
Oracle9i Application Server

mod_plsql User’s Guide

Release 2 (9.0.2)

February 2002

Part No. A90855-01

mod_plsql User’s Guide, Release 2 (9.0.2)

Part No. A90855-01

Copyright © 1996, 2002, Oracle Corporation. All rights reserved.

Contributors: Ron Decker, Pushkar Kapasi, Sanjay Khanna, Eric Lee, Kannan Muthukkaruppan

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, andOracle8, Oracle8i, Oracle9i, and PL/SQL are trademarks or
registered trademarks of Oracle Corporation. Other names may be trademarks of their respective
owners.

iii

Contents

Send Us Your Comments .. v

Preface... vii

Related Oracle Documents .. vii
Oracle Services and Support ... viii
Conventions.. ix
Documentation Accessibility .. x

1 Using mod_plsql

1.1 Oracle Database Requirements ... 1-1
1.2 Before you begin.. 1-1
1.3 Installing Required Packages... 1-2
1.3.1 Upgrading from Oracle9i Application Server or WebDB Listener......................... 1-3
1.4 Accessing the mod_plsql Configuration page .. 1-4
1.4.1 Access the DAD Configuration pages through OEM... 1-4
1.4.2 Access the DAD Configuration pages through Portal.. 1-5

2 mod_plsql Overview

2.1 Processing Client Requests .. 2-1
2.2 Database Access Descriptors ... 2-3
2.3 Invoking mod_plsql ... 2-3
2.3.1 POST, GET and HEAD Methods ... 2-5
2.4 Transaction Mode.. 2-5
2.5 Parameter passing ... 2-6

iv

2.5.1 Parameter Passing by Name (Overloaded parameters) ... 2-6
2.5.1.1 Overloading and PL/SQL Arrays .. 2-7
2.5.2 Flexible Parameter Passing ... 2-8
2.5.2.1 Two parameter interface .. 2-8
2.5.2.2 Four parameter interface.. 2-8
2.5.3 Large Parameter Passing ... 2-9
2.6 File Upload and Download.. 2-10
2.6.1 Document Table Definition... 2-10
2.6.1.1 Semantics of the CONTENT column ... 2-11
2.6.1.2 Semantics of the CONTENT_TYPE column ... 2-11
2.6.1.3 Semantics of the LAST_UPDATED column.. 2-11
2.6.1.4 Semantics of the DAD_CHARSET column ... 2-12
2.6.2 Old Style Document Table Definition ... 2-12
2.6.3 Parameters for Document Upload/Downloading .. 2-12
2.6.3.1 PlsqlDocumentPath (Document Access Path) .. 2-12
2.6.3.2 PlsqlDocumentProcedure (Document Access Procedure): 2-13
2.6.3.3 PlsqlUploadAsLongRaw.. 2-13
2.6.4 File Upload .. 2-14
2.6.5 Specifying Attributes (Mime Types) of Uploaded Files ... 2-16
2.6.6 Uploading Multiple Files .. 2-16
2.6.7 File Download... 2-16
2.6.8 Direct BLOB Download... 2-17
2.7 Path Aliasing (Direct Access URLs).. 2-18
2.8 Common Gateway Interface (CGI) Environment Variables ... 2-19
2.8.1 Adding and Overiding CGI Environment Variables .. 2-20
2.8.2 PlsqlNLSLanguage... 2-21
2.8.2.1 REQUEST_CHARSET CGI environment variable ... 2-21
2.8.2.2 REQUEST_IANA_CHARSET CGI environment variable 2-22
2.9 Restrictions in mod_plsql ... 2-22

Index

v

Send Us Your Comments

mod_plsql User’s Guide, Release 2 (9.0.2)

Part No. A90855-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). Send comments to:

■ Electronic mail: iasdocs_us@oracle.com
If you would like a reply, please give your name, address, telephone number, and electronic mail
address.

If you have problems with the software, please contact your local Oracle Support Services.

vi

vii

Preface

This manual describes how to install, configure, and maintain mod_plsql for
Oracle9i Application Server v 9.0.2. It contains the following chapters:

Chapter 1 - Explains how to use mod_plsql.

Chapter 2 - Provides an overview of the mod_plsql and its features.

Related Oracle Documents
For more information, see the following manuals:

Titles within the
Oracle9i Application Server set Part Number Containing Information about...

Oracle HTTP Server Administration
Guide

A92173-01 Oracle HTTP Server Modules -
Administration using the command
line tools and manually editing
configuration files (DAD
parameters, http.conf etc.)

Oracle9i Application Server Security
Guide

A90146-01 Securing Database Access through
mod_plsql

Oracle9i Application Server
Performance Guide

A95102-01 Performance and tuning material
and caching

Oracle9i Application Server
Administrator’s Guide

A92171-01 Administering Oracle9i Application
Server through the Oracle
Enterprise Manager Console (DAD
Configuration)

viii

Oracle Services and Support
Information about Oracle products and global services is available from:

■ http://www.oracle.com

The sections below provide URLs for selected services.

Oracle Technology Network
Register with the Oracle Technology Network (OTN) at:

http://technet.oracle.com

OTN delivers technical papers, discussion forums, code samples, product
documentation, self-service developer support, and Oracle key developer products
to enable rapid development and deployment of application built on Oracle
technology.

Oracle Support Services
Technical Support contact information worldwide is listed at:

http://www.oracle.com/support

Oracle9i Application Server:
Migrating from Oracle9iAS Release 1
(1.0.2.2.x) to Release 2 (9.0.2)

A96157-01 Parameters that have changed and
tools used to migrate DADs

PL/SQL Web Toolkit Reference A90101-01 OWA package information

Oracle9i Application Server
Installation Guide

Solaris:
A90215-01

NT: A90216-01

Installation for the Oracle9i
Application Server

Oracle9i Application Server:
Migrating from Oracle Application
Server

A95108-01 Migrating from previous versions
(Oracle Application Server)

Oracle9i Application Server Concepts A95926-01 Overview of the Oracle9i
Application Server

Titles within the
Oracle9i Application Server set Part Number Containing Information about...

ix

Templates are provided to help you prepare information about your problem before
you call. You will also need your CSI number (if applicable) or complete contact
details, including any special project information.

Product and Documentation
For U.S.A customers, Oracle Store is at:

■ http://store.oracle.com

Links to Stores in other countries are provided from this site.

Product documentation can be found at:

■ http://docs.oracle.com

Customer Service
Global Customer Service contacts are listed at:

■ http://www.oracle.com/support

Education and Training
Training information and worldwide schedules are available from:

■ http://education.oracle.com

Conventions
The following conventions are used in this manual:

Convention Meaning

.

.

.

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted

boldface text Boldface type in text indicates a term defined in the text.

< > Angle brackets enclose user-supplied names.

x

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at
http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

[] Brackets enclose optional clauses from which you can choose one or
none.

Convention Meaning

Using mod_plsql 1-1

1
Using mod_plsql

1.1 Oracle Database Requirements
The following are the recommended and minimum requirements for the Oracle
database when using mod_plsql:

■ Oracle8i or higher

■ For 8i databases, verify you are on the correct path set.

■ For Solaris, the database must have the following patch sets:

■ 8.1.6.3 or higher for 8.1.6 databases

■ 8.1.7.2 or higher for 8.1.7 databases

■ For Windows NT, you need:

■ 8.1.6.3.1 or higher for 8.1.6 databases

■ 8.1.7.1.1 or higher for 8.1.7 databases

1.2 Before you begin
Before you install mod_plsql using the Oracle9i Application Server Oracle
Universal Installer, satisfy the following requirements:

Note: mod_plsql requires the Oracle 9.0.1.2 client libraries to be
installed in the same Oracle Home as mod_plsql. If these libraries
are installed, you can still run mod_plsql against remote Oracle 8i
or above databases.

Installing Required Packages

1-2 mod_plsql User’s Guide

■ You must have a SYS user password on the database where you plan to load
PL/SQL Web Toolkit packages required by mod_plsql.

■ The database to which you plan to connect mod_plsql must be up and running.

■ You must have enough disk space on the machine where you plan to run the
Oracle Universal Installer.

■ You must have write permissions to the directory where the Oracle Universal
Installer is writing its oraInventory data.

1.3 Installing Required Packages
After installation, manually install additional required packages using the
owaload.sql script.

1. Navigate to the directory where the owaload.sql file is located. This directory is
<ORACLE_HOME>/Apache/modpsql/owa.

2. Using SQL*Plus, log into the Oracle database as the SYS user.

3. If you think other OWA packages exist in SYS, run the following query to
produce a list of all instances of the OWA packages

'select object_name, owner from all_objects where object_name like HTP%';

If multiple instances are detected in other schemas, deinstall other versions
before installing the OWA packages.

4. At a SQL prompt, run the following command:

@owaload.sql log_file

Note: Even if a full database export is made with the Export
utility you still must reinstall mod_plsql in the new target instance
via running the OWALOAD.SQL script as SYS. Objects in SYS are
not imported with the Import/Export mechanism, and the PL/SQL
toolkit has to be installed in SYS.

Installing Required Packages

Using mod_plsql 1-3

5. Scan the log file for any errors.

6. Do a manual recompile.

7. After the install, check the version of the OWA packages by running "Select
owa_util.get_version". Confirm that the version shown is 9.0.2.1.0 or above.

1.3.1 Upgrading from Oracle9i Application Server or WebDB Listener
If you were previously running Oracle9i Application Server or WebDB Listener
2.5 and below:

1. Verify there is no user data (other than the PL/SQL Web Toolkit packages)
in the schema.

Table 1–1 Installing Required Packages Parameters

Elements Description

owaload.sql Installs the PL/SQL Web Toolkit packages into the SYS
schema. It also creates public synonyms and makes the
packages public so that all users in the database have access to
them. Therefore, only one installation per database is needed.

log_file The installation log file. Make sure that you have write
permissions to create the log file

Note: The owaload script checks the existing version of the owa
packages in the database and installs a new version only if:

■ No OWA package exists or,

■ Older OWA packages were detected.

If your database already has the latest OWA packages or has a
newer version installed, the owaload script does nothing and
reports this in the log file.

Note: Installing the OWA packages invalidates all dependent
objects. These packages automatically recompile on first access, but
a manual recompile is recommended after the reinstallation.

Accessing the mod_plsql Configuration page

1-4 mod_plsql User’s Guide

2. Drop the schema where the old PL/SQL Web Toolkit packages were
installed.

3. Install the new PL/SQL Web Toolkit as per "Installing Required Packages"
on page 1-2.

1.4 Accessing the mod_plsql Configuration page
All monitoring and configuration takes place through the Oracle Enterprise
Manager (OEM) tool. The mod_plsql monitoring and configuration is accessible
through links within the HTTP Server components and the Portal.

To get to the mod_plsql configuration pages navigate to the applicable Application
Server through OEM. You can access the pages either through a portal instance or
through the link in the HTTP server instance.

1.4.1 Access the DAD Configuration pages through OEM
1. Enter the following URL in the web browser:

http://<hostname>:<port_number>

2. Enter the Oracle9i Application Server administrator username and password.
The default username for administrator user is ias_admin. The default
password is defined during the installation of Oracle9iAS.

3. Click OK.

4. Select Oracle9i Application Server instance with the mod_plsql that needs
configuring.

5. Select the HTTP Server link or the Portal instance.

6. Select mod_plsql component or link.

7. Scroll down to DAD Status section.

Note: Refer also to the Online Help available through the Oracle
Enterprise Manager tool for mod_plsql and DAD Configuration.

Note: 1810 is the default port.

Accessing the mod_plsql Configuration page

Using mod_plsql 1-5

8. Click Create to set up a new DAD or select the DAD you are interested in and
click Edit.

1.4.2 Access the DAD Configuration pages through Portal
1. Log on to Portal.

2. Click the Builder icon.

3. Access the Administrator tab.

4. Click Portal Service Monitoring link in the Services portlet.

5. Click mod_plsql Services in the Portal Components section.

6. Scroll down to DAD Status section.

7. Click Create to set up a new DAD or select the DAD you are interested in and
click Edit.

Accessing the mod_plsql Configuration page

1-6 mod_plsql User’s Guide

mod_plsql Overview 2-1

2
mod_plsql Overview

Oracle9i Application Server consolidates Oracle’s middle-tier products into a single
solution for the deployment of Web applications. Mod_plsql provides support for
building PL/SQL-based applications on the Web. PL/SQL stored procedures
retrieve data from a database and generate HTTP responses containing data and
code to display in a Web browser. Mod_plsql also supports other Oracle products
such as Oracle Portal.

2.1 Processing Client Requests
Mod_plsql is an Apache plug-in that communicates with the database. It maps
browser requests into database stored procedure calls over a SQL*Net connection. It
is generally indicated by a /pls virtual path.

The following scenario provides an overview of what steps occur when a server
receives a client request:

Processing Client Requests

2-2 mod_plsql User’s Guide

1. The Oracle HTTP Server receives a PL/SQL Server Page request from a client
browser.

2. The Oracle HTTP Server routes the request to mod_plsql.

3. The request is forwarded by mod_plsql to the Oracle Database. By using the
configuration information stored in your DAD, mod_plsql connects to the
database.

4. Mod_plsql prepares the call parameters, and invokes the PL/SQL procedure in
the application.

5. The PL/SQL procedure generates an HTML page using data and the PL/SQL
Web Toolkit accessed from the database.

6. The response is returned to mod_plsql.

7. The Oracle HTTP Server sends the response to the client browser.

Invoking mod_plsql

mod_plsql Overview 2-3

The procedure that mod_plsql invokes returns the HTTP response to the client. To
simplify this task, mod_plsql includes the PL/SQL Web Toolkit, which contains a
set of packages called the owa packages. Use these packages in your stored
procedure to get information about the request, construct HTML tags, and return
header information to the client. Install the toolkit in a common schema so that all
users can access it.

2.2 Database Access Descriptors
Each mod_plsql request is associated with a Database Access Descriptor (DAD), a
set of configuration values used for database access. A DAD specifies information
such as:

■ the database alias (Net8 service name).

■ a connect string if the database is remote.

■ a procedure for uploading and downloading documents.

You can also specify a username and password information in a DAD. If they are
not specified, the user is prompted to enter a username and password when the
URL is invoked.

2.3 Invoking mod_plsql
To invoke mod_plsql in a Web browser, input the URL in the following format:

protocol://hostname[:port]/DAD location/[[!][schema.][package.]proc_
name[?query_string]]

Table 2–1 Invoking mod_plsql Parameters

Parameter Description

protocol Either http or https. For SSL, use https.

hostname The machine where the Web server is running.

port
(optional)

The port at which the application server is listening. If omitted,
port 80 is assumed.

DAD location A virtual path to handle PL/SQL requests that you have
configured in the WEb server.

! character
(optional)

Indicates to use the flexible parameter passing scheme.
See"Flexible Parameter Passing" on page 2-8 for more
information.

Invoking mod_plsql

2-4 mod_plsql User’s Guide

Example 1: A Web server is configured with pls/mydad as a DAD location and
the browser sends the following URL:

http://www.acme.com:9000/pls/mydad/mypackage.myproc

The Web server running on www.acme.com and listening at port 9000 handles the
request. When the Web server receives the request, it passes the request to
mod_plsql. This is because the pls/mydad indicates that the Web server is
configured to invoke mod_plsql. It then uses the DAD associated with mydad and
runs the myproc procedure stored in mypackage.

Example 2: Specify a URL without a DAD, schema, or stored procedure name.

http://www.acme.com:9000/pls/mydad

Then the default home page for the mydad DAD (as specified on the DAD
Configuration pages) displays.

schema
(optional)

The database schema name. If omitted, name resolution for
package.proc_name occurs based on the database user that the
URL request is processed as.

package
(optional)

The package that contains the PL/SQL stored procedure. If
omitted, the procedure is stand-alone.

proc_name The PL/SQL stored procedure to run. This must be a
procedure and not a function. It can accept only IN arguments.

?query_string

(optional)

The parameters for the stored procedure. The string follows the
format of the GET method. For example:

■ Multiple parameters are separated with the & character.
Space characters in the values to be passed in are replaced
with the + character.

■ If you use HTML forms to generate the string (as opposed
to generating the string yourself), the formatting is done
automatically.

■ The HTTP request may also choose the HTTP POST
method to post data to mod_plsql. See "POST, GET and
HEAD Methods" on page 2-5 for more information.

Table 2–1 Invoking mod_plsql Parameters

Parameter Description

Transaction Mode

mod_plsql Overview 2-5

2.3.1 POST, GET and HEAD Methods
The POST, GET and HEAD methods in the HTTP protocol instruct browsers on
how to pass parameter data (usually in the form of name-value pairs) to
applications. The parameter data is generated by HTML forms.

mod_plsql applications can use any of the methods. Each method is as secure as the
underlying transport protocol (http or https).

■ When using the POST method, parameters are passed in the request body.
Generally, if you are passing large amounts of parameter data to the server, use
the POST method.

■ When using the GET method, parameters are passed using a query string. The
limitation of this method is that the length of the value in a name-value pair
cannot exceed the maximum length for the value of an environment variable, as
imposed by the underlying operating system. In addition, operating systems
have a limit on how many environment variables you can define.

■ When using the HEAD method, it has the same functionality as the GET
method. The only difference is that only the HTTP status line and the HTTP
headers are passed back. No content data is streamed back to the browser. This
is useful for monitoring tools in which you are only interested if the request is
processed correctly.

■ Mixed Mode - In mod_plsql you can pass some of the parameters in a query
string and the remaining ones as POST data. For example, if you have a
procedure foo (a varchar2, b number), and want to pass values "v" and "1" to 'a'
and 'b' respectively, you could do so in three ways to create URLs:

■ All values are specified as part of the query string
http://host:port/pls/DAD/foo?a=v&b=1

■ All values are specified as part of the POST data
http://host:port/pls/DAD/foo, POST data="a=v&b=1"

■ Some of the parameters are specified in the URL and the rest in the POST
data:
http://host:port/pls/DAD/foo?a=v, POST data="b=1"

2.4 Transaction Mode
After processing a URL request for a procedure invocation, mod_plsql performs a
rollback if there were any errors. Otherwise, it performs a commit. This mechanism

Parameter passing

2-6 mod_plsql User’s Guide

does not allow a transaction to span across multiple HTTP requests. In this stateless
model, applications typically maintain state using HTTP cookies or database tables.

2.5 Parameter passing
mod_plsql supports:

■ Parameter passing by name

Each parameter in a URL that invokes procedure or functions identified by a
unique name. Overloaded parameters are supported. See "Parameter Passing by
Name (Overloaded parameters)" on page 2-6 for more information.

■ Flexible parameter passing

Procedures are prefixed by a ! character. See "Flexible Parameter Passing" on
page 2-8 for more information.

■ Large (up to 32K) parameters passing

See "Large Parameter Passing" on page 2-9 for more information.

2.5.1 Parameter Passing by Name (Overloaded parameters)
Overloading allows multiple subprograms (procedures or functions) to have the
same name, but differ in the number, order, or the datatype family of the
parameters. When you call an overloaded subprogram, the PL/SQL compiler
determines which subprogram to call based on the data types passed.

PL/SQL allows you to overload local or packaged subprograms. Stand-alone
subprograms cannot be overloaded. See the PL/SQL User’s Guide in the Oracle
Server documentation for more information on PL/SQL overloading.

You must give parameters different names for overloaded subprograms that have
the same number of parameters. Because HTML data is not associated with
datatypes, mod_plsql does not know which version of the subprogram to call.

For example, although PL/SQL allows you to define two procedures using the
same parameter names for the procedures, an error occurs if you use this with
mod_plsql.

-- legal PL/SQL, but not for mod_plsql
CREATE PACKAGE my_pkg AS

PROCEDURE my_proc (val IN VARCHAR2);
PROCEDURE my_proc (val IN NUMBER);

END my_pkg;

Parameter passing

mod_plsql Overview 2-7

To avoid the error, name the parameters differently. For example:

-- legal PL/SQL and also works for mod_plsql
CREATE PACKAGE my_pkg AS

PROCEDURE my_proc (valvc2 IN VARCHAR2);
PROCEDURE my_proc (valnum IN NUMBER);

END my_pkg;

The URL to invoke the first version of the procedure looks similar to:

http://www.acme.com/pls/mydad/my_pkg.my_proc?valvc2=input

The URL to invoke the second version of the procedure looks similar to:

http://www.acme.com/pls/mydad/my_pkg.my_proc?valnum=34

2.5.1.1 Overloading and PL/SQL Arrays
If you have overloaded PL/SQL procedures where the parameter names are
identical, but the data type is owa_util.ident_arr (a table of varchar2) for one
procedure and a scalar type for another procedure, mod_plsql can still distinguish
between the two procedures. For example, if you have the following procedures:

CREATE PACKAGE my_pkg AS
PROCEDURE my_proc (val IN VARCHAR2); -- scalar data type
PROCEDURE my_proc (val IN owa_util.ident_arr); -- array data type

END my_pkg;

Each of these procedures has a single parameter of the same name, val.

When mod_plsql gets a request that has only one value for the val parameter, it
invokes the procedure with the scalar data type.

Example 1: Send the following URL to execute the scalar version of the procedure:

http://www.acme.com/pls/mydad/my_proc?val=john

When mod_plsql gets a request with more than one value for the val parameter, it
then invokes the procedure with the array data type.

Example 2: Send the following URL to execute the array version of the procedure:

http://www.acme.com/pls/mydad/my_proc?val=john&val=sally

To ensure that the array version executes, use hidden form elements on your HTML
page to send dummy values that are checked and discarded in your procedure.

Parameter passing

2-8 mod_plsql User’s Guide

2.5.2 Flexible Parameter Passing
mod_plsql supports flexible parameter passing to handle HTML forms where users
can select any number of elements. To use flexible parameter passing for a
URL-based procedure invocation, prefix the procedure with an exclamation mark (!)
in the URL. You can use two or four parameters. The two parameter interface
provides improved performance with mod_plsql. The four parameter interface is
supported for compatibility.

2.5.2.1 Two parameter interface
procedure [proc_name] is

name_array IN [array_type],
value_array IN [array_type],

Example: If you send the following URL:

http://www.acme.com/pls/mydad/!scott.my_proc?x=john&y=10&z=doe

The exclamation mark prefix (!) instructs mod_plsql to use flexible parameter
passing. It invokes procedure scott.myproc and passes it the following two
arguments:

name_array ==> (‘x’, ‘y’, ‘z’)
values_array ==> (’john’, ’10’, ’doe’)

2.5.2.2 Four parameter interface
The four parameter interface is supported for compatibility.

procedure [proc_name] is
(num_entires IN NUMBER,

Table 2–2 Two Parameter Interface Parameters

Parameter Description

proc_name
(required)

The name of the PL/SQL procedure that you are invoking.

name_array The names from the query string (indexed from 1) in the order
submitted.

value_array The values from the query string (indexed from 1) in the order
submitted.

array_type
(required)

The values from the query string (indexed from 1) in the order
submitted.

Parameter passing

mod_plsql Overview 2-9

name_array IN [array_type],
value_array IN [array_type],
reserved in [array_type]);

Example: If you send the following URL, where the query_string has duplicate
occurrences of the name "x":

http://www.acme.com/pls/mydad/!scott.my_pkg.my_proc?x=a&y=b&x=c

The exclamation mark prefix (!) instructs mod_plsql to use flexible parameter
passing. It invokes procedure scott.my_pkg.myproc and passes it the following
arguments:

num_entries ==> 3
name_array ==> (‘x’, ‘y’, ‘x’);
values_array ==> (‘a’, ‘b’, ‘c’)
reserved ==> ()

2.5.3 Large Parameter Passing
The values passed as scalar arguments and the values passed as elements to the
index-by table of varchar2 arguments can be up to 32K in size.

For example, when using flexible parameter passing (described in "Flexible
Parameter Passing" on page 2-8), each name or value in the query_string portion of
the URL gets passed as an element of the name_array or value_array
argument to the procedure being invoked. These names or values can be up to 32KB
in size.

Table 2–3 Four Parameter Interface Parameters

Parameter Description

proc_name
(required)

The name of the PL/SQL procedure that you are invoking.

num_entries The number of name_value pairs in the query string

name_array The names from the query string (indexed from 1) in the order
submitted.

value_array The values from the query string (indexed from 1) in the order
submitted.

reserved Not used. It is reserved for future use.

array_type
(required)

Any PL/SQL index-by table of varchar2 type (e.g., owa.vc_
arr).

File Upload and Download

2-10 mod_plsql User’s Guide

2.6 File Upload and Download
mod_plsql allows you to:

■ Upload and download files as raw byte streams without any character set
conversions. The files are uploaded into the document table. A primary key is
passed to the PL/SQL upload handler routine so that it can retrieve the
appropriate table row.

■ Specify one or more tables per application for uploaded files so that files from
different applications are not mixed together.

■ Provide access to files in these tables via a URL format that doesn’t use query
strings, for example:

http://www.acme.com:9000/pls/mydad/docs/cs250/lecture1.htm

This is required to support uploading a set of files that have relative URL
references to each other.

■ Upload multiple files per form submission.

■ Upload files into LONG RAW and BLOB (Binary Large Object) types of
columns in the document table.

2.6.1 Document Table Definition
You can specify the document storage table on a per DAD basis. The document
storage table must have the following definition:

CREATE TABLE [table_name] (
NAME VARCHAR2(256) UNIQUE NOT NULL,
MIME_TYPE VARCHAR2(128),
DOC_SIZE NUMBER,
DAD_CHARSET VARCHAR2(128),
LAST_UPDATED DATE,
CONTENT_TYPE VARCHAR2(128),
[content_column_name] [content_column_type]
[, [content_column_name] [content_column_type]]

);

Users can choose the table_name. The content_column_type type must be
either LONG RAW or BLOB.

The content_column_name depends on the corresponding content_column_
type:

File Upload and Download

mod_plsql Overview 2-11

■ If the content_column_type is LONG RAW, the content_column_name
must be CONTENT.

■ If the content_column_type is BLOB, the content_column_name must be
BLOB_CONTENT.

An example of legal document table definition is:

NAME VARCHAR(128) UNIQUE NOT NULL,
MIME_TYPE VARCHAR(128),
DOC_SIZE NUMBER,
DAD_CHARSET VARCHAR(128),
LAST_UPDATED DATE,
CONTENT_TYPE VARCHAR(128),
CONTENT LONG RAW,
BLOB_CONTENT BLOB ;

2.6.1.1 Semantics of the CONTENT column
The contents of the table are stored in a content column. There can be more than one
content column in a document table. However, for each row in the document table,
only one of the content columns is used. The other content columns are set to
NULL.

2.6.1.2 Semantics of the CONTENT_TYPE column
The content_type column tracks in which content column the document is
stored. When a document is uploaded, mod_plsql sets the value of this column to
the type name.

For example, if a document was uploaded into the BLOB_CONTENT column, then
the CONTENT_TYPE column for the document is set to the string ‘BLOB’.

2.6.1.3 Semantics of the LAST_UPDATED column
The LAST_UPDATED column reflects a document’s creation or last modified time.
When a document is uploaded, mod_plsql sets the LAST_UPDATED column for the
document to the database server time.

If an application then modifies the contents or attributes of the document, it must
also update the LAST_UPDATED time.

mod_plsql uses the LAST_UPDATED column to check and indicate to the HTTP
client (browser) if the browser can use a previously cached version of the document.
This reduces network traffic and improves server performance.

File Upload and Download

2-12 mod_plsql User’s Guide

2.6.1.4 Semantics of the DAD_CHARSET column
The DAD_CHARSET column keeps track of the character set setting at the time of the
file upload. This column is reserved for future use.

2.6.2 Old Style Document Table Definition
For backward capability with the document model used by older releases of WebDB
2.x, mod_plsql also supports the following old definition of the document storage
table where the CONTENT_TYPE, DAD_CHARSET and LAST_UPDATED columns
are not present.

/* older style document table definition (DEPRECATED) */
CREATE TABLE [table_name]
(

NAME VARCHAR2(128),
MIME_TYPE VARCHAR2(128),
DOC_SIZE NUMBER,
CONTENT LONG RAW

);

2.6.3 Parameters for Document Upload/Downloading
For each DAD, the following configuration parameters are relevant for file upload
or download.

PlsqlDocumentTablename

The PlsqlDocumentTablename parameter specifies the table for storing
documents when file uploads are performed via this DAD.

Syntax:

PlsqlDocumentTablename [document_table_name]

Examples:

PlsqlDocumentTablename my_documents

or,

PlsqlDocumentTablename scott.my_document_table

2.6.3.1 PlsqlDocumentPath (Document Access Path)
The PlsqlDocumentPath parameter specifies the path element to access a
document. The PlsqlDocumentPath parameter follows the DAD name in the

File Upload and Download

mod_plsql Overview 2-13

URL. For example, if the document access path is docs, then the URL would look
similar to:

http://neon/pls/mydad/docs/myfile.htm

The mydad is the DAD name and myfile.htm is the file name.

Syntax:

PlsqlDocumentPath [document_access_path_name]

2.6.3.2 PlsqlDocumentProcedure (Document Access Procedure):
The PlsqlDocumentProcedure procedure is an application-specified procedure.
It has no parameters and processes a URL request with the document access path.
The document access procedure calls wpg_docload.download_
file(filename) to download a file. It knows the filename based on the URL
specification. For example, an application can use this to implement file-level access
controls and versioning. An example of this is in "File Download" on page 2-16.

Syntax:

PlsqlDocumentProcedure [document_access_procedure_name]

Examples:

PlsqlDocumentProcedure my_access_procedure

or,

PlsqlDocumentProcedure scott.my_pkg.my_access_procedure

2.6.3.3 PlsqlUploadAsLongRaw
The DAD parameter, PlsqlUploadAsLongRaw, configures file uploads based on
their file extensions. The value of an PlsqlUploadAsLongRaw DAD parameter
is a one entry per line list of file extensions. Files with these extensions are uploaded
by mod_plsql into the content column of long_raw type in the document table.
Files with other extensions are uploaded into the BLOB content column.

The file extensions can be text literals (jpeg, gif, etc.) or an asterisk (*) matches any
file whose extension has not been listed in the PlsqlUploadAsLongRaw setting.

Syntax:

PlsqlUploadAsLongRaw [file_extension]
PlsqlUploadAsLongRaw *

File Upload and Download

2-14 mod_plsql User’s Guide

[file_extension] is an extension for a file (with or without the ‘.’ character,
e.g., ‘txt’ or ‘.txt’) or the wildcard character *.

Examples:

PlsqlUploadAsLongRaw html
PlsqlUploadAsLongRaw txt
PlsqlUploadAsLongRaw *

2.6.4 File Upload
To send files from a client machine to a database, create an HTML page that
contains:

■ A FORM tag whose enctype attribute is set to multipart/form-data and
whose action attribute is associated with a mod_plsql procedure call, referred to
as the "action procedure."

■ An INPUT element whose type and name attributes are set to file. The INPUT
type="file" element enables a user to browse and select files from the file
system.

When a user clicks Submit, the following events occur:

1. The browser uploads the file specified by the user as well as other form data to
the server.

2. mod_plsql stores the file contents in the database in the document storage table.
The table name is derived from the PlsqlDocumentTablename DAD setting.

3. The action procedure specified in the action attribute of the FORM is run
(similar to invoking a mod_plsql procedure without file upload).

The following example shows an HTML form that lets a user select a file from the
file system to upload. The form contains other fields to provide information about
the file.

<html>
<head>
<title>test upload</title>
</head>
<body>
<FORM enctype="multipart/form-data"

action="pls/mydad/write_info"
method="POST">
<p>Author’s Name:<INPUT type="text" name="who">
<p>Description:<INPUT type="text" name="description">

File Upload and Download

mod_plsql Overview 2-15

<p>File to upload:<INPUT type="file" name="file">

<p><INPUT type="submit">
</FORM>
</body>
</html>

When a user clicks Submit on the form:

a. The browser uploads the file listed in the INPUT type="file" element.

b. The write_info procedure then runs.

c. The procedure writes information from the form fields to a table in the
database and returns a page to the user.

procedure write_info (
who in varchar2,
description in varchar2,
file in varchar2) as
begin
insert into myTable values (who, description, file);
htp.htmlopen;
htp.headopen;
htp.title('File Uploaded');
htp.headclose;
htp.bodyopen;
htp.header(1, 'Upload Status');
htp.print('Uploaded ' || file || ' successfully');
htp.bodyclose;
htp.htmlclose;
end;

The filename obtained from the browser is prefixed with a generated directory
name to reduce the possibility of name conflicts. The "action procedure" specified in
the form renames this name. So, for example, when /private/minutes.txt is
uploaded, the name stored in the table by the mod_plsql is
F9080/private/minutes.txt. The application can rename this in the called
stored procedure. For example, the application can rename it to
scott/minutes.txt.

Note: The action procedure does not have to return anything to the
user, but it is a good idea to let the user know whether the Submit
succeeded or failed, as shown below.

File Upload and Download

2-16 mod_plsql User’s Guide

2.6.5 Specifying Attributes (Mime Types) of Uploaded Files
In addition to renaming the uploaded file, the stored procedure can alter other file
attributes. For example, the form in the example from "File Upload" on page 2-14
could display a field for allowing the user to input the uploaded document’s
Multipurpose Internet Mail Extension (MIME) type.

The MIME type can be received as a parameter in write_info. The document
table would then store the mime type for the document instead of the default mime
type that is parsed from the multipart form by mod_plsql when uploading the file.

2.6.6 Uploading Multiple Files
To send multiple files in a single submit, the upload form must include multiple
<INPUT type="file" name="file"> elements. If more than one file INPUT element
defines name to be of the same name, then the action procedure must declare that
parameter name to be of type owa.vc_arr. The names defined in the file INPUT
elements could also be unique, in which case, the action procedure must declare
each of them to be of varchar2. For example, if a form contained the following
elements:

<INPUT type="file" name="textfiles">
<INPUT type="file" name="textfiles">
<INPUT type="file" name="binaryfile">

As a result, the action procedure must contain the following parameters:

procedure handle_text_and_binary_files(textfiles IN owa.vc_arr,
binaryfile IN varchar2).

2.6.7 File Download
After you have sent files to the database, you can download them, delete them from
the database, and read and write their attributes.

To download a file, create a stored procedure without parameters that calls
wpg_docload.download_file (file_name) to initiate the download.

The HTML page presented to the user simply has a link to a URL which includes
the Document Access Path and specifies the file to be downloaded.

For example, if the DAD specifies that the Document Access Path is docs and the
Document Access Procedure is mydad.process_download, then the mydad.process_
download procedure is called when the user clicks on the URL:

http://www.acme:9000/pls/mydad/docs/myfile.htm

File Upload and Download

mod_plsql Overview 2-17

An example implementation of process_download is:

procedure process_download is
v_filename varchar2(255);
begin

-- getfilepath() uses the SCRIPT_NAME and PATH_INFO cgi
-- environment variables to construct the full pathname of
-- the file URL, and then returns the part of the pathname
-- following ‘/docs/’
v_filename := getfilepath;
select name into v_filename from plsql_gateway_doc
where UPPER(name) = UPPER(v_filename);
-- now we call docload.download_file to initiate
-- the download.
wpg_docload.download_file(v_filename);

exception
when others then

v_filename := null;
end process_download;

Any time you call wpg_docload.download_file(filename) from a procedure
running in mod_plsql, a download of the file filename is initiated. However,
when a file download begins, no other HTML (produced via HTP interfaces)
generated by the procedure, is passed back to the browser.

mod_plsql looks for the filename in the document table. There must be a unique
row in the document table whose NAME column matches the filename. mod_plsql
generates the HTTP response headers based on the information in the MIME_TYPE
column of the document table. The content_type column’s value determines
which content columns the document’s content comes from. The contents of the
document are sent as the body of the HTTP response.

2.6.8 Direct BLOB Download
You can also download contents stored as Binary Large Object (BLOB) data type.

1. Create a stored procedure that calls wpg_docload.download_file(blob) where
blob is of data type BLOB. Since mod_plsql has no information about the
contents in the BLOB, you must supply them.

2. Setup the Content-Type and other headers.

Example: The following procedure uses the name from the argument to select a
BLOB from a table and initiates the Direct BLOB download:

Path Aliasing (Direct Access URLs)

2-18 mod_plsql User’s Guide

procedure download_blob(varchar2 name) is
myblob blob;
begin

a. Select the BLOB out of mytable using the name argument

select blob_data into myblob from mytable where blob_name = name;

b. Setup headers which describes the content

owa_util.mime_header('text/html', FALSE);
htp.p('Content-Length: ' || dbms_lob.get_length(myblob));
owa_util.http_header_close;

c. Initiate Direct BLOB download

wpg_docload.download_file(myblob);
end;

The structure of the mytable table:

create table mytable
(
blob_name varchar2(128),
blob_data blob
);

3. The HTML page presented to the user has a link to a URL that calls this stored
procedure with the correct argument(s).

4. When a Direct BLOB download is initiated, no other HTML (produced via the
HTP interface) generated by the procedure is passed back to the browser.

2.7 Path Aliasing (Direct Access URLs)
Path Aliasing enables applications using mod_plsql to provide direct reference to its
objects using simple URLs. This lets you directly access documents within an
application using the document access path and a document access procedure. For
example, the docs keyword in the URL below tells mod_plsql that this request is
for document access.

protocol://hostname[:port]/DAD
Location/docs/<FolderName/Document>

The above assumes that the Document Access Path is docs.

Common Gateway Interface (CGI) Environment Variables

mod_plsql Overview 2-19

Path Aliasing provides the equivalent function by allowing means of direct access
to application objects other than documents. Two fields in Database Access
Descriptor's configuration information support path aliasing:

■ Path Alias

■ Path Alias Procedure

If mod_plsql encounters an incoming URL with the keyword entered in the Path
Alias field, it invokes the procedure entered in the Path Alias Procedure field.

For example, if the URL below is the incoming URL and the Path Alias is set to
myalias, mod_plsql invokes the Path Alias Procedure. This passes everything
after the keyword myalias to the invoked procedure.

http://www.acme.com:9000/pls/mydad/myalias/foo/bar/foobar

Applications that use path aliasing must implement the Path Alias Procedure. The
procedure receives the rest of the URL (foo/bar/foobar) after the keyword,
myalias, as a single parameter. It is responsible for dereferencing the object from
the URL.

Although there is no restriction on the name and location for this procedure, it can
accept only a single parameter, p_path, with the datatype varchar2.

2.8 Common Gateway Interface (CGI) Environment Variables
The OWA_UTIL package provides an API to get the values of CGI environment
variables. The variables provide context to the procedure being executed through
mod_plsql. Although mod_plsql is not operated through CGI, the PL/SQL
application invoked from mod_plsql can access these CGI environment variables.
The following are the available CGI Environment Variables:

Table 2–4 CGI Environment Variables

CGI Environment Variables

AUTHORIZATION PlsqlDocumentTablename

DAD_NAME REMOTE_ADDR

DOC_ACCESS_PATH REMOTE_HOST

HTTP_ACCEPT REMOTE_USER

HTTP_ACCEPT_CHARSET REQUEST_CHARSET (refer to "REQUEST_
CHARSET CGI environment variable" on
page 2-21)

Common Gateway Interface (CGI) Environment Variables

2-20 mod_plsql User’s Guide

A PL/SQL application can get the value of a CGI environment variable using the
owa_util.get_cgi_env interface.

Syntax:

owa_util.get_cgi_env(param_name in varchar2) return varchar2;

param_name is the name of the CGI environment variable. param_name is
case-insensitive.

2.8.1 Adding and Overiding CGI Environment Variables
The PlsqlCGIEnvironmentList DAD parameter is a one-entry per line list of
name and value pairs which can override any environment variables or add new
ones. If the name is one of the original environment variables (as listed in "Common
Gateway Interface (CGI) Environment Variables" on page 2-19), that environment
variable is overridden with the given value. If the name is not in the original list, a
new environment variable is added into the list with that same name and value
given in the parameter.

If no value is specified for the parameter, then the value is obtained from the Oracle
HTTP Server. With Apache, you can pass the DOCUMENT_ROOT CGI
Environment variable by specifying:

HTTP_ACCEPT_LANGUAGE REQUEST_IANA_CHARSET

HTTP_COOKIE REQUEST_METHOD

HTTP_HOST REQUEST_PROTOCOL

HTTP_PRAGMA SCRIPT_NAME

HTTP_REFERER SCRIPT_PREFIX

HTTP_USER_AGENT SERVER_NAME

PATH_ALIAS SERVER_PORT

PATH_INFO SERVER_PROTOCOL

Note: Refer to the Oracle HTTP Server Administration Guide for
information about the mod_plsql Configuration Files.

Table 2–4 CGI Environment Variables

CGI Environment Variables

Common Gateway Interface (CGI) Environment Variables

mod_plsql Overview 2-21

PlsqlCGIEnvironmentList DOCUMENT_ROOT

New environment variables passed in through this configuration parameter are
available to the PL/SQL application via the owa_util.get_cgi_env interface.

Example 1:

PlsqlCGIEnvironmentList SERVER_NAME=myhost.mycompany.com

PlsqlCGIEnvironmentList REMOTE_USER=testuser

This example overrides the SERVER_NAME and the REMOTE_USER CGI
environment variables with the given values since they are part of the original list.

Example 2:

PlsqlCGIEnvironmentList MYENV_VAR=testing

PlsqlCGIEnvironmentList SERVER_NAME=,

PlsqlCGIEnvironmentList REMOTE_USER=user2

This example overrides the SERVER_NAME and the REMOTE_USER variables. The
SERVER_NAME variable is deleted since there is no value given to it. A new
environment variable called MYENV_VAR is added since it is not part of the
original list. It is assigned the value of "testing".

2.8.2 PlsqlNLSLanguage
For mod_plsql, the National Language Support variable (PlsqlNLSLanguage) can
be set either as an environment variable or at the DAD level. The following
restrictions apply:

■ The PlsqlNLSLanguage parameter of the database must match that of the
Oracle HTTP Server powered by Apache, or

■ The PlsqlNLSLanguage parameter of the database and Oracle HTTP Server
powered by Apache, must be of fixed character width and both must be the same
size.

2.8.2.1 REQUEST_CHARSET CGI environment variable
Every request to mod_plsql is associated with a DAD. The CGI environment
variable REQUEST_CHARSET is set as follows:

■ The REQUEST_CHARSET is set to the default character set in use, derived from
the PlsqlNLSLanguage environment variable. However, if the DAD level

Restrictions in mod_plsql

2-22 mod_plsql User’s Guide

PlsqlNLSLanguage parameter is set, that derives the character set information
instead.

The PL/SQL application can access this information via a function call of the form:

owa_util.get_cgi_env(‘REQUEST_CHARSET’);

2.8.2.2 REQUEST_IANA_CHARSET CGI environment variable
This is the IANA (Internet Assigned Number Authority) equivalent of the
REQUEST_CHARSET CGI environment variable. IANA is an authority that
globally coordinates the standards for charsets on the Internet.

2.9 Restrictions in mod_plsql
The following restrictions exist in mod_plsql:

■ The maximum length of the HTTP cookie header is 32000 bytes. Values higher
than this generate an error. This limit is due to the PL/SQL varchar2 limit.

■ The maximum length of any single cookie within the HTTP cookie is 3990.
Values higher than this generate an error. This limit is due to the OCI array bind
limit of strings in arrays.

■ There is a hard maximum cookie limit in mod_plsql that limits the number of
cookies being set at any given time. That limit is set to 20. Anything over 20 will
be dropped.

Index-1

Index
Symbols
! character

definition, 2-3
flexible parameter passing, 2-8

Numerics
2 parameter

flexible parameter passing, 2-8
4 parameter

flexible parameter passing, 2-8

A
arrays, 2-7

B
BLOB

direct download, 2-17
document table definition, 2-11

C
CGI

environment variables, 2-20
client request, 2-1
configuration

mod_plsql, 1-4
configuration of DADs, 1-4
configuration of mod_plsql, 1-4
content column, 2-11
content_type column, 2-11

cookie restrictions, 2-22
customer service, 1-viii

D
DAD

definition, 2-3
DAD configuration, 1-4
DAD_charset column, 2-12
direct access URLs, 2-18
document access path, 2-12
document table definition, 2-10

old style, 2-12
document_path, 2-12
document_proc, 2-13
download, 2-10
downloading files, 2-16
DTD, 2-10

old style, 2-12

E
eduction website, 1-ix
environment variables

CGI, 2-19

F
file upload, 2-10, 2-14

attributes, 2-16
multiple files, 2-16

flexible parameter passing, 2-8
four parameter

flexible parameter passing, 2-8

Index-2

G
GET method, 2-5

H
head method, 2-5
HTTP HEAD requests, 2-5

I
installation, 1-1

L
language parameter (nls_lang), 2-21
LAST_UPDATED column, 2-11
LONGRAW

document table definition, 2-11

M
mime type, 2-16
mod_plsql

configuring, 1-4
invoking, 2-3

mod_plsql configuration, 1-4

N
nls_lang

definition, 2-21

O
Oracle documents, 1-vii
Oracle Technology Network, 1-ix
overloading, 2-6, 2-7
OWA Web Toolkit reference guide, 1-viii
owa_util PL/SQL web toolkit package, 2-19
owaload.sql, 1-2

P
parameters

flexible, 2-8

large, 2-9
overloaded, 2-6
passing, 2-6, 2-8

POST method, 2-5

R
related Oracle documents, 1-vii
request_charset, 2-21
REQUEST_IANA_CHARSET, 2-22
restrictions, 2-22

S
support services, 1-viii
system requirements, 1-1

T
training website, 1-ix
transaction model, 2-5
two parameter

flexible parameter passing, 2-8

U
upload, 2-10

W
Web Toolkit Reference manual, 1-viii
WebDB

upgrading the listener, 1-3

	Contents
	Send Us Your Comments
	Preface
	Related Oracle Documents
	Oracle Services and Support
	Conventions
	Documentation Accessibility

	1 Using mod_plsql
	1.1� Oracle Database Requirements
	1.2� Before you begin
	1.3� Installing Required Packages
	1.3.1� Upgrading from Oracle9i Application Server or WebDB Listener

	1.4� Accessing the mod_plsql Configuration page
	1.4.1� Access the DAD Configuration pages through OEM
	1.4.2� Access the DAD Configuration pages through Portal

	2 mod_plsql Overview
	2.1� Processing Client Requests
	2.2� Database Access Descriptors
	2.3� Invoking mod_plsql
	2.3.1� POST, GET and HEAD Methods

	2.4� Transaction Mode
	2.5� Parameter passing
	2.5.1� Parameter Passing by Name (Overloaded parameters)
	2.5.1.1� Overloading and PL/SQL Arrays

	2.5.2� Flexible Parameter Passing
	2.5.2.1� Two parameter interface
	2.5.2.2� Four parameter interface

	2.5.3� Large Parameter Passing

	2.6� File Upload and Download
	2.6.1� Document Table Definition
	2.6.1.1� Semantics of the CONTENT column
	2.6.1.2� Semantics of the CONTENT_TYPE column
	2.6.1.3� Semantics of the LAST_UPDATED column
	2.6.1.4� Semantics of the DAD_CHARSET column

	2.6.2� Old Style Document Table Definition
	2.6.3� Parameters for Document Upload/Downloading
	2.6.3.1� PlsqlDocumentPath (Document Access Path)
	2.6.3.2� PlsqlDocumentProcedure (Document Access Procedure):
	2.6.3.3� PlsqlUploadAsLongRaw

	2.6.4� File Upload
	2.6.5� Specifying Attributes (Mime Types) of Uploaded Files
	2.6.6� Uploading Multiple Files
	2.6.7� File Download
	2.6.8� Direct BLOB Download

	2.7� Path Aliasing (Direct Access URLs)
	2.8� Common Gateway Interface (CGI) Environment Variables
	2.8.1� Adding and Overiding CGI Environment Variables
	2.8.2� PlsqlNLSLanguage
	2.8.2.1� REQUEST_CHARSET CGI environment variable
	2.8.2.2� REQUEST_IANA_CHARSET CGI environment variable

	2.9� Restrictions in mod_plsql

	Index

