAR
LONGVARCHAR

CHAR
VARCHAR2
LONG

oracle.sql.NCLOB CLOB CLOB

oracle.sqlj.runtime.NcharAsciiStream LONGVARCHAR LONG

oracle.sqlj.runtime.NcharUnicodeStream LONGVARCHAR LONG

QUERY RESULT OBJECTS

java.sql.ResultSet CURSOR CURSOR

SQLJ iterator objects CURSOR CURSOR

Table 5–1 Type Mappings for Supported Host Expression Types (Cont.)

Java Type OracleTypes Definition Oracle Datatype
 Type Support 5-5

Supported Types for Host Expressions
as int and float) cannot contain null values. See "Null-Handling" on
page 4-19 for more information.

■ For information about SQLJ support for result set and iterator host variables,
see "Using Iterators and Result Sets as Host Variables" on page 3-51.

■ The SQLJ stream classes are required in using streams as host variables. For
information, see "Support for Streams" on page 5-12.

■ A new set of interfaces, in the oracle.jdbc package, is added in Oracle 9i
JDBC in place of classes of the oracle.jdbc.driver package. These new
interfaces provide a more generic way for users to access Oracle-specific
features using Oracle JDBC drivers. The Oracle 8i API will continue to be
supported for backward compatibility, so no change is required for existing
JDBC code to upgrade from Oracle 8i to Oracle 9i. (SQLJ programmers,
however, will not typically use these interfaces directly. They are used
transparently by the SQLJ runtime or in Oracle-specific generated code.)

For more information, see "Custom Java Class Interface Specifications" on
page 6-6.

The following points relate to Oracle extensions, which are covered in "Support for
JDBC 2.0 LOB Types and Oracle Type Extensions" on page 5-25 and in Chapter 6,
"Objects and Collections":

■ Oracle SQLJ requires any class that implements oracle.sql.ORAData to set
the public static _SQL_TYPECODE parameter according to values defined
in the OracleTypes class. In some cases an additional parameter must be set
as well (such as _SQL_NAME for objects and _SQL_BASETYPE for object
references). This occurs automatically if you use the Oracle JPublisher utility to
generate the class.

See "Oracle Requirements for Classes Implementing ORAData" on page 6-11.

■ The oracle.sql classes are wrappers for SQL data for each of the Oracle
datatypes. The ARRAY, STRUCT, REF, BLOB, and CLOB classes correspond to
standard JDBC 2.0 interfaces. For background information about these classes
and Oracle extensions, see the Oracle9i JDBC Developer’s Guide and Reference.

■ Custom Java classes can map to Oracle objects (implementing ORAData or
SQLData), references (implementing ORAData only), collections (implementing
ORAData only), or other SQL types (for customized handling, implementing
ORAData only). See "Custom Java Classes" on page 6-6.

You can use the Oracle JPublisher utility to automatically generate custom Java
classes. See "JPublisher and the Creation of Custom Java Classes" on page 6-25.
5-6 SQLJ Developer’s Guide and Reference

Supported Types for Host Expressions
■ Using any of the Oracle extensions requires the following:

– an Oracle JDBC driver

– Oracle customization or Oracle-specific code generation during translation

– the Oracle SQLJ runtime when your application runs

Supported Types and Requirements for JDBC 2.0
As indicated in Table 5–1 above, Oracle JDBC and SQLJ support JDBC 2.0 types in
the standard java.sql package.

This section lists JDBC 2.0 supported types and related Oracle extensions.

Table 5–2 lists the JDBC 2.0 types supported by Oracle SQLJ. You can use them
wherever you can use the corresponding Oracle extensions, summarized in the
table.

The Oracle extensions have been available in prior releases and are still available as
well. These oracle.sql.* classes provide functionality to wrap raw SQL data,
and are described in the Oracle9i JDBC Developer’s Guide and Reference.

Important: In a Sun Microsystems JDK environment, JDBC 2.0
types require a JDK 1.2.x or higher version. While Oracle JDBC
under JDK 1.1.x supports oracle.jdbc2 extensions to mimic
JDBC 2.0 type functionality, Oracle SQLJ has never supported the
oracle.jdbc2 package.

To use JDBC 2.0 types or corresponding Oracle extended types in
Oracle SQLJ, use the SQLJ runtime12 or runtime12ee library,
which support JDK 1.2.x.

Table 5–2 Correlation between Oracle Extensions and JDBC 2.0 Types

JDBC 2.0 Type Oracle Extension

java.sql.Blob oracle.sql.BLOB

java.sql.Clob oracle.sql.CLOB

java.sql.Struct oracle.sql.STRUCT

java.sql.Ref oracle.sql.REF

java.sql.Array oracle.sql.ARRAY
 Type Support 5-7

Supported Types for Host Expressions
ORAData functionality is an Oracle-specific alternative to standard SQLData
functionality for Java support of user-defined types. For information, see "Custom
Java Classes" on page 6-6.

For information about support for other types in Table 5–2, see "Support for BLOB,
CLOB, and BFILE" on page 5-26 and "Support for Weakly Typed Objects,
References, and Collections" on page 6-77.

Unsupported Types
The types summarized in Table 5–3, while supported by Oracle JDBC, are not
currently supported by Oracle SQLJ or JPublisher.

In addition, the following JDBC 2.0 types are currently not supported in Oracle
JDBC or SQLJ:

■ JAVA_OBJECT—Represents an instance of a Java type in a SQL column.

■ DISTINCT—A distinct SQL type represented in or retrievable from a basic SQL
type (for example, SHOESIZE --> NUMBER).

java.sql.SQLData n/a

n/a oracle.sql.ORAData
 (_SQL_TYPECODE = OracleTypes.STRUCT)

Table 5–3 Unsupported Host Expression Types

Java Type OracleTypes Definition Oracle Datatype

Java classes for SQLJ
object types

JAVA_STRUCT SQLJ object types

OPAQUE types OPAQUE OPAQUE

scalar index-by-table n/a n/a

DATE/TIME types:
TIMESTAMP
TIMESTAMPTZ
TIMESTAMPLTZ

TIMESTAMPNS
TIMESTAMPTZ
TIMESTAMPLTZ

TIMESTAMP
TIMESTAMP-WITH-TIMEZONE
TIMESTAMPE-WITH-LOCAL-TIMEZONE

Table 5–2 Correlation between Oracle Extensions and JDBC 2.0 Types (Cont.)

JDBC 2.0 Type Oracle Extension
5-8 SQLJ Developer’s Guide and Reference

Supported Types for Host Expressions
Wrapping PL/SQL BOOLEAN, RECORD, and TABLE Types
Oracle SQLJ does not support calling arguments or return values of the PL/SQL
types TABLE (now known as indexed-by tables), RECORD, or BOOLEAN. (RECORD and
BOOLEAN types are not supported by Oracle JDBC.)

As a workaround, you can create wrapper procedures that process the data using
supported types. For example, to wrap a stored procedure that uses PL/SQL
booleans, you can create a stored procedure that takes a character or number from
JDBC and passes it to the original procedure as BOOLEAN, or, for an output
parameter, accepts a BOOLEAN argument from the original procedure and passes it
as a CHAR or NUMBER to JDBC. Similarly, to wrap a stored procedure that uses
PL/SQL records, you can create a stored procedure that handles a record in its
individual components (such as CHAR and NUMBER). To wrap a stored procedure
that uses PL/SQL tables, you can break the data into components or perhaps use
Oracle collection types.

Here is an example of a PL/SQL wrapper procedure MY_PROC for a stored
procedure PROC that takes a BOOLEAN as input:

PROCEDURE MY_PROC (n NUMBER) IS
BEGIN
 IF n=0
 THEN proc(false);
 ELSE proc(true);
 END IF;
END;

PROCEDURE PROC (b BOOLEAN) IS
BEGIN
...
END;
 Type Support 5-9

Supported Types for Host Expressions
Backwards Compatibility for Previous Oracle JDBC Releases
This section summarizes backwards compatibility issues when using Oracle SQLJ
with previous Oracle JDBC releases.

Backwards Compatibility for Oracle8i
The following Oracle9i features are not supported, or are supported differently, in
the Oracle8i JDBC drivers:

■ oracle.sql.ORAData and ORADataFactory interfaces for Java mapping of
user-defined SQL types

Use the Oracle8i oracle.sql.CustomDatum and CustomDatumFactory
interfaces instead. See "ORAData Versus CustomDatum Interfaces" on page 6-8.

■ Oracle extensions for character types for globalization support (NCHAR, NCLOB,
NString, NcharAsciiStream, and NcharUnicodeStream).

Backwards Compatibility for Oracle 8.0.x and 7.3.x
Some of the Oracle type extensions supported by the Oracle9i JDBC drivers are
either not supported or supported differently by the Oracle 8.0.x and 7.3.x JDBC
drivers. Following are the key points:

■ The Oracle 8.0.x and 7.3.x drivers have no oracle.sql package, meaning
there are no wrapper types such as oracle.sql.NUMBER and
oracle.sql.CHAR that you can use to wrap raw SQL data.

■ The Oracle 8.0.x and 7.3.x drivers do not support Oracle object and collection
types.

■ The Oracle 8.0.x and 7.3.x drivers support the Oracle ROWID datatype with the
OracleRowid class in the oracle.jdbc package.

■ The Oracle 8.0.x drivers support the Oracle BLOB, CLOB, and BFILE datatypes
with the OracleBlob, OracleClob, and OracleBfile classes in the
oracle.jdbc package. These classes do not include LOB and BFILE
manipulation methods such as those discussed in "Support for BLOB, CLOB,
and BFILE" on page 5-26. You must, instead, use the PL/SQL DBMS_LOB
package, which is discussed in the same section.

■ The Oracle 7.3.x drivers do not support BLOB, CLOB, and BFILE.

Table 5–4 summarizes these differences.
5-10 SQLJ Developer’s Guide and Reference

Supported Types for Host Expressions
Table 5–4 Type Support Differences for Oracle 8.0.x and 7.3.x JDBC Drivers

Java Type Oracle Types Definition Oracle Datatype

ORACLE EXTENSIONS

oracle.sql.NUMBER not supported n/a

oracle.sql.CHAR not supported n/a

oracle.sql.RAW not supported n/a

oracle.sql.DATE not supported n/a

oracle.jdbc.OracleRowid ROWID ROWID

oracle.jdbc.OracleBlob BLOB in 8.0.x

not supported in 7.3.x

BLOB in 8.0.x

n/a in 7.3.x

oracle.jdbc.OracleClob CLOB in 8.0.x

not supported in 7.3.x

CLOB in 8.0.x

n/a in 7.3.x

oracle.jdbc.OracleBfile BFILE in 8.0.x

not supported in 7.3.x

BFILE in 8.0.x

n/a in 7.3.x

oracle.sql.STRUCT not supported n/a

oracle.sql.REF not supported n/a

oracle.sql.ARRAY not supported n/a

JPub-generated objects not supported n/a

JPub-generated object references not supported n/a

JPub-generated arrays not supported n/a

client-customized types
(customization of any oracle.sql
types, including objects,
references, and collections)

not supported n/a
 Type Support 5-11

Support for Streams
Support for Streams
Standard SQLJ provides three specialized classes, listed below, for convenient
processing of long data in streams. These stream types can be used for iterator
columns to retrieve data from the database, or for input host variables to send data
to the database. As with Java streams in general, these classes allow the convenience
of processing and transferring large data items in manageable chunks.

■ BinaryStream

■ AsciiStream

■ UnicodeStream

These classes are in the sqlj.runtime package.

This section discusses general use of these classes, Oracle SQLJ extended
functionality, and stream class methods.

General Use of SQLJ Streams
With respect to Oracle9i, Table 5–1 on page 5-3 lists the datatypes you would
typically process using these stream classes. To summarize:

■ AsciiStream and UnicodeStream are typically used for datatype LONG
(java.sql.Types.LONGVARCHAR), but might also be used for datatype
VARCHAR2 (Types.VARCHAR).

■ BinaryStream is typically used for datatype LONG RAW
(Types.LONGVARBINARY), but might also be used for datatype RAW
(Types.BINARY or Types.VARBINARY).

Of course, any use of streams is at your discretion. As Table 5–1 documents, LONG
and VARCHAR2 data can also be manifested in Java strings, while RAW and LONGRAW
data can also be manifested in Java byte arrays. Furthermore, if your database
supports large object types such as BLOB (binary large object) and CLOB (character
large object), you may find these to be preferable to using types such as LONG and
LONG RAW (although streams may still be used in extracting data from large
objects). Oracle SQLJ and JDBC support large object types—see "Support for BLOB,
CLOB, and BFILE" on page 5-26.

You can use the SQLJ stream types for host variables to either send or retrieve data.
All three SQLJ stream classes are subclasses of the standard Java input stream class,
java.io.InputStream, and act as wrappers to provide the functionality required
by SQLJ. This functionality is to communicate to SQLJ the type and length of data in
the underlying stream so that it can be processed and formatted properly.
5-12 SQLJ Developer’s Guide and Reference

Support for Streams
Using SQLJ Streams to Send Data
Standard SQLJ allows you to use streams as host variables to update the database.

A key point in sending a SQLJ stream to the database is that you must somehow
determine the length of the data and specify that length to the constructor of the
SQLJ stream. This will be further discussed below.

You can use a SQLJ stream to send data to the database as follows:

1. Determine the length of your data.

2. Create a standard Java input stream—an instance of java.io.InputStream
or some subclass—as you normally would.

3. Create an instance of the appropriate SQLJ stream class (depending on the type
of data), passing the input stream and length (as an int) to the constructor.

4. Use the SQLJ stream instance as a host variable in a suitable SQL operation in a
SQLJ executable statement.

5. Close the stream (this is not required, but is recommended).

This section now goes into more detail regarding two typical examples of sending a
SQLJ stream to the database:

■ using an operating system file to update a LONG or LONG RAW column (this can
be either a binary file to update a LONG RAW column, or an ASCII or Unicode
file to update a LONG column)

■ using a byte array to update a LONG RAW column

Updating LONG or LONG RAW from a File
In updating a database column (presumably a LONG or LONG RAW column) from a
file, a step is needed to determine the length. You can do this by creating a
java.io.File object before you create your input stream.

Here are the steps in updating the database from a file:

1. Create a java.io.File object from your file. You can specify the file path
name to the File class constructor.

Note: In using any method that takes an InputStream object as
input, you can use an object of any of the SQLJ stream classes
instead.
 Type Support 5-13

Support for Streams
2. Use the length() method of the File object to determine the length of the
data. This method returns a long value, which you must cast to an int for
input to the SQLJ stream class constructor.

3. Create a java.io.FileInputStream object from your File object. You can
pass the File object to the FileInputStream constructor.

4. Create an appropriate SQLJ stream object. This would be a BinaryStream
object for a binary file, an AsciiStream object for an ASCII file, or a
UnicodeStream object for a Unicode file. Pass the FileInputStream object
and data length (as an int) to the SQLJ stream class constructor.

The SQLJ stream constructors all have the same signature, as follows:

BinaryStream (InputStream in, int length)
AsciiStream (InputStream in, int length)
UnicodeStream (InputStream in, int length)

You can input an instance of java.io.InputStream or of any subclass, such
as FileInputStream, to these constructors.

5. Use the SQLJ stream object as a host variable in an appropriate SQL operation
in a SQLJ executable statement.

The following is an example of writing LONG data to the database from a file.
Presume you have an HTML file in /private/mydir/myfile.html and you
want to insert the file contents into a LONG column called asciidata in a database
table named filetable.

Imports:

import java.io.*;
import sqlj.runtime.*;

Executable code:

File myfile = new File ("/private/mydir/myfile.html");
int length = (int)myfile.length(); // Must cast long output to int.
FileInputStream fileinstream = new FileInputStream(myfile);
AsciiStream asciistream = new AsciiStream(fileinstream, length);

Note: Before performing this cast, test the long value to make
sure it is not too big to fit into an int variable. The static constant
MAX_VALUE in the class java.lang.Integer indicates the largest
possible Java int value.
5-14 SQLJ Developer’s Guide and Reference

Support for Streams
#sql { INSERT INTO filetable (asciidata) VALUES (:asciistream) };
asciistream.close();
...

Updating LONG RAW from a Byte Array
You must determine the length of the data before updating the database from a byte
array. (Presumably you would be updating a LONG RAW column.) This is more
trivial for arrays than for files, though, because all Java arrays have functionality to
return the length.

Here are the steps in updating the database from a byte array:

1. Use the length functionality of the array to determine the length of the data.
This returns an int, which is what you will need for the constructor of any of
the SQLJ stream classes.

2. Create a java.io.ByteArrayInputStream object from your array. You can
pass the byte array to the ByteArrayInputStream constructor.

3. Create a BinaryStream object. Pass the ByteArrayInputStream object and
data length (as an int) to the BinaryStream class constructor.

The constructor signature is as follows:

BinaryStream (InputStream in, int length)

You can use an instance of java.io.InputStream or of any subclass, such as
the ByteArrayInputStream class.

4. Use the SQLJ stream object as a host variable in an appropriate SQL operation
in a SQLJ executable statement.

The following is an example of writing LONG RAW data to the database from a byte
array. Presume you have a byte array bytearray[] and you want to insert its
contents into a LONG RAW column called BINDATA in a database table named
BINTABLE.

Imports:

import java.io.*;
import sqlj.runtime.*;

Executable code:

byte[] bytearray = new byte[100];
 Type Support 5-15

Support for Streams
(Populate bytearray somehow.)
...
int length = bytearray.length;
ByteArrayInputStream arraystream = new ByteArrayInputStream(bytearray);
BinaryStream binstream = new BinaryStream(arraystream, length);
#sql { INSERT INTO bintable (bindata) VALUES (:binstream) };
binstream.close();
...

Retrieving Data into Streams—Precautions
You can also use the SQLJ stream classes to retrieve data, but the logistics of using
streams make certain precautions necessary with some database products.

When reading long data and writing it to a stream using Oracle9i and an Oracle
JDBC driver, you must be careful in how you access and process the stream data.

As the Oracle JDBC drivers access data from an iterator row, they must flush any
stream item from the communications pipe before accessing the next data item.
Even though the stream data is written to a local stream as the iterator row is
processed, this stream data will be lost if you do not read it from the local stream
before the JDBC driver accesses the next data item. This is because of the way
streams must be processed, due to their potentially large size and unknown length.

Therefore, as soon as your Oracle JDBC driver has accessed a stream item and
written it to a local stream variable, you must read and process the local stream
before anything else is accessed from the iterator.

This is especially problematic in using positional iterators, with their requisite
FETCH INTO syntax. With each fetch, all columns are read before any are
processed. Therefore, there can be only one stream item, and it must be the last item
accessed.

To summarize the precautions you must take:

■ When using a positional iterator, you can have only one stream column, and it
must be the last column. As soon as you have fetched each row of the iterator,
writing the stream item to a local input stream variable in the process, you must
read and process the local stream variable before advancing to the next row of
the iterator.

Note: It is not necessary to use a stream as in this example—you
can also update the database directly from a byte array.
5-16 SQLJ Developer’s Guide and Reference

Support for Streams
■ When using a named iterator, you can have multiple stream columns; however,
as you process each iterator row, each time you access a stream field, writing the
data to a local stream variable in the process, you must read and process the
local stream immediately, before reading anything else from the iterator.

Furthermore, in processing each row of a named iterator, you must call the
column accessor methods in the same order in which the database columns
were selected in the query that populated the iterator. As mentioned in a similar
preceding discussion, this is because stream data remains in the
communications pipe after the query. If you try to access columns out of order,
then the stream data may be skipped over and lost in the course of accessing
other columns.

Using SQLJ Streams to Retrieve Data
To retrieve data as a stream, standard SQLJ allows you to select data into a named
or positional iterator that has a column of the appropriate SQLJ stream type.

This section covers the basic steps in retrieving data into a SQLJ stream using a
positional iterator or a named iterator, taking into account the precautions
documented in "Retrieving Data into Streams—Precautions" on page 5-16.

These are general steps. For more information, see "Processing SQLJ Streams" on
page 5-19 and "Examples of Retrieving and Processing Stream Data" on page 5-20.

Using a SQLJ Stream Column in a Positional Iterator
Use the following steps to retrieve data into a SQLJ stream using a positional
iterator:

1. Declare a positional iterator class with the last column being of the appropriate
SQLJ stream type.

2. Declare a local variable of your iterator type.

3. Declare a local variable of the appropriate SQLJ stream type. This will be used
as a host variable to receive data from each row of the SQLJ stream column of
the iterator.

4. Execute a query to populate the iterator you declared in step 2.

Note: Oracle9i and the Oracle JDBC drivers do not support use of
streams in SELECT INTO statements.
 Type Support 5-17

Support for Streams
5. Process the iterator as usual. (See "Using Positional Iterators" on page 3-47.)
Because the host variables in the INTO-list of the FETCH INTO statement must
be in the same order as the columns of the positional iterator, the local input
stream variable is the last host variable in the list.

6. In the iterator processing loop, after each iterator row is accessed, immediately
read and process the local input stream, storing or outputting the stream data as
desired.

7. Close the local input stream each time through the iterator processing loop (this
is not required, but is recommended).

8. Close the iterator.

Using SQLJ Stream Columns in a Named Iterator
Use the following steps to retrieve data into one or more SQLJ streams using a
named iterator:

1. Declare a named iterator class with one or more columns of appropriate SQLJ
stream type.

2. Declare a local variable of your iterator type.

3. Declare a local variable of some input stream type for each SQLJ stream column
in the iterator. These will be used to receive data from the stream-column
accessor methods. These local stream variables do not have to be SQLJ stream
types; they can be standard java.io.InputStream if desired. (They do not
have to be SQLJ stream types, because the data was already correctly formatted
as a result of the iterator columns being of appropriate SQLJ stream types.)

4. Execute a query to populate the iterator you declared in step 2.

5. Process the iterator as usual. (See "Using Named Iterators" on page 3-42.) In
processing each row of the iterator, as each stream-column accessor method
returns the stream data, write it to the corresponding local input stream
variable you declared in step 3.

To ensure that stream data will not be lost, call the column accessor methods in
the same order in which columns were selected in the query in step 4.

6. In the iterator processing loop, immediately after calling the accessor method
for any stream column and writing the data to a local input stream variable,
read and process the local input stream, storing or outputting the stream data as
desired.
5-18 SQLJ Developer’s Guide and Reference

Support for Streams
7. Close the local input stream each time through the iterator processing loop (this
is not required, but is recommended).

8. Close the iterator.

Processing SQLJ Streams
In processing a SQLJ stream column in a named or positional iterator, the local
stream variable used to receive the stream data can be either a SQLJ stream type or
the standard java.io.InputStream type. In either case, standard input stream
methods are supported.

If the local stream variable is a SQLJ stream type—BinaryStream, AsciiStream,
or UnicodeStream—you have the option of either reading data directly from the
SQLJ stream object, or retrieving the underlying java.io.InputStream object
and reading data from that. This is just a matter of preference—the former approach
is simpler; the latter approach involves more direct and efficient data access.

The following important methods of the InputStream class—the skip() method,
close() method, and three forms of the read() method—are supported by the
SQLJ stream classes as well.

■ int read ()—Reads the next byte of data from the input stream. The byte of
data is returned as an int value in the range 0 to 255. If the end of the stream
has already been reached, then the value -1 is returned. This method blocks
program execution until one of the following: 1) input data is available; 2) the
end of the stream is detected; or 3) an exception is thrown.

■ int read (byte b[])—Reads up to b.length bytes of data from the input
stream, writing the data into the specified b[] byte array. It returns an int
value indicating how many bytes were read or -1 if the end of the stream has
already been reached. This method blocks program execution until input is
available.

■ int read (byte b[], int off, int len)—Reads up to len (length)
bytes of data from the input stream, starting at the byte specified by the offset,

Note: When you populate a SQLJ stream object with data, the
length attribute of the stream will not be meaningful. This attribute
is meaningful only when you set it explicitly, either using the
setLength() method that each SQLJ stream class provides, or
specifying the length to the constructor (as discussed in "Using
SQLJ Streams to Send Data" on page 5-13).
 Type Support 5-19

Support for Streams
off, and writing the data into the specified b[] byte array. It returns an int
value indicating how many bytes were read or -1 if the end of the stream has
already been reached. This method blocks until input is available.

■ long skip (long n)—Skips over and discards n bytes of data from the
input stream. In some circumstances, however, this method will actually skip a
smaller number of bytes. It returns a long value indicating the actual number
of bytes skipped.

■ void close()—Closes the stream and releases any associated resources.

In addition, SQLJ stream classes support the following important method:

■ InputStream getInputStream()—Returns the underlying input stream
being wrapped, as a java.io.InputStream object.

Examples of Retrieving and Processing Stream Data
This section provides examples of various scenarios of retrieving stream data, as
follows:

■ using a SELECT statement to select data from a LONG column and populate a
SQLJ AsciiStream column in a named iterator

■ using a SELECT statement to select data from a LONG RAW column and
populate a SQLJ BinaryStream column in a positional iterator

Example: Selecting LONG Data into AsciiStream Column of Named Iterator This example
selects data from a LONG database column, populating a SQLJ AsciiStream
column in a named iterator.

Assume there is a table named FILETABLE with a VARCHAR2 column called
FILENAME that contains file names, and a LONG column called FILECONTENTS that
contains file contents in ASCII.

Imports and declarations:

import sqlj.runtime.*;
import java.io.*;
...
#sql iterator MyNamedIter (String filename, AsciiStream filecontents);

Executable code:

MyNamedIter namediter = null;
String fname;
AsciiStream ascstream;
5-20 SQLJ Developer’s Guide and Reference

Support for Streams
#sql namediter = { SELECT filename, filecontents FROM filetable };
while (namediter.next()) {
 fname = namediter.filename();
 ascstream = namediter.filecontents();
 System.out.println("Contents for file " + fname + ":");
 printStream(ascstream);
 ascstream.close();
}
namediter.close();
...
public void printStream(InputStream in) throws IOException
{
 int asciichar;
 while ((asciichar = in.read()) != -1) {
 System.out.print((char)asciichar);
 }
}

Remember that you can pass a SQLJ stream to any method that takes a standard
java.io.InputStream as an input parameter.

Example: Selecting LONG RAW Data into BinaryStream Column of Positional Iterator This
example selects data from a LONG RAW column, populating a SQLJ BinaryStream
column in a positional iterator.

As explained in "Retrieving Data into Streams—Precautions" on page 5-16, there can
be only one stream column in a positional iterator, and it must be the last column.

Assume there is a table named BINTABLE with a NUMBER column called
IDENTIFIER and a LONG RAW column called BINDATA that contains binary data
associated with the identifier.

Imports and declarations:

import sqlj.runtime.*;
...
#sql iterator MyPosIter (int, BinaryStream);

Executable code:

MyPosIter positer = null;
int id=0;
BinaryStream binstream=null;
#sql positer = { SELECT identifier, bindata FROM bintable };
while (true) {
 #sql { FETCH :positer INTO :id, :binstream };
 Type Support 5-21

Support for Streams
 if (positer.endFetch()) break;

 (...process data as desired...)

 binstream.close();
}
positer.close();
...

SQLJ Stream Objects as Output Parameters and Function Return Values
As described in the preceding sections, standard SQLJ supports use of the
BinaryStream, AsciiStream, and UnicodeStream classes in the package
sqlj.runtime for retrieval of stream data into iterator columns.

In addition, the Oracle SQLJ implementation allows the following uses of SQLJ
stream types if you use Oracle9i, an Oracle JDBC driver, the Oracle customizer, and
the Oracle SQLJ runtime:

■ They can appear as OUT or INOUT host variables from a stored procedure or
function call.

■ They can appear as the return value from a stored function call.

Streams as Stored Procedure Output Parameters
You can use the types AsciiStream, BinaryStream, and UnicodeStream as the
assignment type for a stored procedure or stored function OUT or INOUT parameter.

Assume the following table definition:

CREATE TABLE streamexample (name VARCHAR2 (256), data LONG);
INSERT INTO streamexample (data, name)
 VALUES
 (’0000000000111111111112222222222333333333344444444445555555555’,
 ’StreamExample’);

Also presume the following stored procedure definition, which uses the
STREAMEXAMPLE table:

CREATE OR REPLACE PROCEDURE out_longdata
 (dataname VARCHAR2, longdata OUT LONG) IS
BEGIN
 SELECT data INTO longdata FROM streamexample WHERE name = dataname;
END out_longdata;
5-22 SQLJ Developer’s Guide and Reference

Support for Streams
The following code calls the out_longdata stored procedure to read long data.

Imports:

import sqlj.runtime.*;

Executable code:

AsciiStream data;
#sql { CALL out_longdata(’StreamExample’, :OUT data) };
int c;
while ((c = data.read ()) != -1)
 System.out.print((char)c);
System.out.flush();
data.close();
...

Streams as Stored Function Results
You can use the types AsciiStream, BinaryStream and UnicodeStream as the
assignment type for a stored function return result.

Assume the same STREAMEXAMPLE table definition as in the preceding stored
procedure example.

Also assume the following stored function definition, which uses the
STREAMEXAMPLE table:

CREATE OR REPLACE FUNCTION get_longdata (dataname VARCHAR2) RETURN long
 IS longdata LONG;
BEGIN
 SELECT data INTO longdata FROM streamexample WHERE name = dataname;
 RETURN longdata;
END get_longdata;

The following sample code uses a call to the get_longdata stored function to read
the long data.

Imports:

import sqlj.runtime.*;

Executable code:

AsciiStream data;

Note: Closing the stream is recommended, but not required.
 Type Support 5-23

Support for Streams
#sql data = { VALUES(get_longdata(’StreamExample’)) };
int c;
while ((c = data.read ()) != -1)
 System.out.print((char)c);
System.out.flush();
data.close();
...

Stream Class Methods
The SQLJ stream classes in the sqlj.runtime package—BinaryStream,
AsciiStream, and UnicodeStream—are all subclasses of the
sqlj.runtime.StreamWrapper class.

The StreamWrapper class provides the following methods inherited by the SQLJ
stream classes:

■ InputStream getInputStream()—As discussed in "Processing SQLJ
Streams" on page 5-19, you can optionally use this method to get the underlying
java.io.InputStream object of any SQLJ stream object. This is not required,
however, as you can also process SQLJ stream objects directly.

■ void setLength(int length)—You can use this to set the length
attribute of a SQLJ stream object. This is not necessary if you have already set
length in constructing the stream object, unless you want to change it for
some reason.

Bear in mind that the length attribute must be set to an appropriate value
before you send a SQLJ stream to the database.

■ int getLength()—This method returns the value of the length attribute of
a SQLJ stream. This value is meaningful only if you explicitly set it using the
stream object constructor or the setLength() method. When you retrieve data
into a stream, the length attribute is not set automatically.

Note: Closing the stream is recommended, but not required.

Note: The sqlj.runtime.StreamWrapper class is a subclass of
the java.io.FilterInputStream class, which is a subclass of
the java.io.InputStream class.
5-24 SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
Support for JDBC 2.0 LOB Types and Oracle Type Extensions
Oracle SQLJ offers extended functionality for the following JDBC 2.0 and
Oracle-specific datatypes:

■ JDBC 2.0 LOB datatypes (BLOB and CLOB)

■ Oracle BFILE datatype

■ Oracle ROWID datatype

■ Oracle REF CURSOR datatypes

■ other Oracle9i datatypes (such as NUMBER and RAW)

These datatypes are supported by classes in the oracle.sql package, discussed
below. LOBs and BFILEs are handled similarly in many ways, so are discussed
together.

Additionally, Oracle SQLJ offers extended support for the following standard JDBC
type:

■ BigDecimal

JDBC 2.0 functionality for user-defined SQL objects (both weakly and strongly
typed), object references, and collections (variable arrays and nested tables) are also
supported. These are discussed in Chapter 6, "Objects and Collections".

Note that using Oracle extensions in your code requires the following:

■ Use one of the Oracle JDBC drivers.

■ Customize the profiles appropriately (the default customizer,
oracle.sqlj.runtime.util.OraCustomizer, is recommended).

or:

Use Oracle-specific code generation (translating with -codegen=oracle).

■ Use the Oracle SQLJ runtime when your application runs.

The Oracle SQLJ runtime and an Oracle JDBC driver are required whenever you use
the Oracle customizer, even if you do not actually use Oracle extensions in your
code.

For Oracle-specific semantics-checking, you must use an appropriate checker. The
default checker, oracle.sqlj.checker.OracleChecker, acts as a front end
and will run the appropriate checker based on your environment. This will be one
of the Oracle-specific checkers if you are using an Oracle JDBC driver.
 Type Support 5-25

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
Oracle-specific types are defined in the oracle.sql package, discussed in
"Package oracle.sql" below.

Package oracle.sql
SQLJ users, as well as JDBC users, should be aware of the oracle.sql package,
which includes classes to support all the Oracle9i datatypes (for example,
oracle.sql.ROWID, oracle.sql.CLOB, and oracle.sql.NUMBER). The
oracle.sql classes are wrappers for the raw SQL data and provide appropriate
mappings and conversion methods to Java formats. An oracle.sql.* object
contains a binary representation of the corresponding SQL data in the form of a byte
array.

Each oracle.sql.* datatype class is a subclass of the oracle.sql.Datum class.

For Oracle-specific semantics-checking, you must use an appropriate checker. The
default checker, oracle.sqlj.checker.OracleChecker, acts as a front end
and will run the appropriate checker based on your environment. This will be one
of the Oracle-specific checkers if you are using an Oracle JDBC driver.

For information about translator options relating to semantics-checking, see
"Connection Options" on page 8-31 and "Semantics-Checking Options" on
page 8-66.

For more information about the oracle.sql classes, see the Oracle9i JDBC
Developer’s Guide and Reference.

Support for BLOB, CLOB, and BFILE
Oracle JDBC and SQLJ support JDBC 2.0 large object (LOB) datatypes—BLOB
(binary LOB) and CLOB (character LOB)—and provide similar support for the
Oracle-specific BFILE type (read-only binary files stored outside the database).
These datatypes are supported by the following classes:

■ oracle.sql.BLOB

■ oracle.sql.CLOB

■ oracle.sql.BFILE

See the Oracle9i JDBC Developer’s Guide and Reference for more information about
LOBs and files and use of supported stream APIs.
5-26 SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
The oracle.sql.BLOB, oracle.sql.CLOB, and oracle.sql.BFILE classes
can be used in Oracle-specific SQLJ applications in the following ways:

■ as IN, OUT, or INOUT host variables in executable SQLJ statements (including
use in INTO-lists)

■ as return values from stored function calls

■ as column types in iterator declarations (both named and positional)

You can manipulate LOBs by using methods defined in the BLOB and CLOB classes
(recommended) or by using the procedures and functions defined in the PL/SQL
package DBMS_LOB. All procedures and functions defined in this package can be
called by SQLJ programs.

You can manipulate BFILEs by using methods defined in the BFILE class
(recommended) or by using the file-handling routines of the DBMS_LOB package.

Using methods of the BLOB, CLOB, and BFILE classes in a Java application is more
convenient than using the DBMS_LOB package and may also lead to faster execution
in some cases.

Note that the type of the chunk being read or written depends on the kind of LOB
being manipulated. For example, CLOBs contain character data; therefore, Java
strings are used to hold chunks of data. BLOBs contain binary data; therefore, Java
byte arrays are used to hold chunks of data.

BFILE Class versus DBMS_LOB Functionality for BFILEs
The following examples contrast use of the oracle.sql methods with use of the
DBMS_LOB package for BFILEs.

Example: Use of oracle.sql.BFILE File-Handling Methods with BFILE This example
manipulates a BFILE using file-handling methods of the oracle.sql.BFILE class.

BFILE openFile (BFILE file) throws SQLException
{
 String dirAlias, name;
 dirAlias = file.getDirAlias();
 name = file.getName();
 System.out.println("name: " + dirAlias + "/" + name);

Note: DBMS_LOB is an Oracle9i package, requiring a round trip to
the server. Methods in the BLOB, CLOB, and BFILE classes may also
result in a round trip to the server.
 Type Support 5-27

Support for JDBC 2.0 LOB Types and Oracle Type Extensions

 if (!file.isFileOpen())
 {
 file.openFile();
 }
 return file;
}

The BFILE getDirAlias() and getName() methods construct the full path and
file name. The openFile() method opens the file. You cannot manipulate BFILEs
until they have been opened.

Example: Use of DBMS_LOB File-Handling Routines with BFILE This example manipulates
a BFILE using file-handling routines of the DBMS_LOB package.

BFILE openFile(BFILE file) throws SQLException
{
 String dirAlias, name;
 #sql { CALL dbms_lob.filegetname(:file, :out dirAlias, :out name) };
 System.out.println("name: " + dirAlias + "/" + name);

 boolean isOpen;
 #sql isOpen = { VALUES(dbms_lob.fileisopen(:file)) };
 if (!isOpen)
 {
 #sql { CALL dbms_lob.fileopen(:inout file) };
 }
 return file;
}

The openFile() method prints the name of a file object then returns an opened
version of the file. Note that BFILEs can be manipulated only after being opened
with a call to DBMS_LOB.FILEOPEN or equivalent method in the BFILE class.

BLOB and CLOB Classes versus DBMS_LOB Functionality for LOBs
The following examples contrast use of the oracle.sql methods with use of the
DBMS_LOB package for BLOBs and CLOBs. For each example using oracle.sql
methods, the example that follows it is functionally identical but uses DBMS_LOB
instead.

Example: Use of oracle.sql.CLOB Read Methods with CLOB This example reads data from
a CLOB using methods of the oracle.sql.CLOB class.

void readFromClob(CLOB clob) throws SQLException
5-28 SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
{
 long clobLen, readLen;
 String chunk;

 clobLen = clob.length();

 for (long i = 0; i < clobLen; i+= readLen) {
 chunk = clob.getSubString(i, 10);
 readLen = chunk.length();
 System.out.println("read " + readLen + " chars: " + chunk);
 }
}

This method contains a loop that reads from the CLOB and returns a 10-character
Java string each time. The loop continues until the entire CLOB has been read.

Example: Use of DBMS_LOB Read Routines with CLOB This example uses routines of the
DBMS_LOB package to read from a CLOB.

void readFromClob(CLOB clob) throws SQLException
{
 long clobLen, readLen;
 String chunk;

 #sql clobLen = { VALUES(dbms_lob.getlength(:clob)) };

 for (long i = 1; i <= clobLen; i += readLen) {
 readLen = 10;
 #sql { CALL dbms_lob.read(:clob, :inout readLen, :i, :out chunk) };
 System.out.println("read " + readLen + " chars: " + chunk);
 }
}

This method reads the contents of a CLOB in chunks of 10 characters at a time. Note
that the chunk host variable is of the type String.

Example: Use of oracle.sql.BLOB Write Routines with BLOB This example writes data to a
BLOB using methods of the oracle.sql.BLOB class. Input a BLOB and specified
length.

void writeToBlob(BLOB blob, long blobLen) throws SQLException
{
 byte[] chunk = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 long chunkLen = (long)chunk.length;

 Type Support 5-29

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
 for (long i = 0; i < blobLen; i+= chunkLen) {
 if (blobLen < chunkLen) chunkLen = blobLen;
 chunk[0] = (byte)(i+1);
 chunkLen = blob.putBytes(i, chunk);
 }
}

This method goes through a loop that writes to the BLOB in 10-byte chunks until
the specified BLOB length has been reached.

Example: Use of DBMS_LOB Write Routines with BLOB This example uses routines of the
DBMS_LOB package to write to a BLOB.

void writeToBlob(BLOB blob, long blobLen) throws SQLException
{
 byte[] chunk = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 long chunkLen = (long)chunk.length;

 for (long i = 1; i <= blobLen; i += chunkLen) {
 if ((blobLen - i + 1) < chunkLen) chunkLen = blobLen - i + 1;
 chunk[0] = (byte)i;
 #sql { CALL dbms_lob.write(:INOUT blob, :chunkLen, :i, :chunk) };
 }
}

This method fills the contents of a BLOB in 10-byte chunks. Note that the chunk
host variable is of the type byte[].

LOB and BFILE Stored Function Results
Host variables of type BLOB, CLOB, and BFILE can be assigned to the result of a
stored function call. The following example is for a CLOB, but code for BLOBs and
BFILEs would be functionally the same.

First, presume the following function definition:

CREATE OR REPLACE function longer_clob (c1 clob, c2 clob) return clob is
 result clob;
BEGIN
 if dbms_lob.getLength(c2) > dbms_lob.getLength(c1) then
 result := c2;
 else
 result := c1;
 end if;
 RETURN result;
END longer_clob;
5-30 SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
The following example uses a CLOB as the assignment type for a return value from
the function defined above.

void readFromLongest(CLOB c1, CLOB c2) throws SQLException
{
 CLOB longest;
 #sql longest = { VALUES(longer_clob(:c1, :c2)) };
 readFromClob(longest);
}

The readFromLongest() method prints the contents of the longer passed CLOB,
using the readFromClob() method defined previously.

LOB and BFILE Host Variables and SELECT INTO Targets
Host variables of type BLOB, CLOB, and BFILE can appear in the INTO-list of a
SELECT INTO executable statement. The following example is for a BLOB and
CLOB, but code for BFILEs would be functionally the same.

Assume the following table definition:

CREATE TABLE basic_lob_table(x varchar2(30), b blob, c clob);
INSERT INTO basic_lob_table
 VALUES(’one’, ’010101010101010101010101010101’, ’onetwothreefour’);
INSERT INTO basic_lob_table
 VALUES(’two’, ’020202020202020202020202020202’, ’twothreefourfivesix’);

The following example uses a BLOB and a CLOB as host variables that receive data
from the table defined above, using a SELECT INTO statement.

...
BLOB blob;
CLOB clob;
#sql { SELECT one.b, two.c INTO :blob, :clob
 FROM basic_lob_table one, basic_lob_table two
 WHERE one.x=’one’ AND two.x=’two’ };
#sql { INSERT INTO basic_lob_table VALUES(’three’, :blob, :clob) };
...

This example selects the BLOB from the first row and the CLOB from the second
row of the BASIC_LOB_TABLE. It then inserts a third row into the table using the
BLOB and CLOB selected in the previous operation.
 Type Support 5-31

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
LOBs and BFILEs in Iterator Declarations
The types BLOB, CLOB, and BFILE can be used as column types for SQLJ positional
and named iterators. Such iterators can be populated as a result of compatible
executable SQLJ operations.

Here are sample declarations that will be repeated and used below.

#sql iterator NamedLOBIter(CLOB c);
#sql iterator PositionedLOBIter(BLOB);
#sql iterator NamedFILEIter(BFILE bf);

LOB and BFILE Host Variables and Named Iterator Results
The following example employs the table BASIC_LOB_TABLE and the method
readFromLongest() defined in previous examples, and uses a CLOB in a named
iterator. Similar code could be written for BLOBs and BFILEs.

Declaration:

#sql iterator NamedLOBIter(CLOB c);

Executable code:

...
NamedLOBIter iter;
#sql iter = { SELECT c FROM basic_lob_table };
if (iter.next())
 CLOB c1 = iter.c();
if (iter.next())
 CLOB c2 = iter.c();
iter.close();
readFromLongest(c1, c2);
...

This example uses an iterator to select two CLOBs from the first two rows of the
BASIC_LOB_TABLE, then prints the larger of the two using the
readFromLongest() method.

LOB and BFILE Host Variables and Positional Iterator FETCH INTO Targets
Host variables of type BLOB, CLOB, and BFILE can be used with positional iterators
and appear in the INTO-list of the associated FETCH INTO statement if the
corresponding column attribute in the iterator is of the identical type.
5-32 SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
The following example employs table BASIC_LOB_TABLE and method
writeToBlob() defined in previous examples. Similar code could be written for
CLOBs and BFILEs.

Declaration:

#sql iterator PositionedLOBIter(BLOB);

Executable code:

...
PositionedLOBIter iter;
BLOB blob = null;
#sql iter = { SELECT b FROM basic_lob_table };
for (long rowNum = 1; ; rowNum++)
{
 #sql { FETCH :iter INTO :blob };
 if (iter.endFetch()) break;
 writeToBlob(blob, 512*rowNum);
}
iter.close();
...

This example calls writeToBlob() for each BLOB in BASIC_LOB_TABLE. Each
row writes an additional 512 bytes of data.

Support for Oracle ROWID
The Oracle-specific type ROWID stores the unique address for each row in a
database table. The class oracle.sql.ROWID wraps ROWID information and is
used to bind and define variables of type ROWID.

Variables of type oracle.sql.ROWID can be employed in SQLJ applications
connecting to Oracle9i in the following ways:

■ as IN, OUT or INOUT host variables in SQLJ executable statements (including
use in INTO-lists)

■ as a return value from a stored function call

■ as column types in iterator declarations (both named and positional)
 Type Support 5-33

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
ROWIDs in Iterator Declarations
You can use the type oracle.sql.ROWID as a column type for SQLJ positional
and named iterators, as shown in the following declarations:

#sql iterator NamedRowidIter (String ename, ROWID rowid);

#sql iterator PositionedRowidIter (String, ROWID);

ROWID Host Variables and Named-Iterator SELECT Results
You can employ ROWID objects as IN, OUT and INOUT parameters in SQLJ
executable statements. In addition, you can populate iterators whose columns
include ROWID types. This code example uses the preceding example declarations.

Declaration:

#sql iterator NamedRowidIter (String ename, ROWID rowid);

Executable code:

...
NamedRowidIter iter;
ROWID rowid;
#sql iter = { SELECT ename, rowid FROM emp };
while (iter.next())
{
 if (iter.ename().equals("CHUCK TURNER"))
 {
 rowid = iter.rowid();
 #sql { UPDATE emp SET sal = sal + 500 WHERE rowid = :rowid };
 }
}
iter.close();
...

The preceding example increases the salary of the employee named Chuck Turner
by $500 according to the ROWID. Note that this is the recommended way to encode
WHERE CURRENT OF semantics.

Note: Oracle does not currently support positioned UPDATE or
positioned DELETE by way of a WHERE CURRENT OF clause, as
specified by the SQLJ specification. Instead, Oracle recommends the
use of ROWIDs to simulate this functionality.
5-34 SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
ROWID Stored Function Results
Presume the following function exists in Oracle9i.

CREATE OR REPLACE function get_rowid (name varchar2) return rowid is
 rid rowid;
BEGIN
 SELECT rowid INTO rid FROM emp WHERE ename = name;
 RETURN rid;
END get_rowid;

Given the preceding stored function, the following example indicates how a ROWID
object is used as the assignment type for the function return result.

ROWID rowid;
#sql rowid = { values(get_rowid(’AMY FEINER’)) };
#sql { UPDATE emp SET sal = sal + 500 WHERE rowid = :rowid };

This example increases the salary of the employee named Amy Feiner by $500
according to the ROWID.

ROWID SELECT INTO Targets
Host variables of type ROWID can appear in the INTO-list of a SELECT INTO
statement.

ROWID rowid;
#sql { SELECT rowid INTO :rowid FROM emp WHERE ename=’CHUCK TURNER’ };
#sql { UPDATE emp SET sal = sal + 500 WHERE rowid = :rowid };

This example increases the salary of the employee named Chuck Turner by $500
according to the ROWID.

ROWID Host Variables and Positional Iterator FETCH INTO Targets
Host variables of type ROWID can appear in the INTO-list of a FETCH INTO
statement if the corresponding column attribute in the iterator is of the identical
type.

Declaration:

#sql iterator PositionedRowidIter (String, ROWID);

Executable code:

...
PositionedRowidIter iter;
 Type Support 5-35

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
ROWID rowid = null;
String ename = null;
#sql iter = { SELECT ename, rowid FROM emp };
while (true)
{
 #sql { FETCH :iter INTO :ename, :rowid };
 if (iter.endFetch()) break;
 if (ename.equals("CHUCK TURNER"))
 {
 #sql { UPDATE emp SET sal = sal + 500 WHERE rowid = :rowid };
 }
}
iter.close();
...

This example is similar to the previous named iterator example, but uses a
positional iterator with its customary FETCH INTO syntax.

Support for Oracle REF CURSOR Types
Oracle PL/SQL and Oracle SQLJ support the use of cursor variables that represent
database cursors.

Overview of REF CURSOR Types
Cursor variables are functionally equivalent to JDBC result sets, essentially
encapsulating the results of a query. A cursor variable is often referred to as a REF
CURSOR, but REF CURSOR itself is a type specifier, not a type name. Instead,
named REF CURSOR types must be specified. The following example shows a REF
CURSOR type specification:

TYPE EmpCurType IS REF CURSOR;

Stored procedures and stored functions can return parameters of Oracle REF
CURSOR types. You must use PL/SQL to return a REF CURSOR parameter; you
cannot accomplish this using SQL alone. A PL/SQL stored procedure or function
can declare a variable of some named REF CURSOR type, execute a SELECT
statement, and return the results in the REF CURSOR variable.

For information about cursor variables, see the PL/SQL User’s Guide and Reference.

REF CURSOR Types in SQLJ
In Oracle SQLJ, a REF CURSOR type can be mapped to iterator columns or host
variables of any iterator class type or of type java.sql.ResultSet, but host
5-36 SQLJ Developer’s Guide and Reference

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
variables can be OUT only. Support for REF CURSOR types can be summarized as
follows:

■ as result expressions for stored function returns

■ as output host expressions for stored procedure or function output parameters

■ as output host expressions in INTO-lists

■ as iterator columns

You can use the Oracle SQL CURSOR operator for a nested SELECT within an outer
SELECT statement. This is how you can write a REF CURSOR object to an iterator
column or ResultSet column in an iterator, or write a REF CURSOR object to an
iterator host variable or ResultSet host variable in an INTO-list.

"Using Iterators and Result Sets as Host Variables" on page 3-51 has examples
showing the use of implicit REF CURSOR variables, including an example of the
CURSOR operator.

REF CURSOR Example
The following sample method shows a REF CURSOR type being retrieved from an
anonymous block. This is part of a full sample application that is in "REF
CURSOR—RefCursDemo.sqlj" on page 12-54.

private static EmpIter refCursInAnonBlock(String name, int no)
 throws java.sql.SQLException {
 EmpIter emps = null;
 System.out.println("Using anonymous block for ref cursor..");
 #sql { begin
 INSERT INTO emp (ename, empno) VALUES (:name, :no);
 OPEN :out emps FOR SELECT ename, empno FROM emp ORDER BY empno;
 end
 };
 return emps;
}

Notes:

■ Use typecode OracleTypes.CURSOR for REF CURSOR types.

■ There is no oracle.sql class for REF CURSOR types. Use
either java.sql.ResultSet or an iterator class. (Close the
result set or iterator to release resources when you are done
processing it.)
 Type Support 5-37

Support for JDBC 2.0 LOB Types and Oracle Type Extensions
Support for Other Oracle9i Datatypes
All oracle.sql classes can be used for iterator columns or for input, output, or
input-output host variables in the same way that any standard Java type can be
used. This includes the classes mentioned in the preceding sections and others, such
as the oracle.sql.NUMBER, oracle.sql.CHAR, and oracle.sql.RAW classes.

Because the oracle.sql.* classes do not require conversion to Java type format,
they offer greater efficiency and precision than equivalent Java types. You would
need to convert the data to standard Java types, however, to use it with standard
Java programs or to display it to end users.

Extended Support for BigDecimal
SQLJ supports java.math.BigDecimal in the following situations:

■ as host variables in SQLJ executable statements

■ as return values from stored function calls

■ as iterator column types

Standard SQLJ has the limitation that a value can be retrieved as BigDecimal only
if that is the JDBC default mapping, which is the case only for numeric and decimal
data. (See Table 5–1 on page 5-3 for more information about JDBC default
mappings.)

In Oracle SQLJ, however, you can map to non-default types as long as the datatype
is convertible from numeric and you use Oracle9i, an Oracle JDBC driver, the Oracle
customizer (or Oracle-specific code generation), and the Oracle SQLJ runtime. The
datatypes CHAR, VARCHAR2, LONG, and NUMBER are convertible. For example, you
can retrieve data from a CHAR column into a BigDecimal variable. To avoid errors,
however, you must be careful that the character data consists only of numbers.

Note: The BigDecimal class is in the standard java.math
package.
5-38 SQLJ Developer’s Guide and Reference

 Objects and Colle
6

Objects and Collections

This chapter discusses how Oracle SQLJ supports user-defined SQL types—namely
objects (and related object references) and collections (variable arrays and nested
tables). This includes discussion of the Oracle JPublisher utility, which you can use
to generate Java classes corresponding to user-defined SQL types.

The following topics are discussed:

■ Oracle Objects and Collections

■ Custom Java Classes

■ User-Defined Types

■ JPublisher and the Creation of Custom Java Classes

■ Strongly Typed Objects and References in SQLJ Executable Statements

■ Strongly Typed Collections in SQLJ Executable Statements

■ Serialized Java Objects

■ Weakly Typed Objects, References, and Collections
ctions 6-1

Oracle Objects and Collections
Oracle Objects and Collections
This section provides some background conceptual information about Oracle9i
objects and collections.

For additional conceptual and reference information about Oracle objects,
references, and collections, refer to the Oracle9i SQL Reference and the Oracle9i
Application Developer’s Guide - Fundamentals.

For information about how to declare objects and collections, see "User-Defined
Types" on page 6-20.

Introduction to Objects and Collections
Oracle9i and Oracle SQLJ support user-defined SQL object types (composite data
structures), related SQL object reference types, and user-defined SQL collection types.
Oracle objects and collections are composite data structures consisting of individual
data elements.

Oracle SQLJ supports either strongly typed or weakly typed Java representations of
object types, reference types, and collection types to use in iterators or host
expressions. Strongly typed representations use a custom Java class that maps to a
particular object type, reference type, or collection type and must implement either
the JDBC 2.0 standard java.sql.SQLData interface (for object types only) or the
Oracle oracle.sql.ORAData interface. Either paradigm is supported by the
Oracle JPublisher utility, which you can use to automatically generate custom Java
classes. Weakly typed representations use the class oracle.sql.STRUCT (for
objects), oracle.sql.REF (for object references), or oracle.sql.ARRAY (for
collections). Or, alternatively, you can use standard java.sql.Struct, Ref, or
Array objects in a weakly typed scenario.

The term "strongly typed" is used where a particular Java type is associated with a
particular SQL named (user-defined) type. For example, if there is a PERSON type
with a corresponding Person Java class.

The term "weakly typed" is used where a Java type is used in a generic way and can
map to multiple SQL named types. The Java class (or interface) has no special
information particular to any SQL type. This is the case for the
oracle.sql.STRUCT, REF, and ARRAY types and the java.sql.Struct, Ref,
and Array types.
6-2 SQLJ Developer’s Guide and Reference

Oracle Objects and Collections
Note that using Oracle extensions in your code requires the following:

■ Use one of the Oracle JDBC drivers.

■ Customize the profiles appropriately, unless you use Oracle-specific code
generation

The default customizer, oracle.sqlj.runtime.util.OraCustomizer, is
recommended.

For Oracle-specific generated code, produced through the -codegen=oracle
translator setting, no profiles are produced so customization is not applicable.
Oracle JDBC APIs are called directly through the generated Java code.

■ Use the Oracle SQLJ runtime when your application runs.

The Oracle SQLJ runtime and an Oracle JDBC driver are required whenever
you use the Oracle customizer, even if you do not actually use Oracle extensions
in your code.

For Oracle-specific semantics-checking, you must use an appropriate checker. The
default checker, oracle.sqlj.checker.OracleChecker, acts as a front end
and will run the appropriate checker based on your environment. This will be one
of the Oracle-specific checkers if you are using an Oracle JDBC driver.

Oracle-specific types for Oracle objects and collections are included in the
oracle.sql package.

For information about translator options relating to semantics-checking, see
"Connection Options" on page 8-31 and "Semantics-Checking Options" on
page 8-66.

Custom Java Class Usage Notes

■ This chapter primarily discusses the use of custom Java classes with
user-defined types; however, classes implementing ORAData can be used for
other Oracle SQL types as well. A class implementing ORAData can be
employed to perform any kind of desired processing or conversion in the
course of transferring data between SQL and Java. See "Additional Uses for
ORAData Implementations" on page 6-18.

■ The SQLData interface is intended only for custom object classes. The ORAData
interface can be used for any custom Java class.
 Objects and Collections 6-3

Oracle Objects and Collections
Terminology Notes

■ User-defined SQL object types and user-defined SQL collection types are
referred to as user-defined types (UDTs).

■ Custom Java classes for objects, references, and collections are referred to as
custom object classes, custom reference classes, and custom collection classes,
respectively.

For general information about Oracle object features and functionality, see the
Oracle9i Application Developer’s Guide - Object-Relational Features.

Oracle Object Fundamentals
Oracle objects (SQL objects) are composite data structures that group related data
items, such as facts about each employee, into a single data unit. An object type is
functionally similar to a Java class—you can populate and use any number of
individual objects of a given object type, just as you can instantiate and use
individual objects of a Java type.

For example, you can define an object type EMPLOYEE that has the attributes name
(type CHAR), address (type CHAR), phonenumber (type CHAR), and
employeenumber (type NUMBER).

Oracle objects can also have methods—stored procedures associated with the object
type. These methods can be either static methods or instance methods and can be
implemented either in PL/SQL or in Java. Their signatures can include any number
of input, output, or input-output parameters. All this depends on how they are
initially defined.

Oracle Collection Fundamentals
There are two categories of Oracle collections (SQL collections):

■ variable-length arrays (VARRAY types)

■ nested tables (TABLE types)

Both categories are one-dimensional, although the elements can be complex object
types. VARRAY types are used for one-dimensional arrays; nested table types are
used for single-column tables within an outer table. A variable of any VARRAY type
can be referred to as a VARRAY; a variable of any nested table type can be referred
to as a nested table.

A VARRAY, as with any array, is an ordered set of data elements, with each element
having an index and all elements being of the same datatype. The size of a VARRAY
6-4 SQLJ Developer’s Guide and Reference

Oracle Objects and Collections
refers to the maximum number of elements. Oracle VARRAYs are of variable size
(thus the name), but the maximum size of any particular VARRAY type must be
specified when the VARRAY type is declared.

A nested table is an unordered set of elements. Nested table elements within a table
can themselves be queried in SQL. A nested table, as with any table, is not created
with any particular number of rows—this is determined dynamically.

Object and Collection Datatypes
User-specified object and collection definitions in Oracle9i function as SQL datatype
definitions. You can then use these datatypes, as with any other datatype, in
defining table columns, SQL object attributes, and stored procedure or function
parameters. In addition, once you have defined an object type, the related object
reference type can be used as any other SQL reference type.

Once you have defined EMPLOYEE as an Oracle object, as described in "Oracle
Object Fundamentals" on page 6-4, it becomes an Oracle datatype, and you can
have a table column of type EMPLOYEE just as you can have a table column of type
NUMBER. Each row in an EMPLOYEE column contains a complete EMPLOYEE object.
You can also have a column type of REF EMPLOYEE, consisting of references to
EMPLOYEE objects.

Similarly, you can define a variable-length array MYVARR as VARRAY(10) of
NUMBER and a nested table NTBL of CHAR(20). The MYVARR and NTBL collection
types become Oracle datatypes, and you can have table columns of either type.
Each row of a MYVARR column consists of an array of up to ten numbers; each row
of an NTBL column consists of 20 characters.

Notes: The elements in a VARRAY or the rows in a nested table
can be of a user-defined object type, and VARRAY and nested table
types can be used for attributes in a user-defined object type.
Oracle9i supports nesting of collection types. The elements of a
VARRAY or rows of a nested table can be of another VARRAY or
nested table type, or these elements can be of a user-defined object
type that has VARRAY or nested table attributes.
 Objects and Collections 6-5

Custom Java Classes
Custom Java Classes
The purpose of custom Java classes is to provide a way to convert data between
SQL and Java and make the data accessible, particularly in supporting objects and
collections or if you want to perform custom data conversions.

It is generally advisable to provide custom Java classes for all user-defined types
(objects and collections) that you use in a SQLJ application. The Oracle JDBC driver
will use instances of these classes in converting data, which is more convenient and
less error-prone than using the weakly typed oracle.sql.STRUCT, REF, and
ARRAY classes.

Custom Java classes are first-class types that you can use to read from and write to
user-defined SQL types transparently.

To be used in SQLJ iterators or host expressions, a custom Java class must
implement either the oracle.sql.ORAData (and ORADataFactory) interface or
the standard java.sql.SQLData interface. This section provides an overview of
these interfaces and custom Java class functionality, covering the following topics:

■ Custom Java Class Interface Specifications

■ Custom Java Class Support for Object Methods

■ Custom Java Class Requirements

■ Compiling Custom Java Classes

■ Reading and Writing Custom Data

■ Additional Uses for ORAData Implementations

Custom Java Class Interface Specifications
This section discusses specifications of the ORAData and ORADataFactory
interfaces and the standard SQLData interface.

Oracle9i includes a set of new APIs for Oracle-specific custom Java class
functionality for user-defined types—oracle.sql.ORAData and
oracle.sql.ORADataFactory.

The oracle.sql.CustomDatum and oracle.sql.CustomDatumFactory
interfaces used previously for this functionality are deprecated in Oracle9i, but still
supported for backward compatibility. You must use the CustomDatum interfaces if
you are working with an Oracle8i JDBC driver.
6-6 SQLJ Developer’s Guide and Reference

Custom Java Classes
ORAData and ORADataFactory Specifications
Oracle provides the interface oracle.sql.ORAData and the related interface
oracle.sql.ORADataFactory to use in mapping and converting Oracle object
types, reference types, and collection types to custom Java classes.

Data is sent or retrieved in the form of an oracle.sql.Datum object, with the
underlying data being in the format of the appropriate oracle.sql.Datum
subclass—oracle.sql.STRUCT, for example. This data is still in its SQL format;
the oracle.sql.Datum object is just a wrapper. (For information about classes in
the oracle.sql package that support Oracle type extensions, see the Oracle9i
JDBC Developer’s Guide and Reference.)

The ORAData interface specifies a toDatum() method for data conversion from
Java format to SQL format. This method takes as input your connection object and
converts data to the appropriate oracle.sql.* representation. The connection
object is necessary so that the JDBC driver can perform appropriate type checking
and type conversions at runtime. Here is the ORAData and toDatum()
specification:

interface oracle.sql.ORAData
{
 oracle.sql.Datum toDatum(java.sql.Connection c) throws SQLException;
}

The ORADataFactory interface specifies a create() method that constructs
instances of your custom Java class, converting from SQL format to Java format.
This method takes as input a Datum object containing the data, and a typecode,
such as OracleTypes.RAW, indicating the SQL type of the underlying data. It
returns an object of your custom Java class, which implements the ORAData
interface. This object receives its data from the Datum object that was input. Here is
the ORADataFactory and create() specification:

interface oracle.sql.ORADataFactory
{
 oracle.sql.ORAData create(oracle.sql.Datum d, int sqlType)
 throws SQLException;
}

To complete the relationship between the ORAData and ORADataFactory
interfaces, you must implement a static getORADataFactory() method in any
custom Java class that implements the ORAData interface. This method returns an
object that implements the ORADataFactory interface and that, therefore, can be
used to create instances of your custom Java class. This returned object can itself be
an instance of your custom Java class, and its create() method is used by the
 Objects and Collections 6-7

Custom Java Classes
Oracle JDBC driver to produce further instances of your custom Java class, as
necessary.

For information about Oracle SQLJ requirements of a class that implements
ORAData, see "Oracle Requirements for Classes Implementing ORAData" on
page 6-11.

For more information about the ORAData and ORADataFactory interfaces, the
oracle.sql classes, and the OracleTypes class, see the Oracle9i JDBC Developer’s
Guide and Reference.

If you use JPublisher, specifying -usertypes=oracle will result in JPublisher
generating custom Java classes that implement the ORAData and
ORADataFactory interfaces and the getORADataFactory() method. Or, for
backwards compatibility, you have the option of using the JPublisher
-compatible=customdatum setting in conjunction with -usertypes=oracle
to use the CustomDatum and CustomDatumFactory interfaces instead. See the
Oracle9i JPublisher User’s Guide for more information.

ORAData Versus CustomDatum Interfaces
As a result of the oracle.jdbc interfaces being introduced in Oracle9i as
replacements for the oracle.jdbc.driver classes, the
oracle.sql.CustomDatum and oracle.sql.CustomDatumFactory
interfaces, formerly used to access customized objects, have been deprecated in
favor of new interfaces—oracle.sql.ORAData and
oracle.sql.ORADataFactory. Like the CustomDatum interfaces, these can be
used as an Oracle-specific alternative to the standard SQLData interface. The
CustomDatum interfaces are still supported for backward compatibility.

Note: JPublisher implements the ORAData interface and its
toDatum() method and the ORADataFactory interface and its
create() method in a single custom Java class; however,
toDatum() and create() are specified in different interfaces to
allow the option of implementing them in separate classes. You can
have one custom Java class that implements ORAData, its
toDatum() method, and the getORADataFactory() method,
and have a separate factory class that implements
ORADataFactory and its create() method. For purposes of
discussion here, however, the assumption is that both interfaces are
implemented in a single class.
6-8 SQLJ Developer’s Guide and Reference

Custom Java Classes
CustomDatum and CustomDatumFactory have the following definitions:

public interface CustomDatum
{
 oracle.sql.Datum toDatum(
 oracle.jdbc.driver.OracleConnection conn
) throws SQLException;

public interface CustomDatumFactory
{
 oracle.sql.CustomDatum create(
 oracle.sql.Datum d, int sqlType
) throws SQLException;
}

The connection conn and typecode sqlType are used as described for ORAData
and ORADataFactory in "ORAData and ORADataFactory Specifications" on
page 6-7. Note, however, that CustomDatum uses the Oracle-specific
OracleConnection type instead of the standard Connection type.

SQLData Specification
Standard JDBC 2.0 supplies the interface java.sql.SQLData to use in mapping
and converting structured object types to Java classes. This interface is intended for
mapping structured object types only, not object references, collections/arrays, or
other SQL types.

The SQLData interface is a JDBC 2.0 standard, specifying a readSQL() method to
read data into a Java object, and a writeSQL() method to write to the database
from a Java object.

For information about functionality that is required of a class that implements
SQLData, see "Requirements for Classes Implementing SQLData" on page 6-13.

For additional information about standard SQLData functionality, refer to the Sun
Microsystems JDBC 2.0 API Specification.

If you use JPublisher, specifying -usertypes=jdbc will result in JPublisher
generating custom Java classes that implement the SQLData interface.
 Objects and Collections 6-9

Custom Java Classes
Custom Java Class Support for Object Methods
Methods of Oracle objects can be invoked from custom Java class wrappers.
Whether the underlying stored procedure is written in PL/SQL or is written in Java
and published to SQL is invisible to the user.

A Java wrapper method used to invoke a server method requires a connection to
communicate with the server. The connection object can be provided as an explicit
parameter or can be associated in some other way (as an attribute of your custom
Java class, for example).

If the connection object used by the wrapper method is a non-static attribute, then
the wrapper method must be an instance method of the custom Java class in order
to have access to the connection. Custom Java classes generated by JPublisher use
this technique.

There are also issues regarding output and input-output parameters in methods of
Oracle objects. If a stored procedure (SQL object method) modifies the internal state
of one of its arguments, then the actual argument passed to the stored procedure is
modified. In Java this is not possible. When a JDBC output parameter is returned
from a stored procedure call, it must be stored in a newly created object. The
original object identity is lost.

One way to return an output or input-output parameter to the caller is to pass the
parameter as an element of an array. If the parameter is input-output, the wrapper
method takes the array element as input; after processing, the wrapper assigns the
output to the array element. Custom Java classes generated by JPublisher use this
technique—each output or input-output parameter is passed in a one-element array.

When you use JPublisher, it implements wrapper methods by default. This is true
for generated classes implementing either the SQLData interface or the ORAData
interface. To disable this feature, set the JPublisher -methods flag to false. See the
Oracle9i JPublisher User’s Guide for more information.

Note: If you are implementing a custom Java class yourself, there
are various ways that you can implement wrapper methods. Data
processing in the server can be done either through the SQL object
method directly, or by forwarding the object value from the client to
the server and then executing the method there. To see how
JPublisher implements wrapper methods, and whether this may
meet your needs, see "JPublisher Implementation of Wrapper
Methods" on page 6-42.
6-10 SQLJ Developer’s Guide and Reference

Custom Java Classes
Custom Java Class Requirements
Custom Java classes must satisfy certain requirements to be recognized by the
Oracle SQLJ translator as valid host variable types, and to allow type-checking by
the translator.

This section discusses Oracle-specific requirements of custom Java classes so they
can support this functionality. Requirements for both ORAData implementations
and SQLData implementations are covered.

Oracle Requirements for Classes Implementing ORAData
Oracle requirements for ORAData implementations are primarily the same for any
kind of custom Java class but vary slightly depending on whether the class is for
mapping to objects, object references, collections, or some other SQL type.

These requirements are as follows:

■ The class implements the oracle.sql.ORAData interface.

■ The class implements a method getORADataFactory() that returns an
oracle.sql.ORADataFactory object as follows:

public static oracle.sql.ORADataFactory getORADataFactory();

If using the deprecated CustomDatum interface, the class implements the
method getFactory() that returns an oracle.sql.CustomDatumFactory
object as follows:

public static oracle.sql.CustomDatumFactory getFactory();

■ The class has a constant, _SQL_TYPECODE (string), initialized to the
oracle.jdbc.OracleTypes typecode of the Datum subclass that
toDatum() returns.

For custom object classes:

public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

For custom reference classes:

public static final int _SQL_TYPECODE = OracleTypes.REF;

Note: Custom Java classes for user-defined types are often
referred to in this manual as "wrapper classes".
 Objects and Collections 6-11

Custom Java Classes
For custom collection classes:

public static final int _SQL_TYPECODE = OracleTypes.ARRAY;

For other uses, some other typecode might be appropriate. For example, for
using a custom Java class to serialize and deserialize Java objects into or out of
RAW fields, a _SQL_TYPECODE of OracleTypes.RAW is used. See "Serialized
Java Objects" on page 6-68.

(The OracleTypes class simply defines a typecode, which is an integer
constant, for each Oracle datatype. For standard SQL types, the OracleTypes
entry is identical to the entry in the standard java.sql.Types type
definitions class.)

■ For custom Java classes with _SQL_TYPECODE of STRUCT, REF, or ARRAY (in
other words, for custom Java classes that represent objects, object references, or
collections), the class has a constant that indicates the relevant user-defined
type name.

– Custom object classes and custom collection classes must have a constant,
_SQL_NAME (string), initialized to the SQL name you declared for the
user-defined type, as follows:

public static final String _SQL_NAME = UDT name;

Custom object class example for a user-defined PERSON object:

public static final String _SQL_NAME = "PERSON";

or (to specify the schema, if that is appropriate):

public static final String _SQL_NAME = "SCOTT.PERSON";

Custom collection class example for a collection of PERSON objects, which
you have declared as PERSON_ARRAY:

public static final String _SQL_NAME = "PERSON_ARRAY";

– Custom reference classes must have a constant, _SQL_BASETYPE (string),
initialized to the SQL name you declared for the user-defined type being
referenced, as follows:

public static final String _SQL_BASETYPE = UDT name;

Custom reference class example for PERSON references:

public static final String _SQL_BASETYPE = "PERSON";
6-12 SQLJ Developer’s Guide and Reference

Custom Java Classes
For other ORAData uses, specifying a UDT name is not applicable.

Usage Notes

■ A collection type name reflects the collection type, not the base type. For
example, if you have declared a VARRAY or nested table type PERSON_ARRAY
for PERSON objects, then the name of the collection type that you specify for the
_SQL_NAME entry is PERSON_ARRAY, not PERSON.

■ When specifying the SQL type in a _SQL_NAME field, if the SQL type was
declared in a case-sensitive way (in quotes), then you must specify the SQL
name exactly as it was declared, such as CaseSensitive or
SCOTT.CaseSensitive. (Note this differs from usage in a JPublisher input
file, where the case-sensitive name must also appear in quotes.) If you did not
declare the SQL type in a case-sensitive way (no quotes), then you must specify
the SQL name in all uppercase, such as ADDRESS or SCOTT.ADDRESS.

JPublisher automatically generates the value of this field appropriately,
according to case-sensitivity and the JPublisher -omit_schema_names setting
if applicable.

Requirements for Classes Implementing SQLData
The SQLJ ISO standard outlines requirements for type map definitions for classes
implementing the SQLData interface.

Alternatively, SQLData wrapper classes can identify associated SQL object types
through public static final fields. This non-standard functionality was
introduced in Oracle SQLJ release 8.1.6 and continues to be supported.

Be aware of the following important points:

■ Whether you use a type map or use alternative (non-standard) public
static final fields to specify mappings, you must be consistent in your
approach. Either use a type map that specifies all relevant mappings so that you
do not require public static final fields, or do not use a type map at all
and specify all mappings through public static final fields.

■ SQLData, unlike ORAData, is for mapping structured object types only. It is not
for object references, collections/arrays, or any other SQL types. If you are not
using ORAData, then your only choices for mapping object references and
collections are the weak types java.sql.Ref and java.sql.Array,
respectively (or oracle.sql.REF and oracle.sql.ARRAY).
 Objects and Collections 6-13

Custom Java Classes
■ SQLData implementations require a JDK 1.2.x environment. Although Oracle
JDBC supports JDBC 2.0 extensions under JDK 1.1.x through the
oracle.jdbc2 package, Oracle SQLJ does not.

■ When specifying the mapping from a SQL type to a Java type (described
below), if the SQL type was declared in a case-sensitive way (in quotes), then
you must specify the SQL name exactly as it was declared, such as
CaseSensitive or SCOTT.CaseSensitive. (Note this differs from usage in
a JPublisher input file, where the case-sensitive name must also appear in
quotes.) If you did not declare the SQL type in a case-sensitive way (no quotes),
then you must specify the SQL name in all uppercase, such as ADDRESS or
SCOTT.ADDRESS.

Mapping Specified in Type Map Resource First, consider the mapping representation
according to the SQLJ ISO standard. Assume that Address, pack.Person, and
pack.Manager.InnerPM (where InnerPM is an inner class of Manager) are three
wrapper classes that implement java.sql.SQLData.

■ You must employ these classes only in statements that use explicit connection
context instances of a declared connection context type. Assume, for example,
that this type is called SDContext. Example:

Address a =...;
pack.Person p =...;
pack.Manager.InnerPM pm =...;
SDContext ctx = new SDContext(url,user,pwd,false);
#sql [ctx] { ... :a ... :p ... :pm ... };

■ The connection context type must have been declared using the with attribute
typeMap that specifies an associated class implementing a
java.util.PropertyResourceBundle. In the preceding example,
SDContext might have been declared as follows:

#sql public static context SDContext with (typeMap="SDMap");

■ The type map resource must provide the mapping from SQL object types to
corresponding Java classes that implement the java.sql.SQLData interface.
This mapping is specified with entries of the following form:

class.<java_class_name>=STRUCT <sql_type_name>

The keyword STRUCT can also be omitted. In our example, the resource file
SDMap.properties might contain the following entries:

class.Address=STRUCT SCOTT.ADDRESS
6-14 SQLJ Developer’s Guide and Reference

Custom Java Classes
class.pack.Person=PERSON
class.pack.Manager$InnerPM=STRUCT PRODUCT_MANAGER

Although "." separates package and class name, you must use the character "$"
to separate an inner class name.

This mechanism is more complicated than the non-standard alternative (discussed
next). Furthermore, it is not possible to associate a type map resource with the
default connection context. The advantage is that all the mapping information is
placed in a single location—the type map resource.This means that the type
mapping in an already compiled application can be easily adjusted at a later time,
for example to accommodate new SQL types and Java wrappers in an expanding
SQL-Java type hierarchy.

Be aware of the following:

■ You must employ the SQLJ runtime12 or runtime12ee library to use this
feature. Type maps are represented as java.util.Map objects. These are
exposed in the SQLJ runtime API and, therefore, cannot be supported by the
generic runtime libraries.

■ You must use the Oracle SQLJ runtime and Oracle-specific profile
customization if your SQLData wrapper classes occur as OUT or INOUT
parameters in SQLJ statements. This is because the SQL type of such parameters
is required for registerOutParameter() by the Oracle JDBC driver.
Furthermore, for OUT parameter type registration, the SQL type is "frozen in"
by the type map in effect during translation.

Important: If you used Oracle-specific code generation in this
example, through the SQLJ translator -codegen=oracle setting,
then any iterator that is used for a statement whose context type is
SDContext must also have been declared with the same associated
type map, SDMap, such as in the following example:

#sql public static iterator SDIter with (typeMap="SDMap");
...
SDContext sdctx = ...
SDIter sditer;
#sql [sdctx] sditer = { SELECT ...};

This is to ensure that proper code is generated for the iterator class.
 Objects and Collections 6-15

Custom Java Classes
■ The SQLJ type map is independent from any JDBC type map you may be using
on the underlying connection. Thus, you must be careful if you are mixing SQLJ
and JDBC code that both use SQLData wrappers. However, you can easily
extract the type map in effect on a given SQLJ connection context:

ctx.getTypeMap();

Mapping Specified in Static Field of Wrapper Class Alternatively, a class that implements
SQLData can satisfy the following non-standard requirement.

■ The Java class declares the public static final String-valued field
_SQL_NAME. This field defines the name of the SQL type that is being wrapped
by the Java class.

In our example, the Address class would have the following field declaration:

public static final String _SQL_NAME="SCOTT.ADDRESS";

The following declaration would be in pack.Person:

public static final String _SQL_NAME="PERSON";

And the class pack.Manager.InnerPM would hold the following:

public static final String _SQL_NAME="PRODUCT_MANAGER";

Note that JPublisher always generates SQLData wrapper classes with the
_SQL_NAME field. However, this field is ignored in SQLJ statements that reference a
type map.

Usage Notes

■ If a class that implements the _SQL_NAME field is used in a SQLJ statement with
an explicit connection context type and associated type map, then that type map
is used, and the _SQL_NAME field is ignored, thereby simplifying migration of
existing SQLJ programs to the new SQLJ ISO standard.

■ The static SQL-Java type correspondence specified in the _SQL_NAME field is
independent from any JDBC type map you may be using on the underlying
connection. Thus, you must be careful if you are mixing SQLJ and JDBC code
that both use SQLData wrappers.
6-16 SQLJ Developer’s Guide and Reference

Custom Java Classes
Compiling Custom Java Classes
You can include the .java file names for your custom Java classes (whether
ORAData or SQLData implementations) on the SQLJ command line, together with
your .sqlj file names. However, this is not necessary if the SQLJ -checksource
flag is set to true (the default) and your classpath includes the directory where the
custom Java source is located.

For example, if ObjectDemo.sqlj uses Oracle object types ADDRESS and PERSON
and you have run JPublisher or otherwise produced custom Java classes for these
objects, then you can run SQLJ as follows.

If -checksource=true (default) and the classpath includes the custom Java
source location:

% sqlj ObjectDemo.sqlj

Or, if -checksource=false:

% sqlj ObjectDemo.sqlj Address.java AddressRef.java Person.java PersonRef.java

Any .sqlj files that JPublisher produces, however, must be explicitly included on
the SQLJ command line, even with -checksource=true.

You also have the choice of using your Java compiler to compile custom Java source
files directly. If you do this, you must do it prior to translating .sqlj files.

Running the SQLJ translator is discussed in Chapter 8, "Translator Command Line
and Options". For more information about the -checksource flag, see "Source
Check for Type Resolution (-checksource)" on page 8-65.

Note: Because ORAData implementations rely on Oracle-specific
features, SQLJ will report numerous portability warnings if you do
not use the translator portability setting -warn=noportable (the
default). For information about the -warn flag, see "Translator
Warnings (-warn)" on page 8-43.
 Objects and Collections 6-17

Custom Java Classes
Reading and Writing Custom Data
Through the use of custom Java class instances, Oracle SQLJ and JDBC allow you to
read and write user-defined types as though they are built-in types. Exactly how
this is accomplished is transparent to the user.

For the mechanics of how data is read and written, for both ORAData
implementations and SQLData implementations, see the Oracle9i JDBC Developer’s
Guide and Reference.

Additional Uses for ORAData Implementations
To this point, discussion of custom Java classes has been for use as one of the
following:

■ wrappers for SQL objects—custom object classes, for use with
oracle.sql.STRUCT instances

■ wrappers for SQL references—custom reference classes, for use with
oracle.sql.REF instances

■ wrappers for SQL collections—custom collection classes, for use with
oracle.sql.ARRAY instances

It might be useful, however, to provide custom Java classes to wrap other
oracle.sql.* types as well, for customized conversions or processing. You can
accomplish this with classes that implement ORAData (but not SQLData), as in the
following examples:

■ Perform encryption and decryption or validation of data.

■ Perform logging of values that have been read or are being written.

■ Parse character columns (such as character fields containing URL information)
into smaller components.

■ Map character strings into numeric constants.

■ Map data into more desirable Java formats (such as mapping a DATE field to
java.util.Date format).

■ Customize data representation (for example, data in a table column is in feet,
but you want it represented in meters after it is selected).

■ Serialize and deserialize Java objects—into or out of RAW fields, for example

This last use is further discussed in "Serialized Java Objects" on page 6-68.
6-18 SQLJ Developer’s Guide and Reference

Custom Java Classes
"General Use of ORAData—BetterDate.java" on page 12-49 provides an example of
a class (BetterDate) that implements ORAData and can be used instead of
java.sql.Date to represent dates.

Note: This sort of functionality is not possible through the
SQLData interface, as SQLData implementations can wrap only
structured object types.
 Objects and Collections 6-19

User-Defined Types
User-Defined Types
This section contains examples of creating and using user-defined object types and
collection types in Oracle9i. A full SQL script for all the user-defined types
employed in the object and collection sample applications is in "Definition of Object
and Collection Types" on page 12-21.

For more information about any of the SQL commands used here, refer to the
Oracle9i SQL Reference.

Creating Object Types
Oracle SQL commands to create object types are of the following form:

CREATE TYPE typename AS OBJECT
(
 attrname1 datatype1,
 attrname2 datatype2,

 attrnameN datatypeN
);

Where typename is the desired name of your object type, attrname1 through
attrnameN are the desired attribute names, and datatype1 through datatypeN
are the attribute datatypes.

The remainder of this section provides an example of creating user-defined object
types in Oracle9i.

The following items are created using the SQL script below:

■ two object types, PERSON and ADDRESS

■ a typed table for PERSON objects

■ an EMPLOYEES table that includes an ADDRESS column and two columns of
PERSON references

Here is the script:

/*** Using user-defined types (UDTs) in SQLJ ***/
/
/*** Create ADDRESS UDT ***/
CREATE TYPE ADDRESS AS OBJECT
(
 street VARCHAR(60),
 city VARCHAR(30),
6-20 SQLJ Developer’s Guide and Reference

User-Defined Types
 state CHAR(2),
 zip_code CHAR(5)
)
/
/*** Create PERSON UDT containing an embedded ADDRESS UDT ***/
CREATE TYPE PERSON AS OBJECT
(
 name VARCHAR(30),
 ssn NUMBER,
 addr ADDRESS
)
/
/*** Create a typed table for PERSON objects ***/
CREATE TABLE persons OF PERSON
/
/*** Create a relational table with two columns that are REFs
 to PERSON objects, as well as a column which is an Address ADT. ***/
CREATE TABLE employees
(
 empnumber INTEGER PRIMARY KEY,
 person_data REF PERSON,
 manager REF PERSON,
 office_addr ADDRESS,
 salary NUMBER
)
/*** Insert some data--2 objects into the persons typed table ***/
INSERT INTO persons VALUES (
 PERSON(’Wolfgang Amadeus Mozart’, 123456,
 ADDRESS(’Am Berg 100’, ’Salzburg’, ’AT’,’10424’)))
/
INSERT INTO persons VALUES (
 PERSON(’Ludwig van Beethoven’, 234567,
 ADDRESS(’Rheinallee’, ’Bonn’, ’DE’, ’69234’)))
/
/** Put a row in the employees table **/
INSERT INTO employees (empnumber, office_addr, salary) VALUES (
 1001,
 ADDRESS(’500 Oracle Parkway’, ’Redwood Shores’, ’CA’, ’94065’),
 50000)
/
/** Set the manager and PERSON REFs for the employee **/
UPDATE employees
 SET manager =
 (SELECT REF(p) FROM persons p WHERE p.name = ’Wolfgang Amadeus Mozart’)
/

 Objects and Collections 6-21

User-Defined Types
UPDATE employees
 SET person_data =
 (SELECT REF(p) FROM persons p WHERE p.name = ’Ludwig van Beethoven’)

Creating Collection Types
There are two categories of collections

■ variable-length arrays (VARRAYs)

■ nested tables

Oracle SQL commands to create VARRAY types are of the following form:

CREATE TYPE typename IS VARRAY(n) OF datatype;

Where typename is the desired name of your VARRAY type, n is the desired
maximum number of elements in the array, and datatype is the datatype of the
array elements. For example:

CREATE TYPE myvarr IS VARRAY(10) OF INTEGER;

Oracle SQL commands to create nested table types are of the following form:

CREATE TYPE typename AS TABLE OF datatype;

Where typename is the desired name of your nested table type, and datatype is
the datatype of the table elements (this can be a user-defined type as well as a
standard datatype). A nested table is limited to one column, although that one
column type can be a complex object with multiple attributes. The nested table, as
with any database table, can have any number of rows. For example:

CREATE TYPE person_array AS TABLE OF person;

This command creates a nested table where each row consists of a PERSON object.

Note: Use of a table alias, such as p above, is a recommended
general practice in Oracle SQL, especially in accessing tables with
user-defined types. It is required syntax in some cases where object
attributes are accessed. Even when not required, it helps in
avoiding ambiguities. See the Oracle9i SQL Reference for more
information about table aliases.
6-22 SQLJ Developer’s Guide and Reference

User-Defined Types
The rest of this section provides an example of creating a user-defined collection
type (as well as object types) in Oracle9i.

The following items are created and populated using the SQL script below:

■ two object types, PARTICIPANT_T and MODULE_T

■ a collection type, MODULETBL_T, which is a nested table of MODULE_T objects

■ a PROJECTS table that includes a column of PARTICIPANT_T references and a
column of MODULETBL_T nested tables

■ a collection type PHONE_ARRAY, which is a VARRAY of VARCHAR2(30)

■ PERSON and ADDRESS objects (repeating the same definitions used earlier in
"Creating Object Types" on page 6-20)

■ an EMPLOYEES table, which includes a PHONE_ARRAY column

Here is the script:

Rem This is a SQL*Plus script used to create schema to demonstrate collection
Rem manipulation in SQLJ

CREATE TYPE PARTICIPANT_T AS OBJECT (
 empno NUMBER(4),
 ename VARCHAR2(20),
 job VARCHAR2(12),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 deptno NUMBER(2))
/
show errors
CREATE TYPE MODULE_T AS OBJECT (
 module_id NUMBER(4),
 module_name VARCHAR2(20),
 module_owner REF PARTICIPANT_T,
 module_start_date DATE,
 module_duration NUMBER)
/
show errors
create TYPE MODULETBL_T AS TABLE OF MODULE_T;
/
show errors
CREATE TABLE projects (
 id NUMBER(4),
 name VARCHAR(30),
 Objects and Collections 6-23

User-Defined Types
 owner REF PARTICIPANT_T,
 start_date DATE,
 duration NUMBER(3),
 modules MODULETBL_T) NESTED TABLE modules STORE AS modules_tab;

show errors
CREATE TYPE PHONE_ARRAY IS VARRAY (10) OF varchar2(30)
/

/*** Create ADDRESS UDT ***/
CREATE TYPE ADDRESS AS OBJECT
(
 street VARCHAR(60),
 city VARCHAR(30),
 state CHAR(2),
 zip_code CHAR(5)
)
/
/*** Create PERSON UDT containing an embedded ADDRESS UDT ***/
CREATE TYPE PERSON AS OBJECT
(
 name VARCHAR(30),
 ssn NUMBER,
 addr ADDRESS
)
/
CREATE TABLE employees
(empnumber INTEGER PRIMARY KEY,
 person_data REF person,
 manager REF person,
 office_addr address,
 salary NUMBER,
 phone_nums phone_array
)
/

6-24 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
JPublisher and the Creation of Custom Java Classes
Oracle offers flexibility in how users can customize the mapping of Oracle object
types, reference types, and collection types to Java classes in a strongly typed
paradigm. Developers have the following choices in creating these custom Java
classes:

■ using Oracle JPublisher to automatically generate custom Java classes and using
those classes directly without modification

■ using JPublisher to automatically generate custom Java classes and subclassing
them to create custom Java classes with added functionality

■ manually coding custom Java classes without using JPublisher, provided that
the classes meet the requirements stated in "Custom Java Class Requirements"
on page 6-11

Although you have the option of manually coding your custom Java classes, using
or subclassing JPublisher-generated classes is advisable.

JPublisher can implement either the Oracle oracle.sql.ORAData interface or the
standard java.sql.SQLData interface when it generates a custom object class. If
you choose the ORAData implementation, then JPublisher will also generate a
custom reference class. For compatibility with older JDBC versions, JPublisher can
also generate classes that implement the oracle.sql.CustomDatum interface.

The SQLData interface is not intended for custom reference or custom collection
classes. If you want your code to be portable, you have no choice but to use
standard, weakly typed java.sql.Ref objects to map to references, and
java.sql.Array objects to map to collections.

This manual provides only minimal information and detail regarding the JPublisher
utility. See the Oracle9i JPublisher User’s Guide for more information.

For detailed discussion of the ORAData and SQLData interfaces and relative
advantages of the ORAData interface, see the Oracle9i JDBC Developer’s Guide and
Reference.

What JPublisher Produces
When you use JPublisher to generate custom Java classes, you can use either an
ORAData implementation (for custom object classes, custom reference classes, or
custom collection classes) or a SQLData implementation (for custom object classes
only). An ORAData implementation will also implement the ORADataFactory
interface, for creating instances of the custom Java class.
 Objects and Collections 6-25

JPublisher and the Creation of Custom Java Classes
This is controlled by how you set the JPublisher -usertypes option. A setting of
-usertypes=oracle specifies an ORAData implementation; a setting of
-usertypes=jdbc specifies a SQLData implementation.

ORAData Implementation
When you run JPublisher for a user-defined object type and choose the ORAData
implementation for your custom object class (through the -usertypes=oracle
setting), JPublisher automatically creates the following:

■ a custom object class to act as a type definition to correspond to your Oracle
object type

This class includes getter and setter methods for each attribute. The method
names are of the form getFoo() and setFoo() for attribute foo.

In addition, JPublisher by default will generate wrapper methods in your class
that invoke the associated Oracle object methods executing in the server. This
can be disabled, however, by setting -methods=false. This option is
described later in this section.

■ a related custom reference class for object references to your Oracle object type

This class includes a getValue() method that returns an instance of your
custom object class, and a setValue() method that updates an object value in
the database, taking as input an instance of the custom object class.

A strongly typed reference class is always generated, regardless of whether the
SQL object type uses references.

Advantages of using strongly typed instead of weakly typed references are
described in"Strongly Typed Object References for ORAData Implementations"
on page 6-27.

■ custom classes for any object or collection attributes of the top-level object

This is necessary so that attributes can be materialized in Java whenever an
instance of the top-level class is materialized.

When you run JPublisher for a user-defined collection type, choosing the ORAData
implementation, JPublisher automatically creates the following:

■ a custom collection class to act as a type definition to correspond to your Oracle
collection type

This class includes overloaded getArray() and setArray() methods to
retrieve or update a collection as a whole, a getElement() method and
6-26 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
setElement() method to retrieve or update individual elements of a
collection, and additional utility methods.

■ a custom object class for the elements, if the elements of the collection are
objects

This is necessary so that object elements can be materialized in Java whenever
an instance of the collection is materialized.

JPublisher-generated custom Java classes in any of these categories implement the
ORAData interface, the ORADataFactory interface, and the
getORADataFactory() method.

Strongly Typed Object References for ORAData Implementations
For Oracle ORAData implementations, JPublisher always generates strongly typed
object reference classes as opposed to using the weakly typed oracle.sql.REF
class. This is to provide greater type safety and to mirror the behavior in SQL,
where object references are strongly typed. The strongly typed classes (with names
such as PersonRef for references to PERSON objects) are essentially wrappers for
the REF class.

In these strongly typed REF wrappers, there is a getValue() method that
produces an instance of the SQL object that is referenced, in the form of an instance
of the corresponding Java class. (Or, in the case of inheritance, perhaps as an
instance of a subclass of the corresponding Java class.) For example, if there is a
PERSON SQL object type, with a corresponding Person Java class, there will also be
a PersonRef Java class. The getValue() method of the PersonRef class would
return a Person instance containing the data for a PERSON object in the database.

Whenever a SQL object type has an attribute that is an object reference, the Java
class corresponding to the object type would have an attribute that is an instance of
a Java class corresponding to the appropriate reference type. For example, if there is

Notes:

■ If you specify the ORAData implementation, the generated
classes will use Oracle-specific features and therefore will not
be portable.

■ JPublisher still supports implementation of the CustomDatum
interface, replaced by ORAData and deprecated in Oracle9i,
through the -compatible option. This is described in "Choose
the Implementation for Generated Classes" on page 6-29.
 Objects and Collections 6-27

JPublisher and the Creation of Custom Java Classes
a PERSON object with a MANAGER REF attribute, then the corresponding Person
Java class will have a ManagerRef attribute.

For standard SQLData implementations, strongly typed object references are not
supported (they are not part of the standard). JPublisher does not create a custom
reference class; you must use java.sql.Ref or oracle.sql.REF as the reference
type.

SQLData Implementation
When you run JPublisher for a user-defined object type and choose the SQLData
implementation for your custom object class (through the -usertypes=jdbc
setting), JPublisher will produce a custom object class to act as a type definition to
correspond to your Oracle object type. This class will include the following:

■ getter and setter methods for each attribute

■ implementations of the standard SQLData interface readSQL() and
writeSQL() methods

■ wrapper methods that invoke the Oracle object methods executing in the server
(unless you specify -methods=false when you run JPublisher)

Because the SQLData interface is intended only for objects, however, and not for
references or collections, JPublisher will not generate a custom reference class for
references to the Oracle object type. You will have to use standard, weakly typed
java.sql.Ref instances, or perhaps oracle.sql.REF instances if you do not
require portability. Note that REF instances, like custom reference class instances,
have Oracle extension methods getValue() and setValue() to read or write
instances of the referenced object. Standard Ref instances do not have this
functionality.

Similarly, because you cannot use a SQLData implementation for a custom
collection class, you must use standard, weakly typed java.sql.Array instances,
or perhaps oracle.sql.ARRAY instances if you do not require portability. Array
and ARRAY instances, like custom collection class instances, have getArray()
functionality to read the collection as a whole or in part, but do not have the
element-level access and writability offered by the custom collection class
getElement() and setElement() methods.
6-28 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
Generating Custom Java Classes
This section discusses key JPublisher command-line functionality for specifying the
user-defined types that you want to map to Java and for specifying object class
names, collection class names, attribute type mappings, and wrapper methods.
These key points can be summarized as follows:

■ Specify the implementation to use (ORAData or SQLData; use the JPublisher
-usertypes option).

■ Specify user-defined types to map to Java. You can specify the custom object
and custom collection class names for JPublisher to use, or you can accept the
default names (use the JPublisher -sql, -user, and -case options).

■ Optionally specify attribute type mappings (use the JPublisher -XXXtypes
options: -numbertypes, -builtintypes, and -lobtypes).

■ Choose whether or not JPublisher will create wrapper methods, in particular for
Oracle object methods (use the JPublisher -methods flag, which is enabled by
default).

Choose the Implementation for Generated Classes
Before running JPublisher, consider whether you want the generated classes to
implement the Oracle ORAData interface or the standard SQLData interface. Using
SQLData will likely make your code more portable, but using ORAData offers a
number of advantages, including no need for type maps.

The preceding section, "What JPublisher Produces" on page 6-25, discusses some of
the implementation details for each scenario.

Note: The SQLData interface is defined in the JDBC 2.0
specification to be portable. However, if you want the SQLData
implementation produced by JPublisher to be portable, you must
avoid using any Oracle-specific features and Oracle type mapping
(which uses the Oracle-specific oracle.sql.* classes).

Note: Throughout the remainder of this section, we simplify
discussion of custom reference classes or custom collection classes
by referring only to ORAData implementations.
 Objects and Collections 6-29

JPublisher and the Creation of Custom Java Classes
Remember the following:

■ You must use ORAData implementations for custom collection classes. The
SQLData interface does not support collections (arrays).

■ Strongly typed reference classes are always generated for ORAData custom
object class implementations, but not for SQLData custom object class
implementations.

For detailed discussion of the ORAData and SQLData interfaces and relative
advantages of the ORAData interface, see the Oracle9i JDBC Developer’s Guide and
Reference.

Use the JPublisher -usertypes option to specify which interface you want your
classes to implement. A setting of -usertypes=oracle (the default) specifies the
ORAData interface, while a setting of -usertypes=jdbc specifies the SQLData
interface.

The following JPublisher command-line examples will result in implementation of
ORAData, CustomDatum, and SQLData, respectively (assume % is a system
prompt).

% jpub -usertypes=oracle ... <other option settings>

% jpub -usertypes=oracle -compatible=customdatum ... <other option settings>

% jpub -usertypes=jdbc ... <other option settings>

JPublisher will ignore a -compatible=customdatum or
-compatible=oradata setting if -usertypes=jdbc.

Note: If you have a requirement to implement the CustomDatum
interface, which is replaced by ORAData and deprecated in
Oracle9i, you can do so. Use the JPublisher -compatible option
with a setting of -compatible=customdatum. This, combined
with a -usertypes=oracle setting, results in generated classes
implementing the CustomDatum interface. The default setting is
-compatible=oradata.

(The setting -compatible=8i also directs JPublisher to use
CustomDatum, as well as resulting in code generation that is
backward compatible to Oracle8i versions of JPublisher. See the
Oracle9i JPublisher User’s Guide for more information.)
6-30 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
Specify User-Defined Types to Map to Java
In using JPublisher to create custom Java classes, use the -sql option to specify the
user-defined SQL types that you want to map to Java. You can either specify the
custom object class names and custom collection class names, or you can accept the
defaults.

The default names of your top-level custom classes—the classes that will
correspond to the user-defined type names you specify to the -sql option—are
identical to the user-defined type names as you enter them on the JPublisher
command line. Because SQL names in the database are case-insensitive by default,
you can capitalize them to ensure that your class names are capitalized per Java
convention. For example, if you want to generate a custom class for employee
objects, you can run JPublisher as follows:

% jpub -sql=Employee ...

The default names of other classes, such as for home_address objects that are
attributes of employee objects, are determined by the JPublisher -case option. If
you do not set the -case option, it is set to mixed. This means that the default for
the custom class name is to capitalize the initial character of the corresponding
user-defined type name and the initial character of every word unit thereafter.
JPublisher interprets underscores (_), dollar signs ($), and any characters that are
illegal in Java identifiers as word-unit separators; these characters are discarded in
the process.

For example, for Oracle object type home_address, JPublisher would create class
HomeAddress in a HomeAddress.java source file.

On the JPublisher command line, use syntax as in the next example for the -sql
option (you can specify multiple actions in a single option setting).

Important: Only non-case-sensitive SQL names are supported on
the JPublisher command line. If a user-defined type was defined in
a case-sensitive way (in quotes) in SQL, then you must specify the
name in the JPublisher INPUT file instead of on the command line,
and in quotes. See "Using JPublisher INPUT Files" on page 6-39.

Note: For backwards compatibility to previous versions of
JPublisher, the -types option is still accepted as an alternative to
-sql.
 Objects and Collections 6-31

JPublisher and the Creation of Custom Java Classes
-sql=udt1<:mapclass1><,udt2<:mapclass2>>,...,<udtN<:mapclassN>> ...

And use the -user option to specify the database schema. Following is an example:

% jpub -sql=Myobj,mycoll:MyCollClass -user=scott/tiger

(There can be no space before or after the comma.)

For the Oracle object MYOBJ, this command will name it as you typed it, creating
source Myobj.java to define a Myobj class. For the Oracle collection MYCOLL, this
command will create source MyCollClass.java to define a MyCollClass class.

You can optionally specify schema names in the -sql option—for example, the
scott schema:

% jpub -sql=scott.Myobj,scott.mycoll:MyCollClass -user=scott/tiger

You cannot specify custom reference class names; JPublisher automatically derives
them by adding "Ref" to custom object class names (relevant to ORAData
implementations only). For example, if JPublisher produces Java source
Myobj.java to define custom object class Myobj, then it will also produce Java
source MyobjRef.java to define a MyobjRef custom reference class.

To create custom Java classes for the object and collection types defined in
"User-Defined Types" on page 6-20, you can run JPublisher as follows:

%jpub -user=scott/tiger -sql=Address,Person,Phone_array,Participant_t,
Module_t,Moduletbl_t

Or, to explicitly specify custom object class and custom collection class names:

%jpub -user=scott/tiger -sql=Address,Person,phone_array:PhoneArray,
participant_t:ParticipantT,module_t:ModuleT,moduletbl_t:ModuletblT

(Each of the preceding two examples is a single wrap-around command line.)

The second example will produce Java source files Address.java,
AddressRef.java, Person.java, PersonRef.java, PhoneArray.java,
ParticipantT.java, ParticipantTRef.java, ModuleT.java,
ModuleTRef.java, and ModuletblT.java. Examples of some of these source
files are provided in "JPublisher Custom Java Class Examples" on page 6-43.

Note: When specifying the schema, such as scott in the above
example, this is not incorporated into the custom Java class name.
6-32 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
So that it knows how to populate the custom Java classes, JPublisher connects to the
specified schema (here, scott/tiger) to determine attributes of your specified
object types or elements of your specified collection types.

If you want to change how JPublisher uses character case in default names for the
methods and attributes that it generates, including lower-level custom Java class
names for attributes that are objects or collections, you can accomplish this using
the -case option. There are four possible settings:

■ -case=mixed (default)—The following will be uppercase: the first character of
every word unit of a class name, every word unit of an attribute name, and
every word unit after the first word unit of a method name. All other characters
are in lowercase. JPublisher interprets underscores (_), dollar signs ($), and any
characters that are illegal in Java identifiers as word-unit separators; these
characters are discarded in the process.

■ -case=same—Character case is unchanged from its representation in the
database. Underscores and dollar signs are retained; illegal characters are
discarded.

■ -case=upper—Lowercase letters are converted to uppercase. Underscores and
dollar signs are retained; illegal characters are discarded.

■ -case=lower—Uppercase letters are converted to lowercase. Underscores and
dollar signs are retained; illegal characters are discarded.

Specify Type Mappings
JPublisher offers several choices for how to map user-defined types and their
attribute and element types between SQL and Java. The rest of this section lists
categories of SQL types and the mapping options available for each category.

(See "Supported Types for Host Expressions" on page 5-2 for general information
about how Oracle datatypes map to Java types.)

For more information about JPublisher features or options, see the Oracle9i
JPublisher User’s Guide.

Note: If you run JPublisher without specifying the user-defined
types to map to Java, it will process all user-defined types in the
schema. Generated class names, for both your top-level custom
classes and any other classes for object attributes or collection
elements, will be based on the setting of the -case option.
 Objects and Collections 6-33

JPublisher and the Creation of Custom Java Classes
Categories of SQL Types JPublisher categorizes SQL types into the following groups,
with corresponding JPublisher options as noted:

■ numeric types—anything stored as SQL type NUMBER

Use the JPublisher -numbertypes option to specify type-mapping for numeric
types.

■ LOB types—SQL types BLOB and CLOB

Use the JPublisher -lobtypes option to specify type-mapping for LOB types.

■ built-in types—anything stored as a SQL type not covered by the preceding
categories, for example: CHAR, VARCHAR2, LONG, and RAW

Use the JPublisher -builtintypes option to specify type-mapping for built-in
types.

Type-Mapping Modes JPublisher defines the following type-mapping modes:

■ JDBC mapping (setting jdbc)—Uses standard default mappings between SQL
types and Java native types. This can be used as a setting for the
-numbertypes, -lobtypes, and -builtintypes options.

■ Oracle mapping (setting oracle)—Uses corresponding oracle.sql types to
map to SQL types. This can be used as a setting for the -numbertypes,
-lobtypes, and -builtintypes options.

■ object-JDBC mapping (setting objectjdbc)—This is an extension of JDBC
mapping. Where relevant, object-JDBC mapping uses numeric object types from
the standard java.lang package (such as java.lang.Integer, Float, and
Double) instead of primitive Java types (such as int, float, and double).
The java.lang types are nullable; the primitive types are not. This can be
used as a setting for the -numbertypes option only.

■ BigDecimal mapping (setting bigdecimal)—Uses
java.math.BigDecimal to map to all numeric attributes; appropriate if you
are dealing with large numbers but do not want to map to the
oracle.sql.NUMBER type. This can be used as a setting for the
-numbertypes option only.

Note: Using BigDecimal mapping can significantly degrade
performance.
6-34 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
The next section discusses type mapping options that you can use for object
attributes and collection elements.

Mapping Attribute or Element Types to Java If you do not specify mappings for the
attribute types of a SQL object type or the element types of a SQL collection type,
then JPublisher uses the following defaults:

■ For numeric types, the default mapping is object-JDBC.

■ For LOB types, the default mapping is Oracle.

■ For built-in type types, the default mapping is JDBC.

If you want alternate mappings, use the -numbertypes, -lobtypes, and
-builtintypes options as necessary, depending on the attribute types you have
and the mappings you desire.

If an attribute type is itself a SQL object type, it will be mapped according to the
-usertypes setting.

Summary of SQL Type Categories and Mapping Settings Table 6–1 summarizes JPublisher
categories for SQL types, the mapping settings relevant for each category, and the
default settings.

Important: Be especially aware that if you specify a SQLData
implementation for the custom object class and want the code to be
portable, you must be sure to use portable mappings for the
attribute types. The defaults for numeric types and built-in types
are portable, but for LOB types you must specify
-lobtypes=jdbc.

Table 6–1 JPublisher SQL Type Categories, Supported Settings, and Defaults

SQL Type
Category

JPublisher
Mapping Option Mapping Settings Default

UDT types -usertypes oracle, jdbc oracle

numeric types -numbertypes oracle, jdbc, objectjdbc, bigdecimal objectjdbc

LOB types -lobtypes oracle, jdbc oracle

built-in types -builtintypes oracle, jdbc jdbc
 Objects and Collections 6-35

JPublisher and the Creation of Custom Java Classes
Generate Wrapper Methods
In creating custom object classes to map Oracle objects to Java, the -methods
option instructs JPublisher whether to include Java wrappers for Oracle object
methods (member functions). The default -methods=true setting generates
wrappers.

Wrapper methods generated by JPublisher are always instance methods, even when
the original object methods are static. See "Custom Java Class Support for Object
Methods" on page 6-10 for more information.

The following example shows how to set the -methods option:

% jpub -sql=Myobj,mycoll:MyCollClass -user=scott/tiger -methods=true

This will use default naming—the Java method names will be derived in the same
fashion as custom Java class names (as described in "Specify User-Defined Types to
Map to Java" on page 6-31), except that the initial character will be lowercase. For
example, by default an object method name of CALC_SAL results in a Java wrapper
method of calcSal().

Alternatively, you can specify desired Java method names, but this requires use of a
JPublisher INPUT file and is discussed in "Creating Custom Java Classes and
Specifying Member Names" on page 6-41.

Regarding Overloaded Methods If you run JPublisher for an Oracle object that has an
overloaded method where multiple signatures have the same corresponding Java
signature, then JPublisher will generate a uniquely named method for each
signature. It accomplishes this by appending _n to function names, where n is a
number. This is to ensure that no two methods in the generated custom Java class

Note: The JPublisher -mapping option used in previous releases
is deprecated but still supported. For information about how
JPublisher converts -mapping option settings to settings for the
new mapping options, see the Oracle9i JPublisher User’s Guide.

Note: The -methods option has additional uses as well, such as
for generating wrapper classes for packages, or wrapper methods
for package methods. This is beyond the scope of this manual—see
the Oracle9i JPublisher User’s Guide for information.
6-36 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
have the same name and signature. Consider, for example, the SQL functions
defined in creating a MY_TYPE object type:

CREATE OR REPLACE TYPE my_type AS OBJECT
(
 ...

 MEMBER FUNCTION myfunc(x INTEGER)
 RETURN my_return IS
 BEGIN
 ...
 END;

 MEMBER FUNCTION myfunc(y SMALLINT)
 RETURN my_return IS
 BEGIN
 ...
 END;
 ...
);

Without precaution, both definitions of myfunc result in the following name and
signature in Java:

myfunc(Integer)

This is because both INTEGER and SMALLINT in SQL map to the Java Integer
type.

Instead, JPublisher might call one myfunc_1 and the other myfunc_2. (The _n is
unique for each. In simple cases it will likely be _1, _2, and so on, but it might
sometimes be arbitrary, other than being unique for each.)

Generate Custom Java Classes and Map Alternate Classes
You can use JPublisher to generate a custom Java class but instruct it to map the
object type (or collection type) to an alternative class instead of to the generated
class.

Note: How JPublisher handles overloaded wrapper methods
applies to SQL functions created within an object or within a
package, but not to top-level functions—overloading is not allowed
at the top level.
 Objects and Collections 6-37

JPublisher and the Creation of Custom Java Classes
A typical scenario is to treat JPublisher-generated classes as superclasses, extend
them to add functionality, and map the object types to the subclasses. For example,
presume you have an Oracle object type ADDRESS and want to produce a custom
Java class for it that has functionality beyond what is produced by JPublisher. You
can use JPublisher to generate a custom Java class JAddress for the purpose of
subclassing it to produce a class MyAddress. Under this scenario you will add any
special functionality to MyAddress and will want JPublisher to map ADDRESS
objects to that class, not to the JAddress class. You will also want JPublisher to
produce a reference class for MyAddress, not JAddress.

JPublisher has functionality to streamline the process of mapping to alternative
classes. Use the following syntax in your -sql option setting:

-sql=object_type:generated_class:map_class

For the above example, use this setting:

-sql=ADDRESS:JAddress:MyAddress

This generates class JAddress in source file JAddress.java, but does the
following:

■ Maps the object type ADDRESS to the MyAddress class, not to the JAddress
class. Therefore, if you retrieve an object from the database that has an
ADDRESS attribute, then this attribute will be created as an instance of
MyAddress in Java. Or, if you retrieve an ADDRESS object directly, you will
retrieve it into a MyAddress instance.

■ Creates a MyAddressRef class in MyAddressRef.java, instead of creating a
JAddressRef class.

You must manually define a MyAddress class in a MyAddress.java source file.
This class implements your required functionality by subclassing JAddress.

For further discussion about subclassing JPublisher-generated classes or using them
as fields (continuing the preceding example), see "Extending Classes Generated by
JPublisher" on page 6-47.
6-38 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
JPublisher INPUT Files and Properties Files
JPublisher supports the use of special INPUT files and standard properties files to
specify type mappings and additional option settings.

Using JPublisher INPUT Files
You can use the JPublisher -input command-line option to specify an INPUT file
for JPublisher to use for additional type mappings.

"SQL" in an INPUT file is equivalent to "-sql" on the command line, and "AS" or
"GENERATE...AS" syntax is equivalent to command-line colon syntax. Use the
following syntax, specifying just one mapping per SQL command:

SQL udt1 <GENERATE GeneratedClass1> <AS MapClass1>
SQL udt2 <GENERATE GeneratedClass2> <AS MapClass2>
...

This generates GeneratedClass1 and GeneratedClass2, but maps udt1 to
MapClass1 and udt2 to MapClass2.

INPUT File Example In the following example, JPublisher will pick up the -user
option from the command line and go to INPUT file myinput.in for type
mappings.

Command line:

% jpub -input=myinput.in -user=scott/tiger

Important: If a user-defined type was defined in a case-sensitive
way (in quotes) in SQL, then you must specify the name in quotes.
For example:

SQL "CaseSenstiveType" AS CaseSensitiveType

Or, if also specifying a non-case-sensitive schema name:

SQL SCOTT."CaseSensitiveType" AS CaseSensitiveType

Or, if also specifying a case-sensitive schema name:

SQL "Scott"."CaseSensitiveType AS CaseSensitiveType

(The AS clauses are optional.)

Avoid using a dot (".") as part of the schema name or type name
itself.
 Objects and Collections 6-39

JPublisher and the Creation of Custom Java Classes
Contents of INPUT file myinput.in:

SQL Myobj
SQL mycoll AS MyCollClass
SQL employee GENERATE Employee AS MyEmployee

This accomplishes the following:

■ User-defined type MYOBJ gets the custom object class name Myobj because
that’s how you typed it—JPublisher creates source Myobj.java (and
MyobjRef.java).

■ User-defined type MYCOLL is mapped to MyCollClass. JPublisher creates a
MyCollClass.java source file.

■ User-defined type EMPLOYEE is mapped to the MyEmployee class. JPublisher
creates source Employee.java and MyEmployeeRef.java. If you retrieve an
object from the database that has an EMPLOYEE attribute, this attribute would
be created as an instance of MyEmployee in Java. Or if you retrieve an
EMPLOYEE object directly, presumably you will retrieve it into a MyEmployee
instance. You must manually create source file MyEmployee.java to define
class MyEmployee, which would subclass the Employee class.

Using JPublisher Properties Files
You can use the JPublisher -props command-line option to specify a properties file
for JPublisher to use for additional type mappings and other option settings.

In a properties file, "jpub." (including the period) is equivalent to the
command-line "-" (single-dash), and other syntax remains the same. Specify only
one option per line.

For type mappings, for example, "jpub.sql" is equivalent to "-sql". As on the
command line, but unlike in an INPUT file, you can specify multiple mappings in a
single jpub.sql setting.

Properties File Example In the following example, JPublisher will pick up the -user
option from the command line and go to properties file jpub.properties for
type mappings and the attribute-mapping option.

Command line:

% jpub -props=jpub.properties -user=scott/tiger
6-40 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
Contents of properties file jpub.properties:

jpub.sql=Myobj,mycoll:MyCollClass,employee:Employee:MyEmployee
jpub.usertypes=oracle

This produces the same results as the input-file example above, explicitly specifying
the oracle mapping setting.

Creating Custom Java Classes and Specifying Member Names
In generating custom Java classes you can specify the names of any attributes or
methods of the custom class. This cannot be specified on the JPublisher command
line, however—only in a JPublisher INPUT file using TRANSLATE syntax, as
follows:

SQL udt <GENERATE GeneratedClass> <AS MapClass> <TRANSLATE membername1 AS
Javaname1> <, membername2 AS Javaname2> ...

(This is a single wrap-around command line.)

TRANSLATE pairs (membernameN AS JavanameN) are separated by commas.

For example, presume the Oracle object type EMPLOYEE has an ADDRESS attribute
that you want to call HomeAddress, and a GIVE_RAISE method that you want to
call giveRaise(). Also presume that you want to generate an Employee class but
map EMPLOYEE objects to a MyEmployee class that you will create (this is not
related to specifying member names, but provides a full example of INPUT file
syntax).

SQL employee GENERATE Employee AS MyEmployee TRANSLATE address AS HomeAddress,
GIVE_RAISE AS giveRaise

(This is a single wrap-around command line.)

Note: Unlike SQLJ, JPublisher has no default properties file. To
use a properties file, you must use the -props option.
 Objects and Collections 6-41

JPublisher and the Creation of Custom Java Classes
JPublisher Implementation of Wrapper Methods
This section describes how JPublisher generates wrapper methods and how
wrapper method calls are processed at runtime.

Generation of Wrapper Methods
The following points describe how JPublisher generates wrapper methods:

■ JPublisher-generated wrapper methods are implemented in SQLJ; therefore,
whenever -methods=true, the custom object class will be defined in a .sqlj
file instead of in a .java file, assuming the object type defines methods. Run
SQLJ to translate the .sqlj file.

■ All wrapper methods generated by JPublisher are implemented as instance
methods. This is because a database connection is required for you to invoke
the corresponding server method. Each instance of a JPublisher-generated
custom Java class has a connection associated with it.

Runtime Execution of Wrapper Method Calls
The following points describe what JPublisher-generated Java wrapper methods
execute at runtime. In this discussion, "Java wrapper method" refers to a method in
the custom Java object, while "wrapped SQL method" refers to the SQL object
method that is wrapped by the Java wrapper method.

Notes:

■ When you specify member names, any members you do not
specify will be given the default naming.

■ The reason to capitalize the specified attribute—HomeAddress
instead of homeAddress—is that it will be used exactly as
specified to name the accessor methods; getHomeAddress(),
for example, follows naming conventions;
gethomeAddress() does not.

Note: Even if the object type does not define methods, you can
ensure that a .sqlj file is generated by setting
-methods=always. See the Oracle9i JPublisher User’s Guide for
more information.
6-42 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
■ The custom Java object is converted to a SQL object and passed to the database,
where the wrapped SQL method is invoked. After this method invocation, the
new value of the SQL object is returned to Java in a new custom Java object,
either as a function return from the wrapped SQL method (if the SQL method is
a stored procedure), or, if there already is a function return, as an array element
in an additional output parameter (if the SQL method is a stored function).

■ Any output or input-output parameter is passed as the element of a
one-element array. (This is to work around logistical issues with output and
input-output parameters, as discussed in "Custom Java Class Support for Object
Methods" on page 6-10.) If the parameter is input-output, then the wrapper
method takes the array element as input; after processing, the wrapper assigns
the output to the array element.

JPublisher Custom Java Class Examples
This section provides examples of JPublisher-generated ORAData implementations
for the following user-defined types (created in "User-Defined Types" on page 6-20):

■ a custom object class (Address, corresponding to the Oracle object type
ADDRESS) and related custom reference class (AddressRef)

■ a custom collection class (ModuletblT, corresponding to the Oracle collection
type MODULETBL_T)

Custom Object Class—Address.java
Following is an example of the source code that JPublisher generates for a custom
object class. Implementation details have been omitted.

In this example, unlike in "Creating Object Types" on page 6-20, assume the Oracle
object ADDRESS has only the street and zip_code attributes.

package bar;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;

Note: For examples of JPublisher-generated SQLData
implementations, as well as further examples of
JPublisher-generated ORAData implementations, see the Oracle9i
JPublisher User’s Guide.
 Objects and Collections 6-43

JPublisher and the Creation of Custom Java Classes
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.MutableStruct;

public class Address implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 public static ORADataFactory getORADataFactory()
 { ... }

 /* constructor */
 public Address()
 { ... }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 { ... }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { ... }

 /* accessor methods */
 public String getStreet() throws SQLException
 { ... }

 public void setStreet(String street) throws SQLException
 { ... }

 public String getZipCode() throws SQLException
 { ... }

 public void setZipCode(String zip_code) throws SQLException
 { ... }

}

6-44 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
Custom Reference Class—AddressRef.java
Following is an example of the source code that JPublisher generates for a custom
reference class to be used for references to ADDRESS objects. Implementation details
have been omitted.

package bar;

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.REF;
import oracle.sql.STRUCT;

public class AddressRef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

 public static ORADataFactory getORADataFactory()
 { ... }

 /* constructor */
 public AddressRef()
 { ... }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 { ... }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { ... }

 public Address getValue() throws SQLException
 { ... }

 public void setValue(Address c) throws SQLException
 { ... }
}

 Objects and Collections 6-45

JPublisher and the Creation of Custom Java Classes
Custom Collection Class—ModuletblT.java
Following is an example of the source code that JPublisher generates for a custom
collection class. Implementation details have been omitted.

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.ARRAY;
import oracle.sql.ArrayDescriptor;
import oracle.jpub.runtime.MutableArray;

public class ModuletblT implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.MODULETBL_T";
 public static final int _SQL_TYPECODE = OracleTypes.ARRAY;

 public static ORADataFactory getORADataFactory()
 { ... }

 /* constructors */
 public ModuletblT()
 { ... }

 public ModuletblT(ModuleT[] a)
 { ... }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 { ... }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { ... }

 public String getBaseTypeName() throws SQLException
 { ... }

 public int getBaseType() throws SQLException
 { ... }

 public ArrayDescriptor getDescriptor() throws SQLException
 { ... }
6-46 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
 /* array accessor methods */
 public ModuleT[] getArray() throws SQLException
 { ... }

 public void setArray(ModuleT[] a) throws SQLException
 { ... }

 public ModuleT[] getArray(long index, int count) throws SQLException
 { ... }

 public void setArray(ModuleT[] a, long index) throws SQLException
 { ... }

 public ModuleT getObjectElement(long index) throws SQLException
 { ... }

 public void setElement(ModuleT a, long index) throws SQLException
 { ... }
}

Extending Classes Generated by JPublisher
You might want to enhance the functionality of a custom Java class generated by
JPublisher by adding methods and transient fields. You can accomplish this by
extending the JPublisher-generated class.

For example, suppose you want JPublisher to generate the class JAddress from the
SQL object type ADDRESS. You also want to write a class MyAddress to represent
ADDRESS objects and implement special functionality. The MyAddress class must
extend JAddress.

Another way to enhance the functionality of a JPublisher-generated class is to
simply add methods to it. However, adding methods to the generated class is not
recommended if you anticipate running JPublisher at some future time to
regenerate the class. If you run JPublisher to regenerate a class that you have
modified in this way, you would have to save a copy and then manually merge
your changes back in.
 Objects and Collections 6-47

JPublisher and the Creation of Custom Java Classes
JPublisher Functionality for Extending Generated Classes
As discussed in "Generate Custom Java Classes and Map Alternate Classes" on
page 6-37, the JPublisher syntax to generate JAddress but map to MyAddress is as
follows:

-sql=ADDRESS:JAddress:MyAddress

or, in an INPUT file:

SQL ADDRESS GENERATE JAddress AS MyAddress

As a result of this, JPublisher will generate the reference class MyAddressRef (in
MyAddressRef.java) rather than JAddressRef.

In addition, JPublisher alters the code it generates to implement the following
functionality:

■ The MyAddress class, instead of the JAddress class, is used to represent
attributes whose SQL type is ADDRESS.

■ The MyAddress class, instead of the JAddress class, is used to represent
method arguments and function results whose type is ADDRESS.

■ The MyAddress factory, instead of the JAddress factory, is used to construct
Java objects whose SQL type is ADDRESS.

You would presumably use MyAddress similarly in any additional code that you
write.

At runtime, the Oracle JDBC driver will map any occurrences of ADDRESS data in
the database to MyAddress instances, instead of to JAddress instances.

Requirements of Extended Classes
The class that you create (for example, MyAddress.java) must have a
no-argument constructor. The easiest way to construct a properly initialized object
is to invoke the constructor of the superclass, either explicitly or implicitly.

As a result of subclassing the JPublisher-generated class, the subclass will inherit
definitions of the _SQL_NAME field, which it requires, and the _SQL_TYPECODE
field.

In addition, one of the following will be true.

■ If the JPublisher-generated class implements the ORAData and
ORADataFactory interfaces, then the subclass will inherit this implementation
and the necessary toDatum() and create() functionality of the generated
6-48 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
class. You must implement a getORADataFactory() method that returns an
instance of your map class (such as a MyAddress object).

or:

■ If the JPublisher-generated class implements the SQLData interface, then the
subclass will inherit this implementation and the necessary readSQL() and
writeSQL() functionality of the generated class.

JPublisher-Generated Custom Object Class—JAddress.java
Continuing the example in the preceding sections, here is sample code for the
JPublisher-generated class (JAddress), implementing ORAData and
ORADataFactory. Implementation details have been omitted.

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class JAddress implements ORAData, ORADataFactory
{
 public static final String _SQL_NAME = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 public static ORADataFactory getORADataFactory()
 { ... }

 /* constructor */
 public JAddress()
 { ... }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 { ... }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { ... }

 /* accessor methods */
 public String getStreet() throws SQLException
 Objects and Collections 6-49

JPublisher and the Creation of Custom Java Classes
 { ... }

 public void setStreet(String street) throws SQLException
 { ... }

 public String getCity() throws SQLException
 { ... }

 public void setCity(String city) throws SQLException
 { ... }

 public String getState() throws SQLException
 { ... }

 public void setState(String state) throws SQLException
 { ... }

 public java.math.BigDecimal getZip() throws SQLException
 { ... }

 public void setZip(java.math.BigDecimal zip) throws SQLException
 { ... }

}

JPublisher-Generated Alternate Reference Class—MyAddressRef.java
Continuing the example in the preceding sections, here is sample code for the
JPublisher-generated reference class (MyAddressRef, as opposed to
JAddressRef, because MyAddress is the class that ADDRESS objects map to). This
class also implements ORAData and ORADataFactory. Implementation details
have been omitted.

import java.sql.SQLException;
import java.sql.Connection;
import oracle.jdbc.OracleTypes;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.REF;
import oracle.sql.STRUCT;
6-50 SQLJ Developer’s Guide and Reference

JPublisher and the Creation of Custom Java Classes
public class MyAddressRef implements ORAData, ORADataFactory
{
 public static final String _SQL_BASETYPE = "SCOTT.ADDRESS";
 public static final int _SQL_TYPECODE = OracleTypes.REF;

 public static ORADataFactory getORADataFactory()
 { ... }

 /* constructor */
 public MyAddressRef()
 { ... }

 /* ORAData interface */
 public Datum toDatum(Connection c) throws SQLException
 { ... }

 /* ORADataFactory interface */
 public ORAData create(Datum d, int sqlType) throws SQLException
 { ... }

 public MyAddress getValue() throws SQLException
 { ... }

 public void setValue(MyAddress c) throws SQLException
 { ... }
}

Extended Custom Object Class—MyAddress.java
Continuing the example in the preceding sections, here is sample code for a
MyAddress class that subclasses the JPublisher-generated JAddress class. The
comments in the code show what is inherited from JAddress. Implementation
details have been omitted.

import java.sql.SQLException;
import oracle.sql.ORAData;
import oracle.sql.ORADataFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class MyAddress extends JAddress
{
 /* _SQL_NAME inherited from MyAddress */
 Objects and Collections 6-51

JPublisher and the Creation of Custom Java Classes
 /* _SQL_TYPECODE inherited from MyAddress */

 static _myAddressFactory = new MyAddress();

 public static ORADataFactory getORADataFactory()
 {
 return _myAddressFactory;
 }

 /* constructor */
 public MyAddress()
 { super(); }

 /* ORAData interface */
 /* toDatum() inherited from JAddress */

 /* ORADataFactory interface */
 public ORAData create(oracle.sql.Datum d, int sqlType) throws SQLException
 { ... }

 /* accessor methods inherited from JAddress */

 /* Additional methods go here. These additional methods (not shown)
 are the reason that JAddress was extended.
 */
}

6-52 SQLJ Developer’s Guide and Reference

Strongly Typed Objects and References in SQLJ Executable Statements
Strongly Typed Objects and References in SQLJ Executable Statements
Oracle SQLJ is flexible in how it allows you to use host expressions and iterators in
reading or writing object data through strongly typed objects or references.

For iterators, you can use custom object classes as iterator column types.
Alternatively, you can have iterator columns that correspond to individual object
attributes (similar to extent tables), using column types that appropriately map to
the SQL datatypes of the attributes.

For host expressions, you can use host variables of your custom object class type or
custom reference class type. Alternatively, you can use host variables that
correspond to object attributes, using variable types that appropriately map to the
SQL datatypes of the attributes.

The remainder of this section provides examples of how to manipulate Oracle
objects using custom object classes, custom object class attributes, and custom
reference classes for host variables and iterator columns in SQLJ executable
statements.

The first two examples operate at the object level:

1. Selecting Objects and Object References into Iterator Columns

2. Updating an Object

The third example operates at the scalar-attribute level:

3. Inserting an Object Created from Individual Object Attributes

The fourth example operates through a reference:

4. Updating an Object Reference

Refer back to the Oracle object types ADDRESS and PERSON in "Creating Object
Types" on page 6-20.

For a complete sample application that includes most of the code in the following
examples, see "Oracle Objects—ObjectDemo.sqlj" on page 12-28.

Note: Discussion of custom reference classes applies only to
implementations using the ORAData or deprecated CustomDatum
interfaces.
 Objects and Collections 6-53

Strongly Typed Objects and References in SQLJ Executable Statements
Selecting Objects and Object References into Iterator Columns
This example uses a custom Java class and a custom reference class (ORAData
implementations) as iterator column types.

Presume the following definition of Oracle object type ADDRESS:

CREATE TYPE ADDRESS AS OBJECT
(street VARCHAR(40),
 zip NUMBER);

And the following definition of the table EMPADDRS, which includes an ADDRESS
column and an ADDRESS reference column:

CREATE TABLE empaddrs
(name VARCHAR(60),
 home ADDRESS,
 loc REF ADDRESS);

Once you use JPublisher or otherwise create a custom Java class Address and
custom reference class AddressRef corresponding to the Oracle object type
ADDRESS, you can use Address and AddressRef in a named iterator as follows:

Declaration:

#sql iterator EmpIter (String name, Address home, AddressRef loc);

Executable code:

EmpIter ecur;
#sql ecur = { SELECT name, home, loc FROM empaddrs };
while (ecur.next()) {
 Address homeAddr = ecur.home();
 // Print out the home address.
 System.out.println ("Name: " + ecur.name() + "\n" +
 "Home address: " + homeAddr.getStreet() + " " +
 homeAddr.getZip());
 // Now update the loc address zip code through the address reference.
 AddressRef homeRef = ecur.loc();
 Address location = homeRef.getValue();
 location.setZip(new BigDecimal(98765));
 homeRef.setValue(location);
 }
...
6-54 SQLJ Developer’s Guide and Reference

Strongly Typed Objects and References in SQLJ Executable Statements
The method call ecur.home() extracts an Address object from the home column
of the iterator and assigns it to the local variable homeAddr (for efficiency). The
attributes of that object can then be accessed using standard Java dot syntax:

homeAddr.getStreet()

Use the getValue() and setValue() methods, standard with any
JPublisher-generated custom reference class, to manipulate the location address (in
this case its zip code).

Updating an Object
This example declares and sets an input host variable of Java type Address to
update an ADDRESS object in a column of the employees table. Both before and
after the update, the address is selected into an output host variable of type
Address and printed for verification.

...
// Updating an object

static void updateObject()
{

 Address addr;
 Address new_addr;
 int empnum = 1001;

 try {
 #sql {
 SELECT office_addr
 INTO :addr
 FROM employees
 WHERE empnumber = :empnum };
 System.out.println("Current office address of employee 1001:");

 printAddressDetails(addr);

 /* Now update the street of address */

Note: The remaining examples in this section use the types and
tables defined in the SQL script in "Creating Object Types" on
page 6-20.
 Objects and Collections 6-55

Strongly Typed Objects and References in SQLJ Executable Statements
 String street ="100 Oracle Parkway";
 addr.setStreet(street);

 /* Put updated object back into the database */

 try {
 #sql {
 UPDATE employees
 SET office_addr = :addr
 WHERE empnumber = :empnum };
 System.out.println
 ("Updated employee 1001 to new address at Oracle Parkway.");

 /* Select new address to verify update */

 try {
 #sql {
 SELECT office_addr
 INTO :new_addr
 FROM employees
 WHERE empnumber = :empnum };

 System.out.println("New office address of employee 1001:");
 printAddressDetails(new_addr);

 } catch (SQLException exn) {
 System.out.println("Verification SELECT failed with "+exn); }

 } catch (SQLException exn) {
 System.out.println("UPDATE failed with "+exn); }

 } catch (SQLException exn) {
 System.out.println("SELECT failed with "+exn); }
}
...

Note the use of the setStreet() accessor method of the Address object.
Remember that JPublisher provides such accessor methods for all attributes in any
custom Java class that it produces.

This example uses the printAddressDetails() utility. For the source code of
this method, see "Oracle Objects—ObjectDemo.sqlj" on page 12-28.
6-56 SQLJ Developer’s Guide and Reference

Strongly Typed Objects and References in SQLJ Executable Statements
Inserting an Object Created from Individual Object Attributes
This example declares and sets input host variables corresponding to attributes of
PERSON and nested ADDRESS objects, then uses these values to insert a new
PERSON object into the persons table in the database.

...
// Inserting an object

static void insertObject()
{
 String new_name = "NEW PERSON";
 int new_ssn = 987654;
 String new_street = "NEW STREET";
 String new_city = "NEW CITY";
 String new_state = "NS";
 String new_zip = "NZIP";
 /*
 * Insert a new PERSON object into the persons table
 */
 try {
 #sql {
 INSERT INTO persons
 VALUES (PERSON(:new_name, :new_ssn,
 ADDRESS(:new_street, :new_city, :new_state, :new_zip))) };

 System.out.println("Inserted PERSON object NEW PERSON.");

 } catch (SQLException exn) { System.out.println("INSERT failed with "+exn); }
}
...

Updating an Object Reference
This example selects a PERSON reference from the persons table and uses it to
update a PERSON reference in the employees table. It uses simple (int and
String) input host variables to check attribute value criteria. The newly updated
reference is then used in selecting the PERSON object to which it refers, so that
information can be output to the user to verify the change.

...
// Updating a REF to an object

static void updateRef()
 Objects and Collections 6-57

Strongly Typed Objects and References in SQLJ Executable Statements
{
 int empnum = 1001;
 String new_manager = "NEW PERSON";

 System.out.println("Updating manager REF.");
 try {
 #sql {
 UPDATE employees
 SET manager =
 (SELECT REF(p) FROM persons p WHERE p.name = :new_manager)
 WHERE empnumber = :empnum };

 System.out.println("Updated manager of employee 1001. Selecting back");

 } catch (SQLException exn) {
 System.out.println("UPDATE REF failed with "+exn); }

 /* Select manager back to verify the update */
 Person manager;

 try {
 #sql {
 SELECT deref(manager)
 INTO :manager
 FROM employees e
 WHERE empnumber = :empnum };

 System.out.println("Current manager of "+empnum+":");
 printPersonDetails(manager);

 } catch (SQLException exn) {
 System.out.println("SELECT REF failed with "+exn); }

}
...

Note: This example uses table alias syntax (p) as discussed
previously. Also, the REF syntax is required in selecting a reference
through the object to which it refers, and the DEREF syntax is
required in selecting an object through a reference. See the Oracle9i
SQL Reference for more information about table aliases, REF, and
DEREF.
6-58 SQLJ Developer’s Guide and Reference

Strongly Typed Collections in SQLJ Executable Statements
Strongly Typed Collections in SQLJ Executable Statements
As with strongly typed objects and references, Oracle SQLJ supports different
scenarios for reading and writing data through strongly typed collections, using
either iterators or host expressions.

From the perspective of a SQLJ developer, both categories of collections—VARRAY
and nested table—are treated essentially the same, but there are some differences in
implementation and performance.

Oracle SQLJ, and Oracle SQL in general, support syntax choices so that nested
tables can be accessed and manipulated either apart from or together with their
outer tables. In this section, manipulation of a nested table by itself will be referred
to as detail-level manipulation; manipulation of a nested table together with its outer
table will be referred to as master-level manipulation.

Most of this section, after a brief discussion of some syntax, focuses on examples of
manipulating nested tables, given that their use is somewhat more complicated
than that of VARRAYs.

Refer back to the Oracle collection type MODULETBL_T and related tables and object
types defined in "Creating Collection Types" on page 6-22.

For complete nested table sample applications, including one that incorporates the
sample code below, see "Oracle Nested Tables—NestedDemo1.sqlj and
NestedDemo2.sqlj" on page 12-37.

Following the nested table discussion are some brief VARRAY examples. There are
also complete VARRAY sample applications, including one that incorporates this
code, in "Oracle VARRAYs—VarrayDemo1.sqlj and VarrayDemo2.sqlj" on
page 12-45.

Notes:

■ In Oracle SQLJ, VARRAY types and nested table types can be
retrieved only in their entirety. This is as opposed to Oracle
SQL, where nested tables can be selectively queried.

■ Any discussion of custom collection classes applies only to
implementations using the ORAData or deprecated
CustomDatum interfaces.
 Objects and Collections 6-59

Strongly Typed Collections in SQLJ Executable Statements
Accessing Nested Tables—TABLE syntax and CURSOR syntax
Oracle SQLJ supports the use of nested iterators to access data in nested tables. Use
the CURSOR keyword in the outer SELECT statement to encapsulate the inner
SELECT statement. This is shown in "Selecting Data from a Nested Table Using a
Nested Iterator" on page 6-64.

Oracle SQLJ also supports use of the TABLE keyword to manipulate the individual
rows of a nested table. This keyword informs Oracle that the column value returned
by a subquery is a nested table, as opposed to a scalar value. You must prefix the
TABLE keyword to a subquery that returns a single column value or an expression
that yields a nested table.

The following example shows the use of TABLE syntax:

UPDATE TABLE(SELECT a.modules FROM projects a WHERE a.id=555) b
 SET module_owner=
 (SELECT ref(p) FROM employees p WHERE p.ename= ’Smith’)
 WHERE b.module_name = ’Zebra’;

When you see TABLE used as it is here, realize that it is referring to a single nested
table that has been selected from a column of an outer table.

Inserting a Row that Includes a Nested Table
This example shows an operation that manipulates the master level (outer table)
and detail level (nested tables) simultaneously and explicitly. This inserts a row in
the projects table, where each row includes a nested table of type MODULETBL_T,
which contains rows of MODULE_T objects.

First, the scalar values are set (id, name, start_date, duration), then the nested
table values are set. This involves an extra level of abstraction, because the nested
table elements are objects with multiple attributes. In setting the nested table values,
each attribute value must be set for each MODULE_T object in the nested table.
Finally, the owner values, initially set to null, are set in a separate statement.

// Insert Nested table details along with master details

 public static void insertProject2(int id) throws Exception

Note: This example uses table alias syntax (a for projects, b for
the nested table, and p for employees) as discussed previously.
See the Oracle9i SQL Reference for more information about table
aliases.
6-60 SQLJ Developer’s Guide and Reference

Strongly Typed Collections in SQLJ Executable Statements
 {
 System.out.println("Inserting Project with Nested Table details..");
 try {
 #sql { INSERT INTO Projects(id,name,owner,start_date,duration, modules)
 VALUES (600, ’Ruby’, null, ’10-MAY-98’, 300,
 moduletbl_t(module_t(6001, ’Setup ’, null, ’01-JAN-98’, 100),
 module_t(6002, ’BenchMark’, null, ’05-FEB-98’,20) ,
 module_t(6003, ’Purchase’, null, ’15-MAR-98’, 50),
 module_t(6004, ’Install’, null, ’15-MAR-98’,44),
 module_t(6005, ’Launch’, null,’12-MAY-98’,34))) };
 } catch (Exception e) {
 System.out.println("Error:insertProject2");
 e.printStackTrace();
 }

 // Assign project owner to this project

 try {
 #sql { UPDATE Projects pr
 SET owner=(SELECT ref(pa) FROM participants pa WHERE pa.empno = 7698)
 WHERE pr.id=600 };
 } catch (Exception e) {
 System.out.println("Error:insertProject2:update");
 e.printStackTrace();
 }
 }

Selecting a Nested Table into a Host Expression
This example presents an operation that works directly at the detail level of the
nested table. Recall that ModuletblT is a JPublisher-generated custom collection
class (ORAData implementation) for MODULETBL_T nested tables, ModuleT is a
JPublisher-generated custom object class for MODULE_T objects, and MODULETBL_T
nested tables contain MODULE_T objects.

A nested table of MODULE_T objects is selected from the modules column of the
projects table into a ModuletblT host variable.

Following that, the ModuletblT variable (containing the nested table) is passed to
a method that accesses its elements through its getArray() method, writing the
data to a ModuleT[] array. (All custom collection classes generated by JPublisher
include a getArray() method.) Then each element is copied from the ModuleT[]
array into a ModuleT object, and individual attributes are retrieved through
 Objects and Collections 6-61

Strongly Typed Collections in SQLJ Executable Statements
accessor methods (getModuleName(), for example) and then printed. (All
JPublisher-generated custom object classes include such accessor methods.)

 static ModuletblT mymodules=null;
 ...

 public static void getModules2(int projId)
 throws Exception
 {
 System.out.println("Display modules for project " + projId);

 try {
 #sql {SELECT modules INTO :mymodules
 FROM projects WHERE id=:projId };
 showArray(mymodules);
 } catch(Exception e) {
 System.out.println("Error:getModules2");
 e.printStackTrace();
 }
 }

 public static void showArray(ModuletblT a)
 {
 try {
 if (a == null)
 System.out.println("The array is null");
 else {
 System.out.println("printing ModuleTable array object of size "
 +a.length());
 ModuleT[] modules = a.getArray();

 for (int i=0;i<modules.length; i++) {
 ModuleT module = modules[i];
 System.out.println("module "+module.getModuleId()+
 ", "+module.getModuleName()+
 ", "+module.getModuleStartDate()+
 ", "+module.getModuleDuration());
 }
 }
 }
 catch(Exception e) {
 System.out.println("Show Array");
 e.printStackTrace();
 }
 }
6-62 SQLJ Developer’s Guide and Reference

Strongly Typed Collections in SQLJ Executable Statements
Manipulating a Nested Table Using TABLE Syntax
This example uses TABLE syntax to work at the detail level to access and update
nested table elements directly, based on master-level criteria.

The assignModule() method selects a nested table of MODULE_T objects from the
MODULES column of the PROJECTS table, then updates MODULE_NAME for a
particular row of the nested table.

Similarly, the deleteUnownedModules() method selects a nested table of
MODULE_T objects, then deletes any unowned modules in the nested table (where
MODULE_OWNER is null).

These methods use table alias syntax, as discussed previously—in this case, m for
the nested table and p for the participants table. See the Oracle9i SQL Reference
for more information about table aliases.

 /* assignModule
 // Illustrates accessing the nested table using the TABLE construct
 // and updating the nested table row
 */
 public static void assignModule(int projId, String moduleName,
 String modOwner) throws Exception
 {
 System.out.println("Update:Assign ’"+moduleName+"’ to ’"+ modOwner+"’");

 try {
 #sql {UPDATE TABLE(SELECT modules FROM projects WHERE id=:projId) m
 SET m.module_owner=
 (SELECT ref(p) FROM participants p WHERE p.ename= :modOwner)
 WHERE m.module_name = :moduleName };
 } catch(Exception e) {
 System.out.println("Error:insertModules");
 e.printStackTrace();
 }
 }

 /* deleteUnownedModules
 // Demonstrates deletion of the Nested table element
 */

 public static void deleteUnownedModules(int projId)
 throws Exception
 {
 System.out.println("Deleting Unowned Modules for Project " + projId);
 try {
 Objects and Collections 6-63

Strongly Typed Collections in SQLJ Executable Statements
 #sql { DELETE TABLE(SELECT modules FROM projects WHERE id=:projId) m
 WHERE m.module_owner IS NULL };
 } catch(Exception e) {
 System.out.println("Error:deleteUnownedModules");
 e.printStackTrace();
 }
 }

Selecting Data from a Nested Table Using a Nested Iterator
SQLJ supports the use of nested iterators as a way of accessing nested tables. This
requires CURSOR syntax, as used in the example below.

The code defines a named iterator class ModuleIter, then uses that class as the
type for a modules column in another named iterator class ProjIter. Inside a
populated ProjIter instance, each modules item is a nested table rendered as a
nested iterator.

The CURSOR syntax is part of the nested SELECT statement that populates the
nested iterators.

Once the data has been selected, it is output to the user through the iterator accessor
methods.

This example uses required table alias syntax, as discussed previously—in this case,
a for the projects table and b for the nested table. See the Oracle9i SQL Reference
for more information about table aliases.

...

// The Nested Table is accessed using the ModuleIter
// The ModuleIter is defined as Named Iterator

#sql public static iterator ModuleIter(int moduleId ,
 String moduleName ,
 String moduleOwner);

// Get the Project Details using the ProjIter defined as
// Named Iterator. Notice the use of ModuleIter below:

#sql public static iterator ProjIter(int id,
 String name,
 String owner,
 Date start_date,
 ModuleIter modules);
6-64 SQLJ Developer’s Guide and Reference

Strongly Typed Collections in SQLJ Executable Statements
...

public static void listAllProjects() throws SQLException
{
 System.out.println("Listing projects...");

 // Instantiate and initialize the iterators

 ProjIter projs = null;
 ModuleIter mods = null;
 #sql projs = {SELECT a.id,
 a.name,
 initcap(a.owner.ename) as "owner",
 a.start_date,
 CURSOR (
 SELECT b.module_id AS "moduleId",
 b.module_name AS "moduleName",
 initcap(b.module_owner.ename) AS "moduleOwner"
 FROM TABLE(a.modules) b) AS "modules"
 FROM projects a };

 // Display Project Details

 while (projs.next()) {
 System.out.println("\n’" + projs.name() + "’ Project Id:"
 + projs.id() + " is owned by " +"’"+ projs.owner() +"’"
 + " start on "
 + projs.start_date());

 // Notice below the modules from the ProjIter are assigned to the module
 // iterator variable
 mods = projs.modules();
 System.out.println ("Modules in this Project are : ");

 // Display Module details
 while(mods.next()) {
 System.out.println (" "+ mods.moduleId() + " ’"+
 mods.moduleName() + "’ owner is ’" +
 mods.moduleOwner()+"’");
 } // end of modules
 mods.close();
 } // end of projects
 projs.close();
}

 Objects and Collections 6-65

Strongly Typed Collections in SQLJ Executable Statements
Selecting a VARRAY into a Host Expression
This section provides an example of selecting a VARRAY into a host expression.
Presume the following SQL definitions:

CREATE TYPE PHONE_ARRAY IS VARRAY (10) OF varchar2(30)
/
/*** Create ADDRESS UDT ***/
CREATE TYPE ADDRESS AS OBJECT
(
 street VARCHAR(60),
 city VARCHAR(30),
 state CHAR(2),
 zip_code CHAR(5)
)
/
/*** Create PERSON UDT containing an embedded ADDRESS UDT ***/
CREATE TYPE PERSON AS OBJECT
(
 name VARCHAR(30),
 ssn NUMBER,
 addr ADDRESS
)
/

CREATE TABLE employees
(empnumber INTEGER PRIMARY KEY,
 person_data REF person,
 manager REF person,
 office_addr address,
 salary NUMBER,
 phone_nums phone_array
)
/

And presume that JPublisher is used to create a custom collection class
PhoneArray to map from the PHONE_ARRAY SQL type.

The following method selects a row from this table, placing the data into a host
variable of the PhoneArray type.

private static void selectVarray() throws SQLException
{
 PhoneArray ph;
 #sql {select phone_nums into :ph from employees where empnumber=2001};
 System.out.println(
6-66 SQLJ Developer’s Guide and Reference

Strongly Typed Collections in SQLJ Executable Statements
 "there are "+ph.length()+" phone numbers in the PhoneArray. They are:");

 String [] pharr = ph.getArray();
 for (int i=0;i<pharr.length;++i)
 System.out.println(pharr[i]);
}

Inserting a Row that Includes a VARRAY
This section provides an example of inserting data from a host expression into a
VARRAY, using the same SQL definitions and custom collection class
(PhoneArray) as in the previous section.

The following methods populate a PhoneArray instance and use it as a host
variable, inserting its data into a VARRAY in the database.

// creates a varray object of PhoneArray and inserts it into a new row
private static void insertVarray() throws SQLException
{
 PhoneArray phForInsert = consUpPhoneArray();
 // clean up from previous demo runs
 #sql {delete from employees where empnumber=2001};
 // insert the PhoneArray object
 #sql {insert into employees (empnumber, phone_nums)
 values(2001, :phForInsert)};
}

private static PhoneArray consUpPhoneArray()
{
 String [] strarr = new String[3];
 strarr[0] = "(510) 555.1111";
 strarr[1] = "(617) 555.2222";
 strarr[2] = "(650) 555.3333";
 return new PhoneArray(strarr);
}

 Objects and Collections 6-67

Serialized Java Objects
Serialized Java Objects
When writing and reading instances of Java objects to or from the database, it is
sometimes advantageous to define a SQL object type that corresponds to your Java
class, and use the mechanisms of mapping custom Java classes described
previously. This fully permits SQL queries on your Java objects.

In some cases, however, you may want to store Java objects "as-is" and retrieve them
later, using database columns of type RAW or BLOB. There are different ways to
accomplish this:

■ You can map a serializable Java class to RAW or BLOB columns by using a
non-standard extension to the type map facility, or by adding a typecode field
to the serializable class, so that instances of the serializable class can be stored
as RAW or BLOB.

■ You can use the ORAData facility to define a serializable wrapper class whose
instances can be stored in RAW or BLOB columns.

Serializing in any of these ways works for any Oracle SQLJ runtime library except
runtime-nonoracle.

Serializing Java Classes to RAW and BLOB Columns
If you want to store instances of Java classes directly in RAW or BLOB columns, then
you must meet certain non-standard requirements to specify the desired SQL-Java
mapping. (Note that in SQLJ statements the serializable Java objects can be
transparently read and written as if they were built-in types.)

You have two options in specifying the SQL-Java type mapping:

■ Declare a type map in the connection context declaration and use this type map
to specify mappings.

■ Use the public static final field _SQL_TYPECODE to specify the mapping.

The rest of this section describes each of these options.

Defining a Type Map for Serializable Classes
Consider an example where SAddress, pack.SPerson, and
pack.Manager.InnerSPM (where InnerSPM is an inner class of Manager) are
serializable Java classes. In other words, these classes implement the
java.io.Serializable interface.
6-68 SQLJ Developer’s Guide and Reference

Serialized Java Objects
You must employ the classes only in statements that use explicit connection context
instances of a declared connection context type, such as SerContext in the
following example:

SAddress a =...;
pack.SPerson p =...;
pack.Manager.InnerSPM pm =...;
SerContext ctx = new SerContext(url,user,pwd,false);
#sql [ctx] { ... :a ... :OUT p ... :INOUT pm ... };

The following is required:

■ The connection context type must have been declared using the typeMap
attribute of a with clause to specify an associated class implementing a
java.util.PropertyResourceBundle. In our example, SerContext
might have been declared as follows.

#sql public static context SerContext with (typeMap="SerMap");

■ The type map resource must provide non-standard mappings from RAW or
BLOB columns to the serializable Java classes. This mapping is specified with
entries of the following form, depending on whether the Java class is mapped to
a RAW or a BLOB column:

oracle-class.<java_class_name>=JAVA_OBJECT RAW
oracle-class.<java_class_name>=JAVA_OBJECT BLOB

The keyword oracle-class marks this as an Oracle-specific extension. In our
example, the resource file SerMap.properties might contain the following
entries:

oracle-class.SAddress=JAVA_OBJECT RAW
oracle-class.pack.SPerson=JAVA_OBJECT BLOB
oracle-class.packManager$InnerSPM=JAVA_OBJECT RAW

(Although "." separates package and class names, you must use the character
"$" to separate an inner class name.)

Note that this Oracle-specific extension can be placed in the same type map
resource as standard SQLData type map entries.

Using Fields to Determine Mapping for Serializable Classes
As an alternative to using a type map for a serializable class, you can use static
fields in the serializable class to determine type mapping.
 Objects and Collections 6-69

Serialized Java Objects
You can add either of the following fields to a class that implements the
java.io.Serializable interface, such as the SAddress and SPerson classes
from the example in "Defining a Type Map for Serializable Classes" above.

public final static int _SQL_TYPECODE = oracle.jdbc.OracleTypes.RAW;

or:

public final static int _SQL_TYPECODE = oracle.jdbc.OracleTypes.BLOB;

Limitations on Serializing Java Objects
You should be aware of the effect of serialization. If two objects, A and B, share the
same object, C, then upon serialization and subsequent deserialization of A and B,
each will point to its own clone of the object C. Sharing is broken.

In addition, note that for a given Java class, you can declare only one kind of
serialization: either into RAW or into BLOB. The SQLJ translator can check only that
the actual usage conforms to either RAW or BLOB.

RAW columns are limited in size—you may experience runtime errors if the actual
size of the serialized Java object exceeds the size of the column.

Although column size is much less restrictive for BLOB columns, writing a
serialized Java object to a BLOB column is currently supported only in the JDBC OCI
driver. On the other hand, retrieving a serialized object from a BLOB column is
supported by all Oracle JDBC drivers.

Finally, treating serialized Java objects this way is an Oracle-specific extension and
requires the Oracle SQLJ runtime as well as either Oracle-specific profile
customization (with standard SQLJ code generation) or Oracle-specific code
generation (specified with -codegen=oracle during translation). Note that future
versions of Oracle may support SQL types that directly encapsulate Java serialized
objects — these are described as JAVA_OBJECT SQL types in JDBC 2.0. At that
point, you can replace each of the BLOB and RAW designations by the names of their
corresponding JAVA_OBJECT SQL types, and you can drop the oracle- prefix on
the entries.

Note: Using the type map facility supersedes manually adding
the _SQL_TYPECODE field to the class.
6-70 SQLJ Developer’s Guide and Reference

Serialized Java Objects
SerializableDatum—An ORAData Implementation
"Additional Uses for ORAData Implementations" on page 6-18 includes examples of
situations where you might want to define a custom Java class that maps to some
oracle.sql.* type other than the oracle.sql.STRUCT, oracle.sql.REF, or
oracle.sql.ARRAY type.

An example of such a situation is if you want to serialize and deserialize Java
objects into and out of RAW fields, with a custom Java class that maps to the
oracle.sql.RAW type. (This could apply equally to BLOB fields, with a custom
Java class that maps to the oracle.sql.BLOB type.)

This section presents an example of this, creating a class SerializableDatum that
implements the ORAData interface and follows the general form of custom Java
classes, as described in "Custom Java Classes" on page 6-6.

The example starts with a step-by-step approach to the development of
SerializableDatum, followed by the complete sample code.

1. Begin with a skeleton of the class.

public class SerializableDatum implements ORAData
{
 // <Client methods for constructing and accessing the Java object>

 public Datum toDatum(java.sql.Connection c) throws SQLException
 {
 // <Implementation of toDatum()>
 }
 public static ORADataFactory getORADataFactory()
 {
 return FACTORY;
 }

Note: The implementation of this particular serialization
mechanism does not use JDBC type maps. The map (to BLOB or to
RAW) is hardcoded in the Oracle profile customization at translation
time, or is generated directly into Java code.

Note: This application uses classes from the java.io, java.sql,
oracle.sql, and oracle.jdbc packages. No import statements
are not shown here.
 Objects and Collections 6-71

Serialized Java Objects
 private static final ORADataFactory FACTORY =
 // <Implementation of an ORADataFactory for SerializableDatum>

 // <Construction of SerializableDatum from oracle.sql.RAW>

 public static final int _SQL_TYPECODE = OracleTypes.RAW;
}

SerializableDatum does not implement the ORADataFactory interface,
but its getORADataFactory() method returns a static member that
implements this interface.

The _SQL_TYPECODE is set to OracleTypes.RAW because this is the datatype
being read from and written to the database. The SQLJ translator needs this
typecode information in performing online type-checking to verify
compatibility between the user-defined Java type and the SQL type.

2. Define client methods that perform the following:

■ Create a SerializableDatum object.

■ Populate a SerializableDatum object.

■ Retrieve data from a SerializableDatum object.

// Client methods for constructing and accessing a SerializableDatum

private Object m_data;
public SerializableDatum()
{
 m_data = null;
}
public void setData(Object data)
{
 m_data = data;
}
public Object getData()
{
 return m_data;
}

3. Implement a toDatum() method that serializes data from a
SerializableDatum object to an oracle.sql.RAW object. The
implementation of toDatum() must return a serialized representation of the
object in the m_data field as an oracle.sql.RAW instance.
6-72 SQLJ Developer’s Guide and Reference

Serialized Java Objects
// Implementation of toDatum()

try {
 ByteArrayOutputStream os = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(os);
 oos.writeObject(m_data);
 oos.close();
 return new RAW(os.toByteArray());
} catch (Exception e) {
 throw new SQLException("SerializableDatum.toDatum: "+e.toString()); }

4. Implement data conversion from an oracle.sql.RAW object to a
SerializableDatum object. This step deserializes the data.

// Constructing SerializableDatum from oracle.sql.RAW

private SerializableDatum(RAW raw) throws SQLException
{
 try {
 InputStream rawStream = new ByteArrayInputStream(raw.getBytes());
 ObjectInputStream is = new ObjectInputStream(rawStream);
 m_data = is.readObject();
 is.close();
 } catch (Exception e) {
 throw new SQLException("SerializableDatum.create: "+e.toString()); }
}

5. Implement an ORADataFactory. In this case, it is implemented as an
anonymous class.

// Implementation of an ORADataFactory for SerializableDatum

new ORADataFactory()
{
 public ORAData create(Datum d, int sqlCode) throws SQLException
 {
 if (sqlCode != _SQL_TYPECODE)
 {
 throw new SQLException
 ("SerializableDatum: invalid SQL type "+sqlCode);
 }
 return (d==null) ? null : new SerializableDatum((RAW)d);
 }
};
 Objects and Collections 6-73

Serialized Java Objects
SerializableDatum in SQLJ Applications
Given the SerializableDatum class created in the preceding section, this section
shows how to use an instance of it in a SQLJ application, both as a host variable and
as an iterator column.

Presume the following table definition:

CREATE TABLE PERSONDATA (NAME VARCHAR2(20) NOT NULL, INFO RAW(2000));

SerializableDatum as Host Variable
The following uses a SerializableDatum instance as a host variable.

...
SerializableDatum pinfo = new SerializableDatum();
pinfo.setData (
 new Object[] {"Some objects", new Integer(51), new Double(1234.27) });
String pname = "MILLER";
#sql { INSERT INTO persondata VALUES(:pname, :pinfo) };
...

SerializableDatum in Iterator Column
Here is an example of using SerializableDatum as a named iterator column.

Declaration:

#sql iterator PersonIter (SerializableDatum info, String name);

Executable code:

PersonIter pcur;
#sql pcur = { SELECT * FROM persondata WHERE info IS NOT NULL };
while (pcur.next())
{
 System.out.println("Name:" + pcur.name() + " Info:" + pcur.info());
}
pcur.close();
...
6-74 SQLJ Developer’s Guide and Reference

Serialized Java Objects
SerializableDatum (Complete Class)
This section shows you the entire SerializableDatum class previously
developed in step-by-step fashion.

import java.io.*;
import java.sql.*;
import oracle.sql.*;
import oracle.jdbc.*;

public class SerializableDatum implements ORAData
{
// Client methods for constructing and accessing a SerializableDatum

 private Object m_data;
 public SerializableDatum()
 {
 m_data = null;
 }
 public void setData(Object data)
 {
 m_data = data;
 }
 public Object getData()
 {
 return m_data;
 }

// Implementation of toDatum()

 public Datum toDatum(Connection c) throws SQLException
 {

 try {
 ByteArrayOutputStream os = new ByteArrayOutputStream();
 ObjectOutputStream oos = new ObjectOutputStream(os);
 oos.writeObject(m_data);
 oos.close();
 return new RAW(os.toByteArray());
 } catch (Exception e) {
 throw new SQLException("SerializableDatum.toDatum: "+e.toString()); }
 }

 public static ORADataFactory getORADataFactory()
 {
 Objects and Collections 6-75

Serialized Java Objects
 return FACTORY;
 }

// Implementation of an ORADataFactory for SerializableDatum

 private static final ORADataFactory FACTORY =

 new ORADataFactory()
 {
 public ORAData create(Datum d, int sqlCode) throws SQLException
 {
 if (sqlCode != _SQL_TYPECODE)
 {
 throw new SQLException(
 "SerializableDatum: invalid SQL type "+sqlCode);
 }
 return (d==null) ? null : new SerializableDatum((RAW)d);
 }
 };

// Constructing SerializableDatum from oracle.sql.RAW

 private SerializableDatum(RAW raw) throws SQLException
 {
 try {
 InputStream rawStream = new ByteArrayInputStream(raw.getBytes());
 ObjectInputStream is = new ObjectInputStream(rawStream);
 m_data = is.readObject();
 is.close();
 } catch (Exception e) {
 throw new SQLException("SerializableDatum.create: "+e.toString()); }
 }

 public static final int _SQL_TYPECODE = OracleTypes.RAW;
}

6-76 SQLJ Developer’s Guide and Reference

Weakly Typed Objects, References, and Collections
Weakly Typed Objects, References, and Collections
Weakly typed objects, references, and collections are supported by SQLJ. Their use
is not generally recommended, and there are some specific restrictions, but in some
circumstances they can be useful. For example, you might have generic code that
can use "any STRUCT" or "any REF".

Support for Weakly Typed Objects, References, and Collections
In using Oracle objects, references, or collections in a SQLJ application, you have the
option of using generic and weakly typed java.sql or oracle.sql instances
instead of the strongly typed custom object, reference, and collection classes that
implement the ORAData interface or the strongly typed custom object classes that
implement the SQLData interface. (Note that if you use SQLData implementations
for your custom object classes, you will have no choice but to use weakly typed
custom reference instances.)

The following weak types can be used for iterator columns or host expressions in
Oracle SQLJ:

■ java.sql.Struct or oracle.sql.STRUCT for objects

■ java.sql.Ref or oracle.sql.REF for object references

■ java.sql.Array or oracle.sql.ARRAY for collections

In host expressions, they are supported as follows:

■ as input host expressions

■ as output host expressions in an INTO-list

Using these weak types is not generally recommended, however, as you would lose
all the advantages of the strongly typed paradigm that SQLJ offers.

Each attribute in a STRUCT object or each element in an ARRAY object is stored in an
oracle.sql.Datum object, with the underlying data being in the form of the
appropriate oracle.sql.* type (such as oracle.sql.NUMBER or
oracle.sql.CHAR). Attributes in a STRUCT object are nameless.

Because of the generic nature of the STRUCT and ARRAY classes, SQLJ cannot
perform type checking where objects or collections are written to or read from
instances of these classes.

It is generally recommended that you use custom Java classes for objects, references,
and collections, preferably classes generated by JPublisher.
 Objects and Collections 6-77

Weakly Typed Objects, References, and Collections
Restrictions on Weakly Typed Objects, References, and Collections
A weakly typed object (Struct or STRUCT instance), reference (Ref or REF
instance), or collection (Array or ARRAY instance) cannot be used in host
expressions in the following circumstances:

■ IN parameter if null

■ OUT or INOUT parameter in a stored procedure or function call

■ OUT parameter in a stored function result expression

They cannot be used in these ways because there is no way to know the underlying
SQL type name (such as Person), which is required by the Oracle JDBC driver to
materialize an instance of a user-defined type in Java.
6-78 SQLJ Developer’s Guide and Reference

 Advanced Language Fea
7

Advanced Language Features

This chapter discusses advanced SQLJ language features for use in coding your
application. For more basic topics, see Chapter 3, "Basic Language Features".

The following topics are discussed:

■ Connection Contexts

■ Execution Contexts

■ Multithreading in SQLJ

■ Iterator Class Implementation and Advanced Functionality

■ Advanced Transaction Control

■ SQLJ and JDBC Interoperability

■ Support for Dynamic SQL
tures 7-1

Connection Contexts
Connection Contexts
SQLJ supports the concept of connection contexts, allowing strongly typed
connections for use with different sets of SQL entities. You can think of a connection
context as being associated with a particular set of SQL entities such as tables,
views, and stored procedures. SQLJ lets you declare additional connection context
classes so that you can use each class for connections that use a particular set of SQL
entities. Different instances of a single connection context class are not required to
use the same physical entities or connect to the same schema, but will at least use
sets of entities with the same names and datatypes.

Connection Context Concepts
If your application uses different sets of SQL entities, then you will typically want to
declare and use one or more additional connection context classes, as discussed in
"Overview of SQLJ Declarations" on page 3-2. Each connection context class can be
used for a particular set of interrelated SQL entities, meaning that all the
connections you define using a particular connection context class will use tables,
views, stored procedures, and so on, that have the same names and use the same
datatypes.

An example of a set of SQL entities is the set of tables and stored procedures used
by the Human Resources department. Perhaps they use tables EMPLOYEES and
DEPARTMENTS and stored procedures CHANGE_DEPT and UPDATE_HEALTH_PLAN.
Another set of SQL entities might be the set of tables and procedures used by the
Payroll department, perhaps consisting of the table EMPS (another table of
employees, but different than the one used by HR) and the stored procedures
GIVE_RAISE and CHANGE_WITHHOLDING.

The advantage in tailoring connection context classes to sets of SQL entities is in the
degree of online semantics-checking that this allows. Online checking verifies that
all the SQL entities appearing in SQLJ statements that use a given connection
context class match SQL entities found in the exemplar schema used during
translation. An exemplar schema is a database account that SQLJ connects to for
online checking of all the SQLJ statements that use a particular connection context
class. You provide exemplar schemas to the translator through the SQLJ
command-line -user, -password, and -url options. (See "Connection Options"

Note: For an overview of connection basics, focusing on situations
where you are using just a single set of SQL entities and a single
connection context class, see "Connection Considerations" on
page 4-6.
7-2 SQLJ Developer’s Guide and Reference

Connection Contexts
on page 8-31 for information about these options.) An exemplar schema might or
might not be the same account your application will use at runtime.

If you have SQLJ statements that use a broad and perhaps unrelated group of SQL
entities, but you use only a single connection context class for these statements, then
the exemplar schema you provide must be very general. It must contain all the
tables, views, and stored procedures used throughout all the statements.
Alternatively, if all the SQLJ statements using a given connection context class use a
tight, presumably interrelated, set of SQL entities, then you can provide a more
specific exemplar schema that allows more thorough and meaningful
semantics-checking.

Notes:

■ Be aware that a connection context class declaration does not
define a set of SQL entities to be used with the declared
connection context class, and it is permissible to use the same
connection context class for connections that use disparate and
unrelated sets of entities. How you use your connection context
classes is at your discretion. All that limits the SQL entities you
can use with a particular connection context class are the set of
entities available in the exemplar schema (if you use online
semantics-checking during translation) and the set of entities
available in the schema you connect to at runtime, using
instances of the connection context class.

■ If you use qualified SQL names in your application—names
such as SCOTT.EMP, which specifies the schema where the
entity resides—then the exemplar schema (if you use online
checking) and runtime schema must have permission to access
resources by these fully qualified names.

■ It is possible to use a single connection context class, even for
connections to databases from different vendors, as long as
each schema you connect to has entities that are accessible by
the same names and that use compatible datatypes.
 Advanced Language Features 7-3

Connection Contexts
Connection Context Logistics
Declaring a connection context class results in the SQLJ translator defining a class
for you in the translator-generated code. In addition to any connection context
classes that you declare, there is always the default connection context class:

sqlj.runtime.ref.DefaultContext

When you construct a connection context instance, specify a particular schema (user
name, password, and URL) and a particular session and transaction in which SQL
operations will execute. You typically accomplish this by specifying a user name,
password, and database URL as input to the constructor of the connection context
class. The connection context instance manages the set of SQL operations performed
during the session.

In each SQLJ statement, you can specify a connection context instance to use, as
discussed in "Specifying a Connection Context Instance for a SQLJ Clause" on
page 7-7.

The following example shows basic declaration and use of a connection context
class, MyContext, to connect to two different schemas. For typical usage, assume
these schemas include a set of SQL entities with common names and datatypes.

Declaration:

#sql context MyContext;

Executable code:

MyContext mctx1 = new MyContext
 ("jdbc:oracle:thin@localhost:1521:ORCL", "scott", "tiger", false);
MyContext mctx2 = new MyContext
 ("jdbc:oracle:thin@localhost:1521:ORCL", "brian", "mypasswd", false);

Note that connection context class constructors specify a boolean auto-commit
parameter (this is further discussed in "More About Declaring and Using a
Connection Context Class" on page 7-5).

In addition, note that you can connect to the same schema with different connection
context instances. In the example above, both mctx1 and mctx2 could specify
scott/tiger if desired. During runtime, however, one connection context
instance would not see changes to the database made from the other until the
changes are committed. The only exception to this would be if both connection
context instances were created from the same underlying JDBC connection instance.
(One of the constructors of any connection context class takes a JDBC connection
instance as input.)
7-4 SQLJ Developer’s Guide and Reference

Connection Contexts
More About Declaring and Using a Connection Context Class
This section gives a detailed example of how to declare a connection context class,
then define a database connection using an instance of the class.

A connection context class has constructors for opening a connection to a database
schema, given any of the following (as with the DefaultContext class):

■ URL (String), user name (String), password (String), auto-commit
(boolean)

■ URL (String), java.util.Properties object, auto-commit (boolean)

■ URL (String fully specifying connection and including user name and
password), auto-commit setting (boolean)

■ JDBC connection object (Connection)

■ SQLJ connection context object

Declaring the Class
The following declaration creates a connection context class:

#sql context OrderEntryCtx <implements clause> <with clause>;

This results in the SQLJ translator generating a class that implements the
sqlj.runtime.ConnectionContext interface and extends some base class
(probably an abstract class) that also implements the ConnectionContext
interface. This base class would be a feature of the particular SQLJ implementation
you are using.

Notes:

■ When using the constructor that takes a JDBC connection
object, do not initialize the connection context instance with a
null JDBC connection.

■ The auto-commit setting determines whether SQL operations
are automatically committed. For more information, see "Basic
Transaction Control" on page 4-26.

■ If a connection context class is declared with a data source
with clause, then it incorporates a different set of constructors.
See "Data Source Support" on page 7-13 for more information.
 Advanced Language Features 7-5

Connection Contexts
The implements clause and with clause are optional, specifying additional
interfaces to implement and variables to define and initialize, respectively. See
"Declaration IMPLEMENTS Clause" on page 3-5 and "Declaration WITH Clause" on
page 3-6. For information about data source with clauses in particular, see "Data
Source Support" on page 7-13.

The following is an example of what the SQLJ translator generates (with method
implementations omitted):

class OrderEntryCtx implements sqlj.runtime.ConnectionContext
 extends ...
{
 public OrderEntryCtx(String url, Properties info, boolean autocommit)
 throws SQLException {...}
 public OrderEntryCtx(String url, boolean autocommit)
 throws SQLException {...}
 public OrderEntryCtx(String url, String user, String password,
 boolean autocommit) throws SQLException {...}
 public OrderEntryCtx(Connection conn) throws SQLException {...}
 public OrderEntryCtx(ConnectionContext other) throws SQLException {...}

 public static OrderEntryCtx getDefaultContext() {...}
 public static void setDefaultContext(OrderEntryCtx ctx) {...}
}

Creating a Connection Context Instance
Continuing the preceding example, instantiate the OrderEntryCtx class with the
following syntax:

OrderEntryCtx myOrderConn = new OrderEntryCtx
 (url, username, password, autocommit);

For example:

OrderEntryCtx myOrderConn = new OrderEntryCtx
 ("jdbc:oracle:thin:@localhost:1521:orcl", "scott", "tiger", true);

This is accomplished in the same way as instantiating the DefaultContext class.
All connection context classes, including DefaultContext, have the same
constructor signatures.
7-6 SQLJ Developer’s Guide and Reference

Connection Contexts
Specifying a Connection Context Instance for a SQLJ Clause
Recall that the basic SQLJ statement syntax is as follows:

#sql <[<conn><, ><exec>]> { SQL operation };

Specify the connection context instance inside square brackets following the #sql
token. For example, in the following SQLJ statement, the connection context
instance is myOrderConn from the previous example:

#sql [myOrderConn] { UPDATE TAB2 SET COL1 = :w WHERE :v < COL2 };

In this way, you can specify an instance of either the DefaultContext class or any
declared connection context class.

Closing a Connection Context Instance
It is advisable to close all connection context instances when you are done. Each
connection context class includes a close() method, as discussed for the
DefaultContext class in "Closing Connections" on page 4-10.

In closing a connection context instance that shares the underlying connection with
another connection instance, you might want to keep the underlying connection
open. See "Closing Shared Connections" on page 7-46.

Example of Multiple Connection Contexts
The following is an example of a SQLJ application using multiple connection
contexts. It implicitly uses an instance of the DefaultContext class for one set of
SQL entities, and uses an instance of the declared connection context class
DeptContext for another set of SQL entities.

This example uses the static Oracle.connect() method to establish a default
connection, then constructs an additional connection by using the static

Notes:

■ You typically must register your JDBC driver prior to
constructing a connection context instance. See "Driver
Selection and Registration for Runtime" on page 4-5.

■ If a connection context class is declared with a data source
with clause, then it incorporates a different set of constructors.
See "Data Source Support" on page 7-13 for more information.
 Advanced Language Features 7-7

Connection Contexts
Oracle.getConnection() method to pass another DefaultContext instance
to the DeptContext constructor. As previously mentioned, this is just one of
several ways you can construct a SQLJ connection context instance.

import java.sql.SQLException;
import oracle.sqlj.runtime.Oracle;

// declare a new context class for obtaining departments
#sql context DeptContext;

#sql iterator Employees (String ename, int deptno);

class MultiSchemaDemo
{
 public static void main(String[] args) throws SQLException
 {
 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 // set the default connection to the URL, user, and password
 // specified in your connect.properties file
 Oracle.connect(MultiSchemaDemo.class, "connect.properties");

 // create a context for querying department info using
 // a second connection
 DeptContext deptCtx =
 new DeptContext(Oracle.getConnection(MultiSchemaDemo.class,
 "connect.properties"));

 new MultiSchemaDemo().printEmployees(deptCtx);
 deptCtx.close();
 }

 // performs a join on deptno field of two tables accessed from
 // different connections.
 void printEmployees(DeptContext deptCtx) throws SQLException
 {
 // obtain the employees from the default context
 Employees emps;
 #sql emps = { SELECT ename, deptno FROM emp };

 // for each employee, obtain the department name
 // using the dept table connection context
 while (emps.next()) {
7-8 SQLJ Developer’s Guide and Reference

Connection Contexts
 String dname;
 int deptno = emps.deptno();
 #sql [deptCtx] {
 SELECT dname INTO :dname FROM dept WHERE deptno = :deptno
 };
 System.out.println("employee: " +emps.ename() +
 ", department: " + dname);
 }
 emps.close();
 }
}

Implementation and Functionality of Connection Context Classes
This section discusses how SQLJ implements connection context classes, including
the DefaultContext class, and what noteworthy methods they contain.

As mentioned earlier, the DefaultContext class and all generated connection
context classes implement the ConnectionContext interface.

ConnectionContext Interface
Each connection context class implements the
sqlj.runtime.ConnectionContext interface.

Basic methods specified by this interface include the following:

■ close(boolean CLOSE_CONNECTION/KEEP_CONNECTION)—Releases all
resources used in maintaining this connection and closes any open connected
profiles. It might or might not close the underlying JDBC connection,
depending on whether CLOSE_CONNECTION or KEEP_CONNECTION is
specified. These are static boolean constants of the ConnectionContext
interface.

For further discussion, see "Closing Shared Connections" on page 7-46.

■ getConnection()—Returns the underlying JDBC connection object for this
connection context instance.

Note: Subclassing connection context classes is not permitted in
the SQLJ specification and is not supported by Oracle SQLJ.
 Advanced Language Features 7-9

Connection Contexts
■ getExecutionContext()—Returns the default ExecutionContext
instance for this connection context instance. For more information, see
"Execution Contexts" on page 7-16.

Additional Connection Context Class Methods
In addition to the methods specified and defined in the ConnectionContext
interface, each connection context class defines the following methods:

■ Your_Ctx_Class getDefaultContext()—This is a static method that
returns the default connection context instance for a given connection context
class.

■ setDefaultContext(Your_Ctx_Class conn_ctx_instance)—This is a
static method that defines the given connection context instance as the default
connection context instance for its class.

Although it is true that you can use an instance of only the DefaultContext class
as your default connection, it might still be useful to designate an instance of a
declared connection context class as the default context for that class, using the
setDefaultContext() method. Then you could conveniently retrieve it using
the getDefaultContext() method of the particular class. This would allow you,
for example, to specify a connection context instance for a SQLJ executable
statement as follows.

Declaration:

#sql context MyContext;

Executable code:

...
MyContext myctx1 = new MyContext(url, user, password, autocommit);
...
MyContext.setDefaultContext(myctx1);
...
#sql [MyContext.getDefaultContext()] { SQL operations };
...

Additionally, each connection context class defines methods for control of SQLJ
statement caching. The following are static methods:

■ setDefaultStmtCacheSize(int)

■ int getDefaultStmtCacheSize()
7-10 SQLJ Developer’s Guide and Reference

Connection Contexts
And the following are instance methods:

■ setStmtCacheSize(int)

■ int getStmtCacheSize()

By default, statement caching is enabled. See "Connection Context Methods for
Statement Cache Size" on page A-5 for more information. (This is a subsection
under "Statement Caching" on page A-4, which provides an overview of statement
caching.)

Use of the IMPLEMENTS Clause in Connection Context Declarations
There might be situations where it is useful to implement an interface in your
connection context declarations. For general information and syntax, see
"Declaration IMPLEMENTS Clause" on page 3-5.

You might, for example, want to define an interface that exposes just a subset of the
functionality of a connection context class. More specifically, you might want the
capability of a class that has getConnection() functionality, but does not have
other functionality of a connection context class.

You can create an interface called HasConnection, for example, that specifies a
getConnection() method, but does not specify other methods found in a
connection context class. You can then declare a connection context class but expose
only the getConnection() functionality by assigning a connection context
instance to a variable of the type HasConnection, instead of to a variable that has
the type of your declared connection context class.

The declaration will be as follows (presume HasConnection is in package
mypackage):

#sql public context MyContext implements mypackage.HasConnection;

Then you can instantiate a connection instance as follows:

HasConnection myConn = new MyContext (url, username, password, autocommit);

For example:

HasConnection myConn = new MyContext
 ("jdbc:oracle:thin:@localhost:1521:orcl", "scott", "tiger", true);
 Advanced Language Features 7-11

Connection Contexts
Semantics-Checking of Your Connection Context Usage
A significant feature of SQLJ is strong typing of connections, with each connection
context class typically used for operations on a particular set of interrelated SQL
entities. This doesn’t mean that all the connection instances of a single class use the
same physical entities, but that they use entities that have the same properties, such
as names and privileges associated with tables and views, datatypes of their rows,
and names and definitions of stored procedures. This strong typing allows SQLJ
semantics-checking to verify during translation that you are using your SQL
operations correctly, with respect to your database connections.

To use online semantics-checking during translation, provide a sample schema (that
includes an appropriate set of SQL entities) for each connection context class. These
sample schemas are referred to as exemplar schemas. Provide exemplar schemas
through an appropriate combination of the SQLJ -user, -password, and -url
options. Following are two examples, one for the DefaultContext class and one
for a declared connection context class, where the user, password, and URL are all
specified through the -user option:

-user=scott/tiger@jdbc:oracle:oci:@
-user@MyContext=scott/tiger@jdbc:oracle:oci:@

(For information about these SQLJ options, see "Connection Options" on page 8-31.)

During semantics-checking, the translator connects to the specified exemplar
schema for a particular connection context class and accomplishes the following:

■ It examines each SQLJ statement in your code that specifies an instance of the
connection context class and checks its SQL operations (such as what tables you
access and what stored procedures you use).

■ It verifies that entities in the SQL operations match the set of entities existing in
the exemplar schema.

It is your responsibility to pick an exemplar schema that represents the runtime
schema in appropriate ways. For example, it must have tables, views, stored
functions, and stored procedures with names and datatypes that match what are
used in your SQL operations, and with privileges set appropriately.

If no appropriate exemplar schema is available during translation for one of your
connection context classes, then it is not necessary to specify SQLJ translator options
(-user, -password, -url) for that particular connection context class. In that case,
SQLJ statements specifying connection objects of that connection context class are
semantically checked only to the extent possible.
7-12 SQLJ Developer’s Guide and Reference

Connection Contexts
Data Source Support
The JDBC 2.0 extended API specifies the use of data sources and JNDI as a portable
alternative to the DriverManager mechanism for obtaining JDBC connections. It
permits database connections to be established through a JNDI name lookup. This
name is bound to a particular database and schema prior to program runtime
through a javax.sql.DataSource object, typically installed through a GUI
JavaBeans deployment tool. The name can be bound to different physical
connections without any source code changes simply by rebinding the name in the
directory service.

SQLJ uses the same mechanism to create connection context instances in a flexible
and portable way. Data sources can also be implemented using a connection pool or
distributed transaction service, as defined by the JDBC 2.0 extended API.

For more information about data sources, see the Oracle9i JDBC Developer’s Guide
and Reference.

Associating A Connection Context With A Data Source
In SQLJ it is natural to associate a connection context class with a logical schema, in
much the same way that a data source name serves as a symbolic name for a JDBC
connection. Combine both concepts by adding the data source name to the
connection context declaration.

#sql context EmpCtx with (dataSource="jdbc/EmpDB");

Any connection context class that you declare with a dataSource property
provides additional constructors. To continue the EmpCtx example, the following
constructors are provided:

■ public EmpCtx()—Looks up the data source for jdbc/EmpDB and then calls
the getConnection() method on the data source to obtain a connection.

■ public EmpCtx(String user, String password)—Looks up the data
source for jdbc/EmpDB and calls the getConnection(user,password)
method on the data source to obtain a connection.

Note: Remember that the exemplar schema you specify in your
translator option settings does not specify the schema to be used at
runtime. The exemplar schema furnishes the translator only with a
set of SQL entities to compare against the entities you use in your
SQLJ executable statements.
 Advanced Language Features 7-13

Connection Contexts
■ public EmpCtx(ConnectionContext ctx)—Delegates to ctx to obtain a
connection.

Any connection context class declared with a dataSource property also omits a
number of DriverManager-based constructors. Continuing the EmpCtx example,
the following constructors are omitted:

■ public EmpCtx(Connection conn)

■ public EmpCtx(String url, String user, String password,
boolean autoCommit)

■ public EmpCtx(String url, boolean autoCommit)

■ public EmpCtx(String url, java.util.Properties info,
boolean autoCommit)

■ public EmpCtx(String url, boolean autoCommit)

Auto-Commit Mode for Data Source Connections
Unlike the DriverManager-based constructors they replace, the new
data-source-based constructors do not include an explicit auto-commit parameter.
They always use the auto-commit mode defined by the data source.

Data sources are configured to have a default auto-commit mode depending on the
deployment scenario. For example, data sources in the server and middle tier
typically have auto-commit off; those on the client may have it on. However, it is
also possible to configure data sources with a specific auto-commit setting. This
permits data sources to be configured for a particular application and deployment
scenario. Contrast this with JDBC URLs that may specify only a single
database/driver configuration.

Programs can verify and possibly override the current auto-commit setting with the
JDBC connection that underlies their connection context.
7-14 SQLJ Developer’s Guide and Reference

Connection Contexts
Associating a Data Source with the Default Context
If a SQLJ program accesses the default connection context, and the default context
has not yet been set, then the SQLJ runtime will use the SQLJ default data source to
establish its connection. The SQLJ default data source is bound to the JNDI name
"jdbc/defaultDataSource".

This mechanism provides a portable means to define and install a default JDBC
connection for the default SQLJ connection context.

Data Source Support Requirements
For your program to use data sources, you must supply the packages
javax.sql.* and javax.naming.*, and an InitialContext provider in
your Java environment. The latter is required to obtain the JNDI context in which
the SQLJ runtime can look up the data source object.

Typically, you would use data sources in a JDK 1.2.x environment with the Java
Extension classes, or in a J2EE environment. However, you can also use data sources
under JDK 1.1.x with the Java Extension classes.

All SQLJ runtime libraries provided by Oracle support data sources. However, if
you use the runtime12ee library you must have javax.sql.* and
javax.naming.* in your classpath in order for the runtime to load. By contrast,
the other runtime libraries use reflection to retrieve DataSource objects.

Note: Be aware of the auto-commit status of the connections you
establish.

■ If you use the Oracle class, auto-commit is off unless you turn
it on explicitly.

■ If you use DefaultContext or a connection context class with
DriverManager-style constructors, then the auto-commit
setting must always be specified explicitly.

■ If you use the data source mechanism, then the auto-commit
setting is inherited from the underlying data source. In most
environments, the data source object originates from JDBC, and
the auto-commit option is on. To avoid unexpected behavior,
always check the auto-commit setting.
 Advanced Language Features 7-15

Execution Contexts
Execution Contexts
An execution context is an instance of the sqlj.runtime.ExecutionContext
class and provides a context in which SQL operations are executed. An execution
context instance is associated either implicitly or explicitly with each SQL operation
in your SQLJ application.

The ExecutionContext class contains methods for execution control, execution
status, execution cancellation, and update-batching operations which function in
the following ways:

■ Execution control operations of a given execution context instance modify the
semantics of subsequent SQL operations executed using that instance.

■ Execution status operations of a given execution context instance describe the
results of the most recent SQL operation that completed using that instance.

■ Execution cancellation operations of a given execution context instance
terminate the SQL operation that is currently executing using that instance.

■ Update-batching operations of a given execution context instance include
enabling and disabling update batching, setting the batch limit, and getting
update counts. (For information about update batching, see "Update Batching"
on page A-11.)

Relation of Execution Contexts to Connection Contexts
Each connection context instance implicitly has its own default execution context
instance, which you can retrieve by using the getExecutionContext() method
of the connection context instance.

A single execution context instance will be sufficient for a connection context
instance except in the following circumstances:

■ You are using multiple threads with a single connection context instance.

Note: There is only one execution context class, unlike connection
context classes where you declare additional classes as desired.
Every execution context is an instance of the ExecutionContext
class. So while the term connection context refers to a class that you
have declared, the term execution context refers to an instance of the
ExecutionContext class. This document specifies connection
context class, connection context instance, and execution context instance
to avoid confusion.
7-16 SQLJ Developer’s Guide and Reference

Execution Contexts
When using multithreading, each thread must have its own execution context
instance.

■ You want to use different SQL execution control operations on different SQLJ
statements that employ the same connection context instance.

■ You want to retain different sets of SQL status information from multiple SQL
operations that employ the same connection context instance.

As you execute successive SQL operations that employ the same execution
context instance, the status information from each operation overwrites the
status information from the previous operation.

Although execution context instances might appear to be associated with
connection context instances (given that each connection context instance has a
default execution context instance, and you can specify a connection context
instance and an execution context instance together for a particular SQLJ
statement), they actually operate independently. You can employ different execution
context instances in statements that employ the same connection context instance,
and vice versa.

For example, it is useful to use multiple execution context instances with a single
connection context instance if you use multithreading, with a separate execution
context instance for each thread. And you can use multiple connection context
instances with a single explicit execution context instance if your program is
single-threaded and you want the same set of SQL control parameters to apply to
all the connection context instances. (See "ExecutionContext Methods" on page 7-19
for information about SQL control settings.)

To employ different execution context instances with a single connection context
instance, you must create additional instances of the ExecutionContext class and
specify them appropriately with your SQLJ statements.

Creating and Specifying Execution Context Instances
To employ an execution context instance other than the default with a given
connection context instance, you must construct another execution context instance.
There are no input parameters for the ExectionContext constructor:

ExecutionContext myExecCtx = new ExecutionContext();

You can then specify this execution context instance for use with any particular
SQLJ statement, much as you would specify a connection context instance. The next
example shows this syntax.
 Advanced Language Features 7-17

Execution Contexts
#sql [<conn_context><, ><exec_context>] { SQL operation };

For example, if you declare and instantiate a connection context class
MyConnCtxClass and create an instance myConnCtx, you can use the following
statement:

#sql [myConnCtx, myExecCtx] { DELETE FROM emp WHERE sal > 30000 };

You can subsequently use different execution context instances with myConnCtx or
different connection context instances with myExecCtx.

You can optionally specify an execution context instance while using the default
connection context instance, as follows:

#sql [myExecCtx] { DELETE FROM emp WHERE sal > 30000 };

Execution Context Synchronization
ExecutionContext methods (discussed in "ExecutionContext Methods" on
page 7-19) are all synchronized methods. Therefore, generally speaking, anytime
a statement tries to use an execution context instance (in essence, tries to use a
method of an execution context instance) already in use, the second statement will
be blocked until the first statement completes.

In a client application, this typically involves multithreading situations. A thread
that tries to use an execution context instance currently in use by another thread
will be blocked.

Notes:

■ If you specify a connection context instance without an
execution context instance, then the default execution context
instance of that connection context instance is used.

■ If you specify an execution context instance without a
connection context instance, then the execution context instance
is used with the default connection context instance of your
application.

■ If you specify no connection context instance and no execution
context instance, then SQLJ uses your default connection and
its default execution context instance.
7-18 SQLJ Developer’s Guide and Reference

Execution Contexts
To avoid such blockage, you must specify a separate execution context instance for
each thread that you use, as discussed in "Multithreading in SQLJ" on page 7-25.

There are two exceptions to the preceding discussion:

■ One is if you use Oracle-specific code generation, through the SQLJ translator
-codegen=oracle setting. For performance reasons, SQLJ performs no
additional synchronization against ExecutionContext instances for
Oracle-specific generated code. Therefore, you are responsible for ensuring that
the same execution context instance will not be used by more than one thread. If
multiple threads use the same execution context, then your application, rather
than blocking, will experience errors such as incorrect results or NullPointer
exceptions.

■ The other is for recursion, which is encountered only in the server. Multiple
SQLJ statements in the same thread are allowed to simultaneously use the same
execution context instance if this situation results from recursive calls. An
example of this is where a SQLJ stored procedure (or function) has a call to
another SQLJ stored procedure (or function). If both use the default execution
context instance, as is typical, then the SQLJ statements in the second procedure
will use this execution context while the SQLJ call statement from the first
procedure is also still using it. This is allowed, and is further discussed in
"Recursive SQLJ Calls in the Server" on page 11-27.

ExecutionContext Methods
This section lists the methods of the ExecutionContext class, categorized as
status methods, control methods, cancellation method, and update batching
methods.

Status Methods
Use the following methods of an execution context instance to obtain status
information about the most recent SQL operation that completed using that
instance:

■ SQLWarning getWarnings()—Returns a java.sql.SQLWarning object
containing the first warning reported by the most recent SQL operation that
completed using this execution context instance. Warnings are returned in a
chain—use the getWarnings() method of the execution context instance to
get the first warning, then use the getNextWarning() method of each
SQLWarning object to get the next warning. The chain contains all warnings
generated during the execution of the SQL operation.
 Advanced Language Features 7-19

Execution Contexts
■ int getUpdateCount()—Except when update batching is enabled, this
returns an int value specifying the number of rows updated by the last SQL
operation that completed using this execution context instance. Zero (0) is
returned if the last SQL operation was not a DML statement. The constant
QUERY_COUNT is returned if the last SQL operation produced an iterator or
result set. The constant EXCEPTION_COUNT is returned if the last SQL
operation terminated before completing execution, or if no operation has yet
been attempted using this execution context instance.

For batch-enabled applications, the value returned by getUpdateCount()
would be one of several batch-related constant values—NEW_BATCH_COUNT,
ADD_BATCH_COUNT, or EXEC_BATCH_COUNT. See "Execution Context Update
Counts" on page A-16 for more information.

Control Methods
Use the following methods of an execution context instance to control the operation
of future SQL operations executed using that instance (operations that have not yet
started):

■ int getMaxFieldSize()—Returns an int value specifying the maximum
amount of data (in bytes) that would be returned from a SQL operation
subsequently, using this execution context instance. (This can be modified using
the setMaxFieldSize() method.) This applies only to columns of type
BINARY, VARBINARY, LONGVARBINARY, CHAR, VARCHAR, or LONGVARCHAR.

By default this parameter is set to 0, meaning there is no size limit.

■ setMaxFieldSize(int)—Takes an int value as input to modify the
field-size maximum.

■ int getMaxRows()—Returns an int value specifying the maximum number
of rows that can be contained by any SQLJ iterator or JDBC result set created
using this execution context instance. (You can modify this using the
setMaxRows() method.) If the limit is exceeded, the excess rows are silently
dropped without any error report or warning.

By default, this parameter is set to 0, meaning there is no row limit.

■ setMaxRows(int)—Takes an int value as input to modify the row
maximum.

■ int getQueryTimeout()—Returns an int value specifying the timeout
limit, in seconds, for any SQL operation that uses this execution context
instance. (You can modify this using the setQueryTimeout() method.) If a
SQL operation exceeds this limit, a SQL exception is thrown.
7-20 SQLJ Developer’s Guide and Reference

Execution Contexts
By default, this parameter is set to 0, meaning there is no query timeout limit.

■ setQueryTimeout(int)—Takes an int value as input to modify the query
timeout limit.

■ int getFetchSize()—Retrieves the number of rows that is the current fetch
size for iterator objects generated from this ExecutionContext object. If this
ExecutionContext object has not set a fetch size by calling
setFetchSize(), then the value returned is zero. If this ExecutionContext
object has set a non negative fetch size by calling the method
setFetchSize(), then the return value is the fetch size specified on
setFetchSize().

■ setFetchSize(int)—Gives the SQLJ runtime a hint as to the number of
rows that should be fetched when more rows are needed. The number of rows
specified affects only iterator objects created using this ExecutionContext
object. Specifying zero means that an implementation-dependent default value
will be used for the fetch size.

■ int getFetchDirection()—Retrieves the default direction for fetching
data, for scrollable iterator objects that are generated from this
ExecutionContext object. If this ExecutionContext object has not set a
fetch direction by calling the method setFetchDirection(), the return
value is FETCH_FORWARD.

■ setFetchDirection(int)—Gives the SQLJ runtime a hint as to the
direction in which rows of scrollable iterator objects are processed. The hint
applies only to scrollable iterator objects that are created using this
ExecutionContext object. The default value is:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD.

This method throws a SQLException if the given direction is not one of
FETCH_FORWARD, FETCH_REVERSE, or FETCH_UNKNOWN (int constants).

Cancellation Method
Use the following method to cancel SQL operations in a multithreading
environment or to cancel a pending statement batch if update batching is enabled:

■ cancel()—In a multithreading environment, use this method in one thread to
cancel a SQL operation currently executing in another thread. It cancels the
most recent operation that has started, but not completed, using this execution
context instance. This method has no effect if no statement is currently being
executed using this execution context instance.
 Advanced Language Features 7-21

Execution Contexts
In a batch-enabled environment, use this to cancel a pending statement batch.
The batch is emptied, and none of the statements in the batch are executed.
After you cancel a batch, the next batchable statement encountered will be
added to a new batch. ("Canceling a Batch" on page A-15 discusses this.)

Update Batching Methods
Use the following methods to control update batching if you want your application
to use that performance enhancement feature (these methods, and update batching
in general, are further discussed in "Update Batching" on page A-11):

■ setBatching(boolean)—Takes a boolean value to enable update batching.
See "Enabling and Disabling Update Batching" on page A-12 for more
information.

Update batching is disabled by default.

■ boolean isBatching()—Returns a boolean value indicating whether
update batching is enabled.

This does not indicate whether there is currently a pending batch, but you can
use the getUpdateCount() method described in "Status Methods" on
page 7-19 to see whether a batch has been newly created, added to, or executed.

■ int getBatchLimit()—Returns an int value indicating the current batch
limit. If there is a batch limit, a pending batch is implicitly executed once it
contains that number of statements. See "Setting a Batch Limit" on page A-17 for
more information.

By default, the batch limit is set to the ExecutionContext static constant
value UNLIMITED_BATCH, meaning there is no batch limit.

■ setBatchLimit(int)—Takes a positive, non-zero int value as input to set
the current batch limit. Two special values you can input are
UNLIMITED_BATCH, which means there is no limit, and AUTO_BATCH, which
lets the SQLJ runtime dynamically determine a batch limit.

■ int[] executeBatch()—Executes the pending statement batch, returning
an array of int update counts that have meanings as described in "Execution
Context Update Counts" on page A-16. See "Explicit and Implicit Batch
Execution" on page A-13 for more information. Regarding error conditions, see
"Error Conditions During Batch Execution" on page A-21.

■ int[] getBatchUpdateCounts()—Returns an array of int update counts
for the last batch executed, with meanings as described in "Execution Context
7-22 SQLJ Developer’s Guide and Reference

Execution Contexts
Update Counts" on page A-16. This method is useful in situations where the
batch was executed implicitly.

Example: Use of ExecutionContext Methods
The following code demonstrates the use of some ExecutionContext methods:

ExecutionContext execCtx =
 DefaultContext.getDefaultContext().getExecutionContext();

// Wait only 3 seconds for operations to complete
execCtx.setQueryTimeout(3);

// delete using execution context of default connection context
#sql { DELETE FROM emp WHERE sal > 10000 };

System.out.println
 ("removed " + execCtx.getUpdateCount() + " employees");

Relation of Execution Contexts to Multithreading
Do not use multiple threads with a single execution context. If you do, and two
SQLJ statements try to use the same execution context simultaneously, then the
second statement will be blocked until the first statement completes. Furthermore,
status information from the first operation will likely be overwritten before it can be
retrieved.

Therefore, if you are using multiple threads with a single connection context
instance, you should take the following steps:

1. Instantiate a unique execution context instance for use with each thread.

2. Specify execution contexts with your #sql statements so that each thread uses
its own execution context. (See "Creating and Specifying Execution Context
Instances" on page 7-17.)

If you are using a different connection context instance with each thread, then no
instantiation and specification of execution context instances is necessary, because
each connection context instance implicitly has its own default execution context
instance.

See "Multithreading in SQLJ" on page 7-25 for more information about
multithreading.
 Advanced Language Features 7-23

Execution Contexts
Note: For performance reasons, SQLJ performs no additional
synchronization against ExecutionContext instances for
Oracle-specific generated code. Therefore, you are responsible for
ensuring that the same execution context instance will not be used
by more than one thread. If multiple threads use the same
execution context, then your application, rather than blocking, will
experience errors such as incorrect results or NullPointer
exceptions.
7-24 SQLJ Developer’s Guide and Reference

Multithreading in SQLJ
Multithreading in SQLJ
This section discusses SQLJ support and requirements for multithreading and the
relation between multithreading and execution context instances.

You can use SQLJ in writing multithreaded applications; however, any use of
multithreading in your SQLJ application is subject to the limitations of your JDBC
driver or proprietary database access vehicle. This includes any synchronization
limitations.

You are required to use a different execution context instance for each thread. You
can accomplish this in one of two ways:

■ Specify connection context instances for your SQLJ statements such that a
different connection context instance is used for each thread. Each connection
context instance automatically has its own default execution context instance.

■ If you are using the same connection context instance with multiple threads,
then declare additional execution context instances and specify execution
context instances for your SQLJ statements such that a different execution
context instance is used for each thread.

For information about how to specify connection context instances and execution
context instances for your SQLJ statements, see "Specifying Connection Context
Instances and Execution Context Instances" on page 3-11.

If you are using one of the Oracle JDBC drivers, multiple threads can use the same
connection context instance if desired (as long as different execution context
instances are specified), and there are no synchronization requirements directly
visible to the user. Note, however, that data access is sequential—only one thread is
accessing data at any given time. (Synchronization refers to the control flow of the
various stages of the SQL operations executing through your threads. Each
statement, for example, can bind input parameters, then execute, then bind output
parameters. With some JDBC drivers, special care must be taken not to intermingle
these stages.)

If a thread attempts to execute a SQL operation that uses an execution context that
is in use by another operation, then the thread is blocked until the current operation
completes. If an execution context were shared between threads, the results of a
SQL operation performed by one thread would be visible in the other thread. If both
threads were executing SQL operations, a race condition might occur—the results of
an execution in one thread might be overwritten by the results of an execution in
the other thread before the first thread had processed the original results. This is
why multiple threads are not allowed to share an execution context instance.
 Advanced Language Features 7-25

Multithreading in SQLJ
For a complete multithreading sample application, see
"Multithreading—MultiThreadDemo.sqlj" on page 12-57.

Important: The preceding paragraph does not apply if you use
Oracle-specific code generation, through the SQLJ translator
-codegen=oracle setting. For performance reasons, SQLJ
performs no additional synchronization against
ExecutionContext instances for Oracle-specific generated code.
Therefore, you are responsible for ensuring that the same execution
context instance will not be used by more than one thread. If
multiple threads use the same execution context, then your
application, rather than blocking, will experience errors such as
incorrect results or NullPointer exceptions.
7-26 SQLJ Developer’s Guide and Reference

Iterator Class Implementation and Advanced Functionality
Iterator Class Implementation and Advanced Functionality
This section discusses how iterator classes are implemented and what additional
functionality is available beyond the essential methods discussed in "Using Named
Iterators" on page 3-42 and "Using Positional Iterators" on page 3-47. The following
topics are covered:

■ Implementation and Functionality of Iterator Classes

■ Use of the IMPLEMENTS Clause in Iterator Declarations

■ Support for Subclassing of Iterator Classes

■ Result Set Iterators

■ Scrollable Iterators

Implementation and Functionality of Iterator Classes
Any named iterator class you declare will be generated by the SQLJ translator to
implement the sqlj.runtime.NamedIterator interface. Classes implementing
the NamedIterator interface have functionality that maps iterator columns to
database columns by name, as opposed to by position.

Any positional iterator class you declare will be generated by the SQLJ translator to
implement the sqlj.runtime.PositionedIterator interface. Classes
implementing the PositionedIterator interface have functionality that maps
iterator columns to database columns by position, as opposed to by name.

Both the NamedIterator interface and the PositionedIterator interface, and
therefore all generated SQLJ iterator classes as well, implement or extend the
sqlj.runtime.ResultSetIterator interface.

The ResultSetIterator interface specifies the following methods for all SQLJ
iterators (both named and positional):

■ close()—Closes the iterator.

■ ResultSet getResultSet()—Extracts the underlying JDBC result set from
the iterator.

■ boolean isClosed()—Determines if the iterator has been closed.

■ boolean next()—Moves to the next row of the iterator (returning true if
there is a valid next row to go to).
 Advanced Language Features 7-27

Iterator Class Implementation and Advanced Functionality
The PositionedIterator interface adds the following method specification for
positional iterators:

■ boolean endFetch()—Determines if you have reached the last row of a
positional iterator.

As discussed in "Using Named Iterators" on page 3-42, use the next() method to
advance through the rows of a named iterator, and accessor methods to retrieve the
data. The SQLJ generation of a named iterator class defines an accessor method for
each iterator column, where each method name is identical to the corresponding
column name. For example, if you declare a name column, then a name() method
will be generated.

As discussed in "Using Positional Iterators" on page 3-47, use a FETCH INTO
statement together with the endFetch() method to advance through the rows of a
positional iterator and retrieve the data. A FETCH INTO statement implicitly calls
the next() method. Do not explicitly use the next() method in a positional
iterator unless you are using the special FETCH CURRENT syntax (described in
"From JDBC Result Sets to SQLJ Iterators — FETCH CURRENT Syntax" on
page 7-35). The FETCH INTO statement also implicitly calls accessor methods that
are named according to iterator column numbers. The SQLJ generation of a
positional iterator class defines an accessor method for each iterator column, where
each method name corresponds to the column position.

Use the close() method to close any iterator once you are done with it.

The getResultSet() method is central to SQLJ-JDBC interoperability and is
discussed in "SQLJ Iterator and JDBC Result Set Interoperability" on page 7-47.

Use of the IMPLEMENTS Clause in Iterator Declarations
There might be situations where it will be useful to implement an interface in your
iterator declaration. For general information and syntax, see "Declaration
IMPLEMENTS Clause" on page 3-5.

Note: Alternatively, you can use a ResultSetIterator instance
(or a ScrollableResultSetIterator instance) directly as a
weakly typed iterator. (ScrollableResultSetIterator
extends ResultSetIterator.) This is convenient if you are
interested only in converting it to a JDBC result set and you do not
need named or positional iterator functionality. You can also access
it through SQLJ FETCH CURRENT syntax introduced in Oracle
SQLJ release 8.1.7. See "Result Set Iterators" on page 7-30.
7-28 SQLJ Developer’s Guide and Reference

Iterator Class Implementation and Advanced Functionality
You might, for example, have an iterator class where you want to restrict access to
one or more columns. As discussed in "Using Named Iterators" on page 3-42, a
named iterator class generated by SQLJ has an accessor method for each column in
the iterator. If you want to restrict access to certain columns, you can create an
interface with only a subset of the accessor methods, then expose instances of the
interface type to the user instead of exposing instances of the iterator class type.

For example, assume you are creating a named iterator of employee data, with
columns ENAME (employee name), EMPNO (employee number), and SAL (salary).
Accomplish this as follows:

#sql iterator EmpIter (String ename, int empno, float sal);

This generates a class EmpIter with ename(), empno(), and sal() accessor
methods.

Assume, though, that you want to prevent access to the SAL column. You can create
an interface EmpIterIntfc that has ename() and empno() methods, but no
sal() method. Then you can use the following iterator declaration instead of the
declaration above (presume EmpIterIntfc is in package mypackage):

#sql iterator EmpIter implements mypackage.EmpIterIntfc
 (String emame, int empno, float sal);

Then if you code your application so that users can access data only through
EmpIterIntfc instances, they will not have access to the SAL column.

Support for Subclassing of Iterator Classes
SQLJ supports the ability to subclass iterator classes. This feature can be very useful
in allowing you to add functionality to your queries and query results. See
"Subclassing Iterators—SubclassIterDemo.sqlj" on page 12-65 for an example of an
iterator subclass that treats rows of a query as individual objects and writes them
into a Java vector.

The one key requirement of an iterator subclass is that you must supply a public
constructor that takes an instance of sqlj.runtime.RTResultSet as input. The
SQLJ runtime will call this constructor in assigning query results to an instance of
your subclass. Beyond that, you provide functionality as you choose.

You can continue to use functionality of the original iterator class (the superclass of
your subclass). For example, you can advance through query results by calling the
super.next() method.
 Advanced Language Features 7-29

Iterator Class Implementation and Advanced Functionality
Result Set Iterators
You may have situations where you do not require the strongly typed functionality
of a SQLJ iterator.

For such circumstances, you can directly use instances of the type
sqlj.runtime.ResultSetIterator to receive query data, so that you are not
required to declare a named or positional iterator class. Alternatively, you can use
the sqlj.runtime.ScrollableResultSetIterator type, which extends
ResultSetIterator. This allows you to use SQLJ scrollable iterator functionality,
as described in "Scrollable Result Set Iterators" on page 7-36.

In using a result set iterator instead of a strongly typed iterator, you are trading the
strong type-checking of the SQLJ SELECT operation for the convenience of not
having to declare an iterator class.

As discussed in "Iterator Class Implementation and Advanced Functionality" on
page 7-27, the ResultSetIterator interface underlies all named and positional
iterator classes and specifies the getResultSet() and close() methods.

If you want to use SQLJ to process a result set iterator instance, then use a
ScrollableResultSetIterator instance, and use FETCH CURRENT syntax as
described in "From JDBC Result Sets to SQLJ Iterators — FETCH CURRENT
Syntax" on page 7-35.

If you want to use JDBC to process a result set iterator instance, you can use its
getResultSet() method, as described in "Using and Converting Weakly Typed
Iterators (ResultSetIterator)" on page 7-50, then process the underlying result set
that you retrieve.

If you process a result set iterator through its underlying result set, you should close
the result set iterator, not the result set, when you are finished. Closing the result set
iterator will also close the result set, but closing the result set will not close the
result set iterator.

Scrollable Iterators
The ISO standard for SQLJ supports scrollable iterators, with functionality being
patterned after the JDBC 2.0 specification for scrollable JDBC result sets.

Note: Oracle9i SQLJ supports result set iterators for use as host
expressions and to represent cursors in FETCH statements. (This
functionality was not supported in Oracle8i releases.)
7-30 SQLJ Developer’s Guide and Reference

Iterator Class Implementation and Advanced Functionality
For general information about scrollable result sets, see the Oracle9i JDBC
Developer’s Guide and Reference.

Declaring Scrollable Iterators
To characterize an iterator as scrollable, add the following clause to the iterator
declaration:

implements sqlj.runtime.Scrollable

This instructs the SQLJ translator to generate an iterator that implements the
Scrollable interface. Here is an example of a declaration of a named, scrollable
iterator:

#sql public static MyScrIter implements sqlj.runtime.Scrollable
 (String ename, int empno);

The code that the SQLJ translator generates for the MyScrIter class will
automatically support all the methods of the Scrollable interface, described in
"The Scrollable Interface" below.

Scrollable Iterator Sensitivity
You can declare scrollable iterators, like scrollable result sets, to have sensitivity to
changes to the underlying data. By default, scrollable iterators in Oracle SQLJ have
a sensitivity setting of INSENSITIVE, meaning they do not detect any such
changes in the underlying data. You can, however, use a declaration with clause to
alter this setting. The following example expands an earlier example to specify
sensitivity:

#sql public static MyScrIter implements sqlj.runtime.Scrollable
 with (sensitivity=SENSITIVE)
 (String ename, int empno);

(The SQLJ standard also allows a setting of ASENSITIVE, but in Oracle SQLJ this is
undefined. Setting sensitivity to ASENSITIVE results instead in the default
setting, INSENSITIVE, being used.)

Given the preceding declaration, MyScrIter instances will be sensitive to data
changes, subject to factors such as the fetch size window. For general information

Important: The implements clause must precede the with
clause.
 Advanced Language Features 7-31

Iterator Class Implementation and Advanced Functionality
about the behavior of sensitive scrollable JDBC result sets (which underlie sensitive
scrollable iterators), see the Oracle9i JDBC Developer’s Guide and Reference.

The Scrollable Interface
This section documents some key methods of the sqlj.runtime.Scrollable
interface.

You can provide hints about the fetch direction to scrollable iterators. The following
methods are defined on scrollable iterators as well as on execution contexts. Use an
ExecutionContext instance to provide the default direction to be used in
creation of scrollable iterators.

■ setFetchDirection(int) —Gives the SQLJ runtime a hint as to the
direction in which rows are processed. The direction should be one of
sqlj.runtime.ResultSetIterator.FETCH_FORWARD, FETCH_REVERSE,
or FETCH_UNKNOWN.

If you do not specify a value for the direction on the ExecutionContext, then
FETCH_FORWARD will be used as a default.

■ int getFetchDirection()—Retrieves the current direction for fetching
rows of data (one of the integer constants described immediately above).

There are also a number of scrollable iterator methods that will return information
about the current position of the iterator object in the underlying result set. All these
methods will return false whenever the result set underlying the iterator contains
no rows:

■ boolean isBeforeFirst()—Indicates whether the iterator object is before
the first row in the result set.

■ boolean isFirst()—Indicates whether the iterator object is on the first row
of the result set.

■ boolean isLast()—Indicates whether the iterator object is on the last row of
the result set. Note that calling the method isLast() may be expensive,
because the JDBC driver may need to fetch ahead one row to determine
whether the current row is the last row in the result set.

■ boolean isAfterLast()—Indicates whether the iterator object is after the
last row in the result set.
7-32 SQLJ Developer’s Guide and Reference

Iterator Class Implementation and Advanced Functionality
Scrollable Named Iterators
Named iterators use navigation methods, defined in the Scrollable interface, to
move through the rows of a result set. As described earlier in this manual,
non-scrollable iterators have only the following method for navigation:

■ boolean next()—Moves the iterator object to the next row in the result set.

(See "Using Named Iterators" on page 3-42 for more information.)

Additional navigation methods are available for scrollable named iterators. These
methods function similarly to the next() method, in that they try to position the
iterator on an actual row of the result set. They return true if the iterator ends up
on a valid row and false if it does not. Additionally, if you attempt to position the
iterator object before the first row or after the last row in the result set, this leaves
the iterator object in the "before first" or "after last" position, respectively.

The following methods are supported:

■ boolean previous()—Moves the iterator object to the previous row in the
result set.

■ boolean first()—Moves the iterator object to the first row in the result set.

■ boolean last()—Moves the iterator object to the last row in the result set.

■ boolean absolute(int) — Moves the iterator object to the given row
number in the result set. The first row is row 1, the second is row 2, and so on. If
the given row number is negative, the iterator object moves to a row position
relative to the end of the result set. For example, calling absolute(-1)
positions the iterator object on the last row, absolute(-2) indicates the
next-to-last row, and so on.

■ boolean relative(int)—Moves the iterator object a relative number of
rows, either positive or negative from the current position. Calling
relative(0) is valid, but does not change the iterator position.

The methods beforeFirst() and afterLast() return void, because they never
place the iterator object on an actual row of the result set.

■ void beforeFirst()—Moves the iterator object to the front of the result set,
before the first row. This has no effect if the result set contains no rows.

Note: Additional methods for navigation, also defined in the
Scrollable interface, are available as well. These are described in
"Scrollable Named Iterators" below.
 Advanced Language Features 7-33

Iterator Class Implementation and Advanced Functionality
■ void afterLast()—Moves the iterator object to the end of the result set,
after the last row. This has no effect if the result set contains no rows.

Scrollable Positional Iterators
General FETCH syntax for positional iterators was described earlier, in "Using
Positional Iterators" on page 3-47. For example:

#sql { FETCH :iter INTO :x, :y, :z };

This is actually an abbreviated version of the following syntax.

#sql { FETCH NEXT FROM :iter INTO :x, :y, :z };

This suggests the pattern for alternatively moving to the previous, first, or last row
in the result set. (Unfortunately, JDBC 2.0—after which the movement methods
were modeled—uses previous(), whereas the FETCH syntax, which is patterned
after SQL, employs PRIOR. In case you should forget this inconsistency, the SQLJ
translator will also accept FETCH PREVIOUS.)

#sql { FETCH PRIOR FROM :iter INTO :x, :y, :z };
#sql { FETCH FIRST FROM :iter INTO :x, :y, :z };
#sql { FETCH LAST FROM :iter INTO :x, :y, :z };

There is also syntax to pass a numeric value for absolute or relative movements, to
move to a particular (absolute) row, or to move forward or backward from the
current position:

#sql { FETCH ABSOLUTE :n FROM :iter INTO :x, :y, :z };
#sql { FETCH RELATIVE :n FROM :iter INTO :x, :y, :z };

Note that you must use a host expression to specify the movement. You cannot
simply use a constant for the numeric value. Thus, instead of:

#sql { FETCH RELATIVE 0 FROM :iter INTO :x, :y, :z };

you must write the following:

#sql { FETCH RELATIVE :(0) FROM :iter INTO :x, :y, :z };

Note: In all of the preceding cases, the iterator endFetch()
method returns true whenever the FETCH fails to move to a valid
row and retrieve values.
7-34 SQLJ Developer’s Guide and Reference

Iterator Class Implementation and Advanced Functionality
Incidentally, this command leaves the position of the iterator unchanged and—if the
iterator is on a valid row—just populates the variables.

From JDBC Result Sets to SQLJ Iterators — FETCH CURRENT Syntax
Consider a situation where you have an existing JDBC program that you want to
rewrite in SQLJ with as little modification as possible.

Your JDBC result set will use only movement methods, such as next(),
previous(), absolute(), and so on. You can immediately model this in SQLJ
through a named iterator. However, this also implies that all columns of the SQL
result set must have a proper name. In practice many (if not all) columns of the
result set will require introduction of alias names. This is unacceptable if the query
text is to remain untouched.

The alternative, to avoid change to the query source, is to define a positional iterator
type for the result set. However, this approach forces changes to the control-flow
logic of the program. Consider the following JDBC code sample:

ResultSet rs = ... // execute ...query...;
while (rs.next()) {
 x := rs.getXxx(1); y:=rs.getXxx(2);
 ...process...
}

This translates along the following lines to SQLJ:

MyIter iter;
#sql iter = { ...query... };
while(true) {
 #sql { FETCH :iter INTO :x, :y };
 if (iter.endFetch()) break;
 ...process...
}

Note: Alternatively, you can navigate through a scrollable
positional iterator through a combination of the navigation
methods described in "Scrollable Named Iterators" on page 7-33,
and FETCH CURRENT syntax described in "From JDBC Result Sets
to SQLJ Iterators — FETCH CURRENT Syntax" below.
 Advanced Language Features 7-35

Iterator Class Implementation and Advanced Functionality
The transformations to the program logic will become even more difficult when
considering arbitrary movements on scrollable iterators. Because positional iterators
implement all the movement commands of named iterators, it is possible to exploit
this and use RELATIVE :(0) to populate variables from the iterator:

MyIter iter;
#sql iter = { ...query... };
while (iter.next()) {
 #sql { FETCH RELATIVE :(0) FROM :iter INTO :x, :y };
 ...process...
}

Now, you can preserve both the original query and the original program logic.
Unfortunately, there still is one drawback to this approach—the iterator type
MyIter must implement the Scrollable interface, even if this property is not
really needed. To address this, the following syntax extension is furnished by Oracle
SQLJ:

#sql { FETCH CURRENT FROM :iter INTO :x, :y, :z };

Given this syntax, you can rewrite the JDBC example in SQLJ for scrollable as well
as non-scrollable iterators:

AnyIterator ai;
#sql ai = { ...query... };
while (ai.next()) {
 #sql { FETCH CURRENT FROM :ai INTO :x, :y };
 ...process...
}

Scrollable Result Set Iterators
In Oracle9i SQLJ, support for weakly typed result set iterators is extended to add a
scrollable result set iterator type:

package sqlj.runtime;
public interface ScrollableResultSetIterator
 extends ResultSetIterator
 implements Scrollable
{ }

Because this type extends sqlj.runtime.ResultSetIterator, it supports the
methods described in "Result Set Iterators" on page 7-30.
7-36 SQLJ Developer’s Guide and Reference

Iterator Class Implementation and Advanced Functionality
Because it also implements the sqlj.runtime.Scrollable interface, it supports
the methods described in "The Scrollable Interface" on page 7-32 and "Scrollable
Named Iterators" on page 7-33.

Furthermore, scrollable result set iterators support the FETCH CURRENT syntax
described in "From JDBC Result Sets to SQLJ Iterators — FETCH CURRENT
Syntax" on page 7-35.

Consider the following JDBC code:

Statement st = conn.createStatement("SELECT ename, empid FROM emp");
ResultSet rs = st.executeQuery();
while (rs.next()) {
 x = rs.getString(1);
 y = rs.getInt(2);
}
rs.close();

You can use a SQLJ result set iterator in writing equivalent code, as follows:

sqlj.runtime.ResultSetIterator rsi;
#sql rsi = { SELECT ename, empid FROM emp };
while (rsi.next()) {
 #sql { FETCH CURRENT FROM :rsi INTO :x, :y };
}
rsi.close();

To take advantage of scrollability features, you could also write the following code:

sqlj.runtime.ScrollableResultSetIterator srsi;
#sql srsi = { SELECT ename, empid FROM emp };
srsi.afterLast();
while (srsi.previous()) {
 #sql { FETCH CURRENT FROM :srsi INTO :x, :y };
}
srsi.close();

Notes: Scrollability and FETCH CURRENT functionality for result
set iterators was not supported in Oracle8i SQLJ releases.
 Advanced Language Features 7-37

Advanced Transaction Control
Advanced Transaction Control
SQLJ supports the SQL SET TRANSACTION statement to specify the access mode
and isolation level of any given transaction. Standard SQLJ supports READ ONLY
and READ WRITE access mode settings, but Oracle JDBC does not support READ
ONLY. (You can set permissions to have the same effect, however.) Supported
settings for isolation level are SERIALIZABLE, READ COMMITTED, READ
UNCOMMITTED, and REPEATABLE READ. Oracle SQL, however, does not support
READ UNCOMMITTED or REPEATABLE READ.

READ WRITE is the default access mode in both standard SQL and Oracle SQL.

READ COMMITTED is the default isolation level in Oracle SQL; SERIALIZABLE is
the default in standard SQL.

Access modes and isolation levels are briefly described below. For more
information, see the Oracle9i SQL Reference. You might also consult any guide to
standard SQL for additional conceptual information.

For an overview of transactions, including SQLJ support for the basic transaction
control operations COMMIT and ROLLBACK, see "Basic Transaction Control" on
page 4-26.

SET TRANSACTION Syntax
In SQLJ, the SET TRANSACTION statement has the following syntax:

#sql { SET TRANSACTION <access_mode>, <ISOLATION LEVEL isolation_level> };

If you do not specify a connection context instance, then the statement applies to the
default connection.

If you use SET TRANSACTION, it must be the first statement in a transaction (in
other words, the first statement since your connection to the database or your most
recent COMMIT or ROLLBACK), preceding any DML statements.

In standard SQLJ, any access mode or isolation level you set will remain in effect
across transactions until you explicitly reset it at the beginning of a subsequent
transaction.

In a standard SQLJ SET TRANSACTION statement, you can optionally specify the
isolation level first, or specify only the access mode, or only the isolation level.
Following are some examples:

#sql { SET TRANSACTION READ WRITE };
7-38 SQLJ Developer’s Guide and Reference

Advanced Transaction Control
#sql { SET TRANSACTION ISOLATION LEVEL SERIALIZABLE };

#sql { SET TRANSACTION READ WRITE, ISOLATION LEVEL SERIALIZABLE };

#sql { SET TRANSACTION ISOLATION LEVEL READ COMMITTED, READ WRITE };

You can also specify a particular connection context instance for a SET
TRANSACTION statement, as opposed to having it apply to the default connection:

#sql [myCtxt] { SET TRANSACTION ISOLATION LEVEL SERIALIZABLE };

Note that in SQLJ, both the access mode and the isolation level can be set in a single
SET TRANSACTION statement. This is not true in other Oracle SQL tools such as
Server Manager or SQL*Plus, where a single statement can set one or the other,
but not both.

Access Mode Settings
The READ WRITE and READ ONLY access mode settings (where supported) have
the following functionality:

■ READ WRITE (default)—In a READ WRITE transaction, the user is allowed to
update the database. SELECT, INSERT, UPDATE, and DELETE are all legal.

■ READ ONLY (not supported by Oracle JDBC)—In a READ ONLY transaction, the
user is not allowed to update the database. SELECT is legal, but INSERT,
UPDATE, DELETE, and SELECT FOR UPDATE are not.

Isolation Level Settings
The READ COMMITTED, SERIALIZABLE, READ UNCOMMITTED, and REPEATABLE
READ isolation level settings (where supported) have the following functionality:

■ READ UNCOMMITTED (not supported by Oracle9i)—Dirty reads, non-repeatable
reads, and phantom reads are all allowed. (See below for definitions of the
italicized terms.)

■ READ COMMITTED (default for Oracle9i)—Dirty reads are prevented;
non-repeatable reads and phantom reads are allowed. If the transaction
contains DML statements that require row locks held by other transactions, then
any of the statements will block until the row lock it needs is released by the
other transaction.

■ REPEATABLE READ (not supported by Oracle9i)—Dirty reads and
non-repeatable reads are prevented; phantom reads are allowed.
 Advanced Language Features 7-39

Advanced Transaction Control
■ SERIALIZABLE—Dirty reads, non-repeatable reads, and phantom reads are all
prevented. Any DML statements in the transaction cannot update any resource
that might have had changes committed after the transaction began. Such DML
statements will fail.

A dirty read occurs when transaction B accesses a row that was updated by
transaction A, but transaction A later rolls back the updates. As a result, transaction
B sees data that was never actually committed to the database.

A non-repeatable read occurs when transaction A retrieves a row, transaction B
subsequently updates the row, and transaction A later retrieves the same row again.
Transaction A retrieves the same row twice but sees different data.

A phantom read occurs when transaction A retrieves a set of rows satisfying a given
condition, transaction B subsequently inserts or updates a row such that the row
now meets the condition in transaction A, and transaction A later repeats the
conditional retrieval. Transaction A now sees an additional row; this row is referred
to as a "phantom".

You can think of the four isolation level settings being in a progression:

SERIALIZABLE > REPEATABLE READ > READ COMMITTED > READ UNCOMMITTED

If a desired setting is unavailable to you—such as REPEATABLE READ or READ
UNCOMMITTED if you use Oracle9i—use a "greater" setting (one further to the left) to
ensure having at least the level of isolation that you want.

Using JDBC Connection Class Methods
You can optionally access and set the access mode and isolation level of a
transaction, using methods of the underlying JDBC connection instance of your
connection context instance. SQLJ code using these JDBC methods is not portable,
however.

Following are the Connection class methods for access mode and isolation level
settings:

■ public abstract int getTransactionIsolation()—Returns the
current transaction isolation level as one of the following constant values:
TRANSACTION_NONE
TRANSACTION_READ_COMMITTED
TRANSACTION_SERIALIZABLE
TRANSACTION_READ_UNCOMMITTED
TRANSACTION_REPEATABLE_READ
7-40 SQLJ Developer’s Guide and Reference

Advanced Transaction Control
■ public abstract void setTransactionIsolation(int)—Sets the
transaction isolation level, taking as input one of the preceding constant values.

■ public abstract boolean isReadOnly()—Returns true if the
transaction is READ ONLY; returns false if the transaction is READ WRITE.

■ public abstract void setReadOnly(boolean)—Sets the transaction
access mode to READ ONLY if true is input; sets the access mode to READ
WRITE if false is input.
 Advanced Language Features 7-41

SQLJ and JDBC Interoperability
SQLJ and JDBC Interoperability
As described in "Introduction to SQLJ" on page 1-2, SQLJ statements are typically
used for static SQL operations. Oracle9i has extensions to support dynamic SQL as
well, but another alternative is to use JDBC code within your SQLJ application for
dynamic operations (which would be more portable). And there might be
additional scenarios where using JDBC code in your SQLJ application might be
useful or even required.

Because of this, SQLJ allows you to use SQLJ statements and JDBC statements
concurrently and provides interoperability between SQLJ constructs and JDBC
constructs.

Two kinds of interactions between SQLJ and JDBC are particularly useful:

■ between SQLJ connection contexts and JDBC connections

■ between SQLJ iterators and JDBC result sets

For general information about JDBC functionality, see the Oracle9i JDBC Developer’s
Guide and Reference.

SQLJ Connection Context and JDBC Connection Interoperability
SQLJ allows you to convert, in either direction, between SQLJ connection context
instances and JDBC connection instances.

Converting from Connection Contexts to JDBC Connections
If you want to perform a JDBC operation through a database connection that you
have established in SQLJ (for example, if your application calls a library routine that
returns a JDBC connection object), then you must convert the SQLJ connection
context instance to a JDBC connection instance.

Any connection context instance in a SQLJ application, whether an instance of the
sqlj.runtime.ref.DefaultContext class or of a declared connection context
class, contains an underlying JDBC connection instance and a getConnection()
method that returns that JDBC connection instance. Use the JDBC connection
instance to create JDBC statement objects if you want to use JDBC operations.

Note: When converting between a SQLJ connection context and a
JDBC connection, bear in mind that the two objects are sharing the
same underlying physical connection. See "About Shared
Connections" on page 7-45.
7-42 SQLJ Developer’s Guide and Reference

SQLJ and JDBC Interoperability
Following is an example of how to use the getConnection() method.

Imports:

import java.sql.*;

Executable code:

DefaultContext ctx = new DefaultContext
 ("jdbc:oracle:thin:@localhost:1521:orcl", "scott", "tiger", true);
...
(SQLJ operations through SQLJ ctx connection context instance)
...
Connection conn = ctx.getConnection();
...
(JDBC operations through JDBC conn connection instance)
...

The connection context instance can be an instance of the DefaultContext class
or of any connection context class that you have declared.

To retrieve the underlying JDBC connection of your default SQLJ connection, you
can use getConnection() directly from a
DefaultContext.getDefaultContext() call, where getDefaultContext()
returns a DefaultContext instance that you had previously initialized as your
default connection, and getConnection() returns its underlying JDBC
connection instance. In this case, because you do not have to use the
DefaultContext instance explicitly, you can also use the Oracle.connect()
method. This method implicitly creates the instance and makes it the default
connection.

 (See "Connection Considerations" on page 4-6 for an introduction to connection
context instances and default connections. See "More About the Oracle Class" on
page 4-12 for information about the Oracle.connect() method.)

Following is an example.

Imports:

import java.sql.*;

Executable code:

...
Connection conn = Oracle.connect(
 "jdbc:oracle:thin:@localhost:1521:orcl", "scott", "tiger").getConnection();
...
 Advanced Language Features 7-43

SQLJ and JDBC Interoperability
(JDBC operations through JDBC conn connection instance)
...

Example: JDBC and SQLJ Connection Interoperability for Dynamic SQL Following is a
sample method that uses the underlying JDBC connection instance of the default
SQLJ connection context instance to perform dynamic SQL operations in JDBC. The
dynamic operations are performed using JDBC java.sql.Connection,
java.sql.PreparedStatement, and java.sql.ResultSet objects. (For
information about such basic features of JDBC programming, see the Oracle9i JDBC
Developer’s Guide and Reference.)

Alternatively, you can use Oracle SQLJ extensions for dynamic SQL operations. See
"Support for Dynamic SQL" on page 7-52 for general information. For a rework of
this example using SQLJ dynamic SQL functionality with FETCH functionality from
a result set iterator, see Example 5: Dynamic SQL with FETCH from Result Set
Iterator on page 7-57.

import java.sql.*;

public static void projectsDue(boolean dueThisMonth) throws SQLException {

 // Get JDBC connection from previously initialized SQLJ DefaultContext.
 Connection conn = DefaultContext.getDefaultContext().getConnection();

 String query = "SELECT name, start_date + duration " +
 "FROM projects WHERE start_date + duration >= sysdate";
 if (dueThisMonth)
 query += " AND to_char(start_date + duration, ’fmMonth’) " +
 " = to_char(sysdate, ’fmMonth’) ";

 PreparedStatement pstmt = conn.prepareStatement(query);
 ResultSet rs = pstmt.executeQuery();
 while (rs.next()) {
 System.out.println("Project: " + rs.getString(1) + " Deadline: " +
 rs.getDate(2));
 }
 rs.close();
 pstmt.close();
}

7-44 SQLJ Developer’s Guide and Reference

SQLJ and JDBC Interoperability
Converting from JDBC Connections to Connection Contexts
If you initiate a connection as a JDBC Connection instance but later want to use it
as a SQLJ connection context instance (for example, if you want to use it in a context
expression to specify the connection to use for a SQLJ executable statement), then
you can convert the JDBC connection instance to a SQLJ connection context
instance.

The DefaultContext class and all declared connection context classes have a
constructor that takes a JDBC connection instance as input and constructs a SQLJ
connection context instance.

For example, presume you instantiated and defined the JDBC connection instance
conn and want to use the same connection for an instance of a declared SQLJ
connection context class MyContext. You can do this as follows:

...
#sql context MyContext;
...
MyContext myctx = new MyContext(conn);
...

About Shared Connections
A SQLJ connection context instance and the associated JDBC connection instance
share the same underlying physical connection. As a result, the following is true:

■ When you get a JDBC connection instance from a SQLJ connection context
instance (using the connection context getConnection() method), the
Connection instance inherits the state of the connection context instance.
Among other things, the Connection instance will retain the auto-commit
setting of the connection context instance.

■ When you construct a SQLJ connection context instance from a JDBC
connection instance (using the connection context constructor that takes a
connection instance as input), the connection context instance inherits the state
of the Connection instance. Among other things, the connection context
instance will retain the auto-commit setting of the Connection instance. (By
default, a JDBC connection instance has an auto-commit setting of true, but
you can alter this through the setAutoCommit() method of the Connection
instance.)

■ Given a SQLJ connection context instance and associated JDBC connection
instance, calls to methods that alter session state in one instance will also affect
 Advanced Language Features 7-45

SQLJ and JDBC Interoperability
the other instance, because it is actually the underlying shared session that is
being altered.

■ Because there is just a single underlying physical connection, there is also a
single underlying set of transactions. A COMMIT or ROLLBACK operation in one
connection instance will affect any other connection instances that share the
same underlying connection.

Closing Shared Connections
When you get a JDBC connection instance from a SQLJ connection context instance
(using the getConnection() method) or you create a SQLJ connection context
instance from a JDBC connection instance (using the connection context
constructor), you must close only the connection context instance. By default,
calling the close() method of a connection context instance closes the associated
JDBC connection instance and the underlying physical connection, thereby freeing
all resources associated with the connection.

If you want to close a SQLJ connection context instance without closing the
associated JDBC connection instance (if, for example, the Connection instance is
being used elsewhere, either directly or by another connection context instance),
then you can specify the boolean constant KEEP_CONNECTION to the close()
method, as follows (presume you have been using a connection context instance
ctx):

ctx.close(ConnectionContext.KEEP_CONNECTION);

If you do not specify KEEP_CONNECTION, then the associated JDBC connection
instance is closed by default. You can also specify this explicitly:

ctx.close(ConnectionContext.CLOSE_CONNECTION);

KEEP_CONNECTION and CLOSE_CONNECTION are static constants of the
sqlj.runtime.ConnectionContext interface.

Note: It is also possible for multiple SQLJ connection context
instances to be created from the same JDBC connection instance
and, therefore, to share the same underlying physical connection.
This might be useful, for example, if you want to share the same set
of transactions between program modules. The preceding notes
apply to this situation as well.
7-46 SQLJ Developer’s Guide and Reference

SQLJ and JDBC Interoperability
If you do not explicitly close a connection context instance, then it will be closed by
the finalizer during garbage collection with KEEP_CONNECTION, meaning the
resources of the JDBC connection instance would not be freed until released
explicitly or by garbage collection.

If you close only the JDBC connection instance, this will not close the associated
SQLJ connection context instance. The underlying physical connection would be
closed, but the resources of the connection context instance would not be freed until
garbage collection.

SQLJ Iterator and JDBC Result Set Interoperability
SQLJ allows you to convert in either direction between SQLJ iterators and JDBC
result sets. For situations where you are selecting data in a SQLJ statement but do
not care about strongly typed iterator functionality, SQLJ also supports a weakly
typed iterator, which you can convert to a JDBC result set.

Converting from Result Sets to Named or Positional Iterators
There are a number of situations where you might find yourself manipulating JDBC
result sets. For example, another package might be implemented in JDBC and
provide access to data only through result sets, or might require
ResultSetMetaData information because it is a routine written generically for
any type of result set. Or your SQLJ application might invoke a stored procedure
that returns a JDBC result set.

Notes:

■ If the same underlying JDBC connection is shared by multiple
connection context instances, then use KEEP_CONNECTION
when closing all but the last remaining open connection context
instance.

■ An error message will be issued if you try to close a connection
context instance whose underlying JDBC connection has
already been closed, or if you try to close the underlying
connection when it has already been closed. If you encounter
this, verify that the JDBC connection is not being closed
independently by JDBC code, and that all preceding close()
calls on SQLJ connection context instances that use the
underlying connection use the KEEP_CONNECTION parameter.
 Advanced Language Features 7-47

SQLJ and JDBC Interoperability
If the dynamic result set has a known structure, it is typically desirable to
manipulate it as an iterator to use the strongly typed paradigm that iterators offer.

In SQLJ, you can populate a named or positional iterator object by converting an
existing JDBC result set object. This can be thought of as casting a result set to an
iterator, and the syntax reflects this, as follows:

#sql iter = { CAST :rs };

This binds the result set object rs into the SQLJ executable statement, converts the
result set, and populates the iterator iter with the result set data.

Following is an example. Assume myEmpQuery() is a static Java function in a class
called RSClass, with a predefined query that returns a JDBC result set object.

Imports and declarations:

import java.sql.*;
...
#sql public iterator MyIterator (String ename, float sal);
...

Executable code:

ResultSet rs;
MyIterator iter;
...
rs = RSClass.myEmpQuery();
#sql iter = { CAST :rs };
...
(process iterator)
...
iter.close();
...

This example could have used a positional iterator instead of a named iterator; the
functionality is identical.

The following rules apply when converting a JDBC result set to a SQLJ iterator and
processing the data:

■ To convert to a positional iterator, the result set and iterator must have the same
number of columns, and the types must map correctly.

■ To convert to a named iterator, the result set must have at least as many
columns as the iterator, and all columns of the iterator must be matched by
name and type. (If the result set and iterator do not have the same number of
7-48 SQLJ Developer’s Guide and Reference

SQLJ and JDBC Interoperability
columns, then the SQLJ translator will generate a warning unless you use the
-warn=nostrict option setting.)

■ The result set being cast must implement the java.sql.ResultSet interface.
(The class oracle.jdbc.OracleResultSet implements this interface, as
does any standard result set class.)

■ The iterator receiving the cast must be an instance of an iterator class that was
declared as public.

■ Do not access data from the result set, either before or after the conversion.
Access data from the iterator only.

■ When you are finished, close the iterator, not the result set. Closing the iterator
will also close the result set, but closing the result set will not close the iterator.
When interoperating with JDBC, always close the SQLJ entity.

For a complete example of how SQLJ and JDBC can interoperate in the same
program, see "Interoperability with JDBC—JDBCInteropDemo.sqlj" on page 12-59.

Converting from Named or Positional Iterators to Result Sets
You might also encounter situations where you want to define a query using SQLJ
but ultimately need a result set. (SQLJ offers more natural and concise syntax, but
perhaps you want to do dynamic processing of the results, or perhaps you want to
use an existing Java method that takes a result set as input.)

So that you can convert iterators to result sets, every SQLJ iterator class, whether
named or positional, is generated with a getResultSet() method. This method
can be used to return the underlying JDBC result set object of an iterator object.

Following is an example showing use of the getResultSet() method.

Imports and declarations:

import java.sql.*;
...
#sql public iterator MyIterator (String ename, float sal);
...
 Advanced Language Features 7-49

SQLJ and JDBC Interoperability
Executable code:

MyIterator iter;
...
#sql iter = { SELECT * FROM emp };
ResultSet rs = iter.getResultSet();
...
(process result set)
...
iter.close();
...

The following rules apply when converting a SQLJ iterator to a JDBC result set and
processing the data:

■ When writing iterator data to a result set, you should access data only through
the result set. Do not attempt to directly access the iterator, either before or after
the conversion.

■ When you finish, close the original iterator, not the result set. Closing the
iterator will also close the result set, but closing the result set will not close the
iterator. When interoperating with JDBC, always close the SQLJ entity.

Using and Converting Weakly Typed Iterators (ResultSetIterator)
You might have a situation similar to what is discussed in "Converting from Named
or Positional Iterators to Result Sets" on page 7-49, but where you do not require the
strongly typed functionality of the iterator. All you might care about is being able to
use SQLJ syntax for the query and then processing the data dynamically from a
result set.

For such circumstances, you can directly use the type
sqlj.runtime.ResultSetIterator to receive query data. See "Result Set
Iterators" on page 7-30 for general information about the result set iterator types.

In using SQLJ statements and ResultSetIterator functionality instead of using
JDBC statements and standard result set functionality, you enable yourself to use
the more concise SELECT syntax of SQLJ.

Following is an example of how to use and convert a weakly typed result set
iterator.

Imports:

import sqlj.runtime.*;
import java.sql.*;
...
7-50 SQLJ Developer’s Guide and Reference

SQLJ and JDBC Interoperability
Executable code:

ResultSetIterator rsiter;
...
#sql rsiter = { SELECT * FROM table };
ResultSet rs = rsiter.getResultSet();
...
(process result set)
...
rsiter.close();
...

Note: Oracle SQLJ permits navigation through a result set iterator
using the next() method and FETCH CURRENT syntax, as
described in "From JDBC Result Sets to SQLJ Iterators — FETCH
CURRENT Syntax" on page 7-35. Furthermore, for scrollable result
set iterators, additional navigation methods are supported. These
methods are described in "Scrollable Named Iterators" on
page 7-33.
 Advanced Language Features 7-51

Support for Dynamic SQL
Support for Dynamic SQL
Oracle9i SQLJ includes extensions to support dynamic SQL—operations that are not
predefined and can change in real-time. Dynamic SQL expressions embedded in
SQLJ statements are referred to as meta bind expressions and are described
immediately below.

Meta Bind Expressions
Meta bind expressions are used for dynamic SQL in SQLJ statements, where
otherwise static SQL clauses would appear. A meta bind expression contains a Java
identifier of type String or a string-valued Java expression that is interpreted at
runtime. In addition, so that SQLJ can perform online semantics-checking, a meta
bind expression can optionally include static SQL replacement code to be used for
checking during translation.

This section describes usage, restrictions, syntax, and behavior for meta bind
expressions.

Meta Bind Expressions—General Usage and Restrictions
You can use a meta bind expression in place of any of the following:

■ a table name

■ a column name in a SELECT-list (without the column alias, if one was specified)

■ all or part of a WHERE clause condition

■ a role, schema, catalog, or package name in a DDL or DML statement

■ a SQL literal value or SQL expression

Note: In Oracle8i SQLJ releases, you must use JDBC code for
dynamic SQL functionality. Using JDBC code is still an option in
Oracle9i, and may be preferable if code portability is a concern, but
new Oracle9i SQLJ support for dynamic SQL permits use of SQLJ
as a single, simplified API for data access. (SQLJ-JDBC interaction is
discussed under "SQLJ and JDBC Interoperability" on page 7-42.)
7-52 SQLJ Developer’s Guide and Reference

Support for Dynamic SQL
Be aware of the following restrictions on meta bind expressions, enforced to ensure
that the SQLJ translator can properly determine the nature of the SQL operation and
can perform syntactic analysis of the SQLJ statement as a whole:

■ A meta bind expression cannot be the first non-comment of the SQL operation
within a SQLJ statement.

■ A meta bind expression cannot contain the INTO token of a SQLJ SELECT
INTO statement and cannot expand to become the INTO-list of a SELECT INTO
statement.

■ A meta bind expression cannot appear in any of the following kinds of
SQL/SQLJ instructions or clauses: CALL, VALUES, PSM SET, COMMIT,
ROLLBACK, FETCH INTO, or CAST.

Meta Bind Expressions—Syntax and Behavior
Following is the general syntax for meta bind expressions:

:{ Java_bind_expression }

or:

:{ Java_bind_expression :: SQL_replacement_code }

Spaces are optional.

There can be multiple meta bind expressions within the SQL instructions of a SQLJ
statement.

Java Bind Expression A Java bind expression can be either of the following:

■ a Java identifier of type String

■ a Java expression that evaluates to a character string

Java bind expressions within meta bind expressions are subject to standard Java
lexing rules, and have syntax similar to that of SQLJ host expressions (described in
"Java Host Expressions, Context Expressions, and Result Expressions" on
page 3-15). However, unlike host expressions, Java bind expressions within meta
bind expressions are not enclosed within parentheses. This is because if there is SQL
replacement code, the "::" token acts as a separator between the Java bind expression
and the SQL code; if there is no SQL replacement code, the closing "}" acts as a
terminator. In either case, there is no ambiguity.
 Advanced Language Features 7-53

Support for Dynamic SQL
SQL Replacement Code A SQL replacement code clause consists of a sequence of zero
or more SQL tokens, with the following requirements and restrictions:

■ It is subject to SQL lexing rules.

■ Braces—"{" and "}"—must occur in matching pairs (with the exception of those
that are part of a SQL comment, constant, or identifier).

■ There can be no SQLJ host expressions or nested meta bind expressions within
the SQL instructions.

Translation-Time Behavior Whenever there is SQL replacement code (even if only an
empty string) in a meta bind expression, then the meta bind expression is replaced
by the SQL code during translation. The purpose of SQL replacement code is to
enable the SQLJ translator to perform online semantics-checking.

If any meta bind expression within a SQLJ statement has no SQL replacement code
clause, then the SQLJ translator cannot perform online semantics-checking on the
statement—it is only checked syntactically.

Runtime Behavior At runtime, each meta bind expression is replaced by the
evaluation of its Java bind expression.

If a Java bind expression evaluates to null, then the dynamic SQL statement as a
whole becomes undefined.

Note: There can be no mode specifiers (IN, OUT, or INOUT) within
a Java bind expression, or between ":" and "{" of the meta bind
expression.

Note: It is permissible for the SQL replacement code to be empty.
7-54 SQLJ Developer’s Guide and Reference

Support for Dynamic SQL
SQLJ Dynamic SQL Examples
This section provides examples of dynamic SQL usage in SQLJ code.

Example 1

...
int x = 10;
int y = x + 10;
int z = y + 10;
String table = "new_Emp";
#sql { INSERT INTO :{table :: emp} VALUES (:x, :y, :z) };
...

During translation, the SQL operation becomes:

INSERT INTO emp VALUES (10, 20, 30);

SQLJ can perform online semantics-checking against a schema that has an emp
table. (Perhaps new_Emp only exists in the runtime schema, and is not created until
the application executes.)

During runtime, the SQL operation becomes:

INSERT INTO new_Emp VALUES (10, 20, 30);

Example 2

...
String table = "new_Emp";
String query = "ename LIKE ’S%’ AND sal>1000";
#sql myIter = { SELECT * FROM :{table :: emp2}
 WHERE :{query :: ename=’SCOTT’} };
...

During translation, the SQL operation becomes:

SELECT * FROM emp2 WHERE ename=’SCOTT’;

Note: See "Dynamic SQL—DynamicDemo.sqlj" on page 12-68 for
a full sample application of dynamic SQL functionality of SQLJ,
PL/SQL, and JDBC .
 Advanced Language Features 7-55

Support for Dynamic SQL
SQLJ can perform online semantics-checking against a schema that has an emp2
table.

During runtime, the SQL operation becomes:

SELECT * FROM new_Emp WHERE ename LIKE ’S%’ AND sal>1000;

Example 3

...
double raise = 1.12;
String col = "comm";
String whereQuery = "WHERE "+col+" IS NOT null";
for (int i=0; i<5; i++)
{
 #sql { UPDATE :{"emp"+i :: emp}
 SET :{col :: sal} = :{col :: sal} * :raise :{whereQuery ::} };
}
...

During translation, the SQL operation becomes:

UPDATE emp SET sal = sal * 1.12;

SQLJ can perform online semantics-checking against a schema that has an emp
table. There is no WHERE clause during translation, because the SQL replacement
code is empty.

During runtime, the SQL operation is executed five times, becoming:

UPDATE emp0 SET comm = comm * 1.12 WHERE comm IS NOT null;
UPDATE emp1 SET comm = comm * 1.12 WHERE comm IS NOT null;
UPDATE emp2 SET comm = comm * 1.12 WHERE comm IS NOT null;
UPDATE emp3 SET comm = comm * 1.12 WHERE comm IS NOT null;
UPDATE emp4 SET comm = comm * 1.12 WHERE comm IS NOT null;

Example 4

...
double raise = 1.12;
String col = "comm";
String whereQuery = "WHERE "+col+" IS NOT null";
7-56 SQLJ Developer’s Guide and Reference

Support for Dynamic SQL
for (int i=0; i<10; i++)
{
 #sql { UPDATE :{"emp"+i}
 SET :{col :: sal} = :{col :: sal} * :raise :{whereQuery ::} };
}
...

The runtime behaviors of Example 4 and Example 3 are identical. A difference
occurs during translation, however, where SQLJ cannot perform online
semantics-checking for Example 4 because there is no SQL replacement code for the
first meta bind expression, :{"emp"+i}.

Example 5: Dynamic SQL with FETCH from Result Set Iterator This example is a rework of
"Example: JDBC and SQLJ Connection Interoperability for Dynamic SQL" on
page 7-44, using SQLJ statements instead of JDBC statements. This example also
uses FETCH CURRENT functionality, as described in "From JDBC Result Sets to SQLJ
Iterators — FETCH CURRENT Syntax" on page 7-35, from a result set iterator.

import java.sql.*;

public static void projectsDue(boolean dueThisMonth) throws SQLException {

 ResultSetIterator rsi;
 String andClause = (dueThisMonth) ?
 " AND to_char(start_date + duration, ’fmMonth’) "
 + " = to_char(sysdate, ’fmMonth’) "
 : "";
 #sql rsi = { SELECT name, start_date + duration FROM projects
 WHERE start_date + duration >= sysdate :{andClause :: } };
 while (rsi.next())
 {
 String name = null;
 java.sql.Date deadline = null;
 #sql { FETCH CURRENT FROM :rsi INTO :name, :deadline };
 System.out.println("Project: " + name + "Deadline: " + deadline);
 }
 rsi.close();
}

 Advanced Language Features 7-57

Support for Dynamic SQL
7-58 SQLJ Developer’s Guide and Reference

 Translator Command Line and O
8

Translator Command Line and Options

Once you have written your source code, you must translate it using the SQLJ
translator. This chapter discusses the SQLJ translator command line, options, and
properties files.

The following topics are discussed:

■ Translator Command Line and Properties Files

■ Basic Translator Options

■ Advanced Translator Options

■ Translator Support and Options for Alternative Environments
ptions 8-1

Translator Command Line and Properties Files
Translator Command Line and Properties Files
This section discusses general command-line syntax for the script sqlj that you
use to run the SQLJ translator, and lists all the options available. It then discusses
SQLJ properties files, which you can use instead of the command line to set most
options, and the SQLJ_OPTIONS environment variable, which you can use in
addition to or instead of the command line for setting options.

For detailed information about settings for basic options, see "Basic Translator
Options" on page 8-20.

For information about more advanced options, see "Advanced Translator Options"
on page 8-56 and "Translator Support and Options for Alternative Environments"
on page 8-72.

The sqlj script invokes a Java virtual machine (JVM) and passes the class name of
the SQLJ translator (sqlj.tools.Sqlj) to the JVM. The JVM invokes the
translator and performs operations such as parsing the command line and
properties files. For simplicity, running the script is referred to as "running SQLJ",
and its command line is referred to as the "SQLJ command line".

This is the typical general syntax for the command line:

sqlj <optionlist> filelist

The option list is a list of SQLJ option settings, separated by spaces. There are also
prefixes to mark options to pass to other executable programs.

The file list is the list of files, separated by spaces, to be processed by the SQLJ
translator (they can be .sqlj, .java, .ser, or .jar files, as explained in
"Command-Line Syntax and Operations" on page 8-10). The * wildcard entry can be
used in file names. For example, Foo*.sqlj would find Foo1.sqlj,
Foo2.sqlj, and Foobar.sqlj.

Do not include .class files in the file list, but do be sure that your classpath is set
so that the SQLJ translator can find any classes it must have for type resolution of
variables in your SQLJ source files.

Note: It is not required that all the options precede the file list.
Options may appear anywhere in the command line and are
processed in order.

All command-line options apply to all files being translated. It is
not possible to have file-specific option settings.
8-2 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files
If the -checksource flag is enabled (its default setting), the SQLJ translator can
also find classes it needs in uncompiled .java files in the classpath. See "Source
Check for Type Resolution (-checksource)" on page 8-65.

SQLJ Options, Flags, and Prefixes
This section discusses options supported by the SQLJ translator. Boolean options are
referred to as flags. Also listed are prefixes, used to pass options to the JVM, which
the SQLJ script invokes, and to the Java compiler and SQLJ profile customizer,
which the JVM invokes.

Use an equals sign (=) to specify option and flag settings, although for simplicity
you do not have to specify =true to turn on a flag—typing the flag name alone will
suffice. You must, however, specify =false to turn a flag off—a flag will not toggle
from its previous value. For example:

-linemap=true or just -linemap to enable line-mapping

-linemap=false to disable line-mapping

Notes Regarding Options Flags and Prefixes

■ The names of command-line options, including options passed elsewhere, are
case-sensitive and usually all lowercase. Option values are usually
case-sensitive as well.

■ Several options, as indicated in Table 8–1 below, accept alternative syntax if
specified on the command line, to support compatibility with the Oracle
loadjava utility.

Notes:

■ Discussion of the SQLJ command line applies only to
client-side translation, not server-side translation. There is a
different mechanism for specifying options to SQLJ in the
server. For information, see "Option Support in the Server
Embedded Translator" on page 11-18.

■ If you run the script by entering only sqlj, you will receive a
synopsis of the most frequently used SQLJ options. In fact, this
is true whenever you run the script without specifying any files
to process. This is equivalent to using the -help flag setting.
 Translator Command Line and Options 8-3

Translator Command Line and Properties Files
■ Several javac options are recognized directly by SQLJ if specified on the
command line, as indicated in Table 8–1. All these are passed to your Java
compiler (presumably javac), and some also affect SQLJ operation.

■ Most SQLJ options can also be set in a properties file. See "Properties Files for
Option Settings" on page 8-14.

■ The SQLJ_OPTIONS environment variable can be used in addition to, or
instead of, the command line for setting options. See "SQLJ_OPTIONS
Environment Variable for Option Settings" on page 8-18.

■ If the same option appears more than once on the command line (or in the
properties file), then the last value is used.

■ In this document, boolean flags are usually discussed as being true or false,
but they can also be enabled/disabled by setting them to yes/no, on/off, or
1/0.

For an example and discussion of command-line syntax and operations, see
"Command-Line Syntax and Operations" on page 8-10.

Summary of SQLJ Options
Table 8–1 below lists options supported by the SQLJ translator, categorized as
follows:

■ Flags, options, and prefixes listed as "command-line only" cannot be set in a
properties file.

■ Flags and options listed as "Basic" are discussed in "Basic Translator Options" on
page 8-20.

■ Flags, options, and prefixes listed as "Advanced" are discussed in "Advanced
Translator Options" on page 8-56.

■ Flags and options listed as "Environment" are discussed in "Translator Support
and Options for Alternative Environments" on page 8-72. These flags and
options are for use of a non-standard JVM, compiler, or customizer.

■ Options listed as "javac Compatible" are javac options that SQLJ supports and
that are also passed directly to the Java compiler (presumably javac). These
options are discussed in "Options for javac Compatibility" on page 8-9.
8-4 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files
Table 8–1 SQLJ Translator Options

Option Description Default Category

-C prefix that marks options to pass to the
Java compiler

n/a Advanced

-cache flag to enable caching of online
semantics-checking results (to reduce
trips to database)

false Advanced

-checkfilename flag to specify whether a warning is
issued during translation if a source file
name does not correspond to the name of
the public class (if any) defined there

true Environment

-checksource flag to instruct SQLJ type resolution to
examine source files in addition to class
files in certain circumstances

true Advanced

-classpath
(command-line only)

option to specify the classpath to the JVM
and Java compiler (passed to javac)

none Basic

-codegen option to specify type of code generation:
iso for standard SQLJ code generation;
oracle for Oracle-specific code
generation with direct Oracle JDBC calls

iso Basic

-compile flag to enable/disable the Java
compilation step (for .java files
generated during the current SQLJ run, or
previously generated .java files
specified on the command line)

true Advanced

-compiler-executable option to specify the Java compiler to use javac Environment

-compiler-encoding-flag flag to tell SQLJ whether to pass the
-encoding setting (if that option is set)
to the Java compiler

true Environment

-compiler-output-file option to specify a file to which the Java
compiler output should be written

(If this option is not set, then SQLJ
assumes that compiler output goes to
standard output.)

none Environment

-compiler-pipe-output-flag flag instructing SQLJ whether to set the
javac.pipe.output system property,
which determines whether the Java
compiler outputs errors and messages to
STDOUT instead of STDERR

true Environment
 Translator Command Line and Options 8-5

Translator Command Line and Properties Files
-d option to set the output directory for
profile (.ser) files generated by SQLJ
and .class files generated by the
compiler (passed to javac)

empty (use directory of
.java files for .class
files; use directory of
.sqlj files for .ser
files)

Basic

-default-customizer option to specify the profile customizer to
use; specify a class name

oracle.sqlj.runtime.util.
OraCustomizer

Environment

-default-url-prefix option to set the default prefix for URL
settings

jdbc:oracle:thin: Basic

-depend
(command-line only)

passed to javac only n/a javac
Compatible

-dir option to set output directory for
SQLJ-generated .java files

empty (use directory of
.sqlj input file)

Basic

-driver option to specify the JDBC driver class to
register; specify a class name or
comma-separated list of class names

oracle.jdbc.
OracleDriver

Basic

-encoding
(also recognized as -e if on
command line)

option to specify the encoding that SQLJ
and the compiler will use in globalization
support (passed to javac)

JVM file.encoding
setting

Basic

-explain flag to request "cause" and "action"
information to be displayed with
translator error messages

false Basic

-g
(command-line only)

passed to javac; enables -linemap n/a javac
Compatible

-help (also recognized as -h)
-help-long
-help-alias
(all command-line only)

flags to display different levels of
information about SQLJ option names,
descriptions, and current values

not enabled Basic

-jdblinemap variant of -linemap option for use with
Sun Microsystems jdb debugger

false Basic

-J
(command-line only)

prefix that marks options to pass to the
JVM

n/a Advanced

-linemap flag to enable mapping of line numbers
between generated Java class file and
original SQLJ code

false Basic

Table 8–1 SQLJ Translator Options (Cont.)

Option Description Default Category
8-6 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files
-n
(command-line only;
alternatively -vm=echo)

flag instructing the sqlj script to echo
the full command line as it would be
passed to the SQLJ translator (including
settings in SQLJ_OPTIONS) without
having the translator execute it

n/a Basic

-nowarn
(command-line only)

passed to javac; sets -warn=none n/a javac
Compatible

-O
(command-line only)

passed to javac; disables -linemap n/a javac
Compatible

-offline option to specify the offline checker to use
for semantics-checking; specify a list of
fully qualified class names

oracle.sqlj.checker.
OracleChecker

Advanced

-online option to specify the online checker to use
for semantics-checking; specify a fully
qualified class name (you must also set
-user to enable online checking)

oracle.sqlj.checker.
OracleChecker

Advanced

-optcols flag to enable iterator column type and
size definitions to optimize performance
(used with Oracle-specific code
generation only, otherwise use equivalent
Oracle customizer option)

false Basic

-optparams flag to enable parameter size definitions
to optimize JDBC resource allocation
(used with -optparamdefaults; used
with Oracle-specific code generation only,
otherwise use equivalent Oracle
customizer options)

false Basic

-optparamdefaults option to set parameter size defaults for
particular datatypes (used with
-optparams; used with Oracle-specific
code generation only, otherwise use
equivalent Oracle customizer options)

false Basic

-P prefix that marks options to pass to the
SQLJ profile customizer

n/a Advanced

-passes
(command-line only)

flag instructing the sqlj script to run
SQLJ in two separate passes, with
compilation in between

false Environment

Table 8–1 SQLJ Translator Options (Cont.)

Option Description Default Category
 Translator Command Line and Options 8-7

Translator Command Line and Properties Files
-password
(also recognized as -p if on
command line)

option to set the user password for the
database connection for online
semantics-checking

none Basic

-profile flag to enable/disable the profile
customization step (for profile files
generated during current SQLJ run)

true Advanced

-props
(command-line only)

option to specify a properties file (an
alternative to the command line for
setting options); sqlj.properties is
also still read

none Basic

-ser2class flag to instruct SQLJ to translate
generated .ser profiles to .class files

false Advanced

-status
(also recognized as -v if on
command line)

flag requesting SQLJ to display status
messages as it runs

false Basic

-url option to set the database URL for the
database connection for online
semantics-checking

jdbc:oracle:oci:@ Basic

-user
(also recognized as -u if on
command line)

option to enable online
semantics-checking and set the user name
(and optionally password and URL) for
the database connection

none (no online
semantics-checking)

Basic

-verbose
(command-line only)

passed to javac; enables -status n/a javac
Compatible

-version
-version-long
(both command-line only)

flag to display different levels of SQLJ
and JDBC driver version information

not enabled Basic

-vm
(command-line only)

option to specify JVM to use for running
the SQLJ translator

java Environment

-warn comma-separated list of flags to enable or
disable different SQLJ warnings;
individual flags are cast/nocast
precision/noprecision, nulls/nonulls,
portable/noportable, strict/nostrict, and
verbose/noverbose; global flag is
all/none

cast
precision
nulls
noportable
strict
noverbose

Basic

Table 8–1 SQLJ Translator Options (Cont.)

Option Description Default Category
8-8 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files
Options for loadjava Compatibility
For compatibility with the loadjava utility used to load Java and SQLJ
applications into Oracle9i, the following alternative syntax is recognized for some
options when specified on the command line (this is also noted in Table 8–1 above):

■ -e (equivalent to -encoding)

■ -h (equivalent to -help)

■ -p (equivalent to -password)

■ -u (equivalent to -user)

■ -v (for verbose message output; equivalent to -status)

To maintain full consistency with loadjava syntax, you can use a space instead of
"=" in setting these options, as in the following example:

-u scott/tiger -v -e SJIS

For general information about the loadjava utility, see the Oracle9i Java Tools
Reference.

Options for javac Compatibility
For compatibility with javac, the Java compiler supplied with the Sun
Microsystems JDK, the following javac options are accepted directly by SQLJ
without the -C prefix if specified on the command line. Some also serve as SQLJ
options; some are not SQLJ options per se, but also set SQLJ options; some affect
javac only. This is also indicated in Table 8–1 above. Refer to your javac
documentation for information about javac option settings and functionality.

■ -classpath (also a SQLJ option; sets the classpath for both javac and the
JVM)

See "Classpath for Java Virtual Machine and Compiler (-classpath)" on
page 8-21.

■ -d (also a SQLJ option; sets the output directory for .class files and SQLJ
profile files)

See "Output Directory for Generated .ser and .class Files (-d)" on page 8-28.

Note: This alternative option syntax is recognized only on the
command line or in the SQLJ_OPTIONS environment variable, not
in properties files.
 Translator Command Line and Options 8-9

Translator Command Line and Properties Files
■ -depend (javac option only; compiles out-of-date files recursively; also
enables the -checksource option)

■ -encoding (also a SQLJ option; sets encoding for both SQLJ and javac)

See "Encoding for Input and Output Source Files (-encoding)" on page 8-27.

■ -g (generates javac debugging information; also sets SQLJ -linemap=true)

See "Line-Mapping to SQLJ Source File (-linemap)" on page 8-47.

■ -nowarn (instructs javac to generate no warnings; also sets SQLJ
-warn=none)

See "Translator Warnings (-warn)" on page 8-43.

■ -O (instructs javac to optimize; also sets SQLJ -linemap=false)

See "Line-Mapping to SQLJ Source File (-linemap)" on page 8-47.

■ -verbose (instructs javac to output real-time status messages; also sets SQLJ
-status=true)

See "Real-Time Status Messages (-status)" on page 8-46.

Profile Customizer Options
Profile customizer options—options for the customizer harness front end, the
default Oracle customizer, and special customizers for debugging and
deployment-time semantics-checking—are documented in "Customization Options
and Choosing a Customizer" on page 10-17.

Command-Line Syntax and Operations
The general sequence of events triggered by running the script sqlj was discussed
in "Translation Steps" on page 1-9. This section will add some operational details to
that discussion, as part of this overview of the command line.

Use of Command-Line Arguments
Recall the typical general syntax for the command line:

sqlj <optionlist> filelist

When the sqlj script invokes a JVM, it passes all of its command-line arguments to
the JVM, which later passes them elsewhere (such as to the Java compiler or profile
customizer) as appropriate.
8-10 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files
Arguments from the Option List Option list arguments are used in the following ways:

■ Options not designated by the -J, -C, or -P prefixes are SQLJ options and are
passed to the SQLJ translator as the JVM invokes it.

■ Options designated by the -J prefix are JVM options and are used by the JVM
directly. Such options must be specified on the command line or in the
SQLJ_OPTIONS environment variable.

■ Options designated by the -C prefix are Java compiler options and are passed to
the compiler as the JVM invokes it.

Note that three SQLJ options have the same name as Java compiler options and,
if specified, are automatically passed to the Java compiler, as well as being used
by SQLJ:

– The -d setting is used by SQLJ to specify the output directory for its
generated profile files and is also passed to the compiler, which uses it to
specify the output directory for its generated .class files.

– The -encoding setting is used by SQLJ in reading .sqlj files and
generating .java files and is also passed to the Java compiler (unless the
-compiler-encoding-flag is off), which uses it in reading .java files.

– The -classpath setting is passed by SQLJ to both the Java compiler and
the JVM to set the classpath for both. It must be specified on the command
line or in the SQLJ_OPTIONS environment variable.

Do not use the -C prefix to specify the -d or -encoding compiler options.
Note that this also means that SQLJ and the compiler use the same settings for
-d and -encoding.

You must use the -C prefix (and the -J prefix) for -classpath if you want to
set different classpath values for the Java compiler and for the JVM that runs
SQLJ.

■ Options designated by the -P prefix are SQLJ profile customizer options and
are passed to the customizer as the JVM invokes it.

Any profile customization other than what SQLJ performs automatically is
considered an advanced feature and is covered in Chapter 10, "Profiles and
Customization".
 Translator Command Line and Options 8-11

Translator Command Line and Properties Files
Arguments from the File List The SQLJ front end parses the file list, processes wildcard
characters, and expands file names. By default, files are processed as follows:

■ The .sqlj files are processed by the SQLJ translator, Java compiler, and SQLJ
profile customizer.

■ The .java files are processed by the Java compiler and are also used by the
SQLJ translator for type resolution.

■ The .ser profiles and .jar files are processed only by the profile customizer.

Note that you can specify .sqlj files together with .java files on the command
line, or you can specify .ser files together with .jar files, but you cannot mix the
two categories. (See "Use of JAR Files for Profiles" on page 10-41 for details about
how .jar files are processed.)

If you have .sqlj files and .java files with interdependencies (each requiring
access to code in the others), then enter them all on the command line for a single
execution of SQLJ. You cannot specify them for separate executions of SQLJ,
because then SQLJ would be unable to resolve all the types.

Processing to Avoid Source Conflicts The SQLJ translator takes steps to try to prevent
having multiple source files define the same class in the same location. If your
command-line file list includes multiple references to the same .sqlj or .java
file, all but the first reference are discarded from the command line. In addition, if
you list a .java file and .sqlj file with the same base name and in the same
location without using the -dir option, only the .sqlj file is processed. This
processing also applies to wild-card file name characters.

Consider the following command-line examples, presuming that your current
directory is /myhome/mypackage, which contains the files Foo.sqlj and
Foo.java:

■ sqlj Foo.sqlj /myhome/mypackage/Foo.sqlj

These both refer to the same file, so the translator discards
/myhome/mypackage/Foo.sqlj from the command line.

Note: As an alternative to entering .java file names on the
command line, you can enable the -checksource option and then
just be sure that the .java files are in the classpath. See "Source
Check for Type Resolution (-checksource)" on page 8-65.
8-12 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files
■ sqlj Foo.sqlj Foo.java

The translator discards Foo.java from the command line. Otherwise, this
command line would result in the translator both writing to and reading from
Foo.java in the same execution.

■ sqlj Foo.*

Again, the translator discards Foo.java from the command line. Otherwise,
the translator would find both Foo.sqlj and Foo.java, which again would
cause it to both write to and read from Foo.java in the same execution.

■ sqlj -dir=outdir -d=outclasses Foo.sqlj Foo.java

This is okay, because the generated Foo.java will be in the outdir
subdirectory, while the Foo.java being read is in the /myhome/mypackage
directory. Presuming that Foo.java and Foo.sqlj define classes in different
packages, the .class files created by Java compilation will be placed in
different subdirectories under the outclasses directory hierarchy.

This processing of the command line means that you can, for example, type the
following command and have it execute without difficulty (with file references
being automatically discarded as necessary):

sqlj *.sqlj *.java

This is convenient in many situations.

Command-Line Example and Results
Below is a sample command line. This example uses some advanced concepts more
fully explained later in this chapter, but is presented in the interest of showing a
complete example of command-line syntax.

sqlj -J-Duser.language=ja -warn=none -J-prof -encoding=SJIS *Bar.sqlj Foo*.java

The sqlj script invokes a JVM, passes it the class name of the SQLJ translator, then
passes it the command-line arguments (which later passes them to the translator,
compiler, and customizer, as appropriate). If there are any options for the JVM, as
designated by -J, the script passes them to the JVM ahead of the translator class file
name (just as you would type Java options prior to typing the class file name if you
were invoking Java by hand).

After these steps are completed, the results are equivalent to the user having typed
in the next example (presuming SushiBar.sqlj, DiveBar.sqlj, FooBar.java,
and FooBaz.java were all in the current directory).
 Translator Command Line and Options 8-13

Translator Command Line and Properties Files
java -Duser.language=ja -prof sqlj.tools.Sqlj -warn=none -encoding=SJIS
SushiBar.sqlj DiveBar.sqlj FooBar.java FooBaz.java

(This is one wrap-around command line.)

For more information about how JVM options are handled, see "Options to Pass to
the Java Virtual Machine (-J)" on page 8-56.

Echoing the Command Line without Executing
You can use the SQLJ -n option (or, alternatively, -vm=echo) to echo the command
line that the sqlj script would construct and pass to the SQLJ translator, without
executing it. This includes settings in the SQLJ_OPTIONS environment variable as
well as on the command line, but does not include settings in properties files.

For more information, see "Command Line Echo without Execution (-n)" on
page 8-25.

Properties Files for Option Settings
You can use properties files, instead of the command line, to set options for the SQLJ
translator, Java compiler, and SQLJ profile customizer.

In addition, if your Java compiler will be running in a separate JVM and you want
to specify options to this JVM regarding operation of the compiler, then you can use
properties files to supply such options. Such options are passed to the JVM at the
time the compiler is run, after the SQLJ translation step. (It is more typical, however,
to pass options to the compiler’s JVM by using the command-line -C-J prefix.)

You cannot use properties files to set the following SQLJ options, flags, and prefixes:

■ -classpath

■ -help, -help-long, -help-alias, -C-help, -P-help

■ -J

■ -n

■ -passes

■ -props

■ -version, -version-long

■ -vm
8-14 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files
It is not possible to use properties files to specify options to the JVM, for example,
because properties files are read after the JVM is invoked.

You also cannot do the following in properties files:

■ set the SQLJ equivalents of javac options that are supported as SQLJ options
(-depend, -g, -nowarn, -O, -verbose)

However, as discussed in "Properties File Syntax" below, you can use the
"compile." prefix to set javac options directly . For example:

compile.depend
compile.g

■ use option abbreviations recognized on the command line for compatibility
with loadjava (-e, -h, -p, -u, -v)

Properties File Syntax
Option settings in a properties file are placed one per line. Lines with SQLJ options,
compiler options, and customizer options can be interspersed. (They are parsed by
the SQLJ front end and processed appropriately.)

Syntax for the different kinds of options is as follows:

■ Each SQLJ option is prefixed by sqlj. (including the period) instead of an
initial hyphen; only options that start with sqlj. are passed to the SQLJ
translator. For example:

sqlj.warn=none
sqlj.linemap=true

■ Each Java compiler option is prefixed by compile. (including the period)
instead of -C-; only options that start with compile. are passed to the Java
compiler. For example:

compile.verbose

Notes: Discussion of SQLJ properties files applies only to
client-side SQLJ, not server-side SQLJ. There is a different
mechanism for specifying options to SQLJ in the server. For
information, see "Option Support in the Server Embedded
Translator" on page 11-18.
 Translator Command Line and Options 8-15

Translator Command Line and Properties Files
(The Java compiler -verbose option outputs status messages during the
compile.)

■ General profile customization options (that apply regardless of the particular
customizer you are using) are prefixed by profile. (including the period)
instead of -P-; only options that start with profile. are passed to the profile
customizer. For example:

profile.backup

(The profile customizer backup option saves a copy of the previous profile.)

You can also specify options to a particular customizer by using profile.C as
follows:

profile.Csummary

(For the Oracle customizer, the summary option displays a summary of the
Oracle features used.)

Any profile customization other than the default Oracle customization is
considered an advanced feature and is covered in Chapter 10, "Profiles and
Customization".

■ Comment lines start with a pound sign (#). For example:

Comment line.

■ Blank lines are also permitted.

As on the command line, a flag can be enabled/disabled in a properties file with
=true/=false, =on/=off, =1/=0, or =yes/=no. A flag can also be enabled
simply by entering it without a setting, such as the following:

sqlj.linemap

Note: Always use the equals sign (=) in your option settings in a
properties file, even though some options (such as -user,
-password, and -url) allow use of a space instead of "=" on the
command line.
8-16 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files
Properties File: Simple Example The following are sample properties file entries:

Set user and JDBC driver
sqlj.user=scott
sqlj.driver=oracle.jdbc.OracleDriver

Turn on the compiler verbose option
compile.verbose

These entries are equivalent to having the following on the SQLJ command line:

sqlj -user=scott -driver=oracle.jdbc.OracleDriver -C-verbose

Properties File: Non-Default Connection Context Classes Following is a sample properties
file that specifies settings for a connection context class SourceContext that you
declared:

JDBC driver
sqlj.driver=oracle.jdbc.OracleDriver

Oracle 8.0.4 on spock.natdecsys.com
sqlj.user@SourceContext=sde
sqlj.password@SourceContext=fornow
sqlj.url@SourceContext=jdbc:oracle:thin:@207.67.155.3:1521:nds

Warning settings
sqlj.warn=all

Cache
sqlj.cache=on

Default Properties Files
Regardless of whether a properties file is specified in the SQLJ command line, the
SQLJ front end looks for files named "sqlj.properties". It looks for them in the Java
home directory, the user home directory, and the current directory, in that order. It
processes each sqlj.properties file it finds, overriding previously set options as
it encounters new ones. Thus, options set in the sqlj.properties file in the
current directory override those set in the sqlj.properties file in the user home
directory or Java home directory.

Also see "Order of Precedence of Option Settings" on page 8-18.
 Translator Command Line and Options 8-17

Translator Command Line and Properties Files
SQLJ_OPTIONS Environment Variable for Option Settings
Oracle SQLJ supports use of an environment variable called SQLJ_OPTIONS as an
alternative to the command line for setting SQLJ options. Any option referred to as
"command-line only", meaning it cannot be set in a properties file, can also be set
using the SQLJ_OPTIONS variable.

You can use the SQLJ_OPTIONS variable to set any SQLJ option, but it is intended
especially for option settings to be passed to the JVM. And it is particularly useful
for command-line-only options, such as -classpath, that you use repeatedly with
the same setting.

Following is an example of a SQLJ_OPTIONS setting:

-vm=jview -J-verbose

When you use SQLJ_OPTIONS, SQLJ effectively inserts the SQLJ_OPTIONS
settings, in order, at the beginning of the SQLJ command line, prior to any other
command-line option settings.

Order of Precedence of Option Settings
SQLJ takes option settings in the following order. At each step, it overrides any
previous settings for any given option.

1. It sets options to default settings (where applicable).

2. It looks for a sqlj.properties file in the Java home directory; if it finds one,
it sets options as specified there.

3. It looks for a sqlj.properties file in the user home directory; if it finds one,
it sets options as specified there.

4. It looks for a sqlj.properties file in the current directory; if it finds one, it
sets options as specified there.

Note: How to set environment variables is specific to your
operating system. There can also be OS-specific restrictions. For
example, in Windows 95 you use the Environment tab in the
System control panel. Additionally, since Windows 95 does not
support the "=" character in variable settings, SQLJ supports the use
of "#" instead of "=" in setting SQLJ_OPTIONS. Consult your
operating system documentation.
8-18 SQLJ Developer’s Guide and Reference

Translator Command Line and Properties Files
5. It looks for option settings in the SQLJ_OPTIONS environment variable and
effectively prepends them to the beginning of the command line. It sets options
as specified in SQLJ_OPTIONS.

6. It looks for option settings on the command line and sets options as specified
there. When SQLJ processes the command line, it looks in any file specified by
the -props option and sets options as specified there.

Example Presume SQLJ is run as follows:

sqlj -user=scott -props=myprops.properties -dir=/home/java

And presume the file myprops.properties is in the current directory and
contains the following entries:

sqlj.user=tony
sqlj.dir=/home/myjava

These settings are processed as if they were inserted into the command line where
the -props option was specified. Therefore, the tony entry takes precedence over
the scott entry for the user option, but the /home/java entry takes precedence
over the /home/myjava entry for the dir option.

Notes:

■ In sqlj.properties files, SQLJ reads option settings from
top to bottom, with later entries taking precedence over earlier
entries.

■ If there is a properties file specified by the -props option on
the command line, SQLJ inserts the option settings of the file
into the position on the command line where the -props
option was specified.

■ SQLJ reads options on the command line, with options from a
-props file inserted, in order from left to right. Any later
(right-hand) setting takes precedence over earlier (left-hand)
settings.
 Translator Command Line and Options 8-19

Basic Translator Options
Basic Translator Options
This section documents the syntax and functionality of the basic flags and options
you can specify in running SQLJ. These options allow you to run in a fairly
standard mode of operation. For options that can also be specified in a properties
file (such as sqlj.properties), that syntax is noted as well. (See "Properties Files
for Option Settings" on page 8-14.)

More advanced command-line flags and options are discussed in "Advanced
Translator Options" on page 8-56 and "Translator Support and Options for
Alternative Environments" on page 8-72.

Basic Options for Command Line Only
The following basic options can be specified only on the SQLJ command line or,
equivalently, in the SQLJ_OPTIONS environment variable. They cannot be specified
in properties files.

■ -props

■ -classpath

■ -help, -help-long, -help-alias, -P-help, -C-help

■ -version, -version-long

■ -n

The command-line-only flags (the -help flags, -version flags, and -n) do not
support =true syntax. Enable them by typing only the flag name, as in the
following example:

supported: sqlj -version-long ...

not supported: sqlj -version-long=true ...

Input Properties File (-props)
The -props option specifies a properties file from which SQLJ can read option
settings (an alternative to specifying option settings on the command line).

Note: Additionally, there are advanced options, flags, and prefixes
that can be set only on the command line or in SQLJ_OPTIONS:
-J, -passes, and -vm.
8-20 SQLJ Developer’s Guide and Reference

Basic Translator Options
See "Properties Files for Option Settings" on page 8-14 for information about the
format of these files, the details of how they are used in relation to command-line
options, and where SQLJ looks for default properties files.

Command-line syntax -props=filename

Command-line example -props=myprops.properties

Properties file syntax n/a

Properties file example n/a

Default value none

Classpath for Java Virtual Machine and Compiler (-classpath)
For compatibility with the syntax of most JVMs and compilers, SQLJ recognizes the
-classpath option if it is specified on the command line. In setting this option,
you can use either a space, as with most JVMs or compilers, or "=", as with other
SQLJ options. The following examples (both on Solaris) demonstrate this:

-classpath=.:./classes:/vobs/dbjava/classes/classes111.zip:/jdbc-1.2.zip

or:

-classpath .:./classes:/vobs/dbjava/classes/classes111.zip:/jdbc-1.2.zip

The -classpath option sets the Java classpath for both the JVM and the Java
compiler. If you do not want to use the same classpath for both, set them separately
using the SQLJ -J and -C prefixes, described in "Prefixes that Pass Option Settings
to Other Executables" on page 8-56.

Command-line syntax sqlj -classpath=<class_path>

Command-line example sqlj -classpath=/jdbc-1.2.zip:/classes/bin

Note: As with other options described later in this chapter, if you
do use "=" in setting the -classpath option, then it is stripped out
when the option string is passed to the JVM and compiler. This is
because JVMs and compilers do not support the "=" syntax in their
option settings.
 Translator Command Line and Options 8-21

Basic Translator Options
Properties file syntax n/a

Properties file example n/a

Default value none

SQLJ Option Information (-help)
The following three settings of the -help flag, specified on the command-line,
instruct SQLJ to display varying levels of information about SQLJ options:

■ -help

■ -help-long

■ -help-alias

You can enable this option by typing the desired setting on the command line as in
the following examples:

sqlj -help

or:

sqlj -help-long

or:

sqlj -help-alias

No input-file translation is performed when you use the -help flag in any of these
forms, even if you include file names and other options on the command line as
well. SQLJ assumes that you either want to run the translator or you want help, but
not both.

You can also receive information about the profile customizer or Java compiler,
requesting help through the -P and -C prefixes as in the following examples. These
prefixes are discussed in "Prefixes that Pass Option Settings to Other Executables"
on page 8-56. As with the -help flag, no translation is performed if you request
customizer or compiler help.

sqlj -P-help

sqlj -C-help

As with other command-line-only flags, -help (as well as -P-help and -C-help)
does not support =true syntax. Enable it by typing only the desired flag setting.
8-22 SQLJ Developer’s Guide and Reference

Basic Translator Options
The -help Setting The most basic level of help is achieved by specifying the -help
setting. This provides the following:

■ a synopsis of the most frequently used SQLJ options

■ a listing of the additional -help flag settings available

The -help-long Setting This setting provides a complete list of SQLJ option
information, including the following for each option:

■ option name

■ option type (the Java type that the option takes as input, such as int or
String)

■ description

■ current value

■ how the current value was set (from the command line, from a properties file,
or by default)

Notes:

■ For compatibility with the loadjava utility, -h is recognized
as equivalent to -help when specified on the command line.
See "Options for loadjava Compatibility" on page 8-9.

■ You can use multiple -help flag settings on the same
command line, including -P-help and -C-help.

■ Although -P and -C settings can generally be set in properties
files, -P-help and -C-help are command-line-only.

■ Help is also provided if you run SQLJ without specifying any
files to process. This is equivalent to using the -help setting.

Note: It is often useful to include other option settings on the
command line with a -help-long option, especially with complex
options (such as -warn) or combinations of options, so that you can
see what option settings resulted from your actions. (The
-help-long mode displays current settings of all options.)
 Translator Command Line and Options 8-23

Basic Translator Options
The -help-alias Setting This setting provides a synopsis of the command-line
abbreviations supported for compatibility with the loadjava utility.

Command-line syntax sqlj help_flag_settings

Command-line examples
sqlj -help
sqlj -help -help-alias
sqlj -help-long
sqlj -warn=none,null -help-long
sqlj -help-alias

Properties file syntax n/a

Properties file example n/a

Default value none

SQLJ Version Number (-version)
The following settings of the -version flag, specified on the command-line,
instruct SQLJ to display varying levels of information about SQLJ and JDBC driver
versions:

■ -version

■ -version-long

You can enable this option by typing the desired setting on the command line as in
the following examples:

sqlj -version

or:

sqlj -version-long

No input-file translation is performed when you use the -version option, even if
you include file names and other options on the command line. SQLJ assumes that
you either want to run the translator or you want version information, but not both.
Properties files and anything else you type on the command line are ignored.

As with other command-line-only flags, -version does not support =true syntax.
Enable it by typing only the flag name.
8-24 SQLJ Developer’s Guide and Reference

Basic Translator Options
The -version Setting The -version setting displays the SQLJ release number, such as
"Oracle SQLJ 9.0.1".

The -version-long Setting The -version-long setting displays information about the
SQLJ and SQLJ runtime library release and build versions, the JDBC driver release
number if one can be found, and the Java environment. For example, if an Oracle
JDBC driver is used, this option would display something such as "Oracle JDBC
version 9.0 (9.0.1.0)".

This flag offers a good way to check your SQLJ installation and the JDBC and JDK
versions you are using.

Command-line syntax sqlj version_flag_settings

Command-line example
sqlj -version
sqlj -version -version-long
sqlj -version-long

Properties file syntax n/a

Properties file example n/a

Default value none

Command Line Echo without Execution (-n)
The -n flag, specified on the command line, instructs the sqlj script to construct
the full command line that would be passed to the SQLJ translator, including any
SQLJ_OPTIONS settings, and echo it to the user without having the SQLJ translator
execute it. This includes capturing and echoing the name of the JVM that would be
launched to execute the SQLJ translator and echoing the full class name of the
translator. This does not include settings from properties files.

This is useful in showing you the following:

■ the fully expanded form of any options you abbreviated (such as -u and other
abbreviations supported for loadjava compatibility)

■ the order in which options would be placed when the overall command string
is constructed and passed to the translator

■ possible conflicts between SQLJ_OPTIONS settings and command-line settings
 Translator Command Line and Options 8-25

Basic Translator Options
The -n option can appear anywhere on the command line or in the SQLJ_OPTIONS
variable.

As with other command-line-only flags, -n does not support =true syntax. Enable
it by typing only the flag name.

Consider the following sample scenario:

■ You have the following setting for SQLJ_OPTIONS:

-user=scott/tiger@jdbc:oracle:thin:@ -classpath=/myclasses/bin

■ You enter the following command line:

% sqlj -n -e SJIS myapp.sqlj

You would see the following echo:

java -classpath /myclasses/bin sqlj.tools.Sqlj
-user=scott/tiger@jdbc:oracle:thin:@ -C-classpath=/myclasses/bin -encoding=SJIS
myapp.sqlj

(This is all one wrap-around line.)

Command-line syntax -n

Command-line example -n

Properties file syntax n/a

Properties file example n/a

Default value false

Note:

■ As an alternative to -n, you can use the -vm=echo setting.

■ Another effective way to check option settings is to use the
-help-long flag. This displays current settings for all options,
including other options you set on the command line as well as
settings in properties files and in SQLJ_OPTIONS. See "SQLJ
Option Information (-help)" on page 8-22.
8-26 SQLJ Developer’s Guide and Reference

Basic Translator Options
Options for Output Files and Directories
The following option specifies encoding for SQLJ input and output source files:

■ -encoding

These options specify where SQLJ output files are placed:

■ -d

■ -dir

Encoding for Input and Output Source Files (-encoding)
The -encoding option specifies the encoding to be applied to .sqlj and .java
input files and .java generated files for globalization support. For compatibility
with javac, you can use either a space or "=" in setting this option on the command
line, as in the following examples:

-encoding=SJIS

-encoding SJIS

If setting sqlj.encoding in a properties file, however, use "=", not a space.

When this option is specified, it is also passed to the Java compiler (unless the
-compiler-encoding-flag is off), which uses it to specify encoding for .java
files processed by the compiler.

Note the following:

■ As with the -classpath and -d options described below, if you do use an "="
in setting the -encoding option, then it is stripped out when the option string
is passed to the JVM and compiler. This is because JVMs and compilers do not
support the "=" syntax in their option settings.

■ For compatibility with the loadjava utility, -e is recognized as equivalent to
-encoding when specified on the command line. See "Options for loadjava
Compatibility" on page 8-9.

■ The -encoding option does not apply to Java properties
files—sqlj.properties and connect.properties, for example.
Properties files always use the encoding 8859_1. This is a feature of Java in
general, not SQLJ in particular. You can, however, use Unicode escape
sequences in a properties file. (You can use the native2ascii utility to create
escape sequences for a natively encoded file—see "Using native2ascii for Source
File Encoding" on page 9-32.)
 Translator Command Line and Options 8-27

Basic Translator Options
Command-line syntax -encoding=Java_character_encoding

Command-line example -encoding=SJIS

Properties file syntax sqlj.encoding=Java_character_encoding

Properties file example sqlj.encoding=SJIS

Default value setting in JVM system property file.encoding

Output Directory for Generated .ser and .class Files (-d)
The -d option specifies the root output directory for profiles generated by the SQLJ
translator, and is also passed to the Java compiler to specify the root output
directory for .class files generated by the compiler. Whether profiles are
generated as .ser files (default) or .class files (if the -ser2class option is
enabled) is irrelevant in using the -d option. (For information about -ser2class,
see "Conversion of .ser File to .class File (-ser2class)" on page 8-64.)

Whenever a directory is specified, the output files are generated under this
directory according to the package name, if applicable. For example, if you have
source files in package a.b.c and specify directory /mydir, output files will be
placed in directory /mydir/a/b/c.

If you specify a relative directory path, this will be from your current directory.

For compatibility with javac, you can use either a space or "=" in setting this
option on the command line, as in the following examples (both of which make
/root the root directory for generated profile files):

-d=/root

-d /root

If setting -d in a properties file, however, use "=", not a space (for example,
sqlj.d=/root).

If your current directory is /root/home/mydir and you set the -d option to the
relative directory path mysubdir/myothersubdir as follows, then
/root/home/mydir/mysubdir/myothersubdir will be the root directory for
generated profile files:

-d=mysubdir/myothersubdir
8-28 SQLJ Developer’s Guide and Reference

Basic Translator Options
You can also use standard syntax such as a period for the current directory or two
periods to go up a level (the second example immediately below will go up a level,
then back down to a parallel directory called paralleldir):

-d=.

-d=../paralleldir

If the -d option is empty or not specified, then .class files and .ser files
generated by the translation process will be placed as follows:

■ A .class file corresponding to a .java file that was generated by the
translator is placed in the same directory as the generated .java file, which is
according to the -dir option.

■ A .class file corresponding to a .java file that you specified on the
command line will be placed in the same directory as the .java file.

■ A .ser file is placed in the same directory as the .sqlj source file from which
it resulted.

Command-line syntax -d=directory_path

Command-line example -d=/topleveldir/mydir

Notes:

■ You can specifically set -d to be empty (to override settings in a
properties file, for example) as follows:

-d=

■ Throughout this discussion, the forward-slash (/) was used as
the file separator. It is important to note, however, that in
specifying this or similar options, you must actually use the file
separator of your operating system, as specified in the
file.separator system property of your JVM.

■ As with the -classpath and -encoding options described
above, if you do use an "=" in setting the -d option, then it is
stripped out when the option string is passed to the JVM and
compiler. This is because JVMs and compilers do not support
the "=" syntax in their option settings.
 Translator Command Line and Options 8-29

Basic Translator Options
Properties file syntax sqlj.d=directory_path

Properties file example sqlj.d=/topleveldir/mydir

Default value none (.class files go with .java files; .ser files go with .sqlj files)

Output Directory for Generated .java Files (-dir)
The -dir option specifies the root directory for .java files generated by the SQLJ
translator.

Whenever a directory is specified, the output files are generated under this
directory according to the package name, if applicable. For example, if you have
source files in package a.b.c and specify directory /mydir, then output files will
be placed in directory /mydir/a/b/c.

If you specify a relative directory path, it will be from your current directory.

A simple example is as follows, which will make /root the root directory for
generated .java files:

-dir=/root

If your current directory is /root/home/mydir and you set the -dir option to the
relative directory path mysubdir/myothersubdir as follows:

-dir=mysubdir/myothersubdir

then /root/home/mydir/mysubdir/myothersubdir will be the root directory
for generated .java files.

You can also use standard syntax such as a period for the current directory or two
periods to go up a level (the second example immediately below will go up a level,
then back down to a parallel directory called paralleldir):

-dir=.

-dir=../paralleldir

If the -dir option is not specified, then files are generated under the same directory
as the original .sqlj source file (not under the current directory).

If you specifically want the output directory to be the same as your .sqlj source
directory (perhaps overriding other -dir settings, such as in properties files), then
you can use the -dir option as follows:

-dir=
8-30 SQLJ Developer’s Guide and Reference

Basic Translator Options
Command-line syntax -dir=directory_path

Command-line example -dir=/topleveldir/mydir

Properties file syntax sqlj.dir=directory_path

Properties file example sqlj.dir=/topleveldir/mydir

Default value none (use directory of .sqlj source file)

Connection Options
You can use the following options for the database connection for online
semantics-checking:

■ -user

■ -password

■ -url

■ -default-url-prefix

■ -driver

There is no requirement that the SQLJ translator connect to the same database or
schema as the application does at runtime. The connection information in
application source code can be independent of the connection information in the
SQLJ options.

Notes:

■ If you specify the -dir option but not the -d option, then
generated .class files will also be placed in the directory
specified by -dir, but generated .ser files will be placed in
the directory of the .sqlj file.

■ Throughout this discussion, the forward-slash (/) was used as
the file separator. Be aware, however, that in specifying this or
similar options, you must use the file separator of your
operating system, as specified in the file.separator system
property of your JVM.
 Translator Command Line and Options 8-31

Basic Translator Options
A situation where you will probably want to use a different connection for
translation than for runtime is if you are developing in a different environment than
the one to which you will deploy.

Online Semantics-Checking and User Name (-user)
Simple semantics-checking not involving a database connection is referred to as
offline checking. The more thorough semantics-checking requiring a connection is
referred to as online checking. Online checking offers one of the prime advantages of
the SQLJ strong-typing paradigm—type incompatibilities that would normally
result in runtime SQL exceptions are caught during translation, before users ever
run the application.

The -user option enables online semantics-checking and specifies the user name
(schema name) for the exemplar schema, which is the sample database schema that
you provide to the translator for it to use in performing the checking. You can also
use the -user option to specify the password and URL, as opposed to using the
-password and -url options separately.

Note that there is no other flag to enable or disable online semantics-checking; SQLJ
enables it or disables it according to the presence or absence of the -user option.

Discussion of the -user option is split into two categories—1) effect of -user
when you are employing the default connection context class only; and 2) effect of
-user when you are employing non-default or multiple connection context classes.
Non-default connection context classes are discussed in "Connection Contexts" on
page 7-2.

General discussion of connection considerations, such as when to use multiple
instances of the DefaultContext class and when to declare additional connection
context classes, is in "Connection Considerations" on page 4-6.
8-32 SQLJ Developer’s Guide and Reference

Basic Translator Options
Effect of -user When Using Default Connection Context Class Only The most basic usage of
the -user option is as follows:

-user=scott

When you are using only the default connection or other instances of the
DefaultContext class, such a setting will apply to all your SQLJ executable
statements. This example results in online checking against the scott schema.

You can also specify the password, URL, or both along with the user name, using
syntax as in the following examples (with "/" preceding the password and "@"
preceding the URL):

-user=scott/tiger

or:

-user=scott@jdbc:oracle:oci:@

Notes:

■ For compatibility with the loadjava utility, -u is recognized
as equivalent to -user when specified on the command line.
See "Options for loadjava Compatibility" on page 8-9.

■ User names cannot contain the characters "/" or "@".

■ You are allowed to use a space instead of "=" in a user name
setting on the command line, as in the following examples:

-user scott/tiger
-user@CtxClass scott/tiger
-u scott/tiger
-u@CtxClass scott/tiger

■ If a password contains the character "@", then you cannot set
the password through the -user option. You must use
separate -user and -password settings.

■ If your login name is a member of the DBA group, you may
have special privilege to connect as SYSDBA to the SYS schema.
In this case, you can specify the user name SYS or INTERNAL.
 Translator Command Line and Options 8-33

Basic Translator Options
or:

-user=scott/tiger@jdbc:oracle:oci:@

Otherwise the URL can be specified through the -url option, and the password
can be specified interactively or through the -password option.

You can disable online semantics-checking by setting the -user option to an empty
string:

-user=

Again, when you are using only the default connection or other instances of the
DefaultContext class, this will apply to all your SQLJ executable statements.

Disabling online semantics-checking is useful, for example, if you have online
checking enabled in a properties file but want to override that on the command line,
or have it enabled in the default properties file but want to override that in a
user-specified properties file (specified using the -props option).

There is also a special user name, URL.CONNECT, which you can use when the URL
specifies the user and password as well as the other details of the connection. To see
what the URL would look like in such a case, see "Connection URL for Online
Semantics-Checking (-url)" on page 8-38.

Effect of -user When Using Non-Default or Multiple Connection Context Classes If you
declare and use additional connection context classes in your application, then you
can specify -user settings for the testing of SQLJ executable statements that use
instances of those classes. Specify a user name for online checking against a
particular connection context class (CtxClass, for example) as follows:

-user@CtxClass=scott

This results in online checking against the scott schema for any of your SQLJ
executable statements that specify a connection context instance of the class
CtxClass.

As with the default connection context class, you can also specify the password or
URL in your -user setting for a particular connection context class, as in the
following example:

-user@CtxClass=scott/tiger@jdbc:oracle:oci:@

The CtxClass connection context class must be declared in your source code or
previously compiled into a .class file. (See "Connection Contexts" on page 7-2 for
more information.)
8-34 SQLJ Developer’s Guide and Reference

Basic Translator Options
Employ the -user option separately for each connection context class for which
you want to enable online checking and set a user name; these settings have no
influence on each other:

-user@CtxClass1=user1 -user@CtxClass2=user2 -user@CtxClass3=user3

When you are using multiple connection context classes in your application, a
-user setting that does not specify a class will apply to the DefaultContext class
as well as to all classes for which you do not otherwise specify a -user setting.
Presumably, though, you will specify a -user setting for each connection context
class, given that different connection context classes are typically intended for use
with different sets of SQL objects.

Consider a situation where you have declared connection context classes
CtxClass1, CtxClass2, and CtxClass3 and you set -user as follows:

-user@CtxClass2=scott/tiger -user=bill/lion

Any statement in your application that uses an instance of CtxClass2 will be
checked against the scott schema. Any statement that uses an instance of
DefaultContext, CtxClass1, or CtxClass3 will be checked against the bill
schema.

In addition, once you enable online checking by setting the -user option, you can
disable online checking for a particular connection context by setting the -user
option again with an empty user name for that connection context. For example,
consider the following setting:

-user@CtxClass2=

This disables online semantics-checking for any SQLJ executable statements that
specify a connection object that is an instance of CtxClass2.

To disable online semantics-checking for the default connection context class and
any other connection context classes for which you do not specify a user name:

-user=

Command-line syntax -user<@conn_context_class>=username</password><@url>

Command-line examples
-user=scott
-user=scott/tiger
-user=scott@jdbc:oracle:oci:@
-user=scott/tiger@jdbc:oracle:oci:@
 Translator Command Line and Options 8-35

Basic Translator Options
-user=
-user=URL.CONNECT
-user@CtxClass=scott/tiger
-user@CtxClass=

Properties file syntax sqlj.user<@conn _context_class>=username</password><@url>

Properties file examples
sqlj.user=scott
sqlj.user=scott/tiger
sqlj.user=scott@jdbc:oracle:oci:@
sqlj.user=scott/tiger@jdbc:oracle:oci:@
sqlj.user=
sqlj.user=URL.CONNECT
sqlj.user@CtxClass=scott/tiger
sqlj.user@CtxClass=

Default value none (no online semantics-checking)

User Password for Online Semantics-Checking (-password)
The -password option specifies the user password for the database connection for
online semantics-checking. For the -password setting to be meaningful, the -user
option must also be set .

You can also specify the password as part of the -user option setting. See "Online
Semantics-Checking and User Name (-user)" on page 8-32. Do not use the
-password option for a connection context class if you have already set its
password in the -user option, which takes precedence.

For the most part, functionality of the -password option parallels that of the
-user option. That is, if your application uses only the default connection or other
instances of DefaultContext, the next example will set the password for the
schema to be used in checking all of your SQLJ statements.

Note: Be aware of the difference in format between specifying
user, password, and URL in the -user option and specifying them
in the -url option. In the -url option, the user name and
password are included in the URL, immediately following the
JDBC driver type; in the -user option they precede the URL. Also
see "Connection URL for Online Semantics-Checking (-url)" on
page 8-38.
8-36 SQLJ Developer’s Guide and Reference

Basic Translator Options
-password=tiger

If you declare and use additional connection context classes, CtxClass1 for
example, then you will presumably employ the -user option to specify additional
exemplar schemas to use in testing statements that use those connection context
classes. Similarly, use the -password option to specify passwords for those
schemas, as in the following example:

-password@CtxClass1=tiger

A connection context class without a password setting, either through the
-password setting or the -user setting, uses the password setting for the default
connection context class. If you set no password for the default connection context
class, then SQLJ prompts you interactively for that password. If you also set no
password for a user-defined connection context class, then SQLJ prompts you
interactively for that password as well. An exception to this discussion is where
user name URL.CONNECT is used, as discussed in "Online Semantics-Checking and
User Name (-user)" on page 8-32. In this case, user name and password are
determined from the string specified in the -url setting, and any setting of the
-password option is ignored.

You can specifically set an empty password to override other settings of the
-password option, such as in a properties file, and be prompted interactively. You
can do this for the DefaultContext class or any particular connection context
class, as in the following examples:

-password=

or:

-password@CtxClass1=

If you actually want to use an empty password to log in, specify EMPTY.PASSWORD
as in the following examples:

-password=EMPTY.PASSWORD

or:

-password@CtxClass2=EMPTY.PASSWORD

The Oracle9i database, however, does not permit an empty password.
 Translator Command Line and Options 8-37

Basic Translator Options
Command-line syntax -password<@conn_context_class>=user_password

Command-line examples
-password=tiger
-password=
-password=EMPTY.PASSWORD
-password@CtxClass=tiger

Properties file syntax sqlj.password<@conn_context_class>=user_password

Properties file examples
sqlj.password=tiger
sqlj.password=
sqlj.password=EMPTY.PASSWORD
sqlj.password@CtxClass=tiger

Default value none (password for DefaultContext is used, or user is prompted)

Connection URL for Online Semantics-Checking (-url)
The -url option specifies a URL for establishing a database connection for online
semantics-checking. As necessary, the URL can include a host name, port number,
and Oracle SID.

You can also specify the URL as part of the -user option setting. See "Online
Semantics-Checking and User Name (-user)" on page 8-32. Do not use the -url
option for a connection context class if you have already set its URL in the -user
option, which takes precedence.

For the most part, functionality of the -url option parallels that of the -user
option. That is, if your application uses only the default connection or other

Notes:

■ When specified on the command line, -p is recognized as
equivalent to -password.

■ You are allowed to use a space instead of "=" in a password
setting on the command line, as in the following examples:

-password tiger
-password@CtxClass tiger
-p tiger
-p@CtxClass tiger
8-38 SQLJ Developer’s Guide and Reference

Basic Translator Options
instances of DefaultContext, the following example would set the URL to use for
the connection for checking all your SQLJ statements:

-url=jdbc:oracle:oci:@

Or, to include the host name, port number, and SID:

-url=jdbc:oracle:thin:@hostname:1521:orcl

If you do not begin a URL setting with jdbc: then the setting is assumed to be of
the form host:port:sid and by default is automatically prefixed with the
following:

jdbc:oracle:thin:@

A -url setting of localhost:1521:orcl, for example, results in the following
URL:

jdbc:oracle:thin:@localhost:1521:orcl

You can remove or alter this default prefix with the -default-url-prefix
option. See "Default URL Prefix (-default-url-prefix)" on page 8-41 for more
information.

You can specify the user and password in the -url setting, instead of in the -user
and -password settings. In such a case, set -user to URL.CONNECT, as follows:

-url=jdbc:oracle:oci:scott/tiger@ -user=URL.CONNECT

If you declare and use additional connection context classes, CtxClass1 for
example, you will presumably specify additional exemplar schemas to use in testing
statements that use those connection context classes. You can use the -url option to
specify URLs for those schemas, as in the following example:

-url@CtxClass1=jdbc:oracle:oci:@

Any connection context class without a URL setting, either through the -url
setting or the -user setting, uses the URL setting for the default connection context
class, presuming a URL has been set for the default context class.
 Translator Command Line and Options 8-39

Basic Translator Options
Command-line syntax -url<@conn_context_class>=URL

Command-line examples
-url=jdbc:oracle:oci:@
-url=jdbc:oracle:thin:@hostname:1521:orcl
-url=jdbc:oracle:oci:scott/tiger@
-url=hostname:1521:orcl
-url@CtxClass=jdbc:oracle:oci:@

Properties file syntax sqlj.url<@conn_context_class>=URL

Properties file examples
sqlj.url=jdbc:oracle:oci:@
sqlj.url=jdbc:oracle:thin:@hostname:1521:orcl
sqlj.url=jdbc:oracle:oci:scott/tiger@
sqlj.url=hostname:1521:orcl
sqlj.url@CtxClass=jdbc:oracle:oci:@

Default value jdbc:oracle:oci:@

Notes:

■ Remember that any connection context class with a URL setting
must also have a user name setting for online checking to occur.

■ You are allowed to use a space instead of "=" in a URL setting
on the command line, as in the following examples:

-url jdbc:oracle:oci:@
-url@CtxClass jdbc:oracle:oci:@

Note: Be aware of the difference in format between specifying
user, password, and URL in the -user option and specifying them
in the -url option. (In the -url option, the user name and
password are included in the URL, immediately following the
JDBC driver type; in the -user option they precede the URL.) Also
see "Online Semantics-Checking and User Name (-user)" on
page 8-32.
8-40 SQLJ Developer’s Guide and Reference

Basic Translator Options
Default URL Prefix (-default-url-prefix)
Use the -default-url-prefix option to alter or remove the default prefix.

The following is the default prefix for any URL setting you specify that does not
already start with jdbc:

jdbc:oracle:thin:@

This allows you to use a shorthand in specifying a URL setting, either in the -user
option or the -url option—it is permissible to specify only the host, port, and SID
of the database. As an example, presume you set a URL as follows:

-url=myhost:1521:orcl

or:

-user=scott/tiger@myhost:1521:orcl

By default, the URL will be interpreted to be the following:

jdbc:oracle:thin:@myhost:1521:orcl

If you specify a full URL that starts with jdbc:, then the default prefix will not be
used, such as in the following example:

-url=jdbc:oracle:oci:@orcl

However, if you want your URL settings to default to the OCI driver, for example,
instead of the Thin driver, then set the default prefix as follows:

-default-url-prefix=jdbc:oracle:oci:@

With this prefix, a setting of -url=orcl is equivalent to the
-url=jdbc:oracle:oci:@orcl setting above.

If you do not want any prefix, then set the -default-url-prefix option to an
empty string, as follows:

-default-url-prefix=

Command-line syntax -default-url-prefix=url_prefix

Command-line examples
-default-url-prefix=jdbc:oracle:oci:@
-default-url-prefix=
 Translator Command Line and Options 8-41

Basic Translator Options
Properties file syntax sqlj.default-url-prefix=url_prefix

Properties file examples
sqlj.default-url-prefix=jdbc:oracle:oci:@
sqlj.default-url-prefix=

Default value jdbc:oracle:thin:@

JDBC Drivers to Register for Online Semantics-Checking (-driver)
The -driver option specifies the JDBC driver class to register for interpreting
JDBC connection URLs for online semantics-checking. Specify a driver class or
comma-separated list of classes.

The default, OracleDriver, supports the Oracle OCI, Thin, and server-side JDBC
drivers for use with Oracle9i.

Command-line syntax -driver=driver1<,driver2,driver3,...>

Command-line examples
-driver=oracle.jdbc.OracleDriver
-driver=oracle.jdbc.OracleDriver,sun.jdbc.odbc.JdbcOdbcDriver

Properties file syntax sqlj.driver=driver1<,driver2,driver3,...>

Properties file examples
sqlj.driver=oracle.jdbc.OracleDriver
sqlj.driver=oracle.jdbc.OracleDriver,sun.jdbc.odbc.JdbcOdbcDriver

Default value oracle.jdbc.OracleDriver

Reporting and Line-Mapping Options
The following options specify what types of conditions SQLJ should monitor,
whether to generate real-time error and status messages, and whether to include
"cause" and "action" information with translator error messages:

■ -warn

■ -status

■ -explain

The following options enable line-mapping from the generated Java .class file
back to the .sqlj source file, so that you can trace runtime errors back to the
8-42 SQLJ Developer’s Guide and Reference

Basic Translator Options
appropriate location in your original source code. Use -jdblinemap in conjunction
with the Sun Microsystems jdb debugger; otherwise use -linemap.

■ -linemap

■ -jdblinemap

Translator Warnings (-warn)
There are various warnings and informational messages that the SQLJ translator
can display as dictated by conditions it encounters during the translation. The
-warn option consists of a set of flags that specify which of those warnings and
messages should be displayed (in other words, which conditions should be
monitored and which should be ignored).

All the flags for this option must be combined into a single, comma-separated
string.

Table 8–2 documents the conditions that can be tested, what the true and false
flag values are for each condition, what a true flag value means, and which value
is the default.

Table 8–2 Tests and Flags for SQLJ Warnings

Tests and Flag Functions TRUE/FALSE Values

Test for requirement of subtypes of declared object type in an
inheritance hierarchy—Enable cast to receive warnings when
usage of SQL object types in a SQL inheritance hierarchy requires
that subtypes of a declared type must be passed at runtime.

cast (default)

nocast

Data precision test—Enable precision to receive warnings if
there was a possible loss of precision when moving values from
database columns to Java host variables.

precision (default)

noprecision

Conversion loss test for nullable data—Enable nulls to receive
warnings if there was possible conversion loss when moving
nullable columns or nullable Java types from database columns to
Java host variables.

nulls (default)

nonulls

Portability test—Enable portable to check SQLJ clauses for
portability and receive warnings if there are non-portable clauses.
(Where non-portable refers to the use of extensions to the SQLJ
standard, such as vendor-specific types or features.)

portable

noportable (default)
 Translator Command Line and Options 8-43

Basic Translator Options
The verbose/noverbose flag works differently from the others. It does not
enable a particular test but enables output of general informational messages about
the semantics-checking.

The global all/none flag takes priority over default settings. You can use it to
enable or disable all flags, or to serve as an initialization to make sure all flags are
off before you turn selected flags on, or the converse.

The all setting is equivalent to the following:

cast,precision,nulls,portable,strict,verbose

And the none setting is equivalent to the following:

nocast,noprecision,nonulls,noportable,nostrict,noverbose

There is no default for all/none; there are only defaults for individual flags.

Strict matching test for named iterators—Enable strict to
instruct SQLJ to require that the number of columns selected from
the database must equal the number of columns in the named
iterator being populated. A warning is issued for any column in
the database cursor for which there is no corresponding column in
the iterator. The nostrict setting allows more (but not fewer)
columns in the database cursor; unmatched columns are ignored.

strict (default)

nostrict

Translation-time informational messages—Enable verbose to
provide additional informational messages about the translation
process (such as what database connections were made for online
checking).

verbose

noverbose (default)

Global enabling/disabling of warnings—Use all or none to
enable or disable all warnings.

all

none

Note: Do not confuse -warn=verbose with the -status flag.
The -status flag provides real-time informational messages about
all aspects of SQLJ translation—translation, semantics-checking,
compilation, and profile customization. The -warn=verbose flag
results in additional reporting about the translation phase only.

Table 8–2 Tests and Flags for SQLJ Warnings (Cont.)

Tests and Flag Functions TRUE/FALSE Values
8-44 SQLJ Developer’s Guide and Reference

Basic Translator Options
For example, use the following sequence to make sure only the nulls flag is on:

-warn=none,nulls

And the following sequence will have the same result, because the verbose setting
will be overridden:

-warn=verbose,none,nulls

Or use the following to make sure everything except the portability flag is on:

-warn=all,noportable

And the following sequence will have the same result, because the nonulls setting
will be overridden:

-warn=nonulls,all,noportable

Other than placement of the all/none flag, the order in which flags appear in a
-warn setting is unimportant, except in the case of conflicting settings. If there are
conflicts—such as in -warn=portable,noportable—then the last (right-most)
setting is used.

Separate settings of the -warn option in properties files and on the command line
are not cumulative. Only the last setting is processed. In the following example, the
-warn=portable setting is ignored—that flag and all other flags besides
nulls/nonulls are set according to their defaults:

-warn=portable -warn=nonulls

Command-line syntax -warn=comma-separated_list_of_flags

Command-line example -warn=none,nulls,precision

Properties file syntax sqlj.warn=comma-separated_list_of_flags

Properties file example sqlj.warn=none,nulls,precision

Default values cast,precision,nulls,noportable,strict,noverbose

Note: The cast, precision, nullability, and strictness tests are part
of online semantics-checking and require a database connection.
 Translator Command Line and Options 8-45

Basic Translator Options
Real-Time Status Messages (-status)
The -status flag instructs SQLJ to output additional status messages throughout
all aspects of the SQLJ process—translation, semantics-checking, compilation, and
customization. Messages are output as each file is processed and at each stage of
SQLJ operation.

Command-line syntax -status=true/false

Command-line example -status=true

Properties file syntax sqlj.status=true/false

Properties file example sqlj.status=false

Default value false

Cause and Action for Translator Errors (-explain)
The -explain flag instructs the SQLJ translator to include "cause" and "action"
information (as available) with translator error message output (for the first
occurrence of each error).

This is the same information provided in "Translation Time Messages", starting on
page B-2.

Command-line syntax -explain=true/false

Command-line example -explain=true

Properties file syntax sqlj.explain=true/false

Notes:

■ Do not confuse -warn=verbose with the -status flag. The
-status flag provides real-time informational messages about
all aspects of SQLJ translation. The -warn=verbose flag
results in additional reporting about the translation phase only.

■ For compatibility with the loadjava utility, -v is recognized
as equivalent to -status when specified on the command line.
See "Options for loadjava Compatibility" on page 8-9.
8-46 SQLJ Developer’s Guide and Reference

Basic Translator Options
Properties file example sqlj.explain=false

Default value false

Line-Mapping to SQLJ Source File (-linemap)
The -linemap flag instructs SQLJ to map line numbers from a SQLJ source code
file to locations in the corresponding .class file. (This will be the .class file
created during compilation of the .java file generated by the SQLJ translator.) As a
result, when Java runtime errors occur, the line number reported by the JVM is the
line number in the SQLJ source code, making it much easier to debug.

Normally, the instructions in a .class file map to source code lines in the
corresponding .java file. This would be of limited use to SQLJ developers, though,
as they would still need to map line numbers in the generated .java file to line
numbers in their original .sqlj file.

The SQLJ translator modifies the .class file to implement the -linemap option,
replacing line numbers and the file name from the generated .java file with
corresponding line numbers and the file name from the original .sqlj file. This
process is known as instrumenting the class file.

In performing this, SQLJ takes the following into account:

■ the -d option setting, which determines the root directory for .class files

■ the -dir option setting, which determines the root directory for generated
.java files

Notes:

■ If you are processing a .sqlj file and the compilation step is
skipped due to error, then no line-mapping can be performed
either, because no .class file is available for mapping.

■ When the Java compiler is invoked from SQLJ (as is typical), it
always reports compilation errors using line numbers of the
original .sqlj source file, not the generated .java file. No
option needs to be set for this mapping.

■ Anonymous classes in a .sqlj file will not be instrumented.

■ If you are using the Sun Microsystems jdb debugger, then use
the -jdblinemap option (discussed next) instead of the
-linemap option.
 Translator Command Line and Options 8-47

Basic Translator Options
Command-line syntax -linemap=true/false

Command-line example -linemap=true

Properties file syntax sqlj.linemap=true/false

Properties file example sqlj.linemap=false

Default value false

Line-Mapping to SQLJ Source File for jdb Debugger (-jdblinemap)
This option is equivalent to the -linemap option (discussed in the preceding
section), but you should use it instead of -linemap if you are using the jdb
debugger provided with the Sun Microsystems JDK.

This is because jdb can access only source files with a .java file name extension.
With the -jdblinemap setting, SQLJ does the following:

■ It overwrites the contents of the .java file generated by the translator with the
contents of the original .sqlj file.

■ It preserves the .java file name, instead of the .sqlj file name, in the
generated .class file.

In this way, the SQLJ source code is accessible to jdb.

Command-line syntax -jdblinemap=true/false

Command-line example -jdblinemap=true

Properties file syntax sqlj.jdblinemap=true/false

Properties file example sqlj.jdblinemap=false

Default value false
8-48 SQLJ Developer’s Guide and Reference

Basic Translator Options
Options for Code Generation, Column Optimizations, and Parameter Optimizations
Oracle9i SQLJ allows Oracle-specific code generation, which generates Oracle JDBC
code directly, as an alternative to standard SQLJ code generation. With
Oracle-specific code generation, no profiles are generated, and the SQLJ runtime is
largely bypassed during code execution.

Because profile customization is not applicable with Oracle-specific code
generation, some generally useful optimization options, formerly available only
through the Oracle customizer, are now available directly through the SQLJ
translator.

This section describes these code generation and optimization options:

■ -codegen

■ -optcols

■ -optparams

■ -optparamdefaults

Code Generation (-codegen)
Oracle SQLJ offers the alternative of generating Oracle JDBC code directly instead
of generating standard code that calls the SQLJ runtime (which in turn contains
calls to Oracle JDBC). With Oracle-specific code generation, there are no profile files,
and the SQLJ runtime is largely bypassed during program execution.

Use the SQLJ translator -codegen option to specify Oracle-specific code
generation, as follows:

-codegen=oracle

The default is standard SQLJ code generation, but you can also explicitly specify
this as follows:

-codegen=iso

See "Oracle-Specific Code Generation (No Profiles)" on page 10-11 for information
about advantages, disadvantages, limitations, and special considerations regarding
Oracle-specific code generation.

Note: For standard SQLJ code generation, use the Oracle
customizer optcols, optparams, and optparamdefaults
options instead. See "Oracle Customizer Options" on page 10-29.
 Translator Command Line and Options 8-49

Basic Translator Options
Command-line syntax -codegen=iso/oracle

Command-line example -codegen=oracle

Properties file syntax sqlj.codegen=iso/oracle

Properties file example sqlj.codegen=oracle

Default value iso

Column Definitions (-optcols)
For Oracle-specific code generation, use the SQLJ translator -optcols flag to
instruct the translator to determine types and sizes of iterator or result set columns.
This enables registration of the columns with the Oracle JDBC driver when your
application runs, saving round trips to Oracle9i depending on the particular driver
implementation. Specifically, this is effective for the Thin driver and positional
iterators.

For an overview of column definitions, see "Column Definitions" on page A-22.

You can enable or disable this flag on the SQLJ command line or in a properties file.

Enable it on the command line as follows:

-optcols

or:

-optcols=true

Note: If an application compiles under both JDK 1.1.x and JDK
1.2.x and is translated with the -codegen=oracle setting, and if
JDK 1.2.x was used to compile it, then the application will likely not
run under JDK 1.1.x. You should use JDK 1.1.x to compile an
application that will run under 1.1.x.

Note: For standard SQLJ code generation, use the Oracle
customizer optcols option instead. See "Oracle Customizer
Column Definition Option (optcols)" on page 10-31.
8-50 SQLJ Developer’s Guide and Reference

Basic Translator Options
This flag is disabled by default, but you can also disable it explicitly. Disable it on
the command line as follows:

-optcols=false

Column definitions require a database connection for examination of the columns of
tables being queried, so the SQLJ translator -user, -password, and -url options
must also be set appropriately. For example:

sqlj -user=scott/tiger@jdbc:oracle:oci:@ -optcols MyApp.sqlj

Command-line syntax -optcols<=true/false>

Command-line example -optcols

Properties file syntax profile.optcols<=true/false>

Notes:

■ Because definitions are done for all columns that you select, it is
advisable in your SQL operations to explicitly select the
columns you will use, rather than using a SELECT * where
you might not actually use all the columns selected. A situation
where you select more than you need exposes you to a greater
risk of runtime errors if any changes were made to the table
between customization and runtime, especially when you have
customized with column definitions. You might want to
translate with the SQLJ -warn=strict flag set, which will
warn you if additional (unwanted) columns will be selected by
your query.

■ Column definitions are not possible for any iterator or result set
that includes one or more object or collection columns.

■ An error will be generated if you enable the -optcols option
without setting the user name, password, and URL for a
database connection.

■ The translator does not have to connect to the same schema or
even the same database that your application will connect to at
runtime, but the relevant columns will have to be in the same
order and of identical types and sizes to avoid runtime errors.
 Translator Command Line and Options 8-51

Basic Translator Options
Properties file example profile.optcols

Default value false

Parameter Definitions (-optparams)
For Oracle-specific code generation, use the SQLJ translator -optparams flag to
enable parameter size definitions. If this flag is enabled, SQLJ will register your
input and output parameters (host variables) to optimize JDBC resource allocations
according to sizes you specify, with the following precedence:

1. size specified in a source code hint, if any

2. default size, if any, specified for the corresponding datatype in the
-optparamdefaults option setting

If there is no source code hint or default datatype size for a given host variable, then
resource allocation is left to JDBC.

For an overview of parameter size definitions and a discussion of source code hints,
see "Parameter Size Definitions" on page A-23.

You can enable or disable the -optparams flag on the command line or in a SQLJ
properties file.

Enable it on the command line as follows:

-optparams

or:

-optparams=true

This flag is disabled by default, but you can also disable it explicitly. Disable it on
the command line as follows:

-optparams=false

Note: For standard SQLJ code generation, use the Oracle
customizer optparams option instead. See "Oracle Customizer
Parameter Definition Option (optparams)" on page 10-34.
8-52 SQLJ Developer’s Guide and Reference

Basic Translator Options
Following is a command-line example (omitting a setting for the
-optparamdefaults option, which is discussed in the next section):

sqlj -optparams -optparamdefaults=defaults-string MyApp.sqlj

Command-line syntax -optparams<=true/false>

Command-line example -optparams

Properties file syntax profile.optparams<=true/false>

Properties file example profile.optparams

Default value false

Parameter Default Size (-optparamdefaults)
If you enable the -optparams option to set parameter sizes, use the
-optparamdefaults option as desired to set default sizes for specified datatypes.
If -optparams is not enabled, then any -optparamdefaults setting is ignored.

If a host variable has a source code hint to specify its size, that takes precedence
over the corresponding datatype default size set with this option. If there is no
source code hint or corresponding datatype default size for a particular host
variable, then resource allocation for that variable is determined by the JDBC driver,
just as it would be if -optparams were not enabled.

There is no requirement to use the -optparamdefaults option, although it is
typically used whenever -optparams is enabled. If -optparams is enabled and
there are no default size settings, then resources are allocated either according to
source code hints (if any) or according to the JDBC driver.

For an overview of parameter size definitions and a discussion of source code hints,
see "Parameter Size Definitions" on page A-23.

Note: Unlike the -optcols option, the -optparams option does
not require a database connection, because you are providing the
size specifications yourself.
 Translator Command Line and Options 8-53

Basic Translator Options
You can set the -optparamdefaults flag on the command line or in a SQLJ
properties file.

Set it on the command line as follows:

-optparamdefaults=datatype1(size1),datatype2(size2),...

All sizes are in bytes. Do not include any white space. Use empty parentheses for a
null setting.

For example, the following will set sizes of 30 bytes for VARCHAR2 and 1000 bytes
for RAW, and will specify a null size setting for CHAR. So for any host variable
corresponding to the CHAR datatype, if there is no source code hint, then the JDBC
driver is left to allocate the resources.

-optparamdefaults=VARCHAR2(30),RAW(1000),CHAR()

The -optparamdefaults option recognizes the following datatype names:

■ CHAR

■ VARCHAR, VARCHAR2 (synonymous)

■ LONG, LONGVARCHAR (synonymous)

■ BINARY, RAW (synonymous)

■ VARBINARY

■ LONGVARBINARY, LONGRAW (synonymous)

The -optparamdefaults option also recognizes group names and wildcards, as
follows:

■ CHAR_TYPE covers CHAR, VARCHAR/VARCHAR2, and LONG/LONGVARCHAR.

■ RAW_TYPE covers BINARY/RAW, VARBINARY, and LONGVARBINARY/LONGRAW.

■ % by itself covers all recognized datatypes, or, appended to a partial name,
covers a subset of datatypes. For example, VAR% includes all datatypes that start
with "VAR".

Note: For standard SQLJ code generation, use the Oracle
customizer optparamdefaults option instead. See "Oracle
Customizer Parameter Default Size Option (optparamdefaults)" on
page 10-35.
8-54 SQLJ Developer’s Guide and Reference

Basic Translator Options
The -optparamdefaults setting is processed from left to right. When using
group names or wildcards, you can override a group setting for particular
datatypes.

The following example sets a general default size of 50 bytes, overrides that with a
setting of 500 bytes for raw types, then overrides the raw type group setting with a
null setting for VARBINARY (leaving that to JDBC for corresponding host variables
with no source code hints):

-optparamdefaults=%(50),RAW_TYPE(500),VARBINARY()

Following is a command-line example, including the -optparams setting as well:

sqlj -optparams -optparamdefaults=CHAR_TYPE(50),RAW_TYPE(500),CHAR(10) MyApp.sqlj

Command-line syntax -optparamdefaults=defaults-string

Command-line example -optparamdefaults=VAR%(50),LONG%(500),RAW_TYPE()

Properties file syntax profile.optparamdefaults=defaults-string

Properties file example profile.optparamdefaults=VAR%(50),LONG%(500),RAW_TYPE()

Default value null

Note: If at runtime the actual size exceeds the registered size of
any parameter, runtime errors will occur.
 Translator Command Line and Options 8-55

Advanced Translator Options
Advanced Translator Options
This section documents the syntax and functionality of the advanced flags and
options you can specify in running SQLJ, as well as prefixes employed to pass
options to the JVM, Java compiler, or SQLJ profile customizer. These options allow
you to exercise any of the specialized features of Oracle SQLJ. For options that can
also be specified in a properties file (such as sqlj.properties), that syntax is
noted as well. (See "Properties Files for Option Settings" on page 8-14 for more
information.)

Additional advanced options, intended specifically for situations where you are
using alternative Java environments, are discussed in "Translator Support and
Options for Alternative Environments" on page 8-72. More basic command line
flags and options are discussed in "Basic Translator Options" on page 8-20.

Prefixes that Pass Option Settings to Other Executables
The following flags mark options to be passed to the Java interpreter, Java compiler,
and SQLJ profile customizer:

■ -J (mark options for the Java interpreter)

■ -C (mark options for the Java compiler)

■ -P (mark options for the profile customizer)

Options to Pass to the Java Virtual Machine (-J)
The -J prefix, specified on the command line, marks options to be passed to the
JVM from which SQLJ was invoked. This prefix immediately precedes a JVM
option, with no spaces in between. After stripping off the -J prefix, the sqlj script
passes the Java option to the JVM.

For example:

-J-Duser.language=ja

After stripping the -J prefix, the sqlj script passes the -Duser.language
argument as is to the JVM. In the Sun Microsystems JDK, the flag
-Duser.language=ja sets the system property user.language to the value ja
(Japanese), but specific flags are dependent on the actual Java executable you are
using and are not interpreted or acted upon by the sqlj script in any way.

You cannot pass options to the JVM from a properties file, because properties files
are read after the JVM is invoked.
8-56 SQLJ Developer’s Guide and Reference

Advanced Translator Options
Command-line syntax -J-Java_option

Command-line example -J-Duser.language=ja

Properties file syntax n/a

Properties file example n/a

Default value n/a

Options to Pass to the Java Compiler (-C)
The -C prefix marks options to pass to the Java compiler invoked from the sqlj
script. This prefix immediately precedes a Java compiler option, with no spaces in
between. After stripping off the -C prefix, the sqlj script passes the compiler
option to the Java compiler (typically, but not necessarily, javac).

For example:

-C-nowarn

Notes:

■ While it is not possible to use a properties file to pass options
directly to the JVM in which the SQLJ translator runs, it is
possible to use the SQLJ_OPTIONS environment variable for
this purpose. See "SQLJ_OPTIONS Environment Variable for
Option Settings" on page 8-18. It is also possible (if applicable)
to use a properties file to pass options to the JVM in which the
Java compiler runs. See "Options to Pass to the Java Compiler
(-C)" on page 8-57 for information.

■ The JVM file.encoding setting does not apply to Java
properties files—sqlj.properties and
connect.properties, for example. Properties files always
use the encoding 8859_1. This is a feature of Java in general,
not SQLJ in particular. You can, however, use Unicode escape
sequences in a properties file. (You can use the native2ascii
utility to determine escape sequences—see "Using native2ascii
for Source File Encoding" on page 9-32.)
 Translator Command Line and Options 8-57

Advanced Translator Options
After stripping the -C prefix, the sqlj script passes the -nowarn argument as is to
the compiler. (The -nowarn flag is a javac option to suppress warning messages
during compilation.)

One Java compiler option, -classpath, is slightly modified when it is passed to
the compiler. All other compiler options are passed without change. (Note that if
you want the same classpath setting for the JVM and compiler, then you can use the
SQLJ -classpath option, instead of -J-classpath and -C-classpath.)

Specify the classpath setting to the Java compiler, using the following syntax:

-C-classpath=path

For example:

-C-classpath=/user/jdk/bin

The equals sign is necessary for SQLJ parsing but is automatically replaced with a
space when the option is passed to the Java compiler. After the -C is stripped off
and the equals sign is replaced, the option is passed to the compiler as follows:

-classpath /user/jdk/bin

If the Java compiler runs in its own JVM, then you can pass options to that JVM
through the compiler. Accomplish this by prefixing the JVM option with -C-J with
no spaces between this prefix combination and the option.

For example:

-C-J-Duser.language=de

Observe the following restrictions in using the -C prefix:

■ Do not use -C-encoding to specify encoding of .java files processed by the
Java compiler. Instead, use the SQLJ -encoding option, which specifies
encoding of .sqlj files processed by SQLJ and .java files generated by SQLJ,
and is also passed to the compiler. This ensures that .sqlj files and .java files
receive the same encoding. For information about the -encoding option, see
"Encoding for Input and Output Source Files (-encoding)" on page 8-27.

■ Do not use -C-d to specify an output directory for .class files. Instead, use
the SQLJ -d option, which specifies the output directory for generated profile
(.ser) files and is also passed to the Java compiler. This will ensure that
.class files and .ser files are in the same directory. (For information about
the -d option, see "Output Directory for Generated .ser and .class Files (-d)" on
page 8-28.)
8-58 SQLJ Developer’s Guide and Reference

Advanced Translator Options
Command-line syntax -C-Java_compiler_option

Command-line example -C-nowarn

Properties file syntax compile.Java_compiler_option

Properties file example compile.nowarn

Default value n/a

Options to Pass to the Profile Customizer (-P)
During the customization phase, the sqlj script invokes a front-end customizer
harness, which coordinates the customization and runs your particular customizer.
The -P prefix marks options for customization, as follows:

■ Use the -P prefix by itself to pass generic options to the customizer harness that
apply regardless of the customizer.

■ Use the -P-C prefix to pass vendor-specific options to the particular customizer
you are using.

Notes:

■ In the above -classpath discussion, the forward-slash (/)
was used as the file separator. Be aware, however, that in
specifying this or similar options, you must use the file
separator of your operating system, as specified in the
file.separator system property of your JVM.

■ If you specify compiler options but disable compilation
(-compile=false), then the compiler options are silently
ignored.

■ The compiler help option (-C-help, presuming your compiler
supports -help) can be specified only on the command line or
in the SQLJ_OPTIONS variable, not in a properties file. As with
the SQLJ -help option, no translation will be done. This is true
even if you also specify files to process. (SQLJ assumes that you
want help or you want translation, but not both.)
 Translator Command Line and Options 8-59

Advanced Translator Options
The -P and -P-C prefixes immediately precede a customizer option, with no spaces
in between. After stripping off the prefix, the sqlj script passes the customizer
option as is to the profile customizer.

One use of the -P prefix is to override the default customizer determined by the
SQLJ -default-customizer option, as follows:

-P-customizer=your_customizer_class

Example of generic option:

-P-backup

The -backup flag is a generic customizer option to backup the previous
customization before generating a new one.

Here is an example of a vendor-specific customizer option (in this case,
Oracle-specific):

-P-Csummary

(The summary flag is an Oracle customizer option that prints a summary of the
customizations performed.)

Notes:

■ Note that there is no hyphen between "-P-C" and a
vendor-specific customizer option. With other prefixes and
prefix combinations, there is a hyphen between the prefix and
the option.

■ The customizer help option (-P-help) can be specified only on
the command line or in the SQLJ_OPTIONS variable, not in a
properties file. As with the SQLJ -help option, no translation
will be done. This is true even if you also specify files to
process. (SQLJ assumes that you want help or you want
translation, but not both.)

■ If you specify customization options but turn off customization
for .sqlj files (and have no .ser files on the command line),
then the customization options are silently ignored.

■ The -P prefix is not applicable for Oracle-specific code
generation (-codegen=oracle), where no profiles are
produced and so no customization is performed.
8-60 SQLJ Developer’s Guide and Reference

Advanced Translator Options
For information about available generic and Oracle-specific customizer options, see
"Customization Options and Choosing a Customizer" on page 10-17.

Command-line syntax -P-<C>profile_customizer_option

Command-line examples
-P-driver=oracle.jdbc.OracleDriver
-P-Csummary

Properties file syntax profile.<C>profile_customizer_option

Properties file example
profile.driver=oracle.jdbc.OracleDriver
profile.Csummary

Default value n/a

Flags for Special Processing
As mentioned above, .sqlj files are typically processed by the SQLJ translator,
Java compiler, and SQLJ profile customizer. The following flags limit this
processing, directing the SQLJ startup script to skip the indicated process:

■ -compile

■ -profile

The following flag instructs SQLJ to convert profiles from serialized resource (.ser)
files to class files after customization:

■ -ser2class

The following flag instructs SQLJ type resolution, in certain circumstances, to
examine source files as well as class files or files specified on the SQLJ command
line:

■ -checksource

Compilation Flag (-compile)
The -compile flag enables or disables processing of .java files by the compiler.
This applies both to generated .java files and to .java files specified on the
command line. This flag is useful, for example, if you want to compile .java files
later using a compiler other than javac. The flag is true by default; setting it to
false disables compilation.
 Translator Command Line and Options 8-61

Advanced Translator Options
When you process a .sqlj file with -compile=false, you are responsible for
compiling and customizing it later as necessary.

Setting -compile=false also implicitly sets -profile=false. In other words,
whenever -compile is false, both compilation and customization are skipped. If
you set -compile=false and -profile=true, then your -profile setting is
ignored.

Command-line syntax -compile=true/false

Command-line example -compile=false

Properties file syntax sqlj.compile=true/false

Properties file example sqlj.compile=false

Default value true (compile)

Profile Customization Flag (-profile)
The -profile flag enables or disables processing of generated profile (.ser) files
by the SQLJ profile customizer. However, this applies only to .ser files generated
by the SQLJ translator from .sqlj files that you specify on the current command
line; it does not apply to previously generated .ser files (or to .jar files) that you
specify on the command line. The flag is true by default; setting it to false
disables customization.

Notes: There are situations where it is sensible for -compile to
be set to false even when .java files must be accessed for type
resolution. You might do this, for example, if you are translating a
.sqlj file, the translator will need one or more .java files for
type resolution during translation, but you want to compile all your
.java files later using a particular compiler.

(An example of a situation where .java files must be accessed for
type resolution is if you are using Oracle9i objects in your SQLJ
application and using the Oracle JPublisher utility to map these
objects to custom Java types. The .java files produced by
JPublisher must be available to the SQLJ translator for type
resolution during translation. See "Compiling Custom Java Classes"
on page 6-17 for more information.)
8-62 SQLJ Developer’s Guide and Reference

Advanced Translator Options
This option behaves differently from the -compile option for files specified on the
command line. Any .ser and .jar files specified on the command line are still
customized if -profile=false; however, .java files specified on the command
line are not compiled if -compile=false. The reason for this is that you might
want other operations, such as line mapping, to be performed on a .java file.
There are, however, no other operations that can be performed on a .ser or .jar
file specified on the command line.

When you process a .sqlj file with -profile=false, you are responsible for
customizing it later, as necessary.

Command-line syntax -profile=true/false

Command-line example -profile=false

Properties file syntax sqlj.profile=true/false

Properties file example sqlj.profile=false

Default value true (customize)

Notes:

■ Set this option to false if you do not want your application to
require the Oracle SQLJ runtime and an Oracle JDBC driver
when it runs. (Or specify a non-default customizer, using the
-default-customizer option.) If no customization is
performed, then the generic SQLJ runtime will be used when
your application runs.

■ Setting -compile=false also implicitly sets
-profile=false. In other words, whenever -compile is
false, both compilation and customization are skipped. If you
set -compile=false and -profile=true, then your
-profile setting is ignored.

■ This option is not applicable for Oracle-specific code generation
(-codegen=oracle), where no profiles are produced and so
no customization is performed.
 Translator Command Line and Options 8-63

Advanced Translator Options
Conversion of .ser File to .class File (-ser2class)
With standard SQLJ code generation, the -ser2class flag instructs SQLJ to
convert generated .ser files to .class files. This is necessary if you are using
SQLJ to create an applet that will be run from a browser that does not support
resource file names with the .ser suffix. (This is true of Netscape Navigator 4.x, for
example.)

This also simplifies the naming of schema objects for your profiles in situations
where you are translating a SQLJ program on a client and then loading classes and
resource files into the server. Loaded class schema objects have a simpler naming
convention than loaded resource schema objects. (This is discussed in "Loaded
Class and Resource Schema Objects" on page 11-10.)

The conversion is performed after profile customization so that it includes your
customizations.

The base names of converted files are identical to those of the original files; the only
difference in the file name is .ser being replaced by .class. For example:

Foo_SJProfile0.ser

is converted to:

Foo_SJProfile0.class

Notes:

■ The original .ser file is not saved.

■ Once a profile has been converted to a .class file, it cannot be
further customized. You would have to delete the .class file
and rerun SQLJ to recreate the profile.

■ Where encoding is necessary, the -ser2class option always
uses 8859_1 encoding, ignoring the SQLJ -encoding setting.

■ If you use Oracle-specific code generation
(-codegen=oracle), then no profiles are produced and the
-ser2class option is irrelevant. In fact, you may prefer to use
Oracle-specific code generation (presuming you use the SQLJ
library runtime11 or runtime12 library) if your motivation
is to eliminate .ser files.
8-64 SQLJ Developer’s Guide and Reference

Advanced Translator Options
Command-line syntax -ser2class=true/false

Command-line example -ser2class=true

Properties file syntax sqlj.ser2class=true/false

Properties file example sqlj.ser2class=false

Default value false

Source Check for Type Resolution (-checksource)
It may not be sufficient for the SQLJ type resolution process to examine only class
files in the classpath and class or source files specified on the SQLJ command line.
The -checksource flag instructs SQLJ to also examine source files in the classpath
under the following circumstances:

■ if a class file cannot be found for a required class, but a source file can be found

■ if a source file has a more recent modification date than its corresponding class
file

Command-line syntax -checksource=true/false

Command-line example -checksource=true

Properties file syntax sqlj.checksource=true/false

Properties file example sqlj.checksource=false

Default value true

Note: This applies only to Java types that appear in #sql
statements, not elsewhere in your Java code. Therefore, you should
always explicitly provide the names of any required .sqlj files on
the SQLJ command line.
 Translator Command Line and Options 8-65

Advanced Translator Options
Semantics-Checking Options
The following options specify characteristics of online and offline
semantics-checking:

■ -offline

■ -online

■ -cache

Discussion of these options is preceded by a discussion of OracleChecker—the
default front-end class for semantics-checking—and an introduction to the Oracle
semantics-checkers.

Semantics-Checkers and the OracleChecker Front End (default checker)
The default checker is oracle.sqlj.checker.OracleChecker (for both online
and offline checking). This class acts as a front end and runs the appropriate
semantics-checker, depending on your environment and whether you choose offline
or online checking.

For Oracle, there are the following categories of checkers (for both online and offline
checking):

■ Oracle8 checkers for Oracle9i and Oracle8i types (as used in Oracle9i and
Oracle8i JDBC)

■ Oracle80 checkers for Oracle 8.0.x types (as used in Oracle 8.0.x JDBC)

■ Oracle7 checkers for Oracle 7.3.x types (as used in Oracle 7.3.x or 8.0.x JDBC)

■ Oracle8To7 checkers for using an Oracle8i or Oracle9i JDBC driver, but only
with the subset of types that are compatible with an Oracle 7.3.x database.

The Oracle80 and Oracle7 checkers are incompatible with the Oracle8i and Oracle9i
JDBC drivers, and the Oracle8 and Oracle8To7 checkers are incompatible with the
Oracle 8.0.x and Oracle 7.3.x JDBC drivers. The Oracle8To7 checkers were created so
that there is a way to use an Oracle8i or Oracle9i JDBC driver and check against an
Oracle 7.3.x subset of types.

Online Checking with Oracle Database and JDBC Driver If you are using an Oracle
database (or perhaps the middle-tier database cache) and Oracle JDBC driver with
online checking, then OracleChecker will choose a checker based on the lower of
your database version and JDBC driver version. Table 8–3 summarizes the choices
for the possible combinations of database version and driver version, and also notes
any other Oracle checkers that would be legal.
8-66 SQLJ Developer’s Guide and Reference

Advanced Translator Options
Offline Checking with Oracle JDBC Driver If you are using an Oracle JDBC driver with
offline checking, then OracleChecker will choose a checker based on your JDBC
driver version. Table 8–4 summarizes the possible choices. (Note that there is an
Oracle8To7OfflineChecker, but it can be used only by selecting it manually.)

Not Using Oracle Database and JDBC Driver If OracleChecker detects that you do not
use an Oracle JDBC driver, then it runs one of the following checkers:

■ sqlj.semantics.OfflineChecker if online checking is not enabled

■ sqlj.semantics.JdbcChecker if online checking is enabled

Offline Semantics-Checker (-offline)
The -offline option specifies a Java class that implements the semantics-checking
component of SQLJ for offline checking. With offline checking, there is no database
connection—only SQL syntax and usage of Java types is checked. (For information
about what offline and online semantics-checkers accomplish and how they
function, see "Semantics-Checking" on page 9-2.)

Table 8–3 Oracle Online Semantics-Checkers Chosen by OracleChecker

Database Version JDBC Version Chosen Online Checker
Other Legal Online
Checkers

Oracle9i, 8i, or 8.0.x Oracle9i or 8i Oracle8JdbcChecker Oracle8To7JdbcChecker

Oracle9i, 8i, or 8.0.x Oracle 8.0.x Oracle80JdbcChecker Oracle7JdbcChecker

Oracle9i, 8i, or 8.0.x Oracle 7.3.x Oracle7JdbcChecker none

Oracle 7.3.x Oracle9i or 8i Oracle8To7JdbcChecker none

Oracle 7.3.x Oracle 8.0.x Oracle7JdbcChecker none

Oracle 7.3.x Oracle 7.3.x Oracle7JdbcChecker none

Table 8–4 Oracle Offline Semantics-Checkers Chosen by OracleChecker

JDBC Version Chosen Offline Checker
Other Legal Offline
Checkers

Oracle9i or 8i Oracle8OfflineChecker Oracle8To7OfflineChecker

Oracle 8.0.x Oracle80OfflineChecker Oracle7OfflineChecker

Oracle 7.3.x Oracle7OfflineChecker none
 Translator Command Line and Options 8-67

Advanced Translator Options
Note that offline checking is neither enabled nor disabled by the -offline option.
Offline checking runs only when online checking does not—either because online
checking is not enabled or because the database connection cannot be established.

You can specify different offline checkers for different connection contexts, with a
limit of one checker per context (do not list multiple offline checkers for one
connection context).

The default OracleChecker, a front-end class discussed in "Semantics-Checkers
and the OracleChecker Front End (default checker)" on page 8-66, will serve your
needs unless you want to specify a particular checker that would not be chosen by
OracleChecker. For example, you might run offline checking on a machine with
an Oracle 8.0 JDBC driver, but your application (or at least statements using a
particular connection context class) will run against an Oracle 7.3 database. In this
case you will want to check these statements using the Oracle7 checker.

The following example shows how to select the Oracle7 offline checker for a
particular connection context (CtxClass):

-offline@CtxClass=oracle.sqlj.checker.Oracle7OfflineChecker

This results in SQLJ using oracle.sqlj.checker.Oracle7OfflineChecker
for offline checking of any of your SQLJ executable statements that specify a
connection object that is a CtxClass instance.

The CtxClass connection context class must be declared in your source code or
previously compiled into a .class file. (See "Connection Contexts" on page 7-2 for
more information.)

Use the -offline option separately for each connection context offline checker
you want to specify; these settings have no influence on each other. For example:

-offline@CtxClass2=oracle.sqlj.checker.Oracle7OfflineChecker
-offline@CtxClass3=sqlj.semantics.OfflineChecker

To specify the offline checker for the default connection context and any other
connection contexts for which you do not specify an offline checker:

-offline=oracle.sqlj.checker.Oracle7OfflineChecker

Any connection context without an offline checker setting uses the offline checker
setting of the default connection context, presuming an offline checker has been set
for the default context.
8-68 SQLJ Developer’s Guide and Reference

Advanced Translator Options
Command-line syntax -offline<@conn_context_class>=checker_class

Command-line examples
-offline=oracle.sqlj.checker.Oracle80OfflineChecker
-offline@CtxClass=oracle.sqlj.checker.Oracle80OfflineChecker

Properties file syntax sqlj.offline<@conn_context_class>=checker_class

Properties file examples
sqlj.offline=oracle.sqlj.checker.Oracle80OfflineChecker
sqlj.offline@CtxClass=oracle.sqlj.checker.Oracle80OfflineChecker

Default value oracle.sqlj.checker.OracleChecker

Online Semantics-Checker (-online)
The -online option specifies a Java class or list of classes that implement the
online semantics-checking component of SQLJ. This involves connecting to a
database.

Remember that online checking is not enabled by the -online option—you must
enable it through the -user option. The -password, -url, and -driver options
must be set appropriately as well. (For information about what offline and online
semantics-checkers accomplish and how they function, see "Semantics-Checking"
on page 9-2.)

You can specify different online checkers for different connection contexts, and you
can list multiple checkers (separated by commas) for any given context. In cases
where multiple checkers are listed for a single context, SQLJ uses the first checker
(reading from left to right in the list) that accepts the database connection
established for online checking. (At analysis time, a connection is passed to each
online checker, and the checker decides whether it recognizes the database.)

The default OracleChecker, a front-end class discussed in "Semantics-Checkers
and the OracleChecker Front End (default checker)" on page 8-66, will serve your
needs unless you want to specify a particular checker that would not be chosen by
OracleChecker. For example, you might run online checking on a machine with
an Oracle 8.0 database and JDBC driver, but your application (or at least statements
using a particular connection context class) will eventually run against an Oracle 7.3
database. In this case you will want to check these statements using the Oracle7
checker.
 Translator Command Line and Options 8-69

Advanced Translator Options
The following example shows how to select the Oracle7 online checker for the
DefaultContext class (and any other connection context classes without a
specified setting):

-online=oracle.sqlj.checker.Oracle7JdbcChecker

To specify a list of drivers and allow the proper class to be selected depending on
what kind of database is being accessed:

-online=oracle.sqlj.checker.Oracle7JdbcChecker,sqlj.semantics.JdbcChecker

With this specification, if connection is made to an Oracle database, then SQLJ uses
the oracle.sqlj.checker.Oracle7JdbcChecker semantics-checker. If
connection is made to any other kind of database, then SQLJ uses the generic
sqlj.semantics.JdbcChecker semantics-checker. This is similar functionally
to what the default OracleChecker does but ensures that you use an Oracle7
checker instead of an Oracle8 checker if you connect to an Oracle database.

To specify the online checker for a particular connection context (CtxClass):

-online@CtxClass=oracle.sqlj.checker.Oracle7JdbcChecker

This results in the use of oracle.sqlj.checker.Oracle7JdbcChecker for
online checking of any of your SQLJ executable statements that specify a connection
object that is an instance of CtxClass, presuming you enable online checking for
CtxClass.

The CtxClass connection context class must be declared in your source code or
previously compiled into a .class file. (See "Connection Contexts" on page 7-2 for
more information.)

Use the -online option separately for each connection context online checker you
want to specify; these settings have no influence on each other:

-online@CtxClass2=oracle.sqlj.checker.Oracle80JdbcChecker
-online@CtxClass3=sqlj.semantics.JdbcChecker

Any connection context without an online checker setting uses the online checker
setting of the default connection context, presuming you set an online checker for
the default context.

Command-line syntax -online<@conn_context_class>=checker_class(list)

Command-line examples
-online=oracle.sqlj.checker.Oracle80JdbcChecker
-online=oracle.sqlj.checker.Oracle80JdbcChecker,sqlj.semantics.JdbcChecker
8-70 SQLJ Developer’s Guide and Reference

Advanced Translator Options
-online@CtxClass=oracle.sqlj.checker.Oracle80JdbcChecker

Properties file syntax sqlj.online<@conn_context_class>=checker_class(list)

Properties file examples
sqlj.online=oracle.sqlj.checker.Oracle80JdbcChecker
sqlj.online=oracle.sqlj.checker.Oracle80JdbcChecker,sqlj.semantics.JdbcChecker
sqlj.online@CtxClass=oracle.sqlj.checker.Oracle80JdbcChecker

Default value oracle.sqlj.checker.OracleChecker

Caching of Online Semantics-Checker Results (-cache)
Use the -cache option to enable caching of the results generated by the online
checker. This avoids additional database connections during subsequent SQLJ
translation runs. The analysis results are cached in a file, SQLChecker.cache, that
is placed in your current directory.

The cache contains serialized representations of all SQL statements successfully
translated (translated without error or warning messages), including all statement
parameters, return types, translator settings, and modes.

The cache is cumulative and continues to grow through successive invocations of
the SQLJ translator. Delete the SQLChecker.cache file to empty the cache.

Command-line syntax -cache=true/false

Command-line example -cache=true

Properties file syntax sqlj.cache=true/false

Properties file example sqlj.cache=false

Default value false
 Translator Command Line and Options 8-71

Translator Support and Options for Alternative Environments
Translator Support and Options for Alternative Environments
By default, Oracle9i SQLJ is configured to run under the Sun Microsystems JDK
1.2.x (or higher) or 1.1.x and to use the Sun Microsystems compiler javac. These
are not requirements, however. You can configure SQLJ to work with alternative
JVMs or compilers. To do so, you must supply SQLJ with the following information:

■ the name of the JVM to use (-vm option)

■ the name of the Java compiler to use (-compiler-executable option)

■ any settings the compiler requires

A set of SQLJ options allows you to provide this information. These options are
described in "Java and Compiler Options" below.

SQLJ also defaults to the Oracle profile customizer, but can work with alternative
customizers as well. See "Customization Options" on page 8-80 for how to instruct
SQLJ to use a different customizer.

Java and Compiler Options
The following options relate to the operation of the JVM and Java compiler:

■ -vm (specify the JVM; command-line only)

■ -compiler-executable (specify the Java compiler)

■ -compiler-encoding-flag

■ -compiler-output-file

■ -compiler-pipe-output-flag

Some compilers, such as the standard javac, require a Java source file name to
match the name of the public class (if any) defined there. Therefore, by default the
SQLJ translator verifies that this is true. You can use the following option, however,
to instruct SQLJ not to verify this:

■ -checkfilename

Note: Be aware of the limitations of any operating system and
environment you use. In particular, the complete, expanded SQLJ
command line must not exceed the maximum command-line size
(for example, 250 characters for Windows 95 and 4000 characters
for Windows NT). Consult your operating system documentation.
8-72 SQLJ Developer’s Guide and Reference

Translator Support and Options for Alternative Environments
For some JVM and compiler configurations, there might be problems with the way
SQLJ normally invokes the compiler. You can use the following option to alleviate
this by breaking SQLJ processing into a two-pass process:

■ -passes

You can also pass options directly to the particular JVM or compiler you use,
through the -J and -C prefixes discussed in "Prefixes that Pass Option Settings to
Other Executables" on page 8-56.

Name of the Java Virtual Machine (-vm)
Use the -vm option if you want to specify a particular JVM for SQLJ to use.
Otherwise SQLJ uses the standard java from the Sun Microsystems JDK.

You cannot set this option in a properties file, because properties files are read after
the JVM is invoked.

If you do not specify a directory path along with the name of the JVM executable
file, then SQLJ looks for the executable according to the setting of your operating
system PATH variable.

Command-line syntax -vm=JVM_path+name

Command-line example -vm=/myjavadir/myjavavm

Properties file syntax n/a

Note: The -vm option, -passes option, and -J prefix cannot be
used in a properties file. You can set them on the command line or,
more conveniently, in the SQLJ_OPTIONS environment variable.
See "SQLJ_OPTIONS Environment Variable for Option Settings" on
page 8-18.

Note: Special functionality of this option, -vm=echo, is
supported. This is equivalent to the -n option, instructing the sqlj
script to construct the full command line that would be passed to
the SQLJ translator, and echo it to the user without having the
translator execute it. For more information, see "Command Line
Echo without Execution (-n)" on page 8-25.
 Translator Command Line and Options 8-73

Translator Support and Options for Alternative Environments
Properties file example n/a

Default value java

Name of the Java Compiler (-compiler-executable)
Use the -compiler-executable option if you want to specify a particular Java
compiler for SQLJ to use. Otherwise SQLJ uses the standard javac from the Sun
Microsystems JDK.

If you do not specify a directory path along with the name of the compiler
executable file, then SQLJ looks for the executable according to the setting of your
operating system PATH variable.

The following is required of any Java compiler that you use:

■ It can output error and status information to the standard output device (for
example, STDOUT on a UNIX system) or, alternatively, to a file (as directed by
the -compiler-output-file option, described below).

■ It will understand the SQLJ -d option, which determines the root directory for
class files.

■ It must return a non-zero exit code to the operating system whenever a
compilation error occurs.

■ The line information that it provides in any errors or messages must be in one
of the following two formats (items in <> brackets are optional):

– Sun Microsystems javac format

filename.java:line<.column><-line<.column>>

Example: myfile.java:15: Illegal character: ’\u01234’

– Microsoft jvc format

filename.java(line,column)

Example: myfile.java(15,7) Illegal character: ’\u01234’

As always, SQLJ processes compiler line information so that it refers to line
numbers in the original .sqlj file, not in the produced .java file.
8-74 SQLJ Developer’s Guide and Reference

Translator Support and Options for Alternative Environments
Command-line syntax -compiler-executable=Java_compiler_path+name

Command-line example -compiler-executable=/myjavadir/myjavac

Properties file syntax sqlj.compiler-executable=Java_compiler_path+name

Properties file example sqlj.compiler-executable=myjavac

Default value javac

Compiler Encoding Support (-compiler-encoding-flag)
As mentioned in "Encoding for Input and Output Source Files (-encoding)" on
page 8-27, it is typical that when you employ the -encoding option to specify an
encoding character set for SQLJ to use, SQLJ passes this to the Java compiler for the
compiler to use as well. Set the -compiler-encoding-flag to false if you do
not want SQLJ to pass the character encoding to the compiler (if, for example, you
are using a compiler other than javac, and it does not support an -encoding
option by that name).

Command-line syntax -compiler-encoding-flag=true/false

Command-line example -compiler-encoding-flag=false

Properties file syntax sqlj.compiler-encoding-flag=true/false

Properties file example sqlj.compiler-encoding-flag=false

Default value true

Compiler Output File (-compiler-output-file)
If you have instructed the Java compiler to output its results to a file, then use the
-compiler-output-file option to make SQLJ aware of the file name. Otherwise
SQLJ assumes that the compiler outputs to the standard output device (such as

Note: If you use a compiler that does not support an -encoding
option, then disable the -compiler-encoding-flag, described
in "Compiler Encoding Support (-compiler-encoding-flag)" on
page 8-75.
 Translator Command Line and Options 8-75

Translator Support and Options for Alternative Environments
STDOUT on a UNIX system). As appropriate, specify an absolute path, or a relative
path from the current directory.

Command-line syntax -compiler-output-file=output_file_path+name

Command-line example -compiler-output-file=/myjavadir/mycmploutput

Properties file syntax sqlj.compiler-output-file=output_file_path+name

Properties file example sqlj.compiler-output-file=/myjavadir/mycmploutput

Default value none (standard output)

Compiler Message Output Pipe (-compiler-pipe-output-flag)
By default, the javac compiler provided with the Sun Microsystems JDK writes
error and message output to STDERR. SQLJ, however, expects such compiler output
to be written to STDOUT so it can be captured reliably.

If SQLJ sets the javac.pipe.output system property to true, which is SQLJ’s
default behavior when it invokes the Java compiler, then compiler error and
message output will be sent to STDOUT. You can specify
-compiler-pipe-output-flag=false, however, to instruct SQLJ to not set this
system property when it invokes the Java compiler. You should do this, for
example, if the Java compiler you are using does not support the
javac.pipe.output system property.

You can set this flag in a properties file, as well as on the command line or in the
SQLJ_OPTIONS environment variable.

Note: You cannot use this option if you enable -passes, which
requires output to STDOUT.
8-76 SQLJ Developer’s Guide and Reference

Translator Support and Options for Alternative Environments
Command-line syntax -compiler-pipe-output-flag=true/false

Command-line example -compiler-pipe-output-flag=false

Properties file syntax sqlj.compiler-pipe-output-flag=true/false

Properties file example sqlj.compiler-pipe-output-flag=false

Default value true

Source File Name Check (-checkfilename)
This flag instructs SQLJ whether to verify that the SQLJ source file name matches
the name of the public class (if any) defined there. Some compilers, such as the
standard javac, require this to be the case; others do not.

To maximize portability of your code, this flag should be enabled, which it is by
default.

(It is advisable for the source file name to always match the name of the public class
defined, or, if there is no public class, the name of the first class defined. For
example, public class MyPublicClass should be defined in a
MyPublicClass.sqlj source file.)

Notes:

■ If you are using a Java compiler that originates from Sun
Microsystems and that writes its output to STDERR by default,
then you must leave -compiler-pipe-output-flag
enabled if you enable -passes, which requires output to
STDOUT.

■ Sun Microsystems JDK 1.3.x versions appear to no longer
support javac.pipe.output functionality.

Note: If you are translating in the server, where there is no
equivalent naming requirement, there is no -checkfilename
option, and the translator executes no such check.
 Translator Command Line and Options 8-77

Translator Support and Options for Alternative Environments
Command-line syntax -checkfilename=true/false

Command-line example -checkfilename=false

Properties file syntax sqlj.checkfilename=true/false

Properties file example sqlj.checkfilename=false

Default value true

SQLJ Two-Pass Execution (-passes)
By default, the following sequence occurs when you invoke the sqlj script:

1. The sqlj script invokes your JVM, which runs the SQLJ translator.

2. The translator completes the semantics-checking and translation of your .sqlj
files, generating translated .java files.

3. The translator invokes your Java compiler, which compiles the generated
.java files.

4. The translator processes the compiler output.

5. If any profile files were generated, the translator invokes a profile customizer to
customize them.

For some JVM and compiler configurations, however, the compiler invocation in
step 3 will not return, and your translation will suspend.

If you encounter this situation, the solution is to instruct SQLJ to run in two passes,
with the compilation step in between. To accomplish this, you must enable the
two-pass execution flag as follows:

-passes

The -passes option must be specified on the command line or, equivalently, in the
SQLJ_OPTIONS environment variable. It cannot be specified in a properties file.
8-78 SQLJ Developer’s Guide and Reference

Translator Support and Options for Alternative Environments
With -passes enabled, the following sequence occurs when you invoke the sqlj
script:

1. The sqlj script invokes your JVM, which runs the SQLJ translator for its first
pass.

2. The translator completes the semantics-checking and translation of your .sqlj
files, generating translated .java files.

3. The JVM is terminated.

4. The sqlj script invokes the Java compiler, which compiles the generated
.java files.

5. The sqlj script invokes your JVM again, which runs the SQLJ translator for its
second pass.

6. The translator processes compiler output.

7. If any profile files were generated, the JVM runs your profile customizer to
customize them.

With this sequence, you circumvent any problems the JVM might have in invoking
the Java compiler.

Command-line syntax -passes

Command-line example -passes

Properties file syntax n/a

Properties file example n/a

Default value off

Notes:

■ If you enable -passes, then compiler output must go to
STDOUT, so leave -compiler-pipe-output-flag enabled
(which is its default). In addition, you cannot use the
-compiler-output-file option, which would result in
output to a file instead of to STDOUT.

■ Like other command-line-only flags (-help, -version, -n),
the -passes flag does not support =true syntax.
 Translator Command Line and Options 8-79

Translator Support and Options for Alternative Environments
Customization Options
The following options relate to the customization of your SQLJ profiles:

■ -default-customizer

■ options passed directly to the customizer

Default Profile Customizer (-default-customizer)
Use the -default-customizer option to instruct SQLJ to use a profile
customizer other than the default, which is:

oracle.sqlj.runtime.util.OraCustomizer

In particular, use this option if you are not using an Oracle database.

This option takes a fully qualified Java class name as its argument.

Command-line syntax -default-customizer=customizer_classname

Command-line example -default-customizer=sqlj.myutil.MyCustomizer

Properties file syntax sqlj.default-customizer=customizer_classname

Properties file example sqlj.default-customizer=sqlj.myutil.MyCustomizer

Default value oracle.sqlj.runtime.util.OraCustomizer

Note: If you use Oracle-specific code generation
(-codegen=oracle), then SQLJ generates no profiles and so
performs no customization. In that case, the options discussed here
are irrelevant.

Notes: You can override this option with the -P-customizer
option in your SQLJ command line (or properties file). For more
information, see "Options to Pass to the Profile Customizer (-P)" on
page 8-59.
8-80 SQLJ Developer’s Guide and Reference

Translator Support and Options for Alternative Environments
Options Passed Directly to the Customizer
As with the JVM and compiler, you can pass options directly to the profile
customizer harness using a prefix, in this case -P. This is discussed in "Options to
Pass to the Profile Customizer (-P)" on page 8-59.

Details about these options, both general customization options and Oracle-specific
customizer options, are covered in "Customization Options and Choosing a
Customizer" on page 10-17.

Note: When you use an Oracle database, Oracle recommends that
you use the default OraCustomizer for your profile
customization.
 Translator Command Line and Options 8-81

Translator Support and Options for Alternative Environments
8-82 SQLJ Developer’s Guide and Reference

 Translator and Runtime Functio
9

Translator and Runtime Functionality

This chapter discusses internal operations and functionality of the Oracle SQLJ
translator and runtime.

The following topics are covered:

■ Internal Translator Operations

■ Functionality of Translator Errors, Messages, and Exit Codes

■ SQLJ Runtime

■ Globalization Support in the Translator and Runtime
nality 9-1

Internal Translator Operations
Internal Translator Operations
The following topics summarize the operations executed by the SQLJ translator
during a translation:

■ Code-Parsing and Syntax-Checking

■ Semantics-Checking

■ Code Generation

■ Java Compilation

■ Profile Customization

Code-Parsing and Syntax-Checking
In this first phase of SQLJ translation, a SQLJ parser and a Java parser are used to
process all the source code and check syntax.

As the SQLJ translator parses the .sqlj file, it invokes a Java parser to check the
syntax of Java statements and a SQLJ parser to check the syntax of SQLJ constructs
(anything preceded by #sql). The SQLJ parser also invokes the Java parser to check
the syntax of Java host variables and expressions within SQLJ executable
statements.

The SQLJ parser checks the grammar of SQLJ constructs according to the SQLJ
language specification. It does not check the grammar of the embedded SQL
operations, however. SQL syntax is not checked until the semantics-checking step.

This syntax-check will discover errors such as missing semi-colons, mismatched
curly braces, and obvious type mismatches (such as multiplying a number by a
string).

If the parsers discover any syntax errors or type mismatches during this phase, then
the translation is aborted, and the errors are reported to the user.

Semantics-Checking
Once the SQLJ application source code is verified as syntactically correct, the
translator enters into the semantics-checking phase and invokes a
semantics-checker, according to user option settings. The semantics-checker verifies
the validity of Java types in SQL operations (result expressions or host expressions)
and optionally connects to a database to check compatibility between Java types
and SQL types.
9-2 SQLJ Developer’s Guide and Reference

Internal Translator Operations
The -user option specifies online checking, and the -password and -url options
finish specifying the database connection if the password and URL were not
specified in the -user option. The -offline or -online option specifies which
checker to use. The default is a checker front end called OracleChecker, which
chooses the most appropriate checker, according to whether you have enabled
online checking and which JDBC driver you are using. For more information, see
"Connection Options" on page 8-31 and "Semantics-Checking Options" on
page 8-66.

The following two tasks are always performed during semantics-checking, whether
offline or online:

1. SQLJ analyzes the types of Java expressions in your SQLJ executable
statements.

This includes examining the SQLJ source files being translated, any .java files
entered on the command-line, and any imported Java classes whose .class
files or .java files can be found through the classpath. SQLJ examines whether
and how stream types are used in SELECT or CAST statements, what Java types
are used in iterator columns or INTO-lists, what Java types are used as input
host variables, and what Java types are used as output host variables.

SQLJ also processes FETCH, CAST, CALL, SET TRANSACTION, VALUES, and
SET statements syntactically.

Any Java expression in a SQLJ executable statement must have a Java type valid
for the given situation and usage. For example, consider the following
statement:

#sql [myCtx] { UPDATE ... };

The myCtx variable, which might be used to specify a connection context
instance or execution context instance for this statement, must actually resolve
to a SQLJ connection context type or execution context type.

Now consider the following example:

#sql { UPDATE emp SET sal = :newSal };

Note: Semantics-checking can also be performed on a profile that
was produced during a previous execution of the SQLJ translator.
See "SQLCheckerCustomizer for Profile Semantics-Checking" on
page 10-43.
 Translator and Runtime Functionality 9-3

Internal Translator Operations
If newSal is a variable (as opposed to a field), then an error is generated if
newSal was not previously declared. In any case, an error is generated if it
cannot be assigned to a valid Java type, or its Java type cannot be used in a SQL
statement (a java.util.Vector, for example).

2. SQLJ tries to categorize your embedded SQL operations—each operation must
have a recognizable keyword, such as SELECT or INSERT, so that SQLJ knows
what kind of operation it is. For example, the following statement will generate
an error:

#sql { foo };

The following two tasks are performed only if online checking is enabled:

3. SQLJ analyzes your embedded SQL operations and checks their syntax against
the database.

4. SQLJ checks the types of Java expressions in SQLJ executable statements
against: 1) SQL types of corresponding columns in the database; 2) SQL types of
corresponding arguments and return variables of stored procedures and
functions.

In the process of doing this, SQLJ verifies that the SQL objects used in your
SQLJ executable statements (such as tables, views, and stored procedures)
actually exist in the database. SQLJ also checks nullability of database columns
whose data is being selected into iterator columns of Java primitive types,
which cannot process null data. (Nullability is not checked for stored procedure
and function output parameters and return values, however.)

If the semantics-checker discovers any syntax or semantics errors during this phase,
then the translation is aborted and the errors are reported.

Oracle supplies Oracle-specific offline checkers, a generic offline checker,
Oracle-specific online checkers, and a generic online checker. For more information
about checkers, see "Offline Semantics-Checker (-offline)" on page 8-67 and "Online
Semantics-Checker (-online)" on page 8-69.

Note: Remember that semantics-checking of Java types is
performed only for Java expressions within SQLJ executable
statements. Such errors in your standard Java statements will not be
detected until compilation by the Java compiler.
9-4 SQLJ Developer’s Guide and Reference

Internal Translator Operations
The generic checkers assume you use only standard SQL92 and standard JDBC
features. Oracle recommends that you use the Oracle-specific checkers when using
an Oracle database.

Code Generation
For your .sqlj application source file, the SQLJ translator generates a .java file
and, for standard SQLJ code generation, at least one profile (either in .ser or
.class files). A .java file is created for your translated application source code,
class definitions for private iterators and connection contexts you declared, and a
profile-keys class definition generated and used internally by SQLJ.

Generated Application Code in .java File
Once your application source code has passed the preceding syntax and semantics
checks, it is translated and output to a .java file. For standard SQLJ code
generation, SQLJ executable statements are replaced by calls to the SQLJ runtime,
which in turn contains calls to the JDBC driver to access the database. For

Notes: The following is not checked against the database during
online semantics-checking:

■ DDL statements (such as CREATE, ALTER, and DROP) and
transaction control statements (such as COMMIT and
ROLLBACK)

■ compatibility of data corresponding to weakly typed host
expressions (those using the oracle.sql package STRUCT,
REF, and ARRAY classes, which are discussed in "Weakly Typed
Objects, References, and Collections" on page 6-77)

■ mode compatibility (IN, OUT, or IN OUT) of expressions in
PL/SQL anonymous blocks

Note: Profiles and a profile-keys class are not generated under the
following circumstances:

■ if you do not use any SQLJ executable statements in your code

■ if you use Oracle-specific code generation
(-codegen=oracle)

See "Oracle-Specific Code Generation (No Profiles)" on page 10-11.
 Translator and Runtime Functionality 9-5

Internal Translator Operations
Oracle-specific code generation, SQLJ executable statements are replaced by direct
calls to Oracle JDBC (there are also calls to an Oracle-specific SQLJ runtime).

The generated .java file contains all your generic Java code, your iterator class and
connection context class definitions, and calls to the SQLJ runtime.

For convenience, generated .java files also include a comment for each of your
#sql statements, repeating the statement in its entirety for reference.

The generated .java file will have the same base name as the input .sqlj file,
which would be the name of the public class defined in the .sqlj file (or the first
class defined if there are no public classes). For example, Foo.sqlj defines class
Foo, and source file Foo.java will be generated by the translator.

The location of the generated .java file depends on whether and how the SQLJ
-dir option is set. By default, the .java file will be placed in the directory of the
.sqlj input file. See "Output Directory for Generated .java Files (-dir)" on
page 8-30 for more information.

Generated Profile-Keys Class in .java File
During translation with standard SQLJ code generation, SQLJ generates a
profile-keys class that it uses internally during runtime to load and access the
serialized profile. This class contains mapping information between the SQLJ
runtime calls in your translated application and the SQL operations placed in the
serialized profile. It also contains methods to access the serialized profile.

The profile-keys class is defined in the same .java output file that has your
translated application source code, with a class name based on the base name of
your .sqlj source file as follows:

Basename_SJProfileKeys

For example, translating Foo.sqlj defines the following profile-keys class in the
generated .java file:

Foo_SJProfileKeys

Note: If you use Oracle-specific code generation, through the
SQLJ translator -codegen=oracle setting, no profiles or
profile-keys classes are generated.
9-6 SQLJ Developer’s Guide and Reference

Internal Translator Operations
If your application is in a package, this is reflected appropriately. For example,
translating Foo.sqlj in the package a.b defines the following class:

a.b.Foo_SJProfileKeys

Generated Profiles in .ser or .class Files
When you use standard SQLJ code generation, SQLJ generates profiles that it uses
to store information about the SQL operations found in the input file. A profile is
generated for each connection context class that you use in your application. It
describes the operations to be performed using instances of the associated
connection context class, such as SQL operations to execute, tables to access, stored
procedures and functions to call.

Profiles are generated in .ser serialized resource files. If, however, you enable the
SQLJ -ser2class option, they are automatically converted to .class files as part
of the translation. (In this case, no further customization of the profile is possible.
You would have to delete the .class file and rerun the SQLJ translator to
regenerate the profile.)

Profile base names are generated similarly to the profile-keys class name. They are
fully qualified with the package name, followed by the .sqlj file base name,
followed by the string:

_SJProfilen

Where n is a unique number, starting with 0, for each profile generated for a
particular .sqlj input file.

Again using the example of the input file Foo.sqlj, if two profiles are generated,
then they will have the following base names (presuming no package):

Foo_SJProfile0
Foo_SJProfile1

Note: If you use Oracle-specific code generation, through the
SQLJ translator -codegen=oracle setting, then information
about the SQL operations is embedded in the generated code,
which calls Oracle JDBC directly. In this case, SQLJ does not
generate profiles.
 Translator and Runtime Functionality 9-7

Internal Translator Operations
If Foo.sqlj is in the package a.b, then the profile base names will be:

a.b.Foo_SJProfile0
a.b.Foo_SJProfile1

Physically, a profile exists as a Java serialized object contained within a resource file.
Resource files containing profiles use the .ser extension and are named according
to the base name of the profile (excluding package names). Resource files for the
two previously mentioned profiles will be named:

Foo_SJProfile0.ser
Foo_SJProfile1.ser

Or they will be named Foo_SJProfile0.class and Foo_SJProfile1.class
if you enable the -ser2class option. If you choose this option, the conversion to
.class takes place after the customization step below. See "Conversion of .ser File
to .class File (-ser2class)" on page 8-64 for more information.

The location of these files depends on how the SQLJ -d option is set, which
determines where all generated .ser and .class files are placed. See "Output
Directory for Generated .ser and .class Files (-d)" on page 8-28 for more information.

In a later step in the SQLJ process, your profiles are customized for use with your
particular database. See "Profile Customization" on page 9-11.

More About Generated Calls to SQLJ Runtime
When your #sql statements are replaced by calls to the SQLJ runtime (for standard
SQLJ code generation) or Oracle JDBC (for Oracle-specific code generation), these
calls implement the following steps:

Table 9–1 Steps for Generated Calls, Standard Versus Oracle-Specific

Steps for Standard Code Generation Steps for Oracle Code Generation

Get a SQLJ statement object, using
information stored in the associated profile
entry.

Get an Oracle JDBC statement object.

Bind inputs into the statement, using
setXXX() methods of the statement object.

Bind inputs using Oracle JDBC statement
methods and, if necessary, register output
parameters.

Execute the statement, using the
executeUpdate() or executeQuery()
method of the statement object.

Execute the Oracle statement.

Create iterator instances, if applicable. Create iterator instances, if applicable.
9-8 SQLJ Developer’s Guide and Reference

Internal Translator Operations
A SQLJ runtime uses SQLJ statement objects that are similar to JDBC statement
objects, although a particular implementation of SQLJ might or might not employ
JDBC statement classes directly. SQLJ statement classes add functionality particular
to SQLJ. For example:

■ Standard SQLJ statement objects raise a SQL exception if a null value from the
database is to be output to a primitive Java type such as int or float, which
cannot take null values.

■ Oracle SQLJ statement objects allow user-defined object and collection types to
be passed to or retrieved from an Oracle database.

Java Compilation
After code generation, SQLJ invokes the Java compiler to compile the generated
.java file. This produces a .class file for each class you defined in your
application, including iterator and connection context declarations, as well as a
.class file for the generated profile-keys class (presuming your application uses
SQLJ executable statements). Any .java files you specified directly on the SQLJ
command line (for type-resolution, for example) are compiled at this time as well.

In the example used in "Code Generation" on page 9-5, the following .class files
would be produced in the appropriate directory (given package information in the
source code):

■ Foo.class

■ Foo_SJProfileKeys.class

■ a .class file for each additional class you defined in Foo.sqlj

■ a .class file for each iterator and connection context class you declared in
Foo.sqlj (whether public or private)

To ensure that .class files generated by the compiler and profiles generated by
SQLJ (whether .ser or .class) will be located in the same directory, SQLJ passes

Retrieve outputs from the statement, using
getXXX() methods of the statement object.

Retrieve outputs from the statement using
appropriate Oracle JDBC getter methods.

Close the SQLJ statement object (by default,
recycling it through the SQLJ statement
cache).

Close the Oracle JDBC statement object (by
default, recycling it through the JDBC
statement cache).

Table 9–1 Steps for Generated Calls, Standard Versus Oracle-Specific (Cont.)

Steps for Standard Code Generation Steps for Oracle Code Generation
 Translator and Runtime Functionality 9-9

Internal Translator Operations
its -d option to the Java compiler. If the -d option is not set, then .class files and
profiles are placed in the same directory as the generated .java file (which is
placed according to the -dir option setting).

In addition, so that SQLJ and the Java compiler will use the same encoding, SQLJ
passes its -encoding option to the Java compiler (unless the SQLJ
-compiler-encoding-flag is turned off). If the -encoding option is not set,
SQLJ and the compiler will use the setting in the JVM file.encoding property.

By default, SQLJ invokes the standard javac compiler of the Sun Microsystems
JDK, but other compilers can be used instead. You can request that an alternative
Java compiler be used by setting the SQLJ -compiler-executable option.

For information about compiler-related SQLJ options, see the following:

■ "Output Directory for Generated .ser and .class Files (-d)" on page 8-28

■ "Encoding for Input and Output Source Files (-encoding)" on page 8-27

■ "Options to Pass to the Java Compiler (-C)" on page 8-57

■ "Compilation Flag (-compile)" on page 8-61

■ "Compiler Encoding Support (-compiler-encoding-flag)" on page 8-75

■ "Name of the Java Compiler (-compiler-executable)" on page 8-74

■ "Compiler Output File (-compiler-output-file)" on page 8-75

■ "Compiler Message Output Pipe (-compiler-pipe-output-flag)" on page 8-76

Note: If you are using the SQLJ -encoding option but using a
compiler that does not have an -encoding option, turn off the
SQLJ -compiler-encoding-flag. (Otherwise, SQLJ will
attempt to pass the -encoding option to the compiler.)
9-10 SQLJ Developer’s Guide and Reference

Internal Translator Operations
Profile Customization
After Java compilation, the generated profiles (which contain information about
your embedded SQL instructions) are customized so that your application can work
efficiently with your database and use vendor-specific extensions.

To accomplish customization, SQLJ invokes a front end called the customizer harness,
which is a Java class that functions as a command-line utility. The harness, in turn,
invokes a particular customizer, either the default Oracle customizer or a
customizer that you specify by SQLJ option settings.

During customization, profiles are updated in two ways:

■ to allow your application to use any vendor-specific database types or features,
if applicable

■ to tailor the profiles so that your application is as efficient as possible in using
features of the relevant database environment

Without customization, you can access and use only standard JDBC types.

For example, the Oracle customizer can update a profile to support an Oracle9i
PERSON type that you had defined. You could then use PERSON as you would any
other supported datatype.

You also must customize with the Oracle customizer to utilize any of the
oracle.sql type extensions.

Customization Notes Be aware of the following:

■ The Oracle SQLJ runtime and an Oracle JDBC driver will be required by your
application whenever you use the Oracle customizer during translation, even if
you do not use Oracle extensions in your code.

■ The generic SQLJ runtime will be used if your application has no
customizations, or none suitable for the connection.

■ You can customize previously created profiles by specifying .ser files, or .jar
files containing .ser files, on the command line. But you cannot do this in the

Note: If you use Oracle-specific code generation, SQLJ produces
no profiles and skips the customization step. Your code will
support Oracle-specific features through direct calls to Oracle JDBC
APIs. See "Oracle-Specific Code Generation (No Profiles)" on
page 10-11 for more information.
 Translator and Runtime Functionality 9-11

Internal Translator Operations
same running of SQLJ where translations are taking place. You can specify
.ser/.jar files to be customized or .sqlj/.java files to be translated and
compiled, but not both. For more information about how .jar files are used,
see "Use of JAR Files for Profiles" on page 10-41.

For more information about profile customization, see Chapter 10, "Profiles and
Customization".

Also see the following for information about SQLJ options related to profile
customization:

■ "Default Profile Customizer (-default-customizer)" on page 8-80

■ "Options to Pass to the Profile Customizer (-P)" on page 8-59

■ "Profile Customization Flag (-profile)" on page 8-62

■ "Customization Options and Choosing a Customizer" on page 10-17
9-12 SQLJ Developer’s Guide and Reference

Functionality of Translator Errors, Messages, and Exit Codes
Functionality of Translator Errors, Messages, and Exit Codes
This section provides an overview of SQLJ translator messages and exit codes.

Translator Error, Warning, and Information Messages
There are three major levels of SQLJ messages you might encounter during the
translation phase: error, warning, and information. Warning messages can be further
broken down into two levels: non-suppressible and suppressible. Therefore, there are
four message categories (in order of seriousness):

1. errors

2. non-suppressible warnings

3. suppressible warnings

4. information

You can control suppressible warnings and information by using the SQLJ -warn
option, as described below.

Error messages, prefixed by Error:, indicate that one of the following has been
encountered:

■ a condition that would prevent compilation (for example, the source file
contains a public class whose name does not match the base file name)

■ a condition that would result in a runtime error if the code were executed (for
example, the code attempts to fetch a VARCHAR into a java.util.Vector,
using an Oracle JDBC driver)

If errors are encountered during SQLJ translation, then no output is produced
(.java file or profiles), and compilation and customization are not executed.

Non-suppressible warning messages, prefixed by Warning:, indicate that one of
the following has been encountered:

■ a condition that would probably, but not necessarily, result in a runtime error if
the code were executed (for example, a SELECT statement whose output is not
assigned to anything)

■ a condition that compromises SQLJ’s ability to verify runtime aspects of your
source code (for example, not being able to connect to the database you specify
for online checking)

■ a condition that presumably resulted from a coding error or oversight
 Translator and Runtime Functionality 9-13

Functionality of Translator Errors, Messages, and Exit Codes
SQLJ translation will complete if a non-suppressible warning is encountered, but
you should analyze the problem and determine if it should be fixed before running
the application. If online checking is specified but cannot be completed, offline
checking is performed instead.

Suppressible warning messages, also prefixed by Warning:, indicate that there is a
problem with a particular aspect of your application, such as portability. An
example of this is using an Oracle-specific type such as oracle.sql.NUMBER to
read from or write to Oracle9i.

Informational or status messages prefixed by Info: do not indicate an error
condition. They merely provide additional information about what occurred during
the translation phase.

Suppressible warning and status messages can be suppressed by using the various
-warn option flags:

■ cast/nocast—The nocast setting suppresses warnings about possible
runtime errors when trying to cast an object type instance to an instance of a
subtype.

■ precision/noprecision—The noprecision setting suppresses warnings
regarding possible loss of data precision during conversion.

■ nulls/nonulls—The nonulls setting suppresses warnings about possible
runtime errors due to nullable columns or types.

■ portable/noportable—The noportable setting suppresses warnings
regarding SQLJ code that uses Oracle-specific features or might otherwise be
non-standard and, therefore, not portable to other environments.

■ strict/nostrict—The nostrict setting suppresses warnings issued if
there are fewer columns in a named iterator than in the selected data that is to
populate the iterator.

Note: For logistical reasons, the parser that the SQLJ translator
employs to analyze SQL operations is not the same top-level SQL
parser that will be used at runtime. Therefore, errors might
occasionally be detected during translation that will not actually
cause problems when your application runs. Accordingly, such
errors are reported as non-suppressible warnings, rather than fatal
errors.
9-14 SQLJ Developer’s Guide and Reference

Functionality of Translator Errors, Messages, and Exit Codes
■ verbose/noverbose—The noverbose setting suppresses status messages
that are merely informational and do not indicate error or warning conditions.

See "Translator Warnings (-warn)" on page 8-43 for more information about the
-warn option and how to set the flags.

If you receive warnings during your SQLJ translation, then you can try running the
translator again with -warn=none to see if any of the warnings are of the more
serious (non-suppressible) variety.

Table 9–2 summarizes the categories of error and status messages generated by the
SQLJ translator.

Notes: For information about particular error, warning, and
information messages, see "Translation Time Messages" on page B-2
and "Runtime Messages" on page B-47.

Table 9–2 SQLJ Translator Error Message Categories

Message Category Prefix Indicates Suppressed By

Error Error: fatal error that will cause
compilation failure or runtime
failure (translation is aborted)

n/a

Non-suppressible
warning

Warning: condition that prevents proper
translation or might cause
runtime failure (translation is
completed)

n/a

Suppressible warning Warning: problem regarding a particular
aspect of your application
(translation is completed)

-warn option flags:
nocast
noprecision
nonulls
noportable
nostrict

Informational/status
message

Info: information regarding the
translation process

-warn option flags:
noverbose
 Translator and Runtime Functionality 9-15

Functionality of Translator Errors, Messages, and Exit Codes
Translator Status Messages
In addition to the translator’s error, warning, and information messages, SQLJ can
produce status messages throughout all phases of SQLJ operation—translation,
compilation, and customization. Status messages are output as each file is processed
and at each phase of SQLJ operation.

You can control status messages by using the SQLJ -status option. This option is
described in "Real-Time Status Messages (-status)" on page 8-46.

Translator Exit Codes
The following exit codes are returned by the SQLJ translator to the operating system
upon completion:

■ 0 = no error in execution

■ 1 = error in SQLJ execution

■ 2 = error in Java compilation

■ 3 = error in profile customization

■ 4 = error in class instrumentation (the optional mapping of line numbers from
your .sqlj source file to the resulting .class file)

■ 5 = error in ser2class conversion (the optional conversion of profile files
from .ser files to .class files)

Notes:

■ If you issue the -help or -version option, then the SQLJ exit
code is 0.

■ If you run SQLJ without specifying any files to process, then
SQLJ issues help output and returns exit code 1.
9-16 SQLJ Developer’s Guide and Reference

SQLJ Runtime
SQLJ Runtime
This section presents information about the Oracle SQLJ runtime, which is a thin
layer of pure Java code that runs above the JDBC driver. When Oracle SQLJ
translates your SQLJ source code using standard SQLJ code generation, embedded
SQL commands in your Java application are replaced by calls to the SQLJ runtime.
Runtime classes act as wrappers for equivalent JDBC classes, providing special
SQLJ functionality. When the end user runs the application, the SQLJ runtime acts
as an intermediary, reading information about your SQL operations from your
profile and passing instructions along to the JDBC driver.

If you use Oracle-specific code generation, the SQLJ runtime layer becomes even
thinner. Most of the runtime functionality is compiled directly into Oracle JDBC
calls. This requires an Oracle JDBC driver, as opposed to a JDBC driver from some
other vendor. See "Oracle-Specific Code Generation (No Profiles)" on page 10-11.

Generally speaking, however, a SQLJ runtime can be implemented to use any JDBC
driver or vendor-proprietary means of accessing the database. The Oracle SQLJ
runtime requires a JDBC driver but can use any standard JDBC driver. To use
Oracle-specific datatypes and features, however, you must use an Oracle JDBC
driver. For the purposes of this document, it is generally assumed that you are
using an Oracle database (or perhaps the middle-tier database cache) and one of the
Oracle JDBC drivers.

Notes:

■ The generic SQLJ runtime will be used if your application has
no customizations, or none suitable for the connection.

■ For standard SQLJ code generation, the Oracle SQLJ runtime
and an Oracle JDBC driver will be required by your application
whenever you use the Oracle customizer during translation,
even if you do not use Oracle extensions in your code.

■ For Oracle-specific code generation, a SQLJ runtime subset will
be used in conjunction with an Oracle JDBC driver.
 Translator and Runtime Functionality 9-17

SQLJ Runtime
Runtime Packages
The Oracle SQLJ runtime includes packages you will likely import and use directly,
and others that are used only indirectly.

Packages Used Directly
This section lists packages containing classes you can import and use directly in
your application. Packages whose names begin with oracle are for Oracle-specific
SQLJ features.

■ sqlj.runtime

This package includes the ExecutionContext class, ConnectionContext
interface, ResultSetIterator interface, ScrollableResultSetIterator
interface, and wrapper classes for streams (BinaryStream, AsciiStream,
and UnicodeStream).

Interfaces and abstract classes in this package are implemented by classes in the
sqlj.runtime.ref package or by classes generated by the SQLJ translator.

■ sqlj.runtime.ref

The classes in this package implement interfaces and abstract classes in the
sqlj.runtime package. You will likely use the
sqlj.runtime.ref.DefaultContext class, which is used to specify your
default connection and create default connection context instances. The other
classes in this package are used internally by SQLJ in defining classes during
code generation, such as iterator classes and connection context classes that you
declare in your SQLJ code.

■ oracle.sqlj.runtime

This package contains the Oracle class that you can use to instantiate the
DefaultContext class and establish your default connection. It also contains
Oracle-specific runtime classes used by the Oracle implementation of SQLJ,
including functionality to convert to and from Oracle type extensions.

Note: These packages are included in the runtime libraries—
runtime12, runtime12ee, runtime11, runtime, and
runtime-nonoracle.
9-18 SQLJ Developer’s Guide and Reference

SQLJ Runtime
Packages Used Indirectly
This section lists packages containing classes that are for internal use by SQLJ.

■ sqlj.runtime.profile

This package contains interfaces and abstract classes that define what SQLJ
profiles look like. This includes the EntryInfo class and TypeInfo class. Each
entry in a profile is described by an EntryInfo object (where a profile entry
corresponds to a SQL operation in your application). Each parameter in a
profile entry is described by a TypeInfo object.

The interfaces and classes in this package are implemented by classes in the
sqlj.runtime.profile.ref package.

■ sqlj.runtime.profile.ref

This package contains classes that implement the interfaces and abstract classes
of the sqlj.runtime.profile package, and are used internally by the SQLJ
translator in defining profiles. It also provides the default JDBC-based runtime
implementation.

■ sqlj.runtime.error

This package, used internally by SQLJ, contains resource files for all generic
(non-Oracle-specific) error messages that can be generated by the SQLJ
translator.

■ oracle.sqlj.runtime.error

This package, used internally by SQLJ, contains resource files for all
Oracle-specific error messages that can be generated by the SQLJ translator.

Categories of Runtime Errors
Runtime errors can be generated by any of the following:

■ SQLJ runtime

■ JDBC driver

■ RDBMS

In any of these cases, a SQL exception is generated as an instance of the
java.sql.SQLException class or a subclass (such as
sqlj.runtime.SQLNullException).

Depending on where the error came from, there might be meaningful information
you can retrieve from an exception using the getSQLState(), getErrorCode(),
 Translator and Runtime Functionality 9-19

SQLJ Runtime
and getMessage() methods. SQLJ errors, for example, include meaningful SQL
states and messages. For information, see "Retrieving SQL States and Error Codes"
on page 4-24.

If errors are generated by the Oracle JDBC driver or RDBMS at runtime, look at the
prefix and consult the appropriate documentation:

■ Oracle9i JDBC Developer’s Guide and Reference for JDBC errors

■ Oracle9i Database Error Messages reference for RDBMS errors

For a list of SQLJ runtime errors, see "Runtime Messages" on page B-47.
9-20 SQLJ Developer’s Guide and Reference

Globalization Support in the Translator and Runtime
Globalization Support in the Translator and Runtime
Oracle SQLJ uses Java’s built-in capabilities for globalization support (otherwise
known as National Language Support, or NLS). This section discusses the
following:

■ basics of SQLJ support for globalization and native character encoding, starting
with background information covering some of the implementation details of
character encoding and language support in Oracle SQLJ

■ options available through the Oracle SQLJ command line that allow you to
adjust your Oracle Globalization Support configuration

■ extended Oracle SQLJ globalization support

■ relevant manipulation outside of Oracle SQLJ for globalization support

Some prior knowledge of Oracle Globalization Support is assumed, particularly
regarding character encoding and locales. For information, see the Oracle9i
Globalization Support Guide.

Character Encoding and Language Support
There are two main areas of SQLJ globalization support:

■ character encoding

There are three parts to this:

– character encoding for reading and generating source files during SQLJ
translation

– character encoding for generating error and status messages during SQLJ
translation

– character encoding for generating error and status messages when the
application runs

■ language support

This determines which translations of error and status message lists are used
when SQLJ outputs messages to the user, either during SQLJ translation or
SQLJ runtime.

Globalization support at runtime is transparent to the user, presuming your SQLJ
source code and SQL character data use only characters that are within the database
character set. SQL character data is transparently mapped into and out of Unicode.
 Translator and Runtime Functionality 9-21

Globalization Support in the Translator and Runtime
Note that for multi-language applications, it is advisable to use one of the following
options:

■ Use a database whose character set supports Unicode.

or:

■ Even if your database character set does not support Unicode, you can specify
that the national language character set supports Unicode. (See the Oracle9i
Globalization Support Guide.) In this case, you will typically use the SQLJ
Unicode character types described in "Oracle SQLJ Extended Globalization
Support" on page 9-27.

Overview of Character Encoding
The character encoding setting for source files tells Oracle SQLJ two things:

■ how source code is represented in .sqlj and .java input files that the SQLJ
translator must read

■ how SQLJ should represent source code in .java output files that it generates

Notes:

■ The SQLJ translator fully supports Unicode 2.0 and Java
Unicode escape sequences. The SQLJ command-line utility,
however, does not support Unicode escape sequences—you can
use only native characters supported by the operating system.
Command-line options requiring Unicode escape sequences
can be entered in a SQLJ properties file instead, because
properties files do support Unicode escape sequences.

■ Encoding and conversion of characters in your embedded SQL
operations, and characters read from or written to the database,
are handled by JDBC directly. SQLJ does not play a role in this.
If online semantics-checking is enabled during translation,
however, you will be warned if there are characters within the
text of your SQL DML operations that might not be convertible
to the database character set.

■ For information about JDBC globalization support
functionality, see the Oracle9i JDBC Developer’s Guide and
Reference.
9-22 SQLJ Developer’s Guide and Reference

Globalization Support in the Translator and Runtime
By default, SQLJ uses the encoding indicated by the JVM file.encoding
property. If your source files use other encodings, then you must indicate this to
SQLJ so that appropriate conversion can be performed.

Use the SQLJ -encoding option to accomplish this. SQLJ also passes the
-encoding setting to the compiler for it to use in reading .java files (unless the
SQLJ -compiler-encoding-flag is off).

The system character-encoding setting also determines how SQLJ error and status
messages are represented when output to the user, either during translation or
during runtime when the end user is running the application. This is set according
to the file.encoding property and is unaffected by the SQLJ -encoding option.

For source file encoding, you can use the -encoding option to specify any
character encoding supported by your Java environment. If you are using the Sun
Microsystems JDK, these are listed in the native2ascii documentation, which
you can find at the following Web site:

http://www.javasoft.com/products/jdk/1.1/docs/tooldocs/solaris/native2ascii.html

Dozens of encodings are supported by the Sun Microsystems JDK. These include
8859_1 through 8859_9 (ISO Latin-1 through ISO Latin-9), JIS (Japanese), SJIS
(shift-JIS, Japanese), and UTF8.

Character Encoding Notes Be aware of the following:

■ A character that is not representable in the encoding used, for either messages
or source files, can always be represented as a Java Unicode escape sequence (of
the form \uHHHH, where each H is a hexadecimal digit).

■ As a .sqlj source file is read and processed during translation, error messages
quote source locations based on character position (not byte position) in the
input encoding.

■ Encoding settings, either set through the SQLJ -encoding option or the Java
file.encoding setting, do not apply to Java properties
files—sqlj.properties and connect.properties, for example.

Important: Do not alter the file.encoding system property to
specify encodings for source files. This might impact other aspects
of your Java operation and might offer only a limited number of
encodings, depending on platform or operating system
considerations.
 Translator and Runtime Functionality 9-23

Globalization Support in the Translator and Runtime
Properties files always use the encoding 8859_1. This is a feature of Java in
general, not SQLJ in particular. You can, however, use Unicode escape
sequences in a properties file. (You can use the native2ascii utility to
determine escape sequences—see "Using native2ascii for Source File Encoding"
on page 9-32.)

Overview of Language Support
SQLJ error and status reporting, either during translation or during runtime, uses
the Java locale setting in the JVM user.language property. Users typically do not
have to alter this setting.

Language support is implemented through message resources that use key/value
pairs. For example, where an English-language resource has a key/value pair of
"OkKey", "Okay", a German-language resource has a key/value pair of
"OkKey", "Gut". The locale setting determines which message resources are
used.

SQLJ supports locale settings of en (English), de (German), fr (French), and ja
(Japanese).

SQLJ and Java Settings for Character Encoding and Language Support
Oracle SQLJ provides syntax that allows you to set the following:

■ character encoding used by the SQLJ translator and Java compiler in
representing source code

Use the SQLJ -encoding option.

■ character encoding used by the SQLJ translator and runtime in representing
error and status messages

Use the SQLJ -J prefix to set the Java file.encoding property.

■ locale used by the SQLJ translator and runtime for error and status messages

Use the SQLJ -J prefix to set the Java user.language property.

Note: Java locale settings can support country and variant
extensions in addition to language extensions. For example,
consider ErrorMessages_de_CH_var1, where CH is the Swiss
country extension of German, and var1 is an additional variant.
SQLJ, however, currently supports only language extensions (de in
this example), ignoring country and variant extensions.
9-24 SQLJ Developer’s Guide and Reference

Globalization Support in the Translator and Runtime
Setting Character Encoding for Source Code
Use the SQLJ -encoding option to determine the character encoding used in
representing .sqlj files read by the translator, .java files generated by the
translator, and .java files read by the compiler. (The option setting is passed by
SQLJ to the compiler, unless the SQLJ -compiler-encoding-flag is off.)

This option can be set on the command line or SQLJ_OPTIONS environment
variable, as in the following example:

-encoding=SJIS

Or it can be set in a SQLJ properties file as follows:

sqlj.encoding=SJIS

If the encoding option is not set, then both the translator and compiler will use the
encoding specified in the JVM file.encoding property. This can also be set
through the SQLJ command line, as discussed in "Setting Character Encoding and
Locale for SQLJ Messages" on page 9-25.

For more information, see "Encoding for Input and Output Source Files (-encoding)"
on page 8-27 and "Compiler Encoding Support (-compiler-encoding-flag)" on
page 8-75.

Setting Character Encoding and Locale for SQLJ Messages
Character encoding and locale for SQLJ error and status messages output to the
user, during both translation and runtime, are determined by the Java
file.encoding and user.language properties. Although it is typically not
necessary, you can set these and other JVM properties in the SQLJ command line by
using the SQLJ -J prefix. Options marked by this prefix are passed to the JVM.

Set the character encoding as in the following example (which specifies shift-JIS
Japanese character encoding):

-J-Dfile.encoding=SJIS

Note: If your -encoding is to be set routinely to the same value,
then it is most convenient to specify it in a properties file, as in the
second example above. For more information, see "Properties Files
for Option Settings" on page 8-14.
 Translator and Runtime Functionality 9-25

Globalization Support in the Translator and Runtime
Set the locale as in the following example (which specifies Japanese locale):

-J-Duser.language=ja

The -J prefix can be used on the command line or SQLJ_OPTIONS environment
variable only. It cannot be used in a properties file, because properties files are read
after the JVM is invoked.

For additional information about the SQLJ -J prefix, see "Command-Line Syntax
and Operations" on page 8-10 and "Options to Pass to the Java Virtual Machine (-J)"
on page 8-56.

SQLJ Command-Line Example: Setting Encoding and Locale
Following is a complete SQLJ command line, including JVM file.encoding and
user.language settings:

sqlj -encoding=8859_1 -J-Dfile.encoding=SJIS -J-Duser.language=ja Foo.sqlj

Note: Only a limited number of encodings might be available,
depending on platform or operating system considerations.

Notes:

■ If your file.encoding, user.language, or any other Java
property is to be set routinely to the same value, it is most
convenient to specify -J settings in the SQLJ_OPTIONS
environment variable. This way, you do not have to repeatedly
specify them on the command line. The syntax is essentially the
same as on the command line. For more information, refer to
"SQLJ_OPTIONS Environment Variable for Option Settings" on
page 8-18.

■ Remember that if you do not set the SQLJ -encoding option,
then setting file.encoding will affect encoding for source
files as well as error and status messages.

■ Be aware that altering the file.encoding property might
have unforeseen consequences on other aspects of your Java
operations; furthermore, any new setting must be compatible
with your operating system.
9-26 SQLJ Developer’s Guide and Reference

Globalization Support in the Translator and Runtime
This example uses the SQLJ -encoding option to specify 8859_1 (Latin-1)
encoding for source code representation during SQLJ translation. This encoding is
used by the translator in reading the .sqlj input file and in generating the .java
output file. The encoding is then passed to the Java compiler to be used in reading
the generated .java file. (The -encoding option, when specified, is always
passed to the Java compiler unless the SQLJ -compiler-encoding-flag is
disabled.)

For error and status messages output during translation of Foo.sqlj, the SQLJ
translator uses the SJIS encoding and the ja locale.

Oracle SQLJ Extended Globalization Support
Oracle9i SQLJ adds support for Java types (Unicode character types) derived from
existing character and stream types that convey expected usage for globalization
support in the server. (In SQLJ it is not possible to use JDBC statement or result set
methods directly that otherwise serve the purpose of globalization support, but if
you are interested in information about those methods, refer to the Oracle9i JDBC
Developer’s Guide and Reference.)

If the database natively supports Unicode , then the types described in "Java Types
for Globalization Support" below are unnecessary—globalization support will be
handled transparently. It is when the database does not natively support Unicode,
but has a national language character set that does support Unicode, that you will
typically use these types (for columns that employ the national language character
set).

Java Types for Globalization Support
Oracle9i SQLJ provides a number of Java types for globalization support. Table 9–3
notes the correspondence between these globalization support types and
general-use JDBC and SQLJ character and stream types. Each globalization support
type, except for NString, is a subclass of its corresponding JDBC or SQLJ type.

Table 9–3 JDBC and SQLJ Types and Corresponding Globalization Types

JDBC and SQLJ Types Globalization Support Types

JDBC types:

oracle.sql.CHAR oracle.sql.NCHAR

java.lang.String oracle.sql.NString

oracle.sql.CLOB oracle.sql.NCLOB
 Translator and Runtime Functionality 9-27

Globalization Support in the Translator and Runtime
In situations where your application must handle national language character
strings as input parameters to the database or as output parameters from the
database, use the globalization support types instead of the corresponding
general-use types.

NString Class Usage and Notes
Because the oracle.sql.CHAR class (and therefore its NCHAR subclass) provides
only constructors that require explicit knowledge of the database character set, the
oracle.sql.NString class—a wrapper for java.lang.String—is preferable
in most circumstances.

The NString class provides simpler constructors and ensures that the national
language character form of use is registered with the JDBC driver.

SQLJ types:

sqlj.runtime.AsciiStream oracle.sqlj.runtime.NcharAsciiStream

sqlj.runtime.UnicodeStream oracle.sqlj.runtime.NcharUnicodeStream

Notes:

■ All globalization support types add automatic registration of
intended usage for IN and OUT parameters, but are otherwise
identical in usage to the corresponding JDBC or SQLJ type
(including constructors).

■ Use of globalization support types is unnecessary in iterator
columns, because the underlying network protocol supports
national language characters implicitly for the underlying
result sets.

■ In Oracle9i there is no direct support for these globalization
support types in Oracle JDBC.

■ In Oracle9i there is no support for national language character
attributes within Oracle objects.

Table 9–3 JDBC and SQLJ Types and Corresponding Globalization Types (Cont.)

JDBC and SQLJ Types Globalization Support Types
9-28 SQLJ Developer’s Guide and Reference

Globalization Support in the Translator and Runtime
Following are the key NString methods:

■ NString(String)—This constructor creates an NString instance from an
existing String instance.

■ String toString()—This method returns the underlying String instance.

■ String getString()—This method also returns the underlying String
instance.

The toString() method allows you to employ the NString instance in string
concatenation expressions (such as "a"+b, where b is a string). The getString()
method, provided in the CHAR superclass, is supported as well for uniformity. In
addition, the member methods of the String class are carried over to the NString
wrapper class to allow you to write more concise code.

Globalization Support Examples
The following examples show use of the NString class.

NString as IN Argument This example uses an NString instance as an input
parameter to the database.

import oracle.sql.NString;
...
NString nc_name = new NString("Name with strange characters");
#sql { update PEOPLE
 set city = :(new NString("\ufff2")), name = :nc_name
 where num= :n };
...

NString as OUT Argument This example uses an NString instance as an output
parameter from the database.

import oracle.sql.NString;
...
NString nstr;
#sql { call foo(:out nstr) };
System.out.println("Result is: "+nstr);
// or, explicitly: System.out.println("Result is: "+nstr.toString());
...
 Translator and Runtime Functionality 9-29

Globalization Support in the Translator and Runtime
NString as Result Set Column This example uses the NString type for an iterator
column. Such usage is superfluous (given that the underlying network protocol
supports national language characters implicitly), but harmless. This example also
shows use of one of the String methods, substring(), that is carried over to
NString.

import oracle.sql.NString;
import oracle.sql.NCLOB;
...
#sql iterator NIter(NString title, NCLOB article);

NIter nit;
#sql nit = { SELECT article, title FROM page_table };
while (nit.next())
{
 System.out.println("<TITLE>"+nit.title()+"</TITLE>");
 ...
 nit.article().substring(0, 1000); ...
}

Note: Using the NCHAR type instead of the NString type for the
preceding examples requires the following changes:

■ Use the appropriate NCHAR constructor. NCHAR constructors
mirror CHAR constructors, such as the following:

NCHAR(String str, oracle.sql.CharacterSet charset)

■ Although you have the option of using either toString() or
getString() to retrieve the underlying String instance
from an NString instance, for an NCHAR instance you must
use the getString() method. (When using the NString
type, the toString() method is used automatically for string
concatenation, such as in "NString as OUT Argument" above.)
9-30 SQLJ Developer’s Guide and Reference

Globalization Support in the Translator and Runtime
Manipulation Outside of SQLJ for Globalization Support
This section discusses ways to manipulate your Oracle Globalization Support
configuration outside of SQLJ.

Setting Encoding and Locale at Application Runtime
As with any end user running any Java application, those running your SQLJ
application can specify JVM properties such as file.encoding and
user.language directly, as they invoke the JVM to run your application. This
determines the encoding and locale used for message output as your application
executes.

They can accomplish this as in the following example:

java -Dfile.encoding=SJIS -Duser.language=ja Foo

This will use SJIS encoding and Japanese locale.

Using API to Determine Java Properties
In Java code, you can determine values of Java properties by using the
java.lang.System.getProperty() method, specifying the appropriate
property. For example:

public class Settings
{
 public static void main (String[] args)
 {
 System.out.println("Encoding: " + System.getProperty("file.encoding")
 + ", Language: " + System.getProperty("user.language"));
 }
}

You can compile this and run it as a standalone utility.

There is also a getProperties() method that returns the values of all properties,
but this will raise a security exception if you try to use it in code that runs in the
server.

You can get information about the java.lang.System class at the following Web
site:

http://www.javasoft.com/products/jdk/1.1/docs/api/java.lang.System.html
 Translator and Runtime Functionality 9-31

Globalization Support in the Translator and Runtime
Using native2ascii for Source File Encoding
If you are using a Sun Microsystems JDK, there is an alternative to having SQLJ do
the character encoding for your source files. You can use the utility native2ascii
to convert sources with native encoding to sources in 7-bit ASCII with Unicode
escape sequences.

Run native2ascii as follows:

% native2ascii <options> <inputfile> <outputfile>

Standard input or standard output are used if you omit the input file or output file.
Two options are supported:

■ -reverse (reverse the conversion; convert from Latin-1 or Unicode to native
encoding)

■ -encoding <encoding>

For example:

% native2ascii -encoding SJIS Foo.sqlj Temp.sqlj

For more information see the following Web site:

http://www.javasoft.com/products/jdk/1.1/docs/tooldocs/solaris/native2ascii.html

Note: To use SQLJ to translate source created by native2ascii,
ensure that the JVM that invokes SQLJ has a file.encoding
setting that supports some superset of 7-bit ASCII. This is not the
case with settings for EBCDIC or Unicode encoding.
9-32 SQLJ Developer’s Guide and Reference

 Profiles and Custom
10

Profiles and Customization

Profiles and profile customization are introduced in "SQLJ Profiles" on page 1-5.

This chapter presents more technical detail and discusses customizer options and
how to use customizers other than the default Oracle customizer.

The following topics are covered:

■ More About Profiles

■ More About Profile Customization

■ Oracle-Specific Code Generation (No Profiles)

■ Customization Options and Choosing a Customizer

■ Use of JAR Files for Profiles

■ SQLCheckerCustomizer for Profile Semantics-Checking

Important: If you use Oracle-specific code generation, then the
discussion in this chapter, outside of the section devoted to that
topic, does not pertain to your application.
ization 10-1

More About Profiles
More About Profiles
SQLJ profiles contain information about your embedded SQL operations, with a
separate profile being created for each connection context class that your
application uses. Profiles are created during the SQLJ translator’s code generation
phase and customized during the customization phase. Customization enables your
application to use vendor-specific database features. Separating these
vendor-specific operations into your profiles enables the rest of your generated code
to remain generic.

Each profile contains a series of entries for the SQLJ statements that use the relevant
connection context class, where each entry corresponds to one SQL operation in
your application.

Profiles exist as serialized objects stored in resource files packaged with your
application. Because of this, profiles can be loaded, read, and modified (added to or
re-customized) at any time. When profiles are customized, information is only
added, never removed. Multiple customizations can be made without losing
preceding customizations, so that your application maintains the capability to run
in multiple environments. This is known as binary portability.

For profiles to have binary portability, SQLJ industry-standard requirements have
been met in the Oracle SQLJ implementation.

Creation of a Profile During Code Generation
During code generation, the translator creates each profile as follows:

1. It creates a profile object as an instance of the
sqlj.runtime.profile.Profile class.

2. It inserts information about your embedded SQL operations (for SQLJ
statements that use the relevant connection context class) into the profile object.

3. It serializes the profile object into a Java resource file, referred to as a profile file,
with a .ser file name extension.

Note: Oracle SQLJ provides an option to have the translator
automatically convert these .ser files to .class files. (The.ser
files are not supported by some browsers, and can be cumbersome
when loading translated applications into the server.) However, this
prevents any further customization of the profile. For information,
see "Conversion of .ser File to .class File (-ser2class)" on page 8-64.
10-2 SQLJ Developer’s Guide and Reference

More About Profiles
As discussed in "Code Generation" on page 9-5, profile file names for application
Foo are of the form:

Foo_SJProfilen.ser

SQLJ generates Foo_SJProfile0.ser, Foo_SJProfile1.ser, and so on, as
needed (depending on how many connection context classes you use in your code).
Or, if the -ser2class option is enabled, then SQLJ generates
Foo_SJProfile0.class, Foo_SJProfile1.class, and so on.

Each profile has a getConnectedProfile() method that is called during SQLJ
runtime. This method returns something equivalent to a JDBC Connection object,
but with added functionality. This is further discussed in "Functionality of a
Customized Profile at Runtime" on page 10-10.

Sample Profile Entry
Below is a sample SQLJ executable statement with the profile entry that would
result. For simplicity, the profile entry is presented as plain text with irrelevant
portions omitted.

Note that in the profile entry, the host variable is replaced by JDBC syntax (the
question mark).

SQLJ Executable Statement
Presume the following declaration:

#sql iterator Iter (double sal, String ename);

And presume the following executable statements:

String empname = ’Smith’;
Iter it;
...
#sql it = { SELECT ename, sal FROM emp WHERE ename = :empname };

Note: Referring to a "profile object" indicates that the profile is in
its original non-serialized state. Referring to a "profile file" indicates
that the profile is in its serialized state in a .ser file.
 Profiles and Customization 10-3

More About Profiles
Corresponding SQLJ Profile Entry
===
...
#sql { SELECT ename, sal FROM emp WHERE ename = ? };
...
PREPARED_STATEMENT executed via EXECUTE_QUERY
role is QUERY
descriptor is null
contains one parameter
1. mode: IN, java type: java.lang.String (java.lang.String),
 sql type: VARCHAR, name: ename, ...
result set type is NAMED_RESULT
result set name is Iter
contains 2 result columns
1. mode: OUT, java type: double (double),
 sql type: DOUBLE, name: sal, ...
2. mode: OUT, java type: java.lang.String (java.lang.String),
 sql type: VARCHAR, name: ename, ...
===

Note: This profile entry is presented here as text for convenience
only; profiles are not actually in text format. They can be printed as
text, however, using the SQLJ -P-print option, as discussed in
"Overview of Customizer Harness Options" on page 10-17.
10-4 SQLJ Developer’s Guide and Reference

More About Profile Customization
More About Profile Customization
By default, running the sqlj script on a SQLJ source file includes an automatic
customization process, where each profile created during the code generation phase
is customized for use with your particular database. The default customizer is the
Oracle customizer, oracle.sqlj.runtime.OraCustomizer, which optimizes
your profiles to use type extensions and performance enhancements specific to
Oracle9i.

You can also run the sqlj script to customize profiles created previously. On the
SQLJ command line, you can specify .ser files individually, .jar files containing
.ser files, or both.

Overview of the Customizer Harness and Customizers
Regardless of whether you use the Oracle customizer or an alternative customizer,
SQLJ uses a front-end customization utility known as the customizer harness in
accomplishing your customizations.

When you run SQLJ, you can specify customization options for the customizer
harness (for general customization settings that apply to any customizer you use)
and for your customizer (for settings used by the particular customizer). In either
case, you can specify these options either on the command line or in a properties
file. This is discussed in "Customization Options and Choosing a Customizer" on
page 10-17.

Notes:

■ Whenever you use the default Oracle customizer during
translation, your application will require the Oracle SQLJ
runtime and an Oracle JDBC driver when it runs, even if you
do not use Oracle extensions in your code.

■ If an application has no customizations, or none suitable for the
connection, then the generic SQLJ runtime is used.

■ You can run SQLJ to process .sqlj and/or .java files
(translation, compilation, and customization) or to process
.ser and/or .jar files (customization only), but not both
categories at once.
 Profiles and Customization 10-5

More About Profile Customization
Implementation Details The following paragraphs detail how Oracle implements the
customizer harness and the Oracle customizer. This information is not necessary for
most SQLJ developers.

The customizer harness is a command-line tool that is an instance of the class
sqlj.runtime.profile.util.CustomizerHarness. A
CustomizerHarness object is created and invoked each time you run the SQLJ
translator. During the customization phase, the harness creates and invokes an
object of the customizer class you are using (such as the default Oracle customizer),
and loads your profiles.

The Oracle customizer is defined in the
oracle.sqlj.runtime.OraCustomizer class. All customizers must be
JavaBeans components that adhere to the JavaBeans API to expose their properties
and must implement the sqlj.runtime.profile.util.ProfileCustomizer
interface, which specifies a customize() method. It is the implementation of this
method in a particular customizer that does the work of customizing profiles.

For each profile to be customized, the customizer harness calls the customize()
method of the customizer object.

Steps in the Customization Process
The SQLJ customization process during translation consists of the following steps,
as applicable, either during the customization stage of an end-to-end SQLJ run, or
when you run SQLJ to customize existing profiles only:

1. SQLJ instantiates and invokes the customizer harness and passes it any general
customization options you specified.

2. The customizer harness instantiates the customizer you are using and passes it
any customizer-specific options you specified.

3. The customizer harness discovers and extracts the profile files within any .jar
files (applicable when you run SQLJ for customization only, specifying one or
more .jar files on the command line).

4. The customizer harness deserializes each profile file into a profile object (.ser
files automatically created during an end-to-end SQLJ run, .ser files specified
on the command line for customization only, or .ser files extracted from .jar
files specified on the command line for customization only).

5. If the customizer you use requires a database connection, the customizer
harness establishes that connection.
10-6 SQLJ Developer’s Guide and Reference

More About Profile Customization
6. For each profile, the harness calls the customize() method of the customizer
object instantiated in step 2 (customizers used with Oracle SQLJ must have a
customize() method).

7. For each profile, the customize() method typically creates and registers a
profile customization within the profile. (This depends on the intended
functionality of the customizer, however. Some might have a specialized
purpose that does not require a customization to be created and registered in
this way.)

8. The customizer harness reserializes each profile and puts it back into a .ser
file.

9. The customizer harness recreates the .jar contents, inserting each customized
.ser file to replace the original corresponding uncustomized .ser file
(applicable when you run SQLJ for customization only, specifying one or more
.jar files on the command line).

Creation and Registration of a Profile Customization
When the harness calls the customize() method to customize a profile, it passes
in the profile object, a SQLJ connection context object (if you are using a customizer
that requires a connection), and an error log object (which is used in logging error
messages during the customization).

The same error log object is used for all customizations throughout a single running
of SQLJ, but its use is transparent. The customizer harness reads messages written
to the error log object and reports them in real-time to the standard output device
(whatever SQLJ uses, typically your screen).

Notes:

■ If an error occurs during customization of a profile, the original
.ser file is not replaced.

■ If an error occurs during customization of any profile in a .jar
file, the original .jar file is not replaced.

■ SQLJ can run only one customizer at a time. If you want to
accomplish multiple customizations on a single profile, you
must run SQLJ multiple times. For the additional
customizations, enter the profile name directly on the SQLJ
command line.
 Profiles and Customization 10-7

More About Profile Customization
Recall that each profile has a set of entries, where each entry corresponds to a SQL
operation. (These would be the SQL operations in your application that use
instances of the connection context class associated with this profile.)

A customize() method implements special processing on these entries. It could
be as simple as checking each entry to verify its syntax, or it could be more
complicated, such as creating new entries that are equivalent to the original entries
but are modified to use features of your particular database.

Implementation Details The following paragraphs detail how Oracle implements the
customization process. This information is not necessary for most SQLJ developers.

In the case of the Oracle customizer, the customize() method creates a data
structure that has one entry for each entry in the original profile. The original
entries are never changed, but the new entries are customized to take advantage of
features of Oracle9i. For example, if you are using BLOBs, a generic getObject()
call used to retrieve a BLOB in the original entry is replaced by a getBLOB() call.

These new entries are encapsulated in an object of a customization class that
implements the sqlj.runtime.profile.Customization interface, and this
customization object is installed into the profile object. (Customization objects, like
profile objects, are serializable.)

The customizer harness then registers the customization, which is accomplished
through functionality of the profile object. Registration allows a profile to keep track
of the customizations that it contains.

Any errors encountered during customization are posted to the error log and
reported by the customizer harness as appropriate.

A Customization object has an acceptsConnection() method called at
runtime to determine if the customization can create a connected profile object for a
given SQLJ connection context object. A connected profile object—an instance of a

Notes:

■ Any customize() processing of profile entries does not alter
the original entries.

■ Customizing your profiles for use in a particular environment
does not prevent your application from running in a different
environment. You can customize a profile multiple times for
use in multiple environments, and these customizations will
not interfere with each other.
10-8 SQLJ Developer’s Guide and Reference

More About Profile Customization
class that implements the sqlj.runtime.profile.ConnectedProfile
interface—represents a mapping between a profile object and a JDBC connection. It
is equivalent to a JDBC Connection object (underlying a SQLJ connection context
object) with the ability to create statements, but supports additional vendor-specific
functionality.

Customization Error and Status Messages
The customizer harness outputs error and status messages in much the same way as
the SQLJ translator, outputting them to the same output device. None of the
warnings regarding customization are suppressible, however. (See "Translator Error,
Warning, and Information Messages" on page 9-13.)

Error messages reported by the customizer harness fall into four categories:

■ unrecognized or illegal option

■ connection instantiation error

■ profile instantiation error

■ customizer instantiation error

Status messages reported by the customizer harness during customization allow
you to determine whether a profile was successfully customized. They fall into
three categories:

■ profile modification status

■ .jar file modification status

■ name of backup file created (if the customizer harness backup option is
enabled)

Additional customizer-specific errors and warnings might be reported by the
customize() method of the particular customizer.

During customization, the profile customizer writes messages to its error log, and
the customizer harness reads the log contents in real-time and outputs these
messages to the SQLJ output device, along with any other harness output. You
never need to access error log contents directly.
 Profiles and Customization 10-9

More About Profile Customization
Functionality of a Customized Profile at Runtime
A customized profile is a static member of the connection context class with which
it is associated. For each SQLJ statement in your application, the SQLJ runtime
determines the connection context class and instance associated with that statement,
then uses the customized profile of the connection context class, together with the
underlying JDBC connection of the particular connection context instance, to create
a connected profile. This connected profile is the vehicle that the SQLJ runtime uses in
applying vendor-specific features to the execution of your SQLJ application.

Implementation Details The following paragraphs details how the Oracle SQLJ
runtime uses customized profiles. This information is not necessary for most SQLJ
developers.

In executing a SQLJ statement, the SQLJ runtime uses methods of the connection
context object associated with the statement, and the profile object associated with
the connection context class, as follows:

1. When an end user is running your application and a SQL operation is to be
executed, the SQLJ runtime calls the connection context
getConnectedProfile() method.

2. The connection context getConnectedProfile() method calls the
getConnectedProfile() method of the profile object associated with the
connection context class, passing it a connection. (This is the connection
instance underlying the connection context instance used for the SQL
operation.)

3. The profile object getConnectedProfile() method calls the
acceptsConnection() method of each Customization object registered in
the profile. The first Customization object that accepts the connection creates
the connected profile that is passed back to the runtime.

4. In executing the SQL operation, the connected profile is used like a JDBC
connection—creating statements to be executed—but implements special
functionality of the customization.
10-10 SQLJ Developer’s Guide and Reference

Oracle-Specific Code Generation (No Profiles)
Oracle-Specific Code Generation (No Profiles)
Throughout this manual there is discussion of the SQLJ runtime layer and SQLJ
profiles. Oracle SQLJ, however, offers the alternative of generating Oracle JDBC
code directly, instead of generating standard code that calls the SQLJ runtime for
SQL operations (which in turn contains calls to Oracle JDBC). With Oracle-specific
code generation, there are no profile files, and the role of the SQLJ runtime layer is
greatly reduced during program execution.

Oracle-specific code supports all Oracle-specific extended features.

You can specify Oracle-specific code generation through the Oracle SQLJ translator
-codegen=oracle setting. (The default setting, -codegen=iso, results in
standard code generation.)

See "Code Generation (-codegen)" on page 8-49 for information about syntax for this
option.

The remainder of this section covers the following topics:

■ Advantages and Disadvantages of Oracle-Specific Code Generation

■ Environment Requirements for Oracle-Specific Code Generation

■ Coding Considerations and Limitations with Oracle-Specific Code Generation

■ Translator/Customizer Usage Changes with Oracle-Specific Code Generation

■ Server-Side Considerations with Oracle-Specific Code Generation

Advantages and Disadvantages of Oracle-Specific Code Generation
Oracle-specific code generation offers many advantages over standard SQLJ code
generation:

■ Applications run more efficiently. The code calls JDBC APIs directly, placing
runtime performance directly at the JDBC level. The role of the intermediate
SQLJ runtime layer is greatly reduced during program execution.

■ Applications are smaller in size.

■ No profile files (.ser) are produced. This is especially convenient if you are
loading a translated application into the database or porting it to another
system—there are fewer components.

■ Translation is faster, because there is no profile customization step.
 Profiles and Customization 10-11

Oracle-Specific Code Generation (No Profiles)
■ During runtime, Oracle SQLJ and Oracle JDBC use a single, unified statement
cache, resulting in further program efficiency—JDBC can use cached SQLJ
statements, and SQLJ can use cached JDBC statements. Dynamically generated
SQLJ statements use the same cache as well. Furthermore, if a SQLJ statement
appears multiple times within the same application, all appearances of the
statement use the same cache.

None of this functionality holds true for standard generated code.

■ Having the SQL-specific information appear in the Java class files instead of in
separate profile files avoids potential security issues.

■ You will not have to rewrite your code to take advantage of possible future
Oracle JDBC performance enhancements (such as enhancements being
considered for execution of static SQL code). Future releases of the Oracle SQLJ
translator will handle this automatically.

■ The use of Java reflection at runtime is eliminated, thereby providing full
portability to browser environments.

By comparison, there are relatively few disadvantages:

■ Oracle-specific generated code does not adhere to SQLJ standards and is not
portable to generic JDBC platforms.

■ Profile-specific functionality is not available. For example, you cannot perform
customizations at a later date to use the Oracle customizer harness -debug,
-verify, and -print options. (These options are described in "Customizer
Harness Options that Invoke Specialized Customizers" on page 10-25. The
AuditorInstaller invoked by the -debug option is described in
"AuditorInstaller Customizer for Debugging" on page A-26.)

Environment Requirements for Oracle-Specific Code Generation
Be aware of the following requirements of your environment if you use
Oracle-specific code generation:

■ You must use an Oracle9i JDBC driver, because Oracle-specific code generation
requires JDBC statement caching functionality. None of the Oracle8i (or prior)
JDBC releases will work.

■ The generic SQLJ runtime libraries, runtime and runtime-nonoracle, are
not supported for Oracle-specific code generation. You must have one of the
following Oracle SQLJ runtime libraries in your classpath:

– runtime11.zip (or .jar)
10-12 SQLJ Developer’s Guide and Reference

Oracle-Specific Code Generation (No Profiles)
– runtime12.zip (or .jar)

– runtime12ee.zip (or .jar)

These runtime libraries are further discussed in "Requirements for Using Oracle
SQLJ" on page 2-3.

Coding Considerations and Limitations with Oracle-Specific Code Generation
When coding a SQLJ application where Oracle-specific code generation will be
used, be aware of the following programming considerations and restrictions:

■ To use a non-default statement cache size, you must include appropriate
method calls in your code, because the Oracle customizer stmtcache option is
unavailable. See "Translator/Customizer Usage Changes with Oracle-Specific
Code Generation" immediately below.

■ Do not mix Oracle-specific generated code with standard SQLJ generated code
in the same application.

However, if Oracle-specific code and standard code must share the same
connection, do one of the following:

– Ensure that the Oracle-specific code and standard code use different SQLJ
execution context instances. (See "Execution Contexts" on page 7-16 for
information about SQLJ execution contexts.)

or:

– Place a transaction boundary—a manual COMMIT or ROLLBACK
statement—between the two kinds of code.

This limitation regarding mixing code is especially significant for server-side
code, because all Java code running in a given session uses the same JDBC
connection and SQLJ connection context. (Also see "Server-Side Considerations
with Oracle-Specific Code Generation" on page 10-16.)

■ Do not rely on side effects in parameter expressions when values are returned
from the database. Oracle-specific code generation does not create temporary
variables for evaluation of OUT parameters, INOUT parameters, SELECT INTO
variables, or return arguments on SQL statements.

For example, avoid statements such as the following:

#sql { SELECT * FROM EMP INTO :(x[i++]), :(f_with_sideffect()[i++]),
 :(a.b[i]) };
 Profiles and Customization 10-13

Oracle-Specific Code Generation (No Profiles)
or:

#sql x[i++] = { VALUES f(:INOUT (x[i++]), :OUT (f_with_sideffect())) };

Evaluation of arguments is performed "in place" in the generated code. This
may result in different behavior than when evaluation is according to standard
SQLJ code generation.

■ If you use type maps for Oracle object functionality (which assumes that the
corresponding Java classes implement the java.sql.SQLData interface,
given that JPublisher-generated Java classes do not otherwise require a type
map), then your iterator declarations and connection context declarations must
specify the same type map(s). Specify this through the declaration with clause.

For example, if you declare a connection context class as follows:

#sql context TypeMapContext with (typeMap="MyTypeMap");

and you populate an iterator instance from a SQLJ statement that uses an
instance of this connection context class, as follows:

TypeMapContext tmc = new TypeMapContext(...);
...
MyIterator it;
#sql [tmc] it = (SELECT pers, addr FROM tab WHERE ...);

then the iterator declaration is required to have specified the same type map, as
follows:

#sql iterator MyIterator with (typeMap="MyTypeMap")
 (Person pers, Address addr);

For general information about with clauses, see "Declaration WITH Clause" on
page 3-6.

Note: The reason for this restriction is that with Oracle-specific
code generation, all iterator getter methods are fully generated as
Oracle JDBC calls during translation. To generate the proper calls,
the SQLJ translator must know whether an iterator will be used
with a particular type map.
10-14 SQLJ Developer’s Guide and Reference

Oracle-Specific Code Generation (No Profiles)
Translator/Customizer Usage Changes with Oracle-Specific Code Generation
Some options that were previously available only as Oracle customizer options are
useful for Oracle-specific code generation as well. Because profile customization is
not applicable with Oracle-specific code generation, these options have been made
available through other means.

To alter the statement cache size or disable statement caching when generating
Oracle-specific code, use method calls in your code instead of using the customizer
stmtcache option. The sqlj.runtime.ref.DefaultContext class, as well as
any connection context class you declare, now has the following static methods:

■ setDefaultStmtCacheSize(int)

■ int getDefaultStmtCacheSize()

and the following instance methods:

■ setStmtCacheSize(int)

■ int getStmtCacheSize()

By default, statement caching is enabled.

See "Connection Context Methods for Statement Cache Size" on page A-5 for more
information. (This is a subsection under "Statement Caching" on page A-4, which
provides an overview of statement caching.)

In addition, the following options are now available as front-end Oracle SQLJ
translator options as well as Oracle customizer options:

■ -optcols—Enable iterator column type and size definitions to optimize
performance.

■ -optparams—Enable parameter size definitions to optimize JDBC resource
allocation (used in conjunction with optparamdefaults).

■ -optparamdefaults—Set parameter size defaults for particular datatypes
(used in conjunction with optparams).

See "Options for Code Generation, Column Optimizations, and Parameter
Optimizations" on page 8-49.

Be aware of the following:

■ If you try to use the preceding options as front-end options without setting
-codegen=oracle, you will receive an error.
 Profiles and Customization 10-15

Oracle-Specific Code Generation (No Profiles)
■ Use the -optcols option only if you are using online semantics-checking
(where you have used the SQLJ translator -user, -password, and -url
options appropriately to request a database connection during translation).

■ The functionality of the -optcols, -optparams, and -optparamdefaults
options, including default values, is the same as for the corresponding
customizer options.

Server-Side Considerations with Oracle-Specific Code Generation
Note the following considerations if your SQLJ code will run in the server:

■ The server-side SQLJ translator does not produce Oracle-specific generated
code. SQLJ source code that is loaded into the server and compiled there will
always be translated with the default -codegen=iso setting.

Therefore, to use Oracle-specific generated code in the server, you must
translate and compile the SQLJ code on a client and then load the individual
components into the server. (See "Translating SQLJ Source on a Client and
Loading Components" on page 11-8.)

■ The caution against mixing Oracle-specific generated code with standard SQLJ
generated code (described in "Coding Considerations and Limitations with
Oracle-Specific Code Generation" on page 10-13) applies to server-side Java
code that calls a Java stored procedure (or stored function), even if the stored
procedure is invoked through a PL/SQL wrapper. This constitutes a recursive
call-in—by default, the ExecutionContext object is shared by both the
calling module and the called module. Therefore, both modules should be
translated with the same -codegen setting.

To ensure interoperability with existing code that has been translated with
standard code generation, it is advisable for any code translated with
Oracle-specific code generation for use in a Java stored procedure to instantiate
and use its own execution context instance, as in the following example:

public static method() throws SQLException
{
 Execution Context ec = new ExecutionContext();
 ...
 #sql [ec] { SQL operation };
 ...
}

10-16 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer
Customization Options and Choosing a Customizer
This section discusses options for profile customization, which fall into three
categories:

■ options you specify to the customizer harness, which apply to whatever
customizer you use

This includes general options, connection options, and options that invoke
specialized customizers.

■ customizer-specific options you specify to your customizer through the
customizer harness

■ SQLJ options, which determine basic aspects of customization, such as whether
to customize at all and which customizer to use

All categories of options are specified through the SQLJ command line or properties
files.

The following topics are included in this section:

■ Overview of Customizer Harness Options

■ General Customizer Harness Options

■ Customizer Harness Options for Connections

■ Customizer Harness Options that Invoke Specialized Customizers

■ Overview of Customizer-Specific Options

■ Oracle Customizer Options

■ SQLJ Options for Profile Customization

To choose a customizer other than the default Oracle customizer, you can use either
the customizer harness customizer option (discussed in "Overview of Customizer
Harness Options" on page 10-17) or the SQLJ -default-customizer option
(discussed in "SQLJ Options for Profile Customization" on page 10-40).

Overview of Customizer Harness Options
The customizer harness provided with Oracle SQLJ offers a number of options that
are not specific to a particular customizer. The harness uses these options in its
front-end coordination of the customization process.
 Profiles and Customization 10-17

Customization Options and Choosing a Customizer
Syntax for Customizer Harness Options
Customizer harness option settings on the SQLJ command line have the following
syntax:

-P-option=value

Or, in a SQLJ properties file:

profile.option=value

Enable boolean options (flags) either with:

-P-option

or:

-P-option=true

Boolean options are disabled by default, but you can explicitly disable them with:

-P-option=false

This option syntax is also discussed in "Options to Pass to the Profile Customizer
(-P)" on page 8-59 and "Properties File Syntax" on page 8-15.

Options Supported by the Customizer Harness
The customizer harness supports the following general options:

■ backup—Save a backup copy of the profile before customizing it.

■ context—Limit customizations to profiles associated with the listed
connection context classes.

■ customizer—Specify the customizer to use.

■ digests—Specify digests for .jar file manifests (relevant only if specifying
.jar files to customize).

■ help—Display customizer options (specified in SQLJ command-line only).

■ verbose—Display status messages during customization.

The customizer harness supports the following options for customizer database
connections. Currently, these are used by the Oracle customizer if you enable its
optcols option for column definitions (for performance optimization). In addition,
they are used by the SQLCheckerCustomizer if you use this specialized
customizer to perform online semantics-checking on profiles.
10-18 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer
■ user—Specify the user name for the connection used in this customization.

■ password—Specify the password for the connection used in this
customization.

■ url—Specify the URL for the connection used in this customization.

■ driver—Specify the JDBC driver for the connection used in this
customization.

For information about the Oracle customizer optcols flag, see "Oracle Customizer
Column Definition Option (optcols)" on page 10-31. For information about the
SQLCheckerCustomizer, see "SQLCheckerCustomizer for Profile
Semantics-Checking" on page 10-43.

The following commands function as customizer harness options, but are
implemented through specialized customizers provided with Oracle SQLJ.

■ debug—Insert debugging information into the specified profiles, to be output
at runtime.

■ print—Output the contents of the specified profiles, in text format.

■ verify—Perform semantics-checking on a profile that was produced during a
previous execution of the SQLJ translator (equivalent to semantics-checking
performed on source code during translation). This is a shortcut to invoke
SQLCheckerCustomizer, which is described in "SQLCheckerCustomizer for
Profile Semantics-Checking" on page 10-43.

General Customizer Harness Options
This section describes general options supported by the customizer harness.

Profile Backup Option (backup)
Use the backup flag to instruct the harness to save a backup copy of each .jar file
and standalone .ser file before replacing the original. (Separate backups of .ser
files that are within .jar files are not necessary.)

Backup file names are given the extension .bakn, where n indicates digits used as
necessary where there are similarly named files. For each backup file created, an
informational message is issued.

If an error occurs during customization of a standalone .ser file, then the original
.ser file is not replaced and no backup is created. Similarly, if an error occurs
during customization of any .ser file within a .jar file, then the original .jar file
is not replaced and no backup is created.
 Profiles and Customization 10-19

Customization Options and Choosing a Customizer
Command-line syntax -P-backup<=true/false>

Command-line example -P-backup

Properties file syntax profile.backup<=true/false>

Properties file example profile.backup

Default value false

Customization Connection Context Option (context)
Use the context option to limit customizations to profiles that correspond to the
specified connection context classes. Fully qualify the class names and use a
comma-separated list to specify multiple classes. For example:

-P-context=sqlj.runtime.ref.DefaultContext,foo.bar.MyCtxtClass

There must be no space on either side of the comma.

If this option is not specified, then all profiles are customized, regardless of their
associated connection context classes.

Command-line syntax -P-context=ctx_class1<,ctx_class2,...>

Command-line example -P-context=foo.bar.MyCtxtClass

Properties file syntax profile.context=ctx_class1<,ctx_class2,...>

Properties file example profile.context=foo.bar.MyCtxtClass

Default value none (customize all profiles)

Customizer Option (customizer)
Use the customizer option to specify which customizer to use. Fully qualify the
class name, such as in the following example:

-P-customizer=oracle.sqlj.runtime.util.OraCustomizer

If you do not set this option, then SQLJ will use the customizer specified in the SQLJ
-default-customizer option. Unless set otherwise, this is the following:

oracle.sqlj.runtime.util.OraCustomizer
10-20 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer
Command-line syntax -P-customizer=customizer_class

Command-line example -P-customizer=a.b.c.MyCustomizer

Properties file syntax profile.customizer=customizer_class

Properties file example profile.customizer=a.b.c.MyCustomizer

Default value none (use default, set in SQLJ -default-customizer option)

Customization JAR File Digests Option (digests)
When a .jar file is produced, the jar utility can optionally include one or more
digests for each entry, based on one or more specified algorithms, so that the
integrity of the .jar file entries can later be verified. Digests are similar
conceptually to checksums, for readers familiar with those.

If you are customizing profiles in a .jar file and want the jar utility to add new
digests (or update existing digests) when the .jar file is updated, then use the
digests option to specify a comma-separated list of one or more algorithms. These
are the algorithms that jar will use in creating the digests for each entry. The jar
utility produces one digest for each algorithm for each .jar file entry in the jar
manifest file. Specify algorithms as follows:

-P-digests=SHA,MD5

There must be no space on either side of the comma.

In this example, there will be two digests for each entry in the .jar manifest
file—an SHA digest and an MD5 digest.

For information about .jar files and the jar utility, see the following Web site:

http://www.javasoft.com/products/jdk/1.1/docs/guide/jar/index.html

Command-line syntax -P-digests=algo1<,algo2,...>

Command-line example -P-digests=SHA,MD5

Properties file syntax profile.digests=algo1<,algo2,...>

Properties file example profile.digests=SHA,MD5

Default value SHA,MD5
 Profiles and Customization 10-21

Customization Options and Choosing a Customizer
Customization Help Option (help)
Use the help option to display the option lists of the customizer harness and the
default customizer or a specified customizer. For the harness and Oracle customizer,
this includes a brief description and the current setting of each option.

Display the option lists for the harness and default customizer as follows (where the
default customizer is the Oracle customizer or whatever you have specified in the
SQLJ -default-customizer option):

-P-help

Use the help option in conjunction with the customizer option to display the
option list of a particular customizer, as follows:

-P-help -P-customizer=sqlj.runtime.profile.util.AuditorInstaller

Command-line syntax -P-help <-P-customizer=customizer_class>

Command-line example -P-help

Properties file syntax n/a

Properties file example n/a

Default value none

Customization Verbose Option (verbose)
Use the verbose flag to instruct the harness to display status messages during
customizations. These messages are written to the standard output
device—wherever SQLJ writes its other messages.

Notes:

■ You can use the -P-help option on the SQLJ command line
only, not in a SQLJ properties file.

■ No customizations are performed if the -P-help flag is
enabled, even if you specify profiles to customize on the
command line.
10-22 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer
Command-line syntax -P-verbose<=true/false>

Command-line example -P-verbose

Properties file syntax profile.verbose<=true/false>

Properties file example profile.verbose

Default value none

Customizer Harness Options for Connections
This section describes connection options supported by the customizer harness.
These are used as follows:

■ The Oracle customizer uses database connections only for column definitions. If
you do not enable the Oracle customizer optcols option, then there is no need
to set the customizer harness user, password, url, and driver options.

■ The SQLCheckerCustomizer, a specialized customizer that performs
semantics-checking on profiles, uses the customizer harness user, password,
url, and driver settings for online checking.

Use -P-verify on the SQLJ command line to invoke this customizer.

Customization User Option (user)
Set the user option to specify a database schema if your customizer uses database
connections.

In addition to specifying the schema, you can optionally specify the password, URL,
or both in your user option setting. The password is preceded by a forward-slash
(/), and the URL is preceded by an "at" sign (@), as in the following examples:

-P-user=scott/tiger
-P-user=scott@jdbc:oracle:oci:@
-P-user=scott/tiger@jdbc:oracle:oci:@

Note: Do not confuse the customizer harness user, password,
url, and driver options with the translator options of the same
names, which are for semantics-checking during the translation
step and are unrelated.
 Profiles and Customization 10-23

Customization Options and Choosing a Customizer
Command-line syntax -P-user=username</password><@url>

Command-line examples
-P-user=scott
-P-user=scott/tiger
-P-user=scott/tiger@jdbc:oracle:oci:@

Properties file syntax profile.user=username</password><@url>

Properties file examples
profile.user=scott
profile.user=scott/tiger
profile.user=scott/tiger@jdbc:oracle:oci:@

Default value null

Customization Password Option (password)
Use the password option if your customizer uses database connections.

The password can also be set with the user option, as described in "Customization
User Option (user)" on page 10-23.

Command-line syntax -P-password=password

Command-line example -P-password=tiger

Properties file syntax profile.password=password

Properties file example profile.password=tiger

Default value null

Customization URL Option (url)
Use the url option if your customizer uses database connections.

The URL can also be set with the user option, as described in "Customization User
Option (user)" on page 10-23.

Command-line syntax -P-url=url

Command-line example -P-url=jdbc:oracle:oci:@
10-24 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer
Properties file syntax profile.url=url

Properties file example profile.url=jdbc:oracle:oci:@

Default value jdbc:oracle:oci:@

Customization JDBC Driver Option (driver)
Use the driver option to register a comma-separated list of JDBC driver classes if
your customizer uses database connections. For example:

-P-driver=sun.jdbc.odbc.JdbcOdbcDriver,oracle.jdbc.OracleDriver

There must be no space on either side of the comma.

Command-line syntax -P-driver=dvr_class1<,dvr_class2,...>

Command-line example -P-driver=sun.jdbc.odbc.JdbcOdbcDriver

Properties file syntax profile.driver=dvr_class1<,dvr_class2,...>

Properties file example profile.driver=sun.jdbc.odbc.JdbcOdbcDriver

Default value oracle.jdbc.OracleDriver

Customizer Harness Options that Invoke Specialized Customizers
The customizer harness supports the following options that invoke specialized
customizers:

■ debug—This invokes the AuditorInstaller customizer, used in debugging.

■ print—This invokes a customizer that prints a text version of a profile.

■ verify—This invokes the SQLCheckerCustomizer customizer, which
performs semantics-checking on a profile.
 Profiles and Customization 10-25

Customization Options and Choosing a Customizer
Specialized Customizer—Profile Debug Option (debug)
The debug option runs a specialized customizer, called the AuditorInstaller,
that inserts debugging statements into profiles. Use this option in conjunction with
a SQLJ command line file list to insert debugging statements into the specified
profiles. These profiles must already be customized from a previous SQLJ run.

For detailed information about this customizer, including additional options that it
supports, see "AuditorInstaller Customizer for Debugging" on page A-26.

The debugging statements will execute during SQLJ runtime (when someone runs
your application), displaying a trace of method calls and values returned.

Following are examples of how to specify the debug option:

sqlj -P-debug Foo_SJProfile0.ser Bar_SJProfile0.ser

sqlj -P-debug *.ser

Command-line syntax sqlj -P-debug profile_list

Command-line example sqlj -P-debug Foo_SJProfile*.ser

Properties file syntax profile.debug

(Also specify profiles in the SQLJ file list.)

Properties file example profile.debug

Default value n/a

Important: Because each of these options invokes a customizer,
and only one customizer can run in a single execution of SQLJ, you
cannot perform any other customization when you use any of these
options.

You also cannot use more than one of print, debug, or verify
simultaneously.
10-26 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer
Specialized Customizer—Profile Print Option (print)
The print option runs a specialized customizer that prints profiles in text format.
Use this option in conjunction with a SQLJ command line file list to output the
contents of one or more specified profiles. The output goes to the standard SQLJ
output device, typically the user screen.

Following are examples of how to specify the print option:

sqlj -P-print Foo_SJProfile0.ser Bar_SJProfile0.ser

sqlj -P-print *.ser

For sample output, see "Sample Profile Entry" on page 10-3.

Command-line syntax sqlj -P-print profile_list

Command-line example sqlj -P-print Foo_SJProfile*.ser

Properties file syntax profile.print

(Also specify profiles in SQLJ file list.)

Properties file example profile.print

Default value n/a

Specialized Customizer—Profile Semantics-Checking Option (verify)
The verify option runs a specialized customizer, called the
SQLCheckerCustomizer, that performs semantics-checking on a profile. This is
equivalent to the semantics-checking that is performed on source code during
translation. The profile will have been created during a previous execution of the
SQLJ translator.

This option is useful for checking semantics against the runtime database, after
deployment, and after the source code may no longer be available.

For detailed information about this customizer, including additional options that it
supports, see "SQLCheckerCustomizer for Profile Semantics-Checking" on
page 10-43.

Note: For online semantics-checking of the profile, you must also
use the customizer harness user, password, and url options.
 Profiles and Customization 10-27

Customization Options and Choosing a Customizer
Following are examples of how to specify the verify option. Both of these
examples use the SQLCheckerCustomizer default semantics-checker, which
employs online checking through the specified database connection.

sqlj -P-verify -P-user=scott -P-password=tiger -P-url=jdbc:oracle:oci:@
Foo_SJProfile0.ser Bar_SJProfile0.ser

(The preceding is a single wrap-around command line.)

sqlj -P-verify -P-user=scott -P-password=tiger -P-url=jdbc:oracle:oci:@ *.ser

Command-line syntax sqlj -P-verify <conn params> profile_list

Command-line example sqlj -P-verify <conn params> Foo_SJProfile*.ser

Properties file syntax profile.verify

(You must also specify profiles, and typically customizer harness connection
options, in the SQLJ command line.)

Properties file example profile.verify

Default value n/a

Overview of Customizer-Specific Options
You can set customizer-specific options, such as options for the Oracle customizer,
on the SQLJ command line or in a SQLJ properties file. The syntax is similar to that
for setting customizer harness options.

Set a customizer option on the SQLJ command line by preceding it with:

-P-C

Or set it in a SQLJ properties file by preceding it with:

profile.C

This option syntax is also discussed in "Options to Pass to the Profile Customizer
(-P)" on page 8-59 and "Properties File Syntax" on page 8-15.

The remainder of this section discusses features of the Oracle customizer, which
supports several options.
10-28 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer
Most of these options are boolean and are enabled as follows:

-P-Coption

or:

-P-Coption=true

Boolean options are disabled by default, but you can explicitly disable them with:

-P-Coption=false

Numeric or string options are set similarly:

-P-Coption=value

Oracle Customizer Options
This section describes options that are specific to the Oracle customizer, beginning
with an overview of the options supported.

Options Supported by the Oracle Customizer
The Oracle customizer implements the following options:

■ compat—Display version compatibility information.

■ force—Instruct the customizer to customize even if a valid customization
already exists.

■ optcols—Enable iterator column type and size definitions to optimize
performance.

■ optparams—Enable parameter size definitions to optimize JDBC resource
allocation (used in conjunction with optparamdefaults).

■ optparamdefaults—Set parameter size defaults for particular datatypes
(used in conjunction with optparams).

■ showSQL—Display SQL statement transformations.

■ stmtcache—Set the statement cache size (the number of statements that can
be cached for each connection during runtime) for performance optimization, or
set it to zero to disable statement caching.

■ summary—Display a summary of Oracle features used in your application.
 Profiles and Customization 10-29

Customization Options and Choosing a Customizer
Any output displayed by these options is written to the standard output device,
wherever SQLJ writes its other messages.

Oracle Customizer Version Compatibility Option (compat)
Use the compat flag to instruct the Oracle customizer to display information about
compatibility of your application with different versions of the Oracle database and
Oracle JDBC drivers. This can be accomplished either during a full SQLJ translation
run or on profiles previously created.

To see compatibility output when translating and customizing the application
MyApp:

sqlj <...SQLJ options...> -P-Ccompat MyApp.sqlj

In this example, the MyApp profiles will be created, customized, and checked for
compatibility in a single running of SQLJ.

To see compatibility output for MyApp profiles previously created:

sqlj <...SQLJ options...> -P-Ccompat MyApp_SJProfile*.ser

In this example, the MyApp profiles were created (and possibly customized) in a
previous running of SQLJ and will be customized (if needed) and checked for
compatibility in the above running of SQLJ.

Following are two output samples from a -P-Ccompat setting when using the
default Oracle customizer. The first example indicates that the application can be
used with all Oracle JDBC driver versions:

MyApp_SJProfile0.ser: Info: compatible with all Oracle JDBC drivers

This second example indicates that the application can be used only with 8.1 or later
Oracle JDBC driver versions:

MyApp_SJProfile0.ser: Info: compatible with Oracle 8.1 or later JDBC driver

Command-line syntax -P-Ccompat<=true/false>

Command-line example -P-Ccompat

Note: If customization does not take place because a valid
previous customization is detected, the compat option reports
compatibility regardless.
10-30 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer
Properties file syntax profile.Ccompat<=true/false>

Properties file example profile.Ccompat

Default value false

Oracle Customizer Force Option (force)
Use the force flag to instruct the Oracle customizer to force the customization of a
given profile (specified on the command line) even if a valid customization already
exists in that profile. For example:

sqlj -P-Cforce MyApp_SJProfile*.ser

This will customize all the MyApp profiles, regardless of whether they have already
been customized. Otherwise, by default, the Oracle customizer will not reinstall
over a previously existing customization unless the previous one had been installed
with an older version of the customizer.

Command-line syntax -P-Cforce<=true/false>

Command-line example -P-Cforce

Properties file syntax profile.Cforce<=true/false>

Properties file example profile.Cforce

Default value false

Oracle Customizer Column Definition Option (optcols)
Use the optcols flag to instruct the Oracle customizer to determine types and sizes
of iterator or result set columns and add this information to the profile. This enables
the SQLJ runtime to automatically register the columns with the Oracle JDBC driver
when your application runs, saving round trips to Oracle depending on the
particular driver implementation. Specifically, this is effective for the Thin driver
and positional iterators.

For an overview of column definitions, see "Column Definitions" on page A-22.
 Profiles and Customization 10-31

Customization Options and Choosing a Customizer
You can enable or disable the customizer optcols flag on the SQLJ command line
or in a properties file.

Enable it on the command line as follows:

-P-Coptcols

or:

-P-Coptcols=true

This flag is disabled by default, but you can also disable it explicitly. Disable it on
the command line as follows:

-P-Coptcols=false

Column definitions require the customizer to make a database connection to
examine columns of tables being queried, so the customizer harness user,
password, and url options must be set appropriately (as well as the customizer
harness driver option if you are not using the default OracleDriver class). For
example:

sqlj <...SQLJ options...> -P-user=scott/tiger@jdbc:oracle:oci:@ -P-Coptcols MyApp.sqlj

(Note that as with the SQLJ translator, you can optionally set the password and
URL in the user option instead of in the password and url options.)

Or you can insert column definitions into a previously existing profile (in this case
you must also use the Oracle customizer force option to force a recustomization):

sqlj -P-user=scott/tiger@jdbc:oracle:oci:@ -P-Cforce -P-Coptcols MyApp_SJProfile*.ser

Or you can insert column definitions into previously existing profiles in a .jar file:

sqlj -P-user=scott/tiger@jdbc:oracle:oci:@ -P-Cforce -P-Coptcols MyAppProfiles.jar

When you run the Oracle customizer with its optcols flag enabled (either during
translation and creation of a new profile or during customization of an existing
profile), you can also enable the customizer harness verbose flag. This will instruct

Note: For Oracle-specific code generation, where profile
customization is not applicable, use the SQLJ translator -optcols
option instead. See "Column Definitions (-optcols)" on page 8-50.

That section also has some additional conceptual information.
10-32 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer
the Oracle customizer to display information about what iterators and result sets
are being processed and what their column type and size definitions are. For
example:

sqlj -P-user=scott/tiger@jdbc:oracle:oci:@ -P-verbose -P-Cforce -P-Coptcols MyApp_SJProfile*.ser

For general information about the verbose flag, see that section under "Overview
of Customizer Harness Options" on page 10-17.

You can execute the Oracle customizer with its summary flag enabled on an existing
profile to determine if column definitions have been added to that profile:

sqlj -P-Csummary MyApp_SJProfile*.ser

For general information about the summary flag, see that section under "Overview
of Customizer-Specific Options" on page 10-28.

Command-line syntax -P-Coptcols<=true/false>

Command-line example -P-Coptcols

Properties file syntax profile.Coptcols<=true/false>

Properties file example profile.Coptcols

Default value false

Note: An error will be generated if you enable the Oracle
customizer optcols option without setting the customizer harness
user name, password, and URL for a database connection. Do not
confuse this with setting the translator user name, password, and
URL for semantics-checking—these are unrelated.

The customizer does not have to connect to the same schema or
even the same database that your application will connect to at
runtime, but the relevant columns will have to be in the same order
and of identical types and sizes to avoid runtime errors.

For information about the customizer harness connection options,
see the user, password, url, and driver sections under
"Overview of Customizer Harness Options" on page 10-17.
 Profiles and Customization 10-33

Customization Options and Choosing a Customizer
Oracle Customizer Parameter Definition Option (optparams)
Use the optparams flag to enable parameter size definitions. If this flag is enabled,
SQLJ will register your input and output parameters (host variables) to optimize
JDBC resource allocations according to sizes you specify.

For an overview of parameter size definitions and a discussion of source code hints,
see "Parameter Size Definitions" on page A-23.

You can enable or disable the optparams flag on the command line or in a SQLJ
properties file.

Enable it on the command line as follows:

-P-Coptparams

or:

-P-Coptparams=true

This flag is disabled by default, but you can also disable it explicitly. Disable it on
the command line as follows:

-P-Coptparams=false

Following is a command-line example (omitting a setting for the
optparamdefaults option, which is discussed in the next section):

sqlj <...SQLJ options...> -P-Coptparams -P-Coptparamdefaults=defaults-string MyApp.sqlj

Or you can enable parameter size definitions for a previously existing profile, as in
the next example.

Note: For Oracle-specific code generation, where profile
customization is not applicable, use the SQLJ translator
-optparams option instead. See "Parameter Definitions
(-optparams)" on page 8-52.

That section also has some additional conceptual information.

Note: Unlike the optcols option, the optparams option does
not require a database connection by the customizer, because you
are providing the size specifications yourself.
10-34 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer
sqlj -P-Coptparams -P-Coptparamdefaults=defaults-string MyApp_SJProfile*.ser

Or for previously existing profiles in a .jar file:

sqlj -P-Coptparams -P-Coptparamdefaults=defaults-string MyAppProfiles.jar

Command-line syntax -P-Coptparams<=true/false>

Command-line example -P-Coptparams

Properties file syntax profile.Coptparams<=true/false>

Properties file example profile.Coptparams

Default value false

Oracle Customizer Parameter Default Size Option (optparamdefaults)
If you enable the optparams option to set parameter sizes, use the
optparamdefaults option as desired to set default sizes for specified datatypes.
If optparams is not enabled, then any optparamdefaults setting is ignored.

For an overview of parameter size definitions and a discussion of source code hints,
see "Parameter Size Definitions" on page A-23.

You can set the optparamdefaults flag on the command line or in a SQLJ
properties file.

Set it on the command line as follows:

-P-Coptparamdefaults=datatype1(size1),datatype2(size2),...

Following is a command-line example, including the optparams setting as well:

sqlj <...SQLJ options...> -P-Coptparams -P-Coptparamdefaults=CHAR_TYPE(50),RAW_TYPE(500),CHAR(10) MyApp.sqlj

Note: For Oracle-specific code generation, where profile
customization is not applicable, use the SQLJ translator
-optparamdefaults option instead. See "Parameter Default Size
(-optparamdefaults)" on page 8-53.

That section also has important additional conceptual and syntax
information. Functionality of the two options is equivalent.
 Profiles and Customization 10-35

Customization Options and Choosing a Customizer
The syntax is explained in "Parameter Default Size (-optparamdefaults)" on
page 8-53.

Or you can specify parameter size defaults for a previously existing profile (in
which case you must also use the Oracle customizer force option to force a
recustomization):

sqlj -P-Cforce -P-Coptparams -P-Coptparamdefaults=CHAR_TYPE(50),RAW_TYPE(500),CHAR(10) MyApp_SJProfile*.ser

Or you can specify parameter size defaults for previously existing profiles in a .jar
file:

sqlj -P-Cforce -P-Coptparams -P-Coptparamdefaults=CHAR_TYPE(50),RAW_TYPE(500),CHAR(10) MyAppProfiles.jar

Command-line syntax -P-Coptparamdefaults=defaults-string

Command-line example -P-Coptparamdefaults=VAR%(50),LONG%(500),RAW_TYPE()

Properties file syntax profile.Coptparamdefaults=defaults-string

Properties file example profile.Coptparamdefaults=VAR%(50),LONG%(500),RAW_TYPE()

Default value null

Oracle Customizer Show-SQL Option (showSQL)
Use the showSQL flag to display any SQL statement transformations performed by
the Oracle customizer. Such transformations are necessary in cases where SQLJ
supports syntax that Oracle9i does not.

To show SQL transformations when translating and customizing the application
MyApp:

sqlj <...SQLJ options...> -P-CshowSQL MyApp.sqlj

In this example, the MyApp profiles will be created and customized and their SQL
transformations displayed in a single running of SQLJ.

Note: If at runtime the actual size exceeds the registered size of
any parameter, runtime errors will occur.
10-36 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer
To show SQL transformations when customizing MyApp profiles previously created:

sqlj <...SQLJ options...> -P-CshowSQL MyApp_SJProfile*.ser

In this example, the MyApp profiles were created (and possibly customized) in a
previous running of SQLJ and will be customized (if needed) and have their SQL
transformations displayed in the above running of SQLJ.

The showSQL output might include an entry such as this:

MyApp.sqlj:14: Info: <<<NEW SQL>>> #sql {BEGIN ? := VALUES(tkjsSET_f1); END};

in file MyApp, line 14, we had:

#sql {set :v1= VALUES(tkjsSET_f1) };

SQLJ supports the SET statement, but Oracle9i does not. During customization, the
Oracle customizer replaces the SET statement with an equivalent PL/SQL block.

Command-line syntax -P-CshowSQL<=true/false>

Command-line example -P-CshowSQL

Properties file syntax profile.CshowSQL<=true/false>

Properties file example profile.CshowSQL

Default value false

Oracle Customizer Statement Cache Size Option (stmtcache)
Use the Oracle customizer stmtcache option to set the statement cache size—the
number of statements that can be cached for each database connection as your
application runs—or to disable statement caching.

The default statement cache size is 5. For an overview of statement caching, see
"Statement Caching" on page A-4.

Note: If customization does not take place because a valid
previous customization is detected, the showSQL option shows
SQL transformations regardless.
 Profiles and Customization 10-37

Customization Options and Choosing a Customizer
You can set the statement cache size on the command line or in a properties file.

To use the command line to set the statement cache size to 15 (for example) for the
application MyApp:

sqlj <...SQLJ options...> -P-Cstmtcache=15 MyApp.sqlj

To disable statement caching, set the cache size to 0:

sqlj <...SQLJ options...> -P-Cstmtcache=0 MyApp.sqlj

You can also alter the statement cache size in an existing profile, without
re-translating the application (but you must also use the Oracle customizer force
option to force a recustomization):

sqlj -P-Cforce -P-Cstmtcache=15 MyApp_SJProfile0.ser

If you have multiple profiles, you can set their statement cache sizes individually by
running SQLJ separately for each profile, after you have translated your application:

sqlj -P-Cforce -P-Cstmtcache=10 MyApp_SJProfile0.ser
sqlj -P-Cforce -P-Cstmtcache=15 MyApp_SJProfile1.ser
sqlj -P-Cforce -P-Cstmtcache=0 MyApp_SJProfile2.ser

Of course, you must determine which profile corresponds to each of your
connection context classes. This is determined as follows: Profile 0 will correspond
to the connection context class used for the first executable statement in your
application; Profile 1 will correspond to the connection context class used for the
first executable statement that does not use the first connection context class, and so
on. You can verify the correlation by using the customizer harness print option to
examine each profile.

Command-line syntax -P-Cstmtcache=value

Command-line example -P-Cstmtcache=10

Important: If you use Oracle-specific code generation, through the
SQLJ translator -codegen=oracle setting, then SQLJ does not
produce profiles and skips the customization step. In this case, use
connection context methods to control SQLJ statement caching. See
"Connection Context Methods for Statement Cache Size" on
page A-5.
10-38 SQLJ Developer’s Guide and Reference

Customization Options and Choosing a Customizer
Properties file syntax profile.Cstmtcache=value

Properties file example profile.Cstmtcache=10

Default value 5

Oracle Customizer Summary Option (summary)
Use the summary flag to instruct the Oracle customizer to display a summary of
Oracle features used in an application being translated, or in specified profile files.
This is useful in identifying features that would prevent portability to other
platforms and can be accomplished either during a full SQLJ translation run or on
profiles previously created.

To see summary output when translating and customizing the application MyApp:

sqlj <...SQLJ options...> -P-Csummary MyApp.sqlj

In this example, the MyApp profiles will be created, customized, and summarized in
a single running of SQLJ.

To see summary output for MyApp profiles previously created:

sqlj <...SQLJ options...> -P-Csummary MyApp_SJProfile*.ser

In this example, the MyApp profiles were created (and possibly customized) in a
previous running of SQLJ and will be customized (if needed) and summarized in
the above running of SQLJ.

Following are two samples resulting from a -P-Csummary setting when using the
default Oracle customizer. The first example indicates no Oracle features are used:

MyApp_SJProfile0.ser: Info: Oracle features used:
MyApp_SJProfile0.ser: Info: * none

This second example indicates that Oracle features are used—namely, several Oracle
extended datatypes from the oracle.sql package—and lists them:

MyApp_SJProfile0.ser: Info: Oracle features used:
MyApp_SJProfile0.ser: Info: * oracle.sql.NUMBER: 2
MyApp_SJProfile0.ser: Info: * oracle.sql.DATE: 2
MyApp_SJProfile0.ser: Info: * oracle.sql.CHAR: 2
MyApp_SJProfile0.ser: Info: * oracle.sql.RAW: 2
 Profiles and Customization 10-39

Customization Options and Choosing a Customizer
Command-line syntax -P-Csummary<=true/false>

Command-line example -P-Csummary

Properties file syntax profile.Csummary<=true/false>

Properties file example profile.Csummary

Default value false

Options for Other Customizers
Oracle SQLJ provides additional, specialized customizers described elsewhere in
this manual, and these customizers also have command-line options:

■ SQLCheckerCustomizer (for profile semantics-checking)—See
"SQLCheckerCustomizer for Profile Semantics-Checking" on page 10-43 for
general information, and "SQLCheckerCustomizer Options" on page 10-44 for
information about its options.

■ AuditorInstaller (for debugging)—See "AuditorInstaller Customizer for
Debugging" on page A-26 for general information, and "AuditorInstaller
Options" on page A-29 for information about its options.

SQLJ Options for Profile Customization
The following SQLJ options relate to profile customization and are described
elsewhere in this manual:

■ -default-customizer—Specify the default profile customizer to use if none
is specified in the customizer harness -customizer option.

See "Default Profile Customizer (-default-customizer)" on page 8-80.

■ -profile—Specify whether to customize during this running of SQLJ.

See "Profile Customization Flag (-profile)" on page 8-62.

Note: If customization does not take place because a valid
previous customization is detected, the summary option produces a
summary regardless.
10-40 SQLJ Developer’s Guide and Reference

Use of JAR Files for Profiles
Use of JAR Files for Profiles
As discussed previously, you can specify a .jar file on the SQLJ command line in
order to customize any profiles that the .jar file contains.

JAR File Requirements
When using a .jar file for profiles, the manifest entry for each profile must contain
the line:

SQLJProfile: TRUE

Accomplish this by: 1) creating a plain text file with two lines for each profile that
will be included in the .jar file—one line specifying the path or package and
name, and one line as above; and 2) using the jar utility -m option to input this file.

The two lines must be consecutive (no blank line in between), and there must be a
blank line preceding line-pairs for additional profiles.

For example, presume your MyApp application (in the directory foo/bar) has three
profiles, and you will be creating a .jar file that will include these profiles.

Notes:

■ Remember that you can specify .sqlj and/or .java files on
the SQLJ command line for normal SQLJ processing, or you can
specify .ser and/or .jar files on the command line for
customization only, but not both.

■ It is permissible for the .jar file to contain files that are not
profiles. Any file whose manifest entry indicates that the file is
not a profile will be ignored during customization.

■ The .jar file is used as the class-loading context for each
profile it contains. If a profile contains a reference to a class
contained within the .jar file, then that class is loaded from
the .jar file. If a profile contains a reference to a class not in
the .jar file, then the system class loader will find and load
the class according to your classpath, as usual.
 Profiles and Customization 10-41

Use of JAR Files for Profiles
In this case, complete the following steps:

1. Create a text file with the following eight lines (including the blank lines used
as separators):

Name: foo/bar/MyApp_SJProfile0.ser
SQLJProfile: TRUE

Name: foo/bar/MyApp_SJProfile1.ser
SQLJProfile: TRUE

Name: foo/bar/MyApp_SJProfile2.ser
SQLJProfile: TRUE

Presume you call this file MyAppJarEntries.txt

2. When you run jar to create the .jar file, use the -m option to input your text
file as follows (presume you want to call the .jar file myjarfile.jar):

jar -cvfm myjarfile.jar MyAppJarEntries.txt foo/bar/MyApp_SJProfile*.ser foo/bar/*.class

As the jar utility constructs the manifest during creation of the .jar file, it
reads your text file and inserts the SQLJProfile: TRUE line into the manifest
entry of each profile. It accomplishes this by matching the names in the
manifest with the names you specify in your text file.

JAR File Results
When you specify a .jar file on the SQLJ command line, each profile in the .jar
file is deserialized and customized.

A .jar file is successfully customized only if all the profiles it contains are
successfully customized. After a successful customization, each profile has been
reserialized into a .ser file, the .jar file has been modified to replace the original
.ser files with the customized .ser files, and the .jar file manifest has been
updated to indicate the new entries.

If any error is encountered in the customization of any profile in a .jar file, then
the .jar file customization has failed, and the original .jar file is left unchanged.

Note: If you use signature files for authentication, the signature
files that appeared in the original .jar file will appear unchanged
in the updated .jar file. You are responsible for re-signing the new
.jar file if the profiles require signing.
10-42 SQLJ Developer’s Guide and Reference

SQLCheckerCustomizer for Profile Semantics-Checking
SQLCheckerCustomizer for Profile Semantics-Checking
Oracle provides a special customizer, SQLCheckerCustomizer, that will perform
semantics-checking on a profile that was produced during previous execution of the
translator. This semantics-checking is similar to what is normally performed during
translation of the source code.

This is particularly useful when the database to be used at runtime differs from
what was available to use for semantics-checking during translation. In these
circumstances, you can use SQLCheckerCustomizer after deployment, against
the runtime database, typically in a scenario where the source code is no longer
available.

You can specify the checker to use. If you accept the default OracleChecker front
end, SQLCheckerCustomizer will perform online semantics-checking using an
appropriate online checker.

Invoking SQLCheckerCustomizer with the Customizer Harness verify Option
Following are examples of how to specify the Oracle customizer harness verify
option to run SQLCheckerCustomizer in its default mode. Because it defaults to
an online checker, you typically must provide connection parameters through the
customizer harness user, password, and url options. (The first example is a
single wrap-around command line.)

sqlj -P-verify -P-user=scott -P-password=tiger -P-url=jdbc:oracle:oci:@
Foo_SJProfile0.ser Bar_SJProfile0.ser

sqlj -P-verify -P-user=scott -P-password=tiger -P-url=jdbc:oracle:oci:@ *.ser

The verify option results in the customizer harness instantiating and invoking the
following class:

sqlj.runtime.profile.util.SQLCheckerCustomizer

This class coordinates semantics-checking of the SQL operations in the profile. You
can specify a semantics-checker or accept the default OracleChecker
semantics-checker front end.

Note: For online semantics-checking of the profile, you must also
specify connection parameters using the customizer harness
connection options.
 Profiles and Customization 10-43

SQLCheckerCustomizer for Profile Semantics-Checking
The -P-verify option is equivalent to the following:

 -P-customizer=sqlj.runtime.profile.util.SQLCheckerCustomizer

This overrides the customizer specified in the SQLJ -default-customizer
option.

Command-line syntax sqlj -P-verify <conn params> profile_list

Command-line example sqlj -P-verify <conn params> Foo_SJProfile*.ser

Properties file syntax profile.verify

(You must also specify profiles, and typically customizer harness connection
options, in the SQLJ command line.)

Properties file example profile.verify

Default value n/a

SQLCheckerCustomizer Options
Like any customizer, SQLCheckerCustomizer has its own options, which can be
set using the -P-C prefix on the SQLJ command line (or profile.C, instead of
-P-C, in a SQLJ properties file).

Notes:

■ As with any Oracle customizer, help output and an option list
will be provided if you specify -P-verify together with
-P-help on the SQLJ command line.

■ It is important to realize that because the verify option
invokes a customizer, and only one customizer can run in any
single running of SQLJ, you cannot do any other customization
when you use this option.

■ You also cannot use more than one of -P-print, -P-debug,
and -P-verify simultaneously, because each of these invokes
a specialized customizer.
10-44 SQLJ Developer’s Guide and Reference

SQLCheckerCustomizer for Profile Semantics-Checking
SQLCheckerCustomizer supports the following options:

■ checker—Specify the semantics-checker to use. The default is the
OracleChecker front end, as for checking during SQLJ translation.

■ warn—Specify the categories of warnings and messages to display during
semantics-checking of the profile. This is equivalent to the SQLJ -warn flag for
warning categories during translation-time semantics-checking, supports the
same settings, and uses the same defaults. See "Translator Warnings (-warn)" on
page 8-43.

SQLCheckerCustomizer Semantics-Checker Option (checker)
The checker option allows you to specify the semantics-checker to use in checking
the SQL operations in a profile.

This defaults to the Oracle semantics-checker front end,
oracle.sqlj.checker.OracleChecker, which for SQLCheckerCustomizer
chooses an appropriate online checker for your environment. For more information
about OracleChecker, see "Semantics-Checkers and the OracleChecker Front End
(default checker)" on page 8-66.

Following is a full command-line example, showing how to use the
SQLCheckerCustomizer checker option, in conjunction with the customizer
harness verify option and connection options.

sqlj -P-verify -P-user=scott -P-password=tiger -P-url=jdbc:oracle:oci:@
-P-Cchecker=abc.def.MyChecker *.ser

(This is a single wrap-around command line.)

Command-line syntax -P-Cchecker=checker_class

Command-line example -P-Cchecker=a.b.c.MyChecker

Properties file syntax profile.Cchecker=checker_class

Properties file example profile.Cchecker=a.b.c.MyChecker

Default value oracle.sqlj.checker.OracleChecker
 Profiles and Customization 10-45

SQLCheckerCustomizer for Profile Semantics-Checking
SQLCheckerCustomizer Warnings Option (warn)
The warn option is equivalent to the SQLJ translator -warn option, allowing you to
choose the categories of warnings and messages to be displayed as
semantics-checking is performed on a profile.

For a complete description of the functionality and possible settings of these
options, see "Translator Warnings (-warn)" on page 8-43.

This defaults to the all,noverbose,noportable settings, resulting in all
warning categories except verbose and portable being enabled. You will receive
any warnings regarding inheritance hierarchy requirements, data precision,
conversion loss for nullable data, and strict matching for named iterators. These are
the same defaults as for warnings during SQLJ translation.

Following is a full command-line example showing how to use the
SQLCheckerCustomizer warn option, in conjunction with the customizer
harness verify option and connection options. This would result in only
portability warnings being displayed.

sqlj -P-verify -P-user=scott -P-password=tiger -P-url=jdbc:oracle:oci:@
-P-Cwarn=none,portable *.ser

(This is a single wrap-around command line.)

Command-line syntax -P-Cwarn=comma-separated_list_of_flags

Command-line example -P-Cwarn=none,verbose

Properties file syntax profile.Cwarn=comma-separated_list_of_flags

Properties file example profile.Cwarn=none,verbose

Default value all,noverbose,noportable
10-46 SQLJ Developer’s Guide and Reference

 SQLJ in the
11

SQLJ in the Server

SQLJ applications can be stored and run directly in the server. You have the option
of either translating and compiling them on a client and loading the generated
classes and resources into the server, or loading SQLJ source code into the server
and having it translated and compiled by the server’s embedded translator.

This chapter discusses features and usage of SQLJ in the server, including
additional considerations such as multithreading and recursive SQLJ calls.

Most of this chapter assumes you are writing stored procedures or stored functions,
but additional vehicles such as Enterprise JavaBeans or CORBA objects are
supported as well.

The following topics are discussed:

■ Introduction to Server-Side SQLJ

■ Creating SQLJ Code for Use within the Server

■ Translating SQLJ Source on a Client and Loading Components

■ Loading SQLJ Source and Translating in the Server

■ Dropping Java Schema Objects

■ Additional Considerations

■ Additional Vehicles for SQLJ in the Server
 Server 11-1

Introduction to Server-Side SQLJ
Introduction to Server-Side SQLJ
SQLJ code, as with any Java code, can run in Oracle9i in stored procedures, stored
functions, triggers, Enterprise JavaBeans, or CORBA objects. Data access is through
a server-side implementation of the SQLJ runtime (with all SQLJ runtime packages
automatically available) in combination with the Oracle JDBC server-side internal
driver. (You will sometimes hear this referred to as the "KPRB driver".)

In addition, an embedded SQLJ translator in Oracle9i is available to translate SQLJ
source files directly in the server.

Considerations for running SQLJ in the server include several server-side coding
issues as well as decisions about where to translate your code and how to load it
into the server. You must also be aware of how the server determines the names of
generated output. You can either translate and compile on a client and load the class
and resource files into the server, or you can load .sqlj source files into the server
and have the files automatically translated by the embedded SQLJ translator.

The embedded translator has a different user interface than the client-side
translator. Supported options can be specified using a database table, and error
output is to a database table. Output files from the translator (.java and .ser) are
transparent to the developer.
11-2 SQLJ Developer’s Guide and Reference

Creating SQLJ Code for Use within the Server
Creating SQLJ Code for Use within the Server
With few exceptions, writing SQLJ code for use within the target Oracle9i database
or middle-tier database cache is identical to writing SQLJ code for client-side use.
The few differences are due to Oracle JDBC characteristics or general Java
characteristics in the server, rather than being specific to SQLJ. There are a few
things to be aware of, however:

■ There is an implicit connection to the server itself.

■ There are coding issues such as lack of auto-commit functionality.

■ In the server, the default output device is the current trace file.

■ Name resolution functions differently in the server than on a client.

■ SQL names must be interpreted and processed differently from Java names.

Database Connections within the Server
The concept of connecting to a server is different when your SQLJ code is running
within this server itself—there is no explicit database connection. By default, an
implicit channel to the database is employed for any Java program running in the
server. You do not have to initialize this "connection"—it is automatically initialized
for SQLJ programs. You do not have to register or specify a driver, create a
connection instance, specify a default connection context, specify any connection
objects for any of your #sql statements, or close the connection.

Note: Writing SQLJ code to connect from one server to another
through the server-side Thin driver is identical to writing code for
an application that uses a client-side Thin driver. The points in this
discussion do not apply.

Note: In the server, setting the default connection context to null,
as follows, will reinstall the default connection context (the implicit
connection to the server):

DefaultContext.setDefaultContext(null);
 SQLJ in the Server 11-3

Creating SQLJ Code for Use within the Server
Coding Issues within the Server
There are a few coding issues to consider when your code will run within the target
server using the server-side internal driver. Note the following:

■ Result sets issued by the internal driver persist across calls, and their finalizers
do not release their cursors. Because of this, it is especially important to close all
iterators to avoid running out of available cursors, unless you have a particular
reason for keeping an iterator open (such as when it is actually used across
calls).

■ The internal driver does not support auto-commit functionality—the
auto-commit setting is ignored within the server. Use explicit COMMIT or
ROLLBACK statements to implement or cancel your data updates:

#sql { COMMIT };
...
#sql { ROLLBACK };

■ If you use SQLJ code that interacts with JDBC code, and you use a non-default
connection context instance, then you must eventually close the connection
context instance in order to clean up statements cached there (unless you use
the same connection context instance for the duration of your session).
Following is an example:

DefaultContext ctx = new DefaultContext(conn); // conn is JDBC connection
#sql [ctx] { SQL operation };
...
ctx.close(sqlj.runtime.ConnectionContext.KEEP_CONNECTION);
...

If you do not close the connection context instance, you are likely to run out of
statement handles in your session. Also be aware that simply closing the
underlying JDBC connection object does not reclaim statement handles, which
differs from the behavior when the application executes on a client.

Note: If you are using any kind of XA transactions, such as Java
Transaction Service (JTS) transactions, you cannot use SQLJ or
JDBC COMMIT/ROLLBACK statements or methods. This applies
particularly to Enterprise JavaBeans or CORBA objects, which
typically use such transactions. See "Additional Vehicles for SQLJ in
the Server" on page 11-30.
11-4 SQLJ Developer’s Guide and Reference

Creating SQLJ Code for Use within the Server
■ If you use Oracle-specific code generation for code that will run in the server,
use an explicit ExecutionContext instance. This ensures that your
application can fully interoperate with applications translated with standard
SQLJ code generation.

If you use one thread per connection (which translates to one thread per Oracle
session), it is sufficient to use one static instance, as in the following example:

public static ExecutionContext ec = new ExecutionContext();
...
#sql [ec] { SQL operation }; // use ec for all operations

If you use multiple threads per connection, you must use a separate execution
context instance for each method invocation.

For more information about server-side JDBC and the server-side internal and Thin
drivers, see the Oracle9i JDBC Developer’s Guide and Reference.

Default Output Device in the Server
The default standard output device in the Oracle Java virtual machine (JVM) is the
current trace file.

 If you want to reroute all standard output from a program executing in the server
(output from any System.out.println() calls, for example) to a user screen,
then you can execute the SET_OUTPUT() procedure of the DBMS_JAVA package, as
follows (inputting the buffer size in bytes):

sqlplus> execute dbms_java.set_output(10000);

(Output exceeding the buffer size will be lost.)

If you want your code executing in the server to expressly output to the user screen,
you can also use the PL/SQL DBMS_OUTPUT.PUT_LINE() procedure instead of
the Java System.out.println() method.

The PUT_LINE() procedure is overloaded, accepting either VARCHAR2, NUMBER, or
DATE as input to specify what is printed.

Note: The preceding discussion does not apply if you use
Oracle-specific code generation through the SQLJ translator
-codegen=oracle setting. In this case, statements are cached in
the underlying implicit JDBC statement cache and will be
automatically reclaimed.
 SQLJ in the Server 11-5

Creating SQLJ Code for Use within the Server
For more information about the DBMS_OUTPUT package, see the Oracle9i Supplied
PL/SQL Packages and Types Reference.

Name Resolution in the Server
Class loading and name resolution in the server follow a very different paradigm
than on a client, because the environments themselves are very different. This
section gives only an overview; the topic is discussed in detail in the Oracle9i Java
Developer’s Guide.

Java name resolution in the Oracle JVM includes the following:

■ class resolver specs, which are schema lists to search in resolving a class schema
object (functionally equivalent to the classpath on a client)

■ the resolver, which maintains mappings between class schema objects that
reference each other in the server

A class schema object is said to be resolved when all of its external references to
Java names are bound. In general, all the classes of a Java program should be
compiled or loaded before they can be resolved. (This is because Java programs are
typically written in multiple source files that can reference each other recursively.)

When all the class schema objects of a Java program in the server are resolved and
none of them have been modified since being resolved, the program is effectively
pre-linked and ready to run.

A class schema object must be resolved before Java objects of the class can be
instantiated or methods of the class can be executed.

Note: The loadjava utility resolves references to classes, but not
to resources. If you translated on the client, be careful how you load
any resources into resource schema objects in the server, as
discussed in "Loaded Class and Resource Schema Objects" on
page 11-10. (If you enabled the SQLJ -ser2class flag for your
client-side translation, then your SQLJ profiles will be in class files,
and you will typically not have any resource files. If you did not
enable -ser2class, then your profiles will be in .ser resource
files.)
11-6 SQLJ Developer’s Guide and Reference

Creating SQLJ Code for Use within the Server
SQL Names Versus Java Names
SQL names (such as names of source, class, and resource schema objects) are not
global in the way that Java names are global. The Java Language Specification
directs that package names use Internet naming conventions to create globally
unique names for Java programs. By contrast, a fully qualified SQL name is
interpreted only with respect to the current schema and database. For example, the
name SCOTT.FIZZ in one database does not necessarily denote the same program
as SCOTT.FIZZ in another database. In fact, SCOTT.FIZZ in one database can even
call SCOTT.FIZZ in another database.

Because of this inherent difference, SQL names must be interpreted and processed
differently from Java names. SQL names are relative names and are interpreted
from the point of view of the schema where a program is executed. This is central to
how the program binds local data stored at that schema. Java names are global
names, and the classes that they designate can be loaded at any execution site, with
reasonable expectation that those classes will be classes that were used to compile
the program.
 SQLJ in the Server 11-7

Translating SQLJ Source on a Client and Loading Components
Translating SQLJ Source on a Client and Loading Components
One approach to developing SQLJ code for the server is to first run the SQLJ
translator on a client machine to take care of translation, compilation, and profile
customization. Then load the resulting class and resource files (including your SQLJ
profiles) into the server, typically using a Java archive (.jar) file.

If you are developing your source on a client machine, as is usually the case, and
have a SQLJ translator available there, this approach is advisable. It allows the most
flexibility in running the translator, because option-setting and error-processing are
not as convenient in the server.

It might also be advisable to use the SQLJ -ser2class option during translation
when you intend to load an application into the server. This results in SQLJ profiles
being converted from .ser serialized resource files to .class files and simplifies
their naming. Be aware, however, that profiles converted to .class files cannot be
further customized. To further customize, you would have to rerun the translator
and regenerate the profiles. For information about the -ser2class option, see
"Conversion of .ser File to .class File (-ser2class)" on page 8-64.

When you load .class files and .ser resource files into Oracle9i, either directly or
using a .jar file, the resulting library units are referred to as Java class schema
objects (for Java classes) and Java resource schema objects (for Java resources). Your
SQLJ profiles will be in resource schema objects if you load them as .ser files, or in
class schema objects if you enabled -ser2class during translation and load them
as .class files.

Loading Classes and Resources into the Server
Once you run the translator on the client, use the Oracle loadjava client-side
utility to load class and resource files into schema objects in the server. This utility is
discussed in detail in the Oracle9i Java Developer’s Guide.

Either specify the class and resource files individually on the loadjava command
line, or put them into a .jar file and specify the .jar file on the command line. A
separate schema object is created for each .class or .ser file in the .jar file or
on the command line.

Consider an example where you do the following:

1. Translate and compile Foo.sqlj, which includes an iterator declaration for
MyIter, using standard SQLJ code generation.

2. Enable the -ser2class option when you translate Foo.sqlj.
11-8 SQLJ Developer’s Guide and Reference

Translating SQLJ Source on a Client and Loading Components
3. Archive the resulting files (Foo.class, MyIter.class,
Foo_SJProfileKeys.class, and Foo_SJProfile0.class) into Foo.jar.

Then run loadjava with the following command line (plus any options you want
to specify). This examples uses the default OCI driver:

loadjava -user scott/tiger Foo.jar

Or, alternatively, use the original files:

loadjava -user scott/tiger Foo.class MyIter.class Foo_SJProfileKeys.class Foo_SJProfile0.class

or:

loadjava -user scott/tiger Foo*.class MyIter.class

Or, to use the Thin driver for loading (specifying the -thin option and an
appropriate URL):

loadjava -thin -user scott/tiger@localhost:1521:ORCL Foo.jar

For information about files generated by the SQLJ translator, see "Code Generation"
on page 9-5 and "Java Compilation" on page 9-9.

Although the loadjava utility is recommended for loading your SQLJ and Java
applications into the server, you can also use Oracle SQL CREATE JAVA commands
such as the following:

CREATE OR REPLACE <AND RESOLVE> JAVA CLASS <NAMED name>;

CREATE OR REPLACE JAVA RESOURCE <NAMED name>;

See the Oracle9i SQL Reference for more information about the CREATE JAVA
commands.

Notes:

■ When you load a profile into the server as a .ser file, it is first
customized if it was not already customized on the client. If it
was already customized, it is loaded as is.

■ You can access the USER_OBJECTS view in your schema to
verify that your classes and resources are loaded properly. This
is discussed in the Oracle9i Java Developer’s Guide.
 SQLJ in the Server 11-9

Translating SQLJ Source on a Client and Loading Components
Loaded Class and Resource Schema Objects
This section discusses how schema objects for classes and profiles are named when
you load classes and profiles into the server.

If the SQLJ -ser2class option was enabled when you translated your application
on the client, then profiles were converted to .class files and will be loaded into
class schema objects in the server. If -ser2class was not enabled, then profiles
were generated as .ser serialized resource files and will be loaded into resource
schema objects in the server.

In the following discussion, it is assumed that you use only the default connection
context class for any application that will run in the server; therefore, there will be
only one profile.

Note: Any discussion of profiles assumes you translated your
code with standard SQLJ code generation. If you use
Oracle-specific code generation, through the SQLJ translator
-codegen=oracle setting, then SQLJ produces no profile files.

Note: There are two forms of schema object names in the server:
full names and short names.

Full names are fully qualified and are used as the schema object
names wherever possible. If any full name is longer than 31
characters, however, or contains characters that are illegal or cannot
be converted to characters in the database character set, then
Oracle9i converts the full name to a short name to employ as the
name of the schema object, keeping track of both names and how to
convert between them. If the full name is 31 characters or less and
has no illegal or inconvertible characters, then the full name is used
as the schema object name.

For more information about these and about other file naming
considerations, including DBMS_JAVA procedures to retrieve a full
name from a short name and the converse, see the Oracle9i Java
Developer’s Guide.
11-10 SQLJ Developer’s Guide and Reference

Translating SQLJ Source on a Client and Loading Components
Full Names of Loaded Classes (including profiles if -ser2class enabled)
The full name of the class schema object produced when you load a .class file
into the server is determined by the package and class name in the original source
code. Any path information you supply on the command line (so that loadjava
can find it, for example) or in the .jar file is irrelevant in determining the name of
the schema object. For example, if Foo.class consists of a class Foo which was
specified in the source code as being in package x.y, then the full name of the
resulting class schema object is as follows:

x/y/Foo

Note that ".class" is dropped.

If Foo.sqlj declares an iterator MyIter, then the full name of its class schema
object is:

x/y/MyIter

(Unless it is a nested class, in which case it will not have its own schema object.)

The related profile-keys class file, generated by SQLJ when you translate
Foo.sqlj, is Foo_SJProfileKeys.class; therefore, the full name of its class
schema object is:

x/y/Foo_SJProfileKeys

If the -ser2class option was enabled when you translated your application, then
the resulting profile was generated in file Foo_SJProfile0.class; therefore, the
full name of the class schema object is:

x/y/Foo_SJProfile0

Full Names of Loaded Resources (including profiles if -ser2class not enabled)
This discussion is relevant only if you did not enable the -ser2class option when
you translated your application, or if you use other Java serialized resource (.ser)
files in your application.

The naming of resource schema objects is handled differently from class schema
objects—their names are not determined from the contents of the resources. Instead,
their full names are identical to the names that appear in a .jar file or on the
loadjava command line, including path information. Note also that the .ser
extension is not dropped.
 SQLJ in the Server 11-11

Translating SQLJ Source on a Client and Loading Components
It is important to note that because resource names are used to locate the resources
at runtime, their names must include the correct path information. In the server, the
correct full name of a resource is identical to the relative path and file name that
Java would use to look it up on a client.

In the case of a SQLJ profile, this is a subdirectory under the directory specified by
the translator -d option, according to the package name. If the -d option, used to
specify the top-level output directory for generated .class and .ser files, is set to
/mydir and the application is in package abc.def, then .class and .ser files
generated during translation will be placed in the /mydir/abc/def directory. For
more information about the SQLJ -d option, including the default value, see
"Output Directory for Generated .ser and .class Files (-d)" on page 8-28.

At runtime, /mydir would presumably be in your classpath, and Java will look for
your application components in the abc/def directory underneath it.

Therefore, when you load this application into the server, you must run loadjava
or jar from the -d directory so that the path you specify on the command line to
find the files also indicates the package name, as follows:

cd /mydir
loadjava <...options...> abc/def/*.class abc/def/*.ser

Or, if you use a .jar file:

cd /mydir
jar -cvf myjar.jar abc/def/*.class abc/def/*.ser
loadjava <...options...> myjar.jar

If your application is App and your profile is App_SJProfile0.ser, then either of
the above examples will correctly result in the following full name of the created
resource schema object:

abc/def/App_SJProfile0.ser

Note that ".ser" is retained.

Note also that if you set -d to a directory whose hierarchy has no other contents
(which is advisable), you can simply run jar as follows to recursively get your
application components:

cd /mydir
jar -cvf myjar.jar *
loadjava <...options...> myjar.jar
11-12 SQLJ Developer’s Guide and Reference

Translating SQLJ Source on a Client and Loading Components
Publishing the Application After Loading Class and Resource Files
Before using your SQLJ code in the server, you must publish the top-level methods,
as is true of any Java code you use in the server. Publishing includes writing call
descriptors, mapping datatypes, and setting parameter modes. For information, see
the Oracle9i Java Stored Procedures Developer’s Guide.

Summary: Running a Client Application in the Server
This section summarizes the typical steps of running a client application in the
server. As an example, it uses the NamedIterDemo sample application provided in
"Named Iterator—NamedIterDemo.sqlj" on page 12-6.

1. Create a .jar file for your application components. For NamedIterDemo, the
components include SalesRec.class as well as the application class and
profile.

You can create a .jar file niter-server.jar as follows:

jar cvf niter-server.jar Named*.class Named*.ser SalesRec.classconnect.properties

2. Load the .jar file into the server.

Use loadjava as follows. This example instructs loadjava to use the OCI
driver in loading the files. The -resolve option results in the class files being
resolved.

loadjava -oci -resolve -force -user scott/tiger niter-server.jar

3. Create a SQL wrapper in the server for your application.

For example, run a SQL*Plus script that executes the following:

set echo on
set serveroutput on
set termout on
set flush on

execute dbms_java.set_output(10000);

create or replace procedure SQLJ_NAMED_ITER_DEMO as language java
name ’NamedIterDemo.main (java.lang.String[])’;
/

The DBMS_JAVA.SET_OUTPUT() routine reroutes default output to your
screen, instead of to a trace file; the input parameter is the buffer size in bytes.
 SQLJ in the Server 11-13

Translating SQLJ Source on a Client and Loading Components
4. Execute the wrapper.

For example:

sqlplus> call SQLJ_NAMED_ITER_DEMO();
11-14 SQLJ Developer’s Guide and Reference

Loading SQLJ Source and Translating in the Server
Loading SQLJ Source and Translating in the Server
Another approach to developing SQLJ code for the server is loading the source code
into the server and translating it directly in the server. This employs the embedded
SQLJ translator in the Oracle JVM. This discussion still assumes you created the
source on a client machine.

As a general rule, loading SQLJ source into the server is identical to loading Java
source into the server, with translation taking place implicitly when a compilation
option is set (such as the loadjava -resolve option, discussed below).

When you load .sqlj source files into Oracle9i, either directly or using a .jar file,
the resulting library units containing the source code are referred to as Java source
schema objects. A separate schema object is created for each source file.

When translation and compilation take place, the resulting library units for the
generated classes and profiles are referred to as Java class schema objects (for classes)
and Java resource schema objects (for profiles), just as they are when loaded directly
into the server from .class files and .ser files created on a client. A separate
schema object is created for each class and for each profile.

Resource schema objects are also used for properties files that you load into the
server.

Notes:

■ The server-side SQLJ translator does not currently support
Oracle-specific code generation (the -codegen=oracle
setting). If you want to use such code in the server, you must
translate on a client and load the individual class files into the
server, as described in "Translating SQLJ Source on a Client and
Loading Components" on page 11-8.

■ When you translate your SQLJ application in the server,
profiles are always generated as resources, not classes, because
there is no -ser2class option in SQLJ server-side translator.
 SQLJ in the Server 11-15

Loading SQLJ Source and Translating in the Server
Loading SQLJ Source Code into the Server
Use the Oracle loadjava client-side utility on a .sqlj file (instead of on .class
and .ser files) to load source into the server. This utility is discussed in detail in
the Oracle9i Java Developer’s Guide.

If you enable the loadjava -resolve option in loading a .sqlj file, then the
server-side embedded translator is run to perform the translation, compilation, and
customization of your application as it is loaded. Otherwise, the source is loaded
into a source schema object without any translation. In this case, however, the
source is implicitly translated, compiled, and customized the first time an attempt is
made to use a class defined in the source. Such implicit translation might seem
surprising at first, because there is nothing comparable in client-side SQLJ.

For example, run loadjava as follows:

loadjava -user scott/tiger -resolve Foo.sqlj

Or, to use the Thin driver to load (specifying the -thin option and an appropriate
URL):

loadjava -thin -user scott/tiger@localhost:1521:ORCL -resolve Foo.sqlj

Either of these will result in appropriate class schema objects and resource schema
objects being created in addition to the source schema object. For information, see
"Loaded Source and Generated Class and Resource Schema Objects" on page 11-21.

Before running loadjava, however, you must set SQLJ options appropriately. For
more information, see "Option Support in the Server Embedded Translator" on
page 11-18. Note that encoding can be set on the loadjava command line, instead
of through the server-side SQLJ encoding option, as follows:

loadjava -user scott/tiger -resolve -encoding SJIS Foo.sqlj

The loadjava script, which runs the actual utility, is in the bin subdirectory under
your [Oracle Home] directory. This directory should already be in your path once
Oracle has been installed.
11-16 SQLJ Developer’s Guide and Reference

Loading SQLJ Source and Translating in the Server
Although the loadjava utility is recommended for loading your SQLJ and Java
applications into the server, you can also use Oracle SQL CREATE JAVA commands
such as the following:

CREATE OR REPLACE <AND COMPILE> JAVA SOURCE <NAMED srcname> <AS loadname>;

If you specify AND COMPILE for a .sqlj file, then the source is translated,
compiled, and customized at that time, creating class schema objects and resource
schema objects as appropriate in addition to the source schema object. Otherwise, it
is not translated and compiled—in this case only the source schema object is
created. In this latter case, however, the source is implicitly translated, compiled,
and customized the first time an attempt is made to use a class contained in the
source.

See the Oracle9i SQL Reference for more information about the CREATE JAVA
commands.

Notes:

■ You cannot load a .sqlj file along with .class files or .ser
files that were generated from processing of the same .sqlj
file. This would create an obvious conflict, because the server
would be trying to load the same classes and profiles that it
would also be trying to generate.

(In processing a .jar file, loadjava first processes .sqlj,
.java, and .class files. It then makes a second pass and
processes everything else as Java resource files.)

■ You can put multiple .sqlj files into a .jar file and specify
the .jar file to loadjava.

■ You can access the USER_OBJECTS view in your schema to
verify that your classes and resources are loaded properly. This
is discussed in the Oracle9i Java Developer’s Guide.

Note: When you first load a source file, some checking of the
source code is performed, such as determining what classes are
defined. If any errors are detected at this time, the load fails.
 SQLJ in the Server 11-17

Loading SQLJ Source and Translating in the Server
Option Support in the Server Embedded Translator
The following options are available in the server-side SQLJ translator:

■ encoding

■ online

■ debug

This section includes discussion of the loadjava utility and its -resolve option.
For more information, see the Oracle9i Java Developer’s Guide.

The encoding Option
This option determines any encoding (for example, SJIS) employed to interpret
your source code when it is loaded into the server. The encoding option is used at
the time the source is loaded, regardless of whether it is also compiled.

Alternatively, when using loadjava to load your SQLJ application into the server,
you can specify encoding on the loadjava command line, as discussed in
"Loading SQLJ Source Code into the Server" on page 11-16. Any loadjava
command-line setting for encoding overrides this encoding option.

See "Encoding for Input and Output Source Files (-encoding)" on page 8-27 for
general information about this option.

The online Option
Setting this option to true (the default value) enables online semantics-checking.
Semantics-checking is performed relative to the schema in which the source is

Note: Class schema objects created during server-side translation
reference line numbers that map to the SQLJ source code. This is
equivalent to enabling the -linemap option when you translate on
a client. For a discussion of this option, see "Line-Mapping to SQLJ
Source File (-linemap)" on page 8-47.

Note: If no encoding is specified, either through this option or
through loadjava, then encoding is performed according to the
file.encoding setting of the client from which you run
loadjava.
11-18 SQLJ Developer’s Guide and Reference

Loading SQLJ Source and Translating in the Server
loaded. You do not specify an exemplar schema, as you do for online-checking on a
client.

If the online option is set to false, offline checking is performed.

In either case, the default checker is oracle.sqlj.checker.OracleChecker,
which will choose an appropriate checker according to your JDBC driver version
and Oracle version. For information about OracleChecker, see
"Semantics-Checkers and the OracleChecker Front End (default checker)" on
page 8-66.

The online option is used at the time the source is translated and compiled. If you
load it with the loadjava -resolve option enabled, this will occur immediately.
Otherwise it will occur the first time an attempt is made to use a class defined in the
source (resulting in implicit translation and compilation).

The debug Option
Setting this option to true instructs the server-side Java compiler to output
debugging information when a .sqlj or .java source file is compiled in the
server. This is equivalent to using the -g option when running the standard javac
compiler on a client.

The debug option is used at the time the source is compiled. If you load it with the
loadjava -resolve option enabled, this will occur immediately (right after SQLJ
translation, in the case of a .sqlj file). Otherwise it will occur the first time an
attempt is made to use a class defined in the source (resulting in implicit translation
and compilation).

Setting SQLJ Options in the Server
There is no command line and there are no properties files when running the SQLJ
translator in the server. Information about translator and compiler options is held in
each schema in a table named JAVA$OPTIONS. Manipulate options in this table
through the following functions and procedures of the package DBMS_JAVA:

■ dbms_java.get_compiler_option()

Note: The online option is used differently in the server than on
a client. In the server, the online option is only a flag that enables
online checking using a default checker. On a client, the -online
option specifies which checker to use, but it is the -user option
that enables online checking.
 SQLJ in the Server 11-19

Loading SQLJ Source and Translating in the Server
■ dbms_java.set_compiler_option()

■ dbms_java.reset_compiler_option()

Use set_compiler_option() to specify separate option settings for individual
packages or sources. It takes the following as input, with each parameter enclosed
by single-quotes:

■ package name, using dotted names, or source name

Specify this as a full name, not a short name.

If you specify a package name, the option setting applies to all sources in that
package and subpackages, except where you override the setting for a
particular subpackage or source.

■ option name

■ option setting

Execute the DBMS_JAVA routines using SQL*Plus, for example, as follows:

sqlplus> execute dbms_java.set_compiler_option(’x.y’, ’online’, ’true’);
sqlplus> execute dbms_java.set_compiler_option(’x.y.Create’, ’online’, ’false’);

These two commands enable online checking for all sources in the package x.y,
then override that for the Create source by disabling online checking for that
particular source.

Similarly, set encoding for package x.y to SJIS as follows:

sqlplus> execute dbms_java.set_compiler_option(’x.y’, ’encoding’, ’SJIS’);

Server-Side Option Notes Be aware of the following:

■ The set_compiler_option() parameter for package and source names uses
dotted names (such as abc.def as a package name) even though schema object
names use slash syntax (such as abc/def as a package name).

■ When you specify a package name, be aware that the option will apply to any
included packages as well. A setting of a.b.MyPackage sets the option for any
source schema objects whose names are of the following form:

a/b/MyPackage/ subpackage/...

■ Specifying ’’ (empty set of single-quotes) as a package name makes the option
apply to the root and all subpackages, effectively making it apply to all
packages in your schema.
11-20 SQLJ Developer’s Guide and Reference

Loading SQLJ Source and Translating in the Server
Loaded Source and Generated Class and Resource Schema Objects
When you use the server-side SQLJ translator, such as when you use loadjava on
a .sqlj file with the -resolve option enabled, the output generated by the
server-side translator is essentially identical to what would be generated on a
client—a compiled class for each class you defined in the source, a compiled class
for each iterator and connection context class, a compiled profile-keys class, and one
or more customized profiles.

As a result, the following schema objects will be produced when you load a .sqlj
file into the server with loadjava and have it translated and compiled:

■ a source schema object for the original source code

■ a class schema object for each class you defined in the source

■ a class schema object for each iterator or connection context class you declared
in the source

But presumably you will not need to declare connection context classes in code
that will run in the server, unless it is to specify type maps for user-defined
types. (See "Requirements for Classes Implementing SQLData" on page 6-13.)

■ a class schema object for the profile-keys class, if you use standard code
generation (created by the translator, as on a client, presuming you use SQLJ
executable statements in your code)

■ a resource schema object for the profile, if you use standard code generation
(presumably there is just one profile)

The full names of these schema objects are determined as described in the following
subsections. Use the loadjava -verbose option for a report of schema objects
produced and what they are named.

Full Names and Short Names
There are two forms of schema object names in the server: full names and short
names.

Full names are fully qualified and are used as the schema object names whenever
possible. If any full name is longer than 31 characters, however, or contains
characters that are illegal or cannot be converted to characters in the database
character set, then Oracle9i converts the full name to a short name to employ as the
name of the schema object, keeping track of both names and how to convert
between them. If the full name is 31 characters or less and has no illegal or
inconvertible characters, then the full name is used as the schema object name.
 SQLJ in the Server 11-21

Loading SQLJ Source and Translating in the Server
For more information about these and about other file naming considerations,
including DBMS_JAVA procedures to retrieve a full name from a short name, and
the converse, see the Oracle9i Java Developer’s Guide.

Full Name of Source
When you load a source file into the server, regardless of whether it is translated
and compiled, a source schema object is produced. The full name of this schema
object is determined by the package and class names in the source code. Any path
information you supply on the command line (so loadjava can find it) is
irrelevant to the determination of the name of the schema object.

For example, if Foo.sqlj defines a class Foo in package x.y and defines or
declares no other classes, then the full name of the resulting source schema object is:

x/y/Foo

Note that ".sqlj" is dropped.

If you define additional classes or declare iterator or connection context classes,
then the source schema object is named according to the first public class definition
or declaration encountered, or, if there are no public classes, the first class
definition. (In the server, there can be more than one public class definition in a
single source.)

For example, if Foo.sqlj is still in package x.y, defines public class Bar first and
then class Foo, and has no public iterator or connection context class declarations
preceding the definition of Bar, then the full name of the resulting source schema
object is:

x/y/Bar

If, however, the declaration of public iterator class MyIter precedes the Bar and
Foo class definitions, then the full name of the resulting source schema object is:

x/y/MyIter

Full Names of Generated Classes
Class schema objects are generated for each class you defined in the source, each
iterator you declared, and the profile-keys class. The naming of the class schema
objects is based on the class names and the package name from the source code.

This discussion continues the example in "Full Name of Source" on page 11-22.
Presume your source code specifies package x.y, defines public class Bar then class
11-22 SQLJ Developer’s Guide and Reference

Loading SQLJ Source and Translating in the Server
Foo, then declares public iterator class MyIter. The full names of the class schema
objects for the classes you define and declare are as follows:

x/y/Bar
x/y/Foo
x/y/MyIter

Note that ".class" is not appended.

The profile-keys class is named according to the name of the source schema object,
appended by:

_SJProfileKeys

If the Bar definition precedes the Foo definition and MyIter declaration, then the
class schema object for the profile-keys class is named as follows:

x/y/Bar_SJProfileKeys

If the MyIter declaration precedes either of the class definitions, then the
profile-keys class schema object is named as follows:

x/y/MyIter_SJProfileKeys

The name of the original source file, as well as any path information you specify
when loading the source into the server, is irrelevant in determining the names of
the generated classes.

If you define inner classes or anonymous classes in your code, then they are named
according to the conventions of the standard javac compiler.

Full Names of Generated Profiles
Resource schema objects for generated profiles are named in the same way as the
profile-keys class schema object—based on the source schema object name, using
package and class information from the source code in the same way. Any directory
information specified on the command line (the loadjava command line, for
example) or in a .jar file is irrelevant in determining the profile name.

Note: It is recommended that the source name always match the
first public class defined, or, if there are no public classes, the first
class defined. This will avoid possible differences between
client-side and server-side behavior.
 SQLJ in the Server 11-23

Loading SQLJ Source and Translating in the Server
When a source file is loaded and translated, the generated profiles use the source
schema object name as a base name, followed by:

_SJProfile0.ser
_SJProfile1.ser
...

Note that ".ser" is included.

This is identical to what is appended to produce a profile name on the client.

Using the examples in "Full Name of Source" on page 11-22, where the source
schema object was named either x/y/Foo, x/y/Bar, or x/y/MyIter (depending
on the situation, as discussed), the name of the profile would be:

x/y/Foo_SJProfile0.ser

or:

x/y/Bar_SJProfile0.ser

or:

x/y/MyIter_SJProfile0.ser

Error Output from the Server Embedded Translator
SQLJ error processing in the server is similar to general Java error processing in the
server. SQLJ errors are directed into the USER_ERRORS table of the user schema.
You can SELECT from the TEXT column of this table to get the text of a given error
message.

If you use loadjava to load your SQLJ source, however, loadjava also captures
and outputs the error messages from the server-side translator.

Informational messages and suppressible warnings are withheld by the server-side
translator in a way that is equivalent to the operation of the client-side translator
with a -warn=noportable,noverbose setting (which is the default). See
"Translator Warnings (-warn)" on page 8-43 for more information about the -warn
option of the client-side translator.
11-24 SQLJ Developer’s Guide and Reference

Loading SQLJ Source and Translating in the Server
Publishing the Application After Loading Source Files
Before using your SQLJ code in the server, you must publish the top-level methods,
as is true of any Java code you use in the server. Publishing includes writing call
descriptors, mapping datatypes, and setting parameter modes. For information, see
the Oracle9i Java Stored Procedures Developer’s Guide.
 SQLJ in the Server 11-25

Dropping Java Schema Objects
Dropping Java Schema Objects
To complement the loadjava utility, Oracle provides the dropjava utility to
remove (drop) Java source, class, and resource schema objects. It is recommended
that any schema object loaded into the server using loadjava be removed using
dropjava only. This section presents only an overview of dropjava; it is
discussed in detail in the Oracle9i Java Tools Reference.

The dropjava utility transforms command-line file names and .jar file contents
to schema object names, then removes the schema objects. You can enter .sqlj,
.java, .class, .ser, and .jar files on the command line in any order.

You should always remove Java schema objects in the same way that you first
loaded them. If you load a .sqlj source file and translate it in the server, then run
dropjava on the same source file. If you translate on a client and load classes and
resources directly, then run dropjava on the same classes and resources.

For example, if you run loadjava on Foo.sqlj, then execute dropjava on the
same file name, as follows:

dropjava -user scott/tiger Foo.sqlj

If you translate your program on the client and load it using a .jar file containing
the generated components, then use the same .jar file name to remove the
program:

dropjava -user scott/tiger Foo.jar

If you translate your program on the client and load the generated components
using the loadjava command line, then remove them using the dropjava
command line, as follows (presume there were no iterator classes):

dropjava -user scott/tiger Foo*.class dir1/dir2/Foo_SJProfile*.ser
11-26 SQLJ Developer’s Guide and Reference

Additional Considerations
Additional Considerations
This section discusses Java multithreading in the server and recursive SQLJ calls in
the server.

Java Multithreading in the Server
Programs that use Java multithreading can execute in Oracle9i without
modification; however, while client-side programs use multithreading to improve
throughput for users, there are no such benefits when Java-multithreaded code runs
in the server. If you are considering porting a multithreaded application into the
server, be aware of the following important differences in the functionality of
multithreading in the Oracle JVM, as opposed to in client-side JVMs:

■ Threads in the server run sequentially, not simultaneously.

■ In the server, threads within a call die at the end of the call.

■ Threads in the server are not preemptively scheduled. If one thread goes into an
infinite loop, then no other threads can run.

Do not confuse Java multithreading in Oracle9i with general Oracle server
multithreading. The latter refers to simultaneous Oracle sessions, not Java
multithreading. In the server, scalability and throughput are gained by having
many individual users, each with his own session, executing simultaneously. The
scheduling of Java execution for maximum throughput (such as for each call within
a session) is performed by the Oracle server, not by Java.

For general information about Java multithreading in SQLJ, see "Multithreading in
SQLJ" on page 7-25.

Recursive SQLJ Calls in the Server
As discussed in "Execution Context Synchronization" on page 7-18, SQLJ generally
does not allow multiple SQLJ statements to use the same execution context instance
simultaneously. Specifically, a statement trying to use an execution context instance
that is already in use will be blocked until the first statement completes.

This functionality would be less desirable in the Oracle server than on a client,
however. This is because different stored procedures or functions, which all
typically use the default execution context instance, can inadvertently try to use this
same execution context instance simultaneously in recursive situations. For
example, one stored procedure might use a SQLJ statement to call another stored
procedure that uses SQLJ statements. When these stored procedures are first
 SQLJ in the Server 11-27

Additional Considerations
created, there is probably no way of knowing when such situations might arise, so it
is doubtful that particular execution context instances are specified for any of the
SQLJ statements.

To address this situation, SQLJ does allow multiple SQLJ statements to use the same
execution context instance simultaneously if this results from recursive calls.

Consider an example of a recursive situation to see what happens to status
information in the execution context instance. Presume that all statements use the
default connection context instance and its default execution context instance. If
stored procedure proc1 has a SQLJ statement that calls stored procedure proc2,
which also has SQLJ statements, then the statements in proc2 will each be using
the execution context instance while the procedure call in proc1 is also using it.

Each SQLJ statement in proc2 results in status information for that statement being
written to the execution context instance, with the opportunity to retrieve that
information after completion of each statement as desired. The status information
from the statement in proc1 that calls proc2 is written to the execution context
instance only after proc2 has finished executing, program flow has returned to
proc1, and the operation in proc1 that called proc2 has completed.

To avoid confusion about execution context status information in recursive
situations, execution context methods are carefully defined to update status
information about a SQL operation only after the operation has completed.

Notes:

■ To avoid confusion, use distinct execution context instances as
appropriate whenever you plan to use execution context status
or control methods in code that will run in the server.

■ Be aware that if the above example does not use distinct
execution context instances, and proc2 has any method calls to
the execution context instance to change control parameters,
then this will affect operations subsequently executed in
proc1.

■ Update batching is not supported across recursive calls. By
default, only the top-level procedure will perform batching (if
enabled). This limitation can be avoided by using explicit
execution context instances.
11-28 SQLJ Developer’s Guide and Reference

Additional Considerations
For information about ExecutionContext methods, see "ExecutionContext
Methods" on page 7-19.

Verifying that Code is Running in the Server
A convenient way to verify that your code is actually running in the server is to use
the static getProperty() method of the java.lang.System class to retrieve the
oracle.server.version Java property. If this property contains a version
number, then you are running in the Oracle server. If it is null, then you are not.
Here is an example:

...
if (System.getProperty("oracle.server.version") != null
{
 // (running in server)
}
...

Note: Do not use the getProperties() method, as this causes a
security exception in the server.
 SQLJ in the Server 11-29

Additional Vehicles for SQLJ in the Server
Additional Vehicles for SQLJ in the Server
Most of the discussion in this chapter has presumed that SQLJ is being used for
stored procedures or stored functions; there has been no special consideration of
any other possibilities. Be aware, though, that you can also use SQLJ in the server in
the following ways:

■ in Enterprise JavaBeans

■ in CORBA server objects

This section introduces the use of Enterprise JavaBeans and CORBA objects. For
more information, see the Oracle9i Enterprise JavaBeans Developer’s Guide and
Reference and the Oracle9i CORBA Developer’s Guide and Reference. The EJB manual,
in its example code appendix, includes an example of an EJB developed with SQLJ.

Enterprise JavaBeans
To use SQLJ in Enterprise JavaBeans (EJBs), develop and translate the SQLJ EJBs on
a client and then load all resulting classes and resources into the server. To load and
publish EJBs, however, you must use a utility called deployejb (loadjava is not
used).

When you run the SQLJ translator for your EJB program, consider the following:

■ It might be helpful to use the SQLJ -ser2class option so that your profiles
are converted to .class files from .ser files. This simplifies the naming of the
resulting schema objects in the server, as explained in "Loaded Class and
Resource Schema Objects" on page 11-10; however, it prevents you from further
customizing the profiles. (To further customize, you must rerun the SQLJ
translator and regenerate the profiles.)

Alternatively, you can use the SQLJ -codegen=oracle setting to generate
Oracle-specific code directly. In this case, no profiles are produced. See
"Oracle-Specific Code Generation (No Profiles)" on page 10-11 for information.

Note: If your EJB or CORBA object uses any XA transactions
(UserTransaction in an EJB, or JTS in a CORBA object, for
example), then you cannot use explicit SQLJ COMMIT/ROLLBACK
statements or JDBC COMMIT/ROLLBACK methods. Any attempt to
do so will result in an exception. You must, instead, execute your
COMMIT and ROLLBACK operations through the particular XA
interface that you are using. See the Oracle9i JDBC Developer’s Guide
and Reference for general information about XA functionality.
11-30 SQLJ Developer’s Guide and Reference

Additional Vehicles for SQLJ in the Server
■ It is also helpful to use the SQLJ -d option to direct all generated .class files
(and .ser files, if any) into a specified directory.

Once you have translated your SQLJ EJB, gather everything into a .jar file. This
includes:

■ products of EJB development—.class files for home interface, remote
interface, bean implementation, and any dependent classes; any required Java
resources

■ products of SQLJ development and translation—application .class files,
profile-keys .class file, iterator .class files, and the profile (either in a
.class file or a .ser file)

"Alternative Deployment Scenarios" on page 1-16 provides a summary of what
SQLJ produces. (Note that you would presumably have no declared connection
context classes in a program being loaded into the server, because the only
connection is to the server itself.)

After creating the .jar file, use the deployejb utility to load everything into the
server, specifying the .jar file as input.

CORBA Server Objects
You can also use SQLJ for developing CORBA objects that have SQL DML
statements. As with EJBs, you must be careful to include all classes and resource
files that the SQLJ translator generates when you load files into the server. For
CORBA objects, load and publish as you would for stored procedures.

Create a .jar file to hold all the SQLJ-generated files, as discussed in "Enterprise
JavaBeans" on page 11-30, and use this file on the command line when you run the
loadjava utility.
 SQLJ in the Server 11-31

Additional Vehicles for SQLJ in the Server
11-32 SQLJ Developer’s Guide and Reference

 Sample Appli
12

Sample Applications

This chapter presents sample applications that highlight a range of SQLJ features,
from basic features to advanced features and Oracle extensions, categorized as
follows:

■ Demo Directories

■ Properties Files

■ Basic Samples

■ Object, Collection, and ORAData Samples

■ Advanced Samples

■ Performance Enhancement Samples

■ Applet Sample

■ Server-Side Sample

■ JDBC Versus SQLJ Sample Code
cations 12-1

Demo Directories
Demo Directories
This chapter contains a subset of SQLJ demos that can be found in the following
directory and its subdirectories after installation:

[Oracle Home]/sqlj/demo

This directory and its subdirectories are organized as follows:

■ demo directory (top-level)—properties files, basic samples, and advanced
samples

■ demo/Objects subdirectory—object and collection samples

■ demo/server subdirectory—server-side sample

■ demo/applets subdirectory—applet samples

■ demo/jdbc20 subdirectory—ISO SQLJ and JDBC 2.0 samples

■ demo/jpub—JPublisher samples

■ demo/components—samples of how to create your own semantics-checkers
and profile customizers

Please refer directly to the demo directories for the full set of SQLJ and JPublisher
sample applications.

Note: Listings in this chapter were copied directly from the demo
directory and subdirectories without alteration.
12-2 SQLJ Developer’s Guide and Reference

Properties Files
Properties Files
This section consists of two properties files—one for the SQLJ runtime connection
and one for translator option settings. These files are located in the following
directory:

[Oracle Home]/sqlj/demo

Runtime Connection Properties File
The sample applications in this chapter use the Oracle.connect() method, a
convenient way to create an instance of the DefaultContext class and establish it
as your default connection. This method offers several signatures; the signature
used in the samples takes a properties file—connect.properties—to specify
connection parameters. Here are sample contents of that file:

Users should uncomment one of the following URLs or add their own.
(If using Thin, edit as appropriate.)
#sqlj.url=jdbc:oracle:thin:@localhost:1521:ORCL
sqlj.url=jdbc:oracle:oci:@

User name and password here (edit to use different user/password)
sqlj.user=scott
sqlj.password=tiger

The version of this file in [Oracle Home]/sqlj/demo is configured to use the
JDBC OCI driver and scott/tiger schema. This is appropriate for the sample
applications in this chapter, presuming you have a client installation as described in
Chapter 2, "Getting Started".

For other uses, you must edit the file appropriately for your particular database
connection.

SQLJ Translator Properties File
A SQLJ translator properties file, such as sqlj.properties below and in the
demo directory, can be used to specify translator options in translating the SQLJ
demo applications. As is, the file does not enable online semantics-checking. To
enable it, "uncomment" the sqlj.user entries or add new sqlj.user entries, as
appropriate. An appropriate checker, either offline or online as applicable, will be
chosen for you by the default OracleChecker class.
 Sample Applications 12-3

Properties Files
In general, this properties file shows how to set numerous options, but settings are
commented out.

For information about SQLJ properties files, see "Properties Files for Option
Settings" on page 8-14.

###
Settings to establish a database connection for online checking
###

turn on checking by uncommenting user
or specifying the -user option on the command line
#sqlj.user=scott
sqlj.password=tiger

add additional drivers here
#sqlj.driver=oracle.jdbc.OracleDriver<,driver2...>

Oracle JDBC-OCI URL (9i driver)
#sqlj.url=jdbc:oracle:oci:@
#
Oracle9i JDBC-OCI8 URL (8i/8.0.x drivers)
#sqlj.url=jdbc:oracle:oci8:@
#
Oracle9i JDBC-OCI7 URL (7.3.x drivers)
#sqlj.url=jdbc:oracle:oci7:@

Oracle JDBC-Thin URL
#sqlj.url=jdbc:oracle:thin:@<host>:<port>:<oracle_sid>
#sqlj.url=jdbc:oracle:thin:@localhost:1521:orcl

Warning settings
Note: All settings must be specified TOGETHER on a SINGLE line.

Report portability warnings about Oracle-specific extensions to SQLJ
#sqlj.warn=portable

Turn all warnings off
#sqlj.warn=none

Turn informational messages on
#sqlj.warn=verbose

###
Online checker
###
12-4 SQLJ Developer’s Guide and Reference

Properties Files
Force Oracle 7.3 features only (with Oracle 9i JDBC and 9i database)
#sqlj.online=oracle.sqlj.checker.Oracle8To7JdbcChecker

Force Oracle 7.3 features only (with Oracle 8.0 JDBC and 8.0 database)
#sqlj.online=oracle.sqlj.checker.Oracle7JdbcChecker

JDBC-generic checker:
#sqlj.online=sqlj.semantics.JdbcChecker

###
Offline checker
###

Force Oracle 7.3 features only (with Oracle 9i JDBC)
#sqlj.offline=oracle.sqlj.checker.Oracle8To7OfflineChecker

Force Oracle 7.3 features only (with Oracle 8.0 JDBC)
#sqlj.offline=oracle.sqlj.checker.Oracle7OfflineChecker

JDBC-generic checker:
#sqlj.offline=sqlj.semantics.OfflineChecker

###
Re-use online checking results on correct statements
###
#sqlj.cache=on

###
Settings for the QueryDemo example
###
shows how to set options for a particular connection context
###
#sqlj.user@QueryDemoCtx=scott
#sqlj.password@QueryDemoCtx=tiger
#sqlj.url@QueryDemoCtx=jdbc:oracle:oci:@
#sqlj.url@QueryDemoCtx=jdbc:oracle:thin:@<host>:<port>:<oracle_sid>
 Sample Applications 12-5

Basic Samples
Basic Samples
This section presents examples that demonstrate some of the basic essentials of
SQLJ, including iterators and host expressions. The following samples are included:

■ Named Iterator—NamedIterDemo.sqlj

■ Positional Iterator—PosIterDemo.sqlj

■ Host Expressions—ExprDemo.sqlj

These samples are located in the following directory:

[Oracle Home]/sqlj/demo

Before beginning, connect to the database following the procedures described in
"Set Up the Runtime Connection" on page 2-11. Note that this includes creating the
following SALES table:

CREATE TABLE SALES (
 ITEM_NUMBER NUMBER,
 ITEM_NAME CHAR(30),
 SALES_DATE DATE,
 COST NUMBER,
 SALES_REP_NUMBER NUMBER,
 SALES_REP_NAME CHAR(20));

Named Iterator—NamedIterDemo.sqlj
This example demonstrates the use of a named iterator.

For information about named iterators (and positional iterators as well), see
"Multi-Row Query Results—SQLJ Iterators" on page 3-36.

// ------------------ Begin of file NamedIterDemo.sqlj -----------------------
//
// Invoke the SQLJ translator with the following command:
// sqlj NamedIterDemo.sqlj
// Then run as
// java NamedIterDemo

/* Import useful classes.
**
** Note that java.sql.Date (and not java.util.Date) is being used.
*/
12-6 SQLJ Developer’s Guide and Reference

Basic Samples
import java.sql.Date;
import java.sql.SQLException;
import oracle.sqlj.runtime.Oracle;

/* Declare an iterator.
**
** The comma-separated terms appearing in parentheses after the class name
** serve two purposes: they correspond to column names in the query results
** that later occupy instances of this iterator class, and they provide
** names for the accessor methods of the corresponding column data.
**
** The correspondence between the terms and column names is case-insensitive,
** while the correspondence between the terms and the generated accessor names
** is always case-sensitive.
*/

#sql iterator SalesRecs(
 int item_number,
 String item_name,
 Date sales_date,
 double cost,
 Integer sales_rep_number,
 String sales_rep_name);

class NamedIterDemo
{

 public static void main(String args[])
 {
 try
 {
 NamedIterDemo app = new NamedIterDemo();
 app.runExample();
 }
 catch(SQLException exception)
 {
 System.err.println("Error running the example: " + exception);
 }

 try { Oracle.close(); } catch (SQLException e) { }
 }

 /* Initialize database connection.
 Sample Applications 12-7

Basic Samples
 **
 ** Before any #sql blocks can be executed, a connection to a database
 ** must be established. The constructor of the application class is a
 ** convenient place to do this, since it is executed once, and only
 ** once, per application instance.
 */

 NamedIterDemo() throws SQLException
 {
 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 // set the default connection to the URL, user, and password
 // specified in your connect.properties file
 Oracle.connect(getClass(), "connect.properties");
 }

 void runExample() throws SQLException
 {
 System.out.println();
 System.out.println("Running the example.");
 System.out.println();

 /* Reset the database for the demo application.
 */

 #sql { DELETE FROM SALES };

 /* Insert a row into the cleared table.
 */

 #sql
 {
 INSERT INTO SALES VALUES(
 101,’Relativistic redshift recorder’,
 TO_DATE(’22-OCT-1997’,’dd-mon-yyyy’),
 10999.95,
 1,’John Smith’)
 };
12-8 SQLJ Developer’s Guide and Reference

Basic Samples
 /* Insert another row in the table using bind variables.
 */

 int itemID = 1001;
 String itemName = "Left-handed hammer";
 double totalCost = 79.99;

 Integer salesRepID = new Integer(358);
 String salesRepName = "Jouni Seppanen";
 Date dateSold = new Date(97,11,6);

 #sql { INSERT INTO SALES VALUES(:itemID,:itemName,:dateSold,:totalCost,
 :salesRepID,:salesRepName) };

 /* Instantiate and initialize the iterator.
 **
 ** The iterator object is initialized using the result of a query.
 ** The query creates a new instance of the iterator and stores it in
 ** the variable ’sales’ of type ’SalesRecs’. SQLJ translator has
 ** automatically declared the iterator so that it has methods for
 ** accessing the rows and columns of the result set.
 */

 SalesRecs sales;

 #sql sales = { SELECT item_number,item_name,sales_date,cost,
 sales_rep_number,sales_rep_name FROM sales };

 /* Print the result using the iterator.
 **
 ** Note how the next row is accessed using method ’next()’, and how
 ** the columns can be accessed with methods that are named after the
 ** actual database column names.
 */

 while(sales.next())
 {
 System.out.println("ITEM ID: " + sales.item_number());
 System.out.println("ITEM NAME: " + sales.item_name());
 System.out.println("COST: " + sales.cost());
 System.out.println("SALES DATE: " + sales.sales_date());
 System.out.println("SALES REP ID: " + sales.sales_rep_number());
 System.out.println("SALES REP NAME: " + sales.sales_rep_name());
 Sample Applications 12-9

Basic Samples
 System.out.println();
 }

 /* Close the iterator.
 **
 ** Iterators should be closed when you no longer need them.
 */

 sales.close() ;
 }

}

Positional Iterator—PosIterDemo.sqlj
This example demonstrates the use of a positional iterator.

For information about positional iterators (and named iterators as well), see
"Multi-Row Query Results—SQLJ Iterators" on page 3-36.

// ---------------------- Begin of file PosIterDemo.sqlj ---------------------
//
// Invoke the SQLJ translator as follows:
// sqlj PosIterDemo.sqlj
// Then run the program using
// java PosIterDemo

import java.sql.* ; // JDBC classes
import oracle.sqlj.runtime.Oracle; // Oracle class for connecting

/* Declare a ConnectionContext class named PosIterDemoCtx. Instances of this
 class can be used to specify where SQL operations should execute. */
#sql context PosIterDemoCtx;

/* Declare a positional iterator class named FetchSalesIter.*/
#sql iterator FetchSalesIter (int, String, Date, double);

class PosIterDemo {

 private PosIterDemoCtx ctx = null; // holds the database connection info

 /* The constructor sets up a database connection. */
12-10 SQLJ Developer’s Guide and Reference

Basic Samples
 public PosIterDemo() {
 try
 {
 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 // get a context object based on the URL, user, and password
 // specified in your connect.properties file
 ctx = new PosIterDemoCtx(Oracle.getConnection(getClass(),
 "connect.properties"));
 }
 catch (Exception exception)
 { System.err.println (
 "Error setting up database connection: " + exception);
 }
 }

 //Main method
 public static void main (String args[])
 {
 PosIterDemo posIter = new PosIterDemo();

 try
 {
 //Run the example
 posIter.runExample() ;

 //Close the connection
 posIter.ctx.close() ;
 }
 catch (SQLException exception)
 { System.err.println (
 "Error running the example: " + exception) ;
 }

 try { Oracle.close(); } catch (SQLException e) { }
 } //End of method main

 //Method that runs the example
 void runExample() throws SQLException
 {

 /* Reset the database for the demo application. */
 Sample Applications 12-11

Basic Samples
 #sql [ctx] { DELETE FROM SALES
 -- Deleting sales rows

 };

 insertSalesRecord
 (250, "widget1", new Date(97, 9, 9), 12.00,
 new Integer(218), "John Doe"
) ;

 insertSalesRecord
 (267, "thing1", new Date(97, 9, 10), 700.00,
 new Integer(218), "John Doe"
) ;

 insertSalesRecord
 (270, "widget2", new Date(97, 9, 10), 13.00,
 null, "Jane Doe" // Note: Java null is same as SQL null
) ;

 System.out.println("Sales records before delete") ;
 printRecords(fetchSales()) ;

 // Now delete some sales records
 Date delete_date;
 #sql [ctx] { SELECT MAX(sales_date) INTO :delete_date
 FROM SALES };

 #sql [ctx] { DELETE FROM SALES WHERE sales_date = :delete_date };

 System.out.println("Sales records after delete") ;
 printRecords(fetchSales()) ;

 } //End of method runExample

 //Method to select all records from SALES through a positional iterator
 FetchSalesIter fetchSales() throws SQLException {
 FetchSalesIter f;

 #sql [ctx] f = { SELECT item_number, item_name, sales_date, cost
 FROM sales };
 return f;
 }
12-12 SQLJ Developer’s Guide and Reference

Basic Samples
 //Method to print rows using a FetchSalesIter
 void printRecords(FetchSalesIter salesIter) throws SQLException
 {
 int item_number = 0;
 String item_name = null;
 Date sales_date = null;
 double cost = 0.0;

 while (true)
 {
 #sql { FETCH :salesIter
 INTO :item_number, :item_name, :sales_date, :cost
 };
 if (salesIter.endFetch()) break;

 System.out.println("ITEM NUMBER: " + item_number) ;
 System.out.println("ITEM NAME: " + item_name) ;
 System.out.println("SALES DATE: " + sales_date) ;
 System.out.println("COST: " + cost) ;
 System.out.println() ;
 }

 //Close the iterator since we are done with it.
 salesIter.close() ;

 } //End of method runExample

 //Method to insert one row into the database
 void insertSalesRecord(
 int item_number,
 String item_name,
 Date sales_date,
 double cost,
 Integer sales_rep_number,
 String sales_rep_name)

 throws SQLException
 {
 #sql [ctx] {INSERT INTO SALES VALUES
 (:item_number, :item_name, :sales_date, :cost,
 :sales_rep_number, :sales_rep_name
)
 } ;
 } //End of method insertSalesRecord
 Sample Applications 12-13

Basic Samples
} //End of class PosIterDemo

//End of file PosIterDemo.sqlj

Host Expressions—ExprDemo.sqlj
This example demonstrates the use of host expressions.

For information about host expressions, see "Java Host Expressions, Context
Expressions, and Result Expressions" on page 3-15.

import java.sql.Date;
import java.sql.SQLException;
import oracle.sqlj.runtime.Oracle;

class ExprDemo
{

 public static void main(String[] arg)
 {
 try
 {
 new ExprDemo().runExample();
 }
 catch(SQLException e)
 {
 System.err.println("Error running the example: " + e);
 }

 try
 {
 Oracle.close();
 }
 catch(SQLException e) { }
 }

 ExprDemo() throws SQLException
 {
 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */
12-14 SQLJ Developer’s Guide and Reference

Basic Samples
 // set the default connection to the URL, user, and password
 // specified in your connect.properties file
 Oracle.connect(getClass(), "connect.properties");
 }

 int[] array;
 int indx;

 Integer integer;

 class Demo
 {
 int field = 0;
 }

 Demo obj = new Demo();

 int total;

 void printArray()
 {
 System.out.print("array[0.." + (array.length-1) + "] = { ");

 int i;

 for(i=0;i<array.length;++i)
 {
 System.out.print(array[i] + ",");
 }

 System.out.println(" }");
 }

 void printIndex()
 {
 System.out.println("indx = " + indx);
 }
 Sample Applications 12-15

Basic Samples
 void printTotal()
 {
 System.out.println("total = " + total);
 }

 void printField()
 {
 System.out.println("obj.field = " + obj.field);
 }

 void printInteger()
 {
 System.out.println("integer = " + integer);
 }

 void runExample() throws SQLException
 {
 System.out.println();
 System.out.println("Running the example.");
 System.out.println();

 /*~~~

 Expressions ’indx++’ and ’array[indx]’ are evaluated in that order.
 Because ’indx++’ increments the value of ’indx’ from 1 to 2, the
 result will be stored in ’array[2]’:

 Suggested Experiments:

 - Try preincrement operator instead of post-increment
 - See what happens if the array index goes out of bounds as a result
 of being manipulated in a host expression

 */

 array = new int[] { 1000,1001,1002,1003,1004,1005 };
 indx = 1;

 #sql { SELECT :(indx++) INTO :(array[indx]) FROM DUAL };

 printArray();
12-16 SQLJ Developer’s Guide and Reference

Basic Samples
 System.out.println();

 /*~~~

 Expressions ’array[indx]’ and ’indx++’ are evaluated in that order.
 The array reference is evaluated before the index is incremented,
 and hence the result will be stored in ’array[1]’ (compare with the
 previous example):

 */

 array = new int[] { 1000,1001,1002,1003,1004,1005 };
 indx = 1;

 #sql { SET :(array[indx]) = :(indx++) };

 printArray();

 System.out.println();

 /*~~~

 Expressions ’x.field’ and ’y.field’ both refer to the same variable,
 ’obj.field’. If an attempt is made to assign more than one results
 in what is only one storage location, then only the last assignment
 will remain in effect (so in this example ’obj.field’ will contain 2
 after the execution of the SQL statement):

 */

 Demo x = obj;
 Demo y = obj;

 #sql { SELECT :(1), :(2) INTO :(x.field), :(y.field) FROM DUAL };

 printField();

 System.out.println();

 /*~~~

 All expressions are evaluated before any are assigned. In this
 example the ’indx’ that appears in the second assignment will be
 evaluated before any of the assignments take place. In particular,
 when ’indx’ is being used to assign to ’total’, its value has not
 Sample Applications 12-17

Basic Samples
 yet been assigned to be 100.

 The following warning may be generated, depending on the settings
 of the SQLJ translator:

 Warning: Repeated host item indx in positions 1 and 3 in SQL
 block. Behavior is vendor-defined and non portable.

 */

 indx = 1;
 total = 0;

 #sql
 {
 BEGIN
 :OUT indx := 100;
 :OUT total := :IN (indx);
 END;
 };

 printIndex();
 printTotal();

 System.out.println();

 /*~~~

 Expression ’indx++’ in the following example is evaluated exactly
 once, despite appearing inside a SQL loop construct. Its old value
 before increment is used repeatedly inside the loop, and its value
 is incremented only once, to 2.

 */

 indx = 1;
 total = 0;

 #sql
 {
 DECLARE
 n NUMBER;
 s NUMBER;
 BEGIN
 n := 0;
12-18 SQLJ Developer’s Guide and Reference

Basic Samples
 s := 0;
 WHILE n < 100 LOOP
 n := n + 1;
 s := s + :IN (indx++);
 END LOOP;
 :OUT total := s;
 END;
 };

 printIndex();
 printTotal();

 System.out.println();

 /*~~~

 In the next example there are two assignments to the same variable,
 each inside a different branch of an SQL ’if..then..else..end if’
 construct, so that only one of those will be actually executed at
 run-time. However, assignments to OUT variable are always carried
 out, regardless of whether the SQL code that manipulates the return
 value has been executed or not.

 In the following example, only the first assignment is executed by
 the SQL; the second assignment is not executed. When the control
 returns to Java from the SQL statement, the Java variable ’integer’
 is assigned twice: first with the value ’1’ it receives from the
 first SQL assignment, then with a ’null’ value it receives from the
 second assignment that is never executed. Because the assignments
 occur in this order, the final value of ’integer’ after executing
 this SQL statement is undefined.

 The following warning may be generated, depending on the settings
 of the SQLJ translator:

 Warning: Repeated host item indx in positions 1 and 3 in SQL
 block. Behavior is vendor-defined and non portable.

 Suggested experiments:

 - Use a different OUT-variable in the ’else’-branch
 - Vary the condition so that the ’else’-branch gets executed

 */
 Sample Applications 12-19

Basic Samples
 integer = new Integer(0);

 #sql
 {
 BEGIN
 IF 1 > 0 THEN
 :OUT integer := 1;
 ELSE
 :OUT integer := 2;
 END IF;
 END;
 };

 printInteger();

 System.out.println();

 /*~~~
 */

 }
}

12-20 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
Object, Collection, and ORAData Samples
This section has examples showing support of user-defined objects and collections
through oracle.sql.ORAData implementations, and general use of the ORAData
interface. (This interface is discussed in "Custom Java Classes" on page 6-6.) The
following samples are included:

■ Definition of Object and Collection Types

■ Oracle Objects—ObjectDemo.sqlj

■ Oracle Nested Tables—NestedDemo1.sqlj and NestedDemo2.sqlj

■ Oracle VARRAYs—VarrayDemo1.sqlj and VarrayDemo2.sqlj

■ General Use of ORAData—BetterDate.java

The object and collection samples are located in the following directory:

[Oracle Home]/sqlj/demo/Objects

For a full discussion of objects and collections, see Chapter 6, "Objects and
Collections"

For examples of object support through a java.sql.SQLData implementation,
see the Oracle9i JPublisher User’s Guide and the Oracle9i JDBC Developer’s Guide and
Reference.

Also see samples in the demo/jpub directory.

Definition of Object and Collection Types
The following SQL script defines Oracle object types, Oracle collection types (both
nested tables and VARRAYs), and tables used in the object, nested table, and
VARRAY sample applications below. In particular, it defines the following:

■ object types PERSON and ADDRESS for the objects demo

■ object types MODULE_T and PARTICIPANT_T for the nested tables demos

■ nested table type MODULETBL_T

■ VARRAY type PHONE_ARRAY

Here is the script:

/*** Using UDTs in SQLJ ***/
SET ECHO ON;
/**
 Sample Applications 12-21

Object, Collection, and ORAData Samples
Consider two types, person and address, and a typed table for
person objects, that are created in the database using the following
SQL script.
**/

/*** Clean up ***/
DROP TABLE EMPLOYEES
/
DROP TABLE PERSONS
/
DROP TABLE projects
/
DROP TABLE participants
/
DROP TYPE PHONE_ARRAY FORCE
/
DROP TYPE PHONE_TAB FORCE
/
DROP TYPE PERSON FORCE
/
DROP TYPE ADDRESS FORCE
/
DROP TYPE moduletbl_t FORCE
/
DROP TYPE module_t FORCE
/
DROP TYPE participant_t FORCE
/

/*** Create an address ADT ***/
CREATE TYPE address AS OBJECT
(
 street VARCHAR(60),
 city VARCHAR(30),
 state CHAR(2),
 zip_code CHAR(5)
)
/
show errors

/*** Create a person ADT containing an embedded Address ADT ***/
CREATE TYPE person AS OBJECT
(
 name VARCHAR(30),
 ssn NUMBER,
12-22 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
 addr address
)
/
show errors

/*** Create a typed table for person objects ***/
CREATE TABLE persons OF person
/
show errors
CREATE TYPE PHONE_ARRAY IS VARRAY (10) OF varchar2(30)
/
show errors
CREATE TYPE participant_t AS OBJECT (
 empno NUMBER(4),
 ename VARCHAR2(20),
 job VARCHAR2(12),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 deptno NUMBER(2))
/
show errors
CREATE TYPE module_t AS OBJECT (
 module_id NUMBER(4),
 module_name VARCHAR2(20),
 module_owner REF participant_t ,
 module_start_date DATE,
 module_duration NUMBER)
/
show errors
create TYPE moduletbl_t AS TABLE OF module_t;
/
show errors

/*** Create a relational table with two columns that are REFs
 to person objects, as well as a column which is an Address ADT. ***/

CREATE TABLE employees
(empnumber INTEGER PRIMARY KEY,
 person_data REF person,
 manager REF person,
 office_addr address,
 salary NUMBER,
 phone_nums phone_array
)

 Sample Applications 12-23

Object, Collection, and ORAData Samples
/
CREATE TABLE projects (
 id NUMBER(4),
 name VARCHAR(30),
 owner REF participant_t,
 start_date DATE,
 duration NUMBER(3),
 modules moduletbl_t) NESTED TABLE modules STORE AS modules_tab ;

CREATE TABLE participants OF participant_t ;

/*** Now let’s put in some sample data
 Insert 2 objects into the persons typed table ***/

INSERT INTO persons VALUES (
 person(’Wolfgang Amadeus Mozart’, 123456,
 address(’Am Berg 100’, ’Salzburg’, ’AU’,’10424’)))
/
INSERT INTO persons VALUES (
 person(’Ludwig van Beethoven’, 234567,
 address(’Rheinallee’, ’Bonn’, ’DE’, ’69234’)))
/

/** Put a row in the employees table **/

INSERT INTO employees (empnumber, office_addr, salary, phone_nums) VALUES
 (1001,
 address(’500 Oracle Parkway’, ’Redwood City’, ’CA’, ’94065’),
 50000,
 phone_array(’(408) 555-1212’, ’(650) 555-9999’));
/

/** Set the manager and person REFs for the employee **/

UPDATE employees
 SET manager =
 (SELECT REF(p) FROM persons p WHERE p.name = ’Wolfgang Amadeus Mozart’)
/

UPDATE employees
 SET person_data =
 (SELECT REF(p) FROM persons p WHERE p.name = ’Ludwig van Beethoven’)
/

/* now we insert data into the PARTICIPANTS and PROJECTS tables */
12-24 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
INSERT INTO participants VALUES (
participant_T(7369,’ALAN
SMITH’,’ANALYST’,7902,to_date(’17-12-1980’,’dd-mm-yyyy’),800,20)) ;

INSERT INTO participants VALUES (
participant_t(7499,’ALLEN
TOWNSEND’,’ANALYST’,7698,to_date(’20-2-1981’,’dd-mm-yyyy’),1600,30));

INSERT INTO participants VALUES (
participant_t(7521,’DAVID
WARD’,’MANAGER’,7698,to_date(’22-2-1981’,’dd-mm-yyyy’),1250,30));

INSERT INTO participants VALUES (
participant_t(7566,’MATHEW
JONES’,’MANAGER’,7839,to_date(’2-4-1981’,’dd-mm-yyyy’),2975,20));

INSERT INTO participants VALUES (
participant_t(7654,’JOE
MARTIN’,’MANAGER’,7698,to_date(’28-9-1981’,’dd-mm-yyyy’),1250,30));

INSERT INTO participants VALUES (
participant_t(7698,’PAUL
JONES’,’Director’,7839,to_date(’1-5-1981’,’dd-mm-yyyy’),2850,30));

INSERT INTO participants VALUES (
participant_t(7782,’WILLIAM
CLARK’,’MANAGER’,7839,to_date(’9-6-1981’,’dd-mm-yyyy’),2450,10));

INSERT INTO participants VALUES (
participant_t(7788,’SCOTT
MANDELSON’,’ANALYST’,7566,to_date(’13-JUL-87’,’dd-mm-yy’)-85,3000,20));

INSERT INTO participants VALUES (
participant_t(7839,’TOM
KING’,’PRESIDENT’,NULL,to_date(’17-11-1981’,’dd-mm-yyyy’),5000,10));
 Sample Applications 12-25

Object, Collection, and ORAData Samples
INSERT INTO participants VALUES (
participant_t(7844,’MARY TURNER’,’SR
MANAGER’,7698,to_date(’8-9-1981’,’dd-mm-yyyy’),1500,30));

INSERT INTO participants VALUES (
participant_t(7876,’JULIE ADAMS’,’SR ANALYST’,7788,to_date(’13-JUL-87’,
’dd-mm-yy’)-51,1100,20));

INSERT INTO participants VALUES (
participant_t(7900,’PAMELA JAMES’,’SR
ANALYST’,7698,to_date(’3-12-1981’,’dd-mm-yyyy’),950,30));

INSERT INTO participants VALUES (
participant_t(7902,’ANDY
FORD’,’ANALYST’,7566,to_date(’3-12-1981’,’dd-mm-yyyy’),3000,20));

INSERT INTO participants VALUES (
participant_t(7934,’CHRIS MILLER’,’SR
ANALYST’,7782,to_date(’23-1-1982’,’dd-mm-yyyy’),1300,10));

INSERT INTO projects VALUES (101, ’Emarald’, null, ’10-JAN-98’, 300,
 moduletbl_t(module_t (1011 , ’Market Analysis’, null, ’01-JAN-98’, 100),
 module_t (1012 , ’Forecast’, null, ’05-FEB-98’,20) ,
 module_t (1013 , ’Advertisement’, null, ’15-MAR-98’, 50),
 module_t (1014 , ’Preview’, null, ’15-MAR-98’,44),
 module_t (1015 , ’Release’, null,’12-MAY-98’,34))) ;

update projects set owner=(select ref(p) from participants p where p.empno =
7839) where id=101 ;

update the (select modules from projects a where a.id = 101)
set module_owner = (select ref(p) from participants p where p.empno = 7844)
where module_id = 1011 ;

update the (select modules from projects where id = 101)
set module_owner = (select ref(p) from participants p where p.empno = 7934)
where module_id = 1012 ;

update the (select modules from projects where id = 101)
set module_owner = (select ref(p) from participants p where p.empno = 7902)
12-26 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
where module_id = 1013 ;

update the (select modules from projects where id = 101)
set module_owner = (select ref(p) from participants p where p.empno = 7876)
where module_id = 1014 ;

update the (select modules from projects where id = 101)
set module_owner = (select ref(p) from participants p where p.empno = 7788)
where module_id = 1015 ;

INSERT INTO projects VALUES (500, ’Diamond’, null, ’15-FEB-98’, 555,
 moduletbl_t (module_t (5001 , ’Manufacturing’, null, ’01-MAR-98’, 120),
 module_t (5002 , ’Production’, null, ’01-APR-98’,100),
 module_t (5003 , ’Materials’, null, ’01-MAY-98’,200) ,
 module_t (5004 , ’Marketing’, null, ’01-JUN-98’,10) ,
 module_t (5005 , ’Materials’, null, ’15-FEB-99’,50),
 module_t (5006 , ’Finance ’, null, ’16-FEB-99’,12),
 module_t (5007 , ’Budgets’, null, ’10-MAR-99’,45))) ;

update projects set owner=(select ref(p) from participants p where p.empno =
7698) where id=500 ;

update the (select modules from projects where id = 500)
set module_owner = (select ref(p) from participants p where p.empno = 7369)
where module_id = 5001 ;

update the (select modules from projects where id = 500)
set module_owner = (select ref(p) from participants p where p.empno = 7499)
where module_id = 5002 ;

update the (select modules from projects where id = 500)
set module_owner = (select ref(p) from participants p where p.empno = 7521)
where module_id = 5004 ;

update the (select modules from projects where id = 500)
set module_owner = (select ref(p) from participants p where p.empno = 7566)
where module_id = 5005 ;

update the (select modules from projects where id = 500)
set module_owner = (select ref(p) from participants p where p.empno = 7654)
where module_id = 5007 ;

COMMIT
/
QUIT
 Sample Applications 12-27

Object, Collection, and ORAData Samples
Oracle Objects—ObjectDemo.sqlj
Following is the ObjectDemo.sqlj source code. This uses definitions from the
preceding SQL script in "Definition of Object and Collection Types", which begins
on page 12-21.

Use of objects is discussed in "Strongly Typed Objects and References in SQLJ
Executable Statements" on page 6-53.

import java.sql.SQLException;
import java.sql.DriverManager;
import java.math.BigDecimal;
import oracle.sqlj.runtime.Oracle;

public class ObjectDemo
{

/* Global variables */

static String uid = "scott"; /* user id */
static String password = "tiger"; /* password */
static String url = "jdbc:oracle:oci:@"; /* Oracle’s OCI driver */

public static void main(String [] args)
{

 System.out.println("*** SQLJ OBJECT DEMO ***");

 try {

 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 /* Connect to the database */
 Oracle.connect(ObjectDemo.class, "connect.properties");

 /* DML operations on single objects */

 selectAttributes(); /* Select Person attributes */
 updateAttributes(); /* Update Address attributes */

 selectObject(); /* Select a person object */
 insertObject(); /* Insert a new person object */
 updateObject(); /* Update an address object */
12-28 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
 selectRef(); /* Select Person objects via REFs */
 updateRef(); /* Update Person objects via REFs */

 #sql { rollback work };

 }
 catch (SQLException exn)
 {
 System.out.println("SQLException: "+exn);
 }
 finally
 {
 try
 {
 #sql { rollback work };
 }
 catch (SQLException exn)
 {
 System.out.println("Unable to roll back: "+exn);
 }
 }

 System.out.println("*** END OF SQLJ OBJECT DEMO ***");
}

/**
Iterator for selecting a person’s data.
*/

#sql static iterator PData (String name, String address, int ssn);

/**
Selecting individual attributes of objects
*/
static void selectAttributes()

{
 /*
 Select individual scalar attributes of a person object
 into host types such as int, String
 */

 String name;
 Sample Applications 12-29

Object, Collection, and ORAData Samples
 String address;
 int ssn;

 PData iter;

 System.out.println("Selecting person attributes.");
 try {
 #sql iter =
 {
 select p.name as "name", p.ssn as "ssn",
 p.addr.street || ’, ’ || p.addr.city
 || ’, ’ || p.addr.state
 || ’, ’ || p.addr.zip_code as "address"
 from persons p
 where p.addr.state = ’AU’ OR p.addr.state = ’CA’ };

 while (iter.next())
 {
 System.out.println("Selected person attributes:");
 System.out.println("name = " + iter.name());
 System.out.println("ssn = " + iter.ssn());
 System.out.println("address = " + iter.address());
 }
 } catch (SQLException exn) {
 System.out.println("SELECT failed with "+exn);
 }
}

/**
Updating individual attributes of an object
*/

static void updateAttributes()
{

 /*
 * Update a person object to have a new address. This example
 * illustrates the use of constructors in SQL to create object types
 * from scalars.
 */

 String name = "Ludwig van Beethoven";
 String new_street = "New Street";
 String new_city = "New City";
12-30 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
 String new_state = "WA";
 String new_zip = "53241";

 System.out.println("Updating person attributes..");

 try { #sql {

 update persons
 set addr = Address(:new_street, :new_city, :new_state, :new_zip)
 where name = :name };

 System.out.println("Updated address attribute of person.");

 } catch (SQLException exn) {

 System.out.println("UPDATE failed with "+exn);
 }
}

/**
Selecting an object
*/

static void selectObject()
{
 /*
 * When selecting an object from a typed table like persons
 * (as opposed to an object column in a relational table, e.g.,
 * office_addr in table employees), you have to use the VALUE
 * function with a table alias.
 */

 Person p;
 System.out.println("Selecting the Ludwig van Beethoven person object.");

 try { #sql {
 select value(p) into :p
 from persons p
 where p.addr.state = ’WA’ AND p.name = ’Ludwig van Beethoven’ };

 printPersonDetails(p);

 /*
 * Memory for the person object was automatically allocated,
 Sample Applications 12-31

Object, Collection, and ORAData Samples
 * and it will be automatically garbage collected when this
 * method returns.
 */

 } catch (SQLException exn) {
 System.out.println("SELECT failed with "+exn);
 }
 catch (Exception exn)
 {
 System.out.println("An error occurred");
 exn.printStackTrace();
 }
}

/**
Inserting an object
*/

static void insertObject()
{

 String new_name = "NEW PERSON";
 int new_ssn = 987654;
 String new_street = "NEW STREET";
 String new_city = "NEW CITY";
 String new_state = "NS";
 String new_zip = "NZIP";

 /*
 * Insert a new person object into the persons table
 */
 try {
 #sql {
 insert into persons
 values (person(:new_name, :new_ssn,
 address(:new_street, :new_city, :new_state, :new_zip)))
 };

 System.out.println("Inserted person object NEW PERSON.");

 } catch (SQLException exn) { System.out.println("INSERT failed with "+exn); }
}

/**
Updating an object
12-32 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
*/

static void updateObject()
{

 Address addr;
 Address new_addr;
 int empno = 1001;

try {
 #sql {
 select office_addr
 into :addr
 from employees
 where empnumber = :empno };
 System.out.println("Current office address of employee 1001:");

 printAddressDetails(addr);

 /* Now update the street of address */

 String street ="100 Oracle Parkway";
 addr.setStreet(street);

 /* Put updated object back into the database */

 try
 {
 #sql {
 update employees
 set office_addr = :addr
 where empnumber = :empno };

 System.out.println
 ("Updated employee 1001 to new address at Oracle Parkway.");

 /* Select new address to verify update */

 try
 {
 #sql {
 select office_addr
 into :new_addr
 from employees
 where empnumber = :empno };
 Sample Applications 12-33

Object, Collection, and ORAData Samples

 System.out.println("New office address of employee 1001:");
 printAddressDetails(new_addr);

 } catch (SQLException exn) {
 System.out.println("Verification SELECT failed with "+exn);
 }

 } catch (SQLException exn) {
 System.out.println("UPDATE failed with "+exn);
 }

} catch (SQLException exn) {
 System.out.println("SELECT failed with "+exn);
}

 /* No need to free anything explicitly. */

}

/**
Selecting an object via a REF
*/

static void selectRef()
{

 String name = "Ludwig van Beethoven";
 Person mgr;

 System.out.println("Selecting manager of "+name+" via a REF.");

 try {
 #sql {
 select deref(manager)
 into :mgr
 from employees e
 where e.person_data.name = :name
 } ;

 System.out.println("Current manager of "+name+":");
 printPersonDetails(mgr);

 } catch (SQLException exn) {
12-34 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
 System.out.println("SELECT REF failed with "+exn); }
}

/**
Updating a REF to an object
*/

static void updateRef()
{

 int empno = 1001;
 String new_manager = "NEW PERSON";

 System.out.println("Updating manager REF.");
 try {
 #sql {
 update employees
 set manager = (select ref(p) from persons p where p.name = :new_manager)
 where empnumber = :empno };

 System.out.println("Updated manager of employee 1001. Selecting back");

 } catch (SQLException exn) {
 System.out.println("UPDATE REF failed with "+exn);
 }

 /* Select manager back to verify the update */
 Person manager;

 try {
 #sql {
 select deref(manager)
 into :manager
 from employees e
 where empnumber = :empno
 } ;

 System.out.println("Current manager of "+empno+":");
 printPersonDetails(manager);

 } catch (SQLException exn) {
 System.out.println("SELECT REF failed with "+exn); }

}

 Sample Applications 12-35

Object, Collection, and ORAData Samples
/**
Utility functions
*/

/**** Print the attributes of a person object ****/

static void printPersonDetails(Person p) throws SQLException
{
 if (p == null) {
 System.out.println("NULL Person");
 return;

 }

 System.out.print("Person ");
 System.out.print((p.getName()==null) ? "NULL name" : p.getName());
 System.out.print
 (", SSN=" + ((p.getSsn()==null) ? "-1" : p.getSsn().toString()));
 System.out.println(":");
 printAddressDetails(p.getAddr());
}

/**** Print the attributes of an address object ****/

static void printAddressDetails(Address a) throws SQLException
{

 if (a == null) {
 System.out.println("No Address available.");
 return;
 }

 String street = ((a.getStreet()==null) ? "NULL street" : a.getStreet()) ;
 String city = (a.getCity()==null) ? "NULL city" : a.getCity();
 String state = (a.getState()==null) ? "NULL state" : a.getState();
 String zip_code = (a.getZipCode()==null) ? "NULL zip" : a.getZipCode();

 System.out.println("Street: ’" + street + "’");
 System.out.println("City: ’" + city + "’");
 System.out.println("State: ’" + state + "’");
 System.out.println("Zip: ’" + zip_code + "’");
}

12-36 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
/**** Populate a person object with data ****/

static Person createPersonData(int i) throws SQLException
{
 Person p = new Person();

 /* create and load the dummy data into the person */
 p.setName("Person " + i);
 p.setSsn(new BigDecimal(100000 + 10 * i));

 Address a = new Address();
 p.setAddr(a);
 a.setStreet("Street " + i);
 a.setCity("City " + i);
 a.setState("S" + i);
 a.setZipCode("Zip"+i);

 /* Illustrate NULL values for objects and individual attributes */

 if (i == 2)
 {
 /* Pick this person to have a NULL ssn and a NULL address */
 p.setSsn(null);
 p.setAddr(null);
 }
 return p;
}

}

Oracle Nested Tables—NestedDemo1.sqlj and NestedDemo2.sqlj
Following is the source code for NestedDemo1.sqlj and NestedDemo2.sqlj.
These use definitions from the SQL script in "Definition of Object and Collection
Types" on page 12-21.

Use of nested tables is discussed in "Strongly Typed Collections in SQLJ Executable
Statements" on page 6-59.
 Sample Applications 12-37

Object, Collection, and ORAData Samples
NestedDemo1.sqlj
// --------------Begin of NestedDemo1.sqlj -------------------------

// Import Useful classes

import sqlj.runtime.*;
import sqlj.runtime.ref.*;
import java.sql.*;
import oracle.sql.* ;
import oracle.sqlj.runtime.Oracle;

public class NestedDemo1
{
 // The Nested Table is accessed using the ModuleIter
 // The ModuleIter is defined as Named Iterator

 #sql public static iterator ModuleIter(int moduleId ,
 String moduleName ,
 String moduleOwner);

 // Get the Project Details using the ProjIter defined as
 // Named Iterator. Notice the use of ModuleIter below:

 #sql public static iterator ProjIter(int id,
 String name,
 String owner,
 Date start_date,
 ModuleIter modules);

 public static void main(String[] args)
 {
 try {
 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 /* Connect to the database */
 Oracle.connect(NestedDemo1.class, "connect.properties");

 listAllProjects(); // uses named iterator
 } catch (Exception e) {
 System.err.println("Error running ProjDemo: " + e);
 }
 }

12-38 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples

 public static void listAllProjects() throws SQLException
 {
 System.out.println("Listing projects...");

 // Instantiate and initilaise the iterators

 ProjIter projs = null;
 ModuleIter mods = null;
 #sql projs = {SELECT a.id,
 a.name,
 initcap(a.owner.ename) as "owner",
 a.start_date,
 CURSOR (
 SELECT b.module_id AS "moduleId",
 b.module_name AS "moduleName",
 initcap(b.module_owner.ename) AS "moduleOwner"
 FROM TABLE(a.modules) b) AS "modules"
 FROM projects a };

 // Display Project Details

 while (projs.next()) {
 System.out.println();
 System.out.println("’" + projs.name() + "’ Project Id:"
 + projs.id() + " is owned by " +"’"+ projs.owner() +"’"
 + " start on "
 + projs.start_date());

 // Notice below the modules from the Projiter are assigned to the module
 // iterator variable
 mods = projs.modules() ;
 System.out.println ("Modules in this Project are : ") ;

 // Display Module details
 while(mods.next()) {
 System.out.println (" "+ mods.moduleId() + " ’"+
 mods.moduleName() + "’ owner is ’" +
 mods.moduleOwner()+"’") ;
 } // end of modules
 mods.close();
 } // end of projects
 projs.close();
 }
}

 Sample Applications 12-39

Object, Collection, and ORAData Samples
NestedDemo2.sqlj
// --------------Begin of NestedDemo2.sqlj -------------------------
// Demonstrate DML on Nested Tables in SQLJ
// Import Useful classes

import sqlj.runtime.*;
import sqlj.runtime.ref.*;
import java.sql.*;
import oracle.sql.*;
import oracle.sqlj.runtime.Oracle;

public class NestedDemo2
{
 #sql public static iterator ModIter(int, String, String) ;

 static ModuletblT mymodules=null;

 public static void main(String[] args)
 {
 try {
 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 /* get connect to the database */
 Oracle.connect(NestedDemo2.class, "connect.properties");

 cleanupPreviousRuns();
 /*
 // insert new project into Projects table
 // get the owner details from ’participant’
 */

 String ProjName ="My project";
 int projid = 123;
 String Owner = "MARY TURNER";
 insertProject(projid, ProjName, Owner); // insert new project

 /*
 // Insert another Project
 // Both project details and Nested table details are inserted
 */
 projid = 600;
 insertProject2(projid);
12-40 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
 /* Insert a new module for the above project */
 insertModules(projid);

 /* Update the nested table row */
 projid=600;
 String moduleName = "Module 1";
 String setownerto = "JULIE ADAMS";
 assignModule(projid, moduleName, setownerto);

 /* delete all the modules for the given project
 // which are unassigned
 */

 projid=600;
 deleteUnownedModules(projid);

 /* Display Modules for 500 project */

 getModules(500) ;

 // Example to use nested table as host variable using a
 // JPub-generated SQL ’Array’ type

 getModules2(600);

 } catch (Exception e) {
 System.err.println("Error running ProjDemo: " + e);
 }
 }

 /* insertProject
 // inserts into projects table
 */

 public static void insertProject(int id, String projectName, String ownerName)
 throws SQLException
 {
 System.out.println("Inserting Project ’" + id + " "+projectName +
 "’ owner is ’" + ownerName + "’");

 try {
 #sql { INSERT INTO Projects(id, name,owner,start_date,duration)
 SELECT :id, :projectName, ref(p), ’12-JAN-97’, 30
 Sample Applications 12-41

Object, Collection, and ORAData Samples
 FROM participants p WHERE ename = :ownerName };

 } catch (Exception e) {
 System.out.println("Error:insertProject");
 e.printStackTrace();
 }
 }

 /* insert Project 2
 // Insert Nested table details along with master details
 */

 public static void insertProject2(int id) throws Exception
 {
 System.out.println("Inserting Project with Nested Table details..");
 try {
 #sql { INSERT INTO Projects(id,name,owner,start_date,duration, modules)
 VALUES (600, ’Ruby’, null, ’10-MAY-98’, 300,
 moduletbl_t(module_t(6001, ’Setup ’, null, ’01-JAN-98’, 100),
 module_t(6002, ’BenchMark’, null, ’05-FEB-98’,20) ,
 module_t(6003, ’Purchase’, null, ’15-MAR-98’, 50),
 module_t(6004, ’Install’, null, ’15-MAR-98’,44),
 module_t(6005, ’Launch’, null,’12-MAY-98’,34))) };
 } catch (Exception e) {
 System.out.println("Error:insertProject2");
 e.printStackTrace();
 }

 // Assign project owner to this project

 try {
 #sql { UPDATE Projects pr
 SET owner=(SELECT ref(pa) FROM participants pa WHERE pa.empno = 7698)
 WHERE pr.id=600 };
 } catch (Exception e) {
 System.out.println("Error:insertProject2:update");
 e.printStackTrace();
 }
 }

 /* insertModules
 // Illustrates accessing the nested table using the TABLE construct
 */
 public static void insertModules(int projId) throws Exception
 {
12-42 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
 System.out.println("Inserting Module 6009 for Project " + projId);
 try {
 #sql { INSERT INTO TABLE(SELECT modules FROM projects
 WHERE id = :projId)
 VALUES (6009,’Module 1’, null, ’12-JAN-97’, 10)};

 } catch(Exception e) {
 System.out.println("Error:insertModules");
 e.printStackTrace();
 }
 }

 /* assignModule
 // Illustrates accessing the nested table using the TABLE construct
 // and updating the nested table row
 */
 public static void assignModule
 (int projId, String moduleName, String modOwner)
 throws Exception
 {
 System.out.println("Update:Assign ’"+moduleName+"’ to ’"+ modOwner+"’");

 try {
 #sql {UPDATE TABLE(SELECT modules FROM projects WHERE id=:projId) m
 SET m.module_owner=(SELECT ref(p)
 FROM participants p WHERE p.ename= :modOwner)
 WHERE m.module_name = :moduleName };
 } catch(Exception e) {
 System.out.println("Error:insertModules");
 e.printStackTrace();
 }
 }

 /* deleteUnownedModules
 // Demonstrates deletion of the Nested table element
 */

 public static void deleteUnownedModules(int projId)
 throws Exception
 {
 System.out.println("Deleting Unowned Modules for Project " + projId);
 try {
 #sql { DELETE TABLE(SELECT modules FROM projects WHERE id=:projId) m
 WHERE m.module_owner IS NULL };
 } catch(Exception e) {
 Sample Applications 12-43

Object, Collection, and ORAData Samples
 System.out.println("Error:deleteUnownedModules");
 e.printStackTrace();
 }
 }

 public static void getModules(int projId)
 throws Exception
 {
 System.out.println("Display modules for project " + projId) ;

 try {
 ModIter miter1 ;
 #sql miter1={SELECT m.module_id, m.module_name, m.module_owner.ename
 FROM TABLE(SELECT modules
 FROM projects WHERE id=:projId) m };
 int mid=0;
 String mname =null;
 String mowner =null;
 while (true)
 {
 #sql { FETCH :miter1 INTO :mid, :mname, :mowner } ;
 if (miter1.endFetch()) break;
 System.out.println (mid + " " + mname + " "+mowner) ;
 }
 } catch(Exception e) {
 System.out.println("Error:getModules");
 e.printStackTrace();
 }
 }

 public static void getModules2(int projId)
 throws Exception
 {
 System.out.println("Display modules for project " + projId) ;

 try {
 #sql {SELECT modules INTO :mymodules
 FROM projects WHERE id=:projId };
 showArray(mymodules) ;
 } catch(Exception e) {
 System.out.println("Error:getModules2");
 e.printStackTrace();
 }
 }
12-44 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
 public static void showArray(ModuletblT a)
 {
 try {
 if (a == null)
 System.out.println("The array is null");
 else {
 System.out.println("printing ModuleTable array object of size "
 +a.length());
 ModuleT[] modules = a.getArray();

 for (int i=0;i<modules.length; i++) {
 ModuleT module = modules[i];
 System.out.println("module "+module.getModuleId()+
 ", "+module.getModuleName()+
 ", "+module.getModuleStartDate()+
 ", "+module.getModuleDuration());
 }
 }
 }
 catch(Exception e) {
 System.out.println("Show Array") ;
 e.printStackTrace();
 }
 }
 /* clean up database from any previous runs of this program */
 private static void cleanupPreviousRuns()
 {
 try {
 #sql {delete from projects where id in (123, 600)};
 } catch (Exception e) {
 System.out.println("Exception at cleanup time!") ;
 e.printStackTrace();
 }
 }
}

Oracle VARRAYs—VarrayDemo1.sqlj and VarrayDemo2.sqlj
Following is the source code for VarrayDemo1.sqlj and VarrayDemo2.sqlj.
These examples use definitions from the SQL script in "Definition of Object and
Collection Types" on page 12-21.

Use of VARRAYs is discussed in "Strongly Typed Collections in SQLJ Executable
Statements" on page 6-59.
 Sample Applications 12-45

Object, Collection, and ORAData Samples
VarrayDemo1.sqlj
import java.sql.SQLException;
import java.sql.DriverManager;
import java.math.BigDecimal;
import oracle.sqlj.runtime.Oracle;

public class VarrayDemo1
{

/* Global variables */

static String uid = "scott"; /* user id */
static String password = "tiger"; /* password */
static String url = "jdbc:oracle:oci:@"; /* Oracle’s OCI driver */

public static void main(String [] args) throws SQLException
{

 System.out.println("*** SQLJ VARRAY DEMO #1 ***");

 try {

 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 /* Connect to the database */
 Oracle.connect(VarrayDemo1.class, "connect.properties");

 /* create a new VARRAY object and insert it into the DBMS */
 insertVarray();

 /* get the VARRAY object and print it */
 selectVarray();

 }
 catch (SQLException exn)
 {
 System.out.println("SQLException: "+exn);
 }
 finally
 {
 try
 {
 #sql { rollback work };
12-46 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
 }
 catch (SQLException exn)
 {
 System.out.println("Unable to roll back: "+exn);
 }
 }

 System.out.println("*** END OF SQLJ VARRAY DEMO #1 ***");
}

private static void selectVarray() throws SQLException
{
 PhoneArray ph;
 #sql {select phone_nums into :ph from employees where empnumber=2001};
 System.out.println(
 "there are "+ph.length()+" phone numbers in the PhoneArray. They are:");

 String [] pharr = ph.getArray();
 for (int i=0;i<pharr.length;++i)
 System.out.println(pharr[i]);

}

// creates a varray object of PhoneArray and inserts it into a new row
private static void insertVarray() throws SQLException
{
 PhoneArray phForInsert = consUpPhoneArray();

 // clean up from previous demo runs
 #sql {delete from employees where empnumber=2001};

 // insert the PhoneArray object
 #sql {insert into employees (empnumber, phone_nums)
 values(2001, :phForInsert)};
}

private static PhoneArray consUpPhoneArray()
{
 String [] strarr = new String[3];
 strarr[0] = "(510) 555.1111";
 strarr[1] = "(617) 555.2222";
 strarr[2] = "(650) 555.3333";
 return new PhoneArray(strarr);
}
}

 Sample Applications 12-47

Object, Collection, and ORAData Samples
VarrayDemo2.sqlj
import java.sql.SQLException;
import java.sql.DriverManager;
import java.math.BigDecimal;
import oracle.sqlj.runtime.Oracle;

#sql iterator StringIter (String s);
#sql iterator intIter(int value);

public class VarrayDemo2
{

/* Global variables */

static String uid = "scott"; /* user id */
static String password = "tiger"; /* password */
static String url = "jdbc:oracle:oci:@"; /* Oracle’s OCI driver */

public static void main(String [] args) throws SQLException
{
 System.out.println("*** SQLJ VARRAY DEMO #2 ***");

 try {

 StringIter si = null;

 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 /* Connect to the database */
 Oracle.connect(VarrayDemo2.class, "connect.properties");

 #sql si = {select column_value s from
 table(select phone_nums from employees where empnumber=1001)};

 while(si.next())
 System.out.println(si.s());
 }
 catch (SQLException exn)
 {
 System.out.println("SQLException: "+exn);
 }
 finally
12-48 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
 {
 try
 {
 #sql { rollback work };
 }
 catch (SQLException exn)
 {
 System.out.println("Unable to roll back: "+exn);
 }
 }

 System.out.println("*** END OF SQLJ VARRAY DEMO #2 ***");
}
}

General Use of ORAData—BetterDate.java
This example shows a class that implements the ORAData interface to provide a
customized representation of Java dates.

import java.util.Date;
import oracle.sql.ORAData;
import oracle.sql.DATE;
import oracle.sql.ORADataFactory;
import oracle.jdbc.OracleTypes;

// a Date class customized for user’s preferences:
// - months are numbers 1..12, not 0..11
// - years are referred to via four-digit numbers, not two.

public class BetterDate extends java.util.Date
 implements ORAData, ORADataFactory {
 public static final int _SQL_TYPECODE = OracleTypes.DATE;

 String[]monthNames={"JAN", "FEB", "MAR", "APR", "MAY", "JUN",
 "JUL", "AUG", "SEP", "OCT", "NOV", "DEC"};
 String[]toDigit={"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"};

 static final BetterDate _BetterDateFactory = new BetterDate();

Note: This is not a complete application—there is no main()
method.
 Sample Applications 12-49

Object, Collection, and ORAData Samples
 public static ORADataFactory getORADataFactory() { return _BetterDateFactory;}

 // the current time...
 public BetterDate() {
 super();
 }

 public oracle.sql.Datum toDatum(java.sql.Connection conn) {
 return new DATE(toSQLDate());
 }

 public oracle.sql.ORAData create(oracle.sql.Datum dat, int intx) {
 if (dat==null) return null;
 DATE DAT = ((DATE)dat);
 java.sql.Date jsd = DAT.dateValue();
 return new BetterDate(jsd);
 }

 public java.sql.Date toSQLDate() {
 java.sql.Date retval;
 retval = new java.sql.Date(this.getYear()-1900, this.getMonth()-1,
 this.getDate());
 return retval;
 }
 public BetterDate(java.sql.Date d) {
 this(d.getYear()+1900, d.getMonth()+1, d.getDate());
 }
 private static int [] deconstructString(String s) {
 int [] retval = new int[3];
 int y,m,d; char temp; int offset;
 StringBuffer sb = new StringBuffer(s);
 temp=sb.charAt(1);
 // figure the day of month
 if (temp < ’0’ || temp > ’9’) {
 m = sb.charAt(0)-’0’;
 offset=2;
 } else {
 m = (sb.charAt(0)-’0’)*10 + (temp-’0’);
 offset=3;
 }

 // figure the month
 temp = sb.charAt(offset+1);
 if (temp < ’0’ || temp > ’9’) {
12-50 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
 d = sb.charAt(offset)-’0’;
 offset+=2;
 } else {
 d = (sb.charAt(offset)-’0’)*10 + (temp-’0’);
 offset+=3;
 }

 // figure the year, which is either in the format "yy" or "yyyy"
 // (the former assumes the current century)
 if (sb.length() <= (offset+2)) {
 y = (((new BetterDate()).getYear())/100)*100 +
 (sb.charAt(offset)- ’0’) * 10 +
 (sb.charAt(offset+1)- ’0’);
 } else {
 y = (sb.charAt(offset)- ’0’) * 1000 +
 (sb.charAt(offset+1)- ’0’) * 100 +
 (sb.charAt(offset+2)- ’0’) * 10 +
 (sb.charAt(offset+3)- ’0’);
 }
 retval[0]=y;
 retval[1]=m;
 retval[2]=d;
// System.out.println("Constructing date from string as: "+d+"/"+m+"/"+y);
 return retval;
 }
 private BetterDate(int [] stuff) {
 this(stuff[0], stuff[1], stuff[2]);
 }
 // takes a string in the format: "mm-dd-yyyy" or "mm/dd/yyyy" or
 // "mm-dd-yy" or "mm/dd/yy" (which assumes the current century)
 public BetterDate(String s) {
 this(BetterDate.deconstructString(s));
 }

 // years are as ’1990’, months from 1..12 (unlike java.util.Date!), date
 // as ’1’ to ’31’
 public BetterDate(int year, int months, int date) {
 super(year-1900,months-1,date);
 }
 // returns "Date: dd-mon-yyyy"
 public String toString() {
 int yr = getYear();
 return getDate()+"-"+monthNames[getMonth()-1]+"-"+
 toDigit[(yr/1000)%10] +
 toDigit[(yr/100)%10] +
 Sample Applications 12-51

Object, Collection, and ORAData Samples
 toDigit[(yr/10)%10] +
 toDigit[yr%10];
// return "Date: " + getDate() + "-"+getMonth()+"-"+(getYear()%100);
 }
 public BetterDate addDays(int i) {
 if (i==0) return this;
 return new BetterDate(getYear(), getMonth(), getDate()+i);
 }
 public BetterDate addMonths(int i) {
 if (i==0) return this;
 int yr=getYear();
 int mon=getMonth()+i;
 int dat=getDate();
 while(mon<1) {
 --yr;mon+=12;
 }
 return new BetterDate(yr, mon,dat);
 }
 // returns year as in 1996, 2007
 public int getYear() {
 return super.getYear()+1900;
 }
 // returns month as 1..12
 public int getMonth() {
 return super.getMonth()+1;
 }
 public boolean equals(BetterDate sd) {
 return (sd.getDate() == this.getDate() &&
 sd.getMonth() == this.getMonth() &&
 sd.getYear() == this.getYear());
 }
 // subtract the two dates; return the answer in whole years
 // uses the average length of a year, which is 365 days plus
 // a leap year every 4, except 100, except 400 years =
 // = 365 97/400 = 365.2425 days = 31,556,952 seconds
 public double minusInYears(BetterDate sd) {
 // the year (as defined above) in milliseconds
 long yearInMillis = 31556952L;
 long diff = myUTC()-sd.myUTC();
 return (((double)diff/(double)yearInMillis)/1000.0);
 }
 public long myUTC() {
 return Date.UTC(getYear()-1900, getMonth()-1, getDate(),0,0,0);
 }

12-52 SQLJ Developer’s Guide and Reference

Object, Collection, and ORAData Samples
 // returns <0 if this is earlier than sd
 // returns = if this == sd
 // else returns >0
 public int compare(BetterDate sd) {
 if (getYear()!=sd.getYear()) {return getYear()-sd.getYear();}
 if (getMonth()!=sd.getMonth()) {return getMonth()-sd.getMonth();}
 return getDate()-sd.getDate();
 }
}

 Sample Applications 12-53

Advanced Samples
Advanced Samples
This section presents examples that demonstrate some of the relatively advanced
features of SQLJ. The following samples are included:

■ REF CURSOR—RefCursDemo.sqlj

■ Multithreading—MultiThreadDemo.sqlj

■ Interoperability with JDBC—JDBCInteropDemo.sqlj

■ Multiple Connection Contexts—MultiSchemaDemo.sqlj

■ Data Manipulation and Multiple Connection Contexts—QueryDemo.sqlj

■ Subclassing Iterators—SubclassIterDemo.sqlj

■ Dynamic SQL—DynamicDemo.sqlj

These samples are located in the following directory:

[Oracle Home]/sqlj/demo

REF CURSOR—RefCursDemo.sqlj
This example shows the use of a REF CURSOR type in an anonymous block, a
stored procedure, and a stored function.

The PL/SQL code used to create the procedure and function is also shown.

For information about REF CURSOR types, see "Support for Oracle REF CURSOR
Types" on page 5-36.

Definition of REF CURSOR Stored Procedure and Stored Function
This section contains the PL/SQL code that defines the following:

■ a stored procedure that returns a REF CURSOR type as an OUT parameter

■ a stored function that returns a REF CURSOR type as a result

create or replace package SQLJRefCursDemo as
 type EmpCursor is ref cursor;
 procedure RefCursProc(name VARCHAR,
 no NUMBER,
 empcur OUT EmpCursor);

 function RefCursFunc (name VARCHAR, no NUMBER) return EmpCursor;
12-54 SQLJ Developer’s Guide and Reference

Advanced Samples
end SQLJRefCursDemo;
/

create or replace package body SQLJRefCursDemo is

 procedure RefCursProc(name VARCHAR,
 no NUMBER,
 empcur OUT EmpCursor)
 is begin
 insert into emp (ename, empno) values (name, no);
 open empcur for select ename, empno from emp
 order by empno;
 end;

 function RefCursFunc (name VARCHAR, no NUMBER) return EmpCursor is
 empcur EmpCursor;
 begin
 insert into emp (ename, empno) values (name, no);
 open empcur for select ename, empno from emp
 order by empno;
 return empcur;
 end;
end SQLJRefCursDemo;
/
exit
/

REF CURSOR Sample Application Source Code
This application retrieves a REF CURSOR type from the following:

■ an anonymous block

■ a stored procedure (as an OUT parameter)

■ a stored function (as a return value)

A ROLLBACK operation is executed before closing the connection, so the data is not
permanently altered.

import java.sql.*;
import oracle.sqlj.runtime.Oracle;

public class RefCursDemo
{
 #sql public static iterator EmpIter (String ename, int empno);
 Sample Applications 12-55

Advanced Samples
 public static void main (String argv[]) throws SQLException
 {
 String name; int no;
 EmpIter emps = null;

 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 /* Connect to the database */
 Oracle.connect(RefCursDemo.class, "connect.properties");

 try
 {
 name = "Joe Doe"; no = 8100;
 emps = refCursInAnonBlock(name, no);
 printEmps(emps);

 name = "Jane Doe"; no = 8200;
 emps = refCursInStoredProc(name, no);
 printEmps(emps);

 name = "Bill Smith"; no = 8300;
 emps = refCursInStoredFunc(name, no);
 printEmps(emps);
 }
 finally
 {
 #sql { ROLLBACK };
 Oracle.close();
 }
 }

 private static EmpIter refCursInAnonBlock(String name, int no)
 throws java.sql.SQLException {
 EmpIter emps = null;

 System.out.println("Using anonymous block for ref cursor..");
 #sql { begin
 insert into emp (ename, empno) values (:name, :no);
 open :out emps for select ename, empno from emp
 order by empno;
 end;
 };
12-56 SQLJ Developer’s Guide and Reference

Advanced Samples
 return emps;
 }

 private static EmpIter refCursInStoredProc (String name, int no)
 throws java.sql.SQLException {
 EmpIter emps = null;
 System.out.println("Using stored procedure for ref cursor..");
 #sql { CALL SQLJREFCURSDEMO.REFCURSPROC (:IN name, :IN no, :OUT emps)
 };
 return emps;
 }

 private static EmpIter refCursInStoredFunc (String name, int no)
 throws java.sql.SQLException {
 EmpIter emps = null;
 System.out.println("Using stored function for ref cursor..");
 #sql emps = { VALUES (SQLJREFCURSDEMO.REFCURSFUNC(:name, :no))
 };
 return emps;
 }

 private static void printEmps(EmpIter emps)
 throws java.sql.SQLException {
 System.out.println("Employee list:");
 while (emps.next()) {
 System.out.println("\t Employee name: " + emps.ename() +
 ", id : " + emps.empno());
 }
 System.out.println();
 emps.close();
 }
}

Multithreading—MultiThreadDemo.sqlj
The following is an example of a SQLJ application using multithreading. See
"Multithreading in SQLJ" on page 7-25 for information about multithreading
considerations in SQLJ.

A ROLLBACK operation is executed before closing the connection, so the data is not
permanently altered.

import java.sql.SQLException;
import java.util.Random;
 Sample Applications 12-57

Advanced Samples
import sqlj.runtime.ExecutionContext;
import oracle.sqlj.runtime.Oracle;

/**
 Each instance of MultiThreadDemo is a thread that gives all employees
 a raise of some ammount when run. The main program creates two such
 instances and computes the net raise after both threads have completed.
 **/
class MultiThreadDemo extends Thread
{
 double raise;
 static Random randomizer = new Random();

 public static void main (String args[])
 {
 try {
 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 // set the default connection to the URL, user, and password
 // specified in your connect.properties file
 Oracle.connect(MultiThreadDemo.class, "connect.properties");
 double avgStart = calcAvgSal();
 MultiThreadDemo t1 = new MultiThreadDemo(250.50);
 MultiThreadDemo t2 = new MultiThreadDemo(150.50);
 t1.start();
 t2.start();
 t1.join();
 t2.join();
 double avgEnd = calcAvgSal();
 System.out.println("average salary change: " + (avgEnd - avgStart));
 } catch (Exception e) {
 System.err.println("Error running the example: " + e);
 }

 try { #sql { ROLLBACK }; Oracle.close(); } catch (SQLException e) { }
 }

 static double calcAvgSal() throws SQLException
 {
 double avg;
 #sql { SELECT AVG(sal) INTO :avg FROM emp };
 return avg;
 }
12-58 SQLJ Developer’s Guide and Reference

Advanced Samples
 MultiThreadDemo(double raise)
 {
 this.raise = raise;
 }

 public void run()
 {
 // Since all threads will be using the same default connection
 // context, each run uses an explicit execution context instance to
 // avoid conflict during execution
 try {
 delay();
 ExecutionContext execCtx = new ExecutionContext();
 #sql [execCtx] { UPDATE EMP SET sal = sal + :raise };
 int updateCount = execCtx.getUpdateCount();
 System.out.println("Gave raise of " + raise + " to " +
 updateCount + " employees");
 } catch (SQLException e) {
 System.err.println("error updating employees: " + e);
 }
 }

 // delay is used to introduce some randomness into the execution order
 private void delay()
 {
 try {
 sleep((long)Math.abs(randomizer.nextInt()/10000000));
 } catch (InterruptedException e) {}
 }
}

Interoperability with JDBC—JDBCInteropDemo.sqlj
The following example uses JDBC to perform a dynamic query, casts the JDBC
result set to a SQLJ iterator, and uses the iterator to view the results. It demonstrates
how SQLJ and JDBC can interoperate in the same program.

For information about SQLJ-JDBC interoperability, see "SQLJ and JDBC
Interoperability" on page 7-42.

import java.sql.*;
import sqlj.runtime.ref.DefaultContext;
import oracle.sqlj.runtime.Oracle;
 Sample Applications 12-59

Advanced Samples
public class JDBCInteropDemo
{
 // in this example, we use an iterator that is inner class
 #sql public static iterator Employees (String ename, double sal) ;

 public static void main(String[] args) throws SQLException
 {
 if (args.length != 1) {
 System.out.println("usage: JDBCInteropDemo <whereClause>");
 System.exit(1);
 }
 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */
 // set the default connection to the URL, user, and password
 // specified in your connect.properties file
 Oracle.connect(JDBCInteropDemo.class, "connect.properties");

 try
 {
 Connection conn = DefaultContext.getDefaultContext().getConnection();

 // create a JDBCStatement object to execute a dynamic query
 Statement stmt = conn.createStatement();
 String query = "SELECT ename, sal FROM emp WHERE ";
 query += args[0];

 // use the result set returned by executing the query to create
 // a new strongly-typed SQLJ iterator
 ResultSet rs = stmt.executeQuery(query);
 Employees emps;
 #sql emps = { CAST :rs };

 while (emps.next()) {
 System.out.println(emps.ename() + " earns " + emps.sal());
 }
 emps.close();
 stmt.close();
 }
 finally
 {
 Oracle.close();
 }
 }
}

12-60 SQLJ Developer’s Guide and Reference

Advanced Samples
Multiple Connection Contexts—MultiSchemaDemo.sqlj
The following is an example of a SQLJ application using multiple connection
contexts. It implicitly uses an instance of the DefaultContext class for operations
that use one set of SQL objects, and uses an instance of the declared connection
context class DeptContext for operations that use another set of SQL objects.

This example uses the static Oracle.connect() method to establish a default
connection, then constructs an additional connection by using the static
Oracle.getConnection() method to pass another DefaultContext instance
to the DeptContext constructor. As previously mentioned, this is just one of
several ways you can construct a SQLJ connection context instance. This example is
repeated in "Connection Contexts" on page 7-2. You can refer to that section for
information about multiple and non-default connection contexts.

import java.sql.SQLException;
import oracle.sqlj.runtime.Oracle;

// declare a new context class for obtaining departments
#sql context DeptContext;

#sql iterator Employees (String ename, int deptno);

class MultiSchemaDemo
{
 public static void main(String[] args) throws SQLException
 {
 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 // set the default connection to the URL, user, and password
 // specified in your connect.properties file
 Oracle.connect(MultiSchemaDemo.class, "connect.properties");

 try
 {
 // create a context for querying department info using
 // a second connection
 DeptContext deptCtx =
 new DeptContext(Oracle.getConnection(MultiSchemaDemo.class,
 "connect.properties"));

 new MultiSchemaDemo().printEmployees(deptCtx);
 deptCtx.close();
 Sample Applications 12-61

Advanced Samples
 }
 finally
 {
 Oracle.close();
 }
 }

 // performs a join on deptno field of two tables accessed from
 // different connections.
 void printEmployees(DeptContext deptCtx) throws SQLException
 {
 // obtain the employees from the default context
 Employees emps;
 #sql emps = { SELECT ename, deptno FROM emp };

 // for each employee, obtain the department name
 // using the dept table connection context
 while (emps.next()) {
 String dname;
 int deptno = emps.deptno();
 #sql [deptCtx] {
 SELECT dname INTO :dname FROM dept WHERE deptno = :deptno
 };
 System.out.println("employee: " +emps.ename() +
 ", department: " + dname);
 }
 emps.close();
 }
}

Data Manipulation and Multiple Connection Contexts—QueryDemo.sqlj
This demo demonstrates programming constructs that you can use to fetch rows of
data using SQLJ and also shows the use of multiple connection contexts.

This sample uses the stored procedure GET_SAL, defined as follows:

-- SQL script for the QueryDemo

CREATE OR REPLACE FUNCTION get_sal(name VARCHAR) RETURN NUMBER IS
 sal NUMBER;
BEGIN
 SELECT sal INTO sal FROM emp WHERE ENAME = name;
 RETURN sal;
12-62 SQLJ Developer’s Guide and Reference

Advanced Samples
END get_sal;
/

EXIT
/

Sample application source code follows.

A ROLLBACK operation is executed before closing the connection, so the data is not
permanently altered.

// Source code for the QueryDemo

import java.sql.SQLException;
import oracle.sqlj.runtime.Oracle;
import sqlj.runtime.ref.DefaultContext;

#sql context QueryDemoCtx ;

#sql iterator SalByName (double sal, String ename) ;

#sql iterator SalByPos (double, String) ;

/**
 This sample program demonstrates the various constructs that may be
 used to fetch a row of data using SQLJ. It also demonstrates the
 use of explicit and default connection contexts.
 **/
public class QueryDemo
{
 public static void main(String[] args) throws SQLException
 {
 if (args.length != 2) {
 System.out.println("usage: QueryDemo ename newSal");
 System.exit(1);
 }

 /* if you’re using a non-Oracle JDBC Driver, add a call here to
 DriverManager.registerDriver() to register your Driver
 */

 // set the default connection to the URL, user, and password
 // specified in your connect.properties file
 Oracle.connect(QueryDemo.class, "connect.properties");
 Sample Applications 12-63

Advanced Samples
 try
 {
 QueryDemoCtx ctx =
 new QueryDemoCtx(DefaultContext.getDefaultContext().getConnection());
 String ename = args[0];
 int newSal = Integer.parseInt(args[1]);

 System.out.println("before update:");
 getSalByName(ename, ctx);
 getSalByPos(ename);

 updateSal(ename, newSal, ctx);

 System.out.println("after update:");
 getSalByCall(ename, ctx);
 getSalByInto(ename);
 ctx.close(ctx.KEEP_CONNECTION);
 }
 finally
 {
 #sql { ROLLBACK };
 Oracle.close();
 }
 }

 public static void getSalByName(String ename, QueryDemoCtx ctx)
 throws SQLException
 {
 SalByName iter = null;
 #sql [ctx] iter = { SELECT ename, sal FROM emp WHERE ename = :ename };
 while (iter.next()) {
 printSal(iter.ename(), iter.sal());
 }
 iter.close();
 }

 public static void getSalByPos(String ename) throws SQLException
 {
 SalByPos iter = null;
 double sal = 0;
 #sql iter = { SELECT sal, ename FROM emp WHERE ename = :ename };
 while (true) {
 #sql { FETCH :iter INTO :sal, :ename };
 if (iter.endFetch()) break;
12-64 SQLJ Developer’s Guide and Reference

Advanced Samples
 printSal(ename, sal);
 }
 iter.close();
 }

 public static void updateSal(String ename, int newSal, QueryDemoCtx ctx)
 throws SQLException
 {
 #sql [ctx] { UPDATE emp SET sal = :newSal WHERE ename = :ename };
 }

 public static void getSalByCall(String ename, QueryDemoCtx ctx)
 throws SQLException
 {
 double sal = 0;
 #sql [ctx] sal = { VALUES(get_sal(:ename)) };
 printSal(ename, sal);
 }

 public static void getSalByInto(String ename)
 throws SQLException
 {
 double sal = 0;
 #sql { SELECT sal INTO :sal FROM emp WHERE ename = :ename };
 printSal(ename, sal);
 }

 public static void printSal(String ename, double sal)
 {
 System.out.println("salary of " + ename + " is " + sal);
 }
}

Subclassing Iterators—SubclassIterDemo.sqlj
This sample shows the usefulness of subclassing an iterator class, in this case to add
behavior that writes all the rows of a query result into a Java vector.

See "Support for Subclassing of Iterator Classes" on page 7-29 for a general
discussion.

// ----------------- Begin of file SubclassIterDemo.sqlj ----------------------
//
// Invoke the SQLJ translator with the following command:
 Sample Applications 12-65

Advanced Samples
// sqlj SubclassIterDemo.sqlj
// Then run as
// java SubclassIterDemo

/* Import useful classes.
**
** Note that java.sql.Date (and not java.util.Date) is being used.
*/

import java.util.Vector;
import java.util.Enumeration;
import java.sql.SQLException;

import sqlj.runtime.profile.RTResultSet;
import oracle.sqlj.runtime.Oracle;

public class SubclassIterDemo
{
 // Declare an iterator
 #sql public static iterator EmpIter(int empno, String ename);

 // Declare Emp objects
 public static class Emp
 {
 public Emp(EmpIter iter) throws SQLException
 { m_name=iter.ename(); m_id=iter.empno(); }

 public String getName() { return m_name; }
 public int getId() { return m_id; }

 public String toString() { return "EMP "+getName()+" has ID "+getId(); }

 private String m_name;
 private int m_id;
 }

 // Declare an iterator subclass. In this example we add behavior to add
 // all rows of the query as a Vector.

 public static class EmpColl extends EmpIter
 {
 // We _must_ provide a constructor for sqlj.runtime.RTResultSet
12-66 SQLJ Developer’s Guide and Reference

Advanced Samples
 // This constructor is called in the assignment of EmpColl to a query.
 public EmpColl(RTResultSet rs) throws SQLException
 { super(rs); }

 // Materialize the result as a vector
 public Vector getEmpVector() throws SQLException
 { if (m_v==null) populate(); return m_v; }

 private Vector m_v;
 private void populate() throws SQLException
 {
 m_v = new Vector();
 while (super.next())
 { m_v.addElement(new Emp(this)); }
 super.close();
 }
 }

 public static void main(String args[])
 {
 try
 {
 SubclassIterDemo app = new SubclassIterDemo();
 app.runExample();
 }
 catch(SQLException exception)
 {
 System.err.println("Error running the example: " + exception);
 }
 finally
 {
 try { Oracle.close(); } catch (SQLException e) { }
 }
 }

 /* Initialize database connection.
 **
 */

 SubclassIterDemo() throws SQLException
 {
 Oracle.connect(getClass(), "connect.properties");
 }
 Sample Applications 12-67

Advanced Samples
 void runExample() throws SQLException
 {
 System.out.println();
 System.out.println("Running the example.");
 System.out.println();

 EmpColl ec;
 #sql ec = { select ename, empno from emp };

 Enumeration enum = ec.getEmpVector().elements();
 while (enum.hasMoreElements())
 {
 System.out.println(enum.nextElement());
 }
 }

}

Dynamic SQL—DynamicDemo.sqlj
This section shows how to use dynamic SQLJ statements, PL/SQL blocks, and JDBC
statements to implement dynamic SQL in a SQLJ application.

A ROLLBACK operation is executed before closing the connection, so the data is not
permanently altered.

For information about SQLJ dynamic SQL functionality, see "Support for Dynamic
SQL" on page 7-52.

import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.CallableStatement;
import java.sql.ResultSet;
import java.sql.Types;

import sqlj.runtime.ResultSetIterator;
import sqlj.runtime.ref.DefaultContext;
import oracle.sqlj.runtime.Oracle;

public class DynamicDemo
{

12-68 SQLJ Developer’s Guide and Reference

Advanced Samples
 private final static int SQLJ = 1;
 private final static int PL_SQL = 2;
 private final static int JDBC = 3;

 public static void main(String[] args) throws SQLException
 {
 sqlj.runtime.ref.DefaultContext.setDefaultStmtCacheSize(0);

 int[] modes = { SQLJ, PL_SQL, JDBC };
 for (int i=0; i<modes.length; i++)
 {
 int mode = modes[i];

 System.out.println("*** Demo of using dynamic SQL through
 "+printMode(mode)+" ***");

 try
 {
 // set the default connection to the URL, user, and password
 // specified in your connect.properties file
 Oracle.connect(DynamicDemo.class, "connect.properties");

 String table_name = "emp_"+printMode(mode);

 String col_name = "sal";
 String index_name = col_name + "_" + table_name;

 // dynamic DDL

 dynamicDrop(mode, table_name);
 dynamicCreate(mode, table_name, index_name, col_name);

 // dynamic DML

 String ename;
 int empno; double sal;

 ename = "julie"; empno = 8455; sal = 3500;
 dynamicInsert(mode, table_name, ename, empno, sal);

 ename = "scott"; empno = 7788; sal = 2500;
 dynamicInsert(mode, table_name, ename, empno, sal);

 ename = "king"; empno = 2167; sal = 4500;
 dynamicInsert(mode, table_name, ename, empno, sal);
 Sample Applications 12-69

Advanced Samples

 ename = "adams"; empno = 5481; sal = 1900;
 dynamicInsert(mode, table_name, ename, empno, sal);

 dynamicDelete(mode, table_name, "empno", "8455");

 empno = 7788; sal = 7000.00;
 dynamicUpdateReturning(mode, table_name, empno, sal);

 // dynamic 1-row query
 dynamicSelectOne(mode, table_name);

 // dynamic multi-row query
 dynamicSelectMany(mode, table_name, "sal > 2000.00");
 dynamicSelectMany(mode, table_name, null);
 }
 finally
 {
 #sql { ROLLBACK };
 Oracle.close();
 }
 }
 }

 private static String printMode(int mode)
 {
 switch (mode)
 {
 case SQLJ: return "SQLJ";
 case PL_SQL: return "PL_SQL";
 case JDBC: return "JDBC";
 }
 return "UNKNOWN"+mode;
 }

 private static void dynamicDrop(int mode, String table) throws SQLException
 {
 System.out.println("Dropping table " + table);
 try
 {
 switch (mode)
 {
 case SQLJ:
 #sql { drop table :{table} };
12-70 SQLJ Developer’s Guide and Reference

Advanced Samples
 break;

 case PL_SQL:
 #sql { begin
 execute immediate ’drop table ’ || :table;
 end;
 };
 break;

 case JDBC:
 PreparedStatement ps = null;
 try
 {
 ps =
DefaultContext.getDefaultContext().getConnection().prepareStatement("drop
table "+table);
 ps.executeUpdate();
 } finally {
 ps.close();
 }
 break;
 }
 } catch (SQLException exn) {
 // Ignore exception if table did not exist
 }
 }

 private static void dynamicCreate(int mode, String table_name, String
 index_name, String index_col)
 throws SQLException
 {
 System.out.println("Creating table " + table_name +
 " and index " + index_name + " on column " +
 index_col);

 switch (mode)
 {
 case SQLJ:
 #sql { create table :{table_name} (empno number(4) constraint
 :{"pk_"+table_name} primary key,
 ename varchar2(40), sal number) };
 #sql { create index :{index_name} on :{table_name} (:{index_col}) };
 break;

 case PL_SQL:
 Sample Applications 12-71

Advanced Samples
 String ddl = "create table " + table_name + " (empno number(4)
 constraint pk_"+table_name+" primary key, "+
 "ename varchar2(40), sal number)";
 #sql { begin
 execute immediate :ddl;
 end;
 };
 ddl = "create index " + index_name + " on " + table_name + "(" +
 index_col + ")";
 #sql { begin execute immediate :ddl; end; };
 break;

 case JDBC:
 String j_ddl = "create table " + table_name + " (empno number(4)
 constraint pk_"+table_name+" primary key, "+
 "ename varchar2(40), sal number)";
 PreparedStatement ps =
DefaultContext.getDefaultContext().getConnection().prepareStatement(j_ddl);
 ps.executeUpdate();
 ps.close();
 j_ddl = "create index " + index_name + " on " + table_name + "(" +
 index_col + ")";
 ps =
DefaultContext.getDefaultContext().getConnection().prepareStatement(j_ddl);
 ps.executeUpdate();
 ps.close();
 break;
 }
 }

 private static void dynamicInsert(int mode, String which_table,
 String ename, int empno, double sal)
 throws SQLException
 {
 System.out.println("Dynamic insert on table " + which_table
 + " of employee " + ename);

 switch (mode)
 {
 case SQLJ:
 #sql { insert into :{which_table} (ename,empno,sal)
 values(:ename, :empno, :sal) };
 break;
12-72 SQLJ Developer’s Guide and Reference

Advanced Samples
 case PL_SQL:
 #sql { begin
 execute immediate
 ’insert into ’ || :which_table ||
 ’(ename, empno, sal) values(:1, :2, :3)’
 -- note: PL/SQL rule is table | col name cannot be
 -- a bind argument in USING
 -- also, binds are by position except in dynamic PL/SQL blocks
 using :ename, :empno, :sal;
 end;
 };
 break;

 case JDBC:
 String dml = "insert into "+which_table+"(ename,empno,sal)
 values(?,?,?)";
 PreparedStatement ps =
DefaultContext.getDefaultContext().getConnection().prepareStatement(dml);
 ps.setString(1,ename);
 ps.setInt(2,empno);
 ps.setDouble(3,sal);
 ps.executeUpdate();
 ps.close();
 break;
 }
 }

 private static void dynamicDelete(int mode, String which_table, String
 which_col, String what_val)
 throws SQLException
 {
 System.out.println("Dynamic delete of " + which_col +
 " = " + what_val + " or " + which_col + " is null");

 switch (mode)
 {

 case SQLJ:
 #sql { delete from :{which_table}
 where :{which_col} = :{what_val} or :{which_col} is null };
 break;

 case PL_SQL:
 String s = "delete from "+ which_table +" where " + which_col + " =
 Sample Applications 12-73

Advanced Samples
 " + what_val
 + " or " + which_col + " is null";
 #sql { begin
 execute immediate :s;
 end;
 };
 break;

 case JDBC:
 String js = "delete from "+ which_table +" where " + which_col + " =
 " + what_val
 + " or " + which_col + " is null";
 PreparedStatement ps =
DefaultContext.getDefaultContext().getConnection().prepareStatement(js);
 ps.executeUpdate();
 ps.close();
 break;
 }
 }

 private static void dynamicUpdateReturning (int mode, String table, int
 empno, double newSal)
 throws SQLException
 {
 System.out.println("Dynamic update-returning in table "+table+" for empno
 " + empno);

 String ename = null;

 switch (mode)
 {
 case SQLJ: // INTO-clause not supported in dynamic SQLJ, using PL_SQL
 case PL_SQL:
 #sql { begin
 execute immediate
 ’update ’ || :table || ’ set sal = :2 where empno = :3 ’ ||
 ’returning ename into :4’
 using :newSal, :empno, OUT :OUT ename ;
 -- note weird repeated OUT, one for PL/SQL bind, one for
 SQLJ
 end;
 };
 break;
12-74 SQLJ Developer’s Guide and Reference

Advanced Samples
 case JDBC:
 String upd_ret = "begin update "+ table
 + " set sal = ? where empno = ? returning ename into
 ?; end;";
 CallableStatement cs =
DefaultContext.getDefaultContext().getConnection().prepareCall(upd_ret);
 cs.setDouble(1,newSal);
 cs.setInt(2,empno);
 cs.registerOutParameter(3,Types.VARCHAR);
 cs.executeUpdate();
 ename = cs.getString(3);
 cs.close();
 break;
 }

 System.out.println("Updated the salary of employee " + ename);
 }

 private static void dynamicSelectOne(int mode, String which_table)
 throws SQLException
 {
 System.out.println("Dynamic 1-row query on table " + which_table);

 int countRows = -1;

 switch (mode)
 {
 case SQLJ:
 // The following is currently not supported by SQLJ:
 // #sql { select count(*) from :{which_table} into :OUT countRows };

 ResultSetIterator rsi;
 #sql rsi = { select count(*) from :{which_table} };
 #sql { FETCH :rsi INTO :countRows };
 rsi.close();
 break;

 case PL_SQL:
 #sql { begin
 execute immediate
 ’select count(*) from ’ || :which_table
 into :OUT countRows; -- :OUT is for SQLJ bind
 end;
 };
 break;
 Sample Applications 12-75

Advanced Samples
 case JDBC:
 String js = "select count(*) from " + which_table;
 PreparedStatement ps =
DefaultContext.getDefaultContext().getConnection().prepareStatement(js);
 ResultSet rs = ps.executeQuery();
 rs.next();
 countRows = rs.getInt(1);
 rs.close();
 ps.close();
 break;
 }

 System.out.println("Number of rows in table " + which_table +
 " is " + countRows);
 }

 // a nested iterator class
 #sql public static iterator Employees (String ename, double sal) ;

 private static void dynamicSelectMany(int mode, String table, String
 what_cond)
 throws SQLException
 {
 System.out.println("Dynamic multi-row query on table emp");

 what_cond = (what_cond==null || what_cond.equals(""))
 ? ""
 : "where "+what_cond;

 Employees empIter = null;
 PreparedStatement ps = null;

 // table/column names cannot be bind args in dynamic PL/SQL, so
 // build up query as Java string

 switch(mode)
 {
 case SQLJ:
 #sql empIter = { select ename, sal from :{table} :{what_cond} order
 by ename};
12-76 SQLJ Developer’s Guide and Reference

Advanced Samples
 break;

 case PL_SQL:
 String query = "select ename, sal from " + table +
 " " + what_cond + " order by ename";
 #sql { begin
 open :OUT empIter for -- opening ref cursor with dynamic
 query
 :query;
 -- can have USING clause here if needed
 end;
 };
 break;

 case JDBC:
 String jquery = "select ename, sal from " + table +
 " " + what_cond + " order by ename";
 ps =
DefaultContext.getDefaultContext().getConnection().prepareStatement(jquery);
 ResultSet rs = ps.executeQuery();
 #sql empIter = { CAST :rs };
 }

 while (empIter.next())
 {
 System.out.println("Employee " + empIter.ename() +
 " has salary " + empIter.sal());
 }
 empIter.close();

 if (mode==JDBC) ps.close();
 }
}

 Sample Applications 12-77

Performance Enhancement Samples
Performance Enhancement Samples
This section presents examples that demonstrate Oracle SQLJ row prefetching and
update batching to enhance performance.

These samples are located in the following directory:

[Oracle Home]/sqlj/demo

Prefetch Demo—PrefetchDemo.sqlj
This sample has code showing the use of Oracle SQLJ row prefetching, Oracle SQLJ
update batching, and Oracle JDBC update batching. (Note that with JDBC 2.0, there
is also a standard update-batching paradigm in JDBC.)

The code here does not actually call the Oracle SQLJ update batching
method—insertRowsBatchedSQLJ(). That call is commented out. Only the
Oracle JDBC update-batching method—insertRowsBatchedJDBC()—is called.
But you can compare the code, and you can optionally "comment out" the JDBC
update-batching method call and "uncomment" the SQLJ update-batching method
call.

For another example of Oracle SQLJ update batching, see "Update
Batching—BatchDemo.sqlj" on page 12-83.

For information about SQLJ prefetching, see "Row Prefetching" on page A-3. For
information about SQLJ update batching, see "Update Batching" on page A-11.

This application uses the following table definition from PrefetchDemo.sql:

DROP TABLE PREFETCH_DEMO;
CREATE TABLE PREFETCH_DEMO (n INTEGER);

Application source code follows:

// Application source code--PrefetchDemo.sqlj
//
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import oracle.jdbc.Connection;
import oracle.jdbc.OraclePreparedStatement;
import sqlj.runtime.ExecutionContext;
import sqlj.runtime.ref.DefaultContext;
import oracle.sqlj.runtime.Oracle;
12-78 SQLJ Developer’s Guide and Reference

Performance Enhancement Samples
/**
 Before compiling this demo with online checking, you
 should run the SQL script PrefetchDemo.sql.

 This demo shows how to set different prefetch values for
 SQLJ SELECT statements. It compares SQLJ and JDBC runs.

 Additionally, when creating the data in the PREFETCH_DEMO
 table, we show how to batch INSERT statements in JDBC.
 SQLJ now also supports batching, and we show the source for
 the equivalent SQLJ batched insert as well.
**/

public class PrefetchDemo
{

 #sql static iterator PrefetchDemoCur (int n);

 public static void main(String[] args) throws SQLException
 {
 System.out.println("*** Start of Prefetch demo ***");

 Oracle.connect(PrefetchDemo.class,"connect.properties");
 OracleConnection conn =
 (OracleConnection) DefaultContext.getDefaultContext().getConnection();
 System.out.println("Connected.");

 try
 {
 try
 {
 #sql { DELETE FROM PREFETCH_DEMO };
 }
 catch (SQLException exn)
 {
 System.out.println("A SQL exception occurred: "+exn);

 System.out.println("Attempting to create the PREFETCH_DEMO table");

 try
 {
 #sql { DROP TABLE PREFETCH_DEMO };
 }
 catch (SQLException ex) { };
 Sample Applications 12-79

Performance Enhancement Samples
 try
 {
 #sql { CREATE TABLE PREFETCH_DEMO (n INTEGER) };
 }
 catch (SQLException ex)
 {
 System.out.println
 ("Unable to create the PREFETCH_DEMO table: "+exn);
 System.exit(1);
 };
 }

 System.out.println
 (">>> Inserting data into the PREFETCH_DEMO table <<<");

 // We batch _all_ rows here, so there is only a single roundtrip.
 int numRows = 1000;

 insertRowsBatchedJDBC(numRows, conn);
 // insertRowsBatchedSQLJ(numRows, conn);

 System.out.println
 (">>> Selecting data from the PREFETCH_DEMO table <<<");

 System.out.println("Default Row Prefetch value is: "
 + conn.getDefaultRowPrefetch());

 // We show three row prefetch settings:
 // 1. every row fetched individually
 // 2. prefetching the default number of rows (10)
 // 3. prefetching all of the rows at once
 //
 // each setting is run with JDBC and with SQLJ

 int[] prefetch = new int[] { 1, conn.getDefaultRowPrefetch(),
 numRows / 10, numRows };

 for (int i=0; i<prefetch.length; i++)
 {
 selectRowsJDBC(prefetch[i], conn);
 selectRowsSQLJ(prefetch[i], conn, i);
 }
 }
 finally
 {
12-80 SQLJ Developer’s Guide and Reference

Performance Enhancement Samples
 Oracle.close();
 }
 }

 public static void selectRowsSQLJ(int prefetch, OracleConnection conn, int i)
 throws SQLException
 {
 System.out.print("SQLJ: SELECT using row prefetch "+prefetch+". ");
 System.out.flush();
 conn.setDefaultRowPrefetch(prefetch);

 PrefetchDemoCur c;

 long start = System.currentTimeMillis();

 // Note: In this particular example, statement caching can
 // defeat row prefetch! Statements are created _with_
 // their prefetch size taken from the connection’s prefetch size.
 // The statement will maintain this original prefetch size when
 // it is re-used from the cache.
 //
 // To obtain predictable results, regardless of the cache setting,
 // we must force the use of _different_ select statements for each
 // of the prefetch settings.
 //
 // To get the seemingly strange behavior above, add the line below
 // and leave statement caching enabled.
 // i=0;

 switch (i % 5) {
 case 0: #sql c = { SELECT n FROM PREFETCH_DEMO }; break;
 case 1: #sql c = { SELECT n FROM PREFETCH_DEMO }; break;
 case 2: #sql c = { SELECT n FROM PREFETCH_DEMO }; break;
 case 3: #sql c = { SELECT n FROM PREFETCH_DEMO }; break;
 default: #sql c = { SELECT n FROM PREFETCH_DEMO };
 }

 while (c.next()) { };
 c.close();
 long delta = System.currentTimeMillis() - start;

 System.out.println("Done in "+(delta / 1000.0)+" seconds.");
 }
 Sample Applications 12-81

Performance Enhancement Samples
 public static void selectRowsJDBC(int prefetch, OracleConnection conn)
 throws SQLException
 {
 System.out.print("JDBC: SELECT using row prefetch "+prefetch+". ");
 System.out.flush();
 conn.setDefaultRowPrefetch(prefetch);

 long start = System.currentTimeMillis();
 PreparedStatement pstmt =
 conn.prepareStatement("SELECT n FROM PREFETCH_DEMO");
 ResultSet rs = pstmt.executeQuery();
 while (rs.next()) { };
 rs.close();
 pstmt.close();
 long delta = System.currentTimeMillis() - start;

 System.out.println("Done in "+(delta / 1000.0)+" seconds.");
 }

 public static void insertRowsBatchedSQLJ(int n, OracleConnection conn)
 throws SQLException
 {
 System.out.print("SQLJ BATCHED: INSERT "+n+" rows. ");
 System.out.flush();

 long start = System.currentTimeMillis();

 ExecutionContext ec = new ExecutionContext();
 ec.setBatching(true);
 ec.setBatchLimit(n);

 for (int i=1; i<=n; i++)
 {
 #sql [ec] { INSERT INTO PREFETCH_DEMO VALUES(:i) };
 }

 ec.executeBatch();

 long delta = System.currentTimeMillis() - start;

 System.out.println("Done in "+(delta / 1000.0)+" seconds.");
 }

 public static void insertRowsBatchedJDBC(int n, OracleConnection conn)
 throws SQLException
12-82 SQLJ Developer’s Guide and Reference

Performance Enhancement Samples
 {
 System.out.print("JDBC BATCHED: INSERT "+n+" rows. ");
 System.out.flush();

 long start = System.currentTimeMillis();
 int curExecuteBatch = conn.getDefaultExecuteBatch();
 conn.setDefaultExecuteBatch(n);

 PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO PREFETCH_DEMO VALUES(?)");
 for (int i=1; i<=n; i++)
 {
 pstmt.setInt(1,i);
 pstmt.execute();
 }
 ((OraclePreparedStatement)pstmt).sendBatch();
 pstmt.close();
 conn.setDefaultExecuteBatch(curExecuteBatch);

 long delta = System.currentTimeMillis() - start;

 System.out.println("Done in "+(delta / 1000.0)+" seconds.");
 }

}

Update Batching—BatchDemo.sqlj
This section shows an example of Oracle SQLJ update batching. For a discussion of
how this feature works, see "Update Batching" on page A-11.

This sample uses the following table definition:

DROP TABLE BATCH_DEMO;
CREATE TABLE BATCH_DEMO
 (EMPNO NUMBER(7),
 ENAME VARCHAR2(20),
 HIREDATE DATE,
 SAL NUMBER(10, 2)
);

Application code follows:

// Application source code--BatchDemo.sqlj
//
 Sample Applications 12-83

Performance Enhancement Samples
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import oracle.jdbc.*;
import sqlj.runtime.*;
import oracle.sqlj.runtime.*;

/**
 Before compiling this demo with online checking,
 you must run the SQL script BatchDemo.sql.

 This demo shows the SQLJ batch update feature.
 **/

public class BatchDemo {

 public static void main(String[] args) throws java.sql.SQLException
 {

 System.out.println("*** Batch Demo ***");

 try
 {
 Oracle.connect(BatchDemo.class, "connect.properties");
 System.out.println("Connected.");

 try
 {
 #sql { DELETE FROM BATCH_DEMO };
 }
 catch (SQLException e)
 {
 System.out.println("A SQL exception occurred: "+e);

 System.out.println("Attempting to create the BATCH_DEMO table");

 try
 {
 #sql { DROP TABLE BATCH_DEMO };
 }
 catch (SQLException ex) { };

 try
 {
 #sql { CREATE TABLE BATCH_DEMO
12-84 SQLJ Developer’s Guide and Reference

Performance Enhancement Samples
 (EMPNO NUMBER(7),
 ENAME VARCHAR2(20),
 HIREDATE DATE,
 SAL NUMBER(10, 2)
)
 };
 }
 catch (SQLException ex)
 {
 System.out.println("Unable to create the BATCH_DEMO table: "+ex);
 System.exit(1);
 };
 }

 System.out.println(">>> Inserting 100 records <<<<");
 batchUpdate(1, 100, 201, "test0");
 batchUpdate(10, 100, 401, "test1");
 batchUpdate(100, 100, 601, "test2");
 batchUpdate(1000, 100, 801, "test3");

 System.out.println(">>> Inserting 1000 records <<<<");
 batchUpdate(1, 1000, 2001, "test0");
 batchUpdate(10, 1000, 4001, "test1");
 batchUpdate(100, 1000, 6001, "test2");
 batchUpdate(1000, 1000, 8001, "test3");

 }
 finally
 {
 Oracle.close();
 }

 System.out.println("*** End of Demo ***");
 }

 public static void batchUpdate
 (int batchSize, int updateSize, int start, String name)
 throws java.sql.SQLException
 {

 if (batchSize==1)
 {
 System.out.print("Inserting one record at a time: ");
 System.out.flush();
 }
 Sample Applications 12-85

Performance Enhancement Samples
 else
 {
 System.out.print("Inserting in batch of "+batchSize+": ")
 System.out.flush();
 }

 long t = System.currentTimeMillis();

 ExecutionContext ec = new ExecutionContext();

 if (batchSize==1)
 {
 ec.setBatching(false);
 }
 else
 {
 ec.setBatchLimit(batchSize);
 ec.setBatching(true);
 }

 for (int i=start; i<start+updateSize; i++)
 {
 #sql [ec] { insert into batch_demo(empno, ename,hiredate, sal)
 values(:i, :(name+"_"+i), sysdate, :i)
 };
 }
 #sql {commit};

 System.out.println("Done in "+((System.currentTimeMillis()-t)/1000.0)
 +" seconds.");
 }

}

12-86 SQLJ Developer’s Guide and Reference

Applet Sample
Applet Sample
This section contains a generic sample applet that does not use Oracle-specific
features. Both the SQLJ source code and the HTML page are included here, but Java
source code for the user interface is not included. The demo in this section is located
in the following directory:

[Oracle Home]/sqlj/demo/applets

This directory also includes source for the user interface and a version of the applet
that uses Oracle-specific types.

For information about running the generic applet, see the Applet.readme file in
the directory noted above. For information about running the Oracle-specific applet,
refer to the AppletOracle.readme file.

For general discussion of SQLJ in applets, see "Running SQLJ in Applets" on
page 1-16.

Generic Applet HTML Page—Applet.html
This section contains the HTML page for the generic applet.

<html>
<head>
<title>SQLJ Applet</title>
</head>
<body>

<h1>SQLJ Applet</h1>

This page contains an example of an applet that uses SQLJ and
Oracle’s Thin JDBC driver.<p>

Note:
This applet requires Netscape 4.0X with the JDK1.1 patch, or Netscape 4.5
or later, or Microsoft Internet Explorer 4.0 or later.
<p>

The source code for the applet is in
AppletMain.sqlj

The source code for the applet’s user interface is in
AppletUI.java
 Sample Applications 12-87

Applet Sample
<hr>
<!-- Properties of the APPLET tag:
 codebase="<the location of your classfiles or archives>"
 archive="<name of archive file>"

 Below we assume that you have a directory "dist" off of
 the root of your HTML server, and that you have jar-ed up
 the SQLJ runtime, JDBC thin driver, and Applet classes into
 the archive Applet.jar in this directory.

 Applet PARAMeters: adjust these to reflect your settings
 sqlj.url - the JDBC URL
 for example "jdbc:oracle:thin:@localhost:1521:orcl"
 sqlj.user - the user name
 sqlj.password - the user password
 -->
<APPLET code="AppletMain.class"
 codebase="dist"
 archive="Applet.jar"
 width=640 height=480>
<PARAM name="sqlj.url"
value="jdbc:oracle:thin:@<hostname>:<port>:<oracle_sid>">
<PARAM name="sqlj.user" value="scott">
<PARAM name="sqlj.password" value="tiger">
</APPLET>

Generic Applet SQLJ Source—AppletMain.sqlj
This section contains the SQLJ source code for the generic applet. If you have access
to the demo/applets directory and compare the Oracle-specific source
(AppletOracle.sqlj) to this generic source, you will note that the only
significant differences are as follows:

■ The generic applet declares an iterator, EmpIter, that uses only the Java
String type. The Oracle-specific applet declares an iterator, EmpOraIter, that
uses oracle.sql.* types.

■ The Oracle-specific applet must use the stringValue() method of the
oracle.sql.NUMBER class to display numeric data.

/*
 * This applet extends the AppletInterface class that contains the
 * user interface component of the applet.
12-88 SQLJ Developer’s Guide and Reference

Applet Sample
 *
 * This applet connects to a database to select and display
 * employee information. It will also delete a select employee
 * from the database.
 */

// SQLJ-specific classes
import java.sql.SQLException;
import java.sql.DriverManager;
import sqlj.runtime.ExecutionContext;
import sqlj.runtime.ref.DefaultContext;
import oracle.jdbc.OracleDriver;
import oracle.sqlj.runtime.Oracle;

// Event handling classes
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

public class AppletMain extends AppletUI
 implements ActionListener
{

 // Declare a named iterator with several columns from the EMP table

 #sql public static iterator
 EmpIter(String empno, String ename, String job, String sal, String comm);

 // Applet initialization

 private DefaultContext m_ctx = null;

 public void init ()
 {

 // Create the User Interface

 super.init();

 // Activate the buttons

 Query_button.addActionListener(this);
 Query_button.setActionCommand("query");
 Sample Applications 12-89

Applet Sample
 Delete_button.addActionListener(this);
 Delete_button.setActionCommand("delete");

 // Open a connection to the database

 if (m_ctx == null)
 {
 // Connect to the database
 String url = null;
 String user = null;
 String password = null;
 try
 {
 url = getParameter("sqlj.url");
 user = getParameter("sqlj.user");
 password = getParameter("sqlj.password");
 }
 catch (NullPointerException exn) { }; // permit to call as an application

 try
 {
 if (url==null || url.equals("")
 || user==null || user.equals("")
 || password==null || password.equals(""))
 {
 // If the connect properties are not passed as parameters from the
 // HTML file, we pull them out of the connnect.properties resource.
 output.append("Connecting using the connect.properties resource\n");
 m_ctx = Oracle.getConnection(getClass(),"connect.properties");
 }
 else
 {
 output.append("Connecting using the PARAMeters in the HTML file\n");
 output.append("User " + user + " to " + url + "\n");

 DriverManager.registerDriver(new OracleDriver());
 m_ctx = Oracle.getConnection(url, user, password);
 }
 output.append("Connected\n");
 }
 catch (SQLException exn)
 {
 output.append("A SQL exception occurred: "+exn.getMessage()+"\n");
12-90 SQLJ Developer’s Guide and Reference

Applet Sample
 }
 }
 else
 {
 output.append("Re-using connection.\n");
 }
 }

 // Perform the work

 public void actionPerformed(ActionEvent ev)
 {
 String command = ev.getActionCommand();

 try
 {

 if (command.equals("query"))
 {
 int numRecords = 0;

 EmpIter ecur;

 // Clear the output area
 output.setText("");

 String x = query_name_field.getText();
 if (x==null || x.equals("") || x.equals("%"))
 {
 // Execute the query
 output.append("Executing: SELECT * FROM EMP\n");
 #sql [m_ctx] ecur = { SELECT * FROM EMP };
 while (ecur.next ())
 {
 output.append(ecur.empno() + " " + ecur.ename() + " "
 + ecur.job() + " $" + ecur.sal() + "\n");
 numRecords++;
 }
 }
 else
 {
 output.append("Executing: SELECT * FROM EMP WHERE ENAME = ’"+
 query_name_field.getText() + "’\n\n");
 #sql [m_ctx] ecur = { SELECT * FROM EMP
 Sample Applications 12-91

Applet Sample
 WHERE ENAME = :(query_name_field.getText()) };
 while (ecur.next())
 {
 output.append("Employee’s Number: " + ecur.empno() + "\n");
 output.append("Employee’s Name: " + ecur.ename() + "\n");
 output.append("Employee’s Job: " + ecur.job() + "\n");
 output.append("Employee’s Salary: " + ecur.sal() + "\n");
 output.append("Employee’s Commison: " + ecur.comm() + "\n");
 numRecords++;
 }
 }

 // we’re done
 output.append(numRecords + " record"+((numRecords==1)?"":"s")+
 " retrieved.\n");
 query_name_field.setText("");

 // ensure that iterator is closed
 ecur.close();
 }
 else if (command.equals("delete"))
 {
 output.setText("");

 // Use an execution context to get an update count
 ExecutionContext ectx = new ExecutionContext();
 #sql [m_ctx, ectx]
 { DELETE FROM EMP WHERE ENAME = :(delete_name_field.getText()) };
 int numDeleted = ectx.getUpdateCount();

 if (numDeleted==1)
 {
 output.append("Deleted employee "+delete_name_field.getText()+ ".");
 }
 else if (numDeleted==ExecutionContext.EXCEPTION_COUNT)
 {
 output.append("An exception occurred during deletion.");
 }
 else
 {
 output.append("Deleted "+numDeleted+" employees.");
 }

 delete_name_field.setText("");
12-92 SQLJ Developer’s Guide and Reference

Applet Sample
 }
 }
 catch (SQLException e)
 {
 // Report the error
 output.append("A SQL exception occurred:\n"+e.getMessage () + "\n");
 }
 }

 // it is important to rollback (or commit) at the end of the day, and
 // not leave the connection dangling

 public void stop()
 {
 if (m_ctx != null)
 {
 try
 {
 System.out.println("Closing the applet.");
 #sql [m_ctx] { ROLLBACK };
 // or, if you prefer: #sql [m_ctx] { COMMIT };

 m_ctx.close();
 }
 catch (SQLException exn) { }
 finally { m_ctx = null; }
 }
 };

 // Provide a main entry point so this works both, as an applet, and as
 // an application.
 public static void main(String[] args)
 {
 AppletFrame f = new AppletFrame(new AppletMain(), 600, 350);
 }

}

 Sample Applications 12-93

Server-Side Sample
Server-Side Sample
This section contains a sample that runs in the server. This demo is located in the
following directory:

[Oracle Home]/sqlj/demo/server

For a full discussion of SQLJ in the server, see Chapter 11, "SQLJ in the Server".

SQLJ in the Server—ServerDemo.sqlj
This example demonstrates a SQLJ application that runs in the Oracle9i embedded
Java virtual machine.

Before trying to run this server-side demo application, refer to README.txt in the
following directory:

[Oracle Home]/sqlj/demo/server

//---------------- Start of file ServerDemo.sqlj ----------------

import java.sql.Date;
import java.sql.SQLException;

class ServerDemo
{
 public static void main (String argv[])
 {
 // Note: No explicit connection setup is required
 // for server-side execution of SQLJ programs.

 try {
 System.out.println("Hello! I’m SQLJ in server!");

 Date today;
 #sql {select sysdate into :today from dual};
 System.out.println("Today is " + today);

 System.out.println("End of SQLJ demo.");
 } catch (SQLException e) {
 System.out.println("Error running main: " + e);
 }
 }
}

12-94 SQLJ Developer’s Guide and Reference

JDBC Versus SQLJ Sample Code
JDBC Versus SQLJ Sample Code
This section presents a side-by-side comparison of two versions of the same sample
code—one version written in JDBC and the other in SQLJ. The objective of this
section is to point out the differences in coding requirements between SQLJ and
JDBC.

In the sample, two methods are defined: getEmployeeAddress(), which selects
from a table and returns an employee’s address based on the employee’s number,
and updateAddress(), which takes the retrieved address, calls a stored
procedure, and returns the updated address to the database.

In both versions of the sample code, the following assumptions are made:

■ The ObjectDemo.sql SQL script has been run to create the schema in the
database and populate the tables. The SQL for this script is in "Definition of
Object and Collection Types" on page 12-21.

■ A PL/SQL stored function UPDATE_ADDRESS(), which updates a given
address, exists.

■ The Connection object (for JDBC) and default connection context (for SQLJ)
have been created previously by the caller.

■ Exceptions are handled by the caller.

■ The value of the address argument (addr) passed to the updateAddress()
method can be null.

Both versions of the sample code reference objects and tables created by the
ObjectDemo.sql script.

JDBC Version of the Sample Code
Following is the JDBC version of the sample code, which defines methods to
retrieve an employee’s address from the database, update the address, and return it
to the database. Note that the to-do items in the comment lines indicate where you
might want to add additional code to increase the usefulness of the code sample.

import java.sql.*;
import oracle.jdbc.*;

Note: The JDBC and SQLJ versions of the sample code are only
partial samples and cannot run independently (there is no main()
method in either).
 Sample Applications 12-95

JDBC Versus SQLJ Sample Code
/**
 This is what we have to do in JDBC
 **/
public class SimpleDemoJDBC // line 7
{

//TO DO: make a main that calls this

 public Address getEmployeeAddress(int empno, Connection conn)
 throws SQLException // line 13
 {
 Address addr;
 PreparedStatement pstmt = // line 16
 conn.prepareStatement("SELECT office_addr FROM employees" +
 " WHERE empnumber = ?");
 pstmt.setInt(1, empno);
 OracleResultSet rs = (OracleResultSet)pstmt.executeQuery();
 rs.next(); // line 21
 //TO DO: what if false (result set contains no data)?
 addr = (Address)rs.getORAData(1, Address.getORADataFactory());
 //TO DO: what if additional rows?
 rs.close(); // line 25
 pstmt.close();
 return addr; // line 27
 }
 public Address updateAddress(Address addr, Connection conn)
 throws SQLException // line 30
 {
 OracleCallableStatement cstmt = (OracleCallableStatement)
 conn.prepareCall("{ ? = call UPDATE_ADDRESS(?) }"); //line 33
 cstmt.registerOutParameter(1, Address._SQL_TYPECODE, Address._SQL_NAME);
 // line 35
 if (addr == null) {
 cstmt.setNull(2, Address._SQL_TYPECODE, Address._SQL_NAME);
 } else {
 cstmt.setORAData(2, addr);
 }

 cstmt.executeUpdate(); // line 42
 addr = (Address)cstmt.getORAData(1, Address.getORADataFactory());
 cstmt.close(); // line 44
 return addr;
 }
}
12-96 SQLJ Developer’s Guide and Reference

JDBC Versus SQLJ Sample Code
Line 12: In the getEmployeeAddress() method definition, you must pass the
connection object to the method definition explicitly.

Lines 16-20: Prepare a statement that selects an employee’s address from the
EMPLOYEES table on the basis of the employee number. The employee number is
represented by a marker variable, which is set with the setInt() method. Note
that because the prepared statement does not recognize "INTO" syntax, you must
provide your own code to populate the address (addr) variable. Because the
prepared statement is returning a custom object, cast the output to an Oracle result
set.

Lines 21-23: Because the Oracle result set contains a custom object of type Address,
use the getORAData() method to retrieve it (the Address class can be created by
JPublisher). The getORAData() method requires a "factory" object that it can use to
create additional custom objects (additional Address objects in this case) as it
retrieves the data to populate them. Use the static factory method
Address.getORADataFactory() to materialize an Address factory object for
the getORAData() method to use.

Because getORAData() returns a Datum, cast the output to an Address object.

Note that the routine assumes a one-row result set. The to-do items in the comment
statements indicate that you must write additional code for the cases where the
result set contains either no rows or more than one row.

Lines 25-27: Close the result set and prepared statement objects, then return the
addr variable.

Line 29: In the updateAddress() definition, you must pass the connection object
and the Address object explicitly.

The updateAddress() method passes an address object (Address) to the
database for update, then fetches it back. The actual updating of the address is
performed by the stored function UPDATE_ADDRESS() (the code for this function is
not provided in this example).

Line 32-42: Prepare an Oracle callable statement that takes an address object
(Address) and passes it to the UPDATE_ADDRESS() stored procedure. To register
an object as an output parameter, you must know the SQL type code and SQL type
name of the object.

Before passing the address object (addr) as an input parameter, the program must
determine whether addr has a value or is null. Depending on the value of addr, the
 Sample Applications 12-97

JDBC Versus SQLJ Sample Code
program calls different setter methods. If addr is null, the program calls
setNull(); if addr has a value, the program calls setORAData().

Line 43: Fetch the return result addr. Because the Oracle callable statement returns a
custom object of type Address, use the getORAData() method to retrieve it (the
Address class can be created by JPublisher). The getORAData() method requires
you to use the factory method Address.getORADataFactory to materialize an
instance of an Address object. Because getORAData() returns a Datum object,
cast the output to an Address object.

Lines 44, 45: Close the Oracle callable statement, then return the addr variable.

Coding Requirements of the JDBC Version
Note the following coding requirements for the JDBC version of the sample code:

■ The getEmployeeAddress() and updateAddress() definitions must
explicitly include the connection object.

■ Long SQL strings must be concatenated with the SQL concatenation character
("+").

■ You must explicitly manage resources (for example, close result set and
statement objects).

■ You must cast datatypes as needed.

■ You must know the _SQL_TYPECODE and _SQL_NAME values of the factory
object and any objects that you are registering as output parameters.

■ Null data must be explicitly processed.

■ Host variables must be represented by parameter markers in callable and
prepared statements.

■ If you want to reuse statement objects, for example if you want to repeatedly
call getEmployeeAddress() and updateAddress(), then you must code
this appropriately. Both Oracle SQLJ and Oracle JDBC support statement
caching.

Maintaining JDBC Programs
JDBC programs are potentially expensive to maintain. For example, in the above
code sample, if you add another WHERE clause, then you must change the SELECT
string. If you append another host variable, then you must increment the index of
12-98 SQLJ Developer’s Guide and Reference

JDBC Versus SQLJ Sample Code
the other host variables by one. A simple change to one line in a JDBC program
might require changes in several other areas of the program.

SQLJ Version of the Sample Code
Following is the SQLJ version of the code, defining methods to retrieve an employee
address from the database, update the address, and return it to the database.

import java.sql.*;

/**
 This is what we have to do in SQLJ
 **/
public class SimpleDemoSQLJ // line 6
{
 //TO DO: make a main that calls this

 public Address getEmployeeAddress(int empno) // line 10
 throws SQLException
 {
 Address addr; // line 13
 #sql { SELECT office_addr INTO :addr FROM employees
 WHERE empnumber = :empno };
 return addr;
 }
 // line 18
 public Address updateAddress(Address addr)
 throws SQLException
 {
 #sql addr = { VALUES(UPDATE_ADDRESS(:addr)) }; // line 22
 return addr;
 }
}

Line 10: The getEmployeeAddress() method does not require a connection
object. SQLJ uses a default connection context instance, which would have been
defined previously somewhere in your application.

Lines 13-15: The getEmployeeAddress() method retrieves an employee address
according to employee number. Use standard SQLJ SELECT INTO syntax to select
an employee’s address from the employee table if their employee number matches
the one (empno) passed in to getEmployeeAddress(). This requires a declaration
of the Address object (addr) that will receive the data. The empno and addr
variables are used as input host variables.
 Sample Applications 12-99

JDBC Versus SQLJ Sample Code
Line 16: The getEmployeeAddress() method returns the addr object.

Line 19: The updateAddress() method also uses the default connection context
instance.

Lines 19-22: The address is passed to the updateAddress() method, which passes
it to the database. The database updates it and passes it back. The actual updating
of the address is performed by the UPDATE_ADDRESS() stored function (the code
for this function is not shown here). Use standard SQLJ function-call syntax to
receive the address object (addr) output by UPDATE_ADDRESS().

Line 23: The updateAddress() method returns the addr object.

Coding Requirements of the SQLJ Version
Note the following coding requirements (and lack of requirements) for the SQLJ
version of the sample code:

■ An explicit connection is not required—SQLJ assumes that a default connection
context has been defined previously in your application.

■ No datatype casting is required.

■ SQLJ does not require knowledge of _SQL_TYPECODE, _SQL_NAME, or
factories.

■ Null data is processed implicitly.

■ No explicit code for resource management (for closing statements or results
sets, for example) is required.

■ SQLJ embeds host variables, in contrast to JDBC, which uses parameter
markers.

■ String concatenation for long SQL statements is not required.

■ You do not have to register output parameters.

■ SQLJ syntax is simpler. For example, SELECT INTO statements are supported
and OBDC-style escapes are not used.

■ You do not need to implement your own statement cache. By default, SQLJ will
automatically cache #sql statements. This results in improved performance, for
example, if you repeatedly call getEmployeeAddress() and
updateAddress().
12-100 SQLJ Developer’s Guide and Reference

 Performance and Debu
A

Performance and Debugging

This appendix discusses features, utilities, and tips to enhance performance of your
SQLJ application and to debug your SQLJ source code at runtime. The following
topics are discussed:

■ Performance Enhancement Features

■ AuditorInstaller Customizer for Debugging

■ Additional SQLJ Debugging Considerations
gging A-1

Performance Enhancement Features
Performance Enhancement Features
Oracle SQLJ includes features to enhance your performance by making data access
more efficient. These include the following:

■ row prefetching—Query results are sent to your application in groups of rows,
instead of one at a time.

■ update batching—Database updates, inserts, and deletes are sent to the
database in batches, instead of one at a time.

■ statement caching—Prepared statements are saved in memory and reused, to
avoid repeated processing in the server.

■ column definitions—Column types and sizes are predefined, possibly saving
round trips to the database.

■ parameter size definitions—Sizes of host variables are predefined for more
efficient memory usage.

For information about underlying Oracle JDBC support for these features, see the
Oracle9i JDBC Developer’s Guide and Reference.

Your application might also benefit if you use Oracle-specific code generation
through the SQLJ translator -codegen=oracle setting. The generated code will be
optimized with direct calls to Oracle JDBC, eliminating the overhead of
intermediate calls to the SQLJ runtime (which in turn would call JDBC). For
information, see "Oracle-Specific Code Generation (No Profiles)" on page 10-11.

In addition to the preceding Oracle SQLJ (and JDBC) performance enhancements,
you can employ optimizer hints in the SQL operations within a SQLJ program, as
you can in any Oracle SQL operations.

Oracle SQL allows you to tune your SQL statements by using /*+ or --+ comment
notation to pass hints to the Oracle SQL optimizer. The SQLJ translator recognizes
and supports these optimizer hints, passing them at runtime as part of your SQL
statement.

You can also define cost and selectivity information for a SQLJ stored function, as
for any other stored function, using the extensibility features for SQL optimization

Note: Neither Oracle SQLJ nor Oracle JDBC supports batch
fetches, which is the fetching of sets of rows into arrays of values.
You may, however, be able to use Oracle row prefetching to obtain
some of the benefits of batch fetching.
A-2 SQLJ Developer’s Guide and Reference

Performance Enhancement Features
in Oracle9i. During SQL execution, the optimizer invokes the cost and selectivity
methods for the stored function, evaluates alternate strategies for execution, and
chooses an efficient execution plan.

For information about the Oracle optimizer, see the Oracle9i SQL Reference.

Note that using Oracle performance extensions in your code requires the following:

■ Use one of the Oracle JDBC drivers.

■ Customize the profiles appropriately, or use Oracle-specific code generation.

The default customizer, oracle.sqlj.runtime.util.OraCustomizer, is
recommended. Alternatively, you can avoid profiles through the
-codegen=oracle translator setting.

■ Use the Oracle SQLJ runtime when your application runs.

(The Oracle SQLJ runtime and an Oracle JDBC driver are required by your
application whenever you customize profiles with the Oracle customizer, even if
you do not actually use Oracle extensions in your code.)

Row Prefetching
Standard JDBC receives the results of a query one row at a time, with each row
requiring a separate round trip to the database (or middle-tier database cache). Row
prefetching allows you to receive the results more efficiently, in groups of multiple
rows each.

Use the setFetchSize() method of an ExecutionContext instance to set the
number of rows to be prefetched whenever you execute a SELECT statement (for
SQLJ statements using the particular ExecutionContext instance).

The getFetchSize() method of an ExecutionContext instance returns the
current prefetch size, as an int value.

Here is an example of setting the prefetch size to 20 by getting the default execution
context instance of the default connection context instance and calling the
setFetchSize() method:

DefaultContext.getDefaultContext().getExecutionContext().setFetchSize(20);

(It is also possible to set the prefetch size directly on the underlying
OracleConnection object, using the JDBC API, but in SQLJ this is discouraged.)

To specify the number of rows to prefetch for queries that use a given connection
context instance, use the underlying JDBC Connection instance cast to an
 Performance and Debugging A-3

Performance Enhancement Features
Connection. Following is an example that sets the prefetch value to 20 for your
default connection:

((Connection)DefaultContext.getDefaultContext().getConnection()).setDefaultRowPrefetch(20);

Each additional connection context instance you use must be set separately, as
desired. For example, if ctx is an instance of a declared connection context class, set
its prefetch value as follows:

((Connection)ctx.getConnection()).setDefaultRowPrefetch(20);

There is no maximum row-prefetch value. The default is 10 in JDBC, and this is
inherited by SQLJ. This value is effective in typical circumstances, although you
might want to increase it if you receive a large number of rows.

See "Prefetch Demo—PrefetchDemo.sqlj" on page 12-78 for a sample application
showing row prefetching through SQLJ and update batching through JDBC.

Statement Caching
SQLJ offers a statement caching feature that improves performance by saving
executable statements that are used repeatedly, such as in a loop or in a method that
is called repeatedly. When a statement is cached before it is re-executed, the code
does not have to be reparsed, the statement object does not have to be recreated,
and the parameter size definitions do not have to be recalculated.

There is also an underlying JDBC statement cache. In some cases, the SQLJ and
JDBC statement caches are used separately, and in other circumstances SQLJ uses
the JDBC cache instead of maintaining its own. Details are described later in this
section.

Oracle JDBC Support for Statement Caching
Statement caching is a standard SQLJ feature that does not require any particular
JDBC driver; however, using a driver that implements the interface
sqlj.runtime.profile.ref.ClientDataSupport allows more robust
caching. Oracle9i JDBC drivers implement this interface, providing the following
features:

■ a separate cache for each database connection, instead of a single static cache for
the entire application

■ the ability to share cached statements between multiple instances of a
connection context class that share the same underlying connection
A-4 SQLJ Developer’s Guide and Reference

Performance Enhancement Features
When a single cache is used, as is the case with a generic JDBC driver that does not
implement ClientDataSupport, a statement executed in one connection can
cause a cached statement from another connection to be flushed (if the statement
cache size—the maximum number of statements that can be cached—is exceeded).

See the Oracle9i JDBC Developer’s Guide and Reference for information about Oracle
JDBC statement caching.

Oracle Customizer Option for Statement Cache Size
With standard SQLJ code generation, SQLJ statement caching is enabled in your
application by default when you use the Oracle customizer, which is typically
executed as part of Oracle SQLJ translation.

The default SQLJ statement cache size is 5, meaning a maximum of five statements
are cached per connection. You can alter the statement cache size or disable
statement caching (by setting the cache size to 0) through the Oracle customizer
stmtcache option. For information, see "Oracle Customizer Statement Cache Size
Option (stmtcache)" on page 10-37.

If you use multiple connection context classes and, therefore, have multiple profiles,
you can set their statement cache sizes individually by running SQLJ (actually, the
customizer) separately for each profile.

At runtime, the appropriate SQLJ profile determines the statement cache size for a
connection. This would be the profile that corresponds to the first connection
context class instantiated for this connection. Its statement cache size setting, if any,
is determined according to how you set the Oracle customizer stmtcache option
when you customized the profile. The runtime statement cache size for a connection
is set when the first statement on that connection is executed.

Connection Context Methods for Statement Cache Size
If you use Oracle-specific code generation (through the SQLJ translator
-codegen=oracle setting), there is no profile customization and therefore the
stmtcache option is unavailable. To alter statement cache size (from the default of

Note: If you use Oracle-specific code generation, through the
SQLJ translator -codegen=oracle setting, then SQLJ uses the
JDBC statement cache instead of a separate SQLJ statement cache.
See "Connection Context Methods for Statement Cache Size" below
for information about how to control this cache.
 Performance and Debugging A-5

Performance Enhancement Features
five statements) or disable statement caching (with a setting of 0), you must use
method calls in your code instead. See "Oracle-Specific Code Generation (No
Profiles)" on page 10-11 for description of Oracle-specific code generation.

The following Oracle-specific (non-standard) static methods have been added to the
sqlj.runtime.ref.DefaultContext class, and are also included in any
connection context classes you declare:

■ public static void setDefaultStmtCacheSize(int)—Set the
default statement cache size for all connection contexts. This becomes the initial
statement cache size for any subsequently created instance of any connection
context class, not just the class upon which you call the method. The method
call does not affect connection context instances that already exist.

Without calling this method, the default statement cache size is five statements.

■ public static int getDefaultStmtCacheSize()—Retrieve the
current default statement cache size for connection contexts.

And the following Oracle-specific instance methods have also been added to the
DefaultContext class and are included in any other connection context classes:

■ public void setStmtCacheSize(int)—Set the statement cache size for
the underlying connection of the particular connection context instance
(overrides the default).

■ public int getStmtCacheSize()—Retrieve the current statement cache
size for the underlying connection of the connection context instance.

Important: Be aware, however, that with Oracle-specific code
generation there are important interactions between SQLJ
statement caching and JDBC statement caching. See "Interaction
Between JDBC Statement Caching and SQLJ Statement Caching"
and "Interaction Between JDBC and SQLJ Statement Caching Status
and Size" below.

Note: These methods delegate to methods of the same name on
the underlying OracleConnection object.
A-6 SQLJ Developer’s Guide and Reference

Performance Enhancement Features
Interaction Between JDBC Statement Caching and SQLJ Statement Caching
By default, when statement caching is enabled, Oracle JDBC uses an implicit
statement caching mechanism. (See the Oracle9i JDBC Developer’s Guide and Reference
for more information about this mechanism.) This section discusses interaction
between JDBC and SQLJ statement caching. Also see "Interaction Between JDBC
and SQLJ Statement Caching Status and Size" below.

If you use standard code generation for your SQLJ application (through the
translator default -codegen=iso setting), then this JDBC implicit cache will be
enabled and is independent of SQLJ statement caching. So with standard code
generation, be aware of the following:

■ SQLJ and JDBC use different physical statement caches.

■ Setting the Oracle customizer stmtcache option affects SQLJ statement
caching only, not JDBC implicit statement caching. This includes the
circumstance of setting stmtcache=0, which disables SQLJ statement caching
but does not disable JDBC implicit statement caching.

If you use Oracle-specific code generation for your SQLJ application (through the
translator -codegen=oracle setting), then a unified caching scheme is used. In
this circumstance, be aware that SQLJ and JDBC use the same physical statement
cache; namely, the underlying JDBC cache. (SQLJ uses the JDBC cache in explicit
mode, while JDBC uses it in implicit mode. See the Oracle9i JDBC Developer’s Guide
and Reference for information about the differences between these modes.)

Also remember that SQLJ and JDBC statement caching functionality have different
semantics and behaviors. As noted earlier, SQLJ statement caching applies only to
single statements used repeatedly, such as in a loop or through repeated calls to the
same method. Consider the following example:

...
#sql { same SQL operaton }; // occurrence #1
...
Java code
...
#sql { same SQL operaton }; // occurrence #2
...
Java code
...
#sql { same SQL operaton }; // occurrence #3
...

Assume the three SQL operations are identical, including white space.
 Performance and Debugging A-7

Performance Enhancement Features
SQLJ caching would consider these three occurrences of the same SQL operation to
be three different statements. They will occupy three separate slots in the cache.
JDBC implicit caching, however, would recognize these as identical statements,
using only a single cache slot for all three. The statement would be reused for
occurrence #2 and occurrence #3.

Interaction Between JDBC and SQLJ Statement Caching Status and Size
This section discusses further interaction between JDBC and SQLJ statement
caching when using Oracle-specific code generation, particularly regarding the size
of the cache and whether caching is enabled (non-zero cache size). Also see
"Interaction Between JDBC Statement Caching and SQLJ Statement Caching" above.

In particular, there are additional considerations regarding statement cache size and
the related static connection context class methods:

■ setDefaultStmtCacheSize(int)

and:

■ int getDefaultStmtCacheSize()

These methods set and get the global, static default minimum size for the JDBC
statement cache. Whenever the actual JDBC statement cache size on the underlying
JDBC connection is smaller than the default size of the connection context class, the
SQLJ runtime will attempt to increase the JDBC statement cache size to the default
value.

If, on the other hand, the actual JDBC statement cache size is larger, then the SQLJ
runtime will not attempt to perform a change in the cache size. The SQLJ runtime
checks the actual JDBC cache size against the default size set whenever it creates a
SQLJ connection context instance.

It is important to note that these methods have the same effect regardless of the
context class on which they are issued, since they modify or report the same
underlying static field.

As an example, assume the following connection context class declarations:

#sql context CtxtA;
#sql context CtxtB;

In this case, each of the following three code instructions has the same effect—that
whenever a new SQLJ connection context instance is subsequently created, it will
not try to enable JDBC statement caching:

sqlj.runtime.ref.DefaultContext.setDefaultStmtCacheSize(0);
A-8 SQLJ Developer’s Guide and Reference

Performance Enhancement Features
or:

CtxtA.setDefaultStmtCacheSize(0);

or:

CtxtB.setDefaultStmtCacheSize(0);

In order to disable JDBC statement caching for the underlying JDBC connection
conn, you must issue the following:

((oracle.jdbc.OracleConnection)conn).setStmtCacheSize(0);
sqlj.runtime.ref.DefaultContext.setDefaultStmtCacheSize(0);

If you do not issue the second instruction, then whenever a SQLJ connection context
instance is created on the underlying connection conn, JDBC statement caching
would be enabled on conn according to the default statement cache size (which is
initialized to 5).

On the other hand, in order to turn on JDBC statement caching with a cache size of
at least 10 for any SQLJ connection context instances that are created subsequently,
it is sufficient to issue the following:

sqlj.runtime.ref.DefaultContext.setDefaultStmtCacheSize(10);

Statement Caching Limitations and Notes
Using a statement cache, even of size 1, will improve the performance of almost any
SQLJ application. Be aware of the following, however:

■ There is no benefit if each statement is executed only once.

■ Try to avoid interleaving statements executed once with statements executed
multiple times. The statements being executed only once would needlessly take
up space in the statement cache, which becomes an issue when you reach the
statement cache size limit. As an alternative, if you use standard code
generation you can use a separate connection context class for statements that

Important: If a SQLJ connection context instance is created on an
underlying JDBC pooled connection, then SQLJ will not be able to
change the JDBC statement cache size. In this case, the desired
JDBC statement cache size must be set explicitly on the underlying
physical connection(s).
 Performance and Debugging A-9

Performance Enhancement Features
are executed only once, and disable statement caching for that connection
context class.

■ Distinct statements with identical SQL operations are treated the same way as
any distinct statements—each is processed and cached separately. As an
alternative, put the SQL operation in a method, and call the method repeatedly,
instead of using distinct statements.

■ Be careful in choosing an appropriate statement cache size. If it is too small,
then the cache might fill up, resulting in statements being flushed before they
are re-executed. If it is too large, then database resources or program resources
may be exhausted.

Statement Caching Notes Also be aware of the following general notes regarding
statement caching.

■ If you use Oracle-specific code generation, using separate SQLJ connection
context instances to have separate statement caching behavior will not work if
the connection contexts share the same underlying JDBC connection instance.
This is because under Oracle-specific generation, SQLJ uses the JDBC statement
cache.

■ For Oracle applications, the statement cache size plus the maximum number of
open JDBC statements in your application (both directly and through SQLJ)
should total less than the maximum number of cursors available for a session,
because the maximum number of cursors defines the maximum number of
statements that can be open simultaneously.

With standard code generation, consider both the SQLJ statement cache size, as
determined by the -P-Cstmtcache option (default 5), and the JDBC implicit
statement cache size (default 5). With Oracle-specific code generation, consider
only the JDBC implicit statement cache size (there is no separate SQLJ cache in
this case).

■ Using a statement cache generally does not change the execution semantics of
an operation itself, although there are some scenarios where it does. For
example, if you have a statement that throws an exception when its resources
are released, then using a cache would mean that the exception would not be
thrown until the connection is closed or the statement is flushed from the cache
(which happens when the cache size is exceeded).
A-10 SQLJ Developer’s Guide and Reference

Performance Enhancement Features
Update Batching
Update batching (referred to as batch updates in the Sun Microsystems JDBC 2.0
specification) allows UPDATE, DELETE, and INSERT statements that are batchable
and compatible (as discussed below) to be collected into a batch and sent to the
database for execution at once, saving round trips to the database. This feature is
included in the JDBC 2.0 and SQLJ specifications, and is therefore supported by
both Oracle9i JDBC and Oracle9i SQLJ. Update batching is typically used for an
operation that is executed repeatedly within a loop.

In SQLJ, update batching is tied to execution context usage. This feature is enabled
or disabled in each execution context, independently of any other execution context,
and each execution context instance maintains its own batch.

Batchable and Compatible Statements
Two criteria determine whether a statement can be added to an existing batch of
statements:

■ Whether it is batchable. You cannot batch some kinds of statements under any
circumstances.

■ Whether it is compatible with statements in the existing batch.

Batchable For Oracle9i SQLJ, the following kinds of statements are batchable:

■ UPDATE

■ INSERT

■ DELETE

Note the following restriction, however:

■ UPDATE and INSERT statements with one or more stream host expressions are
not batchable.

Important: Be aware of the following for update batching:

■ You must use Oracle-specific code generation or customize
your application with the Oracle customizer.

■ It is highly advisable to disable auto-commit mode. This gives
you control of what to commit and what to roll back in case of
an error during batch execution.
 Performance and Debugging A-11

Performance Enhancement Features
In future releases or other implementations of SQLJ, additional kinds of statements
might be batchable (such as stored procedure calls or DDL statements).

Compatible In Oracle9i SQLJ, only multiple instances of the same statement are
compatible. This can occur in one of two circumstances:

■ A statement is executed repeatedly in a loop.

■ A statement is executed in a method, and the method is called repeatedly.

In future releases or other implementations of SQLJ, additional kinds of statements
might be compatible (such as instances of different statements that have no host
expressions).

Enabling and Disabling Update Batching
SQLJ performs update batching separately for each execution context instance. Each
one can have update batching enabled independently of your other execution
context instances, and each maintains its own batch.

To enable or disable update batching for a particular execution context instance, use
the setBatching() method of that execution context instance. This method takes
boolean input, as follows:

...
ExecutionContext ec = new ExecutionContext();
ec.setBatching(true);
...

or:

...
ExecutionContext ec = new ExecutionContext();
ec.setBatching(false);
...

Update batching is disabled by default.

Use the isBatching() method of an execution context instance to determine if
update batching is enabled for that execution context, as in the next example.

Note: The setBatching() method does not affect an existing
statement batch. Neither enabling nor disabling update batching
causes an existing batch to be executed or canceled.
A-12 SQLJ Developer’s Guide and Reference

Performance Enhancement Features
ExecutionContext ec = new ExecutionContext();
...
boolean batchingOn = ec.isBatching();

This does not, however, indicate whether a batch is currently pending.

Explicit and Implicit Batch Execution
You can explicitly execute a pending update batch as desired, but it might also be
implicitly executed under certain circumstances.

Explicit Use the executeBatch() method of the execution context instance to
explicitly execute an update batch. This method returns an int array of update
counts with meanings as described in "Execution Context Update Counts" on
page A-16.

Following is an example of explicitly executing a batch:

...
ExecutionContext ec = new ExecutionContext();
ec.setBatching(true);
...
double[] sals = ...;
String[] empnos = ...;
for (int i = 0; i < empnos.length; i++)
{
 #sql [ec] { UPDATE emp SET sal = :(sals[i]) WHERE empno = :(empnos[i]) };
}
int[] updateCounts = ec.executeBatch();
...

Note: It is important to be aware of what happens when an
exception occurs in the middle of a batch execution. See "Error
Conditions During Batch Execution" on page A-21.

Notes: If you invoke executeBatch() when the execution
context instance has no pending batch, then the method returns
null.
 Performance and Debugging A-13

Performance Enhancement Features
Implicit When a pending update batch exists, it is implicitly executed in the
following circumstances:

■ An executable statement is encountered that is not batchable. In this case the
existing batch is executed first, then the non-batchable statement is executed.

■ An update statement is encountered that is batchable, but is not compatible
with the statements in the existing batch (in other words, is not an instance of
the same statement). In this case the batch is executed, then a new batch is
created, starting with the incompatible statement.

■ A predefined batch limit—that is, a specified number of statements—is reached.
This is discussed in "Setting a Batch Limit" on page A-17.

Following is an example. First one batch is created and executed implicitly when an
unbatchable statement is encountered, then a new batch is created and executed
implicitly when a batchable, but incompatible, statement is encountered:

ExecutionContext ec = new ExecutionContext();
ec.setBatching(true);
...
/* Statements in the following loop will be placed in a batch */
double[] sals = ...;
String[] empnos = ...;
for (int i = 0; i < empnos.length; i++)
{
 #sql [ec] { UPDATE emp SET sal = :(sals[i]) WHERE empno = :(empnos[i]) };
}

/* a SELECT is unbatchable so causes the batch to be executed */
double avg;
#sql [ec] { SELECT avg(sal) INTO :avg FROM emp };

/* Statements in the following loop will be placed in a new batch */
double[] comms = ...;
for (int i = 0; i < empnos.length; i++)
{
 #sql [ec] { UPDATE emp SET comm = :(comms[i]) WHERE empno = :(empnos[i]) };
}

/* the following update is incompatible with the second batch, so causes it to
be executed */
int smithdeptno = ...;
#sql [ec] { UPDATE emp SET deptno = :smithdeptno WHERE ename = ’Smith’ };
A-14 SQLJ Developer’s Guide and Reference

Performance Enhancement Features
To obtain the update count array for a batch executed implicitly, invoke the
getBatchUpdateCounts() method of the execution context instance. This
returns the update counts for the last batch to be executed successfully in this
execution context instance. The following code statement could be inserted after the
SELECT and after the last UPDATE:

int[] updateCounts = ec.getBatchUpdateCounts();

The meanings of these update counts are described in "Execution Context Update
Counts" on page A-16.

Canceling a Batch
To cancel the batch that is pending in an execution context, use the cancel()
method of the execution context instance. You can, for example, cancel a batch that
has been executed, but not yet committed, in the event that an exception occurred
during batch execution. Following is an example:

...
ExecutionContext ec = new ExecutionContext();
ec.setBatching(true);
...
double[] sals = ...;
String[] empnos = ...;
for (int i = 0; i < empnos.length; i++)
{
 #sql [ec] { UPDATE emp SET sal = :(sals[i]) WHERE empno = :(empnos[i]) };
 if (!check(sals[i], empnos[i])) //assume "check" is a user-supplied function
 {
 ec.cancel();
 throw new SQLException("Process canceled.");
 }
}

try
{
 int[] updateCounts = ec.executeBatch();
} catch (SQLException exception) { ec.cancel(); }
...

Note: If no update batch has been executed successfully for the
execution context instance, then getBatchUpdateCounts()
returns null.
 Performance and Debugging A-15

Performance Enhancement Features
When you cancel a batch, the next batchable statement will start a new batch.

Execution Context Update Counts
In Oracle9i SQLJ, the array of update counts returned by the executeBatch()
method or the getBatchUpdateCounts() method of an execution context
instance does not contain counts of the number of rows updated by the batched
statements, but simply values indicating whether each statement was successful. So
its functionality differs from that of the single update count returned by the
getUpdateCount() method of the execution context instance when batching is
not enabled, which is described in "Status Methods" on page 7-19.

As statements are batched, and after batch execution, the single update count
returned by getUpdateCount() is also affected.

Value Available from getUpdateCount() In a batch-enabled environment, the value
available from the getUpdateCount() method of the execution context instance is
modified after each statement is encountered. It will be updated with one of several
ExecutionContext class static int constant values, as follows:

■ NEW_BATCH_COUNT—Indicates that a new batch was created for the last
statement encountered.

■ ADD_BATCH_COUNT—Indicates that the last statement encountered was added
to an existing batch.

■ EXEC_BATCH_COUNT—Indicates that the pending batch was executed, either
explicitly or implicitly, after the last statement was encountered.

If you refer to these constants, use the qualified names:

ExecutionContext.NEW_BATCH_COUNT
ExecutionContext.ADD_BATCH_COUNT
ExecutionContext.EXEC_BATCH_COUNT

Notes:

■ Calling cancel() will also cancel any statement currently
executing.

■ Canceling a batch does not disable update batching.
A-16 SQLJ Developer’s Guide and Reference

Performance Enhancement Features
Values Available from executeBatch() or getBatchUpdateCounts() After a batch has been
executed, either explicitly or implicitly, the array of values returned by
executeBatch() or getBatchUpdateCounts() indicates only whether the
statements executed successfully. There is an array element for each batched
statement. As per the JDBC 2.0 specification, a value of -2 for an array element
indicates that the corresponding statement completed successfully, but that the
number of rows it affected is unknown.

Checking all the array values after execution of a batch would not be meaningful.
As currently implemented, the only useful test of this array would be to verify the
number of statements that were in the batch prior to execution, by checking the
number of elements in the array after a successful execution (essentially, after a
batch execution that does not produce an exception).

Note that the update counts array is not modified as statements are batched, only as
the batch is executed.

Setting a Batch Limit
You can specify that each update batch be executed after a predefined number of
statements have been batched, before the next statement would be added. Use the
setBatchLimit() method of the execution context instance, inputting a positive,
non-zero integer as follows:

...
ExecutionContext ec = new ExecutionContext();
ec.setBatching(true);
ec.setBatchLimit(10);
...
double[] sals = ...;
String[] empnos = ...;
for (int i = 0; i < 20; i++)
{
 #sql [ec] { UPDATE emp1 SET sal = :(sals[i]) WHERE empno = :(empnos[i]) };
}

This loop is executed 20 times, with the statements being batched and the batch
being executed during the 11th time through the loop (before an 11th statement
would be added to the batch). Note that the batch would not be executed a second
time in the loop, however. When your application exits the loop, the last ten
statements would still be in the batch and would not be executed until another
statement is encountered or you execute the batch explicitly.
 Performance and Debugging A-17

Performance Enhancement Features
You can use two special static int constants of the ExecutionContext class as
input to the setBatchLimit() method:

■ AUTO_BATCH—Allows the SQLJ runtime to determine the batch limit.

■ UNLIMITED_BATCH (default)—Specifies that there is no batch limit.

For example:

...
ExecutionContext ec = new ExecutionContext();
ec.setBatching(true);
ec.setBatchLimit(ExecutionContext.AUTO_BATCH);
...

or:

ec.setBatchLimit(ExecutionContext.UNLIMITED_BATCH);
...

To check the current batch limit, use the getBatchLimit() method of the
execution context instance.

Batching Incompatible Statements
If you want to batch a statement that is incompatible with statements in an existing
batch without implicitly executing the existing batch, then you will have to use a
separate execution context instance. Following is an example:

...
ExecutionContext ec1 = new ExecutionContext();
ec1.setBatching(true);
ExecutionContext ec2 = new ExecutionContext();
ec2.setBatching(true);
...
double[] sals = ...;
String[] empnos = ...;
for (int i = 0; i < empnos.length; i++)
{
 #sql [ec1] { UPDATE emp1 SET sal = :(sals[i]) WHERE empno = :(empnos[i]) };
 #sql [ec2] { UPDATE emp2 SET sal = :(sals[i]) WHERE empno = :(empnos[i]) };
}
int[] updateCounts1 = ec1.executeBatch();
int[] updateCounts2 = ec2.executeBatch();
...
A-18 SQLJ Developer’s Guide and Reference

Performance Enhancement Features
An alternative is to use a single execution context and separate loops so that all the
EMP1 updates are batched and executed prior to the EMP2 updates:

...
ExecutionContext ec = new ExecutionContext();
ec.setBatching(true);
...
double[] sals = ...;
String[] empnos = ...;
for (int i = 0; i < empnos.length; i++)
{
 #sql [ec] { UPDATE emp1 SET sal = :(sals[i]) WHERE empno = :(empnos[i]) };
}
for (int i = 0; i < empnos.length; i++)
{
 #sql [ec] { UPDATE emp2 SET sal = :(sals[i]) WHERE empno = :(empnos[i]) };
}
ec.executeBatch();
...

This example executes the first batch implicitly and the second batch explicitly.

Using Implicit Execution Contexts for Update Batching
All the update batching examples so far have created and specified explicit
execution context instances. This is not necessary, however, given that every
connection context instance has an implicit execution context instance. For example,
you can access the implicit execution context instance of the default connection as
follows:

DefaultContext.getDefaultContext().getExecutionContext().setBatching(true);
...
double[] sals = ...;
String[] empnos = ...;
for (int i = 0; i < empnos.length; i++)
{
 #sql { UPDATE emp SET sal = :(sals[i]) WHERE empno = :(empnos[i]) };
}

Note: This example assumes that the two UPDATE statements are
completely independent of each other. Do not batch interdependent
statements in different execution contexts because you cannot
completely assure the order in which they will be executed.
 Performance and Debugging A-19

Performance Enhancement Features
// implicitly execute the batch and commit
#sql { COMMIT };

Or, alternatively, you could execute the batch explicitly:

DefaultContext.getDefaultContext().getExecutionContext().executeBatch();

General Cautions Regarding Update Batching
If you use update batching, especially if you mix statements using an unbatched
execution context instance with statements using a batched execution context
instance, remember the following points:

■ If an unbatched statement depends on a batched statement, be sure the batch is
executed prior to the unbatched statement.

■ A JDBC COMMIT or ROLLBACK operation—that is, an auto-commit or any
explicit use of the commit() method or rollback() method of a JDBC
Connection instance—does not execute pending statements in a batch.

It is important to note, however, that using a SQLJ COMMIT or ROLLBACK
statement, such as follows, will execute pending statements in a batch:

#sql { COMMIT };

or:

#sql { ROLLBACK };

This is another reason that you should always commit or roll back changes
using #sql syntax, which cleans up both SQLJ resources and JDBC resources.

■ When a batch is implicitly executed as a result of an unbatchable or
incompatible statement being encountered, the batch is executed before the
unbatchable/incompatible statement is executed, but after the input parameters
of that statement have been evaluated and passed to the statement.

■ If you no longer intend to use a particular batch-enabled execution context
instance, then explicitly execute or cancel its pending batch to free resources.
A-20 SQLJ Developer’s Guide and Reference

Performance Enhancement Features
Error Conditions During Batch Execution
In the event that a statement causes an exception in the middle of a batch execution,
be aware of the following:

■ Batched statements following the statement that caused the exception are not
executed.

■ Batched statements that had already been executed prior to the exception are
not rolled back.

■ If the batch where the exception occurred was executed implicitly as the result
of another (unbatchable or incompatible) statement being encountered, that
statement is not executed.

When an exception occurs during batch execution under JDBC 2.0, it is typically an
instance of the standard java.sql.BatchUpdateException class, a subclass of
the java.sql.SQLException class. (Under JDK 1.1.x, the Oracle JDBC drivers
support update-batching exceptions with the
oracle.jdbc2.BatchUpdateException class.)

The BatchUpdateException class has a getUpdateCounts() method that, for
batched statements successfully executed before the exception occurred, returns an
array of update counts equivalent to what would be returned by the
ExecutionContext class executeBatch() or getBatchUpdateCounts()
method.

Recursive Call-ins and Update Batching
As discussed in "Recursive SQLJ Calls in the Server" on page 11-27, execution of
SQLJ stored procedures where one calls the other can result in situations where the
two procedures are simultaneously using the same execution context instance. The
update-batching flag (set using the setBatching() method of the execution
context instance) would behave in the same way as other execution context
attributes—regardless of which stored procedure sets it, it would affect the next
executable statement in either stored procedure.

For this reason, update batching is automatically disabled in the server whenever a
recursive call-in occurs. The pending batch is executed, and no batching occurs in
the recursively invoked procedure.

Note: Presumably you have disabled auto-commit mode when
using update batching. This gives you commit/rollback control in
case of an error during batch execution.
 Performance and Debugging A-21

Performance Enhancement Features
To avoid this behavior, use explicit execution context instances in batch-enabled
stored procedures.

Column Definitions
Oracle SQLJ reflects Oracle JDBC support for column type and size definitions.
Depending on the driver implementation, which differs somewhat among the
different Oracle JDBC drivers, registering column types and sizes can save a trip to
the database for each query. In particular, this is true for the Oracle JDBC Thin
driver and use of positional iterators.

Oracle SQLJ Implementation of Column Definitions
If you enable column definitions, Oracle SQLJ takes the following steps to
automatically register column types and sizes:

■ During customization, or during translation where Oracle-specific code
generation is used (-codegen=oracle), Oracle SQLJ connects to a specified
database schema to determine types and sizes of columns being retrieved. (With
standard SQLJ code generation, the column defaults become part of the SQLJ
profile. This can be accomplished during the customization step of source code
translation, or during separate customization of an existing profile.)

■ When your application executes, the SQLJ runtime will use the column
information to register the column types and sizes with the JDBC driver, using a
call to the defineColumnType() method available in the Oracle JDBC
statement classes.

Customizer and Translator Options for Column Definitions
To enable column definitions, assuming standard SQLJ code generation, set
customizer options as follows:

■ Enable the Oracle customizer optcols flag (-P-Coptcols on the SQLJ
command line).

■ Set the user, password, and URL for the database connection during
customization (-P-user, -P-password, and -P-url on the SQLJ command
line). In addition, set the JDBC driver class (-P-driver on the SQLJ command
line) if you are not using the default OracleDriver class.

For information about these customizer options, see the optcols section under
"Overview of Customizer-Specific Options" on page 10-28, and the user,
password, url, and driver sections under "Overview of Customizer Harness
Options" on page 10-17.
A-22 SQLJ Developer’s Guide and Reference

Performance Enhancement Features
For Oracle-specific code generation, use the SQLJ translator -optcols option
instead, and use the SQLJ translator -user, -password, and -url options as
appropriate, as you do for online semantics-checking. See "Column Definitions
(-optcols)" on page 8-50 and "Connection Options" on page 8-31.

Parameter Size Definitions
Oracle JDBC and Oracle SQLJ allow you to optimize JDBC resource allocation by
defining parameter sizes—sizes of Java host variables used as any of the following:

■ input or output parameters in stored procedure or function calls

■ return values from stored function calls

■ input or output parameters in SET statements

■ input or output parameters in PL/SQL blocks

Oracle SQLJ Implementation of Parameter Size Definitions
Oracle SQLJ implements parameter size definitions through option settings in
combination with "hints" embedded in source code comments. For standard SQLJ
code generation, Oracle customizer options are available. For Oracle-specific code
generation, equivalent SQLJ translator options are available.

Use options and hints as follows:

■ Enable parameter size definitions through the SQLJ translator or Oracle
customizer parameter definition flag.

■ Specify default sizes for particular datatypes through the SQLJ translator or
Oracle customizer parameter default size option.

■ Override datatype default sizes for particular parameters by embedding hints
in source code comments, following a prescribed format.

For any given host variable, when parameter size definitions are enabled, resources
are allocated according to the source code hint if there is one. If there is no source
code hint, then the default size for the corresponding datatype is used if one was

Note: Be aware that user, password, URL, and driver settings for
customization are not the same as the settings for
semantics-checking during SQLJ translation. They are unrelated.
 Performance and Debugging A-23

Performance Enhancement Features
specified. If there is no source code hint or appropriate default size, then maximum
resources are allocated according to the JDBC implementation.

When your application executes, the parameter sizes are registered through calls to
the defineParameterType() and registerOutParameter() methods
available in the Oracle JDBC statement classes.

Customizer Options for Parameter Size Definitions
For standard SQLJ code generation, use the following customizer options for
parameter size definitions:

■ the Oracle customizer optparams flag to enable parameter size definitions
(-P-Coptparams on the SQLJ command line)

■ the Oracle customizer optparamdefaults option to set default sizes for
particular datatypes (-P-Coptparamdefaults=xxxx on the SQLJ command
line)

For information about these options, see the sections under "Overview of
Customizer-Specific Options" on page 10-28.

For Oracle-specific code generation, use the SQLJ translator -optparams and
-optparamdefaults options instead. See "Parameter Definitions (-optparams)"
on page 8-52 and "Parameter Default Size (-optparamdefaults)" on page 8-53.

Source Code Hints for Parameter Size Definitions
Embed source code hints for parameter size definitions within your SQLJ
statements in the following format (you can add white space within the comment,
as desired):

/*(size)*/

The size is in bytes. Hints are ignored if the optparams flag is disabled.

You can override the default parameter size, without specifying a new size (leaving
size allocation to the JDBC implementation), as follows:

/*()*/

Note: If you do not enable the parameter definition flag, then
parameter size defaults and source code hints will be ignored, and
maximum or default resources will be allocated according to the
JDBC implementation.
A-24 SQLJ Developer’s Guide and Reference

Performance Enhancement Features
Here is an example:

byte[] hash;
String name=Tyrone;
String street=2020 Meryl Street;
String city=Wichita;
String state=Kansas;
String zipcode=77777;
#sql hash = { /* (5) */ VALUES (ADDR_HASH(:name /* (20) */, :street /* () */,
 :city, :state, :INOUT zipcode /* (10) */)) };

A hint for a result expression, such as the result expression hash in the example,
must be the first item appearing inside the brackets of the SQLJ statement, as
shown. Hints for input and output host variables must immediately follow the
variables, as shown.

The example sets parameter sizes as follows:

■ hash—5 bytes

■ name—20 bytes

■ street—override default, but with no setting (leave allocation up to JDBC)

■ city—none (use appropriate datatype default, if any)

■ state—none (use appropriate datatype default, if any)

■ zipcode—10 bytes

Note: If any parameter size is altered such that its actual size
exceeds its registered size at runtime, a SQL exception will be
thrown.
 Performance and Debugging A-25

AuditorInstaller Customizer for Debugging
AuditorInstaller Customizer for Debugging
Oracle SQLJ provides a special customizer—AuditorInstaller—that will insert
sets of debugging statements, known as auditors, into profiles specified on the SQLJ
command line. These profiles must already exist from previous customization.

The debugging statements will execute during SQLJ runtime (when someone runs
your application), displaying a trace of method calls and values returned.

Use the customizer harness debug option, preceded by -P- as with any general
customization option, to insert the debugging statements. (Syntax for this option is
discussed in "Invoking AuditorInstaller with the Customizer Harness debug
Option" on page A-27.)

Overview of Auditors and Code Layers
When an application is customized, the Oracle customizer implements profiles in
layers of code (typically less than five) for different levels of runtime functionality.
The deepest layer uses straight Oracle JDBC calls and implements any of your SQLJ
statements that can be executed through JDBC functionality. Each higher layer is a
specialized layer for some category of SQLJ functionality that is not supported by
JDBC and so must be handled specially by the SQLJ runtime. For example, a layer
for iterator conversion statements (CAST) is used to convert JDBC result sets to SQLJ
iterators. Another layer is used for assignment statements (SET).

At runtime, each SQLJ executable statement is first passed to the shallowest layer
and then passed, layer-by-layer, until it reaches the layer that can process it (usually
the deepest layer, which executes all JDBC calls).

You can install debugging statements at only one layer during a single execution of
AuditorInstaller. Each set of debugging statements installed at a particular
layer of code is referred to as an individual auditor. During runtime, an auditor is
activated whenever a call is passed to the layer at which the auditor is installed.

Any one of the specialized code layers above the JDBC layer is usually of no
particular interest during debugging, so it is typical to install an auditor at either the
deepest layer or the shallowest layer. If you install an auditor at the shallowest
layer, its runtime debugging output will be a trace of method calls resulting from all
your SQLJ executable statements. If you install an auditor at the deepest layer, its
runtime output will be a trace of method calls from all your SQLJ executable
statements that result in JDBC calls.
A-26 SQLJ Developer’s Guide and Reference

AuditorInstaller Customizer for Debugging
Use multiple executions of AuditorInstaller to install auditors at different
levels. You might want to do that to install auditors at both the deepest layer and
the shallowest layer, for example.

See "AuditorInstaller Depth Option (depth)" on page A-30 for information about
how to specify the layer at which to install an auditor.

Invoking AuditorInstaller with the Customizer Harness debug Option
Following are examples of how to specify the Oracle customizer harness debug
option to run AuditorInstaller in its default mode:

sqlj -P-debug Foo_SJProfile0.ser Bar_SJProfile0.ser

sqlj -P-debug *.ser

sqlj -P-debug myappjar.jar

The debug option results in the customizer harness instantiating and invoking the
following class:

sqlj.runtime.profile.util.AuditorInstaller

This class performs the work of inserting the debugging statements.

The -P-debug option is equivalent to the following:

-P-customizer=sqlj.runtime.profile.util.AuditorInstaller

This overrides the customizer specified in the SQLJ -default-customizer
option.

Be aware of the following:

■ To run an application with auditors installed, the Oracle SQLJ file
translator.zip (or .jar) must be in your classpath. (Normally, running a
pre-translated SQLJ application requires only a runtime library.)

■ As with any Oracle customizer, help output and an option list will be provided
if you specify -P-debug together with -P-help on the SQLJ command line.

■ It is important to realize that because the debug option invokes a customizer,
and only one customizer can run in any single running of SQLJ, you cannot
perform any other customization when you use this option.

■ You also cannot use more than one of -P-print, -P-debug, and -P-verify
simultaneously, because each of these invokes a specialized customizer.
 Performance and Debugging A-27

AuditorInstaller Customizer for Debugging
Command-line syntax sqlj -P-debug profile_list

Command-line example sqlj -P-debug Foo_SJProfile*.ser

Properties file syntax profile.debug

(You must also specify profiles in the file list.)

Properties file example profile.debug

Default value n/a

AuditorInstaller Runtime Output
During runtime, debugging statements placed by AuditorInstaller result in a
trace of methods called and values returned. This happens for all profile layers that
had debugging statements installed. (There is no means of selective debug output at
runtime.)

AuditorInstaller output relates to profiles only; there is currently no mapping
to lines in your original .sqlj source file.

Following is a sample portion of AuditorInstaller runtime output. This is what
the output might look like for a SQLJ SELECT INTO statement:

oracle.sqlj.runtime.OraProfile@1 . getProfileData ()
oracle.sqlj.runtime.OraProfile@1 . getProfileData returned
sqlj.runtime.profile.ref.ProfileDataImpl@2
oracle.sqlj.runtime.OraProfile@1 . getStatement (0)
oracle.sqlj.runtime.OraProfile@1 . getStatement returned
oracle.sqlj.runtime.OraRTStatement@3
oracle.sqlj.runtime.OraRTStatement@3 . setMaxRows (1000)
oracle.sqlj.runtime.OraRTStatement@3 . setMaxRows returned
oracle.sqlj.runtime.OraRTStatement@3 . setMaxFieldSize (3000)
oracle.sqlj.runtime.OraRTStatement@3 . setMaxFieldSize returned
oracle.sqlj.runtime.OraRTStatement@3 . setQueryTimeout (1000)
oracle.sqlj.runtime.OraRTStatement@3 . setQueryTimeout returned
oracle.sqlj.runtime.OraRTStatement@3 . setBigDecimal (1 , 5)
oracle.sqlj.runtime.OraRTStatement@3 . setBigDecimal returned
oracle.sqlj.runtime.OraRTStatement@3 . setBoolean (2 , false)
oracle.sqlj.runtime.OraRTStatement@3 . setBoolean returned
oracle.sqlj.runtime.OraRTStatement@3 . executeRTQuery ()
oracle.sqlj.runtime.OraRTStatement@3 . executeRTQuery returned
oracle.sqlj.runtime.OraRTResultSet@6
oracle.sqlj.runtime.OraRTStatement@3 . getWarnings ()
A-28 SQLJ Developer’s Guide and Reference

AuditorInstaller Customizer for Debugging
oracle.sqlj.runtime.OraRTStatement@3 . getWarnings returned null
oracle.sqlj.runtime.OraRTStatement@3 . executeComplete ()
oracle.sqlj.runtime.OraRTStatement@3 . executeComplete returned
oracle.sqlj.runtime.OraRTResultSet@6 . next ()
oracle.sqlj.runtime.OraRTResultSet@6 . next returned true
oracle.sqlj.runtime.OraRTResultSet@6 . getBigDecimal (1)
oracle.sqlj.runtime.OraRTResultSet@6 . getBigDecimal returned 5
oracle.sqlj.runtime.OraRTResultSet@6 . getDate (7)
oracle.sqlj.runtime.OraRTResultSet@6 . getDate returned 1998-03-28

There are two lines for each method call—the first showing the call and input
parameters, and the second showing the return value.

AuditorInstaller Options
As with any customizer, AuditorInstaller has its own options that can be set
using the -P-C prefix on the SQLJ command line (or profile.C in a SQLJ
properties file).

AuditorInstaller supports the following options:

■ depth—Specify how deeply you want to go into the layers of runtime
functionality in your profiles.

■ log—Specify the target file for runtime output of the debugging statements of
the installed auditor.

■ prefix—Specify a prefix for each line of runtime output that will result from
this installation of debugging statements.

■ showReturns—Enable the installed auditor to include return arguments in its
runtime call tracing.

■ showThreads—Enable the installed auditor to include thread names in its
runtime call tracing (relevant only for multithreaded applications).

■ uninstall—Remove the debugging statements placed into the profiles during
the most recent previous invocation of AuditorInstaller on those profiles.

Note: The classes you see in the oracle.sqlj.runtime
package are SQLJ runtime classes with equivalent functionality to
similarly named JDBC classes. For example, OraRTResultSet is
the SQLJ runtime implementation of the JDBC ResultSet
interface, containing equivalent attributes and methods.
 Performance and Debugging A-29

AuditorInstaller Customizer for Debugging
AuditorInstaller Depth Option (depth)
As discussed in "Overview of Auditors and Code Layers" on page A-26,
AuditorInstaller can install a set of debugging statements, known as an
auditor, at only a single layer of code during any one execution. The
AuditorInstaller depth option allows you to specify which layer. Use multiple
executions of AuditorInstaller to install auditors at different levels.

Layers are numbered in integers. The shallowest depth is layer 0; a maximum depth
of 2 or 3 is typical. The only depth settings typically used are 0 for the shallowest
layer or -1 for the deepest layer. In fact, it is difficult to install an auditor at any
other particular layer, because the layer numbers used for the various kinds of SQLJ
executable statements are not publicized.

The depth option is sometimes used in conjunction with the prefix option. By
running AuditorInstaller more than once, with different prefixes for different
layers, you can see at runtime what information is coming from which layers.

If you do not set the depth option, or the specification exceeds the number of layers
in a given profile, then an auditor will be installed at the deepest layer.

Command-line syntax -P-Cdepth=n

Command-line example -P-Cdepth=0

Properties file syntax profile.Cdepth=n

Properties file example profile.Cdepth=0

Default value -1 (deepest layer)

AuditorInstaller Log File Option (log)
Use the log option to specify an output file for runtime output that will result from
the auditor that you are currently installing. Otherwise, standard output will be
used—debug output will go to wherever SQLJ messages go.

When auditors write messages to an output file, they append; they do not
overwrite. Therefore, you can specify the same log file for multiple auditors without
conflict (in fact, it is typical in this way to have debug information from all layers of
your application go to the same log file).

Command-line syntax -P-Clog=log_file
A-30 SQLJ Developer’s Guide and Reference

AuditorInstaller Customizer for Debugging
Command-line example -P-Clog=foo/bar/mylog.txt

Properties file syntax profile.Clog=log_file

Properties file example profile.Clog=foo/bar/mylog.txt

Default value empty (use standard output)

AuditorInstaller Prefix Option (prefix)
Use the prefix option to specify a prefix for each line of runtime output resulting
from the debugging statements installed during this invocation of
AuditorInstaller.

This option is often used in conjunction with the depth option. By running
AuditorInstaller multiple times with different prefixes for different layers, you
can easily see at runtime what information is coming from which layers.

Command-line syntax -P-Cprefix="string"

Command-line example -P-Cprefix="layer 2: "

Properties file syntax profile.Cprefix="string"

Properties file example profile.Cprefix="layer 2: "

Default value empty

AuditorInstaller Return Arguments Option (showReturns)
Use the showReturns option to enable or disable the display of return arguments
as part of the runtime call tracing. This is enabled by default.

The following few lines show sample output with showReturns enabled (default):

oracle.sqlj.runtime.OraRTStatement@3 . executeComplete ()
oracle.sqlj.runtime.OraRTStatement@3 . executeComplete returned
oracle.sqlj.runtime.OraRTResultSet@6 . next ()
oracle.sqlj.runtime.OraRTResultSet@6 . next returned true
oracle.sqlj.runtime.OraRTResultSet@6 . getBigDecimal (1)
oracle.sqlj.runtime.OraRTResultSet@6 . getBigDecimal returned 5
oracle.sqlj.runtime.OraRTResultSet@6 . getDate (7)
oracle.sqlj.runtime.OraRTResultSet@6 . getDate returned 1998-03-28
 Performance and Debugging A-31

AuditorInstaller Customizer for Debugging
With showReturns disabled, the output would appear as follows:

oracle.sqlj.runtime.OraRTStatement@3 . executeComplete ()
oracle.sqlj.runtime.OraRTResultSet@6 . next ()
oracle.sqlj.runtime.OraRTResultSet@6 . getBigDecimal (1)
oracle.sqlj.runtime.OraRTResultSet@6 . getDate (7)

Instead of both a call line and a return line for each method call, there is only a call
line.

Command-line syntax -P-CshowReturns=true/false

Command-line example -P-CshowReturns=false

Properties file syntax profile.CshowReturns=true/false

Properties file example profile.CshowReturns=false

Default value true

AuditorInstaller Thread Names Option (showThreads)
Use the showThreads option to enable or disable the display of thread names as
part of the runtime call tracing (relevant only for multithreaded applications). This
is disabled by default.

When this option is enabled, thread names prefix the method names in the trace
output.

Command-line syntax -P-CshowThreads=true/false

Command-line example -P-CshowThreads=true

Properties file syntax profile.CshowThreads=true/false

Properties file example profile.CshowThreads=false

Default value false

AuditorInstaller Uninstall Option (uninstall)
Use the uninstall option to remove debugging statements placed during
previous invocations of AuditorInstaller. Each time you use the uninstall
option, it will remove the auditor most recently installed.
A-32 SQLJ Developer’s Guide and Reference

AuditorInstaller Customizer for Debugging
To remove all auditors from a profile, run AuditorInstaller repeatedly until
you get a message indicating that the profile was unchanged.

Command-line syntax -P-Cuninstall

Command-line example -P-Cuninstall

Properties file syntax profile.Cuninstall

Properties file example profile.Cuninstall

Default value false

Full Command-Line Examples
Following are some full SQLJ command-line examples showing the specification of
AuditorInstaller options.

Insert a set of debugging statements, or auditor, into the deepest layer (which is the
default layer), with runtime output to standard output:

sqlj -P-debug MyApp_SJProfile*.ser

Insert an auditor into the deepest layer, with runtime output to log.txt:

sqlj -P-debug -P-Clog=foo/bar/log.txt MyApp_SJProfile*.ser

Insert an auditor into the deepest layer, with runtime output to standard output,
showing thread names but not return arguments:

sqlj -P-debug -P-CshowThreads=true -P-CshowReturns=false MyApp_SJProfile*.ser

Insert an auditor into layer 0 (the shallowest layer). Send runtime output to
log.txt; prefix each line of runtime output with "Layer 0: " (the following
command is a single wrap-around line):

sqlj -P-debug -P-Clog=foo/bar/log.txt -P-Cdepth=0 -P-Cprefix="Layer 0: "
MyApp_SJProfile*.ser

Uninstall an auditor (this uninstalls the auditor most recently installed; do it
repeatedly to uninstall all auditors):

sqlj -P-debug -P-Cuninstall MyApp_SJProfile*.ser
 Performance and Debugging A-33

Additional SQLJ Debugging Considerations
Additional SQLJ Debugging Considerations
In addition to the AuditorInstaller discussed under "AuditorInstaller
Customizer for Debugging" on page A-26, there are other considerations to be
aware of regarding debugging:

■ If you are running SQLJ from the command line, then the -linemap option (or
-jdblinemap option if you are using the jdb debugger) can aid in debugging
your SQLJ code.

■ The embedded server-side translator has an option that will aid in debugging
your Java code in general, but not your SQLJ code in particular.

■ SQLJ is integrated into the Oracle JDeveloper integrated development
environment, allowing access to JDeveloper’s debugging facilities.

SQLJ -linemap Flag
The -linemap flag instructs SQLJ to map line numbers from a SQLJ source code
file to locations in the corresponding .class file. (This will be the .class file
created during compilation of the .java file generated by the SQLJ translator.) As a
result of this, when Java runtime errors occur, the line number reported by the Java
virtual machine (JVM) is the line number in the SQLJ source code, making it much
easier to debug.

If you are using the Sun Microsystems jdb debugger, then use the -jdblinemap
option instead of the -linemap option. The options are equivalent, except that
-jdblinemap does some special processing, necessitated by the fact that jdb does
not support Java source files with file name extensions other than the .java
extension.

For more information, see "Line-Mapping to SQLJ Source File (-linemap)" on
page 8-47 and "Line-Mapping to SQLJ Source File for jdb Debugger (-jdblinemap)"
on page 8-48.

Note: If you are translating in the server, class schema objects
created during server-side translation automatically reference line
numbers that map to the SQLJ source code. This is equivalent to
enabling the -linemap option when you translate on a client.
A-34 SQLJ Developer’s Guide and Reference

Additional SQLJ Debugging Considerations
Server-Side debug Option
If you are loading SQLJ source into the server and using the server-side embedded
translator to translate it, the server-side debug option instructs the server-side
compiler to output debugging information when a .sqlj or .java source file is
compiled in the server. This is equivalent to using the -g option when running the
standard javac compiler on a client. This does not aid in debugging your SQLJ
code in particular, but aids in debugging your Java code in general.

See "Option Support in the Server Embedded Translator" on page 11-18 for more
information about this option and information about how to set options in the
server.

For general information about debugging in the Oracle JVM, see the Oracle9i Java
Developer’s Guide.

Developing and Debugging in JDeveloper
Oracle SQLJ is fully integrated into the Oracle JDeveloper visual programming tool.

JDeveloper also includes an integrated debugger that supports SQLJ. SQLJ
statements, as with standard Java statements, can be debugged in-line as your
application executes. Reported line numbers are according to the line numbers in
your SQLJ source code (as opposed to in the generated Java code).

See "SQLJ in JDeveloper and Other IDEs" on page 1-24 for an introduction to
JDeveloper.
 Performance and Debugging A-35

Additional SQLJ Debugging Considerations
A-36 SQLJ Developer’s Guide and Reference

 SQLJ Error Mess
B

SQLJ Error Messages

This appendix lists error messages that might be output by the SQLJ translator and
SQLJ runtime. Cause and action information is also provided, as well as the SQL
state for runtime errors.

■ Translation Time Messages

■ Runtime Messages

Note: Error messages, causes, and actions in this appendix were
copied directly from SQLJ source code without alteration.
ages B-1

Translation Time Messages
Translation Time Messages
This section provides a list of error messages you may encounter from the SQLJ
translator, including cause and action information.

<<<NEW SQL>>>
Cause: The Oracle customizer translated a SQL operation into an
Oracle-specific dialect, as shown in the remainder of the message. Messages of
this nature are enabled with the Oracle customizer "showSQL" option.

Action: This is an informational message only. No further action is required.

[Connecting to user user at connection]
Cause: Informs user that SQLJ connects as user user to the database with URL
connection.

[Preserving SQL checking info]
Cause: SQLJ will preserve analysis information obtained from online checking
during this run.

[Querying database with "sqlquery"]
Cause: Informs user that database query was issued.

[Re-using cached SQL checking information]
Cause: Informs user that SQLJ is reusing cached analysis results from previous
online checking runs.

[Registered JDBC drivers: class]
Cause: Lists the JDBC drivers that have been registered.

[SQL checking: read m of n cached objects.]
Cause: Analysis information cached from online checking has been retrieved.

[SQL function call "sqlj call" transformed into ODBC syntax "jdbc call"]
Cause: Informs user that SQLJ has converted SQLJ function call syntax to JDBC
function call syntax.

A call to a stored function must return a value.

Note: By enabling the SQLJ translator -explain flag, you can
instruct the translator to provide "cause" and "action" information
in real-time with its error message output. This is the same
information that is provided in the error list below. See "Cause and
Action for Translator Errors (-explain)" on page 8-46.
B-2 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: User ignores result returned by a stored function call.

A call to a stored procedure cannot return a value.
Cause: User tries to retrieve a return value from a stored procedure invocation.

A non-array type cannot be indexed.
Cause: Only array types can be used as the base operand of array access
operator (’[]’).

Action: Check the type of the base operand.

A SQL quote was not terminated.
Action: Insert the terminating " or ’.

Access modifiers modifier1 and modifier2 are not compatible.
Cause: Named access modifiers cannot be applied to the same class, method,
or member. For example, private and public are incompatible as access
modifiers.

Action: Change or remove one of the conflicting access modifiers.

Ambiguous column names columns in SELECT list.
Cause: You may not use column names that are only distinguished by case.

Action: Use column aliases to distinguish column names.

Ambiguous constructor invocation.
Cause: More than one constructor declaration matches the arguments after
standard conversions.

Action: Indicate with explicit cast which constructor argument types should be
used.

Ambiguous method invocation.
Cause: More than one overloaded method declaration matches the arguments
after standard conversions.

Action: Indicate with explicit cast which method argument types should be
used.

An error occurred when determining result set column sizes: message
Cause: User specified the -P-Coptcols option. An error occurred when the
profile customizer was trying to determine the types and sizes the columns in a
result set columns.
 SQLJ Error Messages B-3

Translation Time Messages
Action: Check your SQL statement. You may want to perform connected
translation to better determine the cause of the error.

an io error occured while generating output: message
Action: Ensure that you have appropriate permissions and sufficient space for
SQLJ output.

Anonymous classes are not allowed in bind expressions.
Cause: Host expressions cannot contain anonymous classes.

Action: Move the expression that has anonymous class outside the #sql
statement and store its value to a temporary variable of the correct type; then
use that temporary variable in the host expression instead.

Argument #n of name must be a host variable, since this argument has mode OUT
or INOUT.
Cause: Modes OUT and INOUT require the presence of variables or assignable
expressions (such as array locations) in this argument position.

Argument #n of name requires mode IN.
Cause: The stored procedure or function name requires that the mode of the
host expression #n be IN.

Action: Declare the host expression in the SQLJ statement as IN.

Argument #n of name requires mode INOUT.
Cause: The stored procedure or function name requires that the mode of the
host expression #n be INOUT.

Action: Declare the host expression in the SQLJ statement as INOUT.

Argument #n of name requires mode OUT.
Cause: The stored procedure or function name requires that the mode of the
host expression #n be OUT.

Action: Declare the host expression in the SQLJ statement as OUT.

Argument #pos is empty.
Cause: In the argument list of a stored function or procedure, you left the
argument at position pos empty. For example: proc(1, ,:x).

Action: Replace the empty argument with a host expression or a SQL
expression.

Arithmetic expression requires numeric operands.
B-4 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: Both the left-hand side and the right-hand side of an arithmetic
operation must have numeric types.

Action: Correct the types of the operands.

Array index must be a numeric type.
Cause: Array objects can only be indexed using a numeric index.

Action: Correct the type of the index operand.

Attributes attribute1 and attribute2 are not compatible.
Cause: The named attributes cannot be applied to the same class or method.
For example, abstract and final are incompatible as attributes.

Action: Change or remove one of the conflicting attributes.

auditing layer added
Cause: An auditing customization was installed into the profile being
customized.

Action: The profile will include audit calls when used. No further action
required. Use the "uninstall" option to remove the auditor.

auditing layer removed
Cause: The last auditing customization previously installed into the profile was
removed. If multiple auditors were installed, only the last to be installed is
removed.

Action: Further "uninstall" calls may be required if you want to remove
additional auditors.

backup created as filename
Cause: A backup file for the profile was created with the name filename. The
backup file contains the original profile before customization.

Action: No further action required. The original profile can be restored by
copying the backup file over the new profile.

bad filename: filename
Cause: The file filename could not be used as input to the customizer harness
utility. Only filenames with ".ser" or ".jar" extensions are supported.

Action: Rename the file to have an accepted extension.

Bad octal literal ’token’.
 SQLJ Error Messages B-5

Translation Time Messages
Cause: A numeric literal beginning with digit ’0’ is interpreted as an octal, and
hence must not contain digits ’8’ or ’9’.

Action: Modify the bad literal. If octal was intended, recalculate its value in
base-8. If decimal was intended, remove all leading zeroes.

Badly placed #sql construct -- not a class declaration.
Cause: An executable SQLJ statement appears where a declaration was
expected.

Action: Move the #sql construct to a legal position.

Bitwise operator requires boolean or numeric operands.
Cause: Bitwise operator can only operate on objects both of which are either
boolean or numeric. A bitwise operation between two objects from different
categories will fail.

Action: Check the types of operands.

Boolean operator requires boolean operands.
Cause: Boolean operators can only operate with boolean arguments.

Action: Check the types of operands.

cannot access option option name
Cause: The option named option name was not accessible to the customizer
harness. This often indicates a non-standard customizer-specific option.

Action: Verify the intended use of the option. As a workaround, discontinue
use of the option or use a different customizer.

Cannot analyze SQL statement online: unable to determine SQL types for count
host items.
Cause: SQLJ determines a corresponding SQL type for each of the Java host
expressions. These SQL types are required for checking the statement online.

Action: Use Java types that are supported by Oracle SQLJ.

Cannot determine default arguments for stored procedures and functions. May
need to install SYS.SQLJUTL.
Cause: SQLJ cannot find the functions declared in the package SYS.SQLJUTL.

Action: Find the SQL file [Oracle Home]/sqlj/lib/sqljutl.sql and run it.
Alternatively, if your stored functions or procedures do not use default
arguments, you can ignore this message.
B-6 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cannot load JDBC driver class class.
Action: Check the name of the JDBC driver class.

Cannot load type map from resource map name.
Action: Ensure that the type map resource map name is present on the
CLASSPATH.

cannot remove java file without first compiling it
Cause: The "nc" and "rj" options were specified at the same time to the profile
conversion utility. The utility is unable to remove the Java file if it has not been
compiled into a class file.

Action: Use only one of the "nc" and "rj" options.

Cannot resolve identifier because the enclosing class has errors.
Cause: Class that contains errors cannot be used in name resolution because
access rights can be assigned to complete classes only.

Action: Fix the enclosing class, paying attention to correct spelling of base
types, field types, method argument types and method return types. Also make
sure that any external classes that are referenced by their base name only have
been imported.

Cannot retrieve type map for context class context class: error message
Cause: An error occurred when trying to retrieve a type map for the connection
context class context class.

cannot specify both option name and option name options
Cause: Two incompatible options were specified at the same time to the profile
conversion utility.

Action: Use only one of the specified options.

Class class does not implement the checker interface.
Cause: Checkers must implement sqlj.framework.checker.SQLChecker.

Class classname not found.
Cause: The program contained a reference to a class named classname. The
class definition was not found in any source file currently being translated or in
the classpath.

Action: Check the name of the class. Verify that it is defined either in class
format in the classpath or in a source file passed to the translator.

class cannot be constructed as an iterator: class name
 SQLJ Error Messages B-7

Translation Time Messages
Cause: The iterator class class name used in this SQL operation did not have the
expected constructor. This indicates an iterator generated by a non-standard
translator.

Action: Retranslate the iterator declaration using a standard translator.

class has already been defined: classname
Cause: Ensure that the class classname is only defined in one of the source files
that you pass to SQLJ.

class has errors - unable to resolve method method().
Cause: SQLJ translation is not able to determine if the Java class properly
implements the oracle.sql.CustomDatum or java.sql.SQLData interface. This is
due to an error in the Java class.

Action: Fix the problem in the Java class. You may want to compile it
separately to obtain errors on the class.

class implements both sqlj.runtime.NamedIterator and
sqlj.runtime.PositionedIterator: class name
Cause: It could not be determined if the iterator class class name used in this
SQL operation was a named iterator or positional iterator. This indicates an
iterator that was generated by a non-standard translator or included an
erroneous interface in its implements clause.

Action: Verify that the implements clause of the iterator declaration does not
contain one of the problematic interfaces. Retranslate the iterator declaration
using a standard translator.

Class not found: mesg. The problem is likely due to the fact that either your
program or the SQLJ runtime references javax.sql.DataSource.
Cause: You are probably using the WITH attribute "dataSource" on a
connection context and/or a SQLJ runtime version, such as runtime12ee.zip,
that is statically linked with javax.sql.DataSource.

Action: Ensure that the javax.sql.* and javax.naming.* packages are in your
CLASSPATH. Or remove the "dataSource" attribute from the connection context
declaration and do not use runtime12ee.zip.

Column javatype column not found in SELECT list.
Action: The column column could not be found in the result set returned by the
query. Either fix the iterator declaration, or the SELECT statement, possibly by
using an alias.
B-8 SQLJ Developer’s Guide and Reference

Translation Time Messages
Column name1 #pos1 will cause column name2 #pos2 to be lost. Use a single
stream column at the end of the select list.
Cause: You can have at most one stream column in a positional iterator, and
this column must be the last one in the iterator.

Action: Move the stream column to the last position in the iterator. If you have
more than one stream column, you can use a named iterator, ensuring that the
stream columns (and other columns) are accessed in order.

Column type column is not compatible with database type sqltype
Cause: The Java and SQL types are not compatible.

Comparison operator requires numeric operands.
Cause: Only numeric values are meaningful in an operation that compares
magnitudes.

Action: Check the types of operands.

compatible with the following drivers:
Cause: The Oracle customizer "compat" option was enabled. A list of Oracle
JDBC driver versions that may be used with the current profile follows this
message.

Action: Use one of the listed JDBC driver versions to run the program.

compiling filename
Cause: The profile in file filename was compiled into class file format by the
profile conversion utility.

Action: No further action required.

Complement operator requires integral operand.
Cause: Only an integral value can be complemented bitwise.

Action: Check the types of operands.

Conditional expression requires boolean for its first operand.
Cause: Conditional expression uses its first operand to choose which one of the
other two shall be executed; hence the first operand must have a boolean type.

Action: Check the type of the first operand.

Conditional expression result types must match.
 SQLJ Error Messages B-9

Translation Time Messages
Cause: The value of conditional expression is either its second or its third
operand, both of which must be either boolean or numeric types, or object types
at least one of which is assignable to the other.

Action: Check the types of operands.

Connection context expression does not have a Java type.
Cause: No valid Java type could be derived for your connection context
expression.

Connection context must have been declared with #sql context ... It can not be
declared as a ConnectionContext.
Action: Declare your connection context type with #sql context
ConnectionContext;

ConnectionContext attribute attribute is not defined in the SQLJ specification.
Action: The with-clause attribute attribute is not explicitly part of the SQLJ
specification. Check the spelling of your attribute name.

ConnectionContext cannot implement the interface interface.
Cause: In your SQLJ context declaration you specified an implements clause
with the interface interface. However, connection contexts do not implement this
interface.

Constructor not found.
Cause: The constructor that was invoked does not exist.

Action: Check the constructor arguments, or add a constructor with the desired
arguments.

Context context ignored in FETCH statement.
Cause: Since a context is associated with a cursor object at the initialization of a
cursor with a query, context information in FETCH statements is superfluous,
and will be ignored by SQLJ.

converting profile filename
Cause: The profile in file filename was converted from serialized to Java source
file format by the profile conversion utility.

Action: No further action required.

Cursor has item count items. Argument #pos of INTO-list is invalid.
Cause: Your INTO-list has more elements than the corresponding positional
iterator from which you are fetching.
B-10 SQLJ Developer’s Guide and Reference

Translation Time Messages
Action: Remove the extra INTO-list elements.

Cursor type in FETCH statement does not have a Java type.
Cause: No valid Java type could be derived for the iterator expression in the
FETCH statement.

customized
Cause: The profile was successfully customized.

Action: No further action required.

customizer does not accept connection: connection url
Cause: The connection specified by connection url was established, but was
either not needed or not recognized by the current customizer.

Action: Verify that the current customizer requires a connection. If not, omit
the "user" option from the customizer harness. If so, verify that the database
and schema connected to are compatible with the customizer.

Database error during signature lookup for stored procedure or function name:
message
Cause: An error occurred when SQLJ tried to determine the existence and the
signature of the function or procedure name.

Action: As a workaround you can translate your SQLJ program offline.

Database issued an error: error.
Cause: Database issued error when parsing a SQL statement against the
exemplar schema.

Action: Check the validity of the SQL statement.

Database issued an error: error sqltext
Cause: Database issued an error when parsing the SQL statement against the
exemplar schema.

Action: Check the validity of the SQL statement.

deleting filename
Cause: The intermediate file filename was removed by the profile conversion
utility.

Action: No further action required.

Did not find a stored procedure or function name with n arguments.
 SQLJ Error Messages B-11

Translation Time Messages
Cause: No procedure or function name with n arguments appears in the
database.

Action: Check the name of your stored procedure or function.

Did not find a stored procedure or function name with n arguments. found
functions/procedures with different numbers of arguments
Cause: No procedure or function name with n arguments appears in the
database. However, there is a procedure or function of this name with a
different number of arguments.

Action: Check the name of your stored procedure/function, as well as for
extraneous or missing arguments.

Did not find stored function name with n arguments.
Cause: SQLJ could not find a stored function of the desired name name.

Action: Check the name of your stored function.

Did not find stored function proc with n arguments. found functions/procedures
with different numbers of arguments
Cause: No stored function proc with n arguments appears in the database.
However, there is a procedure or function of this name with a different number
of arguments.

Action: Check the name of your stored function, as well as for extraneous or
missing arguments.

Did not find stored procedure name with n arguments.
Cause: SQLJ could not find a stored procedure of the desired name name.

Action: Check the name of your stored procedure.

Did not find stored procedure proc with n arguments. found functions/procedures
with different numbers of arguments
Cause: No stored procedure proc with n arguments appears in the database.
However, there is a procedure or function of this name with a different number
of arguments.

Action: Check the name of your stored procedure, as well as for extraneous or
missing arguments.

Do not know how to analyze this SQL statement.
Cause: An online connection is required to help SQLJ analyze this statement.

Do not understand this statement.
B-12 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: Unable to identify this statement, since it does not start with a SQL
keyword (SELECT, UPDATE, DELETE, BEGIN, ...) or a SQLJ keyword (CALL,
VALUES, FETCH, CAST, ...).

Duplicate access modifier.
Cause: The same access modifier appears more than once for the same class,
method or member.

Action: Remove the superfluous access modifier.

Duplicate method method.
Cause: The method method was declared more than once.

Duplicate methods method1 and method2.
Cause: Methods method1 and method2 map to the same SQL name. You cannot
have two methods that map to the same SQL name in a named iterator
declaration.

Equality operator operand types must match.
Cause: Equality operator can only compare objects both of which are either
boolean or numeric types, or object types at least one of which is assignable to
the other.

Action: Check the types of the operands to the equality operator.

error converting profile: filename
Cause: An error occurred while converting the profile in file filename from
serialized to class file format. Details of the error were listed after this message.

Action: Consult the error details and fix as appropriate.

Error in Java compilation: message
Cause: An error occurred when SQLJ was invoking the Java compiler to
compile .java source files.

Action: Ensure that the correct Java compiler is specified in the
-compiler-executable flag, and that the compiler can be found on the PATH.
Alternatively, you can use the -passes option, so that your Java compiler is
called from the commandline rather than from SQLJ.

error loading customizer harness
Cause: The customizer harness utility could not be properly initialized. This
indicates an incompatible Java runtime environment.

Action: Verify that the Java runtime environment is compatible with JRE 1.1 or
later.
 SQLJ Error Messages B-13

Translation Time Messages
Expected "token1" and found "token2" instead.
Cause: The syntax of this statement requires a terminating token token1 which
was not found.

Expected ’FROM’ to follow ’SELECT ... INTO ...’
Cause: The SELECT statement syntax is incorrect.

Action: Add FROM clause after the INTO clause.

Expected cast to be assigned to an iterator, found that cast was assigned to type.
Cause: The the left-hand-side of the CAST assignment must be a SQLJ iterator
instance, not an expression of type type.

Expected cast to be assigned to an iterator.
Cause: The SQLJ CAST statement must be an assignment statement, with the
left-hand-side of the assignment being a SQLJ iterator instance.

Expected cursor host variable or NEXT, or PRIOR, or FIRST, or LAST, or
ABSOLUTE, or RELATIVE.
Cause: A host variable representing an iterator type or a keyword was
expected here.

Expected cursor host variable. Encountered: "token"
Cause: A host variable representing an iterator type was expected here.

Expected end of cast statement. Found "token" ...
Cause: An unexpected token token was found after the CAST statement.

Expected end of FETCH statement. Encountered: "token"
Cause: No further tokens were expected in this FETCH statement.

Expected host variable of type java.sql.ResultSet, found "token" ...
Cause: You did not specify a host variable after the CAST keyword.

Expected host variable of type java.sql.ResultSet, found host variable of invalid
Java type.
Cause: No valid Java type could be derived for the host expression.

Expected host variable of type java.sql.ResultSet, found host variable of type
type.
Cause: The host expression has the Java type type, not java.sql.ResultSet
as required.

Action: Use a host expression of type java.sql.ResultSet. If necessary,
you can cast the expression to this type using a Java cast.

Expected host variable of type java.sql.ResultSet.
B-14 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: The SQLJ CAST statement assigns a java.sql.ResultSet to an
iterator type. The type you are trying to convert is not a
java.sql.ResultSet.

Action: You must use a host expression of type java.sql.ResultSet. If
necessary, you can cast the expression to this type using a Java cast.

Expected INTO bind expression.
Cause: This statement should have a list of one or more INTO host expressions.

expected ODBC function call syntax "{ call func(...) }".
Cause: Invalid use of the JDBC escape syntax for calling stored procedures.

Expected stored function name. Found: token
Cause: The name of a stored function was expected here instead of the token
token.

Expected stored function or procedure name. Found: token
Cause: The name of a stored function or a stored procedure was expected here
instead of the token token.

Expected stored procedure name. Found: token
Cause: The name of a stored procedure was expected here instead of the token
token.

Expected: FETCH :cursor INTO ...
Cause: The FETCH statement must have a cursor host variable, from which
values are to be fetched.

Expected: WHERE CURRENT OF :hostvar. Found: WHERE CURRENT token ...
Action: Use proper syntax in the WHERE CURRENT OF clause.

Expected: WHERE CURRENT OF :hostvar. Found: WHERE CURRENT OF token
...
Action: Use proper syntax in the WHERE CURRENT OF clause.

field "field name" in class name is not a class name type
Cause: The field named field name in custom datum class class name did not
have the expected type class name. A field of this type is required for proper
conversion of the class to and from Oracle database types.

Action: Declare field field name to be the indicated type in the custom datum
class.

field "field name" in class name is not accessible
 SQLJ Error Messages B-15

Translation Time Messages
Cause: The field named field name was not public in custom datum class class
name. It is required for proper conversion of the class to and from Oracle
database types.

Action: Declare field field name as public in the custom datum class.

field "field name" in class name is not uniquely defined
Cause: More than one field named field name was found in custom datum class
class name. This can occur if field name is defined in two different interfaces that
are both implemented by class name. A uniquely defined field is required for
proper conversion of the class to and from Oracle database types.

Action: Update the custom datum class so that field name is defined only once.

field "field name" not found in class name
Cause: A field named field name could not be found in custom datum class class
name. It is required for proper conversion of the class to and from Oracle
database types.

Action: Declare the required field in the custom datum class.

Field not accessible.
Cause: This class has no access to the field.

Action: Check that the access rights of the field are set correctly.

File fileName does not contain type className as expected. Please adjust the class
path so that the file does not appear in the unnamed package.
Cause: Ensure that the class className is defined in file fileName that you pass
to SQLJ.

file too large
Cause: A profile file contained in a JAR file was too large to be customized.

Action: Extract and customize the profile as a single file rather than as part of a
JAR file.

filename must be a valid java identifier: filename
Cause: The filename is an illegal Java identifier. SQLJ creates additional class
and resource definitions based on the name of the input file, so the name must
be able to be used as a Java identifier.

Action: Rename the file so that it can be used as a Java identifier.

found incompatible types
B-16 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: The profile contained a combination of types that could not be
supported by any one Oracle JDBC driver.

Action: Remove incompatible types from the program. Incompatible types are
included in the types listed by the "summary" option.

Host item #n cannot be OUT or INOUT.
Cause: The host item at position #n is embedded in a SQL expression that
constitutes an argument to a stored procedure or function. This argument
position therefore must have the mode IN. This message is also given if you
bind arguments by name.

Action: Change the mode of the argument to IN. If you are binding an OUT or
INOUT argument by name, you should ignore this message.

Host item #pos must be an lvalue.
Cause: The OUT or INOUT host expression at position pos must be an
assignable expression. Java variables, fields, and array elements are assignable
expressions.

Host item name (at position #n) cannot be OUT or INOUT.
Cause: The host item name at position #n is embedded in a SQL expression that
constitutes an argument to a stored procedure or function. This argument
position therefore must have the mode IN. This message is also given if you
bind arguments by name.

Action: Change the mode of the argument to IN. If you are binding an OUT or
INOUT argument by name, you should ignore this message.

Identifier identifier may not begin with __sJT_.
Action: Ensure that you do not use identifiers that start with __sJT_.

Ignored type map entries: entry list.
Cause: One or more non-standard, non-portable entries on the connection
context type map were found and ignored.

ignoring context name context name
Cause: A profile was found with an associated connection context named
context name. Since this context was not included in the customizer harness
"context" option list, this profile was not customized.

Action: Rerun the customizer harness with a "context" setting that includes the
named context, if desired.

Illegal entry for option option. Expected a boolean value, received: "value"
 SQLJ Error Messages B-17

Translation Time Messages
Action: Use a boolean value for option (such as true, false, yes, no, 0, 1).

Illegal INTO ... bind variable list: error.
Cause: One or more components of the INTO list do not have a valid Java type.

Illegal Java type in cursor for WHERE CURRENT OF
Cause: No valid Java type could be derived for the iterator in the WHERE
CURRENT OF clause.

Illegal token ’token’ will be ignored.
Cause: Source file contains a sequence of characters that cannot be matched to
any Java token.

Action: Modify the source file to fix the error and verify the source file contains
valid Java source code.

illegal value: option setting
Cause: An option was set to a value that was out of range or invalid.

Action: Consult the message detail and correct the option value accordingly.

In FETCH clause: expected expected token or expression.
Cause: A particular syntactic keyword or expression was expected in the
FETCH clause.

IN mode is not allowed for INTO-variables.
Cause: INTO variables return values in Java.

Action: Use OUT instead (which is the default, so if you want you can omit the
specifier altogether).

Inaccessible Java type for host item #n: type.
Cause: The Java class type is not a publicly visible class, and thus cannot be
instantiated by a driver.

Action: Use a public Java type in the host expression.

Inaccessible Java type for host item name (at position #n): type.
Cause: The host expression name has Java type type, which is not publicly
visible, and thus cannot be instantiated by a driver.

Action: Use a public Java type in the host expression.

Inaccessible Java type for item #pos of INTO-list: type.
Cause: The Java class type of INTO-list item pos is not a publicly visible class,
and thus cannot be instantiated by a driver.
B-18 SQLJ Developer’s Guide and Reference

Translation Time Messages
Action: Use a public Java type in the INTO-list.

Increment/decrement operator requires numeric operand.
Cause: Increment and decrement operators can only operate on integer values.

Action: Check the type of the operand.

Initialization lists are not allowed in bind expressions.
Cause: Host expressions cannot have initialization lists.

Action: Move the expression that uses initialization list outside the #sql
statement and store its value to a temporary variable of the correct type; then
use that temporary variable in the host expression instead.

INOUT mode is not allowed for INTO-variables.
Cause: INTO variables return values in Java.

Action: Use OUT instead (which is the default, so if you want you can omit the
specifier altogether).

Instanceof operator requires an object reference operand.
Cause: Instanceof operator can only operate on objects.

Action: Check the type of the operand.

INTERNAL ERROR SEM-label. Should not occur - please notify.
Action: Notify Oracle of the error message.

INTO-list item #position must be an lvalue.
Cause: The elements of an INTO-list must be assignable expression. Java
variables, fields, and array elements are assignable expressions.

INTO-lists may only occur in SELECT and FETCH statements.
Cause: No INTO... bind list is permitted in the current SQL statement.

Invalid CustomDatum or SQLData implementation in type: mesg
Cause: You are employing a user-defined Java type type that implements the
oracle.sql.CustomDatum or the java.sql.SQLData interface. However,
your type does not meet all of the requirements placed on user-defined type, as
indicated by the message detail.

Action: Remedy the problem in your user-defined type. Alternatively, you may
want to use the jpub utility to generate your user-defined type.

Invalid bind variable or expression.
 SQLJ Error Messages B-19

Translation Time Messages
Cause: A bind variable (i.e., host variable, context expression, or iterator
expression when used to store the return value of a query) is not legal Java
syntax.

Action: Fix the host variable or expression.

Invalid cursor type in FETCH statement: type.
Action: Iterator in the FETCH statement must implement
sqlj.runtime.FetchableIterator.

Invalid iterator declaration.
Cause: There is a syntax error in the SQL declaration.

Action: Check the SQL declaration syntax.

Invalid Java type classname in entry "typemap entry".
Cause: The Java classname must be the name of a valid Java class that is
present in the Java environment.

Invalid Java type java type in map at entry "entry"
Cause: The type java type is not the name of a valid Java class.

Invalid Java type for host item #n.
Cause: No valid Java type could be derived for host expression #n.

Invalid Java type for host item #n: error.
Cause: No valid Java type could be derived for host expression #n.

Invalid Java type for host item #position: classname. Oracle SQL does not support
this type.
Cause: The Oracle SQLJ runtime does not support writing instances of this
type to the database.

Action: If the problem type is oracle.sql.STRUCT, oracle.sql.REF, or
oracle.sql.ARRAY, you can use a JPublisher-generated wrapper class instead of
the oracle.XXX type.

Invalid Java type for host item name (at position #n).
Cause: No valid Java type could be derived for host expression name (at
position #n).

Invalid Java type for host item name (at position #n): error.
Cause: No valid Java type could be derived for host expression name (at
position #n).

Invalid Java type for item #pos of INTO-list: type.
B-20 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: No valid Java type could be derived for INTO-item #pos: type.

invalid option "option name" set from option origin: problem description
Cause: The option option name had an invalid value.

Action: Correct the option value as needed for problem description.

invalid option: option setting
Cause: The option given by option setting was not recognized by the customizer
harness.

Action: Correct or remove the unknown option.

invalid profile name: profile name
Cause: The JAR file MANIFEST file contained a SQLJ profile entry that was not
contained in the JAR file.

Action: Add the named profile to the JAR file, or remove its entry from the
MANIFEST file.

Invalid SQL iterator declaration.
Cause: An instance of a declared SQLJ type cannot be fully manipulated,
because its declaration contains errors or ambiguities.

Action: Check the SQL iterator declaration, paying attention to the types that
appear in the iterator column type list, and that those types are imported if they
are referred to using their base name only.

Invalid SQL string.
Cause: There is a syntax error in the SQL statement.

Action: Check the SQL statement syntax, paying attention especially to missing
delimiters (for example, closing parenthesis, braces, and brackets; quotation
marks; comment delimiters, etc.).

Invalid SQL type in entry "entry" of type map type map message.
Cause: The SQL type in entry entry was not given properly, or it has duplicate
entries.

Invalid type cast
Cause: An object cannot be cast to the indicated type.

Action: Check the type of the operand.

Item #pos of INTO-list does not have a Java type.
Cause: No valid Java type could be derived for INTO-item #pos.
 SQLJ Error Messages B-21

Translation Time Messages
Iterator iterator must implement the interface interface.
Cause: Because of the motion command used on this iterator, it must
implement the interface interface.

Action: Declare the iterator type as follows: #sql iterator iterator implements
interface (...);

iterator class name must implement either sqlj.runtime.NamedIterator or
sqlj.runtime.PositionedIterator
Cause: The iterator class class name used in this SQL operation was neither a
named iterator nor a positional iterator. This indicates an iterator that was
generated by a non-standard translator.

Action: Retranslate the iterator declaration using a standard translator.

Iterator attribute attribute is not defined in the SQLJ specification.
Action: The with-clause attribute attribute is not explicitly part of the SQLJ
specification. Check the spelling of your attribute name.

Iterator with attribute updateColumns must implement sqlj.runtime.ForUpdate
Action: Specify the implements-clause: implements
sqlj.runtime.ForUpdate in your iterator declaration.

JAR does not contain MANIFEST file
Cause: A JAR file did not contain a MANIFEST file. The MANIFEST file is
required to determine the profiles contained in the JAR file.

Action: Add a MANIFEST to the JAR file. The MANIFEST should include the
line "SQLJProfile=TRUE" for each profile contained in the JAR file.

JAR MANIFEST file format unknown
Cause: A JAR file could not be customized because the JAR MANIFEST file
was written using an unknown format.

Action: Recreate the JAR file with a MANIFEST file formatted according the
JDK manifest file format specification. MANIFEST files created using the jar
utility conform to this format.

Java class class specified in type map does not implement interface.
Cause: According to the context type map type map, the class class must
implement the interface type map. This is not the case.

Java class class specified in type map implements neither interface1 nor
interface2.
B-22 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: According to the context type map type map, the class class must
implement interface interface1 or it must implement interface interface2. This is
not the case.

Java class classname in entry "entry" must implement interface
Cause: Instances of Java objects that are read from or written to the database
must implement a particular Java interface.

Java type javatype for column column is illegal.
Cause: No valid Java class declaration could be found for javatype.

Java type type of iterator for WHERE CURRENT OF is not supported. It must
implement sqlj.runtime.ForUpdate.
Cause: The iterator in the WHERE CURRENT OF clause must be declared as
implementing the interface sqlj.runtime.ForUpdate.

JDBC does not specify that column column type is compatible with database type
sqltype. Conversion is non-portable and may result in a runtime error.
Action: For maximum portability to different JDBC drivers, you should avoid
this conversion.

JDBC reports a mode other than IN/OUT/INOUT/RETURN for name in position
n.
Cause: Your JDBC reports an unknown mode for an argument of a stored
procedure or function.

Action: Ensure that the stored function or procedure has been properly
defined. Possibly update your JDBC driver.

JDBC reports an error during the retrieval of argument information for the stored
procedure/function name: error.
Action: Because of the error, the modes for this function or procedure could not
be determined. Repeat translation or translate offline if error persists.

JDBC reports more than one return value for name.
Cause: Your JDBC driver erroneously reports multiple return arguments for a
stored procedure or function.

Action: Update your JDBC driver.

JDBC reports the return value for function in position pos instead of position 1.
Cause: Your JDBC driver does not properly report the return argument of a
stored function first.

Action: Update your JDBC driver.
 SQLJ Error Messages B-23

Translation Time Messages
Left hand side of assignment does not have a Java type.
Cause: No valid Java type could be derived for the left-hand-side expression of
the assignment statement.

list item value may not be empty
Cause: A list-valued option such as "driver" or "context" included an empty list
item.

Action: Remove the empty item from the list.

Loss of precision possible in conversion from sqltype to column column type.
Cause: Conversion from a numeric SQL value to Java may result in a loss of
precision.

Method name method is reserved by SQLJ.
Cause: SQLJ pre-defines several methods on iterators. You cannot use these
names in your own methods.

Method not accessible.
Cause: This class has no access to the method.

Action: Check that the access rights of the method are set correctly.

Method not found.
Cause: The method does not exist.

Action: Check the method arguments, or add an overloaded method with the
desired arguments.

Missing count elements in INTO list: types
Cause: The FETCH statement has fewer columns on the fetch cursor than
required by the INTO bind variable list.

Missing closing ")" on argument list of stored procedure/function call.
Action: The argument list should be terminated with a ")".

Missing colon.
Cause: There was no colon where one was expected.

Action: Add the missing colon.

Missing comma.
Cause: There was no comma where one was expected.

Action: Add the missing comma.

Missing curly brace.
B-24 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: There was no opening curly brace where one was expected.

Action: Add the missing opening curly brace.

Missing dot operator.
Cause: There was no dot operator where one was expected.

Action: Add the missing dot operator.

Missing element in INTO list: element
Action: You must add element to the INTO list.

Missing equal sign in assignment.
Cause: A Java expression is in position of a return variable, but no equal sign
follows the expression as required by assignment syntax.

Action: Add the missing assignment operator.

Missing parenthesis.
Cause: There was no opening parenthesis where one was expected.

Action: Add the missing opening parenthesis.

Missing semicolon.
Cause: There was no semicolon where one was expected.

Action: Add the missing semicolon.

Missing square bracket.
Cause: There was no opening square bracket where one was expected.

Action: Add the missing opening square bracket.

Missing terminating "token".
Cause: No matching token token was found in the SQL statement.

Mode of left-hand-side expression in SET statement was changed to OUT.
Cause: In a SET :x = ... statement you specified the mode of the host
expression x as IN or INOUT. This is incorrect.

Action: Either omit the mode, or specify the mode as OUT.

Modifier modifier not allowed in declaration.
Cause: Not all modifiers are permitted in a SQLJ class declaration.

Modifier modifier not allowed in top-level declarations.
Cause: Not all modifiers are permitted in a SQLJ class declaration.
 SQLJ Error Messages B-25

Translation Time Messages
More than one INTO ... bind list in SQL statement.
Action: Eliminate superfluous INTO ... bind lists.

moving original filename to new filename
Cause: A backup of the profile was created by the profile conversion utility.
The backup file is named new filename.

Action: No further action required.

Must be connected online to perform optimization for result set columns.
Cause: User specified the -P-Coptcols option. The profile customizer must be
able to log on to the database in order to determine the types and sizes of all
result set columns.

Action: Specify connection information through the -P-user, -P-password, and
-P-url options.

Must specify STRUCT or JAVA_OBJECT in entry "entry"
Cause: The SQL type to which Java class maps must either be a structured type
(STRUCT xxx) or a SQL type capable of holding Java object instances (JAVA_
OBJECT xxx).

Name ’illegal identifier’ cannot be used as an identifier.
Cause: The string ’illegal identifier’ cannot be used as an identifier because it
represents some other language element (for example, operator, punctuation,
control structure, etc.).

Action: Use some other name for the identifier.

Negation operator requires boolean operand.
Cause: Negation operator can operate only on a boolean operand.

Action: Check the type of the operand.

No ";" permitted after stored procedure/function call.
Cause: SQLJ does not permit a terminating semicolon after a stored procedure
or function invocation.

No connect string specified for context context.
Cause: No JDBC connection URL was given for context.

Action: Specify a JDBC URL in the -url@context option, or in the
-user@context option.

No connect string specified.
B-26 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: No JDBC connection URL was given.

Action: Specify a JDBC URL in the -url option, or in the -user option.

No connection specified for context context. Will attempt to use connection
defaultconnection instead.
Cause: If no explicit connection information is given for the online checking of
context, SQLJ will use the values for the default online exemplar schema.

no customizer specified
Cause: Profile customization was requested but no customizer was specified.

Action: Set the profile customizer using the "customizer" or
"default-customizer" option.

No instrumentation: class already instrumented.
Cause: This class file was already instrumented with the source locations from
the original .sqlj file.

No instrumentation: no line info in class.
Cause: This class file does not have any line information and thus cannot be
instrumented. Most likely, this happened because you used the -O (optimize)
flag to the Java compiler, which will strip line information from the class file.

No INTO variable for column #pos: "name" type
Cause: In a SELECT-INTO statement, the column name at position pos of type
type does not have a corresponding Java host expression.

Action: Either expand your INTO-list, or change your SELECT statement.

No offline checker specified for context context.
Cause: No offline analysis can be performed for context.

No offline checker specified.
Cause: No offline analysis can be performed.

No online checker specified for context context. Attempting to use offline checker
instead.
Cause: The context will be checked offline, even though online checking was
requested.

No online checker specified. Attempting to use offline checker instead.
Cause: Offline checking will be performed, even though online checking was
requested.

No SQL code permitted after stored procedure/function call. Found: "token" ...
 SQLJ Error Messages B-27

Translation Time Messages
Cause: SQLJ does not permit additional statements after a stored procedure or
function invocation.

No suitable online checker found for context context. Attempting to use offline
checker instead.
Cause: None of the online checkers is capable to check context.

No suitable online checker found. Attempting to use offline checker instead.
Cause: None of the online checkers is capable to check the default context.

No user specified for context context. Will attempt to connect as user user.
Cause: If a user is specified for the default context, SQLJ will attempt to check
online for all contexts.

No variable name defined in class classname
Cause: A variable named name could not be found in class classname.

Action: Verify that the variable exists and is accessible in the named class.

not a directory: name
Cause: You have directed SQLJ via the -d or the -dir option to create output
files into a directory hierarchy starting with the root directory name. Ensure that
the root directory exists and is writable.

not a valid input filename: filename
Cause: Input files to SQLJ must have the extension ".sqlj", ".java", ".ser", or
".jar".

Not an interface: name
Cause: The name name was used in the implements clause. However, it does
not represent a Java interface.

Not an original sqlj file - no instrumentation.
Cause: The Java file from which the class file was compiled was not generated
by the SQLJ translator.

Not found: name. There is no stored procedure or function of this name.
Cause: A stored function or procedure could not be found.

option is read only: option name
Cause: An option value was specified for the read-only option named option
name.

Action: Verify the intended use of the option.

Option optparamdefaults: Invalid JDBC type in size hint
B-28 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: User specified the -P-Coptparamdefaults option which contains a
comma-separated list of size hints of the form <JDBC-type>(<number>) or
<JDBC-type>(). <JDBC-type> was not one of CHAR, VARCHAR, VARCHAR2,
LONG, LONGVARCHAR, BINARY, RAW, VARBINARY, LONGVARBINARY,
LONGRAW, or a wildcard XXX% matching one or more of these, or CHAR_
TYPE, or RAW_TYPE.

Option optparamdefaults: Invalid or missing size indicator in size hint
Cause: User specified the -P-Coptparamdefaults option which contains a
comma-separated list of size hints. One or more of the hints did not have the
form <JDBC-type>(<number>) or <JDBC-type>().

Oracle features used:
Cause: The Oracle customizer "summary" option was enabled. A list of Oracle
specific types and features used by the current profile follows this message.

Action: If wider portability is desired, types and features listed may need to be
removed from the program.

PLEASE ENTER PASSWORD FOR user AT connection >
Action: You are requested to enter a user password and hit <enter>.

positioned update/delete not supported
Cause: Select and use a ROWID to refer to a particular table row.

Action: A SQL positioned update or delete operation was contained in the
profile. This operation cannot be executed by Oracle at runtime.

Premature end-of-file.
Cause: The source file ended before the class declaration was completed.

Action: Check the source file, paying attention to missing quotation marks;
correct placement or possible omission of enclosing parenthesis, brackets, or
braces; missing comment delimiters; and that it contains at least one valid Java
class.

Public class class name must be defined in a file called filename.sqlj or
filename.java
Cause: Java requires that the class name must match with the base name of the
source file that contains its definition.

Action: Rename the class or the file.

Public declaration must reside in file with base name name, not in the file file.
 SQLJ Error Messages B-29

Translation Time Messages
Action: Ensure that the name of the SQLJ file name and the public class name
match.

re-installing Oracle customization
Cause: An older version of the Oracle customization was previously installed
into the profile being customized. The old customization was replaced with a
more recent version.

Action: The profile is ready for use with Oracle. No further action required.

recursive iterators not supported: iterator name
Cause: A SQL operation used a recursively defined iterator type. A recursively
defined iterator type "A" is an iterator which eventually contains "A" as one of
its column types. An iterator is said to eventually contain "A" if it has a column
type that is either "A" or an iterator that itself eventually contains "A".

Action: Use an iterator that is not recursive.

registering Oracle customization
Cause: The Oracle customization was installed into the profile being
customized.

Action: The profile is ready for use with Oracle. No further action required.

Repeated host item name in positions pos1 and pos2 in SQL block. Behavior is
vendor-defined and non portable.
Cause: The host variable name appeared in more than one position with the
mode OUT, or INOUT, or it appears with the mode IN as well as OUT or
INOUT.

Action: Be aware that host variables are not passed by reference, but each
occurrence is passed individually by value-result. To avoid this message, use
separate host variables for each OUT or INOUT position.

Result expression must be an lvalue.
Cause: The left-hand side of a SQLJ assignment statement must be an
assignable expression. Java variables, fields, and array elements are assignable
expressions.

Return type javatype of stored function is not legal.
Cause: The stored function returns a Java type javatype, which does not refer to
a valid Java class.

Return type type is not a visible Java type.
B-30 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: The type type is not a publicly visible Java type, and thus no instances of
this type can be created and returned from a database driver.

Action: Declare type type as public.

Return type type is not supported in Oracle SQL.
Cause: The Java type type cannot be returned by a SQL statement.

Return type type of stored function is not a JDBC output type. This will not be
portable.
Cause: Use types as per the JDBC specification for maximum portability.

Return type type of stored function is not a visible Java type.
Cause: The type type is not a publicly visible Java type, and thus no instances of
this type can be created and returned from a database driver.

Action: Declare type type as public.

Return type incompatible with SELECT statement: type is not an iterator type.
Action: SQL queries that return a value must be assigned to a
java.sql.ResultSet, or to a positional or named iterator object.

Select list has only n elements. Column type #pos is not available.
Cause: The database query returns fewer columns than required by the iterator
or by an INTO host variable list.

Action: Either change the query, or remove elements from the INTO-list.

Select list has only one element. Column type #pos is not available.
Cause: The database query returns fewer columns than required by the iterator
or by an INTO host variable list.

Action: Either change the query, or remove elements from the INTO-list.

Shift operator requires integral operands.
Cause: Shift operator can operate only on numeric operands.

Action: Check the types of operands.

Sign operator requires numeric operand.
Cause: Sign operator can operate only on a numeric operand.

Action: Check the type of the operand.

Size designation size hint for parameter param ignored.
 SQLJ Error Messages B-31

Translation Time Messages
Cause: A size hint was given for parameter param. However, this parameter
does not have a variable size type. Therefore the size hint will be ignored.

SQL checker did not categorize this statement.
Cause: The specified SQL checker did not determine the nature of this SQL
statement.

Action: Your SQL checker should be categorizing every SQL statement. Check
the SQL checker that is being used (-online and -offline options).

SQL checking did not assign mode for host variable #n - assuming IN.
Cause: The specified SQL checker did not assign mode information for this
host variable. The mode IN is assumed.

Action: Your SQL checker should be assigning modes to all host expressions.
Check the SQL checker that is being used (-online and -offline options).

SQL checking did not assign mode for host variable #n.
Cause: The specified SQL checker did not assign mode information for this
host variable. The mode IN is assumed.

Action: Your SQL checker should be assigning modes to all host expressions.
Check the SQL checker that is being used (-online and -offline options).

SQL checking did not assign mode for host variable name (at position #n) -
assuming IN.
Cause: The specified SQL checker did not assign mode information for this
host variable. The mode IN is assumed.

Action: Your SQL checker should be assigning modes to all host expressions.
Check the SQL checker that is being used (-online and -offline options).

SQL checking did not assign mode for host variable name (at position #n).
Cause: The specified SQL checker did not assign mode information for this
host variable. The mode IN is assumed.

Action: Your SQL checker should be assigning modes to all host expressions.
Check the SQL checker that is being used (-online and -offline options).

SQL statement could not be categorized.
Cause: This SQL statement did not begin with a recognizable SQL or SQLJ
keyword, such as SELECT, UPDATE, DELETE, ..., CALL, VALUES, FETCH,
CAST, etc.

Action: Check the syntax of your SQL statement.
B-32 SQLJ Developer’s Guide and Reference

Translation Time Messages
SQL statement does not return a value.
Cause: The program contained an assignment statement that was neither a
query nor a stored function call. Only queries and functions can return
immediate results.

SQL statement with INTO ... bind variables can not additionally return a value.
Action: Either remove INTO ... bind list, or remove assignment to an iterator.

SQLJ declarations cannot be inside method blocks.
Cause: Method blocks cannot contain SQLJ declarations.

Action: Move the SQLJ declaration from the method block scope to the class
scope or file scope instead (renaming the declared type and all references to it if
necessary to avoid ambiguity).

SQLJ runtime library is missing. You need to provide sqlj runtime library on the
CLASSPATH.
Cause: From version 8.1.7 on, the translator.zip library does not contain the
SQLJ runtime classes any longer.

Action: Ensure that one of runtime.zip, runtime11.zip, or runtime12.zip is
available on your CLASSPATH or via the -classpath option. Depending on your
JDBC and Java environment, the error message suggests a particular runtime
version.

Statement execution expression does not have a Java type.
Cause: No valid Java type could be derived for your execution context
expression.

Stored function or procedure syntax does not follow SQLJ specification.
Cause: Stored functions use the VALUES(...) syntax, while stored procedures
use the CALL ... syntax.

Action: SQLJ understands your function/procedure syntax. However, if you
want your SQLJ program to be maximally portable, you may want to use the
documented syntax.

Stored function syntax does not follow SQLJ specification.
Cause: Stored functions use the VALUES(...) syntax.

Action: SQLJ understands your function syntax. However, if you want your
SQLJ program to be maximally portable, you may want to use the documented
syntax.

Stream column name #pos not permitted in SELECT INTO statement.
 SQLJ Error Messages B-33

Translation Time Messages
Cause: You cannot use stream types, such as sqlj.runtime.AsciiStream,
in a SELECT INTO statement.

Action: For a single stream column, you can use a positional iterator and place
the stream column at the end. Alternatively, you can use a named iterator,
ensuring that the stream columns (and other columns) are accessed in order.

Syntax [<connection context>, <execution context>, ...] is illegal. Only two context
descriptors are permitted.
Action: Use #sql [<connection context>, <execution context>] { ... }; for
specifying both connection and execution contexts.

The class prefix is prefix, which has the SQLJ reserved shape <file>_SJ.
Cause: You should avoid class names of the form <file>_SJ<suffix>, which are
reserved for SQLJ-internal use.

The column column type is not nullable, even though it may be NULL in the
select list. This may result in a runtime error.
Cause: Nullability in Java does not reflect nullability in the database.

The keyword non-portable keyword for iterator movement is not portable - use
portable expression instead.
Cause: The syntax used here is not part of the SQLJ ISO standard.

The option value -warn=value is invalid. Permitted values are: all, none, nulls,
nonulls, precision, noprecision, strict, nostrict, verbose, noverbose.
Action: Use only permitted values in your -warn option.

The result set column "name" type was not used by the named cursor.
Cause: The column name of type type was selected by the query. However, this
column is not required by the named iterator.

Action: Change the query or ignore this message (you can turn it off with the
-warn=nostrict option).

The tag tag in option option is invalid. This option does not permit tags.
Action: Only the -user, -url, -password, -offline, and -online options
are used with tags. Specify the option as -option not as -option@tag.

The type of the context expression is type. It does not implement a connection
context.
Cause: A connection context must implement
sqlj.runtime.ConnectionContext.
B-34 SQLJ Developer’s Guide and Reference

Translation Time Messages
The type of the statement execution context is type. It does not implement an
ExecutionContext.
Cause: An execution context must be an instance of class
sqlj.runtime.ExecutionContext.

This SQLJ runtime version requires JDK version 1.2 or later.
Cause: You are using runtime12.zip under JDK 1.1.x.

Action: Either run in a JDK 1.2 environment, or use a JDK 1.1.x compatible
runtime, such as runtime.zip or runtime11.zip.

This type is not legal as an IN argument.
Cause: The Java type is supported as an OUT argument but not as an IN
argument by your JDBC driver.

This type is not legal as an OUT argument.
Cause: The Java type is supported as an IN argument but not as an OUT
argument by your JDBC driver.

Type type for column column is not a JDBC type. Column declaration is not
portable.
Action: Use types as per the JDBC specification for maximum portability.

Type type for column column is not a valid Java type.
Cause: No valid Java class declaration could be found for type.

Type type of column column is not publicly accessible.
Cause: The Java class type of SELECT-list column column is not a publicly
visible class, and thus cannot be instantiated by a driver.

Action: Use a public Java type in the SELECT-list.

Type type of host item #n is not permitted in JDBC. This will not be portable.
Action: Use types as per the JDBC specification for maximum portability.

Type type of host item item (at position #n) is not permitted in JDBC. This will
not be portable.
Action: Use types as per the JDBC specification for maximum portability.

Type type of INTO-list item n is not publicly accessible.
Cause: The Java class type of INTO-list item n is not a publicly visible class, and
thus cannot be instantiated by a driver.

Action: Use a public Java type in the INTO-list.
 SQLJ Error Messages B-35

Translation Time Messages
Type cast operator requires non-void operand.
Cause: A void type cannot be cast to any actual type.

Action: Correct the type of the operand, or remove the cast operation
altogether.

Type map map value at key is not a String.
Cause: You specified the type map resource map with your connection context.
The entry for the key key is not an instance of java.lang.String.

Action: Ensure that every key maps to a non-null String value.

Type map map value at key is null.
Cause: You specified a type map resource map with your connection context.
The entry for the key key is null.

Action: Ensure that every key maps to a non-null String value.

Type map map: inner Java class java type must be specified as required type at
entry "entry"
Cause: When referencing an inner class in a type map, you wrote the class
name the same way it would be written in Java source: <package name>.<outer
class>.<inner class>. However, at runtime the JavaVM will not be able to load
this class with Class.forName.

Action: In the type map make reference to inner classes as follows: <package
name>.<outer class>$<inner class>.

Type map resource resource appears to have the same name as a class. You should
rename the resource.
Cause: The resource name resource coincides with an existing class name. This
can cause problems when you run your program.

Type mismatch in argument #n of INTO-list. Expected: type1 Found: type2
Cause: The Java type type2 of your host expression #n in the INTO-list does not
match the Java type type1 prescribed by the positional iterator.

Unable to check SQL query. Error returned by database is: error
Cause: The database issued an error message when checking a SQL query
against the exemplar schema.

Action: Verify whether the SQL query is correct.

Unable to check SQL statement. Could not parse the SQL statement.
B-36 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: An error occurred during parsing of a SQL statement, making it
impossible to determine the contents of the select list.

Action: Verify the syntax of your SQL query.

Unable to check SQL statement. Error returned by database is: error
Cause: The database issued an error message when checking a SQL statement
against the exemplar schema.

Action: Verify whether the SQL statement is correct.

Unable to check WHERE clause. Error returned by database is: error
Cause: When determining the shape of a query from an exemplar schema, the
database issued an error message.

Action: Verify the syntax of your SQL query.

Unable to connect to data source "data source". Will attempt to use JDBC
connection instead.
Cause: The connection context has the dataSource attribute value data source.
Since the translator was unable to connect to this data source, it now attempts to
use a JDBC connection instead.

Unable to convert profile to a class file.
Cause: SQLJ could not convert the profile file profile to a class file.

Action: Ensure that the profile file is present, that directory specified in the -d
option is writable, and that the Java compiler is accessible.

Unable to create a connection context instance of context name: message.
Cause: The SQLJ customizer is unable to instantiate the connection context
type context name.

Action: Ensure that the context class context name is declared as public and is
available on the CLASSPATH. This is particularly important if this context has
declared a typeMap.

unable to create backup file
Cause: A backup file for the current profile could not be created. This indicates
that a new file could not be created in the directory containing the profile. The
original profile remains unchanged.

Action: Verify that the directory containing the profile has the proper
permissions and rerun the customizer harness. Omit the "backup" option to
customize the profile without creating a backup file.
 SQLJ Error Messages B-37

Translation Time Messages
unable to create output file file
Action: Ensure that SQLJ has the appropriate permissions to create the file file.

unable to create package directory directory
Cause: You have directed SQLJ via the -d or the -dir option to create output
files into a directory hierarchy. Ensure that SQLJ is able to create appropriate
subdirectories.

unable to delete filename
Cause: The profile file filename could not be removed by the profile conversion
utility.

Action: Verify that the file given by filename has the proper permissions.

Unable to determine type of WITH-clause attribute name: circular reference.
Cause: The value of the WITH-clause attribute name directly or indirectly
referenced itself. The type of the attribute cannot be determined in such cases.

Action: Update the WITH-clause value so it does not refer to itself.

unable to find input file filename
Action: Ensure that file filename exists.

Unable to initialize system classes: error. This can be caused by a version
mismatch between the SQLJ runtime and the Java environment.
Cause: The SQLJ runtime does not appear to be compatible with the Java
environment.

Action: Under JDK 1.1.x use runtime.zip or runtime11.zip, under JDK 1.2 or
later use (preferably) runtime12.zip or runtime.zip.

Unable to instantiate the offline checker class.
Cause: Class class does not have a public default constructor.

Unable to instantiate the online checker class.
Cause: Class class does not have a public default constructor.

Unable to instrument args: message
Cause: SQLJ could not instrument the classfile args due to some error that
occurred during instrumentation.

Action: Ensure that the class file is present, that it is not corrupt, and that it is
writable.

unable to load class class name: error description
B-38 SQLJ Developer’s Guide and Reference

Translation Time Messages
Cause: A parameter or iterator column with type class name used in this SQL
statement could not be loaded by the customizer. To perform customization,
the customizer must be able to load all classes used in the SQL operation.

Action: Verify the type class name exists in ".class" format, and can be found on
the CLASSPATH. Examine error description for details of the problem.

Unable to load the offline checker class.
Cause: The Java class class could not be found.

Unable to load the online checker class.
Cause: The Java class class could not be found.

unable to move original filename to new filename
Cause: The profile file original filename could not be renamed as new filename by
the profile conversion utility.

Action: Verify that the files and output directory have the proper permissions.

Unable to obtain DatabaseMetaData to determine the online checker to use for
context context. Attempting to use offline checker instead.
Cause: JDBC database meta data was unavailable, or did not supply
information on the database name and version.

Action: Ensure that you have a proper JDBC driver available.

Unable to obtain description of stored function or procedure: error.
Cause: An error occurred when trying to characterize a stored function or
procedure invocation.

Action: Ensure that you are calling a proper stored procedure or function.
Ensure that you are using an appropriate JDBC driver to check your SQLJ
program.

Unable to obtain line mapping information from Java file args: message
Cause: SQLJ could not obtain line mapping information from the Java file args
due to some error.

Action: Ensure that the Java file is present, that it is not corrupt, and that it is
readable.

unable to open temporary output file filename
Action: Ensure that you can create a temporary file filename, and that the
directory is writable.

Unable to perform online type checking on weakly typed host item untypables
 SQLJ Error Messages B-39

Translation Time Messages
Cause: For each of the Java host expressions, SQLJ determines a corresponding
SQL type. These SQL types are required for checking the statement online.
When you are using "weak types", SQLJ cannot check your SQL statement
online in may cases.

Action: Replace weak types with user-defined types.

Unable to perform semantic analysis on connection connectionUrl by user user.
Error returned by database is: error
Cause: SQLJ failed in establishing a connection for online checking.

unable to read input file filename
Action: Ensure that the file filename exists, and that you have read permissions
on it.

Unable to read password from user: error.
Cause: An error occurred when reading a user password.

unable to read property file property file
Action: You specified a property file in the -props=property file option. Ensure
that this file exists and is readable.

Unable to read translation state from file: message
Action: Ensure that SQLJ can create and subsequently read a temporary file file.

Unable to remove file file1 or file2
Cause: SQLJ was unable to remove temporary files that it created during
translation.

Action: Check the default permissions for newly created files.

unable to remove file filename
Cause: During profile customization, a temporary file named filename was
created that was unable to be removed.

Action: Verify the default permissions for newly created files. Manually
remove the temporary file.

unable to rename file original filename to new filename
Cause: During profile customization, a temporary file named original filename
could not be renamed new filename. This indicates that the customizer harness
was unable to replace the original profile or .jar file with the customized
version.

Action: Verify that the original profile or jar file is writable.
B-40 SQLJ Developer’s Guide and Reference

Translation Time Messages
unable to rename output file from original filename to new filename
Action: Ensure that new filename is writable.

Unable to resolve stored function function - n declarations match this call.
Cause: The stored function invocation matches more than one stored function
signature in the database.

Action: Use Java host expressions rather than SQL expressions in the
arguments to the stored function to enable signature resolution.

Unable to resolve stored procedure procedure - n declarations match this call.
Cause: The stored procedure invocation matches more than one stored
procedure signature in the database.

Action: Use Java host expressions rather than SQL expressions in the
arguments to the stored procedure to enable signature resolution.

Unable to resolve type or value of WITH attribute attribute.
Cause: You used a WITH attribute with your iterator or context declaration.
The value of the WITH attribute was not a literal or symbolic constant, which
made it impossible for SQLJ to determine the Java type and value of the
attribute.

Action: Use a literal constant or a symbolic constant to specify the value of the
WITH attribute.

Unable to write Java compiler command line to file: message
Action: Ensure that SQLJ can create and subsequently read a temporary file file.

Unable to write translation state to file: message
Action: Ensure that SQLJ can write to a temporary file file.

Unbalanced curly braces.
Cause: There was no closing curly brace where one was expected.

Action: Add the missing closing curly brace.

Unbalanced parenthesis.
Cause: There was no closing parenthesis where one was expected.

Action: Add the missing closing parenthesis.

Unbalanced square brackets.
Cause: There was no closing square bracket where one was expected.
 SQLJ Error Messages B-41

Translation Time Messages
Action: Add the missing closing square bracket.

unchanged
Cause: The profile was not modified by the customization process.

Action: Correct errors that prevented customization, if any. Note that some
customizers (such as the profile printer) intentionally leave the profile
unchanged; in such cases, this is the expected message.

Undefined variable or class name: name
Cause: The name name was used in an expression but did not correspond to
any accessible variable or class name.

Action: Verify that the name refers to an accessible variable or class name.

Undefined variable, class, or package name: name
Cause: The name name was used in an expression but did not correspond to
any accessible variable or class name.

Action: Verify that the name refers to an accessible variable or class name.

Undefined variable: name
Cause: The name name was used in an expression but did not correspond to
any accessible variable.

Action: Verify that the name refers to an accessible variable.

unexpected error occurred...
Action: An unexpected error occurred during SQLJ translation. Contact Oracle
if this error persists.

Unexpected token ’unexpected token’ in Java statement.
Cause: Java statement cannot have token ’unexpected token’ in the position in
which it appears in the source code.

Action: Check the syntax of the statement.

unknown digest algorithm: algorithm name
Cause: An unknown jar message digest algorithm was specified in the
customizer harness "digests" option.

Action: Verify that algorithm name is a valid message digest algorithm and that
the corresponding MessageDigest implementation class exists in the
CLASSPATH.
B-42 SQLJ Developer’s Guide and Reference

Translation Time Messages
Unknown identifier ’unknown identifier’.
Cause: The identifier ’unknown identifier’ has not been defined.

Action: Check the identifier for typing errors, and/or make sure that it has
been defined.

Unknown identifier.
Cause: The identifier has not been defined.

Action: Check the identifier for typing errors, and/or make sure that it has
been defined.

unknown option found in location: name
Action: Ensure that you are using a valid SQLJ option. Run sqlj -help-long
to obtain a list of supported options.

unknown option type: option name
Cause: The option named option name could not be handled by the customizer
harness. This often indicates a non-standard, customizer-specific option for
which an appropriate JavaBeans property editor could not be found.

Action: Verify that property editors associated with the current customizer are
accessible on the CLASSPATH. As a workaround, discontinue use of the option
or use a different customizer.

Unknown target type in cast expression.
Cause: The target type of the cast operation has not been defined.

Action: Verify the type name and/or make sure that it has been defined.

unrecognized option: option
Cause: An unknown option was given to the profile conversion utility.

Action: Verify that the option is spelled correctly.

Unrecognized SET TRANSACTION syntax at "token" ...
Cause: SQLJ was not able to understand this SET TRANSACTION statement.

Action: If you rely on SQLJ to recognize this particular SET TRANSACTION
clause, you should use the documented syntax.

Unrecognized SET TRANSACTION syntax.
Cause: SQLJ was not able to understand this SET TRANSACTION statement.

Action: If you rely on SQLJ to recognize this particular SET TRANSACTION
clause, you should use the documented syntax.
 SQLJ Error Messages B-43

Translation Time Messages
Unrecognized SQL statement: keyword
Cause: The SQL statement was introduced with the keyword keyword. Neither
SQLJ nor the JDBC driver recognized it as a SQL keyword.

Action: Check your SQL statement. If this is a vendor-specific keyword that
neither your JDBC driver nor your SQL checker knows about, you can ignore
this message.

Unsupported file encoding
Action: Ensure that the encoding specified in the -encoding option is
supported by your Java VM.

Unsupported Java type for host item #n: type.
Cause: The Java type type is not supported as a host item by your JDBC driver.

Action: Use a different Java type in your host expression. Possibly update your
JDBC driver.

Unsupported Java type for host item name (at position #n): type.
Cause: The Java type type is not supported as a host item by your JDBC driver.

Action: Use a different Java type in your host expression. Possibly update your
JDBC driver.

Unsupported Java type for item #pos of INTO-list: type.
Cause: The Java class type of INTO-list item pos is not supported by your JDBC
driver.

Action: Use supported Java types in the INTO-list. Possibly update your JDBC
driver.

Unterminated comment.
Cause: The source file ended in a comment before the class declaration was
completed.

Action: Check the source file for a missing comment delimiter.

valid Oracle customization exists
Cause: A valid Oracle customization was previously installed into the profile
being customized. The profile was not modified.

Action: The profile is ready for use with Oracle. No further action required.

Value of iterator attribute attribute must be a boolean.
B-44 SQLJ Developer’s Guide and Reference

Translation Time Messages
Action: This iterator with-clause attribute requires a boolean value. Specify
one of: attribute=true, or attribute=false.

Value of iterator attribute updateColumns must be a String containing a list of
column names.
Action: Declare the updateColumns attribute in your iterators with-clause as
follows: updateColumns="col1,col2,col3" where the column names
represent the updatable columns.

Value of the iterator with-clause attribute sensitivity must be one of SENSITIVE,
ASENSITIVE, or INSENSITIVE.
Action: To set sensitivity, specify one of: sensitivity=SENSITIVE,
sensitivity=ASENSITIVE, or sensitivity=INSENSITIVE on the
with-clause of your iterator declaration.

Value returned by SQL query is not assigned to a variable.
Cause: User is ignoring the result returned by a query.

Action: Verify your SQL statement, and that it is your intention to discard the
result of the SELECT.

Value returned by SQL stored function is not assigned to a variable.
Cause: User is ignoring the result returned by a stored function call.

Action: Verify your SQL statement, and that it is your intention to discard the
result of a stored function call.

WITH attribute attribute must be of type Java type expected, not Java type seen.
Cause: You used a WITH attribute with your iterator or context declaration.
The Java type of this attribute should be Java type expected. The actual type of the
attribute, however, was Java type seen.

Action: Use the Java type Java type expected for this attribute.

You are using a non-Oracle JDBC driver to connect to an Oracle database. Only
JDBC-generic checking will be performed.
Cause: In order to perform Oracle-specific checking, an Oracle JDBC driver is
required.

You are using an Oracle 8.0 JDBC driver, but connecting to an Oracle7 database.
SQLJ will use Oracle7 specific SQL checking.
Cause: Translation with an online connection will automatically be limited to
the features of the database that you are connected to.
 SQLJ Error Messages B-45

Translation Time Messages
Action: If you use the Oracle 8.0 JDBC driver but also want to connect to
Oracle7 databases, you may want to explicitly specify
oracle.sqlj.checker.Oracle7OfflineChecker and
oracle.sqlj.checker.Oracle7JdbcChecker for offline and online
checking, respectively.

You are using an Oracle 8.1 JDBC driver, but are not connecting to an Oracle8 or
Oracle7 database. SQLJ will perform JDBC-generic SQL checking.
Cause: This version of SQLJ does not recognize the database you are
connecting to.

Action: Connect to an Oracle7 or Oracle8 database.

You are using an Oracle 8.1 JDBC driver, but connecting to an Oracle7 database.
SQLJ will use Oracle7 specific SQL checking.
Cause: Translation with an online connection will automatically be limited to
the features of the database that you are connected to.

Action: If you use the Oracle 8.1 JDBC driver but also want to connect to
Oracle7 databases, you may want to explicitly specify
oracle.sqlj.checker.Oracle8To7OfflineChecker and
oracle.sqlj.checker.Oracle8To7JdbcChecker for offline and online
checking, respectively.

You are using an Oracle JDBC driver, but connecting to an non-Oracle database.
SQLJ will perform JDBC-generic SQL checking.
Cause: This version of SQLJ does not recognize the database you are
connecting to.

Action: Connect to an Oracle7 or Oracle8 database

You cannot specify both, source files (.sqlj,.java) and profile files (.ser,.jar)
Cause: Either use SQLJ to translate, compile, and customize .sqlj and .java
source files, or use SQLJ to customize profile files by specifying .ser files and
.jar archives containing .ser files, but not both.
B-46 SQLJ Developer’s Guide and Reference

Runtime Messages
Runtime Messages
This section provides a list of error messages that users may encounter from the
SQLJ runtime, including SQL state, cause, and action information.

See "Retrieving SQL States and Error Codes" on page 4-24 for information about
SQL states.

java.io.InvalidObjectException: invalid descriptor: descriptor value
Cause: In the loading of a profile object, it was determined that the descriptor
object of one of the SQL operations was invalid. This suggests that the profile
does not conform to the standard, or was read from a corrupted file.

Action: Recreate the profile by retranslating the original source file.

java.io.InvalidObjectException: invalid execute type: type value
Cause: In the loading of a profile object, it was determined that the method
used to execute one of the SQL operations was invalid. This suggests that the
profile does not conform to the standard, or was read from a corrupted file.

Action: Recreate the profile by retranslating the original source file.

java.io.InvalidObjectException: invalid modality: mode value
Cause: In the loading of a profile object, it was determined that the modality of
one of the SQL operation parameters was invalid. This suggests that the profile
does not conform to the standard, or was read from a corrupted file.

Action: Recreate the profile by retranslating the original source file.

java.io.InvalidObjectException: invalid result set type: type value
Cause: In the loading of a profile object, it was determined that the type of
result produced by of one of the SQL operations was invalid. This suggests that
the profile does not conform to the standard, or was read from a corrupted file.

Action: Recreate the profile by retranslating the original source file.

java.io.InvalidObjectException: invalid role: role value
Cause: In the loading of a profile object, it was determined that the contents of
one of the SQL operations was invalid. This suggests that the profile does not
conform to the standard, or was read from a corrupted file.

Action: Recreate the profile by retranslating the original source file.

java.io.InvalidObjectException: invalid statement type: type value
 SQLJ Error Messages B-47

Runtime Messages
Cause: In the loading of a profile object, it was determined that the statement
type of one of the SQL operations was invalid. This suggests that the profile
does not conform to the standard, or was read from a corrupted file.

Action: Recreate the profile by retranslating the original source file.

java.lang.ClassNotFoundException: not a profile: profile name
Cause: The object created as the profile named profile name cannot be used as a
profile. This error suggests that the file containing the profile has unknown
data or has been corrupted.

Action: Recreate the profile by retranslating the original source file.

java.lang.ClassNotFoundException: unable to instantiate profile profile name
Cause: The profile named profile name exists but could not be instantiated. This
suggests that the profile contains invalid data or was read from a corrupted file.

Action: Recreate the profile by retranslating the original source file.

java.lang.ClassNotFoundException: unable to instantiate serialized profile profile
name
Cause: The profile named profile name exists as type
sqlj.runtime.SerializedProfile, but could not be instantiated. A
profile of this type usually indicates that the profile has been converted to
.class format. This error suggests that the profile contains invalid data or
was read from a corrupted file.

Action: Recreate the profile by retranslating the original source file. Use the
ser2class option if the profiles should be created in .class format.

java.sql.SQLException: closed connection
SQL State: 08000

Cause: A attempt was made to close a connection context object whose
underlying JDBC connection object was already closed.

Action: Ensure that the underlying JDBC connection was not inadvertently
closed. Also, if several SQLJ connection contexts share the same underlying
JDBC connection, you have to ensure that when you close the connection
context objects all but the last close() invokes the method
close(ConnectionContext.KEEP_CONNECTION). This ensures that the
underlying JDBC connection remains open for the duration and all associated
JDBC resources -such as JDBC statement objects- can be properly released.
B-48 SQLJ Developer’s Guide and Reference

Runtime Messages
java.sql.SQLException: could not establish connection to DataSource data source
name: message
SQL State: 08003

Cause: Unable to establish a connection with data source data source name.

Action: Examine the message text message to determine the action required for
connecting with data source data source name.

java.sql.SQLException: could not load context type map type map resource:
message
SQL State: 08000

Cause: Either the type map could not be found or loaded from the resource type
map resource, or the type map contained an invalid entry, or a Java class
referenced in the type map could not be found.

Action: Examine the message to determine the nature of the failure, and how it
could be remedied.

java.sql.SQLException: expected x columns in select list but found y
SQL State: 42122

Cause: The query executed selects x items, but has y INTO-list items or is
assigned to an iterator containing y columns.

Action: Correct the program so that the number of INTO-list items or iterator
columns matches the number of items selected.

java.sql.SQLException: expected instance of ForUpdate iterator at parameter x,
found class class name
SQL State: 46130

Cause: A positional SQL operation contained a host expression with runtime
type class name as the target of the CURRENT OF clause. The class name must
be an instance of the sqlj.runtime.ForUpdate interface.

Action: Update the declaration of the iterator type passed as the target of the
CURRENT OF clause. Include the ForUpdate interface in the implements
clause.

java.sql.SQLException: expected statement with no OUT parameters: {statement}
SQL State: 46130

Cause: A SQL operation unexpectedly contained one or more OUT or INOUT
parameters. This indicates an operation that does not conform to the SQLJ
 SQLJ Error Messages B-49

Runtime Messages
runtime standard, and may require a special customization to be executed.
Alternatively, the profile may have been read from a corrupted file.

Action: Verify the original SQL operation is valid. Retranslate the source file or
install a customization that supports the extended functionality.

java.sql.SQLException: expected statement with OUT parameters: {statement}
SQL State: 46130

Cause: A SQL operation contained no OUT or INOUT parameters when it was
expected to have at least one. This indicates an operation that does not conform
to the SQLJ runtime standard, and may require a special customization to be
executed. Alternatively, the profile may have been read from a corrupted file.

Action: Verify the original SQL operation is valid. Retranslate the source file or
install a customization that supports the extended functionality.

java.sql.SQLException: expected statement {statement} to be executed via
executeQuery
SQL State: 46130

Cause: A SQL operation was unexpectedly requested to produce an update
count instead of a result set. This indicates an operation that does not conform
to the SQLJ runtime standard, and may require a special customization to be
executed. Alternatively, the profile may have been read from a corrupted file.

Action: Verify the original SQL operation is valid. Retranslate the source file or
install a customization that supports the extended functionality.

java.sql.SQLException: expected statement {statement} to be executed via
executeUpdate
SQL State: 46130

Cause: A SQL operation was unexpectedly requested to produce a result set
instead of an update count. This indicates an operation that does not conform
to the SQLJ runtime standard, and may require a special customization to be
executed. Alternatively, the profile may have been read from a corrupted file.

Action: Verify the original SQL operation is valid. Retranslate the source file or
install a customization that supports the extended functionality.

java.sql.SQLException: expected statement {statement} to use x parameters, found
y
SQL State: 46130

Cause: A SQL operation that was expected to contain y host expressions was
found to contain x host expressions instead. This indicates an operation that
B-50 SQLJ Developer’s Guide and Reference

Runtime Messages
does not conform to the SQLJ runtime standard, and may require a special
customization to be executed. Alternatively, the profile may have been read
from a corrupted file.

Action: Verify the original SQL operation is valid. Retranslate the source file or
install a customization that supports the extended functionality.

java.sql.SQLException: found null connection context
SQL State: 08003

Cause: The connection context instance used in an executable SQL statement
was null.

Action: Initialize the connection context instance to a non-null value. If the
SQL statement uses an implicit connection context, it is initialized using the
static setDefaultContext method of the
sqlj.runtime.ref.DefaultContext class.

java.sql.SQLException: found null execution context
SQL State: 08000

Cause: The execution context instance used in an executable SQL statement
was null.

Action: Initialize the execution context instance to a non-null value.

java.sql.SQLException: invalid batch limit: batch limit
SQL State: 08000

Cause: The value batch limit is not a valid batch limit.

Action: Ensure that the batch limit is either non-negative or that it is the
constant sqlj.runtime.ExecutionContext.AUTO_BATCH.

java.sql.SQLException: Invalid column name
SQL State: 46121

Cause: There was a mismatch between a column name declared in the named
iterator used in this SQL operation and a column name contained in the
underlying result set. Each column of a named iterator must uniquely
case-insensitive match the name of a column in the underlying result set.

Action: Change either the name of the column in the named iterator, or the
name of the column in the associated query, so that they match.

java.sql.SQLException: invalid iterator type: type name
SQL State: 46120
 SQLJ Error Messages B-51

Runtime Messages
Cause: An object returned or used by this SQL operation with type type name
was not a valid iterator type. This may indicate that the iterator class was
produced by a non-standard translator.

Action: Verify the original SQL operation and the iterator types it uses are
valid. Retranslate the source files as needed.

java.sql.SQLException: Java serialization not possible into SQL type: code
SQL State: 08000

Cause: The SQL type -as reflected in the OracleTypes code code is not suitable
for serialization/deserialization of Java objects.

Action: Ensure that you serialize/deserialize Java objects into a SQL type that
supports this, such as RAW or BLOB.

java.sql.SQLException: key is not defined in connect properties: key name
SQL State: 08000

Cause: The key named key name was not defined in the connection properties
resource file. Information contained in the connection properties resource file is
used to establish a database connection, and must include a key named key
name.

Action: Add the key key name to the connection properties file with an
appropriate value for the desired connection.

java.sql.SQLException: multiple rows found for select into statement
SQL State: 21000

Cause: The execution of a SELECT INTO statement produced a result that
contained more than one row.

Action: Correct the SELECT INTO query or queried data so that exactly one
row is selected.

java.sql.SQLException: no rows found for select into statement
SQL State: 02000

Cause: The execution of a SELECT INTO statement produced a result that
contained no rows.

Action: Correct the SELECT INTO query or queried data so that exactly one
row is selected.

java.sql.SQLException: null connection
SQL State: 08000
B-52 SQLJ Developer’s Guide and Reference

Runtime Messages
Cause: A null SQLJ connection context or JDBC connection object was passed
to the constructor of a connection context class.

Action: If a JDBC connection is used, establish a database connection with the
JDBC connection object before passing it to the connection context constructor.
For Oracle JDBC drivers, this is done using one of the static getConnection
methods of the java.sql.DriverManager class. If a connection context
object is used, make sure it has been properly initialized before passing it to the
constructor. If the default connection context is used, call
setDefaultContext before using the default context.

java.sql.SQLException: only fetch forward direction permitted
SQL State: 46110

Cause: This Oracle JDBC driver only supports FETCH FORWARD result sets.

Action: Update to an 8.1.6 or later JDBC driver with full support for scrollable
result sets.

java.sql.SQLException: profile profile name not found: error description
SQL State: 46130

Cause: The profile named profile name could not be found or instantiated. The
problem is further explained by error description.

Action: Consult the recommended action for the problem detail given by error
description.

java.sql.SQLException: SQL operation currently in use
SQL State: 46000

java.sql.SQLException: streaming of BLOB data not supported in this driver
SQL State: 46110

Cause: Your JDBC driver does not support the streaming of raw data into
BLOBS.

Action: Update to a newer Oracle JDBC driver version, or use a RAW column
to hold serialized Java objects.

java.sql.SQLException: unable to convert database class found type to client class
expected type
SQL State: 22005

Cause: The default mapping from a database type into a Java object produced
class found type when class expected type was required by the host expression.
This often indicates a failed conversion to the client-side class
 SQLJ Error Messages B-53

Runtime Messages
java.math.BigDecimal. It may also indicate a failed conversion to a
non-standard class that is only supported when a particular customization is
installed.

Action: Verify that the database type selected has a default mapping assignable
to the type of host variable or iterator column fetched into. This may require
the use of a different client-side type. Verify that the customization required to
support the client-side type, if any, is installed.

java.sql.SQLException: Unable to create CallableStatement for RTStatement
SQL State: 46110

Cause: Execution of this SQL operation requires the use of a JDBC
CallableStatement object at runtime. However, such an object was not
available from the customization used to execute the operation. This indicates
that incompatible customizations may have been installed into your
application, or that the operation may require the use of a special
customization.

Action: Retranslate the source file or install a customization that supports the
extended functionality.

java.sql.SQLException: Unable to create PreparedStatement for RTStatement
SQL State: 46110

Cause: Execution of this SQL operation requires the use of a JDBC
PreparedStatement object at runtime. However, such an object was not
available from the customization used to execute the operation. This indicates
that incompatible customizations may have been installed into your
application, or that the operation may require the use of a special
customization.

Action: Retranslate the source file or install a customization that supports the
extended functionality.

java.sql.SQLException: unable to load connect properties file: filename
SQL State: 08000

Cause: The connection properties file named filename could not be loaded as a
resource file. It is used to establish a database connection. Since it is loaded as
an application resource file, it must be packaged with the application classes.
This message indicates that the file does not exist in the expected location or is
not readable.

Action: Verify that the connection properties file is readable and packaged with
the application classes.
B-54 SQLJ Developer’s Guide and Reference

Runtime Messages
java.sql.SQLException: unexpected call to method method name
SQL State: 46130

Cause: The execution of a SQL operation unexpectedly involved a call to
method method name. This indicates an operation that does not conform to the
SQLJ runtime standard, and may require a special customization to be executed.
It may also indicate the use of a non-standard SQLJ translator.

Action: Verify the original SQL operation is valid. Retranslate the source file or
install a customization that supports the extended functionality.

java.sql.SQLException: unexpected exception raised by constructor constructor
name: exception description
SQL State: 46120

Cause: The construction of a runtime result or output parameter resulted in a
runtime exception being thrown by the constructor.

Action: Examine the contents of exception description to determine the cause of
the exception.

java.sql.SQLException: unexpected exception raised by method method name:
exception description
SQL State: 46120

Cause: The conversion of a host expression to or from a database type involved
in a call to method method name, which raised an exception other than a
SQLException.

Action: Examine the contents of exception description to determine the cause of
the exception.

sqlj.runtime.SQLNullException: cannot fetch null into primitive data type
SQL State: 22002

Cause: Attempted to store a SQL NULL into Java primitive iterator column
type, result, OUT parameter, or INOUT parameter.

Action: Use a nullable Java wrapper type instead of the primitive type.
 SQLJ Error Messages B-55

Runtime Messages
B-56 SQLJ Developer’s Guide and Reference

Index
A
access mode settings (transactions), 7-39
alternative environments, support, 8-72
applets

sample using SQLJ, 12-87
using SQLJ, 1-16

ASENSITIVE (cursor state), 3-7
assignment statements (SET), 3-57
assumptions, environment, 2-2
AuditorInstaller

command-line examples, A-33
customizer for debugging, A-26
invoking, A-27
options, A-29
runtime output, A-28

auditors in profiles for debugging, A-26
auto-commit

modifying in existing connection, 4-28
not supported in server, 11-4
specifying in new connection, 4-27

B
backup option (customizer harness), 10-19
backwards compatibility

to Oracle8i, 5-10
to Oracle8/Oracle7, 5-10

backwards compatibility, Oracle SQLJ, 2-6
batch updates

batch limit, A-17
batchable and compatible statements, A-11
batching incompatible statements, A-18
canceling a batch, A-15

cautions, A-20
enabling and disabling, A-12
error conditions during execution, A-21
explicit and implicit batch execution, A-13
overview, A-11
update counts, A-16
using implicit execution contexts, A-19
with respect to recursive call-ins, A-21

BetterDate (custom Java class), 12-49
BFILEs

as stored function results, 5-30
BFILE support, 5-26

BigDecimal mapping (for attributes), 6-34
BigDecimal support, 5-38
binary portability of profiles, 1-6
BLOB support, 5-26
BOOLEAN type (PL/SQL), 5-9
builtintypes option (JPublisher -builtintypes), 6-34

C
C prefix (sqlj -C-x), 8-57
cache option (sqlj -cache), 8-71
caching online checker results, 8-71
caching statements, A-4
CALL syntax for stored procedures, 3-59
calling stored functions, 3-60
calling stored procedures, 3-59
calls to runtime, generated, 9-8
case option (JPublisher -case), 6-33
case-sensitive SQL UDT names, 6-13, 6-14, 6-31,

6-39
cause/action output for errors, 8-46
character encoding
 Index-1

command line example, 9-26
for messages, 9-25
for source, 9-25
overview, 9-22
setting at runtime, 9-31
using native2ascii, 9-32

check source name against. public class, 8-77
check sources, expand resolution search, 8-65
checker option (SQLCheckerCustomizer), 10-45
checkfilename option (sqlj -checkfilename), 8-77
checksource option (sqlj -checksource), 8-65
class loading in server, 11-6
class schema object naming

generated, 11-22
loaded, 11-11

classpath and path, 2-8
classpath option (sqlj -classpath), 8-21
clauses, SQLJ executable statements, 3-10
client-side translation to run in server, 11-8
CLOB support, 5-26
close() method (DefaultContext), 4-17
close() method (Oracle class), 4-14, 4-17
CLOSE_CONNECTION, 7-46
code generation

general information, 9-5
Oracle-specific vs. standard, 10-11
translator -codegen option, 8-49

code layers in profiles, A-26
codegen option (SQLJ -codegen), 8-49
code-parsing, 9-2
collections

about custom Java classes, 6-6
creating collection types, 6-22
datatypes, 6-5
fundamentals, 6-4
introduction to collection support, 6-2
mapping to alternative classes, 6-37
nested tables sample application, 12-37
ORAData specifications, 6-7
specifying type mapping, 6-31, 6-33
strongly typed, 6-59
VARRAYs sample application, 12-45
weak types, restrictions, 6-78
weak types, support, 6-77

column definitions (types/sizes)

general information, A-22
Oracle customizer optcols option, 10-31
SQLJ -optcols option, 8-50

command line (translator)
echoing without executing, 8-14
example, 8-13
overview, 8-2
syntax and arguments, 8-10

commit
automatic vs. manual, 4-26
effect on iterators and result sets, 4-29
manual, 4-28
modifying auto-commit in existing

connection, 4-28
specifying auto-commit in new connection, 4-27

compat(ibility) option (Oracle customizer), 10-30
compatible option (JPublisher -compatible), 6-30
compilation

compiling in two passes, 8-78
debug option in server, 11-19
during translation, 9-9
enabling/disabling, 8-61
in server, 11-6

compile option (sqlj -compile), 8-61
compiler

classpath option, 8-21
options through SQLJ, 8-57
related options, 8-72
required behavior, 8-74
specifying name, 8-74

compiler encoding support option (sqlj), 8-75
compiler executable option (sqlj), 8-74
compiler message output pipe option (sqlj), 8-76
compiler output file option (sqlj -compiler...), 8-75
configuration and installation verification, 2-8
connect() method (Oracle class), 4-12
connection contexts

close connection, 7-9
concepts, 7-2
converting from JDBC connection, 7-45
converting to JDBC connection, 7-42
declaration with IMPLEMENTS clause, 7-11
declarations, 3-4
declaring connection context class, 7-5
get default connection, 7-10
Index-2

get execution context, 7-9
get JDBC connection, 7-9
implementation and functionality, 7-9
instantiating connection object, 7-6
methods, 7-9
multiple connections, example, 7-7
multiple, sample application, 12-62
relation to execution contexts, 7-16
semantics-checking, 7-12
set default connection, 7-10
specifying connection for statement, 7-7
specifying for executable statement, 3-11

connection properties file, 12-3
connections

closing, 4-10
closing shared connections with JDBC, 7-46
database connection in server, 11-3
JDBC transaction methods, 7-40
modifying auto-commit, 4-28
multiple, sample application, 12-61
multiple, using declared connect contexts, 4-12
Oracle class to connect, 4-12
set up, 2-11
shared connections with JDBC, 7-45
single or multiple using default context, 4-6
specifying auto-commit, 4-27
translator options, 8-31
verify, 2-13

connect.properties file, 12-3
context expressions

evaluation at runtime, 3-21
overview, 3-20

context option (customizer harness), 10-20
converting .ser profiles to .class, 8-64
CORBA server objects with SQLJ, 11-31
CURSOR syntax (nested tables), 6-60
custom Java classes

about custom Java classes, 6-6
compiling, 6-17
creation by JPublisher, 6-25
examples, 6-43
extending, 6-47
generation by JPublisher, 6-29
mapping to alternative classes, 6-37
reading and writing data, 6-18

requirements, 6-11
sample class, 12-49
specifying member names, 6-41
strongly typed, definition, 6-2
support for object methods, 6-10
using to serialize object, 6-71
weakly typed, definition, 6-2

CustomDatum (deprecated), 6-8
customization

converting .ser profiles to .class, 8-64
creation and registration, 10-7
customizer harness connection options, 10-23
customizer harness general options, 10-19
customizer harness options overview, 10-17
defining column types/sizes, 10-31
defining parameter sizes, 10-34
during translation, 9-11
enabling/disabling, 8-62
error and status messages, 10-9
force customization, 10-31
jar file usage, 10-41
more about customization, 10-5
options, 10-17
options to invoke special customizers, 10-25
Oracle customizer options, 10-29
overview/syntax of customizer-specific

options, 10-28
parameter default sizes, 10-35
related SQLJ options, 10-40
show SQL transformations, 10-36
statement cache size, 10-37
steps in process, 10-6
summary of Oracle features used, 10-39
version compatibility, 10-30

customizer harness
connection options, 10-23
general options, 10-19
invoke special customizers, 10-25
options overview, 10-17
overview, 10-5

customizer option (customizer harness), 10-20
customizers

choosing, 10-17
option to choose customizer, 10-20
overview, 10-5
 Index-3

passing options through SQLJ, 8-59
specifying default, 8-80

D
d option (sqlj -d), 8-28
data source support

associating a connection, 7-13
associating a default context, 7-15
auto-commit mode, 7-14
dataSource (connection context WITH

clause), 3-7
overview, 7-13
requirements, 7-15

database connection, verify, 2-13
DBMS_JAVA package

setting server-side options, 11-19
DBMS_LOB package, 5-27
debug option (customizer harness), 10-26
debug option for compile (in server), 11-19
debugging

AuditorInstaller command-line examples, A-33
AuditorInstaller customizer, A-26
AuditorInstaller options, A-29
AuditorInstaller runtime output, A-28
debug option for compile (in server), 11-19
debug option, customizer harness, 10-26
in JDeveloper, A-35
invoking AuditorInstaller, A-27
line-mapping, SQLJ source to class, 8-47
line-mapping, SQLJ source to class for jdb, 8-48

declarations
connection context declarations, 3-4
IMPLEMENTS clause, 3-5
iterator declarations, 3-3
overview, 3-2
WITH clause, 3-6

default connection
setting with Oracle.connect(), 4-6
setting with setDefaultContext(), 4-10

default customizer option (sqlj), 8-80
default output device in server, 11-5
default properties files (translator), 8-17
default semantics-checker, 8-66
default URL prefix option (sqlj), 8-41

DefaultContext class
close() method parameters, 4-17
constructors, 4-15
key methods, 4-14
use for single or multiple connections, 4-6

defining column types/sizes, A-22
defining parameter sizes, A-23
depth option (AuditorInstaller), A-30
digests option, jar (customizer harness), 10-21
dir option (sqlj -dir), 8-30
directory

for generated .class and .ser, 8-28
for generated .java, 8-30

dirty reads, 7-39
driver option (customizer harness), 10-25
driver registration option (sqlj -driver), 8-42
dropjava, 11-26
dropping Java schema objects, 11-26
dynamic SQL

defined, 1-2
in JDBC code, 7-42
in PL/SQL within SQLJ, 12-68

dynamic SQL support in SQLJ
examples, 7-55
introduction, 7-52
meta bind expressions, 7-52
runtime behavior, 7-54
translation-time behavior, 7-54

E
echo option, without execution, 8-25
echoing command line without executing, 8-14
encoding

character encoding for messages, 9-25
character encoding for source, 9-25
command line example, 9-26
do not pass option to compiler, 8-75
overview of character encoding, 9-22
setting at runtime, 9-31
specifying in server, 11-18
using native2ascii, 9-32

encoding option (in server), 11-18
encoding option, source files (sqlj -encoding), 8-27
Enterprise JavaBeans with SQLJ, 11-30
Index-4

environment assumptions and requirements, 2-2
environment variable, translator options, 8-18
errors

character encoding for messages, 9-25
customization messages, 10-9
messages, codes, and SQL states, 4-24
outputting cause and action, 8-46
runtime categories, 9-19
runtime error list, B-47
server-side error output, 11-24
translator error list, B-2
translator error, warning, info messages, 9-13

exceptions
exception-handling requirements, 4-22
processing, 4-23
set up exception-handling, 4-31
using SQLException subclasses, 4-25

executable statements
examples, 3-12
overview, 3-9
rules, 3-9
specifying connection/execution contexts, 3-11
SQLJ clauses, 3-10
using PL/SQL blocks, 3-14

execution contexts
cancellation method, 7-21
control methods, 7-20
creating and specifying, 7-17
method usage, example, 7-23
overview, 7-16
relation to connection contexts, 7-16
relation to multithreading, 7-23
specifying for executable statement, 3-11
status methods, 7-19
synchronization, 7-18
update-batching methods, 7-22

exemplar schema, 4-17
exit codes, translator, 9-16
explain option (sqlj -explain), 8-46
extending JPub-generated classes, 6-47
extensions

overview, 1-7
performance extensions, A-2
summary of features used, 10-39
type extensions, 5-25

F
FETCH CURRENT syntax (iterators), 7-35
FETCH syntax (scrollable positional iterators), 7-34
file name requirements and restrictions, 4-40
flags for special processing, 8-61
force option (Oracle customizer), 10-31
ForUpdate/updateColumns (WITH clause), 3-7
full names (schema names), 11-21
function calls, stored, 3-60

G
getConnection() method (Oracle class), 4-12
globalization support

character encoding, language support, 9-21
outside of SQLJ, 9-31
overview, 1-24
related datatypes, 5-5
related Java types, 9-27
related SQLJ and Java settings, 9-24
support for Unicode characters, 9-27

H
help option (customizer harness), 10-22
help options (sqlj -help-xxxx), 8-22
hints in code, parameter sizes, A-24
holdability (cursor states, WITH clause), 3-7
host expressions

basic syntax, 3-16
evaluation at runtime, 3-21
examples, 3-18
examples of evaluation at runtime, 3-23
iterators and result sets as host variables, 3-51
overview, 3-15
restrictions, 3-32
sample application, 12-14
selecting a nested table, 6-61
supported types for JDBC 2.0, 5-7
type support for Oracle8i, 5-10
type support for Oracle8/Oracle7, 5-10
type support summary, 5-2
unsupported types, 5-8
 Index-5

I
IDE SQLJ integration, 1-24
IMPLEMENTS clause

in connection context declarations, 7-11
in iterator declarations, 7-28
syntax, 3-5

importing required classes, 4-30
informational messages, translator, 9-13
input to translator, 1-12
INSENSITIVE (cursor state), 3-7
installation and configuration verification, 2-8
instrumenting class file (linemap), 8-47
interoperability with JDBC

connection contexts and connections, 7-42
iterators and result sets, 7-47
sample application, 12-59

introduction to SQLJ, 1-2
isolation level settings (transactions), 7-39
iterators

accessing named iterators, 3-45
accessing positional iterators, 3-48
as host variables, 3-51
as iterator columns (nested), 3-54
as stored function returns, 3-62
commit/rollback effect, 4-29
concepts, 3-36
converting from result sets, 7-47
converting to result sets, 7-49
declarations, 3-3
declaring named iterators, 3-43
declaring positional iterators, 3-47
declaring with IMPLEMENTS clause, 7-28
general steps in using, 3-40
instantiating/populating named iterators, 3-44
instantiating/populating positional

iterators, 3-48
iterator class functionality, 7-27
named iterator sample application, 12-6
named vs. positional, 3-40
nested iterators for nested tables, 6-64
overview, 3-36
positional iterator sample application, 12-10
positional iterators, using next(), 3-50
result set iterators (weakly typed), 3-40, 7-30

scrollable, 7-30
scrollable result set iterators, 7-36
selecting objects and references, 6-54
set up named iterator (example), 4-34
subclassing, 7-29
subclassing, sample application, 12-65
using named iterators, 3-42
using positional iterators, 3-47
using weakly typed iterators, 7-50
with serialized objects, 6-74

J
J prefix (sqlj -J-x), 8-56
jar file digests option, customization, 10-21
jar files for profiles, 10-41
Java bind expressions (dynamic SQL), 7-53
Java names vs. SQL names in server, 11-7
Java Option (Oracle JVM) configuration, 2-7
Java properties, getProperty(), 9-31
Java sockets, 4-3
Java VM

classpath option, 8-21
options through SQLJ, 8-56
specifying name, 8-73

javac compatibility, 8-9
JDBC 2.0

support for LOB types, 5-25
support for weakly typed Struct, Ref,

Array, 6-77
types supported, 5-7

JDBC connection methods (transactions), 7-40
JDBC considerations in server, 11-4
JDBC driver registration option (sqlj -driver), 8-42
JDBC drivers

Oracle drivers, 4-2
select for translation, 4-4
select/register for customization, 10-25
select/register for runtime, 4-5
verify, 2-13

JDBC interoperability
connection contexts and connections, 7-42
iterators and result sets, 7-47
sample application, 12-59

JDBC mapping (for attributes), 6-34
Index-6

JDBC vs. SQLJ, sample application, 12-95
jdblinemap option (sqlj -jdblinemap), 8-48
JDeveloper

debugging with, A-35
SQLJ integration, 1-24

JDK
appropriate JDBC class files, 2-9
supported versions, 2-4

JNDI
name of default data source, 7-15
use for data sources, connections, 7-13

JPublisher
builtintypes option, 6-34
case option, 6-33
compatible option, 6-30
creation of custom Java classes, 6-25
custom Java class examples, 6-43
extending generated classes, 6-47
generating custom Java classes, 6-29
generating wrapper methods, 6-36
implementation of method wrappers, 6-42
input files, 6-39
lobtypes option, 6-34
mapping to alternative classes, 6-37
numbertypes option, 6-34
properties files, 6-40
specifying member names, 6-41
specifying type mapping, 6-31
sql option, 6-31
type categories and mapping options, 6-34
type mapping, 6-33
type mapping modes and option settings, 6-34
types option, 6-31
user option, 6-31
what JPublisher produces, 6-25

K
KEEP_CONNECTION, 7-46

L
language support (globalization support), 9-24
linemap option (sqlj -linemap), 8-47
line-mapping

SQLJ source to class file, 8-47
SQLJ source to class for jdb, 8-48

loading classes/resources into server, 11-8
loading/translating source in server, 11-16
loadjava

compatibility options, SQLJ, 8-9
loading classes/resources, 11-8
loading source, translating, 11-16
output from loading source, 11-21

LOBs
as iterator columns, 5-32
as stored function results, 5-30
FETCH INTO LOB host variables, 5-32
SELECT INTO LOB host variables, 5-31
support (oracle.sql and DBMS_LOB), 5-26

lobtypes option (JPublisher -lobtypes), 6-34
locale

command line example, 9-26
for messages, 9-25
setting at runtime, 9-31

log option (AuditorInstaller), A-30

M
mapping to alternative classes (UDTs), 6-37
member names (objects), 6-41
message pipe, compiler, 8-76
meta bind expressions (dynamic SQL), 7-52
method support for objects, 6-10
method wrappers (JPub)

implementation, 6-42
multiple connections, sample application, 12-61
multithreading

in server, 11-27
in SQLJ, overview, 7-25
relation to execution contexts, 7-23
sample application, 12-57

N
n option (sqlj -n) (echo without execution), 8-25
name of compiler, 8-74
name of Java VM, 8-73
named iterators

accessing, 3-45
 Index-7

declaring, 3-43
instantiating and populating, 3-44
scrollable, 7-33
using, 3-42

naming requirements and restrictions
file names, 4-40
local variables, classes (Java namespace), 4-38
SQL namespace, 4-40
SQLJ namespace, 4-40

naming schema objects
generated class, 11-22
generated profile, 11-23
loaded classes, 11-11
loaded resources, 11-11
source, 11-22

National Language Support--see Globalization
Support

native2ascii for encoding, 9-32
NCHAR class (globalization support), 9-27
NcharAsciiStream class (globalization

support), 9-27
NcharUnicodeStream class (globalization

support), 9-27
NCLOB class (globalization support), 9-27
nested iterators, 6-64
nested tables

accessing, 6-60
inserting in SQLJ, 6-60
manipulating, 6-63
sample application, 12-37
selecting into host expression, 6-61
types, 6-4
using nested iterator, 6-64

NLS--see Globalization Support
non-repeatable reads, 7-39
NString class (globalization support), 9-27
null-handling

examples, 4-20
wrapper classes for null-handling, 4-19

numbertypes option (JPublisher
-numbertypes), 6-34

O
object method wrappers (JPub), 6-42

object references
selecting into iterators, 6-54
strongly typed in SQLJ, 6-53
updating in SQLJ, 6-57
weak types, restrictions, 6-78
weak types, support, 6-77

object-JDBC mapping (for attributes), 6-34
objects

about custom Java classes, 6-6
creating object types, 6-20
datatypes, 6-5
fundamentals, 6-4
inserting in SQLJ, 6-57
introduction to object support, 6-2
mapping to alternative classes, 6-37
method support, 6-10
ORAData specifications, 6-7
sample application, 12-28
selecting into iterators, 6-54
serializing (overview), 6-68
serializing RAW and BLOB columns, 6-68
serializing with custom Java class, 6-71
specifying type mapping, 6-31, 6-33
SQLData specifications, 6-9
strongly typed in SQLJ, 6-53
updating a reference in SQLJ, 6-57
updating in SQLJ, 6-55
weak types, restrictions, 6-78
weak types, support, 6-77
wrapper methods, 6-36

OCI driver (JDBC), 4-3
offline checking

default checker, Oracle checkers, 8-66
specifying checker, 8-67

offline option (sqlj -offline), 8-67
online checking

caching results, 8-71
default checker, Oracle checkers, 8-66
enabling in server, 11-18
enabling, setting user schema, 8-32
registering drivers, 8-42
setting default URL prefix, 8-41
setting password, 8-36
setting URL, 8-38
specifying checker, 8-69
Index-8

online option (in server), 11-18
online option (sqlj -online), 8-69
optcols option (Oracle customizer), 10-31
optcols option (SQLJ -optcols), 8-50
optimizer, SQL, A-2
options (translator)

command line only, 8-20
flags for special processing, 8-61
for connections, 8-31
for customization, 8-80
for javac compatibility, 8-9
for loadjava compatibility, 8-9
for output files and directories, 8-27
for reporting and line mapping, 8-42
for semantics-checking, 8-66
for VM and compiler, 8-72
help, 8-22
order of precedence, 8-18
overview, 8-3
prefixes for passing options, 8-56
summary list, 8-4
support for alternative environments, 8-72

options for customizer harness
connection options, 10-23
general options, 10-19
invoke special customizers, 10-25
overview, 10-17

options for Oracle customizer, 10-29
options for translation in server

setting options, 11-19
supported options, 11-18

optparamdefaults option (Oracle
customizer), 10-35

optparamdefaults option (SQLJ
-optparamdefaults), 8-53

optparams option (Oracle customizer), 10-34
optparams option (SQLJ -optparams), 8-52
Oracle class

close() method parameters, 4-14
connect() method, 4-12
for DefaultContext instances, 4-12
getConnection() method, 4-12

Oracle customizer
define column types/sizes, 10-31
define parameter sizes, 10-34

force customization, 10-31
options, 10-29
set default parameter sizes, 10-35
show SQL transformation, 10-36
statement cache size, 10-37
summary of Oracle features used, 10-39
version compatibility, 10-30

Oracle extensions
overview, 1-7
performance extensions, A-2
summary of features used, 10-39
type extensions, 5-25

Oracle JVM (Java Option) configuration, 2-7
Oracle Lite with SQLJ, 1-22
Oracle mapping (for attributes), 6-34
Oracle optimizer, A-2
OracleChecker default checker, 8-66
Oracle-specific code generation

advantages and disadvantages, 10-11
coding considerations, limitations, 10-13
environment requirements, 10-12
server-side considerations, 10-16
translator/customizer usage changes, 10-15

oracle.sql package, 5-26
ORAData

additional uses, 6-18
specifications, 6-7
use in custom Java classes, 6-6
versus CustomDatum, 6-8

output device in server, default, 11-5
output directory

for generated .class and .ser, 8-28
for generated .java, 8-30

output file and directory options (translator), 8-27
output file for compiler, 8-75
output from server-side translator, 11-21
output from translator, 1-12
output pipe, compiler messages, 8-76
output, server-side translator errors, 11-24

P
P prefix (sqlj -P-x), 8-59
parameter definitions (sizes)

general information, A-23
 Index-9

Oracle customizer optparamdefaults
option, 10-35

Oracle customizer optparams option, 10-34
SQLJ -optparamdefaults option, 8-53
SQLJ -optparams option, 8-52

passes option (sqlj -passes), 8-78
passes, two-pass compiling, 8-78
passing options to other executables, 8-56
password option (customizer harness), 10-24
password option for checking (sqlj), 8-36
path (connection context WITH clause), 3-8
path and classpath, 2-8
performance enhancements, A-2
phantom reads, 7-39
pipe, compiler output messages, 8-76
PL/SQL

blocks in executable statements, 3-14
BOOLEAN type, 5-9
example for dynamic SQL in SQLJ, 12-68
RECORD type, 5-9
TABLE type, 5-9

positional iterators
accessing, 3-48
declaring, 3-47
instantiating and populating, 3-48
navigation with next(), 3-50
scrollable, 7-34
using, 3-47

positioned delete, 5-34
positioned update, 5-34
prefetching rows, A-3
prefix option (AuditorInstaller), A-31
prefixes

to pass options to customizer, 8-59
to pass options to Java compiler, 8-57
to pass options to Java VM, 8-56

print option (customizer harness), 10-27
procedure calls, stored, 3-59
profile customization (see customization), 9-11
profile option (sqlj -profile), 8-62
profile-keys class, 9-6
profiles

auditors for debugging, A-26
binary portability, 1-6
code layers, A-26

creation during code generation, 10-2
debug option, 10-26
functionality at runtime, 10-10
generated profiles, 9-7
more about profiles, 10-2
naming generated profiles in server, 11-23
overview, 1-5
print option, 10-27
sample profile entry, 10-3
use of jar files, 10-41
verify option, 10-27

properties files (translator)
default properties files, 8-17
example, 12-3
overview, 8-14
setting input file, 8-20
syntax, 8-15

properties, Java, getProperty(), 9-31
props option (sqlj -props), 8-20
public class name / source name check, 8-77

R
READ COMMITTED transactions, 7-39
READ ONLY transactions, 7-39
READ UNCOMMITTED transactions, 7-39
READ WRITE transactions, 7-39
RECORD type (PL/SQL), 5-9
recursive SQLJ calls in server, 11-27
REF CURSOR

about REF CURSOR types, 5-36
example, 5-37
sample application, 12-54
SQLJ support, 5-36

register JDBC drivers
for runtime, 4-5
for translation, 8-42

registering column types/sizes, A-22
registering parameter sizes, A-23
REPEATABLE READ transactions, 7-39
reporting options (translator), 8-42
requirements, environment, 2-3
resource schema object naming

generated, 11-23
loaded, 11-11
Index-10

result expressions
evaluation at runtime, 3-21
overview, 3-20

result set iterators (weakly typed)
general information, 7-30
introduction, 3-40
scrollable, 7-36

result sets
as host variables, 3-51
as iterator columns, 3-54
as stored function returns, 3-62
commit/rollback effect, 4-29
converting from iterators, 7-49
converting to iterators, 7-47
persistence across calls in server, 11-4

ResultSetIterator type, 7-30
returnability (cursor states, WITH clause), 3-7
rollback

effect on iterators and result sets, 4-29
manual, 4-28

row prefetching, A-3
ROWID

as stored function results, 5-35
FETCH INTO ROWID host variable, 5-35
SELECT INTO ROWID host variable, 5-35
support, 5-33

runtime
categories of errors, 9-19
debugging output (AuditorInstaller), A-28
error list, B-47
functionality, 9-17
functionality of profiles, 10-10
generated calls to runtime, 9-8
globalization support, 9-21
JDBC driver selection and registration, 4-5
overview, 1-4
packages, 9-18
set up connection, 2-11
steps in runtime processing, 1-15
test, 2-14

S
sample applet, SQLJ, 12-87
sample applications

demo directories, 12-2
host expressions, 12-14
interoperability with JDBC, 12-59
JDBC vs. SQLJ, 12-95
multiple connection contexts, 7-7, 12-62
multiple connection schemas, 12-61
multiple-row query (named iterator), 4-35
multithreading, 12-57
named iterator, 12-6
nested tables, 12-37
objects, 12-28
positional iterator, 12-10
REF CURSOR, 12-54
row prefetching, 12-78
server-side SQLJ, 12-94
single-row query (SELECT INTO), 4-33
subclassing iterator classes, 12-65
VARRAYs, 12-45

sample classes
custom Java class (BetterDate), 12-49
SerializableDatum class, 6-75

schema objects
naming generated classes, 11-22
naming generated resources, 11-23
naming loaded classes, 11-11
naming loaded resources, 11-11
naming sources, 11-22

scrollable iterators
declaring, 7-31
scrollable named iterators, 7-33
scrollable positional iterators, 7-34
sensitivity, 7-31
the scrollable interface, 7-32

ScrollableResultSetIterator type, 7-36
SELECT INTO statements

error conditions, 3-35
examples, 3-34
syntax, 3-33

semantics-checking
caching online results, 8-71
default checker, Oracle checkers, 8-66
enabling online in server, 11-18
enabling online, setting user schema, 8-32
invoking SQLCheckerCustomizer, 10-43
of profiles, via customizer harness, 10-27
 Index-11

options, 8-66
registering drivers, 8-42
setting default URL prefix, 8-41
setting password, 8-36
setting URL, 8-38
specifying offline checker, 8-67
specifying online checker, 8-69
SQLCheckerCustomizer options, 10-44
steps involved, 9-2

SENSITIVE (cursor state), 3-7
sensitivity (cursor states, WITH clause), 3-7
ser profiles (.ser)

converting to .class, 8-64
generated profiles, 9-7

ser2class option (sqlj -ser2class), 8-64
SERIALIZABLE transactions, 7-39
serialized objects

as host variables, 6-74
in iterator columns, 6-74
overview, 6-68
SerializableDatum class (sample), 6-75
through custom Java class, 6-71
to RAW and BLOB columns, 6-68

server-side internal driver (JDBC), 4-4
server-side SQLJ

class loading, 11-6
coding considerations, 11-3
compilation, 11-6
connection to database, 11-3
CORBA objects, 11-31
default output device, 11-5
dropjava, 11-26
dropping Java schema objects, 11-26
Enterprise JavaBeans, 11-30
error output, 11-24
generated output from translation, 11-21
introduction, 11-2
Java multithreading, 11-27
JDBC differences, 11-4
loading classes/resources into server, 11-8
loading source into server, translating, 11-16
naming generated class schema objects, 11-22
naming generated profiles, 11-23
naming generated resource schema

objects, 11-23

naming loaded class schema objects, 11-11
naming loaded resource schema objects, 11-11
naming source schema objects, 11-22
options, 11-18
overview, 1-20
recursive calls, 11-27
running client program in server, 11-13
sample application, 12-94
setting options, 11-19
SQL names vs. Java names, 11-7
translating in server, 11-15
translating on client, 11-8
verifying code is running in server, 11-29

server-side Thin driver (JDBC), 4-3
SET (assignment) statements, 3-57
SET TRANSACTION syntax, 7-38
setup of SQLJ, testing, 2-11
short names (schema names), 11-21
showReturns option (AuditorInstaller), A-31
showSQL option (Oracle customizer), 10-36
showThreads option (AuditorInstaller), A-32
source check for type resolution, 8-65
source file line-mapping

for jdb, 8-48
general, 8-47

source files encoding option, 8-27
source name / public class name check, 8-77
source schema object naming, 11-22
SQL names vs. Java names in server, 11-7
SQL optimizer, A-2
sql option (JPublisher -sql), 6-31
SQL replacement code (dynamic SQL), 7-54
SQL states (for errors), 4-24
SQLCheckerCustomizer

for semantics-checking of profiles, 10-43
invoking, 10-43
options, 10-44

SQLData
specifications, 6-9
use in custom Java classes, 6-6

SQLException subclasses, using, 4-25
SQLJ properties file example, 12-3
SQLJ vs. JDBC, sample application, 12-95
SQLJ_OPTIONS environment variable, 8-18
sqljutl package, 2-10
Index-12

standard code generation, 10-11
statement caching, A-4
static SQL, defined, 1-2
status messages

for customization, 10-9
for translation, 9-16
translator, enabling/disabling, 8-46

status option (sqlj -status), 8-46
stmtcache option (Oracle customizer), 10-37
stored function calls, 3-60
stored procedure calls, 3-59
streams

as function return values, 5-23
as output parameters, 5-22
classes and methods, 5-24
examples, 5-20
general use in SQLJ, 5-12
precautions, 5-16
processing, 5-19
retrieving data, 5-17
sending data to database, 5-13
supporting classes, 5-12

strongly typed collections, 6-59
strongly typed custom Java classes, 6-2
strongly typed objects and references, 6-53
subclassing iterator classes, 7-29
summary option (Oracle customizer), 10-39
Sun JDK

appropriate JDBC class files, 2-9
supported versions, 2-4

synchronization of execution contexts, 7-18
syntax

translator command line, 8-10
translator properties files, 8-15

syntax-checking, 9-2

T
TABLE syntax (nested tables), 6-60, 6-63
TABLE type (PL/SQL), 5-9
Thin driver (JDBC), 4-3
transactions

access mode settings, 7-39
advanced transaction control, 7-38
automatic commit vs. manual commit, 4-26

basic transaction control, 4-26
isolation level settings, 7-39
JDBC Connection methods, 7-40
manual commit and rollback, 4-28
modifying auto-commit, 4-28
overview, 4-26
specifying auto-commit, 4-27

transformGroup (connection context WITH
clause), 3-8

TRANSLATE (object member names), 6-41
translating in server to run in server, 11-15
translating on client to run in server, 11-8
translator

basic translation steps, 1-9
code generation, 9-5
code-parsing, syntax-checking, 9-2
compilation, 9-9
customization, 9-11
error list, B-2
error, warning, info messages, 9-13
exit codes, 9-16
globalization support, 9-21
input and output, 1-12
internal operations, 9-2
output, server-side, 11-21
overview, 1-4
semantics-checking, 9-2
status messages, 9-16
support for alternative environments, 8-72
test, 2-14

Type, 5-1
type extensions, 5-25
type mapping

BigDecimal mapping, 6-34
JDBC mapping, 6-34
JPublisher mapping option, 6-31
object JDBC mapping, 6-34
Oracle mapping, 6-34
type categories and mapping modes, 6-33

type resolution, expand search, 8-65
typeMap (connection context WITH clause), 3-7
types option (JPublisher -types), 6-31
types supported

for JDBC 2.0, 5-7
for Oracle8i, 5-10
 Index-13

for Oracle8/Oracle7, 5-10
summary of types, 5-2
unsupported types, 5-8

U
uninstall option (AuditorInstaller), A-32
update batching

batch limit, A-17
batchable and compatible statements, A-11
batching incompatible statements, A-18
canceling a batch, A-15
cautions, A-20
enabling and disabling, A-12
error conditions during execution, A-21
explicit and implicit batch execution, A-13
overview, A-11
update counts, A-16
using implicit execution contexts, A-19
with respect to recursive call-ins, A-21

updateColumns/ForUpdate (WITH clause), 3-7
url option (customizer harness), 10-24
url option for checking (sqlj -url), 8-38
URL, default prefix for online checking, 8-41
user option (customizer harness), 10-23
user option (JPublisher -user), 6-31
user option for checking (sqlj -user), 8-32
user-defined types, 6-20

V
VALUES syntax for stored functions, 3-60
VARRAYs

sample application, 12-45
VARRAY types, 6-4

verbose option (customizer harness), 10-22
verify option (customizer harness), 10-27
version compatibility (Oracle customizer), 10-30
version number options (sqlj -version-xxxx), 8-24
VM

classpath option, 8-21
options through SQLJ, 8-56
specifying name, 8-73

vm option (sqlj -vm), 8-73

W
warn option (SQLCheckerCustomizer), 10-46
warn option (sqlj -warn), 8-43
warning messages, translator, 9-13
warnings, translator, enabling/disabling, 8-43
weak object/collection types

restrictions, 6-78
support, 6-77

weakly typed custom Java classes, 6-2
weakly typed iterators, 7-30
WHERE CURRENT OF, 5-34
Windows, SQLJ development in, 1-25
WITH clause syntax, 3-6
wrapper classes for null-handling, 4-19
wrapper methods (JPub), generating, 6-36
Index-14

	Send Us Your Comments
	Preface
	1 Overview
	Introduction to SQLJ
	Basic Concepts
	Java and SQLJ versus PL/SQL

	Overview of SQLJ Components
	SQLJ Translator and SQLJ Runtime
	SQLJ Profiles

	Overview of Oracle Extensions to the SQLJ Standard
	Basic Translation Steps and Runtime Processing
	Translation Steps
	Summary of Translator Input and Output
	Runtime Processing

	Alternative Deployment Scenarios
	Running SQLJ in Applets
	Introduction to SQLJ in the Server
	Using SQLJ with Oracle Lite

	Alternative Development Scenarios
	SQLJ Globalization Support
	SQLJ in JDeveloper and Other IDEs
	Windows Considerations

	2 Getting Started
	Assumptions and Requirements
	Assumptions About Your Environment
	Requirements for Using Oracle SQLJ
	Supported JDK Versions
	Oracle SQLJ Backwards Compatibility
	Oracle JVM Configuration

	Checking the Installation and Configuration
	Check for Installed Directories and Files
	Set the Path and Classpath
	Verify Installation of sqljutl Package

	Testing the Setup
	Set Up the Runtime Connection
	Create a Table to Verify the Database
	Verify the JDBC Driver
	Verify the SQLJ Translator and Runtime
	Verify the SQLJ Translator Connection to the Database

	3 Basic Language Features
	Overview of SQLJ Declarations
	Rules for SQLJ Declarations
	Iterator Declarations
	Connection Context Declarations
	Declaration IMPLEMENTS Clause
	Declaration WITH Clause

	Overview of SQLJ Executable Statements
	Rules for SQLJ Executable Statements
	SQLJ Clauses
	Specifying Connection Context Instances and Execution Context Instances
	Executable Statement Examples
	PL/SQL Blocks in Executable Statements

	Java Host Expressions, Context Expressions, and Result Expressions
	Overview of Host Expressions
	Basic Host Expression Syntax
	Examples of Host Expressions
	Overview of Result Expressions and Context Expressions
	Evaluation of Java Expressions at Runtime
	Examples of Evaluation of Java Expressions at Runtime
	Restrictions on Host Expressions

	Single-Row Query Results—SELECT INTO Statements
	SELECT INTO Syntax
	Examples of SELECT INTO Statements
	Examples with Host Expressions in SELECT-List
	SELECT INTO Error Conditions

	Multi-Row Query Results—SQLJ Iterators
	Iterator Concepts
	General Steps in Using an Iterator
	Named Iterators Versus Positional Iterators Versus Result Set Iterators
	Using Named Iterators
	Using Positional Iterators
	Using Iterators and Result Sets as Host Variables
	Using Iterators and Result Sets as Iterator Columns

	Assignment Statements (SET)
	Stored Procedure and Function Calls
	Calling Stored Procedures
	Calling Stored Functions
	Using Iterators and Result Sets as Stored Function Returns

	4 Key Programming Considerations
	Selection of the JDBC Driver
	Overview of the Oracle JDBC Drivers
	Driver Selection for Translation
	Driver Selection and Registration for Runtime

	Connection Considerations
	Single Connection or Multiple Connections Using DefaultContext
	Closing Connections
	Multiple Connections Using Declared Connection Context Classes
	More About the Oracle Class
	More About the DefaultContext Class
	Connection for Translation
	Connection for Customization

	Null-Handling
	Wrapper Classes for Null-Handling
	Examples of Null-Handling

	Exception-Handling Basics
	SQLJ and JDBC Exception-Handling Requirements
	Processing Exceptions
	Using SQLException Subclasses

	Basic Transaction Control
	Overview of Transactions
	Automatic Commits versus Manual Commits
	Specifying Auto-Commit as You Define a Connection
	Modifying Auto-Commit in an Existing Connection
	Using Manual COMMIT and ROLLBACK
	Effect of Commits and Rollbacks on Iterators and Result Sets

	Summary: First Steps in SQLJ Code
	Import Required Classes
	Register JDBC Drivers and Set Default Connection
	Set Up Exception Handling
	Set Up Host Variables, Execute SQLJ Clause, Process Results
	Example of Single-Row Query using SELECT INTO
	Set Up a Named Iterator
	Example of Multiple-Row Query Using Named Iterator

	Other Programming Considerations
	Naming Requirements and Restrictions
	Statement Caching Methods

	5 Type Support
	Supported Types for Host Expressions
	Summary of Supported Types
	Supported Types and Requirements for JDBC 2.0
	Unsupported Types
	Wrapping PL/SQL BOOLEAN, RECORD, and TABLE Types
	Backwards Compatibility for Previous Oracle JDBC Releases

	Support for Streams
	General Use of SQLJ Streams
	Using SQLJ Streams to Send Data
	Retrieving Data into Streams—Precautions
	Using SQLJ Streams to Retrieve Data
	Processing SQLJ Streams
	Examples of Retrieving and Processing Stream Data
	SQLJ Stream Objects as Output Parameters and Function Return Values
	Stream Class Methods

	Support for JDBC 2.0 LOB Types and Oracle Type Extensions
	Package oracle.sql
	Support for BLOB, CLOB, and BFILE
	Support for Oracle ROWID
	Support for Oracle REF CURSOR Types
	Support for Other Oracle9i Datatypes
	Extended Support for BigDecimal

	6 Objects and Collections
	Oracle Objects and Collections
	Introduction to Objects and Collections
	Oracle Object Fundamentals
	Oracle Collection Fundamentals
	Object and Collection Datatypes

	Custom Java Classes
	Custom Java Class Interface Specifications
	Custom Java Class Support for Object Methods
	Custom Java Class Requirements
	Compiling Custom Java Classes
	Reading and Writing Custom Data
	Additional Uses for ORAData Implementations

	User-Defined Types
	Creating Object Types
	Creating Collection Types

	JPublisher and the Creation of Custom Java Classes
	What JPublisher Produces
	Generating Custom Java Classes
	JPublisher INPUT Files and Properties Files
	Creating Custom Java Classes and Specifying Member Names
	JPublisher Implementation of Wrapper Methods
	JPublisher Custom Java Class Examples
	Extending Classes Generated by JPublisher

	Strongly Typed Objects and References in SQLJ Executable Statements
	Selecting Objects and Object References into Iterator Columns
	Updating an Object
	Inserting an Object Created from Individual Object Attributes
	Updating an Object Reference

	Strongly Typed Collections in SQLJ Executable Statements
	Accessing Nested Tables—TABLE syntax and CURSOR syntax
	Inserting a Row that Includes a Nested Table
	Selecting a Nested Table into a Host Expression
	Manipulating a Nested Table Using TABLE Syntax
	Selecting Data from a Nested Table Using a Nested Iterator
	Selecting a VARRAY into a Host Expression
	Inserting a Row that Includes a VARRAY

	Serialized Java Objects
	Serializing Java Classes to RAW and BLOB Columns
	SerializableDatum—An ORAData Implementation
	SerializableDatum in SQLJ Applications
	SerializableDatum (Complete Class)

	Weakly Typed Objects, References, and Collections
	Support for Weakly Typed Objects, References, and Collections
	Restrictions on Weakly Typed Objects, References, and Collections

	7 Advanced Language Features
	Connection Contexts
	Connection Context Concepts
	Connection Context Logistics
	More About Declaring and Using a Connection Context Class
	Example of Multiple Connection Contexts
	Implementation and Functionality of Connection Context Classes
	Use of the IMPLEMENTS Clause in Connection Context Declarations
	Semantics-Checking of Your Connection Context Usage
	Data Source Support

	Execution Contexts
	Relation of Execution Contexts to Connection Contexts
	Creating and Specifying Execution Context Instances
	Execution Context Synchronization
	ExecutionContext Methods
	Relation of Execution Contexts to Multithreading

	Multithreading in SQLJ
	Iterator Class Implementation and Advanced Functionality
	Implementation and Functionality of Iterator Classes
	Use of the IMPLEMENTS Clause in Iterator Declarations
	Support for Subclassing of Iterator Classes
	Result Set Iterators
	Scrollable Iterators

	Advanced Transaction Control
	SET TRANSACTION Syntax
	Access Mode Settings
	Isolation Level Settings
	Using JDBC Connection Class Methods

	SQLJ and JDBC Interoperability
	SQLJ Connection Context and JDBC Connection Interoperability
	SQLJ Iterator and JDBC Result Set Interoperability

	Support for Dynamic SQL
	Meta Bind Expressions
	SQLJ Dynamic SQL Examples

	8 Translator Command Line and Options
	Translator Command Line and Properties Files
	SQLJ Options, Flags, and Prefixes
	Command-Line Syntax and Operations
	Properties Files for Option Settings
	SQLJ_OPTIONS Environment Variable for Option Settings
	Order of Precedence of Option Settings

	Basic Translator Options
	Basic Options for Command Line Only
	Options for Output Files and Directories
	Connection Options
	Reporting and Line-Mapping Options
	Options for Code Generation, Column Optimizations, and Parameter Optimizations

	Advanced Translator Options
	Prefixes that Pass Option Settings to Other Executables
	Flags for Special Processing
	Semantics-Checking Options

	Translator Support and Options for Alternative Environments
	Java and Compiler Options
	Customization Options

	9 Translator and Runtime Functionality
	Internal Translator Operations
	Code-Parsing and Syntax-Checking
	Semantics-Checking
	Code Generation
	Java Compilation
	Profile Customization

	Functionality of Translator Errors, Messages, and Exit Codes
	Translator Error, Warning, and Information Messages
	Translator Status Messages
	Translator Exit Codes

	SQLJ Runtime
	Runtime Packages
	Categories of Runtime Errors

	Globalization Support in the Translator and Runtime
	Character Encoding and Language Support
	SQLJ and Java Settings for Character Encoding and Language Support
	Oracle SQLJ Extended Globalization Support
	Manipulation Outside of SQLJ for Globalization Support

	10 Profiles and Customization
	More About Profiles
	Creation of a Profile During Code Generation
	Sample Profile Entry

	More About Profile Customization
	Overview of the Customizer Harness and Customizers
	Steps in the Customization Process
	Creation and Registration of a Profile Customization
	Customization Error and Status Messages
	Functionality of a Customized Profile at Runtime

	Oracle-Specific Code Generation (No Profiles)
	Advantages and Disadvantages of Oracle-Specific Code Generation
	Environment Requirements for Oracle-Specific Code Generation
	Coding Considerations and Limitations with Oracle-Specific Code Generation
	Translator/Customizer Usage Changes with Oracle-Specific Code Generation
	Server-Side Considerations with Oracle-Specific Code Generation

	Customization Options and Choosing a Customizer
	Overview of Customizer Harness Options
	General Customizer Harness Options
	Customizer Harness Options for Connections
	Customizer Harness Options that Invoke Specialized Customizers
	Overview of Customizer-Specific Options
	Oracle Customizer Options
	Options for Other Customizers
	SQLJ Options for Profile Customization

	Use of JAR Files for Profiles
	JAR File Requirements
	JAR File Results

	SQLCheckerCustomizer for Profile Semantics-Checking
	Invoking SQLCheckerCustomizer with the Customizer Harness verify Option
	SQLCheckerCustomizer Options

	11 SQLJ in the Server
	Introduction to Server-Side SQLJ
	Creating SQLJ Code for Use within the Server
	Database Connections within the Server
	Coding Issues within the Server
	Default Output Device in the Server
	Name Resolution in the Server
	SQL Names Versus Java Names

	Translating SQLJ Source on a Client and Loading Components
	Loading Classes and Resources into the Server
	Loaded Class and Resource Schema Objects
	Publishing the Application After Loading Class and Resource Files
	Summary: Running a Client Application in the Server

	Loading SQLJ Source and Translating in the Server
	Loading SQLJ Source Code into the Server
	Option Support in the Server Embedded Translator
	Loaded Source and Generated Class and Resource Schema Objects
	Error Output from the Server Embedded Translator
	Publishing the Application After Loading Source Files

	Dropping Java Schema Objects
	Additional Considerations
	Java Multithreading in the Server
	Recursive SQLJ Calls in the Server
	Verifying that Code is Running in the Server

	Additional Vehicles for SQLJ in the Server
	Enterprise JavaBeans
	CORBA Server Objects

	12 Sample Applications
	Demo Directories
	Properties Files
	Runtime Connection Properties File
	SQLJ Translator Properties File

	Basic Samples
	Named Iterator—NamedIterDemo.sqlj
	Positional Iterator—PosIterDemo.sqlj
	Host Expressions—ExprDemo.sqlj

	Object, Collection, and ORAData Samples
	Definition of Object and Collection Types
	Oracle Objects—ObjectDemo.sqlj
	Oracle Nested Tables—NestedDemo1.sqlj and NestedDemo2.sqlj
	Oracle VARRAYs—VarrayDemo1.sqlj and VarrayDemo2.sqlj
	General Use of ORAData—BetterDate.java

	Advanced Samples
	REF CURSOR—RefCursDemo.sqlj
	Multithreading—MultiThreadDemo.sqlj
	Interoperability with JDBC—JDBCInteropDemo.sqlj
	Multiple Connection Contexts—MultiSchemaDemo.sqlj
	Data Manipulation and Multiple Connection Contexts—QueryDemo.sqlj
	Subclassing Iterators—SubclassIterDemo.sqlj
	Dynamic SQL—DynamicDemo.sqlj

	Performance Enhancement Samples
	Prefetch Demo—PrefetchDemo.sqlj
	Update Batching—BatchDemo.sqlj

	Applet Sample
	Generic Applet HTML Page—Applet.html
	Generic Applet SQLJ Source—AppletMain.sqlj

	Server-Side Sample
	SQLJ in the Server—ServerDemo.sqlj

	JDBC Versus SQLJ Sample Code
	JDBC Version of the Sample Code
	SQLJ Version of the Sample Code

	A Performance and Debugging
	Performance Enhancement Features
	Row Prefetching
	Statement Caching
	Update Batching
	Column Definitions
	Parameter Size Definitions

	AuditorInstaller Customizer for Debugging
	Overview of Auditors and Code Layers
	Invoking AuditorInstaller with the Customizer Harness debug Option
	AuditorInstaller Runtime Output
	AuditorInstaller Options
	Full Command-Line Examples

	Additional SQLJ Debugging Considerations
	SQLJ -linemap Flag
	Server-Side debug Option
	Developing and Debugging in JDeveloper

	B SQLJ Error Messages
	Translation Time Messages
	Runtime Messages

	Index

