
Oracle9iAS Containers for J2EE

JSP Tag Libraries and Utilities Reference

Release 2 (9.0.2)

January 2002

Part No. A95883-01

Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference, Release 2 (9.0.2)

Part No. A95883-01

Copyright © 2002 Oracle Corporation. All rights reserved.

Primary Author: Brian Wright

Contributing Author: Michael Freedman

Contributors: Julie Basu, Alex Yiu, Sunil Kunisetty, Gael Stevens, Ping Guo, Olga Peschansky, Sumathi
Gopalakrishnan, YaQing Wang, Song Lin, Hal Hildebrand, Jasen Minton, Matthieu Devin, Jerry Schwarz,
Shiva Prasad, Kuassi Mensah, Susan Kraft, Sheryl Maring, Ellen Barnes, Angie Long, Sanjay Singh,
Sharon Malek, Deborah Steiner, Jesse Anton, George Tang, Margaret Taft, Charlie Berger, Olaf van der
Geest, Ralph Gordon, David Zhang, Fred Bethke, Charles Murray, Peter Lubbers

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle9i, Oracle8i, Oracle8, Oracle7, PL/SQL, SQL*Net, SQL*Plus,
and Oracle Store are trademarks or registered trademarks of Oracle Corporation. Other names may be
trademarks of their respective owners.

Contents

Send Us Your Comments ... ix

Preface.. xi

Intended Audience ... xii
Documentation Accessibility .. xii
Organization .. xiii
Related Documentation .. xiv
Conventions... xvii

1 Overview of Tag Libraries and Utilities

Overview of Tag Libraries and Utilities Provided with OC4J ... 1-2
Tag Syntax Symbology and Notes ... 1-2
Overview of Extended Type JavaBeans .. 1-3
Overview of JspScopeListener for Event-Handling .. 1-3
Overview of Integration with XML and XSL ... 1-3
Summary of Custom Data-Access JavaBeans and Tag Library... 1-5
Summary of JSP Markup Language (JML) Custom Tag Library .. 1-6
Summary of Oracle9iAS Personalization Tag Library .. 1-8
Summary of JSP Utility Tags... 1-12

Overview of Oracle Caching Support for Web Applications .. 1-16
Oracle9i Application Server and JSP Caching Features.. 1-16
Role of the JSP Web Object Cache .. 1-17
Summary of Tag Libraries for Caching ... 1-19

Overview of Tag Libraries from Other Oracle9iAS Components... 1-23
 iii

Oracle9i JDeveloper Business Components for Java (BC4J) Tag Library 1-23
Oracle9i JDeveloper User Interface Extension (UIX) Tag Library 1-25
Oracle9i JDeveloper BC4J/UIX Tag Library... 1-28
Oracle9i Reports Tag Library .. 1-30
Oracle9iAS Wireless Location (Spatial) Tag Library ... 1-31
Oracle9iAS Ultra Search Tag Library... 1-33
Oracle9iAS Portal Tag Library.. 1-35

2 JavaBeans for Extended Types

Overview of JML Extended Types ... 2-2
JML Extended Type Descriptions .. 2-4

Type JmlBoolean ... 2-4
Type JmlNumber .. 2-5
Type JmlFPNumber.. 2-6
Type JmlString... 2-7
JML Extended Types Example.. 2-8

3 JSP Markup Language Tags

Overview of the JSP Markup Language (JML) Tag Library ... 3-2
JML Tag Library Philosophy... 3-2
JML Tag Categories .. 3-3

JSP Markup Language (JML) Tag Descriptions .. 3-4
Bean Binding Tag Descriptions... 3-4
Logic and Flow Control Tag Descriptions .. 3-8

4 Data-Access JavaBeans and Tags

JavaBeans for Data Access... 4-2
Introduction to Data-Access JavaBeans... 4-2
Data-Access Support for Data Sources and Pooled Connections .. 4-3
Data-Access JavaBean Descriptions ... 4-3

SQL Tags for Data Access .. 4-16
Introduction to Data-Access Tags .. 4-16
Data-Access Tag Descriptions... 4-17
iv

5 XML and XSL Tag Support

Overview of Oracle Tags for XML Support ... 5-2
XML Producers and XML Consumers .. 5-2
Summary of OC4J Tags with XML Functionality .. 5-3

XML Utility Tags ... 5-4
XML Utility Tag Descriptions... 5-4
XML Utility Tag Examples.. 5-8

6 JESI Tags for Edge Side Includes

Overview of Edge Side Includes Technology and Processing ... 6-2
Edge Side Includes Technology.. 6-2
Oracle9iAS Web Cache and ESI Processor ... 6-4

Overview of JESI Functionality ... 6-6
Advantages of JESI Tags.. 6-6
Overview of JESI Tags Implemented by Oracle... 6-7
JESI Usage Models.. 6-8
Invalidation of Cached Objects... 6-12
Personalization of Cached Pages.. 6-12

Oracle JESI Tag Descriptions.. 6-14
Tag Descriptions for Page Setup and Content ... 6-14
Tag and Subtag Descriptions for Invalidation of Cached Objects 6-25
Tag Description for Page Personalization... 6-31

JESI Tag Handling and JESI-to-ESI Conversion... 6-33
Example: JESI-to-ESI Conversion for Included Pages... 6-33
Example: JESI-to-ESI Conversion for a Template and Fragment .. 6-34

7 Web Object Cache Tags and API

Overview of the Web Object Cache .. 7-2
Benefits of the Web Object Cache... 7-2
Web Object Cache Components ... 7-3
Cache Policy and Scope ... 7-5

Key Functionality of the Web Object Cache ... 7-7
Cache Block Naming—Implicit Versus Explicit .. 7-7
Cloneable Cache Objects.. 7-8
 v

Cache Block Runtime Functionality... 7-10
Data Invalidation and Expiration... 7-10

Attributes for Policy Specification and Use .. 7-12
Cache Policy Attributes ... 7-12
Expiration Policy Attributes.. 7-18

Web Object Cache Tag Descriptions ... 7-21
Cache Tag Descriptions ... 7-21
Cache Invalidation Tag Description .. 7-33

Web Object Cache Servlet API Descriptions... 7-39
Cache Policy Object Creation.. 7-39
CachePolicy Methods ... 7-41
Expiration Policy Object Retrieval ... 7-47
ExpirationPolicy Methods ... 7-47
CacheBlock Methods .. 7-48
Sample Servlet Using the Web Object Cache API.. 7-49
Tag Code Versus API Code... 7-52

Cache Policy Descriptor ... 7-58
Cache Policy Descriptor DTD ... 7-58
Sample Cache Policy Descriptor... 7-59
Cache Policy Descriptor Loading and Refreshing ... 7-59

Cache Repository Descriptor .. 7-61
Cache Repository Descriptor DTD... 7-61
Sample Cache Repository Descriptor .. 7-62

Configuration for Back-End Repository... 7-63
Configuration Notes for Oracle9i Application Server Java Object Cache 7-63
Configuration Notes for File System Cache.. 7-64

8 JSP Utilities and Utility Tags

JSP Event-Handling—JspScopeListener .. 8-2
General Use of JspScopeListener .. 8-2
Use of JspScopeListener in OC4J and Other Servlet 2.3 Environments................................ 8-3
Examples Using JspScopeListener ... 8-7

Mail JavaBean and Tag... 8-14
General Considerations for the Mail JavaBean and Tag ... 8-14
SendMailBean Description .. 8-15
vi

The sendMail Tag Description.. 8-19
File-Access JavaBeans and Tags ... 8-25

Overview of OC4J File-Access Functionality ... 8-25
File Upload and Download JavaBean and Class Descriptions .. 8-29
File Upload and Download Tag Descriptions.. 8-40

EJB Tags .. 8-48
EJB Tag Configuration ... 8-48
EJB Tag Descriptions .. 8-49
EJB Tag Examples ... 8-53

General Utility Tags ... 8-56
Display Tags .. 8-56
Miscellaneous Utility Tags .. 8-58

9 Oracle9iAS Personalization Tags

Overview of Personalization .. 9-2
General Overview of Personalization.. 9-2
Introduction to Oracle9iAS Personalization... 9-3
Overview of Recommendation Engine API Concepts and Features 9-6

Overview of Personalization Tag Functionality ... 9-13
Recommendation Engine Session Management .. 9-13
Use of Items in Personalization Tags... 9-15
Mode of Use for Item Recording Tags... 9-21
Use of Tuning, Filtering, and Sorting for Recommendation and Evaluation Tags 9-22

Personalization Tag and Class Descriptions ... 9-27
Session Management Tag Descriptions... 9-28
Recommendation and Evaluation Tag Descriptions... 9-33
Item Recording and Removal Tag Descriptions .. 9-47
Item Class Description ... 9-56
Personalization Tag Constraints... 9-57

Personalization Tag Library Configuration Files ... 9-59
The personalization.xml Files ... 9-59
Element Descriptions for personalization.xml ... 9-59
Sample personalization.xml File .. 9-63
 vii

A JML Compile-Time Syntax and Tags

JML Compile-Time Syntax Support .. A-2
JML Bean References and Expressions, Compile-Time Implementation A-2
Attribute Settings with JML Expressions .. A-3

JML Compile-Time Tag Support.. A-5
The taglib Directive for Compile-Time JML Support.. A-5
JML Tag Summary, Compile-Time Versus Runtime... A-6
Descriptions of Additional JML Tags, Compile-Time Implementation A-7

B Third Party Licenses

Apache HTTP Server .. B-2
The Apache Software License ... B-2

Apache JServ .. B-4
Apache JServ Public License ... B-4
viii

Send Us Your Comments

Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference, Release 2 (9.0.2)

Part No. A95883-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document
title and part number, and the chapter, section, and page number (if available). You can send com-
ments to us in the following ways:

■ Electronic mail: jpgcomment_us@oracle.com
■ FAX: (650) 506-7225 Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Java Platform Group, Information Development Manager
500 Oracle Parkway, Mailstop 4op9
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-
tronic mail address.

 If you have problems with the software, please contact your local Oracle Support Services.
ix

x

Preface

This document provides reference information as well as some conceptual material
for JSP tag libraries and utilities included with OC4J. These libraries are generally
portable, not requiring the OC4J JSP container.

This preface contains these topics:

■ Intended Audience

■ Documentation Accessibility

■ Organization

■ Related Documentation

■ Conventions

Note: The Sample Applications chapter was removed for
Oracle9iAS 9.0.2. Applications that were listed there are available in
the OC4J demos, from either of the following locations:

■ the OC4J demo instance, included with the Oracle9iAS product

■ the JSP download page on the Oracle Technology Network
(requiring an OTN membership, which is free):

http://otn.oracle.com/tech/java/servlets/content.html
 xi

Intended Audience
This document is intended for Web application developers using servlet and
JavaServer Pages technology. It assumes that working Web, servlet, and JSP
environments already exist, and that readers are already familiar with the
following:

■ general Web technology

■ Java

■ HTML

■ Java servlets

■ JavaServer Pages

■ how to configure their Web server and servlet environments

■ Oracle JDBC (for JSP applications accessing an Oracle database)

■ Oracle SQLJ (for JSP database applications using SQLJ)

You can refer to the Oracle9iAS Containers for J2EE Support for JavaServer Pages
Reference for background information about standard JavaServer Pages technology
and tag library support, and details of the Oracle JSP implementation.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and contains
markup to facilitate access by the disabled community. Standards will continue to
evolve over time, and Oracle Corporation is actively engaged with other
market-leading technology vendors to address technical obstacles so that our
documentation can be accessible to all of our customers. For additional information,
visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen
reader, may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
xii

otherwise empty line; however, JAWS may not always read a line of text that
consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This
documentation may contain links to Web sites of other companies or organizations
that Oracle Corporation does not own or control. Oracle Corporation neither
evaluates nor makes any representations regarding the accessibility of these Web
sites.

Organization
This document contains:

Chapter 1, "Overview of Tag Libraries and Utilities"
This chapter provides an overview of the tag libraries documented in the remainder
of the manual, as well as overviews of tag libraries provided with other Oracle9iAS
components (outside of OC4J).

Chapter 2, "JavaBeans for Extended Types"
This chapter discusses JavaBeans provided with the JSP Markup Language (JML)
library that can be used as extended Java types.

Chapter 3, "JSP Markup Language Tags"
This provides JML syntax and tag descriptions, as well as an overview of the
philosophy behind the JML tag library.

Chapter 4, "Data-Access JavaBeans and Tags"
This documents JavaBeans and tags for database access.

Chapter 5, "XML and XSL Tag Support"
This chapter describes tags to use in handling XML documents and outputting or
transforming their data.

Chapter 6, "JESI Tags for Edge Side Includes"
This chapter describes the Oracle implementation of JESI tags to support Edge Side
Includes technology for Web caching.
 xiii

Chapter 7, "Web Object Cache Tags and API"
This describes concepts, custom tags, servlet APIs, and XML descriptor files for the
Web Object Cache, an application-level Java caching interface provided with OC4J.

Chapter 8, "JSP Utilities and Utility Tags"
This chapter discusses miscellaneous utility features included with OC4J:
JspScopeListener for event-handling; a tag and JavaBean for sending e-mail;
tags and JavaBeans for uploading or downloading files; tags for using EJBs; and
general utility tags.

Chapter 9, "Oracle9iAS Personalization Tags"
This chapter describes a set of tags to support use of Oracle9iAS Personalization.
Personalization is a mechanism to tailor recommendations to application users,
based on behavioral, purchasing, rating, and demographic data.

Appendix A, "JML Compile-Time Syntax and Tags"
This chapter provides an overview of the compile-time implementation of the
Oracle JML sample tag library (the only way the library was supported in pre-JSP
1.1 releases), and documents tags not supported in the runtime implementation that
is documented in Chapter 3.

Appendix B, "Third Party Licenses"
This appendix includes the Third Party License for third party products included
with Oracle9i Application Server and discussed in this document.

Related Documentation
See the following additional OC4J documents available from the Oracle Java
Platform group:

■ Oracle9iAS Containers for J2EE User’s Guide

This book provides some overview and general information for OC4J; primer
chapters for servlets, JSP pages, and EJBs; and general configuration and
deployment instructions.

■ Oracle9iAS Containers for J2EE Support for JavaServer Pages Reference

This book provides information for JSP developers who want to run their pages
in OC4J. It includes a general overview of JSP standards and programming
xiv

considerations, as well as discussion of Oracle value-added features and steps
for getting started in the OC4J environment.

■ Oracle9iAS Containers for J2EE Servlet Developer’s Guide

This book provides information for servlet developers regarding use of servlets
and the servlet container in OC4J. It also documents relevant OC4J
configuration files.

■ Oracle9iAS Containers for J2EE Services Guide

This book describes basic Java services supplied with OC4J, such as JTA, JNDI,
and the Oracle9i Application Server Java Object Cache.

■ Oracle9iAS Containers for J2EE Enterprise JavaBeans Developer’s Guide and
Reference

This book discusses the EJB implementation and EJB container in OC4J.

Also available from the Oracle Java Platform group:

■ Oracle9i JDBC Developer’s Guide and Reference

■ Oracle9i SQLJ Developer’s Guide and Reference

■ Oracle9i JPublisher User’s Guide

■ Oracle9i Java Stored Procedures Developer’s Guide

The following documents are available from the Oracle9i Application Server group:

■ Oracle9i Application Server Administrator’s Guide

■ Oracle Enterprise Manager Administrator’s Guide

■ Oracle HTTP Server Administration Guide

■ Oracle9i Application Server Performance Guide

■ Oracle9i Application Server Globalization Support Guide

■ Oracle9iAS Web Cache Administration and Deployment Guide

■ Oracle9i Application Server: Migrating from Oracle9i Application Server 1.x

The following are available from the JDeveloper group:

■ Oracle JDeveloper online help

■ Oracle JDeveloper documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html
 xv

The following documents from the Oracle Server Technologies group may also
contain information of interest:

■ Oracle9i XML Developer’s Kits Guide - XDK

■ Oracle9i Application Developer’s Guide - Fundamentals

■ Oracle9i Supplied Java Packages Reference

■ Oracle9i Supplied PL/SQL Packages and Types Reference

■ PL/SQL User’s Guide and Reference

■ Oracle9i SQL Reference

■ Oracle9i Net Services Administrator’s Guide

■ Oracle Advanced Security Administrator’s Guide

■ Oracle9i Database Reference

■ Oracle9i Database Error Messages

For information about Oracle9iAS Personalization, which is the foundation of the
Personalization tag library, you can refer to the following documents from the
Oracle9iAS Personalization group:

■ Oracle9iAS Personalization Administrator’s Guide

■ Oracle9iAS Personalization Recommendation Engine API Programmer’s Guide

In North America, printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

Customers in Europe, the Middle East, and Africa (EMEA) can purchase
documentation from

http://www.oraclebookshop.com/

Other customers can contact their Oracle representative to purchase printed
documentation.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register
online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html
xvi

If you already have a username and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

The following Oracle Technology Network (OTN) resources are available for further
information about JavaServer Pages:

■ OTN Web site for Java servlets and JavaServer Pages:

http://otn.oracle.com/tech/java/servlets/

■ OTN JSP discussion forums, accessible through the following address:

http://www.oracle.com/forums/forum.jsp?id=399160

The following resources are available from Sun Microsystems:

■ Web site for JavaServer Pages, including the latest specifications:

http://java.sun.com/products/jsp/index.html

■ Web site for Java Servlet technology, including the latest specifications:

http://java.sun.com/products/servlet/index.html

■ jsp-interest discussion group for JavaServer Pages

To subscribe, send an e-mail to listserv@java.sun.com with the following
line in the body of the message:

subscribe jsp-interest yourlastname yourfirstname

It is recommended, however, that you request only the daily digest of the
posted e-mails. To do this add the following line to the message body as well:

set jsp-interest digest

Conventions
This section describes the conventions used in the text and code examples of this
documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples
 xvii

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.
The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Italics Italic typeface indicates book titles or
emphasis, or terms that are defined in the
text.

Oracle9i Database Concepts

Ensure that the recovery catalog and target
database do not reside on the same disk.

UPPERCASE
monospace
(fixed-width)
font

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, usernames, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database by using the
BACKUP command.

Query the TABLE_NAME column in the
USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width)
font

Lowercase monospace typeface indicates
executables, filenames, directory names,
and sample user-supplied elements. Such
elements include computer and database
names, net service names, and connect
identifiers, as well as user-supplied
database objects and structures, column
names, packages and classes, usernames
and roles, program units, and parameter
values.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

Enter sqlplus to open SQL*Plus.

The password is specified in the orapwd file.

Back up the data files and control files in the
/disk1/oracle/dbs directory.

The department_id, department_name,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

The JRepUtil class implements these
methods.

lowercase
italic
monospace
(fixed-width)
font

Lowercase italic monospace font
represents place holders or variables.

You can specify the parallel_clause.

Run Uold_release.SQL where
old_release refers to the release you
installed prior to upgrading.
xviii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line
statements. They are displayed in a monospace (fixed-width) font and separated
from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM
employees;

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates place holders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order and with the spelling shown.
However, because these terms are not
case sensitive, you can enter them in
lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;
 xix

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/hr

CREATE USER mjones IDENTIFIED BY ty3MU9;

Convention Meaning Example
xx

 Overview of Tag Libraries and U
1

Overview of Tag Libraries and Utilities

This manual documents tag libraries, JavaBeans, and other utilities supplied with
OC4J that are implemented according to industry standards and are generally
portable to other JSP or servlet environments. There is also a section summarizing
tag libraries provided with other components of the Oracle9i Application Server.

Oracle-specific features, as well as an introduction to the OC4J JSP container and
standard JSP technology, are covered in the Oracle9iAS Containers for J2EE Support
for JavaServer Pages Reference.

This chapter covers the following topics:

■ Overview of Tag Libraries and Utilities Provided with OC4J

■ Overview of Oracle Caching Support for Web Applications

■ Overview of Tag Libraries from Other Oracle9iAS Components

Tags and JavaBeans introduced in the first section provide functionality in several
different areas, including type extensions, integration with XML/XSL, database
access, and programming convenience.
tilities 1-1

Overview of Tag Libraries and Utilities Provided with OC4J
Overview of Tag Libraries and Utilities Provided with OC4J
The Oracle extensions introduced in this section are implemented through standard
tag libraries or custom JavaBeans and are generally portable to other JSP
environments.

Here is a list of the topics covered:

■ Tag Syntax Symbology and Notes

■ Overview of Extended Type JavaBeans

■ Overview of JspScopeListener for Event-Handling

■ Overview of Integration with XML and XSL

■ Summary of Custom Data-Access JavaBeans and Tag Library

■ Summary of JSP Markup Language (JML) Custom Tag Library

■ Summary of Oracle9iAS Personalization Tag Library

■ Summary of JSP Utility Tags

Tag Syntax Symbology and Notes
For the syntax documentation in tag descriptions throughout this manual, note the
following:

■ Italic indicates that you must specify a value or string.

■ Optional attributes are enclosed in square brackets: [...]

■ Default values of optional attributes are indicated in bold.

■ Choices in how to specify an attribute are separated by vertical bars: |

■ Except where noted, you can use JSP runtime expressions to set tag attribute
values: "<%= jspExpression %>"

■ Tag descriptions in this manual use certain tag prefixes by convention; however,
you can designate any desired prefix in your taglib directives.

Note: See the OC4J demos for sample applications using the
features introduced in this section.
1-2 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries and Utilities Provided with OC4J
Overview of Extended Type JavaBeans
JSP pages generally rely on core Java types in representing scalar values. However,
neither of the following standard type categories is fully suitable for use in JSP
pages:

■ primitive types such as int, float, and double

Values of these types cannot have a specified scope—they cannot be stored in a
JSP scope object (for page, request, session, or application scope),
because only objects can be stored in a scope object.

■ wrapper classes in the standard java.lang package, such as Integer, Float,
and Double

Values of these types are objects, so they can theoretically be stored in a JSP
scope object. However, they cannot be declared in a jsp:useBean action,
because the wrapper classes do not follow the JavaBean model and do not
provide zero-argument constructors.

Additionally, instances of the wrapper classes are immutable. To change a
value, you must create a new instance and assign it appropriately.

To work around these limitations, OC4J provides the JmlBoolean, JmlNumber,
JmlFPNumber, and JmlString JavaBean classes in package oracle.jsp.jml to
wrap the most common Java types.

For information, see Chapter 2, "JavaBeans for Extended Types".

Overview of JspScopeListener for Event-Handling
OC4J provides the JspScopeListener interface for lifecycle management of Java
objects of various scopes within a JSP application.

Standard servlet and JSP event-handling is provided through the
javax.servlet.http.HttpSessionBindingListener interface, but this is
for session-based events only. The Oracle JspScopeListener can be integrated
with HttpSessionBindingListener to manage session-based events, and can
handle page-based, request-based, and application-based events as well.

For information, see "JSP Event-Handling—JspScopeListener" on page 8-2.

Overview of Integration with XML and XSL
You can use JSP syntax to generate any text-based MIME type, not just HTML code.
In particular, you can dynamically create XML output. When you use JSP pages to
 Overview of Tag Libraries and Utilities 1-3

Overview of Tag Libraries and Utilities Provided with OC4J
generate an XML document, however, you often want a stylesheet applied to the
XML data before it is sent to the client. This is difficult in JavaServer Pages
technology, because the standard output stream used for a JSP page is written
directly back through the server.

OC4J provides special tags to specify that all or part of a JSP page should be
transformed through an XSL stylesheet before it is output. Input can be from the tag
body or from an XML DOM object, and output can be to an XML DOM object to the
browser.

You can use these tags multiple times in a single JSP page if you want to specify
different style sheets for different portions of the page. Note that these tags are
portable to other JSP environments.

There is additional XML support as well:

■ A utility tag converts data from an input stream to an XML DOM object.

■ Several tags, for such features as caching and SQL operations, now can take
XML objects as input or send them as output.

XML utility tags are summarized in Table 1–1. Note that there is also XML
functionality in the dbOpen SQL tag, and the cacheXMLObj Web Object Cache tag.
For more information, see Chapter 5, "XML and XSL Tag Support".

You can find information about Oracle-specific XML support in the Oracle9iAS
Containers for J2EE Support for JavaServer Pages Reference.

Table 1–1 Summary of XML Utility Tags

Tag Description Attributes

transform Output XML data with an XSL transformation,
either to an HTTP client or a specified XML DOM
object.

href
fromXMLObjName
toXMLObjName
toWriter

styleSheet Same as transform tag. href
fromXMLObjName
toXMLObjName
toWriter

parsexml Convert from an input stream to an XML DOM
object.

resource
toXMLObjName
validateResource
root
1-4 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries and Utilities Provided with OC4J
Summary of Custom Data-Access JavaBeans and Tag Library
OC4J supplies a set of custom JavaBeans for use in accessing the Oracle9i database.
The following beans are provided in the oracle.jsp.dbutil package:

■ ConnBean opens a database connection. This bean also supports data sources
and connection pooling.

■ ConnCacheBean uses the Oracle connection caching implementation for
database connections. (This requires JDBC 2.0.)

■ DBBean executes a database query.

■ CursorBean provides general DML support for queries; UPDATE, INSERT, and
DELETE statements; and stored procedure calls.

For information, see "JavaBeans for Data Access" on page 4-2.

For JSP programmers, OC4J also provides a custom tag library for SQL
functionality, wrapping the functionality of the JavaBeans. These tags are
summarized in Table 1–2. For further information, see "SQL Tags for Data Access"
on page 4-16.

Table 1–2 Summary of Data-Access Tag Library

Tag Description Attributes

dbOpen Open a database connection. This tag also supports
data sources and connection pooling.

connId
scope
dataSource
user
password
URL
commitOnClose

dbClose Close a database connection. connId
scope

dbQuery Execute a query. queryId
connId
scope
output
maxRows
skipRows
bindParams
toXMLObjName

dbCloseQuery Close the cursor for a query. queryId

dbNextRow Process the rows of a result set. queryId
 Overview of Tag Libraries and Utilities 1-5

Overview of Tag Libraries and Utilities Provided with OC4J
Summary of JSP Markup Language (JML) Custom Tag Library
Although the Sun Microsystems JavaServer Pages Specification, Version 1.1 supports
scripting languages other than Java, Java is the primary language used. Even
though JavaServer Pages technology is designed to separate the dynamic/Java
development effort from the static/HTML development effort, it is a hindrance if
the Web developer does not know any Java, especially in small development groups
where no Java experts are available.

OC4J provides custom tags as an alternative—the JSP Markup Language (JML). The
Oracle JML tag library provides an additional set of JSP tags so that you can script
your JSP pages without using Java statements. JML provides tags for variable
declarations, control flow, conditional branches, iterative loops, parameter settings,
and calls to objects. The JML tag library also supports XML functionality, as noted
previously.

The following example shows use of the JML for tag, repeatedly printing "Hello
World" in progressively smaller headings (H1, H2, H3, H4, H5):

<jml:for id="i" from="<%= 1 %>" to="<%= 5 %>" >
 <H<%=i%>>
 Hello World!
 </H<%=i%>>
</jml:for>

dbExecute Execute any SQL statement (DML or DDL). connId
scope
output
bindParams

dbSetParam Set a parameter to bind into a dbQuery or
dbExecute tag.

name
value
scope

dbSetCookie Set a cookie. name
value
domain
comment
maxAge
version
secure
path

Table 1–2 Summary of Data-Access Tag Library (Cont.)

Tag Description Attributes
1-6 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries and Utilities Provided with OC4J
The JML tag library is summarized in Table 1–3. For more information, see
Chapter 3, "JSP Markup Language Tags".

Table 1–3 Summary of JSP Markup Language Tag Library

Tag Description Attributes

useVariable This tag offers a convenient alternative to the
jsp:useBean tag for declaring simple variables.

id
scope
type
value

useForm This tag provides a convenient syntax for declaring
variables and setting them to values passed in
from the request.

id
scope
type
param

useCookie This tag offers a convenient syntax for declaring
variables and setting them to values contained in
cookies.

id
scope
type
cookie

remove This tag removes an object from its scope. id
scope

if This tag evaluates a single conditional statement. If
the condition is true, then the body of the if tag is
executed.

condition

choose The choose tag, with associated when and
otherwise tags, provides a multiple conditional
statement.

(none)

when This is used with the choose tag. condition

otherwise This is optionally used with the choose and when
tags.

(none)

for This tag provides the ability to iterate through a
loop, as with a Java for loop.

id
from
to

foreach This tag provides the ability to iterate over a
homogeneous set of values in a Java array,
Enumeration instance, or Vector instance.

id
in
limit
type

return When this tag is reached, execution returns from
the page without further processing.

(none)
 Overview of Tag Libraries and Utilities 1-7

Overview of Tag Libraries and Utilities Provided with OC4J
Summary of Oracle9iAS Personalization Tag Library
Web site personalization is a mechanism to personalize recommendations to users
of a site, based on behavioral and demographic data. Recommendations are made
in real-time, during a user’s Web session. User behavior is saved to a database
repository for use in building models for predictions of future user behavior.

Oracle9iAS Personalization uses data mining algorithms in the Oracle database to
choose the most relevant content available for a user. Recommendations are
calculated by an Oracle9iAS Personalization recommendation engine, using
typically large amounts of data regarding past and current user behavior. This is
superior to other approaches that rely on "common sense" heuristics and require
manual definition of rules in the system.

The Oracle9iAS Personalization tag library brings this functionality to a wide
audience of JSP developers for use in HTML, XML, or JavaScript pages. The tag
interface is layered on top of the lower level Java API of the recommendation
engine.

Table 1–4 summarizes the Oracle9iAS Personalization Tag Library. See Chapter 9,
"Oracle9iAS Personalization Tags" for information.

flush This tag writes the current contents of the page
buffer back to the client. This applies only if the
page is buffered; otherwise, there is no effect.

(none)

Note: Oracle JSP container versions preceding the JSP 1.1
specification use an Oracle-specific compile-time implementation of
the JML tag library. Oracle still supports this implementation as an
alternative to the standard runtime implementation, as
documented in Appendix A, "JML Compile-Time Syntax and Tags".

Table 1–3 Summary of JSP Markup Language Tag Library (Cont.)

Tag Description Attributes
1-8 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries and Utilities Provided with OC4J
Table 1–4 Summary of Oracle9iAS Personalization Tag Library

Tag Description Attributes

startRESession Use this tag to start an
Oracle9iAS Personalization
recommendation engine
session.

REName
REURL
RESchema
REPassword
RECacheSize
REFlushInterval
applicationSession
createSession
userType
userID
storeUserIDIn
disableRecording

endRESession Use this tag to explicitly end a
recommendation engine
session.

(none)

setVisitorToCustomer Use this tag for situations
where an anonymous visitor
creates a registered customer
account.

customerID

getRecommendations Use this tag to request a set of
recommendations for
purchasing, navigation, or
ratings.

from
fromHotPicksGroups
storeResultsIn
storeInterestDimensionIn
maxQuantity
tuningName
tuningDataSource
tuningInterestDimension
tuningPersonalizationIndex
tuningProfileDataBalance
tuningProfileUsage
filteringName
filteringTaxonomyID
filteringMethod
filteringCategories
sortOrder
 Overview of Tag Libraries and Utilities 1-9

Overview of Tag Libraries and Utilities Provided with OC4J
getCrossSellRecommendations Use this tag to request a set of
recommendations for
purchasing, navigation, or
ratings, based on input of a
set of past items (such as past
purchases) that are used as a
basis for the
recommendations.

storeResultsIn
storeInterestDimensionIn
fromHotPicksGroups
inputItemList
maxQuantity
tuningName
tuningDataSource
tuningInterestDimension
tuningPersonalizationIndex
tuningProfileDataBalance
tuningProfileUsage
filteringName
filteringTaxonomyID
filteringMethod
filteringCategories
sortOrder

selectFromHotPicks Use this tag to request
recommendations from a set
of "hot picks" groups only.

hotPicksGroups
storeResultsIn
storeInterestDimensionIn
maxQuantity
tuningName
tuningDataSource
tuningInterestDimension
tuningPersonalizationIndex
tuningProfileDataBalance
tuningProfileUsage
filteringName
filteringTaxonomyID
filteringMethod
filteringCategories
sortOrder

evaluateItems Use this tag to evaluate only
the set of items that are input
to the tag.

storeResultsIn
taxonomyID
inputItemList
tuningName
tuningDataSource
tuningInterestDimension
tuningPersonalizationIndex
tuningProfileDataBalance
tuningProfileUsage
sortOrder

Table 1–4 Summary of Oracle9iAS Personalization Tag Library (Cont.)

Tag Description Attributes
1-10 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries and Utilities Provided with OC4J
forItem You can use this tag to select
individual items input to a
tag that requires an input list.

index
itemList
type
ID

getNextItem You can optionally use this
tag within some
recommendation tags to
access and process returned
items.

storeTypeIn
storeIDIn
storeItemIn

recordNavigation Use this tag to record a
navigation item into the
recommendation engine
session cache.

type
ID
index
itemList

recordPurchase Use this tag to record a
purchasing item into the
recommendation engine
session cache.

type
ID
index
itemList

recordRating Use this tag to record a rating
item into the
recommendation engine
session cache.

value
type
ID
index
itemList

recordDemographic Use this tag to record a
demographic item into the
recommendation engine
session cache.

type
value

removeNavigationRecord Use this tag to remove a
navigation item that had been
recorded into the
recommendation engine
session cache earlier in the
session.

type
ID
index
itemList

removePurchaseRecord Use this tag to remove a
purchasing item that had
been recorded into the
recommendation engine
session cache earlier in the
session.

type
ID
index
itemList

Table 1–4 Summary of Oracle9iAS Personalization Tag Library (Cont.)

Tag Description Attributes
 Overview of Tag Libraries and Utilities 1-11

Overview of Tag Libraries and Utilities Provided with OC4J
Summary of JSP Utility Tags
OC4J provides utility tags to accomplish the following from within Web
applications:

■ sending e-mail messages

■ uploading and downloading files

■ using EJBs

■ using miscellaneous utilities

For sending e-mail messages, you can use the sendMail tag or the
oracle.jsp.webutil.email.SendMailBean JavaBean. Table 1–5 summarizes
the sendMail tag. See "Mail JavaBean and Tag" on page 8-14 for more information.

removeRatingRecord Use this tag to remove a
rating item that had been
recorded into the
recommendation engine
session cache earlier in the
session.

value
type
ID
index
itemList

removeDemographicRecord Use this tag to remove a
demographic item that had
been recorded into the
recommendation engine
session cache earlier in the
session.

type
value

Table 1–5 Summary of sendMail Tag

Tag Description Attributes

sendMail Send an e-mail message from a JSP page. Tag
functionality includes globalization support.

host
sender
recipient
cc
bcc
subject
contentType
contentEncoding

Table 1–4 Summary of Oracle9iAS Personalization Tag Library (Cont.)

Tag Description Attributes
1-12 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries and Utilities Provided with OC4J
For uploading files, you can use the httpUpload tag or the
oracle.jsp.webutil.fileaccess.HttpUploadBean JavaBean. For
downloading, there is the httpDownload tag or the HttpDownloadBean
JavaBean. Table 1–6 summarizes the file access tags. For more information see
"File-Access JavaBeans and Tags" on page 8-25.

For using EJBs, there are tags to create a home instance, create an EJB instance, and
iterate through a collection of EJBs. Table 1–7 summarizes the EJB tag library. See
"EJB Tags" on page 8-48 for more information.

Table 1–6 Summary of File Access Tag Library

Tag Description Attributes

httpUploadForm For convenience, you can use this tag to create a
form in your application, using multipart
encoded form data, that allows users to specify
the files to upload.

formsAction
maxFiles
fileNameSize
maxFileNameSize
includeNumbers
submitButtonText

httpUpload Upload files from the client to a server. You can
upload into either a file system or a database.

destination
destinationType
connId
scope
overwrite
fileType
table
prefixColumn
fileNameColumn
dataColumn

httpDownload Download files from a server to the client. You
can download from either a file system or a
database.

servletPath
source
sourceType
connId
scope
recurse
fileType
table
prefixColumn
fileNameColumn
dataColumn
 Overview of Tag Libraries and Utilities 1-13

Overview of Tag Libraries and Utilities Provided with OC4J
There are also utility tags for displaying a date, displaying an amount of money in
the appropriate currency, displaying a number, iterating through a collection,
evaluating and including the tag body depending on whether the user belongs to a
specified role, and displaying the last modification date of the current file. Table 1–8
summarizes these tags. See "General Utility Tags" on page 8-56 for more
information.

Table 1–7 Summary of EJB Tag Library

Tag Description Attributes

useHome This tag looks up the home interface for the EJB
and creates an instance of it.

id
type
location

useBean Use this tag for instantiating and using the EJB. Its
functionality has similarities to the standard
jsp:useBean tag for a JavaBean.

id
type
value
scope

createBean For first instantiating an EJB, if you do not use the
value attribute of the EJB useBean tag, you must
nest an EJB createBean tag within the useBean
tag to do the work of creating the EJB instance.

instance

iterate Use this tag to iterate through a collection of EJB
instances (more typical for entity beans).

id
type
collection
max

Table 1–8 Summary of General Utility Tag Library

Tag Description Attributes

displayCurrency This tag displays a specified amount of money,
formatted as currency for the locale.

amount
locale

displayDate This tag displays a specified date, formatted
appropriately for the locale.

date
locale

displayNumber This displays the specified number, for the locale
and optionally in the specified format.

number
locale
format

iterate Use this tag to iterate through a collection. id
type
collection
max
1-14 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries and Utilities Provided with OC4J
ifInRole Use this tag to evaluate the tag body and include it
in the body of the JSP page, depending on whether
the user is in the specified application role.

role
include

lastModified This tag displays the date of the last modification
of the current file, in appropriate format for the
locale.

locale

Table 1–8 Summary of General Utility Tag Library (Cont.)

Tag Description Attributes
 Overview of Tag Libraries and Utilities 1-15

Overview of Oracle Caching Support for Web Applications
Overview of Oracle Caching Support for Web Applications
This section provides the following information:

■ an introduction to caching features supported by the Oracle9i Application
Server in general and the OC4J JSP container in particular

■ a discussion of the role of the OC4J Web Object Cache in relation to other
Oracle9i Application Server caching components

■ a summary of tag libraries relating to caching features

Oracle9i Application Server and JSP Caching Features
The Oracle9i Application Server and OC4J provide the following caching features:

■ Oracle9iAS Web Cache

This is an HTTP-level cache, maintained outside the application, providing very
fast cache operations. It is a pure, content-based cache, capable of caching static
data (such as HTML, GIF, or JPEG files) or dynamic data (such as servlet or JSP
results). Given that it exists as a flat content-based cache outside the application,
it cannot cache objects (such as Java objects or XML DOM objects) in a
structured format. In addition, it has relatively limited post-processing abilities
on cached data.

The Oracle9iAS Web Cache provides an ESI processor to support Edge Side
Includes, an XML-style markup language that allows dynamic content
assembly away from the Web server. This technology allows you to break
cacheable pages into separate cached objects, as desired. OC4J supports this
technology through its JESI tag library.

For an overview of Edge Side Includes and the Oracle9iAS Web Cache, as well
as detailed documentation of the JESI tag library, see Chapter 6, "JESI Tags for
Edge Side Includes".

For additional information about the Oracle9iAS Web Cache, see the Oracle9iAS
Web Cache Administration and Deployment Guide.

■ OC4J Web Object Cache

This is an application-level cache, embedded and maintained within a Java Web
application. It is a hybrid cache, both Web-based and object-based. A custom

Note: See the OC4J demos for sample applications using the
features introduced in this section.
1-16 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Oracle Caching Support for Web Applications
tag library or API allows you to define page fragment boundaries and to
capture, store, reuse, process, and manage the intermediate and partial
execution results of JSP pages and servlets as cached objects. Each block can
produce its own resulting cache object. The produced objects can be HTML or
XML text fragments, XML DOM objects, or Java serializable objects. These
objects can be cached conveniently in association with HTTP semantics.
Alternatively, they can be reused outside HTTP, such as in outputting cached
XML objects through Simple Mail Transfer Protocol (SMTP), Java Messaging
Service (JMS), Advanced Queueing (AQ), or Simple Object Access Protocol
(SOAP).

For more information, see Chapter 7, "Web Object Cache Tags and API".

■ Oracle9i Application Server Java Object Cache

The Oracle9i Application Server Java Object Cache is a general-use cache to
manage Java objects within a process, across processes, and on local disk. By
managing local copies of objects that are difficult or expensive to retrieve or
create, the Java Object Cache significantly improves server performance. By
default, the OC4J Web Object Cache uses the Oracle9i Application Server Java
Object Cache as its underlying cache repository.

For details, see the Oracle9iAS Containers for J2EE Services Guide.

Role of the JSP Web Object Cache
It is important to understand the role of the OC4J Web Object Cache in the overall
setup of a Web application. It works at the Java level and is closely integrated with
the HTTP environment of servlet and JSP applications. By contrast, the Oracle9i
Application Server Java Object Cache works at the Java object level, but is not
integrated with HTTP. As for the Oracle9iAS Web Cache, it is well integrated with
HTTP and is an order of magnitude faster than the Web Object Cache, but it does
not operate at the Java level. For example, it cannot apply a stylesheet to a cached
DOM object within the J2EE container, reuse the cached result in other protocols, or
allow direct DOM operations. (Oracle9iAS Web Cache can, however, apply a
stylesheet to raw XML documents, as opposed to DOM objects, that were cached
from the original Web server through HTTP.)

The Web Object Cache is not intended for use as the main Web cache for an
application. It is an auxiliary cache embedded within the same Java virtual machine
that is running your servlets and JSP pages. Because the retrieval path for cached
results in the Web Object Cache includes the JVM and the JSP and servlet engines, it
generally takes much longer to serve a page from the Web Object Cache compared
to the Oracle9iAS Web Cache.
 Overview of Tag Libraries and Utilities 1-17

Overview of Oracle Caching Support for Web Applications
The Web Object Cache does not replace or eliminate the need for either the
Oracle9iAS Web Cache or the Oracle9i Application Server Java Object Cache—it is a
complementary caching component in the overall framework of a Web application
and should be used together with the other caching products, as appropriate. In
fact, the Web Object Cache uses the Java Object Cache as its default repository. And
through combined use of the OC4J JESI tags and Web Object Cache tags, you can
use the Web Object Cache and Oracle9iAS Web Cache together in the same page.

Web Object Cache Versus Oracle9iAS Web Cache
Think of the Oracle9iAS Web Cache as the primary caching component. It serves
cached pages directly to HTTP clients and handles large volumes of HTTP traffic
quickly, fitting the requirements of most Web sites. You can use the Oracle9iAS Web
Cache to store complete Web pages or partial pages (through use of the JESI tags).
Cached pages can be customized, to a certain extent, before being sent to a client,
including cookie-replacement and page-fragment concatenation, for example.

It is advisable to use the Oracle9iAS Web Cache as much as possible to reduce the
load on the Web application server and back-end database. The caching needs of a
large percentage of Web pages can be addressed by the Oracle9iAS Web Cache
alone.

As a complement to the Oracle9iAS Web Cache, you can use the Web Object Cache
to capture intermediate results of JSP and servlet execution, and subsequently reuse
these cached results in other parts of the Java application logic. It is not beneficial to
use the Web Object Cache in your Web application unless you are doing a
significant amount of post-processing on cached objects between the time they are
cached and the time they are served to a client.

Web Object Cache Versus Oracle9i Application Server Java Object Cache
In comparison to the Oracle9i Application Server Java Object Cache, the Web Object
Cache makes it much easier to store and maintain partial execution results in
dynamic Web pages. The Java Object Cache, being a pure object-based framework
for any general Java application, is not aware of the HTTP environment in which it
may be embedded. For example, it does not directly depend on HTTP cookies or
sessions. When you directly use the Java Object Cache within a Web application,
you are responsible for creating any necessary interfacing. The Java Object Cache
does not provide a way to specify maintenance policies declaratively.
1-18 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Oracle Caching Support for Web Applications
Summary of Tag Libraries for Caching
OC4J supplies two tag libraries for use with Oracle9iAS caching features:

■ JESI tag library

■ Web Object Cache tag library

This section summarizes those libraries.

Summary of JESI Tag Library
OC4J provides the JESI tag library as a convenient interface to ESI tags and Edge
Side Includes functionality for Web caching. Developers have the option of using
ESI tags directly in any Web application, but JESI tags provide additional
convenience in a JSP environment.

Table 1–9 summarizes the JESI tag library. See "Oracle JESI Tag Descriptions" on
page 6-14 for more information.

Table 1–9 Summary of JESI Tag LIbrary

Tag Description Attributes

control This tag controls caching characteristics for JSP
pages in the control/include usage model. You can
use a JESI control tag in the top-level page or
any included page.

expiration
maxRemovalDelay
cache

include This tag, like a standard jsp:include tag,
dynamically inserts output from the included page
into output from the including page. Additionally,
it is directing that the included page be processed
and assembled by the ESI processor.

page
alt
ignoreError
copyparam
flush

template Use this tag to specify caching behavior for the
aggregate page, outside any fragments, in the
template/fragment usage model.

expiration
maxRemovalDelay
cache

fragment Use one or more JESI fragment tags within a JESI
template tag, between the JESI template start
and end tags, in the template/fragment model.

expiration
maxRemovalDelay
cache

invalidate Use this tag with its JESI object subtag to
explicitly invalidate one or more cached objects.

url
username
password
config
output
 Overview of Tag Libraries and Utilities 1-19

Overview of Oracle Caching Support for Web Applications
Summary of Web Object Cache Tag Library
The OC4J Web Object Cache is a mechanism that allows Web applications written in
Java to capture, store, reuse, post-process, and maintain the partial and intermediate
results generated by a dynamic Web page, such as a JSP or servlet. For
programming interfaces, it provides a tag library (for use in JSP pages) and a Java
API (for use in servlets).

Table 1–10 summarizes the Web Object Cache tag library. See "Web Object Cache
Tag Descriptions" on page 7-21 for more information.

object Use this required subtag of the JESI invalidate
tag to specify cached objects to invalidate,
according to either the complete URI or a URI
prefix.

uri
prefix
maxRemovalDelay

cookie Optionally use this subtag of the JESI object tag
to use cookie information as a further criterion for
invalidation.

name
value

header Optionally use this subtag of the JESI object tag
to use HTTP/1.1 header information as a further
criterion for invalidation.

name
value

personalize Use this tag to allow page customization, by
informing the ESI processor of dependencies on
cookie and session information.

name
value

Table 1–9 Summary of JESI Tag LIbrary (Cont.)

Tag Description Attributes
1-20 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Oracle Caching Support for Web Applications
Table 1–10 Summary of Web Object Cache Tag LIbrary

Tag Description Attributes

cache Use this tag to set up general caching, as
opposed to caching of XML objects or Java
serializable objects, in a JSP application.

policy
ignoreCache
invalidateCache
scope
autoType
selectedParam
selectedCookies
reusableTimeStamp
reusableDeltaTime
name
expirationType
TTL
timeInaDay
dayInaWeek
dayInaMonth
writeThrough
printCacheBlockInfo
printCachePolicy
cacheRepositoryName
reportException

cacheXMLObj Generally speaking, use this tag instead of the
cache tag if you are caching XML DOM
objects. The cacheXMLObj tag supports all the
cache tag attributes, as well as additional
XML-specific parameters.

policy
ignoreCache
invalidateCache
scope
autoType
selectedParam
selectedCookies
reusableTimeStamp
reusableDeltaTime
name
expirationType
TTL
timeInaDay
dayInaWeek
dayInaMonth
writeThrough
printCacheBlockInfo
printCachePolicy
cacheRepositoryName
reportException
fromXMLObjName
toXMLObjName
toWriter
 Overview of Tag Libraries and Utilities 1-21

Overview of Oracle Caching Support for Web Applications
useCacheObj Use this tag to cache any Java serializable
object. The useCacheObj tag supports all the
cache tag parameters, as well as additional
attributes specific to its functionality.

policy
ignoreCache
invalidateCache
scope
autoType
selectedParam
selectedCookies
reusableTimeStamp
reusableDeltaTime
name
expirationType
TTL
timeInaDay
dayInaWeek
dayInaMonth
writeThrough
printCacheBlockInfo
printCachePolicy
cacheRepositoryName
reportException
type
id
cacheScope

cacheInclude This tag combines functionality of the cache
tag (but not the cacheXMLObj tag or
useCacheObj tag) and the standard
jsp:include tag.

policy
page
printCacheBlockInfo
reportException

invalidateCache Use this tag to explicitly invalidate a cache
block through program logic. Most parameters
of the invalidateCache tag also exist in the
cache and cacheXMLObj tags and are used in
the same way.

policy
ignoreCache
scope
autoType
selectedParam
selectedCookies
name
invalidateNameLike
page
autoInvalidateLevel
cacheRepositoryName
reportException

Table 1–10 Summary of Web Object Cache Tag LIbrary (Cont.)

Tag Description Attributes
1-22 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries from Other Oracle9iAS Components
Overview of Tag Libraries from Other Oracle9iAS Components
A number of other Oracle9iAS components provide JSP tag libraries. This section
summarizes the following libraries:

■ Oracle9i JDeveloper Business Components for Java (BC4J) Tag Library

■ Oracle9i JDeveloper User Interface Extension (UIX) Tag Library

■ Oracle9i JDeveloper BC4J/UIX Tag Library

■ Oracle9i Reports Tag Library

■ Oracle9iAS Wireless Location (Spatial) Tag Library

■ Oracle9iAS Ultra Search Tag Library

■ Oracle9iAS Portal Tag Library

Some prior knowledge of these components is helpful.

Oracle9i JDeveloper Business Components for Java (BC4J) Tag Library
Oracle9i JDeveloper provides set of JSP 1.1-compliant custom tags known as
Business Components for Java (BC4J) data tags. BC4J data tags provide a simple
tag-based approach for interaction with business component data sources. The tags
provide complete access to business components and allow viewing, editing, and
full DML control.

Custom data tags allow for simplified interaction with Business Components for
Java data sources. The tag-based approach to building JSP applications with
business components does not require extensive Java programming and is very
much like coding an HTML page.

Table 1–11 summarizes the BC4J tag library. The typical tag prefix is jbo.

For more information, refer to the Oracle9i JDeveloper online help, or their
documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

Note: Because of the size of this library, tags are not described
individually.
 Overview of Tag Libraries and Utilities 1-23

Overview of Tag Libraries from Other Oracle9iAS Components
Table 1–11 Summary of BC4J Tag Library

Tag Group Description of Group Individual Tags

Component tags This group includes tags to display a form and
edit a record, handle business component events,
perform a search on a data source, display a
record bound to a data source, display a table
bound to a data source, and render database
transaction operations.

DataEdit
DataHandler
DataNavigate
DataQuery
DataRecord
DataScroller
DataTable
DataTransaction

Connection tags This group includes tags to create an application
module instance to service HTTP requests, apply
changes made on a data source to the database,
create a dynamic view object from an application
module, create a JSP page data source, create a
data source variable, post changes made on a
data source to the database, re-execute the data of
a data source, trigger the release of an application
module instance, and roll back current data
source changes.

ApplicationModule
Commit
CreateViewObject
DataSource
DataSourceRef
PostChanges
RefreshDataSource
ReleasePageResources
RollBack

Data access tags This group includes tags to iterate through the
data source attribute definition, set a WHERE
clause, execute a SQL statement, display an
attribute using a field renderer, retrieve a data
row instance and perform an operation, iterate
through the rows of a data source, move the
viewing range of a data source, update an
attribute in a row, display the criteria of a data
item, display the meta data of an attribute,
display the hints of an attribute, display an
attribute value, set search view criteria, and
iterate through the rows of view criteria.

AttributeIterate
Criteria
CriteriaRow
ExecuteSQL
RenderValue
Row
RowsetIterate
RowsetNavigate
SetAttribute
ShowCriteria
ShowDefinition
ShowHint
ShowValue
ViewCriteria
ViewCriteriaIterate

Event tags This group includes tags to execute a business
component event, handle a business component
event, and build a URL for events.

FormEvent
OnEvent
UrlEvent
1-24 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries from Other Oracle9iAS Components
Oracle9i JDeveloper User Interface Extension (UIX) Tag Library
Oracle9i JDeveloper provides set of JSP 1.1-compliant custom tags known as User
Interface Extension (UIX) tags. The tags invoke UIX controls, generating the HTML
to render tabs, buttons, tables, headers, and other layout and navigational
components that implement the Oracle browser look and feel.

The tags are included on several palette pages: UIX Page, UIX Layout, UIX Table,
UIX Form, UIX Border Layout, and BC4J UIX. These support page layout, table
layout, form layout, border layout, and data-binding to a business components
project.

Table 1–12 summarizes the UIX tag library. The typical tag prefix is uix.

For more information, refer to the Oracle9i JDeveloper online help, or their
documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

Forms tags This group includes tags to insert an input date
field, insert an input field, insert a hidden input
field, insert a password field, overwrite the field
renderer, and add HTML attributes to an input
tag.

InputDate
InputHidden
InputPassword
InputRender
InputSelect
InputSelectGroup
InputSelectLOV
InputText
InputTextArea
SetDomainRenderer
SetFieldRenderer
SetHtmlAttribute

interMedia tags This group includes tags to insert an HTML
ANCHOR tag for an interMedia object, insert an
HTML OBJECT tag for an interMedia audio
object, insert an HTML IMAGE tag for an
interMedia image object, insert an HTML
OBJECT tag for an interMedia video object, insert
an HTML FORM tag for a file upload, and insert a
URL string for an interMedia object.

AnchorMedia
EmbedAudio
EmbedImage
EmbedVideo
FileUploadForm
MediaUrl

Web bean tags This group includes tags to insert a Web bean or
Data Web bean into a page.

DataWebBean
WebBean

Table 1–11 Summary of BC4J Tag Library (Cont.)

Tag Group Description of Group Individual Tags
 Overview of Tag Libraries and Utilities 1-25

Overview of Tag Libraries from Other Oracle9iAS Components
Note: Because of the size of this library, tags are not described
individually.

Table 1–12 Summary of UIX Tag Library

Tag Group Description of Group Individual Tags

Border layout tags This group includes tags to lay out indexed
"children", specify the border above or below
indexed children, and specify the border to the
left or right of indexed children.

borderLayout
bottom
innerBottom
innerEnd
innerLeft
innerRight
innerStart
innerTop
left
right
top

Form tags This group includes tags to create a browser
input checkbox, display a menu-style list of
input items, create a text field for entering
dates and a button for selecting dates from a
calendar, add a widget for uploading a file,
create an HTML form in the page, add a value
that will be submitted with a form, display a
defined list of items for input, create a text
field with a button for launching a
list-of-values dialog, create a single option
input field, insert a browser radio button,
create a set of radio buttons, create a button to
reset form content, insert a button for
submitting a form, and create a single-line text
field or multi-line text area.

checkBox
choice
dateField
fileUpload
form
formValue
list
lovField
option
radioButton
radioGroup
resetButton
submitButton
textInput

Layout tags This group includes tags to lay out children
horizontally or vertically.

flowLayout
stackLayout
1-26 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries from Other Oracle9iAS Components
Page tags This group consists of numerous tags to create
and manipulate page content. Among many
other functions, this includes inserting a trail
of links back to the home page, building a UIX
tree and saving it to the page context, inserting
buttons, placing ancillary information on the
page, creating a copyright or corporate
branding section, inserting page footer links,
adding a banner that can contain links for site
navigation, placing labels, inserting images,
inserting a text link, applying a template to the
page, and inserting a CSS stylesheet.

body
breadCrumbs
buildTree
button
case
cobranding
contentContainer
contentFooter
contents
copyright
corporateBranding
dataScope
document
end
footer
globalButton
globalButtonBar
globalButtons
globalHeader
header
image
inlineMessage
labeledFieldLayout
largeAdvertisement
leading
leadingFooter
link
location
mediumAdvertisement
messageBox
messagePrompt
messageStyledText
navigationBar
pageButtonBar
pageHeader
pageLayout
privacy
productBranding
quickSearch
rawText
ref
renderingContext
separator
shuttle
sideNav

Table 1–12 Summary of UIX Tag Library (Cont.)

Tag Group Description of Group Individual Tags
 Overview of Tag Libraries and Utilities 1-27

Overview of Tag Libraries from Other Oracle9iAS Components
Oracle9i JDeveloper BC4J/UIX Tag Library
UIX JSP pages can include both BC4J data tags and BC4J UIX convenience tags that
simplify the presentation of data.

The BC4J UIX convenience tags rely on an ApplicationModule data tag to get the
data source from the BC4J application module. In addition to the BC4J UIX tags
listed here, you can use the (non-UIX) BC4J tags in UIX JSP pages.

Table 1–13 summarizes the BC4J/UIX tags. The typical tag prefix is bc4juix.

Page tags (continued) spacer
start
styleSheet
styledText
switcher
tabBar
tabs
tip
trailing
trailingFooter
train

Table tags This group includes tags that, among other
functions, let users add rows of data and see
updated data totals, add formatting,
encapsulate formatting information for a table
column, render a selection column for
multiple selection of rows, stamp column
headers for sorting, and support editing and
formatting of tabular data.

addTableRow
cellFormat
column
columnFooter
columnHeader
columnHeaderStamp
hideShow
multipleSelection
rowLayout
singleSelection
sortableHeader
table
tableDetail
tableLayout
totalRow

Validation tags This group of tags is to insert validators and
tags relating to validation.

date
decimal
onBlurValidater
onSubmitValidater
regExp
wml

Table 1–12 Summary of UIX Tag Library (Cont.)

Tag Group Description of Group Individual Tags
1-28 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries from Other Oracle9iAS Components
For more information, refer to the Oracle9i JDeveloper online help, or their
documentation on the Oracle Technology Network:

http://otn.oracle.com/products/jdev/content.html

Table 1–13 Summary of BC4J/UIX Tag Library

Tag Description Attributes

AddTableRow Renders a special "TableRow" that lets users add
rows of data to the data source. The body can
contain JSP content.

text
rows
destination

InputRender Renders an input field from a data source to a
page.

datasource
dataitem

LabelStyledText Binds styled text labels to the data source
automatically.

datasource
dataitem

NavigationBar Binds the navigation bar to the data source
automatically.

datasource

RenderValue Displays data of special data types—such as
images, audio, or video—using a field render
specific to the data object type.

datasource
dataitem

StyledText Binds styled text to the data source automatically. datasource
dataitem
styleClass
accessKey
destination

Table Binds a table to the data source automatically. The
body can contain JSP content.

datasource
alternateText
destination
formSubmitted
height
width
name
nameTransformed
proxied
summary
text
value

TableDetail Causes the detail column from the data source to
be displayed. The body can contain JSP content.

(none)
 Overview of Tag Libraries and Utilities 1-29

Overview of Tag Libraries from Other Oracle9iAS Components
Oracle9i Reports Tag Library
Oracle9i Reports tags integrate with data model objects that are used to create
Oracle reports. The Reports custom tags allow you to quickly add report blocks and
graphs to existing JSP files. These tags can be used as templates to enable you to
build and insert your own data-driven Java component into a Reports HTML page.

An example of a custom JSP tag is the 3D Graphics charting component. Using a
custom JSP tag, you can pass Reports data to the 3D application server, which
creates an image of the chart. The custom JSP tag then returns HTML to reference
the created image.

The report and objects tags, respectively, delimit and define the report block.
Inside these tags, other custom tags define the content and the look and feel of the
report data.

Table 1–14 summarizes the Reports tags. The typical tag prefix is rw.

For more information, refer to the Oracle9i Reports Developer online help, under
"Reference/JSP Tags". You can also find more information about Reports on the
Oracle Technology Network:

http://otn.oracle.com/products/reports/content.html

Table 1–14 Summary of Reports Tag Library

Tag Description Attributes

report Delimits a report object within a JSP page. id
parameters

objects Modifies the report definition. id

field Provides formatting to render a single value source
object in HTML.

id
src
breakLevel
breakValue
nullValue
containsHtml
formatMask
formatTrigger

foreach Loops through a data source group. id
src
startRow
endRow
increment
1-30 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries from Other Oracle9iAS Components
Oracle9iAS Wireless Location (Spatial) Tag Library
Developers of location-based applications need specialized services for the
following:

■ geocoding—associating geographical coordinates with addresses

■ mapping—providing a graphical map for a point, set of points, route, or driving
maneuver

■ routing—providing driving directions

■ business directories ("yellow pages")—listing businesses by region by either
category or name

■ traffic—providing information about accidents, construction, and other
incidents that affect traffic flow

getValue Retrieves the name for a report object. id
src
formatMask

graph Defines a graph or chart. id
src
groups
dataValues
series
width
height
graphHyperlink

include Reformats a top-level layout object into a simple
HTML table.

id
src
format

seq Defines a sequence of values. name
seq

seqval Operates on a sequence of values defined by the
seq tag.

ref
op

id Generates unique HTML IDs for row and column
headers for compliance with the American
Disabilities Act.

id
breakLevel
asArray

headers Retrieves ID values generated by the id tag for
row and column headers.

id
src

Table 1–14 Summary of Reports Tag Library (Cont.)

Tag Description Attributes
 Overview of Tag Libraries and Utilities 1-31

Overview of Tag Libraries from Other Oracle9iAS Components
The Oracle9iAS Wireless location application components are a set of APIs for
performing geocoding, providing driving directions, and looking up business
directories. Service proxies are included that map existing important providers to
the APIs, and additional providers are expected to be accommodated in the future.

For JSP developers, a tag library is provided, as summarized in Table 1–15. The
typical tag prefix is loc.

For more information, refer to the Oracle9iAS Wireless Developer’s Guide.

Table 1–15 Summary of Location (Spatial) Tag Library

Tag Description Attributes

address For a geocoding, mapping, or
routing application, this specifies
an address to be geocoded,
located on a map, or used as the
start or end address of a route, or
as the center for a business
directory query.

name
type
businessName
firstLine
city
state
postalCode
country

map For a mapping application, this
specifies a map with a specified
resolution, showing one of the
following: one or more points, a
route, or a driving maneuver.

name
type
points
route
maneuver
xres
yres

route For a routing application, this
specifies a route with a specified
map resolution. It includes
maneuvers, an overview map, and
maneuver maps.

name
type
xres
yres

iterateManeuvers For a routing application, this
creates a collection of driving
maneuvers, presenting the
maneuvers individually.

name
type
routeID
1-32 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries from Other Oracle9iAS Components
Oracle9iAS Ultra Search Tag Library
Oracle9iAS Ultra Search provides a custom tag library for use by developers in
incorporating content search functionality into JSP applications. The library
includes the following functionality:

■ the ability to retrieve search attributes, groups, languages, and lists of values
(LOVs) for rendering the advance query form

businesses For a business directory
application, this specifies a
collection of businesses that share
one or more attributes.

name
type
businessName
categoryID
keyword
city
state
postalCode
country
centerID
radius
nearestN

iterateBusinesses For a business directory
application, this presents
individually the businesses in a
collection returned by the
businesses tag.

name
type
collection

category For a business directory
application, this specifies a
business category, such as
"dealers".

name
type
parentCategory
categoryName

iterateCategoriesMatchingKeyword For a business directory
application, this creates a
collection of categories that match
a specified keyword value, and
presents the categories
individually.

name
type
parentCategory
keyword

iterateChildCategories For a business directory
application, this specifies a
collection of immediate "child"
subcategories, presented
individually.

name
type
parentCategory

Table 1–15 Summary of Location (Spatial) Tag Library (Cont.)

Tag Description Attributes
 Overview of Tag Libraries and Utilities 1-33

Overview of Tag Libraries from Other Oracle9iAS Components
■ the ability to iterate through the resulting hit set, and retrieve document
attributes and properties for rendering the result page

■ the ability to perform a search with "relevance boosting" and an estimation of
the total hit count

The tag library is summarized in Table 1–16. The typical tag prefix is US.

For more information, refer to the Ultra Search online documentation, under "Ultra
Search JSP Tag Library".

Table 1–16 Summary of Ultra Search Tag Library

Tag Description Attributes

instance This tag establishes a connection to an
Ultra Search instance.

instanceId
username
password
url
dataSourceName
tablePagePath
emailPagePath
filePagePath

iterAttributes For an advanced query, use this tag to
show the list of attributes that are
available.

instance
locale

iterGroups For an advanced query, use this tag to
show the list of groups that are
available.

instance
locale

iterLanguages For an advanced query, use this tag to
show the list of languages defined in the
Ultra Search instance.

instance

iterLOV Use this tag to show all values defined
for a search attribute.

instance
locale
attributeName
attributeType

getResult Use this tag to perform the search. resultId
instance
query
queryLocale
documentLanguage
from
to
boostTerm
withCount
1-34 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Tag Libraries from Other Oracle9iAS Components
Oracle9iAS Portal Tag Library
With Oracle9iAS Portal, developers can accomplish the following:

■ Build and deploy Internet portals to deliver relevant information and
applications to customers, employees, and partners.

■ Develop portals rapidly, without code, using productive online tools.

■ Increase user productivity with single sign-on and self-service publishing.

■ Add value quickly with over 250 prebuilt portlets based on open standards.

The Oracle9iAS Portal tag library provides further convenience for developers
building customizable Internet portals. A developer can create internal JSP pages,
which are stored inside the Portal database and downloaded when the portal is
executed, or external JSP pages, which are stored in the file system, or some
combination.

The tag library is summarized in Table 1–17. The typical tag prefix is portal.

For more information, refer to the document Oracle9i Application Server Portal:
Adding JSPs, available through the Oracle Technology Network:

http://otn.oracle.com

fetchAttribute This is a nested tag within getResult to
specify which attributes of each document
should be fetched along with the query
results. There can be multiple
fetchAttribute tags nested inside a
getResult tag.

attributeName
attributeType

showHitCount If withCount="true" in the getResult
tag, then the result includes a total number
of hits and you can use showHitCount to
display this number.

result

iterResult This tag iterates through all the documents
in the search results. Use this to present the
results in the JSP page.

result
instance

showAttributeValue Renders a document attribute. attributeName
attributeType
default

Table 1–16 Summary of Ultra Search Tag Library (Cont.)

Tag Description Attributes
 Overview of Tag Libraries and Utilities 1-35

Overview of Tag Libraries from Other Oracle9iAS Components
Table 1–17 Summary of Portal Tag Library

Tag Description Attributes

usePortal Use this to specify the overall portal,
which forms the framework of the Web
page and contains portlets that have the
dynamic content. This must be the first
Portal tag in a JSP page.

id
pagegroup
login

prepare Use this to set up a bundle of one or
more portlets that will be displayed
within the portal.

portal
portletHeaders

portlet Use one or more of these tags inside a
prepare tag to declare the portlets to
be displayed.

id
instance
header

showPortlet Use this to display a portlet—typically,
but not necessarily, a portlet that was
declared through a portlet tag. In its
simplest usage, however, the
showPortlet tag itself specifies the
portlet to display.

name
portal
header

parameter Use this inside a portlet or
showPortlet tag to specify a
parameter setting for a portlet. (For
example, for a stock-quote portlet,
specify the stock to quote.)

name
value

useStyle Specify a CSS style to use for the portal,
or use the default style. (Alternatively,
do not use this tag at all and implement
the desired style by other means.)

name
portal
1-36 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

 JavaBeans for Extended T
2

JavaBeans for Extended Types

This chapter describes portable JavaBeans provided with OC4J for use as extended
types. For JSP pages, these types offer advantages over Java primitive types or
standard java.lang types.

The chapter consists of the following:

■ Overview of JML Extended Types

■ JML Extended Type Descriptions
ypes 2-1

Overview of JML Extended Types
Overview of JML Extended Types
JSP pages generally rely on core Java types in representing scalar values. However,
neither of the following type categories is fully suitable for use in JSP pages:

■ primitive types such as int, float, and double

Values of these types cannot have a specified scope—they cannot be stored in a
JSP scope object (for page, request, session, or application scope),
because only objects can be stored in a scope object.

■ wrapper classes in the standard java.lang package, such as Integer, Float,
and Double

Values of these types are objects, so they can theoretically be stored in a JSP
scope object. However, they cannot be declared in a jsp:useBean action,
because the wrapper classes do not follow the JavaBean model and do not
provide zero-argument constructors.

Additionally, instances of the wrapper classes are immutable. To change a
value, you must create a new instance and assign it appropriately.

To work around these limitations, OC4J provides the following JavaBean classes in
the oracle.jsp.jml package to act as wrappers for the most common Java types:

■ JmlBoolean to represent a boolean value

■ JmlNumber to represent an int value

■ JmlFPNumber to represent a double value

■ JmlString to represent a String value

Each of these classes has a single attribute, value, and includes methods to get the
value, set the value from input in various formats, test whether the value is equal to
a value specified in any of several formats, and convert the value to a string.

Alternatively, instead of using the getValue() and setValue() methods, you
can use the jsp:getProperty and jsp:setProperty tags, as with any other
bean.

The following example creates a JmlNumber instance called count that has
application scope:

<jsp:useBean id="count" class="oracle.jsp.jml.JmlNumber" scope="application" />

Later, assuming that the value has been set elsewhere, you can access it as follows:

<h3> The current count is <%=count.getValue() %> </h3>
2-2 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of JML Extended Types
The following example creates a JmlNumber instance called maxSize that has
request scope, and sets it using setProperty:

<jsp:useBean id="maxSize" class="oracle.jsp.jml.JmlNumber" scope="request" >
 <jsp:setProperty name="maxSize" property="value" value="<%= 25 %>" />
</jsp:useBean>
 JavaBeans for Extended Types 2-3

JML Extended Type Descriptions
JML Extended Type Descriptions
This section documents the public methods of the four extended
types—JmlBoolean, JmlNumber, JmlFPNumber, and JmlString—followed by
an example.

Type JmlBoolean
A JmlBoolean object represents a Java boolean value.

The getValue() and setValue() methods get or set the value property of the
bean as a Java boolean value.

■ boolean getValue()

■ void setValue(boolean)

The setTypedValue() method has several signatures and can set the value
property from a string (such as "true" or "false"), a java.lang.Boolean value, a
Java boolean value, or a JmlBoolean value. For the string input, conversion of
the string is performed according to the same rules as for the valueOf() method
of the java.lang.Boolean class.

■ void setTypedValue(String)

■ void setTypedValue(Boolean)

■ void setTypedValue(boolean)

■ void setTypedValue(JmlBoolean)

The equals() method tests whether the value property is equal to the specified
Java boolean value.

■ boolean equals(boolean)

The typedEquals() method has several signatures and tests whether the value
property has a value equivalent to a specified string (such as "true" or "false"),
java.lang.Boolean value, or JmlBoolean value.

■ boolean typedEquals(String)

■ boolean typedEquals(Boolean)

Note: To use the JML extended types, verify that the
ojsputil.jar file is installed and in your classpath. This file is
supplied with OC4J.
2-4 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Extended Type Descriptions
■ boolean typedEquals(JmlBoolean)

The toString() method returns the value property as a java.lang.String
value, either "true" or "false".

■ String toString()

Type JmlNumber
A JmlNumber object represents a 32-bit number equivalent to a Java int value.

The getValue() and setValue() methods get or set the value property of the
bean as a Java int value.

■ int getValue()

■ void setValue(int)

The setTypedValue() method has several signatures and can set the value
property from a string, a java.lang.Integer value, a Java int value, or a
JmlNumber value. For the string input, conversion of the string is performed
according to the same rules as for the decode() method of the
java.lang.Integer class.

■ void setTypedValue(String)

■ void setTypedValue(Integer)

■ void setTypedValue(int)

■ void setTypedValue(JmlNumber)

The equals() method tests whether the value property is equal to the specified
Java int value.

■ boolean equals(int)

The typedEquals() method has several signatures and tests whether the value
property has a value equivalent to a specified string (such as "1234"),
java.lang.Integer value, or JmlNumber value.

■ boolean typedEquals(String)

■ boolean typedEquals(Integer)

■ boolean typedEquals(JmlNumber)
 JavaBeans for Extended Types 2-5

JML Extended Type Descriptions
The toString() method returns the value property as an equivalent
java.lang.String value (such as "1234"). This method has the same
functionality as the toString() method of the java.lang.Integer class.

■ String toString()

Type JmlFPNumber
A JmlFPNumber object represents a 64-bit floating point number equivalent to a
Java double value.

The getValue() and setValue() methods get or set the value property of the
bean as a Java double value.

■ double getValue()

■ void setValue(double)

The setTypedValue() method has several signatures and can set the value
property from a string (such as "3.57"), a java.lang.Integer value, a Java int
value, a java.lang.Float value, a Java float value, a java.lang.Double
value, a Java double value, or a JmlFPNumber value. For the string input,
conversion of the string is according to the same rules as for the valueOf()
method of the java.lang.Double class.

■ void setTypedValue(String)

■ void setTypedValue(Integer)

■ void setTypedValue(int)

■ void setTypedValue(Float)

■ void setTypedValue(float)

■ void setTypedValue(Double)

■ void setTypedValue(double)

■ void setTypedValue(JmlFPNumber)

The equals() method tests whether the value property is equal to the specified
Java double value.

■ boolean equals(double)

The typedEquals() method has several signatures and tests whether the value
property has a value equivalent to a specified string (such as "3.57"),
java.lang.Integer value, Java int value, java.lang.Float value, Java
2-6 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Extended Type Descriptions
float value, java.lang.Double value, Java double value, or JmlFPNumber
value.

■ boolean typedEquals(String)

■ boolean typedEquals(Integer)

■ boolean typedEquals(int)

■ boolean typedEquals(Float)

■ boolean typedEquals(float)

■ boolean typedEquals(Double)

■ boolean typedEquals(JmlFPNumber)

The toString() method returns the value property as a java.lang.String
value (such as "3.57"). This method has the same functionality as the toString()
method of the java.lang.Double class.

■ String toString()

Type JmlString
A JmlString object represents a java.lang.String value.

The getValue() and setValue() methods get or set the value property of the
bean as a java.lang.String value. If the input in a setValue() call is null,
then the value property is set to an empty (zero-length) string.

■ String getValue()

■ void setValue(String)

The toString() method is functionally equivalent to the getValue() method.

■ String toString()

The setTypedValue() method sets the value property according to the specified
JmlString value. If the JmlString value is null, then the value property is set
to an empty (zero-length) string.

■ void setTypedValue(JmlString)

The isEmpty() method tests whether the value property is an empty
(zero-length) string: ""

■ boolean isEmpty()
 JavaBeans for Extended Types 2-7

JML Extended Type Descriptions
The equals() method has two signatures and tests whether the value property is
equal to a specified java.lang.String value or JmlString value.

■ boolean equals(String)

■ boolean equals(JmlString)

JML Extended Types Example
This example illustrates the use of JML extended type JavaBeans for management of
simple types at scope. The page declares four session objects—one for each JML
type. The page presents a form that allows you to enter values for each of these
types. Once new values are submitted, the form displays both the new values and
the previously set values. In the process of generating this output, the page updates
the session objects with the new form values.

<jsp:useBean id = "submitCount" class = "oracle.jsp.jml.JmlNumber" scope = "session" />

<jsp:useBean id = "bool" class = "oracle.jsp.jml.JmlBoolean" scope = "session" >
 <jsp:setProperty name = "bool" property = "value" param = "fBoolean" />
</jsp:useBean>

<jsp:useBean id = "num" class = "oracle.jsp.jml.JmlNumber" scope = "session" >
 <jsp:setProperty name = "num" property = "value" param = "fNumber" />
</jsp:useBean>

<jsp:useBean id = "fpnum" class = "oracle.jsp.jml.JmlFPNumber" scope = "session" >
 <jsp:setProperty name = "fpnum" property = "value" param = "fFPNumber" />
</jsp:useBean>

<jsp:useBean id = "str" class = "oracle.jsp.jml.JmlString" scope = "session" >
 <jsp:setProperty name = "str" property = "value" param = "fString" />
</jsp:useBean>

<HTML>

<HEAD>
 <META HTTP-EQUIV="Content-Type" CONTENT="text/html;CHARSET=iso-8859-1">
 <META NAME="GENERATOR" Content="Visual Page 1.1 for Windows">
 <TITLE>Extended Datatypes Sample</TITLE>
</HEAD>

<BODY BACKGROUND="images/bg.gif" BGCOLOR="#FFFFFF">
2-8 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Extended Type Descriptions
<% if (submitCount.getValue() > 1) { %>
 <h3> Last submitted values </h3>

 bool: <%= bool.getValue() %>
 num: <%= num.getValue() %>
 fpnum: <%= fpnum.getValue() %>
 string: <%= str.getValue() %>

<% }

 if (submitCount.getValue() > 0) { %>

 <jsp:setProperty name = "bool" property = "value" param = "fBoolean" />
 <jsp:setProperty name = "num" property = "value" param = "fNumber" />
 <jsp:setProperty name = "fpnum" property = "value" param = "fFPNumber" />
 <jsp:setProperty name = "str" property = "value" param = "fString" />

 <h3> New submitted values </h3>

 bool: <jsp:getProperty name="bool" property="value" />
 num: <jsp:getProperty name="num" property="value" />
 fpnum: <jsp:getProperty name="fpnum" property="value" />
 string: <jsp:getProperty name="str" property="value" />

<% } %>

<jsp:setProperty name = "submitCount" property = "value" value = "<%= submitCount.getValue() + 1
%>" />

<FORM ACTION="index.jsp" METHOD="POST" ENCTYPE="application/x-www-form-urlencoded">
<P> <pre>
 boolean test: <INPUT TYPE="text" NAME="fBoolean" VALUE="<%= bool.getValue() %>" >
 number test: <INPUT TYPE="text" NAME="fNumber" VALUE="<%= num.getValue() %>" >
fpnumber test: <INPUT TYPE="text" NAME="fFPNumber" VALUE="<%= fpnum.getValue() %>" >
 string test: <INPUT TYPE="text" NAME="fString" VALUE= "<%= str.getValue() %>" >
</pre>

<P> <INPUT TYPE="submit">

</FORM>

</BODY>

</HTML>
 JavaBeans for Extended Types 2-9

JML Extended Type Descriptions
2-10 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

 JSP Markup Language
3

JSP Markup Language Tags

This chapter documents the Oracle JSP Markup Language (JML) tag library, which
provides a set of JSP tags to allow developers to script JSP pages without using Java
statements. The JML library provides tags for variable declarations, control flow,
conditional branches, iterative loops, parameter settings, and calls to objects.

The chapter is organized as follows:

■ Overview of the JSP Markup Language (JML) Tag Library

■ JSP Markup Language (JML) Tag Descriptions

Note: The library described here, which uses a standard runtime
implementation, is also supported through an Oracle-specific
compile-time implementation. The compile-time syntax and tags
are documented in Appendix A, "JML Compile-Time Syntax and
Tags". General considerations in using compile-time tags instead of
runtime tags are discussed in the Oracle9iAS Containers for J2EE
Support for JavaServer Pages Reference.
 Tags 3-1

Overview of the JSP Markup Language (JML) Tag Library
Overview of the JSP Markup Language (JML) Tag Library
OC4J supplies the JSP Markup Language (JML) tag library, which is portable to any
standard JSP environment. JML tags, as with those of any standard tag library, are
completely compatible with regular JSP script and can be used in any JSP page.

JML tags are intended to simplify coding syntax for JSP developers who are not
proficient with Java. There are two main categories of JML tags: 1) logic/flow
control; 2) bean binding.

This section covers the following topics:

■ JML Tag Library Philosophy

■ JML Tag Categories

Note the following requirements for using JML tags:

■ Verify that the file ojsputil.jar is installed and in your classpath. This file is
provided with the OC4J installation.

■ As with any tag library following the JSP 1.1 specification, the tags of the JML
library are specified in an XML-style tag library description (TLD) file,
jml.tld. In an Oracle9iAS installation, this file is located in the
[Oracle_Home]/j2ee/tlds directory. The TLD file must be deployed with
any JSP application that uses JML tags, and specified in a taglib directive for
any page using JML tags. The taglib directive supplies a standard universal
resource indicator (URI) to locate the file. The URI syntax is typically
application-relative, such as in the following example:

<%@ taglib uri="/WEB-INF/jml.tld" prefix="jml" %>

JML Tag Library Philosophy
JavaServer Pages technology is intended for two separate developer communities:

■ those whose primary skill is Java programming

■ those whose primary skill is in designing static content, particularly in HTML,
and who may have limited scripting experience

The JML tag library is designed to allow most Web developers, with little or no
knowledge of Java, to assemble JSP applications with a full complement of program
flow-control features.

This model presumes that the business logic is contained in JavaBeans that are
developed separately by a Java developer.
3-2 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of the JSP Markup Language (JML) Tag Library
JML Tag Categories
The JML tag library covers a feature set split into two functional categories, as
summarized in Table 3–1.

Table 3–1 JML Tag Functional Categories

Tag Categories Tags Functionality

bean binding tags useVariable
useForm
useCookie
remove

The purpose of these tags is to
declare or undeclare a JavaBean at a
specified JSP scope. See "Bean
Binding Tag Descriptions" on
page 3-4.

logic/flow control tags if
choose..when..[otherwise]
foreach
return
flush

These tags offer simplified syntax to
define code flow, such as for
iterative loops or conditional
branches. See "Logic and Flow
Control Tag Descriptions" on
page 3-8.
 JSP Markup Language Tags 3-3

JSP Markup Language (JML) Tag Descriptions
JSP Markup Language (JML) Tag Descriptions
This section documents the JML tags that are supported in the current JSP runtime
implementation, following the JSP 1.1 specification. They are categorized as follows:

■ Bean Binding Tag Descriptions

■ Logic and Flow Control Tag Descriptions

For an elementary sample using some of the tags described here, refer to the OC4J
demos.

Bean Binding Tag Descriptions
This section documents the following JML tags, which are used for bean-binding
operations:

■ JML useVariable Tag

■ JML useForm Tag

■ JML useCookie Tag

■ JML remove Tag

JML useVariable Tag
This tag offers a convenient alternative to the jsp:useBean tag for declaring
simple variables.

Syntax

<jml:useVariable id = "beanInstanceName"
 [scope = "page" | "request" | "session" | "application"]
 type = "string" | "boolean" | "number" | "fpnumber"
 [value = "stringLiteral"] />

Notes:

■ The prefix "jml:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

■ See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.
3-4 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Markup Language (JML) Tag Descriptions
Attributes

■ id (required)—Names the variable being declared.

■ scope—Defines the duration or scope of the variable (as with a jsp:useBean
tag). This attribute is optional; the default scope is page.

■ type (required)—Specifies the type of the variable. Type specifications refer to
JmlString, JmlBoolean, JmlNumber, or JmlFPNumber.

■ value—Allows the variable to be set directly in the declaration, as either a
string literal or a JSP expression enclosed in <%=... %> syntax. This attribute
is optional. If it is not specified, then the value remains the same as when it was
last set (if it already exists) or is initialized with a default value. If it is specified,
then the value is always set, regardless of whether this declaration instantiates
the object or merely acquires it from the named scope.

Example Consider the following example:

<jml:useVariable id = "isValidUser" type = "boolean" value = "<%= dbConn.isValid() %>" scope = "session" />

This is equivalent to the following:

<jsp:useBean id = "isValidUser" class = "oracle.jsp.jml.JmlBoolean" scope = "session" />
<jsp:setProperty name="isValidUser" property="value" value = "<%= dbConn.isValid() %>" />

JML useForm Tag
This tag provides a convenient syntax for declaring variables and setting them to
values passed in from the request.

Syntax

<jml:useForm id = "beanInstanceName"
 [scope = "page" | "request" | "session" | "application"]
 [type = "string" | "boolean" | "number" | "fpnumber"]
 param = "requestParameterName" />

Attributes

■ id (required)—Names the variable being declared or referenced.

■ scope—Defines the duration or scope of the variable (as with a jsp:useBean
tag). This attribute is optional; the default scope is page.
 JSP Markup Language Tags 3-5

JSP Markup Language (JML) Tag Descriptions
■ type—Specifies the type of the variable. Type specifications refer to
JmlString, JmlBoolean, JmlNumber, or JmlFPNumber. This attribute is
optional; its default value is "string".

■ param (required)—Specifies the name of the request parameter whose value is
used in setting the variable. If the request parameter exists, then the variable
value is always updated, regardless of whether this declaration brings the
variable into existence. If the request parameter does not exist, then the variable
value remains unchanged.

Example The following example sets a session variable named user of the type
string to the value of the request parameter named user.

<jml:useForm id = "user" type = "string" param = "user" scope = "session" />

This is equivalent to the following:

<jsp:useBean id = "user" class = "oracle.jsp.jml.JmlString" scope = "session" />
<jsp:setProperty name="user" property="value" param = "user" />

JML useCookie Tag
This tag offers a convenient syntax for declaring variables and setting them to
values contained in cookies.

Syntax

<jml:useCookie id = "beanInstanceName"
 [scope = "page" | "request" | "session" | "application"]
 [type = "string" | "boolean" | "number" | "fpnumber"]
 cookie = "cookieName" />

Attributes

■ id (required)—Names the variable being declared or referenced.

■ scope—Defines the duration or scope of the variable. This attribute is optional;
the default scope is page.

■ type—Identifies the type of the variable. Type specifications refer to
JmlString, JmlBoolean, JmlNumber, or JmlFPNumber. This attribute is
optional; the default setting is "string".

■ cookie (required)—Specifies the name of the cookie whose value is used in
setting this variable. If the cookie exists, then the variable value is always
3-6 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Markup Language (JML) Tag Descriptions
updated, regardless of whether this declaration brings the variable into
existence. If the cookie does not exist, then the variable value remains
unchanged.

Example The following example sets a request variable named user of the type
string to the value of the cookie named user.

<jml:useCookie id = "user" type = "string" cookie = "user" scope = "request" />

This is equivalent to the following:

<jsp:useBean id = "user" class = "oracle.jsp.jml.JmlString" scope = "request" />
<%
 Cookies [] cookies = request.getCookies();
 for (int i = 0; i < cookies.length; i++) {
 if (cookies[i].getName().equals("user")) {
 user.setValue(cookies[i].getValue());
 break;
 }
 }
%>

JML remove Tag
This tag removes an object from its scope.

Syntax

<jml:remove id = "beanInstanceName"
 [scope = "page" | "request" | "session" | "application"] />

Attributes

■ id (required)—Specifies the name of the bean being removed.

■ scope—This attribute is optional. If not specified, then scopes are searched in
the following order: 1) page, 2) request, 3) session, 4) application. The
first object whose name matches id is removed.

Example The following example removes the session user object:

<jml:remove id = "user" scope = "session" />
 JSP Markup Language Tags 3-7

JSP Markup Language (JML) Tag Descriptions
This is equivalent to the following:

<% session.removeValue("user"); %>

Logic and Flow Control Tag Descriptions
This section documents the following JML tags, which are used for logic and flow
control:

■ JML if Tag

■ JML choose...when...[otherwise] Tags

■ JML for Tag

■ JML foreach Tag

■ JML return Tag

■ JML flush Tag

These tags, which are intended for developers without extensive Java experience,
can be used in place of Java logic and flow control syntax, such as iterative loops
and conditional branches.

JML if Tag
This tag evaluates a single conditional statement. If the condition is true, then the
body of the if tag is executed.

Syntax

<jml:if condition = "<%= jspExpression %>" >
 ...body of if tag (executed if the condition is true)...
</jml:if>

Attributes

■ condition (required)—Specifies the conditional expression to be evaluated.

Example The following e-commerce example displays information from a user's
shopping cart. The code checks to see if the variable holding the current T-shirt
order is empty. If not, then the size that the user has ordered is displayed. Assume
currTS is of type JmlString.
3-8 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Markup Language (JML) Tag Descriptions
<jml:if condition = "<%= !currTS.isEmpty() %>" >
 <S>(size: <%= currTS.getValue().toUpperCase() %>)</S>
</jml:if>

JML choose...when...[otherwise] Tags
The choose tag, with associated when and otherwise tags, provides a multiple
conditional statement.

The body of the choose tag contains one or more when tags, where each when tag
represents a condition. For the first when condition that is true, the body of that
when tag is executed. (A maximum of one when body is executed.)

If none of the when conditions are true, and if the optional otherwise tag is
specified, then the body of the otherwise tag is executed.

Syntax

<jml:choose>
 <jml:when condition = "<%= jspExpression %>" >
 ...body of 1st when tag (executed if the condition is true)...
 </jml:when>
 ...
 [...optional additional when tags...]
 [<jml:otherwise>
 ...body of otherwise tag (executed if all when conditions false)...
 </jml:otherwise>]
</jml:choose>

Attributes The when tag uses the following attribute:

■ condition (required)—Specifies the conditional expression to be evaluated.

 The choose and otherwise tags have no attributes.

Example The following e-commerce example displays information from a user's
shopping cart. This code checks to see if anything has been ordered. If so, the
current order is displayed; otherwise, the user is asked to shop again. (This example
omits the code to display the current order.) Presume orderedItem is of the type
JmlBoolean.
 JSP Markup Language Tags 3-9

JSP Markup Language (JML) Tag Descriptions
<jml:choose>
 <jml:when condition = "<%= orderedItem.getValue() %>" >
 You have changed your order:
 -- output the current order --
 </jml:when>
 <jml:otherwise>
 Are you sure we can’t interest you in something, cheapskate?
 </jml:otherwise>
</jml:choose>

JML for Tag
This tag provides the ability to iterate through a loop, as with a Java for loop.

The id attribute is a local loop variable of the type java.lang.Integer that
contains the value of the current range element. The range starts at the value
expressed in the from attributed and is incremented by one after each execution of
the body of the loop, until it exceeds the value expressed in the to attribute.

Once the range has been traversed, control goes to the first statement following the
for end tag.

Syntax

<jml:for id = "loopVariable"
 from = "<%= jspExpression %>"
 to = "<%= jspExpression %>" >
 ...body of for tag (executed once at each value of range, inclusive)...
</jml:for>

Attributes

■ id (required)—This is the name of the loop variable, which holds the current
value in the range. This is a java.lang.Integer value and can be used only
within the body of the tag.

■ from (required)—Specifies the start of the range. This is an expression that
must evaluate to a Java int value.

Note: Descending ranges are not supported—the from value
must be less than or equal to the to value.
3-10 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Markup Language (JML) Tag Descriptions
■ to (required)—Specifies the end of the range. This is an expression that must
evaluate to a Java int value.

Example The following example repeatedly prints "Hello World" as progressively
smaller headings (H1, H2, H3, H4, H5).

<jml:for id="i" from="<%= 1 %>" to="<%= 5 %>" >
 <H<%=i%>>
 Hello World!
 </H<%=i%>>
</jml:for>

JML foreach Tag
This tag provides the ability to iterate over a homogeneous set of values.

The body of the tag is executed once per element in the set. If the set is empty, then
the body is not executed.

The id attribute is a local loop variable containing the value of the current set
element. Its type is specified in the type attribute. (The specified type should match
the type of the set elements, as applicable.)

This tag currently supports iterations over the following types of data structures:

■ Java array

■ java.util.Enumeration

■ java.util.Vector

Syntax

<jml:foreach id = "loopVariable"
 in = "<%= jspExpression %>"
 limit = "<%= jspExpression %>"
 type = "package.class" >
 ...body of foreach tag (executes once for each element in data structure)...
</jml:foreach>

Attributes

■ id (required)—This is the name of the loop variable, which holds the value of
the current element at each step of the iteration. It can be used only within the
body of the tag. Its type is the same as specified in the type attribute.
 JSP Markup Language Tags 3-11

JSP Markup Language (JML) Tag Descriptions
■ in (required)—Specifies a JSP expression that evaluates to a Java array,
Enumeration object, or Vector object.

■ limit (required)—Specifies a JSP expression that evaluates to a Java int value
defining the maximum number of iterations, regardless of the number of
elements in the set.

■ type (required)—Specifies the type of the loop variable. This should match the
type of the set elements, as applicable.

Example The following example iterates over the request parameters.

<jml:foreach id="name" in="<%= request.getParameterNames() %>" type="java.lang.String" >
 Parameter: <%= name %>
 Value: <%= request.getParameter(name) %>

</jml:foreach>

or, if you want to handle parameters with multiple values:

<jml:foreach id="name" in="<%= request.getParameterNames() %>" type="java.lang.String" >
 Parameter: <%= name %>
 Value: <jml:foreach id="val" in="<%=request.getParameterValues(name)%>"
 type="java.lang.String" >
 <%= val %> :
 </jml:foreach>

</jml:foreach>

JML return Tag
When this tag is reached, execution returns from the page without further
processing.

Syntax

<jml:return />

Attributes

None.
3-12 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Markup Language (JML) Tag Descriptions
Example The following example returns without processing the page if the timer has
expired.

<jml:if condition="<%= timer.isExpired() %>" >
 You did not complete in time!
 <jml:return />
</jml:if>

JML flush Tag
This tag writes the current contents of the page buffer back to the client. This
applies only if the page is buffered; otherwise, there is no effect.

Syntax

<jml:flush />

Attributes

None.

Example The following example flushes the current page contents before performing
an expensive operation.

<jml:flush />
<% myBean.expensiveOperation(out); %>
 JSP Markup Language Tags 3-13

JSP Markup Language (JML) Tag Descriptions
3-14 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

 Data-Access JavaBeans and
4

Data-Access JavaBeans and Tags

This chapter describes portable JavaBeans and tags provided with OC4J for use in
accessing a database from servlets and JSP pages.

The chapter is organized as follows:

■ JavaBeans for Data Access

■ SQL Tags for Data Access
 Tags 4-1

JavaBeans for Data Access
JavaBeans for Data Access
The OC4J product includes a set of JavaBeans you can use to access a database. This
section, organized as follows, describes the beans:

■ Introduction to Data-Access JavaBeans

■ Data-Access Support for Data Sources and Pooled Connections

■ Data-Access JavaBean Descriptions

Introduction to Data-Access JavaBeans
OC4J supplies a set of custom JavaBeans for database access. The following beans
are included in the oracle.jsp.dbutil package:

■ ConnBean opens a database connection. This bean also supports data sources
and connection pooling. See "Data-Access Support for Data Sources and Pooled
Connections" on page 4-3 for related information.

■ ConnCacheBean uses the Oracle JDBC connection caching implementation for
database connections. This requires JDBC 2.0.

■ DBBean executes a database query. It also has its own connection mechanism,
but does not support data sources.

■ CursorBean provides general DML support for queries; UPDATE, INSERT, and
DELETE statements; and stored procedure calls.

This section presumes a working knowledge of Oracle JDBC. Consult the Oracle9i
JDBC Developer’s Guide and Reference as necessary.

To use the data-access JavaBeans, verify that the file ojsputil.jar is installed
and in your classpath. This file is provided with the OC4J installation. For
XML-related methods and functionality, you will also need the file xsu12.jar (for
JDK 1.2.x) or xsu111.jar (for JDK 1.1.x), both of which are provided with
Oracle9iAS.

Note: The JavaBeans described here are used by the tags
discussed in "SQL Tags for Data Access" on page 4-16. Generally
speaking, these beans and tags can be used with non-Oracle
databases, assuming you have appropriate JDBC driver classes;
however, numerous features described below, as noted, are
Oracle-specific.
4-2 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Data Access
You will also need appropriate JDBC driver classes installed and in your classpath,
such as classes12.zip for an Oracle database and JDK 1.2 or higher.

Data-Access Support for Data Sources and Pooled Connections
The data-access JavaBeans, as well as the data-access tag library, supports the use of
data sources to specify connection properties. This is also how support for
connection pooling is implemented. This mechanism supports both Oracle
connection objects and OC4J connection objects.

To use a data source in a JSP page, you must define the data source, its JNDI name,
and its connection and pooling properties. In OC4J, do this in a <data-source>
element in the data-sources.xml file. Here is an example:

<data-source
 class="oracle.jdbc.pool.OracleDataSource"
 name="jdbc/pool/OracleDS"
 location="jdbc/ConnectionDS"
 pooled-location="jdbc/pool/OracleDS"
 url="jdbc:oracle:thin:@myhost:1521:orcl"
 username="scott"
 password="tiger"
 min-connections="3"
 max-connections="50"
 wait-timeout="10"
 inactivity-timeout="30" />

See the Oracle9iAS Containers for J2EE Services Guide for more information about
data sources.

Data-Access JavaBean Descriptions
This section describes attributes and methods of the data-access
JavaBeans—ConnBean, ConnCacheBean, DBBean, and CursorBean—and
concludes with an example that uses a data source:

■ ConnBean for a Database Connection

■ ConnCacheBean for Connection Caching

Notes: The Oracle data-access JavaBeans implement the Oracle
JspScopeListener interface for event notification. Refer to "JSP
Event-Handling—JspScopeListener" on page 8-2 for information
about this interface.
 Data-Access JavaBeans and Tags 4-3

JavaBeans for Data Access
■ DBBean for Queries Only

■ CursorBean for DML and Stored Procedures

■ Example: Using ConnBean and CursorBean with a Data Source

ConnBean for a Database Connection
Use oracle.jsp.dbutil.ConnBean to establish a simple database connection
(one that uses no connection pooling or caching).

ConnBean has the following properties. The user, password, and URL properties
are not required if you use a data source.

■ dataSource (JNDI name for a data source location)

This is valid only for an environment that supports data sources. See
"Data-Access Support for Data Sources and Pooled Connections" on page 4-3
for information about how to set up a data source in OC4J.

■ user (user ID for database schema)

■ password (user password)

■ URL (database connection string)

■ stmtCacheSize (cache size for Oracle JDBC statement caching)

Setting stmtCacheSize enables Oracle JDBC statement caching.

■ executeBatch (batch size for Oracle JDBC update batching)

Setting executeBatch enables Oracle JDBC update batching.

■ preFetch (number of statements to prefetch in Oracle JDBC row prefetching)

Setting preFetch enables Oracle JDBC row prefetching.

■ commitOnClose ("true" or "false" to execute commit when connection is
closed)

The value of this property indicates whether an automatic commit should be
executed when the connection is closed. A "true" setting results in a commit; a
"false" setting results in a rollback. In previous releases, an automatic
commit was always executed, but in Oracle9iAS 9.0.2 the default is an

Notes: For queries only, if you do not require a data source, it is
simpler to use DBBean, which has its own connection mechanism.
4-4 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Data Access
automatic rollback. The commitOnClose property allows for backward
compatibility to ease migration.

Be aware that there can be an application-wide commit-on-close setting in
the application web.xml file, but the setting of the ConnBean property is not
automatically dependent on that setting. If a JSP pages uses ConnBean instead
of a dbOpen tag, the value of the commit-on-close context parameter should
be retrieved and then explicitly set as the commitOnClose value in the
ConnBean instance. For reference, here is a sample web.xml entry that sets the
commit-on-close context parameter:

<context-param>
 <param-name>commit-on-close</param-name>
 <param-value>true</param-value>
</context-param>

ConnBean provides the following setter and getter methods for these properties:

■ void setDataSource(String)

■ String getDataSource()

■ void setUser(String)

■ String getUser()

■ void setPassword(String)

■ String getPassword()

■ void setURL(String)

■ String getURL()

■ void setStmtCacheSize(int)

■ int getStmtCacheSize()

■ void setExecuteBatch(int)

■ int getExecuteBatch()

■ void setPreFetch(int)

Note: See the Oracle9i JDBC Developer’s Guide and Reference for
information about statement caching, update batching, and row
prefetching.
 Data-Access JavaBeans and Tags 4-5

JavaBeans for Data Access
■ int getPreFetch()

■ void setCommitOnClose(String)

■ String getCommitOnClose()

Use the following methods to open and close a connection, or to verify its status:

■ void connect()

Establish a database connection using ConnBean property settings.

■ void close()

Close the connection and any open cursors.

■ boolean isConnectionClosed()—Determine if the connection is closed.

Use the following method to open a cursor and return a CursorBean object:

■ CursorBean getCursorBean(int, String)

or:

■ CursorBean getCursorBean(int)

Input the following:

– one of the following int constants to specify the type of JDBC statement
you want: CursorBean.PLAIN_STMT for a Statement object,
CursorBean.PREP_STMT for a PreparedStatement object, or
CursorBean.CALL_STMT for a CallableStatement object

– a string specifying the SQL operation to execute (optional; alternatively, the
SQL operation can be specified in the CursorBean method call that
executes the statement)

See "CursorBean for DML and Stored Procedures" on page 4-11 for information
about CursorBean functionality.

ConnCacheBean for Connection Caching
Use oracle.jsp.dbutil.ConnCacheBean to use the Oracle JDBC connection
caching mechanism, using JDBC 2.0 connection pooling, for your database

Note: As with any JavaBean you use in a JSP page, you can set
any of the ConnBean properties with a jsp:setProperty action
instead of using the setter method directly.
4-6 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Data Access
connections. Refer to the Oracle9i JDBC Developer’s Guide and Reference for
information about connection caching.

ConnCacheBean has the following properties:

■ user (user ID for database schema)

■ password (user password)

■ URL (database connection string)

■ maxLimit (maximum number of connections allowed by this cache)

■ minLimit (minimum number of connections existing for this cache)

If you use fewer than this number, then there will also be connections in the
"idle pool" of the cache.

■ stmtCacheSize (cache size for Oracle JDBC statement caching)

Setting stmtCacheSize enables the Oracle JDBC statement caching feature.
Refer to the Oracle9i JDBC Developer’s Guide and Reference for information about
Oracle JDBC statement caching features and limitations.

■ cacheScheme (type of cache, indicated by one of the following int constants):

– DYNAMIC_SCHEME—New pooled connections can be created above and
beyond the maximum limit, but each one is automatically closed and freed
as soon as the logical connection instance that it provided is no longer in
use.

– FIXED_WAIT_SCHEME—When the maximum limit is reached, any new
connection waits for an existing connection object to be released.

– FIXED_RETURN_NULL_SCHEME—When the maximum limit is reached,
any new connection fails (null is returned) until connection objects have
been released.

Notes:

■ To use data sources or simple connection objects, use
ConnBean instead.

■ ConnCacheBean extends OracleConnectionCacheImpl,
which extends OracleDataSource (both in Oracle JDBC
package oracle.jdbc.pool).
 Data-Access JavaBeans and Tags 4-7

JavaBeans for Data Access
The ConnCacheBean class supports methods defined in the Oracle JDBC
OracleConnectionCacheImpl class, including the following getter and setter
methods for its properties:

■ void setUser(String)

■ String getUser()

■ void setPassword(String)

■ String getPassword()

■ void setURL(String)

■ String getURL()

■ void setMaxLimit(int)

■ int getMaxLimit()

■ void setMinLimit(int)

■ int getMinLimit()

■ void setStmtCacheSize(int)

■ int getStmtCacheSize()

■ void setCacheScheme(int)

Specify ConnCacheBean.DYNAMIC_SCHEME,
ConnCacheBean.FIXED_WAIT_SCHEME, or
ConnCacheBean.FIXED_RETURN_NULL_SCHEME.

■ int getCacheScheme()

Returns ConnCacheBean.DYNAMIC_SCHEME,
ConnCacheBean.FIXED_WAIT_SCHEME, or
ConnCacheBean.FIXED_RETURN_NULL_SCHEME.

The ConnCacheBean class also inherits properties and related getter and setter
methods from the oracle.jdbc.pool.OracleDataSource class. This provides
getter and setter methods for the following properties: databaseName,
dataSourceName, description, networkProtocol, portNumber,
serverName, and driverType. For information about these properties and their
getter and setter methods, see the Oracle9i JDBC Developer’s Guide and Reference.
4-8 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Data Access
Use the following methods to open and close a connection:

■ Connection getConnection()

Get a connection from the connection cache using ConnCacheBean property
settings.

■ void close()

Close all connections and any open cursors.

Although the ConnCacheBean class does not support Oracle JDBC update
batching and row prefetching directly, you can enable these features by calling the
setDefaultExecuteBatch(int) and setDefaultRowPrefetch(int)
methods of the Connection object that you retrieve from the getConnection()
method. Alternatively, you can use the setExecuteBatch(int) and
setRowPrefetch(int) methods of JDBC statement objects that you create from
the Connection object. (Update batching is supported only in prepared
statements.) Refer to the Oracle9i JDBC Developer’s Guide and Reference for
information about these features.

Note: As with any JavaBean you use in a JSP page, you can set
any of the ConnCacheBean properties with a jsp:setProperty
action instead of using the setter method directly.

Notes:

■ ConnCacheBean has the same functionality as the
OracleConnectionCacheImpl class. See the Oracle9i JDBC
Developer’s Guide and Reference for more information.

■ Unlike ConnBean, when you use ConnCacheBean, you use
normal Connection object functionality to create and execute
statement objects.
 Data-Access JavaBeans and Tags 4-9

JavaBeans for Data Access
DBBean for Queries Only
Use oracle.jsp.dbutil.DBBean to execute queries only.

DBBean has the following properties:

■ user (user ID for database schema)

■ password (user password)

■ URL (database connection string)

DBBean provides the following setter and getter methods for these properties:

■ void setUser(String)

■ String getUser()

■ void setPassword(String)

■ String getPassword()

■ void setURL(String)

■ String getURL()

Use the following methods to open and close a connection:

■ void connect()

Establish a database connection using DBBean property settings.

Notes:

■ DBBean has its own connection mechanism but does not
support data sources. If you require a data source, use
ConnBean instead. If you do not require a data source,
ConnBean is not required.

■ Use CursorBean for any other DML operations (UPDATE,
INSERT, DELETE, or stored procedure calls).

Note: As with any JavaBean you use in a JSP page, you can set
any of the DBBean properties with a jsp:setProperty statement
instead of using the setter method directly.
4-10 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Data Access
■ void close()

Close the connection and any open cursors.

Use either of the following methods to execute a query:

■ String getResultAsHTMLTable(String)

Input a string that contains the SELECT statement. This method returns a string
with the HTML commands necessary to output the result set as an HTML table.
SQL column names (or aliases) are used for the table column headers.

■ String getResultAsXMLString(String)

Input a string with the SELECT statement. This method returns the result set as
an XML string, using SQL names (or aliases) for the XML tags.

CursorBean for DML and Stored Procedures
Use oracle.jsp.dbutil.CursorBean for SELECT, UPDATE, INSERT, or
DELETE operations or stored procedure calls on a simple connection. It uses a
previously defined ConnBean object for the connection.

You can specify a SQL operation in a ConnBean object getCursorBean() call, or
through a call to one of the create(), execute(), or executeQuery() methods
of a CursorBean object as described below.

CursorBean supports scrollable and updatable cursors, update batching, row
prefetching, and query timeout limits. For information about these Oracle JDBC
features, see the Oracle9i JDBC Developer’s Guide and Reference.

CursorBean has the following properties:

■ executeBatch (batch size for Oracle JDBC update batching)

Setting this property enables Oracle JDBC update batching.

■ preFetch (number of statements to prefetch in Oracle JDBC row prefetching)

Setting this property enables Oracle JDBC row prefetching.

■ queryTimeout (number of seconds for the driver to wait for a statement to
execute before issuing a timeout)

Note: To use connection caching, use ConnCacheBean and
normal Connection object functionality. Do not use CursorBean.
 Data-Access JavaBeans and Tags 4-11

JavaBeans for Data Access
■ resultSetType (scrollability of the result set, as indicated by one of the
following int constants):

– TYPE_FORWARD_ONLY (default)—Use this for a result set that can scroll
only forward (using the next() method) and cannot be positioned.

– TYPE_SCROLL_INSENSITIVE—Use this for a result set that can scroll
forward or backward and can be positioned, but is not sensitive to
underlying data changes.

– TYPE_SCROLL_SENSITIVE—Use this for a result set that can scroll
forward or backward, can be positioned, and is sensitive to underlying data
changes.

■ resultSetConcurrency (updatability of the result set, as indicated by one of
the following int constants):

– CONCUR_READ_ONLY (default)—Use this for a result set that is read-only
(cannot be updated).

– CONCUR_UPDATABLE—Use this for a result set that is updatable.

You can set these properties with the following methods to enable Oracle JDBC
features, as desired:

■ void setExecuteBatch(int)

■ int getExecuteBatch()

■ void setPreFetch(int)

■ int getPreFetch()

■ void setQueryTimeout(int)

■ int getQueryTimeout()

■ void setResultSetConcurrency(int)

Specify CursorBean.CONCUR_READ_ONLY or
CursorBean.CONCUR_UPDATABLE.

■ int getResultSetConcurrency()

Returns CursorBean.CONCUR_READ_ONLY or
CursorBean.CONCUR_UPDATABLE.
4-12 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Data Access
■ void setResultSetType(int)

Specify CursorBean.TYPE_FORWARD_ONLY,
CursorBean.TYPE_SCROLL_INSENSITIVE, or
CursorBean.TYPE_SCROLL_SENSITIVE.

■ int getResultSetType()

Returns CursorBean.TYPE_FORWARD_ONLY,
CursorBean.TYPE_SCROLL_INSENSITIVE, or
CursorBean.TYPE_SCROLL_SENSITIVE.

To execute a query once a CursorBean instance has been defined in a
jsp:useBean statement, you can use CursorBean methods to create a cursor in
one of two ways. Use the following methods to create the cursor and supply a
connection in separate steps:

■ void create()

■ void setConnBean(ConnBean)

Or you can combine the process into a single step:

■ void create(ConnBean)

Set up the ConnBean object as described in "ConnBean for a Database Connection"
on page 4-4.

Then use the following method to specify and execute a query. This uses a JDBC
plain Statement object behind the scenes.

■ ResultSet executeQuery(String)

Input a string that contains the SELECT statement.

Alternatively, if you want to format the result set as an HTML table or XML string,
use either of the following methods instead of executeQuery():

■ String getResultAsHTMLTable(String)

Returns a string with HTML statements to create an HTML table for the result
set. Specify a string with the SELECT statement.

Note: As with any JavaBean you use in a JSP page, you can set
any of the CursorBean properties with a jsp:setProperty
action instead of using the setter method directly.
 Data-Access JavaBeans and Tags 4-13

JavaBeans for Data Access
■ String getResultAsXMLString(String)

Returns the result set data in an XML string. Specify a string with the SELECT
statement.

To execute an UPDATE, INSERT, or DELETE statement once a CursorBean instance
has been defined in a jsp:useBean action, you can use CursorBean methods to
create a cursor in one of two ways. Use the following methods to create the cursor
(specifying a statement type as an integer, and SQL statement as a string) and
supply a connection:

■ void create(int, String)

■ void setConnBean(ConnBean)

Or you can combine the process into a single step:

■ void create(ConnBean, int, String)

Set up the ConnBean object as described in "ConnBean for a Database Connection"
on page 4-4.

The int input takes one of the following constants to specify the type of JDBC
statement you want: CursorBean.PLAIN_STMT for a Statement object,
CursorBean.PREP_STMT for a PreparedStatement object, or
CursorBean.CALL_STMT for a CallableStatement object. The String input is
to specify the SQL statement.

Then use the following method to execute the INSERT, UPDATE, or DELETE
statement. (You can ignore the boolean return value.)

■ boolean execute()

Or for update batching, use the following method, which returns the number of
rows affected. (See below for how to enable update batching.)

■ int executeUpdate()

Additionally, CursorBean supports Oracle JDBC functionality such as
registerOutParameter() for callable statements, setXXX() methods for

Note: Specify the SQL operation either during statement creation
or during statement execution, but not both. The execute() and
executeUpdate() methods can optionally take a string to specify
a SQL operation. This is also true of the create() call, as well as
the getCursorBean() call in ConnBean
4-14 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JavaBeans for Data Access
prepared statements and callable statements, and getXXX() methods for result sets
and callable statements.

Use the following method to close the database cursor:

■ void close()

Example: Using ConnBean and CursorBean with a Data Source
This following is a sample JSP page that uses ConnBean with a data source to open
a connection, then uses CursorBean to execute a query.

<%@ page import="java.sql.*, oracle.jsp.dbutil.*" %>
<jsp:useBean id="cbean" class="oracle.jsp.dbutil.ConnBean" scope="session">
 <jsp:setProperty name="cbean" property="dataSource"
 value="<%=request.getParameter("datasource")%>"/>
</jsp:useBean>
<% try {
 cbean.connect();
 String sql="SELECT ename, sal FROM scott.emp ORDER BY ename";
 CursorBean cb = cbean.getCursorBean (CursorBean.PREP_STMT, sql);
 out.println(cb.getResultAsHTMLTable());
 cb.close();
 cbean.close();
 } catch (SQLException e) {
 out.println("<P>" + "There was an error doing the query:");
 out.println("<PRE>" + e + "</PRE>\n<P>"); }
%>
 Data-Access JavaBeans and Tags 4-15

SQL Tags for Data Access
SQL Tags for Data Access
OC4J includes a set of tags you can use in JSP pages to execute SQL commands to
access a database. This section, organized as follows, describes the tags:

■ Introduction to Data-Access Tags

■ Data-Access Tag Descriptions

Introduction to Data-Access Tags
OC4J supplies a custom tag library for SQL functionality, consisting of the following
tags:

■ dbOpen—Open a database connection. This tag also supports data sources and
connection pooling. See "Data-Access Support for Data Sources and Pooled
Connections" on page 4-3 for related information.

■ dbClose—Close a database connection.

■ dbQuery—Execute a query.

■ dbCloseQuery—Close the cursor for a query.

■ dbNextRow—Process the rows of a result set.

■ dbExecute—Execute any SQL statement (DML or DDL).

■ dbSetParam—Set a parameter to bind into a dbQuery or dbExecute tag.

■ dbSetCookie—Set a cookie.

These tags are described in the following subsections. For examples, see the OC4J
demos.

Note the following requirements for using SQL tags:

■ You will need the appropriate JDBC driver file, such as classes12.zip for
JDK 1.2 or higher, installed and in your classpath.

■ Verify that the file ojsputil.jar is installed and in your classpath. This file is
provided with the OC4J installation.

Note: The tags in this section use the beans described in
"JavaBeans for Data Access" on page 4-2. Generally speaking, these
beans and tags can be used with non-Oracle databases, assuming
you have appropriate JDBC driver classes; however, numerous
features described below, as noted, are Oracle-specific.
4-16 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL Tags for Data Access
■ Make sure the tag library description file, sqltaglib.tld, is deployed with
the application and is in the location specified in the taglib directives of your
JSP pages, such as in the following example:

<%@ taglib uri="/WEB-INF/sqltaglib.tld" prefix="sql" %>

In an Oracle9i Application Server installation, the tag library description file is
located in the [Oracle_Home]/j2ee/tlds directory.

For general information about JSP 1.1 tag library usage, including tag library
description files and taglib directives, refer to the Oracle9iAS Containers for J2EE
Support for JavaServer Pages Reference.

Data-Access Tag Descriptions
This section provides detailed syntax for the data-access tags and an example using
dbOpen and dbQuery tags with a data source.

■ SQL dbOpen Tag

■ SQL dbClose Tag

■ SQL dbQuery Tag

■ SQL dbCloseQuery Tag

■ SQL dbNextRow Tag

■ SQL dbExecute Tag

■ SQL dbSetParam Tag

■ SQL dbSetCookie Tag

■ Example: Using dbOpen and dbQuery with a Data Source

For a complete set of sample pages using these tags, see the OC4J demos.
 Data-Access JavaBeans and Tags 4-17

SQL Tags for Data Access
SQL dbOpen Tag
Use the dbOpen tag to open a database connection for subsequent SQL operations
through such tags as dbQuery and dbExecute. Do this by specifying a data source
location, in which case connection caches are supported, or by specifying the user,
password, and URL individually. See "Data-Access Support for Data Sources and
Pooled Connections" on page 4-3 for information about how to set up a data source
in OC4J.

The implementation uses oracle.jsp.dbutil.ConnBean instances. For simple
connections, but not connection caches, you can optionally set ConnBean properties
such as stmtCacheSize, preFetch, and batchSize to enable those Oracle JDBC
features. See "ConnBean for a Database Connection" on page 4-4 for more
information.

The ConnBean object for the connection is created in an instance of the
tag-extra-info class of the dbOpen tag. Refer to the Oracle9iAS Containers for J2EE
Support for JavaServer Pages Reference for information about the standard JSP tag
library framework and tag-extra-info classes.

Syntax

<sql:dbOpen
 [connId = "connection_id"]
 [scope = "page" | "request" | "scope" | "application"]
 [dataSource = "JNDI_name"]
 [user = "username"
 password = "password"
 URL = "databaseURL"]
 [commitOnClose = "true" | "false"] >

 ...

</sql:dbOpen>

Notes:

■ The prefix "sql:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

■ See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.
4-18 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL Tags for Data Access
Nested code that you want to execute through this connection can go into the tag
body, between the dbOpen start and end tags.

Attributes

■ connId—Optionally use this to specify an ID name for the connection. You can
then reference this ID in subsequent tags such as dbQuery or dbExecute.
Alternatively, you can nest dbQuery and dbExecute tags inside the dbOpen
tag. You can also reference the connection ID in a dbClose tag when you want
to close the connection.

You can still specify a connection ID if you nest dbQuery or dbExecute tags
inside the dbOpen tag. In this case, the connection will be found through the
connection ID. With the scope attribute, it is possible to have multiple
connections using the same connection ID but different scopes.

If you specify a connection ID, then the connection is not closed until you close
it explicitly with a dbClose tag. Without a connection ID, the connection is
closed automatically when the dbOpen end tag is encountered.

■ scope (used only with a connId)—Use this to specify the desired scope of the
connection instance. The default is page scope.

If you specify a scope setting in a dbOpen tag, then you must specify the same
scope setting in any other tag—dbQuery, dbExecute, or dbClose—that uses
the same connection ID.

■ dataSource (required if you do not set the user, password, and URL
attributes)—Optionally use this to specify the JNDI name of a data source for
database connections. First set up the data source in the OC4J
data-sources.xml file—see "Data-Access Support for Data Sources and
Pooled Connections" on page 4-3. The dataSource setting should correspond

Note: You must either set the dataSource attribute or set the
user, password, and URL attributes. Optionally, you can use a
data source to specify a URL, then use the dbOpen tag user and
password attributes separately.

When a data source is used, and is for a cache of connections, the
first use of the cache initializes it. If you specify the user and
password through the dbOpen tag user and password attributes,
that will initialize the cache for that user and password. Subsequent
uses of the cache are for the same user and password.
 Data-Access JavaBeans and Tags 4-19

SQL Tags for Data Access
to the location name or pooled-location name in a <data-source>
element in data-sources.xml.

A data source must specify a URL setting, but does not have to specify a
user/password pair—you can use the dbOpen tag user and password
attributes instead.

This attribute is supported only in OC4J environments.

■ user (required if no user/password pair is specified through a data
source)—This is the user name for a database connection.

If a user name is specified through both a data source and the user attribute,
the user attribute takes precedence. It is advisable to avoid such duplication,
because conflicts could arise if the data source is a pooled connection with
existing logical connections using a different user name.

■ password (required if no user/password pair is specified through a data
source)—This is the user password for a database connection.

Note that you do not have to hardcode a password into the JSP page, which
would be an obvious security concern. Instead, you can get the password and
other parameters from the request object, as follows:

<sql:dbOpen connId="conn1" user=’<%=request.getParameter("user")%>’
 password=’<%=request.getParameter("password")%>’ URL="url" />

As with the user attribute, if a password is specified through both a data
source and the password attribute, the password attribute takes precedence.

■ URL (required if no data source is specified)—This is the URL for a database
connection. If a URL is supplied through a data source, the dbOpen tag URL
attribute is ignored.

■ commitOnClose—Set this to "true" for an automatic SQL commit when the
connection is closed or goes out of scope. Otherwise, an automatic rollback is
executed. The default is "false", for rollback.

As a convenience, if you want to specify application-wide automatic commit or
rollback behavior, set the parameter name commit-on-close in the
application web.xml file, as in the following example:

<context-param>
 <param-name>commit-on-close</param-name>
 <param-value>true</param-value>
</context-param>
4-20 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL Tags for Data Access
The commitOnClose setting in a dbOpen tag takes precedence over the
commit-on-close setting in web.xml.

SQL dbClose Tag
Use the dbClose tag to close a connection associated with the optional connId
parameter specified in a dbOpen tag. If connId is not used in the dbOpen tag, then
the connection is closed automatically when the dbOpen end tag is reached; a
dbClose tag is not required.

Note that by using the JspScopeListener utility provided with OC4J, you can
have the connection closed automatically with session-based event-handling. Refer
to "JSP Event-Handling—JspScopeListener" on page 8-2 for information.

Syntax

<sql:dbClose connId = "connection_id"
 [scope = "page" | "request" | "scope" | "application"] />

Attributes

■ connId (required)—This is the ID for the connection to be closed, specified in
the dbOpen tag that opened the connection.

■ scope—This is the scope of the connection instance. This attribute is not
necessary for page scope, but if the dbOpen tag specified a scope other than
page, then you must specify that same scope in the dbClose tag.

SQL dbQuery Tag
Use the dbQuery tag to execute a query, outputting the results either as a JDBC
result set, HTML table, XML string, or XML DOM object. Place the SELECT
statement (one only) in the tag body, between the dbQuery start and end tags.

This tag uses an oracle.jsp.dbutil.CursorBean object for the cursor, so you
can set properties such as the result set type, result set concurrency, batch size, and
prefetch size, if desired. See "CursorBean for DML and Stored Procedures" on
page 4-11 for information about CursorBean functionality.

Note: In previous releases, the behavior is always to commit
automatically when the connection is closed. The commitOnClose
attribute offers backward compatibility to simplify migration.
 Data-Access JavaBeans and Tags 4-21

SQL Tags for Data Access
For XML usage, this tag acts as an XML producer. See "XML Producers and XML
Consumers" on page 5-2 for more information. Also see "Example Using the
transform and dbQuery Tags" on page 5-10.

Syntax

<sql:dbQuery
 [queryId = "query_id"]
 [connId = "connection_id"]
 [scope = "page" | "request" | "scope" | "application"]
 [output = "HTML" | "XML" | "JDBC"]
 [maxRows = "number"]
 [skipRows = "number"]
 [bindParams = "value"]
 [toXMLObjName = "objectname"] >

 ...SELECT statement (one only)...

 </sql:dbQuery>

Attributes

■ queryId—You can use this to specify an ID name for the cursor. This is
required if you want to process the results using a dbNextRow tag.

If the queryId parameter is present, then the cursor is not closed until you
close it explicitly with a dbCloseQuery tag. Without a query ID, the cursor is
closed automatically when the dbQuery end tag is encountered. This is not a
request-time attribute, meaning it cannot take a JSP expression value.

■ connId—The ID for a database connection, according to the connId setting in
the dbOpen tag that opened the connection. If you do not specify connId in a
dbQuery tag, then the tag must be nested within the body of a dbOpen tag and
will use the connection opened in the dbOpen tag. This is not a request-time
attribute.

Important:

■ In the current release, do not terminate the SELECT statement
with a semicolon. This will result in a syntax error.

■ The dbQuery tag does not currently support LOB columns.
This support is expected in a future release.
4-22 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL Tags for Data Access
■ scope—This is the scope of the connection instance. This attribute is not
necessary for page scope, but if the associated dbOpen tag specified a scope
other than page, then you must specify that same scope in the dbQuery tag.
This is not a request-time attribute.

■ output—This is the desired output format:

– HTML specifies that the result set be output as an HTML table (default).

– XML specifies that the result set be output as an XML string, or an XML
DOM object if an object name is specified in the toXMLObjName attribute.

– JDBC specifies that the result set be output as a JDBC ResultSet object
that can be processed using the dbNextRow tag to iterate through the rows.

■ maxRows—This is the maximum number of rows of data to display.

■ skipRows—This is the number of data rows to skip in the query results before
displaying results.

■ bindParams—Use this to bind a parameter into the query. The following
example is from an application that prompts the user to enter an employee
number, using bindParams to bind the specified value into the empno field of
the query:

<sql:dbQuery connId="con1" bindParams="empno">
 select * from EMP where empno=?
</sql:dbQuery>

Alternatively, you can set a parameter value with the dbSetParam tag to bind
it in through the bindParams attribute. See "SQL dbSetParam Tag" on
page 4-26.

■ toXMLObjName—Specify an XML object name if you want to output the results
as an XML DOM object. (Also set output to "XML".)

SQL dbCloseQuery Tag
Use the dbCloseQuery tag to close a cursor associated with the optional queryId
parameter specified in a dbQuery tag. If queryId is not specified in the dbQuery
tag, then the cursor is closed automatically when the dbQuery end tag is reached; a
dbCloseQuery tag is not required.

Syntax

<sql:dbCloseQuery queryId = "query_id" />
 Data-Access JavaBeans and Tags 4-23

SQL Tags for Data Access
Attributes

■ queryId (required)—The ID for the cursor to be closed, specified in the
dbQuery tag that opened the cursor.

SQL dbNextRow Tag
Use the dbNextRow tag to process each row of a result set obtained in a dbQuery
tag and associated with the specified queryId. Place the processing code in the tag
body, between the dbNextRow start and end tags. The body is executed for each
row of the result set.

To use the dbNextRow tag, the dbQuery tag must set output to "JDBC" and
specify a queryId for the dbNextRow tag to reference.

The result set object is created in an instance of the tag-extra-info class of the
dbQuery tag. Refer to the Oracle9iAS Containers for J2EE Support for JavaServer Pages
Reference for information about the standard JSP tag library framework and
tag-extra-info classes.

Syntax

<sql:dbNextRow queryId = "query_id" >
...Row processing...
</sql:dbNextRow >

Attributes

■ queryId (required)—This is the ID of the cursor containing the results to be
processed, specified in the dbQuery tag that opened the cursor.

Example The following example shows the combined use of a dbOpen, dbQuery,
and dbNextRow tag.

<sql:dbOpen connId="con1" URL="jdbc:oracle:thin:@myhost:1521:816"
 user="scott" password="tiger">
</sql:dbOpen>
<sql:dbQuery connId="con1" output="jdbc" queryId="myquery">
 select * from EMP
</sql:dbQuery>
<sql:dbNextRow queryId="myquery">
 <%= myquery.getString(1) %>
</sql:dbNextRow>
<sql:dbCloseQuery queryId="myquery" />
<sql:dbClose connId="con1" />
4-24 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL Tags for Data Access
SQL dbExecute Tag
Use the dbExecute tag to execute any DML or DDL statement (one only). Place the
statement in the tag body, between the dbExecute start and end tags.

This tag uses an oracle.jsp.dbutil.CursorBean object for the cursor. See
"CursorBean for DML and Stored Procedures" on page 4-11 for information about
CursorBean functionality.

Syntax

<sql:dbExecute
 [connId = "connection_id"]
 [scope = "page" | "request" | "scope" | "application"]
 [output = "yes" | "no"]
 [bindParams = "value"] >

 ...DML or DDL statement (one only)...

</sql:dbExecute >

Attributes

■ connId—This is the ID of a database connection, according to the connId
setting in the dbOpen tag that opened the connection. If you do not specify
connId in a dbExecute tag, then the tag must be nested within the body of a
dbOpen tag and will use the connection opened in the dbOpen tag.

■ scope—This is the scope of the connection instance. This attribute is not
necessary for page scope, but if the dbOpen tag specified a scope other than
page, then you must specify that same scope in the dbExecute tag.

■ output—If output="yes", then for DML statements the HTML string
"number row[s] affected" will be output to the browser to notify the user how
many database rows were affected by the operation. For DDL statements, the
statement execution status will be printed. The default setting is "no".

Important:

■ In the current release, do not terminate the DML or DDL
statement with a semicolon. This will result in a syntax error.

■ The dbExecute tag does not currently support LOB columns.
This support is expected in a future release.
 Data-Access JavaBeans and Tags 4-25

SQL Tags for Data Access
■ bindParams—Use this to bind a parameter into the SQL statement. The
following example is from an application that prompts the user to enter an
employee number, using bindParams to bind the specified value into the
empno field of the DELETE statement:

<sql:dbExecute connId="con1" bindParams="empno">
 delete from EMP where empno=?
</sql:dbExecute>

Alternatively, you can set a parameter value with the dbSetParam tag to bind
it in through the bindParams attribute. See "SQL dbSetParam Tag" below.

SQL dbSetParam Tag
You can use this tag to set a parameter value to bind into a query, through the
dbQuery tag, or to bind into any other SQL operation, through the dbExecute tag.

Syntax

<sql:dbSetParam name = "param_name"
 value = "param_value"
 [scope = "page" | "request" | "scope" | "application"] />

Attributes

■ name (required)—This is the name of the parameter to set.

■ value (required)— This is the desired value of the parameter.

■ scope—This is the scope of the bind parameter. The default is page scope.

Example The following example uses a dbSetParam tag to set the value of a
parameter named id2. This value is then bound into the SQL statement in the
dbExecute tag.

<sql:dbSetParam name="id2" value=’<%=request.getParameter("id")%>’
 scope="session" />
Result:
 <HR>
 <sql:dbOpen URL="<%= connStr %>" user="scott" password="tiger">
 <sql:dbExecute output="yes" bindParams="id2 name job sal">
 insert into emp(empno, ename, deptno, job, sal)
 values (?, ?, 20, ?, ?)
 </sql:dbExecute>
 </sql:dbOpen>
4-26 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

SQL Tags for Data Access
SQL dbSetCookie Tag
You can use this tag to set a cookie. The dbSetCookie tag wraps functionality of
the standard javax.servlet.http.Cookie class.

Syntax

<sql:dbSetCookie name = "cookie_name"
 [value = "cookie_value"]
 [domain = "domain_name"]
 [comment = "comment"]
 [maxAge = "age"]
 [version = "protocol_version"]
 [secure = "true" | "false"]
 [path = "path"] />

Attributes

■ name (required)—This is the name of the cookie.

■ value—This is the desired value of the cookie. Because it is permissible to have
a null-value cookie, this attribute is not required.

■ domain—This is the domain name for the cookie. The form of the domain
name is according to the RFC 2019 specification.

■ comment—This is for a comment describing the purpose of the cookie.

■ maxAge—This is the maximum allowable age of the cookie, in seconds. Use a
setting of -1 for the cookie to persist until the browser is shut down.

■ version—This is the version of the HTTP protocol that the cookie complies
with.

■ secure—This informs the browser whether the cookie should only be sent
using a secure protocol, such as HTTPS or SSL.

■ path—This specifies a file system path for the cookie, the location to which the
client should return the cookie.

Example

<sql:dbSetCookie name="cId" value=’<%=request.getParameter("id")%>’
 maxAge=’800000’ />
 Data-Access JavaBeans and Tags 4-27

SQL Tags for Data Access
Example: Using dbOpen and dbQuery with a Data Source
This section provides a sample JSP page that uses a dbOpen tag with a data source
to open a connection, then uses a dbQuery tag to execute a query.

<%@ taglib uri="/WEB-INF/sqltaglib.tld" prefix="sql" %>
<HTML>
<BODY>
 <sql:dbOpen dataSource=’<%=request.getParameter("datasource") %>’
 connId="con1">
 </sql:dbOpen>
 <sql:dbQuery connId="con1">
 SELECT * FROM emp ORDER BY ename
 </sql:dbQuery>
 <sql:dbClose connId="con1" />
</BODY>
</HTML>
4-28 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

 XML and XSL Tag Su
5

XML and XSL Tag Support

This chapter describes tags provided with OC4J that you can use for XML data and
XSL transformation, and summarizes additional XML functionality in other OC4J
tags. These tags are implemented according to JSP specifications.

The chapter is organized as follows:

■ Overview of Oracle Tags for XML Support

■ XML Utility Tags

Note: See the Oracle9iAS Containers for J2EE Support for JavaServer
Pages Reference for additional information about XML-related
functionality for JSP pages.
pport 5-1

Overview of Oracle Tags for XML Support
Overview of Oracle Tags for XML Support
This section provides an overview of tags supplied with OC4J that have XML
functionality. This includes tags that can take XML DOM objects as input, generate
XML DOM objects as output, transform XML documents according to a specified
stylesheet, and parse data from an input stream to an XML DOM object. The
following topics are covered:

■ XML Producers and XML Consumers

■ Summary of OC4J Tags with XML Functionality

XML Producers and XML Consumers
An XML-related operation can be classified as either of the following, or as both:

■ an XML producer, which outputs an XML object

■ an XML consumer, which takes an XML object as input

Similarly, an XML-related tag can be classified as an XML producer, or consumer, or
both. XML producers can pass XML objects to XML consumers either explicitly or
implicitly; the latter is also known as anonymous passing.

For explicit passing between XML-related tags, there is a toXMLObjName attribute
in the producer tag and a fromXMLObjName attribute in the consumer tag. Behind
the scenes, the passing is done through the getAttribute() and
setAttribute() methods of the standard JSP pageContext object. The
following example uses explicit passing:

<sql:dbQuery output="XML" toXMLObjName="foo" ... >
 ...SQL query...
</sql:dbQuery>
...
<ojsp:cacheXMLObj fromXMLObjName="foo" ... />

For implicit passing between XML-related tags, do not use the toXMLObjName and
fromXMLObjName attributes. The passing is accomplished through direct
interaction between the tag handlers, typically in a situation where the tags are
nested. The following example uses implicit passing:

<ojsp:cacheXMLObj ... >
 <sql:dbQuery output="XML" >
 ...SQL query...
 </sql:dbQuery>
</ojsp:cacheXMLObj>
5-2 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Oracle Tags for XML Support
Here the XML produced in the dbQuery tag is passed to the cacheXMLObj tag
directly, without being stored to the pageContext object.

For a tag to be able to function as a consumer with implicit passing, the tag handler
implements the OC4J ImplicitXMLObjConsumer interface:

interface ImplicitXMLObjConsumer
{
 void setImplicitFromXMLObj();
}

Summary of OC4J Tags with XML Functionality
For the tag libraries supplied with OC4J, table Table 5–1 summarizes the tags that
can function as XML producers or consumers.

Note the following:

■ The XML transform and styleSheet tags are equivalent and produce
identical results.

■ For convenience, the cacheXMLObj tag is defined in the XML tag library
(xml.tld) as well as the Web Object Cache tag library (jwcache.tld).

Table 5–1 OC4J Tags with XML Functionality

Tag Library
Producer /
Consumer Related Attributes Tag Information

transform /
styleSheet

XML both fromXMLObjName
toXMLObjName

"XML transform and
styleSheet Tags for XML/XSL
Data Transformation" on
page 5-5

parsexml XML producer toXMLObjName "XML parsexml Tag to
Convert from Input Stream"
on page 5-7

cacheXMLObj Web Object
Cache (and
XML)

both fromXMLObjName
toXMLObjName

"Web Object Cache
cacheXMLObj Tag" on
page 7-27

dbQuery SQL producer toXMLObjName "SQL dbQuery Tag" on
page 4-21
 XML and XSL Tag Support 5-3

XML Utility Tags
XML Utility Tags
This section describes XML utility tags supplied with OC4J, and is organized as
follows:

■ XML Utility Tag Descriptions

■ XML Utility Tag Examples

In an Oracle9i Application Server installation, the tag library description file for
XML utility tags, xml.tld, is located in the [Oracle_Home]/j2ee/tlds
directory. To use this TLD file, you will need a taglib directive such as the
following:

<%@ taglib uri="/WEB-INF/xml.tld" prefix="xml" %>

The XML tag library requires the ojsputil.jar, xmlparserv2.jar, and
xsu12.jar (or xsu111.jar for JDK 1.1.x) files to be installed and in your
classpath. These files are supplied with OC4J.

XML Utility Tag Descriptions
This section describes the following utility tags:

■ XML transform and styleSheet Tags for XML/XSL Data Transformation

■ XML parsexml Tag to Convert from Input Stream

Notes:

■ The prefix "xml:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

■ See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

Important: Tag attributes are request-time attributes, meaning
they can take JSP expressions as input, unless otherwise noted.
5-4 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

XML Utility Tags
XML transform and styleSheet Tags for XML/XSL Data Transformation
Many uses of XML and XSL for dynamic JSP pages require an XSL transformation
to occur in the server before results are returned to the client. Oracle provides two
synonymous tags in the XML library to simplify this process. You can output the
result directly to the HTTP client or, alternatively, you can output to a specified
XML DOM object. Use either the transform tag or the styleSheet tag, as
described and shown in this section. The two tags are synonymous, having identical
effects.

Each tag acts as both an XML producer and an XML consumer. They can take as
input either of the following:

■ an XML DOM object

■ the tag body, containing JSP commands and static text that produce the XML
code

The tags can output to either or both of the following, with the specified stylesheet
being applied in either case:

■ an XML DOM object

■ the output writer to the browser, in which case the specified stylesheet is
applied

Each tag applies to what is inside its body, between its start-tag and end-tag. You
can have multiple XSL transformation blocks within a page, with each block
bounded by its own transform or styleSheet tag set, specifying its own href
pointer to the appropriate stylesheet.

Syntax

<xml:transform href="xslRef"
 [fromXMLObjName = "objectname"]
 [toXMLObjName = "objectname"]
 [toWriter = "true" | "false"] >

 [...body...]

</xml:transform >

or:

<xml:styleSheet href="xslRef"
 [fromXMLObjName = "objectname"]
 [toXMLObjName = "objectname"]
 XML and XSL Tag Support 5-5

XML Utility Tags
 [toWriter = "true" | "false"] >

 [...body...]

</xml:styleSheet >

Attributes

■ href (required)—Specify the XSL stylesheet to use for the XML data
transformation. This is required whether you are outputting to an XML object
(where you can have transformation without formatting) or to the browser.

Note the following regarding the href attribute:

– It can refer to either a static XSL stylesheet or a dynamically generated one.
For example, it can refer to a JSP page or servlet that generates the
stylesheet.

– It can be a fully qualified URL (http://host[:port]/path), an
application-relative JSP reference (starting with "/"), or a page-relative JSP
reference (not starting with "/"). Refer to the Oracle9iAS Containers for J2EE
Support for JavaServer Pages Reference for information about
application-relative and page-relative paths.

– Its value can be a static Java string constant literal, or it can be dynamically
specified through a standard JSP request-time expression.

■ fromXMLObjName—Use this to specify an input XML DOM object if input is
from a DOM object instead of from the tag body.

If there is both a tag body and a fromXMLObjName specification,
fromXMLObjName takes precedence.

■ toXMLObjName—Use this to specify the name of an output XML DOM object if
output is to a DOM object, instead of or in addition to going to the JSP writer
object for output to the HTTP client. This is not required if there is an implicit
XML consumer, such as a tag within which the transform or styleSheet tag
is nested.

■ toWriter—This is "true" or "false" to indicate whether output goes to the JSP
writer object for output to the HTTP client. This can be instead of or in addition
to output to a DOM object. The default is "true" for backward compatibility. (In
earlier releases this was the only output choice; there was no toXMLObjName
attribute.)
5-6 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

XML Utility Tags
XML parsexml Tag to Convert from Input Stream
The XML tag library supplies an XML producer utility tag, parsexml, that converts
from an input stream to an XML DOM object. This tag can take input from a
specified resource or from the tag body.

Syntax

<xml:parsexml
 [resource = "xmlresource"]
 [toXMLObjName = "objectname"]
 [validateResource = "dtd_path"]
 [root = "dtd_root_element"] >

 [...body...]

</xml:parsexml >

Attributes

■ resource—Use this to specify an XML resource if input is from a resource
instead of from the tag body. For example:

resource="/dir1/hello.xml"

If there is both a tag body and a specified resource, the resource takes
precedence.

■ toXMLObjName—Specify the name of the XML DOM object where the output
will go. This is not required if there is an implicit XML consumer, such as a tag
within which the parsexml tag is nested.

■ validateResource—For XML validation, you can specify the path to the
appropriate DTD. Alternatively, the DTD can be embedded in the XML
resource. This is not a request-time attribute.

■ root—If validating, specify the root element in the DTD for validation. This is
not a request-time attribute. If you specify validateResource without
specifying root, the default root is the top-level of the DTD.
 XML and XSL Tag Support 5-7

XML Utility Tags
XML Utility Tag Examples
This section provides the following examples:

■ Example Using the transform Tag

■ Example Using the transform and dbQuery Tags

■ Examples Using the transform and parsexml Tags

Example Using the transform Tag
This section provides a sample XSL stylesheet and a sample JSP page that uses the
transform tag to filter its output through the stylesheet. This is a simplistic
example—the XML in the page is static. A more realistic example might use the JSP
page to dynamically generate all or part of the XML before performing the
transformation.

Sample Stylesheet: hello.xsl

<?xml version="1.0"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:template match="page">
 <html>
 <head>
 <title>
 <xsl:value-of select="title"/>
 </title>
 </head>
 <body bgcolor="#ffffff">
 <xsl:apply-templates/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="title">
 <h1 align="center">
 <xsl:apply-templates/>
 </h1>
 </xsl:template>

 <xsl:template match="paragraph">
 <p align="center">
 <i>
5-8 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

XML Utility Tags
 <xsl:apply-templates/>
 </i>
 </p>
 </xsl:template>

</xsl:stylesheet>

Sample JSP Page: hello.jsp

<%@ page session = "false" %>
<%@ taglib uri="/WEB-INF/xml.tld" prefix="xml" %>

<xml:transform href="style/hello.xsl" >

<page>
 <title>Hello</title>
 <content>
 <paragraph>This is my first XML/XSL file!</paragraph>
 </content>
</page>

</xml:transform>

This example results in the following output:
 XML and XSL Tag Support 5-9

XML Utility Tags
Example Using the transform and dbQuery Tags
This example returns a result set from a dbQuery tag, using a transform tag to
filter the query results through the XSL stylesheet rowset.xsl (code below). It
uses a dbOpen tag to open a connection, with the connection string being obtained
either from the request object or through the setconn.jsp page (code below).
Data passing from the dbOpen tag to the transform tag is done implicitly. For
related information, see "SQL dbQuery Tag" on page 4-21 and "SQL dbOpen Tag" on
page 4-18.

JSP Page

<%@ page import="oracle.sql.*, oracle.jdbc.driver.*, oracle.jdbc.*, java.sql.*"
%>
<%@ taglib uri="/WEB-INF/xml.tld" prefix="xml" %>
<%@ taglib uri="/WEB-INF/sqltaglib.tld" prefix="sql" %>

<%
 String connStr=request.getParameter("connStr");
 if (connStr==null) {
 connStr=(String)session.getValue("connStr");
 } else {
 session.putValue("connStr",connStr);
 }
 if (connStr==null) { %>
<jsp:forward page="../../sql/setconn.jsp" />
<%
 }

%>
<h3>Transform DBQuery Tag Example</h3>
<xml:transform href="style/rowset.xsl" >
<sql:dbOpen connId="conn1" URL="<%= connStr %>"
 user="scott" password="tiger">
 </sql:dbOpen>
 <sql:dbQuery connId="conn1" output="xml" queryId="myquery" >
 select ENAME, EMPNO from EMP order by ename
 </sql:dbQuery>
 <sql:dbCloseQuery queryId="myquery" />
 <sql:dbClose connId="conn1" />
</xml:transform>
5-10 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

XML Utility Tags
rowset.xsl

<xsl:stylesheet version=’1.0’ xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’>
<xsl:template match="ROWSET">
 <html><body>
 <h1>A Simple XML/XSL Transformation</h1>
 <table border="2">
<xsl:for-each select="ROW">
 <tr>
 <td><xsl:value-of select="@num"/></td>
 <td><xsl:value-of select="ENAME"/></td>
 <td><xsl:value-of select="EMPNO"/></td>
 </tr>
</xsl:for-each>
</table>
</body></html>
</xsl:template>
</xsl:stylesheet>

setconn.jsp

<body bgcolor="#FFFFFF">

Please enter a suitable JDBC connection string, before you try the above
demo
<pre>
 To use the thin driver insert your host, port and database id.
 Once you have set the connection string it will remain in effect until
 the session times out for most demos. For Connection Cache demos
 which use application scope on most servlet engines the connection
 string will remain in effect for the life of the application.
</pre>
<%
 String connStr;
 connStr=request.getParameter("connStr");
 if (connStr==null) {
 connStr=(String)session.getValue("connStr");
 }
 if (connStr==null) {
 connStr="jdbc:oracle:thin:@localhost:1521:orcl"; // default connection str
 }

 session.putValue("connStr",connStr);
%>
 XML and XSL Tag Support 5-11

XML Utility Tags
<FORM METHOD=get>
<INPUT TYPE="text" NAME="connStr" SIZE=40 value="<%=connStr%>" >
<INPUT TYPE="submit" VALUE="Set Connection String" >
</FORM>

Examples Using the transform and parsexml Tags
This section provides two examples that take output from a parsexml tag and
filter it through a transform tag, using the XSL stylesheet email.xsl. In each
case, data is collected by parsexml from a specified resource XML file, then passed
explicitly from the parsexml tag to the transform tag through the toxml1 XML
object.

The first example uses the XML resource email.xml and a separate DTD,
email.dtd. No root attribute is specified, so validation is from the top-level
element, <email>.

The second example uses the XML resource emailWithDtd.xml, which has the
DTD embedded in the file. The root attribute explicitly specifies that validation is
from the element <email>.

The files email.xml, email.dtd, emailWithDtd.xml, and email.xsl are also
listed below.

Example 1 for transform and parsexml

<%@ taglib uri="/WEB-INF/xml.tld" prefix="xml" %>
<h3>XML Parsing Tag Email Example</h3>
<xml:transform fromXMLObjName="toxml1" href="style/email.xsl">
 <xml:parsexml resource="style/email.xml" validateResource="style/email.dtd"
 toXMLObjName="toxml1">
 </xml:parsexml>
</xml:transform>

Example 2 for transform and parsexml

<%@ taglib uri="/WEB-INF/xml.tld" prefix="xml" %>
<h3>XML Parsing Tag Email Example</h3>
<xml:transform fromXMLObjName="toxml1" href="style/email.xsl">
 <xml:parsexml resource="style/emailWithDtd.xml" root="email"
 toXMLObjName="toxml1">
 </xml:parsexml>
</xml:transform>
5-12 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

XML Utility Tags
email.xml

<email>
<recipient>Manager</recipient>
<copyto>jsp_dev</copyto>
<subject>XML Bug fixed</subject>
<bugno>BUG 1109876!</bugno>
<body>for reuse tag and checked in the latest version!</body>
<sender>Developer</sender>
</email>

email.dtd

<!ELEMENT email (recipient,copyto,subject,bugno,body,sender)>
<!ELEMENT recipient (#PCDATA)>
<!ELEMENT copyto (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT bugno (#PCDATA)>
<!ELEMENT body (#PCDATA)>
<!ELEMENT sender (#PCDATA)>

emailWithDtd.xml

<!DOCTYPE email [
<!ELEMENT email (recipient,copyto,subject,bugno,body,sender)>
<!ELEMENT recipient (#PCDATA)>
<!ELEMENT copyto (#PCDATA)>
<!ELEMENT subject (#PCDATA)>
<!ELEMENT bugno (#PCDATA)>
<!ELEMENT body (#PCDATA)>
<!ELEMENT sender (#PCDATA)>]>
<email>
<recipient>Manager</recipient>
<copyto>jsp_dev</copyto>
<subject>XML Bug fixed</subject>
<bugno>BUG 1109876!</bugno>
<body>for reuse tag and checked in the latest version!</body>
<sender>Developer</sender>
</email>
 XML and XSL Tag Support 5-13

XML Utility Tags
email.xsl

<xsl:stylesheet version=’1.0’ xmlns:xsl=’http://www.w3.org/1999/XSL/Transform’>
<xsl:template match="email">
 <html><body>
 To: <xsl:value-of select="recipient"/>
 CC: <xsl:value-of select="copyto"/>
 Subject: <xsl:value-of select="subject"/> ...
 <xsl:value-of select="body"/> !!
 Thanks <xsl:value-of select="sender"/>
</body></html>
</xsl:template>
</xsl:stylesheet>
5-14 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

 JESI Tags for Edge Side Inc
6

JESI Tags for Edge Side Includes

This chapter describes the JESI (JSP to ESI) tag library that is supplied with OC4J.
These portable tags operate on top of an Edge Side Includes (ESI) framework
available in the Oracle9iAS Web Cache to provide ESI caching functionality in a JSP
application.

The chapter includes the following topics:

■ Overview of Edge Side Includes Technology and Processing

■ Overview of JESI Functionality

■ Oracle JESI Tag Descriptions

■ JESI Tag Handling and JESI-to-ESI Conversion

For an overview of Web caching, including discussion of the Oracle9iAS Web
Cache, the Oracle9i Application Server Java Object Cache, and the OC4J Web Object
Cache, see "Overview of Oracle Caching Support for Web Applications" on
page 1-16.
ludes 6-1

Overview of Edge Side Includes Technology and Processing
Overview of Edge Side Includes Technology and Processing
This section provides background information about some of the underlying
technology upon which the Oracle JESI tags are based.

JESI tags, which are used to break down dynamic content of JSP pages into
cacheable components, are based upon the Edge Side Includes architecture and ESI
markup language.

Although the use of JESI tags is not dependent upon any particular ESI processor or
caching system, it is reasonable to assume that most Oracle customers would use
the Oracle9iAS Web Cache and its ESI processor.

This section covers the following topics:

■ Edge Side Includes Technology

■ Oracle9iAS Web Cache and ESI Processor

This discussion provides only a brief overview of the ESI architecture and language.
For additional information about ESI technology, refer to the following Web site:

http://www.edge-delivery.org

Edge Side Includes Technology
This section introduces the features of ESI technology and the concept of ESI
"surrogates".

Introduction to ESI
Edge Side Includes is an XML-style markup language that allows dynamic content
assembly away from the origin Web server—at the "edge" of the network—and is
designed to take advantage of available tools such as Web caches and content
delivery networks (CDNs) to improve performance for end users.

ESI provides a means of reducing the load on Web and application servers by
promoting processing on intermediaries, known as surrogates or reverse proxies, that
understand the ESI language and act on behalf of the Web server. ESI content is
intended for processing somewhere between the time it leaves the originating Web
server and the time it is displayed in the end user’s browser. A surrogate is
commanded through HTTP headers. Such a surrogate can be referred to as an "ESI
processor" and may be included as part of the functionality of a Web cache.
6-2 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Edge Side Includes Technology and Processing
ESI lends itself to a partial-page caching methodology, where each dynamic portion
of a Web page can be cached individually and retrieved separately and
appropriately.

Using the ESI markup tags, a developer can define aggregate Web pages and the
cacheable components that are to be retrieved and assembled, as appropriate, by the
ESI processor for viewing in the HTTP client. You can think of an aggregate page,
which is the resource associated with the URL that an end user specifies, as simply a
container for assembly, including retrieval and assembly instructions that are
specified through the ESI tags.

More About Surrogates
Because surrogates act on behalf of Web servers, where page content is owned, they
allow content owners to have sufficient control over their behavior. In this way, they
offer greater potential for performance improvements than would otherwise be
available.

The caching process in surrogates operates similarly to the caching process in HTTP
in general, using similar freshness and validation mechanisms as the foundation.
However, surrogates also possess additional control mechanisms.

Key ESI Features
Version 1.0 of the ESI language includes the following key areas of functionality:

■ inclusion

An ESI processor assembles fragments of dynamic content, retrieved from the
network, into aggregate pages to output to the user. Each fragment can have its
own meta data to control its caching behavior.

■ support of variables

ESI supports the use of variables based on HTTP request attributes. ESI
statements can use variables during processing or can output them directly into
the processed markup.

Note: Bear in mind that a JESI user does not have to (and would
typically not want to) use ESI tags directly. JESI tag handlers
translate JESI tags to ESI tags behind the scenes.
 JESI Tags for Edge Side Includes 6-3

Overview of Edge Side Includes Technology and Processing
■ conditional processing

ESI allows use of boolean comparisons for conditional logic in determining how
pages are processed.

■ error handling and alternative processing

Some ESI tags support specification of a default resource or an alternative
resource (or both), such as an alternate Web page, if the primary resource
cannot be found.

Oracle9iAS Web Cache and ESI Processor
This section introduces the Oracle9iAS Web Cache and its ESI processor. See the
Oracle9iAS Web Cache Administration and Deployment Guide for more information.

Introduction to Oracle9iAS Web Cache
Oracle offers Oracle9iAS Web Cache to help e-businesses manage Web site
performance issues. It is a content-aware server accelerator, or reverse proxy server,
that improves the performance, scalability, and availability of Web sites that run on
the Oracle9i Application Server.

By storing pages from frequently accessed URLs in memory, Oracle9iAS Web Cache
eliminates the need to repeatedly process requests for those URLs on the
application Web server. Unlike legacy proxy servers that handle only static
documents, Oracle9iAS Web Cache caches both static content and dynamically
generated content from one or more application Web servers. As the result of more
frequent cache hits, there is greater performance enhancement than with legacy
proxies, and much less load on application servers.

Conceptually, Oracle9iAS Web Cache is positioned in front of application Web
servers, caching their content and sending that content to Web browsers that
request it. When Web browsers access the Web site, they send HTTP protocol or
HTTPS protocol requests to Oracle9iAS Web Cache, which, in turn, acts as a virtual
server for the application Web servers. If the requested content has expired, or has
been invalidated, or is no longer accessible, then Oracle9iAS Web Cache retrieves
the new content from the application Web servers.
6-4 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Edge Side Includes Technology and Processing
Steps in Oracle9iAS Web Cache Usage
Here are the steps for typical browser interaction with Oracle9iAS Web Cache:

1. A browser sends a request to the Web site of a company.

This request, in turn, generates a request to the Domain Name System (DNS)
for the IP address of the Web site.

2. DNS returns the IP address of Oracle9iAS Web Cache.

3. The browser sends the request for the Web page to Oracle9iAS Web Cache.

4. If the requested content is in its cache, Oracle9iAS Web Cache sends the content
directly to the browser. This is known as a cache hit.

5. If Oracle9iAS Web Cache does not have the requested content, or the content is
stale or invalid, then the Web cache hands off the request to the application Web
server. This is known as a cache miss.

6. The application Web server sends the content through Oracle9iAS Web Cache.

7. Oracle9iAS Web Cache sends the content to the client and makes a copy of the
page in cache.

Oracle9iAS Web Cache ESI Processor
Oracle9iAS Web Cache includes an ESI processor to support the use of the Edge
Side Includes markup language in caching. (See "Edge Side Includes Technology"
on page 6-2.)

Web developers in an Oracle9iAS Web Cache environment can use the ESI language
directly in their applications; however, for JSP developers, there are a number of
reasons to use the JESI tag library that is provided as a convenient JSP interface to
the ESI language. (See "Advantages of JESI Tags" on page 6-6.)

Note: A page that is stored in the cache is removed when it
becomes invalid or outdated.
 JESI Tags for Edge Side Includes 6-5

Overview of JESI Functionality
Overview of JESI Functionality
This section introduces JESI functionality and the Oracle implementation, covering
the following topics:

■ Advantages of JESI Tags

■ Overview of JESI Tags Implemented by Oracle

■ JESI Usage Models

■ Invalidation of Cached Objects

■ Personalization of Cached Pages

You can access the proposed JESI specification at the following Web site:

http://www.edge-delivery.org

Advantages of JESI Tags
OC4J provides the JESI tag library as a convenient interface to ESI tags and Edge
Side Includes functionality for Web caching. Developers have the option of using
ESI tags directly in any Web application, but JESI tags provide additional
convenience in a JSP environment. Here are the main advantages in using JESI tags
instead of using ESI tags directly:

■ standard JSP framework and convenient features

For developers accustomed to using JSP pages or working in a JSP IDE
environment, JESI tags allow use of the familiar and convenient features of JSP
programming. For example, you can reference included pages by page-relative
or application-relative syntax instead of the complete URL or file path.

■ JESI shortcut syntax

JESI tags support convenient syntax and tag attributes for specifying meta data
information (such as expiration for cached pages), explicitly invalidating pages
as appropriate, and personalizing pages using cookie information.

■ application-level configuration files

The JESI tag library can use application-level configuration files for convenient
specification of deployment-time parameters and application default settings
that are appropriate to a particular environment. In this way, you can deploy to
different environments that have diverse needs and set appropriate defaults
without changing application code.
6-6 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of JESI Functionality
For example, you can use such a configuration file to preset the cache server
URL, user name, and password for invalidation requests.

Overview of JESI Tags Implemented by Oracle
The Oracle implementation of JESI is layered on top of the standard ESI framework.
Because the JESI tag library is a standard implementation, note the following:

■ You can use it in any standard JSP environment—it does not depend on the
OC4J JSP container.

■ Even though this document discusses the Oracle9iAS Web Cache and its ESI
processor in particular, the JESI tag library does not depend on any particular
caching environment and can work with any ESI processor that conforms to the
ESI 1.0 specification.

The Oracle JESI tag library supports the following tags:

■ JESI control, JESI include, JESI template, and JESI fragment for page
setup and content

■ JESI invalidate (and subtags) for explicit invalidation of cached objects when
appropriate

■ JESI personalize for page customization

Included with the tag library are the following:

■ tag handler classes for these tags

■ a standard tag library description file (TLD) for these tags

JSP developers use these tags (such as JESI include) instead of corresponding ESI
tags (such as esi:include). The usefulness and convenience of this is discussed
previously, in "Advantages of JESI Tags" on page 6-6.

Note: The Oracle JESI tag library is a standard library. For general
information about the standard JavaServer Pages tag library
framework, refer to the Oracle9iAS Containers for J2EE Support for
JavaServer Pages Reference.
 JESI Tags for Edge Side Includes 6-7

Overview of JESI Functionality
JESI Usage Models
There are two models for how to use JESI tags to define aggregate pages and their
cacheable components:

■ the control/include model

■ the template/fragment model

This section describes these models, and concludes with some special notes about
the JESI include tag.

Control/Include Model
One approach to using JESI tags is a modular one, typically bringing most (or all)
cacheable content into the aggregate page as included pages. Generally use this
model as follows:

■ Use the JESI control tag in the top-level page to set caching parameters for
content outside of the included content, if appropriate.

■ Use JESI include tags to bring in dynamic content.

■ Use a JESI control tag inside each included page to set caching parameters for
those pages, as appropriate.

This document refers to this modular approach as the control/include model. It is
particularly convenient in a situation where you are developing new pages.

Each included file is a distinct cacheable object (although caching may be disabled
according to tag settings), and any additional content in the aggregate page is also a
distinct object.

Both tags are optional, depending on the situation. A page can have a JESI control
tag without any JESI include tags. In fact, this is a simple way to convert an
existing page for JESI use. There is also no requirement for a JESI control tag in a
page that uses JESI include tags.

For any page, either top-level or included, that does not specify cacheability
through a JESI control tag, its cacheability depends on configuration settings of
the ESI processor. This applies if the page has no JESI control tag, or if it has a
JESI control tag that does not set the cache attribute.
6-8 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of JESI Functionality
See the following sections for tag syntax and examples:

■ "JESI control Tag" on page 6-15

■ "JESI include Tag" on page 6-16

■ "Examples—Control/Include Model" on page 6-18

Template/Fragment Model
Another JESI tag approach is one where content is in the aggregate page itself, and
you split the page into separately cacheable fragments as desired. Use the JESI
template tag to enclose the aggregate of all cacheable content. This tag sets
caching parameters for the aggregate page outside the fragments. Use JESI
fragment tags as desired to define fragments within the aggregate, to be cached
separately.

This document refers to this scenario as the template/fragment model. It is
particularly convenient in a situation where you are converting existing pages for
JESI use. There can optionally be JESI include tags as well, either at the template
level or the fragment level.

The JESI template tag and JESI fragment tag are always used together. If you do
not need separate fragments in a page, use JESI control instead of JESI
template.

Each fragment is a distinct cacheable object, and dynamic content at the template
level, outside of any fragments, is a distinct cacheable object. Any included page is
also a distinct cacheable object. The cacheability of the template code outside the
fragments depends on the cache attribute setting, if any, of the JESI template tag.
The cacheability of any fragment depends on the cache attribute setting, if any, of
the JESI fragment tag. The cacheability of an included page depends on the cache
attribute setting of the JESI control tag, if any, within that page. For any template,
fragment, or included page that does not specify a cache attribute setting, its
cacheability depends on configuration settings of the ESI processor.

Because the template and fragments are independent cacheable objects, they may
expire at different points in time in the ESI processor. When a cache miss occurs or
an object that has expired is requested, the ESI processor will make a request to the

Notes: The JESI control tag in the aggregate page has no effect
on included pages. An included page without its own JESI
control tag uses default cache settings.
 JESI Tags for Edge Side Includes 6-9

Overview of JESI Functionality
origin server (OC4J in the case of Oracle9iAS) for a fresh copy. If a requested object
is a JESI template, the JSP engine will execute the template code; that is, all code in
the page that is outside any fragments. In output generated by the JSP translator,
the translator will also place ESI markup that designates where all the fragments
should be included. The code contained in the JESI fragments will not be executed
at that time.

When a fragment expires, the ESI processor will make a request to the origin server
for that particular fragment. In order to execute a fragment, the OC4J JSP container
will execute the template code (all code outside of the fragments) plus the code of
the fragment being requested. In the resulting page, there will be the output of the
template, ESI markers for the inclusion of the other fragments, and the results of the
requested fragment. These fragment results will be inserted ("inlined") into the page
at the appropriate point. Upon receiving the response, the ESI processor will find
the inlined fragment in the page and cache the updated copy of that fragment. The
Oracle ESI processor will discard the rest of the page. (Behavior may differ in other
ESI processors.) The Oracle9iAS Web Cache does not update the template when it
requests a fresh fragment.

Keep this behavior in mind when choosing expiration policies for your templates
and fragments. In order to divide a page into template and fragments correctly and
efficiently, it is important to remember what portion of a JSP page is executed
during any particular update request. For example, because the template code is
executed in every update request, try not to place an expensive computation at the
template level, unless it must be executed every time. It is usually preferable to
place expensive computation in a fragment that has as long an expiration time as
possible.

Also be aware that no two fragments are ever executed during the same request.
Therefore, you should not declare or set the value of a scriptlet variable in one
fragment and depend on that variable or the set value in another fragment. If a
variable is needed in more than one fragment, it should be declared and set in the
template code. Similarly, but perhaps less obviously, do not set a request or session
attribute in one fragment and then try to read it in another fragment. Such "page
global logic" should also be placed at the template level.
6-10 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of JESI Functionality
See the following sections for tag syntax and examples:

■ "JESI template Tag" on page 6-21

■ "JESI fragment Tag" on page 6-22

■ "JESI include Tag" on page 6-16

■ "Examples—Template/Fragment Model" on page 6-23

Notes About JESI Includes
In using either model, be aware of the following notes regarding the JESI include
statement:

■ Nested "includes" are supported, either as a JESI include statement that
includes a page that in turn has its own JESI include statement, or as a JESI
include statement inside a fragment defined with JESI fragment.

In the latter case, for example, the ESI processor first requests content of the
aggregate page, next requests content of the fragment, and finally requests
content of the included page within the fragment.

■ Despite conceptual similarities between JESI include and jsp:include, JESI
include is not a perfect substitute for jsp:include when you convert a JSP
page for caching. Because the ESI processor uses separate HTTP requests, you
are unable to pass an HTTP request or response object between an aggregate
page and a page it includes through a JESI include tag. If the code in the
included page needs access to the request or response object of the aggregate
page, you can put the code in a JESI fragment tag (within the JESI template
tag of the aggregate page) instead of in an included page.

Important: In Oracle9iAS 9.0.2, you cannot use the JESI
template/fragment model and explicit ESI markup (such as
<esi:inline> for example) within the same HTTP response.

For example, Oracle9iAS Web Cache errors will occur if there is a
JSP page that uses <jesi:template> and <jesi:fragment>
tags and also includes a servlet that generates HTML with
<esi:inline> tags.
 JESI Tags for Edge Side Includes 6-11

Overview of JESI Functionality
Invalidation of Cached Objects
There may be situations where cached objects must be explicitly invalidated due to
external circumstances, such as changes to relevant data in a database. There may
also be situations where execution of one page may invalidate the data of cached
objects corresponding to another page.

For this reason, JESI provides the JESI invalidate tag and several subtags. These
tags allow you to invalidate pages based on appropriate combinations of the
following:

■ a full URI or URI prefix

■ a cookie name-value pair (optional)

■ an HTTP/1.1 request header name-value pair (optional)

Invalidation messages are in an XML-based format, and specify the URLs to be
invalidated. These messages are initiated by the JSP container when it executes the
JESI invalidate tag, and transmitted to the cache server over HTTP using a POST
method. The cache server then replies with an invalidation response, sent back over
HTTP.

See "Tag and Subtag Descriptions for Invalidation of Cached Objects" on page 6-25
for tag syntax and examples.

Personalization of Cached Pages
Dynamic Web pages frequently display customized information tailored to each
individual user. For example, a welcome page may display the user’s name and a
special greeting, or current quotes for stocks the user owns.

For this kind of tailored output, the Web page depends on cookie information,
which can be provided through the JESI personalize tag. Without this tag to
inform the ESI processor of this dependency, the Web page cannot be shared by
multiple users at the ESI level.

See "Tag Description for Page Personalization" on page 6-31 for tag syntax and
examples.
6-12 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of JESI Functionality
Note: Do not confuse this tag with the Oracle9iAS Personalization
tag library, which encompasses much more functionality. JESI
personalization consists of the ESI processor simply replacing place
holders in a cached page with dynamic strings that come from
cookies sent in a request or response. This enables different users to
share the same cached page. Oracle Personalization, using data
mining on the back-end, is much more dynamic. It produces output
that changes automatically according to user activity. See Chapter 9,
"Oracle9iAS Personalization Tags" for more information.
 JESI Tags for Edge Side Includes 6-13

Oracle JESI Tag Descriptions
Oracle JESI Tag Descriptions
This section describes the syntax and attributes for the JESI tags provided with
OC4J, followed by usage examples. Discussion is organized into the following
categories:

■ Tag Descriptions for Page Setup and Content

■ Tag and Subtag Descriptions for Invalidation of Cached Objects

■ Tag Description for Page Personalization

The Oracle JESI tag library, a standard JavaServer Pages tag library implementation,
is included in the ojsputil.jar file, which is provided with OC4J. Verify that this
file is installed and in your classpath.

To use the JESI tag library, the tag library description file, jesitaglib.tld, must
be deployed with the application. In an Oracle9iAS installation, this file is in the
[Oracle_Home]/j2ee/tlds directory.

In your JSP pages, you must use a taglib directive such as the following:

<%@ taglib uri="/WEB-INF/jesitaglib.tld" prefix="jesi" %>

Tag Descriptions for Page Setup and Content
This section summarizes the use of the following tags, and documents their syntax
and attributes:

■ JESI control

■ JESI include

■ JESI template

Notes:

■ The prefix "jesi:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

■ See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

■ Except where noted otherwise, default settings are determined
by the ESI processor. In the case of the Oracle9iAS Web Cache
ESI processor, this is according to the cache configuration file.
6-14 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions
■ JESI fragment

This section also provides examples of both the control/include model and the
template/fragment model. See "JESI Usage Models" on page 6-8 for overviews of
these models.

JESI control Tag
The JESI control tag controls caching characteristics for JSP pages in the
control/include usage model. You can use a JESI control tag in the top-level page
or any included page, but it is not mandatory. For any page without a JESI control
tag, or with a JESI control tag that has no cache attribute setting, cacheability is
according to the configuration settings of the ESI processor. (See "JESI Usage
Models" on page 6-8.)

The JESI control tag should appear as early as possible in the page, before any
other JESI tags or any buffer flushes in the page.

Be aware of the following:

■ Do not use multiple JESI control tags in a single JSP page. Also do not use
additional JESI control tags in pages that are included, through
jsp:include functionality, into the same response object. In either case, an
exception will result.

■ Do not use a JESI control tag and a JESI template tag in the same page, or in
separate pages that are included into the same response object. An exception
will result.

■ The JESI control tag of the aggregate page has no effect on included pages.
Use a JESI control tag in each included page as well, as necessary.

■ If a page with a JESI control tag depends on request parameters, consider
whether you must cache the page with parameters (as opposed to without
parameters) in the ESI server. Another alternative is to not cache the page at all
(set cache="no"), if you anticipate that too many different request parameter
values will result in too many cached entries for the page.

Syntax

<jesi:control
 [expiration = "value"]
 [maxRemovalDelay = "value"]
 [cache = "yes" | "no" | "no-remote"] />
 JESI Tags for Edge Side Includes 6-15

Oracle JESI Tag Descriptions
Attributes

■ expiration—Specifies the lifetime, in seconds, of the cached object. The
default is 300.

■ maxRemovalDelay—Specifies the maximum time, in seconds, that the ESI
processor can store the cached object after it has expired. The default is 0, for
immediate removal.

■ cache—Specifies whether the object corresponding to the tag is cacheable. Set
cache to "yes" to enable caching. Alternatively, you can set cache to "no" to
disable caching, or to "no-remote" to enable caching only on the closest cache,
instead of on a remote ESI processor or content delivery network. If you do not
set the cache parameter, then cacheability depends on the configuration
settings of the ESI processor.

One reason to make a page non-cacheable, for example, is if you are using a
JESI include tag with copyparam enabled. See "JESI include Tag" below.

JESI include Tag
The JESI include tag, as with a standard jsp:include tag, dynamically inserts
output from the included page into output from the including page. Additionally, it
directs the ESI processor to process and assemble the included pages. Each included
page is a separate cacheable object (or non-cacheable, depending on settings).

You can use this tag in either the control/include model or the template/fragment
model, in any of the following scenarios:

■ by themselves, without a JESI control tag or JESI template and fragment
tags

Note: The proposed JESI specification includes a control
attribute for the JESI control, JESI template, and JESI
fragment tags. This attribute is for setting parameters of ESI
control headers directly. The current Oracle implementation,
however, supports setting only the control header max-age
parameter. Setting this is unnecessary, though, because setting the
expiration and maxRemovalDelay attributes of JESI control
serves the same purpose. Therefore, in Oracle9iAS 9.0.2, the
control attribute is not documented. (Future releases will likely
support setting additional ESI control header parameters, at which
time the control attribute will be documented here.)
6-16 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions
■ after a JESI control tag

■ within a JESI template tag, outside of any fragments

■ within a JESI fragment tag

(See "JESI Usage Models" on page 6-8.)

The cacheability of an included page depends on the cache attribute setting of the
JESI control tag (if any) within that page. If there is no cache setting, then
cacheability depends on configuration settings of the ESI processor.

Although the JESI include tag has similarities in usage to jsp:include, its
different semantics make it unsuitable for page inclusions where request or
response objects must be passed between the originating page and the included
page.

Syntax

<jesi:include page = "uri"
 [alt = "alternate_uri"]
 [ignoreError = "true" | "false"]
 [flush = "true" | "false"]
 [copyparam = "true" | "false"] />

Attributes

■ page (required)—Specifies the URI of the JSP page to be included, using either
page-relative or application-relative syntax. (Refer to the Oracle9iAS Containers
for J2EE Support for JavaServer Pages Reference for information about page-relative
and application-relative syntax.) A full "http://..." or "https://..." URL is
supported as well.

■ alt—Specifies a URI for an alternate page that is to be included if the page that
is specified in the page attribute cannot be accessed. Syntax is the same as for
the page attribute.

■ ignoreError—Set this to "true" for continued processing of the including
page even if no included page (neither the page page nor alt page) can be
accessed. The default value is "false".

■ flush—This attribute is ignored, but is supported to ease migration from
jsp:include syntax.
 JESI Tags for Edge Side Includes 6-17

Oracle JESI Tag Descriptions
■ copyparam—If the included page makes use of request parameters, set this to
"true" to copy parameters and their values from the HTTP request string of the
including page to the included page. The default value is "false".

If request parameters are significant to the included page and
copyparam="true", then either the including page should not be cached
(cache="no" in the JESI control, JESI template, or JESI fragment tag), or,
in the ESI server, the included page should be cached with parameters (instead
of without parameters). As an example, you should generally avoid scenarios
such as the following:

<jesi:control cache="yes"/>
...
<jesi:include page="arf.jsp" copyparam="true" />

The reason is that if you serve a copy of this including page from the cache, the
page will not execute on the server or have a chance to properly copy
parameters into arf.jsp. This would result in clients being served arf.jsp
generated from incorrect parameters.

However, this scenario would not be problematic in certain circumstances, such
as either of the following:

– The arf.jsp page does not use the request parameters. In this case,
though, it is advisable to remove the copyparam attribute or set it to
"false".

or:

– The arf.jsp page is cached in the ESI server with URL parameters. See
the Oracle9iAS Web Cache Administration and Deployment Guide for more
information.

Examples—Control/Include Model
This section provides examples of JESI tag usage in the control/include model.

For a complete sample application using JESI tags, refer to the OC4J demos.

Notes: Future releases may support a JESI param subtag,
conceptually similar to the jsp:param subtag used with
jsp:include.
6-18 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions
Example 1: Control/Include The following example employs default cache settings; no
JESI control tag is necessary. The JESI include tags specify no alternate files, and
a "file not found" error will halt processing. The flush attribute is permissible but
ignored.

<%@ taglib uri="/WEB-INF/jesitaglib.tld" prefix="jesi" %>
<html>
<body>
<jesi:include page="stocks.jsp" flush="true" />
<p>
<hr>
<jesi:include page="/weather.jsp" flush="true" />
<p>
<hr>
<jesi:include page="../sales.jsp" flush="true" />
</body>
</html>

Example 2: Control/Include This example uses the JESI control tag to specify
non-default cache settings for maxRemovalDelay and expiration. In addition, it
explicitly enables caching of the page, though this is already enabled by default. The
first JESI include tag specifies an alternate page in case order.jsp cannot be
retrieved by the ESI processor, and specifies that processing continue even if neither
page can be retrieved. The second JESI include tag specifies no alternate page, and
processing will halt if the page cannot be retrieved.

As you can see, the HTML tags that "Example 1: Control/Include" uses are not
actually required.

<%@ taglib uri="/WEB-INF/jesitaglib.tld" prefix="jesi" %>

<jesi:control maxRemovalDelay="1000" expiration="300" cache="yes"/>
<jesi:include page="order.jsp" alt="alt.jsp" ignoreError="true"/>
<jesi:include page="commit.jsp" />

Example 3: Control/Include This is an example of an aggregate page whose output is
conditional. A cookie represents the identity of a customer. If no cookie is found, the
user will see a generic welcome page with general product information. If a cookie
is found, the user will see a list of products according to the user profile. This list is
brought into the page through a JESI include statement.

The JESI control tag also sets non-default values for maxRemovalDelay and
expiration, and explicitly enables caching for the page.
 JESI Tags for Edge Side Includes 6-19

Oracle JESI Tag Descriptions
<%@ taglib uri="/WEB-INF/jesitaglib.tld" prefix="jesi" %>

<jesi:control maxRemovalDelay="1000" expiration="300" cache="yes"/>
<%
 String customerId=CookieUtil.getCookieValue(request,"customerid");

 if (customerId==null) {
 // some unknown customer
%>
 <jesi:include page="genericwelcome.jsp" />
<%
 }
 else {
 // a known customer; trying to retrieve recommended products from profiling

 String recommendedProductsDescPages[]=
 ProfileUtil.getRecommendedProductsDescURL(customerId);

 for (int i=0; i < recommendedProductsDescPages.length; i++) {
%>
 <jesi:include page="<%=recommendedProductsDescPages[i]%>" />
<%
 }
 }
%>

Example 4: Control/Include This example illustrates the use of JESI include
statements with request parameters. Assume the main page is accessed through the
following URL:

http://host:port/application1/main.jsp?p2=abc

The main page takes the parameter setting p2=abc. Here is the page:

<%@ taglib uri="/WEB-INF/jesitaglib.tld" prefix="jesi" %>
<html>
<jesi:control cache="no" />
<jesi:include page="a.jsp?p1=v1" />
<h3>hello ...</h3>
<jesi:include page="b.jsp" />
<h3>world ...</h3>
<jesi:include page="c.jsp?p1=v2" copyparam="true" />
</html>
6-20 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions
The a.jsp page takes the parameter setting p1=v1. The c.jsp page takes the
setting p1=v2 as well as the setting p2=abc (as a result of the copyparam setting
and the p2 setting in the URL for the main page).

Additionally, this page is non-cacheable, according to the cache="no" setting. In
fact, remember that you should use the copyparam setting in a JESI include tag
only when the including page is non-cacheable, because the request attributes may
change from one request to the next. Remember, too, that the cache="no" setting
has no effect on the included pages—they are still cacheable by default. In other
words, each is cacheable unless it has its own JESI control tag with cache="no"
for some reason.

JESI template Tag
Use the JESI template tag to specify caching behavior for the aggregate page,
outside any fragments, in the template/fragment usage model. (See "JESI Usage
Models" on page 6-8.) The corresponding HTTP header will be set according to the
edge architecture specification. The aggregate content (outside the fragments) is a
cacheable object, and each fragment set aside with a JESI fragment tag is a
separate cacheable object.

Place the JESI template start tag as early in the page as possible—it must appear
before any other JESI tags or any buffer flushes in the page. Place the JESI
template end tag as late in the page as possible—it must appear after any other
JESI tags in the page.

If a JESI template tag does not set the cache attribute, then cacheability of the
corresponding object is according to configuration settings of the ESI processor.

The JESI template tag is always used together with JESI fragment tags. If you
have no need for separate fragments, use a JESI control tag instead of a JESI
template tag.

Be aware of the following:

■ Do not use multiple JESI template tags in a single JSP page. Also do not use
additional JESI template tags in pages that are included, through
jsp:include functionality, into the same response object. In either case, an
exception will result.

■ Do not use a JESI control tag and a JESI template tag in the same page, or in
separate pages that are included into the same response object. An exception
will result.
 JESI Tags for Edge Side Includes 6-21

Oracle JESI Tag Descriptions
■ The JESI template tag settings have no effect on the enclosed fragments;
fragments must provide their own settings.

■ If a page with a JESI template tag depends on request parameters, consider
whether you must cache the page with parameters (instead of without
parameters) in the ESI server. Another alternative is to not cache the page at all
(set cache="no"), if you anticipate that too many different request parameter
values will result in too many cached entries for the page.

The JESI template tag has the same attributes, with the same usage, as the JESI
control tag.

Syntax

<jesi:template
 [expiration = "value"]
 [maxRemovalDelay = "value"]
 [cache = "yes" | "no" | "no-remote"] >

...page content, jesi:fragment tags, jesi:include tags...

</jesi:template>

Attributes

For attribute descriptions, see "JESI control Tag" on page 6-15.

JESI fragment Tag
Use one or more JESI fragment tags within a JESI template tag, between the JESI
template start and end tags, in the template/fragment model. (See "JESI Usage

Note: If request parameters are significant to the fragment, then
either the enclosing template should not be cached (cache="no"
in the JESI template tag), or, in the ESI server, the fragment
should be cached with parameters (instead of without parameters).
In the background, a fragment, as with a page included through a
JESI include tag, involves an additional request. Request
parameters (if any) are always passed from the template to the
fragment, equivalent to JESI include tag functionality with a
setting of copyparam="true". (This kind of issue is also
discussed in "JESI include Tag" on page 6-16.)
6-22 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions
Models" on page 6-8.) The JESI fragment tag defines separate fragments of JSP
code, as desired, for caching behavior. Each fragment is a separate cacheable object.

When a particular fragment is requested through the ESI mechanism, the ESI
processor will retrieve only that fragment.

Each JESI fragment tag specifies its own instructions to the ESI processor. If the
cache attribute is not set, then cacheability of the corresponding object is according
to the configuration settings of the ESI processor. The settings of the surrounding
JESI template tag have no effect on the fragments.

The JESI fragment tag has the same attributes, with the same usage, as the JESI
control and JESI template tags.

Syntax

<jesi:fragment
 [expiration = "value"]
 [maxRemovalDelay = "value"]
 [cache = "yes" | "no" | "no-remote"] >

...JSP code fragment...

</jesi:fragment>

Attributes

For attribute descriptions, see "JESI control Tag" on page 6-15.

Examples—Template/Fragment Model
This section contains examples of JESI tag usage in the template/fragment model.

Example 1: Template/Fragment This is a general example showing use of the JESI
template and JESI fragment tags. Because only the expiration attribute is set
in any of the tags, all other settings are according to defaults.

The aggregate content (outside the fragments), according to the JESI template tag,
uses an expiration of 3600 seconds. This applies to all the HTML blocks because
they are all outside the fragments. JSP code block #1 is cached with an expiration
setting of 60; JSP code block #2 is cached with the default expiration setting; and JSP
code block #3 is cached with an expiration setting of 600.

<%@ taglib uri="/WEB-INF/jesitaglib.tld" prefix="jesi" %>
<jesi:template expiration="3600">
 JESI Tags for Edge Side Includes 6-23

Oracle JESI Tag Descriptions
...HTML block #1...
 <jesi:fragment expiration="60">
 ...JSP code block #1...
 </jesi:fragment>
...HTML block #2...
 <jesi:fragment>
 ...JSP code block #2...
 </jesi:fragment>
...HTML block #3...
 <jesi:fragment expiration="600">
 ...JSP code block #3...
 </jesi:fragment>
...HTML block #4...
</jesi:template>

Example 2: Template/Fragment This example employs JESI include tags inside the
fragments. The following are the cacheable objects for this page:

■ each included page

■ each fragment, outside of its included page

■ the aggregate of the HTML blocks, which are all at template level outside the
fragments

<%@ taglib uri="/WEB-INF/jesitaglib.tld" prefix="jesi" %>
<jesi:template expiration="3600">
...HTML block #1...
 <jesi:fragment expiration="60">
 ...JSP code block #1...
 <jesi:include page="stocks.jsp" />
 </jesi:fragment>
...HTML block #2...
 <jesi:fragment>
 ...JSP code block #2...
 <jesi:include page="/weather.jsp" />
 </jesi:fragment>
...HTML block #3...
 <jesi:fragment expiration="600">
 ...JSP code block #3...
 <jesi:include page="../sales.jsp" />
 </jesi:fragment>
...HTML block #4...
</jesi:template>
6-24 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions
Tag and Subtag Descriptions for Invalidation of Cached Objects
Use the JESI invalidate tag and the following subtags, as appropriate, to
explicitly invalidate cached objects in the ESI processor:

■ JESI object

■ JESI cookie (subtag of JESI object)

■ JESI header (subtag of JESI object)

See "Invalidation of Cached Objects" on page 6-12 for an overview.

JESI invalidate Tag
You can use the JESI invalidate tag with its JESI object subtag to explicitly
invalidate one or more cached objects.

Use the subtags as follows:

■ Use the required JESI object subtag to specify what to invalidate according to
URI or URI prefix.

■ Optionally use the JESI cookie subtag or JESI header subtag of the JESI
object tag to specify further criteria for what to invalidate, according to cookie
or HTTP header information.

Syntax

<jesi:invalidate
 [url = "url"
 username = "username"
 password = "password"]
 [config = "configfilename"]
 [output = "browser"] >

Required subtag (described in "JESI object Subtag" on page 6-27):

 <jesi:object ... >

Optional subtag of JESI object (described in "JESI cookie Subtag" on
page 6-28):

 <jesi:cookie ... />
 JESI Tags for Edge Side Includes 6-25

Oracle JESI Tag Descriptions
Optional subtag of JESI object (described in "JESI header Subtag" on
page 6-29):

 <jesi:header ... />

 </jesi:object>

</jesi:invalidate>

Either specify the user, password, and URL all through their individual tags, or all
in the configuration file referred to in the config attribute.

Attributes

■ url—Specifies the URL of the cache server. If this attribute is omitted, you
must specify the URL in the JESI configuration file.

■ username—Specifies the user name for logging in to the cache server. If this
attribute is omitted, you must specify the user name in the JESI configuration
file.

■ password—Specifies the password for logging in to the cache server. If this
attribute is omitted, you must specify the password in the JESI configuration
file.

■ config—Specifies a JESI configuration file. You can use this file to provide the
cache server URL, user name, and password information instead of using the
corresponding tag attributes. Specify the location in application-relative syntax,
starting with "/". Refer to the Oracle9iAS Containers for J2EE Support for
JavaServer Pages Reference for general information about application-relative
syntax.

■ output—Optionally sets an output device to receive the invalidation response
from the cache server. Currently, the only supported setting is "browser", to
show the message in the user’s Web browser. If you do not set this parameter,
the confirmation message will not be displayed at all.

Example: Configuration File Following is an example of a configuration file that is used
instead of the url, username, and password attributes to set the URL and login
information.

Note: It is permissible to have multiple object tags within an
invalidate tag.
6-26 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions
<?xml version="1.0" ?>
<ojsp-config>
 <web-cache>
 <url>http://yourhost.yourcompany.com:4001</url>
 <username>invalidator</username>
 <password>invpwd</password>
 </web-cache>
</ojsp-config>

JESI object Subtag
Use the required JESI object subtag of the JESI invalidate tag to specify cached
objects to invalidate, according to either the complete URI or a URI prefix.
Optionally use its JESI cookie subtag or JESI header subtag to specify further
criteria for invalidation, based on cookie or HTTP header information.

Specify either the complete URI or the URI prefix in the uri attribute setting.
Whether this field is interpreted as a full URI or as a prefix depends on the setting
of the prefix attribute.

Syntax

<jesi:object uri = "uri_or_uriprefix"
 [maxRemovalDelay = "value"]
 [prefix = "yes" | "no"] >

Optional subtag (described in "JESI cookie Subtag" on page 6-28):

 <jesi:cookie ... />

Optional subtag (described in "JESI header Subtag" on page 6-29):

 <jesi:header ... />

</jesi:object>

or (if not using either subtag):

<jesi:object
 uri = "uri_or_uriprefix"
 [maxRemovalDelay = "value"]
 [prefix = "yes" | "no"] />
 JESI Tags for Edge Side Includes 6-27

Oracle JESI Tag Descriptions
Attributes

■ uri (required)—Specifies either the complete URI of the page whose
corresponding cached object is to be invalidated (if prefix="no"), or a URI
prefix that specifies objects for multiple pages to be invalidated according to
location (if prefix="yes").

If a prefix is specified, then cached objects for all pages under that location are
invalidated. For example, for a prefix setting of /abc/def, cached objects for
all pages in the corresponding directory and any subdirectories are invalidated.

■ prefix—Set this to "yes" if the uri attribute is to be interpreted as a URI prefix
only, and to "no" (default) if uri is to be interpreted as a complete URI.

■ maxRemovalDelay—Specifies the maximum time, in seconds, that the ESI
processor can store the cached object after it has been invalidated. This is 0 by
default, for immediate removal.

JESI cookie Subtag
Use the JESI cookie subtag of the JESI object tag (which is a subtag of JESI
invalidate) to use cookie information as a further criterion for invalidation. This
is used in addition to the URI or URI prefix setting in the JESI object tag, and
possibly in addition to a JESI header tag as well.

Syntax

<jesi:cookie name = "cookie_name"
 value = "cookie_value" />

Notes:

■ It is permissible to have multiple object tags within an
invalidate tag.

■ It is permissible to have multiple cookie tags or header tags
within an object tag.

Note: It is permissible to have multiple cookie tags within an
object tag.
6-28 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions
Attributes

■ name (required)—This is the name of the cookie.

■ value (required)—This is the value of the cookie.

For a cached object to be invalidated, it must have a cookie that matches this name
and value.

JESI header Subtag
Use the JESI header subtag of the JESI object tag (which is a subtag of JESI
invalidate) to use HTTP/1.1 header information as a further criterion for
invalidation. This is in addition to the URI or URI prefix setting in the JESI object
tag, and possibly in addition to a JESI cookie tag as well.

Syntax

<jesi:header name = "header_name"
 value = "header_value" />

Attributes

■ name (required)—This is the name of the HTTP/1.1 header.

■ value (required)—This is the value of the HTTP/1.1 header.

For a cached object to be invalidated, it must have a header that matches this name
and value.

Examples—Page Invalidation
This section provides examples of page invalidation using the JESI invalidate
tag, its JESI object subtag, and the JESI cookie subtag of the JESI object tag.

Example 1: Page Invalidation This example invalidates a single object in the ESI
processor, specified by its complete URI. (By default, uri specifies a full URI, not a
URI prefix.) The JESI invalidate tag also specifies the URL for the cache server
and the user name and password for login, and it specifies that the invalidation
response from the cache server should be displayed in the user’s browser.

Note: It is permissible to have multiple header tags within an
object tag.
 JESI Tags for Edge Side Includes 6-29

Oracle JESI Tag Descriptions
...
<jesi:invalidate url="http://yourhost.yourcompany.com:4001"
 username="invalidator" password="invpwd"
 output="browser">
 <jesi:object uri="/images/logo.gif"/>
</jesi:invalidate>
...

Example 2: Page Invalidation This is equivalent to Example 1: Page Invalidation, but
uses a configuration file to specify the cache server URL and login information.

...
<jesi:invalidate config="/myconfig.xml" output="browser">
 <jesi:object uri="/images/logo.gif"/>
</jesi:invalidate>
...

The JESI invalidate tag uses application-relative syntax for the configuration file.
As an example, suppose that myconfig.xml has the following content:

<?xml version="1.0" ?>
<ojsp-config>
 <web-cache>
 <url>http://yourhost.yourcompany.com:4001</url>
 <username>invalidator</username>
 <password>invpwd</password>
 </web-cache>
</ojsp-config>

Example 3: Page Invalidation This example invalidates all objects in the ESI processor,
according to the URI prefix "/". It does not specify that the invalidation
confirmation message be displayed in the browser, so it will not be displayed at all.

...
<jesi:invalidate url="http://yourhost.yourcompany.com:4001"
 username="invalidator" password="invpwd">
 <jesi:object uri="/" prefix="yes"/>
</jesi:invalidate>
...
6-30 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Oracle JESI Tag Descriptions
Example 4: Page Invalidation This example invalidates a single object but allows it to
be served stale for up to 30 minutes (1800 seconds).

...
<jesi:invalidate url="http://yourhost.yourcompany.com:4001"
 username="invalidator" password="invpwd">
 <jesi:object uri="/images/logo.gif" maxRemovalDelay="1800"/>
</jesi:invalidate>
...

Example 5: Page Invalidation This example specifies the same object for invalidation as
Example 1: Page Invalidation, but specifies that it should be invalidated only if it
has a cookie named user_type with value customer.

...
<jesi:invalidate url="http://yourhost.yourcompany.com:4001"
 username="invalidator" password="invpwd">
 <jesi:object uri="/images/logo.gif">
 <jesi:cookie name="user_type" value="customer"/>
 </jesi:object>
</jesi:invalidate>
...

Tag Description for Page Personalization
To allow page customization when sharing the same cached page between multiple
users, the ESI processor must be informed of dependencies by the page on cookie
and session information. Cookie value replacement, for example, occurs in the ESI
processor instead of in the Web server.

JESI personalize Tag
Use the JESI personalize tag to allow page customization, by informing the ESI
processor of dependencies on cookie and session information.

Syntax

<jesi:personalize name = "cookie_name"
 [value = "default_value"] />
 JESI Tags for Edge Side Includes 6-31

Oracle JESI Tag Descriptions
Attributes

■ name (required)—Specifies the name of the cookie whose value is used as the
basis for personalizing the page.

■ value—An optional default value in case the cookie is not found. This allows
the ESI processor to avoid having to go back to the Web server to look for the
cookie.

Example—Page Personalization
Following is an example showing use of the JESI personalize tag:

<jesi:personalize name="user_id" value="guest" />

The corresponding ESI tag that is generated allows the ESI processor to find the
necessary information. In this case, it looks for a cookie named user_id and
retrieves its value. If it cannot find the cookie, it uses a default value of "guest".
Handling this cookie-value replacement in the ESI processor avoids having to send
a request to the Web server.
6-32 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JESI Tag Handling and JESI-to-ESI Conversion
JESI Tag Handling and JESI-to-ESI Conversion
JESI tag handler classes, supplied as part of the JESI tag library with OC4J, provide
the bridge from JSP functionality to ESI functionality. Tag handlers translate JESI
tags into ESI tags and, as appropriate, generate HTTP requests for invalidation, set
HTTP response headers, and so on. Be aware, however, that there is not always a
simple one-to-one mapping between JESI tags and ESI tags, or between JESI tag
attributes and ESI tag attributes.

Example: JESI-to-ESI Conversion for Included Pages
As an example of JESI-to-ESI conversion, consider the following JSP code:

<p>BEGIN</p>
<jesi:control cache="no"/>
<jesi:include page="stocks.jsp" flush="true" />
<p>
<hr>
<jesi:include page="/weather.jsp" copyparam="true" flush="true" />
<p>
<hr>
<jesi:include page="../sales.jsp?tax=local" copyparam="true" flush="true" />
<p>END</p>

Assume that this JSP code is part of a page with the following URL:

http://host:port/application1/top.jsp

Further assume the following request:

http://host:port/application1/top.jsp?city=Washington_DC

In this case, the JESI include tag handler generates ESI code such as in the
following response.

In the response header:

Surrogate-Control: content="ESI/1.0",max-age=300+0

In the response body:

<p>BEGIN</p>
<esi:include src="/application1/stocks.jsp"/>

<p>
<hr>
 JESI Tags for Edge Side Includes 6-33

JESI Tag Handling and JESI-to-ESI Conversion
<esi:include src="/weather.jsp?city=Washington_DC"/>

<p>
<hr>
<esi:include src="/sales.jsp?tax=local&city=Washington_DC"/>

<p>END</p>

This response is read by the ESI processor before being delivered to the client. A
Surrogate-Control header alerts the ESI processor that the response body
contains ESI code; therefore, the caching mechanism looks inside the response body
for <esi:> tags. In addition, the Surrogate-Control header sets the cache
expiration and maximum delay interval for the page, in this case using the default
expiration of 300 and the default maximum delay of 0 because there is no JESI
control tag to specify otherwise.

In response to each of the three esi:include tags, the ESI processor makes an
additional request to the URL specified. Each response is included into the top-level
page, and only after that is the assembled page delivered to the client. Note that the
client receives one response, but the cache makes four requests to obtain it. This
may seem like a lot of overhead; however, the overall efficiency will be improved if
many additional requests also use the same included pages, such as weather.jsp.
No requests for these pages are required, because they are cached separately on the
ESI server.

Example: JESI-to-ESI Conversion for a Template and Fragment
Suppose that when employees connect to a corporate intranet site, the content of
their pages is dynamic, except for a few features that are present in every response.
In particular, there is always a footer displaying the stock chart and latest business
headlines for the company, and the business headlines are obtained from an
external business news site. Because all returned pages will have to include the
same information, and it is expensive to obtain, it is more efficient to cache the
footer on the ESI server.

The remainder of the page response is dynamic, incorporating the stock fragment in
a slightly different way each time. To avoid having to rewrite the page, you can
mark the footer as a JESI fragment and the enclosing page as a JESI template.

Also assume that a charity campaign is in progress, and that the organizers want to
display a bar chart showing their goal amount and the current donation amount as
part of all corporate pages. This information is stored in a special database and is
6-34 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JESI Tag Handling and JESI-to-ESI Conversion
updated twice a day. The chart is a good candidate to be an additional JESI
fragment.

Therefore, you would add a JESI template tag at the top of the page and use JESI
fragment tags to enclose the fragments that are to be cached as separate entities.

Assume the URL to the corporate page is as follows:

http://www.bigcorp.com/employee_page.jsp

Further assume you have modified the page as follows:

<%@ taglib uri="/WEB-INF/jesitaglib.tld" prefix="jesi" %>
<jesi:template cache="no" >

<p>BEGIN</p>
... some dynamic page content...
<jesi:fragment>
This_is_the_body_of_Charity_Chart
</jesi:fragment>
... some more dynamic content...
<jesi:fragment>
This_is_the_body_of_Business_Footer
</jesi:fragment>
<p>END</p>

When the page is requested, an HTTP response is generated as follows.

In the response header:

Surrogate-Control: content="ESI/1.0",max-age=300+0,no-store

In the response body:

<p>BEGIN</p>
... some dynamic page content...
<esi:include src="/employee_page.jsp?__esi_fragment=1"/>
... some more dynamic content...
<esi:include src="/employee_page.jsp?__esi_fragment=2"/>
<p>END</p>

As with the JESI include example in "Example: JESI-to-ESI Conversion for
Included Pages" on page 6-33, the ESI server is alerted by the
Surrogate-Control response header. Note the no-store directive, generated
because of the cache="no" setting in the JESI template tag. In addition, the
default expiration of 300 and the default maximum delay of 0 are used, because the
JESI template tag does not specify otherwise.
 JESI Tags for Edge Side Includes 6-35

JESI Tag Handling and JESI-to-ESI Conversion
The ESI server makes two additional requests, where it fetches and caches the two
fragments. After that, the composite page is returned to the employee. When the
employee works with the page again, the dynamic content will be newly generated,
but the chart and the footer will be served from the cache.

Note: Surrogate-Control headers are consumed by the ESI
server and are not seen in the final response to the client.
6-36 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

 Web Object Cache Tags an
7

Web Object Cache Tags and API

This chapter describes the Web Object Cache, an application-level caching
mechanism supplied with OC4J. For Web applications written in Java, you can use
the Web Object Cache in conjunction with the Oracle9iAS Web Cache for increased
speed and scalability.

This chapter includes the following topics:

■ Overview of the Web Object Cache

■ Key Functionality of the Web Object Cache

■ Attributes for Policy Specification and Use

■ Web Object Cache Tag Descriptions

■ Web Object Cache Servlet API Descriptions

■ Cache Policy Descriptor

■ Cache Repository Descriptor

■ Configuration for Back-End Repository

For an overview of Web caching, including a discussion of the Oracle9iAS Web
Cache and Oracle9i Application Server Java Object Cache, see "Overview of Oracle
Caching Support for Web Applications" on page 1-16.
d API 7-1

Overview of the Web Object Cache
Overview of the Web Object Cache
The OC4J Web Object Cache is a mechanism that allows Web applications written in
Java to capture, store, reuse, post-process, and maintain the partial and intermediate
results generated by a dynamic Web page, such as a JSP or servlet. For
programming interfaces, it provides a tag library (for use in JSP pages) and a Java
API (for use in servlets).

The Web Object Cache works at the Java level and is closely integrated with the
HTTP environment of JSP and servlet applications. Cached objects might consist of
HTML or XML fragments, XML DOM objects, or Java serializable objects.

Through the Web Object Cache programming interfaces, you can decide how to
split Web pages into page blocks that define separate cache objects for finer control
of caching. (The terms block and object are used somewhat interchangeably in this
sense.) In this way, the application itself can control life span and other behavior of
individual cache entities during runtime. Application developers have the best
understanding of the life cycle patterns of their application Web pages, so are best
suited to determine how to split pages into cache blocks. You can specify
maintenance policies for partial results either declaratively in an external file, the
cache policy descriptor, or programmatically within the application itself.

This section covers the following topics:

■ Benefits of the Web Object Cache

■ Web Object Cache Components

■ Cache Policy and Scope

Benefits of the Web Object Cache

Using the Web Object Cache can significantly reduce the amount of time spent in
constructing page blocks or Java objects in dynamic applications, such as those with
expensive intermediate operations like querying a database and formatting or

Note: The Web Object Cache is useful in particular scenarios and
does not replace the need for other caching mechanisms, including
the Oracle9iAS Web Cache. For an overview of the Web Object
Cache, and how it relates to the Oracle9iAS Web Cache and the
Oracle9i Application Server Java Object Cache, including a
discussion of when it is appropriate to use each one, see "Overview
of Oracle Caching Support for Web Applications" on page 1-16.
7-2 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of the Web Object Cache
transforming the results. Subsequent queries pull the information out of the cache,
so the query and formatting do not have to be repeated.

Furthermore, developers can closely control the cache programmatically, through
API calls or custom JSP tags. This can include controlling when cache entries are
created, what they are named, when they expire, which users can see which cached
data, and what operations can be applied to cached data before the results are
served to the user.

Some kinds of Web applications benefit more than others by using the Web Object
Cache, depending on the nature and use of their data. For example, applications
such as catalog and directory browsing, delayed stock quotes, and personalized
portals would particularly benefit. Applications such as real-time stock trading or
real-time stock quotes, however, would not benefit, because the data has to be
updated so frequently that the overhead of the caching operations would outweigh
the benefits. (In these circumstances, however, the Oracle9iAS Web Cache might still
be useful because of its lighter overhead.)

In general, the Web Object Cache is most useful in the following situations:

■ for special post-processing on cached data objects, such as XSLT or XML DOM
operations

■ for sharing data in a non-HTTP situation, such as reusing cached XML data or
Java objects and sending the data to others through SMTP, JMS, AQ, or SOAP

■ for special storage needs, such as storing cached data in a file system or
database for persistent storage of data with a long lifetime

■ for application-specific authorization, allowing different users to have different
access rights to different data items, such as for a Web-based groupware
application

The application can have its own authorization scheme. The Web Object Cache
is embedded within Java authorization logic.

Using the Web Object Cache in JSP pages, instead of in servlets, is particularly
convenient. JSP code generation can save much of the development effort.

Web Object Cache Components
The Web Object Cache consists of two main components:

■ the cache repository

■ the cache programming interfaces
 Web Object Cache Tags and API 7-3

Overview of the Web Object Cache
This section also provides a brief introduction to the Oracle9i Application Server
Java Object Cache, which is the default cache repository of the Web Object Cache.

Cache Repository
The cache repository is the component that is responsible for data storage, data
distribution, and cache expiration. There can be multiple repository
implementations for a programmable Web cache (such as the Web Object Cache),
depending on the tier and platform. For example, the file system might be used for
secondary storage in the middle tier, and database tables for primary storage in the
database tier.

The Web Object Cache uses the Oracle9i Application Server Java Object Cache as its
default repository. This is a general-purpose caching service and API designed for
Java application use, with objects being accessible by name.

The Java Object Cache is a powerful and flexible programming facility. There are no
restrictions on the types of objects that can be cached or the original source of the
objects—the management of each object is easily customizable. Each object has a set
of attributes such as the following:

■ how the object is loaded into the cache

■ where the object is stored (in memory, on disk, or both)

■ the lifetime, also known as the time-to-live, of the object

■ whom to notify when the object is invalidated

Objects can be invalidated as a group or individually.

For more information, see the Oracle9iAS Containers for J2EE Services Guide.

Cache Programming Interfaces
The front-end caching interfaces are used through JSP pages and servlets to handle
HTTP processing and to direct the semantics relating to the cache policy (rules and
specifications determining how the cache works).

Notes: See "Configuration for Back-End Repository" on page 7-63
for information about configuring the Java Object Cache or a file
system as the back-end repository for the Web Object Cache.
7-4 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of the Web Object Cache
The OC4J Web Object Cache programming interfaces can be further divided as
follows:

■ Web Object Cache tag library

This is a convenient wrapper, using JSP custom tag functionality, for the Web
Object Cache API. Use custom tags in a JSP page to control the caching, with the
API being called through the underlying tag handler classes.

■ Web Object Cache servlet API

This is the common layer across servlets and JSP pages, dealing with the HTTP
semantics and cache policy. This layer communicates with the cache repository.

This chapter describes these programming interfaces and their interaction with the
cache repository. Cache tags are described in "Web Object Cache Tag Descriptions"
on page 7-21. The underlying cache policy API is described in "Web Object Cache
Servlet API Descriptions" on page 7-39. In servlets, you will use the underlying API;
in JSP pages, you will typically use the more convenient tags.

Cache Policy and Scope
The cache policy is a set of specifications determining details of the cache and how it
will behave. This includes the following:

■ cache scope

■ cache block naming rules

■ data expiration rules

■ cache repository name

You can set cache policy specifications (per "Attributes for Policy Specification and
Use" on page 7-12) through any of the following:

■ cache tag attributes (for JSP pages)

See "Web Object Cache Tag Descriptions" on page 7-21.

■ cache policy methods (for servlets)

See "Web Object Cache Servlet API Descriptions" on page 7-39.

■ external cache policy descriptor files (for JSP pages or servlets)

See "Cache Policy Descriptor" on page 7-58.

A cache policy object—an instance of the oracle.jsp.jwcache.CachePolicy
class—is created with policy settings based on these inputs. Because the expiration
 Web Object Cache Tags and API 7-5

Overview of the Web Object Cache
policy is part of the cache policy, each CachePolicy object includes an attribute
that is an instance of the oracle.jsp.jwcache.ExpirationPolicy class.

Cache data can be of either session scope, where it is available to only the current
HTTP session, or application scope, where it is available to all users of the application.

For example, consider an online banking application that caches the account
balance. Only the current user is interested in this information, so session scope is
appropriate.

By contrast, consider an online store with a welcome page that issues the same
general product recommendations to all users. In this case, it is appropriate for the
page to use a cache that has application scope.
7-6 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Key Functionality of the Web Object Cache
Key Functionality of the Web Object Cache
This section discusses key areas of functionality of the Web Object Cache, covering
the following:

■ Cache Block Naming—Implicit Versus Explicit

■ Cache Block Runtime Functionality

■ Data Invalidation and Expiration

Cache Block Naming—Implicit Versus Explicit
A cache block is associated with a cache block name, which can be determined
either implicitly by the caching policy (generally advisable), or explicitly by your
application code. For retrieval, to avoid regenerating the page fragment in question,
there is a lookup of the cache block name.

For implicit naming, there are two inputs:

■ the cache policy

A cache policy API layer performs naming logic.

■ the HTTP request object

The caching logic borrows corresponding semantics from the standard Java
servlet API.

For most situations, implicit naming will result in names that are sufficiently
informative, because the HTTP request usually includes all the inputs to the Web
application (inputs that determine what the application should generate).

Explicit naming might be desirable in some cases, however, such as when a group
of users needs to share the same data. In this case, because relevant identification
information may not be available directly from the user’s HTTP request, an implicit
cache name would not be useful. Instead, you can write code to explicitly generate a
cache name that identifies the group. Preferably, the name-generation logic should
still use only request parameters as input, not other states existing inside the
application. This makes the semantics easier to follow and the code easier to debug.

Following is an example of explicit naming. In the cache tag, note the name
attribute with a JSP expression that calls someMethod() to set the cache block
name:

<ojsp:cache policy="/WEB-INF/policy1.cpd"
 name="<%= someObj.someMethod() %>" >
...static text...
 Web Object Cache Tags and API 7-7

Key Functionality of the Web Object Cache
<% // dynamic content ... %>
</ojsp:cache>

In the following example, because there is no name attribute in the cache tag, the
cache block name will be determined implicitly according to the HTTP request and
the cache policy:

<ojsp:cache policy="/WEB-INF/policy2.cpd" >
...static text...
<% // dynamic content ... %>
</ojsp:cache>

See "More About Cache Block Naming and the autoType Attribute" on page 7-16 for
more information.

Cloneable Cache Objects
The OC4J Web Object Cache provides an interface,
oracle.jsp.jwcache.CloneableCacheObj, which you can implement in
serializable cache objects that you want to be cloneable. For mutable objects that are
cached without being serialized, cloning is useful in providing a complete and
hierarchical copy of the cache object. This section explains the usefulness of
cloneability, first covering some necessary background information.

Memory-Oriented Repositories Versus Secondary Storage Repositories
There are two categories of repositories that can be used as the back-end of the Web
Object Cache:

■ secondary storage cache repository (such as a file system repository)

■ memory-oriented cache repository (such as the Oracle9i Application Server Java
Object Cache, the default repository of the Web Object Cache)

A secondary storage repository requires Java serialization during cache operations.
During storage to the cache, objects are serialized into the repository; during
retrieval from the cache, they are deserialized into memory. Therefore, as a result of
the serialization/deserialization process, a complete and distinct copy of the cache
object is automatically created during each cache operation.

Note: Cache blocks can be nested. In this case, the logic of the
inner cache block will be executed only when the content of the
outer block must be regenerated.
7-8 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Key Functionality of the Web Object Cache
This is not the case when you store or retrieve cache objects to or from a
memory-oriented repository. With a memory-oriented repository, the identical
object in the user application will be stored to the cache, or the identical object in the
cache will be retrieved for the user. By default, no copy is made. If there are
multiple retrievals, all retrievals share the same object.

Advantages in Cloning Copies of Cache Objects
In many cases in your applications, you will want to ensure that different retrievals
use different copies of a cache object. There are two key reasons for this:

■ If the identical cache object is shared across multiple retrievals, changes made to
the data in one place may unintentionally affect values retrieved and used
elsewhere.

■ If the identical cache object is shared across multiple retrievals, then multiple
Java threads may access the same object simultaneously. This would result in
thread safety issues if the original object design was not thread-safe. Perhaps,
for example, the object was originally intended for page-scope or request-scope
usage only, where there could be only one thread per object. This
thread-behavior assumption would be violated.

To avoid these possible problems, use complete and hierarchical copies when you
store and retrieve generic Java serializable data to or from a memory-oriented
repository. "Complete and hierarchical" means copying not just the direct members
referenced by the object, but also any indirect variables that are referenced. For
example, assume an object Y has a java.util.Vector instance as a member
variable. Cloning a complete and hierarchical copy involves copying not just the
Vector instance itself, but also all mutable objects or elements referenced by the
Vector instance.

Use of the CloneableCacheObject Interface
If you implement the CloneableCacheObject interface and its
cloneCacheObj() method in your cache objects, then the Web Object Cache will
automatically call cloneCacheObj() to make a complete and hierarchical copy of
each cache object whenever it is stored to or retrieved from a memory-oriented
cache repository.

One of the OC4J demos (using the useCacheObj tag to cache generic Java objects)
demonstrates the use of a cloneable cache object.
 Web Object Cache Tags and API 7-9

Key Functionality of the Web Object Cache
Cache Block Runtime Functionality
During runtime, when a Web Object Cache cache tag is encountered, the tag handler
checks whether a corresponding cache object exists and was created recently
enough to reuse. If so, the code in the body of the tag is not executed; instead, the
cache object is reused. But if the cache object does not exist or is too old, the tag
body code will be executed to generate a new object (page fragment, XML DOM
object, or Java serializable object). Then this freshly generated object will be
captured, such as through special buffer writing or object passing, and stored into
the cache.

If computations in content generation are costly, such as for a complicated database
query, and the life span of the cache is appropriate, so that the cached data is
reusable, then the Web Object Cache can save significant amounts of time and
system resources. Application speed and throughput will be greatly improved.

Data Invalidation and Expiration
You can set up cache blocks to expire after a specified duration or at a specified
time, or they can be invalidated explicitly by a method call or tag invocation.

Cache Block Expiration
Because cache blocks mainly consist of semi-static fragments of information, the
Oracle implementation does not require a tightly coherent expiration model. A
looser model typically provides acceptable results and requires less synchronization
overhead.

There are two categories of expiration for data in Web Object Cache blocks:

■ duration (time-to-live)—expiration occurs after data has been in the cache for a
specified amount of time

■ fixed time/day—expiration occurs regularly at a set time, such as at a specified
time each day or on a specified day each week

Expiration details are determined by the settings of attributes in an instance of the
oracle.jsp.jwcache.ExpirationPolicy class. This ExpirationPolicy
object is an attribute of the CachePolicy object associated with the cache block.
See "Expiration Policy Attributes" on page 7-18.

In JSP pages, you can set ExpirationPolicy attributes through attributes of the
Web Object Cache cache tags (such as cache, cacheXMLObj, or useCacheObj). In
servlets, you can use methods of the ExpirationPolicy object directly. (See
"ExpirationPolicy Methods" on page 7-47.) Alternatively, you can set
7-10 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Key Functionality of the Web Object Cache
ExpirationPolicy attributes through a cache policy descriptor. (See "Cache
Policy Descriptor" on page 7-58.)

Cache Block Invalidation
Instead of depending on expiration to invalidate a cache, you can invalidate it
explicitly in one of the following ways:

■ Use the invalidateCache tag. See "Web Object Cache invalidateCache Tag"
on page 7-33.

■ Use the overloaded invalidateCache(), invalidateCacheLike(), or
invalidateCacheOtherPathLike() method of a CachePolicy instance to
explicitly invalidate one or more cache blocks. See "CachePolicy Methods" on
page 7-41.
 Web Object Cache Tags and API 7-11

Attributes for Policy Specification and Use
Attributes for Policy Specification and Use
This section describes cache policy attributes—specifically, attributes of the
CachePolicy and ExpirationPolicy classes. You can set these attributes
through custom tags in JSP pages, directly through the provided Java API in
servlets, or through a cache policy descriptor file.

Cache Policy Attributes
Cache policies, introduced in "Cache Policy and Scope" on page 7-5, consist of the
details that determine how cache blocks behave. You can set cache policy attributes
in several ways, as described in subsequent sections:

■ in JSP pages through custom tags

See "Web Object Cache Tag Descriptions" on page 7-21.

■ in servlets through method calls

See "CachePolicy Methods" on page 7-41.

■ through a cache policy descriptor file

See "Cache Policy Descriptor" on page 7-58.

Specification of cache policy settings results in the creation of a cache policy object,
which includes an expiration policy object as one of its attributes. Following is
abbreviated code for the CachePolicy class (in package oracle.jsp.jwcache),
for illustration purposes only, showing the names of the cache policy attributes.

class CachePolicy
{
 boolean ignoreCache;
 int scope;
 int autoType;
 String selectedParameters[];
 String selectedCookies[];
 Date reusableTimeStamp;
 long reusableDeltaTime;
 ExpirationPolicy expirationPolicy;
 String cacheRepositoryName;
 boolean reportException;
}

7-12 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes for Policy Specification and Use
Attribute Descriptions
Table 7–1 describes cache policy object attributes.

Note: The names documented below for integer constants are for
servlet usage. Different names may be used for the Web Object
Cache tags. See "Web Object Cache cache Tag" on page 7-22.

Table 7–1 Cache Policy Attribute Descriptions

Attribute Type Description

ignoreCache boolean This is for use during development only. When
making frequent code changes, set this to true to
disable the cache, typically so that results that
were generated prior to your changes will not be
returned.

default: false

scope int Specifies the scope of the cache. Use the integer
constant SCOPE_SESSION for the cache block to
be accessible only to the current HTTP session, or
SCOPE_APP for the cache block to be accessible to
all HTTP sessions of the application.

default: application

autoType int Specifies whether the cache block is named
explicitly or implicitly, and how properties of the
HTTP request are used in cache block naming
(for implicit naming). The name is relevant in
determining when the cache is reused for
subsequent requests. See "More About Cache
Block Naming and the autoType Attribute" on
page 7-16.

default: implicitly, according to the URI plus all
parameters plus selected cookies
(TYPE_URI_ALLPARAM)

selectedParameters[] String [] These are selected request parameter names used
in cache block naming; used in conjunction with
autoType. See "More About Cache Block
Naming and the autoType Attribute" on
page 7-16.

default: null
 Web Object Cache Tags and API 7-13

Attributes for Policy Specification and Use
selectedCookies[] String[] Selected cookie names used in cache block
naming; used in conjunction with autoType. See
"More About Cache Block Naming and the
autoType Attribute" on page 7-16.

default: null

reusableTimeStamp java.util.Date An absolute time limit for cache usability, where
any cache block created prior to that time will not
be reused. Instead, data is regenerated, but the
cache block is unaltered. See "More About
reusableTimeStamp and reusableDeltaTime" on
page 7-17.

Note the following regarding
reusableTimeStamp:

■ It can be expressed as milliseconds between
midnight, January 1, 1970 and the desired
absolute time limit, or as a
java.util.Date instance. Additional
convenient formats are available through the
cache tag—see "Web Object Cache Tag
Descriptions" on page 7-21.

■ It takes precedence over
reusableDeltaTime.

■ If its value is set as the integer constant
REUSABLE_ALWAYS or the string constant
REUSABLE_IGNORED, then cache entries are
always reusable, for as long as they remain
in the cache.

■ It is not available through the XML cache
policy descriptor file.

default: always reusable

Table 7–1 Cache Policy Attribute Descriptions (Cont.)

Attribute Type Description
7-14 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes for Policy Specification and Use
reusableDeltaTime long A relative time limit for cache usability, where a
cache block is not reused if the difference
between cache block creation time and current
time is greater than reusableDeltaTime.
Instead, data is regenerated, but the cache block
is unaltered. See "More About
reusableTimeStamp and reusableDeltaTime" on
page 7-17.

Note the following regarding
reusableDeltaTime:

■ It is specified in seconds.

■ The reusableTimeStamp attribute
overrides it.

■ If its value is set as the integer constant
REUSABLE_ALWAYS or the string constant
REUSABLE_IGNORED, then cache entries are
always reusable, for as long as they remain
in the cache.

default: always reusable

expirationPolicy ExpirationPolicy An expiration policy object (an instance of
oracle.jsp.jwcache.ExpirationPolicy),
which specifies circumstances under which the
repository will remove cache blocks from storage.

default: the default expiration policy object

For information about expiration policy objects,
parameters, and defaults, see "Expiration Policy
Attributes" on page 7-18.

cacheRepositoryName String The name of the cache repository. Each cache
policy can use its own repository.

The configurations of cache repositories are
defined in the /WEB-INF/wcache.xml file.

default: "DefaultCacheRepository"

reportException boolean A false setting results in most cache operation
failures being silent, without any exception being
reported to the browser.

Default: true

Table 7–1 Cache Policy Attribute Descriptions (Cont.)

Attribute Type Description
 Web Object Cache Tags and API 7-15

Attributes for Policy Specification and Use
More About Cache Block Naming and the autoType Attribute
As discussed in "Cache Block Naming—Implicit Versus Explicit" on page 7-7, cache
blocks can be named either implicitly, sometimes called auto-naming, or explicitly,
sometimes called user-naming.

More specifically, there are six ways for cache blocks to be named. Explicit naming
is the first way. Specify this with an autoType setting of TYPE_USERSPECIFIED
(an integer constant).

The other five ways are variations of implicit naming:

■ implicit naming with only the request URI being used in the name

Specify this with an autoType setting of TYPE_URI_ONLY.

■ implicit naming according to the following:

request URI + query string + selected cookies

Specify this with an autoType setting of TYPE_URI_QUERYSTR. Specify the
cookies in the selectedCookies[] attribute.

■ implicit naming according to the following:

request URI + all parameters + selected cookies (default)

Specify this with an autoType setting of TYPE_URI_ALLPARAM. Specify the
cookies in the selectedCookies[] attribute.

■ implicit naming according to the following:

request URI + selected parameters + selected cookies

Specify this with an autoType setting of TYPE_URI_SELECTEDPARAM. Specify
the parameters in the selectedParameters[] attribute and the cookies in
the selectedCookies[] attribute.

■ implicit naming according to the following:

request URI + all but excluded parameters + selected cookies

Specify this with an autoType setting of TYPE_URI_EXCLUDEDPARAM. Specify
the cookies in the selectedCookies[] attribute, and specify the excluded
parameters in the selectedParameters[] attribute.

As an example, assume that you have developed a JSP page, welcome.jsp, with a
personalized greeting for each user. The data with the personalized greeting is the
only cache block in the page. Further assume that you have specified "request URI +
7-16 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes for Policy Specification and Use
selected parameters + selected cookies" naming, with user as the only selected
parameter for cache block naming and no selected cookies for naming.

Now assume the page is requested as follows:

http://host:port/a.jsp?user=Amy

In this case, a.jsp?user=Amy becomes the cache block name.

Now assume that the page is later requested by another user, as follows:

http://host:port/a.jsp?user=Brian

This will not reuse the "Amy" cache, because the value of user is different. Instead,
a new cache block is created with a.jsp?user=Brian as the name.

Now assume a later request by the first user, as follows:

http://host:port/a.jsp?mypar=3&user=Amy

Because the user is again Amy, this request will reuse the first cache, displaying
Amy’s customized information without having to regenerate it. The mypar
parameter is irrelevant to the caching mechanism because you did not include it in
the selectedParameters[] list of the cache policy object, presumably because
you determined that the value of mypar is not relevant in terms of cachable page
output.

Now assume the following subsequent request:

http://host:port/a.jsp?yourpar=4&user=Brian&hello=true&foo=barfly

Because the user is again Brian, this request will reuse the second cache,
displaying Brian’s customized information without having to regenerate it. The
yourpar, hello, and foo parameters are irrelevant to the caching mechanism
because you did not include them in the selectedParameters[] list of the cache
policy object.

More About reusableTimeStamp and reusableDeltaTime
Be aware that the concept of reusable is different than the concept of time-to-live
(TTL) and is intended for more advanced use. Time-to-live, which controls the
general lifetime of a cache, is described in "Expiration Policy Attributes" on
page 7-18. Usually time-to-live is all that is required to appropriately limit the use of
cached data.

The attributes for reusability—reusableTimeStamp and
reusableDeltaTime—are intended for more specialized use and do not affect the
 Web Object Cache Tags and API 7-17

Attributes for Policy Specification and Use
expiration or invalidation of cached data. As an example, consider a situation where
different users have different requirements for how up-to-date a Web report is.
Assume that most users can accept a report produced anytime within the past day,
and that they all want to be looking at the same version so they can compare
figures. An appropriate TTL value, then, would be "one day".

Also presume, however, that there is a small group of privileged users for whom
the data is much more time-sensitive. They want to have information that is no
more than one hour old.

In this case, although TTL is set to "one day" for all users, there can be a
reusableDeltaTime setting of "one hour" for the privileged users, which will
result in the cache not being used for them if the data is more than one hour old.
Remember, though, that reusableTimeStamp and reusableDeltaTime do not
expire the cache or otherwise affect it—the cached data can still be used for
non-privileged users, according to the time-to-live.

It is up to the application logic to set appropriate values of reusableTimeStamp
and reusableDeltaTime for the privileged user group.

Expiration Policy Attributes
Expiration policies are introduced in "Data Invalidation and Expiration" on
page 7-10. Expiration policies contain the details that determine when cache blocks
expire, at which point their data should no longer be used and the data should be
regenerated instead. (Note that for most discussion, you can think of the expiration
policies as being part of the cache policies.) ExpirationPolicy attributes, as with
CachePolicy attributes, can be set in any of the following ways:

■ in JSP pages through custom tags

See "Web Object Cache Tag Descriptions" on page 7-21.

■ in servlets through method calls

See "ExpirationPolicy Methods" on page 7-47.

■ through a cache policy descriptor file

See "Cache Policy Descriptor" on page 7-58.

The following abbreviated code for the ExpirationPolicy class (in package
oracle.jsp.jwcache), provided for illustration purposes only, shows the names
of the expiration policy attributes.
7-18 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Attributes for Policy Specification and Use
class ExpirationPolicy
{
 int expirationType;
 long TTL;
 long timeInaDay;
 int dayInaWeek;
 int dayInaMonth;
 boolean writeThrough;
}

Table 7–2 describes the expiration policy object attributes.

Note: The names documented below for integer constants are for
servlet usage. Different names may be used for the Web Object
Cache tags. See "Web Object Cache cache Tag" on page 7-22.

Table 7–2 Expiration Policy Attribute Descriptions

Attribute Type Description

expirationType int The type of expiration policy—one of the following
(the TYPE_XXX values are integer constants):

■ time-to-live, specified with an expirationType
setting of TYPE_TTL (also see the TTL attribute
below)

■ daily, to expire within a day at a specified time,
specified with an expirationType setting of
TYPE_DAILY (also see the timeInaDay attribute
below)

■ weekly, to expire within a week on a specified
day at a specified time, specified with an
expirationType setting of TYPE_WEEKLY (also
see the timeInaDay and dayInaWeek attributes
below)

■ monthly, to expire within a month on a specified
date at a specified time, specified with an
expirationType setting of TYPE_MONTHLY
(also see the timeInaDay and dayInaMonth
attributes below)

default: time-to-live
 Web Object Cache Tags and API 7-19

Attributes for Policy Specification and Use
TTL long Time-to-live—the amount of time the cache block is
good for, expressed in seconds.

default: 300 (5 minutes)

timeInaDay long The time of day used for daily, weekly, or monthly
expiration, expressed in seconds from midnight—0 is
00:00:00 (midnight); 86399 is 23:59:59.

default: 300 (00:05:00); ignored if
expirationType=TYPE_TTL

dayInaWeek int The day of the week for weekly expiration, at the
specified timeInaDay—WEEKLY_SUNDAY,
WEEKLY_MONDAY, WEEKLY_TUESDAY,
WEEKLY_WEDNESDAY, WEEKLY_THURSDAY,
WEEKLY_FRIDAY, or WEEKLY_SATURDAY (integer
constants).

default: Wednesday; ignored unless
expirationType=TYPE_WEEKLY

dayInaMonth int The date of the month for monthly expiration, such as
10 for the 10th of each month, at the specified
timeInaDay. The maximum setting is the number of
days in the month when the cache block is created.
For example, if a cache block is created in June and
dayInaMonth has a setting of 31, then its effective
value will be 30.

default: 10; ignored unless
expirationType=TYPE_MONTHLY

writeThrough boolean A flag specifying whether the cache repository should
treat the cache entry as a write-through cache, writing
it immediately into secondary storage such as a file
system or database. Set this to true for write-through
mode. A write-through cache will survive a server
restart or power failure.

With a false setting, the cache entry is treated as a
delayed-write cache, which is appropriate for caches
that have a short life span, such as 5 or 10 minutes,
and are not overly expensive to recompute.

default: true

Note: some cache repositories may not support
write-through mode; others may always use
write-through mode.

Table 7–2 Expiration Policy Attribute Descriptions (Cont.)

Attribute Type Description
7-20 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions
Web Object Cache Tag Descriptions
From JSP pages, you can specify cache policy settings, expiration policy settings,
and explicit invalidation through custom tags provided with OC4J. Discussion is
organized into the following categories:

■ Cache Tag Descriptions

■ Cache Invalidation Tag Description

The Web Object Cache classes are in the file ojsputil.jar, which is supplied with
OC4J. Verify that this file is installed and in your classpath. Also, to use the Oracle9 i
Application Server Java Object Cache as the back-end repository, the file
cache.jar must be installed and in your classpath. This file also comes with OC4J.

To use the Web Object Cache tags, the tag library description file, jwcache.tld,
must be deployed with the application in the location specified in the taglib
directives of your JSP pages, such as in the following example:

<%@ taglib uri="/WEB-INF/jwcache.tld" prefix="ojsp" %>

In an Oracle9i Application Server installation, the tag library description file is
located in the [Oracle_Home]/j2ee/tlds directory.

Cache Tag Descriptions
This section describes the following tags:

■ cache

This tag is for general character-based caching (HTML or XML fragments).

Notes:

■ The prefix "ojsp:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

■ See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

■ The Web Object Cache tag library is a standard library. For
general information about the standard JavaServer Pages tag
library framework, refer to the Oracle9iAS Containers for J2EE
Support for JavaServer Pages Reference.
 Web Object Cache Tags and API 7-21

Web Object Cache Tag Descriptions
■ cacheXMLObj

This tag is for caching XML objects; its parameters comprise a superset of the
cache tag parameters. Because the Web Object Cache is particularly useful
when post-processing XML documents, you will likely use the cacheXMLObj
tag more often than the cache tag.

■ useCacheObj

This tag is for general caching of Java serializable objects. Some of the semantics
and syntax are patterned after the standard jsp:useBean tag.

■ cacheInclude

This tag combines the functionality of the cache tag with that of the standard
jsp:include tag.

This section also describes conditional execution of code within the cache tags,
possible resulting problems, and the workaround of dividing cache blocks into
individual JSP pages and, optionally, using the cacheInclude tag to combine the
pages together appropriately.

Web Object Cache cache Tag
This section documents the syntax and attributes of the cache tag, which you can
use to set up general caching in a JSP application, in contrast to the caching of XML
objects or Java serializable object.

Syntax

<ojsp:cache
 [policy = "filename"]
 [ignoreCache = "true" | "false"]
 [invalidateCache = "true" | "false"]
 [scope = "application" | "session"]
 [autoType = "user" | "URI" | "URI_query" | "URI_allParam" |
 "URI_selectedParam" | "URI_excludedParam"]
 [selectedParam = "space-delimited_string_of_parameter_names"]
 [selectedCookies = "space-delimited_string_of_cookie_names"]

Note: For caching XML objects, use the cacheXMLObj tag
instead. For caching Java serializable objects, use the useCacheObj
tag. These tags support all the cache tag attributes described here.
See "Web Object Cache cacheXMLObj Tag" on page 7-27 and "Web
Object Cache useCacheObj Tag" on page 7-29.
7-22 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions
 [reusableTimeStamp = "yyyy.mm.dd hh:mm:ss z" |
 "yyyy.mm.dd hh:mm:ss" | "yyyy.mm.dd"| "ignored"]
 [reusableDeltaTime = "number" | "ignored"]
 [name = "blockname"]
 [expirationType = "TTL" | "daily" | "weekly" | "monthly"]
 [TTL = "number"]
 [timeInaDay = "number"]
 [dayInaWeek = "Sunday" | "Monday" | "Tuesday" | "Wednesday" |
 "Thursday" | "Friday" | "Saturday"]
 [dayInaMonth = "number"]
 [writeThrough = "true" | "false"]
 [printCacheBlockInfo = "true" | "false"]
 [printCachePolicy = "true" | "false"]
 [cacheRepositoryName = "name"]
 [reportException = "true" | "false"] >

...Code for cache block...

</ojsp:cache>

Attributes

Most of the parameters of the cache tag correspond to attributes in the
CachePolicy or ExpirationPolicy class, described earlier in this chapter (as
referenced below).

■ policy—Optionally use this to specify a cache policy descriptor, the settings of
which would be used in defining the cache policy. You can use a cache policy
descriptor instead of using the various individual cache tag attribute settings, or
to establish default values that you can optionally override through tag
attribute settings.

Specify the descriptor file name according to JSP 1.1 application-relative syntax.
You can refer to the Oracle9iAS Containers for J2EE Support for JavaServer Pages
Reference for information about application-relative syntax.

Notes:

■ This tag can optionally be in the form of a single tag with no
body: <ojsp:cache ... />

■ Key default values are as follows: TTL 300 seconds;
dayInaMonth 10 (10th of the month); cache repository name
DefaultCacheRepository.
 Web Object Cache Tags and API 7-23

Web Object Cache Tag Descriptions
Here is a simple example of a cache policy descriptor:

<!--
test-policy.cpd
-->

<cachePolicy scope="application">
 <expirationPolicy expirationType="TTL" TTL="25" timeInaDay="00:10:00"
 writeThrough="true" />
</cachePolicy>

See "Cache Policy Descriptor" on page 7-58 for more information.

■ ignoreCache—See "Cache Policy Attributes" on page 7-12.

■ invalidateCache—Enable this flag for the corresponding cache block (any
pre-existing cache block with the same name) to first be invalidated. This is
particularly useful where implicit cache block naming is used, but can also be
used for explicit names by specifying the cache block name in the name
attribute of the cache tag. The default setting is "false".

■ scope—See "Cache Policy Attributes" on page 7-12.

■ autoType—See "Cache Policy Attributes" on page 7-12. The correspondence
between tag attribute settings and class attribute values (integer constants) is as
follows:

– user is equivalent to TYPE_USERSPECIFIED.

– URI is equivalent to TYPE_URI_ONLY.

– URI_query is equivalent to TYPE_URI_QUERYSTR.

– URI_allParam is equivalent to TYPE_URI_ALLPARAM.

– URI_selectedParam is equivalent to TYPE_URI_SELECTEDPARAM.

– URI_excludedParam is equivalent to TYPE_URI_EXCLUDEDPARAM.

■ selectedParam—See "Cache Policy Attributes" on page 7-12.

■ selectedCookies—See "Cache Policy Attributes" on page 7-12.

Note: Do not confuse this attribute with the more general-purpose
invalidateCache tag. See "Web Object Cache invalidateCache
Tag" on page 7-33. The invalidateCache attribute is for more
specialized or advanced use to invalidate individual cache blocks.
7-24 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions
■ reusableTimeStamp—See "Cache Policy Attributes" on page 7-12.

■ reusableDeltaTime—See "Cache Policy Attributes" on page 7-12.

■ name—Where you use explicit cache-block naming, use the name parameter to
specify the block name.

■ expirationType—See "Expiration Policy Attributes" on page 7-18.

■ TTL—See "Expiration Policy Attributes" on page 7-18.

■ timeInaDay—See "Expiration Policy Attributes" on page 7-18.

■ dayInaWeek—See "Expiration Policy Attributes" on page 7-18.

■ dayInaMonth—See "Expiration Policy Attributes" on page 7-18.

■ writeThrough—See "Expiration Policy Attributes" on page 7-18.

■ printCacheBlockInfo (for debugging)—Enabling this parameter results in
printing of the internal cache name, creation time, and expiration time of the
cache block, within HTML/XML comment constructs. The default setting is
"false".

■ printCachePolicy (for debugging)—Enabling this parameter results in
printing of the values of all cache policy attributes for this cache block, within
HTML/XML comment constructs. The default setting is "false".

■ cacheRepositoryName—See "Cache Policy Attributes" on page 7-12.

■ reportException—See "Cache Policy Attributes" on page 7-12.

Usage Notes

■ The name attribute is relevant only when autoType is set to user.

■ The selectedParam attribute is relevant only when autoType is set to
URI_selectedParam or URI_excludedParam.

■ The selectedCookies attribute is not relevant when autoType is set to
user or URI.

■ The timeInaDay attribute is not relevant when expirationType is set to
TTL.

■ The dayInaWeek attribute is relevant only when expirationType is set to
weekly.

■ The dayInaMonth attribute is relevant only when expirationType is set to
monthly.
 Web Object Cache Tags and API 7-25

Web Object Cache Tag Descriptions
Example: cache Tag

This example lists and caches a set of items, using the cache tag.

<%@ taglib uri="/WEB-INF/jwcache.tld" prefix="ojsp" %>
<title>listitem.jsp</title>
<%
 String itemid=request.getParameter("itemid");
 if (itemid==null) {
 out.println("Please select a category from the above drop down box.");
 return;
 }
%>
<% long l1=(new java.util.Date()).getTime(); %>
<ojsp:cache autoType="URI_selectedParam" selectedParam="itemid"
 printCacheBlockInfo="true" printCachePolicy="true"
 policy="/WEB-INF/test-policy.cpd"
>
 Item List: <%= itemid %>

 Time: <%= new java.util.Date() %>

 <jsp:useBean class="java.util.Hashtable" id="table" scope="application" />
 <hr>
 <%
 Vector list=(Vector) table.get(itemid);
 if (list==null) {
 out.println("No such item!");
 }
 else {
 for (int i=0; i<list.size(); i++) {
 %>
 <%= list.elementAt(i) %>

 <%
 }
 }
 %>
 timestamp:<%= new java.util.Date() %>

</ojsp:cache>
<% long l2=(new java.util.Date()).getTime(); %>
Time for general cache operation:<%= l2-l1 %>

7-26 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions
Web Object Cache cacheXMLObj Tag
Generally speaking, use the cacheXMLObj tag instead of the cache tag if you are
caching XML DOM objects.

The cacheXMLObj tag supports all the cache tag attributes described in "Web
Object Cache cache Tag" on page 7-22, as well as the attributes described here.

Syntax (in addition to that of the cache tag)

<ojsp:cacheXMLObj
 ...
 [fromXMLObjName = "objectname"]
 [toXMLObjName = "objectname"]
 [toWriter = "true" | "false"] >

...Code for cache block...

</ojsp:cacheXMLObj>

Attributes (in addition to those of the cache tag)

■ fromXMLObjName—For explicit passing, specify the name of the XML input
object being passed to the cache (from the pageContext object).

■ toXMLObjName—For explicit passing, specify the name of the XML output
object being passed from the cache (to the pageContext object).

■ toWriter—Set this to true to write the XML object to a JSP writer to output
directly to the user’s browser. The default value is "false".

Notes:

■ This tag can optionally be in the form of a single tag with no
body: <ojsp:cacheXMLObj ... />

■ For convenience, this tag is duplicated in the XML tag library,
defined in the xml.tld tag library description file.

■ This tag can act as both an XML producer and an XML
consumer. Do not use fromXMLObjName and toXMLObjName
if the XML object is being passed implicitly. (See "XML
Producers and XML Consumers" on page 5-2.)
 Web Object Cache Tags and API 7-27

Web Object Cache Tag Descriptions
Example: cacheXMLObj Tag

This example uses Web Object Cache tags, JESI tags, and tags from the XML and
SQL tag libraries. (For JESI tag descriptions, see "Oracle JESI Tag Descriptions" on
page 6-14. For a description of the XML transform tag, see "XML Utility Tags" on
page 5-4. For SQL tag descriptions, see "SQL Tags for Data Access" on page 4-16.)

The SQL dbOpen and SQL dbQuery tags connect to the database and execute a
query. The cacheXMLObj tag caches the XML DOM object produced by the
query—in subsequent executions (for output through different stylesheets, for
example) the query does not have to be re-executed, because the DOM object can be
retrieved from the Web Object Cache. The XML transform tag outputs the query
results according to an XML stylesheet (specified through a variable). The JESI
fragment tag encloses HTML output to be cached (which does not require
application-level caching). The JESI template tag disables caching outside the
fragment (through the cache="no" setting).

<jesi:template cache="no">
<% String userStyleLoc="style/rowset.xsl"; %>
<h3>Transform DBQuery Tag Example</h3>
<h4>Current Time=<%= new java.util.Date() %></h4>
<jesi:fragment expiration="60">
<!-- You can cache HTML in Oracle9iAS Web Cache with JESI
 or you can cache it in Oracle Web Object Cache -->
<h4>Cached Time=<%= new java.util.Date() %></h4>
<sql:dbOpen connId="conn1" URL="<%= connStr %>"
 user="scott" password="tiger" />
<xml:transform href="<%= userStyleLoc %>" >
<%-- The XML DOM object is produced by dbQuery
 And, the DOM object is cached in Oracle Web Object Cache.

Note: The cacheXMLObj tag is one of several custom tags
supplied with OC4J that are XML-related, meaning these tags
sometimes (or always) take an XML object as input or create one as
output. Other such tags include the SQL library dbQuery tag,
which can output query results as an XML DOM object, and the
XML library transform and styleSheet tags, which can take an
XML object as input and use XSLT transformation to create another
XML object or a JSP writer as output. These tags are consistent in
having a fromXMLObjName attribute and a toXMLObjName
attribute for explicit passing of XML data. For general information,
see "XML Producers and XML Consumers" on page 5-2.
7-28 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions
 XSLT is performed on the cached object. --%>
 <ojsp:cacheXMLObj TTL="60" toWriter="false">
 <sql:dbQuery connId="conn1" output="xml" queryId="myquery" >
 select ENAME, EMPNO from EMP
 </sql:dbQuery>
 </ojsp:cacheXMLObj>
</xml:transform>
<sql:dbCloseQuery queryId="myquery" />
<sql:dbClose connId="con1" />
</jesi:fragment>
</jesi:template>

Web Object Cache useCacheObj Tag
Use the useCacheObj tag to cache any Java serializable object.

The useCacheObj tag supports all the cache tag attributes described in "Web
Object Cache cache Tag" on page 7-22, as well as the attributes described here.

Syntax (in addition to that of the cache tag)

<ojsp:useCacheObj
 ...
 type="classname"
 id = "instancename"
 [cacheScope = "application" | "session"] >

...Code for cache block...

</ojsp:useCacheObj>

Attributes (in addition to those of the cache tag)

■ type (required)—Specify the class name of the Java object to cache.

■ id (required)—Specify the instance name of the Java object to cache.

Notes:

■ This tag can optionally be in the form of a single tag with no
body: <ojsp:useCacheObj ... />

■ The id and type attributes are not request-time attributes, so
cannot be set using JSP runtime expressions.
 Web Object Cache Tags and API 7-29

Web Object Cache Tag Descriptions
■ cacheScope—This attribute has the same usage as the scope attribute in the
cache and cacheXMLObj tags. See "Cache Policy Attributes" on page 7-12.

The type and id attributes here are used similarly to the type (or class) and id
attributes in a standard jsp:useBean tag.

Example: useCacheObj Tag

<ojsp:useCacheObj id="a2" policy="/WEB-INF/test-policy.cpd"
 type="examples.RStrArray" >
<%
 // create a temp writeable array
 WStrArray tmpa2=new WStrArray(3);
 tmpa2.setStr(2,request.getParameter("testing4"));
 tmpa2.setStr(1,"def");
 tmpa2.setStr(0, (new java.util.Date()).toString());
 // create a readonly copy for the cache
 a2=new RStrArray(tmpa2);
 // storing the a2 into pagecontext
 // so useCacheObj tag can pick it up
 pageContext.setAttribute("a2",a2);
%>
</ojsp:useCacheObj>

Conditional Execution of Code Inside the Cache Tags
Be aware that code inside a cache tag (cache, cacheXMLObj, or useCacheObj) is
executed conditionally. In particular:

■ Any code inside a cache tag is executed only when the associated cache block is
not reused.

Consider the following example:

<% String s=null; %>
<% ojsp:useCacheObj ... >
 <% s = "abc"; //...more Java code...%>
</ojsp:useCacheObj>
<% out.print(s.length()); // May cause null pointer exception

If the cache is available and reused, the code to properly initialize the string s is
not executed.

■ If you put a method-based variable declaration inside a cache tag, the variable
is not available outside the tag.
7-30 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions
Consider the following example:

<ojsp:useCacheObj ... >
 <% String s = "abc"; //...more Java code...%>
</ojsp:useCacheObj>
<% // String s will not be available here %>

If you are using the cache tag (not cacheXMLObj or useCacheObj), it might be
helpful to break your cache blocks into separate JSP pages so that you would be less
likely to fall into this type of situation. In this case, each cache block would be
represented by its own URI, and you could use dynamic include functionality to
combine the pages together as desired.

To make this more convenient, Oracle also provides the cacheInclude tag,
described in "Web Object Cache cacheInclude Tag" below.

Web Object Cache cacheInclude Tag
The cacheInclude tag combines functionality of the cache tag (but not the
cacheXMLObj tag or useCacheObj tag) and the standard jsp:include tag.

There are a number of advantages in putting cache blocks into separate pages and
using cacheInclude, including general considerations of modularity and clarity
as well as the issues discussed in "Conditional Execution of Code Inside the Cache
Tags" above.

Be aware of the following limitations, however:

■ You cannot use a runtime JSP expression in the cacheInclude tag.

■ You must use implicit cache-block naming for the cache block.

■ There is no flush parameter (unlike for the standard jsp:include tag).

If any of these limitations presents a problem, then use separate cache and
include tags.

Also be aware of an important difference between the cacheInclude tag and the
JESI include tag. (See "JESI include Tag" on page 6-16 for information about that
tag.) Because the Oracle9iAS Web Cache is in a different caching layer than the Web
Object Cache, the including page and included page for a JESI include tag cannot
share the same request object. There is no such limitation with the cacheInclude
tag, however—the including page and included page share the same request object,
so beans and attributes of request scope can be passed between the two pages.
 Web Object Cache Tags and API 7-31

Web Object Cache Tag Descriptions
Syntax

<ojsp:cacheInclude
 policy = "filename"
 page = "URI"
 [printCacheBlockInfo = "true" | "false"]
 [reportException = "true" | "false"] >

...Code for cache block...

</ojsp:cacheInclude>

Attributes

■ policy (required)—You must use a cache policy descriptor file to specify cache
policy settings; individual parameter settings are not supported.

■ page (required)—Use the page attribute to specify the URI of the page to
dynamically include, as with a standard jsp:include tag.

■ printCacheBlockInfo (for debugging)—See "Web Object Cache cache Tag"
on page 7-22.

■ reportException—See "Cache Policy Attributes" on page 7-12.

Usage Notes

Consider the following cacheInclude tag usage:

<ojsp:cacheInclude page="anotherPage.jsp" policy="foo.cpd" >

This is equivalent to the following:

<ojsp:cache policy="foo.cpd" >
 <% pageContext.include("anotherPage.jsp"); %>
</ojsp:cache>

or the following:

<jsp:include page="anotherPage.jsp" flush="true" />

Note: For the cacheInclude tag, because policy and page are
not request-time attributes, you do not have the option of
determining their values through JSP expressions. (Be aware that
policy is a request-time attribute for the cache, cacheXMLObj,
and useCacheObj tags.)
7-32 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions
where anotherPage.jsp consists of the following:

<ojsp:cache policy="foo.cpd" >
...anotherPage.jsp contents...
</ojsp:cache>

Cache Invalidation Tag Description
This section describes how to use the invalidateCache tag.

Web Object Cache invalidateCache Tag
To explicitly invalidate a cache block through program logic, you can use the
invalidateCache tag. This section documents the syntax and attributes of this
tag.

Syntax

<ojsp:invalidateCache
 [policy = "filename"]
 [ignoreCache = "true" | "false"]
 [scope = "application" | "session"]
 [autoType = "user" | "URI" | "URI_query" | "URI_allParam" |
 "URI_selectedParam" | "URI_excludedParam"]
 [selectedParam = "space-delimited_string_of_parameter_names"]
 [selectedCookies = "space-delimited_string_of_cookie_names"]
 [name = "blockname"]
 [invalidateNameLike = "true" | "false"]
 [page = "URI"]
 [autoInvalidateLevel = "application" | "page" | "param" | "cookie"]

Notes:

■ The invalidateCache tag does not accept new cookies; it can
use only existing cookies of the current HTTP request. For
information about inputting new cookies, see "CachePolicy
Methods" on page 7-41.

■ Do not confuse the invalidateCache tag with the
invalidateCache attribute of the cache tags. The attribute is
for more limited use—to invalidate the pre-existing cache
object.
 Web Object Cache Tags and API 7-33

Web Object Cache Tag Descriptions
 [cacheRepositoryName = "name"]
 [reportException = "true" | "false"] />

Attributes

Most parameters of the invalidateCache tag also exist in the cache and
cacheXMLObj tags and are used in the same way, as described earlier in this
chapter (and as referenced below).

■ policy—See "Web Object Cache cache Tag" on page 7-22.

■ ignoreCache—See "Cache Policy Attributes" on page 7-12.

■ scope—See "Cache Policy Attributes" on page 7-12.

■ autoType—See "Cache Policy Attributes" on page 7-12. The correspondence
between tag attribute settings and class attribute values (integer constants) is as
follows:

– user is equivalent to TYPE_USERSPECIFIED.

– URI is equivalent to TYPE_URI_ONLY.

– URI_query is equivalent to TYPE_URI_QUERYSTR.

– URI_allParam is equivalent to TYPE_URI_ALLPARAM.

– URI_selectedParam is equivalent to TYPE_URI_SELECTEDPARAM.

– URI_excludedParam is equivalent to TYPE_URI_EXCLUDEDPARAM.

■ selectedParam—See "Cache Policy Attributes" on page 7-12.

■ selectedCookies—See "Cache Policy Attributes" on page 7-12.

■ name—Use this with invalidateNameLike to invalidate one or more cache
blocks that were named through explicit cache-block naming, according to the
instructions in "Use of name and invalidateNameLike" below.

■ invalidateNameLike—Use this with name to invalidate one or more cache
blocks that were named through explicit cache-block naming, according to the
instructions in "Use of name and invalidateNameLike" below. The default
setting is "false".

Note: The default for autoInvalidateLevel depends on
specifics of the page URI. See "Use of page and
autoInvalidateLevel" on page 7-35.
7-34 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions
■ page—Specify a page-relative or application-relative URI. Use this with
autoInvalidateLevel to invalidate one or more cache blocks that were
named through implicit cache-block naming, according to the instructions in
"Use of page and autoInvalidateLevel" below.

■ autoInvalidateLevel—Use this with page to invalidate one or more cache
blocks that were named through implicit cache-block naming, according to the
instructions in "Use of page and autoInvalidateLevel" below.

■ cacheRepositoryName—See "Cache Policy Attributes" on page 7-12.

■ reportException—See "Cache Policy Attributes" on page 7-12.

Use of name and invalidateNameLike To invalidate one or more cache blocks that were
named through explicit cache-block naming, use the name and
invalidateNameLike attributes together, as follows:

■ If invalidateNameLike="false", then use the name parameter to specify
the name of a single cache block to invalidate.

■ If invalidateNameLike="true", and the underlying cache repository
supports wild card characters, then you can use the wildcard "*" character in the
name parameter to invalidate multiple cache blocks whose names fit the
criteria. (The Oracle9i Application Server Java Object Cache currently does not
support wild card characters.)

Use of page and autoInvalidateLevel To invalidate one or more cache blocks that were
named through implicit cache-block naming, use the page and
autoInvalidateLevel attributes together, as follows:

Use the page attribute to specify the appropriate URI of the Web page. (With
implicit naming, cache block names are based on Web page URIs.)

Use autoInvalidateLevel to specify the scope of invalidation—application
scope, page scope, parameter scope, or cookie scope—as follows:

■ If autoInvalidateLevel="application", then all cache blocks associated
with the application that the page belongs to will be invalidated.

For example, if there is an application under the /mycontext context path, and
autoInvalidateLevel="application", then all cache entries of all pages
under http://host:port/mycontext will be invalidated.

Here is a corresponding usage example:

<ojsp:invalidateCache page="/" autoInvalidateLevel="application" />
 Web Object Cache Tags and API 7-35

Web Object Cache Tag Descriptions
■ If autoInvalidateLevel="page", then all cache block entries associated
with the page will be invalidated.

For example, if autoInvalidateLevel="page" and the request is the
following:

http://host:port/mycontext/mypage01.jsp?foo=bar

then all cache entries of mypage01.jsp will be invalidated, regardless of what
request parameters and cookies they are associated with. This includes cache
blocks associated with the following, for example:

http://host:port/mycontext/mypage01.jsp?p1=v1

Here is a corresponding usage example:

<ojsp:invalidateCache page="/mypage01.jsp" autoInvalidateLevel="page" />

■ If autoInvalidateLevel="param", then all cache entries of the page that
have the identical selected parameter names and values will be invalidated,
regardless of what cookies they are associated with.

For example, consider the following:

<ojsp:invalidateCache policy="/WEB-INF/c1.cpd"
 page="/mypage01.jsp?foo=bar"
 autoInvalidateLevel="param" />

In this case, cache blocks associated with the following, for example, will not be
invalidated:

http://host:port/mycontext/mypage01.jsp?foo=bar2

However, cache blocks associated with the following will be invalidated,
regardless of what cookies they are associated with:

http://host:port/mycontext/mypage01.jsp?foo=bar

Continuing this example, consider the following:

http://host:port/mycontext/mypage01.jsp?foo=bar&p1=v1

Cache blocks associated with this request will be invalidated if c1.cpd selects
the foo HTTP request parameter only, and the cache blocks are stored under
the same cache policy, c1.cpd. However, the cache objects will not be
invalidated if they were not stored under c1.cpd, or if c1.cpd also selects the
p1 parameter.
7-36 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Tag Descriptions
■ If autoInvalidateLevel="cookie", then the only cache entries invalidated
are those associated with the same page, same selected parameters and values,
and same cookies.

Example—Use of Cache Invalidation Tag
This section provides a brief example of cache invalidation. For complete sample
applications, including cache invalidation, refer to the OC4J demos.

Example: invalidateCache Tag

The following page adds an item to a list of items previously cached, then
invalidates the cache. The list will presumably be re-cached later with the new item.

<%@ taglib uri="/WEB-INF/jwcache.tld" prefix="ojsp" %>
<title>added.jsp</title>
<jsp:useBean class="java.util.Hashtable" id="table" scope="application" />
<%
 String itemid=request.getParameter("itemid");
 String addItem=request.getParameter("addItem");
 Vector list=(Vector) table.get(itemid);
 if (list==null) {
 list=new Vector();
 table.put(itemid,list);
 }
 list.addElement(addItem);
%>
<%= addItem %> was added into category <%= itemid %>.

<% String viewPage="listitem.jsp?itemid="+itemid; %>
<% long l1=(new java.util.Date()).getTime(); %>
<ojsp:invalidateCache page="<%= viewPage %>" autoInvalidateLevel="param"
 policy="/WEB-INF/test-policy.cpd"
 />
<% long l2=(new java.util.Date()).getTime(); %>
Existing cache entry has been invalidated.

Invalidation took <%= l2-l1 %> milliseconds.

Note: If the page URI includes a question mark, then the default
autoInvalidateLevel is param. If there is no question mark,
then the default is page.
 Web Object Cache Tags and API 7-37

Web Object Cache Tag Descriptions
<jsp:include page="<%= viewPage %>" flush="true" />

Select items
or
Add items

7-38 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Servlet API Descriptions
Web Object Cache Servlet API Descriptions
From servlets, you can use CachePolicy methods to modify cache policy settings
or to invalidate a cache block, and ExpirationPolicy methods to modify
expiration settings. This requires creating a cache policy object and retrieving its
expiration policy object attribute (which the JSP cache tag handlers do
automatically).

This section discusses the following:

■ Cache Policy Object Creation

■ CachePolicy Methods

■ Expiration Policy Object Retrieval

■ ExpirationPolicy Methods

■ CacheBlock Methods

■ Sample Servlet Using the Web Object Cache API

The Web Object Cache classes are in the file ojsputil.jar, which is supplied with
OC4J. Verify that this file is installed and in your classpath. Also, to use the Oracle9 i
Application Server Java Object Cache as the back-end repository, the file
cache.jar must be installed and in your classpath. This file also comes with OC4J.

For more information about the classes, interfaces, and methods described in this
section, see the Javadoc that is supplied with OC4J.

Cache Policy Object Creation
There are two approaches to creating a CachePolicy object:

■ Use the static lookupPolicy() method of the CacheClientUtil class.

■ Use one of the public CachePolicy constructors.

Note: Cache policy objects are not resource objects, such as
database connections or cursors, so you can manipulate them
without life-cycle or resource management concerns.
 Web Object Cache Tags and API 7-39

Web Object Cache Servlet API Descriptions
Using the lookupPolicy() Method
In most situations, the most convenient way to create a CachePolicy object is
through the static lookupPolicy() method of the CacheClientUtil class,
provided with OC4J, as in the following example:

CachePolicy cachePolicyObject = oracle.jsp.jwcache.CacheClientUtil.lookupPolicy
 (servletConfig, request, "/WEB-INF/foo.cpd");

Input a servlet configuration object (a javax.servlet.ServletConfig
instance), a request object (a javax.servlet.http.HttpServletRequest
instance), and the URI path (relative to the application root) of an XML cache policy
descriptor file.

Here is a simple example of a cache policy descriptor file:

<!--
test-policy.cpd
-->

<cachePolicy scope="application">
<expirationPolicy expirationType="TTL" TTL="25" timeInaDay="00:10:00"
writeThrough="true" />
</cachePolicy>

See "Cache Policy Descriptor" on page 7-58 for more information.

Using a CachePolicy Constructor
The oracle.jsp.jwcache.CachePolicy class has the following public
constructors—a simple constructor requiring only a servlet configuration object, a
"copy" constructor that copies another CachePolicy object, and a "copy"
constructor with a given servlet configuration object:

public CachePolicy(javax.servlet.ServletConfig config)

public CachePolicy(CachePolicy cPolicy)

public CachePolicy(javax.servlet.ServletConfig config,
 CachePolicy cPolicy)
7-40 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Servlet API Descriptions
CachePolicy Methods
Several utility methods are available in CachePolicy objects, as well as getter and
setter methods for key attributes.

CachePolicy Method Signatures and Common Parameters
The following abbreviated code, for illustration purposes only, contains signatures
for key methods available in CachePolicy objects.

See "Cache Policy Attributes" on page 7-12 for a discussion of relevant attributes.

class CachePolicy
{
 boolean isRecent(CacheBlock block);
 void putCache(Object data, HttpServletRequest req, SectionId sectionId);
 void putCache(Object data, HttpServletRequest req, String specifiedName);
 void putAutoCacheForOtherPath(Object data, HttpServletRequest req,
 String otherPath, StringSectionid sectionId);
 void putAutoCacheForOtherPath(Object data, HttpServletRequest req,
 String otherPath, Cookie[] newCookies, StringSectionid sectionId);
 CacheBlock getCache(HttpServletRequest req, SectionId sectionId);
 CacheBlock getCache(HttpServletRequest req, String specifiedName);
 CacheBlock getAutoCacheForOtherPath(HttpServletRequest req,
 String otherPath, StringSectionId sectionId);
 CacheBlock getAutoCacheForOtherPath(HttpServletRequest req,
 String otherPath, Cookie[] newCookies, StringSectionId sectionId);
 void invalidateCache(HttpServletRequest req, SectionId sectionId);
 void invalidateCache(HttpServletRequest req, String specifiedName);
 void invalidateCacheLike(HttpServletRequest req, String specifiedName);
 void invalidateCacheLike(HttpServletRequest req, int autoInvalidateLevel);
 void invalidateCacheLike(HttpServletRequest req, String specifiedName,
 int autoInvalidateLevel);
 void invalidateCacheOtherPathLike(HttpServletRequest req, String otherPath);
 void invalidateCacheOtherPathLike(HttpServletRequest req, String otherPath,
 Cookie[] newCookies, int autoInvalidateLevel);
 Date getCurrentTime();
}

These methods use several common parameters:

■ req, a javax.servlet.http.HttpServletRequest instance

This is the current HTTP request object.
 Web Object Cache Tags and API 7-41

Web Object Cache Servlet API Descriptions
■ newCookies, a javax.servlet.http.Cookie[] array

This is an array of new cookies. If you pass in new cookies, they are used in
cache operations that use the otherPath parameter (such as the
putAutoCacheForOtherPath() method), assuming the cache policy selects
some cookies, and invalidation is at the cookie level. If you do not pass in new
cookies, then cookies of the current HTTP request are used instead.

■ specifiedName, a Java string

For explicit cache-block naming, this is the name—either the desired cache block
name if you are creating a new cache block, or the existing cache block name if
you are retrieving an existing cache block.

■ sectionId, an oracle.jsp.jwcache.SectionId instance, specifically
StringSectionId or NumberSectionId)

For implicit cache-block naming, this is a counter that is used in tracking cache
blocks. In JSP pages it is used, incremented, and maintained by JSP cache tag
handlers. It is stored in the JSP pageContext object.

SectionId is an interface that is implemented by two
classes—StringSectionId and NumberSectionId. Where
StringSectionId is specified in a method signature, you must use an
instance of that class. Where SectionId is specified, you can use an instance of
either class. Typically you should use StringSectionId, however.
NumberSectionId is primarily intended for use by tag handlers in JSP pages.

In a servlet, you must create a section ID instance manually. "Sample Servlet
Using the Web Object Cache API" on page 7-49 demonstrates the use of a
StringSectionId instance.

■ otherPath, a Java string

The URI of another JSP page that has an associated cache block that you want to
store, retrieve, or invalidate.

■ autoInvalidateLevel, an integer

For implicit cache-block naming, you can use this to specify a level of
invalidation—application, page, parameter, or cookie. Use the CachePolicy
integer constant AUTO_INVALIDATE_APP_LEVEL,

Note: When you construct a StringSectionId instance, the
string must begin with an alphabetic (not numeric) character.
7-42 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Servlet API Descriptions
AUTO_INVALIDATE_PAGE_LEVEL, AUTO_INVALIDATE_PARAM_LEVEL, or
AUTO_INVALIDATE_COOKIE_LEVEL.

CachePolicy Method Descriptions
The CachePolicy methods function as follows:

■ isRecent()

This method checks the timestamp of the specified cache block and determines
whether it is recent enough, given the current time and the values of the cache
policy reusableTimeStamp and reusableDeltaTime attributes.

■ putCache(...)

Use this method to place an object into the cache repository. The data
parameter is any serializable Java object you want to cache that will not require
any further modification or mutation. In JSP pages, the JSP cache tag handler
calls putCache() to cache a BodyContent instance. The cacheXMLObj tag
handler calls it to cache an XML DOM object. In a servlet or useCacheObj tag,
the cache target object can be any Java serializable object.

You must also provide an HTTP request object and a cache block name (for
explicit naming) or a section ID (for implicit naming).

■ putAutoCacheForOtherPath(...)

Place the specified object into the cache repository according to a specified
string-based section ID and a specified page path, optionally using specified
cookies as well. You must also input an HttpServletRequest object. The
cache policy must not use explicit naming (in other words, must not have
autoType=TYPE_USERSPECIFIED).

■ getCache(...)

Use this method to retrieve a cached item from the repository, in the form of an
oracle.jsp.jwcache.CacheBlock instance. You can specify the cache
block name (for explicit naming) or the section ID (for implicit naming). You
must also provide an HTTP request object.

Note: The putCache() method does nothing if the cache policy
ignoreCache attribute is true.
 Web Object Cache Tags and API 7-43

Web Object Cache Servlet API Descriptions
■ getAutoCacheForOtherPath(...)

Retrieve a cached item from the repository according to a specified string-based
section ID and a specified page path, optionally using specified cookies as well.
You must also input an HttpServletRequest object. The cache policy must
not use explicit naming (in other words, must not have
autoType=TYPE_USERSPECIFIED)—otherwise, an exception is thrown.

■ invalidateCache(...)

Use this method to invalidate a single cache block, according to the HTTP
request object and the specified cache block name (for explicit naming) or the
section ID (for implicit naming).

■ invalidateCacheLike(...)

Use this method to invalidate multiple cache blocks. If you use explicit
cache-block naming and the cache repository supports wild-card naming, you
can input the specifiedName parameter with "*" wild card characters. (The
Oracle9i Application Server Java Object Cache currently does not support wild
card characters.)

If you use implicit cache-block naming, you must specify the
autoInvalidateLevel parameter to determine, in combination with the
HttpServletRequest object and optionally the specifiedName parameter,
what cache blocks are invalidated. The autoInvalidateLevel parameter has
the same functionality as in a JSP invalidateCache tag, as explained in "Web
Object Cache invalidateCache Tag" on page 7-33 (using information from the
request object, instead of using information from the page parameter of the
invalidateCache tag).

■ invalidateCacheOtherPathLike(...)

Use this method to invalidate cache blocks associated with the URI you provide
in the otherPath parameter. In the signature taking only a request object and
the URI, the autoInvalidateLevel parameter is set automatically according
to the URI—to param level if there is a question mark ("?") in the URI; to page
level otherwise.

The detailed signature of this method allows you to specifically control the
autoInvalidateLevel setting and the cookies used in invalidation.

Note: The getCache() method does nothing if the cache policy
ignoreCache attribute is true.
7-44 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Servlet API Descriptions
■ getCurrentTime()

Retrieve the current time value, as a java.util.Date instance, of the
underlying cache repository specified in this cache policy.

CachePolicy Getter and Setter Methods
You can use the following methods to retrieve or alter CachePolicy object
attributes. See "Cache Policy Attributes" on page 7-12 for a discussion of these
attributes.

■ boolean getIgnoreCache()

■ void setIgnoreCache(boolean ignoreCache)

■ void setIgnoreCache(String ignoreCacheStr)

■ int getScope()

■ void setScope(int scope)

For scope values, the integer constants SCOPE_APP and SCOPE_SESSION are
available.

■ int getAutoType()

■ void setAutoType(int autoType)

For autoType values, the integer constants TYPE_USERSPECIFIED,
TYPE_URI_ONLY, TYPE_URI_QUERYSTR, TYPE_URI_ALLPARAM,
TYPE_URI_SELECTEDPARAM, and TYPE_URI_EXCLUDEDPARAM are available.

■ String[] getSelectedParam()

■ void setSelectedParam(String[] selectedParameters)

■ void setSelectedParam(String selectedParamStr)

■ String[] getSelectedCookies()

■ void setSelectedCookies(String[] selectedCookies)

■ void setSelectedCookies(String selectedCookiesStr)

■ Date getReusableTimeStamp()

■ void setReusableTimeStamp(Date reusableTimeStamp)
 Web Object Cache Tags and API 7-45

Web Object Cache Servlet API Descriptions
■ void setReusableTimeStamp(long reusableTimeStamp)

For reusableTimeStamp values, the integer constant REUSABLE_ALWAYS is
available, indicating that the cache is always reusable.

■ long getReusableDeltaTime()

■ void setReusableDeltaTime(long reusableDeltaTime)

For reusableDeltaTime values, the integer constant REUSABLE_ALWAYS is
available, indicating that the cache is always reusable.

■ ExpirationPolicy getExpirationPolicy()

■ void setExpirationPolicy(ExpirationPolicy
 expirationPolicy)

■ String getCacheRepositoryName()

■ void setCacheRepositoryName(String repoName)

■ boolean getReportException()

■ void setReportException (boolean reportException)

■ void setReportException (String reportExceptionStr)

The following methods are also available, but are primarily intended for use by the
Web Object Cache tag handlers:

■ void setScope(String scopeStr)

For scope values, the string constants SCOPE_APP_STR and
SCOPE_SESSION_STR are available.

■ void setAutoType(String autoTypeStr)

■ void setReusableTimeStamp(String reusableTimeStampStr)

For reusableTimeStamp values, the string constant REUSABLE_IGNORED is
available, indicating that the cache is always reusable.

■ void setReusableDeltaTime(String reusableDeltaTimeStr)

For reusableDeltaTime values, the string constant REUSABLE_IGNORED is
available, indicating that the cache is always reusable.
7-46 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Servlet API Descriptions
Expiration Policy Object Retrieval
Each CachePolicy object has an ExpirationPolicy attribute. If you want to set
expiration policies for a cache block, you can use the getExpirationPolicy()
method of its CachePolicy object, as in the following example:

CachePolicy cachePolicyObj = CacheClientUtil.lookupPolicy
 (config, request, "/WEB-INF/mypolicy.cpd");
ExpirationPolicy expPolicyObj = cachePolicyObj.getExpirationPolicy();

ExpirationPolicy Methods
The ExpirationPolicy class has getter and setter methods for its attributes, as
follows. For descriptions of these attributes, see "Expiration Policy Attributes" on
page 7-18.

■ int getExpirationType()

■ void setExpirationType(int expirationType)

■ void setExpirationType(String expirationTypeStr)

■ long getTTL()

■ void setTTL(long ttl)

■ long getTimeInaDay()

■ void setTimeInaDay(long timeInaDay)

■ void setTimeInaDay(String timeInaDayStr)

■ int getDayInaWeek()

■ void setDayInaWeek(int dayInaWeek)

■ void setDayInaWeek(String dayInaWeekStr)

■ int getDayInaMonth()

■ void setDayInaMonth(int dayInaMonth)

■ boolean getWriteThrough()

■ void setWriteThrough(boolean writeThrough)

■ void setWriteThrough(String writeThroughStr)
 Web Object Cache Tags and API 7-47

Web Object Cache Servlet API Descriptions
Additionally, the ExpirationPolicy class has the following utility method:

■ long getExpirationTime(long createTime)

Given the creation time of a cache block expressed in milliseconds since
midnight January 1, 1970, this method calculates and returns the expiration
time, also in milliseconds since midnight January 1, 1970. That is, the timestamp
when expiration should occur, according to the expiration policy.

The ExpirationPolicy class also defines the following integer constants for the
expirationType attribute:

■ TYPE_TTL

■ TYPE_DAILY

■ TYPE_WEEKLY

■ TYPE_MONTHLY

And the following integer constants are defined for the dayInaWeek attribute:

■ WEEKLY_SUNDAY

■ WEEKLY_MONDAY

■ WEEKLY_TUESDAY

■ WEEKLY_WEDNESDAY

■ WEEKLY_THURSDAY

■ WEEKLY_FRIDAY

■ WEEKLY_SATURDAY

CacheBlock Methods
You can use the getCache() method of a CachePolicy object to retrieve the
associated CacheBlock object, as documented in "CachePolicy Methods" on
page 7-41 and shown in "Sample Servlet Using the Web Object Cache API" below.

The following abbreviated code, for illustrative purposes only, shows the key
methods of the oracle.jsp.jwcache.CacheBlock class:

class CacheBlock
{ long getCreationTime();
 long getExpirationTime();
 Serializable getData();
}

7-48 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Servlet API Descriptions
Here are brief descriptions of these methods:

■ getCreationTime()—Returns the timestamp indicating when the cache
block was created.

■ getExpirationTime()—Returns the timestamp indicating the expiration
time of the cache block.

■ getData()—Returns the cache block data. Use of this method is also shown in
"Sample Servlet Using the Web Object Cache API" below.

Sample Servlet Using the Web Object Cache API
The following sample servlet, DemoCacheServlet, uses the Web Object Cache.
The code is followed by notes about some of its operations.

package demoPkg;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.IOException;

import java.io.PrintWriter;
import java.io.CharArrayWriter;

import oracle.jsp.jwcache.CachePolicy;
import oracle.jsp.jwcache.ExpirationPolicy;
import oracle.jsp.jwcache.StringSectionId;
import oracle.jsp.jwcache.CacheBlock;
import oracle.jsp.jwcache.CacheClientUtil;

public class DemoCacheServlet extends HttpServlet{

 public void service(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // standard writer object from servlet engine
 PrintWriter out=response.getWriter();
 ServletConfig config=getServletConfig();

 try {

Note: Creation time and expiration time are expressed in
milliseconds since midnight, January 1, 1970.
 Web Object Cache Tags and API 7-49

Web Object Cache Servlet API Descriptions
 CachePolicy cachePolicyObj = CacheClientUtil.lookupPolicy(config,request,
 "/WEB-INF/test-policy.cpd"); // Note A
 StringSectionId sectionId=new StringSectionId("s1"); // Note B
 CacheBlock cacheBlockObj=null;

 cacheBlockObj = cachePolicyObj.getCache(request,sectionId); // Note C
 if (!cachePolicyObj.isRecent(cacheBlockObj)) { // Note D
 CharArrayWriter newOut=new CharArrayWriter();
 PrintWriter pw=new PrintWriter(newOut);

 // actual logic within a cache block
 pw.println("fragment#1");
 pw.println(new java.util.Date());
 // which generates content into the "out" object

 if (cacheBlockObj == null) { // Note E
 cachePolicyObj.putCache(newOut.toCharArray(),request,sectionId);
 // Note F
 }

 out.write(newOut.toCharArray());
 // writing out newly created data back to the original writer
 }
 else {
 out.write((char[])cacheBlockObj.getData());
 // writing the existing cached data to the writer
 }

 sectionId=new StringSectionId("s2");
 long timeToLive = 15; // now set TTL to 15 on this block
 ExpirationPolicy expirationPolicy = cachePolicyObj.getExpirationPolicy();
 expirationPolicy.setTTL(timeToLive);
 cachePolicyObj.setExpirationPolicy(expirationPolicy);
 cacheBlockObj = cachePolicyObj.getCache(request,sectionId);
 if (!cachePolicyObj.isRecent(cacheBlockObj)) {
 CharArrayWriter newOut=new CharArrayWriter();
 PrintWriter pw=new PrintWriter(newOut);

 // actual logic within a cache block
 pw.println("fragment#2");
 pw.println(new java.util.Date());
 // which generates content into the "out" object

 if (cacheBlockObj == null) {
 cachePolicyObj.putCache(newOut.toCharArray(),request,sectionId);
7-50 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Servlet API Descriptions
 }

 out.write(newOut.toCharArray());
 // writing out newly created data back to the original writer
 }
 else {
 out.write((char[])cacheBlockObj.getData());
 // writing the existing cached data to the writer
 }

 } catch (Throwable th) {
 // your exception handling code here
 th.printStackTrace(out);
 }
 }
}

Code Notes The following notes describe some of the key functionality of the
preceding example:

■ The cache policy object is created in the lookupPolicy() call (Note A), with
attribute settings according to the cache policy descriptor test-policy.cpd.

■ The section ID is created for each cache block (Note B), as required for implicit
cache-block naming. See "CachePolicy Methods" on page 7-41 for information
about section IDs.

■ The cache block is retrieved from the repository through the getCache()
method of the cache policy object (Note C), and placed into the repository
through the putCache() method, according to the section ID in each case.

■ The isRecent() call determines if the cache block is recent enough to use
(Note D). If so, the cached data is retrieved through the getData() method of
the cache block. (See "CacheBlock Methods" on page 7-48.) If not, a special
PrintWriter object is created to buffer the output and save it back to the
cache repository. If the cache block object is not found (is null, Note E), then the
putCache() method of the cache policy object is called to create a new cache
block (Note F).
 Web Object Cache Tags and API 7-51

Web Object Cache Servlet API Descriptions
Tag Code Versus API Code
This example presents code for three approaches to an application that caches and
presents timestamp output from two cache fragments:

■ The first approach, tagcode.jsp, is a simple JSP page that uses the Oracle
Web Object Cache tags.

■ The second approach, servletcode.jsp, is a more involved JSP page that
uses the Web Object Cache servlet API (instead of the cache tags) inside a Java
scriptlet.

■ The third approach, DemoCacheServlet.java, uses the Web Object Cache
servlet API inside a standard servlet page.

Following the three code samples is a listing of the cache policy descriptor,
test-policy.cpd.

In each approach, the application will cache the two fragments it displays. You can
reload repeatedly, but the times displayed in the fragments will not change until the
cached fragments expire. The first fragment takes 25 seconds to expire, getting the
25-second time-to-live value from the TTL setting in the cache policy descriptor
(test-policy.cpd). The second fragment takes 15 seconds to expire, overriding
the cache policy descriptor time-to-live value with a value set directly in the page
code.

Output for the sample applications looks something like the following:

fragment#1 (expires in 25 seconds as per TTL value test-policy)
Sun May 27 15:20:46 PDT 2001

fragment#2 (expires in 15 seconds because TTL overrides test-policy value)
Sun May 27 15:20:46 PDT 2001

Simple JSP Page—tagcode.jsp
<%@ taglib uri="/WEB-INF/jwcache.tld" prefix="ojsp" %>
<title>tagcode.jsp</title>
<pre>
tagcode.jsp
<ojsp:cache policy="/WEB-INF/test-policy.cpd" >
 fragment#1 (expires in 25 seconds as per TTL value test-policy)
 <%= new java.util.Date() %>
</ojsp:cache>
<ojsp:cache policy="/WEB-INF/test-policy.cpd" TTL="15" >
 fragment#2 (expires in 15 seconds because TTL overrides test-policy value)
7-52 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Servlet API Descriptions
 <%= new java.util.Date() %>
</ojsp:cache>
</pre>

Scriptlet JSP Page—servletcode.jsp
Code notes are the same as for the servlet version below, which is repeated and
described in "Sample Servlet Using the Web Object Cache API" on page 7-49.

<%@ page import="oracle.jsp.jwcache.*,java.io.*" %>
<title>servletcode.jsp</title>
<pre>
servletcode.jsp
<%
 CachePolicy cachePolicyObj = CacheClientUtil.lookupPolicy(config,request,
 "/WEB-INF/test-policy.cpd"); // Note A
 StringSectionId sectionId=new StringSectionId("s1"); // Note B
 CacheBlock cacheBlockObj=null;

 cacheBlockObj = cachePolicyObj.getCache(request,sectionId); // Note C
 if (!cachePolicyObj.isRecent(cacheBlockObj)) { // Note D
 CharArrayWriter newOut=new CharArrayWriter();
 PrintWriter pw=new PrintWriter(newOut);

 // actual logic within a cache block
 pw.println
("fragment#1 (expires in 25 seconds as per TTL value test-policy)");
 pw.println(new java.util.Date());
 // which generates content into the "out" object

 if (cacheBlockObj == null) { // Note E
 cachePolicyObj.putCache(newOut.toCharArray(),request,sectionId);
 // Note F
 }

 out.write(newOut.toCharArray());
 // writing out newly created data back to the original writer
 }
 else {
 out.write((char[])cacheBlockObj.getData());
 // writing the existing cached data to the writer
 }

 sectionId=new StringSectionId("s2");
 Web Object Cache Tags and API 7-53

Web Object Cache Servlet API Descriptions
 long timeToLive = 15; // now set TTL to 15 on this block
 ExpirationPolicy expirationPolicy = cachePolicyObj.getExpirationPolicy();
 expirationPolicy.setTTL(timeToLive);
 cachePolicyObj.setExpirationPolicy(expirationPolicy);
 cacheBlockObj = cachePolicyObj.getCache(request,sectionId);
 if (!cachePolicyObj.isRecent(cacheBlockObj)) {
 CharArrayWriter newOut=new CharArrayWriter();
 PrintWriter pw=new PrintWriter(newOut);

 // actual logic within a cache block
 pw.println
("fragment#2 (expires in 15 seconds because TTL overrides test-policy value)");
 pw.println(new java.util.Date());
 // which generates content into the "out" object

 if (cacheBlockObj == null) {
 cachePolicyObj.putCache(newOut.toCharArray(),request,sectionId);
 }

 out.write(newOut.toCharArray());
 // writing out newly created data back to the original writer
 }
 else {
 out.write((char[])cacheBlockObj.getData());
 // writing the existing cached data to the writer
 }

%>
</pre>

Servlet Page—DemoCacheServlet.java
This sample also appears in "Sample Servlet Using the Web Object Cache API" on
page 7-49. Refer there for information about the code notes.

package demoPkg;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.IOException;

import java.io.PrintWriter;
import java.io.CharArrayWriter;
7-54 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Servlet API Descriptions
import oracle.jsp.jwcache.CachePolicy;
import oracle.jsp.jwcache.ExpirationPolicy;
import oracle.jsp.jwcache.StringSectionId;
import oracle.jsp.jwcache.CacheBlock;
import oracle.jsp.jwcache.CacheClientUtil;

public class DemoCacheServlet extends HttpServlet{

 public void service(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 // standard writer object from servlet engine
 PrintWriter out=response.getWriter();
 ServletConfig config=getServletConfig();

 try {
 CachePolicy cachePolicyObj = CacheClientUtil.lookupPolicy(config,request,
 "/WEB-INF/test-policy.cpd"); // Note A
 StringSectionId sectionId=new StringSectionId("s1"); // Note B
 CacheBlock cacheBlockObj=null;

 cacheBlockObj = cachePolicyObj.getCache(request,sectionId); // Note C
 if (!cachePolicyObj.isRecent(cacheBlockObj)) { // Note D
 CharArrayWriter newOut=new CharArrayWriter();
 PrintWriter pw=new PrintWriter(newOut);

 // actual logic within a cache block
 pw.println("fragment#1");
 pw.println(new java.util.Date());
 // which generates content into the "out" object

 if (cacheBlockObj == null) { // Note E
 cachePolicyObj.putCache(newOut.toCharArray(),request,sectionId);
 // Note F
 }

 out.write(newOut.toCharArray());
 // writing out newly created data back to the original writer
 }
 else {
 out.write((char[])cacheBlockObj.getData());
 // writing the existing cached data to the writer
 }

 sectionId=new StringSectionId("s2");
 Web Object Cache Tags and API 7-55

Web Object Cache Servlet API Descriptions
 long timeToLive = 15; // now set TTL to 15 on this block
 ExpirationPolicy expirationPolicy = cachePolicyObj.getExpirationPolicy();
 expirationPolicy.setTTL(timeToLive);
 cachePolicyObj.setExpirationPolicy(expirationPolicy);
 cacheBlockObj = cachePolicyObj.getCache(request,sectionId);
 if (!cachePolicyObj.isRecent(cacheBlockObj)) {
 CharArrayWriter newOut=new CharArrayWriter();
 PrintWriter pw=new PrintWriter(newOut);

 // actual logic within a cache block
 pw.println("fragment#2");
 pw.println(new java.util.Date());
 // which generates content into the "out" object

 if (cacheBlockObj == null) {
 cachePolicyObj.putCache(newOut.toCharArray(),request,sectionId);
 }

 out.write(newOut.toCharArray());
 // writing out newly created data back to the original writer
 }
 else {
 out.write((char[])cacheBlockObj.getData());
 // writing the existing cached data to the writer
 }

 } catch (Throwable th) {
 // your exception handling code here
 th.printStackTrace(out);
 }
 }
}

7-56 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Web Object Cache Servlet API Descriptions
Cache Policy Descriptor—test-policy.cpd
This cache policy descriptor is used by all three approaches to the sample
application—tagcode.jsp, servletcode.jsp, and
DemoCacheServlet.java:

<!--
test-policy.cpd
-->

<cachePolicy scope="application">
<expirationPolicy expirationType="TTL" TTL="25" timeInaDay="00:10:00"
writeThrough="true" />
</cachePolicy>
 Web Object Cache Tags and API 7-57

Cache Policy Descriptor
Cache Policy Descriptor
You can optionally use an XML-style cache policy descriptor to specify attribute
settings for the CachePolicy and ExpirationPolicy objects. In any JSP pages
or servlets that you use, you would then specify the cache policy descriptor through
the policy attribute of a cache, cacheXMLObj, useCacheObj, cacheInclude,
or invalidateCache tag.

This section provides the cache policy descriptor DTD, a sample cache policy
descriptor, and information about loading and refreshing the cache policy
descriptor.

Cache Policy Descriptor DTD
This section provides a listing of the Web Object Cache cache policy descriptor
DTD, cachepolicy.dtd. For an example of a cache policy descriptor, see "Sample
Cache Policy Descriptor" on page 7-59.

<!--
Copyright 2000 Oracle Corporation
cachepolicy.dtd
-->
<!--
This DTD is used to validate any (Oracle programmable web)
cache policy descriptors (e.g. "/WEB-INF/foo.cpd").
-->

<!--
The cachePolicy element is the root element of cache policy descriptors.
configuration descriptor.
-->

<!ELEMENT cachePolicy (
 selectedParam*, selectedCookie*,
 reusableTimeStamp?, reusableDeltaTime?,
 cacheRepositoryName?, expirationPolicy?) >

<!ATTLIST cachePolicy ignoreCache (true | false) "false" >
<!ATTLIST cachePolicy scope (application | session) "application" >
<!ATTLIST cachePolicy autoType
 (user | URI | URI_query |
 URI_allParam | URI_selectedParam | URI_excludedParam)
 "URI_allParam" >
<!ATTLIST cachePolicy reportException (true | false) "true" >
7-58 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Cache Policy Descriptor
<!ELEMENT selectedParam (#PCDATA) >
<!ELEMENT selectedCookie (#PCDATA) >
<!ELEMENT reusableTimeStamp (#PCDATA) >
<!ELEMENT reusableDeltaTime (#PCDATA) >
<!ELEMENT cacheRepositoryName (#PCDATA) >

<!ELEMENT expirationPolicy EMPTY >

<!ATTLIST expirationPolicy expirationType (TTL | daily | weekly | monthly)
 "TTL" >
<!ATTLIST expirationPolicy TTL CDATA "300" >
<!ATTLIST expirationPolicy timeInaDay CDATA #IMPLIED >
<!ATTLIST expirationPolicy dayInaWeek
 (Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday)
 "Wednesday" >
<!ATTLIST expirationPolicy dayInaMonth CDATA "10" >
<!ATTLIST expirationPolicy writeThrough (true | false) "true" >

Sample Cache Policy Descriptor
This section provides an example of a simple cache policy descriptor that sets the
TTL and timeInaDay attributes. For the DTD, see "Cache Policy Descriptor DTD"
above.

<!--
test-policy.cpd
-->

<cachePolicy scope="application">
<expirationPolicy expirationType="TTL" TTL="25" timeInaDay="00:10:00"
writeThrough="true" />
</cachePolicy>

Cache Policy Descriptor Loading and Refreshing
To create a CachePolicy object from an XML cache policy descriptor file, there
must be a call to the static lookupPolicy() method of the
oracle.jsp.jwcache.CacheClientUtil class. For JSP pages, this is handled
automatically. For servlets, you must include the lookupPolicy() call in your
code—see "Sample Servlet Using the Web Object Cache API" on page 7-49.
 Web Object Cache Tags and API 7-59

Cache Policy Descriptor
If the caching policy has not been previously loaded, then the lookupPolicy()
method results in the XML descriptor being parsed and used in constructing a new
CachePolicy object (and an ExpirationPolicy attribute of this object). See
"Cache Policy Object Creation" on page 7-39 for information about the
lookupPolicy() method.

The CachePolicy object is stored indirectly under the ServletContext object
associated with your application. When the same caching policy is requested again,
the stored policy object will be returned without the descriptor being re-read or
re-parsed. For performance reasons, because the cache policy descriptor files are
seldom changed, as well as for security reasons, OC4J does not provide descriptor
auto-reloading functionality. The resulting cache policy object is stored in the
middle-tier JVM for faster access.

The CachePolicy object will be valid until the servlet context is destroyed or
someone calls the static refreshPolicy() method of the CacheClientUtil
class. This method has the same calling sequence as the lookupPolicy() method.
For example:

oracle.jsp.jwcache.CacheClientUtil.refreshPolicy
 (servletConfig, request, "/WEB-INF/foo.cpd");

When you alter and refresh the caching policy, active cache blocks are not affected.
7-60 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Cache Repository Descriptor
Cache Repository Descriptor
Use an XML-style cache repository descriptor to specify what to use as the back-end
cache repository for the Web Object Cache, and how to configure it. This section
supplies the DTD for cache repository descriptors, as well as a sample cache
repository descriptor.

Cache Repository Descriptor DTD
This section provides a listing of the Web Object Cache cache repository descriptor
DTD, wcache.dtd. For an example of a cache repository descriptor, see "Sample
Cache Repository Descriptor" below.

<!--
Copyright 2000 Oracle Corporation
wcache.dtd
-->
<!--
This DTD is used to validate "/WEB-INF/wcache.xml", which is used to hold
web cache repositories configuration information for
Oracle programmable web caching components.
-->

<!--
The wcache-config element is the root element of web cache repositories
configuration descriptor.
-->

<!ELEMENT wcache-config (cache-repository*)>

<!ELEMENT cache-repository
(cache-repository-name,cache-repository-class,init-param*)>

<!ELEMENT cache-repository-name (#PCDATA)>
<!ELEMENT cache-repository-class (#PCDATA)>

<!ELEMENT init-param (param-name,param-value)>
<!ELEMENT param-name (#PCDATA)>
<!ELEMENT param-value (#PCDATA)>

Note: By default, the Web Object Cache uses the Oracle9i
Application Server Java Object Cache as its cache repository.
 Web Object Cache Tags and API 7-61

Cache Repository Descriptor
Sample Cache Repository Descriptor
This section lists the cache repository descriptor provided with OC4J. For the DTD,
see "Cache Repository Descriptor DTD" above.

<wcache-config>

<cache-repository>
 <cache-repository-name>DefaultCacheRepository</cache-repository-name>
 <cache-repository-class>
 oracle.jsp.jwcache.repository.impl.OCSRepoImpl
 </cache-repository-class>
</cache-repository>

<cache-repository>
 <cache-repository-name>SimpleFSRepo</cache-repository-name>
 <cache-repository-class>
 oracle.jsp.jwcache.repository.impl.SimpleFSRepositoryImpl
 </cache-repository-class>
 <init-param>
 <param-name>reporoot</param-name>
 <param-value>/tmp/reporoot</param-value>
 </init-param>
</cache-repository>

</wcache-config>

Note: The DTD does not include reporoot, which is a
specific-use parameter that only a file system cache implementation
requires.
7-62 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Configuration for Back-End Repository
Configuration for Back-End Repository
This section describes how to configure the Oracle9i Application Server Java Object
Cache or a file system as the back-end repository for the OC4J Web Object Cache.

Configuration Notes for Oracle9i Application Server Java Object Cache
The following preparatory steps are required in order to use the default cache
repository, Oracle9i Application Server Java Object Cache, in an OC4J environment:

1. Edit global-web-application.xml to add an initialization parameter to
specify the location of the Java Object Cache configuration file,
OCS4J.properties.

For example, for a UNIX system:

<servlet>
 <servlet-name>jsp</servlet-name>
 <servlet-class>oracle.jsp.runtimev2.JspServlet</servlet-class>
 <init-param>
 <param-name>ocs4j_file</param-name>
 <param-value>
 <your_install_root>/demo/ojspdemos/ojspdemos-web/WEB-INF/misc-file/OCS4J.properties
 </param-value>
 </init-param>
</servlet>

Notes:

■ The Java Object Cache cache.jar file must be available in the
<your_install_root>/lib directory.

■ The misc-file directory is created automatically when you
extract the demo programs.
 Web Object Cache Tags and API 7-63

Configuration for Back-End Repository
2. Update OCS4J.properties as appropriate. To set a root directory for the Java
Object Cache, update the diskPath entry.

For a UNIX system, do this as in the following example:

diskPath = /mydir/ocs4jdir

or, for a Windows NT system (note that you have to specify a drive letter):

diskPath = c:\mydir\ocs4jdir

3. Restart the Web server.

Configuration Notes for File System Cache
To use a file system as the back-end repository, edit the cache repository descriptor
(wcache.xml) to set reporoot to specify a root directory for the file system cache.
(This file is located in the WEB-INF directory where the OC4J samples are installed.
See "Cache Repository Descriptor" on page 7-61 for general information and for an
example of a cache repository descriptor that sets a reporoot value.)

For example, for a UNIX system:

<init-param>
 <param-name>reporoot</param-name>
 <param-value>/mydir/repositoryroot</param-value>
</init-param>

or for a Windows NT system:

<init-param>
 <param-name>reporoot</param-name>
 <param-value>c:\mydir\repositoryroot</param-value>
</init-param>
7-64 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

 JSP Utilities and Utility
8

JSP Utilities and Utility Tags

This chapter documents a variety of general utility features available with OC4J for
use in JSP pages, including the following:

■ JSP Event-Handling—JspScopeListener

■ Mail JavaBean and Tag

■ File-Access JavaBeans and Tags

■ EJB Tags

■ General Utility Tags

These features are implemented according to JSP and servlet standards and are
generally portable to other JSP environments.
 Tags 8-1

JSP Event-Handling—JspScopeListener
JSP Event-Handling—JspScopeListener
In standard servlet and JSP technology, only session-based events are supported.
Oracle extends this support to page-based, request-based, and application-based
events through the JspScopeListener interface and JspScopeEvent class in
the oracle.jsp.event package.

This section covers the following topics:

■ General Use of JspScopeListener

■ Use of JspScopeListener in OC4J and Other Servlet 2.3 Environments

■ Examples Using JspScopeListener

General Use of JspScopeListener
For Java objects in your application, implement the JspScopeListener interface
in the appropriate class, then attach objects of that class to a JSP scope using tags
such as jsp:useBean.

When the end of a scope is reached, objects that implement JspScopeListener
and have been attached to the scope will be notified. The JSP container
accomplishes this by sending a JspScopeEvent instance to such objects through
the outOfScope() method specified in the JspScopeListener interface.

Properties of the JspScopeEvent object include the following:

■ the scope that is ending (represented by one of the constants PAGE_SCOPE,
REQUEST_SCOPE, SESSION_SCOPE, or APPLICATION_SCOPE)

■ the container object that is the repository for objects at this scope (one of the
implicit objects page, request, session, or application)

■ the name of the object to which the notification pertains (the name of the
instance of the class that implements JspScopeListener)

■ the JSP implicit application object

This event listener mechanism significantly benefits developers who want to always
free object resources that are of page or request scope, regardless of error
conditions. It frees these developers from having to surround their page
implementations with Java try/catch/finally blocks.

For a complete sample, refer to the OC4J demos.
8-2 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Event-Handling—JspScopeListener
Use of JspScopeListener in OC4J and Other Servlet 2.3 Environments
JspScopeListener uses different mechanisms to support the different scopes,
though all are implemented according to servlet and JSP standards.

For pages running in an OC4J environment, there is also an OC4J-specific runtime
implementation for page scope, for convenience.

This section covers the following topics:

■ Requirements for JspScopeListener

■ Runtime and Tag Implementations to Support Page Scope

■ Servlet Filter Implementation to Support Request Scope

■ Listener Class Implementation to Support Application Scope

■ Integration with HttpSessionBindingListener to Support Session Scope

Requirements for JspScopeListener
The JspScopeListener implementation requires the following:

■ the oracle.jsp.event.JspScopeListener interface and
JspScopeEvent class, and the classes of the oracle.jsp.event.impl
package, all of which are supplied in the ojsp.jar file

■ a servlet 2.3 environment (such as OC4J)

Runtime and Tag Implementations to Support Page Scope
For OC4J and JServ environments, there is support for page scope through an
Oracle-specific runtime implementation. No configuration or special steps on your
part are required.

For portability to other environments, there is also an implementation to support
page scope through a special tag, checkPageScope. Put the appropriate code
between the checkPageScope start-tag and end-tag. This tag, with no attributes, is
defined as follows:

<!-- The checkPageScope tag -->
<tag>
 <name>checkPageScope</name>
 <tagclass>oracle.jsp.jml.tagext.CheckPageScopeListenerTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>
 to provide the notification of logic any
 JspScopeListener stored in page scope
 JSP Utilities and Utility Tags 8-3

JSP Event-Handling—JspScopeListener
 This tag is not needed on
 JServ or OC4J.
 </info>
</tag>

Here is an example of its use:

<%@ taglib uri="/WEB-INF/jml.tld" prefix="jml" %>
<jml:checkPageScope>
pagescope.jsp
<jsp:useBean id="tb" class="testpkg.TestData" />
<%
 /* testpkg.TestData implements oracle.jsp.event.JspScopeListener
 checkPageScope tag will provide the notification of logic any
 JspScopeListener stored in page scope
 This tag is not needed on JServ
 or OC4J.
 */
 // some more JSP / code here ...
%>
<%= new java.util.Date() %>
</jml:checkPageScope>

Servlet Filter Implementation to Support Request Scope
Objects of request scope are supported through a servlet filter. The filtering
applies to any servlets matching a specified URL pattern.

For support of event-handling for request-scope objects, add an entry such as the
following to the web.xml file for your application. To ensure proper operation of
the JspScopeListener functionality, this setting must be after any other filter
settings.

<filter>
 <filter-name>Request Filter</filter-name>
 <filter-class>oracle.jsp.event.impl.RequestScopeFilter</filter-class>
</filter>

Note: The checkPageScope tag is currently part of the Oracle
JML tag library, which is included in the ojsputil.jar file and
requires the jml.tld tag library description file. An appropriate
taglib directive is shown in the preceding example (the "jml"
prefix is typical). See "Overview of the JSP Markup Language (JML)
Tag Library" on page 3-2 for related information.
8-4 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Event-Handling—JspScopeListener
<!-- Define filter mappings for the defined filters -->
<filter-mapping>
 <filter-name>Request Filter</filter-name>
 <url-pattern>/jsp/*</url-pattern>
</filter-mapping>

Listener Class Implementation to Support Application Scope
Objects with application scope are supported through a servlet context listener
implementation class, in accordance with the servlet 2.3 specification.

For support of event-handling for application-scope objects, add an entry such as
the following to the web.xml file for your application. To ensure proper operation
of the JspScopeListener functionality, this setting must be after any other
listener settings.

<listener>
 <listener-class>oracle.jsp.event.impl.AppScopeListener</listener-class>
</listener>

For an application-scope object, in addition to notification upon the conclusion of
the application and servlet context, there is notification when an attribute is
replaced in the servlet context or removed from the servlet context. For example, the
listener outOfScope() method of an application-scope object is called in either of
the following circumstances, assuming a servlet context object ctx:

ctx.setAttribute("name", "Smith");
...
ctx.setAttribute("name, "Jones");

or:

ctx.setAttribute("name", "Smith");
...
ctx.removeAttribute("name");

Note: In this particular example, "/jsp/*" is the URL pattern
covered by the filter. Users may choose other patterns instead, such
as "/*.jsp" or "/*".
 JSP Utilities and Utility Tags 8-5

JSP Event-Handling—JspScopeListener
Integration with HttpSessionBindingListener to Support Session Scope
For session-scope objects, you can write a class that implements both the
JspScopeListener interface and the standard
javax.servlet.http.HttpSessionBindingListener interface. This would
give you the flexibility of supporting instances of this class for other scopes as well.
If instances would never be used outside of session scope, however, there is no
need to implement JspScopeListener.

In the integration scenario, the valueUnbound() method, specified in the
HttpSessionBindingListener interface, should call the outOfScope()
method, specified in the JspScopeListener interface.

Following is a basic example:

import oracle.jsp.event.impl.*;
import javax.servlet.*;
import javax.servlet.http.*;

class SampleObj implements HttpSessionBindingListener,JspScopeListener
{
 public void valueBound(HttpSessionBindingEvent e)
 {
 System.out.println("The object implements the JspScopeListener also");
 }

 public void valueUnBound(HttpSessionBindingEvent e)
 {
 try
 {
 outOfScope(new JspScopeEvent(null,(Object)e.getSession(),
 e.getName(),javax.servlet.jsp.PageContext.SESSION_SCOPE));
 } catch (Throwable e) {}

 }
 public void outOfScope(JspScopeEvent e)
 {...}
}

Note: This functionality was not available prior to Oracle9iAS
release 2.
8-6 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Event-Handling—JspScopeListener
Examples Using JspScopeListener
This section provides two examples of JspScopeListener usage—first a JSP page
and accompanying JavaBean, and then a servlet.

Example: JSP Page Using JspScopeListener
This example consists of a JavaBean, ScopeDispatcher, that implements the
JspScopeListener interface, and a JSP page that uses ScopeDispatcher
instances for request-scope and application-scope functionality.

bookcatalog.jsp The bookcatalog.jsp page allows users to search for a book in
the catalog or insert a new book entry. The catalog is kept in a hashtable that is
initially read from the local file stream.

At the end of a request, if a new book has been submitted it is entered into the
application-level catalog hashtable, and the book count is incremented.

At the end of execution of the application, the catalog hashtable is sent back to the
local file stream, the number of newly inserted books is shown, and query results
are displayed if there was a book search.

<%@ page import="java.util.*" %>
<%@ page import="java.io.*" %>
<%! static int newbookCount = 0; %>
<%! static Hashtable catalog; %>
<%! boolean bookAdded = false; %>
<html>
<head>
<title> BookStore Price catalog </title>
</head>
<body bgcolor="white">

<table color="#FFFFCC" width="100%" border="1" cellspacing="0" cellpadding="0" >
<tr>
<td>
<form action="bookcatalog.jsp">
 BookName
<input type="text" name="bookname">
<input type="submit" value="Get the Price">
</form>
</td>
<td>
<form action="bookcatalog.jsp">
BookName
 JSP Utilities and Utility Tags 8-7

JSP Event-Handling—JspScopeListener
<input type="text" name="new_book">

Price
<input type="text" name="price">
<input type="submit" value="Add to Catalog">
</form>
</td>
</tr>
</table>

<%
 String bookname = request.getParameter("bookname");
 catalog = (Hashtable) application.getAttribute("pricelist");
 if (catalog == null)
 {
 try{
 ObjectInputStream oin = new ObjectInputStream
 (new FileInputStream("bookcatalog.out"));
 Object obj = oin.readObject();
 catalog = (Hashtable) obj;
 oin.close();
 }
 catch(Exception e) {
 catalog = new Hashtable();}
 application.setAttribute("pricelist",catalog);
 }
 if (bookname != null)
 {
 String price = (String) catalog.get(bookname.trim());
 if (price != null)
 {
 out.println("<h2>Book : " +bookname+ "</h2>");
 out.println("<h2>Price: "+price +"</h2>");
 }
 else
 out.println("<h2> Sorry, the Book : " + bookname + " is not available in
 the catalog</h2>");
 }
%>

<%-- declare the event dispatchers --%>
<jsp:useBean id = "requestDispatcher"
 class = "oracle.jsp.sample.event.ScopeDispatcher"
 scope = "request" >
 <jsp:setProperty name = "requestDispatcher" property = "page"
8-8 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Event-Handling—JspScopeListener
 value = "<%= this %>" />
 <jsp:setProperty name = "requestDispatcher" property = "methodName"
 value = "request_OnEnd" />
</jsp:useBean>

<jsp:useBean id = "appDispatcher"
 class = "oracle.jsp.sample.event.ScopeDispatcher"
 scope = "application" >
 <jsp:setProperty name = "appDispatcher" property = "page"
 value = "<%= this %>" />
 <jsp:setProperty name = "appDispatcher" property = "methodName"
 value = "application_OnEnd" />
</jsp:useBean>
<%!
 // request_OnEnd Event Handler
 public void request_OnEnd(HttpServletRequest request) {
 // acquire beans
 String newbook = request.getParameter("new_book");
 bookAdded = false;
 if ((newbook != null) && (!newbook.equals("")))
 {
 catalog.put(newbook,request.getParameter("price"));
 newbookCount++;
 bookAdded = true;
 }
 }
%>

<%!
 public void application_OnEnd(ServletContext application)
 {
 try
 {
 ObjectOutputStream os = new ObjectOutputStream(
 new FileOutputStream("bookcatalog.out"));
 os.writeObject(catalog);
 os.flush();
 os.close();
 }
 catch (Exception e)
 {}
 }
%>

<%
 JSP Utilities and Utility Tags 8-9

JSP Event-Handling—JspScopeListener
if (bookAdded)
 out.println("<h2> The New book is been added in the catalog </h2>");
%>
<%-- Page implementation goes here --%>
<h2> Total number of books added is <%= newbookCount %></h2>

</body>
</html>

ScopeDispatcher.java

package oracle.jsp.sample.event;
import java.lang.reflect.*;
import oracle.jsp.event.*;

public class ScopeDispatcher extends Object implements JspScopeListener {
 private Object page;
 private String methodName;
 private Method method;

 public ScopeDispatcher() {
 }

 public Object getPage() {
 return page;
 }

 public void setPage(Object page) {
 this.page = page;
 }

 public String getMethodName() {
 return methodName;
 }

 public void setMethodName(String m) throws NoSuchMethodException,
 ClassNotFoundException {
 method = verifyMethod(m);
 methodName = m;
 }

 public void outOfScope(JspScopeEvent ae) {
 int scope = ae.getScope();
8-10 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Event-Handling—JspScopeListener
 if ((scope == javax.servlet.jsp.PageContext.REQUEST_SCOPE ||
 scope == javax.servlet.jsp.PageContext.APPLICATION_SCOPE)
 && method != null) {
 try {
 Object args[] = {ae.getContainer()};
 method.invoke(page, args);
 } catch (Exception e) {
 // catch all and continue
 }
 }
 }

 private Method verifyMethod(String m) throws NoSuchMethodException,
 ClassNotFoundException {
 if (page == null) throw new NoSuchMethodException(
 "A page hasn’t been set yet.");

 // Don’t know whether this is a request or page handler so try one then
 // the other
 Class c = page.getClass();
 Class pTypes[] = {Class.forName("javax.servlet.ServletContext")};

 try {
 return c.getDeclaredMethod(m, pTypes);
 } catch (NoSuchMethodException nsme) {
 // fall through and try the request signature
 }

 pTypes[0] = Class.forName("javax.servlet.http.HttpServletRequest");
 return c.getDeclaredMethod(m, pTypes);
 }
}

Example: Servlet Using JspScopeListener
This section contains a sample servlet that uses JspScopeListener functionality
for a request-scope object. The nested class DBScopeObj implements the
JspScopeListener interface.

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Enumeration;
import javax.servlet.*;
import javax.servlet.http.*;
 JSP Utilities and Utility Tags 8-11

JSP Event-Handling—JspScopeListener
import oracle.jsp.event.*;
import oracle.jsp.event.impl.*;

public class RequestScopeServlet extends HttpServlet {

 PrintWriter out;

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 out = response.getWriter();
 out.println("<html>");
 out.println("<body>");
 out.println("<head>");
 out.println("<title> RequestScopeServlet! </title>");
 out.println("</head>");
 response.setContentType("text/html");
 DBScopeObj aobj = new DBScopeObj();
 request.setAttribute("dbcon",aobj);
 request.setAttribute("name","scott");
 request.setAttribute("company","oracle");
 request.setAttribute("city","sanmateo");
 Enumeration en = request.getAttributeNames();
 out.println("
 Request Attributes :

");
 while (en.hasMoreElements()) {
 String key = (String)en.nextElement();
 Object value = request.getAttribute(key);
 out.println(key + " : " + value+"
");
 }
 out.println("</body>");
 out.println("</html>");
 }

 class DBScopeObj implements JspScopeListener
 {
 public void initDBConnection()
 {
 // can create a minimum number of predefined
 // DBConnections
 }

 DBScopeObj()
 {
 // if DBconnection is available in the connection
 // pool then pickup from the pool and give the handle.
8-12 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JSP Event-Handling—JspScopeListener
 }

 public void outOfScope(JspScopeEvent e)
 {
 ServletContext ctx = e.getApplication();
 out.println
 ("
***");
 out.println("
 JspScopeEvent
");
 out.println("<BLINK>");
 out.println
 ("
 In outOfScope method for the Request Attribute
");
 out.println("Name = " +e.getName() + "
");
 out.println("</BLINK>");
 out.println
 ("***
");
 // logging in the context also

 ctx.log("***");
 ctx.log(" JspScopeEvent ");
 ctx.log(" In outOfScope method for the Request Attribute ");
 ctx.log("Name = " +e.getName());
 ctx.log("***");
 returnDBConnection();
 }

 public void returnDBConnection()

 {
 //Can return the handle to the connection pool
 }
 }
}

 JSP Utilities and Utility Tags 8-13

Mail JavaBean and Tag
Mail JavaBean and Tag
It is often useful to be able to send e-mail messages from a Web application, based
on Web site status or user actions. Sun Microsystems has specified a
platform-independent and protocol-independent framework for this through its
javax.mail package and subpackages, known as the JavaMail API.

For further convenience, Oracle supplies a JavaBean and JSP custom tag, based on
the JavaMail API, to use in providing e-mail functionality through your servlets or
JSP pages. The bean and tag, as with other JavaBeans and custom tags supplied
with OC4J, are implemented according to JSP and servlet standards.

This section, organized as follows, describes the mail JavaBean and tag:

■ General Considerations for the Mail JavaBean and Tag

■ SendMailBean Description

■ The sendMail Tag Description

For more information about the JavaMail API, you can refer to the following Sun
Microsystems Web site:

http://java.sun.com/products/javamail/1.2/docs/javadocs/index.html

General Considerations for the Mail JavaBean and Tag
Be aware of the following points, which apply to use of either the mail JavaBean
(SendMailBean) or the mail tag (sendMail):

■ The files mail.jar, containing the JavaMail packages, and jaf.jar, for the
JavaBeans Activation Framework, must be in your classpath for mail
functionality. These files are provided with OC4J.

■ The JavaBean and tag currently do not support mail attachments. This support
is expected in a future release.

■ There is no particular limit to the size of an e-mail message, other than limits of
the JVM, system memory, or mail server.

■ Setting up default mail sessions is specific to the particular Web server. The
current implementations of the mail bean and tag do not support automatic use

Note: In Oracle9iAS, the mail JavaBean and tag require the OC4J
(not the JServ) environment.
8-14 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Mail JavaBean and Tag
of the default mail session. This feature may be added in a future release. Until
then, if you wish, you can write your own code to obtain the default mail
session if one exists for your platform, and make it available to the mail bean or
tag.

■ The JavaBean or tag can currently handle only a moderate number of requests.
If too many are received, it may happen that not enough mail transport objects
can be created and an exception will result. This limitation may be addressed in
a future release.

SendMailBean Description
The oracle.jsp.webutil.email.SendMailBean JavaBean is supplied with
OC4J to support e-mail functionality from servlet or JSP applications. To use it in a
JSP page, you can instantiate it through the standard jsp:useBean tag. (However,
for JSP applications, you may want to use the sendMail tag instead—see "The
sendMail Tag Description" on page 8-19.)

SendMailBean Requirements
To use SendMailBean, verify that the files ojsputil.jar, mail.jar, and
activation.jar are installed and in your classpath. These files are supplied with
OC4J.

When you use SendMailBean in your code, you must provide the following:

■ the message sender

Use the setSender() method to specify the sender.

■ the primary recipient(s) of the message

Use the setRecipient() method to specify the primary recipient(s).

■ a valid JavaMail session object (javax.mail.Session), either directly or
indirectly

There are three ways to supply a JavaMail session:

– Use the setHost() method to specify a host system. In this case, a
JavaMail session object will be created automatically.

– Use the setMailSession() method to provide a JavaMail session object
directly.

– For JSP applications, use the setSession() method to specify the name of
a JavaMail session object that already exists and is accessible through a
 JSP Utilities and Utility Tags 8-15

Mail JavaBean and Tag
"session string, javax.mail.Session object" pair in the JSP page context.
In this case, you must supply the page context instance as an input
parameter when you call the sendMessage() method to send the e-mail
message.

All other SendMailBean attributes are optional.

SendMailBean Method Descriptions
This section lists and describes SendMailBean methods to send mail messages,
close mail sessions, and set or get bean attributes.

Here are the public SendMailBean methods:

■ void sendMessage()

■ void sendMessage(javax.servlet.jsp.PageContext)

Use the sendMessage() method to send the e-mail message.

If you use the setSession() method to supply a JavaMail session, then you
must use the sendMessage(PageContext) signature and provide the page
context instance that holds the specified mail session instance.

If you use the setMailSession() or setHost() method to supply a
JavaMail session, then you do not have to provide a page context in using the
sendMessage() method.

Also be aware, however, that specifying a page context instance may be relevant
in determining the character set of an e-mail message with a "text" content type.
If you provide no page context when invoking the sendMessage() method,
then the default character set is ISO-8859-1. If you do provide a page context,
then the default character set is that of the response object of the page context.
Also note that you can specify the content type and character set directly
through the setContentType() method.

■ void close()

Use this method if you want to release the resources of the JavaMail session
instance from the SendMailBean instance. This method does not actually close
the session.

Note: To comply with the JavaBean specification, SendMailBean
has a no-argument constructor.
8-16 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Mail JavaBean and Tag
■ void setBcc(String s)

Specify a space-separated or comma-separated list of any IDs (e-mail addresses
or aliases) to receive "blind" copies of the message. These IDs will be suppressed
from the message "cc" field.

■ String getBcc()

■ void setCc(String s)

Specify a space-separated or comma-separated list of any IDs (e-mail addresses
or aliases) to receive copies of the message. These IDs will appear in the
message "cc" field.

■ String getCc()

■ void setContent(String s)

Specify the contents of the e-mail message.

■ String getContent()

■ void setContentEncoding(String s)

Specify the content encoding of the e-mail message. Specify "base64" or "B" for
base64 encoding, "quoted-printable" or "Q" for quoted-printable encoding,
"7bit" for seven-bit encoding, or "8bit" for eight-bit encoding. These content
encodings are part of the JavaMail and RFC 2047 standards. Entries are
case-insensitive.

The default content encoding setting is null, in which case the encoding of the
message and headers will be determined by the content. If most characters to be
encoded are in ASCII, then quoted-printable encoding will be used; otherwise,
base64 encoding will be used.

■ String getContentEncoding()

■ void setContentType(String s)

Specify the MIME type and optionally the character set of the message, such as
in the following examples:

setContentType("text/html");

setContentType("text/html; charset=US-ASCII");

The default MIME type is "text/plain", but you cannot specify a character set
without explicitly specifying that or some other text/xxxx MIME type.
 JSP Utilities and Utility Tags 8-17

Mail JavaBean and Tag
The default character set depends on whether you provide a JSP page context
instance when you call the sendMessage() method to send the e-mail
message. If you provide no page context, then the default character set is
ISO-8859-1. If you do provide a page context, then the default character set is
that of the response object of the page context.

■ String getContentType()

■ void setHost(String s)

One of the ways to supply a JavaMail session is to specify a mail server host
name, in which case SendMailBean will obtain a session automatically. Use
the setHost() method for this purpose, providing a mail host name such as
"gmail.oraclecorp.com".

See "SendMailBean Requirements" on page 8-15 for an overview of supplying
the JavaMail session.

■ String getHost()

■ void setMailSession(javax.mail.Session sessobj)

One of the ways to supply a JavaMail session is to provide the session object
directly. Use the setMailSession() method for this purpose, providing a
javax.mail.Session instance.

See "SendMailBean Requirements" on page 8-15 for an overview of supplying
the JavaMail session.

■ javax.mail.Session getMailSession()

This returns a JavaMail session that you had previously set.

■ void setRecipient(String s)

Specify a space-separated or comma-separated list of IDs (e-mail addresses or
aliases) of the primary recipients of the message. These IDs will appear in the
"to" field of the message. You must specify at least one recipient.

■ String getRecipient()

■ void setSender(String s)

Specify the ID (e-mail address or alias) of the message sender. This ID will
appear in the "from" field of the message. You must specify the sender.

■ String getSender()
8-18 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Mail JavaBean and Tag
■ void setSession(String s)

One of the ways to supply a JavaMail session is to provide the name of a
javax.mail.Session instance that already exists in the JSP page context
object. Use the setSession() method for this purpose, specifying the name of
the session instance.

In this case, when you use the sendMessage() method to send the e-mail
message, you must provide the javax.servlet.jsp.PageContext instance
as input.

See "SendMailBean Requirements" on page 8-15 for an overview of supplying
the JavaMail session.

■ String getSession()

■ void setSubject(String s)

Specify the subject line of the message.

■ String getSubject()

The sendMail Tag Description
As a convenience for JSP developers, OC4J supplies the sendMail tag to provide
e-mail functionality for a JSP page. This section describes the tag, including the
following topics:

■ The sendMail Tag Syntax

■ The sendMail Tag Attribute Descriptions

■ Sample Application for sendMail Tag

To use the sendMail tag, verify that the files ojsputil.jar, mail.jar, and
activation.jar are installed and in your classpath. These files are supplied with
OC4J.

In the current implementation, the sendMail tag has its own TLD file, email.tld,
located in the OC4J /j2ee/tlds directory. To use the tag, you must include a
taglib directive, such as the following, to reference this TLD file in your JSP page:

<%@ taglib uri="/WEB-INF/email.tld" prefix="mail" %>
 JSP Utilities and Utility Tags 8-19

Mail JavaBean and Tag
The sendMail Tag Syntax
The sendMail tag has the following syntax:

<mail:sendMail host = "SMTP_host_name" | session = "JavaMail_session_name"
 sender = "sender_address"
 recipient = "primary_recipient_IDs"
 [cc = "cc_recipient_IDs"]
 [bcc = "bcc_recipient_IDs"]
 [subject = "subject_line"]
 [contentType = "MIME_type; [charset=charset]"]
 [contentEncoding = "B"|"base64"|"Q"|"quoted-printable"|
 "7bit"|"8bit"] >
...
E-mail body
...
</mail:sendMail>

The sendMail Tag Attribute Descriptions
The sendMail tag supplies the following attributes:

■ host (required if session is not specified)—This is the appropriate mail host
name, such as "gmail.oraclecorp.com". This is used in creating a JavaMail

Notes:

■ The sender and recipient attributes are required, and
either the host or session attribute is required.

■ Multiple recipients, cc targets, or bcc targets are
space-separated or comma-separated.

■ The e-mail body can contain JSP syntax, which will be
processed by the JSP translator.

■ Attributes used by the tag are typically input by the user in
form fields.

■ The prefix "mail:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

■ See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.
8-20 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Mail JavaBean and Tag
session object for the mail message. Alternatively, you can determine a JavaMail
session through the session attribute.

■ session (required if host is not specified)—This is the name of an existing
JavaMail session object that can be retrieved from the JSP page context.
Alternatively, you can determine a JavaMail session through the host attribute.

■ sender (required)—This is the ID (e-mail address or alias) of the sender of the
message. This ID will appear in the "from" field of the message.

■ recipient (required)—This is a space-separated or comma-separated list of
IDs of the primary recipients of the message. These IDs will appear in the "to"
field of the message.

■ cc — This is a space-separated or comma-separated list of IDs to receive a copy
of the message. These IDs will appear in the "cc" field of the message.

■ bcc —This is a space-separated or comma-separated list of IDs to receive a
"blind" copy of the message. These IDs will be suppressed from the "cc" field.

■ subject—This is the subject line of the message.

■ contentType—This is for the MIME type of the message, and optionally a
character set as well, such as in the following examples:

contentType="text/html"

contentType="text/html; charset=US-ASCII"

The default MIME type is "text/plain", but you cannot specify a character set
without explicitly specifying that or some other text/xxxx MIME type.

The default character set is that of the response object of the JSP page context.

■ contentEncoding—Specify "B" or "base64" for base64 encoding, "Q" or
"quoted-printable" for quoted-printable encoding, "7bit" for seven-bit encoding,
or "8bit" for eight-bit encoding. These are standard JavaMail and RFC 2047
encodings. Entries are case-insensitive.

The default content encoding setting is null, in which case the encoding of the
message and headers will be determined by the content—if most characters to
be encoded are in ASCII, then quoted-printable encoding will be used;
otherwise, base64 encoding will be used.
 JSP Utilities and Utility Tags 8-21

Mail JavaBean and Tag
Sample Application for sendMail Tag
This sample application illustrates use of the sendMail tag. During the first
execution cycle through the page, before the user has specified the sender (or
anything else), the HTML form is displayed for user input. During the next
execution cycle through the page, after the user has sent the input, the sendMail
tag is executed. This page also uses an error page, error.jsp (shown below), to
display any exceptions that are thrown.

<%@ page language="java" errorPage="error.jsp" %>
<%@ taglib uri="/WEB-INF/email.tld" prefix="mail" %>
<%
if (request.getParameter("sender")==null) {
%>
<HTML>
<HEAD><TITLE>SendMail Sample</TITLE></HEAD>
<FORM METHOD=post>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH="20%">
<TR><TD>Host:</TD><TD><INPUT TYPE="text" name="host" ></TD></TR>
<TR><TD>From:</TD><TD><INPUT TYPE="text" name="sender" ></TD></TR>
<TR><TD>To:</TD><TD><INPUT TYPE="text" name="recipient" ></TD></TR>
<TR><TD>Cc:</TD><TD><INPUT TYPE="text" name="cc" ></TD></TR>
<TR><TD>Bcc:</TD><TD><INPUT TYPE="text" name="bcc" ></TD></TR>
<TR><TD>Subject:</TD><TD><INPUT TYPE="text" name="subject"
VALUE="Hi"></TD></TR>
</TABLE>

<TEXTAREA name="body" ROWS=4 COLS=30>"How are you!"</TEXTAREA>

<INPUT TYPE="submit" value="Send">
</FORM>
<%
}
else{
%>
<BODY BGCOLOR="#FFFFFF">
<P>Result:
 <HR>
 <mail:sendMail host=’<%=request.getParameter("host")%>’
 sender=’<%=request.getParameter("sender")%>’
 recipient=’<%=request.getParameter("recipient")%>’
 cc=’<%=request.getParameter("cc")%>’
 bcc=’<%=request.getParameter("bcc")%>’
 subject=’<%=request.getParameter("subject")%>’>
 <%=request.getParameter("body")%>
 </mail:sendMail>
Sent out Successfully!
8-22 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Mail JavaBean and Tag
 <HR>
</BODY>
<%
}
%>
</HTML>

Here is the error page, error.jsp:

<%@ page language="java" isErrorPage="true"%>
<HTML>
Error: <%= exception.getMessage() %>
</HTML>

When you run this application, you will initially see the following default screen:
 JSP Utilities and Utility Tags 8-23

Mail JavaBean and Tag
And here is sample user input for a message from brian.wright@oracle.com to
blodney.treehut@oracle.com through the host gmail.oraclecorp.com:
8-24 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
File-Access JavaBeans and Tags
OC4J provides a portable tag library and JavaBeans that add convenient file upload
and file download functionality for JSP pages and servlets. Files can be uploaded to
or downloaded from a file system or database.

This section documents these features and is organized as follows:

■ Overview of OC4J File-Access Functionality

■ File Upload and Download Tag Descriptions

■ File Upload and Download JavaBean and Class Descriptions

Overview of OC4J File-Access Functionality
Developers have the option of using either custom tags or JavaBeans to program
applications that allow users to upload or download files. In either case, the
application is presumably programmed so that users specify through the browser
where files come from on the client system for uploading, or where they go to on
the client system for downloading. For JSP pages for uploading, OC4J supplies a
convenience tag, httpUploadForm, to create a form for this purpose.

For processing an upload, including specifying the destination file system or
database location, use the HttpUploadBean JavaBean or the httpUpload tag. For
processing a download, including specifying the source file system or database
location, use HttpDownloadBean or the httpDownload tag. The beans extend
HttpFileAccessBean, which is not intended for public use. All of the beans are
in the oracle.jsp.webutil.fileaccess package.

Overview of File Uploading
For user specification in a JSP page of where uploaded files will come from, you can
use the httpUploadForm tag to create a form. This tag lets users select the files for
uploading, and creates the necessary multipart HTTP request. You also have the
option of using a standard HTML form to create the request.

Notes:

■ In Oracle9iAS, the file-access JavaBeans and tags require the
OC4J (not the JServ) environment.

■ Multibyte file names are not currently supported.
 JSP Utilities and Utility Tags 8-25

File-Access JavaBeans and Tags
Use the HttpUploadBean JavaBean or the httpUpload tag to receive and process
the multipart form-encoded data stream and write the files to the appropriate
location, either in the file system or a database. There is functionality to let you
decide whether previous data will be overwritten if the target file or database row
already exists.

File System Destination If the destination is in a file system, you must provide a
properties file that designates a base directory. The properties file must be named
fileaccess.properties, must be located in the /WEB-INF directory of your
application, and must have a fileaccess.basedir entry such as the following
(this example is for a Microsoft Windows system):

fileaccess.basedir=C:\tmp

Under the base directory, there should be subdirectories as appropriate—for
example, a subdirectory for each authorized user. Destination subdirectories under
the base directory must be specified through an attribute of the upload bean or tag.
All directories and subdirectories must already exist and be writable; they cannot be
created or made writable through OC4J functionality.

Database Destination If the destination is in a database, you can optionally use a
default table, fileaccess, that you create through the supplied
fileaccess.sql script, or you can use any other previously existing table
containing the required column types. In either case, you must provide a connection
to the database, as an instance of either oracle.jsp.dbutil.ConnBean or the
standard java.sql.Connection. You can provide a ConnBean instance either
explicitly, or, in a JSP page, implicitly as a result of nesting the httpUpload tag
inside a dbOpen tag. (For information about the ConnBean JavaBean and dbOpen
tag, see Chapter 4, "Data-Access JavaBeans and Tags".)

It is also required that you specify a destination through an attribute of the upload
bean or tag. The destination is simply a Java string value that will be placed in the
prefix column of the database table. The prefix is equivalent to a file system path.

File data is written to a database as either a BLOB or a CLOB (specify which
through an upload bean or tag attribute).

If you do not use the default fileaccess table, you must use attributes of the
upload bean or tag to specify the database table name and the names of the columns

Note: The maximum file size for any upload is 2 GB.
8-26 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
that will contain the file data, the file prefix, and the file name. Any other table you
use must adhere to the pattern of fileaccess, as follows:

■ It must have a concatenated unique key consisting of the column that holds the
file name and the column that holds the prefix.

■ It must have a BLOB or CLOB column for the file data.

■ Any column other than the file data column must allow null data.

Security Considerations for Uploading For uploading to a database, the database table
does not have a column to indicate a particular authorized user for any given file.
Therefore, without precaution, each user can see files that were uploaded by other
users, without having to know the file prefixes. To prevent this, you can prepend an
appropriate user name to each prefix.

Overview of File Downloading
Use the HttpDownloadBean JavaBean or the httpDownload tag as follows:

■ to allow users to specify the file system source directory or the database prefix
to match for file retrieval

Note the following:

– Matching the prefix for downloads from a database is case-sensitive.

– Matching the source directory for downloads from a file system is
case-sensitive in case-sensitive operating systems (such as UNIX).

– There is currently no support for specifying file names, either partial or
complete.

Notes:

■ If you use a ConnBean instance, the connection will be closed
automatically at the end of the scope designated in the
jsp:useBean tag that invokes it. There is no such
functionality for a Connection instance.

■ ConnBean uses and requires the JspScopeListener
interface. See "JSP Event-Handling—JspScopeListener" on
page 8-2 for information about that utility.
 JSP Utilities and Utility Tags 8-27

File-Access JavaBeans and Tags
■ to obtain and display a list of the files that are available for download

Once presented with a list of available files, the user can download them one at
a time from the list.

There is also functionality to specify whether you want recursive downloading,
where files in subdirectories or with additional database prefix information will also
be available for download. For database downloading, a prefix is equivalent to a file
system path and can be used to group files into a hierarchy. As an example of
recursive downloading from a database, assume you have specified /user as the
prefix. Recursive downloading would find matches for files with any prefixes
starting with /user, such as /user/bill and /user/mary, and also such as
/user1, /user2, /user1/tom, and /user2/susan.

For downloading files from a file system, use the mechanism described in
"Overview of File Uploading" on page 8-25—use the fileaccess.properties
file to specify a base directory, and use attributes in the download bean or tag to
specify the rest of the file path.

For downloading files from a database, as with uploading files to a database, you
must provide an instance of oracle.jsp.dbutil.ConnBean or
java.sql.Connection. In addition, if you are not using the default fileaccess
table (that you can create using the supplied fileaccess.sql script), you must
provide all the necessary information about the database table and columns. Specify
this information through attributes of the download bean or tag.

The actual downloading of the files is accomplished by DownloadServlet,
supplied with OC4J. In using the download tag, you specify the path of this servlet
through a tag attribute. For a file system source, hyperlinks are automatically
created to the servlet so that the user can click on a link for each file in order to
download the file. For a database source, the servlet will fetch the selected CLOB or
BLOB data that forms the file contents. (See "The Download Servlet" on page 8-40.)

Security Considerations for Downloading For downloading, you may want to consider
limiting the users’ ability to see what is in the source (server-side) file system or
database. Without precaution, the following scenarios are possible:

■ For file system downloading, a source value of "*" (perhaps specified through
user input) would mean that all directories under the base directory would be
available for downloading, with the names of all the files presumably being
displayed for the user to choose from.

■ For recursive downloading from a database, all files having a prefix beginning
with the source string (perhaps specified through user input) would be
8-28 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
available for downloading, with the names of all these files presumably being
displayed. A source of "*" matches all prefixes.

If this is of concern, you can consider protective measures such as the following:

■ not accepting source values of "*" when downloading from file systems

■ not allowing recursive downloading from databases

■ automatically prepending the source value with a partial directory path or
prefix string, such as a user name, to restrict the areas to which users have
access

File Upload and Download JavaBean and Class Descriptions
This section describes attributes and methods of the file upload and download
JavaBeans provided with OC4J—HttpUploadBean and HttpDownloadBean,
respectively.

There is also brief discussion of DownloadServlet, provided with OC4J to
perform the actual file downloading, and the class FileAccessException that is
used by the file-access JavaBeans for exceptions relating to file uploads and
downloads.

To comply with the JavaBean specification, the file upload and download JavaBeans
provide no-argument constructors.

The HttpUploadBean
The oracle.jsp.webutil.fileaccess.HttpUploadBean JavaBean provides
numerous setter methods for specifying information used for the uploading. It also
includes most corresponding getter methods. Once you have set all the required
and appropriate attributes, use the upload() method to perform the upload. There
is also a method to display the names of the files that were uploaded, typically so
you can provide an informative message to the browser.

HttpUploadBean, as with HttpDownloadBean, extends HttpFileAccessBean,
which itself is not intended for public use.

See "Overview of File Uploading" on page 8-25 for related information.

Note: To use the file upload and download JavaBeans, verify that
the file ojsputil.jar is installed and in your classpath. This file
is provided with OC4J.
 JSP Utilities and Utility Tags 8-29

File-Access JavaBeans and Tags
Summary of Required Attributes

The following list summarizes required attributes for HttpUploadBean:

■ always required: destination

■ also required for uploads to a database: destinationType, connection

■ also required for uploads to a database table other than the default
fileaccess table: table, prefixColumn, fileNameColumn, dataColumn

■ also required for uploads to a database table using a CLOB column for file data:
fileType

In addition, for an upload to a file system, you must call the setBaseDir()
method to provide a servlet context and HTTP request object so that the bean can
find the fileaccess.properties file that specifies the base directory.

Methods

Here are descriptions of the public methods of HttpUploadBean.

■ void upload(javax.servlet.http.HttpServletRequest req)
 throws FileAccessException

Once all required and appropriate bean attributes have been set, use this
method for the upload. The req parameter is the servlet request instance
containing the multipart form-encoded files. For a JSP page, use the implicit
request object.

■ void setBaseDir(javax.servlet.ServletContext sc
 javax.servlet.http.HttpServletRequest req)
 throws FileAccessException

For an upload to a file system, use this method to determine what to use as a
base directory. It gets this information from the fileaccess.properties file
in your application /WEB-INF directory, which it finds through the servlet
context input parameter. The baseDir setting, together with the
destination setting, specifies the absolute path to the upload directory.

The req parameter is the servlet request instance to use in requesting the base
directory information. For JSP pages, use the implicit request object.

Note: Many of the attributes and setter methods for
HttpUploadBean are the same as for HttpDownloadBean.
8-30 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
This method is not relevant for database uploads.

■ void setDestination(String destination)

This method is always required.

For an upload to a file system, destination, together with the base directory,
specifies the absolute path to the upload directory.

For an upload to a database, destination is used as the file prefix (there is no
"base directory"). The prefix is equivalent to a file system path and can be used
to group files into a hierarchy. It is permissible to include separator characters
such as "." and "/" in the destination string.

■ void setDestinationType(String destinationType)
 throws FileAccessException

■ void setDestinationType(int destinationType)
 throws FileAccessException

Use the overloaded setDestinationType() method to specify whether the
upload is to a file system or a database.

To upload to a database, set destinationType to one of the following: the
string "database", the defined String constant FileAccessUtil.DATABASE,
the int value 1, or the defined int constant
FileAccessUtil.LOCATION_TYPE_DATABASE.

Uploading to a file system is the default, but if you want to specify this
explicitly, set destinationType to one of the following: the string
"filesystem", the defined String constant FileAccessUtil.FILESYSTEM,
the int value 0, or the defined int constant
FileAccessUtil.LOCATION_TYPE_FILESYSTEM.

FileAccessUtil is in the oracle.jsp.webutil.fileaccess package.

■ String getDestinationType()

Note there is a getter method for the string version only.

Note: Typically, the destination value will be based at least
partially on user input.
 JSP Utilities and Utility Tags 8-31

File-Access JavaBeans and Tags
■ void setOverwrite(String overwrite)
 throws FileAccessException

■ void setOverwrite(boolean overwrite)

Use the overloaded setOverwrite() method to overwrite existing files or
update rows with the same file name and prefix. This is relevant for both file
system and database uploads.

Overwriting is enabled by default, but you can enable it explicitly with an
overwrite setting of the string "true" or the boolean value true. Disable
overwriting with a setting of the string "false" or the boolean value false.
String settings are case-insensitive. No settings are accepted other than those
listed here.

■ void setFileType(String fileType)
 throws FileAccessException

■ void setFileType(int fileType) throws FileAccessException

For an upload to a database, use the overloaded setFileType() method to
specify whether the data is to be stored in a BLOB for binary data (the default)
or a CLOB for character data. For a CLOB, set fileType to one of the
following: the string "character", the defined String constant
FileAccessUtil.CHARACTER_FILE, or the int value 1. To explicitly specify
a BLOB, set fileType to one of the following: the string "binary", the defined
String constant FileAccessUtil.BINARY_FILE, or the int value 0. String
settings are case-insensitive. No settings are accepted other than those listed
here.

FileAccessUtil is in the oracle.jsp.webutil.fileaccess package.

■ String getFileType()

Note there is a getter method for the string version only.

■ void setTable(String tableName)

For an upload to a database table other than the default fileaccess table, use
this method to specify the table name.

■ String getTable()

■ void setPrefixColumn(String prefixColumnName)

For an upload to a database table other than the default fileaccess table, use
this method to specify the name of the column containing the file prefix. (In
8-32 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
fileaccess, this column name is fileprefix.) The destination value
will be written into this column.

■ String getPrefixColumn()

■ void setFileNameColumn(String fileNameColumnName)

For an upload to a database table other than the default fileaccess table, use
this method to specify the name of the column containing the file name. (In
fileaccess, this column name is filename.) File names will include any file
name extensions.

■ String getFileNameColumn()

■ void setDataColumn(String dataColumnName)

For an upload to a database table other than the default fileaccess table, use
this method to specify the name of the BLOB or CLOB column containing the
file contents. (In fileaccess, this column name is data.)

■ String getDataColumn()

■ void setConnection(ConnBean conn)

■ void setConnection(java.sql.Connection conn)

For an upload to a database table (default table or otherwise), use this method
to provide a database connection. You can provide an instance of either
oracle.jsp.dbutil.ConnBean or the standard java.sql.Connection
type. For information about the ConnBean JavaBean, see "ConnBean for a
Database Connection" on page 4-4.

If you use a Connection instance, you must explicitly open and close it. For a
ConnBean instance, this is handled automatically.

■ java.util.Enumeration getFileNames()

This method returns an Enumeration instance containing the names of the
files that were uploaded. (This functionality is not available through the
httpUpload tag.)

Example: This example uses a plain HTML form to specify a file to upload to a file
system, then uses a JSP page that employs HttpUploadBean for the upload.

Here is the HTML form, which specifies beanUploadExample.jsp for its action
and will generate the multipart upload stream.

<html><body>
<form action="beanUploadExample.jsp" ENCTYPE="multipart/form-data" method=POST>
 JSP Utilities and Utility Tags 8-33

File-Access JavaBeans and Tags

 File to upload: <INPUT TYPE="FILE" NAME="File" SIZE="50" MAXLENGTH="120" >

<INPUT TYPE="SUBMIT" NAME="Submit" VALUE="Send"> </form>
</body></html>

And here is the beanUploadExample.jsp page.

<%@ page language="java"
 import="java.util.*, oracle.jsp.webutil.fileaccess.*" %>
<html><body>
<% String userdir = "fileaccess"; %> // user’s part of the upload directory
<jsp:useBean id="upbean"
 class="oracle.jsp.webutil.fileaccess.HttpUploadBean" >
 <jsp:setProperty name="upbean" property="destination" value="<%= userdir %>"
/>
</jsp:useBean>
<% upbean.setBaseDir(application, request);
 upbean.upload(request);
 Enumeration fileNames = upbean.getFileNames();
 while (fileNames.hasMoreElements()) { %>

<%= (String)fileNames.nextElement() %>
 <% } %>

Done!
</body></html>

The HttpDownloadBean
The oracle.jsp.webutil.fileaccess.HttpDownloadBean JavaBean
provides numerous setter methods for specifying information used for
downloading. It also includes most corresponding getter methods. Once you have
set all the required and appropriate attributes, use the listFiles() method to list
the files available for download. The actual downloading is accomplished through
DownloadServlet, supplied with OC4J, one file at a time. See "The Download
Servlet" on page 8-40.

HttpDownloadBean, as with HttpUploadBean, extends HttpFileAccessBean,
which itself is not intended for public use.

See "Overview of File Uploading" on page 8-25 for related information.

Note: You must construct the URL for DownloadServlet in
your application code.
8-34 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
Summary of Required Attributes

The following list summarizes required attributes for HttpDownloadBean:

■ always required: source

■ also required for uploads to a database: sourceType, connection

■ also required for downloads from a database table other than the default
fileaccess table: table, prefixColumn, fileNameColumn, dataColumn

■ also required for downloads from a database table using a CLOB column for file
data: fileType

In addition, for a download from a file system, you must call the setBaseDir()
method to provide a servlet context and HTTP request object so that the bean can
find the fileaccess.properties file that specifies the base directory.

Methods

Here are descriptions of the public methods of HttpDownloadBean.

■ void listFiles(javax.servlet.http.HttpServletRequest req)
 throws FileAccessException

Once all required and appropriate bean attributes have been set, use this
method to list the files available for download. These are files in the source
directory or matching the source database prefix. The req parameter is the
servlet response instance. For a JSP page, use the implicit request object.

For use from the file list, you can create HREF links to DownloadServlet,
passing it each file and file prefix, allowing users to click on the link for each file
they want to download.

Note: Many of the attributes and setter methods for
HttpDownloadBean are the same as for HttpUploadBean.

Note: The listFiles() method writes the file names to
memory and to the JSP page or servlet. If you later want to access
the file names again, use the getFileNames() method, which
reads them from memory.
 JSP Utilities and Utility Tags 8-35

File-Access JavaBeans and Tags
■ java.util.Enumeration getFileNames()

This method returns an Enumeration instance containing the names of the
files that are available for download. It requires that the listFiles() method
was already called—listFiles() writes the file names to memory and to the
JSP page or servlet; getFileNames() reads them from memory.

■ void setBaseDir(javax.servlet.ServletContext sc
 javax.servlet.http.HttpServletRequest req)
 throws FileAccessException

For a download from a file system, use this method to determine what to use as
the base directory. It gets this information from the fileaccess.properties
file in your application /WEB-INF directory, which it finds through the servlet
context input parameter. The baseDir setting, together with the source
setting, specifies the absolute path to the directory from which files will be
downloaded.

The sc parameter is the servlet context instance for the application. For JSP
pages, use the implicit application object.

The req parameter is for the servlet request instance to use in requesting the
base directory information. For JSP pages, use the implicit request object.

A base directory is not relevant for downloads from a database.

■ void setSource(String source)

This is always required.

For a download from a file system, source, together with the base directory,
specifies the absolute path to the directory from which files will be
downloaded. If source is set to "*", then all directories under the base directory
will be available for downloading.

For a download from a database, source is used as the file prefix (base
directory is not relevant). The prefix is equivalent to a file system path and can
be used to group files into a hierarchy. If recurse is enabled, "%" will be
appended onto the source value, and the WHERE clause for the query will
contain an appropriate LIKE clause. Therefore, all files with prefixes that are
partially matched by the source value will be available for download. If you
want to match all rows in the database table, set source to "*".
8-36 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
■ void setSourceType(String sourceType)
 throws FileAccessException

■ void setSourceType(int sourceType)
 throws FileAccessException

Use the overloaded setSourceType() method to specify whether the
download is from a file system or a database.

To download from a database, set sourceType to one of the following: the
string "database", the defined String constant FileAccessUtil.DATABASE,
the int value 1, or the defined int constant
FileAccessUtil.LOCATION_TYPE_DATABASE.

Downloading from a file system is the default, but if you want to specify this
explicitly, set sourceType to one of the following: the string "filesystem", the
defined String constant FileAccessUtil.FILESYSTEM, the int value 0, or
the defined int constant FileAccessUtil.LOCATION_TYPE_FILESYSTEM.

FileAccessUtil is in the oracle.jsp.webutil.fileaccess package.

■ String getSourceType()

Note there is a getter method for the string version only.

■ void setRecurse(String recurse) throws FileAccessException

■ void setRecurse(boolean recurse)

Use the overloaded setRecurse() method to enable or disable recursive
downloading, where files in file system subdirectories or with additional
database prefix information will also be available for downloading. As an
example of recursive downloading from a database, assume source is set to
"/user". Recursive downloading would also find matches for files with prefixes
such as /user/bill and /user/mary, and also such as /user1, /user2,
/user1/tom, and /user2/susan.

Recursive downloading is enabled by default, but you can enable it explicitly
with a recurse setting of the string "true" or the boolean true. Disable
recursive downloading with a setting of the string "false" or the boolean false.
String settings are case-insensitive. No settings are accepted other than those
listed here.

Note: Typically, the source value will be based at least partially
on user input.
 JSP Utilities and Utility Tags 8-37

File-Access JavaBeans and Tags
■ void setFileType(String fileType)
 throws FileAccessException

■ void setFileType(int fileType) throws FileAccessException

For a download from a database, use the overloaded setFileType() method
to specify whether the data is stored in a BLOB for binary data (the default) or a
CLOB for character data. For a CLOB, set fileType to one of the following: the
string "character", the defined String constant
FileAccessUtil.CHARACTER_FILE, or the int value 1. To explicitly specify
a BLOB, set fileType to one of the following: the string "binary", the defined
String constant FileAccessUtil.BINARY_FILE, or the int value 0. String
settings are case-insensitive. No settings are accepted other than those listed
here.

FileAccessUtil is in the oracle.jsp.webutil.fileaccess package.

■ String getFileType()

Note there is a getter method for the string version only.

■ void setTable(String tableName)

For a download from a database table other than the default fileaccess
table, use this method to specify the table name.

■ String getTable()

■ void setPrefixColumn(String prefixColumnName)

For a download from a database table other than the default fileaccess
table, use this method to specify the name of the column containing the file
prefix. (In fileaccess, this column name is fileprefix.)

■ String getPrefixColumn()

■ void setFileNameColumn(String fileNameColumnName)

For a download from a database table other than the default fileaccess
table, use this method to specify the name of the column containing the file

Note: Practically speaking, recursive downloading is of limited
value for a file system download. To parallel the server
subdirectory structure when downloading files to the client, the
subdirectories would have to already exist. HttpDownloadBean
cannot create the client subdirectories automatically.
8-38 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
name. (In fileaccess, this column name is filename.) The file name
includes any file name extension.

■ String getFileNameColumn()

■ void setDataColumn(String dataColumnName)

For a download from a database table other than the default fileaccess
table, use this method to specify the name of the BLOB or CLOB column that
holds the file contents. (In fileaccess, this column name is data.)

■ String getDataColumn()

■ void setConnection(ConnBean conn)

■ void setConnection(java.sql.Connection conn)

For a download from a database table (default table or otherwise), use this
method to provide a database connection. You can provide an instance of either
oracle.jsp.dbutil.ConnBean or the standard java.sql.Connection
type. For information about the ConnBean JavaBean, see "ConnBean for a
Database Connection" on page 4-4.

If you use a Connection instance, you must explicitly open and close it. For a
ConnBean instance, this is handled automatically.

Example This example is a JSP page that uses HttpDownloadBean for a download
from a file system. Note that the page must construct the URL for the download
servlet.

<%@ page language="java" import="java.util.*, oracle.jsp.webutil.fileaccess.*"
%>
<html><body>
<% String servletPath = "/servlet/download/"; // path to the download servlet
 String userDir = "fileaccess/"; // user part of download directory
%>
<jsp:useBean id="dbean"
 class="oracle.jsp.webutil.access.HttpDownloadBean" >
 <jsp:setProperty name="dbean" property="source" value=’<%=userDir %>’ />
</jsp:useBean>
<% dbean.setBaseDir(application, request);
 dbean.listFiles(request); %>
The following files were found:
<% Enumeration fileNames = dbean.getFileNames();
 while (fileNames.hasMoreElements()) {
 String name = (String)fileNames.nextElement(); %>

<a href="<%= servletPath + name %>" > <%= name %>
 JSP Utilities and Utility Tags 8-39

File-Access JavaBeans and Tags
<% } %>

Done!
</body></html>

The Download Servlet
To use download functionality, through either HttpDownloadBean or the
httpDownload tag, you must have the class
oracle.jsp.webutil.fileaccess.DownloadServlet available in your Web
server.

Its mapping in your Web server must be reflected in your servlet path settings,
either through the servletPath attribute if you use the httpDownload tag, or in
your application code if you use HttpDownloadBean. For an example of how to
configure it in your Web server, see the /WEB-INF/web.xml file for the OC4J
demos.

The OC4J demos, for example, expect to find DownloadServlet mapped to the
servlet name download with the context path /j2ee/servlet (the context root of
the OC4J default Web application). That is, it must be accessible by the following
relative path, unless you edit web.xml:

/j2ee/servlet/download

FileAccessException Class
The oracle.jsp.webutil.fileaccess.FileAccessException class is a
convenience class supplied with OC4J for file-access exception-handling. It wraps
the functionality of the standard java.sql.SQLException and
java.io.IOException classes. It handles exceptions from either of the file-access
beans in addition to handling SQL and I/O exceptions.

File Upload and Download Tag Descriptions
For file uploading, OC4J supplies the httpUpload tag. This tag, in turn, uses
HttpUploadBean. For convenience, you can also use the httpUploadForm tag in
programming the form through which users specify the files to upload, or you can
code the form manually.

For file downloading, OC4J provides the custom httpDownload tag.This tag uses
HttpDownloadBean. This section describes these tags and their attributes.
8-40 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
To use the file upload and download tags, verify that the file ojsputil.jar is
installed and in your classpath. This file is provided with OC4J.

The tag library description file for the file access tags is fileaccess.tld, located
in the OC4J /j2ee/tlds directory. To use the library, you will need a taglib
directive such as the following:

<%@ taglib uri="/WEB-INF/fileaccess.tld" prefix="fileaccess" %>

The httpUploadForm Tag
For convenience, you can use the httpUploadForm tag to create a form in your
application, using multipart encoded form data, that allows users to specify the files
to upload.

Syntax

<fileaccess:httpUploadForm formsAction = "action"
 [maxFiles = "max_number"]
 [fileNameSize = "file_input_box_num_chars"]
 [maxFileNameSize = "max_file_name_num_chars"]
 [includeNumbers = "true" | "false"]
 [submitButtonText = "button_label_text"] />

Attributes

■ formsAction (required)—This is to indicate the action that will be performed
after the form is submitted. For example, formsAction could be the name of a
JSP page that uses HttpUploadBean or the httpUpload tag.

Notes:

■ The prefix "fileaccess:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

■ See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

Note: The httpUploadForm tag can optionally use a body. For
example, the body might consist of a user prompt.
 JSP Utilities and Utility Tags 8-41

File-Access JavaBeans and Tags
■ maxFiles—Use this if you want to specify the number of input lines you want
to appear in the form. The default is 1.

■ fileNameSize—Use this if you want to specify the character-width of the file
name input box(es). The default is 20 characters.

■ maxFileNameSize—Use this if you want to specify the maximum number of
characters allowed in a file name. The default is 80 characters.

■ includeNumbers—Set this to "true" if you want the file name input boxes to
be numbered. The default setting is "false".

■ submitButtonText—Use this if you want to specify the text that appears on
the "submit" button of the form. The default is "Send".

The httpUpload Tag
This tag wraps the functionality of the HttpUploadBean JavaBean, paralleling its
attributes. See "Overview of File Uploading" on page 8-25 and "The
HttpUploadBean" on page 8-29 for related information.

Syntax

<fileaccess:httpUpload destination = "dir_path_or_prefix"
 [destinationType = "filesystem" | "database"]
 [connId = "id"]
 [scope = "request" | "page" | "session" | "applicaton"]
 [overwrite = "true" | "false"]
 [fileType = "character" | "binary"]
 [table = "table_name"]
 [prefixColumn = "column_name"]
 [fileNameColumn = "column_name"]
 [dataColumn = "column_name"] />

Attributes

■ destination (required)—For uploading to a file system, this indicates the
path, beneath the base directory supplied in the
/WEB-INF/fileaccess.properties file, of the directory into which files

Note: For uploads to a file system, the base directory is
automatically retrievable by the tag handler from the JSP page
context.
8-42 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
will be uploaded. For uploading to a database, destination indicates the file
prefix, conceptually equivalent to a file system path.

■ destinationType—Set this to "database" for uploading to a database. The
default is to upload to a file system, but you can also explicitly set it to
"filesystem". These values are case-insensitive.

■ connId—For uploading to a database, use this attribute to provide a
ConnBean connection ID for the database connection to be used. Or,
alternatively, use the httpUpload tag inside a dbOpen tag to implicitly use the
dbOpen connection. For information about the ConnBean JavaBean and
dbOpen tag provided with OC4J, see Chapter 4, "Data-Access JavaBeans and
Tags".

■ scope—For uploading to a database, use this attribute to specify the scope of
the ConnBean instance for the connection. The scope setting here must match
the scope setting when the ConnBean instance was created, such as in a
dbOpen tag. If the httpUpload tag is nested inside a dbOpen tag, then there is
no need to specify connId or scope—that information will be taken from the
dbOpen tag. Otherwise, the default scope is page.

■ overwrite—Set this to "false" if you do not want to overwrite existing files
that have the same paths and names as the files you are uploading, or if you do
not want to update rows with the same file name and prefix for database
uploading. In this case, an error will be generated if a file already exists. By
default, overwrite is set to "true" and httpUpload overwrites files.

■ fileType—For uploading to a database, set this attribute to "character" for
character data, which will be written into a CLOB. The default setting is
"binary" for binary data, which will be written into a BLOB.

■ table—For uploading to a database table other than the default fileaccess
table, use this attribute to specify the table name.

■ prefixColumn—For uploading to a database table other than the default
fileaccess table, use this attribute to specify the name of the column
containing file prefixes. This column is where the destination values will be
written.

Note: Typically, the destination value will be based at least
partially on user input.
 JSP Utilities and Utility Tags 8-43

File-Access JavaBeans and Tags
■ fileNameColumn—For uploading to a database table other than the default
fileaccess table, use this attribute to specify the name of the column
containing file names.

■ dataColumn—For uploading to a database table other than the default
fileaccess table, use this attribute to specify the name of the column
containing file contents.

Example This example has a page that uses the httpUploadForm tag to create the
HTML form for specifying files to upload. The httpUploadForm tag specifies
httpUploadExample.jsp as its forms action. The httpUploadExample.jsp
page uses the httpUpload tag to upload to the default fileaccess table in a
database.

Here is the page for the HTML form:

<%@ page language="java" import="java.io.*" %>
<%@ taglib uri="/WEB-INF/fileaccess.tld" prefix="upload" %>
<html> <body>
<fileaccess:httpUploadForm
 formsAction="httpUploadExample.jsp"
 maxFiles=’<%= request.getParameter("MaxFiles") %>’
 includeNumbers="true" fileNameSize="50" maxFileNameSize="120" >

 File:
</fileaccess:httpUploadForm>
</body> </html>

And following is the httpUploadExample.jsp page. Note that the httpUpload
tag gets its database connection as a result of being inside a dbOpen tag. Also note
that setconn.jsp is used to obtain the connection, if necessary. See "setconn.jsp"
on page 5-11.

<%@ page language="java" %>
<%@ taglib uri="/WEB-INF/fileaccess.tld" prefix="upload" %>
<%@ taglib uri="/WEB-INF/sqltaglib.tld" prefix="sql" %>
<% String connStr=request.getParameter("connStr"); // get the connection string
 if (connStr==null) { connStr=(String)session.getValue("connStr"); }
 else { session.putValue("connStr",connStr); }
 if (connStr==null) { %>
 <jsp:forward page="setconn.jsp" />
<% } %>
<html><body>
<sql:dbOpen URL="<%= connStr %>" user="scott" password="tiger" >
 <fileaccess:httpUpload destinationType = "database"
 destination="tagexample" />
8-44 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
</sql:dbOpen>
Done! </body></html>

The httpDownload Tag
This tag wraps the functionality of the HttpDownloadBean JavaBean, paralleling
its attributes. See "Overview of File Downloading" on page 8-27 and "The
HttpDownloadBean" on page 8-34 for related information.

Syntax

<fileaccess:httpDownload servletPath = "path"
 source = "dir_path_or_prefix"
 [sourceType = "filesystem" | "database"]
 [connId = "id"]
 [scope = "request" | "page" | "session" | "applicaton"]
 [recurse = "true" | "false"]
 [fileType = "character" | "binary"]
 [table = "table_name"]
 [prefixColumn = "column_name"]
 [fileNameColumn = "column_name"]
 [dataColumn = "column_name"] />

Attributes

■ servletPath (required)—The path to the Oracle DownloadServlet, which
executes the actual download of each file. For example, if DownloadServlet
has been installed in the application app and mapped to the name download,
then use "/app/download/", with leading and trailing slashes, as the
servletPath setting. The httpDownload tag handler uses this path in
constructing the URL to DownloadServlet.

See "The Download Servlet" on page 8-40 for more information about this
servlet.

Notes:

■ The httpDownload tag can optionally use a body. For
example, the body might consist of a user prompt.

■ For downloads from a file system, the base directory is
automatically retrievable by the tag handler from the JSP page
context.
 JSP Utilities and Utility Tags 8-45

File-Access JavaBeans and Tags
■ source (required)—For downloading from a file system, this attribute
indicates the path, beneath the base directory supplied in the file
/WEB-INF/fileaccess.properties, of the directory from which files are
retrieved. A value of "*" results in all directories under the base directory being
available.

For downloading from a database, this attribute indicates the file prefix,
conceptually equivalent to a file system path. If recurse is enabled, "%" will be
appended onto the source value, and the WHERE clause for the query will
contain an appropriate LIKE clause. Therefore, all files with prefixes that are
partially matched by the source value will be available for download. If you
want to match all rows in the database table, set source to "*".

■ sourceType—Set this to "database" for downloading from a database. The
default is to download from a file system, or you can explicitly set this to
"filesystem".

■ connId—For downloading from a database, use this attribute to provide a
ConnBean connection ID for the database connection to be used. Or,
alternatively, you can use the httpDownload tag inside a dbOpen tag to
implicitly use the dbOpen connection. For information about the ConnBean
JavaBean and dbOpen tag provided with OC4J, see Chapter 4, "Data-Access
JavaBeans and Tags".

■ scope—For downloading from a database, use this attribute to specify the
scope of the ConnBean instance for the connection. The scope setting here must
match the scope setting when the ConnBean instance was created, such as in a
dbOpen tag. If the httpDownload tag is nested inside a dbOpen tag, then there
is no need to specify connId or scope—that information will be taken from
the dbOpen tag. Otherwise, the default scope is page.

■ recurse—Set this to "false" if you do not want recursive downloading, where
files in file system subdirectories or with additional database prefix information
will also be available for download. As an example of recursive downloading
from a database, assume you have set source to "/user". Recursive
downloading would also find matches for files with prefixes such as
/user/bill and /user/mary, and also such as /user1, /user2,
/user1/tom, and /user2/susan. The default is recursive downloading, or
you can enable it explicitly with a setting of "true".

Note: Typically, the source value is based at least partially on
user input.
8-46 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

File-Access JavaBeans and Tags
■ fileType—For downloading from a database, set this attribute to "character"
for character data, which will be retrieved from a CLOB. The default setting is
"binary" for binary data, which will be retrieved from a BLOB.

■ table—For downloading from a database table other than the default
fileaccess table, use this attribute to specify the table name.

■ prefixColumn—For downloading from a database table other than the
default fileaccess table, use this attribute to specify the name of the column
containing file prefixes, which is where source values are stored.

■ fileNameColumn—For downloading from a database table other than the
default fileaccess table, use this attribute to specify the name of the column
containing file names. File names include any file name extensions.

■ dataColumn—For downloading from a database table other than the default
fileaccess table, use this attribute to specify the name of the column that
stores the file contents.

Example This example is a JSP page that uses the httpDownload tag to download
from the default fileaccess table of a database. The tag body content ("
:")
will be output before each file name in the list of files available for download. Note
that you must specify the DownloadServlet servlet path in the httpDownload
tag; the tag handler will use it in constructing the URL to DownloadServlet,
which performs the actual downloading.

<%@ page language="java" %>
<%@ taglib uri="/WEB-INF/fileaccess.tld" prefix="download" %>
<%@ taglib uri="/WEB-INF/sqltaglib.tld" prefix="sql" %>
<% String connStr=request.getParameter("connStr");
 if (connStr==null) { connStr=(String)session.getValue("connStr");}
 else { session.putValue("connStr",connStr);}
 if (connStr==null) { %>
 <jsp:forward page="setconn.jsp" />
<% } %>
<html> <body>
<% String servletPath = "/servlet/download/"; %>
<sql:dbOpen URL="<%= connStr %>" user="scott" password="tiger" >
<fileaccess:httpDownload sourceType = "database"
 source="tagexample" servletPath = ‘<%= servletPath %>’ >

:
</fileaccess:httpDownload>
</sql:dbOpen>

Done!
</body> </html>
 JSP Utilities and Utility Tags 8-47

EJB Tags
EJB Tags
OC4J provides a custom tag library to simplify the use of Enterprise JavaBeans in
JSP pages.

The functionality of the OC4J EJB tags follows the J2EE specification. The tags allow
you to instantiate EJBs by name, using configuration information in the web.xml
file. One of the tags is a useBean tag, with functionality similar to that of the
standard jsp:useBean tag for invoking a regular JavaBean.

The rest of this section is organized as follows:

■ EJB Tag Configuration

■ EJB Tag Descriptions

■ EJB Tag Examples

EJB Tag Configuration
Use an <ejb-ref> element in your application web.xml file for each EJB you will
use, as in the following example:

<ejb-ref>
 <ejb-ref-name>ejb/DemoSession</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>ejbdemo.DemoSessionHome</home>
 <remote>ejbdemo.DemoSession</remote>
</ejb-ref>

The <ejb-ref> element and its subelements are used according to the Sun
Microsystems Servlet Specification, Version 2.2 (or higher). Briefly, this is as follows:

■ The <ejb-ref-name> subelement specifies a reference name that can be used
by other components of a J2EE application to access this component. For
example, this name could be used in a location value.

■ The <ejb-ref-type> subelement specifies the category of EJB.

■ The <home> subelement specifies the package and type of the EJB home
interface.

■ The <remote> subelement specifies the package and type of the EJB remote
interface.

These values are reflected in attribute values of the EJB tags.
8-48 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

EJB Tags
EJB Tag Descriptions
This section provides syntax and attribute descriptions for the OC4J EJB tags.

To use the EJB tags, verify that the file ojsputil.jar is installed and in your
classpath. This file is provided with OC4J.

The tag library description file for the EJB tags is ejbtaglib.tld, located in the
OC4J /j2ee/tlds directory. To use the library, you will need a taglib directive
such as the following:

<%@ taglib uri="/WEB-INF/ejbtaglib.tld" prefix="ejb" %>

The following tags are available:

■ EJB useHome Tag

■ EJB useBean Tag

■ EJB createBean Tag

■ EJB iterate Tag

When first creating an EJB instance, you will have to use a useHome tag to create a
home interface instance, then the following as appropriate:

■ to create a single EJB instance: a useBean tag, and either the useBean tag
value attribute or a nested createBean tag

■ to create a collection of EJB instances and iterate through them (more typical for
entity beans): an iterate tag

After an EJB instance is created, it is placed in the appropriate scope object, and you
will need only a useBean tag to access it subsequently.

Notes:

■ The prefix "ejb:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

■ See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.
 JSP Utilities and Utility Tags 8-49

EJB Tags
EJB useHome Tag
The useHome tag looks up the home interface for the EJB and creates an instance of
it.

Syntax

<ejb:useHome id = "home_instance_name"
 type = "home_interface_type"
 location = "home_lookup_name" />

This tag uses no body.

Attributes

■ id (required)—Specify a name for the home interface instance. The instance is
accessible from the start tag to the end of the page.

■ type (required)—This is for the name (Java type) of the home interface.

■ location (required)—This is a JNDI name used to look up the home interface
of the desired EJB within the application.

Example

<ejb:useHome id="aomHome" type="com.acme.atm.ejb.AccountOwnerManagerHome"
 location="java:comp/env/ejb/accountOwnerManager" />

EJB useBean Tag
Use the EJB useBean tag for instantiating and using the EJB. The id, type, and
scope attributes are used as in a standard jsp:useBean tag that instantiates a
regular JavaBean.

You can use one of two mechanisms when you first instantiate the EJB:

■ the value attribute

or:

■ a nested EJB createBean tag

When using a createBean tag, the EJB instance is implicitly returned into the
value attribute of the parent useBean tag. Once the EJB is instantiated, value
attributes and nested createBean tags are unnecessary for subsequent useBean
tags using the same EJB instance.
8-50 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

EJB Tags
Syntax

<ejb:useBean id = "EJB_instance_name"
 type = "EJB_class_name"
 [value = "<%=Object%>"]
 [scope = "page" | "request" | "session" | "application"] >

... nested createBean tag for first instantiation (if no value attribute) ...

</ejb:useBean>

Attributes

■ id (required)—Specify an instance name for the EJB.

■ type (required)—This is the class name for the EJB.

■ value—When first instantiating the EJB, if you do not use a nested
createBean tag, you can use the value attribute to return an EJBObject
instance to narrow. This is a mechanism for instantiating the EJB.

■ scope—Specify the scope of the EJB instance. The default is page scope.

Example This example shows the use of an EJB that has already been instantiated.

<ejb:useBean id="bean" type="com.acme.MyBean" scope="session" />

EJB createBean Tag
For first instantiating an EJB, if you do not use the value attribute of the EJB
useBean tag, you must nest an EJB createBean tag within the useBean tag to do
the work of creating the EJB instance. This will be an EJBObject instance. The
instance is implicitly returned into the value attribute of the parent useBean tag.

Syntax

<ejb:createBean instance = "<%=Object%>" />

This tag uses no body.

Note: See "EJB iterate Tag" on page 8-52 for how to use a collection
of EJB instances.
 JSP Utilities and Utility Tags 8-51

EJB Tags
Attributes

■ instance (required)—This is to return the EJB, a created EJBObject instance.

Example In this createBean tag, the create() method of the EJB home interface
instance creates an instance of the EJB.

<ejb:useBean id="bean" type="com.acme.MyBean" scope="session">
 <ejb:createBean instance="<%=home.create()%>" />
</ejb:useBean>

EJB iterate Tag
Use this tag to iterate through a collection of EJB instances. This is more typical for
entity beans, because standard finder methods for entity beans return collections.

In the start tag, obtain the collection through finder results from the home interface.
In the tag body, iterate through the collection as appropriate.

Syntax

<ejb:iterate id = "EJB_instance_name"
 type = "EJB_class_name"
 collection = "<%=Collection%>"
 [max = "<%=Integer%>"] >

... body ...

</ejb:iterate>

The body is evaluated once for each EJB in the collection.

Note:

■ This tag has the same semantics as the more general iterate
utility tag, discussed in "Utility iterate Tag" on page 8-58. It is
copied into the EJB tag library for convenience.

■ See "EJB useBean Tag" on page 8-50 for how to use a single EJB
instance.
8-52 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

EJB Tags
Attributes

■ id (required)—This is an iterator variable, the EJB instance name for each
iteration.

■ type (required)—This is the EJB class name.

■ collection (required)—This is to return the EJB collection.

■ max—Optionally specify a maximum number of beans to iterate through.

Example

<ejb:iterate id="account" type="com.acme.atm.ejb.Account"
 collection="<%=accountManager.getOwnerAccounts()%>"
 max="100">
 <jsp:getProperty name="account" property="id" />
</ejb:iterate>

EJB Tag Examples
This section provides examples of EJB tag usage, one using a session bean and one
use an entity bean.

EJB Tag Session Bean Example
This example relies on the following configuration in the application web.xml file:

<ejb-ref>
 <ejb-ref-name>ejb/DemoSession</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>ejbdemo.DemoSessionHome</home>
 <remote>ejbdemo.DemoSession</remote>
</ejb-ref>

Here is the sample code:

<%@ page import="ejbdemo.*" %>
<%@ taglib uri="/WEB-INF/ejbtaglib.tld" prefix="ejb" %>
<html>
<head> <title>Use EJB from JSP</title> </head>
<body>

<ejb:useHome id="home" type="ejbdemo.DemoSessionHome"
 location="java:comp/env/ejb/DemoSession" />
 JSP Utilities and Utility Tags 8-53

EJB Tags
<ejb:useBean id="demo" type="ejbdemo.DemoSession" scope="session" >
 <ejb:createBean instance="<%=home.create()%>" />
</ejb:useBean>
<heading2> Enterprise Java Bean: </heading2>
 <p> My name is "<%=demo.getName()%>". </p>
</body>
</html>

This accomplishes the following:

■ Creates the home instance of the EJB home interface. Note that the type value
of the useHome tag matches the <home> value of the <ejb-ref> element in
the web.xml file, and that the location value of useHome reflects the
<ejb-ref-name> value of the <ejb-ref> element.

■ Uses the home.create() method to create the demo instance of the EJB. Note
that the type value of the useBean tag matches the <remote> value of the
<ejb-ref> element in the web.xml file.

■ Uses the demo.getName() method to print a user name.

EJB Tag Entity Bean Example
This example relies on the following configuration in the application web.xml file:

<ejb-ref>
 <ejb-ref-name>ejb/DemoEntity</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>ejbdemo.DemoEntityHome</home>
 <remote>ejbdemo.DemoEntity</remote>
</ejb-ref>

Here is the sample code:

<%@ page import="ejbdemo.*" %>
<%@ taglib uri="/WEB-INF/ejbtaglib.tld" prefix="ejb" %>
<html>
<head> <title>Iterate over EJBs from JSP</title> </head>
<body>

<ejb:useHome id="home" type="ejbdemo.DemoEntityHome"
 location="java:comp/env/ejb/DemoEntity" />
<% int i=0; %>
<ejb:iterate id="demo" type="ejbdemo.DemoEntity"
 collection="<%=home.findAll()%>" max="3" >
 <heading2> Bean #<%=++i%>: </heading2>
8-54 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

EJB Tags
 My name is "<%=demo.getName()+"_"+ demo.getId()%>".
</ejb:iterate>
</body>
</html>

This accomplishes the following:

■ Creates the home instance of the EJB home interface. Note that the type value
of the useHome tag matches the <home> value of the <ejb-ref> element in
the web.xml file, and that the location value of useHome reflects the
<ejb-ref-name> value of the <ejb-ref> element.

■ Uses the home.findAll() method to return a collection of EJBs. Note that the
type value in the iterate tag matches the <remote> value of the
<ejb-ref> element in the web.xml file.

■ Iterates through the collection, always using demo for the current instance, and
using the demo.getName() and demo.getId() methods to output
information from each EJB.
 JSP Utilities and Utility Tags 8-55

General Utility Tags
General Utility Tags
OC4J provides a number of miscellaneous utility tags to perform various
operations. This section documents these tags and is organized as follows:

■ Display Tags

■ Miscellaneous Utility Tags

To use the utility tags, verify that the file ojsputil.jar is installed and in your
classpath. This file is provided with OC4J.

The tag library description file for the utility tags is utiltaglib.tld, located in
the OC4J /j2ee/tlds directory. To use the library, you will need a taglib
directive such as the following:

<%@ taglib uri="/WEB-INF/utiltaglib.tld" prefix="util" %>

Display Tags
This section documents the following tags:

■ Utility displayCurrency Tag

■ Utility displayDate Tag

■ Utility displayNumber Tag

Utility displayCurrency Tag
This tag displays a specified amount of money, formatted as currency appropriate
for the locale. If no locale is specified, then the request object will be searched for
a locale. If none is found there, the system default locale is used.

Syntax

<util:displayCurrency amount = "<%=Double%>"
 [locale = "<%=Locale%>"] />

Notes:

■ The prefix "util:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

■ See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.
8-56 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

General Utility Tags
This tag uses no body.

Attributes

■ amount (required)—Specify the amount to format.

■ locale—Optionally specify a locale (a java.util.Locale instance).

Example

<util:displayCurrency amount="<%=account.getBalance()%>"
 locale="<%=account.getLocale()%>" />

Utility displayDate Tag
This tag displays a specified date, formatted appropriately for the locale. If no locale
is specified, the system default locale is used.

Syntax

<util:displayDate date = "<%=Date%>"
 [locale = "<%=Locale%>"] />

This tag uses no body.

Attributes

■ date (required)—Specify the date to format (a java.util.Date instance).

■ locale—Optionally specify a locale (a java.util.Locale instance).

Example

<util:displayDate date="<%=account.getDate()%>"
 locale="<%=account.getLocale()%>" />

Utility displayNumber Tag
This displays the specified number, for the locale and optionally in the specified
format. If no locale is specified, the system default locale is used.
 JSP Utilities and Utility Tags 8-57

General Utility Tags
Syntax

<util:displayNumber number = "<%=Double%>"
 [locale = "<%=Locale%>"]
 [format = "<%=Format%>"] />

This tag uses no body.

Attributes

■ number (required)—Specify the number to format.

■ locale—Optionally specify the locale (a java.util.Locale instance).

■ format—Optionally specify a format (a java.text.Format instance).

Example

<util:displayNumber number="<%=shoe.getSize()%>" />

Miscellaneous Utility Tags
This section documents the following tags:

■ Utility iterate Tag

■ Utility ifInRole Tag

■ Utility lastModified Tag

Utility iterate Tag
Use this tag to iterate through a collection. Obtain the collection in the start tag;
iterate through it in the body.

Syntax

<util:iterate id = "instance_name"
 type = "class_name"
 collection = "<%=Collection%>"
 [max = "<%=Integer%>"] >

... body ...

</util:iterate>
8-58 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

General Utility Tags
The body is evaluated once for each element in the collection.

Attributes

id (required)—This is an iterator variable, the instance name for each iteration.

type (required)—This is the class name; the collection is a set of instances of this
type.

collection (required)—This is for the collection itself.

max—Optionally specify a maximum number of elements to iterate through.

Example

<util:iterate id="contact" type="com.acme.connections.Contact"
 collection="<%=company.getContacts()%>" >
 <jsp:getProperty name="contact" property="name"/>
</util:iterate>

Utility ifInRole Tag
Use this tag to evaluate the tag body and include it in the body of the JSP page,
depending on whether the user is in the specified application role. The tag handler
executes the isUserInRole() method of the request object.

The concept of "role" is according to the Sun Microsystems Java Servlet Specification,
Version 2.2 (and higher). Roles are defined in <role> elements in the application
web.xml file.

Syntax

<util:ifInRole role = "<%=String%>"
 [include = "true" | "false"] >

 ... body to include ...

</util:ifInRole>
 JSP Utilities and Utility Tags 8-59

General Utility Tags
Attributes

■ role (required)—Check to see if the user is in this specified role.

■ include—Use a "true" setting (the default) to include the body only if the user
is in the role. Use a "false" setting to include the body only if the user is not in
the role.

Example

<util:ifInRole role="users" include="true">
 Logged in as <%=request.getRemoteUser()%>

 <form action="logout.jsp">
 <input type="submit" value="Log out">

 </form>
</util:ifInRole>
<util:ifInRole role="users" include="false">
 <form method="POST">
 Username: <input name="j_username" type="text">

 Password: <input name="j_password" type="password">

 <input type="submit" value="Log in">
 </form>
</util:ifInRole>

Utility lastModified Tag
This tag displays the date of the last modification of the current file, appropriately
formatted for the locale. If no locale is specified, then the request object will be
searched for a locale. If none is found there, the system default locale is used.

Syntax

<util:lastModified
 [locale = "<%=Locale%>"] />

This tag uses no body.

Attributes

■ locale—Optionally specify the locale (a java.util.Locale instance).

Example

<util:lastModified />
8-60 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

 Oracle9iAS Personalization
9

Oracle9iAS Personalization Tags

This chapter documents the tag library supplied with OC4J for use with Oracle9 iAS
Personalization. Use of this library assumes that the Oracle9iAS Personalization
product has been properly installed.

This chapter covers the following topics:

■ Overview of Personalization

■ Overview of Personalization Tag Functionality

■ Personalization Tag and Class Descriptions

■ Personalization Tag Library Configuration Files

For information about Oracle9iAS Personalization itself, see the Oracle9iAS
Personalization Administrator’s Guide and the Oracle9iAS Personalization
Recommendation Engine API Programmer’s Guide.

Note: The Oracle9iAS Personalization tag library is certified to
run on the OC4J JSP container.
 Tags 9-1

Overview of Personalization
Overview of Personalization
This section introduces personalization, first covering general concepts and then
providing an overview of the Oracle implementation in particular.

General Overview of Personalization
This overview covers general personalization concepts and describes the differences
between personalization and customization, concepts that are sometimes confused.

Personalization Concepts
Personalization is a mechanism to tailor recommendations to application users,
based on behavioral, purchasing, rating, and demographic data. Recommendations
are made in real-time, during a user’s application session. User behavior is saved to
a profile in a database repository for use in building models to predict future user
behavior.

In future user sessions, the models are used to predict behavior and desires of
similar users (or, within a single session, the same user), such as products or
services to purchase or Web sites to visit. The user will receive recommendations
based on these predictions.

The Oracle9iAS Personalization tag library exposes two key functions of
personalization:

■ choosing the most relevant content to deliver, based on past user behavior as
collected in the user profile

■ embedding this personalized content into application output or Web pages in a
flexible manner

A typical personalization scheme may take any or all of the following into account:

■ user Web-surfing patterns

■ past user purchase activities

■ past user ratings of items

■ anticipated nature and degree of user interest (such as "buy" versus "like")

■ user demographics, such as age, sex, and income
9-2 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization
Personalization Versus Customization
Personalization, as implemented by Oracle and described in this chapter, is a
complex and dynamic set of features that result in content being chosen
automatically and implicitly. It should not be confused with simpler and more static
Web site mechanisms that are often referred to as "personalization", but are really
simply "customization".

Many sites offer customization such as giving a user a set of possible topics of
interest—such as local weather, stocks of interest, or favorite sports—then
displaying output based on the chosen topic. Although it is true that this
personalizes the content that is delivered, the process is static and requires explicit
user involvement. The focus of the content does not change until the user has an
opportunity to change it explicitly through another topic selection.

Personalization chooses content for the user automatically, without direct user
request. The process of choosing content is hidden. Moreover, as the system
becomes more familiar with user habits by observing behavior, it achieves increased
accuracy in predicting future behavior and interests.

Introduction to Oracle9iAS Personalization
Oracle9iAS Personalization uses data mining algorithms in the Oracle database to
choose the most relevant content available for a user. Recommendations are
calculated by an Oracle9iAS Personalization recommendation engine (defined in
"Introduction to Recommendation Engines" on page 9-5), typically using large
amounts of data regarding past and current user behavior. This approach is
superior to others that rely on "common sense" heuristics and require manual
definition of rules in the system.

The application that uses Oracle9iAS Personalization controls data collection, with
Oracle9iAS Personalization itself providing targeted data. This process allows the
application to avoid collecting large volumes of data of only minimal usefulness.

The Oracle9iAS Personalization tag library brings this functionality to a wide
audience of JSP developers for use in HTML, XML, or JavaScript pages. The tag

Note: The concept of personalization is not limited to Web sites
and Web applications. You can use personalization in any
application where there is appropriate data and a need for
personalized recommendations, such as CRM applications. Web
applications are the focus of this particular document, however.
 Oracle9iAS Personalization Tags 9-3

Overview of Personalization
interface is layered on top of the lower-level Java API of the recommendation
engine.

Basis for Recommendations
Depending on the configuration and "tuning" of an Oracle9iAS Personalization
environment, recommendations may be based on one or more factors such as the
following:

■ past behavior of similar users, according to demographics

■ behavior of past users who have shown the same interests, such as a general
trend being established that users who look at items 1, 2, and 3 are likely to be
interested in items 5 and 6 as well, without considering the demographics or
profiles of the users

■ behavior of the same user earlier in the current session, allowing user-specific
personalization even for first-time users or anonymous visitors, as well as
providing a high degree of tuning regarding the purpose of the current visit

■ "hot picks" recommendations, based on current promotions, features of the
week, and so on, which may or may not account for user identity

Key Components
Oracle9iAS Personalization includes the following key components:

■ mining table repository (MTR)

■ mining object repository (MOR)

■ recommendation engine farm, consisting of one or more recommendation
engines

■ recommendation engine Java API

These are all introduced in upcoming sections.

Introduction to Mining Table Repository
The Oracle9iAS Personalization Mining Table Repository (MTR) contains the schema
and data to be used for data mining. It is a set of database tables and views
containing the following:

■ records of previous user behavior

■ data collected elsewhere and imported into the repository

■ user demographics
9-4 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization
These factors are taken together for use in building models to predict future user
preferences.

Introduction to Models
A model is essentially a collection of rules, deduced from user data. A simplified
example of a rule is "female over 55, income between $150,000 and $200,000,
recently purchased scuba tank and mask, likely to buy fins and thermal suit".

In Oracle9iAS Personalization, a model is developed according to recorded facts
gathered from the mining table repository. Rules in the model are deduced strictly
from available data, not from general or common-sense assumptions of what might
be typical for a certain classification of person. How close a particular user’s
characteristics are to the rules of the best available model determines the likelihood
of the resulting recommendation being correct or appropriate.

Introduction to Mining Object Repository
The Oracle9iAS Personalization Mining Object Repository (MOR) is a database
schema that maintains mining metadata and mining model results as defined in the
Oracle9iAS Personalization data mining schema. The mining object repository
serves as the focus for logging in to the data mining system, logging off, and
scheduling Oracle9iAS Personalization events. The building of models out of the
mining table repository is accomplished according to Oracle9iAS Personalization
data mining algorithms.

It is possible to build different models out of the same data by tuning the relevant
algorithm to weigh different characteristics of the data more or less heavily.
Therefore, there may be multiple models in the mining object repository for a given
situation, but only one model is deployed into a recommendation engine at any
particular time.

Introduction to Recommendation Engines
An Oracle9iAS Personalization Recommendation Engine (RE) is an Oracle database
schema that downloads an Oracle9iAS Personalization model during deployment,
and fetches appropriate user profile data from the mining table repository when
processing a request for recommendations. Each engine is responsible for activities
such as the following:

■ Load and hold model data.

■ Process recommendation requests.

■ Collect user profile data.
 Oracle9iAS Personalization Tags 9-5

Overview of Personalization
A recommendation engine processes recommendation requests at runtime and
produces personalized recommendations. It also tracks current user behavior at the
Web site, collecting user profile data during a session. This latter features allows
session-specific personalization for anonymous users and registered users alike.

Populating a recommendation engine involves building a model and then
deploying it to a recommendation engine schema, steps that happen behind the
scenes. The calculation of particular recommendations is accomplished by PL/SQL
stored procedures in the schema.

Introduction to Recommendation Engine Farms
A recommendation engine must be part of a recommendation engine farm. All engines
in a farm are loaded with the same model and can be used interchangeably. It is
permissible for a farm to consist of only one engine; however, for load-balancing
and "failover" purposes, it is advisable to have multiple engines in the farm. To
accomplish the desired effect, these engines would reside in different databases on
different physical systems.

Overview of Recommendation Engine API Concepts and Features
Oracle9iAS Personalization provides a Java API for use with recommendation
engines. The primary use of the API is for requesting recommendations for
appropriate items for a given user. The API essentially acts as a client interface to
the stored procedures of a recommendation engine database schema. Calculation of
recommendations is accomplished through JDBC calls to the stored procedures,
using JDBC connection pooling.

The Java API also provides short-term storage, referred to as the data collection cache,
for collecting user profile data. These data are periodically flushed to
recommendation engine tables, and from there to the mining table repository.
Caching the data in this way, instead of immediately writing user data to the
recommendation engine as it is gathered, minimizes the number of JDBC calls
required. Be aware, however, that each time a recommendation is requested, this
does result in a synchronous JDBC call. Results of recommendation requests are not
cached, because of their unique and personalized nature.

For JSP programmers, the functionality of the recommendation engine Java API is
wrapped in the functionality of the Oracle9iAS Personalization tag library, so this
document does not discuss details of the Java API. The tag library provides
programming convenience, automating features that you must manage explicitly if
you use the Java API directly.
9-6 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization
The rest of this section provides an overview of the following concepts and features
for the Oracle9iAS Personalization recommendation engine:

■ Visitors Versus Customers

■ Items, Recommendations, Taxonomies, and Categories

■ Ratings and Rankings

■ Stateful Versus Stateless Recommendation Engine Sessions

■ Requests for Recommendations

Visitors Versus Customers
The recommendation engine has two classifications of users:

■ visitor—an anonymous user who is not recognized and does not have a
demographic profile or a stored history of past behavior, preferences, and
actions

■ customer—a registered user who is therefore recognized, and has a demographic
profile and stored history of behavior to be used in generating accurate
recommendations

Items, Recommendations, Taxonomies, and Categories
In Oracle9iAS Personalization, item is a generic concept referring to a single article
or the smallest unit of information. Following are some examples:

■ a product

■ a service to purchase

■ a URL clicked by a user

■ a piece of demographic data such as a user’s gender or age

Items are used in several ways:

■ They can be passed for recording of user data, to item-recording tags. In this
situation, they are sometimes referred to as data items.

Note: An anonymous visitor can be converted into a registered
user in the middle of a session—at the time of registration, for
example. See "Personalization setVisitorToCustomer Tag" on
page 9-32.
 Oracle9iAS Personalization Tags 9-7

Overview of Personalization
■ They can be returned as suggestions. In this situation, they are referred to as
recommendations. For each item returned as a recommendation, there is also a
prediction value, which is either a rating or a ranking. These terms are
discussed in "Ratings and Rankings" below.

■ They can be passed as input when the application requests recommendations.
This is done for cross-selling, where recommended items are based on past
items, or to evaluate and rate or rank a particular set of items.

All individual items in an inventory system must belong to a taxonomy. In
Oracle9iAS Personalization, a taxonomy refers to a structural organization of items.
Typically, the organization of items has a hierarchical structure like a tree or
collection of trees, branching from broader groups at the trunk to individual items
at the leaves. Item membership in a taxonomy is not exclusive—it is possible to
include the same item in multiple taxonomies. A taxonomy is represented by a
taxonomy ID, which is a long integer.

Catalog or Web site hosting applications can distinguish among their client data sets
by using different taxonomy IDs for different client catalogs or Web sites.
Appropriate processing is used to distinguish between classifications of users so
that an appropriate taxonomy can be used in each case. For example, a customer at
www.oracle.com may indicate that she is a DBA or Web developer. This will
determine the taxonomy used in personalizing her future visits. The offering of
promotional campaigns, banners, and available books and training, for example,
would be drawn either from a Web productivity tools taxonomy or a database
administration tools taxonomy.

Individual items within a taxonomy can be grouped into categories. In the structure
of a taxonomy, categories are intermediate nodes, consisting of groups of related
items. Note, however, that any given item can belong to multiple categories. As an
example, the movie The English Patient might belong to categories such as "Screen
Adaptations of Novels", "Oscar Winners", "Foreign", and "Drama".

Generally, an item is uniquely identified by a type parameter and an ID parameter,
although a rating item also requires a parameter for the rating value itself. It is
assumed that an application will be able to rely on some sort of inventory system
that determines a type and ID for each item. A type might be something like "shoes"
or "sporting events". An ID is an identifying number, and within any single
taxonomy no two items can have the same ID.

Be aware that for some personalization filtering settings, a recommendation will
represent a category, such as "Drama", rather than an item, such as a specific movie
title. In this case, the item type of the recommendation is "Category". Also see
"Recommendation Filtering" on page 9-24.
9-8 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization
The Oracle9iAS Personalization tag library provides a convenient public class to
simplify the use of items and recommendations in JSP pages—the
oracle.jsp.webutil.personalization.Item class. Use this class to access
type, ID, and prediction values. See "Item Class Description" on page 9-56 for more
information.

Ratings and Rankings
Items returned as recommendations include a prediction value, as follows:

■ For a rating item, the prediction value of each item is its rating. This is a
predicted measure of user interest.

■ For a purchasing or navigation item, the prediction value indicates a relative
ranking among the returned items, based on the estimated probability of user
interest.

A navigation item can represent anything a Web application might consider a "hit",
such as viewing a page, clicking a link, clicking an icon, and so on.

About Ratings Rating is a quantitative measure of customer preference on a
predefined scale. For movies, for example, you might adopt a five-star system
where a user gives his or her favorite movie five stars, which can be thought of as a
rating of 5.0. In future sessions, Oracle9iAS Personalization would anticipate a high
level of interest in this movie for this user and other users with similar interests and
backgrounds. A movie that a user likes somewhat, but not as much, might get a
rating of three-and-a-half stars, or 3.5.

A definitive rating value is recorded when a user interactively rates an item on the
Web site. Rating is a floating point number, to allow as much granularity as desired.

A rating that is returned by the recommendation engine API or, for JSP pages, a
recommendation tag, is a predicted value, according to Oracle9iAS Personalization
algorithms.

In an Oracle9iAS Personalization rating system, the boundaries are
configurable—such as 0.0 to 5.0 in the preceding example. This is specified in the
MTR.MTR_BIN_BOUNDARY table of the mining table repository.

About Rankings Ranking is a whole number indicating the relative rank of an item
among a group of items. The items are sorted according to the estimated
probabilities of being purchased (for commodities to purchase) or being picked (for
URL links to visit) by the user. The probability is calculated using the data mining
model and a customer's profile data.
 Oracle9iAS Personalization Tags 9-9

Overview of Personalization
As an example, presume three items—item A, item B, and item C—are returned as
recommendations. If A has a 0.9 probability of user interest, B has a 0.55 probability,
and C has a 0.83 probability, then A would have a ranking of 1, C would be ranked
2, and B would be ranked 3.

The ranking of an item is relative and dynamic—relative because ranking is
meaningful only for a number of items compared to each other and sorted in a
certain order; dynamic because ranking of the same item may change for different
customers or when ranked against different items.

Stateful Versus Stateless Recommendation Engine Sessions
Web applications can be either stateful or stateless—that is, an application may
choose to maintain a user session and user-specific information on the server
between requests, or it may not. The recommendation engine API and tag library
are designed to handle both situations. Although there are obvious benefits to
maintaining user information on the server between requests, there are also
high-volume sites that rely on stateless applications for better throughput.

Note, however, that the recommendation engine will always track open user
sessions in the recommendation engine database schema, regardless of the session
behavior of the Web application.

The recommendation engine tracks a user session by its user ID. Therefore, care
must be taken in assigning temporary user IDs to anonymous visitors. If the same
ID is used for all anonymous visitors, and their behavior is being tracked, then data
collected from all such visitors will be attributed to a single recommendation engine
session, and behavior of any one anonymous visitor would influence
recommendations to the others. You can avoid this problem by assigning each
anonymous visitor a temporary ID that is unique within the recommendation
engine.
9-10 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization
Requests for Recommendations
After a recommendation engine session is established and populated with data, an
application can request recommendations from it. Oracle9iAS Personalization
returns the appropriate recommendations to the calling application, and the
application decides what to pass to the user and how to pass it.

In JSP pages, an application can request recommendations through one of several
"recommendation tags". The recommendation engine returns a set of suggested
items according to user data, with respect to tuning and filtering settings. In using
the Oracle9iAS Personalization tag library, you can specify tuning and filtering
settings through tag attributes or in a configuration file.

A set of recommendations is generated in the recommendation engine database
schema through a JDBC call. The time spent in the call may vary, depending on the
criteria, how many data records must be processed, and such factors as the size of
the rules table, the size of the user profile data, and specifics of the recommendation
request. Recommendations will be chosen according to the personalization model,
which is deployed into the recommendation engine that the application is
connected to. When you use Oracle9iAS Personalization tags, use attributes of the
startRESession tag to specify the recommendation engine to use.

For cross-sell recommendations, the application must pass in as input one or more
purchasing or navigation items of past user interest. The cross-sell
recommendations will be based on the item or items passed in, and perhaps on past
or current user data as well.

Recommendation items are returned in an array, with a prediction value for each
recommendation—either a rating or a ranking, as described in "Ratings and
Rankings" on page 9-9—and an interest dimension value for the array as a whole. For
items returned as recommendations, the interest dimension indicates how the items

Note: One of the advantages of the tag library, compared to using
the recommendation engine Java API directly, is that tracking of
recommendation engine sessions in a stateless application is
managed automatically. You must arrange this mapping yourself if
you use the API directly.

Be aware, however, that recommendation engine session tracking
through the tag library requires the client, presumably a browser, to
support and accept cookies. If this is not always guaranteed, then
you must declare your application as stateful.
 Oracle9iAS Personalization Tags 9-11

Overview of Personalization
will be of interest to the user—as purchasing items, navigation items, or rating
items.

The recommendation engine API allows filtering of recommendations before they
are returned, based on the taxonomy.
9-12 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization Tag Functionality
Overview of Personalization Tag Functionality
This section provides an overview of the features and functionality of the
Oracle9iAS Personalization tag library. For descriptions and syntax of the
individual tags, see "Personalization Tag and Class Descriptions" on page 9-27.

Discussion of the functionality of the tag library is organized as follows:

■ Recommendation Engine Session Management

■ Use of Items in Personalization Tags

■ Mode of Use for Item Recording Tags

■ Use of Tuning, Filtering, and Sorting for Recommendation and Evaluation Tags

Recommendation Engine Session Management
Creating and closing a recommendation engine session is handled through the
startRESession and endRESession tags. For a JSP page using Oracle9iAS
Personalization, you must ensure that at least one startRESession tag is
executed, and that it is the first Oracle9iAS Personalization tag encountered for the
particular recommendation engine session.

The Oracle9iAS Personalization tag library can support either stateful applications,
which maintain state information through HTTP session objects, or stateless
applications, which do not. You can use the session attribute of
startRESession to specify which mode to use—a "true" setting to allow the tag
library to use HTTP session objects, or a "false" setting if you do not want the tags to
participate in HTTP sessions.

Setting the session attribute of a startRESession tag to "true" produces effects
similar to those of setting session to "true" in a JSP page directive. The difference
is that by setting the attribute to "true" in a startRESession tag, you are affecting
not only the page containing the tag, but also any other pages that contain
personalization tags that execute within the same recommendation engine session.

After the startRESession tag is executed, the personalization tags maintain the
relationship of the Web client to the recommendation engine database session so
that subsequent personalization tags apply to the same user, as appropriate.

Note: The Oracle9iAS Personalization tag library does not assume
that HTML will be the only output format. Other formats, such as
XML and JavaScript, are supported as well.
 Oracle9iAS Personalization Tags 9-13

Overview of Personalization Tag Functionality
Starting a Recommendation Engine Session
The startRESession tag takes the recommendation engine name and other
information from some combination of tag attribute settings and
personalization.xml configuration file settings.

A startRESession tag will result in no operation if the recommendation engine
session was previously started for the same Web client, with no endRESession tag
executed in between. This is for convenience; it allows flexibility regarding the
order in which JSP pages are executed. You can place startRESession tags in
multiple pages of an application without negative consequences.

See "Personalization startRESession Tag" on page 9-28 for detailed information
about this tag. Also see "Personalization Tag Library Configuration Files" on
page 9-59.

Using a Stateful Application
For a stateful application, which uses HTTP sessions, session information is
maintained in the JSP implicit session object, a standard HttpSession instance.

When the startRESession tag is encountered, if its session attribute is set to
"true" (the default), then the session object is created automatically if it does not
already exist.

Using a Stateless Application
For a stateless application, the tag library will maintain internal session tracking
through the use of cookies. Therefore, be aware that if you want to use a stateless
application, personalization tags will work only if the client browser accepts
cookies. If that is not the case, either because the browser chooses to decline cookies
or due to lack of capability (such as for wireless protocol browsers), then stateful
functionality is required (session="true" for the startRESession tag).

Ending a Recommendation Engine Session
When a stateful application no longer needs a given recommendation engine
session, you can use the endRESession tag. As with startRESession tags,
repeated executions of endRESession tags result in no further operations, so you
can place them in multiple pages of your application without negative
consequences.

The endRESession tag has no effect in stateless applications.
9-14 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization Tag Functionality
Using endRESession tags in stateful applications is sometimes optional, but is
necessary in the following circumstances:

■ if the application intends to subsequently start a new recommendation engine
session with a different recommendation engine user ID from the same browser
or within the same HTTP session

■ to connect to a different recommendation engine from the same browser or
within the same HTTP session

In these cases, the endRESession tag must be executed before the next
startRESession tag.

Use of endRESession tags is also advisable if an application stops using its
Oracle9iAS Personalization tags significantly before the HTTP session is over, so
that recommendation engine resources can be released.

See "Personalization endRESession Tag" on page 9-31 for detailed information about
this tag.

Use of Items in Personalization Tags
The Oracle9iAS Personalization tag library provides a number of tags for item
manipulation—tags to record user behavior information, tags to remove user
behavior information that was previously recorded, tags for outputting items as
recommendations, and a tag for inputting a specific set of items to be evaluated and
rated or ranked.

This section covers the following topics:

■ Overview of Item Recording and Removal Tags

■ Overview of Recommendation and Evaluation Tags

■ Use of Tag-Extra-Info Scripting Variables for Returned Items

■ Specification of Input Items

■ Inputting Item Arrays

Notes: If endRESession is not used in a stateful application, the
underlying recommendation engine session will be closed
automatically when the HTTP session goes out of scope. In a
stateless application, the underlying recommendation engine
session is allowed to time out.
 Oracle9iAS Personalization Tags 9-15

Overview of Personalization Tag Functionality
■ Demographic Items

Overview of Item Recording and Removal Tags
The following tags are for recording data items into the recommendation engine
session cache, or for removing items that were recorded earlier in the session.

■ recordNavigation and removeNavigationRecord

■ recordPurchase and removePurchaseRecord

■ recordRating and removeRatingRecord

■ recordDemographic and removeDemographicRecord

To record or remove a purchasing, navigation, or rating item, you must specify the
item to record or remove by providing either a type and ID (and a value, for a rating
item), or an item array and an index into that array. See "Specification of Input
Items" on page 9-19 for more information. To record or remove a demographic item,
which implicitly applies to the current user, you must specify the demographic
type, such as AGE, and a value, such as 44. See "Demographic Items" on page 9-21.

There is typically little need to use the removeXXXRecord tags. If you place your
recordXXX tags in "receiving pages", there should be no need to use
removePurchaseRecord or removeNavigationRecord tags. Using
removeRatingRecord and removeDemographicRecord tags would be
necessary only in situations where users changed their minds after their initial input
had been recorded. See "Mode of Use for Item Recording Tags" on page 9-21 for
related information.

For detailed tag information, see "Item Recording and Removal Tag Descriptions"
on page 9-47.

Overview of Recommendation and Evaluation Tags
The following tags return an array of items as recommendations:

■ selectFromHotPicks

Note: During the session, recorded items are periodically flushed
to the recommendation engine. Removing an item after that point
still works, but requires a database round-trip. See related
information about REFlushInterval in "Personalization
startRESession Tag" on page 9-28.
9-16 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization Tag Functionality
■ getRecommendations

■ getCrossSellRecommendations

■ evaluateItems

For the selectFromHotPicks, getRecommendations, and
getCrossSellRecommendations tags—referred to in this document as
recommendation tags—the array of items is a set of recommendations returned from
an entire taxonomy or from hot picks groups within a taxonomy. The
getCrossSellRecommendations tag must also take a set of purchasing items or
navigation items as input, on which to base the recommendations (known as
cross-selling).

Hot picks might be promotional items or other specially selected groups of items,
and the picks to choose from can be specified through a tag attribute. See the
Oracle9iAS Personalization Administrator’s Guide for more information about hot
picks.

For evaluateItems, you must input a particular set of items for which you want
evaluations. Some or all (or in some cases, none) of the same items are then
returned, either rated or ranked depending on the interest dimension. See "Ratings
and Rankings" on page 9-9 for background information.

For the getRecommendations and evaluateItems tags, the results are based on
the particular user. The user identity is specified through the startRESession tag
and is implicitly applied to all subsequent personalization tags. The
getCrossSellRecommendations tag depends on the set of input items.

More About the Recommendation Tags Following is some further information about
each of the recommendation tags. For detailed tag descriptions, see
"Recommendation and Evaluation Tag Descriptions" on page 9-33.

■ selectFromHotPicks—The items returned are from a set of hot picks
groups. Use the hotPicksGroups attribute to specify the hot picks groups to
choose from. In a sense, this as a "non-personal" tag in the Oracle9iAS
Personalization tag library, because the results do not depend on the user. It
may still be useful in personalized applications, however, for displaying
promotions for a first-time visitor or for a particular geographical area or
interest group, for example.

■ getRecommendations—The items returned are based on the user, but you
can also specify that they must be from a set of hot picks groups specified
through the fromHotPicksGroups attribute.
 Oracle9iAS Personalization Tags 9-17

Overview of Personalization Tag Functionality
■ getCrossSellRecommendations—The items returned are based on input
items. You can also specify that the items returned must be from a set of hot
picks groups specified through the fromHotPicksGroups attribute. The input
items are assumed to be of previous interest to one user. Functionality of this
tag attempts to answer the following question: Assuming a user bought or
navigated to the input items in the past, what are the most likely additional
items of interest to that user in the future—additional items to purchase or
navigate to (according to the interest dimension)?

Input Items For the tags that take items as input—the
getCrossSellRecommendations and evaluateItems tags—you can use one
or more nested forItem tags to specify desired items, or you can input an entire
array of items through a tag attribute. For more information about inputting items,
see "Specification of Input Items" on page 9-19.

Output Items For the evaluateItems and getCrossSellRecommendations
tags, there is a required tag attribute to specify the name of a tag-extra-info (TEI)
variable for the output array of items. For the getRecommendations and
selectFromHotPicks tags, this attribute is optional—alternatively or
additionally, the items are available sequentially to any getNextItem tags nested
within the getRecommendations or selectFromHotPicks tag.

For the recommendation tags, you can use the maxQuantity attribute to specify
the maximum number of output items. To determine the actual number of items
returned, use the length attribute of the TEI array variable for the returned items.
No separate TEI variable is provided for the array size. See "Use of Tag-Extra-Info
Scripting Variables for Returned Items" below for information about TEI variables.

Use of Tag-Extra-Info Scripting Variables for Returned Items
For each tag that returns an array of items, there is a tag-extra-info (TEI) class that
provides functionality allowing you to use a scripting variable of the following
array type:

oracle.jsp.webutil.personalization.Item[]

The array of items is returned in this variable. Each of these tags has a
storeResultsIn attribute that you use to specify a variable name. You can loop
through the array in your application to display all the items, such as in an HTML
table. Use the length attribute of the array to determine how many items were
returned.
9-18 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization Tag Functionality
The selectFromHotPicks, getRecommendations, and
getCrossSellRecommendations tags can also return a TEI String variable
indicating the interest dimension for the items in the array—NAVIGATION,
PURCHASING, or RATING. Use the storeInterestDimensionIn tag attribute to
specify a variable name for the interest dimension.

Specification of Input Items
There are two general situations where you must input items:

■ to provide input items to a getCrossSellRecommendations or
evaluateItems tag

In addition to the getCrossSellRecommendations or evaluateItems tag,
this can involve one or more nested forItem tags. The forItem tags are used
to select desired input items.

■ to record an item into the recommendation engine session, or, using similar
syntax, to remove an item that was previously recorded

This involves a recordXXX or removeXXXRecord tag.

You can specify items in the following general ways:

1. Specify the type and ID of each desired item, and also the rating value for a
rating item. Or, for a demographic item, specify the type and value.

2. Supply an item array, and the index into the array for each desired item.

3. Supply an entire array of items (not relevant for recordXXX and
removeXXXRecord tags).

For scenarios #2 and #3, see "Inputting Item Arrays" below for more information.

You can input one or more items into a getCrossSellRecommendations or
evaluateItems tag as follows:

■ Nest one or more forItem tags inside the tag, using the type and ID
attributes of each forItem tag to specify a desired item (scenario #1 above).

■ Nest one or more forItem tags inside the tag, using the itemList attribute of
each forItem tag to specify an item array, and using the index attribute to
specify a desired element of the array (scenario #2).

Note: For general information about tag-extra-info classes and
scripting variables, refer to the Oracle9iAS Containers for J2EE
Support for JavaServer Pages Reference.
 Oracle9iAS Personalization Tags 9-19

Overview of Personalization Tag Functionality
■ Specify an Item[] array through the inputItemList attribute of the tag
(scenario #3). The entire array is taken as input.

Note that you can use more than one of these procedures simultaneously. The
getCrossSellRecommendations and evaluateItems tags can take input from
multiple sources.

You can specify an item for a recordXXX or removeXXXRecord tag as follows:

■ Use the type and ID attributes of the tag, and the value attribute for
recordRating or removeRatingRecord, to specify the item (scenario #1
above). Or, for recordDemographic or removeDemographicRecord, use
the type and value attributes.

■ Use the itemList attribute of the tag to specify an item array, and the index
attribute of the tag to specify the desired element of the array (scenario #2).

Inputting Item Arrays
For situations where you input an array of Item[] objects to a tag, you must
specify the array through a JSP expression. This may apply to any of the following
tags:

■ getCrossSellRecommendations or evaluateItems, when you use the
inputItemList attribute to input an entire array

■ forItem (inside getCrossSellRecommendations or evaluateItems),
recordPurchase, recordNavigation, recordRating,
removePurchaseRecord, removeNavigationRecord, or
removeRatingRecord, when you use the itemList and index attributes to
input an array and specify one element of it for use

You can supply the array in the following ways:

■ Create it in a scriptlet, then specify it through a JSP expression:

<% Item[] myList = newItem[] {newItem("shoes", 1)}; %>
<op:evaluateItems inputItemList="<%=myList %> .../>

■ Supply it by using a TEI variable that contains the output from a
recommendation tag:

<op:getRecommendations storeResultsIn="myRecs" .../>
<!-- First tag is closed, but TEI variable is still in scope.
Later use it in second tag. -->
<op:getCrossSellRecommendations inputItemList="<%=myRecs %>" />
9-20 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization Tag Functionality
Demographic Items
Demographic data items, consisting of background information about the user such
as gender and age, are used in only the recordDemographic and
removeDemographicRecord tags. Because they do not contain purchasing,
navigation, or rating information, they cannot be returned by a recommendation tag
or input to a getCrossSellRecommendations or evaluateItems tag.

Demographic items, instead of being identified by type and ID as for purchasing
and navigation items, are identified by type and value. These are the only two
attributes for the recordDemographic and removeDemographicRecord tags.
There are several pre-defined types, which exist as columns in the mining table
repository in the MTR.MTR_CUSTOMERS table:

■ GENDER

■ AGE

■ MARITAL_STATUS

■ PERSONAL_INCOME

■ HOUSEHOLD_INCOME

■ IS_HEAD_OF_HOUSEHOLD

■ HOUSEHOLD_SIZE

■ RENT_OWN_INDICATOR

There are also 50 customizable columns: ATTRIBUTE1 through ATTRIBUTE50.

To use a customizable type, you must do the following:

1. Map the ATTRIBUTEx column to an existing enterprise database, thus defining
what the attribute is.

2. Define the corresponding value boundaries in the MTR.MTR_BIN_BOUNDARIES
table.

Mode of Use for Item Recording Tags
In Oracle9iAS 9.0.2, you can use one mode of operation for item recording tags:
receiving mode. In this mode, when users click on something—such as an item to

Note: See "Recommendation and Evaluation Tag Descriptions" on
page 9-33 for detailed syntax information for the tags shown here.
 Oracle9iAS Personalization Tags 9-21

Overview of Personalization Tag Functionality
purchase or a URL to navigate to—the page they jump to, referred to as the
"receiving page", contains the recordXXX tag to record the item.

(Future releases will support on-click mode. In this case, the item is recorded as soon
as a user clicks on something—the recordXXX tag is in the originating page.)

As a general example, assume that a page uses a getRecommendations tag to
generate a list of recommendations that are displayed in a sequence. Each
recommended item has a clickable "Details" link to get more information and a
clickable "Purchase" link to purchase the item. You can place a
recordNavigation tag in the page the user goes to by clicking on "Details"; and
you can place a recordPurchase tag in the page the user goes to by clicking on
"Purchase" (a purchase confirmation page, for example). In either case, the type and
ID of the item are likely already known on the receiving pages, which are devoted
specifically to that item.

Similarly, you might place a recordDemographic tag in a JSP page that users
jump to when they enter demographic information. For example, there might be a
page that allows users to enter marital status, age, and personal income. Once a user
enters the information—suppose single, age 44, and earning $50,000 per year—the
target of the action behind the HTML form is an advertising page tailored to that
profile. This page would have recordDemographic tags for types
MARITAL_STATUS, AGE, and PERSONAL_INCOME. You can use multiple
recordDemographic tags in a single page.

It is typical to identify items by specifying the appropriate attributes, such as type
and ID for purchasing and navigation items. Alternatively, you can use a previously
created item list, and an index value into that list, to specify an item. The
application can copy an item list array object into a session or request object
and also pass the index as a parameter to the receiving page. On the receiving page,
the item list can be retrieved from the session or request object and passed to
the recordXXX tag along with the index. This approach has at least one advantage:
the sending page or pages can collect more than one index before invoking the
receiving page, then simultaneously record numerous items from the same item list.

Use of Tuning, Filtering, and Sorting for Recommendation and Evaluation Tags
As summarized earlier, the selectFromHotPicks, getRecommendations,
getCrossSellRecommendations, and evaluateItems tags all return an array
of items. This section provides information about tuning and filtering settings you
can use to more carefully tailor the recommendations that are returned, and a
setting to sort the recommendations. Filtering settings do not apply to the
9-22 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization Tag Functionality
evaluateItems tag, however, because the items output are always from the set of
items input.

This section is organized as follows:

■ Tuning Settings

■ Recommendation Filtering

■ Sorting Order

Tuning Settings
Several tuning settings determine some of the qualifications and logic used by the
recommendation engine in returning recommendations. There must be a value for
each setting, determinable in one of the ways described here.

You can specify these settings through the tuningXXX attributes of the
selectFromHotPicks, getRecommendations,
getCrossSellRecommendations, and evaluateItems tags, as summarized in
Table 9–1. Alternatively, you can use the tuningName attribute to get the settings
from the specified <Tuning> element in either the application-level
personalization.xml file (first choice) or the server-wide
personalization.xml file. Also see "Personalization Tag Library Configuration
Files" on page 9-59.

If there are no attribute settings or <Tuning> element, default values will be chosen
according to the following steps, in order:

1. According to a <DefaultTuning> element in the application-level
personalization.xml file.

2. According to a <DefaultTuning> element in the server-wide
personalization.xml file.

3. According to the following hardcoded settings:

tuningDataSource="ALL"
tuningInterestDimension="NAVIGATION"
tuningPersonalizationIndex="MEDIUM"
tuningProfileDataBalance="BALANCED"
tuningProfileUsage="INCLUDE"
 Oracle9iAS Personalization Tags 9-23

Overview of Personalization Tag Functionality
For more information about tuning settings, refer to the Oracle9iAS Personalization
Administrator’s Guide.

Recommendation Filtering
In addition to tuning settings, there are filtering settings that you can specify for a
recommendations request. There must be a value for each setting, determinable in
one of the ways described here.

You can specify these settings through the filteringXXX attributes of the
getRecommendations, getCrossSellRecommendations, and
selectFromHotPicks tags. (Filtering is not relevant to the evaluateItems tag.)
Alternatively, you can use the filteringName attribute to get the settings from

Note: To use the hardcoded defaults, do not use any of the
tuningXXX attribute settings. If some tuning settings are defined
in a tag, then none of the hardcoded values will be used. In this
case, if any setting cannot be found in a tag attribute or
personalization.xml file, an exception will be thrown.

Table 9–1 Tuning Settings for Requesting Recommendations

Attribute Description Settings

tuningDataSource Specify the kind of past user data to be
considered in making recommendations.
(Do not confuse this kind of data source
with the data source concept in the J2EE
platform model.)

ALL
NAVIGATION
PURCHASE
RATING
DEMOGRAPHIC

tuningInterestDimension Specify the kind of recommendation to be
returned.

RATING
PURCHASING
NAVIGATION

tuningPersonalizationIndex Choose how generalized or how
personalized the recommendation
algorithm should be.

LOW
MEDIUM
HIGH

tuningProfileDataBalance Choose whether to stress historical data,
current session data, or both in making
recommendations.

HISTORY
CURRENT
BALANCED

tuningProfileUsage Choose whether to use data in the user’s
demographic profile.

INCLUDE
EXCLUDE
9-24 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Overview of Personalization Tag Functionality
the specified <Filtering> element in either the application-level
personalization.xml file (first choice) or the server-wide
personalization.xml file. Also see "Personalization Tag Library Configuration
Files" on page 9-59.

If there are no attribute settings or <Filtering> element, default values will be
chosen from the <DefaultFiltering> element in either the application-level
personalization.xml file (first choice), or the server-wide
personalization.xml file.

These are the filtering parameters:

■ filteringTaxonomyID—This is a Java string representing an integer, where
the integer is the ID of an item taxonomy in the Oracle9iAS Personalization
environment.

■ filteringMethod—This is one of ALL_ITEMS, INCLUDE_ITEMS,
EXCLUDE_ITEMS, SUBTREE_ITEMS, ALL_CATEGORIES,
INCLUDE_CATEGORIES, EXCLUDE_CATEGORIES, SUBTREE_CATEGORIES,
and CATEGORY_LEVEL. Table 9–2 summarizes the meanings. These methods
always apply to the taxonomy specified through the filteringTaxonomyID
value.

For the getCrossSellRecommendations tag, only the ALL_ITEMS,
INCLUDE_ITEMS, EXCLUDE_ITEMS, and SUBTREE_ITEMS settings are
supported.

■ filteringCategories—This is a Java string of integer IDs, delimited by a
single plus sign (+) after each ID, identifying existing item categories in the
given taxonomy. Categories are defined in the mining table repository, in the
MTR.MTR_CATEGORY table.

Note: Do not provide a filteringCategories setting when
filteringMethod is ALL_ITEMS or ALL_CATEGORIES.

Table 9–2 Filtering Methods for Requesting Recommendations

Filtering Method Description

ALL_ITEMS Recommend items from all leaves in the taxonomy.

INCLUDE_ITEMS Recommend items that belong to the categories specified in
filteringCategories.
 Oracle9iAS Personalization Tags 9-25

Overview of Personalization Tag Functionality
For any of the XXX_CATEGORIES settings, recommendations are returned in the
form of categories, such as "drama", rather than specific items, such as a particular
movie title. The item type is "Category" in this case, and categories must first be
defined in the mining table repository.

For more information about filtering settings, refer to the Oracle9iAS Personalization
Recommendation Engine API Programmer’s Guide.

Sorting Order
You can sort returned items according to the prediction field of each item, which
is either a rating or a ranking. See "Ratings and Rankings" on page 9-9 for
information about how to use this field.

Use the sortOrder attribute of the selectFromHotPicks,
getRecommendations, getCrossSellRecommendations, or evaluateItems
tag to specify a sorting order of ASCEND, DESCEND, or NONE (default). Ascending
order lists the best match first, and descending order does the opposite. An
ascending order of five ranked items would be 1, 2, 3, 4, then 5, because 1 is the
highest rank. An ascending order of five rated items would be something like 4.5,
3.9, 2.5, 2.2, then 1.8, because a higher number means a higher rating.

EXCLUDE_ITEMS Recommend items in the taxonomy that do not belong to the
categories specified in filteringCategories.

SUBTREE_ITEMS Recommend items that belong to the subtrees of the categories
specified in filteringCategories.

ALL_CATEGORIES Recommend all categories in the taxonomy.

INCLUDE_CATEGORIES Recommend categories specified in filteringCategories.

EXCLUDE_CATEGORIES Recommend categories in the taxonomy that are not specified
in filteringCategories.

SUBTREE_CATEGORIES Recommend categories from the subtrees of the categories
specified in filteringCategories.

CATEGORY_LEVEL Recommend categories of the same level as the categories
specified in filteringCategories.

Table 9–2 Filtering Methods for Requesting Recommendations (Cont.)

Filtering Method Description
9-26 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
Personalization Tag and Class Descriptions
This section provides detailed descriptions of syntax and usage for the Oracle9iAS
Personalization tags and the Item public class, concluding with a discussion of tag
limitations. It is organized as follows:

■ Session Management Tag Descriptions

■ Recommendation and Evaluation Tag Descriptions

■ Item Recording and Removal Tag Descriptions

■ Item Class Description

■ Personalization Tag Constraints

To use the Oracle9iAS Personalization tag library, verify that the file
ojsputil.jar is installed and in your classpath. This file is provided with OC4J.
You will also need the classes for the recommendation engine API, which are in the
oreapi-rt.jar file. If you install the Oracle9i Application Server with the
"Business Intelligence" option, this file will be installed in the
[SRCHOME]/dmt/jlib directory. Copy it to a location that is accessible to your
application.

In an Oracle9iAS installation, the personalization tag library description file,
personalization.tld, is located in the [Oracle_Home]/j2ee/tlds
directory. To use this TLD file, you must deploy it with your application, and you
will need a taglib directive such as the following in your JSP pages:

<%@ taglib uri="/WEB-INF/personalization.tld" prefix="op" %>

You must also copy the personalization.tld file into the appropriate location
(presumably /WEB-INF, as above) before producing an EAR file for your
application and subsequently deploying it. See the Oracle9iAS Containers for J2EE
Support for JavaServer Pages Reference for general information about tag library usage,
and the Oracle9iAS Containers for J2EE User’s Guide for general information about
OC4J deployment.
 Oracle9iAS Personalization Tags 9-27

Personalization Tag and Class Descriptions
Use of some of the tag attributes described here requires some general knowledge
of the Oracle9iAS Personalization and recommendation engine implementations.
Where information here is incomplete, see the Oracle9iAS Personalization
Administrator’s Guide or the Oracle9iAS Personalization Recommendation Engine API
Programmer’s Guide.

Session Management Tag Descriptions
This section documents the following tags for starting, ending, and managing
recommendation engine sessions:

■ Personalization startRESession Tag

■ Personalization endRESession Tag

■ Personalization setVisitorToCustomer Tag

Personalization startRESession Tag
This section provides syntax and attribute descriptions for the startRESession
tag, which you use to start a recommendation engine session. Also see
"Recommendation Engine Session Management" on page 9-13 for related
information.

The startRESession tag must be executed before any other Oracle9iAS
Personalization tag that executes within the same recommendation engine session.

The startRESession tag has no body.

Notes:

■ The prefix "op:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

■ See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.

■ Where there is a fixed number of supported attribute settings,
such as "true" or "false", entries are not case-sensitive.
9-28 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
Syntax

<op:startRESession REName = "recommendation_engine_connection_name"
 [REURL = "rec_engine_database_connection_URL"]
 [RESchema = "rec_engine_schema_name"]
 [REPassword = "rec_engine_schema_password"]
 [RECacheSize = "kilobytes_of_cache"]
 [REFlushInterval = "milliseconds_to_flush"]
 [session = "true" | "false"]
 [userType = "visitor" | "customer"]
 [UserID = "user_ID_for_site_login"]
 [storeUserIDIn = "variable_name"]
 [disableRecording = "true" | "false"] />

Attribute Usage Notes

■ For the startRESession tag to work, REName is a required attribute, and you
must define REURL, RESchema, and REPassword through tag attributes or
through one of the personalization.xml files. (Also see "Personalization
Tag Library Configuration Files" on page 9-59.)

■ REName specifies the name of a recommendation engine connection in a
recommendation engine farm. Multiple user sessions should share the same
connection whenever possible, for greater efficiency. To accomplish this, use the
same REName value whenever you want to use the same connection. After the
recommendation engine connection is created, it is cached, using the REName
value as a key.

If REURL, RESchema, or REPassword is not set through attributes of the
startRESession tag that first establishes a connection, then the settings of all
three must come from a personalization.xml file with an <RE> element
whose Name attribute matches the REName value of the startRESession tag.
In this case, you must also set RECacheSize and REFlushInterval in the
<RE> element if you want non-default values. In this scenario, the
application-wide personalization.xml is searched first; the server-wide
personalization.xml is searched only if the application-wide file did not
have an <RE> element with the REName value as its name.

Note: Also see "Personalization Tag Constraints" on page 9-57.
 Oracle9iAS Personalization Tags 9-29

Personalization Tag and Class Descriptions
■ You can use the REName attribute together with <RE> element settings to
facilitate load-balancing among recommendation engines in a farm. Each <RE>
element points to a different recommendation engine in the farm. The JSP page
can rotate among different recommendation engines in the farm by assigning
different values to the REName attribute of different startRESession tags,
according to some load-balancing heuristic.

■ Although default values are provided for RECacheSize and
REFlushInterval, these are intended only to get you started. Once you have
experience in running the application, you can tune these values according to
Web site conditions. The settings of RECacheSize and REFlushInterval
should be in coordination with each other, and according to your estimate of
how quickly items might be added to the recommendation engine session cache
as the result of user actions. The default cache size is 3234 KB, the maximum
possible, which is enough space to store approximately 4800 items. With the
default flush interval of 60 seconds (60000 msec), that allows a cache incoming
rate of 80 items per second. If you increase the flush interval to 120 seconds, you
can support only 40 new items being added per second. On the other hand, if
you reduce the flush interval to 30 seconds, you can support a cache incoming
rate of 160 items per second. A disadvantage in shortening the flush interval,
however, is that removing an item (through a removeXXXRecord tag) after it
has been flushed requires a database round-trip.

Be aware that all sessions sharing the same recommendation engine connection
within the same JVM are also sharing the same session cache. The cache
incoming rate is cumulative across all such sessions.

Attributes

■ REName (required)—Use this to specify the name of a recommendation engine
connection in a recommendation engine farm. Under some circumstances, it
must also match the name of an <RE> element in personalization.xml so
that settings can be retrieved from there, as noted in the attribute usage notes
above. See "Personalization Tag Library Configuration Files" on page 9-59 for
related information.

■ REURL—This is for the JDBC connection string for the recommendation engine
database.

Note: When REName matches the name of an existing connection,
any settings for REURL, RESchema, REPassword, RECacheSize,
and REFlushInterval are superfluous and therefore ignored.
9-30 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
■ RESchema—This is for the name of the recommendation engine database
schema.

■ REPassword—This is the password corresponding to the RESchema name.

■ RECacheSize—Use this to specify the size of the recommendation engine
session cache, in kilobytes. The default is 3234 KB. This should be adjusted in
coordination with REFlushInterval, as described in the attribute usage notes
above.

■ REFlushInterval—Use this to specify how often the data in the
recommendation engine session cache is flushed into the recommendation
engine schema. The unit is milliseconds, with a default of 60000 (1 minute). This
should be adjusted in coordination with RECacheSize, as described in the
attribute usage notes above.

■ session—Use a "true" setting (default) to specify that you want your
Oracle9iAS Personalization JSP pages to act in a stateful manner, through the
use of HTTP session objects. Use a "false" setting for pages to act in a stateless
manner, using cookies instead.

■ userType—This indicates whether the Web site user is an anonymous "visitor"
(default) or a registered "customer".

■ userID—This is the user name for the Web site user. If not provided, such as
for an anonymous visitor, the ID is generated automatically by the tag handler.

■ storeUserIDIn—If you want to store the userID value for later use,
storeUserIDIn can specify the name of a TEI String variable in which to
store it. This attribute is useful for automatically generated user IDs.

■ disableRecording—Use a "true" setting to disable the actions of any
recordXXX tags. This is to allow for the possibility, for example, of a Web site
that permits users to specify that their activities should not be recorded. It is
also a way to improve site performance during peak hours. This attribute can be
set at request-time, based on the current user ID, for example. This permits
recording to be disabled for appropriate users only, or at appropriate times,
without changing your JSP code. The default setting is "false".

Personalization endRESession Tag
Use this tag to explicitly end a recommendation engine session in a stateful
application. This is usually optional, but is required under some circumstances—see
"Ending a Recommendation Engine Session" on page 9-14. It is also advisable to use
this tag in a stateful application if application logic determines that the
 Oracle9iAS Personalization Tags 9-31

Personalization Tag and Class Descriptions
recommendation engine session is no longer required—this will free unneeded
resources.

For situations where you do not use endRESession, note the following behavior:

■ If you started the recommendation engine session with the session attribute
of the startRESession tag set to "true", then the recommendation engine
session will be closed implicitly at the end of the HTTP session.

■ If you started the recommendation engine session with session set to "false",
then the recommendation engine session will be allowed to time out once it has
been inactive for a sufficient period of time. The timeout interval is specified as
a configuration parameter of the recommendation engine schema. The
endRESession tag has no effect.

The endRESession tag has no attributes and no body.

Syntax

<op:endRESession />

Personalization setVisitorToCustomer Tag
Use this tag for situations where an anonymous visitor creates a registered customer
account. Upon execution of this tag, the existing recommendation engine session is
converted from a visitor session to a customer session. Previous data gathered in the
session will be retained. This tag does not actually create the new customer, nor
does it execute a new login. It only converts the ongoing recommendation engine
session.

The customerID value is a request-time attribute and must be provided by the
application.

The setVisitorToCustomer tag has no body.

Syntax

<op:setVisitorToCustomer customerID = "registered_customer_name" />

Attributes

■ customerID (required)—The application provides the ID for the newly
registered customer.
9-32 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
Recommendation and Evaluation Tag Descriptions
This section provides detailed descriptions of the recommendation tags, the
evaluation tag, and related subtags.

The following tags are covered:

■ Personalization getRecommendations Tag

■ Personalization getCrossSellRecommendations Tag

■ Personalization selectFromHotPicks Tag

■ Personalization evaluateItems Tag

■ Personalization forItem Tag

■ Personalization getNextItem Tag

Also see "Overview of Recommendation and Evaluation Tags" on page 9-16.

Personalization getRecommendations Tag
Use this tag to request a set of recommendations for purchasing, navigation, or
ratings. Items from a particular taxonomy are considered, with tuning and filtering
as specified. Recommendations are returned in an array of the following type:

oracle.jsp.webutil.personalization.Item[]

Although other tags, such as getCrossSellRecommendations and
evaluateItems, require items to be input for use as a basis for recommendations,
the getRecommendations tag does not. Recommendations are based on user
identity and profile (user session and historical data), not on specific items.

The resulting recommendations can optionally be stored in a TEI variable of type
Item[], with the variable name specified in the storeResultsIn attribute of the
tag. The recommendations are also available implicitly within the
getRecommendations tag. You can optionally use a tag body with nested
getNextItem tags for any desired processing of the items. See "Personalization
getNextItem Tag" on page 9-45.

Note: Also see "Personalization Tag Constraints" on page 9-57.
 Oracle9iAS Personalization Tags 9-33

Personalization Tag and Class Descriptions
Syntax

<op:getRecommendations
 [from = "top" | "bottom"]
 [fromHotPicksGroups = "string_of_Hot_Picks_group_numbers"]
 [storeResultsIn = "TEI_variable_name"]
 [storeInterestDimensionIn = "TEI_variable_name"]
 [maxQuantity = "integer_value"]
 [tuningName = "name_from_config_file_Tuning_element"]
 [tuningDataSource = "ALL"|"NAVIGATION"|"PURCHASE"|"RATING"|"DEMOGRAPHIC"]
 [tuningInterestDimension = "NAVIGATION"|"PURCHASING"|"RATING"]
 [tuningPersonalizationIndex = "LOW"|"MEDIUM"|"HIGH"]
 [tuningProfileDataBalance = "HISTORY"|"CURRENT"|"BALANCED"]
 [tuningProfileUsage = "INCLUDE"|"EXCLUDE"]
 [filteringName = "name_from_config_file_Filtering_element"]
 [filteringTaxonomyID = "integer_value"]
 [filteringMethod = "ALL_ITEMS"|"EXCLUDE_ITEMS"|"INCLUDE_ITEMS"|
 "SUBTREE_ITEMS"|"ALL_CATEGORIES"|"INCLUDE_CATEGORIES"|
 "EXCLUDE_CATEGORIES"|"SUBTREE_CATEGORIES"|CATEGORY_LEVEL"]
 [filteringCategories = "string_of_integers"]
 [sortOrder = "ASCEND"|"DESCEND"|"NONE"] >

...

</op:getRecommendations>

Attribute Usage Notes Be aware of the following:

■ You must specify either from or fromHotPicksGroups.

■ Access the output items either through the storeResultsIn attribute, or
through a tag body with nested getNextItem tags, or optionally both.

■ Specify tuningName, corresponding to the name of a <Tuning> element in
personalization.xml, or specify individual tuning settings through the
tuningXXX attributes. If you do neither, see "Tuning Settings" on page 9-23 for
information about how default values are chosen. Also see "Personalization Tag
Library Configuration Files" on page 9-59.

■ Specify filteringName, corresponding to the name of a <Filtering>
element in personalization.xml, or specify individual filtering settings
through the filteringXXX attributes. If you do neither, see "Recommendation
Filtering" on page 9-24 for information about how default values are chosen.
9-34 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
■ A filteringCategories setting is required, unless filteringMethods is
set to ALL_ITEMS or ALL_CATEGORIES. These settings can be through either
the tag attributes or personalization.xml.

■ The XXX_CATEGORIES filtering methods return categories, as defined in the
mining table repository, rather than specific items.

Attributes

■ from—Use this if you want items to be selected from the entire taxonomy of
items. A "top" setting, which is the default and is typical, displays the N (or less)
most desirable items, where N is the maximum number of recommendations to
display (maxQuantity). A "bottom" setting displays the N (or less) least
desirable items. This is useful, for example, if Product Management wants to
know which items are least favored by customers.

■ fromHotPicksGroups—Use this if you want items to be selected from one or
more hot picks groups. The application must determine a series of hot picks
group ID numbers, from the same recommendation engine that was specified in
the startRESession tag. In the fromHotPicksGroups attribute, you must
list the group ID numbers in a string, delimited by plus signs (+), such as
"10+20+30".

■ storeResultsIn—Optionally specify the name of a TEI variable of type
Item[] in which to store the resulting recommendations. (This is a required
attribute for getCrossSellRecommendations, but not for
getRecommendations.) If a variable name is provided, the scope of the
variable is AT_BEGIN—available from the start tag to the end of the page. Note
that the value is a variable name, not a JSP expression. You must provide the
variable name for translation; this is not a request-time attribute.

■ storeInterestDimensionIn—Optionally specify the name of a TEI string
variable in which to store the interest dimension, which is either NAVIGATION,
PURCHASING, or RATING. Use the Item class defined constant
INT_DIM_NAVIGATION, INT_DIM_PURCHASING, or INT_DIM_RATING for
comparisons. If a variable name is provided, the scope of the variable is
AT_BEGIN—available from the start tag to the end of the page. You must
provide the variable name for translation; this is not a request-time attribute.
The value returned will be the same as the tuningInterestDimension
setting used in the tag.

■ maxQuantity—Use this if you want to specify a maximum number of
recommendations that can be returned. This is optional if there is a general
default specified in the <RecommendationSettings> element of the
 Oracle9iAS Personalization Tags 9-35

Personalization Tag and Class Descriptions
application personalization.xml file or the server-wide
personalizaton.xml file. Also see "Personalization Tag Library
Configuration Files" on page 9-59.

■ tuningName—Use this to specify the name of a <Tuning> element in
personalization.xml, so that tuning settings can be retrieved from there.
Alternatively, use the individual tuningXXX attributes.

■ tuningDataSource—See "Tuning Settings" on page 9-23.

■ tuningInterestDimension—See "Tuning Settings" on page 9-23.

■ tuningPersonalizationIndex—See "Tuning Settings" on page 9-23.

■ tuningProfileDataBalance—See "Tuning Settings" on page 9-23.

■ tuningProfileUsage—See "Tuning Settings" on page 9-23.

■ filteringName—Use this to specify the name of a <Filtering> element in
personalization.xml, so that filtering settings can be retrieved from there.
Alternatively, use the individual filteringXXX attributes.

■ filteringTaxonomyID—See "Recommendation Filtering" on page 9-24.

■ filteringMethod—See "Recommendation Filtering" on page 9-24.

■ filteringCategories—See "Recommendation Filtering" on page 9-24.
Integers in the string are delimited by plus signs (+), such as "101+200+35".

■ sortOrder—Use this to specify whether items are sorted in ascending order
("ASCEND", best match first) or descending order ("DESCEND"). The default is
neither ("NONE"), for no sorting requirement. See "Sorting Order" on page 9-26
for more information.

Example Following is an example of basic usage of the getRecommendations tag.
The storeResultsIn attribute defines an Item[] array for receiving and
displaying results.

<op:getRecommendations storeResultsIn="myRecs">
<% for(int i = 0; i< myRecs.length; i++) {
 Render(myRecs(i).getType(),myRecs(i).getID());
} %>
</op:getRecommendations>

Also see "Personalization getNextItem Tag" on page 9-45 for an example of a
getRecommendations tag that uses a nested getNextItem tag.
9-36 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
Personalization getCrossSellRecommendations Tag
Like the getRecommendations tag, the getCrossSellRecommendations tag
returns a set of recommendations, in an array of type Item[], for purchasing,
navigation, or ratings. Items from a particular taxonomy are considered, with
tuning and filtering as specified.

To use getCrossSellRecommendations, however, you must input a set of
purchasing or navigation items of past user interest that are used as a basis for the
resulting recommendations. The items must all be from the same taxonomy.

You can input items through a specified item array or through a tag body with
nested forItem tags. See "Specification of Input Items" on page 9-19 for more
information. Also see "Personalization forItem Tag" on page 9-43.

The recommendations from the getCrossSellRecommendations tag are stored
in a TEI variable of type Item[], with the variable name specified in the
storeResultsIn attribute of the tag.

Syntax

<op:getCrossSellRecommendations
 storeResultsIn = "TEI_variable_name"
 [storeInterestDimensionIn = "TEI_variable_name"]
 [fromHotPicksGroups = "string_of_Hot_Picks_group_numbers"]
 [inputItemList = "item_array_expression"]
 [maxQuantity = "integer_value"]
 [tuningName = "name_from_config_file_Tuning_element"]
 [tuningDataSource = "ALL"|"NAVIGATION"|"PURCHASE"|"RATING"|"DEMOGRAPHIC"]
 [tuningInterestDimension = "NAVIGATION"|"PURCHASING"|"RATING"]
 [tuningPersonalizationIndex = "LOW"|"MEDIUM"|"HIGH"]
 [tuningProfileDataBalance = "HISTORY"|"CURRENT"|"BALANCED"]
 [tuningProfileUsage = "INCLUDE"|"EXCLUDE"]
 [filteringName = "name_from_config_file_Filtering_element"]
 [filteringTaxonomyID = "integer_value"]
 [filteringMethod = "ALL_ITEMS"|"EXCLUDE_ITEMS"|"INCLUDE_ITEMS"|
 "SUBTREE_ITEMS"]
 [filteringCategories = "string_of_integers"]
 [sortOrder = "ASCEND"|"DESCEND"|"NONE"] >
...

</op:getCrossSellRecommendations>

Note: Also see "Personalization Tag Constraints" on page 9-57.
 Oracle9iAS Personalization Tags 9-37

Personalization Tag and Class Descriptions
Attribute Usage Notes Be aware of the following:

■ Inputting items requires either the inputItemList attribute, or a body with
nested forItem tags, or optionally both. If you use both mechanisms, then the
forItem tags will be executed first and the indicated items will be placed in an
item list. Then the inputItemList entries are considered and appended to the
list.

■ Unlike for the getRecommendations tag, storeResultsIn is a required
attribute for the getCrossSellRecommendations tag—you must specify the
name of a TEI variable of type Item[] for storage of the resulting
recommendations.

■ Specify tuningName, corresponding to the name of a <Tuning> element in
personalization.xml, or specify individual tuning settings through the
tuningXXX attributes. If you do neither, see "Tuning Settings" on page 9-23 for
information about how default values are chosen. Also see "Personalization Tag
Library Configuration Files" on page 9-59.

■ If the tuningInterestDimension setting is not the same as the
tuningDataSource setting, you might not get any recommendations,
depending on how Oracle9iAS Personalization rules are set.

■ Specify filteringName, corresponding to the name of a <Filtering>
element in personalization.xml, or specify individual filtering settings
through the filteringXXX attributes. If you do neither, see "Recommendation
Filtering" on page 9-24 for information about how default values are chosen.

■ A filteringCategories setting is required, unless filteringMethods is
set to ALL_ITEMS. These settings can be through either the tag attributes or
personalization.xml.

■ The getCrossSellRecommendations tag cannot use category-based
filtering; therefore, it supports only a limited set of filtering
methods—ALL_ITEMS, INCLUDE_ITEMS, EXCLUDE_ITEMS, and
SUBTREE_ITEMS.

Attributes

■ inputItemList—If you want to supply the input items through an Item[]
array, use this attribute with a JSP expression that returns the array. The item
array in the expression can come from a prior recommendation tag. See
"Inputting Item Arrays" on page 9-20 for more information.

All other attributes of the getCrossSellRecommendations tag are used as for
the getRecommendations tag, as described in "Personalization
9-38 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
getRecommendations Tag" on page 9-33, except for any limitations noted in
"Attribute Usage Notes" immediately above.

For additional information about tuning, filtering, and sorting, see "Tuning Settings"
on page 9-23, "Recommendation Filtering" on page 9-24, and "Sorting Order" on
page 9-26.

Example The following example uses a getCrossSellRecommendations tag to
suggest follow-up DVD titles to a user who rented or purchased certain titles in the
past.

<% long[] ids = ApplicationPackage.getUserHistory("Smith01");
 Item[] DVDs = new Item[ids.length];
 for(int i=0; i<ids.length; i++) {
 DVDs[i] = new Item("DVD", ids[i]);
 }
 pageContext.setAttribute("pastInterest", DVDs);
%>
<op: getCrossSellRecommendations inputItemList="pastInterest"
 storeResultsIn="moreDVDs"
 maxQuantity = "4"
 sortOrder="ASCEND" />
<!-- display 4 best cross-sell items -->
<h1> You will also enjoy these titles! </h1>

ApplicationSupport.displayItem(moreDVDs[1].getType(), moreDVDs[1].getID());
ApplicationSupport.displayItem(moreDVDs[2].getType(), moreDVDs[2].getID());
ApplicationSupport.displayItem(moreDVDs[3].getType(), moreDVDs[3].getID());
ApplicationSupport.displayItem(moreDVDs[4].getType(), moreDVDs[4].getID());

Also see "Personalization forItem Tag" on page 9-43 for an example of a
getCrossSellRecommendations tag that uses a nested forItem tag.

Personalization selectFromHotPicks Tag
Use this tag to request recommendations from a set of hot picks groups only, instead
of from the taxonomy as a whole, and without considering the user profile. Tuning
and filtering are still applied, to items in the specified groups.

Other than the fact that selectFromHotPicks does not consider user identity and
profile, it works in essentially the same way as the getRecommendations tag with
a specified fromHotPicksGroups setting. See "Personalization
getRecommendations Tag" on page 9-33 for detailed information about that tag.
 Oracle9iAS Personalization Tags 9-39

Personalization Tag and Class Descriptions
You can optionally store the resulting recommendations in a TEI variable of type
Item[], with the variable name specified in the storeResultsIn attribute of the
tag. The recommendations are also available implicitly within the
selectFromHotPicks tag. You can optionally use a tag body with nested
getNextItem tags for any desired processing of the items. See "Personalization
getNextItem Tag" on page 9-45.

Syntax

<op:selectFromHotPicks
 hotPicksGroups = "string_of_Hot_Picks_group_numbers"
 [storeResultsIn = "TEI_variable_name"]
 [storeInterestDimensionIn = "TEI_variable_name"]
 [maxQuantity = "integer_value"]
 [tuningName = "name_from_config_file_Tuning_element"]
 [tuningDataSource = "ALL"|"NAVIGATION"|"PURCHASE"|"RATING"|"DEMOGRAPHIC"]
 [tuningInterestDimension = "NAVIGATION"|"PURCHASING"|"RATING"]
 [tuningPersonalizationIndex = "LOW"|"MEDIUM"|"HIGH"]
 [tuningProfileDataBalance = "HISTORY"|"CURRENT"|"BALANCED"]
 [tuningProfileUsage = "INCLUDE"|"EXCLUDE"]
 [filteringName = "name_from_config_file_Filtering_element"]
 [filteringTaxonomyID = "integer_value"]
 [filteringMethod = "ALL_ITEMS"|"EXCLUDE_ITEMS"|"INCLUDE_ITEMS"|
 "SUBTREE_ITEMS"|"ALL_CATEGORIES"|"INCLUDE_CATEGORIES"|
 "EXCLUDE_CATEGORIES"|"SUBTREE_CATEGORIES"|CATEGORY_LEVEL"]
 [filteringCategories = "string_of_integers"]
 [sortOrder = "ASCEND"|"DESCEND"|"NONE"] >

...

</op:selectFromHotPicks>

Attribute Usage Notes Be aware of the following:

■ The hotPicksGroups attribute is equivalent to the fromHotPicksGroups
attribute of the getRecommendations tag, but hotPicksGroups is required.

■ Access the output items either through the storeResultsIn attribute, or
through a tag body with nested getNextItem tags, or optionally both.

Note: Also see "Personalization Tag Constraints" on page 9-57.
9-40 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
■ Specify tuningName, corresponding to the name of a <Tuning> element in
personalization.xml, or specify individual tuning settings through the
tuningXXX attributes. If you do neither, see "Tuning Settings" on page 9-23 for
information about how default values are chosen. Also see "Personalization Tag
Library Configuration Files" on page 9-59.

■ Specify filteringName, corresponding to the name of a <Filtering>
element in personalization.xml, or specify individual filtering settings
through the filteringXXX attributes. If you do neither, see "Recommendation
Filtering" on page 9-24 for information about how default values are chosen.

■ A filteringCategories setting is required, unless filteringMethods is
set to ALL_ITEMS or ALL_CATEGORIES. These settings can be through either
the tag attributes or personalization.xml.

■ The XXX_CATEGORIES filtering methods return categories, as defined in the
mining table repository, rather than specific items.

Attributes

■ hotPicksGroups (required)—You must use this to specify one or more hot
picks groups from which the recommendations will be selected. The application
must determine one or more hot picks group ID numbers, for the same
recommendation engine that was specified in the startRESession tag. In the
hotPicksGroups attribute, you must list the group ID numbers in a string,
delimited by plus signs (+), such as "1+20+35".

Use all other attributes as for the getRecommendations tag, as described in
"Personalization getRecommendations Tag" on page 9-33, except for any limitations
noted in the preceding "Attribute Usage Notes".

For additional information about tuning, filtering, and sorting, see "Tuning Settings"
on page 9-23, "Recommendation Filtering" on page 9-24, and "Sorting Order" on
page 9-26.

See "Personalization getNextItem Tag" on page 9-45 for an example of a
selectFromHotPicks tag that uses a nested getNextItem tag.

Personalization evaluateItems Tag
Use the evaluateItems tag to evaluate the set of items that are input to the tag.
The items must all be from the same taxonomy. For an interest dimension of
PURCHASING or NAVIGATION, the items are ranked. For an interest dimension of
RATING, the items are rated. A subset of the evaluated items—anywhere from none
to all of the items, depending on effects of the tuningDataSource setting—are
 Oracle9iAS Personalization Tags 9-41

Personalization Tag and Class Descriptions
returned in a TEI array variable of type Item[]. You must specify the name of the
variable through the storeResultsIn attribute. For each item in the array, the
prediction attribute contains the ranking or rating value.

See "Ratings and Rankings" on page 9-9 for background information about item
ratings and rankings.

You can input items through a specified item array or through a tag body with
nested forItem tags. See "Specification of Input Items" on page 9-19 for more
information. Also see "Personalization forItem Tag" on page 9-43.

Syntax

<op:evaluateItems
 storeResultsIn = "TEI_variable_name"
 taxonomyID = "integer_value"
 [inputItemList = "item_array_expression"]
 [tuningName = "name_from_config_file_Tuning_element"]
 [tuningDataSource = "ALL"|"NAVIGATION"|"PURCHASE"|"RATING"|"DEMOGRAPHIC"]
 [tuningInterestDimension = "NAVIGATION"|"PURCHASING"|"RATING"]
 [tuningPersonalizationIndex = "LOW"|"MEDIUM"|"HIGH"]
 [tuningProfileDataBalance = "HISTORY"|"CURRENT"|"BALANCED"]
 [tuningProfileUsage = "INCLUDE"|"EXCLUDE"]
 [sortOrder = "ASCEND"|"DESCEND"|"NONE"] >

...

</op:evaluateItems>

Attribute Usage Notes Be aware of the following:

■ Inputting items requires either the inputItemList attribute, or a body with
nested forItem tags, or optionally both. If you use both mechanisms, then the
forItem tags will be executed first, and the indicated items will be placed in
an item list. Then the inputItemList entries will be considered and
appended to the list.

■ Unlike for the getRecommendations tag, storeResultsIn is a required
attribute for the evaluateItems tag—you must specify a TEI variable of type
Item[] for storage of the rated items.

Note: Also see "Personalization Tag Constraints" on page 9-57.
9-42 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
■ Specify tuningName, corresponding to the name of a <Tuning> element in
personalization.xml, or specify individual tuning settings through the
tuningXXX attributes. If you do neither, see "Tuning Settings" on page 9-23 for
information about how default values are chosen. Also see "Personalization Tag
Library Configuration Files" on page 9-59.

■ There are no filtering attributes for the evaluateItems tag, because the items
to be rated are simply the items that are input. Therefore, you must specify the
taxonomy through a separate attribute—taxonomyID.

Attributes

■ taxonomyID (required)—This is an integer specifying the ID of the taxonomy
the items are from.

■ inputItemList—If you want to supply the input items through an Item[]
array, use this attribute with a JSP expression that returns the array. The item
array in the expression can come from a prior recommendation tag. See
"Inputting Item Arrays" on page 9-20 for more information.

Use all other evaluateItems attributes as for the getRecommendations tag, as
described in "Personalization getRecommendations Tag" on page 9-33, except for
any limitations noted in the preceding "Attribute Usage Notes".

For additional information about tuning and sorting, see "Tuning Settings" on
page 9-23 and "Sorting Order" on page 9-26.

Example This example takes sale items as input, uses the evaluateItems tag to
put them in order of highest interest to the user, then displays the most interesting
one.

<% Item[] saleItems = ApplicationSupport.getSaleItems(); %>
<!-- Choose the sale items of greatest interest to this user -->
<op:evaluateItems storeResultsIn="bestItems" taxonomyID="1"
 inputItemList="<%=saleItems%>" />

<% ApplicationSupport.displayItem(bestItems(1)); %>

Personalization forItem Tag
Use this tag to specify individual items for input to a
getCrossSellRecommendations tag or an evaluateItems tag.

See "Specification of Input Items" on page 9-19 for conceptual information about
how to use the forItem tag.
 Oracle9iAS Personalization Tags 9-43

Personalization Tag and Class Descriptions
The forItem tag has no body.

Syntax

<op:forItem
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"]
 [type = "type_of_item"]
 [ID = "item_ID_number"] />

Attribute Usage Notes There are two modes of use for this tag:

■ Use both index and itemList.

or:

■ Use both type and ID.

Attributes

■ itemList—Use a JSP expression that returns an Item[] array. The item array
in the expression can come from a prior recommendation tag. Use this attribute
together with index, which specifies a desired element of the array. Do not use
this attribute if you use type and ID. See "Inputting Item Arrays" on page 9-20
for more information.

■ index—Use this to specify the index number of the desired element of an item
array. Specify the item array in the itemList attribute. Do not use this
attribute if you use type and ID.

■ type—This is for the type of items, such as "shoes". Do not use this attribute if
you use index and itemList.

■ ID—This is an identification number, unique for each item of a given type. Do
not use this attribute if you use index and itemList.

Example The following example uses several specified shoe purchasing items as
input for a cross-sell recommendation, then displays the resulting
recommendations.

Note: Also see "Personalization Tag Constraints" on page 9-57.
9-44 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
<op: getCrossSellRecommendations storeResultsIn="shoeItems" >
 <op:forItem type="shoes" ID="20" />
 <op:forItem type="shoes" ID="26" />
 <op:forItem type="shoes" ID="45" />
 <op:forItem type="shoes" ID="93" />
 <op:forItem type="shoes" ID="101" />
</op:getCrossSellRecommendations>
<p> Based on past shoe purchases, here are the shoes we recommend! </p>
<%= ApplicationSupport.displayItemArray(shoeItems) %>

Personalization getNextItem Tag
You can optionally use nested getNextItem tags within a getRecommendations
or selectFromHotPicks tag body to access the recommendations that the outer
tag returns. (The alternative is to access the items through the storeResultsIn
attribute of the getRecommendations or selectFromHotPicks tag.)

The first time a getNextItem tag is executed, it accesses the first item, and
subsequent getNextItem executions proceed through the item array one by one,
with each getNextItem execution taking the next item. When the end of the item
array is reached, the tag puts null values into each of its tag attributes.

Use tag attributes to store either the type and ID of the next item, or the Item
instance itself.

The getNextItem tag has no body.

Be aware of the following:

■ Using the explicit item array from a getRecommendations or
selectFromHotPicks tag, through the storeResultsIn attribute, does not
preclude the use of getNextItem tags. The item array accessible through
storeResultsIn is unaffected by processing through getNextItem tags.

■ If you use one or more getRecommendations tags nested inside another
getRecommendations tag, or one or more selectFromHotPicks tags
inside another selectFromHotPicks tag, then only one of the tags can use
nested getNextItem tags to access implicit tag results. Other tags in the
nesting chain must use the storeResultsIn attribute. No such restriction
exists for a getRecommendations tag inside a selectFromHotPicks tag, or
a selectFromHotPicks tag inside a getRecommendations tag.
 Oracle9iAS Personalization Tags 9-45

Personalization Tag and Class Descriptions
Syntax

<op:getNextItem
 [storeTypeIn = "TEI_variable_for_item_type"]
 [storeIDIn = "TEI_variable_for_item_ID"]
 [storeItemIn = "TEI_variable_for_Item_instance"] />

Attribute Usage Notes There are two modes of use for this tag:

■ Use both storeTypeIn and storeIDIn.

or:

■ Use storeItemIn.

All TEI variables are of scope AT_END, meaning they are available from the end of
the tag until the end of the JSP page. All TEI variables must be declared in scriptlet
code earlier in the page and must be visible in the scope of the getNextItem tag.
Unlike TEI variables in other personalization tags, these variables will not be
declared by the JSP container.

Attributes

■ storeTypeIn—Specify the name of a TEI String variable to store the type of
the next item. Use this in conjunction with storeIDIn; do not use it if you use
storeItemIn.

■ storeIDIn—Specify the name of a TEI String variable to store the ID of the
next item. Use this in conjunction with storeTypeIn; do not use it if you use
storeItemIn.

■ storeItemIn—Specify the name of a TEI variable of type Item to store the
next item. Do not use this if you use storeTypeIn and storeIDIn.

Examples The following example shows a getNextItem tag being used in a loop
inside a getRecommendations tag. The loop terminates when getNextItem
returns null.

<op:getRecommendations from="top"
 tuningName="BalancedTuning"
 filteringName="GeneralFiltering" >
<p> Top Picks selected especially for you: </p>
 <% String type=null;
 String ID=null;
 while(true) { %>
 <op:getNextItem storeTypeIn="type" storeIDIn="ID" />
9-46 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
 <% if(type==null) break;%>
 type: <%=type%> ID: <%=ID%>
 <% } %>
</op:getRecommendations>

And this next example shows a getNextItem tag in a loop inside a
selectFromHotPicks tag:

<op:selectFromHotPicks hotPicksGroups="1+5"
 tuningName="HotPicksTuning"
 filteringName="GeneralFiltering" >
<p> We know you enjoy Horror and Musical movies. Look what we have on
sale this week! </p>
 <% Item item=null;
 while(true) { %>
 <op:getNextItem storeItemIn="item" />
 <% if(item==null) break;%>
 <%= ApplicationSupport.displayItem(item) %>
 <% } %>

</op:selectFromHotPicks>

Item Recording and Removal Tag Descriptions
This section provides detailed descriptions of the recordXXX and
removeXXXRecord tags. Use the appropriate recordXXX tag to record an item
into the recommendation engine session cache. Use the corresponding
removeXXXRecord tag if you want to remove an item that was recorded earlier in
the session. Items in the cache are periodically flushed to the recommendation
engine session; removing an item after that point requires a database round-trip.

Also see "Overview of Item Recording and Removal Tags" on page 9-16.

The following tags are covered here:

■ Personalization recordNavigation Tag

■ Personalization recordPurchase Tag

■ Personalization recordRating Tag

■ Personalization recordDemographic Tag

■ Personalization removeNavigationRecord Tag

■ Personalization removePurchaseRecord Tag
 Oracle9iAS Personalization Tags 9-47

Personalization Tag and Class Descriptions
■ Personalization removeRatingRecord Tag

■ Personalization removeDemographicRecord Tag

Personalization recordNavigation Tag
Use this tag to record a navigation item into the recommendation engine session.
This is to record that a user demonstrated an interest in the item by navigating to it.
For example, he or she may see an icon that represents something of interest, then
click on a "Tell Me More" button next to the icon. See "Personalization
removeNavigationRecord Tag" on page 9-52 for information about the tag to
remove a navigation item.

You can disable actions of the recordNavigation tag by setting the
disableRecording attribute of the startRESession tag to "true". See
"Personalization startRESession Tag" on page 9-28 for more information.

The recordNavigation tag has no body.

Syntax

<op:recordNavigation
 [type = "type_of_item"]
 [ID = "item_ID_number"]
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"] />

Attribute Usage Notes There are two modes of use for this tag:

■ Use both type and ID.

or:

■ Use both index and itemList.

See "Specification of Input Items" on page 9-19 for related information.

Attributes

■ type—This is for the type of item, such as "shoes". Do not use this attribute if
you use index and itemList.

Note: Also see "Personalization Tag Constraints" on page 9-57.
9-48 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
■ ID—This is an identification number, unique for each item of a given type. Do
not use this attribute if you use index and itemList.

■ itemList—Use a JSP expression that returns an Item[] array. The item array
in the expression can come from a prior recommendation tag. Use this attribute
together with index, which specifies a desired element of the array. Do not use
this attribute if you use type and ID. See "Inputting Item Arrays" on page 9-20
for more information.

■ index—Use this to specify the index number of the desired element of an item
array. Specify the item array in the itemList attribute. Do not use this
attribute if you use type and ID.

Personalization recordPurchase Tag
Use this tag to record a purchasing item into the recommendation engine session.
This is to record a purchase the user has made. See "Personalization
removePurchaseRecord Tag" on page 9-53 for information about the tag to remove a
purchasing item.

You can disable actions of the recordPurchase tag by setting the
disableRecording attribute of the startRESession tag to "true". See
"Personalization startRESession Tag" on page 9-28 for more information.

The recordPurchase tag has no body.

Syntax

<op:recordPurchase
 [type = "type_of_item"]
 [ID = "item_ID_number"]
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"] />

Attribute Usage Notes There are two modes of use for this tag:

■ Use both type and ID.

or:

■ Use both index and itemList.

Note: Also see "Personalization Tag Constraints" on page 9-57.
 Oracle9iAS Personalization Tags 9-49

Personalization Tag and Class Descriptions
See "Specification of Input Items" on page 9-19 for related information.

Attributes

Attributes are the same as for the recordNavigation tag—see "Personalization
recordNavigation Tag" on page 9-48.

Example Consider the following excerpts from two JSP pages.

Page 1:

<%@ page session="true" %>
<op:getRecommendations storeResultsIn "myRecs" />
...display recommendations...
<% session.setAttribute("recommendationList", myRecs); %>

Page 2:

<%@ page session="true" %>
<op:recordPurchase itemList="<%=session.getAttribute(\"recommendationList\") %>"
 index="<%=request.getParameter(\"index\" %>" />

Page 1 obtains a list of recommendations and displays them, along with a "Buy" link
for each item. The item array is stored in the session object for subsequent pages
to use.

Page 2 is executed when the user clicks a link to buy a particular recommendation.
The item list is retrieved from a session attribute; the index of the item selected is
retrieved from a request parameter. Page 2 may be a Shopping Cart page, for
example.

Personalization recordRating Tag
Use this tag to record a rating item into the recommendation engine session. This
would be based on a user rating of the item. See "Personalization
removeRatingRecord Tag" on page 9-54 for information about the tag to remove a
rating item.

This tag differs from recordNavigation and recordPurchase in that a
value—the rating value—must also be specified.

The recordRating tag has no body.
9-50 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
Syntax

<op:recordRating value = "rating_value"
 [type = "type_of_item"]
 [ID = "item_ID_number"]
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"] />

Attribute Usage Notes There are two modes of use for this tag:

■ Use both type and ID.

or:

■ Use both index and itemList.

The value attribute is required in either case.

See "Specification of Input Items" on page 9-19 for related information.

Attributes

■ value (required)—This is a string representing the user rating value. An
integer or floating point number can be entered. The number should be in the
appropriate rating range, according to boundaries in the
MTR.MTR_BIN_BOUNDARIES table in the mining table repository.

The other attributes are the same as for the recordNavigation tag—see
"Personalization recordNavigation Tag" on page 9-48.

Personalization recordDemographic Tag
Use this tag to record a demographic item into the recommendation engine session.
A demographic item consists of a piece of personal information about a particular
user. See "Personalization removeDemographicRecord Tag" on page 9-55 for
information about the tag to remove a demographic item.

This tag differs from the other recordXXX tags in that it has only two
attributes—type and value. The type attribute indicates what kind of
information the item contains, such as "AGE". The value attribute contains the
corresponding value, such as "44".

Note: Also see "Personalization Tag Constraints" on page 9-57.
 Oracle9iAS Personalization Tags 9-51

Personalization Tag and Class Descriptions
The recordDemographic tag has no body.

Syntax

<op:recordDemographic
 type = "GENDER"|"AGE"|"MARITAL_STATUS"|"PERSONAL_INCOME"|
 "HOUSEHOLD_INCOME"|"IS_HEAD_OF_HOUSEHOLD"|"HOUSEHOLD_SIZE"|
 "RENT_OWN_INDICATOR"|"ATTRIBUTE1"|...|"ATTRIBUTE50"
 value = "item_value" />

Attributes

■ type (required)—Specify one of the supported demographic types. In addition
to the several named types, there are 50 customizable types—ATTRIBUTE1,
ATTRIBUTE2, ..., ATTRIBUTE50. See "Demographic Items" on page 9-21 for
additional information.

■ value (required)—Specify an appropriate value, given the demographic type,
such as "MALE" or "FEMALE" for a GENDER item.

Personalization removeNavigationRecord Tag
Use this tag to remove a navigation item that had been recorded into the
recommendation engine session earlier in the session. See "Personalization
recordNavigation Tag" on page 9-48 for information about the tag to record a
navigation item.

To remove an item, you must use the removeNavigationRecord tag during the
same recommendation engine session in which the item was recorded. The session
cache is periodically flushed to the recommendation engine database schema
during the course of a session. If you remove an item after it has been flushed,
execution of the removal tag will require a database round-trip.

The removeNavigationRecord tag has no body.

Note: Also see "Personalization Tag Constraints" on page 9-57.

Note: Also see "Personalization Tag Constraints" on page 9-57.
9-52 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
Syntax

<op:removeNavigationRecord
 [type = "type_of_item"]
 [ID = "item_ID_number"]
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"] />

Attribute Usage Notes There are two modes of use for this tag:

■ Use both type and ID.

or:

■ Use both index and itemList.

See "Specification of Input Items" on page 9-19 for related information.

Attributes

Attributes are the same as for the recordNavigation tag—see "Personalization
recordNavigation Tag" on page 9-48.

Personalization removePurchaseRecord Tag
Use this tag to remove a purchasing item that had been recorded into the
recommendation engine session earlier in the session. See "Personalization
recordPurchase Tag" on page 9-49 for information about the tag to record a
purchasing item.

To remove an item, you must use the removePurchaseRecord tag during the
same recommendation engine session in which the item was recorded. The session
cache is periodically flushed to the recommendation engine database schema
during the course of a session. If you remove an item after it has been flushed,
execution of the removal tag will require a database round-trip.

The removePurchaseRecord tag has no body.

Note: Also see "Personalization Tag Constraints" on page 9-57.
 Oracle9iAS Personalization Tags 9-53

Personalization Tag and Class Descriptions
Syntax

<op:removePurchaseRecord
 [type = "type_of_item"]
 [ID = "item_ID_number"]
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"] />

Attribute Usage Notes There are two modes of use for this tag:

■ Use both type and ID.

or:

■ Use both index and itemList.

See "Specification of Input Items" on page 9-19 for related information.

Attributes

Attributes are the same as for the recordNavigation tag—see "Personalization
recordNavigation Tag" on page 9-48.

Personalization removeRatingRecord Tag
Use this tag to remove a rating item that had been recorded into the
recommendation engine session earlier in the session. See "Personalization
recordRating Tag" on page 9-50 for information about the tag to record a rating
item.

This tag differs from removeNavigationRecord and removePurchaseRecord
in that a value—the rating value—must also be specified.

To remove an item, you must use the removeRatingRecord tag during the same
recommendation engine session in which the item was recorded. The session cache
is periodically flushed to the recommendation engine database schema during the
course of a session. If you remove an item after it has been flushed, execution of the
removal tag will require a database round-trip.

The removeRatingRecord tag has no body.

Note: Also see "Personalization Tag Constraints" on page 9-57.
9-54 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
Syntax

<op:removeRatingRecord value = "rating_value"
 [type = "type_of_item"]
 [ID = "item_ID_number"]
 [itemList = "item_array_expression"]
 [index = "index_into_item_array"] />

Attribute Usage Notes There are two modes of use for this tag:

■ Use both type and ID.

or:

■ Use both index and itemList.

The value attribute is required in either case.

See "Specification of Input Items" on page 9-19 for related information.

Attributes

■ value (required)—This is a string representing the user rating value that was
previously recorded.

The other attributes are the same as for the recordNavigation tag—see
"Personalization recordNavigation Tag" on page 9-48.

Personalization removeDemographicRecord Tag
Use this tag to remove a demographic item that had been recorded into the
recommendation engine session earlier in the session. See "Personalization
recordDemographic Tag" on page 9-51 for information about the tag to record a
demographic item.

This tag differs from the other removeXXXRecord tags in that it has only two
attributes—type and value. The type attribute indicates what kind of
information the item contains, such as "AGE". The value attribute contains the
corresponding value, such as "44".

To remove an item, you must use the removeDemographicRecord tag during the
same recommendation engine session in which the item was recorded. The session
cache is periodically flushed to the recommendation engine database schema
during the course of a session. If you remove an item after it has been flushed,
execution of the removal tag will require a database round-trip.
 Oracle9iAS Personalization Tags 9-55

Personalization Tag and Class Descriptions
The removeDemographicRecord tag has no body.

Syntax

<op:removeDemographicRecord
 type = "GENDER"|"AGE"|"MARITAL_STATUS"|"PERSONAL_INCOME"|
 "HOUSEHOLD_INCOME"|"IS_HEAD_OF_HOUSEHOLD"|"HOUSEHOLD_SIZE"|
 "RENT_OWN_INDICATOR"|"ATTRIBUTE1"|...|"ATTRIBUTE50"
 value = "item_value" />

Attributes

Attributes are the same as for the recordDemographic tag—see "Personalization
recordDemographic Tag" on page 9-51.

Item Class Description
The Oracle9iAS Personalization tag library offers the following convenient wrapper
class to facilitate the use of items, categories, and recommendations in JSP pages:

oracle.jsp.webutil.personalization.Item

Tag handlers create Item instances as necessary. There are two particular scenarios
where you will need to use, and sometimes create, Item instances directly:

■ when you want to retrieve type, ID, and prediction values from a
recommendation item

For a purchasing or navigation item, the prediction value is a ranking. For a
rating item, the prediction value is a rating.

■ when you want to create instances manually for input item lists for the
getCrossSellRecommendations and evaluateItems tags

The Item class provides the following getter methods for the first scenario:

■ java.lang.String getType()—Return the item type, such as "shoes", for
example, or one of the supported demographic types for demographic items. A
value of "CATEGORY" indicates that an entire category is being recommended.

■ long getID()—Return the item ID number.

Note: Also see "Personalization Tag Constraints" on page 9-57.
9-56 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag and Class Descriptions
■ float getPrediction()—Return either the rating, for a rating item, or the
ranking, for a purchasing or navigation item. Rankings are always integers, but
this attribute must be floating point because ratings can be floating point.

The class provides the following setter methods for the second scenario:

■ void setType(java.lang.String)—Set the item type.

■ void setID(long)—Set the item ID number.

There are also methods to define the item as a category and to determine if it has
already been defined as a category:

■ void setCategory()—Set the item type to "CATEGORY".

■ boolean isCategory()—Returns true if the item type is "CATEGORY".

The Item class provides the following public constructors:

■ new Item()

■ new Item(java.lang.String type, long ID)

■ new Item(java.lang.String type, java.lang.String ID)

The type attribute must be a string; the ID attribute can be a string or a long
value.

The Item class also defines the following String constant values for interest
dimensions. Use these values for comparisons to values returned in the
storeInterestDimensionIn attribute of the recommendation tags:

■ INT_DIM_NAVIGATION—for an item recommended for its high navigation
interest

■ INT_DIM_PURCHASING—for an item recommended for its high purchasing
interest

■ INT_DIM_RATING—for an item recommended for its high rating interest

Personalization Tag Constraints
Be aware of the following constraints regarding attribute settings for the Oracle9iAS
Personalization tags:

■ The startRESession tag has the following limitations:

– REName attribute—maximum of 12 characters

– REURL attribute—maximum of 256 characters
 Oracle9iAS Personalization Tags 9-57

Personalization Tag and Class Descriptions
– RESchema attribute—maximum of 30 characters

– REPassword attribute—maximum of 30 characters

– userID attribute—maximum of 32 characters

The same restrictions apply to the corresponding attributes of the <RE> element
of a personalization.xml file, except for userID, which is not used in
personalization.xml.

■ There can be no more than 1024 Item elements passed into any tag or returned
by any tag. This is not only the maximum size of any single Item[] array
passed to or from a tag, but is also a combined maximum if any tag receives
input from both an item list and one or more forItem tags.

■ For the recommendation tags—getRecommendations,
getCrossSellRecommendations, and selectFromHotPicks—a
maximum of 1024 hot picks groups can be specified. This applies to the
fromHotPicksGroups attribute of the getRecommendations tag and the
getCrossSellRecommendations tag, and to the hotPicksGroups
attribute of the fromHotPicksGroups tag.

■ Also for the recommendation tags, the filteringCategories attribute can
specify a maximum of 256 categories.

Equivalently, there can be a maximum of 256 <Category> subelements in the
<Filtering> element of a personalization.xml file.

■ Maximum length of the value attribute for the recordDemographic,
removeDemographicRecord, recordRating, and removeRatingRecord
tags is 60 characters.
9-58 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag Library Configuration Files
Personalization Tag Library Configuration Files
The Oracle9iAS Personalization tag library supports the use of configuration files,
named personalization.xml, to specify global and default tag attribute
settings. This section documents personalization.xml files and their supported
elements, and is organized as follows:

■ The personalization.xml Files

■ Element Descriptions for personalization.xml

■ Sample personalization.xml File

The personalization.xml Files
The Oracle9iAS Personalization tag library supports configuration files named
personalization.xml. These files are useful in specifying default settings for
optional tag attributes and for specifying default and named tuning and filtering
settings. Using personalization.xml for tuning and filtering settings is
particularly useful, because the settings can be quite involved, and it would be
inconvenient to have to set them in multiple tags or multiple pages.

There may be two personalization.xml files relevant to a given application:

■ /WEB-INF/personalization.xml

Use this file for the particular application only, for any defaults or settings that
are application-wide.

■ j2ee/home/config/personalization.xml

This is a server-wide configuration file. It is accessed for any required settings
that cannot be found in tag attributes or in the personalization.xml file for
the particular application.

Element Descriptions for personalization.xml
This section documents the XML DTD syntax for personalization.xml
elements supported by the Oracle9iAS Personalization tag library.

These elements are inside a top-level <personalization-config> element.

The personalization tags will validate any personalization.xml file against the
DTD.
 Oracle9iAS Personalization Tags 9-59

Personalization Tag Library Configuration Files
RecommendationSettings Element
Use this element to set a default value for maxQuantity, the maximum number of
recommendations that can be returned, for the getRecommendations,
getCrossSellRecommendations, and selectFromHotPicks tags.

The maxQuantity setting must be a string representing a positive integer.

Definition

<!ELEMENT RecommendationSettings EMPTY>
 <!ATTLIST RecommendationSetting maxQuantity CDATA #REQUIRED>

RE Element
Use this element to specify the name of a recommendation engine connection and to
make the connection. See "Personalization startRESession Tag" on page 9-28 for
information about the attributes.

Definition

<!ELEMENT RE EMPTY>
 <!ATTLIST RE Name CDATA #REQUIRED>
 <!ATTLIST RE URL CDATA #REQUIRED>
 <!ATTLIST RE Schema CDATA #REQUIRED>
 <!ATTLIST RE Password CDATA #REQUIRED>
 <!ATTLIST RE CacheSize CDATA #REQUIRED>
 <!ATTLIST RE FlushInterval CDATA #REQUIRED>

You can refer to the Name attribute in startRESession tag REName attributes.

Tuning Element
Use this element to define named tuning settings. See "Tuning Settings" on
page 9-23 for information about the attributes.

Note: Also see "Personalization Tag Constraints" on page 9-57.
Some of these limitations apply to personalization.xml
elements as well as to tag attribute settings.
9-60 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag Library Configuration Files
Definition

<!ELEMENT Tuning EMPTY>
 <!ATTLIST Tuning Name CDATA #REQUIRED>
 <!ATTLIST Tuning DataSource
 (NAVIGATION|PURCHASING|RATING|DEMOGRAPHIC|ALL) "ALL" >
 <!ATTLIST Tuning InterestDimension (NAVIGATION|PURCHASING|RATING)
 #REQUIRED >
 <!ATTLIST Tuning PersonalizationIndex (LOW|MEDIUM|HIGH) #REQUIRED >
 <!ATTLIST Tuning ProfileDataBalance (HISTORY|CURRENT|BALANCED)
 #REQUIRED >
 <!ATTLIST Tuning ProfileUsage (INCLUDE|EXCLUDE) "INCLUDE" >

The Name attribute is required and must give a unique name to this set of tuning
settings so that the name can be referred to in recommendation tag tuningName
attributes.

Other attributes are also required to fully define tuning settings for a
recommendation request, except for ProfileUsage, which has a default value of
"INCLUDE". See Oracle9iAS Personalization Recommendation Engine API Programmer’s
Guide for more information.

DefaultTuning Element
Use this element for tuning settings in the absence of individual tuning tag
attributes or a tuningName tag attribute (and corresponding <Tuning> element in
personalization.xml).

Attribute meanings are the same as for the <Tuning> element.

Definition

<!ELEMENT DefaultTuning EMPTY>
 <!ATTLIST DefaultTuning DataSource
 (NAVIGATION|PURCHASING|RATING|DEMOGRAPHIC|ALL) "ALL" >
 <!ATTLIST DefaultTuning InterestDimension (NAVIGATION|PURCHASING|RATING)
 #REQUIRED >
 <!ATTLIST DefaultTuning PersonalizationIndex (LOW|MEDIUM|HIGH)
 #REQUIRED >
 <!ATTLIST DefaultTuning ProfileDataBalance (HISTORY|CURRENT|BALANCED)
 #REQUIRED >
 <ATTLIST! DefaultTuning ProfileUsage (INCLUDE|EXCLUDE) "INCLUDE" >
 Oracle9iAS Personalization Tags 9-61

Personalization Tag Library Configuration Files
Filtering Element and Category Elements
Use these elements to define named filtering settings. See "Recommendation
Filtering" on page 9-24 for information about the attributes.

Use the filtering Name attribute to provide a unique name to be referenced from
personalization tags.

One or more <Category> elements must be nested within a filtering subelement,
except for the AllItems and AllCategories subelements. Contents of a
<Category> element must be a string representing a long integer.

Definition

<!ELEMENT Filtering (ExcludeItems|IncludeItems|ExcludeCategories|
 IncludeCategories|CategoryLevel|SubTreeItems|
 SubTreeCategories|AllItems|AllCategories) >
 <!ATTLIST Filtering Name CDATA #REQUIRED>
 <!ATTLIST Filtering TaxonomyID CDATA #REQUIRED>

<!ELEMENT Category (#PCDATA) >
<!ELEMENT ExcludeItems (Category+) >
<!ELEMENT IncludeItems (Category+) >
<!ELEMENT ExcludeCategories (Category+) >
<!ELEMENT IncludeCategories (Category+) >
<!ELEMENT CategoryLevel (Category+) >
<!ELEMENT SubTreeItems (Category+) >
<!ELEMENT SubTreeCategories (Category+) >
<!ELEMENT AllItems EMPTY >
<!ELEMENT AllCategories EMPTY >

DefaultFiltering Element
Use this element for filtering settings in the absence of individual filtering tag
attributes or a filteringName tag attribute (and corresponding <Filtering>
element in personalization.xml).

Definition

<!ELEMENT DefaultFiltering (ExcludeItems|IncludeItems|ExcludeCategories|
 IncludeCategories|CategoryLevel|SubTreeItems
 SubTreeCategories|AllItems|AllCategories) >
 <!ATTLIST DefaultFiltering TaxonomyID CDATA #REQUIRED>
9-62 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Personalization Tag Library Configuration Files
<!ELEMENT Category (#PCDATA) >
<!ELEMENT ExcludeItems (Category+) >
<!ELEMENT IncludeItems (Category+) >
<!ELEMENT ExcludeCategories (Category+) >
<!ELEMENT IncludeCategories (Category+) >
<!ELEMENT CategoryLevel (Category+) >
<!ELEMENT SubTreeItems (Category+) >
<!ELEMENT SubTreeCategories (Category+) >
<!ELEMENT AllItems EMPTY >
<!ELEMENT AllCategories EMPTY >

Sample personalization.xml File
<?xml version="1.0" ?>
<personalization-config>
 <description> Sample personalization config file </description>
 <RecommendationSettings maxQuantity="5" />
 <RE Name="RE1" URL="jdbc:oracle:thin:@sid" Schema="RESCHEMA"
 Password="secret" CacheSize="2999" FlushInterval="30000" />
 <RE Name="RE2" URL="jdbc:oracle:oci:@acme" Schema="RE2-schema"
 Password="RE2-pwd" CacheSize="5555" FlushInterval="100000" />
 <Tuning Name = "tuning1" DataSource="ALL"
 InterestDimension="NAVIGATION"
 PersonalizationIndex="HIGH" ProfileDataBalance="BALANCED"
 ProfileUsage="INCLUDE" />
 <DefaultTuning DataSource="PURCHASING" InterestDimension="RATING"
 PersonalizationIndex="MEDIUM" ProfileDataBalance="CURRENT"
 ProfileUsage="EXCLUDE" />
 <Filtering Name = "filter1" TaxonomyID="25" >
 <CategoryLevel>
 <Category>10</Category>
 <Category>11</Category>
 <Category>15</Category>
 </CategoryLevel>
 </Filtering>
 <DefaultFiltering TaxonomyID="1" >
 <AllItems/>
 </DefaultFiltering>
</personalization-config>
 Oracle9iAS Personalization Tags 9-63

Personalization Tag Library Configuration Files
9-64 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

 JML Compile-Time Syntax and
A

JML Compile-Time Syntax and Tags

Oracle JSP releases prior to the implementation of the JSP 1.1 specification could
support JML tags only as Oracle-specific extensions. The tag library framework was
added to the Sun Microsystems JavaServer Pages Specification, Version 1.1. For those
releases, JML tag processing was built into the JSP translator. This is referred to as
"compile-time tag support" in this manual.

JSP releases with OC4J continue to support the compile-time JML implementation;
however, it is generally advisable to use the runtime implementation whenever
possible. The runtime implementation is documented in Chapter 3, "JSP Markup
Language Tags".

This appendix discusses features of the compile-time implementation that are not in
common with the runtime implementation. This includes the following topics:

■ JML Compile-Time Syntax Support

■ JML Compile-Time Tag Support

For a general discussion of when it may be advantageous to use a compile-time
implementation, refer to the Oracle9iAS Containers for J2EE Support for JavaServer
Pages Reference.
 Tags A-1

JML Compile-Time Syntax Support
JML Compile-Time Syntax Support
This section describes Oracle-specific bean reference syntax and expression syntax
supported by the compile-time JML implementation, for specifying tag attribute
values. The following topics are covered:

■ JML Bean References and Expressions, Compile-Time Implementation

■ Attribute Settings with JML Expressions

This functionality requires the OC4J JSP translator; it is not portable to other JSP
environments.

JML Bean References and Expressions, Compile-Time Implementation
A bean reference is any reference to a JavaBean instance (bean) that results in
accessing either a property or a method of the bean. This includes a reference to a
property or method of a bean where the bean itself is a property of another bean.

This becomes cumbersome, because standard JavaBeans syntax requires that
properties be accessed by calling their accessor methods rather than by direct
reference. For example, consider the following direct reference:

a.b.c.d.doIt()

This must be expressed as follows in standard JavaBeans syntax:

a.getB().getC().getD().doIt()

The Oracle compile-time JML implementation, however, offers abbreviated syntax,
as described in the following subsections.

JML Bean References
Oracle-specific syntax supported by the compile-time JML implementation allows
bean references to be expressed using direct dot (".") notation. Note that standard
bean property accessor method syntax is also still valid.

Consider the following standard JavaBean reference:

customer.getName()

In JML bean reference syntax, you can express this in either of the following ways:

customer.getName()
A-2 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Compile-Time Syntax Support
or:

customer.name

JavaBeans can optionally have a default property, whose reference is assumed if no
reference is explicitly stated. You can omit default property names in JML bean
references. In the example above, if name is the default property, then the following
are all valid JML bean references:

customer.getName()

or:

customer.name

or simply:

customer

Most JavaBeans do not define a default property. Of those that do, the most
significant are the JML datatype JavaBeans described in Chapter 2, "JavaBeans for
Extended Types".

JML Expressions
JML expression syntax supported by the compile-time JML implementation is a
superset of standard JSP expression syntax, adding support for the JML bean
reference syntax documented in the preceding section.

A JML bean reference appearing in a JML expression must be enclosed in the
following syntax:

$[JML_bean_reference]

Attribute Settings with JML Expressions
Tag attribute documentation under "JSP Markup Language (JML) Tag Descriptions"
on page 3-4 notes standard syntax that is portable. You can set attributes, as
documented there, for either the runtime or the compile-time JML implementation
and even for non-Oracle JSP environments.

If you intend to use only the Oracle-specific compile-time implementation,
however, you can set attributes using JML bean references and JML expression
syntax, as documented in "JML Bean References and Expressions, Compile-Time
Implementation" above.
 JML Compile-Time Syntax and Tags A-3

JML Compile-Time Syntax Support
Note the following requirements:

■ Wherever Chapter 3 documents an attribute that accepts either a string literal or
an expression, you can use a JML expression in its $[...] syntax inside
standard JSP <%=...%> syntax.

Consider an example using the JML useVariable tag. You would use syntax
such as the following for the runtime implementation:

<jml:useVariable id = "isValidUser" type = "boolean" value = "<%= dbConn.isValid() %>" scope = "session" />

You can alternatively use syntax such as the following for the compile-time
implementation (the value attribute can be either a string literal or an
expression):

<jml:useVariable id = "isValidUser" type = "boolean" value = "<%= $[dbConn.valid] %>" scope = "session" />

■ Wherever Chapter 3 documents an attribute that accepts an expression only,
you can use a JML expression in its $[...] syntax without being nested in
<%=...%> syntax.

Consider an example using JML choose...when tags. You would use
something such as the following syntax for the runtime implementation
(presume orderedItem is a JmlBoolean instance):

<jml:choose>
 <jml:when condition = "<%= orderedItem.getValue() %>" >
 You have changed your order:
 -- outputs the current order --
 </jml:when>
 <jml:otherwise>
 Are you sure we can’t interest you in something?
 </jml:otherwise>
</jml:choose>

You can alternatively use syntax such as the following for the compile-time
implementation (the condition attribute can be an expression only):

<jml:choose>
 <jml:when condition = "$[orderedItem]" >
 You have changed your order:
 -- outputs the current order --
 </jml:when>
 <jml:otherwise>
 Are you sure we can’t interest you in something?
 </jml:otherwise>
</jml:choose>
A-4 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Compile-Time Tag Support
JML Compile-Time Tag Support
This section presents the following:

■ documentation of the taglib directive you must use for compile-time JML
support

■ a summary of all compile-time tags, noting which are desupported in the
runtime implementation

■ a description of tags supported by the compile-time implementation that are
desupported in the runtime implementation

Those tags still supported in the runtime implementation are documented in
"JSP Markup Language (JML) Tag Descriptions" on page 3-4.

The taglib Directive for Compile-Time JML Support
The Oracle compile-time JML support implementation uses a custom class,
OpenJspRegisterLib, to implement JML tag support.

In a JSP page using JML tags with the compile-time implementation, the taglib
directive must specify the fully qualified name of this class (instead of specifying a
TLD file as in standard JSP 1.1 tag library usage).

Following is an example:

<%@ taglib uri="oracle.jsp.parse.OpenJspRegisterLib" prefix="jml" %>

For information about usage of the taglib directive for the JML runtime
implementation, see "Overview of the JSP Markup Language (JML) Tag Library" on
page 3-2.

Note: In most cases, JML tags that are desupported in the runtime
implementation have standard JSP equivalents. Some of the
compile-time tags, however, were desupported because they have
functionality that is difficult to implement when adhering to the JSP
1.1 specification.
 JML Compile-Time Syntax and Tags A-5

JML Compile-Time Tag Support

JML Tag Summary, Compile-Time Versus Runtime
Most JML tags are available in both the runtime model and the compile-time model;
however, there are exceptions, as summarized in Table A–1.

Table A–1 JML Tags Supported: Compile-Time Model Versus Runtime Model

Tag
Supported in Oracle
Compile-Time Implementation?

Supported in Oracle Runtime
Implementation?

Bean Binding Tags:

useBean yes no; use jsp:useBean

useVariable yes yes

useForm yes yes

useCookie yes yes

remove yes yes

Bean Manipulation Tags:

getProperty yes no; use jsp:getProperty

setProperty yes no; use jsp:setProperty

set yes no

call yes no

lock yes no

Control Flow Tags:

if yes yes

choose yes yes

for yes yes

foreach yes; type attribute is optional yes; type attribute is required

return yes yes

flush yes yes

include yes no; use jsp:include

forward yes no; use jsp:forward

XML Tags:

transform yes yes
A-6 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Compile-Time Tag Support

Descriptions of Additional JML Tags, Compile-Time Implementation
This section provides detailed descriptions of JML tags that are still supported by
the JML compile-time implementation, but are not supported by the JML runtime
implementation. The tags supported in the runtime implementation are
documented under "JSP Markup Language (JML) Tag Descriptions" on page 3-4.

The following JML tags, for compile-time only, are documented here:

■ JML useBean Tag

■ JML getProperty Tag

■ JML setProperty Tag

■ JML set Tag

■ JML call Tag

■ JML lock Tag

■ JML include Tag

■ JML forward Tag

■ JML print Tag

■ JML plugin Tag

styleSheet yes yes

Utility Tags:

print yes; use double-quotes to specify a
string literal

no; use JSP expressions

plugin yes no; use jsp:plugin

Table A–1 JML Tags Supported: Compile-Time Model Versus Runtime Model (Cont.)

Tag
Supported in Oracle
Compile-Time Implementation?

Supported in Oracle Runtime
Implementation?
 JML Compile-Time Syntax and Tags A-7

JML Compile-Time Tag Support
JML useBean Tag
This tag declares an object to be used in the page, locating the previously
instantiated object at the specified scope by name if it exists. If it does not exist, the
tag creates a new instance of the appropriate class and attaches it to the specified
scope by name.

The syntax and semantics are the same as for the standard jsp:useBean tag,
except that wherever a JSP expression is valid in jsp:useBean usage, either a JML
expression or a JSP expression is valid in JML useBean usage.

You can refer to the Oracle9iAS Containers for J2EE Support for JavaServer Pages
Reference for an overview of the jsp:useBean tag.

Syntax

<jml:useBean id = "beanInstanceName"
[scope ="page" | "request" | "session" | "application"]
 class ="package.class" |
 type = "package.class" |
 class ="package.class" type = "package.class" |
 beanName = "package.class" | "<%= jmlExpression %>" type = "package.class" />

Alternatively, you can have additional nested tags, such as setProperty tags, and
use a </jml:useBean> end tag.

Attributes

Refer to the Sun Microsystems JavaServer Pages Specification, Version 1.1 for detailed
information about jsp:useBean attributes and their syntax.

Example

<jml:useBean id = "isValidUser" class = "oracle.jsp.jml.JmlBoolean" scope = "session" />

Notes:

■ The prefix "jml:" is used in the tag syntax here. This is by
convention but is not required. You can specify any desired
prefix in your taglib directive.

■ See "Tag Syntax Symbology and Notes" on page 1-2 for general
information about tag syntax conventions in this manual.
A-8 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Compile-Time Tag Support
JML getProperty Tag
This tag is functionally identical to the standard jsp:getProperty tag. It prints
the value of the bean property into the response.

For general information about getProperty usage, refer to the Oracle9iAS
Containers for J2EE Support for JavaServer Pages Reference or the Sun Microsystems
JavaServer Pages Specification, Version 1.1.

Syntax

<jml:getProperty name = "beanInstanceName"
 property = "propertyName" />

Attributes

■ name (required)—This is the name of the bean whose property is being
retrieved.

■ property (required)—This is the name of the property being retrieved.

Example The following example outputs the current value of the salary property.
Assume salary is of type JmlNumber.

<jml:getProperty name="salary" property="value" />

This is equivalent to the following:

<%= salary.getValue() %>

JML setProperty Tag
This tag covers the functionality supported by the standard jsp:setProperty
tag, but also adds functionality to support JML expressions. In particular, you can
use JML bean references.

For general information about setProperty usage, refer to the Oracle9iAS
Containers for J2EE Support for JavaServer Pages Reference or the Sun Microsystems
JavaServer Pages Specification, Version 1.1.
 JML Compile-Time Syntax and Tags A-9

JML Compile-Time Tag Support
Syntax

<jml:setProperty name = "beanInstanceName"
 property = " * " |
 property = "propertyName" [param = "parameterName"] |
 property = "propertyName"
 [value = "stringLiteral" | "<%= jmlExpression %>"] />

Attributes

■ name (required)—This is the name of the bean whose property is being set.

■ property (required)—This is the name of the property being set.

■ value—This is an optional parameter that lets you set the value directly
instead of from a request parameter. The JML setProperty tag supports JML
expressions in addition to standard JSP expressions to specify the value.

Example The following example updates salary with a six percent raise. (Assume
salary is of type JmlNumber.)

<jml:setProperty name="salary" property="value" value="<%= $[salary] * 1.06 %>" />

This is equivalent to the following:

<% salary.setValue(salary.getValue() * 1.06); %>

JML set Tag
This tag provides an alternative for setting a bean property, using syntax that is
more convenient than that of the setProperty tag.

Syntax

<jml:set name = "beanInstanceName.propertyName"
 value = "stringLiteral" | "<%= jmlExpression %>" />

Attributes

■ name (required)—This is a direct reference (JML bean reference) to the bean
property to be set.

■ value (required)—This is the new property value. It is expressed either as a
string literal, a JML expression, or a standard JSP expression.
A-10 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Compile-Time Tag Support
Example Each of the following examples updates salary with a six percent raise.
(Assume salary is of type JmlNumber.)

<jml:set name="salary.value" value="<%= salary.getValue() * 1.06 %>" />

or:

<jml:set name="salary.value" value="<%= $[salary.value] * 1.06 %>" />

or:

<jml:set name="salary" value="<%= $[salary] * 1.06 %>" />

These are equivalent to the following:

<% salary.setValue(salary.getValue() * 1.06); %>

JML call Tag
This tag provides a mechanism to invoke bean methods that return nothing.

Syntax

<jml:call method = "beanInstanceName.methodName(parameters)" />

Attributes

■ method (required)—This is the method call as you would write it in a scriptlet,
except that the beanInstancename.methodName portion of the statement
can be written as a JML bean reference if enclosed in JML expression $[...]
syntax.

Example The following example redirects the client to a different page:

<jml:call name=’response.sendRedirect("http://www.oracle.com/")’ />

This is equivalent to the following:

<% response.sendRedirect("http://www.oracle.com/"); %>

JML lock Tag
This tag allows controlled, synchronous access to the named object for any code that
uses it within the tag body.
 JML Compile-Time Syntax and Tags A-11

JML Compile-Time Tag Support
Generally, JSP developers need not be concerned with concurrency issues. However,
because application-scope objects are shared across all users running the
application, access to critical data must be controlled and coordinated.

 You can use the JML lock tag to prevent concurrent updates by different users.

Syntax

<jml:lock name = "beanInstanceName" >
 ...body...
</jml:lock>

Attributes

■ name (required)—This is the name of the object that should be locked during
execution of code in the lock tag body.

Example In the following example, pageCount is an application-scope JmlNumber
value. The variable is locked to prevent the value from being updated by another
user between the time this code gets the current value and the time it sets the new
value.

<jml:lock name="pageCount" >
 <jml:set name="pageCount.value" value="<%= pageCount.getValue() + 1 %>" />
</jml:lock>

This is equivalent to the following:

<% synchronized(pageCount)
 {
 pageCount.setValue(pageCount.getValue() + 1);
 }
%>

JML include Tag
This tag includes the output of another JSP page, a servlet, or an HTML page in the
response of the including page (the page invoking include). It provides the same
functionality as the standard jsp:include tag except that the page attribute can
also be expressed as a JML expression.

For general information about include usage, refer to the Oracle9iAS Containers for
J2EE Support for JavaServer Pages Reference or the Sun Microsystems JavaServer Pages
Specification, Version 1.1.
A-12 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

JML Compile-Time Tag Support
Syntax

<jml:include page = "relativeURL" | "<%= jmlExpression %>"
 flush = "true" />

Attributes

For general information about include attributes and usage, refer to the Sun
Microsystems JavaServer Pages Specification, Version 1.1.

Example The following example includes the output of table.jsp, a presentation
component that renders an HTML table based on data in the query string and
request attributes.

<jml:include page="table.jsp?maxRows=10" flush="true" />

JML forward Tag
This tag forwards the request to another JSP page, a servlet, or an HTML page. It
provides the same functionality as the standard jsp:forward tag except that the
page attribute can also be expressed as a JML expression.

For general information about forward usage, refer to the Oracle9iAS Containers for
J2EE Support for JavaServer Pages Reference or the Sun Microsystems JavaServer Pages
Specification, Version 1.1.

Syntax

<jml:forward page = "relativeURL" | "<%= jmlExpression %>" />

Attributes

For general information about forward attributes and usage, refer to the Sun
Microsystems JavaServer Pages Specification, Version 1.1.

Example

<jml:forward page="altpage.jsp" />
 JML Compile-Time Syntax and Tags A-13

JML Compile-Time Tag Support
JML print Tag
This tag provides essentially the same functionality as a standard JSP expression:
<%= expr %>. A specified JML expression or string literal is evaluated, and the
result is output into the response. With this tag, the JML expression does not have to
be enclosed in <%= ... %> syntax; however, a string literal must be enclosed in
double-quotes.

Syntax

<jml:print eval = ’" stringLiteral"’ | " jmlExpression" />

Attributes

eval (required)—Specifies the string or expression to be evaluated and output.

Examples Either of the following examples outputs the current value of salary,
which is of type JmlNumber:

<jml:print eval="$[salary]" />

or:

<jml:print eval="salary.getValue()" />

The following example prints a string literal:

<jml:print eval=’"Your string here"’ />

JML plugin Tag
This tag has functionality identical to that of the standard jsp:plugin tag.

For general information about plugin usage, refer to the Oracle9iAS Containers for
J2EE Support for JavaServer Pages Reference or the Sun Microsystems JavaServer Pages
Specification, Version 1.1.
A-14 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

 Third Party Lice
B

Third Party Licenses

This appendix includes the Third Party License for third party products included
with Oracle9i Application Server and discussed in this document. Topics include:

■ Apache HTTP Server

■ Apache JServ
nses B-1

Apache HTTP Server
Apache HTTP Server
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

The Apache Software License
/* ==
 * The Apache Software License, Version 1.1
 *
 * Copyright (c) 2000 The Apache Software Foundation. All rights
 * reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * 3. The end-user documentation included with the redistribution,
 * if any, must include the following acknowledgment:
 * "This product includes software developed by the
 * Apache Software Foundation (http://www.apache.org/)."
 * Alternately, this acknowledgment may appear in the software itself,
 * if and wherever such third-party acknowledgments normally appear.
 *
 * 4. The names "Apache" and "Apache Software Foundation" must
 * not be used to endorse or promote products derived from this
 * software without prior written permission. For written
 * permission, please contact apache@apache.org.
 *
 * 5. Products derived from this software may not be called "Apache",
 * nor may "Apache" appear in their name, without prior written
B-2 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Apache HTTP Server
 * permission of the Apache Software Foundation.
 *
 * THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ==
 *
 * This software consists of voluntary contributions made by many
 * individuals on behalf of the Apache Software Foundation. For more
 * information on the Apache Software Foundation, please see
 * <http://www.apache.org/>.
 *
 * Portions of this software are based upon public domain software
 * originally written at the National Center for Supercomputing Applications,
 * University of Illinois, Urbana-Champaign.
 */
 Third Party Licenses B-3

Apache JServ
Apache JServ
Under the terms of the Apache license, Oracle is required to provide the following
notices. However, the Oracle program license that accompanied this product
determines your right to use the Oracle program, including the Apache software,
and the terms contained in the following notices do not change those rights.
Notwithstanding anything to the contrary in the Oracle program license, the
Apache software is provided by Oracle "AS IS" and without warranty or support of
any kind from Oracle or Apache.

Apache JServ Public License
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

■ Redistribution of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

■ Redistribution in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

■ All advertising materials mentioning features or use of this software must
display the following acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

■ The names "Apache JServ", "Apache JServ Servlet Engine" and "Java Apache
Project" must not be used to endorse or promote products derived from this
software without prior written permission.

■ Products derived from this software may not be called "Apache JServ" nor may
"Apache" nor "Apache JServ" appear in their names without prior written
permission of the Java Apache Project.

■ Redistribution of any form whatsoever must retain the following
acknowledgment:

This product includes software developed by the Java Apache Project for use
in the Apache JServ servlet engine project (http://java.apache.org/).

THIS SOFTWARE IS PROVIDED BY THE JAVA APACHE PROJECT "AS IS" AND
ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE JAVA
B-4 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Apache JServ
APACHE PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
 Third Party Licenses B-5

Apache JServ
B-6 Oracle9iAS Containers for J2EE JSP Tag Libraries and Utilities Reference

Index

A
application events (JspScopeListener), 8-2

B
bean references, compile-time JML, A-2

C
cache block (Web Object Cache)

expiration, 7-10
invalidation, 7-11
methods, 7-48
naming, 7-7, 7-16
runtime functionality, 7-10

cache policy (Web Object Cache)
and scope, 7-5
attributes, 7-12
creation, 7-39
descriptor, 7-58
methods, 7-41

cache repository descriptor, Web Object
Cache, 7-61

cache tag (Web Object Cache), 7-22, 7-30
cacheInclude tag (Web Object Cache), 7-31
cacheXMLObj tag (Web Object Cache), 7-27, 7-30
caching

Edge Side Includes, 6-2
JESI tags for Edge Side Includes, 6-6
Oracle Web Object Cache, 7-1
Oracle9i Application Server Java Object

Cache, 1-17
Oracle9iAS and JSP caching features,

overview, 1-16
Oracle9iAS Web Cache, 6-4

call tag, compile-time JML, A-11
categories (personalization), 9-7
checkPageScope tag (JspScopeListener), 8-3
choose tag, JML, 3-9
cloneable cache objects (Web Object Cache), 7-8
compile-time JML tags

syntax support, A-2
tag summary and descriptions, A-5
taglib directive, A-5

ConnBean JavaBean (for connection), 4-4
ConnCacheBean JavaBean (for connection

cache), 4-6
connection caching

through ConnCacheBean JavaBean, 4-6
through data sources, 4-3

control tag (JESI), 6-15
control/include model (JESI tags)

examples, 6-18
overview, 6-8

cookie tag (JESI), 6-28
createBean tag (EJB), 8-51
CursorBean JavaBean (for DML), 4-11

D
data sources, support for data-access beans and

tags, 4-3
data-access JavaBeans

ConnBean for connection, 4-4
ConnCacheBean for connection cache, 4-6
CursorBean for DML, 4-11
DBBean for queries, 4-10
 Index-1

overview, 4-2
support for data sources, connection

pooling, 4-3
data-access tags--see SQL tags
DBBean JavaBean (for queries), 4-10
dbClose SQL tag, close connection, 4-21
dbCloseQuery SQL tag, close cursor, 4-23
dbExecute SQL tag, DML/DDL, 4-25
dbNextRow SQL tag, process results, 4-24
dbOpen SQL tag, open connection, 4-18
dbQuery SQL tag, execute query, 4-21
dbSetCookie SQL tag, 4-27
dbSetParam SQL tag, 4-26
demographic items (personalization), 9-21
displayCurrency tag (utility), 8-56
displayDate tag (utility), 8-57
displayNumber tag (utility), 8-57
download file features--see file access
DownloadServlet (file access, downloads), 8-40

E
Edge Side Includes

JESI-ESI conversion, 6-33
overview, 6-2

EJB tags
configuration, 8-48
descriptions, 8-49
examples, 8-53
tag library description file, 8-49

endRESession tag (personalization), 9-31
ESI--see Edge Side Includes
evaluateItems tag (personalization), 9-41
event-handling (JspScopeListener), 8-2
expiration policy (Web Object Cache)

attributes, 7-18
methods, 7-47
retrieval, 7-47

expiration, Web Object Cache, 7-10
explicit cache block naming, Web Object

Cache, 7-7, 7-16
extensions

JML types, descriptions, 2-4
JML types, overview, 2-2
overview of data-access JavaBeans, 1-5

overview of extended types, 1-3
overview of JML tag library, 1-6
overview of JspScopeListener, 1-3
overview of portable extensions, 1-2
overview of SQL tag library, 1-5
overview of XML/XSL support, 1-3

F
file access tags and beans

DownloadServlet, 8-40
example, httpDownload tag, 8-47
example, HttpDownloadBean, 8-39
example, HttpUploadBean, 8-33
example, httpUploadForm and httpUpload

tags, 8-44
FileAccessException, 8-40
httpDownload tag, 8-45
HttpDownloadBean, 8-34
httpUpload tag, 8-42
HttpUploadBean, 8-29
httpUploadForm tag, 8-41
overview, 8-25
recursive downloading, 8-28
security considerations for downloading, 8-28
security considerations for uploading, 8-27

file download features--see file access
file upload features--see file access
fileaccess table, fileaccess.sql script, 8-26
FileAccessException (file access), 8-40
fileaccess.properties file, 8-26
filtering settings (personalization), 9-24
flush tag, JML, 3-13
for tag, JML, 3-10
foreach tag, JML, 3-11
forItem tag (personalization), 9-43
forward tag, compile-time JML, A-13
fragment tag (JESI), 6-22

G
getCache() method (Web Object Cache), 7-41
getCrossSellRecommendations tag

(personalization), 9-37
getNextItem tag (personalization), 9-45
Index-2

getProperty tag, compile-time JML, A-9
getRecommendations tag (personalization), 9-33

H
header tag (JESI), 6-29
hot picks (personalization), 9-17
httpDownload tag (file access, download), 8-45
HttpDownloadBean (file access, download), 8-34
httpUpload tag (file access, upload), 8-42
HttpUploadBean (file access, upload), 8-29
httpUploadForm tag (file access, upload), 8-41

I
if tag, JML, 3-8
ifInRole tag (utility), 8-59
implicit cache block naming, Web Object

Cache, 7-7, 7-16
include tag (JESI), 6-16
include tag, compile-time JML, A-12
interest dimension (personalization), 9-11
invalidate tag (JESI), 6-25
invalidateCache tag (Web Object Cache), 7-33
invalidateCacheXXX() methods (Web Object

Cache), 7-41
invalidation

JESI invalidation examples, 6-29
JESI invalidation of cached objects, 6-12
Web Object Cache, 7-11

Item class (personalization), 9-56
items (personalization)

introduction, 9-7
specification of input items, 9-19
use in personalization tags, 9-15

iterate tag (EJB), 8-52
iterate tag (utility), 8-58

J
Java Object Cache--see Oracle9i Application Server

Java Object Cache
JavaBeans

bean references, compile-time JML, A-2
for file access, 8-29

JML bean binding tags, 3-4
Oracle data-access beans, 4-2
SendMailBean, 8-15

jesi control tag, 6-15
jesi cookie tag, 6-28
jesi fragment tag, 6-22
jesi header tag, 6-29
jesi include tag, 6-16
jesi invalidate tag, 6-25
jesi object tag, 6-27
jesi personalize tag, 6-31
JESI tags

control/include examples, 6-18
control/include model, 6-8
example, personalization of cached pages, 6-32
invalidation, 6-12
invalidation examples, 6-29
invalidation tag and subtags, 6-25
JESI includes, functionality, 6-11
overview of Oracle implementation, 6-7
page setup and content tags, 6-14
personalization of cached pages, 6-12
personalization tag, cached pages, 6-31
tag descriptions, 6-14
tag handling, JESI-ESI conversion, 6-33
tag library description file, 6-14
template/fragment examples, 6-23
template/fragment model, 6-9
usage models, 6-8

jesi template tag, 6-21
jml call tag, compile-time JML, A-11
jml choose tag, 3-9
JML expressions, compile-time JML

attribute settings, A-3
syntax, A-3

jml flush tag, 3-13
jml for tag, 3-10
jml foreach tag, 3-11
jml forward tag, compile-time JML, A-13
jml getProperty tag, compile-time JML, A-9
jml if tag, 3-8
jml include tag, compile-time JML, A-12
jml lock tag, compile-time JML, A-11
jml otherwise tag, 3-9
jml plugin tag, compile-time JML, A-14
 Index-3

jml print tag, A-14
jml remove tag, 3-7
jml return tag, 3-12
jml set tag, compile-time JML, A-10
jml setProperty tag, compile-time JML, A-9
JML tags

attribute settings, compile-time JML, A-3
bean references, compile-time JML, A-2
descriptions, additional compile-time tags, A-7
descriptions, bean binding tags, 3-4
descriptions, logic/flow control tags, 3-8
expressions, compile-time JML, A-3
overview, 3-2
philosophy, 3-2
requirements, 3-2
summary of tags, categories, 3-3
summary, compile-time vs. runtime, A-6
tag library description file, 3-2
taglib directive, compile-time JML, A-5

JML types
example, 2-8
JmlBoolean, 2-4
JmlFPNumber, 2-6
JmlNumber, 2-5
JmlString, 2-7
overview, 2-2

jml useBean tag, compile-time JML, A-8
jml useCookie tag, 3-6
jml useForm tag, 3-5
jml useVariable tag, 3-4
jml when tag, 3-9
JmlBoolean extended type, 2-4
JmlFPNumber extended type, 2-6
JmlNumber extended type, 2-5
JmlString extended type, 2-7
JSP Markup Language--see JML
JspScopeEvent class, event handling, 8-2
JspScopeListener

application scope support, 8-5
examples, 8-7
general use, 8-2
overview, 8-2
page scope support, 8-3
request scope support, 8-4
requirements, 8-3

sample application, 8-7
session scope, integration with

HttpSessionBindingListener, 8-6
use in OC4J / servlet 2.3, 8-3

L
lastModified tag (utility), 8-60
lock tag, compile-time JML, A-11
lookupPolicy() method (Web Object Cache), 7-40

M
mail JavaBean and tag

general considerations, 8-14
introduction, 8-14
sendMail tag description, 8-19
SendMailBean description, 8-15

mining object repository (personalization), 9-5
mining table repository (personalization), 9-4
models (personalization), 9-5
MTR.MTR_BIN_BOUNDARY table

(personalization), 9-9

N
navigation items (personalization), 9-9

O
Object Caching Service for Java--see Oracle9i

Application Server Java Object Cache
object tag (JESI), 6-27
Oracle9i Application Server Java Object Cache

as default Web Object Cache repository, 7-4
configuration notes, 7-63
introduction, 1-17
versus Web Object Cache, 1-18

Oracle9iAS Web Cache
ESI processor, 6-5
introduction, 1-16, 6-4
steps in usage, 6-5
versus Web Object Cache, 1-18

otherwise tag, JML, 3-9
Index-4

P
page events (JspScopeListener), 8-2
parsexml tag for XML output, 5-7
personalization

categories, 9-7
configuration file, personalization.xml, 9-59
demographic items, 9-21
hot picks, 9-17
interest dimension, 9-11
introduction, Oracle implementation, 9-3
Item class description, 9-56
items and recommendations, 9-7
items, usage in tags, 9-15
mining object repository, 9-5
mining table repository, 9-4
models, 9-5
navigation items, 9-9
overview, general, 9-2
prediction value, 9-9
ratings and rankings, 9-9
recommendation engine, 9-5
recommendation engine API features, 9-6
recommendation engine farms, 9-6
recommendation engine session

management, 9-13
requests for recommendations, 9-11
stateful vs. stateless recommendation engine

sessions, 9-10
taxonomies, 9-7
taxonomy, 9-12

personalization (customization), JESI, 6-12
personalization endRESession tag, 9-31
personalization evaluateItems tag, 9-41
personalization forItem tag, 9-43
personalization getCrossSellRecommendations

tag, 9-37
personalization getNextItem tag, 9-45
personalization getRecommendations tag, 9-33
personalization recordDemographic tag, 9-51
personalization recordNavigation tag, 9-48
personalization recordPurchase tag, 9-49
personalization recordRating tag, 9-50
personalization removeDemographicRecord

tag, 9-55

personalization removeNavigationRecord tag, 9-52
personalization removePurchaseRecord tag, 9-53
personalization removeRatingRecord tag, 9-54
personalization selectFromHotPicks tag, 9-39
personalization setVisitorToCustomer tag, 9-32
personalization startRESession tag, 9-28
personalization tags

item recording and removal tag
descriptions, 9-47

limitations, 9-57
mode of use for item recording, 9-21
overview of item recording and removal

tags, 9-16
overview of recommendation and evaluation

tags, 9-16
recommendation and evaluation tag

descriptions, 9-33
session management tag descriptions, 9-28
specification of input items, 9-19
tag-extra-info variables for returned items, 9-18
tuning, filtering, and sorting, 9-22

personalization.xml configuration file, 9-59
personalize tag (JESI), 6-31
plugin tag, compile-time JML, A-14
prediction value (personalization), 9-9
print tag, JML, A-14
putCache() method (Web Object Cache), 7-41

R
rankings (personalization), 9-9
ratings (personalization), 9-9
recommendation engine (personalization)

introduction, 9-5
overview of API features, 9-6
recommendation engine farms, 9-6
session management, 9-13
stateful vs. stateless sessions, 9-10, 9-14

recommendations (personalization), 9-7
recordDemographic tag (personalization), 9-51
recordNavigation tag (personalization), 9-48
recordPurchase tag (personalization), 9-49
recordRating tag (personalization), 9-50
recursive downloading (file access tags and

beans), 8-28
 Index-5

remove tag, JML, 3-7
removeDemographicRecord tag

(personalization), 9-55
removeNavigationRecord tag

(personalization), 9-52
removePurchaseRecord tag (personalization), 9-53
removeRatingRecord tag (personalization), 9-54
request events (JspScopeListener), 8-2
resource management

application (JspScopeListener), 8-2
page (JspScopeListener), 8-2
request (JspScopeListener), 8-2
session (JspScopeListener), 8-2

return tag, JML, 3-12
row prefetching, through ConnBean, 4-4
runtime functionality, Web Object Cache, 7-10

S
sample applications

JML types example, 2-8
JspScopeListener, event-handling, 8-7
sendMail tag, 8-22
XML transform and dbQuery tag example, 5-10
XML transform and parsexml tag example, 5-12
XML transform tag example, 5-8

section IDs (Web Object Cache), 7-42
security considerations

file download tags and beans, 8-28
file upload tags and beans, 8-27

selectFromHotPicks tag (personalization), 9-39
sendMail tag

attribute descriptions, 8-20
sample application, 8-22
syntax, 8-20

SendMailBean, 8-15
session events (JspScopeListener), 8-2
set tag, compile-time JML, A-10
setProperty tag, compile-time JML, A-9
setVisitorToCustomer tag (personalization), 9-32
sorting order (personalization), 9-26
SQL tags

overview, tag list, 4-16
requirements, 4-16
support for data sources, connection

pooling, 4-3
startRESession tag (personalization), 9-28
statement caching

through ConnBean, 4-4
through ConnCacheBean, 4-7

styleSheet tag for XML transformation, 5-5
surrogates (Edge Side Includes), 6-3

T
tag libraries

for file access, 8-40
for other Oracle components, 1-23
JESI tags, descriptions, 6-14
JESI tags, overview, 6-6
Oracle JML tag descriptions, 3-4
Oracle JML tags, overview, 3-2
Oracle SQL tags, 4-16
sendMail tag, 8-19
syntax and symbology notes, 1-2
XML tags, 5-4

tag library description files
for EJB tags, 8-49
for JESI tags, 6-14
for Oracle file access tags, 8-41
for Oracle JML tags, 3-2
for Oracle mail tag, 8-19
for Oracle personalization tags, 9-27
for Oracle SQL tags, 4-17
for Oracle XML tags, 5-4
for utility tags, 8-56
for Web Object Cache tags, 7-21

tag-extra-info classes, use of variables for
personalization, 9-18

taxonomies (personalization), 9-7
taxonomy (personalization), 9-12
TEI--see tag-extra-info
template tag (JESI), 6-21
template/fragment model (JESI tags)

examples, 6-23
overview, 6-9

transform tag for XML transformation, 5-5
tuning settings (personalization), 9-23
types

JML types example, 2-8
Index-6

JmlBoolean extended type, 2-4
JmlFPNumber extended type, 2-6
JmlNumber extended type, 2-5
JmlString extended type, 2-7
Oracle JML extended types, descriptions, 2-4
Oracle JML extended types, overview, 2-2
overview of Oracle type extensions, 1-3

U
update batching, through ConnBean, 4-4
upload file features--see file access
useBean tag (EJB), 8-50
useBean tag, compile-time JML, A-8
useCacheObj tag (Web Object Cache), 7-29, 7-30
useCookie tag, JML, 3-6
useForm tag, JML, 3-5
useHome tag (EJB), 8-50
useVariable tag, JML, 3-4
utility tags

introduction, 8-56
tag library description file, 8-56

W
Web Object Cache

benefits, 7-2
cache block methods, 7-48
cache block naming, 7-7, 7-16
cache block runtime functionality, 7-10
cache policy and scope, 7-5
cache policy attributes, 7-12
cache policy creation, 7-39
cache policy descriptor, 7-58
cache policy methods, 7-41
cache repository descriptor, 7-61
cache tag, 7-22
cache tag examples, 7-37
cacheInclude tag, 7-31
cacheXMLObj tag, 7-27
cloneable cache objects, 7-8
configuration notes for file system cache, 7-64
configuration notes for Oracle9i Application

Server Java Object Cache, 7-63
data invalidation and expiration, 7-10

expiration policy attributes, 7-18
expiration policy methods, 7-47
expiration policy retrieval, 7-47
invalidateCache tag, 7-33
overview, 7-2
overview, cache repository, 7-4
overview, programming interfaces, 7-4
role, versus other caches, 1-17
section IDs, 7-42
servlet API descriptions, 7-39
servlet example, 7-49
tag descriptions, 7-21
tag library description file, 7-21
useCacheObj tag, 7-29

when tag, JML, 3-9

X
XML/XSL tags

parsexml tag for XML output, 5-7
styleSheet tag for XML transformation, 5-5
summary of related OC4J tags, 5-3
tag library description file, 5-4
transform and dbQuery tag example, 5-10
transform and parsexml tag example, 5-12
transform tag example, 5-8
transform tag for XML transformation, 5-5
XML producers and consumers, 5-2
 Index-7

Index-8

	Contents
	Send Us Your Comments
	Preface
	1 Overview of Tag Libraries and Utilities
	Overview of Tag Libraries and Utilities Provided with OC4J
	Tag Syntax Symbology and Notes
	Overview of Extended Type JavaBeans
	Overview of JspScopeListener for Event-Handling
	Overview of Integration with XML and XSL
	Summary of Custom Data-Access JavaBeans and Tag Library
	Summary of JSP Markup Language (JML) Custom Tag Library
	Summary of Oracle9iAS Personalization Tag Library
	Summary of JSP Utility Tags

	Overview of Oracle Caching Support for Web Applications
	Oracle9i Application Server and JSP Caching Features
	Role of the JSP Web Object Cache
	Summary of Tag Libraries for Caching

	Overview of Tag Libraries from Other Oracle9iAS Components
	Oracle9i JDeveloper Business Components for Java (BC4J) Tag Library
	Oracle9i JDeveloper User Interface Extension (UIX) Tag Library
	Oracle9i JDeveloper BC4J/UIX Tag Library
	Oracle9i Reports Tag Library
	Oracle9iAS Wireless Location (Spatial) Tag Library
	Oracle9iAS Ultra Search Tag Library
	Oracle9iAS Portal Tag Library

	2 JavaBeans for Extended Types
	Overview of JML Extended Types
	JML Extended Type Descriptions
	Type JmlBoolean
	Type JmlNumber
	Type JmlFPNumber
	Type JmlString
	JML Extended Types Example

	3 JSP Markup Language Tags
	Overview of the JSP Markup Language (JML) Tag Library
	JML Tag Library Philosophy
	JML Tag Categories

	JSP Markup Language (JML) Tag Descriptions
	Bean Binding Tag Descriptions
	Logic and Flow Control Tag Descriptions

	4 Data-Access JavaBeans and Tags
	JavaBeans for Data Access
	Introduction to Data-Access JavaBeans
	Data-Access Support for Data Sources and Pooled Connections
	Data-Access JavaBean Descriptions

	SQL Tags for Data Access
	Introduction to Data-Access Tags
	Data-Access Tag Descriptions

	5 XML and XSL Tag Support
	Overview of Oracle Tags for XML Support
	XML Producers and XML Consumers
	Summary of OC4J Tags with XML Functionality

	XML Utility Tags
	XML Utility Tag Descriptions
	XML Utility Tag Examples

	6 JESI Tags for Edge Side Includes
	Overview of Edge Side Includes Technology and Processing
	Edge Side Includes Technology
	Oracle9iAS Web Cache and ESI Processor

	Overview of JESI Functionality
	Advantages of JESI Tags
	Overview of JESI Tags Implemented by Oracle
	JESI Usage Models
	Invalidation of Cached Objects
	Personalization of Cached Pages

	Oracle JESI Tag Descriptions
	Tag Descriptions for Page Setup and Content
	Tag and Subtag Descriptions for Invalidation of Cached Objects
	Tag Description for Page Personalization

	JESI Tag Handling and JESI-to-ESI Conversion
	Example: JESI-to-ESI Conversion for Included Pages
	Example: JESI-to-ESI Conversion for a Template and Fragment

	7 Web Object Cache Tags and API
	Overview of the Web Object Cache
	Benefits of the Web Object Cache
	Web Object Cache Components
	Cache Policy and Scope

	Key Functionality of the Web Object Cache
	Cache Block Naming—Implicit Versus Explicit
	Cloneable Cache Objects
	Cache Block Runtime Functionality
	Data Invalidation and Expiration

	Attributes for Policy Specification and Use
	Cache Policy Attributes
	Expiration Policy Attributes

	Web Object Cache Tag Descriptions
	Cache Tag Descriptions
	Cache Invalidation Tag Description

	Web Object Cache Servlet API Descriptions
	Cache Policy Object Creation
	CachePolicy Methods
	Expiration Policy Object Retrieval
	ExpirationPolicy Methods
	CacheBlock Methods
	Sample Servlet Using the Web Object Cache API
	Tag Code Versus API Code

	Cache Policy Descriptor
	Cache Policy Descriptor DTD
	Sample Cache Policy Descriptor
	Cache Policy Descriptor Loading and Refreshing

	Cache Repository Descriptor
	Cache Repository Descriptor DTD
	Sample Cache Repository Descriptor

	Configuration for Back-End Repository
	Configuration Notes for Oracle9i Application Server Java Object Cache
	Configuration Notes for File System Cache

	8 JSP Utilities and Utility Tags
	JSP Event-Handling—JspScopeListener
	General Use of JspScopeListener
	Use of JspScopeListener in OC4J and Other Servlet 2.3 Environments
	Examples Using JspScopeListener

	Mail JavaBean and Tag
	General Considerations for the Mail JavaBean and Tag
	SendMailBean Description
	The sendMail Tag Description

	File-Access JavaBeans and Tags
	Overview of OC4J File-Access Functionality
	File Upload and Download JavaBean and Class Descriptions
	File Upload and Download Tag Descriptions

	EJB Tags
	EJB Tag Configuration
	EJB Tag Descriptions
	EJB Tag Examples

	General Utility Tags
	Display Tags
	Miscellaneous Utility Tags

	9 Oracle9iAS Personalization Tags
	Overview of Personalization
	General Overview of Personalization
	Introduction to Oracle9iAS Personalization
	Overview of Recommendation Engine API Concepts and Features

	Overview of Personalization Tag Functionality
	Recommendation Engine Session Management
	Use of Items in Personalization Tags
	Mode of Use for Item Recording Tags
	Use of Tuning, Filtering, and Sorting for Recommendation and Evaluation Tags

	Personalization Tag and Class Descriptions
	Session Management Tag Descriptions
	Recommendation and Evaluation Tag Descriptions
	Item Recording and Removal Tag Descriptions
	Item Class Description
	Personalization Tag Constraints

	Personalization Tag Library Configuration Files
	The personalization.xml Files
	Element Descriptions for personalization.xml
	Sample personalization.xml File

	A JML Compile-Time Syntax and Tags
	JML Compile-Time Syntax Support
	JML Bean References and Expressions, Compile-Time Implementation
	Attribute Settings with JML Expressions

	JML Compile-Time Tag Support
	The taglib Directive for Compile-Time JML Support
	JML Tag Summary, Compile-Time Versus Runtime
	Descriptions of Additional JML Tags, Compile-Time Implementation

	B Third Party Licenses
	Apache HTTP Server
	The Apache Software License

	Apache JServ
	Apache JServ Public License

	Index

