

Oracle® Fusion Middleware
Developer's Guide for Oracle Enterprise Scheduling Service

11g Release 1 (11.1.1.6.0)

E24713-01

November 2011

Documentation for developers that describes how to use
Oracle Enterprise Scheduling Service to develop jobs that
execute Java, PL/SQL, and binary process code to schedule
and offload enterprise application work.

Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service 11g Release 1
(11.1.1.6.0)

E24713-01

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Steve Traut, Thomas Van Raalte

Contributors: Kirk Bittler, Weifeng Bao, Shelly Butcher, David Craft, Diane Davison, Carlos Fuentes, Charles
Hall, Vaibhav Lole, Solomon Nelson, Shengsong Ni, Rachna Shukla, Steven Traut, Venkat Vengala, Aaron
Weisberg

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xv

1 Introduction to Oracle Enterprise Scheduling Service

1.1 About Oracle Enterprise Scheduling Service.. 1-1
1.2 Oracle Enterprise Scheduling Service Overview for Application Developers 1-2
1.2.1 Introduction to Working with Oracle Enterprise Scheduling Service at Design-Time

1-2
1.2.2 Introduction to Working with Oracle Enterprise Scheduling Service at Runtime 1-3
1.2.3 Oracle Enterprise Scheduling Service Job Requests ... 1-4
1.2.4 Overview of Integration Steps ... 1-6
1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduling Service 1-6

2 Verifying the Oracle Enterprise Scheduling Service Installation

2.1 Introduction to Verifying the Oracle Enterprise Scheduling Service Installation............. 2-1
2.2 How to Verify the Oracle Enterprise Scheduling Service Installation Using a Browser.. 2-1
2.3 How to Programmatically Verify the Oracle Enterprise Scheduling Service Installation

2-2
2.4 What Happens When You Verify the Oracle Enterprise Scheduling Service Installation.......

2-3
2.5 What Happens at Runtime: How the Oracle Enterprise Scheduling Service Installation is

Verified 2-4

3 Using Ant to Generate a Hosting Application

3.1 Introduction to Generating a Hosting Application with Ant .. 3-1
3.1.1 Prerequisites for Using the Ant Build Files.. 3-2
3.2 Ant Targets for Creating and Deploying a Hosting Application .. 3-2
3.3 Creating a Hosting Application and Project Workspace with Ant 3-3
3.4 Creating a Java Job as a Shared Library with Ant.. 3-5
3.5 Packaging a Java Job as a Shared Library with Ant... 3-8
3.6 Deploying a Shared Library with Ant ... 3-8
3.7 Packaging a Hosting Application with Ant .. 3-8
3.8 Deploying a Hosting Application with Ant.. 3-9
3.9 Configuring the Generated Ant Targets.. 3-9

iv

4 Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling
Service Application

4.1 How to Start JDeveloper to Support Building Oracle Enterprise Scheduling Service
Applications 4-1

4.2 Building a Combined Oracle Enterprise Scheduling Service Application 4-2
4.2.1 Creating the Application and Projects for EssDemoApp Application 4-3
4.2.1.1 How to Create the EssDemoApp Application and Host Project........................... 4-3
4.2.1.2 How to Create the Client Project.. 4-4
4.2.2 Creating Metadata and an Implementation Class for the EssDemoApp Application

4-5
4.2.2.1 How to Create Metadata for the EssDemoApp Application 4-5
4.2.3 Adding Application Code to Submit Job Requests .. 4-8
4.2.3.1 How to Add Application Code to Submit Job Requests... 4-8
4.2.4 Setting Oracle Enterprise Scheduling Service Properties .. 4-9
4.2.4.1 How to Set Oracle Enterprise Scheduling Service Properties for the Application

4-10
4.2.5 Assembling the EssDemoApp Application .. 4-10
4.2.5.1 How to Create the EJB-JAR Deployment Profile for the EssDemoApp 4-10
4.2.5.2 How To Update the WAR Archive Options.. 4-11
4.2.5.3 How to Update the EAR Options.. 4-12
4.2.6 Deploying and Running the EssDemoApp Application .. 4-12
4.2.6.1 How to Deploy the EssDemoApp Application... 4-13
4.2.6.2 How to Run the EssDemoApp Sample Application .. 4-13
4.2.6.3 How to Purge Jobs in the EssDemoApp Sample Application 4-14
4.3 Building Split Submitting and Hosting Applications... 4-15
4.3.1 How to Create the Back-End Hosting Application for EssDemoApp 4-15
4.3.1.1 Creating the Back-End Hosting Application... 4-16
4.3.1.2 Configuring Security for the Back-End Hosting Application............................. 4-16
4.3.1.3 Defining Metadata for the Back-End Hosting Application................................. 4-17
4.3.1.4 Creating a Java Implementation Class in the Back-End Hosting Application . 4-19
4.3.1.5 Setting Oracle Enterprise Scheduling Service Properties 4-20
4.3.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise Scheduling

Service 4-20
4.3.1.6.1 How to Assemble the EJB JAR File for the Back-End Hosting Application

4-20
4.3.1.6.2 How to Assemble the MAR and EAR Files for the Back-End Hosting

Application 4-21
4.3.1.7 Deploying the Back-End Hosting Application.. 4-22
4.3.2 How to Create the Front-End Submitter Application for Oracle Enterprise Scheduling

Service 4-22
4.3.2.1 Creating the Front-End Submitter Application .. 4-22
4.3.2.2 Creating the SuperWeb Project.. 4-22
4.3.2.3 Configuring Security for the Front-End Submitter Application 4-23
4.3.2.4 Creating the HTTP Servlet for the Front-End Submitter Application............... 4-23
4.3.2.5 Editing the web.xml File for the Front-End Submitter Application 4-38
4.3.2.6 Editing the weblogic-application.xml file for the Front-End Submitter Application.

4-38
4.3.2.7 Editing the adf-config file for the Front-End Submitter Application 4-39

v

4.3.2.8 Assembling the Front-End Submitter Application for Oracle Enterprise Scheduling
Service 4-40

4.3.2.8.1 How to Assemble the EJB JAR File for the Front-End Submitter Application.....
4-40

4.3.2.8.2 How to Assemble the WAR File for the Front-End Submitter Application
4-40

4.3.2.8.3 How to Assemble the MAR and EAR Files for the Front-End Hosting
Application 4-41

4.3.2.9 Deploying the Front-End Submitter Application ... 4-41
4.3.2.10 Running the Split Application... 4-42

5 Use Case Oracle Enterprise Scheduling Service Sample Application
(Deprecated)

5.1 Introduction to the Oracle Enterprise Scheduling Service Sample Application 5-2
5.2 Creating the Application and Projects for the Sample Application 5-2
5.2.1 How to Create the EssDemoApp Application .. 5-3
5.2.2 How to Create a Project in the Sample Application ... 5-4
5.2.3 How to Set Project Properties for Oracle Enterprise Scheduling Service.................... 5-6
5.3 Creating a Java Implementation Class for the Sample Application.................................... 5-7
5.3.1 How to Create a Java Class Using the Executable Interface.. 5-7
5.3.2 What Happens When You Create a Java Class That Implements the Executable

Interface 5-10
5.3.3 What You Need to Know About the Executable Interface ... 5-10
5.4 Adding Application Code to Submit Oracle Enterprise Scheduling Service Job Requests

5-10
5.4.1 How to Add Required Libraries to Project ... 5-11
5.4.2 How to Create the EssDemo Servlet .. 5-11
5.5 Creating Metadata for Oracle Enterprise Scheduling Service Sample Application....... 5-14
5.5.1 How to Create a Job Type for Java ... 5-14
5.5.2 How to Create a Job Definition for Java .. 5-17
5.6 Assembling the Oracle Enterprise Scheduling Service Sample Application 5-19
5.6.1 How to Assemble the EJB Jar Files for Oracle Enterprise Scheduling Service Sample

Application 5-19
5.6.2 How to Assemble the MAR File for User Metadata .. 5-25
5.6.3 How to Assemble the EAR File for Oracle Enterprise Scheduling Service Sample

Application 5-28
5.6.4 Add oracle.ess Library Weblogic Application Descriptor.. 5-29
5.7 Deploying and Running the Oracle Enterprise Scheduling Service Sample Application

5-30
5.7.1 How to Deploy the EssDemoApp Application.. 5-30
5.7.2 How to Run the Oracle Enterprise Scheduling Service Sample Application 5-32
5.7.3 How to Purge Jobs in the Oracle Enterprise Scheduling Service Sample Application

5-33
5.8 Troubleshooting the Oracle Enterprise Scheduling Service Sample Application 5-34
5.8.1 How to Create the Oracle Enterprise Scheduling Service Database Schema 5-35
5.8.2 How to Drop the Oracle Enterprise Scheduling Service Runtime Schema.............. 5-35
5.9 Using Submitting and Hosting Split Applications ... 5-36

vi

5.9.1 How to Create the Back-End Hosting Application for Oracle Enterprise Scheduling
Service 5-36

5.9.1.1 Creating the Back-End Hosting Application... 5-37
5.9.1.2 Configuring Security for the Back-End Hosting Application............................. 5-37
5.9.1.3 Defining the Deployment Descriptors for the Back-End Hosting Application 5-38
5.9.1.4 Creating a Java Implementation Class in the Back-End Hosting Application . 5-42
5.9.1.5 Creating Metadata for the Back-End Hosting Application 5-44
5.9.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise Scheduling

Service 5-45
5.9.1.6.1 How to Assemble the EJB JAR File for the Back-End Hosting Application

5-45
5.9.1.6.2 How to Assemble the MAR and EAR Files for the Back-End Hosting

Application 5-46
5.9.1.7 Deploying the Back-End Hosting Application.. 5-46
5.9.2 How to Create the Front-End Submitter Application for Oracle Enterprise Scheduling

Service 5-47
5.9.2.1 Creating the Front-End Submitter Application .. 5-47
5.9.2.2 Configuring the ejb-jar.xml File for the Front-End Submitter Application 5-47
5.9.2.3 Creating the SuperWeb Project.. 5-49
5.9.2.4 Configuring Security for the Front-End Submitter Application 5-50
5.9.2.5 Creating the HTTP Servlet for the Front-End Submitter Application............... 5-50
5.9.2.6 Editing the web.xml File for the Front-End Submitter Application 5-64
5.9.2.7 Editing the weblogic-application.xml file for the Front-End Submitter Application.

5-65
5.9.2.8 Editing the adf-config file for the Front-End Submitter Application 5-66
5.9.2.9 Assembling the Front-End Submitter Application for Oracle Enterprise Scheduling

Service 5-67
5.9.2.9.1 How to Assemble the EJB JAR File for the Front-End Submitter Application.....

5-67
5.9.2.9.2 How to Assemble the WAR File for the Front-End Submitter Application

5-67
5.9.2.9.3 How to Assemble the MAR and EAR Files for the Front-End Hosting

Application 5-68
5.9.2.10 Deploying the Back-End Hosting Application.. 5-68

6 Using the Metadata Service

6.1 Introduction to Using the Metadata Service ... 6-1
6.1.1 Introduction to Metadata Service Namespaces... 6-2
6.1.2 Introduction to Metadata Service Operations ... 6-2
6.1.3 Introduction to Metadata Service Transactions .. 6-3
6.2 Accessing the Metadata Service.. 6-3
6.2.1 How to Access the Metadata Service with a Stateless Session EJB 6-3
6.3 Accessing the Metadata Service with Oracle JDeveloper ... 6-4
6.4 Querying Metadata Using the Metadata Service ... 6-4
6.4.1 How to Create a Filter ... 6-4
6.4.2 How to Query Metadata Objects ... 6-5

vii

7 Using Parameters and System Properties

7.1 Introduction to Using Parameters and System Properties ... 7-1
7.1.1 What You Need to Know About Application Defined Property and System Property

Naming 7-1
7.1.2 What You Need to Know About Parameter Conflict Resolution and Parameter

Materialization 7-2
7.1.2.1 What You Need to Know About Job Definition Parameter Materialization 7-2
7.1.2.2 What You Need to Know About Job Set Level Parameter Materialization 7-3
7.2 Using Parameters with the Metadata Service... 7-4
7.2.1 How to Use Parameters and System Properties in Metadata Objects 7-5
7.3 Using Parameters with the Runtime Service .. 7-6
7.3.1 How to Use Parameters with the Runtime Service... 7-6
7.3.2 How to Use Parameters with a Step ID for Job Set Steps .. 7-7
7.4 Using System Properties .. 7-8

8 Creating and Using PL/SQL Jobs

8.1 Introduction to Using PL/SQL Stored Procedure Job Definitions 8-1
8.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduling Service............. 8-2
8.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature.................... 8-2
8.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduling Service PL/SQL

Stored Procedure 8-3
8.2.3 How to Access Job Request Information In PL/SQL Stored Procedures.................... 8-4
8.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure 8-4
8.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures................................... 8-5
8.3.1 How to Grant PL/SQL Stored Procedure Permissions.. 8-5
8.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions 8-5
8.4 Creating and Storing Job Definitions for PL/SQL Job Types... 8-6
8.4.1 How to Create a PL/SQL Job Type... 8-6
8.4.2 How to Create and Store a Job Definition for PL/SQL Job Type 8-7
8.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduling Service

Application 8-8

9 Creating and Using Process Jobs

9.1 Introduction to Creating Process Job Definitions... 9-1
9.2 Creating and Storing Job Definitions for Process Job Types .. 9-2
9.2.1 How to Create and Store a Process Job Type... 9-2
9.2.2 How to Create and Store a Process Type Job Definition.. 9-4
9.3 Using a Perl Agent Handler for Process Jobs ... 9-5

10 Defining and Using Schedules

10.1 Introduction to Schedules... 10-1
10.2 Defining a Recurrence ... 10-1
10.2.1 How to Define a Recurrence with a Recurrence Fields Helper 10-2
10.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification 10-4
10.2.3 What You Need to Know When You Use a Recurrence Fields Helper 10-4
10.2.4 What You Need to Know When You Use an iCalendar Expression......................... 10-6

viii

10.3 Defining an Explicit Date.. 10-6
10.3.1 How to Define an Explicit Date .. 10-6
10.3.2 What You Need to Know About Explicit Dates... 10-6
10.4 Defining and Storing Exclusions ... 10-7
10.4.1 How to Define an Exclusion.. 10-7
10.4.2 How to Create an Exclusions Definition ... 10-7
10.5 Defining and Storing Schedules... 10-8
10.5.1 How to Define and Store a Schedule ... 10-8
10.5.2 What Happens When You Define and Store a Schedule .. 10-8
10.5.3 What You Need to Know About Handling Time Zones with Schedules................. 10-9
10.6 Identifying Job Requests That Use a Particular Schedule.. 10-9
10.7 Updating and Deleting Schedules... 10-9

11 Using the Oracle Enterprise Scheduling Service Web Service

11.1 Introduction to the Oracle Enterprise Scheduling Service Web Service.......................... 11-1
11.2 Developing and Using ESSWebservice Applications... 11-3
11.2.1 How to Develop and Use an ESSWebservice Java EE Application........................... 11-3
11.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL............ 11-4
11.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation... 11-4
11.2.4 Limitations for ESSWebservice... 11-4
11.2.5 ESSWebservice Implementation... 11-5
11.3 ESSWebservice WSDL File ... 11-5
11.4 Use Case Using Oracle Enterprise Scheduling Service ESSWebservice from a BPEL Process

11-5
11.5 Creating the ESSWebService Application and a SOA Project... 11-5
11.5.1 How to Create the ESSWebService Application and Project 11-5
11.6 Creating the ESSWebService Reference.. 11-6
11.6.1 How to Add the ESSWebService Partner Link... 11-6
11.7 Adding the BPEL Process to Call the ESSWebService.. 11-9
11.7.1 How to Add a BPEL Process to Call the ESSWebService ... 11-9
11.7.2 Copy Types Into BPEL Process Schema .. 11-11
11.7.3 How to Invoke the ESSWebService submitRequest Operation 11-13
11.7.4 Assign Required Input Parameters for Request Submission 11-15
11.7.5 Invoke the getCompletionStatus Operation ... 11-21
11.7.6 Assign Input to the getCompletionStatus Operation.. 11-22
11.7.7 Receive the Job Completion Status... 11-25
11.7.8 Return Result to Client... 11-27
11.8 Using Additional ESSWebService Operations .. 11-30
11.8.1 How to Invoke the ESSWebService submitRecurringRequest Operation 11-31
11.8.2 How to Invoke the ESSWebService setSubmitArgs Operation 11-34
11.8.3 How to Invoke the ESSWebService addPPActions Operation 11-37
11.8.4 How to Invoke the ESSWebService setStepsArgs Operation 11-41
11.9 Securing the Oracle Enterprise Scheduling Service Web Service 11-46
11.9.1 How to Secure the Oracle Enterprise Scheduling Service Web Service 11-46
11.9.2 What Happens When You Secure the Oracle Enterprise Scheduling Service Web

Service 11-48
11.10 Deploying and Testing the Project .. 11-48

ix

11.10.1 How to Test the Web Service .. 11-48

12 Defining and Using Job Sets

12.1 Introduction to Defining and Using Job Sets ... 12-1
12.2 Defining Job Sets .. 12-2
12.2.1 How to Define a Job Set ... 12-2
12.2.2 How to Define Serial Job Set Steps... 12-4
12.2.3 How to Define Parallel Job Set Steps ... 12-6
12.2.4 What Happens When You Define a Job Set .. 12-7
12.2.5 What You Need to Know About Serial Job Sets... 12-7
12.2.6 What You Need to Know About Job Set Application Defined Properties and System

Properties 12-8
12.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions.......... 12-8
12.3 Cross Application Job Sets.. 12-10
12.3.1 Overview of Cross Application Job Sets ... 12-11
12.3.2 Requirements for Cross Application Job Sets... 12-11
12.4 Using Input and Output Forwarding ... 12-12
12.4.1 Supporting Input and Output Forwarding in Job Sets ... 12-12

13 Defining and Using a Job Incompatibility

13.1 Introduction to Using a Job Incompatibility .. 13-1
13.1.1 Job Self Incompatibility.. 13-2
13.2 Defining Incompatibility with Oracle JDeveloper .. 13-2
13.2.1 How to Define a Global Incompatibility ... 13-2
13.2.2 How to Define a Domain Incompatibility... 13-4
13.3 What Happens at Runtime to Handle Job Incompatibility ... 13-6
13.3.1 What Happens to Subrequests with an Incompatible Parent Request 13-6
13.3.2 What Happens to the Scope of Request Incompatibility .. 13-6

14 Using the Runtime Service

14.1 Introduction to the Runtime Service ... 14-1
14.2 Accessing the Runtime Service .. 14-1
14.2.1 How to Access the Runtime Service and Obtain a Runtime Service Handle 14-2
14.3 Submitting Job Requests ... 14-2
14.3.1 How to Submit a Request to the Runtime Service ... 14-3
14.3.2 What You Should Know About Default System Properties When You Submit a

Request 14-3
14.3.3 What You Should Know About Metadata When You Submit a Request 14-4
14.4 Managing Job Requests... 14-4
14.4.1 How to Get Job Request Information with getRequestDetail 14-5
14.4.2 How to Change Job Request State.. 14-5
14.4.3 How to Update Job Request Priority and Job Request Parameters........................... 14-6
14.5 Querying Job Requests .. 14-7
14.6 Submitting Ad Hoc Job Requests .. 14-9
14.6.1 How to Create an Ad Hoc Request .. 14-10
14.6.2 What Happens When You Create an Ad Hoc Request... 14-11

x

14.6.3 What You Need to Know About Ad Hoc Requests... 14-11
14.7 Implementing Pre-Process and Post-Process Handlers ... 14-11
14.7.1 Implementing a Pre-Process Handler.. 14-12
14.7.1.1 Implementing the PreProcessHandler Interface... 14-12
14.7.2 Implementing a Post-Process Handler .. 14-12
14.7.2.1 Implementing the PostProcessHandler Interface ... 14-13

15 Using Subrequests

15.1 Introduction to Using Subrequests.. 15-1
15.2 Sample Subrequest... 15-2
15.3 Creating and Managing Subrequests.. 15-3
15.3.1 How to Submit Subrequests.. 15-3
15.3.2 How to Cancel Subrequests .. 15-3
15.3.3 How to Hold Subrequests ... 15-4
15.3.4 How to Delete Subrequests ... 15-4
15.3.5 How to Submit Multiple Subrequests ... 15-4
15.3.6 How to Manage Paused Subrequests .. 15-4
15.3.6.1 Indicating Paused Status .. 15-4
15.3.6.2 Storing the Paused State for a Parent Request .. 15-4
15.3.7 How Subrequests Are Processed.. 15-5
15.3.8 How to Identify Subrequests .. 15-6
15.3.9 How to Manage Subrequests and Incompatibility .. 15-6
15.4 Creating a Java Procedure that Submits a Subrequest ... 15-6
15.5 Creating a PL/SQL Procedure that Submits a Subrequest.. 15-9

16 Working with Asynchronous Java Jobs

16.1 Introduction to Working with Asynchronous Java Jobs.. 16-1
16.2 Creating an Asynchronous Java Job.. 16-1
16.2.1 Implementing the Asynchronous Java Job Asynchronous Interface 16-2
16.2.2 Asynchronous Java Job execute() Method .. 16-2
16.2.3 Invoking a Remote Job from an Asynchronous Java Job.. 16-2
16.2.4 Calling Back to Oracle Enterprise Scheduling Service with Status Updates 16-3
16.2.5 Updating the Asynchronous Java Job.. 16-3
16.2.6 Notifying Oracle Enterprise Scheduling Service When an Asynchronous Job

Completes 16-3
16.2.6.1 Using the Web Service to Notify When an Asynchronous Job Completes....... 16-4
16.2.6.2 Using EJB to Notify When an Asynchronous Job Completes............................. 16-4
16.2.7 Asynchronous Java Job AsyncCancellable Interface ... 16-4
16.2.8 Sample Asynchronous Java Job Invoking a BPEL Process Through Event Delivery

Network 16-5
16.2.8.1 Sample BPEL Process Design Time with Oracle Enterprise Scheduling Service........

16-7
16.3 A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job

16-10
16.3.1 Introduction to the Recommended Design Pattern ... 16-11
16.3.2 Potential Approaches ... 16-11
16.3.3 Use Case Summary... 16-11

xi

16.4 How to Implement BPEL with an Asynchronous Job.. 16-12
16.4.1 Use Case: Add Oracle JDeveloper Libraries ... 16-12
16.4.2 Use Case: Create the Asynchronous Job Definition .. 16-13
16.4.3 Use Case: Design the Event Payload Schema and Event Definition Files.............. 16-14
16.4.4 Programmatically Raise a Business Event from the Asynchronous Job Methods 16-15
16.4.5 Design the SOA Composite with Meditator and BPEL .. 16-17
16.4.6 Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job

16-18
16.4.6.1 Create Correlation Set and Define Initiate Activity.. 16-20
16.4.6.2 Create the onMessage Branch with Use of Correlation Set............................... 16-21
16.4.6.3 Create the Fault Branch .. 16-22
16.4.6.4 Populate the onMessage and Fault Branch... 16-23
16.4.7 Validating the Deployment ... 16-24
16.4.8 Troubleshooting the Use Case .. 16-26
16.5 Handling Time Outs and Recovery for Asynchronous Jobs ... 16-26
16.5.1 Asynchronous Request Time Outs... 16-26
16.5.1.1 Setting the TIme Out Value.. 16-27
16.5.1.2 Discovering the Asynchronous Job Requests that Have Timed Out............... 16-27
16.5.1.3 Completing Asynchronous Requests without a Time Out 16-27
16.5.1.4 What Happens When an Asynchronous Job Request Times Out 16-27
16.5.2 Handling Asynchronous Jobs Marked for Manual Recovery.................................. 16-28
16.5.3 Using RecoverRequest to Manually Recover a Job Request..................................... 16-28
16.6 Oracle Enterprise Scheduling Service Interfaces and Classes ... 16-29

17 Creating Job Request Logs and Output

17.1 Creating Request Logs .. 17-1
17.1.1 System Properties ... 17-1
17.1.2 APIs for Handling Request Logs.. 17-2
17.1.3 Log Header .. 17-2
17.1.4 Creating Request Logs from a Java Job ... 17-2
17.1.4.1 APIs for Java Job Logging .. 17-3
17.1.4.2 Example... 17-3
17.1.5 Creating Request Logs from a PL/SQL Job.. 17-4
17.1.5.1 ESS_JOB Package Support for Creating Logs.. 17-4
17.1.5.2 PL/SQL Request Logging Example.. 17-5
17.1.6 Creating Request Logs from a Process Job.. 17-6
17.2 Creating Request Output .. 17-6
17.2.1 Using the Request File Directory.. 17-6
17.2.1.1 Common Request File Directory Behavior .. 17-7
17.2.1.2 Shared Request File Directory Behavior .. 17-7
17.2.1.2.1 Error Handling When a Shared Request File Directory is Used 17-7
17.2.1.3 Local Request File Directory Behavior ... 17-8
17.2.1.3.1 Error Handling When a Local Request File Directory is Used.................... 17-8
17.2.2 System Properties ... 17-9
17.2.3 APIs for Handling Request Output ... 17-9
17.2.4 Creating Request Output from a Java Job... 17-10
17.2.4.1 APIs for Handling Request Output from a Java Job .. 17-10

xii

17.2.4.2 Example... 17-13
17.2.5 Creating Request Output from a PL/SQL Job ... 17-14
17.2.5.1 PL/SQL Package Support for Creating Output.. 17-14
17.2.5.2 PL/SQL Output Creation Examples... 17-16
17.2.6 Creating Request Output from a Process Job ... 17-19

18 Oracle Enterprise Scheduling Service Security

18.1 Introduction to Oracle Enterprise Scheduling Service Security.. 18-1
18.1.1 Oracle Enterprise Scheduling Service Metadata Access Control 18-1
18.1.2 Oracle Enterprise Scheduling Service Job Execution Security 18-2
18.2 Configuring Metadata Security for Oracle Enterprise Scheduling Service..................... 18-2
18.2.1 How to Enable Application Security with Oracle ADF Security Wizard................. 18-3
18.2.2 How to Define Principals for Security ... 18-4
18.2.3 How to Create Grants with Oracle Enterprise Scheduling Service Metadata Pages.........

18-4
18.2.4 How to Create Grants with Oracle ADF Security Wizard.. 18-5
18.2.5 About MetadataPermission APIs ... 18-7
18.2.6 What Happens When You Configure Metadata Security... 18-7
18.3 Configuring Web Service Security for Oracle Enterprise Scheduling Service................ 18-8
18.4 Configuring PL/SQL Job Security for Oracle Enterprise Scheduling Service 18-8
18.5 Elevating Privileges for Oracle Enterprise Scheduling Service Jobs 18-8
18.6 Configuring a Single Policy Stripe in Oracle Enterprise Scheduling Service 18-8
18.6.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduling Service 18-9
18.6.2 What Happens When You Configure a Single Policy Stripe 18-10
18.6.3 What Happens at Runtime.. 18-10

xiii

List of Tables

3–1 Ant Targets in the Included Build File.. 3-2
3–2 Ant Targets in the Generated Build File ... 3-3
3–3 Information Needed by the Ant Target .. 3-3
3–4 Information Needed by the Ant Target .. 3-6
3–5 Build Properties for Customizing Ant Builds... 3-10
4–1 EJB Resources for the Front-End Submitter Application .. 4-38
5–1 EJB Resources for the Front-End Submitter Application .. 5-65
6–1 Filter Comparison Operators ... 6-4
7–1 Parameter Precedence Levels... 7-2
7–2 ParameterInfo Parameter Properties... 7-4
8–1 Terminal States for PL/SQL Stored Procedure Results ... 8-4
10–1 Recurrence Field Helper Patterns... 10-2
11–2 Submit Request Web Service Arguments for BPEL Assign Activity Mapping........... 11-15
11–3 Submit Recurring Request Web Service Arguments for BPEL Assign Activity Mapping

11-33
14–2 Runtime Service Get Request Methods ... 14-5
14–3 Runtime Service Job Request State Methods .. 14-5
14–4 Runtime Service Update Methods.. 14-7
17–1 RuntimeService Methods for Handling Request Logs .. 17-2
17–2 ContentFactory Methods for Creating Request Logs .. 17-3
17–3 RequestLogger Methods for Creating Request Logs... 17-3
17–4 ESS_JOB Functions and Procedures for Request Logging.. 17-5
17–5 System Properties for Creating Request Output .. 17-9
17–6 RuntimeService Methods for Handling Request Output.. 17-9
17–7 ContentFactory Methods for Java Request Output ... 17-10
17–8 RequestOutput Methods for Java Request Output.. 17-11
17–9 OutputContentHelper Methods for Java Request Output ... 17-11
17–10 CommitSemantics Enum Members to Express Commit Semantics 17-13
17–11 ESS_JOB Procedures and Functions for Request Output.. 17-14
18–1 Sample Permission Grants for Security Using Oracle ADF.. 18-7
18–2 Grant Actions for Metadata Security ... 18-7

xiv

xv

Preface

This document describes how to develop jobs and other extensions of Oracle
Enterprise Scheduling Service.

Oracle Enterprise Scheduling Service provides the ability to run different job types,
including: Java, PL/SQL, and binary scripts, distributed across the nodes in an Oracle
WebLogic Server cluster. Oracle Enterprise Scheduling Service runs these jobs
securely, with high availability and scalability, with load balancing and provides
monitoring and management through Oracle Enterprise Manager Fusion Middleware
Control.

Audience
This document is intended for Oracle applications developers and assumes familiarity
with Java and SQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

xvi

Related Documents
For more information, see the following documents in the Oracle 11g Fusion
Middleware documentation set:

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

■ Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application
Development Framework

■ Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle Fusion Middleware Application Security Guide

■ Oracle Fusion Middleware Administrator's Guide for Oracle Enterprise Scheduling
Service

The following chapters in this guide describe Oracle Enterprise Scheduling Service
administrative functions:

– "Managing Oracle Enterprise Scheduler Service and Jobs"

– "Troubleshooting Oracle Enterprise Scheduler"

– "High Availability for Oracle Enterprise Scheduler"

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to Oracle Enterprise Scheduling Service 1-1

1Introduction to Oracle Enterprise Scheduling
Service

This chapter introduces Oracle Enterprise Scheduling Service as a service for
developing jobs that offload work such as executing Java, PL/SQL, and binary process
code.

■ Section 1.1, "About Oracle Enterprise Scheduling Service"

■ Section 1.2, "Oracle Enterprise Scheduling Service Overview for Application
Developers"

■ Section 1.3, "Fixed-Rate Scheduling with Oracle Enterprise Scheduling Service"

1.1 About Oracle Enterprise Scheduling Service
Enterprise applications require the ability to respond to many real-time transactions
requested by online users or web services. However, they also require the ability to
offload larger transactions to run at a future time or automate the running of
application maintenance work based on a defined schedule.

Oracle Enterprise Scheduling Service provides the ability to run different job types,
including: Java, PL/SQL, and binary scripts, distributed across the nodes in an Oracle
WebLogic Server cluster. Oracle Enterprise Scheduling Service runs these jobs
securely, with high availability and scalability, with load balancing and provides
monitoring and management through Fusion Middleware Control.

Oracle Enterprise Scheduling Service provides scheduling services for the following
purposes:

■ To distribute job request processing across a grid of application servers,

■ To run Java, PL/SQL and binary process jobs,

■ To group job requests into job sets,

■ To schedule job requests based on recurrence expressions,

■ To administer job requests with Fusion Middleware Control.

Oracle Enterprise Scheduling Service provides the critical requirements in a
service-oriented environment to automate processes that must recur on a scheduled
basis and to defer heavy processing to specific time windows. Oracle Enterprise
Scheduling Service lets you:

■ Support sophisticated scheduling and workload management,

■ Automate the running of administrative jobs,

Oracle Enterprise Scheduling Service Overview for Application Developers

1-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

■ Schedule the creation and distribution of reports,

■ Schedule a future time for a step in a business flow for business process
management.

Oracle Enterprise Scheduling Service provides features to manage the complete life
cycle of a job definition: development, distribution, scheduling, and monitoring. Using
Oracle JDeveloper, application developers can easily create job requests in their
development environment. Application administrators and other users can specify
when and where they want their job requests to run. Users and administrators can
monitor how the job ran and access the end results of those jobs.

Customers that implement large systems typically have to manage a large number of
diverse machines to handle the workload of their users. Oracle Enterprise Scheduling
Service provides the ability to control how work is distributed to individual machines
or groups of machines.

1.2 Oracle Enterprise Scheduling Service Overview for Application
Developers

Oracle Enterprise Scheduling Service is primarily a Java EE application that provides
time- and schedule-based callbacks to other applications to run their jobs. Oracle
Enterprise Scheduling Service compares with the Calendar application you might use
in your phone or the Oracle Calendar, where you create events and meetings with
details about time and recurrence; the application sends an alarm or notification at the
right time for the particular event. Similarly, Oracle Enterprise Scheduling Service
applications define jobs and specify when those jobs need to be executed, and Oracle
Enterprise Scheduling Service gives these applications a callback when that time or
when a particular event arrives. This is a simplified model of how a particular
application can interact with an instance of Oracle Enterprise Scheduling Service.
Oracle Enterprise Scheduling Service does not execute the jobs itself, it gives a callback
to the application and the application actually executes the job request. This implies
that Oracle Enterprise Scheduling Service is not aware of the details of the job request,
all the job request details are owned and consumed by the application. An application
that submits requests to run a job is called a client application.

For development purposes, both Oracle Enterprise Scheduling Service and the Oracle
Enterprise Scheduling Service client application are deployed on the same Oracle
WebLogic Server. The Fusion Middleware Control can provide an interface for
interacting with Oracle Enterprise Scheduling Service. Typically, however, you will
provide a client application with which the end user can set up a job request and to
specify when the job request is scheduled to be executed, and eventually gets a
callback from Oracle Enterprise Scheduling Service when the time or event arrives.

1.2.1 Introduction to Working with Oracle Enterprise Scheduling Service at
Design-Time

At design time an application developer uses Oracle JDeveloper to create a Java EE
application that contains the Oracle Enterprise Scheduling Service executable class and
Oracle Enterprise Scheduling Service specific metadata for this executable. The Oracle
Enterprise Scheduling Service metadata consists of job definitions, including the
executable class and parameters, and schedules. Schedules capture the times when a
job request can be sent for execution. Schedules are defined independent of job
requests and get associated with job requests at runtime when the job request is
submitted for execution. Figure 1–1 shows the design time view of an Oracle
Enterprise Scheduling Service application.

Oracle Enterprise Scheduling Service Overview for Application Developers

Introduction to Oracle Enterprise Scheduling Service 1-3

Figure 1–1 Oracle Enterprise Scheduling Service Design Time Integration

In Figure 1–1, although the metadata is written to the MDS store through Oracle
Enterprise Scheduling Service APIs, the client application owns the metadata and the
metadata does not belong to the Oracle Enterprise Scheduling Service application. This
metadata together with the job implementation is packaged in an OAR, including the
EAR for the application and the MAR containing the metadata; this is deployed in the
runtime environment.

You can create the following types of metadata at design time.

■ Job type: This is a basic definition of what a job would be comprised of and
defines the following:

a. The type of job to be run, such as Java, PL/SQL, binary script, and so on.

b. The Java executable class if the job is of Java type, or the PL/SQL function if
the job is of PL/SQL type, or the script if the job is of Script type.

c. Parameters definitions for the job and their data type, and default values.

■ Job definition: A job definition, or job, is the smallest unit of work which gets
performed in context of the client application. It is defined by an underlying job
type and any parameters additional to the ones defined in the job type.

■ Job set: A job set is a sequential or parallel set of job steps, where a job step can be
a single job or another job set. A job set and each of its job set steps can have
additional parameters, the value for which will be provided when the job or job
set is submitted as a job request.

■ Schedule: A job schedule is a predefined time or a recurrence for a period of time
or indefinite. Schedules are defined independent of jobs but are associated with
one or more jobs at run time when a job request is submitted.

■ Incompatibility: An incompatibility lets you specify job definitions and job sets
that cannot run at the same time.

1.2.2 Introduction to Working with Oracle Enterprise Scheduling Service at Runtime
At run time an application user associates a schedule with the job to be submitted and
provides values for the job parameters. This information is then submitted as a job
request. Once Oracle Enterprise Scheduling Service receives a job request it determines
the right time to execute the job request, and at that time sends a message to the
owning client application. The client application then executes the job based on the job
metadata and run time values for the parameters.

Oracle Enterprise Scheduling Service Overview for Application Developers

1-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 1–2 Oracle Enterprise Scheduling Service Runtime Integration

Figure 1–2 shows the sequence involved with running an application using Oracle
Enterprise Scheduling Service, and the following steps:

1. User submits a request using a client application.

2. Client application sends the request to Oracle Enterprise Scheduling Service.

3. Oracle Enterprise Scheduling Service reads the metadata for the request.

4. Oracle Enterprise Scheduling Service puts the request in a wait queue in Oracle
Enterprise Scheduling Service data store, along with the metadata.

5. At the appropriate time, according to the request specifics, Oracle Enterprise
Scheduling Service sends a message to the client application with all the request
parameters and metadata captured at the time of submission.

6. Client application performs the jobs and returns a status.

7. Oracle Enterprise Scheduling Service updates the history with the job request
status.

1.2.3 Oracle Enterprise Scheduling Service Job Requests
Figure 1–3 shows the important Oracle Enterprise Scheduling Service components,
including the following:

■ The scheduler component itself, including the runtime module, request dispatcher
and request processor.

■ The client application, including the run time EJB and end point
Message-Driven-Bean (MDB) which it calls and the job it requests to execute.

■ Oracle Metadata Store and the client application metadata.

■ Oracle Enterprise Scheduling Service schema, including the wait and ready
queues and job history.

Oracle Enterprise Scheduling Service Overview for Application Developers

Introduction to Oracle Enterprise Scheduling Service 1-5

Figure 1–3 Oracle Enterprise Scheduling Service Runtime Details

As shown in Figure 1–3, a client application is composed and runs as follows:

1. A user interacts with the client application, submitting a job request.

2. The client application specifies the two EJBs and the Endpoint MDB in its
ejb-jar.xml. These beans are then instantiated in the client application context.

3. The beans in the application context contact the underlying Oracle Enterprise
Scheduling Service modules. The run time EJB sends the job request to the
underlying run time module in Oracle Enterprise Scheduling Service.

4. The run time module accesses the client application metadata from Oracle MDS.

5. The run time module persists the request along with its metadata and schedule in
the wait queue in the Oracle Enterprise Scheduling Service schema.

6. The Oracle Enterprise Scheduling Service request dispatcher determines the
correct time to run the job request based on its corresponding schedule. At this
time, the request dispatcher moves the request to a ready queue in Oracle
Enterprise Scheduling Service schema.

7. The Oracle Enterprise Scheduling Service request processor continues picking up
job requests to be processed from the ready queue.

8. The request processor sends a message to the application using the endpoint
MDB.

9. Oracle Enterprise Scheduling Service executes the scheduled job.

Fixed-Rate Scheduling with Oracle Enterprise Scheduling Service

1-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

In most cases or at least in the simplified case, this application will be the same as the
application which submitted the request.

1.2.4 Overview of Integration Steps
Once you have installed a basic Oracle WebLogic Server instance, take the following
steps to set up Oracle Enterprise Scheduling Service.

1. Configure Oracle Enterprise Scheduling Service.

2. Develop your client application which has your job definitions and other required
metadata.

3. Deploy your client application.

4. Invoke your client application to submit job request, which in turn calls Oracle
Enterprise Scheduling Service.

5. Invoke your client application to check the status of job request, or other history,
which in turn calls Oracle Enterprise Scheduling Service. Alternatively, use Fusion
Middleware Control to check the status of a given job request.

1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduling Service
Oracle Enterprise Scheduling Service supports fixed-rate scheduling where instances of
a repeating job requests are executed at a constant rate starting from the initial
scheduled execution time. Each job request runs as near to the absolute time of the
schedule as possible. Oracle Enterprise Scheduling Service ensures that only one job
request in a repeating request is running at any one time. If a job request runs beyond
the scheduled execution time of the next job request, the next job request becomes late
and is dispatched immediately upon completion of the previous job request.

When a job request is dispatched, the next request is placed in the wait queue. The
execution time for the next job request is the next time in the schedule that is no earlier
than the current time. Oracle Enterprise Scheduling Service skips time slots that are in
the past.

If the desired behavior is to run all instances of the repeating request regardless of
when they are run and regardless of the requested or recurrence end date, the request
must set the system property EXECUTE_PAST.

Oracle Enterprise Scheduling Service does not support fixed-delay scheduling. Using
fixed-delay scheduling, each request is executed a fixed delay period after the
previous request completes. This means that when one request is late, all subsequent
requests will be late as well. In contrast, fixed-rate scheduling tries to get things back
on schedule after a late request.

2

Verifying the Oracle Enterprise Scheduling Service Installation 2-1

2Verifying the Oracle Enterprise Scheduling
Service Installation

This chapter describes how to ensure that Oracle Enterprise Scheduling Service has
been correctly installed.

■ Section 2.1, "Introduction to Verifying the Oracle Enterprise Scheduling Service
Installation"

■ Section 2.2, "How to Verify the Oracle Enterprise Scheduling Service Installation
Using a Browser"

■ Section 2.3, "How to Programmatically Verify the Oracle Enterprise Scheduling
Service Installation"

■ Section 2.4, "What Happens When You Verify the Oracle Enterprise Scheduling
Service Installation"

■ Section 2.5, "What Happens at Runtime: How the Oracle Enterprise Scheduling
Service Installation is Verified"

2.1 Introduction to Verifying the Oracle Enterprise Scheduling Service
Installation

The Oracle Enterprise Scheduling Service health check enables verifying the Oracle
Enterprise Scheduling Service installation using a web browser. The health check web
page submits a simple scheduled job so as to verify that Oracle Enterprise Scheduling
Service works as it should.

2.2 How to Verify the Oracle Enterprise Scheduling Service Installation
Using a Browser

Access the Java health check servlet in a web browser. Access to the health check page
is available only to users with administrator privileges.

To verify the Oracle Enterprise Scheduling Service installation:
1. In a web browser, enter the following URL:

http://<hostName>:<port>/EssHealthCheck/checkHealth.jsp

where hostName is the server to which Oracle Enterprise Scheduling Service is
installed and port is the port number.

To verify an Oracle Enterprise Scheduling Service cluster, use the following URL:

How to Programmatically Verify the Oracle Enterprise Scheduling Service Installation

2-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

http://<hostName>:<port>/EssHealthCheck/diagnoseHealth.jsp

The Oracle Enterprise Scheduling Service Diagnostic Health Check page displays,
as shown in Figure 2–1.

Figure 2–1 Diagnostic Health Check Page

2. Log in to the diagnostic servlet using an Oracle WebLogic Server administrator
username and password.

3. Click the Check Health button to verify the installation.

2.3 How to Programmatically Verify the Oracle Enterprise Scheduling
Service Installation

Programmatically access the health check servlet from your application. Access to the
health check page is available only to users with administrator privileges.

To programmatically verify the Oracle Enterprise Scheduling Service
installation:
1. Access the following URL:

http://<hostName>:<port>/EssHealthCheck/checkHealth

where hostName is the server to which Oracle Enterprise Scheduling Service is
installed and port is the port number.

2. Use the HTTP response codes to gauge the health of the Oracle Enterprise
Scheduling Service installation, as shown in Table 2–1.

What Happens When You Verify the Oracle Enterprise Scheduling Service Installation

Verifying the Oracle Enterprise Scheduling Service Installation 2-3

2.4 What Happens When You Verify the Oracle Enterprise Scheduling
Service Installation

The health check mechanism consists of an ESSHealthcheck servlet that extends
HttpServlet. The metadata and packaging dependencies are the same as that of the
web service approach.

Metadata services are used to retrieve metadata objects such as job type and job
definition. The required metadata files are EssHealthcheckJobType.xml and
EssHealthcheckJobDefinition.xml. These are packaged as ess-app-meta.mar, which
must itself be packaged with the file eas-app.ear. The servlet, archived as
ess-health-check.war, accesses the runtime metadata in order to schedule the job.

Example 2–1 illustrates the structure of the files ess-app.ear, ess-ejb.jar, and
ess-app-meta.mar.

Example 2–1 The Structure of the Health Check Files

ESS-APP.EAR
| |
| |__APP-INF/classes/META-INF/ESSWebService.wsdl
|__ess-ejb.jar
|__ess-mbeans.war
|__ess-ws.war
|__ess-ra.rar |
|__ess-health-check.war
 |__WEB-INF
 |__web.xml
 |__weblogic.xml
 |__classes/oracle/ess/healthcheck/view/EssHealthcheckServlet.class
 |__classes/oracle/ess/healthcheck/view/EssConsoleServlet.class
 |__classes/oracle/ess/healthcheck/view/EssClusterHealthcheckServlet.class
 |__checkHealth.jsp
 |__diagnoseHealth.jsp

Table 2–1 HTTP Response Codes

Response Code
Oracle Enterprise
Scheduling Service
Status Code

Comments

200(OK) Oracle Enterprise Scheduling
Service is up and running.

The test job has been submitted and has succeeded
within the default duration.

202(ACCEPTED) Oracle Enterprise Scheduling
Service is up and running but a
delay in processing has
occurred.

A value of 202 (SC_ACCEPTED)
indicates to the client that the
request is being acted upon but
processing is not yet complete.

The test job has been submitted but has failed to
complete within the default duration.

500 (INTERNAL_SERVER_
ERROR)

The Oracle Enterprise
Scheduling Service installation
has errors.

An error has occurred during the submission or
execution of the job.

Note: Make sure to properly configure the file adf-config.xml so as
to register all metadata with the repository.

What Happens at Runtime: How the Oracle Enterprise Scheduling Service Installation is Verified

2-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 |__essVersion.jsp

ESS-EJB.JAR
Along with the existing set of files,
oracle/ess/healthcheck/core/EssHealthcheckJob.class is added to the ess-ejb.jar.

ESS-APP-META.MAR

oracle/as/ess/essapp/internal/WorkAssignment/ESSInternalWA.xml
oracle/as/ess/essapp/internal/Workshift/ESSInternalWS.xml
oracle/as/ess/essapp/healthcheck/Jobs/EssHealthcheckJobDefn.xml
oracle/as/ess/essapp/batchdelete/Jobs/BatchDeleteJob.xml
oracle/as/ess/essapp/healthcheck/JobType/EssHealthcheckJobType.xml
oracle/as/ess/essapp/batchdelete/JobType/BatchDeleteJobType.xml

The health check servlet schedules a trivial job with Oracle Enterprise Scheduling
Service as part of an HTTP request. After a few seconds, the servlet calls
RuntimeServiceBean.getRequestState() to check the status of the job and constructs
a response message within the servlet code. The servlet then returns a response
indicating the success or failure of the job.

2.5 What Happens at Runtime: How the Oracle Enterprise Scheduling
Service Installation is Verified

The servlet waits for the job to either reach a terminal state, or run for 10 seconds,
whichever occurs first.

■ If the job reaches a terminal state in less than 10 seconds, the job results in a state
of success.

■ If the job's terminal state does not change within 10 seconds, the job results in a
state of success. However, the job is listed as not having been executed. This is
because the system may be overloaded such that executing the job may take some
time.

■ If any problems occur when submitting or executing the job, the job results in a
state of failure.

When checking the health of a single node or cluster, the processor specific to the
server where the health check is submitted processes the health check request. This is
achieved through a system property called SYS_requestedProcessor. For more
information about system properties, see the table in the section "Creating or Editing a
Job Set" in the chapter "Managing the Work of Oracle Enterprise Scheduling Service
Jobs" in Oracle Fusion Middleware Administrator's Guide for Oracle Enterprise Scheduling
Service.

3

Using Ant to Generate a Hosting Application 3-1

3Using Ant to Generate a Hosting Application

This chapter describes how you can use Ant targets from a build.xml file included
with Oracle Enterprise Scheduling Service to create a hosting application for use with
Java jobs.

Using these targets, you can create the application artifacts in an Oracle JDeveloper
workspace, create a template for a Java job implementation, and package and deploy
both the application and the Java job (as a shared library).

Note that the Ant targets described here do not create a client user interface with
which users can interact with the job. To perform client tasks, you can use Fusion
Middleware Control or develop a client user interface with Oracle JDeveloper.

When you have created and deployed your application and shared library, you can
use JDeveloper or Enterprise Manager to associate metadata with the deployed
outputs.

This chapter includes the following sections:

■ Section 3.1, "Introduction to Generating a Hosting Application with Ant"

■ Section 3.2, "Ant Targets for Creating and Deploying a Hosting Application"

■ Section 3.3, "Creating a Hosting Application and Project Workspace with Ant"

■ Section 3.4, "Creating a Java Job as a Shared Library with Ant"

■ Section 3.5, "Packaging a Java Job as a Shared Library with Ant"

■ Section 3.6, "Deploying a Shared Library with Ant"

■ Section 3.7, "Packaging a Hosting Application with Ant"

■ Section 3.8, "Deploying a Hosting Application with Ant"

■ Section 3.9, "Configuring the Generated Ant Targets"

3.1 Introduction to Generating a Hosting Application with Ant
Oracle Enterprise Scheduling Service includes an Ant build file through which you can
generate the basic artifacts you’ll need to get a hosting application running, along with
a Java job you can deploy to be executed by the application.

You use the included Ant build file to generate a hosting application. When you do,
you also generate another Ant build file that contains targets you can use to generate
artifacts for a Java job, as well as to build and deploy the generated components.

When you have created and deployed your application and shared library, you can
use JDeveloper or Enterprise Manager to associate metadata with the deployed
outputs.

Ant Targets for Creating and Deploying a Hosting Application

3-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

You can also use a generated build.properties file to customize the work Ant does by
setting values for variables a target uses when it runs.

The steps described in this chapter include the following you can do with Ant.

1. Create a hosting application that can execute jobs. Use the create-user-home in the
included build.xml file.

2. Create a JDeveloper project workspace through which you can edit application
artifacts with the IDE. This is done when you create the hosting application.

3. Create an Ant build file with targets for building and deploying parts of the
application.

4. Create a Java job template to which you can add business logic. Use the
create-new-job-def target in the generated build.xml file.

5. Package the implemented Java job as a shared library. Use the package_essjob_
library target in the generated build.xml file.

6. Deploy the shared library to the hosting application. Use the deploy_essjob_
library target in the generated build.xml file.

7. Package the hosting application. Use the package_hosting_app target in the
generated build.xml file.

8. Deploy the hosting application. Use the deploy_hosting_app target in the
generated build.xml file.

3.1.1 Prerequisites for Using the Ant Build Files
Before you get started with the provided and generated build files, make sure you’re
set up with the following prerequisites:

■ You must have Ant installed and set up, with the ANT_HOME variable set
properly and the PATH pointing to ant's bin directory.

■ You must install and set up Oracle JDeveloper. Your PATH variable must contain
the Oracle JDeveloper bin directory so that the jdev command can be executed
from the command prompt.

3.2 Ant Targets for Creating and Deploying a Hosting Application
Oracle Enterprise Scheduling Service includes an Ant build file to get you started
toward deploying a hosting application that can execute jobs. However, you’re
actually using two build files to finish the job: one that is included with Oracle
Enterprise Scheduling Service and another that is generated by a target in the included
build file. The following tables list and describe the targets that are included by default
in the two files.

By default, the included build.xml file is located in the Oracle Enterprise Scheduling
Service extensibility_scripts directory. For example, in an Oracle JDeveloper
installation, you’ll find them in MW_HOME/jdeveloper/extensibility_
scripts/build.xml; with installations of products that include Oracle Enterprise
Scheduling Service, you’ll probably find them in an ORACLE_HOME/extensibility_
scripts directory.

Table 3–1 Ant Targets in the Included Build File

Ant Target Description

create-user-home Default target to create a user home.

Creating a Hosting Application and Project Workspace with Ant

Using Ant to Generate a Hosting Application 3-3

When you run the create-user-home target from the included build.xml file, one of the
target’s actions is to create another build.xml file. That file contains the following
targets that you can use to create, build and deploy artifacts for your application.

3.3 Creating a Hosting Application and Project Workspace with Ant
You can create a hosting application by running the create-user-home Ant target in the
build.xml file included with Oracle Enterprise Scheduling Service.

After the script completes successfully, you’ll have the artifacts for a hosting
application that you can package and deploy. The artifacts will be generated within a
JDeveloper-compatible workspace in the target directory you specified. The created
workspace will have a build.xml that you can use to build, package and deploy the
hosting application and the generated Java job as a shared library.

As the target runs, you’ll be prompted to enter details that guide the target’s work.
These details include the environment for which the target’s work is intended (such as
to run with a particular application), the new application’s name and target directory,
and so on.

Before you get started, you should have in hand the following information for which
you’ll be prompted by the Ant target:

help-create-user-home Help on creating a user home.

Table 3–2 Ant Targets in the Generated Build File

Ant Target Description

build_ears Package the job shared library and the hosting application.

create-new-job-def Create Java job as a shared library.

deploy Package and deploy the job library and hosting application.

deploy_essjob_library Deploy the Java job shared library.

deploy_hosting_app Deploy the hosting application.

deploy_job_logic Package and deploy the job shared library.

package_essjob_library Package the Java job as a shared library.

package_hosting_app Package the hosting application.

Table 3–3 Information Needed by the Ant Target

Input Prompt Description

Which template should be used Possible values are "Fusion" and "Standalone". If you’re
developing for use with Oracle Fusion Applications, enter
Fusion here.

If you’re not developing for use with Oracle Fusion
Applications, enter "Standalone."

There are significant differences between the Oracle
Fusion Applications and standalone contexts. For example,
in the Oracle Fusion Applications context, the target
generates a slightly different hosting application, as well as
a client application.

Table 3–1 (Cont.) Ant Targets in the Included Build File

Ant Target Description

Creating a Hosting Application and Project Workspace with Ant

3-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

To create a hosting application with Ant
1. To get started, open a console window and change directory to where the included

build.xml is located. By default, this is the Oracle Enterprise Scheduling Service
extensibility_scripts directory. For example, in MW_
HOME/jdeveloper/extensibility_scripts/build.xml.

Run the target with a command such as the following. You can omit the target
name because it is the default target in the build file.

ant

If you want to use the target name, you can do so with the following command.

ant create-user-home

In the following example of Ant console output, note that the prompts begin with
the word "[input]". For each prompt, type the value you want to use, then press
Enter.

After you’ve entered the information needed, the target creates the directories and
files you requested, copying needed files into your new workspace and setting up
some of the configuration for the new hosting application.

Example 3–1 Console Output for the create-user-home Target

[extensibility_scripts]$ ant

Buildfile: build.xml

-init:

create-user-home:
[input] Enter which template should be used (source_template) (default=Fusion)
 [input] ([Fusion], Standalone)
Standalone
 [input] Enter Middleware Home Directory path (fmw_home_dir) (default=) []
/scratch/fmwtools/mw_home
 [input] Enter hosting application name (hosting_application_name)

Middleware Home directory path The Middleware Home directory that was created when
Oracle Enterprise Scheduling Service was installed
(probably with another product that embeds it). The
locations of supporting libraries will be found as relative
to this directory.

Hosting application name The name you want the new hosting application to have.

Hosting application JPS stripe ID A stripe is a security construct that defines the subset of
values in the policy store that the application intends to
use. At run time, it determines which set of policies are
applicable for the application. The application name is
often used.

Shared library name for job
business logic

The name for the shared library into which the generated
Java job source code should be placed.

Empty directory where the
application will be created

The directory where you want the generated files to go.
This will be the location of the JDeveloper workspace,
where artifacts such as the build.xml file you’ll use later
will be created.

Table 3–3 (Cont.) Information Needed by the Ant Target

Input Prompt Description

Creating a Java Job as a Shared Library with Ant

Using Ant to Generate a Hosting Application 3-5

(default=MyAppEss) [MyAppEss]
NewDemoApp
 [input] Enter hosting application JPS stripe id (hosting_application_stripe_
id) (default=MyAppEss) [MyAppEss]
NewDemoApp
 [input] Enter the shared library name for the job business logic (jobdef_
library_name) (default=MyJobsLibrary) [MyJobsLibrary]
NewDemoAppJobsLib
 [input] Enter an empty directory where the applications will be created (user_
home)
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [echo]
 [echo]
 [mkdir] Created dir: /scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
[propertyfile] Creating new property file: /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/template.properties
 [copy] Copying 12 files to /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp
 [copy] Copied 25 empty directories to 8 empty directories under
/scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp
 [copy] Copying 1 file to /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/ant/config
 [copy] Copying 1 file to /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp
 [copy] Copying 15 files to /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp
 [move] Moving 1 file to /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/Template_Hosting
 [echo]
 [echo] ==
 [echo]
 [echo] A new workspace has been created at: /scratch/WLServers/MW_
HOME/standalone_apps/NewDemoApp
 [echo] This workspace can be opened and modified using JDeveloper
 [echo] To deploy the applications, run the following command:
 [echo] ant -f /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/ant/build-ess.xml deploy
 [echo] To create new jobs from predefined templates, run the following
command:
 [echo] ant -f /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/build.xml create-new-job-def

BUILD SUCCESSFUL
Total time: 1 minute 27 seconds

3.4 Creating a Java Job as a Shared Library with Ant
You can create a Java job class template by running the create-new-job-def Ant target
that’s in the build file generated when you created a new hosting application. (For
more information, see Section 3.3, "Creating a Hosting Application and Project
Workspace with Ant" for more information.)

The Java class you create here is a template to which you can add logic that
implements your Java job. A Java job executes Java code. With the Java job
implemented, you can add metadata that comprises some of the specifics for the job.

Note: Currently, you can create only synchronous Java job templates
with this Ant target.

Creating a Java Job as a Shared Library with Ant

3-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

As the target runs, you’ll be prompted to enter details that guide the target’s work.
Before you get started, you should have in hand the following information for which
you’ll be prompted by the Ant target:

To create a Java job class template with Ant:
1. To get started, in a console window change directory to the directory you specified

as the location to create the application. The build.xml file should be there. Use the
following command to run the target:

ant create-new-job-def

In the following example of Ant console output, you can see where the prompts
occur. After you’ve entered that information, the target creates the file you
requested, copying needed files into your new workspace and setting up some of
the configuration for the new hosting application.

Example 3–2 Console Output of the create-new-job-def Target

[extensibility_scripts]$ ant -f /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/build.xml create-new-job-def

Buildfile: /scratch/WLServers/MW_HOME/standalone_apps/NewDemoApp/build.xml

-init:

create-new-job-def:
 [echo] Available Job Definition Templates:
 [echo] 1) Simple Synchronous Java Job
 [input] Enter number of job definition template to create (job_template_to_
create)
1
 [echo] Calling default target on /scratch/miscFiles/ExtnDemo/extensibility_
scripts/Standalone/Template_JobLibrary/simple_synchronous_job/build.xml

-init:

create-job-definition:
 [input] Enter Java package name for Job Definition (jobdef_package_name)
(default=oracle.apps.ess.custom) [oracle.apps.ess.custom]
oracle.apps.ess.custom
 [input] Enter Java class name for Job Definition (jobdef_class_name)
(default=MySynchronousJavaJob) [MySynchronousJavaJob]
NewDemoHelloWorld
 [copy] Copying 1 file to /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/NewDemoApp/EssSharedLibrary/src
 [copy] Copying 1 file to /scratch/WLServers/MW_HOME/standalone_
apps/NewDemoApp/NewDemoApp/EssSharedLibrary/src/oracle/apps/ess/custom

Table 3–4 Information Needed by the Ant Target

Input Prompt Description

Number of job definition template
to create

A number corresponding to the type of Java job
implementation you’re creating. Currently, only
synchronous Java jobs can be created this way, so the only
supported value is "1".

Java package name for job
definition

The package name for the Java job you’re creating.

Java class name for job definition The class name for the Java job you’re creating.

Creating a Java Job as a Shared Library with Ant

Using Ant to Generate a Hosting Application 3-7

BUILD SUCCESSFUL
Total time: 34 seconds

2. Having created the class template for the Java job, you can add code that
implements the job’s logic. The template is located in project in the JDeveloper
workspace you created when you created the hosting application in Section 3.3,
"Creating a Hosting Application and Project Workspace with Ant". The file’s
directory path is shown in the Ant console output. You can use the editor you
prefer for editing Java code, such as JDeveloper or a simple text editor.

Open the Java file and add code to implement the execute() method.
Example 3–3 shows what the generated code will look like. You would replace the
simple implementation of the oracle.as.scheduler.Executable interface’s
execute() method with code that does your Java job’s work.

Example 3–3 Oracle Enterprise Scheduling Service HelloWorld Java Class

package oracle.apps.ess.custom;

import java.io.StringWriter;
import java.security.AccessControlContext;
import java.security.AccessController;
import javax.security.auth.Subject;

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.job.BaseSynchronousJavaJob;
import oracle.as.scheduler.request.ContentType;
import oracle.security.jps.util.SubjectUtil;

public class NewDemoHelloWorld extends BaseSynchronousJavaJob {

 public NewDemoHelloWorld() {
 super();
 }

 protected void execute() throws Exception
 {
 long requestId = getRequestExecutionContext().getRequestId();
 RequestParameters params = getRequestParameters();
 AccessControlContext accContext = AccessController.getContext();
 Subject subject = Subject.getSubject(accContext);
 String username = SubjectUtil.getUserName(subject);
 /*
 * Write contents to request log
 */
 StringWriter strWriter = new StringWriter();
 strWriter.write("Simple ESS Java job execution LOG");
 strWriter.write("ESS Job requestID: " + requestId);
 strWriter.write("Username: " + username);
 writeToRequestLog(requestId, strWriter.toString());

 /*
 * Write Text contents to request output
 */
 strWriter = new StringWriter();
 strWriter.write("Simple ESS Java job execution Text Out");
 strWriter.write("ESS Job requestID: " + requestId);
 strWriter.write("Username: " + username);
 writeToRequestOutput(requestId, strWriter.toString(), ContentType.Text);

Packaging a Java Job as a Shared Library with Ant

3-8 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 }
}

3.5 Packaging a Java Job as a Shared Library with Ant
You can package a Java job implementation by running the package_essjob_library
Ant target.

The package_essjob_library target compiles and JARs the job code. The target simply
runs to completion, requiring no user input.

To package a Java job class implementation with Ant:
■ In a console window change directory to the directory you specified as the

location to create the hosting application. Use the following command to run the
target:

ant package_essjob_library

3.6 Deploying a Shared Library with Ant
You can deploy a Java job shared library by running the deploy_essjob_library Ant
target.

The deploy_essjob_library target deploys the job library. The target simply runs to
completion, requiring no user input.

To deploy a Java job shared library with Ant:
■ In a console window change directory to the directory you specified as the

location to create the hosting application. Use the following command to run the
target:

ant deploy_essjob_library

3.7 Packaging a Hosting Application with Ant
You can package a hosting application by running the package_hosting_app Ant
target.

Note: The build file containing this target is generated when you
create a new hosting application. (For more information, see
Section 3.3, "Creating a Hosting Application and Project Workspace
with Ant".)

Note: The build file containing this target is generated when you
create a new hosting application. (For more information, see
Section 3.3, "Creating a Hosting Application and Project Workspace
with Ant".)

Configuring the Generated Ant Targets

Using Ant to Generate a Hosting Application 3-9

The package_hosting_app target packages the hosting app created with the
create-user-home target (for more information, see Section 3.3, "Creating a Hosting
Application and Project Workspace with Ant"). The target simply runs to completion,
requiring no user input.

To package a hosting application with Ant:
■ In a console window change directory to the directory you specified as the

location to create the hosting application. Use the following command to run the
target:

ant package_hosting_app

3.8 Deploying a Hosting Application with Ant
You can deploy a hosting application by running the deploy_hosting_app Ant target.

The deploy_hosting_app target deploys the hosting app created with the
create-user-home target (for more information, see Section 3.3, "Creating a Hosting
Application and Project Workspace with Ant"). This target simply runs to completion,
requiring no user input.

To deploy a hosting application with Ant:
■ In a console window change directory to the directory you specified as the

location to create the hosting application. Use the following command to run the
target:

ant deploy_hosting_app

3.9 Configuring the Generated Ant Targets
The file <user_home>/ant/config/ess-build.properties contains various parameters to
specify information used by the Ant scripts during build, packaging and deployment.
The <user_home> is the directory specified to contain the application workspace in
step 1 above.

Before deployment of archives, the weblogic server based details has to be changed
appropriate to the user's environment.

Use the build properties described in <table> to customize the Ant targets with
configuration values of your own.

Note: The build file containing this target is generated when you
create a new hosting application. (For more information, see
Section 3.3, "Creating a Hosting Application and Project Workspace
with Ant".)

Note: The build file containing this target is generated when you
create a new hosting application. (For more information, see
Section 3.3, "Creating a Hosting Application and Project Workspace
with Ant".)

Configuring the Generated Ant Targets

3-10 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Example 3–4 Contents of an ess-build.properties File for Configuring Ant Builds

ESS build properties
ess.script.base.dir=${user_home}

fmw.home=${fmw_home}
jdev.home=${fmw.home}/jdeveloper
oracle.common=${fmw.home}/oracle_common

========== ESS JDev project details ===============
customEss.project.dir=${ess.script.base.dir}

customEss.hostapp.workspace=${hosting_application_name}
customEss.hostapp.jwsfile=${hosting_application_name}
customEss.hostapp.earprofile=${hosting_application_name}
customEss.hostapp.jprproject=EssSharedLibrary
customEss.hostapp.jarprofile=EssSharedLibrary
customEss.hostapp.jarfile=${jobdef_library_name}

customEss.shared.library.name=${jobdef_library_name}

customEss.hostapp.mds.partition=${hosting_application_name}
customEss.hostapp.mds.jdbc=mds-ESS_MDS_DS
customEss.hostapp.name=${hosting_application_name}

Table 3–5 Build Properties for Customizing Ant Builds

Build Property Description

customEss.hostapp.earprofile

customEss.hostapp.jarfile

customEss.hostapp.jarprofile

customEss.hostapp.jprproject

customEss.hostapp.jwsfile

customEss.hostapp.mds.jdbc

customEss.hostapp.mds.partition

customEss.hostapp.name The name to be used for the generated hosting application.

customEss.hostapp.workspace

customEss.project.dir The directory location for the generated JDeveloper project.

customEss.shared.library.name The name to be given to the generated shared library.

ess.script.base.dir

fmw.home

jdev.home

oracle.common

weblogic.admin.password The WebLogic Server admin password.

weblogic.admin.user The WebLogic Server admin username.

weblogic.server.host

weblogic.server.port

weblogic.server.ssl.port

weblogic.t3.url

Configuring the Generated Ant Targets

Using Ant to Generate a Hosting Application 3-11

========== Weblogic Server details ===============
MW_HOME=${fmw.home}
ORACLE_HOME=${jdev.home}
MW_ORA_HOME=${jdev.home}
COMMON_COMPONENTS_HOME=${oracle.common}
WEBLOGIC_HOME=${fmw.home}/wlserver_10.3
weblogic.server.host=adc2170657.us.oracle.com
WEBLOGIC_HOME=${fmw.home}/wlserver_10.3
weblogic.server.host=adc2170657.us.oracle.com
weblogic.server.port=7001
weblogic.server.ssl.port=7002
weblogic.admin.user=weblogic
weblogic.admin.password=welcome1
weblogic.t3.url=t3://${weblogic.server.host}:${weblogic.server.port}

Configuring the Generated Ant Targets

3-12 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

4

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-1

4Using Oracle JDeveloper to Generate an
Oracle Enterprise Scheduling Service

Application

This chapter is a tutorial that describes how to create and run an application that uses
Oracle Enterprise Scheduling Service to run job requests and demonstrates how to
work with Oracle JDeveloper to create an application using Oracle Enterprise
Scheduling Service.

The chapter then shows a variation on the sample application using two split
applications — a job submission application, a submitter, and a job execution
application, a hosting application.

This chapter includes the following sections:

■ Section 4.1, "How to Start JDeveloper to Support Building Oracle Enterprise
Scheduling Service Applications"

■ Section 4.2, "Building a Combined Oracle Enterprise Scheduling Service
Application"

■ Section 4.3, "Building Split Submitting and Hosting Applications"

4.1 How to Start JDeveloper to Support Building Oracle Enterprise
Scheduling Service Applications

Some aspects of developing Oracle Enterprise Scheduling Service applications with
Oracle JDeveloper require that you set the Middleware Home environment variable to
the installation location of Oracle JDeveloper itself. Before you begin using Oracle
JDeveloper to develop Oracle Enterprise Scheduling Service applications, be sure to
set this variable.

To set an environment for building Oracle Enterprise Scheduling Service
applications:
1. Open a command prompt.

2. Change directory to the installed location of Oracle JDeveloper. For example, on
Windows you might do the following:

>cd c:\Oracle\Middleware\jdeveloper

3. Set MW_HOME to the location of Oracle JDeveloper. For example:

>set MW_HOME=c:\Oracle\Middleware

Building a Combined Oracle Enterprise Scheduling Service Application

4-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

4. Start Oracle JDeveloper.

>jdeveloper

4.2 Building a Combined Oracle Enterprise Scheduling Service
Application

The EssDemoApp sample application you build in this tutorial includes a complete
application that you build with Oracle JDeveloper using Oracle Enterprise Scheduling
Service APIs.

In this example, you’ll create a hosting application and a simple Java job
implementation. Though the example here is simple, its job class implements the
Executable interface from which a more complex Java job might call out to other code
as part of its work.

To create an application that schedules job requests you do the following:

■ Create the Java class that specifies the logic you want to schedule and run with
Oracle Enterprise Scheduling Service.

■ Specify Oracle Enterprise Scheduling Service metadata and the characteristics for
job requests.

■ Define the Java application that uses Oracle Enterprise Scheduling Service APIs to
specify and submit job requests. The application consists of two projects: one for
hosting jobs and another for submitting them.

■ Assemble and deploy the Java application that uses Oracle Enterprise Scheduling
Service APIs.

■ Run the Java application that uses Oracle Enterprise Scheduling Service APIs.

When you use Oracle Enterprise Scheduling Service the application metadata is stored
with MDS. To use MDS you need to have access to a database with MDS user and
schema configured.

You will also need a WebLogic Server instance to which Oracle Enterprise Scheduling
Service is deployed in standalone mode. You should have access to a database with
the Oracle Enterprise Scheduling Service schema installed.

This section includes the following subsections:

■ Section 4.2.1, "Creating the Application and Projects for EssDemoApp
Application"

■ Section 4.2.2, "Creating Metadata and an Implementation Class for the
EssDemoApp Application"

■ Section 4.2.3, "Adding Application Code to Submit Job Requests"

Note: The instructions in this chapter assume that you are using a
new Oracle JDeveloper that you installed without previously saved
projects or other saved Oracle JDeveloper state. If you have previously
used Oracle JDeveloper, some of the instructions may not match the
exact steps shown in this chapter, or you may be able to shorten
procedures or perform the same action in fewer steps. In some cases
Oracle JDeveloper does not show certain dialogs based on your past
use of Oracle JDeveloper.

Building a Combined Oracle Enterprise Scheduling Service Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-3

■ Section 4.2.4, "Setting Oracle Enterprise Scheduling Service Properties"

■ Section 4.2.5, "Assembling the EssDemoApp Application"

■ Section 4.2.6, "Deploying and Running the EssDemoApp Application"

4.2.1 Creating the Application and Projects for EssDemoApp Application
Using Oracle JDeveloper you create an application and projects within the application
that will contain the code and supporting files for the application. To create the sample
application you need to do the following:

■ Create an application in Oracle JDeveloper.

■ Create projects in Oracle JDeveloper. You will create two projects -- one in which
to develop "Hello World"-style Java job and another in which to develop a client
that submits requests with the job.

4.2.1.1 How to Create the EssDemoApp Application and Host Project
To work with Oracle Enterprise Scheduling Service, you first create an application in
Oracle JDeveloper. You’ll also create a hosting application to support job execution.

To create the EssDemoApp application and hosting project:
1. Start Oracle JDeveloper as described in Section 4.1.

2. In the Select Role dialog, select the Default Role, then click OK.

3. Click the Application menu, then click New.

4. In the Name your application window enter the name and location for the new
application.

a. In the Application Name field, enter an application name. For this sample
application, enter EssDemoApp.

b. In the Directory field, accept the default.

c. Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

d. In the Application Template area, select Generic Application.

e. Click Next.

5. In the Name your project window, enter the name for the host project you’re
creating and select supporting technologies.

a. In the Project Name field, enter a name for your hosting project. For this
sample application, enter EssHost.

b. On the Project Technologies tab, under Available, double-click ESS Host
Support and ESS Job Support so that they are both listed under Selected on
the right side of the dialog box.

c. Click Next.

6. In the Configure Java settings window, in the Default Package field, enter
oracle.esshost.

Click Next.

7. In the Configure EJB settings window, select the following:

Building a Combined Oracle Enterprise Scheduling Service Application

4-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

■ Under EJB Version, select the Enterprise JavaBeans 3.0 option button.

■ Under EJB Version 3.0, select the Generate ejb-jar.xml in this project check
box.

Click Next.

8. In the Configure ESS Host Support settings window, in the Application Id field,
enter EssDemoApp.

Click Finish.

This displays the EssDemoApp Overview page. You can use sections of this page
to get information about aspects of the application you’re creating, as well as to
manage its development progress. For now, though, you’ll move on to creating
project artifacts to support creating jobs.

4.2.1.2 How to Create the Client Project
In the preceding step, you created a project in which to develop the application to host
your jobs. In this section, you’ll use Oracle JDeveloper to create another project in the
EssDemoApp application. This second project will provide support for client
interaction with the hosting application.

To create the client project:
1. Click the File menu, then click New.

2. In the New Gallery, under Categories, expand General, then click Projects.

3. Under Items, click Generic Project, then click OK.

4. In the Name your project window, enter the name for the client project you’re
creating and select supporting technologies.

a. In the Project Name field, enter a name for your client project. For this sample
application, enter EssClient.

b. On the Project Technologies tab, under Available, double-click the following
items so that they are listed under Selected on the right side of the dialog box:

ESS Client Support
HTML
JSF
JSP and Servlets
XML

c. Click Next.

5. In the Configure Java settings window, in the Default Package field, enter
oracle.essclient.

Click Next.

6. In the Configure EJB settings window, select the following:

■ Under EJB Version, select the Enterprise JavaBeans 3.0 option button.

Click Next.

7. In the Configure ESS Client Support settings window, in the Application Id field,
ensure the EssDemoApp is displayed there.

Click Finish.

Building a Combined Oracle Enterprise Scheduling Service Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-5

4.2.2 Creating Metadata and an Implementation Class for the EssDemoApp Application
For a Java job, which is what you’ll be adding here, an implementation class
implements the logic of your job -- the code that does job’s actual work. The class
implements the oracle.as.scheduler.Executable interface. The interface’s execute
method provides a place where you can add the job’s logic. Though the code in this
example is very simple, the execute method can also serve as a starting place for
processing that continues into code to which the Java job has access.

As with other job types, including PL/SQL and process jobs, a Java job’s work is
guided by metadata. This metadata forms a job-specific context that can include Oracle
Enterprise Scheduling Service-defined system properties, properties you create, and
control of who has access to the metadata. For example, metadata might be a way for
you to collect and pass instance data to downstream code.

To use the EssDemoApp sample application to submit a job request, you need to
create:

■ Metadata in the form of a job definition that is the basic unit of work that defines a
job request in Oracle Enterprise Scheduling Service.

■ A Java job implementation class.

4.2.2.1 How to Create Metadata for the EssDemoApp Application
In this section, you use Oracle JDeveloper to create job definition metadata and a
simple implementation class for a Java job.

To create metadata for the application:
1. In the Application Navigator, select the EssHost project.

2. Press Ctrl-N. This displays the New Gallery.

3. In the New Gallery, select the All Technologies tab.

4. In the Categories area expand Business Tier and select Enterprise Scheduler
Metadata.

5. In the Items area, select Job Definition as shown in Figure 4–1.

Building a Combined Oracle Enterprise Scheduling Service Application

4-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 4–1 Adding Job Type Metadata to the Sample Application

6. Click OK. This displays the Create Job Definition dialog.

7. In the Create Job Definition dialog, specify the following:

a. In the Name field, enter a name for the job definition. For this example, enter
the name: HelloWorldJobDefinition.

b. In the Package field, enter a package name. For this example, enter
/oracle/esshost/metadata.

Note that you should use slashes, rather than dots, to delimit names in
metadata package names. A metadata package ending in ".metadata" will not
be visible in Oracle JDeveloper.

c. In the Job Type field, from the dropdown list select
/oracle/as/ess/core/JavaJobType.

If job types are not listed in the dropdown, ensure that you started Oracle
JDeveloper as described in Section 4.1.

d. Ensure that the Create Java Class check box and the Synchronous option
button are selected.

By selecting the Create Java Class check box, you’re asking that a Java class for
your Java job be created, saving you the trouble of creating one later. Selecting
the Synchronous option specifies that this will be a synchronous Java job.

e. Under Java Class, specify details for the Java class you’re creating. In the Java
Package field, enter its package name -- here, enter oracle.esshost.impl. In
the Class Name field, enter a name for the class -- here, enter HelloWorldImpl
as shown in Figure 4–2

Building a Combined Oracle Enterprise Scheduling Service Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-7

Figure 4–2 Creating a Job Definition with the Job Definition Creation Wizard

f. Click OK.

This creates the Java class you requested, along with the
HelloWorldJobDefinition.xml file. Oracle JDeveloper displays XML file’s
contents in the Job Definition page.

On the Job Definition page, you can edit job definition metadata, including
properties that specify parameters for the job, access to this metadata, and a
resource bundle to use for localization.

8. In the Job Definition page, in the Description field enter a description for the job
type. For this example enter: Sample Java Job Definition.

Leave the rest of the metadata unchanged.

9. In the Application Navigator, locate the class you created by expanding the items
in the projects panel to EssHost > Application Sources > oracle.esshost.impl >
HelloWorldImpl.java.

10. Open HelloWorldImpl.java in the source editor.

11. In the source editor, add simple code to implement the execute method. The
execute method is where execution for a Java job begins. Your HelloWorldImpl
class should look something like Example 4–1.

Example 4–1 HelloWorldImpl with Execute Method Implemented

public class HelloWorldImpl implements Executable, Cancellable
{
 public void execute(RequestExecutionContext ctx, RequestParameters params)
 throws ExecutionErrorException, ExecutionWarningException,
 ExecutionCancelledException, ExecutionPausedException
 {
 System.out.println("**** Sample Job Running, Request ID: " +
 ctx.getRequestId());
 }

Building a Combined Oracle Enterprise Scheduling Service Application

4-8 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 public void cancel()
 {
 }
}

12. Save and close HelloWorldImpl.java.

4.2.3 Adding Application Code to Submit Job Requests
In an Oracle Enterprise Scheduling Service application you use the Oracle Enterprise
Scheduling Service APIs to submit job requests from any component in the
application. The EssDemoApp sample application provides a Java servlet for a
servlet-based user interface for submitting job requests (using Oracle Enterprise
Scheduling Service).

4.2.3.1 How to Add Application Code to Submit Job Requests
In this section, you’ll create a servlet for receiving job submission requests.

To add a servlet to support job request submissions:
1. In the Application Navigator, select the EssClient project.

2. Press Ctrl-N. This displays the New Gallery.

3. In the New Gallery, in the Categories area, expand Web Tier and select Servlets.

4. In the Items area, select HTTP Servlet as shown in Figure 4–3.

Figure 4–3 Adding Job Type Metadata to the Sample Application

5. Click OK. This displays the Create HTTP Servlet wizard.

6. In the Welcome page, click Next.

7. In the Create HTTP Servlet - Step 1 of 3: Servlet Information page, specify the
following:

Building a Combined Oracle Enterprise Scheduling Service Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-9

a. In the Class field, enter a name for the servlet class. For this example, enter the
name: EssDemo.

b. In the Package field, enter a package name. For this example, enter
oracle.essclient.servlet.

c. In the Generate Content Type field, from the dropdown list ensure the HTML
is selected.

d. In the Implement Methods area, select the doGet() and doPost() check boxes,
as shown in Figure 4–4.

Figure 4–4 Creating a Servlet -- Step 1 of 3

e. Click Next.

8. In the Create HTTP Servlet - Step 2 of 3: Mapping Information page, specify the
following:

a. In the Name field, enter a name for the servlet. For this example, enter the
name: EssDemo.

b. In the URL Pattern field, enter a URL for servlet mapping. For this example,
enter /essdemo/*.

c. Click Finish.

The supplied EssDemo application includes the completed servlet. You need to
copy the source code into your project. To do this, in Oracle JDeveloper replace the
contents of the servlet with the contents of the file EssDemo.java supplied with the
sample application.

4.2.4 Setting Oracle Enterprise Scheduling Service Properties
With Oracle Enterprise Scheduling Service properties, you set values for settings used
in the ejb-jar.xml file associated with the application. These properties include the
following:

Building a Combined Oracle Enterprise Scheduling Service Application

4-10 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

■ Logical Application Name

Specifies the logical name used to identify this application. Separate from the
application name used when deploying the application to the container, this value
lets you safely hard code the logical application name in source code.

■ Application Policy Stripe

Specifies which JPS security stripe (or "security context") should be used to
perform security checks.

■ JPS Interceptor Application Name

Specifies the application stripe name used at run time to determine which set of
security policies are applicable.

4.2.4.1 How to Set Oracle Enterprise Scheduling Service Properties for the
Application
In this section, you’ll set default values for Oracle Enterprise Scheduling Service
properties.

To set values for Oracle Enterprise Scheduling Service properties:
1. In the Application Navigator, right-click the EssHost project, then click Enterprise

Scheduler Properties.

2. In the Enterprise Scheduler Properties dialog, enter EssDemoApp for all three of the
fields provided: Logical Application Name, Application Policy Stripe, and JPS
Interceptor Application Name.

3. Click OK.

4.2.5 Assembling the EssDemoApp Application
After you create the sample application you use Oracle JDeveloper to assemble the
application.

To assemble the application you do the following:

■ Create the EJB JAR files.

■ Create the application MAR file.

■ Create the application EAR file.

■ Update WAR file options.

4.2.5.1 How to Create the EJB-JAR Deployment Profile for the EssDemoApp
The sample application needs to contain the required EJB descriptors. You need to
create the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with any
Java implementation class that you create.

Oracle Enterprise Scheduling Service requires an application to assemble and provide
an EJB JAR so that Oracle Enterprise Scheduling Service can find its entry point in the
application while running job requests on behalf of the application. This EJB jar should
have its required EJB descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as any
Java class implementations that are going to be submitted to Oracle Enterprise
Scheduling Service. The descriptor files ejb-jar.xml and weblogic-ejb-jar must contain
descriptions for the Oracle Enterprise Scheduling Service EJBs and should not be
modified.

Building a Combined Oracle Enterprise Scheduling Service Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-11

To create the EJB-JAR deployment profile:
1. In the Application Navigator, in the Projects panel, right-click the EssHost project,

then click Project Properties.

2. In the Project Properties window, in the navigator, click Deployment.

3. Under Deployment Profiles, delete all profiles listed in the window, then click
New.

4. In the Create Deployment Profile dialog, from the Archive Type dropdown, select
EJB JAR file.

5. In the Name field, enter a name for the EJB. For this example, enter ess-ejb.

6. Click OK.

7. In the Edit EJB JAR Deployment Profile Properties dialog, in the navigator on the
left, click General.

8. In the General window, in the Enterprise Application Name field, enter
EssDemoApp.

9. In the navigator, expand to File Groups > Project Output > Contributors.

10. In the Contributors window, select the following check boxes:

■ Project Output Directory

■ Project Source Path

■ Project Additional Classpath

■ Project Dependencies

11. In the navigator, expand to File Groups > Project Output > Filters.

12. In the Filters window, on the Files tab, ensure that the following folders are
selected:

■ META-INF (and its contents)

■ oracle (and its contents)

13. Click OK.

14. In the Project Properties dialog, click OK.

4.2.5.2 How To Update the WAR Archive Options
In this section, you specify information that Oracle JDeveloper can use to generate a
WAR file.

To update the WAR archive options:
1. In the Application Navigator, in the Projects panel, right-click the EssClient

project, then click Project Properties.

2. In the Project Properties window, in the navigator, click Deployment.

3. In the Deployment window, click New.

4. In the Create Deployment Profile dialog, from the Archive Type dropdown, select
WAR file.

5. In the Name field enter WAR_EssDemoApp.

6. Click OK.

Building a Combined Oracle Enterprise Scheduling Service Application

4-12 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

7. In the Edit WAR Deployment Profile Properties dialog, in the navigator on the left,
click General.

8. In the General window, select the Specify Java EE Web Context Root option. In
the field beneath the option, enter EssDemo.

9. In the navigator, expand to File Groups > Web Files > Contributors.

10. In the Contributors window, select the following check boxes:

■ Project Output Directory

■ Project HTML Root Directory

■ Project Source Path

11. In the navigator, expand to File Groups > Web Files > Filters.

12. In the Filters window, on the Files tab, ensure that the following folders are
selected:

■ oracle (and its contents)

■ WEB-INF (and its contents)

Click OK.

13. In the Project Properties dialog, click OK.

4.2.5.3 How to Update the EAR Options
In this section, you’ll prepare an EAR file that assembles the EssDemoApp sample
application. The EAR archive consists of the following:

■ EJB JAR including the Oracle Enterprise Scheduling Service Java job
implementation.

■ WAR archive with the EssDemo servlet.

To update the EAR options:
1. Click the Application menu, then click Application Properties.

2. In the Application Properties dialog, in the navigation pane, click Deployment.

3. In the Deployment window, click New.

4. In the Create Deployment Profile dialog, in the Name field, enter EAR_EssDemoApp
as the deployment profile’s name.

Click OK.

5. In the Edit EAR Deployment Profile Properties dialog, in the navigation pane on
the left, click Application Assembly.

6. In the Application Assembly window, under Java EE Modules, ensure that all item
check boxes are selected.

7. Click OK.

8. In the Application Properties dialog, click OK.

4.2.6 Deploying and Running the EssDemoApp Application
After you complete the steps to build and assemble the EssDemoApp application you
need to deploy the application to Oracle WebLogic Server. After you successfully
deploy an application you can run the application. For the EssDemoApp sample

Building a Combined Oracle Enterprise Scheduling Service Application

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-13

application you use a browser to run the EssDemo servlet to submit job requests to
Oracle Enterprise Scheduling Service running on Oracle WebLogic Server.

4.2.6.1 How to Deploy the EssDemoApp Application
To deploy the EssDemoApp application you need a properly configured and running
Oracle WebLogic Server, and you need an active metadata server. When you deploy
the application Oracle JDeveloper brings up the Deployment Configuration page.
Select your repository from the dropdown list and Enter a partition name (the
partition name defaults to application name).

To deploy the EssDemoApp application:
1. Check the Run Manager to make sure the Oracle WebLogic Server is up and

running. If the Oracle WebLogic Server is not running, start the server. To start the
server, from the Run menu click Start Server Instance.

2. In the Application Navigator, select the EssDemoApp application.

3. In the Application Navigator from the Application Menu select Deploy > EAR_
EssDemoApp > to > IntegratedWLSConnection.

4. Oracle JDeveloper shows the Deployment Configuration page. Select the
appropriate options for your Metadata Repository.

5. Click Deploy.

6. Verify the deployment using the Deployment Log.

4.2.6.2 How to Run the EssDemoApp Sample Application
To run the EssDemoApp sample application you access the EssDemo servlet in a
browser.

To access the EssDemo servlet:
1. Enter the following URL in a browser:

http://host:http-port/context-root/essdemo

For example,

http://myserver.us.oracle.com:7101/EssDemoApp/essdemo

This shows the EssDemo servlet, as shown in Figure 4–5.

Building a Combined Oracle Enterprise Scheduling Service Application

4-14 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 4–5 Running EssDemo Servlet for Oracle Enterprise Scheduling Service Sample
Application

2. Select a job definition from the Job drop-down menu.

3. Select a value from the Schedule drop-down menu.

4. Click Submit.

5. Refresh the browser to see the progress of the job in the Request Status area, as
shown in Figure 4–6.

Figure 4–6 Running EssDemo Servlet with Request Status for Submitted Requests

4.2.6.3 How to Purge Jobs in the EssDemoApp Sample Application
Using the EssDemoApp sample application and the EssDemo servlet you can remove
completed jobs from the Request Status list.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-15

To remove completed jobs:
1. Click Purge to purge a request.

2. Click Cancel to cancel a request that is either RUNNING or WAITING.

4.3 Building Split Submitting and Hosting Applications
When you build and deploy Oracle Enterprise Scheduling Service applications, you
can use two split applications -- a job submission application, a submitter, and a job
execution application, a hosting application. Using this design, you need to configure
and deploy each application with options that support such a split configuration. In
addition, some Oracle Enterprise Scheduling Service deployments use a separate
Oracle WebLogic Server for the hosting and the submitting applications; for this
deployment option the submitting application and the hosting application are
deployed to separate Oracle WebLogic Servers. When the submitter application and
the hosting application for Oracle Enterprise Scheduling Service run on separate
Oracle WebLogic Servers, you need to configure the Oracle WebLogic Server for the
hosting application so that the submitting application can find the hosting application.

To build the sample split applications, you do the following:

1. Build a back-end hosting application that includes the code to be scheduled and
run.

2. Build a front-end submitter application initiates the job requests.

This section includes the following subsections:

■ Section 4.3.1, "How to Create the Back-End Hosting Application for EssDemoApp"

■ Section 4.3.2, "How to Create the Front-End Submitter Application for Oracle
Enterprise Scheduling Service"

4.3.1 How to Create the Back-End Hosting Application for EssDemoApp
Using Oracle JDeveloper you create the back-end application. To create the
EssDemoApp back-end sample application you do the following:

■ Create a back-end application and project.

■ Configure security.

■ Define the deployment descriptors.

■ Create the Java class that implements the Oracle Enterprise Scheduling Service
executable interface.

■ Create the Oracle Enterprise Scheduling Service metadata to describe the job

■ Assemble the application.

■ Deploy the application.

Note: This section creates a new application. If you have created
EssDemoApp with the sections beginning with Section 4.2.1, note that
this section creates a project of the same name. You’ll need to choose a
different location for the application or delete the previous application
in order to use the EssDemoApp application name in this section.

Building Split Submitting and Hosting Applications

4-16 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

4.3.1.1 Creating the Back-End Hosting Application
To work with Oracle Enterprise Scheduling Service with a split application you use
Oracle JDeveloper to create the back-end application and project, and to add Oracle
Enterprise Scheduling Service extensions to the project.

To create the back-end hosting application:
1. From JDeveloper choose File > New from the main menu.

2. In the New Gallery, expand General, select Applications and then Generic
Application, and click OK.

3. In the Name your application page of the Create Generic Application wizard, set
the Application Name field to EssDemoApp.

4. Click Next.

5. In the Name your project window, enter the name for the host project you’re
creating and select supporting technologies. This project is where you will create
and save the Oracle Enterprise Scheduling Service metadata

a. In the Project Name field, enter a name for your hosting project. For this
sample application, enter SuperEss.

b. On the Project Technologies tab, under Available, double-click ESS Host
Support and ESS Job Support so that both are listed under Selected on the
right side of the dialog box.

Click Next.

6. In the Configure Java Settings page, change the default package to
oracle.apss.ess.howto, then click Next.

7. In the Configure EJB Settings page, select Generate ejb-jar.xml in this project and
click Next.

8. In the Configure ESS Host Support settings page, in the Application Id field, enter
EssDemoApp.

9. Click Finish.

4.3.1.2 Configuring Security for the Back-End Hosting Application
You need to create a user that is assigned to the EssDempAppRole role.

To configure security for the back-end hosting application:
1. Select Application > Secure > Configure ADF Security from the main menu.

2. In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication, then click Next.

3. In the Authentication Type page, accept the default values as this application will
not have a web module to secure.

4. Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding
META-INF. This file contains a security context or security stripe named after the
application.

5. Select Application > Secure > Users from the main menu.

A file named jazn-data.xml is generated.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-17

6. In the overview editor for the jazn-data.xml file, click the Add icon in the Users
list.

7. Set the name to EssDemoAppUser and set the password to welcome1.

8. Click the Application Roles navigation tab.

9. Click the Add icon in the Roles list and choose Add New Role.

10. Set the name to EssDemoAppRole.

11. Click the Add icon in the Mappings tab and choose Add User.

12. Select EssDemoAppUser and click OK.

4.3.1.3 Defining Metadata for the Back-End Hosting Application
To use the Oracle Enterprise Scheduling Service split application to submit a job
request you need to create metadata that defines a job request, including the
following:

■ A job type: this specifies an execution type and defines a common set of
parameters for a job request.

■ A job definition: this is the basic unit of work that defines a job request in Oracle
Enterprise Scheduling Service.

To create metadata for the back-end hosting application:
1. In the Application Navigator, select the SuperEss project.

2. Press Ctrl-N. This displays the New Gallery.

3. In the New Gallery, select the All Technologies tab.

4. In the Categories area expand Business Tier and select Enterprise Scheduler
Metadata.

5. In the Items area, select Job Definition as shown in Figure 4–7.

Building Split Submitting and Hosting Applications

4-18 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 4–7 Adding Job Type Metadata to the Sample Application

6. Click OK. This displays the Create Job Definition dialog.

7. In the Create Job Definition dialog, specify the following:

a. In the Name field, enter a name for the job definition. For this example, enter
the name: HelloWorldJobDef.

b. In the Package field, enter a package name. For this example, enter
oracle/apps/ess/howto/metadata.

c. In the Job Type field, from the dropdown list select
/oracle/as/ess/core/JavaJobType.

If job types are not listed in the dropdown, ensure that you started Oracle
JDeveloper as described in Section 4.1.

d. Ensure that the Create Java Class check box and the Synchronous option
button are selected.

By selecting the Create Java Class check box, you’re asking that a Java class for
your Java job be created, saving you the trouble of creating one later. Selecting
the Synchronous option specifies that this will be a synchronous Java job.

e. Under Java Class, specify defails for the Java class you’re creating. In the Java
Package field, enter its package name -- here, enter oracle.apps.ess.howto.
In the Class Name field, enter a name for the class -- here, enter
HelloWorldJob.

f. Click OK.

This creates the Java class you requested, along with the
HelloWorldJobDefinition.xml file. Oracle JDeveloper displays XML file’s
contents in the Job Definition page.

On the Job Definition page, you can edit job definition metadata, including
properties that specify parameters for the job, access to this metadata, and a
resource bundle to use for localization.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-19

8. In the HelloWorldJobDef.xml Job Definition page, in the Desciption field, enter
HelloWorld Example.

9. In the System Properties section, click the Add button.

10. In the Add System Property dialog, from the Name dropdown, select SYS_
effectiveApplication.

11. In the Initial Value field, enter EssDemoApp.

12. Click OK.

13. In the Access Control section, click the Add button.

14. In the Add Access Control dialog, from the Role dropdown, ensure that
EssDemoAppRole is selected. This is the role that you created during
Section 4.3.1.2.

15. Select the following actions: Read and Execute.

16. Click OK.

4.3.1.4 Creating a Java Implementation Class in the Back-End Hosting Application
To define an application that runs a Java class under control of Oracle Enterprise
Scheduling Service you need to create the Java class that implements the Oracle
Enterprise Scheduling Service Executable interface. The Executable interface specifies
the contract that allows you to use Oracle Enterprise Scheduling Service to invoke a
Java class.

When you created metadata in , you also created the basic of the class you need.

To implement the execute method:
1. In the Application Navigator, locate the class you created by expanding the items

in the projects panel to SuperEss > Application Sources > oracle.apps.ess > howto
> HelloWorldJob.java.

2. Open HelloWorldJob.java in the source editor.

3. In the source editor, add the following code to implement the execute method.
The execute method is where execution for a Java job begins. The code inside
your method should look something like Example 4–2.

Example 4–2 HelloWorldJob Execute Method Code

StringBuilder sb = new StringBuilder(1000);
sb.append("\n==================================");
sb.append("\n= EssDemoApp request is now running");
long myRequestId = ctx.getRequestId();
sb.append("\n= Request Id = " + myRequestId);
sb.append("\n= Request Properties:");
for (String paramKey : params.getNames()) {
 Object paramValue = params.getValue(paramKey);
 sb.append("\n=\t(" + paramKey + ", " + paramValue + ")");
}
sb.append("\n=");
sb.append("\n==================================");
Logger logger = Logger.getLogger("oracle.apps.ess.howto");
logger.info(sb.toString());

Building Split Submitting and Hosting Applications

4-20 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

4.3.1.5 Setting Oracle Enterprise Scheduling Service Properties
With Oracle Enterprise Scheduling Service properties, you set values for settings used
in the ejb-jar.xml file associated with the application. These properties include the
following:

■ Logical Application Name

Specifies the logical name used to identify this application. Separate from the
application name used when deploying the application to the container, this value
lets you safely hardcode the logical application name in source code.

■ Application Policy Stripe

Specifies which JPS security stripe (or "security context") should be used to
perform security checks.

■ JPS Interceptor Application Name

Specifies the application stripe name used at run time to determine which set of
security policies are applicable.

To set values for Oracle Enterprise Scheduling Service properties:
1. In the Application Navigator, right-click the EssHost project, then click Enterprise

Scheduler Properties.

2. In the Enterprise Scheduler Properties dialog, enter EssDemoApp for all three of the
fields provided: Logical Application Name, Application Policy Stripe, and JPS
Interceptor Application Name.

3. Click OK.

4.3.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise
Scheduling Service
After you create the back-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the back-end application you do the following:

■ Create the EJB Java Archive

■ Create the application MAR and EAR files

4.3.1.6.1 How to Assemble the EJB JAR File for the Back-End Hosting Application The EJB
Java archive file includes descriptors for the Java job implementations.

To create the EJB-JAR deployment profile:
1. In the Application Navigator, in the Projects panel, right-click the SuperEss

project, then click Project Properties.

2. In the Project Properties window, in the navigator, click Deployment.

3. Under Deployment Profiles, delete all profiles listed in the window, then click
New.

4. In the Create Deployment Profile dialog, from the Archive Type dropdown, select
EJB JAR file.

5. In the Name field, enter a name for the EJB. For this example, enter JAR_
SuperEssEjbJar.

6. Click OK.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-21

7. In the Edit EJB JAR Deployment Profile Properties dialog, in the navigator, expand
to File Groups > Project Output > Contributors.

8. In the Contributors window, select the following check boxes:

■ Project Output Directory

■ Project Source Path

■ Project Additional Classpath

■ Project Dependencies

9. In the navigator, expand to File Groups > Project Output > Filters.

10. In the Filters window, on the Files tab, ensure that the following folders are
selected:

■ META-INF (and its contents)

■ oracle (and its contents)

11. Click OK.

12. In the Project Properties dialog, click OK.

4.3.1.6.2 How to Assemble the MAR and EAR Files for the Back-End Hosting Application In this
section, you’ll prepare an EAR file that assembles the EssDemoApp sample
application. The EAR archive consists of the following:

■ EJB JAR including the Oracle Enterprise Scheduling Service Java job
implementation.

■ WAR archive with the EssDemo servlet.

To update the EAR options:
1. Click the Application menu, then click Application Properties.

2. In the Application Properties dialog, in the navigation pane, click Deployment.

3. Select the default MAR file profile, then click Edit.

4. In the Edit MAR Deployment Profile Properties dialog, in the navigation pane,
expand to Metadata File Groups > User Metadata > Directories and select
Directories.

5. In the Directories window, select the oracle.apps.ess.howto check box, then click
OK.

6. In the Application Properties dialog, on the Deployment window, click New.

7. In the Create Deployment Profile dialog, from the Archive Type dropdown, select
EAR File.

8. In the Name field, enter EAR_EssDemoAppEar.

Click OK.

9. In the Edit EAR Deployment Profile Properties dialog, in the navigation pane,
select General.

10. In the General window, in the Application Name field, enter EssDemoApp.

11. In the navigation pane, select Application Assembly.

12. In the Application Assembly window, ensure that all check boxes are selected.

13. Click OK.

Building Split Submitting and Hosting Applications

4-22 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

14. In the Application Properties dialog, click OK.

4.3.1.7 Deploying the Back-End Hosting Application
After assembling the application, you can deploy it to the server.

To deploy the back-end hosting application:
1. From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...

2. Set up and deploy the application to a container.

3. When the Deployment Configuration dialog appears, make a note of the default
values, but do not change them.

4.3.2 How to Create the Front-End Submitter Application for Oracle Enterprise
Scheduling Service

In an Oracle Enterprise Scheduling Service split application you use the Oracle
Enterprise Scheduling Service APIs to submit job requests from a front-end
application. The EssDemoAppUI application provides a Java servlet for a servlet based
user interface for submitting job requests (using Oracle Enterprise Scheduling Service).

To create the front-end submitter sample application you do the following:

■ Create a front-end application and project.

■ Configure the ejb-jar.xml file.

■ Create the web project

■ Configure security.

■ Create the HTTP servlet.

■ Edit the web.xml file.

■ Edit the weblogic-application.xml file.

■ Edit the adf-config file.

■ Assemble the application.

■ Deploy the application.

4.3.2.1 Creating the Front-End Submitter Application
You use JDeveloper to build the front-end submitter application using similar steps as
you used for the back-end hosting application.

To create the front-end submitter application:
1. Complete the steps in Section 4.3.1.1, "Creating the Back-End Hosting Application"

but this time use ESSDemoAppUI as the name of the application. When you
configure ESS host support settings, in the Application Id field, be sure to enter
EssDemoApp.

4.3.2.2 Creating the SuperWeb Project
You need to create a web project for the servlet.

To create the SuperWeb project:
1. Right-click the SuperEss project and choose New.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-23

2. In the New Gallery, expand General, select Projects and then Generic Project, and
click OK.

3. In the Name your project window, enter the name for the host project you’re
creating and select supporting technologies. This project is where you will create
and save the Oracle Enterprise Scheduling Service metadata

a. In the Project Name field, enter a name for your hosting project. For this
sample application, enter SuperWeb.

b. On the Project Technologies tab, under Available, double-click ESS Client
Support, JSP and Servlets, and ADF Library Web Application Support so
that both are listed under Selected on the right side of the dialog box.

Click Next.

4. In the Project Java Settings page, change the default package to
oracle.apss.ess.howto and click Finish.

4.3.2.3 Configuring Security for the Front-End Submitter Application
You need to configure security for the application. You do not have to create any users
or roles as the EssDemoAppUI application will simply share the users and roles
created by the EssDemoApp application.

To configure security for the front-end submitter application:
1. Select Application > Secure > Configure ADF Security from the main menu.

2. In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication.

3. In the Authentication Type page, select SuperWeb.jpr from the Web Project
dropdown list.

4. Select HTTP Basic Authentication.

5. Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding
META-INF.

4.3.2.4 Creating the HTTP Servlet for the Front-End Submitter Application
Normally, more complex user interfaces that are built on heavy weight frameworks
such as Oracle Application Development Framework are employed, but for the sake of
simplicity, you use a basic HTTP servlet for the submitter application.

To create the HTTP Servlet for the front-end submitter application:
1. Right-click the SuperEss project and choose New.

2. In the New Gallery, expand Web Tier, select Servlets and then HTTP Servlet, and
click OK.

3. In the Web Application page of the Web Application wizard, select Servlet
2.5\JSP 2.1 (Java EE 1.5).

4. In the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter
EssDemoAppServlet in the Class field.

5. Enter oracle.apps.ess.howto in the Package field and click Next.

6. Click Finish.

Building Split Submitting and Hosting Applications

4-24 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

7. In the source editor, replace the contents of ESSDemoAppServlet.java with the
code in Example 4–3.

Example 4–3 HTTP Servlet Code for the Front-End Submitter Application

package oracle.apps.ess.howto;

import java.io.IOException;
import java.io.PrintWriter;
import java.io.StringWriter;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
import java.util.Map;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.regex.Pattern;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.MetadataObjectId.MetadataObjectType;
import oracle.as.scheduler.MetadataService;
import oracle.as.scheduler.MetadataService.QueryField;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.RequestDetail;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.State;
import oracle.as.scheduler.core.JndiUtil;

public class EssDemoAppServlet extends HttpServlet {
 @SuppressWarnings("compatibility:4685800289380934682")
 private static final long serialVersionUID = 1L;

 private static final String CONTENT_TYPE = "text/html; charset=UTF-8";
 private static final String MESSAGE_KEY = "Message";
 private static final String PATH_SUBMIT = "/submitRequest";
 private static final String PATH_ALTER = "/alterRequest";
 private static final String MDO_SEP = ";";
 private static final String ACTION_CANCEL = "Cancel";
 private static final String ESS_UNAVAIL_MSG =
 "<p>Enterprise Scheduler Service is currently unavailable. Cause: %s</p>";

 private enum PseudoScheduleChoices {

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-25

 Immediately(0),
 InTenSeconds(10),
 InTenMinutes(10 * 60);

 @SuppressWarnings("compatibility:-5637079380819677366")
 private static final long serialVersionUID = 1L;

 private int m_seconds;

 private PseudoScheduleChoices(int seconds) {
 m_seconds = seconds;
 }

 public int getSeconds() {
 return m_seconds;
 }
 }

 public EssDemoAppServlet() throws ServletException {
 super();
 }

 @Override
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }

 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType(CONTENT_TYPE);

 HttpSession session = request.getSession(true);
 String lastMessage = String.valueOf(session.getAttribute(MESSAGE_KEY));

 if ("null".equals(lastMessage)) {
 lastMessage = "";
 }

 try {
 RuntimeLists runtimeLists = getRuntimeLists();
 MetadataLists metadataLists = getMetadataLists();
 renderResponse(metadataLists, runtimeLists,
 request, response, lastMessage);
 } catch (ServletException se) {
 throw se;
 } catch (Exception e) {
 throw new ServletException(e);
 }
 }

 @Override
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException

Building Split Submitting and Hosting Applications

4-26 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 {
 response.setContentType(CONTENT_TYPE);
 request.setCharacterEncoding("UTF-8");

 HttpSession session = request.getSession(true);
 String pathInfo = request.getPathInfo();

 // Clear the message on every post request
 StringBuilder message = new StringBuilder("");

 try {
 // Select each handler based on the form action
 if ("".equals(pathInfo)) {
 // No processing
 } else if (PATH_SUBMIT.equals(pathInfo)) {
 postSubmitRequest(request, message);
 } else if (PATH_ALTER.equals(pathInfo)) {
 postAlterRequest(request, message);
 } else {
 message.append(String.format("<p>No handler for pathInfo=%s</p>",
 pathInfo));
 }
 }
 catch (ServletException se) {
 Throwable t = se.getCause();
 String cause = (t == null) ? se.toString() : t.toString();
 message.append (String.format(ESS_UNAVAIL_MSG, cause));
 }

 // Storing the messages in the session allows them to persist
 // through the redirect and across refreshes.
 session.setAttribute(MESSAGE_KEY, message.toString());

 // render the page by redirecting to doGet(); this intentionally
 // strips the actions and post data from the request.
 response.sendRedirect(request.getContextPath() +
 request.getServletPath());
 }

 /**
 * Handle the job submission form.
 * @param request
 * @param message
 * @throws ServletException
 */
 private void postSubmitRequest(HttpServletRequest request,
 StringBuilder message)
 throws ServletException
 {
 String jobDefName = request.getParameter("job");
 String scheduleDefName = request.getParameter("schedule");

 // Various required args for submission
 Calendar start = Calendar.getInstance();
 start.add(Calendar.SECOND, 2);

 // Launch the job based on form contents
 if (jobDefName == null || scheduleDefName == null) {
 message.append("Both a job name and a schedule name must be

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-27

specified\n");
 } else {
 PseudoScheduleChoices pseudoSchedule = null;

 // See if schedule given is actually a pseudo schedule
 try {
 pseudoSchedule = PseudoScheduleChoices.valueOf(scheduleDefName);
 } catch (IllegalArgumentException e) {
 // The string is not a valid member of the enum
 pseudoSchedule = null;
 }

 MetadataObjectId scheduleDefId = null;
 String scheduleDefNamePart = null;
 MetadataObjectId jobDefId = stringToMetadataObjectId(jobDefName);

 // Don't look up schedules that aren't real
 if (pseudoSchedule != null) {
 scheduleDefNamePart = scheduleDefName;
 start.add(Calendar.SECOND, pseudoSchedule.getSeconds());
 } else {
 scheduleDefId = stringToMetadataObjectId(scheduleDefName);
 scheduleDefNamePart = scheduleDefId.getNamePart();
 }

 String jobDefNamePart = jobDefId.getNamePart();
 String requestDesc = jobDefNamePart + "@" + scheduleDefNamePart;

 Logger logger = getLogger();
 long requestId = submitRequest(pseudoSchedule, requestDesc,
 jobDefId, scheduleDefId, start,
logger);

 // Populate the message block based on results
 message.append(String.format("<p>New request %d launched using
%s</p>",
 requestId, requestDesc));
 }
 }

 private Long submitRequest(final PseudoScheduleChoices pseudoSchedule,
 final String requestDesc,
 final MetadataObjectId jobDefId,
 final MetadataObjectId scheduleDefId,
 final Calendar start,
 final Logger logger)
 throws ServletException
 {
 RuntimeServicePayload<Long> myPayload = new RuntimeServicePayload<Long>()
{
 @Override
 Long execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 RequestParameters params = new RequestParameters();
 return (null != pseudoSchedule)

Building Split Submitting and Hosting Applications

4-28 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 ? service.submitRequest(handle, requestDesc, jobDefId,
 start, params)
 : service.submitRequest(handle, requestDesc, jobDefId,
 scheduleDefId, null,
 start, null, params);
 }
 };
 try {
 return performOperation(myPayload, logger);
 } catch (Exception e) {
 throw new ServletException("Error submitting request using job: " +
 jobDefId + " and schedule: " +
 scheduleDefId, e);
 }
 }

 /**
 * Handle the "Cancel" and "Purge" actions from the form enclosing
 * the Request Status table.
 * @param request
 * @param message
 * @throws ServletException
 */
 private void postAlterRequest(HttpServletRequest request,
 StringBuilder message)
 throws ServletException
 {
 String cancelID = null;

 /*
 * there are a few assumptions going on here...
 * the HTTP button being used to transmit the action and
 * request is backwards from its normal usage (eg. the name
 * should be invariable, and the value variable). Because we
 * want to display either "Purge" or "Cancel" on the button, and
 * transmit the reqId with it, we are reversing the map entry
 * to get the key (which in this case will be the reqID), and
 * match it to the value (Purge or Cancel).
 * Assumptions are that there will be only one entry in the map
 * per request (one purge or cancel). Also, that the datatypes
 * for the key and value willl be those documented for
 * ServletRequest (<K,V> = <String, String[]>).
 */
 Map requestMap = request.getParameterMap();
 Iterator mapIter = requestMap.entrySet().iterator();
 while (mapIter.hasNext()) {
 Map.Entry entry = (Map.Entry)mapIter.next();
 String key = (String)entry.getKey();
 String[] values = (String[])entry.getValue();
 if (ACTION_CANCEL.equals(values[0])) {
 cancelID = key;
 }
 }

 if (cancelID != null) {
 try {
 final String cancelId2 = cancelID;
 RuntimeServicePayload<Void> myPayload = new
RuntimeServicePayload<Void>() {
 @Override

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-29

 Void execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 service.cancelRequest(handle, Long.valueOf(cancelId2));
 return null;
 }
 };

 Logger logger = getLogger();
 performOperation(myPayload, logger);
 message.append
 (String.format("<p>Cancelled request %s</p>", cancelID));
 } catch (Exception e) {
 throw new ServletException
 ("Error canceling or purging request", e);
 }
 } else {
 message.append("<p>No purge or cancel action specified</p>");
 }
 }

 private String metadataObjectIdToString(MetadataObjectId mdoID)
 throws ServletException {

 String mdoString =
 mdoID.getType().value() + MDO_SEP + mdoID.getPackagePart() +
 MDO_SEP + mdoID.getNamePart();

 return mdoString;
 }

 private MetadataObjectId stringToMetadataObjectId(String mdoString)
 throws ServletException {
 String[] mdoStringParts = mdoString.split(Pattern.quote(MDO_SEP));
 if (mdoStringParts.length != 3) {
 throw new ServletException(String.format("Unexpected number of
components %d found " +
 "when converting %s to
MetadataObjectID",
 mdoStringParts.length,
 mdoString));
 }

 MetadataObjectType mdType =
 MetadataObjectType.getMOType(mdoStringParts[0]);
 String mdPackage = mdoStringParts[1];
 String mdName = mdoStringParts[2];

 MetadataObjectId mdoID =
 MetadataObjectId.createMetadataObjectId(mdType, mdPackage, mdName);
 return mdoID;
 }

 /**
 * this changes the format used in this class for job definitions to the one
 * which will be used in the runtime query.
 * @param strMetadataObject
 * @return string representing object in runtime store

Building Split Submitting and Hosting Applications

4-30 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 * @throws ServletException
 */
 private String fixMetadataString(String strMetadataObject)
 throws ServletException {
 String fslash = "/";
 String[] mdoStringParts =
 strMetadataObject.split(Pattern.quote(MDO_SEP));
 if (mdoStringParts.length != 3) {
 throw new ServletException(String.format("Unexpected number of
components %d found " +
 "when converting %s to
MetadataObjectID",
 mdoStringParts.length,
 strMetadataObject));
 }
 String[] trimStringParts = new String[mdoStringParts.length];
 for (int i = 0; i < mdoStringParts.length; i++) {
 String mdoStringPart = mdoStringParts[i];
 trimStringParts[i] = mdoStringPart.replaceAll(fslash, " ").trim();
 }

 MetadataObjectType mdType =
 MetadataObjectType.getMOType(trimStringParts[0]);
 String mdPackage = fslash + trimStringParts[1];
 String mdName = trimStringParts[2];
 MetadataObjectId metadataObjId =
 MetadataObjectId.createMetadataObjectId(mdType, mdPackage, mdName);
 return metadataObjId.toString();
 }

 private Set<String> getSetFromMetadataEnum(Enumeration<MetadataObjectId>
enumMetadata)
 throws ServletException {
 Set<String> stringSet = new HashSet<String>();

 while (enumMetadata.hasMoreElements()) {
 MetadataObjectId objId = enumMetadata.nextElement();
 String strNamePart = objId.getNamePart();
 stringSet.add(strNamePart);
 }
 return stringSet;
 }

 //**
 //
 // HTML Rendering Methods
 //
 //**

 /**
 * Rendering code for the page displayed.
 * In a real application this would be done using JSP, but this approach
 * keeps everything in one file to make the example easier to follow.
 * @param response The response object from the main request.
 * @param message Text that will appear in the message panel, may contain HTML
 * @throws IOException
 */
 private void renderResponse(MetadataLists ml,
 RuntimeLists rl,
 HttpServletRequest request,

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-31

 HttpServletResponse response,
 String message)
 throws IOException, ServletException
 {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();

 String urlBase = request.getContextPath() + request.getServletPath();

 // Indents maintained for clarity
 out.println("<html>");
 out.println("<head><title>EssDemo</title></head>");
 out.println("<body>");
 out.println("<table align=\"center\"><tbody>");
 out.println(" <tr><td align=\"center\"><h1>Oracle Enterprise Scheduling
Service Tutorial</h1></td></tr>");
 out.println(" <tr><td align=\"center\"><table cellspacing=6><tr>");

 // Job launch form
 out.println(" <td align=\"center\">");
 out.println(" <h2>Launch Job</h2>");
 renderLaunchJobForm(ml, out, urlBase);
 out.println(" </td>");

 out.println(" <td align=\"center\" bgcolor=\"blue\" width=\"2\"/>");

 out.println(" </tr></table></td></tr>");

 out.println(" <tr><td bgcolor=\"red\"/></tr>");

 // Message panel
 out.println(" <tr><td align=\"center\"><h3>Messages</h3></td></tr>");
 out.println(" <tr><td>");
 out.println(message);
 out.println(" </td></tr>");

 out.println(" <tr><td bgcolor=\"red\"/></tr>");

 // Request status
 out.println(" <tr><td align=\"center\">");
 out.println(" <form name=\"attrs\" action=\"" + urlBase +
 PATH_ALTER + "\" method=\"post\">");
 out.println(" <h2>Request Status</h2>");
 out.println(" <table border=2><tbody>");
 out.println(" <th>reqID</th>");
 out.println(" <th>Description</th>");
 out.println(" <th>Scheduled time</th>");
 out.println(" <th>State</th>");
 out.println(" <th>Action</th>");

 renderStatusTable(out, rl.requestDetails);

 out.println(" </tbody></table>");
 out.println(" </form>");
 out.println(" </td></tr>");
 out.println("</tbody></table>");
 out.println("</body></html>");
 out.close();
 }

Building Split Submitting and Hosting Applications

4-32 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 private void renderLaunchJobForm(MetadataLists ml, PrintWriter out, String
urlBase)
 throws ServletException {
 out.println(" <form name=\"attrs\" action=\"" + urlBase +
 PATH_SUBMIT + "\" method=\"post\">");
 out.println(" <table><tbody>");
 out.println(" <tr><td align=\"right\">");
 out.println(" Job:");
 out.println(" <select name=\"job\">");

 renderMetadataChoices(out, ml.jobDefList, false);
 renderMetadataChoices(out, ml.jobSetList, false);

 out.println(" </select>");
 out.println(" </td></tr>");
 out.println(" <tr><td align=\"right\">");
 out.println(" Schedule:");
 out.println(" <select name=\"schedule\">");

 renderPseudoScheduleChoices(out);
 renderMetadataChoices(out, ml.scheduleList, false);

 out.println(" </select>");
 out.println(" </td></tr>");
 out.println(" <tr><td align=\"center\">");
 out.println(" <input name=\"submit\" value=\"Submit\"
type=\"submit\">");
 out.println(" </td></tr>");
 out.println(" </tbody></table>");
 out.println(" </form>");
 }

 /**
 *
 * @param out - printwriter
 * @param jobChoices -- metadata to be displayed
 * @param bBlankFirst -- blank first (so that this param is not required)
 * @throws ServletException
 */
 private void renderMetadataChoices(PrintWriter out,
 Enumeration<MetadataObjectId> jobChoices,
 boolean bBlankFirst)
 throws ServletException
 {
 if (jobChoices == null)
 return;

 boolean bFirst = true;
 while (jobChoices.hasMoreElements()) {
 MetadataObjectId job = jobChoices.nextElement();
 String strJob = metadataObjectIdToString(job);
 String strNamePart = job.getNamePart();
 if (strNamePart.compareTo("BatchPurgeJob") == 0) {
 continue;
 } else {
 if (bFirst && bBlankFirst) {
 out.printf("<option value=\"%s\">%s</option>", "", "");
 bFirst = false;
 }
 out.printf("<option value=\"%s\">%s</option>", strJob,

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-33

 strNamePart);
 }
 }
 }

 /**
 * helper method for rendering choices based on strings, adding an empty
 * string to the beginning of the list
 * @param out
 * @param choices
 */
 private void renderStringChoices(PrintWriter out, Set<String> choices) {
 if (choices == null)
 return;

 choices.add("");
 SortedSet<String> sorted = new TreeSet<String>(choices);
 Iterator choiceIter = sorted.iterator();
 while (choiceIter.hasNext()) {
 String choice = (String)choiceIter.next();

 out.printf("<option value=\"%s\">%s</option>", choice, choice);
 }
 }

 private void renderPseudoScheduleChoices(PrintWriter out) {
 for (PseudoScheduleChoices c : PseudoScheduleChoices.values()) {
 out.printf("<option value=\"%s\">%s</option>", c, c);
 }
 }

 private void renderStatusTable
 (PrintWriter out, List<RequestDetail> reqDetails)
 {
 if (reqDetails == null) {
 return;
 }

 for (RequestDetail reqDetail : reqDetails) {
 State state = reqDetail.getState();

 Calendar scheduledTime = reqDetail.getScheduledTime();
 String scheduledTimeString = null;

 if (scheduledTime == null) {
 scheduledTimeString = "null scheduled time";
 } else {
 scheduledTimeString = String.valueOf(scheduledTime.getTime());
 }

 final String actionButton;
 if (!state.isTerminal()) {
 String action = ACTION_CANCEL;
 String reqId = String.valueOf(reqDetail.getRequestId());
 actionButton = String.format
 ("<button type=submit value=%s name=\"%s\">%s</button>",
 action, reqId, action);
 } else {
 actionButton = " ";
 }

Building Split Submitting and Hosting Applications

4-34 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

out.printf("<tr><td>%d</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>\n",
 reqDetail.getRequestId(), reqDetail.getDescription(),
 scheduledTimeString, state, actionButton);
 }
 }

 private MetadataService getMetadataService() throws Exception {
 return JndiUtil.getMetadataServiceEJB();
 }

 private RuntimeService getRuntimeService() throws Exception {
 return JndiUtil.getRuntimeServiceEJB();
 }

 private abstract class Payload<SERVICE, HANDLE, RETURN> {
 abstract SERVICE getService() throws Exception;
 abstract HANDLE getHandle(SERVICE service) throws Exception;
 abstract void closeHandle(SERVICE service,
 HANDLE handle,
 boolean abort)
 throws Exception;
 abstract RETURN execute(SERVICE service, HANDLE handle, Logger logger)
 throws Exception;
 }

 private abstract class MetadataServicePayload<T>
 extends Payload<MetadataService, MetadataServiceHandle, T>
 {
 @Override
 MetadataService getService() throws Exception {
 return getMetadataService();
 }

 @Override
 MetadataServiceHandle getHandle(MetadataService service)
 throws Exception
 {
 return service.open();
 }

 @Override
 void closeHandle(MetadataService service,
 MetadataServiceHandle handle,
 boolean abort)
 throws Exception
 {
 service.close(handle, abort);
 }
 }

 private abstract class RuntimeServicePayload<T>
 extends Payload<RuntimeService, RuntimeServiceHandle, T>
 {
 @Override
 RuntimeService getService() throws Exception {
 return getRuntimeService();
 }

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-35

 @Override
 RuntimeServiceHandle getHandle(RuntimeService service)
 throws Exception
 {
 return service.open();
 }

 @Override
 void closeHandle(RuntimeService service,
 RuntimeServiceHandle handle,
 boolean abort)
 throws Exception
 {
 service.close(handle, abort);
 }
 }

 private <S, H, R> R performOperation
 (Payload<S, H, R> payload, Logger logger)
 throws Exception
 {
 S service = payload.getService();
 H handle = payload.getHandle(service);

 Exception origException = null;
 try {
 return payload.execute(service, handle, logger);
 } catch (Exception e2) {
 origException = e2;
 throw e2;
 } finally {
 if (null != handle) {
 try {
 boolean abort = (null != origException);
 payload.closeHandle(service, handle, abort);
 } catch (Exception e2) {
 if (null != origException) {
 logger.log(Level.WARNING, "An error occurred while " +
 "closing handle, however, a previous failure was " +
 "detected. The following error will be logged " +
 "but not reported: " + stackTraceToString(e2));
 }
 }
 }
 }
 }

 private final String stackTraceToString(Exception e) {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 e.printStackTrace(pw);
 pw.flush();
 pw.close();
 return sw.toString();
 }

 private Logger getLogger() {
 return Logger.getLogger(this.getClass().getName());
 }

Building Split Submitting and Hosting Applications

4-36 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 private class MetadataLists {
 private final Enumeration<MetadataObjectId> jobDefList;
 private final Enumeration<MetadataObjectId> jobSetList;
 private final Enumeration<MetadataObjectId> scheduleList;
 private final Enumeration<MetadataObjectId> jobTypeList;

 private MetadataLists(Enumeration<MetadataObjectId> jobDefList,
 Enumeration<MetadataObjectId> jobSetList,
 Enumeration<MetadataObjectId> scheduleList,
 Enumeration<MetadataObjectId> jobTypeList)
 {
 this.jobDefList = jobDefList;
 this.jobSetList = jobSetList;
 this.scheduleList = scheduleList;
 this.jobTypeList = jobTypeList;
 }
 }

 private class RuntimeLists {
 private final List<RequestDetail> requestDetails;
 private final Set<String> applicationChoices;
 private final Set<String> stateChoices;
 private final Set<MetadataObjectId> jobDefMDOChoices;

 private RuntimeLists(List<RequestDetail> requestDetails,
 Set<String> applicationChoices,
 Set<String> stateChoices,
 Set<MetadataObjectId> jobDefMDOChoices)
 {
 super();
 this.requestDetails = requestDetails;
 this.applicationChoices = applicationChoices;
 this.stateChoices = stateChoices;
 this.jobDefMDOChoices = jobDefMDOChoices;
 }
 }

 /**
 * Retrieve lists of jobs, schedules, and status for use by the renderer
 * @throws ServletException
 */
 private MetadataLists getMetadataLists() throws Exception {
 Logger logger = getLogger();

 MetadataServicePayload<MetadataLists> myPayload =
 new MetadataServicePayload<MetadataLists>()
 {
 @Override
 MetadataLists execute(MetadataService service,
 MetadataServiceHandle handle,
 Logger logger)
 throws Exception
 {
 Enumeration<MetadataObjectId> jobDefs =
 service.queryJobDefinitions(handle, null, QueryField.NAME,
true);
 Enumeration<MetadataObjectId> jobSets =
 service.queryJobSets(handle, null, QueryField.NAME, true);
 Enumeration<MetadataObjectId> schedules =

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-37

 service.querySchedules(handle, null, QueryField.NAME, true);
 Enumeration<MetadataObjectId> jobTypes =
 service.queryJobTypes(handle, null, QueryField.NAME, true);

 return new MetadataLists(jobDefs, jobSets, schedules, jobTypes);
 }
 };
 MetadataLists ml = performOperation(myPayload, logger);
 return ml;
 }

 private RuntimeLists getRuntimeLists() throws Exception {
 Logger logger = getLogger();

 RuntimeServicePayload<List<RequestDetail>> myPayload2 =
 new RuntimeServicePayload<List<RequestDetail>>()
 {
 @Override
 List<RequestDetail> execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 List<RequestDetail> reqDetails =
 new ArrayList<RequestDetail>(10);
 Enumeration requestIds = service.queryRequests
 (handle, null, RuntimeService.QueryField.REQUESTID, true);

 while (requestIds.hasMoreElements()) {
 Long reqId = (Long)requestIds.nextElement();
 RequestDetail detail = service.getRequestDetail(handle,
reqId);
 reqDetails.add(detail);
 }

 return reqDetails;
 }
 };
 List<RequestDetail> reqDetails = performOperation(myPayload2, logger);
 RuntimeLists rl = getRuntimeLists(reqDetails);
 return rl;
 }

 private RuntimeLists getRuntimeLists(List<RequestDetail> reqDetails) {
 Set<String> applicationSet = new HashSet<String>(10);
 Set<String> stateSet = new HashSet<String>(10);
 Set<MetadataObjectId> jobDefMOSet = new HashSet<MetadataObjectId>(10);

 if (reqDetails != null) {
 ListIterator detailIter = reqDetails.listIterator();
 while (detailIter.hasNext()) {
 RequestDetail detail = (RequestDetail)detailIter.next();
 applicationSet.add(detail.getDeployedApplication());
 State state = detail.getState();
 if (state.isTerminal())
 stateSet.add(state.name());
 jobDefMOSet.add(detail.getJobDefn());
 }
 }

Building Split Submitting and Hosting Applications

4-38 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 RuntimeLists rl = new RuntimeLists
 (reqDetails, applicationSet, stateSet, jobDefMOSet);
 return rl;
 }

}

4.3.2.5 Editing the web.xml File for the Front-End Submitter Application
You need to edit the web.xml file to and Oracle Enterprise Scheduling Service
metadata and runtime EJB references.

To edit the web.xml file for the front-end submitter application:
1. In the Application Navigator, expand SuperWeb, expand Web Content, expand

WEB-INF and double-click web.xml.

2. In the overview editor, click the References navigation tab and expand the EJB
References section.

3. Add two EJB resources with the information shown in Table 4–1.

4. Click the Servlets navigation tab and click the Servlet Mappings tab.

5. Change the /essdemoappservlet URL pattern to /essdemoappservlet/*.

4.3.2.6 Editing the weblogic-application.xml file for the Front-End Submitter
Application
You need to create and edit the weblogic-application.xml file.

To edit the weblogic-application.xml file for the front-end submitter application:
1. In Application Navigator, right-click the SuperEss project and select New.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

3. In the Select Descriptor page select weblogic-application.xml.

4. Click Next, click Next again, and click Finish.

5. In the source editor, replace the contents of the weblogic-application.xml file
that you just created with the XML shown in Example 4–4.

Example 4–4 Contents to Copy to weblogic-application.xml for a Front-End Submitter
Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application

http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

Table 4–1 EJB Resources for the Front-End Submitter Application

EJB Name
Interface
Type

EJB
Type Local/Remote Interface

ess/metadata Local Session oracle.as.scheduler.MetadataServiceLocal

ess/runtime Local Session oracle.as.scheduler.RuntimeServiceLocal

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-39

 <!-- The following application parameter tells JPS which stripe it should
 - use to upload the jazn-data.xml policy. If this parameter is not
 - specified, it will use the Java EE deployment name plus the version
 - number (e.g. EssDemoApp#V2.0).
 -->
 <application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value>EssDemoAppUI</param-value>
 </application-param>

 <!-- This listener allows JPS to configure itself and upload the
 - jazn-data.xml policy to the appropriate stripe
 -->
 <listener>

<listener-class>oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener<
/listener-class>
 </listener>

 <!-- This listener allows MDS to configure itself and upload any metadata
 - as defined by the MAR profile and adf-config.xml
 -->
 <listener>

<listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
 </listener>

 <!-- This listener allows Oracle Enterprise Scheduling Service to configure
itself
 -->
 <listener>

<listener-class>oracle.as.scheduler.platform.wls.deploy.ESSApplicationLifecycleLis
tener</listener-class>
 </listener>

 <!-- This shared library contains all the Oracle Enterprise Scheduling Service
classes
 -->
 <library-ref>
 <library-name>oracle.ess.client</library-name>
 </library-ref>
 <library-ref>
 <library-name>adf.oracle.domain</library-name>
 </library-ref>
</weblogic-application>

4.3.2.7 Editing the adf-config file for the Front-End Submitter Application
You need to edit the adf-config.xml file to tell the application to share the metadata
that was created in the hosting application.

To edit the adf-config.xml file for the front-end submitter application:
1. From the Application Resources panel, expand Descriptors, expand ADF

META-INF, and double-click adf-config.xml.

2. In the source editor, replace the contents of the adf-config.xml file with the XML
shown in Example 4–5.

Building Split Submitting and Hosting Applications

4-40 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Example 4–5 Contents to Copy to adf-config.xml for a Front-End Submitter Application

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
 <JaasSecurityContext
initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"

jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="false"
 authenticationRequire="true"/>
 </adf-security-child>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <persistence-config>
 <metadata-namespaces>
 <namespace metadata-store-usage="ess_shared_metadata"
path="/oracle/apps/ess/howto"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage default-cust-store="false" deploy-target="false"
id="ess_shared_metadata"/>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

4.3.2.8 Assembling the Front-End Submitter Application for Oracle Enterprise
Scheduling Service
After you create the front-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the back-end application you do the following:

■ Create the EJB Java Archive

■ Create the WAR file

■ Create the application MAR and EAR files

4.3.2.8.1 How to Assemble the EJB JAR File for the Front-End Submitter Application The EJB
Java archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR File for the front-end submitter application:
1. In Application Navigator, right-click the SuperEss project and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

3. In the Create Deployment Profile dialog, set the Deployment Profile Name to
JAR_SuperEssEjbJar.

4. On the Edit EJB JAR Deployment Profile Properties dialog, click OK.

5. On the Project Properties dialog, click OK.

4.3.2.8.2 How to Assemble the WAR File for the Front-End Submitter Application You need to
create a web archive file for the web application.

Building Split Submitting and Hosting Applications

Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application 4-41

To assemble the WAR file for the front-end submitter application
1. In Application Navigator, right-click the SuperWeb project and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

3. In the Create Deployment Profile dialog, set the Deployment Profile Name to
WAR_SuperWebWar.

4. On the Edit WAR Deployment Profile Properties dialog, click the General
navigation tab, select Specify Java EE Web Context Root, and enter ESSDemoApp.

5. Click OK.

6. On the Project Properties dialog, click OK.

4.3.2.8.3 How to Assemble the MAR and EAR Files for the Front-End Hosting Application The
sample application needs to contain the MAR profile and the EAR file that assembles
the EssDemoApp back-end application.

To create the MAR and EAR files for the front-end submitter application:
1. From the main menu, choose Application Menu > Application Properties...

2. In the Application Properties dialog, click the Deployment navigation tab and
click New.

3. In the Create Deployment Profile dialog, select MAR File from the Archive Type
dropdown list.

4. In the Name field, enter MAR_EssDemoAppUIMar and click OK.

5. Click OK.

6. In the Deployment page of the Application Properties dialog, click New.

7. In the Create Deployment Profile dialog, select EAR File from the Archive Type
dropdown list.

8. In the Name field, enter EAR_EssDemoAppUIEar and click OK.

9. In the Edit EAR Deployment Profile dialog, click the General navigation tab and
enter EssDemoAppUI in the Application Name field.

10. Click the Application Assembly navigation tab, then select MAR_ESSDemoAppUIMar
and select JAR_SuperEssEjbJar.

11. Click OK.

12. In the Application Properties dialog, click OK.

4.3.2.9 Deploying the Front-End Submitter Application
After assembling the application, you can deploy it to the server.

To deploy the front-end submitter application:
1. From the main menu, choose Application > Deploy > EAR_EssDemoUIEar...

2. Set up and deploy the application to a container.

3. On the Deployment Configuration dialog, there should be two entries in the
Shared Metadata Repositories panel. Find the shared repository mapped to the
/oracle/apps/ess/howto namespace. Change its partition to the partition used
when deploying EssDemoApp. If you used the default value, this should be
EssDemoApp_V2.0.

Building Split Submitting and Hosting Applications

4-42 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

4. Click OK.

4.3.2.10 Running the Split Application

To run the split application:
1. Enter the following URL in a browser:

http://host:http-port:/ESSDemoAppUI/essdemoappservlet

For example,

http://myserver.us.oracle.com:7101/EssDemoAppUI/essdemoappservlet

2. Log in as EssDemoAppUser with the password welcome1.

3. Follow the same steps as in the combined application.

5

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-1

5Use Case Oracle Enterprise Scheduling
Service Sample Application (Deprecated)

This chapter describes how to create and run an application that uses Oracle
Enterprise Scheduling Service to run job requests and demonstrates how to work with
Oracle JDeveloper to create an application using Oracle Enterprise Scheduling Service.

The chapter then shows a variation on the sample application using two split
applications — a job submission application, a submitter, and a job execution
application, a hosting application.

This chapter includes the following sections:

■ Section 5.1, "Introduction to the Oracle Enterprise Scheduling Service Sample
Application"

■ Section 5.2, "Creating the Application and Projects for the Sample Application"

■ Section 5.3, "Creating a Java Implementation Class for the Sample Application"

■ Section 5.4, "Adding Application Code to Submit Oracle Enterprise Scheduling
Service Job Requests"

■ Section 5.5, "Creating Metadata for Oracle Enterprise Scheduling Service Sample
Application"

■ Section 5.6, "Assembling the Oracle Enterprise Scheduling Service Sample
Application"

■ Section 5.7, "Deploying and Running the Oracle Enterprise Scheduling Service
Sample Application"

■ Section 5.8, "Troubleshooting the Oracle Enterprise Scheduling Service Sample
Application"

■ Section 5.9, "Using Submitting and Hosting Split Applications"

Note: This chapter includes a tutorial that uses an older release of
Oracle JDeveloper. This content is deprecated. For development with
a current version of Oracle JDeveloper, see Chapter 4, "Using Oracle
JDeveloper to Generate an Oracle Enterprise Scheduling Service
Application".

Introduction to the Oracle Enterprise Scheduling Service Sample Application

5-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

5.1 Introduction to the Oracle Enterprise Scheduling Service Sample
Application

The Oracle Enterprise Scheduling Service sample application includes a complete
application that you build with Oracle JDeveloper using Oracle Enterprise Scheduling
Service APIs. Oracle Enterprise Scheduling Service lets you run different types of job
requests, including: Java classes, PL/SQL procedures, and process type jobs. To create
an application that schedules job requests you need to do the following:

■ Create the Java classes, PL/SQL procedures, or executable processes that specify
the routine you want to schedule and run with Oracle Enterprise Scheduling
Service.

■ Specify Oracle Enterprise Scheduling Service metadata and the characteristics for
job requests.

■ Define the Java application that uses Oracle Enterprise Scheduling Service APIs to
specify and submit job requests.

■ Assemble and deploy the Java application that uses Oracle Enterprise Scheduling
Service APIs.

■ Run the Java application that uses Oracle Enterprise Scheduling Service APIs.

When you use Oracle Enterprise Scheduling Service the application Metadata is stored
with MDS. To use MDS you need to have access to a database with MDS user and
schema configured.

5.2 Creating the Application and Projects for the Sample Application
Using Oracle JDeveloper you create an application and the projects within the
application contain the code and support files for the application. To create the
sample application you need to do the following:

■ Create an application in Oracle JDeveloper.

■ Create a project in Oracle JDeveloper.

■ Create the application code that uses the Oracle Enterprise Scheduling Service
APIs. For the sample application you create the EssDemo servlet in the
EssDemoApp application.

Note: The instructions in this chapter assume that you are using a
new Oracle JDeveloper that you install without previously saved
projects or other saved Oracle JDeveloper state. If you have previously
used Oracle JDeveloper, some of the instructions may not match the
exact steps shown in this chapter, or you may be able to shorten
procedures or perform the same action in fewer steps. In some cases
Oracle JDeveloper does not show certain dialogs based on your past
use of Oracle JDeveloper.

Note: This chapter includes a tutorial that uses an older release of
Oracle JDeveloper. This content is deprecated. For development with
a current version of Oracle JDeveloper, see Chapter 4, "Using Oracle
JDeveloper to Generate an Oracle Enterprise Scheduling Service
Application".

Creating the Application and Projects for the Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-3

5.2.1 How to Create the EssDemoApp Application
To work with Oracle Enterprise Scheduling Service, you first create an application and
a project in Oracle JDeveloper.

To create the EssDemo application:
1. In the Application Navigator, select New Application....

2. In the Name your application window enter the name and location for the new
application.

a. In the Application Name field, enter an application name. For this sample
application, enter EssDemoApp.

b. In the Directory field, accept the default.

c. Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

d. In the Application Template area, select Fusion Web Application (ADF).

e. Click Next.

f. Click Finish.

3. This displays the File Summary page, as shown in Figure 5–1.

Figure 5–1 Sample Application File Summary Page

Creating the Application and Projects for the Sample Application

5-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

5.2.2 How to Create a Project in the Sample Application
When you create an application using the Fusion Web Application (ADF) template,
Oracle JDeveloper adds two projects in the application named Model and
ViewController (Oracle ADF is based on the MVC design pattern that includes these
areas). To organize an Oracle Enterprise Scheduling Service application you add
another project and use this project to add the Oracle Enterprise Scheduling Service
metadata and the Oracle Enterprise Scheduling Service implementation for the Java
classes that you want to run with Oracle Enterprise Scheduling Service.

To create a project:
1. From the Application Menu for the EssDemoApp application select New

Project....

2. In the New Gallery, under Categories expand General and select Projects.

3. In the Items area select ADF Model Project, as shown in Figure 5–2.

Figure 5–2 Adding an Empty Project for Sample Application

4. Click OK.

5. On the Name Your Project page enter a project name. For example, enter EssDemo
as the project name, as shown in Figure 5–3.

Creating the Application and Projects for the Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-5

Figure 5–3 Adding the EssDemo Project to the Sample Application

6. Click Finish.

Configure Oracle JDeveloper resource options for project:
1. In the Application Navigator, select the EssDemo project.

2. Right-click and from the dropdown list select Project Properties....

3. In the Project Properties window, in the navigator expand Project Source Paths
and select Resources.

4. Select the Included tab and then select the Include Content From Subfolders
check box, as shown in Figure 5–4.

5. Click OK.

Creating the Application and Projects for the Sample Application

5-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 5–4 Updating Project Resources for Sample Project

5.2.3 How to Set Project Properties for Oracle Enterprise Scheduling Service
You need to add the Oracle Enterprise Scheduling Service extensions to the project
before you use the Oracle Enterprise Scheduling Service APIs.

To allow Oracle JDeveloper to use Oracle Enterprise Scheduling Service
extensions:
1. In Oracle JDeveloper, in the Application Navigator select the EssDemo project.

2. Right-click and from the dropdown list select Project Properties....

3. In the Project Properties navigator, select Libraries and Classpath.

4. In the Libraries and Classpath area, click Add Library....

5. In the Add Library dialog, in the Libraries area select Enterprise Scheduler
Extensions.

6. In the Add Library dialog click OK. This adds the appropriate libraries, as shown
in Figure 5–5.

Creating a Java Implementation Class for the Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-7

Figure 5–5 Adding Oracle Enterprise Scheduling Service Extensions to Project

7. Click OK to dismiss the Project Properties dialog.

5.3 Creating a Java Implementation Class for the Sample Application
To define an application that runs a Java class under control of Oracle Enterprise
Scheduling Service you need to create the Java class that implements the Oracle
Enterprise Scheduling Service Executable interface. The Executable interface specifies
the contract that allows you to use Oracle Enterprise Scheduling Service to invoke a
Java class.

5.3.1 How to Create a Java Class Using the Executable Interface
A Java class that implements the Executable interface must provide an empty
execute() method.

To create a Java class that implements the executable interface:
1. In the Application Navigator, select the EssDemo project.

2. In the Overview area, select the Java Class navigation tab as shown in Figure 5–6.

Creating a Java Implementation Class for the Sample Application

5-8 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 5–6 Add a Java Class to the EssDemo Project

3. In the Overview area in the Java Files area, select New and from the dropdown list
select Java Class.

4. In the Select a Project dialog, select the EssDemo.jpr project.

5. Click OK. This displays the Create Java Class dialog.

6. In the Create Java Class dialog, in the Name field, enter HelloWorld.

7. In the Create Java Class window, in the Package field, enter essdemo.

8. In other fields accept the defaults as shown in Figure 5–7.

Figure 5–7 Adding a Java Implementation Class to the Sample Application

9. Click OK.

Creating a Java Implementation Class for the Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-9

10. Replace the generated contents of the HelloWorld.java file with the contents of
the HelloWorld.java supplied with the sample, as shown in Example 5–1. This
code is also shown in Figure 5–8.

Figure 5–8 Java Class That Implements Executable for Sample Application

Example 5–1 shows HelloWorld(), the Java class that implements the interface
oracle.as.scheduler.Executable.

Example 5–1 Oracle Enterprise Scheduling Service HelloWorld Java Class

package essdemo;

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.Executable;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RequestExecutionContext;

public class HelloWorld implements Executable {
 public HelloWorld() {
 }

 public void execute(RequestExecutionContext ctx, RequestParameters params)
 throws ExecutionErrorException,
 ExecutionWarningException,
 ExecutionCancelledException,
 ExecutionPausedException
 {
 System.out.println("**** Sample Job Running, Request ID: " +
 ctx.getRequestId());

Adding Application Code to Submit Oracle Enterprise Scheduling Service Job Requests

5-10 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 }
}

5.3.2 What Happens When You Create a Java Class That Implements the Executable
Interface

You need to create a Java class to use Oracle Enterprise Scheduling Service. The Oracle
Enterprise Scheduling Service Executable interface provides a hook for using the Java
class that you supply with Oracle Enterprise Scheduling Service. A Java class that
implements the Executable interface can be submitted to Oracle Enterprise
Scheduling Service for execution.

5.3.3 What You Need to Know About the Executable Interface
When you create a class that implements the Executable interface you should follow
certain practices to make sure that your code performs correctly. These practices allow
you to handle Oracle Enterprise Scheduling Service exceptions.

In Example 5–1, note the following:

■ The routine should throw the ExecutionErrorException to signal to the Oracle
Enterprise Scheduling Service runtime that an unrecoverable error occurred
during execution. For example, you can wrap your exception generated during
execution with this exception. Upon this exception, Oracle Enterprise Scheduling
Service transitions the request to the ERROR state.

■ The routine should throw the ExecutionWarningException when the
implementation detects a failure condition that it needs to communicate to Oracle
Enterprise Scheduling Service. Upon this exception, Oracle Enterprise Scheduling
Service transitions the request to the WARNING state.

■ The routine should throw the ExecutionCancelledException when the
implementation detects a condition for request cancellation that it needs to
communicate to Oracle Enterprise Scheduling Service. Upon this exception, Oracle
Enterprise Scheduling Service transitions the request to the CANCELLED state.

■ The routine should throw the ExecutionPausedException to indicate that the class
implementing the Executable interface should pause for the completion of a
subrequest. Upon this exception, Oracle Enterprise Scheduling Service transitions
the request to the PAUSED state.

5.4 Adding Application Code to Submit Oracle Enterprise Scheduling
Service Job Requests

In an Oracle Enterprise Scheduling Service application you use the Oracle Enterprise
Scheduling Service APIs to submit job requests from any component in the

Note: Every time a job request executes, Oracle Enterprise
Scheduling Service calls the execute() method. All of the business
logic associated with a job request should be implemented through
this method. Thus, the Java implementation should not rely on
instance or static member variables for maintaining state. The Java
implementation can use static variables but their use is not
recommended to manage state.

Adding Application Code to Submit Oracle Enterprise Scheduling Service Job Requests

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-11

application. The EssDemoApp sample application provides a Java servlet for a servlet
based user interface for submitting job requests (using Oracle Enterprise Scheduling
Service).

5.4.1 How to Add Required Libraries to Project
You need to add the EJB3.0 libraries and the Oracle Enterprise Scheduling Service
extensions to the ViewController project before you use the Oracle Enterprise
Scheduling Service APIs in a servlet.

To add Oracle JDeveloper EJB3.0 and Oracle Enterprise Scheduling Service
libraries:
1. In the Application Navigator select the ViewController project.

2. Right-click and from the dropdown list select Project Properties....

3. In the Project Properties navigator, select Libraries and Classpath.

4. In the Libraries and Classpath area, click Add Library....

5. In the Add Library dialog select Enterprise Scheduler Extensions.

6. In the Add Library dialog also select EJB 3.0.

7. Click OK. This action adds the libraries as shown in Figure 5–9.

Figure 5–9 Adding Oracle Enterprise Scheduling Service Extensions to ViewController
Project

8. Click OK to dismiss the Project Properties dialog.

5.4.2 How to Create the EssDemo Servlet
Using MVC design pattern you create the EssDemo servlet in the ViewController
project.

Adding Application Code to Submit Oracle Enterprise Scheduling Service Job Requests

5-12 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

To create the sample servlet:
1. In Application Navigator select the ViewController project.

2. Click the New... icon to open the New Gallery.

3. In the New Gallery, in the Categories area expand Web Tier and select Servlets.

4. In the New Gallery, in the Items area select HTTP Servlet.

5. Click OK. This starts the Create HTTP Servlet Wizard.

6. On the create HTTP Servlet Page - Welcome, click Next.

7. On the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter the class
name in the Class field. For this example in the Class field, enter EssDemo.

8. Enter the package name in the Package field. For this example, in the Package
field, enter demo.

9. In the Generate Content Type field, from the dropdown list select HTML.

10. In the Implement Methods area, select the doGet() and doPost() check boxes, as
shown in Figure 5–10.

Figure 5–10 Using the Create HTTP Servlet Wizard to Create the Sample Servlet

11. Click Next.

12. In the Create HTTP Servlet - Step 2 of 3: Mapping Information dialog, in the Name
field, enter: EssDemo

13. In the Create HTTP Servlet - Step 2 of 3: Mapping Information dialog, in the URL
Pattern field, enter: /essdemo/*, as shown in Figure 5–11.

Adding Application Code to Submit Oracle Enterprise Scheduling Service Job Requests

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-13

Figure 5–11 Using the Create HTTP Servlet Wizard: Step 2 of 3 Dialog

14. Click Finish.

15. The supplied EssDemo application includes the completed servlet. You need to
copy the source code into your project. To do this, in Oracle JDeveloper replace the
contents of the servlet with the contents of the file EssDemo.java supplied with the
sample application, as shown in Figure 5–12. The EssDemo.java sample code
includes several hundred lines, so it is not included in this text in an example.

Creating Metadata for Oracle Enterprise Scheduling Service Sample Application

5-14 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 5–12 Adding the Sample Servlet to the ViewController Project

5.5 Creating Metadata for Oracle Enterprise Scheduling Service Sample
Application

To use the Oracle Enterprise Scheduling Service sample application to submit a job
request you need to create metadata that defines a job request, including the
following:

■ A job type: this specifies an execution type and defines a common set of
parameters for a job request.

■ A job definition: this is the basic unit of work that defines a job request in Oracle
Enterprise Scheduling Service.

5.5.1 How to Create a Job Type for Java
An Oracle Enterprise Scheduling Service job type specifies an execution type and
defines a common set of parameters for a job request.

To create a job type:
1. In the Application Navigator, select the EssDemo project.

2. Press Ctrl-N. This displays the New Gallery.

3. In the New Gallery, select the All Technologies tab.

Creating Metadata for Oracle Enterprise Scheduling Service Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-15

4. In the New Gallery, in the Categories area expand Business Tier and select
Enterprise Scheduler Metadata.

5. In the New Gallery, in the Items area select Job Type as shown in Figure 5–13.

Figure 5–13 Adding Job Type Metadata to the Sample Application

6. Click OK. This displays the Create Job Type dialog.

7. In the Create Job Type dialog, specify the following:

a. In the Name field, enter a name for the job type. For this example, enter the
name: Jobtype_essdemo1.

b. In the Package field, enter a package name. For example, enter mypackage.

c. In the Execution Type field, from the dropdown list select JAVA_TYPE as
shown in Figure 5–14.

Creating Metadata for Oracle Enterprise Scheduling Service Sample Application

5-16 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 5–14 Creating a Job Type with the Job Type Creation Wizard

d. Click OK. This creates the Jobtype_essdemo1.xml file and Oracle JDeveloper
displays the Job Type page.

8. In the Job Type page, in the Description field enter a description for the job type.
For this example enter: Sample Java Job Type.

9. In the Class Name field, click the Browse icon.

10. Click the Hierarchy tab and then navigate to select the appropriate class. For this
sample application, select essdemo.HelloWorld. Click OK.

The Job Type page displays, as shown in Figure 5–15.

Tip: You can add the job class at either the job type level or the job
definition level.

Creating Metadata for Oracle Enterprise Scheduling Service Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-17

Figure 5–15 Adding Sample Job Type Metadata

5.5.2 How to Create a Job Definition for Java
To use a Java class with Oracle Enterprise Scheduling Service you need to create a job
definition. A job definition is the basic unit of work that defines a job request in Oracle
Enterprise Scheduling Service.

When you create a job definition you specify a name, select a job type, and specify
system properties.

To create a job definition:
1. In the Application Navigator, select the EssDemo project.

2. Press Ctrl-N. This displays the New Gallery.

3. In the New Gallery in the Categories area expand Business Tier and select
Enterprise Scheduler Metadata.

4. In the New Gallery in the Items area select Job Definition.

5. Click OK. Oracle JDeveloper displays the Create Job Definition dialog.

6. Use the Create Job Definition dialog to specify the following:

a. Enter a name for the job definition or accept the default name. For example,
for the sample application, enter Job_essdemo1.

b. In the Package field, enter a package name. For example, enter mypackage.

c. In the JobType field, from the dropdown list select a value. For example for
the sample application select the job type you previously created, Jobtype_
essdemo1, as shown in Figure 5–16.

Creating Metadata for Oracle Enterprise Scheduling Service Sample Application

5-18 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 5–16 Using the Job Definition Creation Dialog

d. Click OK. This creates the job definition Job_essdemo1.xml and the jobs folder
in mypackage and shows the Job Definition page, as shown in Figure 5–17.

Figure 5–17 Job Definition Page for Sample Application

e. In the System Properties field, click the add button and create a system
property called EffectiveApplication. Set its value to that used in
Section 5.6.1, "How to Assemble the EJB Jar Files for Oracle Enterprise
Scheduling Service Sample Application."

Assembling the Oracle Enterprise Scheduling Service Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-19

5.6 Assembling the Oracle Enterprise Scheduling Service Sample
Application

After you create the sample application you use Oracle JDeveloper to assemble the
application.

To assemble the application you do the following:

■ Create the EJB Jar files

■ Create the application MAR File

■ Create the application EAR file

■ Update WAR File options

5.6.1 How to Assemble the EJB Jar Files for Oracle Enterprise Scheduling Service
Sample Application

The sample application needs to contain the required EJB descriptors. You need to
create the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with
any Java implementation class that you create.

Oracle Enterprise Scheduling Service requires an application to assemble and provide
an EJB JAR so that Oracle Enterprise Scheduling Service can find its entry point in the
application while running job requests on behalf of the application. This EJB jar should
have its required EJB descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as
any Java class implementations that are going to be submitted to Oracle Enterprise
Scheduling Service. The descriptor files ejb-jar.xml and weblogic-ejb-jar must
contain descriptions for the Oracle Enterprise Scheduling Service EJBs and should not
be modified.

To prepare for the assembly of the sample application, do the following to add the EJB
jar files:

■ Create the ejb-jar.xml file: this provides the description for the Oracle Enterprise
Scheduling Service EJBs and associated resources. The context of Oracle Enterprise
Scheduling Service request submission, processing, metadata, and runtime data
for an application is specified as the name of an Oracle Enterprise Scheduling
Service client application using the deployment name. You can also specify the
context using the applicationName property, as shown in Example 5–4.

■ Create the weblogic-ejb-jar.xml file: this provides the Oracle WebLogic Server
specific descriptions for the Oracle Enterprise Scheduling Service EJBs and
associated resources.

■ Create the EJB JAR archive: this includes descriptors for the Java Job
implementations.

To create the ejb-jar.xml file in the Java implementation project:
1. In Application Navigator select the EssDemo project.

2. Click the New... icon.

3. In the New Gallery, in the navigator expand General and select Deployment
Descriptors.

4. In the New Gallery in the Items area select Java EE Deployment Descriptor.

5. Click OK.

6. In the Select Descriptor page select ejb-jar.xml.

Assembling the Oracle Enterprise Scheduling Service Sample Application

5-20 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

7. Click Next.

8. In the Select Version page select 3.0.

9. Click Finish.

10. This creates ejb-jar.xml file and the META-INF directory in the EssDemo project,
as shown in Figure 5–18.

Figure 5–18 Adding the ejb-jar.xml File to the Sample Application

11. Replace the entire contents of the ejb-jar.xml file that you just created with a
copy of the ejb-jar.xml supplied with the sample application. This sample
ejb-jar.xml file is shown in Example 5–2.

Example 5–2 EJB Contents to Copy to ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
 version="3.0">
 <display-name>ESS</display-name>
 <enterprise-beans>
 <message-driven>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
 </message-driven>

 <session>
 <description>Async Request Bean</description>
 <ejb-name>AsyncRequestBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.AsyncRequestBean</ejb-class>
 </session>

 <session>
 <description>Runtime Session Bean</description>
 <ejb-name>RuntimeServiceBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.RuntimeServiceBean</ejb-class>
 </session>

 <session>
 <description>Metadata Session Bean</description>
 <ejb-name>MetadataServiceBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.MetadataServiceBean</ejb-class>
 </session>
 </enterprise-beans>

Assembling the Oracle Enterprise Scheduling Service Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-21

To create the weblogic-ejb-jar.xml file in the Java implementation project:
1. In Application Navigator select the EssDemo project.

2. Click New... icon.

3. Under Categories expand General and select Deployment Descriptors.

4. In the Items area select Weblogic Deployment Descriptor.

5. Click OK.

6. In the Select Descriptor dialog, select weblogic-ejb-jar.xml.

7. Click Next.

8. Click Next.

9. Click Finish. This creates weblogic-ejb-jar.xml file.

10. Replace the entire contents of the weblogic-ejb-jar.xml file with the sample
weblogic-ejb-jar.xml supplied with the sample application. This file is shown in
Example 5–3.

Example 5–3 EJB Descriptor Contents to Copy to weblogic-ejb-jar.xml File

<?xml version="1.0" encoding="US-ASCII" ?>
<weblogic-ejb-jar xmlns="http://www.bea.com/ns/weblogic/10.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/10.0
http://www.bea.com/ns/weblogic/10.0/weblogic-ejb-jar.xsd">
 <weblogic-enterprise-bean>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <message-driven-descriptor>
 <resource-adapter-jndi-name>ess/ra</resource-adapter-jndi-name>
 </message-driven-descriptor>
 <dispatch-policy>ESSRAWM</dispatch-policy>
 </weblogic-enterprise-bean>

 <run-as-role-assignment>
 <role-name>essSystemRole</role-name>
 <run-as-principal-name>weblogic</run-as-principal-name>
 </run-as-role-assignment>
</weblogic-ejb-jar>

To create the EJB JAR archive:
1. In Application Navigator select the EssDemo project.

2. Right-click and from the dropdown list, select Make EssDemo.jpr. In the
Messages Log you should see a successful compilation message, for example:

[3:40:22 PM] Successful compilation: 0 errors, 0 warnings.

3. In Application Navigator select the EssDemo project.

4. Select the New... icon.

5. In the New Gallery, in the Categories area expand General and select
Deployment Profiles.

6. In the New Gallery, in the Items area select EJB JAR File.

Assembling the Oracle Enterprise Scheduling Service Sample Application

5-22 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

7. Click OK. This displays the Create Deployment Profile - EJB JAR File dialog.

8. In the Create Deployment Profile - EJB JAR File dialog, in the Deployment Profile
Name field enter ess-ejb.

9. Click OK. This displays the Edit EJB JAR Deployment Profile Properties dialog.

10. In the Edit EJB JAR Deployment Profile Properties dialog, in the Enterprise
Application Name field enter EssDemoApp, as shown in Figure 5–19.

Figure 5–19 EJB JAR Deployment Profile for Sample Application

11. In the EJB JAR Deployment Profile Properties dialog, in the Navigator expand File
Groups and expand Project Output, and select Contributors.

12. In the Contributors area select Project Output Directory and Project
Dependencies as shown in Figure 5–20.

Assembling the Oracle Enterprise Scheduling Service Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-23

Figure 5–20 Selecting EJB Contributors for the EJB JAR Deployment

13. In the EJB JAR Deployment Properties dialog, in the Navigator expand File
Groups and Project Output, and select Filters.

14. Select the META-INF folder and the essdemo folder as shown in Figure 5–21.

Figure 5–21 EJB JAR Deployment Profile File Groups Filters

15. On the EJB JAR Deployment Profile Properties page, click OK.

16. On the Project Properties page, click OK.

Assembling the Oracle Enterprise Scheduling Service Sample Application

5-24 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

To update WAR archive options:
1. In the Application Navigator, select the ViewController project.

2. Right-click and select Project Properties....

3. In the Navigator, select Deployment.

4. In the Deployment page, in the Deployment Profiles area select the WAR File.

5. Click Edit.... This displays the Edit WAR Deployment Profile Properties dialog.

6. In the Edit War Deployment Profile Properties dialog, select General and
configure the General page as follows, as shown in Figure 5–22:

a. Set the WAR File: path_to_mywork
/mywork/EssDemoApp/ViewController/deploy/EssDemoApp_
ViewController_webapp1.war

b. In the Web Application Context Root area, select Specify Java EE Web
Context Root:

c. In the Specify Java EE Web Context Root: text entry area, enter EssDemoApp.

d. In the Deployment Client Maximum Heap Size (in Megabytes): dropdown
list select Auto

Figure 5–22 WAR Deployment Configuration Options

7. In the Edit WAR Deployment Profile Properties dialog, click OK.

Oracle JDeveloper updates the deployment profile.

8. In the Project Properties dialog, click OK.

9. An application either uses the deployment name as the default value for its
application name or you can set the application name using the property
applicationName in the ejb-jar.xml. The default application name is the
deployment name if the applicationName is not specified.

Assembling the Oracle Enterprise Scheduling Service Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-25

To set the applicationName edit the ejb-jar.xml file to set the value of the
<activation-config-property> named applicationName, as shown in
Example 5–4.

Example 5–4 Setting applicationName in ejb-jar.xml

 <enterprise-beans>
 <message-driven>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>
 applicationName
 </activation-config-property-name>
 <activation-config-property-value>
 MY_APPLICATION_NAME
 </activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>
 <enterprise-beans>

5.6.2 How to Assemble the MAR File for User Metadata
The sample application needs to contain the required MAR profile.

To create the MAR file:
1. Open the EssDemoApp application and from the Application Menu select

Application Properties...

2. In the Application Properties dialog, in the navigator select Deployment.

3. Select and delete the default deployment profile.

4. Click New.... This displays the Create Deployment Profile page.

5. In the Archive Type field, from the dropdown list select MAR File as shown in
Figure 5–23.

Assembling the Oracle Enterprise Scheduling Service Sample Application

5-26 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 5–23 Create Deployment Profile Page for New MAR

6. In the Create Deployment Profile dialog, in the Name field enter a name, for
example enter essMAR.

7. In the Create Deployment Profile dialog, click OK.

8. On the Edit MAR Deployment Profile dialog, in the navigator expand Metadata
File Groups and select User Metadata.

9. Click Add.... This displays the Add Contributor dialog.

10. On the Add Contributor dialog click Browse to add the essmeta metadata that
contains the namespace for the Jobs and JobTypes directory, as shown in
Figure 5–24. Note, you select the path that you need to include in the Add
Contributor dialog by double-clicking the essmeta directory.

Assembling the Oracle Enterprise Scheduling Service Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-27

Figure 5–24 Adding User Metadata to MAR Profile

11. On the Add Contributor dialog, click OK.

12. In the navigator expand Metadata File Groups and User Metadata and select
Directories.

13. Select the mypackage directory. This selects all the appropriate information for
Oracle Enterprise Scheduling Service application user metadata for the
application.

Select the bottom most directory in the tree. This is the directory from which the
namespace is created. For example, when selecting oracle, the namespace is
oracle. When selecting the product directory, the namespace is
oracle/apps/product. For example, to create the namespace
oracle/apps/product/component/ess, click the ess directory.

The folder you select in this dialog determines the top level namespace in
adf-config.xml. For more information, see Section 5.6.3, "How to Assemble the
EAR File for Oracle Enterprise Scheduling Service Sample Application." This
namespace should be the same as the package defined in job and job type
definition. For more information, see Section 5.5, "Creating Metadata for Oracle
Enterprise Scheduling Service Sample Application."

14. On the Edit MAR Deployment Profile Properties page, click OK.

15. On the Application Properties page, in the navigator expand Run and select
MDS.

16. Select the MAR profile you just created, essMAR, as shown in Figure 5–25.

17. Click OK.

Note: If your namespace is too generic, then your Oracle ADF
application might fail. Make sure to use proper package structure and
map only the required namespaces.

Assembling the Oracle Enterprise Scheduling Service Sample Application

5-28 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 5–25 Setting Application Properties Run MDS MAR Profile

5.6.3 How to Assemble the EAR File for Oracle Enterprise Scheduling Service Sample
Application

You need to prepare an EAR file that assembles the sample application. The EAR
archive consists of the following:

■ EJB JAR including the Oracle Enterprise Scheduling Service Java job
implementation.

■ WAR archive with the EssDemo servlet.

To create the EAR file for the application:
1. In the Application Navigator, select the EssDemoApp application.

2. From the Application Menu, select Application Properties....

3. In the Application Properties Navigator, select Deployment.

4. Click New... to create a new deployment descriptor.

5. In the Archive Type dropdown list, select EAR File.

6. In the Create Deployment Profile dialog in the Name field enter the application
name. For the application, enter EssDemoApp.

7. Click OK.

8. In the Edit EAR Deployment Profile Properties dialog, in the navigator select
Application Assembly.

9. In the Application Assembly page in the Java EE Modules area select the
appropriate check boxes, including the following: essMAR, the WEB module in
the ViewController project and the EJB module, ess-ejb, in the EssDemo project
as shown in Figure 5–26.

Assembling the Oracle Enterprise Scheduling Service Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-29

Figure 5–26 Setting Application Assembly Options for EAR File

10. Click OK.

11. On the Application Properties page, click OK.

5.6.4 Add oracle.ess Library Weblogic Application Descriptor
You need to update the weblogic-application.xml file to include the oracle.ess
library.

1. In the Application Navigator expand Application Resources.

2. In the navigator expand Descriptors and expand META-INF, as shown in
Figure 5–27.

Figure 5–27 Viewing weblogic-application.xml in Application Resources

3. Double-click to open the weblogic-application.xml file.

4. Add the following to the weblogic-application.xml file. Example 5–5 shows a
complete weblogic-application.xml file, including this <library-ref> element.

 <library-ref>
 <library-name>oracle.ess</library-name>
 </library-ref>

Deploying and Running the Oracle Enterprise Scheduling Service Sample Application

5-30 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Example 5–5 Contents of Sample weblogic-application.xml File with oracle.ess

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application
http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-application">
 <listener>
 <listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
 </listener>
 <listener>

<listener-class>oracle.adf.share.weblogic.listeners.ADFApplicationLifecycleListene
r</listener-class>
 </listener>
 <library-ref>
 <library-name>adf.oracle.domain</library-name>
 <implementation-version>11.1.1.1.0</implementation-version>
 </library-ref>

 <library-ref>
 <library-name>oracle.ess</library-name>
 </library-ref>

</weblogic-application>

5.7 Deploying and Running the Oracle Enterprise Scheduling Service
Sample Application

After you complete the steps to build and assemble the sample application you need to
deploy the application to Oracle WebLogic Server. After you successfully deploy an
application you can run the application. For the sample application you use a browser
to run the EssDemo servlet to submit job requests to Oracle Enterprise Scheduling
Service running on Oracle WebLogic Server.

5.7.1 How to Deploy the EssDemoApp Application
To deploy the EssDemoApp application you need a properly configured and running
Oracle WebLogic Server, and you need an active metadata server. When you deploy
the application Oracle JDeveloper brings up the Deployment Configuration page.
Select your repository from the dropdown list and Enter a partition name (the
partition name defaults to application name).

To deploy the EssDemoApp application:
1. Check the Run Manager to make sure the Oracle WebLogic Server is up and

running. If the Oracle WebLogic Server is not running, start the server. To start the
server, from the Run menu click Start Server Instance.

2. In the Application Navigator, select the EssDemoApp application.

3. In the Application Navigator from the Application Menu select Deploy >
EssDemoApp > to > IntegratedWLSConnection, as shown in Figure 5–28.

Deploying and Running the Oracle Enterprise Scheduling Service Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-31

Figure 5–28 Deploying the EssDemoApp Application

4. Oracle JDeveloper shows the Deployment Configuration page, as shown in
Figure 5–29. Select the appropriate options for your Metadata Repository.

Deploying and Running the Oracle Enterprise Scheduling Service Sample Application

5-32 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 5–29 Deployment Configuration Page with Metadata Repository Options

5. Click Deploy.

6. Verify the deployment using the Deployment Log.

5.7.2 How to Run the Oracle Enterprise Scheduling Service Sample Application
To run the sample application you access the EssDemo servlet in a browser.

To access the EssDemo servlet:
1. Enter the following URL in a browser:

http://host:http-port/context-root/essdemo

For example,

http://myserver.us.oracle.com:7101/EssDemoApp/essdemo

This shows the EssDemo servlet, as shown in Figure 5–30.

Deploying and Running the Oracle Enterprise Scheduling Service Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-33

Figure 5–30 Running EssDemo Servlet for Oracle Enterprise Scheduling Service Sample
Application

2. Select a job definition from the Job drop-down menu.

3. Select a value from the Schedule drop-down menu.

4. Click Submit.

5. Refresh the browser to see the progress of the job in the Request Status area, as
shown in Figure 5–31.

Figure 5–31 Running EssDemo Servlet with Request Status for Submitted Requests

5.7.3 How to Purge Jobs in the Oracle Enterprise Scheduling Service Sample
Application

Using the sample application and the EssDemo servlet you can remove completed jobs
from the Request Status list.

Troubleshooting the Oracle Enterprise Scheduling Service Sample Application

5-34 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

To remove completed jobs:
1. Click Purge to purge a request.

2. Click Cancel to cancel a request that is either RUNNING or WAITING.

5.8 Troubleshooting the Oracle Enterprise Scheduling Service Sample
Application

This section covers common problems and solutions for these problems.

1. Problem: sqlplus: Command not found.

Solution: Run the Oracle Database commands in an environment that includes
Oracle Database.

2. Problem: SP2-0310: unable to open file "createuser_ess_oracle.sql"

Solution: Change to the /rcu/integration/ess/sql directory before running
sqlplus scripts.

3. Problem:

404 Not Found
Resource /EssDemoApp-ViewController-context-root/essdemo not found on this
server

Solution: This and similar problems can be due to not using a URL that matches
the root URL that you specify when set the context-root on the URL to access the
application. To use a context-root that matches the deployed application, use the
value that you specified.

To check and set the context-root value in the WAR archive:

a. Select the ViewController project.

b. Right-click and from the dropdown list select Project Properties.

c. In the navigator, select Deployment.

d. In the Deployment Profiles area, select essdemoapp and click Edit.

e. Choose the desired context-root, this forms the context-root on the URL to
access the application.

f. In the General area, select Specify Java EE Web Context Root.

g. For the Java EE Web Context Root: text entry area, enter EssDemoApp.

h. In the WAR Deployment Profile Properties window, click OK.

i. In the Project Properties window, click OK.

4. Problem: Unresolved application library references, defined in
weblogic-application.xml: [Extension-Name: oracle.ess, exact-match:
false]..

Deployment fails with errors. For example:

09:30:59 AM] Building...
[09:31:00 AM] Deploying 2 profiles...
[09:31:01 AM] Wrote Web Application Module to
/scratch/sched7/mywork/EssDemoApp/ViewController/deploy/EssDemoApp_
ViewController_webapp1.war
[09:31:01 AM] removed bundleresolver.jar from APP-INF because it cannot be part
of an EJB deployment[09:31:01 AM] Wrote Enterprise Application Module to

Troubleshooting the Oracle Enterprise Scheduling Service Sample Application

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-35

/scratch/sched7/mywork/EssDemoApp/deploy/EssDemoApp_application1.ear
[09:31:02 AM] Deploying Application...
[09:31:04 AM] [Deployer:149193]Deployment of application 'EssDemoApp_
application1' has failed on 'DefaultServer'
[09:31:04 AM] [Deployer:149034]An exception occurred for task
[Deployer:149026]deploy application EssDemoApp_application1 on DefaultServer.:
[J2EE:160149]Error while processing library references. Unresolved application
library references, defined in weblogic-application.xml: [Extension-Name:
oracle.ess, exact-match: false]..
[09:31:05 AM] Weblogic Server Exception:
weblogic.management.DeploymentException: [J2EE:160149]Error while processing
library references. Unresolved application library references, defined in
weblogic-application.xml: [Extension-Name: oracle.ess, exact-match: false].
[09:31:05 AM] See server logs or server console for more details.
[09:31:05 AM] weblogic.management.DeploymentException: [J2EE:160149]Error while
processing library references. Unresolved application library references,
defined in weblogic-application.xml: [Extension-Name: oracle.ess, exact-match:
false].
[09:31:05 AM] #### Deployment incomplete. ####
[09:31:05 AM] Deployment Failed

Solution: This deployment error can be seen when the application is correct, but
the Oracle WebLogic Server configuration is not correct. The configuration
includes the step, 3.1.4, "Create WLS domain". This configuration step is required.

5.8.1 How to Create the Oracle Enterprise Scheduling Service Database Schema
You need to create the Oracle Enterprise Scheduling Service Oracle Database schema.
Oracle Enterprise Scheduling Service uses this schema to maintain information about
job requests.

In order to create the Oracle Enterprise Scheduling Service database schema, you need
to install Oracle JDeveloper for use with Oracle Enterprise Scheduling Service. For
more information, see the Oracle Fusion Applications Installation Guide.

5.8.2 How to Drop the Oracle Enterprise Scheduling Service Runtime Schema
If you have been running with previous version of the Oracle Enterprise Scheduling
Service runtime schema, or if for any reason you need to drop the schema, you can do
this using the dropschema_ess_oracle.sql script.

Use these steps only to drop the Oracle Enterprise Scheduling Service runtime schema.
These steps clean up certain database objects and then drop the schema user. Note that
simply dropping the Oracle Enterprise Scheduling Service schema is not sufficient to
correctly drop and remove an existing schema.

Note: In the Oracle Fusion Applications environment, this step is not
required. In this environment the database is installed with the Oracle
Enterprise Scheduling Service schema pre-configured. Thus, in this
environment you can skip this step.

Note: For a first time installation you do not need to perform these
steps. Only use these steps if you need to drop the database schema
due to a previous installation error or to clean up your database after
a previous use of Oracle Enterprise Scheduling Service.

Using Submitting and Hosting Split Applications

5-36 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

To drop the database schema:
1. Terminate any container that is using Oracle Enterprise Scheduling Service

schema.

2. Change to the ess/sql directory with the following command:

% cd JDEV_install_dir/rcu/integration/ess/sql

3. Do the following, when connected as SYS or as SYSDBA. In the text, ess_schema
represents Oracle Enterprise Scheduling Service schema being removed:

@dropschema_ess_oracle.sql ess_schema
alter session set current_schema=sys;
drop user ess_schema cascade;

Example in which ess_schema is oraess:

> @dropschema_ess_oracle.sql oraess
> alter session set current_schema=sys;
> drop user oraess cascade;
> exit

5.9 Using Submitting and Hosting Split Applications
When you build and deploy Oracle Enterprise Scheduling Service applications, you
can use two split applications — a job submission application, a submitter, and a job
execution application, a hosting application. Using this design you need to configure
and deploy each application with options that support such a split configuration. In
addition, some Oracle Enterprise Scheduling Service deployments use a separate
Oracle WebLogic Server for the hosting and the submitting applications; for this
deployment option the submitting application and the hosting application are
deployed to separate Oracle WebLogic Servers. When the submitter application and
the hosting application for Oracle Enterprise Scheduling Service run on separate
Oracle WebLogic Servers, you need to configure the Oracle WebLogic Server for the
hosting application so that the submitting application can find the hosting application.

To build the sample split applications, you do the following:

1. Build a back-end hosting application that includes the code to be scheduled and
run.

2. Build a front-end submitter application initiates the job requests.

5.9.1 How to Create the Back-End Hosting Application for Oracle Enterprise
Scheduling Service

Using Oracle JDeveloper you create the back-end application. To create the back-end
sample application you do the following:

■ Create a back-end application and project.

Note: This chapter includes a tutorial that uses an older release of
Oracle JDeveloper. This content is deprecated. For development with
a current version of Oracle JDeveloper, see Chapter 4, "Using Oracle
JDeveloper to Generate an Oracle Enterprise Scheduling Service
Application".

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-37

■ Configure security.

■ Define the deployment descriptors.

■ Create the Java class that implements the Oracle Enterprise Scheduling Service
executable interface.

■ Create the Oracle Enterprise Scheduling Service metadata to describe the job

■ Assemble the application.

■ Deploy the application.

5.9.1.1 Creating the Back-End Hosting Application
To work with Oracle Enterprise Scheduling Service with a split application you use
Oracle JDeveloper to create the back-end application and project, and to add Oracle
Enterprise Scheduling Service extensions to the project.

To create the back-end hosting application:
1. From JDeveloper choose File > New from the main menu.

2. In the New Gallery, expand General, select Applications and then Generic
Application, and click OK.

3. In the Name your application page of the Create Generic Application wizard, set
the Application Name field to EssDemoApp.

4. In the Name your project page, set the Project Name to SuperEss.

This project is where you will create and save the Oracle Enterprise Scheduling
Service metadata.

5. Add the EJB technology to the project.

6. In the Project Java Settings page, change the default package to
oracle.apss.ess.howto.

7. In the Configure EJB Settings page, select Generate ejb-jar.xml in this project and
click Finish.

8. In the Application Navigator, right-click the SuperEss project and select Project
Properties.

9. In the Project Properties dialog, expand Project Source Paths and click the
Resources navigation tab.

10. Select Include Content from Subfolders.

11. Click the Libraries and Classpath navigation tab.

12. Click Add Library, select Enterprise Scheduler Extensions, and click OK.

5.9.1.2 Configuring Security for the Back-End Hosting Application
You need to create a user that is assigned to the EssDempAppRole role.

To configure security for the back-end hosting application:
1. Select Application > Secure > Configure ADF Security from the main menu.

2. In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication.

3. In the Authentication Type page, accept the default values as this application will
not have a web module to secure.

Using Submitting and Hosting Split Applications

5-38 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

4. Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding
META-INF. This file contains a security context or security stripe named after the
application.

5. Select Application > Secure > Users from the main menu.

A file named jps-config.xml is generated.

6. In the overview editor for the jps-config.xml file, click the Add icon in the Users
list.

7. Set the name to EssDemoAppUser and set the password to welcome1.

8. Click the Application Roles navigation tab.

9. Click the Add icon in the Roles list and choose Add New Role.

10. Set the name to EssDemoAppRole.

11. Click the Add icon in the Mappings tab and choose Add User.

12. Select EssDemoAppUser and click OK.

5.9.1.3 Defining the Deployment Descriptors for the Back-End Hosting Application
The sample application needs to contain the required EJB descriptors. You need to
create the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with
any Java implementation class that you create.

Oracle Enterprise Scheduling Service requires an application to assemble and provide
an EJB JAR so that Oracle Enterprise Scheduling Service can find its entry point in the
application while running job requests on behalf of the application. This EJB jar should
have its required EJB descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as
any Java class implementations that are going to be submitted to Oracle Enterprise
Scheduling Service. The descriptor files ejb-jar.xml and weblogic-ejb-jar must
contain descriptions for the Oracle Enterprise Scheduling Service EJBs.

The Oracle Enterprise Scheduling Service back-end application is deployed to Oracle
WebLogic Server. You need to create a deployment profile in Oracle JDeveloper to
deploy the EssDemoApp application.

The EssDemoApp application is a standalone application that contains an Oracle
Enterprise Scheduling Service Java job and includes the required Oracle Enterprise
Scheduling Service metadata, an Oracle Enterprise Scheduling Service message-driven
bean (MDB), and the EJB descriptors for the application. This application does not
perform Oracle Enterprise Scheduling Service submit API; in this hosting application
the submission occurs in the front-end submitter application. In the hosting
application, EssDemoApp, the weblogic-ejb-jar.xml exposes the EJB remote
interface through JNDI (using the EJB remote interface allows for the job submission to
occur in the front-end application).

You also need to create the weblogic-application.xml file to include the oracle.ess
library, to add an Oracle Enterprise Scheduling Service listener, and to indicate which
stripe to use to upload the jazn-data.xml policy.

To define the deployment descriptors for the back-end hosting application:
1. In the Application Navigator, expand SuperEss, expand Application Sources,

expand META-INF, and double-click ejb-jar.xml.

2. Replace the contents of the file with the XML shown in Example 5–6

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-39

Example 5–6 Contents to Copy to ejb-jar.xml for a back-end Hosting Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
 version="3.0">
 <display-name>ESS</display-name>

 <enterprise-beans>
 <message-driven>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
 <activation-config>
 <activation-config-property>
 <!-- The "applicationName" property specifies the logical name used
 - by Oracle Enterprise Scheduling Service to identify this
application.
 - This name is independent of the application name used when
 - deploying the application to the container. This decoupling
 - allows applications to safely hardcode the logical application
 - name in source code without having to worry about the more
 - frequently changed deployment name.
 -
 - Note: The name given here must also be specified in the
 - SYS_effectiveApplication property of each job definition and
 - job set of this application.
 -->

<activation-config-property-name>applicationName</activation-config-property-name>

<activation-config-property-value>EssDemoApp</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <!-- The "applicationStripe" property specifies which JPS security
 - stripe or "security context" Oracle Enterprise Scheduling Service
should
 - use to perform security checks.
 -
 - The value here must be the same as the "injection-target-name"
 - value used by the "oracle.security.jps.ee.ejb.JpsInterceptor"
 - interceptor descriptor below.
 -
 - Note: When creating jps-config.xml through JDev, it will create
 - default security context using the JDev workspace name. In
 - order to simplify things, we will use the JDev workspace name
 - as our value. Otherwise, you will have to rename the security
 - context created by JDev or create your own.
 -->
 <activation-config-property-name>applicationStripe
 </activation-config-property-name>
 <activation-config-property-value>EssDemoApp
 </activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>

 <!-- The AsyncBean allows asynchronous Java jobs to notify
 - Oracle Enterprise Scheduling Service of its status through Java EE EJB
APIs.

Using Submitting and Hosting Split Applications

5-40 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 - It is recommended to use the WebService callback pattern
 - instead of the EJB callbacks wherever possible.
 -->
 <session>
 <description>Async Request Bean</description>
 <ejb-name>AsyncRequestBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.AsyncRequestBean</ejb-class>
 </session>

 <!-- The Runtime Service allows users to interact with an Executable.
 - Operations include submitting, cancelling, querying, etc.
 -->
 <session>
 <description>Runtime Session Bean</description>
 <ejb-name>RuntimeServiceBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.RuntimeServiceBean</ejb-class>
 </session>

 <!-- The Metadata Service allows user to interact with
 - Oracle Enterprise Scheduling Service, metadata including job definitions,
 - job sets, job types, schedules, and so on. Operations include reading,
 - writing, querying, copying, deleting, and so on.
 -->
 <session>
 <description>Metadata Session Bean</description>
 <ejb-name>MetadataServiceBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.MetadataServiceBean</ejb-class>
 </session>

 </enterprise-beans>

 <!--
 - The JPS interceptor is used by JPS (Java Platform Security) in order to
 - perform security checks. The "stripe name" is usually associated with
 - the application name but some groups split their security permissions
 - between Oracle ADF grants and Oracle Enterprise Scheduling Service grants,
creating
 - two stripes.
 - For example, the Oracle ADF grants would live in the "MyApp" stripe while
 - the Oracle Enterprise Scheduling Service grants would live in the
"MyAppEss".
 -
 - Note: For this example, we will use only 1 stripe.
 -
 - Note: When creating jps-config.xml through JDev, it will create
 - default security context using the JDev workspace name. In
 - order to simplify things, we will use the JDev workspace name
 - as our value. Otherwise, you will have to rename the security
 - context created by JDev or create your own.
 -->
 <interceptors>
 <interceptor>

<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>EssDemoApp</env-entry-value>
 <injection-target>

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-41

<injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor</injection-targe
t-class>
 <injection-target-name>application_name</injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 </interceptors>
</ejb-jar>

3. In Application Navigator, right-click the SuperEss project and select New.

4. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

5. In the Select Descriptor page select weblogic-ejb-jar.xml.

6. Click Next, click Next again, and click Finish.

7. In the source editor, replace the contents of the weblogic-ejb-jar.xml file that you
just created with the XML shown in Example 5–7.

This XML associates the MDB in the ejb-jar.xml file with the Oracle Enterprise
Scheduling Service Resource Adapter. Without this XML, the application would
not know what to talk to.

Example 5–7 Contents to Copy to weblogic-ejb-jar.xml for a Back-End Hosting
Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-ejb-jar

http://www.bea.com/ns/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-ejb-jar">

 <weblogic-enterprise-bean>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <message-driven-descriptor>
 <resource-adapter-jndi-name>ess/ra</resource-adapter-jndi-name>
 </message-driven-descriptor>
 <dispatch-policy>ESSRAWM</dispatch-policy>
 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

8. In Application Navigator, right-click the SuperEss project and select New.

9. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

10. In the Select Descriptor page select weblogic-application.xml.

11. Click Next, click Next again, and click Finish.

12. In the source editor, replace the contents of the weblogic-application.xml file
that you just created with the XML shown in Example 5–8.

Example 5–8 Contents to Copy to weblogic-application.xml for a Back-End Hosting
Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Using Submitting and Hosting Split Applications

5-42 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application

http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

 <!-- The following application parameter tells JPS which stripe it should
 - use to upload the jazn-data.xml policy. If this parameter is not
 - specified, it will use the Java EE deployment name plus the version
 - number (e.g. EssDemoApp#V2.0).
 -->
 <application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value>EssDemoApp</param-value>
 </application-param>

 <!-- This listener allows JPS to configure itself and upload the
 - jazn-data.xml policy to the appropriate stripe
 -->
 <listener>

<listener-class>oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener<
/listener-class>
 </listener>

 <!-- This listener allows MDS to configure itself and upload any metadata
 - as defined by the MAR profile and adf-config.xml
 -->
 <listener>

<listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
 </listener>

 <!-- This listener allows Oracle Enterprise Scheduling Service to configure
itself
 -->
 <listener>

<listener-class>oracle.as.scheduler.platform.wls.deploy.ESSApplicationLifecycleLis
tener</listener-class>
 </listener>

 <!-- This shared library contains all the Oracle Enterprise Scheduling Service
classes
 -->
 <library-ref>
 <library-name>oracle.ess</library-name>
 </library-ref>
</weblogic-application>

5.9.1.4 Creating a Java Implementation Class in the Back-End Hosting Application
To define an application that runs a Java class under control of Oracle Enterprise
Scheduling Service you need to create the Java class that implements the Oracle
Enterprise Scheduling Service Executable interface. The Executable interface specifies
the contract that allows you to use Oracle Enterprise Scheduling Service to invoke a
Java class.

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-43

A Java class that implements the Executable interface must provide an empty
execute() method.

To create a Java class that implements the executable Interface:
1. In the Application Navigator, right-click the SuperEss project and choose New.

2. In the New Gallery, expand General, select Java and then Java Class, and click
OK.

3. In the Create Java Class dialog, set the name to HelloWorldJob.

4. Set the package to oracle.apps.ess.howto.

5. Click the Add icon, add the oracle.as.scheduler.Executable interface, and click
OK.

6. In other fields accept the defaults.

7. Click OK.

8. In the source editor, replace the generated contents of the HelloWorldJob.java file
with the code shown in Example 5–9.

Example 5–9 Oracle Enterprise Scheduling Service HelloWorldJob Java Class

package oracle.apps.ess.howto;

import java.util.logging.Logger;

import oracle.as.scheduler.Executable;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RequestExecutionContext;
import oracle.as.scheduler.RequestParameters;

public class HelloWorldJob implements Executable {
 public HelloWorldJob() {
 super();
 }

 public void execute(RequestExecutionContext requestExecutionContext,
 RequestParameters requestParameters)
 throws ExecutionErrorException, ExecutionWarningException,
 ExecutionCancelledException, ExecutionPausedException
 {
 printBanner(requestExecutionContext, requestParameters);
 }

 protected void printBanner(RequestExecutionContext requestExecutionContext,
 RequestParameters requestParameters)
 {
 StringBuilder sb = new StringBuilder(1000);
 sb.append("\n==================================");
 sb.append("\n= EssDemoApp request is now running");
 long myRequestId = requestExecutionContext.getRequestId();
 sb.append("\n= Request Id = " + myRequestId);
 sb.append("\n= Request Properties:");

 for (String paramKey : requestParameters.getNames()) {
 Object paramValue = requestParameters.getValue(paramKey);

Using Submitting and Hosting Split Applications

5-44 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 sb.append("\n=\t(" + paramKey + ", " + paramValue + ")");
 }
 sb.append("\n=");
 sb.append("\n==================================");

 Logger logger = Logger.getLogger("oracle.apps.ess.howto");
 logger.info(sb.toString());
 }
}

5.9.1.5 Creating Metadata for the Back-End Hosting Application
To use the Oracle Enterprise Scheduling Service split application to submit a job
request you need to create metadata that defines a job request, including the
following:

■ A job type: this specifies an execution type and defines a common set of
parameters for a job request.

■ A job definition: this is the basic unit of work that defines a job request in Oracle
Enterprise Scheduling Service.

To create metadata for the back-end hosting application:
1. In the Application Navigator, right-click the SuperEss project and choose New.

2. In the New Gallery, select the All Technologies tab.

3. Expand Business Tier, select Enterprise Scheduler Metadata and then Job Type,
and click OK.

4. In the Create Job Type dialog, specify the following:

a. In the Name field, enter HelloWorldJobType.

b. In the Package field, enter /oracle/apps/ess/howto/.

c. Select JAVA_TYPE from the Execution Type dropdown list.

d. Click OK. This creates the HelloWorldJobType.xml file and Oracle JDeveloper
displays the file in the editor.

5. In the editor window, set the description to HelloWorld Example.

6. Set the class name to oracle.apps.ess.howto.HelloWorldJob.

7. In the Application Navigator, right-click the SuperEss project and choose New.

8. Expand Business Tier, select Enterprise Scheduler Metadata and then Job
Definition, and click OK.

9. In the Create Job Definition dialog, specify the following:

a. Set the name to HelloWorldJobDef.

b. Set the package to /oracle/apps/ess/howto/.

c. Set the job type to /oracle/apps/ess/howto/HelloWorldJobType.

Note: For Oracle Fusion Applications use cases, use the prepackaged
Oracle Enterprise Scheduling Service job types instead of creating
your own. For demonstration purposes, you will create your own job
type.

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-45

d. Click OK. This creates the HelloWorldJobDef.xml file and Oracle JDeveloper
displays the file in the editor.

10. In the editor window, set the description to HelloWorld Example.

11. Click the Add icon in the System Properties section.

12. In the Add System Property dialog, select SYS_effectiveApplication from the
Name dropdown list.

13. Set the initial value to EssDemoApp and click OK.

14. Click the Add icon in the Access Control section.

15. In the Add Access Control dialog, ensure that EssDemoApp role is selected in the
Role dropdown list.

This is the role that you created in Section 5.9.1.2, "Configuring Security for the
Back-End Hosting Application."

16. Select Read and select Execute.

17. Click OK.

5.9.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise
Scheduling Service
After you create the back-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the back-end application you do the following:

■ Create the EJB Java Archive

■ Create the application MAR and EAR files

5.9.1.6.1 How to Assemble the EJB JAR File for the Back-End Hosting Application The EJB
Java archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR file for the back-end hosting application:
1. In Application Navigator, right-click the SuperEss project and select Rebuild

SuperEss.jpr.

In the Messages Log you should see a successful compilation message, for
example:

[3:40:22 PM] Successful compilation: 0 errors, 0 warnings.

2. In Application Navigator, right-click the SuperEss project and choose New.

3. In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

4. In the Create Deployment Profile dialog, set the Deployment Profile Name to
JAR_SuperEssEjbJar.

5. Optionally, in the Edit EJB JAR Deployment Profile Properties dialog, expand File
Groups, expand Project Output, and select Filters and clear the essmeta check
box.

Clearing this check box prevents the JAR file from being cluttered with
unnecessary XML files and reduces the overall memory footprint.

6. On the EJB JAR Deployment Profile Properties dialog, click OK.

Using Submitting and Hosting Split Applications

5-46 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

7. On the Project Properties dialog, click OK.

5.9.1.6.2 How to Assemble the MAR and EAR Files for the Back-End Hosting Application The
sample application needs to contain the MAR profile and the EAR file that assembles
the back-end application.

To create the MAR and EAR files for the back-end hosting application:
1. From the main menu, choose Application Menu > Application Properties...

2. In the Application Properties dialog, click the Deployment navigation tab and
click New.

3. In the Create Deployment Profile dialog, select MAR File from the Archive Type
dropdown list.

4. In the Name field, enter MAR_EssDemoAppMar and click OK.

5. In the Edit MAR Deployment Profile dialog, expand Metadata File Groups and
click User Metadata.

6. Click Add.

7. In the Add Contributor dialog add the essmeta directory.

For example, if your work space is at /tmp/EssDemoApp, then the directory to add
is /tmp/EssDemoApp/SuperEss/essmeta.

8. On the Add Contributor dialog, click OK.

9. In the navigator expand Metadata File Groups and User Metadata and select
Directories.

10. Expand the directories and select the deepest directory of the package name,
which is the howto directory.

The directory that you select forms the MDS namespace. In order to avoid
conflicts, you must select the most specific namespace.

11. Click OK.

12. In the Deployment page of the Application Properties dialog, click New.

13. In the Create Deployment Profile dialog, select EAR File from the Archive Type
dropdown list.

14. In the Name field, enter EAR_EssDemoAppEar and click OK.

15. In the Edit EAR Deployment Profile dialog, click the General navigation tab and
enter EssDemoApp in the Application Name field.

16. Click the Application Assembly navigation tab, then select MAR_ESSDemoAppMar
and select JAR_SuperEssEjbJar.

17. Click OK.

18. In the Application Properties dialog, click OK.

5.9.1.7 Deploying the Back-End Hosting Application
After assembling the application, you can deploy it to the server.

To deploy the back-end hosting application:
1. From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...

2. Set up and deploy the application to a container.

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-47

3. When the Deployment Configuration dialog appears, make a note of the default
values, but do not change them.

5.9.2 How to Create the Front-End Submitter Application for Oracle Enterprise
Scheduling Service

In an Oracle Enterprise Scheduling Service split application you use the Oracle
Enterprise Scheduling Service APIs to submit job requests from a front-end
application. The EssDemoAppUI application provides a Java servlet for a servlet based
user interface for submitting job requests (using Oracle Enterprise Scheduling Service).

To create the front-end submitter sample application you do the following:

■ Create a front-end application and project.

■ Configure the ejb-jar.xml file.

■ Create the web project

■ Configure security.

■ Create the HTTP servlet.

■ Edit the web.xml file.

■ Edit the weblogic-application.xml file.

■ Edit the adf-config file.

■ Assemble the application.

■ Deploy the application.

5.9.2.1 Creating the Front-End Submitter Application
You use JDeveloper to build the front-end submitter application using similar steps as
you used for the back-end hosting application.

To create the front-end submitter application:
1. Complete the steps in Section 5.9.1.1, "Creating the Back-End Hosting Application"

but this time use ESSDemoAppUI as the name of the application.

2. In the Application Navigator, right-click the SuperEss project and choose New.

3. In the New Gallery, select General, select Folder, and click OK.

4. Set the folder name to essmeta and click OK.

5.9.2.2 Configuring the ejb-jar.xml File for the Front-End Submitter Application
You need to add entries to the ejb-jar.xml file to enable asynchronous Java jobs to
notify the Oracle Enterprise Scheduling Service of its status and to enable users to
interact with executable operations, such as submitting operations, and with Oracle
Enterprise Scheduling Service metadata, such as job definitions. You also need to
indicate which stripe to use.

To define the deployment descriptors for the front-end submitter application:
1. In the Application Navigator, expand SuperEss, expand Application Sources,

expand META-INF, and double-click ejb-jar.xml.

2. Replace the contents of the file with the XML shown in Example 5–10

Using Submitting and Hosting Split Applications

5-48 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Example 5–10 Contents to Copy to ejb-jar.xml for a Front-End Submitter Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
 version="3.0">
 <display-name>ESS</display-name>

 <enterprise-beans>

 <!-- Note that the UI application does NOT have a message driven bean.
 - This is because the UI application does not run any jobs. The UI
 - application does have the other EJBs.
 -->

 <!-- The AsyncBean allows asynchronous Java jobs to notify
 - Oracle Enterprise Scheduling Service of its status through Java EE EJB
APIs.
 - It is recommended to instead use the WebService callback pattern
 - instead of the EJB callbacks wherever possible.
 -->
 <session>
 <description>Async Request Bean</description>
 <ejb-name>AsyncRequestBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.AsyncRequestBean</ejb-class>
 </session>

 <!-- The Runtime Service allows users to interact with an Executable.
 - Operations include submitting, cancelling, querying, etc.
 -->
 <session>
 <description>Runtime Session Bean</description>
 <ejb-name>RuntimeServiceBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.RuntimeServiceBean</ejb-class>
 </session>

 <!-- The Metadata Service allows users to interact with
 - Oracle Enterprise Scheduling Service, metadata, including job
definitions,
 - job sets, job types, schedules, and so on.
 - Operations include reading, writing, querying, copying, deleting,
 - and so on.
 -->
 <session>
 <description>Metadata Session Bean</description>
 <ejb-name>MetadataServiceBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.MetadataServiceBean</ejb-class>
 </session>

 </enterprise-beans>

 <!--
 - The JPS interceptor is used by JPS (Java Platform Security) in order to
 - perform security checks. The "stripe name" is usually associated with
 - the application name but some groups split their security permissions
 - between Oracle ADF grants and Oracle Enterprise Scheduling Service grants,
thereby
 - creating two stripes. For example, the Oracle ADF grants would live
 - in the "MyApp" stripe while the Oracle Enterprise Scheduling Service

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-49

 - grants would live in the "MyAppEss".
 -
 - Note: For this example, we will use only 1 stripe.
 -
 - Note: When creating jps-config.xml through JDev, it will create
 - default security context using the JDev workspace name. In
 - order to simplify things, we will use the JDev workspace name
 - as our value. Otherwise, you will have to rename the security
 - context created by JDev or create your own.
 -->
 <interceptors>
 <interceptor>

<interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>EssDemoApp</env-entry-value>
 <injection-target>

<injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor</injection-targe
t-class>
 <injection-target-name>application_name</injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 </interceptors>
</ejb-jar>

5.9.2.3 Creating the SuperWeb Project
You need to create a web project for the servlet.

To create the SuperWeb project:
1. Right-click the SuperEss project and choose New.

2. In the New Gallery, expand General, select Projects and then Generic Project, and
click OK.

3. In the Name your application page of the Create Generic Application wizard, set
the Application Name field to SuperWeb.

4. In the Name your project page, set the Project Name to SuperEss.

5. Add the JSP and Servlets technology to the project.

6. In the Project Java Settings page, change the default package to
oracle.apss.ess.howto and click Finish.

7. In the Application Navigator, right-click the SuperWeb project and choose Project
Properties.

8. Click the Libraries and Classpath navigation tab.

9. Click Add Library, select ADF Web Runtime and Enterprise Scheduler
Extensions, and click OK.

Using Submitting and Hosting Split Applications

5-50 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

5.9.2.4 Configuring Security for the Front-End Submitter Application
You need to configure security for the application. You do not have to create any users
or roles as the EssDemoAppUI application will simply share the users and roles
created by the EssDemoApp application.

To configure security for the front-end submitter application:
1. Select Application > Secure > Configure ADF Security from the main menu.

2. In the ADF Security page of the Configure ADF Security wizard, select ADF
Authentication.

3. In the Authentication Type page, select SuperWeb.jpr from the Web Project
dropdown list.

4. Select HTTP Basic Authentication.

5. Click Finish.

A file named jps-config.xml is generated. You can find this file in the
Application Resources panel by expanding Descriptors, and expanding
META-INF.

5.9.2.5 Creating the HTTP Servlet for the Front-End Submitter Application
Normally, more complex user interfaces that are built on heavy weight frameworks
such as Oracle Application Development Framework are employed, but for the sake of
simplicity, you use a basic HTTP servlet for the submitter application.

To create the HTTP Servlet for the front-end submitter application:
1. Right-click the SuperEss project and choose New.

2. In the New Gallery, expand Web Tier, select Servlets and then HTTP Servlet, and
click OK.

3. In the Web Application page of the Web Application wizard, select Servlet
2.5\JSP 2.1 (Java EE 1.5).

4. In the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter
EssDemoAppServlet in the Class field.

5. Enter oracle.apps.ess.howto in the Package field and click Next.

6. Click Finish.

7. In the source editor, replace the contents of ESSDemoAppServlet.java with the
code in Example 5–11.

Example 5–11 HTTP Servlet Code for the Front-End Submitter Application

package oracle.apps.ess.howto;

import java.io.IOException;
import java.io.PrintWriter;
import java.io.StringWriter;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-51

import java.util.Map;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.regex.Pattern;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.MetadataObjectId.MetadataObjectType;
import oracle.as.scheduler.MetadataService;
import oracle.as.scheduler.MetadataService.QueryField;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.RequestDetail;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.State;
import oracle.as.scheduler.core.JndiUtil;

public class EssDemoAppServlet extends HttpServlet {
 @SuppressWarnings("compatibility:4685800289380934682")
 private static final long serialVersionUID = 1L;

 private static final String CONTENT_TYPE = "text/html; charset=UTF-8";
 private static final String MESSAGE_KEY = "Message";
 private static final String PATH_SUBMIT = "/submitRequest";
 private static final String PATH_ALTER = "/alterRequest";
 private static final String MDO_SEP = ";";
 private static final String ACTION_CANCEL = "Cancel";
 private static final String ESS_UNAVAIL_MSG =
 "<p>Enterprise Scheduler Service is currently unavailable. Cause: %s</p>";

 private enum PseudoScheduleChoices {
 Immediately(0),
 InTenSeconds(10),
 InTenMinutes(10 * 60);

 @SuppressWarnings("compatibility:-5637079380819677366")
 private static final long serialVersionUID = 1L;

 private int m_seconds;

 private PseudoScheduleChoices(int seconds) {
 m_seconds = seconds;
 }

 public int getSeconds() {
 return m_seconds;
 }
 }

Using Submitting and Hosting Split Applications

5-52 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 public EssDemoAppServlet() throws ServletException {
 super();
 }

 @Override
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }

 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType(CONTENT_TYPE);

 HttpSession session = request.getSession(true);
 String lastMessage = String.valueOf(session.getAttribute(MESSAGE_KEY));

 if ("null".equals(lastMessage)) {
 lastMessage = "";
 }

 try {
 RuntimeLists runtimeLists = getRuntimeLists();
 MetadataLists metadataLists = getMetadataLists();
 renderResponse(metadataLists, runtimeLists,
 request, response, lastMessage);
 } catch (ServletException se) {
 throw se;
 } catch (Exception e) {
 throw new ServletException(e);
 }
 }

 @Override
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType(CONTENT_TYPE);
 request.setCharacterEncoding("UTF-8");

 HttpSession session = request.getSession(true);
 String pathInfo = request.getPathInfo();

 // Clear the message on every post request
 StringBuilder message = new StringBuilder("");

 try {
 // Select each handler based on the form action
 if ("".equals(pathInfo)) {
 // No processing
 } else if (PATH_SUBMIT.equals(pathInfo)) {
 postSubmitRequest(request, message);
 } else if (PATH_ALTER.equals(pathInfo)) {
 postAlterRequest(request, message);

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-53

 } else {
 message.append(String.format("<p>No handler for pathInfo=%s</p>",
 pathInfo));
 }
 }
 catch (ServletException se) {
 Throwable t = se.getCause();
 String cause = (t == null) ? se.toString() : t.toString();
 message.append (String.format(ESS_UNAVAIL_MSG, cause));
 }

 // Storing the messages in the session allows them to persist
 // through the redirect and across refreshes.
 session.setAttribute(MESSAGE_KEY, message.toString());

 // render the page by redirecting to doGet(); this intentionally
 // strips the actions and post data from the request.
 response.sendRedirect(request.getContextPath() +
 request.getServletPath());
 }

 /**
 * Handle the job submission form.
 * @param request
 * @param message
 * @throws ServletException
 */
 private void postSubmitRequest(HttpServletRequest request,
 StringBuilder message)
 throws ServletException
 {
 String jobDefName = request.getParameter("job");
 String scheduleDefName = request.getParameter("schedule");

 // Various required args for submission
 Calendar start = Calendar.getInstance();
 start.add(Calendar.SECOND, 2);

 // Launch the job based on form contents
 if (jobDefName == null || scheduleDefName == null) {
 message.append("Both a job name and a schedule name must be
specified\n");
 } else {
 PseudoScheduleChoices pseudoSchedule = null;

 // See if schedule given is actually a pseudo schedule
 try {
 pseudoSchedule = PseudoScheduleChoices.valueOf(scheduleDefName);
 } catch (IllegalArgumentException e) {
 // The string is not a valid member of the enum
 pseudoSchedule = null;
 }

 MetadataObjectId scheduleDefId = null;
 String scheduleDefNamePart = null;
 MetadataObjectId jobDefId = stringToMetadataObjectId(jobDefName);

 // Don't look up schedules that aren't real

Using Submitting and Hosting Split Applications

5-54 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 if (pseudoSchedule != null) {
 scheduleDefNamePart = scheduleDefName;
 start.add(Calendar.SECOND, pseudoSchedule.getSeconds());
 } else {
 scheduleDefId = stringToMetadataObjectId(scheduleDefName);
 scheduleDefNamePart = scheduleDefId.getNamePart();
 }

 String jobDefNamePart = jobDefId.getNamePart();
 String requestDesc = jobDefNamePart + "@" + scheduleDefNamePart;

 Logger logger = getLogger();
 long requestId = submitRequest(pseudoSchedule, requestDesc,
 jobDefId, scheduleDefId, start,
logger);

 // Populate the message block based on results
 message.append(String.format("<p>New request %d launched using
%s</p>",
 requestId, requestDesc));
 }
 }

 private Long submitRequest(final PseudoScheduleChoices pseudoSchedule,
 final String requestDesc,
 final MetadataObjectId jobDefId,
 final MetadataObjectId scheduleDefId,
 final Calendar start,
 final Logger logger)
 throws ServletException
 {
 RuntimeServicePayload<Long> myPayload = new RuntimeServicePayload<Long>()
{
 @Override
 Long execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 RequestParameters params = new RequestParameters();
 return (null != pseudoSchedule)
 ? service.submitRequest(handle, requestDesc, jobDefId,
 start, params)
 : service.submitRequest(handle, requestDesc, jobDefId,
 scheduleDefId, null,
 start, null, params);
 }
 };
 try {
 return performOperation(myPayload, logger);
 } catch (Exception e) {
 throw new ServletException("Error submitting request using job: " +
 jobDefId + " and schedule: " +
 scheduleDefId, e);
 }
 }

 /**
 * Handle the "Cancel" and "Purge" actions from the form enclosing

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-55

 * the Request Status table.
 * @param request
 * @param message
 * @throws ServletException
 */
 private void postAlterRequest(HttpServletRequest request,
 StringBuilder message)
 throws ServletException
 {
 String cancelID = null;

 /*
 * there are a few assumptions going on here...
 * the HTTP button being used to transmit the action and
 * request is backwards from its normal usage (eg. the name
 * should be invariable, and the value variable). Because we
 * want to display either "Purge" or "Cancel" on the button, and
 * transmit the reqId with it, we are reversing the map entry
 * to get the key (which in this case will be the reqID), and
 * match it to the value (Purge or Cancel).
 * Assumptions are that there will be only one entry in the map
 * per request (one purge or cancel). Also, that the datatypes
 * for the key and value willl be those documented for
 * ServletRequest (<K,V> = <String, String[]>).
 */
 Map requestMap = request.getParameterMap();
 Iterator mapIter = requestMap.entrySet().iterator();
 while (mapIter.hasNext()) {
 Map.Entry entry = (Map.Entry)mapIter.next();
 String key = (String)entry.getKey();
 String[] values = (String[])entry.getValue();
 if (ACTION_CANCEL.equals(values[0])) {
 cancelID = key;
 }
 }

 if (cancelID != null) {
 try {
 final String cancelId2 = cancelID;
 RuntimeServicePayload<Void> myPayload = new
RuntimeServicePayload<Void>() {
 @Override
 Void execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 service.cancelRequest(handle, Long.valueOf(cancelId2));
 return null;
 }
 };

 Logger logger = getLogger();
 performOperation(myPayload, logger);
 message.append
 (String.format("<p>Cancelled request %s</p>", cancelID));
 } catch (Exception e) {
 throw new ServletException
 ("Error canceling or purging request", e);
 }

Using Submitting and Hosting Split Applications

5-56 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 } else {
 message.append("<p>No purge or cancel action specified</p>");
 }
 }

 private String metadataObjectIdToString(MetadataObjectId mdoID)
 throws ServletException {

 String mdoString =
 mdoID.getType().value() + MDO_SEP + mdoID.getPackagePart() +
 MDO_SEP + mdoID.getNamePart();

 return mdoString;
 }

 private MetadataObjectId stringToMetadataObjectId(String mdoString)
 throws ServletException {
 String[] mdoStringParts = mdoString.split(Pattern.quote(MDO_SEP));
 if (mdoStringParts.length != 3) {
 throw new ServletException(String.format("Unexpected number of
components %d found " +
 "when converting %s to
MetadataObjectID",
 mdoStringParts.length,
 mdoString));
 }

 MetadataObjectType mdType =
 MetadataObjectType.getMOType(mdoStringParts[0]);
 String mdPackage = mdoStringParts[1];
 String mdName = mdoStringParts[2];

 MetadataObjectId mdoID =
 MetadataObjectId.createMetadataObjectId(mdType, mdPackage, mdName);
 return mdoID;
 }

 /**
 * this changes the format used in this class for job definitions to the one
 * which will be used in the runtime query.
 * @param strMetadataObject
 * @return string representing object in runtime store
 * @throws ServletException
 */
 private String fixMetadataString(String strMetadataObject)
 throws ServletException {
 String fslash = "/";
 String[] mdoStringParts =
 strMetadataObject.split(Pattern.quote(MDO_SEP));
 if (mdoStringParts.length != 3) {
 throw new ServletException(String.format("Unexpected number of
components %d found " +
 "when converting %s to
MetadataObjectID",
 mdoStringParts.length,
 strMetadataObject));
 }
 String[] trimStringParts = new String[mdoStringParts.length];
 for (int i = 0; i < mdoStringParts.length; i++) {
 String mdoStringPart = mdoStringParts[i];

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-57

 trimStringParts[i] = mdoStringPart.replaceAll(fslash, " ").trim();
 }

 MetadataObjectType mdType =
 MetadataObjectType.getMOType(trimStringParts[0]);
 String mdPackage = fslash + trimStringParts[1];
 String mdName = trimStringParts[2];
 MetadataObjectId metadataObjId =
 MetadataObjectId.createMetadataObjectId(mdType, mdPackage, mdName);
 return metadataObjId.toString();
 }

 private Set<String> getSetFromMetadataEnum(Enumeration<MetadataObjectId>
enumMetadata)
 throws ServletException {
 Set<String> stringSet = new HashSet<String>();

 while (enumMetadata.hasMoreElements()) {
 MetadataObjectId objId = enumMetadata.nextElement();
 String strNamePart = objId.getNamePart();
 stringSet.add(strNamePart);
 }
 return stringSet;
 }

 //**
 //
 // HTML Rendering Methods
 //
 //**

 /**
 * Rendering code for the page displayed.
 * In a real application this would be done using JSP, but this approach
 * keeps everything in one file to make the example easier to follow.
 * @param response The response object from the main request.
 * @param message Text that will appear in the message panel, may contain HTML
 * @throws IOException
 */
 private void renderResponse(MetadataLists ml,
 RuntimeLists rl,
 HttpServletRequest request,
 HttpServletResponse response,
 String message)
 throws IOException, ServletException
 {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();

 String urlBase = request.getContextPath() + request.getServletPath();

 // Indents maintained for clarity
 out.println("<html>");
 out.println("<head><title>EssDemo</title></head>");
 out.println("<body>");
 out.println("<table align=\"center\"><tbody>");
 out.println(" <tr><td align=\"center\"><h1>Oracle Enterprise Scheduling
Service Tutorial</h1></td></tr>");
 out.println(" <tr><td align=\"center\"><table cellspacing=6><tr>");

Using Submitting and Hosting Split Applications

5-58 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 // Job launch form
 out.println(" <td align=\"center\">");
 out.println(" <h2>Launch Job</h2>");
 renderLaunchJobForm(ml, out, urlBase);
 out.println(" </td>");

 out.println(" <td align=\"center\" bgcolor=\"blue\" width=\"2\"/>");

 out.println(" </tr></table></td></tr>");

 out.println(" <tr><td bgcolor=\"red\"/></tr>");

 // Message panel
 out.println(" <tr><td align=\"center\"><h3>Messages</h3></td></tr>");
 out.println(" <tr><td>");
 out.println(message);
 out.println(" </td></tr>");

 out.println(" <tr><td bgcolor=\"red\"/></tr>");

 // Request status
 out.println(" <tr><td align=\"center\">");
 out.println(" <form name=\"attrs\" action=\"" + urlBase +
 PATH_ALTER + "\" method=\"post\">");
 out.println(" <h2>Request Status</h2>");
 out.println(" <table border=2><tbody>");
 out.println(" <th>reqID</th>");
 out.println(" <th>Description</th>");
 out.println(" <th>Scheduled time</th>");
 out.println(" <th>State</th>");
 out.println(" <th>Action</th>");

 renderStatusTable(out, rl.requestDetails);

 out.println(" </tbody></table>");
 out.println(" </form>");
 out.println(" </td></tr>");
 out.println("</tbody></table>");
 out.println("</body></html>");
 out.close();
 }

 private void renderLaunchJobForm(MetadataLists ml, PrintWriter out, String
urlBase)
 throws ServletException {
 out.println(" <form name=\"attrs\" action=\"" + urlBase +
 PATH_SUBMIT + "\" method=\"post\">");
 out.println(" <table><tbody>");
 out.println(" <tr><td align=\"right\">");
 out.println(" Job:");
 out.println(" <select name=\"job\">");

 renderMetadataChoices(out, ml.jobDefList, false);
 renderMetadataChoices(out, ml.jobSetList, false);

 out.println(" </select>");
 out.println(" </td></tr>");
 out.println(" <tr><td align=\"right\">");
 out.println(" Schedule:");
 out.println(" <select name=\"schedule\">");

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-59

 renderPseudoScheduleChoices(out);
 renderMetadataChoices(out, ml.scheduleList, false);

 out.println(" </select>");
 out.println(" </td></tr>");
 out.println(" <tr><td align=\"center\">");
 out.println(" <input name=\"submit\" value=\"Submit\"
type=\"submit\">");
 out.println(" </td></tr>");
 out.println(" </tbody></table>");
 out.println(" </form>");
 }

 /**
 *
 * @param out - printwriter
 * @param jobChoices -- metadata to be displayed
 * @param bBlankFirst -- blank first (so that this param is not required)
 * @throws ServletException
 */
 private void renderMetadataChoices(PrintWriter out,
 Enumeration<MetadataObjectId> jobChoices,
 boolean bBlankFirst)
 throws ServletException
 {
 if (jobChoices == null)
 return;

 boolean bFirst = true;
 while (jobChoices.hasMoreElements()) {
 MetadataObjectId job = jobChoices.nextElement();
 String strJob = metadataObjectIdToString(job);
 String strNamePart = job.getNamePart();
 if (strNamePart.compareTo("BatchPurgeJob") == 0) {
 continue;
 } else {
 if (bFirst && bBlankFirst) {
 out.printf("<option value=\"%s\">%s</option>", "", "");
 bFirst = false;
 }
 out.printf("<option value=\"%s\">%s</option>", strJob,
 strNamePart);
 }
 }
 }

 /**
 * helper method for rendering choices based on strings, adding an empty
 * string to the beginning of the list
 * @param out
 * @param choices
 */
 private void renderStringChoices(PrintWriter out, Set<String> choices) {
 if (choices == null)
 return;

 choices.add("");
 SortedSet<String> sorted = new TreeSet<String>(choices);
 Iterator choiceIter = sorted.iterator();

Using Submitting and Hosting Split Applications

5-60 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 while (choiceIter.hasNext()) {
 String choice = (String)choiceIter.next();

 out.printf("<option value=\"%s\">%s</option>", choice, choice);
 }
 }

 private void renderPseudoScheduleChoices(PrintWriter out) {
 for (PseudoScheduleChoices c : PseudoScheduleChoices.values()) {
 out.printf("<option value=\"%s\">%s</option>", c, c);
 }
 }

 private void renderStatusTable
 (PrintWriter out, List<RequestDetail> reqDetails)
 {
 if (reqDetails == null) {
 return;
 }

 for (RequestDetail reqDetail : reqDetails) {
 State state = reqDetail.getState();

 Calendar scheduledTime = reqDetail.getScheduledTime();
 String scheduledTimeString = null;

 if (scheduledTime == null) {
 scheduledTimeString = "null scheduled time";
 } else {
 scheduledTimeString = String.valueOf(scheduledTime.getTime());
 }

 final String actionButton;
 if (!state.isTerminal()) {
 String action = ACTION_CANCEL;
 String reqId = String.valueOf(reqDetail.getRequestId());
 actionButton = String.format
 ("<button type=submit value=%s name=\"%s\">%s</button>",
 action, reqId, action);
 } else {
 actionButton = " ";
 }

out.printf("<tr><td>%d</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>\n",
 reqDetail.getRequestId(), reqDetail.getDescription(),
 scheduledTimeString, state, actionButton);
 }
 }

 private MetadataService getMetadataService() throws Exception {
 return JndiUtil.getMetadataServiceEJB();
 }

 private RuntimeService getRuntimeService() throws Exception {
 return JndiUtil.getRuntimeServiceEJB();
 }

 private abstract class Payload<SERVICE, HANDLE, RETURN> {

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-61

 abstract SERVICE getService() throws Exception;
 abstract HANDLE getHandle(SERVICE service) throws Exception;
 abstract void closeHandle(SERVICE service,
 HANDLE handle,
 boolean abort)
 throws Exception;
 abstract RETURN execute(SERVICE service, HANDLE handle, Logger logger)
 throws Exception;
 }

 private abstract class MetadataServicePayload<T>
 extends Payload<MetadataService, MetadataServiceHandle, T>
 {
 @Override
 MetadataService getService() throws Exception {
 return getMetadataService();
 }

 @Override
 MetadataServiceHandle getHandle(MetadataService service)
 throws Exception
 {
 return service.open();
 }

 @Override
 void closeHandle(MetadataService service,
 MetadataServiceHandle handle,
 boolean abort)
 throws Exception
 {
 service.close(handle, abort);
 }
 }

 private abstract class RuntimeServicePayload<T>
 extends Payload<RuntimeService, RuntimeServiceHandle, T>
 {
 @Override
 RuntimeService getService() throws Exception {
 return getRuntimeService();
 }

 @Override
 RuntimeServiceHandle getHandle(RuntimeService service)
 throws Exception
 {
 return service.open();
 }

 @Override
 void closeHandle(RuntimeService service,
 RuntimeServiceHandle handle,
 boolean abort)
 throws Exception
 {
 service.close(handle, abort);
 }
 }

Using Submitting and Hosting Split Applications

5-62 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 private <S, H, R> R performOperation
 (Payload<S, H, R> payload, Logger logger)
 throws Exception
 {
 S service = payload.getService();
 H handle = payload.getHandle(service);

 Exception origException = null;
 try {
 return payload.execute(service, handle, logger);
 } catch (Exception e2) {
 origException = e2;
 throw e2;
 } finally {
 if (null != handle) {
 try {
 boolean abort = (null != origException);
 payload.closeHandle(service, handle, abort);
 } catch (Exception e2) {
 if (null != origException) {
 logger.log(Level.WARNING, "An error occurred while " +
 "closing handle, however, a previous failure was " +
 "detected. The following error will be logged " +
 "but not reported: " + stackTraceToString(e2));
 }
 }
 }
 }
 }

 private final String stackTraceToString(Exception e) {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 e.printStackTrace(pw);
 pw.flush();
 pw.close();
 return sw.toString();
 }

 private Logger getLogger() {
 return Logger.getLogger(this.getClass().getName());
 }

 private class MetadataLists {
 private final Enumeration<MetadataObjectId> jobDefList;
 private final Enumeration<MetadataObjectId> jobSetList;
 private final Enumeration<MetadataObjectId> scheduleList;
 private final Enumeration<MetadataObjectId> jobTypeList;

 private MetadataLists(Enumeration<MetadataObjectId> jobDefList,
 Enumeration<MetadataObjectId> jobSetList,
 Enumeration<MetadataObjectId> scheduleList,
 Enumeration<MetadataObjectId> jobTypeList)
 {
 this.jobDefList = jobDefList;
 this.jobSetList = jobSetList;
 this.scheduleList = scheduleList;
 this.jobTypeList = jobTypeList;
 }
 }

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-63

 private class RuntimeLists {
 private final List<RequestDetail> requestDetails;
 private final Set<String> applicationChoices;
 private final Set<String> stateChoices;
 private final Set<MetadataObjectId> jobDefMDOChoices;

 private RuntimeLists(List<RequestDetail> requestDetails,
 Set<String> applicationChoices,
 Set<String> stateChoices,
 Set<MetadataObjectId> jobDefMDOChoices)
 {
 super();
 this.requestDetails = requestDetails;
 this.applicationChoices = applicationChoices;
 this.stateChoices = stateChoices;
 this.jobDefMDOChoices = jobDefMDOChoices;
 }
 }

 /**
 * Retrieve lists of jobs, schedules, and status for use by the renderer
 * @throws ServletException
 */
 private MetadataLists getMetadataLists() throws Exception {
 Logger logger = getLogger();

 MetadataServicePayload<MetadataLists> myPayload =
 new MetadataServicePayload<MetadataLists>()
 {
 @Override
 MetadataLists execute(MetadataService service,
 MetadataServiceHandle handle,
 Logger logger)
 throws Exception
 {
 Enumeration<MetadataObjectId> jobDefs =
 service.queryJobDefinitions(handle, null, QueryField.NAME,
true);
 Enumeration<MetadataObjectId> jobSets =
 service.queryJobSets(handle, null, QueryField.NAME, true);
 Enumeration<MetadataObjectId> schedules =
 service.querySchedules(handle, null, QueryField.NAME, true);
 Enumeration<MetadataObjectId> jobTypes =
 service.queryJobTypes(handle, null, QueryField.NAME, true);

 return new MetadataLists(jobDefs, jobSets, schedules, jobTypes);
 }
 };
 MetadataLists ml = performOperation(myPayload, logger);
 return ml;
 }

 private RuntimeLists getRuntimeLists() throws Exception {
 Logger logger = getLogger();

 RuntimeServicePayload<List<RequestDetail>> myPayload2 =
 new RuntimeServicePayload<List<RequestDetail>>()
 {
 @Override

Using Submitting and Hosting Split Applications

5-64 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 List<RequestDetail> execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 List<RequestDetail> reqDetails =
 new ArrayList<RequestDetail>(10);
 Enumeration requestIds = service.queryRequests
 (handle, null, RuntimeService.QueryField.REQUESTID, true);

 while (requestIds.hasMoreElements()) {
 Long reqId = (Long)requestIds.nextElement();
 RequestDetail detail = service.getRequestDetail(handle,
reqId);
 reqDetails.add(detail);
 }

 return reqDetails;
 }
 };
 List<RequestDetail> reqDetails = performOperation(myPayload2, logger);
 RuntimeLists rl = getRuntimeLists(reqDetails);
 return rl;
 }

 private RuntimeLists getRuntimeLists(List<RequestDetail> reqDetails) {
 Set<String> applicationSet = new HashSet<String>(10);
 Set<String> stateSet = new HashSet<String>(10);
 Set<MetadataObjectId> jobDefMOSet = new HashSet<MetadataObjectId>(10);

 if (reqDetails != null) {
 ListIterator detailIter = reqDetails.listIterator();
 while (detailIter.hasNext()) {
 RequestDetail detail = (RequestDetail)detailIter.next();
 applicationSet.add(detail.getDeployedApplication());
 State state = detail.getState();
 if (state.isTerminal())
 stateSet.add(state.name());
 jobDefMOSet.add(detail.getJobDefn());
 }
 }

 RuntimeLists rl = new RuntimeLists
 (reqDetails, applicationSet, stateSet, jobDefMOSet);
 return rl;
 }

}

5.9.2.6 Editing the web.xml File for the Front-End Submitter Application
You need to edit the web.xml file to and Oracle Enterprise Scheduling Service
metadata and runtime EJB references.

To edit the web.xml file for the front-end submitter application:
1. In the Application Navigator, expand SuperWeb, expand Web Content, expand

WEB-INF and double-click web.xml.

2. In the overview editor, click the References navigation tab and expand the EJB
References section.

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-65

3. Add two EJB resources with the information shown in Table 5–1.

4. Click the Servlets navigation tab and click the Servlet Mappings tab.

5. Change the /essdemoappservlet URL pattern to /essdemoappservlet/*.

5.9.2.7 Editing the weblogic-application.xml file for the Front-End Submitter
Application
You need to create and edit the weblogic-application.xml file.

To edit the weblogic-application.xml file for the front-end submitter application:
1. In Application Navigator, right-click the SuperEss project and select New.

2. In the New Gallery, expand General, select Deployment Descriptors and then
Weblogic Deployment Descriptor, and click OK.

3. In the Select Descriptor page select weblogic-application.xml.

4. Click Next, click Next again, and click Finish.

5. In the source editor, replace the contents of the weblogic-application.xml file
that you just created with the XML shown in Example 5–12.

Example 5–12 Contents to Copy to weblogic-application.xml for a Front-End Submitter
Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application

http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

 <!-- The following application parameter tells JPS which stripe it should
 - use to upload the jazn-data.xml policy. If this parameter is not
 - specified, it will use the Java EE deployment name plus the version
 - number (e.g. EssDemoApp#V2.0).
 -->
 <application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value>EssDemoAppUI</param-value>
 </application-param>

 <!-- This listener allows JPS to configure itself and upload the
 - jazn-data.xml policy to the appropriate stripe
 -->
 <listener>

<listener-class>oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener<
/listener-class>
 </listener>

Table 5–1 EJB Resources for the Front-End Submitter Application

EJB Name
Interface
Type

EJB
Type Local/Remote Interface

ess/metadata Local Session oracle.as.scheduler.MetadataServiceLocal

ess/runtime Local Session oracle.as.scheduler.RuntimeServiceLocal

Using Submitting and Hosting Split Applications

5-66 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 <!-- This listener allows MDS to configure itself and upload any metadata
 - as defined by the MAR profile and adf-config.xml
 -->
 <listener>

<listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
 </listener>

 <!-- This listener allows Oracle Enterprise Scheduling Service to configure
itself
 -->
 <listener>

<listener-class>oracle.as.scheduler.platform.wls.deploy.ESSApplicationLifecycleLis
tener</listener-class>
 </listener>

 <!-- This shared library contains all the Oracle Enterprise Scheduling Service
classes
 -->
 <library-ref>
 <library-name>oracle.ess.client</library-name>
 </library-ref>
 <library-ref>
 <library-name>adf.oracle.domain</library-name>
 </library-ref>
</weblogic-application>

5.9.2.8 Editing the adf-config file for the Front-End Submitter Application
You need to edit the adf-config.xml file to tell the application to share the metadata
that was created in the hosting application.

To edit the adf-config.xml file for the front-end submitter application:
1. From the Application Resources panel, expand Descriptors, expand ADF

META-INF, and double-click adf-config.xml.

2. In the source editor, replace the contents of the adf-config.xml file with the XML
shown in Example 5–13.

Example 5–13 Contents to Copy to adf-config.xml for a Front-End Submitter Application

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
 <JaasSecurityContext
initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"

jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="false"
 authenticationRequire="true"/>
 </adf-security-child>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <persistence-config>
 <metadata-namespaces>
 <namespace metadata-store-usage="ess_shared_metadata"
path="/oracle/apps/ess/howto"/>

Using Submitting and Hosting Split Applications

Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated) 5-67

 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage default-cust-store="false" deploy-target="false"
id="ess_shared_metadata"/>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

5.9.2.9 Assembling the Front-End Submitter Application for Oracle Enterprise
Scheduling Service
After you create the front-end sample application you use Oracle JDeveloper to
assemble the application.

To assemble the back-end application you do the following:

■ Create the EJB Java Archive

■ Create the WAR file

■ Create the application MAR and EAR files

5.9.2.9.1 How to Assemble the EJB JAR File for the Front-End Submitter Application The EJB
Java archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR File for the front-end submitter application:
1. In Application Navigator, right-click the SuperEss project and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then EJB
JAR File, and click OK.

3. In the Create Deployment Profile dialog, set the Deployment Profile Name to
JAR_SuperEssEjbJar.

4. On the Edit EJB JAR Deployment Profile Properties dialog, click OK.

5. On the Project Properties dialog, click OK.

5.9.2.9.2 How to Assemble the WAR File for the Front-End Submitter Application You need to
create a web archive file for the web application.

To assemble the WAR file for the front-end submitter application
1. In Application Navigator, right-click the SuperWeb project and choose New.

2. In the New Gallery, expand General, select Deployment Profiles and then WAR
File, and click OK.

3. In the Create Deployment Profile dialog, set the Deployment Profile Name to
WAR_SuperWebWar.

4. On the Edit WAR Deployment Profile Properties dialog, click the General
navigation tab, select Specify Java EE Web Context Root, and enter ESSDemoApp.

5. Click OK.

6. On the Project Properties dialog, click OK.

Using Submitting and Hosting Split Applications

5-68 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

5.9.2.9.3 How to Assemble the MAR and EAR Files for the Front-End Hosting Application The
sample application needs to contain the MAR profile and the EAR file that assembles
the back-end application.

To create the MAR and EAR files for the front-end submitter application:
1. From the main menu, choose Application Menu > Application Properties...

2. In the Application Properties dialog, click the Deployment navigation tab and
click New.

3. In the Create Deployment Profile dialog, select MAR File from the Archive Type
dropdown list.

4. In the Name field, enter MAR_EssDemoAppUIMar and click OK.

5. Click OK.

6. In the Deployment page of the Application Properties dialog, click New.

7. In the Create Deployment Profile dialog, select EAR File from the Archive Type
dropdown list.

8. In the Name field, enter EAR_EssDemoAppUIEar and click OK.

9. In the Edit EAR Deployment Profile dialog, click the General navigation tab and
enter EssDemoAppUI in the Application Name field.

10. Click the Application Assembly navigation tab, then select MAR_ESSDemoAppUIMar
and select JAR_SuperEssEjbJar.

11. Click OK.

12. In the Application Properties dialog, click OK.

5.9.2.10 Deploying the Back-End Hosting Application
After assembling the application, you can deploy it to the server.

To deploy the back-end hosting application:
1. From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...

2. Set up and deploy the application to a container.

3. On the Deployment Configuration dialog, there should be two entries in the
Shared Metadata Repositories panel. Find the shared repository mapped to the
/oracle/apps/ess/howto namespace. Change its partition to the partition used
when deploying EssDemoApp. If you used the default value, this should be
EssDemoApp_V2.0.

4. Click OK.

6

Using the Metadata Service 6-1

6 Using the Metadata Service

This chapter describes how to use the Oracle Enterprise Scheduling Service Metadata
Service to save schedules, job definitions, and other Oracle Enterprise Scheduling
Service metadata to a repository. You can also use the Metadata Service query
methods to list objects stored in metadata.

This chapter includes the following sections:

■ Section 6.1, "Introduction to Using the Metadata Service"

■ Section 6.2, "Accessing the Metadata Service"

■ Section 6.3, "Accessing the Metadata Service with Oracle JDeveloper"

■ Section 6.4, "Querying Metadata Using the Metadata Service"

For information about how to create job definitions, see the following chapters:
Chapter 5, "Use Case Oracle Enterprise Scheduling Service Sample Application
(Deprecated)", Chapter 8, "Creating and Using PL/SQL Jobs", and Chapter 9, "Creating
and Using Process Jobs".

6.1 Introduction to Using the Metadata Service
Oracle Enterprise Scheduling Service provides the Metadata Service and exposes it to
your application program as a Stateless Session Enterprise Java Bean (EJB). The
Metadata Service allows you to save application-level metadata objects. The Metadata
Service uses Oracle Metadata Services (MDS) to save metadata objects to a repository
(the repository can be either database based or file based). The Metadata Service
allows you to reuse application-level metadata across multiple job request
submissions.

Oracle Enterprise Scheduling Service metadata objects include the following:

■ Application Level Metadata: You use the Metadata Service to store job type, job
definition, job set, and other application-level metadata object definitions for job
requests.

■ Default (global) Oracle Enterprise Scheduling Service Metadata: The global Oracle
Enterprise Scheduling Service metadata includes administrative objects such as
schedules, workshifts and work assignments. Oracle Enterprise Scheduling
Service provides MetadataServiceMXBean and the MetadataServiceMXBeanProxy
to access and store default administrative objects

Note: Oracle Enterprise Scheduling Service Schedule objects are
used both in application-level metadata and in global metadata.

Introduction to Using the Metadata Service

6-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Access to application level-metadata objects is exposed only with the MetadataService
interface. The MetadataService is exposed as a stateless session EJB. External clients
must access the service only through the corresponding EJB. Clients should not
interact with the internal API layer directly. When an application client uses the
metadata service through the stateless session EJB, all the methods in this interface
accept a reference to a MetadataServiceHandle argument, which stores state across
multiple calls, for example when multiple methods are to be called within a user
transaction. The MBeanProxy interface does not require a handler.

In an Oracle Enterprise Scheduling Service application you do not need to access or
manipulate the MetadataServiceHandle. The application just needs to hold on to the
reference created by the open method and pass it in methods being called. Finally the
handle must explicitly be closed by calling the close method. Only upon calling the
close method will any changes made using a given handle be committed (or aborted).

Metadata object names must be unique within the scope of a given package or
namespace. Within a given package, two metadata objects with the same name and of
the same type cannot be created.

6.1.1 Introduction to Metadata Service Namespaces
Each Oracle WebLogic Server domain generally includes one metadata repository. A
metadata repository is divided into a number of partitions, where each partition is
independent and isolated from the others in the repository.

Each application can choose which partition to use. Two applications can also choose
to share a partition.

Within a partition, you can organize the data in any way. Usually, the data is
organized hierarchically like the file system of an operating system. Where a file
system uses folders or directories, the Metadata Service uses namespaces or package
names which form a unique name used to locate a file.

For all other Oracle Enterprise Scheduling Service applications, the application name
and an optional package name containing the application-level metadata displays
under the namespace /oracle/apps/ess. For example, the metadata repository for an
application named application1 can be divided into packages with the names dev,
test, and production.

The metadata repository for this application has the following structure:

/oracle/apps/ess/application1/dev/metadata
/oracle/apps/ess/application1/test/metadata
/oracle/apps/ess/application1/production/metadata

Each Metadata Service method that creates a metadata object takes a required
packageName argument that specifies the package part of the directory structure.

6.1.2 Introduction to Metadata Service Operations
After you access an Oracle Enterprise Scheduling Service metadata repository you can
perform different types of Metadata Service operations, including:

■ Add, Update, Delete: These operations have transactional characteristics.

■ Copy: These operations have transactional characteristics.

■ Query: These operations have read-only characteristics and let you list metadata
objects in the metadata repository.

Accessing the Metadata Service

Using the Metadata Service 6-3

■ Get: These operations have either read-only or transactional characteristics,
depending on the value of the forUpdate flag.

6.1.3 Introduction to Metadata Service Transactions
Because clients access the Metadata Service through a Stateless Session EJB, each
method uses a reference to a MetadataServiceHandle argument; this argument stores
state for Metadata Service operations. The Metadata Service open() method begins
each metadata repository user transaction. In an Oracle Enterprise Scheduling Service
application client you obtain a MetadataServiceHandle reference with the open()
method and you pass the reference to subsequent Metadata Service methods. The
MetadataServiceHandle reference provides a connection to the metadata repository
for the calling application.

In a client application that uses the Metadata Service you must explicitly close a
Metadata Service transaction by calling close(). This ends the transaction and causes
the transaction to be committed or rolled back (undone). The close() not only
controls the transactional behavior within the Metadata Service, but it also allows
Oracle Enterprise Scheduling Service to release certain resources. Thus, the close() is
also required for Metadata Service read-only query() and get() operations.

6.2 Accessing the Metadata Service
There are several ways to access the Metadata Service, including:

■ Stateless Session EJB access: Use this type of access with Oracle Enterprise
Scheduling Service user applications.

■ MBean access: This access is intended for use by applications that perform
administrative functions using the oracle.as.scheduler.management APIs.

■ MBean proxy access: This access is intended for use by applications that perform
administrative functions using the oracle.as.scheduler.management APIs. Use
the MBean proxy if the administrative client is remote to the Oracle Enterprise
Scheduling Service.

6.2.1 How to Access the Metadata Service with a Stateless Session EJB
User applications use a Stateless Session EJB to access the Metadata Service for
application level metadata operations. Using JNDI you can lookup the Metadata
Service associated with an Oracle Enterprise Scheduling Service application.

Example 6–1 shows the JNDI lookup for the Oracle Enterprise Scheduling Service
Metadata Service that allows you to use application level metadata. Note that the
getMetadataServiceEJB() method looks up the metadata service using the name
"ess/metadata". By convention, Oracle Enterprise Scheduling Service applications use
"ess/metadata" for the EJB reference to the MetadataServiceBean.

Example 6–1 JNDI Lookup for Stateless Session EJB Access to Metadata Service

// Demonstration on how to lookup metadata service from a Java EE application

Note: The Metadata Service does not support JTA global
transactions, but you can still make Metadata Service calls in the
boundary of your transactions. While you can make Metadata Service
calls in bean/container managed transactions, the calls will not be
part of your transaction.

Accessing the Metadata Service with Oracle JDeveloper

6-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

// JNDI lookup on the metadata service EJB

import oracle.as.scheduler.core.JndiUtil;

MetadataService ms = JndiUtil.getMetadataServiceEJB();

6.3 Accessing the Metadata Service with Oracle JDeveloper
Using Oracle JDeveloper at design time you can create, view, and update application
level metadata objects.

6.4 Querying Metadata Using the Metadata Service
The Metadata Service query methods let you view objects in the metadata repository.
You can query job types with the queryJobTypes() method, query job definitions with
queryJobDefinitions() method, and likewise you can query other metadata objects
using the corresponding MetadataService query method.

Associated with a query you can use a filter to restrict the output to obtain only items
of interest (in a manner similar to using a SQL WHERE clause).

6.4.1 How to Create a Filter
A filter specifies a comparison or a criteria for a query. You create a filter by creating a
comparison that includes a field argument (String), a comparator, and an associated
value (Object). In a filter, you can use the filter methods to combine comparisons to
form filter expressions.

Table 6–1 lists the comparison operators (comparator argument).

Example 6–2 shows code that creates a new filter.

Example 6–2 Creating a Filter with a Filter Comparator for a Query

Filter filter =
 new Filter(MetadataService.QueryField.PACKAGE.fieldName(),
 Filter.Comparator.NOT_EQUALS, null);

Table 6–1 Filter Comparison Operators

Comparison Operator Description

CONTAINS Field contains the specified value

ENDS_WITH Field ends with the specified value

EQUALS Field equals the specified value

GREATER_THAN Field is greater than the specified value

GREATER_THAN_EQUALS Field is greater than or equal to the specified value

LESS_THAN Field is less than the specified value

LESS_THAN_EQUALS Field is less than or equal to the specified value

NOT_CONTAINS Field does not contain the specified value

NOT_EQUALS Field does not equal the specified value

STARTS_WITH Field starts with the specified value

Querying Metadata Using the Metadata Service

Using the Metadata Service 6-5

6.4.2 How to Query Metadata Objects
A MetadataService query returns an enumeration list of MetadataObjectIDs of the
form:

java.util.Enumeration<MetadataObjectId>

Example 6–3 shows a sample routine that queries for a list of job types in the metadata.

Example 6–3 Using Metadata Service Query Methods

Enumeration<MetadataObjectId> qryResults
 = m_service.queryJobTypes(handle, filter, null, false);

Example 6–3, shows the following important steps for using the queryJobTypes()
method:

■ You need to supply a reference to a metadata repository by obtaining an instance
of MetadataServiceHandle.

■ You need to create a filter for the query. The filter contains the fields, comparators,
and values to search for.

■ You determine the field to sort by in the query using the orderBy argument, or
you set the orderBy argument to null to indicate that no specific ordering is
applied.

■ You set the ascending argument for the query. When ordering is applied setting
the ascending argument to true indicates ascending order or false indicates
descending order for the result list.

Table 6–2 MetadataService Query Fields

Query Field Description

MetadataService.QueryField.PACKAGE The name of the package.

MetadataService.QueryField.NAME The job definition name.

MetadataService.QueryField.JOBTYPE The job type associated with the job definition.

MetadataService.QueryField.EXECUTIONTYPE The type of job execution, synchronous or
asynchronous.

MetadataService.QueryField.EXECUTIONMODE The mode of job set execution, parallel or serial.

MetadataService.QueryField.FIRSTSTEP The first step in a job set.

MetadataService.QueryField.ACTIVE Indicates whether a work assignment is active.

MetadataService.QueryField.PRODUCT Indicates the name of the product with which
the job is associated.

MetadataService.QueryField.EFFECTIVEAPPLICATION The name of the hosting application wherein
this job should run.

Querying Metadata Using the Metadata Service

6-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

7

Using Parameters and System Properties 7-1

7Using Parameters and System Properties

This chapter describes how you can define parameters and values in the Oracle
Enterprise Scheduling Service metadata and runtime services you submit a job
request. A given parameter may represent a value for an Oracle Enterprise Scheduling
Service system property or a value for an application defined property.

This chapter includes the following sections:

■ Section 7.1, "Introduction to Using Parameters and System Properties"

■ Section 7.2, "Using Parameters with the Metadata Service"

■ Section 7.3, "Using Parameters with the Runtime Service"

■ Section 7.4, "Using System Properties"

7.1 Introduction to Using Parameters and System Properties
You can define Oracle Enterprise Scheduling Service parameters as follows:

■ In metadata associated with a job definition, a job type, or a job set.

■ In the request parameters when a job request is submitted. A request parameter
can override a parameter specified in metadata or can specify a value for a
parameter not previously defined in the metadata associated with a job request
(subject to certain constraints). You can also add new parameters or update
parameter values (subject to certain constraints) after a job request has been
submitted.

Oracle Enterprise Scheduling Service system properties are parameters with names
that Oracle Enterprise Scheduling Service reserves. For some system properties Oracle
Enterprise Scheduling Service also defines the values or provides a default value if
you do not specify a value. For more information on the Oracle Enterprise Scheduling
Service system properties, see Section 7.4, "Using System Properties".

7.1.1 What You Need to Know About Application Defined Property and System
Property Naming

Oracle Enterprise Scheduling Service application defined and system properties are
case sensitive. For example the application defined property name USER_PARA and
user_para represent different parameters in Oracle Enterprise Scheduling Service.

When you use application defined properties, note that Oracle Enterprise Scheduling
Service reserves the names starting with "SYS_" (case-insensitive) for Oracle Enterprise
Scheduling Service-defined system properties. Thus, you should not use application
defined properties with names that start with "SYS_" (case-insensitive).

Introduction to Using Parameters and System Properties

7-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

7.1.2 What You Need to Know About Parameter Conflict Resolution and Parameter
Materialization

When submitting a job request, Oracle Enterprise Scheduling Service combines
parameters specified in the job metadata with any submission parameters to form the
runtime request parameters. The runtime parameters are saved to the database
runtime store and used for subsequent processing of the request. The metadata
parameters are obtained from the job definition, job type, and if applicable, the job set
as they are defined in the metadata repository at the time of submission. Any
subsequent changes to the metadata is normally not seen or used as the request is
processed. Oracle Enterprise Scheduling Service resolves parameter conflicts for
parameters with the same name associated with the job metadata or the submit
parameters.

A parameter conflict can occur in the following cases:

■ A parameter is defined repeatedly with different values. For example if the
SystemProperty.PRIORITY property is set with different values in the job type and
in the job definition associated with a request.

■ A parameter is defined repeatedly and at least one definition is specified as
read-only with the ParameterInfo readonly flag set to true.

To resolve conflicts with parameters, Oracle Enterprise Scheduling Service uses one of
the following conflict resolution models and the parameter value inheritance hierarchy
shown in Table 7–1:

■ Last definition wins: used when the same parameter is defined repeatedly with the
readonly flag set to false in all cases. In the last definition wins model, conflicts are
resolved according to the precedence rules where the highest level wins (last
definition). For example a property specified at the job request level wins over the
same property specified at the job definition level.

■ First read-only definition wins: used when the same parameter is defined repeatedly
and at least one definition is read-only (the ParameterInfo readonly flag is set to
true.) In the first read-only definition wins model, parameter conflicts are resolved
according to the precedence rules shown in Table 7–1, lowest level wins. For
example a readonly parameter specified at the job type definition level wins over
the same property specified at the job definition level, read-only or not.

7.1.2.1 What You Need to Know About Job Definition Parameter Materialization
Figure 7–1 illustrates the order of precedence taken by parameters defined in various
components.

Table 7–1 Parameter Precedence Levels

Object Level

JobType 1 - Lowest Level

JobDefinition 2

job set step 3

job set 4

Job request (via
RequestParameters passed to
submitRequest())

5 - Highest Level

Introduction to Using Parameters and System Properties

Using Parameters and System Properties 7-3

Figure 7–1 Parameter Precedence

In the case of a job request, the parameters defined by the job type take first
precedence, followed by the parameters defined in the job definition. The parameters
submitted with the job request take final precedence. In the case of a job set request,
the parameters defined in the job set take first precedence, followed by the parameters
defined by the job request run as a child of the job set.

7.1.2.2 What You Need to Know About Job Set Level Parameter Materialization
When the job set step parameters are materialized, if the job set defines any of the
following system properties as read-only, and those properties are defined in the
definition of the topmost job set, that is the job set of the absolute parent, the job set
values will override the values set at the job set step level. This causes every definition,
job definition, or job set definition that runs in the context of a specific job set to run
with the same values.

PRIORITY

REQUEST_EXPIRATION

RETRIES, only if the step definition value is > 0

There is an exception for RETRIES because a value of 0 may mean that the job is not
capable of being restarted. So if a step is defined with RETRIES = 0, it is not
overridden, but if the step has RETRIES > 0, it will be overridden with the job set
value.

Properties for a job set step request are materialized during the processing of a job set
when the step is reached. Properties for a job step request are materialized in the
following order.

1. Job type and job definition (if the step is a job definition) or job set (if the step is a
job set).

2. Job set step.

3. Parent request properties and system properties (parent is step's parent job set).

4. Scoped request properties.

Figure 7–2 illustrates the parameter precedence for job set steps.

Using Parameters with the Metadata Service

7-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 7–2 Parameter Precedence for Job Set Steps

When job sets include steps that are job sets, this is a nested job set. For a nested job
set, the precedence shown in Table 7–1 applies. When a nested job set is reached,
Oracle Enterprise Scheduling Service applies the parameters of the parent request and
the parameters of the parent request follow the same precedence. The effect is that
parameters of the parent request, job set and job set step are inherited by nested job
sets.

7.2 Using Parameters with the Metadata Service
Oracle Enterprise Scheduling Service metadata includes parameters that you can
associate with a metadata object. The parameters can include both application defined
properties and system properties for a given definition (metadata object). An instance
of the ParameterList class declares the parameters for a given job definition, job type
or job set. To set parameters for a given job definition, job type, or job set definition,
you can use a ParameterList object with the setParameters() method for the
metadata object or you can use the constructor and supply a ParameterList. To
supply parameter information in a parameter list, each ParameterList object includes
ParameterInfo objects that represent parameters, such that each parameter is defined
with properties as shown in Table 7–2.

Table 7–2 ParameterInfo Parameter Properties

Parameter Property Description

Name Specifies the parameter name.

Value Specifies the parameter value.

Using Parameters with the Metadata Service

Using Parameters and System Properties 7-5

You can set parameters at different levels appropriate to parameter precedence rules
for a job request. For example, you can set parameters that apply for a job type, a job
definition, a job set, a job set step, or a request submission parameter. For information
about the precedence rules, see Section 7.1.2, "What You Need to Know About
Parameter Conflict Resolution and Parameter Materialization".

7.2.1 How to Use Parameters and System Properties in Metadata Objects
Example 7–1 shows code that uses a ParameterList to set parameter and system
property values in a metadata object.

Example 7–1 Adding Parameters and System Properties in a Metadata Object

String name = "JobDescription_name";
MetadataObjectId jobtype;
.
.
.
JobDefinition jd = new JobDefinition(name, jobtype);
ParameterList parlist = new ParameterList();
parlist.add(SystemProperty.APPLICATION, "METADATA_UNITTEST_APP", false);
parlist.add(SystemProperty.PRODUCT, "METADATA_UNITTEST_PROD", false);
parlist.add(SystemProperty.CLASS_NAME, "oracle.as.scheduler.myself", false);
parlist.add(SystemProperty.RETRIES, "2", false);
parlist.add(SystemProperty.REQUEST_EXPIRATION, "60", false);
parlist.add("MyProp", "Value", false);
parlist.add("MyReadOnlyProp", "readyOnlyValue", true);
jd.setParameters(parlist);

Example 7–1, shows the following important steps for using parameters with a
metadata object:

■ You need a reference to a metadata service handle to create the metadata object
where you want to add parameters.

Readonly This boolean flag can be set for each parameter. This flag indicates
whether the parameter is read-only.

When true, subsequent objects in the parameter precedence hierarchy,
such as request submission parameter, cannot change the parameter
value. Typically a read-only parameter will have a default value that
cannot be changed by subsequent objects.

Note that the value of a read-only parameter can be changed in the
object itself where this parameter is defined. For example if this
parameter is defined in a job type as a read-only parameter, its value can
be changed in the job type definition itself, but a job definition that uses
the job type or a request submission parameter cannot override the
value, subject to the conflict resolution rules specified for parameter
values. For more information, see Section 7.1.2, "What You Need to
Know About Parameter Conflict Resolution and Parameter
Materialization".

Legacy A boolean that specifies that a parameter should be visible when used in
a GUI.

DataType Values can only be one of the supported types, including: Boolean,
Integer, Long, String, and DATETIME that represents a date as a
java.util.Calendar object.

Table 7–2 (Cont.) ParameterInfo Parameter Properties

Parameter Property Description

Using Parameters with the Runtime Service

7-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

■ You need to use the ParameterList add() method to add parameter information.

■ You can use a SystemProperty as the name for a parameter to specify a value for a
system property.

■ You can specify an application defined property by using a name that you define
with the parameter information in a ParameterList.

■ You need to use a metadata object setParameters() method to apply the
parameters specified in the ParameterList to the metadata object. In this case, use
the job definition setParameters() method.

7.3 Using Parameters with the Runtime Service
You can specify parameters when a job request is submitted by supplying a
RequestParameters object with submitRequest(). A request parameter can override a
parameter specified in metadata or can specify a value for a parameter not previously
defined in the metadata associated with a job request (subject to certain constraints).
You can also use the runtime service setRequestParameter() method to set or modify
request parameters (subject to certain constraints) after the request has been
submitted.

The submitRequest() method will validate each request parameter against its
definition in the metadata, if one exists. Such validations include checking the data
type of the parameter against the data type specified in the metadata, checking the
read-only constraint for the parameter, and so on. If a given request parameter does
not exist in the corresponding metadata, the data type for the parameter is determined
by doing an instanceof on the parameter value. The data type of a request parameter
value must be one of the supported types specified by ParameterInfo.DataType.

If the value of a request parameter is null and the property has not been assigned in
the metadata, it defaults to the STRING data type when calling submitRequest().
Oracle Enterprise Scheduling Service assigns a null value to the parameter. As such, a
parameter need not be assigned in the metadata.

The RuntimeService setRequestParameter() method, which is similar to
updateRequestParameter(), allows a previously undefined request parameter to be
set by a job during execution.

7.3.1 How to Use Parameters with the Runtime Service
When you submit a job request you set a parameter in a RequestParameters object.
This parameter may represent an Oracle Enterprise Scheduling Service system
property or an application defined property. The RequestParameters parameter value
may be used to override a parameter specified in metadata, or to specify the value for
a parameter not previously defined in metadata associated with the job request.

Example 7–2 shows code using a RequestParameters object with the add() method to
set a system property value.

Example 7–2 Using the PRIORITY System Property with Request Parameters

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.SystemProperty;

RuntimeService runtime;

Using Parameters with the Runtime Service

Using Parameters and System Properties 7-7

RuntimeServiceHandle rs_handle;
MetadataObjectId jobSetId;
int startsIn;
long requestID = 0L;

RequestParameters req_par = new RequestParameters();

req_par.add(SystemProperty.PRIORITY, new Integer(7));

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID =
 runtime.submitRequest(rs_handle,"My job set", jobSetId, start, req_par);
.
.
.

The example assumes that there is a user-created runtimeServiceHandle named rs_
handle.

7.3.2 How to Use Parameters with a Step ID for Job Set Steps
The RequestParameters object is a container for all the parameters for a request. Some
of the RequestParameters methods take a step ID as an argument. Such methods
allow you to specify parameters for a job set at request submission, where parameters
can be specified for, or scoped to, individual steps associated with a job set request.
For such methods, the step ID argument identifies the step within the job set to which
the given parameter applies. For non-job set requests, the step ID does not apply, but
you can use the parameter as required by your application requirements.

When a step ID is specified in a RequestParameters method such as add(), you need
to specify the step ID using the following format:

id1.id2.id3...

where the fully qualified step ID identifies the unique step, node, in the job set
hierarchy (tree).

Parameters without a step ID in a job set request are treated as global parameters and
they apply to each step of the job set request. The step ID argument for
RequestParameters provides the capability to support shared parameters, where the
parameter can apply to both a job set and either a job definition or a job type.

Oracle Enterprise Scheduling Service prepends the step ID to the name in the form of
stepId:name to generate the unique identifier, with a colon as a separator.

Example 7–3 shows code using a RequestParameters object with a step ID specified
with the add() method to set a system property value for a step in a job set.

Example 7–3 Using the CLASS_NAME System Property with Job Set Request
Parameters

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.SystemProperty;

RuntimeService runtime;
RuntimeServiceHandle rs_handle;

Using System Properties

7-8 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

MetadataObjectId jobSetId;
int startsIn;
long requestID = 0L;

RequestParameters req_par = new RequestParameters();

req_par.add(SystemProperty.PRIORITY, "stepId-1", new Integer(8));
req_par.add(SystemProperty.PRIORITY, "stepId-2.stepId-1", new Integer(6));

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID =
 runtime.submitRequest(rs_handle,"My job set", jobSetId, start, req_par);
.
.
.

The example assumes that there is a user-created runtimeServiceHandle named rs_
handle.

7.4 Using System Properties
Oracle Enterprise Scheduling Service represents parameter names that are known to
and used by the system in the SystemProperty class. You can specify system
properties as parameter names in the application metadata and using request
parameters when a request is submitted. Oracle Enterprise Scheduling Service sets
certain system properties when a request is submitted or at some point in the life cycle
of a request.

Table 7–3 lists the available system properties, as defined in
oracle.as.scheduler.SystemProperty. Most system properties are common to all job
types while some system properties are specific to a particular job type, as indicated in
the descriptions in Table 7–3.

When you use parameters, note that Oracle Enterprise Scheduling Service reserves the
parameter names starting with "SYS_" (case-insensitive) for Oracle Enterprise
Scheduling Service defined properties.

Table 7–3 System Properties

Name Description

ALLOW_MULT_PENDING Specifies whether multiple pending requests for the same job definition is allowed.
This property has no meaning for a job set step.

Type: BOOLEAN

APPLICATION Specifies the logical name of the Java EE application used for request processing. This
property is automatically set by Oracle Enterprise Scheduling Service during request
submission.

Type: STRING

ASYNC_REQUEST_TIMEOUT Specifies the time, in minutes, that the processor waits for an asynchronous request
after it has begun execution. Following this period, the request is considered to have
timed out.

Type: LONG

Using System Properties

Using Parameters and System Properties 7-9

BIZ_ERROR_EXIT_CODE Specifies the process exit code for a process job request that denotes an execution
business error. If this property is not specified, the system treats a process exit code of 4
as an execution business error.

This property is optional for a process job type. It is not used for other job types.

Type: STRING

CLASS_NAME Specifies the Java executable for a Java job request. This should be the name of a Java
class that implements the oracle.as.scheduler.Executable interface. This property is
required for a Java job type. It is not used for other job types.

Type: STRING

CMDLINE Specifies the command line used to invoke an external program for a Process job
request.

This property is required for a Process job type. It is not used for other job types.

Type: STRING

EFFECTIVE_APPLICATION Specifies the logical name of the Java EE application that will be the effective
application used to process the request. A job definition, job type, or a job set step can
be associated with a different application by defining the EFFECTIVE_APPLICATION
system property. This property can only be specified via metadata and cannot be
specified as a submission parameter.

Type: STRING

ENVIRONMENT_VARIABLES Specifies the environment variables to be set for the spawned process of a Process job
request.The property value should be a comma separated list of name value pairs
(name=value) representing the environment variables to be set.

This property is optional for a process job type. It is not used for other job types.

Type: STRING

EXECUTE_PAST Specifies whether instances of a repeating request with an execution time in the past
should be generated. Instances are never generated before the requested start time nor
after the requested end time. To cause past instances to be generated, you must set this
property to TRUE and specify the requested start time as the initial time from which
instances should be generated. Note that a null requested start time defaults to the
current time.

Valid values for this property are:

■ TRUE: All instances specified by a schedule are generated regardless of the time of
generation.

■ FALSE: Instances with a scheduled execution time in the past (that is, before the
time of generation) will not be generated.

If this property is not specified, the system defaults to TRUE.

Type: BOOLEAN

EXTERNAL_ID Specifies an identifier for an external portion of an asynchronous Java job. For example,
an asynchronous Java job usually invokes some remote process and then returns
control to Oracle Enterprise Scheduling Service. This property can be used to identify
the remote process. This property should be set by the job implementation of
asynchronous Java jobs when the identifier is known. It is never set by Oracle
Enterprise Scheduling Service.

Type: STRING

GROUP_NAME Specifies the name of the Oracle Enterprise Scheduling Service isolation group to which
this request is bound. This property is automatically set by Oracle Enterprise
Scheduling Service during request submission.

Type: STRING

Table 7–3 (Cont.) System Properties

Name Description

Using System Properties

7-10 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

INPUT_LIST Specifies input to a request. The input to a serial job set is forwarded as input to the
first step only. The input to a parallel job set is forwarded as input to all the parallel
steps.

Oracle Enterprise Scheduling Service imposes no format on the value of this property.

Type: STRING

LISTENER Specifies the event listener class associated with the request. This should be the name
of a Java class that implements the oracle.as.scheduler.EventListener interface.

Type: STRING

LOCALE Specifies the locale associated with the request.

Type: STRING

OUTPUT_LIST Specifies output from a request.

The output of a serial job set is the OUTPUT_LIST of the last step. The output of a parallel
job set is the concatenation of the OUTPUT_LIST of all the steps, in no guaranteed order,
with oracle.as.scheduler.SystemProperty.OUTPUT_LIST_DELIMITER as a separator.

Type: STRING

POST_PROCESS Specifies the post-process callout handler class. This should be the name of a Java class
that implements the oracle.as.scheduler.PostProcessHandler interface.

Type: STRING

PRE_PROCESS Specifies the pre-process callout handler class. This should be the name of a Java class
that implements the oracle.as.scheduler.PreProcessHandler interface.

Type: STRING

PRIORITY Specifies the request processing priority. The priority interval is [0..9] with 0 as the
lowest priority and 9 as the highest.

Default: If this property is not specified, the system default value used is 4.

Type: INTEGER

PROCEDURE_NAME Specifies the name of the PL/SQL stored procedure to be called for a SQL job request.
The stored procedure should be specified using schema.name format.

The property is required for a SQL job type. It is not used for other job types.

Type: STRING

PRODUCT Specifies the product within the application that submitted the request.

Type: STRING

REDIRECTED_OUTPUT_FILE Specifies the file where standard output and error streams are redirected for a Process
job request. This represents the full path of the log file where the standard output and
error streams are redirected for the spawned process when the request is executed.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

REPROCESS_DELAY Specifies the callout handler processing delay time. This represents the time, in
minutes, to delay request processing when a delay is requested by a callback handler.

Default: If this property is not specified, the system default used is 5.

Type: INTEGER

REQUEST_CATEGORY Specifies an application-specific label for a request. The label, defined by an application
or system administrator, allows administrators to group job requests according to their
own specific needs.

Type: STRING

Table 7–3 (Cont.) System Properties

Name Description

Using System Properties

Using Parameters and System Properties 7-11

REQUEST_EXPIRATION Specifies the expiration time for a request. This represents the time, in minutes, that a
request will expire after its scheduled execution time. A expiration value of zero (0)
means that the request never expires. If this property is not specified, the system
default value used is 0.

Request expiration only applies to requests that are waiting to run. If a request waits
longer than the specified expiration period, it does not run. After a request starts
running the request expiration no longer applies.

Type: INTEGER

REQUESTED_PROCESSOR Specifies the request processor node on which the request should be processed. This
allows processor affinity to be specified for a request. If this property is not specified,
the request can run on any available request processor node. In general, this property
should not be specified.

If this property is specified for a request, the request processor's work assignments
oracle.as.scheduler.WorkAssignment (specialization) must allow the execution of
such requests, otherwise the request will never be executed. If the specified node is not
running, the request will remain in READY state and will not be executed until the node
is restarted.

Type: STRING

RETRIES Specifies the retry limit for a failed request. If request execution fails, the request will
retried up to the number of times specified by this property until the request succeeds.
If retry limit is zero (0), a failed request will not be retried.

Default: If this property is not specified, the system default used is 0.

Type: INTEGER

RUNAS_APPLICATIONID Specifies the runAs identifier that should be used to execute the request. Normally, a
request runs as the submitting user. However, if this property is set in the metadata of
the job associated with the request, then the request executes under the user identified
by this property. This property can only be specified via metadata and cannot be
specified as a submission parameter.

Type: STRING

SELECT_STATE Specifies whether the result state of a job set step affects the eventual state of its parent
job set. In order for the state of a job set step to be considered when determining the
state of the job set, the SELECT_STATE must be set to true. If SELECT_STATE is not
specified on a job set step, the state of the step will be included in the determination of
the state of the job set.

Type: BOOLEAN

SQL_JOB_CLASS Specifies an Oracle Enterprise Scheduling Service job class to be assigned to the Oracle
Enterprise Scheduling Service job used to execute a SQL job request. This property
need not be specified unless the job used for a job request is associated with a
particular Oracle Database resource consumer group or has affinity to a database
service.

If this property is not specified, a default Oracle Enterprise Scheduling Service job class
is used for the job that executes the SQL request. That job class is associated with the
default resource consumer group. It belongs to the default service, such that it has no
service affinity and, in an Oracle RAC environment, any one of the database instances
within the cluster might run the job. No additional privilege or grant is required for an
Oracle Enterprise Scheduling Service SQL job request to use that default job class.

This property is optional for a SQL job type. It is not used for other job types.

Type: STRING

SUBMITTING_APPLICATION Specifies the logical name of the Java EE application for the submitted (absolute parent)
request. This property is automatically set by Oracle Enterprise Scheduling Service
during request submission.

Type: STRING

Table 7–3 (Cont.) System Properties

Name Description

Using System Properties

7-12 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

SUCCESS_EXIT_CODE Specifies the process exit code for a Process job request that denotes an execution
success. If this property is not specified the system treats a process exit code of 0 as
execution success.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

USER_FILE_DIR Specifies a base directory in the file system where files, such as input and output files,
may be stored for use by the request executable.

Oracle Enterprise Scheduling Service supports a configuration parameter that specifies
a file directory where requests may store files. At request submission, a USER_FILE_DIR
property is automatically added for the request if the configuration parameter is
currently set and USER_FILE_DIR property was not specified for the request. If the
property is added, it will be initialized to the value of the configuration parameter. The
property will not be added if the configuration parameter is not set at the

time of request submission.

Type: STRING

USER_NAME Specifies the name of the user used to execute the request. Normally this is the
submitting user unless the RUNAS_APPLICATIONID property was set in the job metadata.
This property is automatically set by Oracle Enterprise Scheduling Service during
request submission.

Type: STRING

WARNING_EXIT_CODE Specifies the process exit code for a Process job request that denotes an execution
warning. If this property is not specified, the system treats a process exit code of 3 as
execution warning.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

WORK_DIR_ROOT Specifies the working directory for the spawned process of a Process job request.

This property is optional for a Process job type. It is not used for other job types.

Type: STRING

Table 7–3 (Cont.) System Properties

Name Description

8

Creating and Using PL/SQL Jobs 8-1

8Creating and Using PL/SQL Jobs

This chapter describes how to create PL/SQL stored procedures for use with Oracle
Enterprise Scheduling Service, and describes Oracle Database tasks that you need to
perform to use PL/SQL stored procedures with Oracle Enterprise Scheduling Service.

After you create a PL/SQL procedure and define a job definition, you can use the
Oracle Enterprise Scheduling Service runtime service to submit a job request for a
PL/SQL procedure.

This chapter includes the following sections:

■ Section 8.1, "Introduction to Using PL/SQL Stored Procedure Job Definitions"

■ Section 8.2, "Creating a PL/SQL Stored Procedure for Oracle Enterprise
Scheduling Service"

■ Section 8.3, "Performing Oracle Database Tasks for PL/SQL Stored Procedures"

■ Section 8.4, "Creating and Storing Job Definitions for PL/SQL Job Types"

For information about how to use the Runtime Service, see Chapter 14, "Using the
Runtime Service".

8.1 Introduction to Using PL/SQL Stored Procedure Job Definitions
Oracle Enterprise Scheduling Service lets you run job requests of different types,
including: Java classes, PL/SQL stored procedures, and process requests that run as a
forked process. To use Oracle Enterprise Scheduling Service with PL/SQL stored
procedures you need to do the following:

■ Create or obtain the PL/SQL stored procedure that you want to use with Oracle
Enterprise Scheduling Service.

■ Load the PL/SQL stored procedure in the Oracle Database and grant the required
permissions and perform other required DBA tasks.

■ Use Oracle JDeveloper to create job type and job definition objects and store these
objects with the Oracle Enterprise Scheduling Service application metadata.

■ Use Oracle JDeveloper to create an application with Oracle Enterprise Scheduling
Service APIs that runs and submits a PL/SQL stored procedure.

Finally, after you create an application that uses the Oracle Enterprise Scheduling
Service APIs you use Oracle JDeveloper to deploy and run the application.

At runtime, after you submit a job request you can monitor and manage the job
request. For more information, see Chapter 14, "Using the Runtime Service".

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduling Service

8-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Oracle Enterprise Scheduling Service uses an asynchronous execution model for
PL/SQL stored procedure job requests. This means that Oracle Enterprise Scheduling
Service does not directly call the PL/SQL stored procedure, but instead uses Oracle
Enterprise Scheduling Service (part of the Oracle Database). When a PL/SQL stored
procedure job request is ready to execute, Oracle Enterprise Scheduling Service creates
an immediate, run-once Oracle Enterprise Scheduling Service job. This Oracle
Enterprise Scheduling Service job is owned by the Oracle Enterprise Scheduling
Service runtime schema user associated with the container instance that executes the
application that specifies the PL/SQL stored procedure. Finally, when the Oracle
Enterprise Scheduling Service job runs, the PL/SQL stored procedure is called using
dynamic SQL. After the PL/SQL stored procedure completes, either by a successful
return or by raising an exception, the Oracle Enterprise Scheduling Service job
completes.

8.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise
Scheduling Service

When you want to use a PL/SQL stored procedure with Oracle Enterprise Scheduling
Service, the PL/SQL procedure must have certain characteristics to work with an
Oracle Enterprise Scheduling Service application and a DBA must assure that certain
Oracle Database permissions are assigned to the PL/SQL stored procedure.

Creating a PL/SQL stored procedure involves the following steps:

■ Define the PL/SQL stored procedure that has the correct signature for use with
Oracle Enterprise Scheduling Service

■ Perform the required DBA tasks to make the PL/SQL stored procedure available
to Oracle Enterprise Scheduling Service

8.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature
The PL/SQL stored procedure that you call from Oracle Enterprise Scheduling Service
must have a specific signature and include specific procedure parameters, as follows:

PROCEDURE my_proc(request_handle IN VARCHAR2);

The request_handle parameter is an opaque value representing an execution context
for the Oracle Enterprise Scheduling Service request being executed.

Example 8–1 shows a sample HELLO_WORLD stored procedure for use with Oracle
Enterprise Scheduling Service.

Example 8–1 HELLO_WORLD PL/SQL Stored Procedure

create or replace procedure HELLO_WORLD(request_handle in varchar2)
as
 v_request_id number := null;
 v_prop_name varchar2(500) := null;
 v_prop_int integer := null;
begin
 -- Get the Oracle Enterprise Scheduling Service request ID being executed.
 begin
 v_request_id := ess_runtime.get_request_id(request_handle);
 exception
 when others then
 raise_application_error(-20000,
 'Failed to get request id for request handle ' ||
 request_handle || '. [' || SQLERRM || ']');

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduling Service

Creating and Using PL/SQL Jobs 8-3

 end;

 -- Retrieve value of an existing request property.
 begin
 v_prop_name := 'mytestIntProp';
 v_prop_int := ess_runtime.get_reqprop_int(v_request_id, v_prop_name);
 exception
 when others then
 rollback;
 raise_application_error(-20001,
 'Failed to get request property ' || v_prop_name ||
 ' for Oracle Enterprise Scheduling Service request ID ' || v_
request_id ||
 '. [' || SQLERRM || ']');
 end;

 -- Update an existing request property with a new value.
 -- This procedure is responsible for commit/rollback of the update operation.
 begin
 v_prop_name := 'myJobdefProp';
 ess_runtime.update_reqprop_varchar2(v_request_id, v_prop_name,
 'myUpdatedalue');
 commit;
 exception
 when others then
 rollback;
 raise_application_error(-20002,
 'Failed to update request property ' || v_prop_name ||
 ' for Oracle Enterprise Scheduling Service request ID ' || v_
request_id ||
 '. [' || SQLERRM || ']');
 end;
end helloworld;
/

8.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduling Service PL/SQL
Stored Procedure

Oracle Enterprise Scheduling Service uses an asynchronous execution model for
PL/SQL stored procedure job types. Oracle Enterprise Scheduling Service does not
directly call the PL/SQL stored procedure, but instead uses the Oracle Enterprise
Scheduling Service in the Oracle Database. When a PL/SQL stored procedure request
is ready to execute, Oracle Enterprise Scheduling Service creates an immediate,
run-once Oracle Enterprise Scheduling Service job that is owned by the Oracle
Enterprise Scheduling Service runtime schema user associated with the container
instance executing that executes the application associated with the PL/SQL stored
procedure. The PL/SQL stored procedure is called using dynamic SQL when the
Oracle Enterprise Scheduling Service job runs. After the PL/SQL stored procedure
completes, either by a successful return or by raising an exception, the Oracle
Enterprise Scheduling Service job completes.

In the PL/SQL stored procedure, you can handle exceptions and other issues by
raising a RAISE_APPLICATION_ERROR exception. The RAISE_APPLICATION_ERROR
requires that the error code from the PL/SQL stored procedure range from -20000 to
-20999. The PL/SQL stored procedure can use RAISE_APPLICATION_ERROR if it needs to
raise an exception. RAISE_APPLICATION_ERROR requires that the error code range from
-20000 to -20999.

Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduling Service

8-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Table 8–1 indicates the Oracle Enterprise Scheduling Service state based on the result
of the PL/SQL stored procedure.

8.2.3 How to Access Job Request Information In PL/SQL Stored Procedures
Oracle Enterprise Scheduling Service provides a PL/SQL package, ESS_RUNTIME to
perform certain operations that you may need when you are working in a PL/SQL
stored procedure. You can use these procedures perform job request operations and to
obtain job request information for an Oracle Enterprise Scheduling Service runtime
schema. For example, you can use these runtime procedure to submit requests and
retrieve and update request information associated with an Oracle Enterprise
Scheduling Service job request.

The following sample code shows use of an ESS_RUNTIME procedure:

v_request_id := ess_runtime.get_request_id(request_handle);

This request obtains the request ID associated with a job request.

Certain procedures in the ESS_RUNTIME package require a request handle parameter
and provide information on an executing request (these should only be called from the
PL/SQL stored procedure that is executing the PL/SQL stored procedure request).
You can call some procedures in the ESS_RUNTIME package from outside of the context
of an executing request; these procedures may include a request id parameter.

8.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure
You need to know the following when you create an use a PL/SQL stored procedure
with Oracle Enterprise Scheduling Service:

■ It is not required that the PL/SQL stored procedure exist when the Oracle
Enterprise Scheduling Service request is submitted, but the PL/SQL stored
procedure must exist and be callable by the Oracle Enterprise Scheduling Service
runtime schema user when the request is ready to run.

■ The PL/SQL stored procedure must exist on the same database as the Oracle
Enterprise Scheduling Service Runtime schema.

Table 8–1 Terminal States for PL/SQL Stored Procedure Results

Final State Description

SUCCEEDED If the PL/SQL stored procedure returns normally, without raising an
exception, the request state transitions to the SUCCEEDED state, bearing any
subsequent errors completing the request.

WARNING If the PL/SQL stored procedure returns with an exception, the request state is
based on the SQL error code of the exception.

The request transitions to the WARNING terminal state if the SQL error code
ranges from -20900 to -20919.

ERROR If the PL/SQL stored procedure returns with an exception, the request state is
based on the SQL error code of the exception.

The request transitions to the ERROR terminal state for any error code outside
the range of -20900 to -20919 (error codes within this range indicate a
WARNING).

Return codes in the range -20920 to -20929 result in an ERROR state with a
BUSINESS error type, where the request is not subject to automatic retries.

Performing Oracle Database Tasks for PL/SQL Stored Procedures

Creating and Using PL/SQL Jobs 8-5

8.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures
After you create the PL/SQL stored procedure that you want to use with Oracle
Enterprise Scheduling Service a DBA needs to load the PL/SQL stored procedure in
the Oracle Database and grant the required permissions.

8.3.1 How to Grant PL/SQL Stored Procedure Permissions
Before the DBA grants permissions, the DBA must determine the Oracle Database and
the Oracle Enterprise Scheduling Service run time schema that is associated with the
deployed Java EE application that is going to submit the Oracle Enterprise Scheduling
Service PL/SQL stored procedure request.

Use the following definitions when you grant PL/SQL stored procedure permissions:

ess_schema: specifies the Oracle Enterprise Scheduling Service runtime schema
associated with the Java EE application.

user_schema: specifies the name of the application user schema.

PROC_NAME: specifies the name of the PL/SQL stored procedure associated with the
Oracle Enterprise Scheduling Service job request.

To grant Oracle Database permissions:
1. In the Oracle Database grant execute on the ESS_RUNTIME package to the

application user schema. For example:

GRANT EXECUTE ON ess_schema.ess_runtime to user_schema;

2. In the Oracle Database, create a private synonym for the ESS_RUNTIME package.
This is a convenience step that allows the PL/SQL stored procedure to reference
the ESS_RUNTIME as simply ESS_RUNTIME rather than using the full schema_
name.ESS_RUNIME. For example:

create or replace synonym user_schema.ess_runtime for ess_schema.ess_runtime;

3. In the Oracle Database, grant execute on the PL/SQL stored procedure to the
Oracle Enterprise Scheduling Service runtime schema user.

GRANT EXECUTE ON user_schema.proc_name to ess_schema;

For example, if the Oracle Enterprise Scheduling Service runtime schema is TEST_
ORAESS, the application user schema is HOWTO, and the PL/SQL procedure is named
HELLO_WORLD, the DBA operations needed would be:

GRANT EXECUTE ON test_oraess.ess_runtime to howto;
create or replace synonym howto.ess_runtime for test_oraess.ess_runtime;
GRANT EXECUTE ON howto.hello_world to test_oraess;

8.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions
The first two steps shown for DBA tasks for granting permissions on the ESS_RUNTIME
package are only required if the ESS_RUNTIME package is referenced by a PL/SQL
procedure. These two steps are not required if the ESS_RUNTIME package is never used
from that application user schema. The third step shown is always required since it
allows Oracle Enterprise Scheduling Service to call the user defined PL/SQL stored
procedure.

All PL/SQL stored procedures in a given application user schema that are used for
Oracle Enterprise Scheduling Service PL/SQL stored procedure jobs should always be

Creating and Storing Job Definitions for PL/SQL Job Types

8-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

associated with the same (single) Oracle Enterprise Scheduling Service Runtime
schema. While this is not technically required, it greatly simplifies the DBA setup and
does not require the PL/SQL stored procedure to explicitly specify the Oracle
Enterprise Scheduling Service Runtime schema if the procedure references the ESS_
RUNTIME.

8.4 Creating and Storing Job Definitions for PL/SQL Job Types
To use PL/SQL stored procedures with Oracle Enterprise Scheduling Service you
need to locate the Metadata Service and create a job definition. You create a job
definition by specifying a name and a job type. When you create a job definition you
also need to set certain system properties. You can then store the job definition and
other associated objects using the Metadata Service.

For information about how to use the Metadata Service, see Chapter 6, "Using the
Metadata Service".

You can use Oracle Enterprise Scheduling Service system properties to specify certain
attributes for the Oracle Enterprise Scheduling Service job that calls the PL/SQL
stored procedure.

These SystemProperty properties apply specifically to SQL job types; PROCEDURE_NAME,
SQL_JOB_CLASS.

The PROCEDURE_NAME system property specifies the name of the PL/SQL stored
procedure to be executed. The stored procedure name should have a schema.name
format. This property must be specified for either the job type or job definition.

The SQL_JOB_CLASS system property specifies an Oracle Enterprise Scheduling Service
job class to be assigned to the Oracle Enterprise Scheduling Service job used to execute
an SQL job request. This property does not need to be specified unless the Oracle
Enterprise Scheduling Service job used for a request should be associated with a
particular Oracle Database resource consumer group or have affinity to a database
service.

Oracle Enterprise Scheduling Service uses an Oracle Enterprise Scheduling Service job
to execute the PL/SQL stored procedure for a SQL job request. An Oracle Enterprise
Scheduling Service job class can be associated with the job when that job needs to have
affinity to a database service or is to be associated with an Oracle Database resource
consumer group. The Oracle Enterprise Scheduling Service job owner must have
EXECUTE privilege on the Oracle Enterprise Scheduling Service job class in order to
successfully create a job using that job class.

If the SQL_JOB_CLASS system property is not specified, a default Oracle Enterprise
Scheduling Service job class is used for the Oracle Enterprise Scheduling Service job.
The default job class is associated with the default resource consumer group. It will
belong to the default service, which means it will have no service affinity and, in an
Oracle RAC environment any one of the database instances within the cluster might
run the job. No additional privilege grant is needed for an Oracle Enterprise
Scheduling Service SQL request to use that default job class.

8.4.1 How to Create a PL/SQL Job Type
An Oracle Enterprise Scheduling Service JobType object specifies an execution type
and defines a common set of properties for a job request. A job type can be defined
and then shared among one or more job definitions. Oracle Enterprise Scheduling
Service supports three execution types:

Creating and Storing Job Definitions for PL/SQL Job Types

Creating and Using PL/SQL Jobs 8-7

■ JAVA_TYPE: for job definitions that are implemented in Java and run in the
container.

■ SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database
server.

■ PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate
processes.

When you specify the JobType you can also specify properties that define the
characteristics associated with the JobType. Table 8–2 describes the SystemProperties
that are appropriate for a PL/SQL stored procedure job type.

When you create and store a PL/SQL job type, you do the following:

■ Use the JobType constructor and supply a String name and a
JobType.ExecutionType.SQL_TYPE argument.

■ Set the appropriate properties for the new JobType.

■ Obtain the metadata pointer, as shown in Section 6.2, "Accessing the Metadata
Service". Use the Metadata Service addJobType() method to store the JobType in
metadata.

■ Use a MedatdataObjectId that uniquely identifies metadata objects in the
metadata repository, and, using a unique identifier the MetadataObjectID contains
the fully qualified name for a metadata object.

See Section 8.4.3, "Using a PL/SQL Stored Procedure with an Oracle Enterprise
Scheduling Service Application" for sample code.

8.4.2 How to Create and Store a Job Definition for PL/SQL Job Type
To use PL/SQL with Oracle Enterprise Scheduling Service, you need to create and
store a job definition. A job definition is the basic unit of work that defines a job
request in Oracle Enterprise Scheduling Service. Each job definition belongs to one and
only one job type.

 Section 8.4.3, "Using a PL/SQL Stored Procedure with an Oracle Enterprise
Scheduling Service Application" shows how to create a job definition using the job
definition constructor and the job type.

Table 8–2 Oracle Enterprise Scheduling Service System Properties for a PL/SQL Stored Procedure Job
Type

System Property Description

PROCEDURE_NAME Specifies the name of the stored procedure to run as part of PL/SQL job execution.

For a SQL_TYPE application, this is a required property.

SQL_JOB_CLASS Specifies an Oracle Enterprise Scheduling Service job class to be assigned to the Oracle
Enterprise Scheduling Service job used to execute an SQL job request.

This is an optional property for a SQL_TYPE job type.

Note: Once you create a job definition with a job type, you cannot
change the type or the job definition name. To change the type or the
job definition name, you need to create a new job definition.

Creating and Storing Job Definitions for PL/SQL Job Types

8-8 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

8.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduling Service
Application

Example 8–2 shows sample code in which job type and job definition application
metadata are created for a SQL job type.

Example 8–2 Oracle Enterprise Scheduling Service Program Using PL/SQL Stored
Procedure

import oracle.as.scheduler.JobType;
import oracle.as.scheduler.JobDefinition;
import oracle.as.scheduler.MetadataService;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.ParameterInfo;
import oracle.as.scheduler.ParameterInfo.DataType;
import oracle.as.scheduler.ParameterList;

void createDefinition()
{
 MetadataService metadata = ...
 MetadataServiceHandle mshandle = null;

 try
 {
 ParameterInfo pinfo;
 ParameterList plist;

 mshandle = metadata.open();

 // Define and add a PL/SQL job type for the application metadata.
 String jobTypeName = "PLSQLJobDefType";
 JobType jobType = null;
 MetadataObjectId jobTypeId = null;

 jobType = new JobType(jobTypeName, JobType.ExecutionType.SQL_TYPE);

 plist = new ParameterList();
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.PROCEDURE_NAME);
 plist.add(info.getName(), pinfo.getDataType(), "HOWTO.HELLO_WORLD", false);
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.PRODUCT);
 plist.add(pinfo.getName(), pinfo.getDataType(), "HOW_TO_PROD", false);
 jobType.setParameters(plist);

 jobTypeId = metadata.addJobType(mshandle, jobType, "HOW_TO_PROD");

 // Define and add a job definition for the application metadata.
 String jobDefName = "PLSQLJobDef";
 JobDefinition jobDef = null;
 MetadataObjectId jobDefId = null;

 jobDef = new JobDefinition(jobDefName, jobTypeId);
 jobDef.setDescription("Demo PLSQL Job Definition " + jobDefName);

 plist = new ParameterList();
 plist.add("myJobdefProp", DataType.STRING, "myJobdefVal", false);
 jobDef.setParameters(plist);

 jobDefId = metadata.addJobDefinition(mshandle, jobDef, "HOW_TO_PROD");
 }

Creating and Storing Job Definitions for PL/SQL Job Types

Creating and Using PL/SQL Jobs 8-9

 catch (Exception e)
 {
 [...]
 }
 finally
 {
 // always close metadata service handle in finally block
 if (null != mshandle)
 {
 metadata.close(mshandle);
 mshandle = null;
 }
 }
}

Creating and Storing Job Definitions for PL/SQL Job Types

8-10 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

9

Creating and Using Process Jobs 9-1

9Creating and Using Process Jobs

This chapter describes how to use Oracle Enterprise Scheduling Service to create
process jobs, which run a script or binary command in a forked process.

This chapter includes the following sections:

■ Section 9.1, "Introduction to Creating Process Job Definitions"

■ Section 9.2, "Creating and Storing Job Definitions for Process Job Types"

For information about how to use the Runtime Service, see Chapter 14, "Using the
Runtime Service".

9.1 Introduction to Creating Process Job Definitions
Oracle Enterprise Scheduling Service lets you run job requests of different types,
including: Java classes, PL/SQL stored procedures, or process jobs that run as
spawned jobs. To use Oracle Enterprise Scheduling Service to run process type jobs
you need to specify certain metadata to define the characteristics of the process type
job that you want to run. You may also want to specify properties of the job request,
such as the schedule for when it runs.

Specifying a process type job request with Oracle Enterprise Scheduling Service is a
three step process:

1. You create or obtain the script or binary command that you want to run with
Oracle Enterprise Scheduling Service. We do not cover this step because we
assume that you have previously created the script or command for the spawned
process.

2. Using the Oracle Enterprise Scheduling Service APIs in your application, you
create job type and job definition objects and store these objects to the metadata
repository.

3. Using the Oracle Enterprise Scheduling Service APIs you submit a job request. For
information about how to submit a request, see Chapter 14, "Using the Runtime
Service".

After you create an application that uses the Oracle Enterprise Scheduling Service
APIs, you need to package and deploy the application.

At runtime, after you submit a job request you can monitor and manage the job
request. For more information on monitoring and managing job requests, see
Chapter 14, "Using the Runtime Service".

Creating and Storing Job Definitions for Process Job Types

9-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

9.2 Creating and Storing Job Definitions for Process Job Types
To use process type jobs with Oracle Enterprise Scheduling Service, you need to locate
the Metadata Service and create a job definition. You create a job definition by
specifying a name and a job type. When you create a job definition you also need to set
certain system properties. You can store the job definition in the metadata repository
using the Metadata Service.

For information about how to use the Metadata Service, see Chapter 6, "Using the
Metadata Service".

9.2.1 How to Create and Store a Process Job Type
An Oracle Enterprise Scheduling Service JobType object specifies an execution type
and defines a common set of properties for a job request. A job type can be defined
and then shared among one or more job definitions. Oracle Enterprise Scheduling
Service supports three execution types:

■ JAVA_TYPE: for job definitions that are implemented in Java and run in the
container.

■ SQL_TYPE: for job definitions that run as PL/SQL stored procedures in a database
server.

■ PROCESS_TYPE: for job definitions that are binaries and scripts that run as separate
processes under the control of the host operating system.

When you specify the JobType you can also specify SystemProperties that define the
characteristics associated with the JobType. Table 9–1 describes the properties that
specify how the request should be processed if the request results in spawning a
process for a process job type.

For more information about system properties, see Chapter 7, "Using Parameters and
System Properties."

Example 9–1 shows a sample job type definition with a PROCESS_TYPE.

Table 9–1 System Properties for Process Type Jobs

System Property Description

BIZ_ERROR_EXIT_CODE Specifies the process exit code for a process job request that denotes an execution
business error. If this property is not specified, the system treats a process exit code
of 4 as an execution business error.

CMDLINE Command line required for invoking an external program.

ENVIRONMENT_VARIABLES A comma-separated list of name/value pairs (name=value) representing the
environment variables to be set for spawned processes.

REDIRECTED_OUTPUT_FILE Specifies the file where standard output and error streams are redirected for a
process job request.

REQUESTED_PROCESSOR The Oracle WebLogic Server node on which a spawned job is executed.

SUCCESS_EXIT_CODE The process exit code for a process job request that denotes a successful execution.
If this property is not specified, the system treats a process exit code of 0 as a
successful completion.

WARNING_EXIT_CODE The process exit code for a spawned job that denotes a successful execution. If this
property is not specified, the system treats a process exit code of 3 as a warning
exit.

WORK_DIR_ROOT The working directory for a spawned process.

Creating and Storing Job Definitions for Process Job Types

Creating and Using Process Jobs 9-3

Example 9–1 Creating an Oracle Enterprise Scheduling Service JobType and Setting
JobType Properties

import oracle.as.scheduler.ConcurrentUpdateException;
import oracle.as.scheduler.JobType;
import oracle.as.scheduler.JobDefinition;
import oracle.as.scheduler.MetadataService;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.MetadataServiceException;
import oracle.as.scheduler.ParameterInfo;
import oracle.as.scheduler.ParameterInfo.DataType;
import oracle.as.scheduler.ParameterList;
import oracle.as.scheduler.SystemProperty;
import oracle.as.scheduler.ValidationException;

 void createDefinition()
 throws MetadataServiceException,ConcurrentUpdateException,
 ValidationException
 {
 MetadataService metadata = ...
 MetadataServiceHandle mshandle = null;

 try
 {
 ParameterInfo pinfo;
 ParameterList plist;

 mshandle = metadata.open();

 // Define and add a PL/SQL job type for the application metadata.
 String jobTypeName = "ProcessJobDefType";
 JobType jobType = null;
 MetadataObjectId jobTypeId = null;

 jobType = new JobType(jobTypeName, JobType.ExecutionType.
 PROCESS_TYPE);

 plist = new ParameterList();
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.CMDLINE);
 plist.add(pinfo.getName(), pinfo.getDataType(), "/bin/myprogram
 arg1 arg2", false);
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.
 ENVIRONMENT_VARIABLES);
 plist.add(pinfo.getName(), pinfo.getDataType(),
 "LD_LIBRARY_PATH=/usr/lib", false);
 pinfo = SystemProperty.getSysPropInfo(SystemProperty.PRODUCT);
 plist.add(pinfo.getName(), pinfo.getDataType(), "HOW_TO_PROD", false);
 jobType.setParameters(plist);

 jobTypeId = metadata.addJobType(mshandle, jobType, "HOW_TO_PROD");

 // Define and add a job definition for the application metadata.
 String jobDefName = "ProcessJobDef";
 JobDefinition jobDef = null;
 MetadataObjectId jobDefId = null;

 jobDef = new JobDefinition(jobDefName, jobTypeId);
 jobDef.setDescription("Demo Process Type Job Definition " +
 jobDefName);

Creating and Storing Job Definitions for Process Job Types

9-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 plist = new ParameterList();
 plist.add("myJobdefProp", DataType.STRING, "myJobdefVal", false);

 pinfo = SystemProperty.getSysPropInfo(SystemProperty.
 REDIRECTED_OUTPUT_FILE);
 plist.add(pinfo.getName(), pinfo.getDataType(), "/tmp/" + jobDefName
 + ".out", false);

 jobDef.setParameters(plist);

 jobDefId = metadata.addJobDefinition(mshandle, jobDef, "HOW_TO_PROD");
 }
 catch (Exception e)
 {
 [...]
 }
 finally
 {
 // Close metadata service handle in finally block.
 if (null != mshandle)
 {
 metadata.close(mshandle);
 mshandle = null;
 }
 }
 }

As shown in Example 9–1, when you create and store a process job type, you do the
following:

■ Use the JobType constructor and supply a String name and a
JobType.ExecutionType.PROCESS_TYPE argument.

■ Obtain the metadata pointer, as shown in Section 6.2, "Accessing the Metadata
Service". Use the Metadata Service addJobType() method to store the JobType in
metadata.

■ The MedatdataObjectId, returned by addJobType(), uniquely identifies metadata
objects in the metadata repository using a unique identifier.

9.2.2 How to Create and Store a Process Type Job Definition
To use process type jobs, you need to create and store a job definition.

Example 9–1 shows how to create a job definition using the job definition constructor
and the job type. Table 9–1 describes some of the system properties that are associated
with the job definition.

As shown in Example 9–1, when you create and store a job definition you do the
following:

■ Use the JobDefinition constructor and supply a String name and a
MetadataObjectID that points to a job type stored in the metadata.

■ Set the appropriate properties for the new job definition.

Note: Once you create a job definition with a job type, you cannot
change the type or the job definition name. To change the job type or
the job definition name, you need to create a new job definition.

Using a Perl Agent Handler for Process Jobs

Creating and Using Process Jobs 9-5

■ Obtain the metadata pointer, as shown in Section 6.2, "Accessing the Metadata
Service". Then, use the Metadata Service addJobDefinition() method to store the
job definition in the metadata repository and to return a MetadataObjectID.

9.3 Using a Perl Agent Handler for Process Jobs
Oracle Enterprise Scheduling Service requires a Perl agent to manage individual
process jobs. The Perl agent is responsible for validating, spawning, monitoring and
controlling process job execution, as well as returning the exit status of process jobs to
Oracle Enterprise Scheduling Service. The Perl agent also monitors Oracle Enterprise
Scheduling Service availability and handles job cancellation requests. In the event of
abnormal job termination (or job cancellation requests), the Perl agent terminates the
spawned process (along with its children) and exits. It detects the operating system
type and uses appropriate system calls to invoke, manage and terminate process jobs.

The Oracle Enterprise Scheduling Service Perl agent can generate its log under the
/tmp folder. This must be enabled by setting the Oracle Enterprise Scheduling Service
log level to FINE, FINER or FINEST and ensuring read and write access to the /tmp
folder. One log file is generated for each process job invocation. The log file lists the
process job invocation log, including a list of environment variables, the command line
and redirected output file specified for the process job, process ID and exit code for the
process job or errors detected while spawning the process.

Oracle Enterprise Scheduling Service Perl agent requires Oracle Perl version 5.10 or
later.

Using a Perl Agent Handler for Process Jobs

9-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

10

Defining and Using Schedules 10-1

10Defining and Using Schedules

This chapter describes how to define schedules that you can associate with a Oracle
Enterprise Scheduling Service job definition, specifying when a job request runs and
including administrative actions such as workshifts that specify time-based controls
for processing with Oracle Enterprise Scheduling Service.

This chapter includes the following sections:

■ Section 10.1, "Introduction to Schedules"

■ Section 10.2, "Defining a Recurrence"

■ Section 10.3, "Defining an Explicit Date"

■ Section 10.4, "Defining and Storing Exclusions"

■ Section 10.5, "Defining and Storing Schedules"

■ Section 10.6, "Identifying Job Requests That Use a Particular Schedule"

■ Section 10.7, "Updating and Deleting Schedules"

10.1 Introduction to Schedules
Using Oracle Enterprise Scheduling Service you can create a schedule to determine
when a job request runs or use a schedule for other purposes, such as determining
when a work assignment becomes active. A schedule can contain a list of explicit
dates, such as July 14, 2012. A schedule can also include expressions that represent a
set of recurring dates (or times and dates).

Using Oracle Enterprise Scheduling Service you create a schedule with one or more of
the following:

■ Explicit Date: Defines a date for use in a schedule or exclusion.

■ Recurrence: Contains an expression that represents a pattern for a recurring date
and time. For example, you can specify a recurrence representing a regular period
such as Mondays at 10:00AM.

■ Exclusion: Contains a list of dates to exclude or dates and times to exclude from a
schedule. For example, you can create an exclusion that contains a list of holidays
to exclude from a schedule.

10.2 Defining a Recurrence
A recurrence is an expression that represents a recurring date and time. You specify a
recurrence using an Oracle Enterprise Scheduling Service Recurrence object. You use a

Defining a Recurrence

10-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Recurrence object when you create a schedule or with an exclusion to specify a list of
dates.

The Recurrence constructor allows you to create a recurrence as follows:

■ Using the fields defined in the RecurrenceFields class, such as DAY_OF_MONTH.

■ Using a recurrence expression compliant with the iCalendar (RFC 2445)
specification. For information about using iCalendar RFC 2245 expressions see,

http://www.ietf.org/rfc/rfc2445.txt

A recurrence can also include the following (these are not required):

■ Start date: The starting time and date for the recurrence pattern.

■ End date: The ending time and date for the recurrence pattern.

■ Count: The count for the recurrence pattern. The count indicates the maximum
number of occurrences the object generates. For example, if you specify a
recurrence representing a regular period such as Mondays at 10:00AM, and a
count of 4, then the recurrence includes only four Mondays.

The start date, end date, and count attributes are valid for either a RecurrenceFields
helper based instance or an iCalendar based instance of a recurrence.

You can validate a recurrence using the recurrence validate() method that checks if
an instance of a Recurrence object represents a well defined and complete recurrence
pattern. A Recurrence instance is considered complete if it has the minimum required
fields that can generate occurrences of dates or dates and times.

10.2.1 How to Define a Recurrence with a Recurrence Fields Helper
You can create a recurrence using a recurrence fields helper. The RecurrenceFields
helper class provides a user-friendly way to specify a recurrence pattern. Table 10–1
shows the recurrence fields helper classes available to specify a recurrence pattern.

Note: When you create a recurrence you can only use one of these
two mechanisms for each recurrence instance.

Table 10–1 Recurrence Field Helper Patterns

Recurrence Field Description

DAY_OF_MONTH Defines the day of a month

DAY_OF_WEEK Enumeration of the day of a week

FREQUENCY Defines the repeat frequency of a Recurrence. Choices are:

■ DAILY: Indicates every day repetition

■ HOURLY: Indicates every hour repetition

■ MINUTELY: Indicates every minute repetition

■ MONTHLY: Indicates every month repetition

■ SECONDLY: Indicates every second repetition

■ WEEKLY: Indicates every week repetition

■ YEARLY: Indicates every year repetition

MONTH_OF_YEAR Defines the months of the year

TIME_OF_DAY Defines the time of the day

Defining a Recurrence

Defining and Using Schedules 10-3

Example 10–1 shows a sample recurrence created using the RecurrenceFields helper
class with a weekly frequency (every Monday at 10:00 a.m.) using no start or end date.

Example 10–1 Defining a Recurrence with Weekly Frequency

Recurrence recur1 =
 new Recurrence(RecurrenceFields.FREQUENCY.WEEKLY, 1, null, null);
recur1.addDayOfWeek(RecurrenceFields.DAY_OF_WEEK.MONDAY);
recur1.setRecurTime(RecurrenceFields.TIME_OF_DAY.valueOf(10, 0, 0));
recur1.validate();

In Example 10–1, note the following:

■ The schedule becomes active as specified with the start time supplied at runtime
by Oracle Enterprise Scheduling Service when a job request that uses the schedule
is submitted.

■ The interval parameter 1 specifies that this recurrence generates occurrences every
week. You calculate this value by multiplying the frequency with the interval.

Example 10–2 shows a sample recurrence for every 4 hours with no start or end date.
The recurrence was created using the RecurrenceFields helper class with an hourly
frequency, an interval multiplier of 4, a null start date, and a null end date.

Example 10–2 Defining a Recurrence with Four Hourly Frequency

Recurrence recur2 =
 new Recurrence(RecurrenceFields.FREQUENCY.HOURLY, 4, null, null);
 recur2.validate();

In Example 10–2, note the following:

■ The schedule becomes active as specified with the start time supplied at runtime
by Oracle Enterprise Scheduling Service when a job request that uses the schedule
is submitted.

■ The interval parameter 4 specifies that this recurrence generates occurrences every
4 hours. You calculate this value by multiplying the frequency with the interval.

Example 10–3 shows a sample recurrence created using the RecurrenceFields helper
class and a monthly frequency.

Example 10–3 Defining a Recurrence with Monthly Frequency

Recurrence recur3 =
 new Recurrence(RecurrenceFields.FREQUENCY.MONTHLY, 1, null, null);
recur3.addWeekOfMonth(RecurrenceFields.WEEK_OF_MONTH.SECOND);
recur3.addDayOfWeek(RecurrenceFields.DAY_OF_WEEK.TUESDAY);
recur3.setRecurTime(RecurrenceFields.TIME_OF_DAY.valueOf(11, 00, 00));
recur3.validate();

Example 10–3 specifies a recurrence with the following characteristics:

WEEK_OF_MONTH Enumerations for the week of a month

YEAR Encapsulate the value of a year

Table 10–1 (Cont.) Recurrence Field Helper Patterns

Recurrence Field Description

Defining a Recurrence

10-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

■ Includes an interval parameter with the value 1 specifies that this recurrence
generates occurrences every month.

■ Includes a specification for the week of month, indicating the second week.

■ Includes a specification for the day of week, Tuesday.

■ Includes the specification for the time of day, with the value 11:00.

Example 10–4 shows a sample recurrence created using the RecurrenceFields helper
class and a monthly frequency specified with a start date and time.

Example 10–4 Defining a Recurrence with Start Date and Time Specified

 Calendar cal = Calendar.getInstance();
 cal.set(Calendar.YEAR, 2007);
 cal.set(Calendar.MONTH, Calendar.JULY);
 cal.set(Calendar.DAY_OF_MONTH, 1);
 cal.set(Calendar.HOUR, 9);
 cal.set(Calendar.MINUTE, 0);
 cal.set(Calendar.SECOND, 0);
 Recurrence recur4 = new Recurrence(RecurrenceFields.FREQUENCY.WEEKLY,
 1,
 cal,
 null);
 recur4.validate();

Example 10–4 defines a recurrence with the following characteristics:

■ The end date is specified as null meaning no end date.

■ Using this recurrence, the start date is specified with the Calendar instance cal,
and its value is set with the set() method calls.

10.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification
You can specify a recurrence pattern using the Recurrence constructor with a String
containing an iCalendar (RFC 2445) specification.

For information about using iCalendar RFC 2245 expressions see the following link:

http://www.ietf.org/rfc/rfc2445.txt

Example 10–5 shows a sample recurrence created using an iCalendar expression.

Example 10–5 Defining a Recurrence with an iCalendar String Expression

Recurrence recur5 = new Recurrence("FREQ=YEARLY;INTERVAL=1;BYMONTH=5;BYDAY=2MO;");
recur5.validate();

10.2.3 What You Need to Know When You Use a Recurrence Fields Helper
When you define a recurrence with a RecurrenceFields helper, note the following:

Note: The following are not supported through iCalendar
expressions:

COUNT, UNTIL, BYSETPOS, WKST

You can still directly specify a count on the Recurrence object using
the setCount method.

Defining a Recurrence

Defining and Using Schedules 10-5

■ Providing a frequency with one of the RecurrenceFields.FREQUENCY constants is
always mandatory when you define a recurrence pattern using the
RecurrenceFields helper classes (for more information on frequency, see
Table 10–1).

■ The frequency interval supplied with the recurrence constructor is an integer that
acts as a multiplier for the supplied frequency. For example if the frequency is
RecurrenceFields.FREQUENCY.HOURLY and the interval is 8, then the combination
represents every 8 hours.

■ Providing either a start or end date is optional. But if a start or end date is
specified, it is guaranteed that the object will not generate any occurrences before
the start date or after the end date (and if specified, any associated start time or
end time).

■ In general if both start date and recurrence fields are used, then the recurrence
fields always take precedence. This qualification means the following:

– If a start date is specified with just the frequency fields from the
RecurrenceFields then the start date defines the occurrences with the
frequency field, starting with the first occurrence on the start date itself. For
example if a start date is specified as 01-MAY-2007:09:00:00 with a
RecurrenceFields.FREQUENCY of WEEKLY without using other recurrence fields,
the occurrences happen once every week starting on 01-MAY-2007:09:00:00
(and including 08-MAY-2007:09:00:00, 15-MAY-2007:09:00:00, and so on).

Thus, providing a start date along with a specification of frequency fields
provides a quick way of defining a recurrence pattern.

– If the start date or end date is specified together with additional recurrence
fields, the recurrence fields take precedence, and the start date or end date
only act as absolute boundary points. For example, with a start date of
01-MAY-2007:09:00:00 and a frequency of WEEKLY if the additional recurrence
field DAY_OF_WEEK is used with a value of WEDNESDAY the occurrence happens
on every Wednesday starting with the first Wednesday that comes after
01-MAY-2007. Because 01-MAY-2007 is a Tuesday, the first occurrence
happens on 02-MAY-2007:09:00:00 and not on 01-MAY-2007:09:00:00.

In this case, with the start date of 01-MAY-2007:09:00:00, if the TIME_OF_DAY is
also specified as 11:00:00, all the occurrences happen at 11:00:00 overriding the
09:00:00 time from the starting date specification.

■ When just a frequency is supplied and a recurrence does not include either a start
date, start time, or a TIME_OF_DAY field, the occurrences happen based on a
timestamp that Oracle Enterprise Scheduling Service supplies at runtime (typically
this timestamp is provided during request submission).

For example, when a recurrence indicates a 2 hour recurrence then the time of the
job request submission determines the start time for the occurrences. Thus, in such
cases the occurrences for a job request are each 2 hours apart, but when multiple
job requests are submitted, the start times will be different and are set at the
request submission time for the job requests.

■ When the start date is not used, recurrence fields can be included such that a
recurrence pattern is completely defined. For example, specifying a MONTH_OF_
YEAR alone does not define a recurrence pattern when a start date is not also
present. Without a start date the number of minimum recurrence fields required to
define a pattern depends upon the value of the frequency used. For example with
frequency of WEEKLY, only DAY_OF_WEEK and TIME_OF_DAY are sufficient to define
which day the weekly occurrences should happen. With a frequency of YEARLY,

Defining an Explicit Date

10-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

MONTH_OF_YEAR, DAY_OF_MONTH (or the WEEK_OF_MONTH and DAY_OF_WEEK) and the
TIME_OF_DAY are sufficient to define the recurrence pattern.

■ You can supply multiple values for recurrence fields, except for the frequency
field. However, at runtime Oracle Enterprise Scheduling Service skips invalid
combinations silently. For example with MONTH_OF_YEAR specified as January and
ending in June, and with DAY_OF_MONTH as 30, the recurrence skips an invalid day,
that is day 30 for February.

10.2.4 What You Need to Know When You Use an iCalendar Expression
When you define a recurrence with an iCalendar expression, note the following:

■ When the recurrence does not include either a start date or time and the iCalendar
expression does not specify a time of day, the occurrences happen based on a
timestamp that Oracle Enterprise Scheduling Service supplies at runtime (typically
this timestamp is provided during request submission).

For example a recurrence can indicate a 2 hour recurrence, and the start date and
time of the job request submission determines the exact start time for the
occurrences. Note that in such cases, when the start time is not specified,
occurrences for different job requests can happen at different times, based on the
submission time, but the individual occurrences will be 2 hours apart.

■ Providing either a start date with setStartDate() or an end date with
setEndDate() is optional. But if a start or end date is specified, it is guaranteed
that the object will not generate any occurrences before the start date or after the
end date (and if specified, any associated start time or end time).

10.3 Defining an Explicit Date
An explicit date defines a date and time for use in a schedule or an exclusion. You
construct an ExplicitDate using appropriate fields from the RecurrenceFields class.

10.3.1 How to Define an Explicit Date
Example 10–6 shows an explicit date definition.

Example 10–6 Defining an Explicit Date

ExplicitDate date = new ExplicitDate(RecurrenceFields.YEAR.valueOf(2007),
 RecurrenceFields.MONTH_OF_YEAR.AUGUST,
 RecurrenceFields.DAY_OF_MONTH.valueOf(17));

In Example 10–6 a RecurrenceFields helper defines a date in the constructor and the
value does not include a time of day. You can optionally use setTime to set the time
associated with an explicit date.

10.3.2 What You Need to Know About Explicit Dates
The ExplicitDate class provides the ability to define a partial date, when compared
with java.util.Calendar where the time part is not specified. Also all other
java.util.Calendar fields such as TimeZone are not defined with an ExplicitDate.
When the time part is not specified in an ExplicitDate, Oracle Enterprise Scheduling
Service computes the time appropriately. For example, consider a schedule that
indicates every Monday after June 1, 2007, and adds an explicit date for the 17th of
August 2007 (a Friday). In this example, the 17th of August 2007 is a partial date since
it does not include a time.

Defining and Storing Exclusions

Defining and Using Schedules 10-7

10.4 Defining and Storing Exclusions
Using an Oracle Enterprise Scheduling Service exclusion you can represent dates that
need to be excluded from a schedule. For example, you can use an exclusion to create a
list of holidays to skip in a schedule.

10.4.1 How to Define an Exclusion
You represent an individual exclusion with an Exclusion object. You can define the
dates to exclude in an exclusion using either an ExplicitDate or with a Recurrence
object.

Example 10–7 shows how to create an Exclusion instance using a recurrence.

Example 10–7 Defining Explicit Dates and an Exclusion

Recurrence recur = new Recurrence(RecurrenceFields.FREQUENCY.YEARLY, 1);
recur.addMonth(RecurrenceFields.MONTH_OF_YEAR.JULY);
recur.addDayOfMonth(RecurrenceFields.DAY_OF_MONTH.valueOf(4));
Exclusion e = new Exclusion("Independence Day", recur);

Example 10–7 defines an individual exclusion. For information about creating a list of
Exclusions, see Section 10.4.2, "How to Create an Exclusions Definition".

10.4.2 How to Create an Exclusions Definition
To create a list of exclusions and persist the exclusion dates you do the following:

1. Create a list of exclusions.

2. Define an ExclusionsDefinition object using the list of exclusions.

3. Use the Metadata Service addExclusionDefinition() method to persist the
ExclusionsDefinition.

Finally, when you want to associate an ExclusionsDefinition with a schedule, you
use the schedule addExclusion() method.

Example 10–8 shows how to create an ExclusionDefinition and store the definition
to the metadata repository.

Example 10–8 Creating and Storing a List of Exclusions in an ExlusionDefinition

Collection<Exclusion> exclusions = new ArrayList<Exclusion>();
Exclusion e = new Exclusion("Independence Day", recur);
exclusions.add(e);
ExclusionsDefinition exDef1 =
 new ExclusionsDefinition("OrclHolidays1", "Annual Holidays", exclusions);
MetadataObjectId exId1 =
 m_service.addExclusionDefinition(handle,
 exDef1,
 "METADATA_UNITTEST_PROD");

Note in Example 10–8 that the ExclusionsDefinition constructor needs three
arguments.

Defining and Storing Schedules

10-8 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

10.5 Defining and Storing Schedules
Using Oracle Enterprise Scheduling Service you can create a schedule to determine
when a job request runs or use the schedule for other purposes (such as determining
when a work assignment becomes active). A schedule contains a list of explicit dates,
such as June 13, 2007 or a set of expressions that represent a recurring date or date and
time. A schedule can also specify specific exclusion and inclusion dates.

You create a schedule using the following:

■ Explicit Dates: Define a date for use in a schedule or exclusion. For more
information, see Section 10.3, "Defining an Explicit Date"

■ Recurrences: Contain an expression that represents a pattern for a recurring date
and time. For example, you can specify a recurrence representing a regular period
such as Mondays at 10:00AM. For more information, see Section 10.2, "Defining a
Recurrence"

■ Exclusions: Contain a list of dates to exclude or dates and times to exclude from a
schedule. For example, you can create an exclusion that contains a list of holidays
to exclude from a schedule. For more information, see Section 10.4, "Defining and
Storing Exclusions"

10.5.1 How to Define and Store a Schedule
To define a schedule:

1. Create a schedule by defining an Oracle Enterprise Scheduling Service Schedule
object and using the schedule constructor to create a new schedule.

2. Obtain a metadata service reference, m_metadataService, and open a metadata
session in a try block with MetadataServiceHandle.

MetadataObjectId scheduleId = m_service.addScheduleDefinition(handle, s1, "HOW_
TO_PROD");

3. Define the date, recurrences and exclusions.

4. Store the schedule using addScheduleDefinition.

5. Close the session with a finally block.

10.5.2 What Happens When You Define and Store a Schedule
Example 10–9 shows a sample schedule definition using a recurrence with the
RecurrenceFields helper class for a weekly schedule, specified to run on Mondays at
10:00AM.

The schedule uses the addInclusionDate() method to add an explicit date to the
occurrences in the schedule, and the addExclusionDate() method to explicitly exclude
the date of May 15 from schedule occurrences.

Example 10–9 Creating a Schedule Recurrence with RecurrenceFields Helpers

Recurrence recur = new Recurrence(RecurrenceFields.FREQUENCY.WEEKLY);
 recur.addDayOfWeek(RecurrenceFields.DAY_OF_WEEK.MONDAY);
 recur.setRecurTime(RecurrenceFields.TIME_OF_DAY.valueOf(10, 0, 0));

 ExplicitDate july10 = new ExplicitDate(RecurrenceFields.YEAR.valueOf(2008),
 RecurrenceFields.MONTH_OF_YEAR.JULY
 RecurrenceFields.DAY_OF_MONTH.valueOf(10));

Updating and Deleting Schedules

Defining and Using Schedules 10-9

 ExplicitDate may15 = new ExplicitDate(RecurrenceFields.YEAR.valueOf(2008),
 RecurrenceFields.MONTH_OF_YEAR.MAY,
 RecurrenceFields.DAY_OF_MONTH.valueOf(15));

 Schedule schedule = new Schedule("everyMonday", "Weekly Schedule", recur);
 schedule.addInclusionDate(july10);
 schedule.addExclusionDate(may15);

Example 10–10 shows sample code used to store a schedule. The method
addScheduleDefinition() is used to store the schedule within a try block, followed
by a finally block that includes error handling.

Example 10–10 Storing a Schedule

MetadataServiceHandle handle = null;
boolean abort = true;
try
 {
 handle = m_service.open();
 m_service.addScheduleDefinition(handle, schedule, "HOW_TO_PROD");
 abort = false;
 }
finally
 {
 if (handle != null)
 {
 m_service.close(handle, abort);
 }
 }

10.5.3 What You Need to Know About Handling Time Zones with Schedules
You can use a java.util.TimeZone object to set the time zone for a schedule. Use the
Schedule setTimeZone() method to set or clear the TimeZone for a Schedule. The
Schedule method getTimeZone()returns a java.util.TimeZone value if the Schedule
object has as TimeZone set.

10.6 Identifying Job Requests That Use a Particular Schedule
You can use Fusion Middleware Control to search for job requests that use a particular
schedule.

For more information about searching for job requests that use a certain schedule, see
the section "Searching for Oracle Enterprise Scheduling Service Job Requests" in the
chapter "Managing Oracle Enterprise Scheduling Service Requests" in Oracle Fusion
Middleware Administrator's Guide for Oracle Enterprise Scheduling Service.

10.7 Updating and Deleting Schedules
You can use Fusion Middleware Control to edit and delete schedules.

For information about editing and deleting schedules, see the section "Managing
Schedules" in the chapter "Managing Oracle Enterprise Scheduling Service Requests"
in Oracle Fusion Middleware Administrator's Guide for Oracle Enterprise Scheduling Service.

Updating and Deleting Schedules

10-10 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

11

Using the Oracle Enterprise Scheduling Service Web Service 11-1

11Using the Oracle Enterprise Scheduling
Service Web Service

This chapter describes how you can use the Oracle Enterprise Scheduling Service web
service for accessing a subset of the Oracle Enterprise Scheduling Service runtime
functionality.

This chapter includes the following sections:

■ Section 11.1, "Introduction to the Oracle Enterprise Scheduling Service Web
Service"

■ Section 11.2, "Developing and Using ESSWebservice Applications"

■ Section 11.3, "ESSWebservice WSDL File"

■ Section 11.4, "Use Case Using Oracle Enterprise Scheduling Service ESSWebservice
from a BPEL Process"

■ Section 11.5, "Creating the ESSWebService Application and a SOA Project"

■ Section 11.6, "Creating the ESSWebService Reference"

■ Section 11.7, "Adding the BPEL Process to Call the ESSWebService"

■ Section 11.8, "Using Additional ESSWebService Operations"

■ Section 11.9, "Securing the Oracle Enterprise Scheduling Service Web Service"

■ Section 11.10, "Deploying and Testing the Project"

11.1 Introduction to the Oracle Enterprise Scheduling Service Web
Service

Oracle Enterprise Scheduling Service provides a rich set of functionality for enterprise
level scheduling. This functionality includes support for the following operations:

■ Creating and managing Oracle Enterprise Scheduling Service metadata

■ Submitting and managing Oracle Enterprise Scheduling Service job requests

■ Configuring and managing Oracle Enterprise Scheduling Service

Client applications can use the Oracle Enterprise Scheduling Service web service
(ESSWebservice) to access a subset of the Oracle Enterprise Scheduling Service
runtime functionality. The ESSWebservice is provided primarily to support SOA
integration, for example invoking Oracle Enterprise Scheduling Service from a BPEL
process. However, any client that needs a web service to interact with Oracle
Enterprise Scheduling Service can use ESSWebservice. ESSWebservice exposes job

Introduction to the Oracle Enterprise Scheduling Service Web Service

11-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

scheduling and management functionality for request submission and request
management.

ESSWebservice is deployed within the Oracle Enterprise Scheduling Service
application, where the application is a Java EE application within the Oracle
Enterprise Scheduling Service runtime framework. Thus, the ESSWebservice is
available on every node where Oracle Enterprise Scheduling Service is installed and
deployed.

The ESSWebservice is a synchronous web service, such that all the operations invoked
are synchronous operations. Since internally, the job execution model in Oracle
Enterprise Scheduling Service is asynchronous, the APIs themselves do not need to be
asynchronous. However, Oracle Enterprise Scheduling Service web service also
provides the capability to retrieve the job completion events asynchronously (in a
manner similar to implementing the Oracle Enterprise Scheduling Service
EventListener contract in the core API layer).

The ESSWebservice WSDL describes the complete functionality for the
ESSWebservice. Table 11–1 summarizes the operations available with ESSWebservice.

Table 11–1 Summary of Operations Available with ESSWebservice

Operation Communication Type Description

addPPAction Synchronous Adds a post-processing action to a step in a job set request. This method
is called prior to submitting the request. The method provides support
for action previously supported by add_printer, add_notification, add_
layout in concurrent processing. The parameters to these legacy
routines are passed as arguments to addPPAction in the order in which
they were declared in the original routine. For more information, see
Section 11.8, "Using Additional ESSWebService Operations"

addPPActions Synchronous Similar to addPPAction, except that you can package multiple actions in
your request.

cancelRequest Synchronous Cancels the processing of a request that is not in a terminal state.

deleteRequest Synchronous Marks a request in a terminal state for deletion. This does not physically
remove any data, although the request will no longer be accessible by
most methods.

For parent requests, this operation will cascade to all children.

getCompletionStatus Asynchronous Registers for an asynchronous status update when the request
completes. A one-way operation with a separate asynchronous
response.

getRequestDetail Synchronous Gets the runtime details of the specified request.

getRequestState Synchronous Retrieves the current state of the specified request.

holdRequest Synchronous Withholds further processing of a request that is in WAIT or READY state.
For parent requests, this operation will cascade to all eligible child
requests.

releaseRequest Synchronous Releases a request from the HOLD state. For parent requests, this
operation will cascade to all eligible child requests.

setAsyncRequestStatus Synchronous Sets the status of an asynchronous java job.

setNLSOptions Synchronous Sets NLS environment options for a request.

setStepsArgs Synchronous Marshals arguments in the previous concurrent processing style into a
Oracle Enterprise Scheduling Service properties for a step in a job set
request. This operation is invoked prior to submitting a request. For
more information, see Section 11.8, "Using Additional ESSWebService
Operations".

Developing and Using ESSWebservice Applications

Using the Oracle Enterprise Scheduling Service Web Service 11-3

11.2 Developing and Using ESSWebservice Applications
Oracle Enterprise Scheduling Service executes a job request, for example a Java type
job request, in the context of the application that submitted the job. Typically, for
development purposes, Oracle Enterprise Scheduling Service and client applications
co-exist locally on any given node which allows Oracle Enterprise Scheduling Service
to execute the job in the context of the target application. For the purposes of
production, the client application and Oracle Enterprise Scheduling Service often
reside on different servers.

A Java EE application that uses Oracle Enterprise Scheduling Service contains all the
Oracle Enterprise Scheduling Service artifacts including the following:

■ Metadata, including a job type, a job definition, a schedule, and any other required
metadata such as a job set.

■ Job implementation classes (for Java jobs).

■ A Required Oracle Enterprise Scheduling Service endpoint description (an MDB
description in ejb-jar.xml).

Any clients interacting with Oracle Enterprise Scheduling Service using
ESSWebservice need to provide such a Java EE application, such that Oracle
Enterprise Scheduling Service can run jobs in the context of the correct target
application. All such web service clients must know the name of the corresponding
Java EE hosting application and should pass it to Oracle Enterprise Scheduling Service
using the web service call wherever required (where this is required is defined in the
WSDL).

The details for developing this hosting application are described in Chapter 5, "Use
Case Oracle Enterprise Scheduling Service Sample Application (Deprecated)." Such an
application is a regular Oracle Enterprise Scheduling Service client application, but the
job request submission and other Oracle Enterprise Scheduling Service interactions
may be skipped, as these calls are generated through the ESSWebservice.

11.2.1 How to Develop and Use an ESSWebservice Java EE Application
When the Oracle Enterprise Scheduling Service functionality is accessed using the
ESSWebservice web service, a corresponding hosting Java EE application needs to be
available to Oracle Enterprise Scheduling Service. Even though clients can interact
with Oracle Enterprise Scheduling Service remotely using the Oracle Enterprise
Scheduling Service web service, the associated Java EE application must still be
co-located with Oracle Enterprise Scheduling Service. This allows Oracle Enterprise

setSubmitArgs Synchronous Marshals arguments in the previous concurrent processing style into
Oracle Enterprise Scheduling Service properties.This operation is
invoked prior to submitting the request. The key of each argument is
ARGUMENT_PREFIX#, where # is the ordinal value of the argument.
For example ARGUMENT_PREFIX1="firstArg" and ARGUMENT_
PREFIX2="secondArg". For more information, see Section 11.8, "Using
Additional ESSWebService Operations".

submitRecurringRequest Synchronous Submits a new recurring job request (a request with a schedule). For
more information, see Section 11.8, "Using Additional ESSWebService
Operations".

submitRequest Synchronous Submits a new job request. For more information, see Section 11.4, "Use
Case Using Oracle Enterprise Scheduling Service ESSWebservice from a
BPEL Process"

Table 11–1 (Cont.) Summary of Operations Available with ESSWebservice

Operation Communication Type Description

Developing and Using ESSWebservice Applications

11-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Scheduling Service to execute job requests in the correct application context. Therefore
ESSWebservice clients still need to develop, package and deploy a corresponding Java
EE application that contains all the required Oracle Enterprise Scheduling Service
artifacts. For information about developing an Oracle Enterprise Scheduling Service
application, see Chapter 5, "Use Case Oracle Enterprise Scheduling Service Sample
Application (Deprecated)."

11.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL
For SOA clients all the SOA components such as a BPEL processor are deployed as a
SOA composite. A SOA composite is not a Java EE application. The composite is
executed using the SOA fabric runtime framework (within soa-infra).

For SOA components, create a separate Java EE hosting application that acts as the
proxy between the composite and Oracle Enterprise Scheduling Service. This hosting
application can either be created in a one-to-one association with one Oracle
Enterprise Scheduling Service application for each composite deployed, or multiple
composites can share a single Java EE hosting application. The Java EE hosting
application contains all the desired Oracle Enterprise Scheduling Service artifacts.

11.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation
As shown in the ESSWebservice WSDL, if clients want to be notified asynchronously
on job completion they can invoke the getCompletionStatus() operation. Upon job
completion, Oracle Enterprise Scheduling Service will invoke the callback operation
onJobCompletion() following ws-addressing where ESSWebservice captures the
caller's address in the incoming call. Clients should be capable of receiving the
callback at any arbitrary time in future. Such a callback depends entirely upon the time
required to complete the job. This is similar to the Oracle Enterprise Scheduling
Service functionality for invoking a client's listener (that implements Oracle Enterprise
Scheduling Service EventListener contract) upon job completion.

When you use getCompletionStatus() clients must include certain required web
service addressing headers (in particular the wsa:MessageID and wsa:ReplyTo
headers). This allows the Oracle Enterprise Scheduling Service runtime to
asynchronously notify the job completion status be sent to the correct ReplyTo address.
When you use getCompletionStatus() from a BPEL process the SOA runtime
automatically adds the required headers. When using getCompletionStatus()
programatically on the client side, using the web service proxies, then the web service
client must set these addressing headers.

11.2.4 Limitations for ESSWebservice
ESSWebservice does not support the following Oracle Enterprise Scheduling Service
features:

■ Ad hoc Request Submission: ESSWebservice does not support ad hoc job request
submission (ad hoc request submission is available using the EJB APIs). Therefore
any job that is submitted using the ESSWebservice must have its corresponding
definition, including a job type and job definition along with the schedule
definitions created as metadata objects in the associated proxy application. The
web service operation can then refer to such metadata objects using their identifier
arguments as specified in the WSDL.

■ Query API: ESSWebservice does not expose the query APIs. Web service clients do
not need to obtain the query information for Oracle Enterprise Scheduling Service

Creating the ESSWebService Application and a SOA Project

Using the Oracle Enterprise Scheduling Service Web Service 11-5

requests. ESSWebservice web service clients do not provide generic monitoring
and managing functionality that would require the use of query APIs.

11.2.5 ESSWebservice Implementation
The Oracle Enterprise Scheduling Service functionality is exposed as web service using
an interface (SEI) annotated with the JAX-WS annotations. The implementation of this
(SEI) web service invokes the common Oracle Enterprise Scheduling Service
implementation layer. The ESSWebservice is exposed in Document/Literal/Wrapped
mode for maximum interoperability.

Some of the data types used in ESSWebservice are not suitable to be used in web
service directly. Such data types cannot be readily converted into corresponding XML
representation. Therefore the Oracle Enterprise Scheduling Service web service layer
defines wrapper classes around these data types that are exposed in the
ESSWebservice, and visible in the WSDL. Otherwise in general, the web service layer
reuses the existing data types where possible.

11.3 ESSWebservice WSDL File
When Oracle Enterprise Scheduling Service is installed and running, you can obtain
the WSDL definition file from the web services page at the following type of URL:

http://host:port/ess/esswebservice?WSDL

For example,

http://system1:7001/ess/esswebservice?WSDL

11.4 Use Case Using Oracle Enterprise Scheduling Service
ESSWebservice from a BPEL Process

The following sections show use of ESSWebService from a BPEL process; in the BPEL
process you use ESSWebService to submit a job request. The use case demonstrates
one path for using Oracle Enterprise Scheduling Service for BPEL and SOA users.
Experienced SOA users and designers may have other ideas for how work with Oracle
Enterprise Scheduling Service using the web service. To submit an Oracle Enterprise
Scheduling Service job request from a BPEL process, you need to deploy an
application that provides the required Oracle Enterprise Scheduling Service artifacts.
For this use case you can deploy the EssDemoApp described in Chapter 5, "Use Case
Oracle Enterprise Scheduling Service Sample Application (Deprecated)."

11.5 Creating the ESSWebService Application and a SOA Project
Using Oracle JDeveloper you create an application and the projects within the
application that contain the code and support files for the application. To create the
ESSWebService sample application, you do the following:

■ Create an application and an SOA project in Oracle JDeveloper

■ Configure the SOA project in Oracle JDeveloper

11.5.1 How to Create the ESSWebService Application and Project
To work with Oracle Enterprise Scheduling Service you first create an application and
an SOA project in Oracle JDeveloper.

Creating the ESSWebService Reference

11-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

To create EssWebApplication:
1. Click the New... icon.

2. In the New Gallery, in the navigator, expand General and select Applications.

3. In the Items area select SOA Application.

4. Click OK.

5. Use the Name your application window to enter the name and location for the
new application and to specify the application template.

a. In the Application Name field, enter an application name. For this sample
application, enter EssWebApplication.

b. In the Directory field, accept the default.

c. Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project
of an application.

d. Click Next.

6. In the Name your project dialog select SOA project options.

a. In the Project Name field, enter a project name or accept the default,
Project1.

b. On the Project Technologies tab, the Selected shuttle should show SOA.

c. Click Finish. This creates the EssWebApplication that contains an SOA
project.

11.6 Creating the ESSWebService Reference
In the SOA composite application you need to add the ESSWebservice reference to
make the web service available for a partner link in the SOA composite application.

11.6.1 How to Add the ESSWebService Partner Link
You need to add the ESSWebService partner link to the SOA composite application.

To add the Oracle Enterprise Scheduling Service web service as a partner link:
1. In the Application Navigator open the ESSWebApplication and expand Project1

and then expand SOA Content.

2. In the Application Navigator select composite.xml.

3. Right-click and from the dropdown list select Open. This displays the composite
as shown in Figure 11–1.

Creating the ESSWebService Reference

Using the Oracle Enterprise Scheduling Service Web Service 11-7

Figure 11–1 EssWebService Application composite.xml

4. In the Component Palette from the SOA dropdown list, in the Service Adapters
area select Web Service.

5. Drag-and-drop the web service icon to the External References lane in
composite.xml. This displays the Create Web Service window, as shown in
Figure 11–2.

Figure 11–2 Create Web Service Dialog

6. In the Name field, enter a service name, or accept the default name.

7. In the Type field, from the dropdown list select Reference.

8. In the WSDL URL text field enter the value for the WSDL URL manually, for
example:

http://host:port/ess/esswebservice?WSDL

9. In the SOA Resource Lookup dialog, click OK.

Creating the ESSWebService Reference

11-8 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

10. In the Create Web Service dialog, in the Port Type field, from the dropdown list
select ESSWebService.

11. In the Create Web Service dialog, in the Callback Port Type select
ESSWebServiceCallback from the dropdown list, as shown in Figure 11–3.

Figure 11–3 Create Web Service with ESSWebService WSDL

Select the check box Copy WSDL and its dependent artifacts into the project.
This allows the local copy of the Oracle Enterprise Scheduling Service abstract
WSDL and ESSTypes.xsd files to be moved into the SOA composite project.

12. Click OK. Now the External References lane in composite.xml displays the new
web service, as shown in Figure 11–4.

Note: Keeping a local copy of a WSDL file may result in
synchronization issues if the remote WSDL file is updated. Making a
local copy of the remote WSDL file is therefore not recommended.
However, doing so may be useful for certain scenarios such as offline
designing.

Adding the BPEL Process to Call the ESSWebService

Using the Oracle Enterprise Scheduling Service Web Service 11-9

Figure 11–4 Composite.xml with ESSWebService External Reference

11.7 Adding the BPEL Process to Call the ESSWebService
Now you need to add a BPEL Process to call the ESSWebService operations.

11.7.1 How to Add a BPEL Process to Call the ESSWebService
You need to add a BPEL process to use the ESSWebService.

To add a BPEL process to use the ESSWebService:
1. In the Application Navigator, in Project1 select composite.xml.

2. In the Component Palette, from the SOA dropdown list in the Service
Components area select BPEL Process.

3. Drag-and-drop a BPEL process to the components swim lane. This displays the
Create BPEL Process dialog, as shown in Figure 11–5.

Adding the BPEL Process to Call the ESSWebService

11-10 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 11–5 Create BPEL Process Dialog for New BPEL Process

4. Click OK. This adds the BPEL process to composite.xml, as shown in Figure 11–6.

Figure 11–6 Adding a BPEL Process to the SOA Composite Application

5. In composite.xml, select BPELProcess1 and then select and drag the right arrow to
create a reference to Service1, as shown in Figure 11–7.

Adding the BPEL Process to Call the ESSWebService

Using the Oracle Enterprise Scheduling Service Web Service 11-11

Figure 11–7 Adding A Reference to the Oracle Enterprise Scheduling Service Web
Service in composite.xml

6. Click the Save All icon to save the project files.

11.7.2 Copy Types Into BPEL Process Schema
You need to change the schema of the BPEL process by opening up the corresponding
XSD file in the xsd folder under the project. This step is a shortcut for the
demonstration purposes for this sample application. In your own application, you
would use the schema types required for the ESSWebservice operations. This allows
the clients of the BPEL process, for this example a simplified test case, to provide all
the necessary inputs (this is required because clients are based on BPEL process
schema). This step allows you to map, or assign inputs for the web service. This step is
only required to correctly generate the sample application. In real scenarios the BPEL
process designer is responsible for defining or supplying the input schema, and
mapping this to the web service inputs.

To update the BPEL process schema:
1. In the Application Navigator, in Project1 expand the SOA Content folder and

expand the xsd folder.

2. In the xsd folder, double-click the BPELProcess1.xsd file.

3. Select the Source tab.

4. Copy the EssWebService types so that the schema includes the contents shown in
Example 11–1.

Note: The steps outlined require manual changes, depending on the
BPEL process you are working with and the particular naming you
are using for your BPEL process. You can find the types that are
required for ESSWebService operations in the ESSWebService WSDL
file. It is also possible to individually add these types to the schema.

Adding the BPEL Process to Call the ESSWebService

11-12 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

The ESSTypes.xsd file and other WSDL artifacts exposed by the Oracle Enterprise
Scheduling Service web service are imported into the composite and renamed
esswebservice_XSD_<XSD file name>.xsd.

5. In the BPELProcess1.xsd file, refer to the artifacts created in Section 11.6, "Creating
the ESSWebService Reference" that have been imported into the composite. The
directory path should be relative the BPELProcess1.xsd file. Example 11–1 shows
the composite schema file with a reference to the web service artifacts.

Example 11–1 BPEL XSD Schema

<?xml version="1.0" encoding="UTF-8"?>
<schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"
 xmlns:ns1="http://xmlns.oracle.com/scheduler/types"
 targetNamespace="http://xmlns.oracle.com/
 EssWebApplication/Project1/BPELProcess1"
 xmlns:tns="http://xmlns.oracle.com/
 EssWebApplication/Project1/BPELProcess1"
 xmlns="http://www.w3.org/2001/XMLSchema">

<import namespace="http://xmlns.oracle.com/scheduler/types"
 schemaLocation="../esswebservice_XSD_ESSTypes.xsd" />

 <element name="process">
 <complexType>
 <xs:sequence>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="jobDefinitionId" type="ns1:metadataObjectId"/>
 <xs:element name="requestedStartTime" type="xs:dateTime"/>
 <xs:element name="application" type="xs:string"/>
 <xs:element name="requestParameters" type="ns1:requestParameters"/>
 </xs:sequence>
 </complexType>
 </element>
 <element name="processResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 <element name="requestId" type="long"/>
 <element name="state" type="ns1:state"/>
 </sequence>
 </complexType>
 </element>
</schema>

6. Click the Save icon.

Note: The schema shown in Example 11–1 includes the application
and project name. If you change the application name or the project
name for this example, you also need to update the schema
targetNamespace and xmlns:tns elements to reflect the names that
you use.

Adding the BPEL Process to Call the ESSWebService

Using the Oracle Enterprise Scheduling Service Web Service 11-13

11.7.3 How to Invoke the ESSWebService submitRequest Operation
In the BPEL process you add an invoke activity to perform the Oracle Enterprise
Scheduling Service web service submitRequest() operation. In this step you need to
select the input and output for the Invoke Activity by associating values with the
Input and Output variables.

To add the Invoke activity to submit the request using ESSWebService:
1. In the Application Navigator, in Project1 expand SOA Content and select the BPEL

file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane as
shown in Figure 11–8.

Figure 11–8 BPEL Process Before Adding Invoke Activity for ESSWebService SubmitRequest

2. From the Component Palette, drag-and-drop an Invoke Activity and place the
activity before callbackClient.

3. Link the invoke activity to the ESSWebService by selecting the right arrow and
dragging it to the Partner Link Service1. This brings up the Edit Invoke dialog, as
shown in Figure 11–9.

Adding the BPEL Process to Call the ESSWebService

11-14 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 11–9 Edit Invoke Dialog for BPEL Activity

4. In the Edit Invoke dialog, in the Operation field, select submitRequest.

5. In the Variables field, click the Add icon next to the Input field.

The Create Variable dialog displays. Accept the default value and click OK.

6. In the Edit Invoke dialog, click the Add icon next to the Output field.

The Create Variable dialog displays. Accept the default value and click OK.

The new invoke link to Service1 displays.

7. Select the Invoke activity and double-click the name Invoke_1 to select the text
entry field. In the text entry field enter submitRequest, as shown in Figure 11–10.

Adding the BPEL Process to Call the ESSWebService

Using the Oracle Enterprise Scheduling Service Web Service 11-15

Figure 11–10 Adding the submitRequest Invoke Activity

11.7.4 Assign Required Input Parameters for Request Submission
You add an Assign activity and then assign inputs from the BPEL process to the
submitRequest Invoke activity.

For the mapping for an Assign activity with a Copy operation, the arguments
correspond to the input parameters for Oracle Enterprise Scheduling Service
submitRequest, as shown in Table 11–2. If your BPEL schema differs from the
submitRequest message type, use Table 11–2 as a guide for how to populate the values
manually with the Assign activity Copy operation.

Note: In most cases, the input payload of the BPEL process will not
directly match the input payload of the submit Request web service.
Coaxing into use of CopyList will only work in the scenarios where
there is a one to one mapping of the input payload to the submit
Request.

Table 11–2 Submit Request Web Service Arguments for BPEL Assign Activity Mapping

Argument Description

Description Context for the ad hoc submission of this job, such as the 'Order
Import'.

Application The application name can be the deployment name of the hosting
Oracle Enterprise Scheduling Service application or it can be a logical
application name.

Adding the BPEL Process to Call the ESSWebService

11-16 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

To add an assign activity:
1. Drag-and-drop an Assign activity from the BPEL Activities area in the Component

Palette to just before the Invoke Activity named submitRequest.

2. Select the Assign activity and double-click the name Assign_1 to enter new text. In
the text entry box enter Job_Inputs, as shown in Figure 11–11.

Figure 11–11 Adding an Assign Activity to BPEL

Add Copy for description JobDefinitionID requestedStartTime application:
1. Double click the new Assign activity named Job_Inputs to show the Assign page

with the Copy Operation tab, as shown in Figure 11–12.

JobDefinitionId ■ name: The name of the Oracle Enterprise Scheduling Service job

■ package: The name of the path containing the Oracle Enterprise
Scheduling Service job

■ type: 'JOB_DEFINITION'

parameter(s) dataType: Value type for this parameter (STRING, INTEGER, LONG,
BOOLEAN, DATETIME)

name: String containing the name of the parameter defined in the
Oracle Enterprise Scheduling Service job definition.

scope: String containing the named scope for this parameter - used
only for job sets.

value: Element containing the parameter's value

Table 11–2 (Cont.) Submit Request Web Service Arguments for BPEL Assign Activity

Argument Description

Adding the BPEL Process to Call the ESSWebService

Using the Oracle Enterprise Scheduling Service Web Service 11-17

Figure 11–12 Copy Operation for BPEL Assign Activity

2. Click the Add icon and from the dropdown list select Copy Operation, to add
copy operations for variables. This displays the Create Copy Operation dialog.

3. In the Create Copy Operation dialog, expand and then navigate to select a copy
operation for each input parameter (you only use a copy operation for
description, jobDefinitionID, requestedStartTime, and application). This
copies the input parameters to Invoke_1_submitRequest_InputVariable
parameters for the invoke activity. Figure 11–13 shows one of these copy
operations.

Adding the BPEL Process to Call the ESSWebService

11-18 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 11–13 Copy Operation for Description Parameter for submitRequest

4. Click OK to add the copy operation for description.

5. In a similar manner, perform additional copy operations for the jobDefintionID,
requestedStartTime, and application parameters.

To add a copy list for RequestParameters:
1. Double click the Assign activity named Job_Inputs to show the Assign page with

the Copy Operation tab.

2. Click the Add icon and from the dropdown list select CopyList Operation..., to
add CopyList operations for the requestParameters. This displays the Create
CopyList Operation dialog.

3. In the Create CopyList Operation dialog, expand and then navigate to select a
copylist operation for requestParameters. To do this you navigate and select the
parameter element, as shown in Figure 11–14.

Adding the BPEL Process to Call the ESSWebService

Using the Oracle Enterprise Scheduling Service Web Service 11-19

Figure 11–14 CopyList Operation for Request Parameters

4. In the Create CopyList Operation dialog, click OK.

5. In the Assign activity, click OK.

Figure 11–15 shows the BPEL Design page.

Adding the BPEL Process to Call the ESSWebService

11-20 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 11–15 BPEL with Job_Inputs Add Activity and submitRequest Invoke

When BPEL Element Does Not Have Same Type as Oracle Enterprise Scheduling
Service web service:
If your BPEL payload is not the same element type as that of the Oracle Enterprise
Scheduling Service web service and you need to assign values to one or more job
parameters, you can use the following approach.

1. Populate the first parameter element using copy operations, as done in previous
steps.

2. Add or clone additional parameter elements using the Insert-After, as shown in
Figure 11–16.

Adding the BPEL Process to Call the ESSWebService

Using the Oracle Enterprise Scheduling Service Web Service 11-21

Figure 11–16 Using Insert-After to Clone Parameters

3. Populate the additional parameter elements using XPath array subscripting.

4. This action effectively copies the entire parameter element along with all
sub-element values and appends it to the end of the XML array. In order to
populate the values of the second job parameter, add additional copy operations
and modify the XPath expressions in the bottom right of the dialog to add the
appropriate array subscript [n]. where 'n' is the # of the parameter. Note that all
XML arrays start with 1, not 0.

11.7.5 Invoke the getCompletionStatus Operation
Add another Invoke activity and link it to Service1 to invoke the ESSWebService
getCompletionStatus operation.

To add the Invoke activity for the getCompletionStatus operation:
1. From the Component Palette, drag-and-drop an Invoke activity and drop it after

submitRequest and before callbackClient.

2. In the new Invoke activity, select the text entry area with the name Invoke_1, and
enter the name, getStatusAsync.

3. Link the invoke activity to Service1 by selecting the right arrow and dragging it to
the Partner Link Service1. This displays the Edit Invoke dialog.

4. In the Edit Invoke dialog for getStatusAsync, in the Operation field, from the
dropdown list select getCompletionStatus.

5. In the Input Variable field select the Add icon. This displays the create variable
dialog, as shown in Figure 11–17.

Adding the BPEL Process to Call the ESSWebService

11-22 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 11–17 Create Variable Window for getStatusAsync

6. In the Create Variable dialog, click OK. This displays the Edit Invoke dialog, as
shown in Figure 11–18.

Figure 11–18 Edit Invoke Window for getStatusAsync

7. In the Edit Invoke dialog, click OK. This displays the new Invoke Activity
getStatusAsync and the link to Service1.

11.7.6 Assign Input to the getCompletionStatus Operation
Add a new Assign Activity after submitRequest to assign the RequestID and pass it to
the getStatusAsync invoke activity.

To add the assign activity:
1. Drag-and-drop an Assign activity from the BPEL Activities area in the Component

Palette to just after the Invoke Activity named submitRequest and before the
Invoke Activity named getStatusAsync.

2. Select the Assign activity and double-click the name Assign_1 to select the text
entry area. In the text entry area, enter RequestID. Figure 11–19 shows the Assign
activity.

Adding the BPEL Process to Call the ESSWebService

Using the Oracle Enterprise Scheduling Service Web Service 11-23

Figure 11–19 Adding RequestID Assign Activity

3. Double click the new Assign activity, RequestID to show the Assign page with the
Copy Operation tab.

4. Click the Add icon and select Copy Operation... from the dropdown list.

5. In the From area expand Invoke_1_submitRequest_OutputVariable and select
requestID. Map this in the To area to the requestID in getStatusAsync_
getCompletionStatus_InputVariable, as shown in Figure 11–20.

Adding the BPEL Process to Call the ESSWebService

11-24 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 11–20 Edit Copy Operation Window for Request ID Assign

6. On the Edit Copy Operation dialog, click OK.

7. On the Copy Operation dialog, click OK.

8. On the BPEL Design page, click Validate Process. This displays the BPEL, as
shown in Figure 11–21.

Adding the BPEL Process to Call the ESSWebService

Using the Oracle Enterprise Scheduling Service Web Service 11-25

Figure 11–21 BPEL with Request ID Assign Activity Added

11.7.7 Receive the Job Completion Status
Add a Receive Activity and link it to the onJobCompletion ESSWEbService operation.

Add a receive activity:
1. Drag-and-drop a Receive activity from the BPEL Activities area in the Component

Palette to a position after the getStatusAsync Invoke activity and before the
callbackClient.

2. Select the text entry area in the Receive Activity named Receive_1 and enter
onJobCompletion, as shown in Figure 11–22.

Adding the BPEL Process to Call the ESSWebService

11-26 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 11–22 Adding Receive Activity to BPEL Process

3. Drag the right arrow from the receive activity onJobCompletion to Service 1. This
displays the Edit Receive dialog, as shown in Figure 11–23.

Figure 11–23 Edit Receive Window for onJobCompletion Receive Activity

4. In the Edit Receive dialog, in the Operation field from the dropdown list select
onJobCompletion.

5. In the Variable field, click the Add icon. This displays the Create Variable dialog.

6. In the Create Variable dialog, click OK.

Adding the BPEL Process to Call the ESSWebService

Using the Oracle Enterprise Scheduling Service Web Service 11-27

7. In the Edit Receive dialog, click OK. This adds an arrow from Service1 to the new
Receive activity, onJobCompletion as shown in Figure 11–24.

Figure 11–24 Adding the onJobCompletion Receive Activity

11.7.8 Return Result to Client
Add an Assign activity to copy the result output from onJobCompletion to the output
for the client. Assign all the results from onJobCompletion to the callbackClient input
variable.

To add the result assign activity:
1. Drag-and-drop an Assign activity from the BPEL Activities area in the Component

Palette to a position after the Receive activity onJobCompletion and before the
callbackClient.

2. Select the Assign activity and double-click the name Assign_1 to enter new text.
Enter the value Result, as shown in Figure 11–25.

Adding the BPEL Process to Call the ESSWebService

11-28 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 11–25 Adding Assign Activity for Output to Client

3. Double click the new Result Assign activity to show the Assign page with the
Copy Operation tab.

4. Click the Add icon and select Copy Operation... from the dropdown list.

5. Navigate to select the variables, for the From area for onJobCompletion_
onJobCompletion_InputVariable and select resultMessage. In the To area,
expand outputVariable and select client:result, shown in Figure 11–26.

Adding the BPEL Process to Call the ESSWebService

Using the Oracle Enterprise Scheduling Service Web Service 11-29

Figure 11–26 Create Copy Operation for Result

6. In the Create Copy Operation dialog, click OK.

7. In the Assign area, click OK.

8. Click Validate Process.

The final BPEL is shown in Figure 11–27.

Using Additional ESSWebService Operations

11-30 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 11–27 Result Assign Activity with callbackClient Invoke Activity

11.8 Using Additional ESSWebService Operations
You can use other EssWebService operations, including:

■ When you want to submit a request with an associated schedule, you use the
submitRecurringRequest web service operation. For more information, see
Section 11.8.1, "How to Invoke the ESSWebService submitRecurringRequest
Operation."

■ When you want to marshal arguments in the previous concurrent processing style
into Oracle Enterprise Scheduling Service properties, you use the setSubmitArgs
operation. This operation should be invoked prior to submitting a request. The
key of each argument is submit.argument#, where # is the ordinal value of the
argument, for example submit.argument1="firstArg" and
submit.argument2="secondArg". For more information, see Section 11.8.2, "How
to Invoke the ESSWebService setSubmitArgs Operation."

■ When you want to add a post-processing action to a step in a job set request, you
use the addPPAction operation. This method is called prior to submitting the
request. This operation provides support for action previously supported by add_
printer, add_notification and add_layout in concurrent processing. The
parameters to these legacy routines are passed as arguments to addPPAction in the
order in which they were declared in the original concurrent processing routine.
Section 11.8.3, "How to Invoke the ESSWebService addPPActions Operation"

Using Additional ESSWebService Operations

Using the Oracle Enterprise Scheduling Service Web Service 11-31

11.8.1 How to Invoke the ESSWebService submitRecurringRequest Operation
In the BPEL process you add an invoke activity to perform the Oracle Enterprise
Scheduling Service web service submitRecurringRequest() operation. In this step you
need to select the input and output for the Invoke Activity by associating values with
the Input and Output variables. In order to submit jobs that repeat or will run at a later
date that job must be submitted with an Oracle Enterprise Scheduling Service schedule
which is constructed declaratively and stored in the metadata repository. Once the
schedule has been defined, BPEL can submit jobs with that schedule through the
submitRecurringRequest() operation.

To add the Invoke activity to submit the request using ESSWebService:
1. In the Application Navigator, in Project1 expand SOA Content and select the BPEL

file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane.

2. From the Component Palette, drag-and-drop an Invoke Activity and place the
activity in the process. This activity populates the request submission payload and
submits it to the Oracle Enterprise Scheduling Service web service.

3. Select the Invoke activity and double-click the name Invoke_1 to select the text
entry field. In the text entry field enter submitRecurringRequest.

4. Link the invoke activity to the ESSWebService by selecting the right arrow and
dragging it to the Partner Link Service1. This brings up the Edit Invoke dialog, as
shown in Figure 11–28.

Figure 11–28 Edit Invoke Window for BPEL Activity

5. In the Edit Invoke dialog, in the Operation field, select submitRecurringRequest.

6. In the Edit Invoke dialog, in the Input field click the Add icon. This displays the
Create Variable dialog and lets you create a scope-level variable to contain the
request payload.

7. In the Create Variable dialog, click OK.

8. In the Edit Invoke dialog, in the Output field select the Add icon. This displays the
Create Variable dialog and lets you create scope-level variable to contain the
response payload.

9. In the Create Variable dialog, click OK.

Using Additional ESSWebService Operations

11-32 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

10. In the Edit Invoke dialog, click OK. This displays the new invoke link to Service1,
as shown in Figure 11–29.

Figure 11–29 Submitting a Request with a Schedule

To assign inputs for recurring request submission:
You add an Assign activity and then assign inputs from the BPEL process to the
submitRecurringRequest Invoke activity. This allows you to populate the input
variable with recurring request submission parameters.

For the mapping for an Assign activity with a Copy operation, the arguments
correspond to the input parameters for Oracle Enterprise Scheduling Service
submitRequest, as shown in Table 11–3. If your BPEL schema differs from the
submitRequest message type, use Table 11–3 as a guide for how to populate the values
manually with the Assign activity Copy operation.

Note: In most cases, the input payload of the BPEL process will not
directly match the input payload of the submit recurring request web
service. Coaxing into use of CopyList will only work in the scenarios
where there is a one to one mapping of the input payload to the
submit Request.

Using Additional ESSWebService Operations

Using the Oracle Enterprise Scheduling Service Web Service 11-33

It is possible to define multiple parameters to be passed to the Oracle Enterprise
Scheduling Service job. When adding additional parameters to the Oracle Enterprise
Scheduling Service service payload in BPEL, you must first add a new parameter
element to the DOM using an 'Insert-After' of the original parameter element, then use
array subscripting to populate that new parameter with the correct values. Repeat as
needed.

First, copy and clone the existing parameter element back into the variable using the
Insert-After operation. This creates a second parameter element in the XML array. For
example, see Figure 11–30.

Table 11–3 Submit Recurring Request Web Service Arguments for BPEL Assign Activity
Mapping

Argument Description

Description Context for the ad hoc submission of this job, such as the 'Order
Import'.

Application The "application" name can be the deployment name of the hosting
Oracle Enterprise Scheduling Service application or it can be a logical
application name.

JobDefinitionId ■ name: The name of the Oracle Enterprise Scheduling Service job

■ package: The name of the path containing the Oracle Enterprise
Scheduling Service job

■ type: 'JOB_DEFINITION'

parameter(s) dataType: Value type for this parameter (STRING, INTEGER, LONG,
BOOLEAN, DATETIME)

name: String containing the name of the parameter defined in the
Oracle Enterprise Scheduling Service job definition.

scope: String containing the named scope for this parameter - used
only for job sets.

value: Element containing the parameter's value

scheduleID ■ name: String containing the name of the schedule metadata file

■ packageName: String containing the name of the MDS package
containing the metadata file (sans the 'Schedule' path)

■ type: 'SCHEDULE_DEFINITION''

Using Additional ESSWebService Operations

11-34 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 11–30 Copy with Insert-After Operation

Second, create a new Copy operation and choose the parameter elements in the
To/From areas of the dialog in the same manner as when copying values for the first
parameter. However, in the lower right corner, change the XPath path to include a [2]
(XML Arrays start at 1 and not 0) and click OK. Repeat as needed for each parameter
required.

11.8.2 How to Invoke the ESSWebService setSubmitArgs Operation
In the BPEL process you add an invoke activity to perform the Oracle Enterprise
Scheduling Service web service setSubmitArgs() operation.

To add the Invoke activity to use setsubmitArgs for a request using
ESSWebService:
1. In the Application Navigator, in Project1 expand SOA Content and select the BPEL

file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane.

2. From the Component Palette, drag-and-drop an Invoke Activity and place the
activity before callbackClient.

3. Link the invoke activity to the ESSWebService by selecting the right arrow and
dragging it to the Partner Link Service1. This brings up the Edit Invoke dialog.

4. In the Edit Invoke dialog, in the Operation field select setSubmitArgs.

5. In the Edit Invoke dialog, in the Input field click the Add icon. This displays the
Create Variable dialog.

6. In the Create Variable dialog, click OK.

7. In the Edit Invoke dialog, in the Output field select the Add icon. This displays the
Create Variable dialog.

8. In the Create Variable dialog, click OK.

9. In the Edit Invoke dialog, click OK. This displays the new invoke link to Service1.

Using Additional ESSWebService Operations

Using the Oracle Enterprise Scheduling Service Web Service 11-35

10. Select the Invoke activity and double-click the name Invoke_1 to select the text
entry field. In the text entry field enter setSubmitArgs.

11. From the Component Palette, drag-and-drop a Transform Activity and place the
activity before the setSubmitArgs. This transformation maps the BPEL flow input
variable to the setSubmitArgs input variable.

12. Open the transformation activity. On the Transformation tab, in the Source area
click the Add icon. This displays the Source Variable dialog.

13. In the Source Variable dialog select inputVariable and click OK.

14. In the transformation activity, on the Transformation tab, in the Target Variable
field select setSubmitArgs_setSubmitArgs_InputVariable as the target.

15. In the transformation activity, on the Transformation tab, in the Mapper File
field, click Add to create a new mapper file.

16. This creates a mapper file, as shown in Figure 11–31. Note that a "for-each"
construct can be inserted by dragging an item from the XSLT Constructs area of
the Component Palette.

Figure 11–31 Transformation for Set Submit Arguments

Using Additional ESSWebService Operations

11-36 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

17. The transformation tool does not create exactly what is needed. You need to edit
the XSLT source. In the source, find the following mapping.

<xsl:for-each select="/client:BPELProcess1ProcessRequest/client:arguments">
 <arguments>
 <xsl:value-of select="."/>
 </arguments>
 </xsl:for-each>

Replace this with the following; add "tns:" as a qualifier to "arguments", resulting
in the following fragment. Note that the transformation tool design tab may
incorrectly complain that this is not a valid transformation:

<xsl:for-each select="/client:BPELProcess1ProcessRequest/client:arguments">
 <tns:arguments>
 <xsl:value-of select="."/>
 </tns:arguments>
 </xsl:for-each>

Example 11–2 shows the complete transformation source file.

Example 11–2 Transformation Source for Set Submit Arguments Transformation

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
 <!-- SPECIFICATION OF MAP SOURCES AND TARGETS, DO NOT MODIFY. -->
 <mapSources>
 <source type="WSDL">
 <schema location="../BPELProcess1.wsdl"/>
 <rootElement name="BPELProcess1ProcessRequest"
 namespace="http://xmlns.oracle.com/EssWebApplication/
 Project1/BPELProcess1"/>
 </source>
 </mapSources>
 <mapTargets>
 <target type="WSDL">
 <schema location="../Service1.wsdl"/>
 <rootElement name="setSubmitArgs"
 namespace="http://xmlns.oracle.com/scheduler"/>
 </target>
 </mapTargets>
 <!-- GENERATED BY ORACLE XSL MAPPER 11.1.1.0.0(build 090113.2000.2412) AT [FRI
 FEB 06 08:27:53 PST 2009]. -->
?>
<xsl:stylesheet version="1.0"
 xmlns:xpath20="http://www.oracle.com/XSL/Transform/java
 /oracle.tip.pc.services.functions.Xpath20"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/
 business-process/"
 xmlns:client="http://xmlns.oracle.com/EssWebApplication
 /Project1/BPELProcess1"
 xmlns:oraext="http://www.oracle.com/XSL/Transform/java/
 oracle.tip.pc.services.functions.ExtFunc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dvm="http://www.oracle.com/XSL/Transform/java/
 oracle.tip.dvm.LookupValue"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:med="http://schemas.oracle.com/mediator/xpath"
 xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.
 mediator.service.common.functions

Using Additional ESSWebService Operations

Using the Oracle Enterprise Scheduling Service Web Service 11-37

 .GetRequestHeaderExtnFunction"
 xmlns:ids="http://xmlns.oracle.com/bpel/services/
 IdentityService/xpath"
 xmlns:tns="http://xmlns.oracle.com/scheduler"
 xmlns:xdk="http://schemas.oracle.com/bpel/extension
 /xpath/function/xdk"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:xref="http://www.oracle.com/XSL/Transform/java
 /oracle.tip.xref.xpath.XRefXPathFunctions"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:ns0="http://xmlns.oracle.com/scheduler/types"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:socket="http://www.oracle.com/XSL/Transform/
 java/oracle.tip.adapter.socket.ProtocolTranslator"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 exclude-result-prefixes="xsi xsl client plnk
 xsd ns0 wsdl tns soap12 soap mime xpath20 bpws oraext
 dvm hwf med mhdr ids xdk xref ora socket ldap">
 <xsl:template match="/">
 <tns:setSubmitArgs>
 <tns:requestParameters>
 <xsl:for-each select="/client:BPELProcess1ProcessRequest/client:
 requestParameters/ns0:parameter">
 <ns0:parameter>
 <ns0:dataType>
 <xsl:value-of select="ns0:dataType"/>
 </ns0:dataType>
 <ns0:name>
 <xsl:value-of select="ns0:name"/>
 </ns0:name>
 <ns0:scope>
 <xsl:value-of select="ns0:scope"/>
 </ns0:scope>
 <ns0:value>
 <xsl:value-of select="ns0:value"/>
 </ns0:value>
 </ns0:parameter>
 </xsl:for-each>
 </tns:requestParameters>
 <xsl:for-each select="/client:BPELProcess1ProcessRequest/client:arguments">
 <tns:arguments>
 <xsl:value-of select="."/>
 </tns:arguments>
 </xsl:for-each>
 </tns:setSubmitArgs>
 </xsl:template>
</xsl:stylesheet>

11.8.3 How to Invoke the ESSWebService addPPActions Operation
In the BPEL process you add an invoke activity to perform the Oracle Enterprise
Scheduling Service web service addPPActions() operation.

Using Additional ESSWebService Operations

11-38 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

To add the Invoke activity for addPPActions operation using ESSWebService:
1. In the Application Navigator, in Project1 expand SOA Content and select the BPEL

file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane.

2. From the Component Palette, drag-and-drop an Invoke Activity and place the
activity before callbackClient.

3. Select the Invoke activity and double-click the name Invoke_1 to select the text
entry field. In the text entry field enter addPPActions.

4. Link the invoke activity to the ESSWebService by selecting the right arrow and
dragging it to the Partner Link Service1. This brings up the Edit Invoke dialog.

5. In the Edit Invoke dialog, in the Operation field select addPPActions, as shown in
Figure 11–32.

Figure 11–32 Adding AddPP Actions Operation

6. In the Edit Invoke dialog, in the Input field click the Add icon. This displays the
Create Variable dialog.

7. In the Create Variable dialog, click OK.

8. In the Edit Invoke dialog, in the Output field select the Add icon. This displays the
Create Variable dialog.

9. In the Create Variable dialog, click OK.

10. In the Edit Invoke dialog, click OK. This displays the new invoke link to Service1.

11. From the Component Palette, drag-and-drop a Transform Activity and place the
activity before the addPPActions. This transformation maps the BPEL flow input
variable to the addPPActions input variable.

12. Open the transformation activity. On the Transformation tab, in the Source area
click the Add icon. This displays the Source Variable dialog.

13. In the Source Variable dialog select inputVariable and click OK.

14. In the transformation activity, on the Transformation tab in the Target Variable
field select addPPActions_addPPActions_InputVariable as the target.

15. In the transformation activity, on the Transformation tab in the Mapper File field,
click Add to create a new mapper file. This displays the XSL transformation file.

Using Additional ESSWebService Operations

Using the Oracle Enterprise Scheduling Service Web Service 11-39

16. Create mappings as shown in Example 11–3.

The requestParameters come from the addPPActions, overriding what is in the
transformation. The remainder of the input still comes from the BPEL flow input
variable. Assign requestParametersReturn/ns2:parameter of the addPPActions
output variable to requestParameters/ns2:parameter of the addPPActions input
variable, as in the previous examples.

Example 11–3 addPPActions Transformations

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
 <!-- SPECIFICATION OF MAP SOURCES AND TARGETS, DO NOT MODIFY. -->
 <mapSources>
 <source type="WSDL">
 <schema location="../BPELProcess1.wsdl"/>
 <rootElement name="BPELProcess1ProcessRequest"
 namespace="http://xmlns.oracle.com/EssWebApplication/Project1/BPELProcess1"/>
 </source>
 </mapSources>
 <mapTargets>
 <target type="WSDL">
 <schema location="../Service1.wsdl"/>
 <rootElement name="addPPActions" namespace="http://xmlns.oracle.com/scheduler"/>
 </target>
 </mapTargets>
 <!-- GENERATED BY ORACLE XSL MAPPER 11.1.1.0.0(build 090113.2000.2412) AT [FRI FEB 06 10:29:28
PST 2009]. -->
?>
<xsl:stylesheet version="1.0"
 xmlns:xpath20="http://www.oracle.com/XSL/Transform/java/
 oracle.tip.pc.services.functions.Xpath20"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:client="http://xmlns.oracle.com/EssWebApplication/Project1/BPELProcess1"
 xmlns:oraext="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.
 services.functions.ExtFunc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:med="http://schemas.oracle.com/mediator/xpath"
 xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.
 mediator.service.common.functions.GetRequestHeaderExtnFunction"
 xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
 xmlns:tns="http://xmlns.oracle.com/scheduler"
 xmlns:xdk="http://schemas.oracle.com/bpel/extension/xpath/function/xdk"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:xref="http://www.oracle.com/XSL/Transform/java/
 oracle.tip.xref.xpath.XRefXPathFunctions"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:ns0="http://xmlns.oracle.com/scheduler/types"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:socket="http://www.oracle.com/XSL/Transform/java/oracle.tip.
 adapter.socket.ProtocolTranslator"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 exclude-result-prefixes="xsi xsl client plnk

Using Additional ESSWebService Operations

11-40 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 xsd ns0 wsdl tns soap12 soap mime xpath20 bpws oraext dvm
 hwf med mhdr ids xdk xref ora socket ldap">
 <xsl:template match="/">
 <tns:addPPActions>
 <tns:requestParameters>
 <xsl:for-each select="/client:BPELProcess1ProcessRequest/client:
 requestParameters/ns0:parameter">
 <ns0:parameter>
 <ns0:dataType>
 <xsl:value-of select="ns0:dataType"/>
 </ns0:dataType>
 <ns0:name>
 <xsl:value-of select="ns0:name"/>
 </ns0:name>
 <ns0:scope>
 <xsl:value-of select="ns0:scope"/>
 </ns0:scope>
 <ns0:value>
 <xsl:value-of select="ns0:value"/>
 </ns0:value>
 </ns0:parameter>
 </xsl:for-each>
 </tns:requestParameters>
 <xsl:for-each select="/client:BPELProcess1ProcessRequest/client:postProcessAction">
 <tns:postProcessActions>
 <ns0:actionName>
 <xsl:value-of select="ns0:actionName"/>
 </ns0:actionName>
 <ns0:actionOrder>
 <xsl:value-of select="ns0:actionOrder"/>
 </ns0:actionOrder>
 <xsl:for-each select="ns0:arguments">
 <ns0:arguments>
 <xsl:value-of select="."/>
 </ns0:arguments>
 </xsl:for-each>
 <ns0:fileMgmtGroup>
 <xsl:value-of select="ns0:fileMgmtGroup"/>
 </ns0:fileMgmtGroup>
 <ns0:description>
 <xsl:value-of select="ns0:description"/>
 </ns0:description>
 <ns0:onError>
 <xsl:value-of select="ns0:onError"/>
 </ns0:onError>
 <ns0:onSuccess>
 <xsl:value-of select="ns0:onSuccess"/>
 </ns0:onSuccess>
 <ns0:onWarning>
 <xsl:value-of select="ns0:onWarning"/>
 </ns0:onWarning>
 </tns:postProcessActions>
 </xsl:for-each>
 </tns:addPPActions>
 </xsl:template>
</xsl:stylesheet>

Using Additional ESSWebService Operations

Using the Oracle Enterprise Scheduling Service Web Service 11-41

11.8.4 How to Invoke the ESSWebService setStepsArgs Operation
In the BPEL process, you add an invoke activity to perform the Oracle Enterprise
Scheduling Service web service addPPActions() operation.

As shown in Example 11–4, you can add the following to the BPELProcess1.xsd file to
allow input for setStepsArgs.

Example 11–4 Enabling Input for setStepsArgs

 <xs:element name="stepArgs" type="ns1:stepArgs"
 minOccurs="0" maxOccurs="unbounded"/>

The main steps are as follows:

1. Create a transformation to map the BPEL flow input variable to the setStepsArgs
input variable.

From BPEL Activities and Components, select Transform and place before
setStepsArgs. Open the new transformation activity. Select inputVariable as the
source and setStepsArgs_setStepsArgs_InputVariable as the target. Create a new
mapper file. Create the mappings as shown in the SetStepsArgs transformation
example.

2. Create an assignment activity. In this example, you want the requestParameters to
come from the previous step, addPPActions, overriding what is in the
transformation. The remainder of the input still comes from the BPEL flow input
variable. Assign requestParametersReturn/ns2:parameter of the addPPActions
output variable to requestParameters/ns2:parameter of the setStepsArgs input
variable, just as in previous examples.

In the BPEL process you add an invoke activity to perform the Oracle Enterprise
Scheduling Service web service submitRecurringRequest() operation. In this step
you need to select the input and output for the Invoke Activity by associating
values with the input and output variables.

To add the Invoke activity use setStepsArgs operation:
1. In the Application Navigator, in Project1 expand SOA Content and select the BPEL

file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane.

2. From the Component Palette, drag-and-drop an Invoke Activity and place the
activity before callbackClient.

3. Select the Invoke activity and double-click the name Invoke_1 to select the text
entry field. In the text entry field enter setStepsArgs.

4. Link the invoke activity to the ESSWebService by selecting the right arrow and
dragging it to the Partner Link Service1. This brings up the Edit Invoke dialog.

5. In the Edit Invoke dialog, in the Operation field select setStepsArgs as shown in
Figure 11–33.

Using Additional ESSWebService Operations

11-42 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 11–33 Set Step Arguments Operation

6. In the Edit Invoke dialog, in the Input field click the Add icon. This displays the
Create Variable dialog.

7. In the Create Variable dialog, click OK.

8. In the Edit Invoke dialog, in the Output field select the Add icon. This displays the
Create Variable dialog.

9. In the Create Variable dialog, click OK.

10. In the Edit Invoke dialog, click OK. This displays the new invoke link to Service1.

11. From the Component Palette, drag-and-drop a Transform Activity and place the
activity before the setStepsArgs. This transformation maps the BPEL flow input
variable to the setStepsArgs input variable.

12. Open the transformation activity. On the Transformation tab, in the Source area
click the Add icon. This displays the Source Variable dialog.

13. In the Source Variable dialog select inputVariable and click OK.

14. In the transformation activity, on the Transformation tab in the Target Variable
field select setStepsArgs_setStepsArgs_InputVariable as the target.

15. In the transformation activity, on the Transformation tab in the Mapper File field,
click Add to create a new mapper file. This displays the XSL transformation file.

16. Create mappings as shown in Figure 11–34 using the mappings shown in
Example 11–5.

Using Additional ESSWebService Operations

Using the Oracle Enterprise Scheduling Service Web Service 11-43

Figure 11–34 Using the Transformation for Set Step Arguments Operation

17. Create an assignment activity. In this example, we want the requestParameters to
come from the previous step, addPPActions, overriding what is in the
transformation. There remainder of the input still comes from the BPEL flow input
variable. Assign the requestParametersReturn/ns2:parameter of the addPPActions
output variable to the requestParameters/ns2:parameter of the setStepsArgs input
variable, just as in previous examples.

Example 11–5 Mapping Transformation for Set Steps Arguments Operation

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
 <!-- SPECIFICATION OF MAP SOURCES AND TARGETS, DO NOT MODIFY. -->
 <mapSources>
 <source type="WSDL">
 <schema location="../BPELProcess1.wsdl"/>
 <rootElement name="BPELProcess1ProcessRequest"namespace="http://xmlns.
 oracle.com/EssWebApplication/Project1/BPELProcess1"/>
 </source>
 </mapSources>
 <mapTargets>
 <target type="WSDL">

Using Additional ESSWebService Operations

11-44 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 <schema location="../Service1.wsdl"/>
 <rootElement name="setStepsArgs"
 namespace="http://xmlns.oracle.com/scheduler"/>
 </target>
 </mapTargets>
 <!-- GENERATED BY ORACLE XSL MAPPER 11.1.1.0.0(build 090113.2000.2412) AT [FRI
 FEB 06 10:56:22 PST 2009]. -->
?>
<xsl:stylesheet version="1.0"

xmlns:xpath20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.
 functions.Xpath20"

xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"

xmlns:client="http://xmlns.oracle.com/EssWebApplication/Project1/BPELProcess1"

xmlns:oraext="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.
 functions.ExtFunc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:med="http://schemas.oracle.com/mediator/xpath"

xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.mediator.service.
 common.functions.GetRequestHeaderExtnFunction"

xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
 xmlns:tns="http://xmlns.oracle.com/scheduler"

xmlns:xdk="http://schemas.oracle.com/bpel/extension/xpath/function/xdk"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

xmlns:xref="http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.
 XRefXPathFunctions"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns0="http://xmlns.oracle.com/scheduler/types"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:socket="http://www.oracle.com/XSL/Transform/java
 /oracle.tip.adapter.socket.ProtocolTranslator"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 exclude-result-prefixes="xsi xsl client plnk xsd ns0
 wsdl tns soap12 soap mime xpath20 bpws oraext dvm
 hwf med mhdr ids xdk xref ora socket ldap">
 <xsl:template match="/">
 <tns:setStepsArgs>
 <tns:requestParameters>
 <xsl:for-each select="/client:BPELProcess1ProcessRequest/client:
 requestParameters/ns0:parameter">
 <ns0:parameter>
 <ns0:dataType>
 <xsl:value-of select="ns0:dataType"/>
 </ns0:dataType>
 <ns0:name>

Using Additional ESSWebService Operations

Using the Oracle Enterprise Scheduling Service Web Service 11-45

 <xsl:value-of select="ns0:name"/>
 </ns0:name>
 <ns0:scope>
 <xsl:value-of select="ns0:scope"/>
 </ns0:scope>
 <ns0:value>
 <xsl:value-of select="ns0:value"/>
 </ns0:value>
 </ns0:parameter>
 </xsl:for-each>
 </tns:requestParameters>
 <xsl:for-each select="/client:BPELProcess1ProcessRequest/client:stepArgs">
 <tns:stepArgsList>
 <xsl:for-each select="ns0:arguments">
 <ns0:arguments>
 <xsl:value-of select="."/>
 </ns0:arguments>
 </xsl:for-each>
 <ns0:NLSOptions>
 <ns0:language>
 <xsl:value-of select="ns0:NLSOptions/ns0:language"/>
 </ns0:language>
 <ns0:numericCharacters>
 <xsl:value-of select="ns0:NLSOptions/ns0:numericCharacters"/>
 </ns0:numericCharacters>
 <ns0:territory>
 <xsl:value-of select="ns0:NLSOptions/ns0:territory"/>
 </ns0:territory>
 </ns0:NLSOptions>
 <xsl:for-each select="ns0:PPActions">
 <ns0:PPActions>
 <ns0:actionName>
 <xsl:value-of select="ns0:actionName"/>
 </ns0:actionName>
 <ns0:actionOrder>
 <xsl:value-of select="ns0:actionOrder"/>
 </ns0:actionOrder>
 <xsl:for-each select="ns0:arguments">
 <ns0:arguments>
 <xsl:value-of select="."/>
 </ns0:arguments>
 </xsl:for-each>
 <ns0:fileMgmtGroup>
 <xsl:value-of select="ns0:fileMgmtGroup"/>
 </ns0:fileMgmtGroup>
 <ns0:description>
 <xsl:value-of select="ns0:description"/>
 </ns0:description>
 <ns0:onError>
 <xsl:value-of select="ns0:onError"/>
 </ns0:onError>
 <ns0:onSuccess>
 <xsl:value-of select="ns0:onSuccess"/>
 </ns0:onSuccess>
 <ns0:onWarning>
 <xsl:value-of select="ns0:onWarning"/>
 </ns0:onWarning>
 </ns0:PPActions>
 </xsl:for-each>
 <ns0:stepPath>

Securing the Oracle Enterprise Scheduling Service Web Service

11-46 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 <xsl:value-of select="ns0:stepPath"/>
 </ns0:stepPath>
 </tns:stepArgsList>
 </xsl:for-each>
 </tns:setStepsArgs>
 </xsl:template>
</xsl:stylesheet>

11.9 Securing the Oracle Enterprise Scheduling Service Web Service
You can secure any of the Oracle Enterprise Scheduling Service web service operations
using an Oracle Web Services Manager security policy.

For more information, see the "Securing and Administering WebLogic Web Services"
chapter in the Oracle Fusion Middleware Security and Administrator's Guide for Web
Services.

11.9.1 How to Secure the Oracle Enterprise Scheduling Service Web Service
Securing the Oracle Enterprise Scheduling Service web service involves attaching one
security policy to the method that calls the web service, and another to the
asynchronous callback to the SOA composite.

To secure the Oracle Enterprise Scheduling Service web service:
1. Open the SOA composite that calls the Oracle Enterprise Scheduling Service web

service.

2. In the swim lane on the right, right-click the Oracle Enterprise Scheduling Service
web service and select Configure WS Policies > For Request.

The Configure SOA WS Policies window displays.

3. In the Security field, click the add button to attach a security policy to the client.

Select the policy oracle/wss11_saml_token_with_message_protection_client_
policy or oracle/wss11_username_token_with_message_protection_client_
policy as shown in Figure 11–35, and click OK.

Note: Oracle Fusion Applications make use of an Oracle WSM
feature called global policy attachments (GPA). Using GPA, policies
are not attached locally, but are specified at a global level. At runtime,
components simply inherit the global policy and Oracle WSM
enforces it.

Unlike local policy attachments (LPA), which need to be added at
every web service client and server, global policy attachment (GPA)
can be attached at a domain level. This makes it easy for the system
administrator to have a uniform policy for all web services across the
domain.

For more information about global policy attachments, see the
"Securing Web Services Use Cases" chapter in the Oracle Fusion
Applications Developer's Guide.

Securing the Oracle Enterprise Scheduling Service Web Service

Using the Oracle Enterprise Scheduling Service Web Service 11-47

Figure 11–35 Client Security Policy for the Oracle Enterprise Scheduling Service Web
Service

4. In the swim lane on the right, right-click the Oracle Enterprise Scheduling Service
web service and select Configure WS Policies > For Callback.

The Configure SOA WS Policies window displays.

5. In the Security field, click the add button to attach a security policy to the callback
method.

Select the policy oracle/wss11_saml_token_with_message_protection_service_
policy, as shown in Figure 11–36, and click OK.

Deploying and Testing the Project

11-48 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 11–36 Callback Security Policy for the Oracle Enterprise Scheduling Service Web
Service

6. Save your changes to the SOA composite file.

11.9.2 What Happens When You Secure the Oracle Enterprise Scheduling Service Web
Service

The security policy oracle/wss11_saml_token_with_message_protection_client_
policy secures the method that calls the Oracle Enterprise Scheduling Service web
service. The security policy wss11_saml_token_with_message_protection_service_
policy secures the asynchronous callback method that the web service uses to call
back the SOA composite.

11.10 Deploying and Testing the Project
Next, you deploy the BPEL process to the Oracle WebLogic Server as described in
"Deploying SOA Composite Applications" in Oracle Fusion Middleware Developer's
Guide for Oracle SOA Suite. Following deployment, you can test the web service using
Oracle SOA Console.

11.10.1 How to Test the Web Service

To test the web service:
1. Open a browser and go to the SOA Console at the following URL.

http://<machine>:<port>/soa-console

2. In the Applications area, select the deployed composite.

Deploying and Testing the Project

Using the Oracle Enterprise Scheduling Service Web Service 11-49

3. Click the Test dropdown and choose the service endpoint Test Client.

4. This an endpoint page where you can provide input to the BPEL process.

5. In the payload area, enter values for the job parameters.

6. Click Invoke.

7. Refresh the console page.

8. Click the latest instance ID to verify the progress of the BPEL file.

Deploying and Testing the Project

11-50 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

12

Defining and Using Job Sets 12-1

12Defining and Using Job Sets

This chapter describes how to define and submit an Oracle Enterprise Scheduling
Service job set, a collection of job definitions that can be grouped together to run as a
single unit.

This chapter includes the following sections:

■ Section 12.1, "Introduction to Defining and Using Job Sets"

■ Section 12.2, "Defining Job Sets"

■ Section 12.3, "Cross Application Job Sets"

■ Section 12.4, "Using Input and Output Forwarding"

12.1 Introduction to Defining and Using Job Sets
Oracle Enterprise Scheduling Service provides for collections of job definitions that
can be grouped together to run as a single unit called a job set. A job set may be nested;
thus a job set may contain a collection of job definitions or one or more child job sets.
Each job definition or job set included within a job set is called a job set step.

A job set is defined as either a serial job set or a parallel job set. At runtime, Oracle
Enterprise Scheduling Service runs parallel job set steps together, in parallel. When a
serial job set runs, Oracle Enterprise Scheduling Service runs the steps one after
another in a specific sequence. Using a serial job set Oracle Enterprise Scheduling
Service supports conditional branching between steps based on the execution status of
a previous step.

You can define a serial job set to include a parallel job set, or a parallel job set to
include a serial job set. job sets that include a mix of parallel and serial job sets are
called complex job sets. For example, when a serial job set contains a child parallel job
set, the serial job set runs serially until it reaches the child parallel job set. Then, all the
job definitions or job set definitions in the child parallel job set run in parallel. Upon
completion of the child parallel job set the serial job set continues running its
remaining steps serially. Nested parallel job sets behave the same as non-nested
parallel job sets.

For every step in a job set Oracle Enterprise Scheduling Service supports properties
that provide runtime flexibility for how a particular step affects the entire job set.
These properties are defined on a per step basis. Table 12–1 shows properties that are
useful for job set steps. Any property can be defined on a job set step.

Defining Job Sets

12-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Oracle Enterprise Scheduling Service provides the capability for a job set to execute
across multiple applications. A job set runs in its hosting application and by default all
job set steps also run in this application. A job set step can be associated with a
different application by defining the EFFECTIVE_APPLICATION system property on the
step. If the step is a job definition, the job definition executes in the effective
application. If the step is a nested job set definition, the job definitions or job set
definitions in the nested job set execute in the effective application. The effective
application becomes the application for the request for the step and for any child
requests of the step. For more information, see Section 12.3, "Cross Application Job
Sets".

12.2 Defining Job Sets
You can define a job set in Oracle JDeveloper by specifying the following:

■ The name, package, and description for the job set

■ The application defined properties for the job set

■ The system properties for the job set

■ Specifying the job set steps

The contents of a job set are specified when you define the job set steps. For example,
for a serial job set you specify the name and the execution mode and then you add the
job set steps to define the sequence of job definitions or child job sets that run when
the job set runs.

12.2.1 How to Define a Job Set
An Oracle Enterprise Scheduling Service job set is defined by a name, a package, a job
set execution mode, step definitions, application defined properties, and system
properties.

To create a job set:
1. In Oracle JDeveloper, right-click in the project to view the New Gallery.

2. In the All Technologies tab, under Categories, expand Business Tier and select
Enterprise Scheduler Metadata.

3. Under Items, select Job Set and click OK. This displays the Create Job Set
window.

Table 12–1 Job Set Step Properties

Property Description

EFFECTIVE_APPLICATION Specifies if the step is a job, the job will execute in the effective application. If the step is
a nested job set, the jobs in the nested job set will execute in the effective application.
The effective application becomes the application for the request for the step and for
any child requests of the step.

This property can be defined for job definitions and job types as well as job sets.

SELECT_STATE Specifies whether the result state of a job set step should be included when determining
the state of the job set. Specifies whether the execution state of the step affects the
eventual state of entire job set.

By default, all job set steps affect the job set state. To prevent the state of a particular job
set step from affecting the state of the job set, set SELECT_STATE to false for that step. To
allow the state of a job set step to affect the overall state of the job set, set SELECT_
STATE to true for that step.

Defining Job Sets

Defining and Using Job Sets 12-3

4. In the Create Job Set window, specify the following:

a. In the Name field, enter a name for the job set or accept the default name.

b. In the Package field, optionally enter a package name for the job set.

c. The Location field displays the full path of the directory where the job set file
is stored.

d. Click OK. This creates the job set and displays the Job Set Definition page, as
shown in Figure 12–1.

Figure 12–1 Job Set Editor with Serial Job Set

5. In the Job Set Editor pane, in the Description field enter a description for the job
set.

6. In the Job Set Steps area, select the Parallel or Serial radio button to specify
parallel or serial execution mode for the job set.

7. In the Job Set Editor pane add the job set steps. For more information on adding
job set steps, see Section 12.2.2, "How to Define Serial Job Set Steps" or
Section 12.2.3, "How to Define Parallel Job Set Steps".

8. In the Application Defined Properties area, click Add to add properties associated
with the job set. You use these to represent an application-specific or step-specific
application defined property for the job set. For more information on using

Defining Job Sets

12-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

application defined properties, see Section 7.1, "Introduction to Using Parameters
and System Properties". For more information, see Section 7.1.2.2, "What You Need
to Know About Job Set Level Parameter Materialization".

9. In the System Properties area, click Add to add system properties associated with
the job set. For more information on using system properties, see Section 7.4,
"Using System Properties".

10. In the Access Control area, click Add to modify the list of roles that have access to
this metadata, along with their access levels. For more information on defining
access, see Section 18.2.3, "How to Create Grants with Oracle Enterprise
Scheduling Service Metadata Pages".

11. In the Localization area, enter the following information for localizing this job set:

■ Resource Bundle Base Name -- The base name for the resource bundle that
specifies internationalized values.

■ Display Name Resource Key -- The resource key that specifies the display
name value in the resource bundle.

■ Description Resource Key -- The resource key that specifies the description
text in the resource bundle.

12. Save the job set.

12.2.2 How to Define Serial Job Set Steps
To define serial job set steps you select the serial execution mode and then add job set
steps. Job set steps are created from the available job definitions and job sets defined in
the current project. You define serial job set steps when you specify a step ID and a job
definition child job set definition associated with the step. You also define links from a
job set step terminal states to specify the next step. Table 12–2 lists the possible
terminal states that you can specify using JDeveloper.

To add serial job set steps:
1. First, define the appropriate job definitions or job sets and define the parent job set

to contain the steps.

2. In the Job Set Editor pane, in the Job Set Steps area, select Serial execution mode.

3. Click the Add icon to add a job set step. This displays the Add Step window.

4. In the Step ID field, enter the step ID. For example, enter step1.

5. In the Job field, from the dropdown list select a job definition or a job set to
associate with the step. For example, select Job1.

6. If you need to define step level application defined properties, then select the
Application Defined Properties tab and add properties for the step.

Table 12–2 Job Set Serial Execution Step Terminal States

Terminal State Description

SUCCEEDED Oracle JDeveloper indicates this state with a checkmark icon. This path represents a child step
or child job set was successfully processed by the system.

WARNING Oracle JDeveloper indicates this step with a warning icon. A child step or child job set resulted
in a warning.

ERROR Oracle JDeveloper indicates this step with an error icon. Some aspect of the request to run the
child step or child job set processing resulted in an error.

Defining Job Sets

Defining and Using Job Sets 12-5

7. If you need to define step level system properties, then select the System
Properties tab and add job set step system properties for the step.

8. Select a destination for the step. The step can be added as part of the job set by
selecting Insert into main diagram. To make the step available for use in another
step, for either error or warning states, select Add to list of available steps.

9. Click OK, this adds the job set step, as shown in Figure 12–2.

Figure 12–2 Job Set with a Step Added

10. From the dropdown list next to the error icon, select Stop or select the step for the
ERROR terminal state for the step. For example, from the dropdown list select Step_
error (Step_error needs to be defined).

11. From the dropdown list next to the warning icon, select Stop or select the step for
the WARNING terminal state for the step. For example, from the dropdown list select
Step_warning (Step_warning needs to be defined).

12. Click the Add icon and add additional steps as needed.

13. Click OK, as shown in Figure 12–3.

Defining Job Sets

12-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 12–3 Job Set with Two Steps Added

12.2.3 How to Define Parallel Job Set Steps
You can add parallel job set steps to a job set.

To add parallel job set steps:
1. First, define the appropriate job definitions and job set definitions and the parent

job set.

2. In the Job Set Editor, select the Parallel execution mode.

3. Click the Add icon to add a job set step to the job set.

The Add Step window displays.

4. In the Job field, select a job definition or a job set.

5. If you need to define step level application defined properties, then select the
Application Defined Properties tab and add properties for the step.

6. If you need to define step level system properties, then select the System
Properties tab and add job set step system properties for the step.

7. Click OK, this adds the job set step.

8. Click the Add icon.

9. In the Add Step dialog, select the job set or job definition to use for next job in the
parallel job set.

10. Click OK. The job set step displays in the job set, as shown in Figure 12–4.

Defining Job Sets

Defining and Using Job Sets 12-7

Figure 12–4 Adding Job Set Steps to a Parallel Job Set

12.2.4 What Happens When You Define a Job Set
When you define a job set with Oracle JDeveloper, Oracle JDeveloper creates an XML
file containing elements that represent the steps that you define.

When you define a parallel job set you specify a set of job set steps that run together. A
parallel job set only contains steps, and does not contain links between steps, as all the
steps execute together and do not depend on each other or upon the order in which
each step runs.

When you define a job set Oracle JDeveloper creates an XML document that conforms
to the Oracle Enterprise Scheduling Service job step schema.

12.2.5 What You Need to Know About Serial Job Sets
When you define a serial job set, the associated XML document includes job set steps
and links. Oracle Enterprise Scheduling Service enforces the following limitations for
serial job set definitions:

■ To prevent looping within a job set, job set definitions should not contain circular
execution paths. A circular execution path, or a loop, is defined at the job set level
as follows: loop is a path from one job set step along the links of any number of
other steps back to the same job set step. For example, in a job set with a flow from

Defining Job Sets

12-8 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Job_A, to Job_B, to Job_C defined, Oracle Enterprise Scheduling Service does not
allow you to define an execution path from Job_B or Job_C back to Job_A. For
example you could a create circular execution path, or a loop, if one of the links in
a job set step for success, error, or warning links back to the same job set step.
Thus, each job set step can link to any of the available job definitions or job sets, or
they could all use the same job definition or job set as a link for the success, error
and warning case. There is only a possible loop based on the path through the job
set steps, as identified by the job set step ID. Oracle Enterprise Scheduling Service
validates job sets at submission time to try to prevent job set step level looping.
Also, Oracle JDeveloper does not allow you to create a job set containing a job set
step level loop.

■ To prevent looping within a job set, job set definitions should not contain
self-referencing execution paths. For example, in a job set with Job_B defined,
Oracle Enterprise Scheduling Service does not allow you to define an execution
path from Job_B to Job_B itself if Job_B ends up with a terminal state of ERROR.
However using the RETRIES property available for a job definition or a job set, you
can have multiple executions up to the configured RETRIES number.

■ When there is no job set link defined for a terminal state of a step, it implies that
the job set should stop if the step ends with the unspecified terminal state. For
example if there is no link defined for a step Job_D for the state WARNING, and if the
step Job_D ends up with the state of WARNING, the job set stops execution.

Each job set step can be defined to use any of the available job definitions or job sets,
and multiple steps may use the same job definition or job set.

12.2.6 What You Need to Know About Job Set Application Defined Properties and
System Properties

There are cases where job set application defined properties or system properties may
conflict with application defined properties or system properties set either in metadata
or when a job request is submitted. For more information on how job set application
defined properties and system properties are handled, see Section 7.2, "Using
Parameters with the Metadata Service" and Section 7.3, "Using Parameters with the
Runtime Service".

12.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions
At runtime, the individual steps in a job set can end up with different terminal states,
as indicated in Table 12–2. When a job set step is a job set, the job set step also ends
with one of these terminal states. Oracle Enterprise Scheduling Service provides a
priority hierarchy for the terminal states of job set steps. This means that when there
are multiple steps in a job set, the job set terminal state is applied the terminal state of
the step with the highest priority terminal state. Thus, the highest priority terminal
state of the steps determines the resulting state for the entire job set.

The resulting state of a job set affects all subsequent state dependent processing within
the system. A job set always follows the basic rule of transitioning to a terminal state
based on the terminal states of its child requests, only after the completion of all child
requests. As a rule, the job set transitions to one of the computed terminal states only
after all child requests have finished and transitioned to terminal states. For example,
if a given job set is actually a step within another job set, then the way in which the
state of the inner job set request is computed affects the conditional execution within
the outer job set.

Defining Job Sets

Defining and Using Job Sets 12-9

Table 12–3 shows the possible job set terminal states with the level indicated in the
Priority column.

Table 12–4 lists additional possible states for a job set:

Table 12–3 Job Set Terminal State Transitions

Terminal State Description Priority

ERROR If any step in a job set finishes with the terminal state of ERROR, the entire job
set is marked with the terminal state of ERROR no matter what the state of the
other steps.

For serial job sets, if one step goes to ERROR, subsequent steps will not
execute. For parallel job sets, all steps begin at the same time, and the job set
state is not determined until the job set steps reach a terminal state.

The ERROR state
has the highest
priority.

WARNING If any step in a job set ends up with the terminal state of WARNING, and there
is no step with the terminal state of ERROR then the job set is marked with the
terminal state WARNING. When the terminal state is WARNING, post processing
will begin.

Lower than ERROR

EXPIRED The job set transitions to EXPIRED state if at least one of the child requests
expires while there is no step that ends with the terminal state of ERROR or
WARNING.

Lower than ERROR
and WARNING

CANCELLED Based on the actual outcome of a cancellation attempt, the job set can
transition to CANCELLED if at least one child request successfully processes
the cancellation attempt and transitions to CANCELLED state. The cancellation
might have been requested on the entire job set or just a specific child
request.

Further the transition to CANCELLED follows the priorities of terminal states.
Therefore the job set transitions to CANCELLED terminal state only if there is
no step that ends with the state of ERROR, WARNING, or EXPIRED and there is at
least one step with terminal state of CANCELLED.

When a job set is cancelled, steps that have not been added or run are
considered to be CANCELLED for the purpose of final state.

Lower than ERROR,
WARNING, and
EXPIRED

SUCCEEDED The job set is considered as SUCCEEDED if and only if all child requests
completed with the terminal state of SUCCEEDED.

The SUCCEEDED
state has the
lowest priority
among all
terminal states

Table 12–4 Possible Job Set Runtime States

State Description

WAIT This is the initial state of the submitted job set request. Once the job set request
transitions to RUNNING state, however, all generated child requests transition directly
to READY state rather than WAIT state.

READY Job sets never go to READY state. The submitted job set request transitions from WAIT to
RUNNING state. Nested job sets are generated in RUNNING state. The only job set steps
that begin in READY state are steps composed of job definitions.

RUNNING The submitted job set transitions from WAIT to RUNNING state when it begins to be
processed. Nested job sets start in RUNNING state and remain in RUNNING state as long
as at least one child is in a non-terminal state.

Cross Application Job Sets

12-10 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

12.3 Cross Application Job Sets
Oracle Enterprise Scheduling Service provides the capability for a job or a job set to
execute across multiple applications as shown in Figure 12–5:

■ Job set FIN has three steps, two of which are defined to execute in different
applications.

■ Job set FIN is submitted to the GL application.

■ Step 1 has the EFFECTIVE_APPLICATION system property set to ODI, so Step 1
executes in the ODI application.

■ Step 2 does not have an effective application set, so it executes in the GL
application.

■ Step 3 has the EFFECTIVE_APPLICATION system property set to INV, so Step 3
executes in the INV application.

CANCELLING A job set transitions to CANCELLING when the user requests a cancellation for the entire
job set. This can be done by calling cancelRequest() with the request ID of the parent
request representing the job set. Passing the parent request ID indicates that the user
wants to cancel entire job set irrespective of its current, non-terminal, state and the
states of its child requests.

In such cases, a cancellation will be attempted on all child requests that are still active
and have not already transitioned to a terminal state.

On the other hand if cancellation is attempted only on a specific child request in the
job set, there won't be any state change for the parent request and only the particular
child request will transition to CANCELLING if possible.

If the cancel happens during post-processing, the state is set to WARNING rather than
CANCELLED. If the job set finishes before the cancel is issued, the job set can have state
SUCCEEDED.

COMPLETED This state indicates that the job set or job set step has finished executing and
post-processing will begin.

BLOCKED The BLOCKED state is not a terminal state. However any request can remain in a
BLOCKED state for a long period until the blocking condition is eliminated (such as
incompatibility).

In the case of a job set, any individual step might be BLOCKED while other steps either
complete or may be running. The job set itself, however, remains in a RUNNING state.
Eventually if all steps in the job set complete except the ones that are in the BLOCKED
state, the job set cannot continue further until the blocking step is ready to run. When
the blocked step unblocks and completes, the job set can proceed. After the steps
complete, the job set eventually goes to the appropriate terminal state.

For a serial job set, the job set may stop at a step that is in BLOCKED state. In such cases,
all previous steps are complete and the job set cannot continue until the blocked step
executes.

However for a parallel job set, multiple steps can remain in BLOCKED state. Further,
while some steps are blocked, other steps can still continue to run.

HOLD The HOLD state is very similar to the BLOCKED state. Following the same rules for the
BLOCKED state, a job set cannot continue running while a step is in HOLD state. A serial
job set cannot continue if the current step in the execution flow is stuck at HOLD state.
In the case of a parallel job set, if at least one step is stuck in HOLD state while all other
steps have completed, the job set can complete when the step is no longer in HOLD
state.

Table 12–4 (Cont.) Possible Job Set Runtime States

State Description

Cross Application Job Sets

Defining and Using Job Sets 12-11

Figure 12–5 Cross Application Job Set Steps

12.3.1 Overview of Cross Application Job Sets
A job set runs in its hosting application and by default, all job set steps also run in this
application. A job set step can be associated with a different application by defining
the EFFECTIVE_APPLICATION system property on the step. If the step is a job, the job
will execute in the effective application. If the step is a nested job set, the jobs in the
nested job set execute in the effective application. When EFFECTIVE_APPLICATION is
defined for a step, the request for the step and any child requests of the step are
associated with the effective application, meaning the APPLICATION system property
for those requests will be set to the effective application.

The EFFECTIVE_APPLICATION system property may only be defined in metadata,
specifically job set, job set step, job type, and job. The property EFFECTIVE_
APPLICATION is not supported in the request parameters. The effective application
must be in the same cluster as the hosting application, or an error will result. If a
submitted job set defines the effective application, that value must be the same as the
hosting application, or the job set submission will be rejected.

Subrequests created by a job set step must run in the same application as the job set
step. In other words, EFFECTIVE_APPLICATION is not supported for subrequests. If the
job for a subrequest defines the effective application, that value must be the same as
the application of the job submitting the subrequest, or the subrequest submission will
be rejected.

For a job set that executes across multiple applications, querying for requests by
application is not sufficient to retrieve all children. Oracle Enterprise Scheduling
Service supports absolute parent id as a query field, making it possible to query for all
requests in a job set regardless of the application. The absolute parent id is the request
id of the job set that was submitted to the hosting application.

12.3.2 Requirements for Cross Application Job Sets
Oracle Enterprise Scheduling Service supports cross-application job set subject to the
following requirements:

1. All applications for a given job set must be deployed in the same cluster.

2. All applications in the job set must share the same enterprise security.

3. All request metadata must be accessible from the application the job set is
submitted to, referred to as the hosting application. All metadata for the request
are persisted to the runtime store for the hosting application. The persisted
metadata include all metadata used by the submitted job set and any nested job
set.

Using Input and Output Forwarding

12-12 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

4. Metadata for subrequests must be accessible from the application that submits the
subrequest, unless the metadata used by the subrequest were already persisted to
the runtime store at job set submission time.

12.4 Using Input and Output Forwarding
Oracle Enterprise Scheduling Service configures a USER_FILE_DIR parameter to specify
the directory for all jobs to store their input and output files. This parameter is
populated by the property RequestFileDirectory in the ess-config.xml file. When
this parameter is set, Oracle Enterprise Scheduling Service set the system property
USER_FILE_DIR for all job requests. When a job request is processed, in the pre- or
post-processor or its execution the job can read, write, create, delete and manage files
and sub-directories based this property. Oracle Enterprise Scheduling Service does not
impose any structure on the user file directory nor support any file or directory
operations.

The purpose of this file support is to allow job implementation to reference files
relative to a configurable location so that the job implementation is not tied to a
particular environment. It de-couples job implementation with file input and output
from the job execution environment.

The USER_FILE_DIR property allows job requests to dynamically change the file.

12.4.1 Supporting Input and Output Forwarding in Job Sets
Sometimes a step in a job set needs input from the previous step in the job set. Oracle
Enterprise Scheduling Service uses two system properties INPUT_LIST and OUTPUT_
LIST to facilitate forwarding the output from one step to the input of the next step.

When a job produces information, such as a list of output files, that needs to be passed
on to the next step in a job set, the job adds the information to the OUTPUT_LIST
property. Upon completion of the job request execution, Oracle Enterprise Scheduling
Service forwards the OUTPUT_LIST property of the request so that it becomes the
INPUT_LIST property of the next step before it executes. The next step takes as its input
the output of the previous step.

A job set step can be a single job or a job set, Oracle Enterprise Scheduling Service
supports forwarding with nested job sets as well. For a serial job set, Oracle Enterprise
Scheduling Service defines the output of the job set as the output of the last step of the
job set, meaning that only the OUTPUT_LIST property of the last step is forwarded to the
next step. Similarly, the input to a serial job set is forwarded only to the first step of the
job set; that is, only the first step of a serial job set has the INPUT_LIST property set to
the value of the OUTPUT_LIST property of the previous step.

For a parallel job set, Oracle Enterprise Scheduling Service specifies that the output of
the job set is the concatenation of the OUTPUT_LIST property of every job in the job set,
separated by a delimiter (with no order guaranteed). The input to a parallel job set is
forwarded to every job in the job set, meaning that every job in the parallel job set has
the same INPUT_LIST property. The system property OUTPUT_LIST_DELIMITER specifies
the delimiter used when listing output files.

Suppose a job set has two jobs, each job producing its own output file, file1.txt and
file2.txt. The system property OUTPUT_LIST for that job set will have the values
file1.txt;file2.txt, assuming the value of OUTPUT_LIST_DELIMITER is a semi-colon.
The concatenated list of output files enables the next job step in the job set to access
output files generated by previous steps within the job set.

Using Input and Output Forwarding

Defining and Using Job Sets 12-13

The InputFile class provides access to files as input to a job definition. There is
currently no mechanism for accepting a file as an input to a job request.

Except for forwarding the value of the OUTPUT_LIST property of a step to the value of
the INPUT_LIST property of the next step, Oracle Enterprise Scheduling Service treats
the two properties like any other system properties. Oracle Enterprise Scheduling
Service does not define the format for the value of the properties (except for the
semicolon delimiter in case of parallel job set). It is the responsibility of the job to
define the syntax and semantics for the properties; for example using a fully qualified
name or relative path name and a comma or space as a delimiter.

Using Input and Output Forwarding

12-14 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

13

Defining and Using a Job Incompatibility 13-1

13Defining and Using a Job Incompatibility

This chapter describes how to use an Oracle Enterprise Scheduling Service job
incompatibility, with which you can specify job requests that cannot run together.

This chapter includes the following sections:

■ Section 13.1, "Introduction to Using a Job Incompatibility"

■ Section 13.2, "Defining Incompatibility with Oracle JDeveloper"

■ Section 13.3, "What Happens at Runtime to Handle Job Incompatibility"

For information about how to create and submit job requests see the following
chapters, for Java jobs, Chapter 5, "Use Case Oracle Enterprise Scheduling Service
Sample Application (Deprecated)", and Chapter 8, "Creating and Using PL/SQL Jobs",
and Chapter 9, "Creating and Using Process Jobs". For more information on using job
sets, see Chapter 12, "Defining and Using Job Sets".

13.1 Introduction to Using a Job Incompatibility
A given incompatibility specifies either a global incompatibility or a domain,
property-based, incompatibility. Oracle Enterprise Scheduling Service supports
incompatibility between job definitions or job sets based on an incompatibility
definition as represented by the oracle.as.scheduler.Incompatibility Java class.
The IncompatibilityType enum specifies the valid incompatibility types.

■ Domain-Specific (DOMAIN): where at most two job definitions are marked as
incompatible within the scope of a resource, where the resource is identified by a
system property name or a user-defined parameter name. A property name must
be specified for each job definition used to define the incompatibility. Parameters
specified through parameterVO will be submitted to the request as request
properties submit.argument1, ... submit.argument#. In the incompatibility
definition for the properties, specify submit.argument1, ... submit.argument#,
Oracle Enterprise Scheduling Service ensures that requests for the incompatible
jobs do not run at the same time if they have the same value for that resource.

■ Global (GLOBAL): where at most two job definitions are marked as incompatible,
regardless of any resource or property. Oracle Enterprise Scheduling Service
ensures that requests for the incompatible jobs do not run at the same time.

An Oracle Enterprise Scheduling Service incompatibility definition specifies either a
global incompatibility or a domain (property-based) incompatibility. An

Note: To simplify the discussion we refer only to job definitions in
this incompatibility chapter, but in all cases this discussion applies to
both job definitions and job sets.

Defining Incompatibility with Oracle JDeveloper

13-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

incompatibility consists of at most two entities (job definition or job set) and the
resource over which they need to be incompatible. A resource is not specified for a
global incompatibility. Each entity can be flagged as being self-incompatible. Oracle
Enterprise Scheduling Service does not support a mixed mode where one entity
represents a domain (property-based) entity and another entity represents a global (no
property) entity.

For a domain incompatibility, the resource is represented by a property name that
might be different for each entity of the incompatibility. For example, if a domain
incompatibility is created for two job definitions, JobA and JobB, then the resource
(property) identified for each entity might have different property names in JobA and
JobB. It might be called foo in JobA while it might be called foo2 in JobB. Oracle
Enterprise Scheduling Service considers a request for JobA and a request for JobB to be
incompatible if they have the same value for their respective property, and those
requests would not run at the same time. If the requests have a different value for their
respective property, they are considered compatible and allowed to run concurrently.

An incompatibility definition specifies which job definition is incompatible with
another job definition. A given job definition does not directly point to or reference
any incompatibility definitions.

Oracle Enterprise Scheduling Service determines which, if any, incompatibility
definitions reference the job definition at request submission. It also determines the
resource (property) value for any domain incompatibility. That information is used
throughout the processing life cycle of the request.

13.1.1 Job Self Incompatibility
A job definition or job set can be defined as self incompatible where the job definition
or job set is incompatible with itself. A self-incompatibility implies that multiple job
requests associated with a single job definition cannot run together. An
incompatibility definition can contain a single entity if it is marked as
self-incompatible. For global self-incompatibly, Oracle Enterprise Scheduling Service
ensures that multiple requests for that particular job or job set definition are not run
simultaneously. For property-based self-incompatibly, Oracle Enterprise Scheduling
Service ensures that requests for that particular job or job set definition, and having the
same value for the property, are not run at the same time.

13.2 Defining Incompatibility with Oracle JDeveloper
You can define an incompatibility in Oracle JDeveloper by specifying the following:

■ The name and package for the incompatibility

■ The incompatibility type

■ The entity for the incompatibility and whether there is a self incompatibility

■ For a domain specific incompatibility, the property associated with the
incompatibility for each entity

13.2.1 How to Define a Global Incompatibility
An Oracle Enterprise Scheduling Service global incompatibility is defined by a name, a
package and entities.

To create a global incompatibility:
1. In Oracle JDeveloper, right-click in the project to view the New Gallery.

Defining Incompatibility with Oracle JDeveloper

Defining and Using a Job Incompatibility 13-3

2. Under Categories, expand Business Tier and select Enterprise Scheduler
Metadata.

3. Under Items, select Incompatibility and click OK. This displays the Create
Incompatibility window, as shown in Figure 13–1.

Figure 13–1 Create Incompatibility Window

4. Use the Create Incompatibility dialog to specify the following:

a. In the Name field, enter a name for the incompatibility or accept the default
name.

b. In the Package field, enter a package name for the incompatibility.

c. The Location field displays the full path of the directory where the
incompatibility file is stored.

d. In the Incompatibility Type field, select Global. and click OK.

The incompatibility is created, and the Incompatibility Definition page
displays.

5. In the Incompatibility Editor pane, in the Description field enter a description for
the incompatibility.

6. In the Entities area, click Add to add entities. This displays the Add Entity dialog,
as shown in Figure 13–2.

Defining Incompatibility with Oracle JDeveloper

13-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 13–2 Incompatibility Add Entity Window

7. Select one or more entities for the incompatibility and click OK. The
Incompatibility Editor displays.

8. To specify a self incompatibility or to change the entity, double-click the entity in
the Entities area. This displays the Edit Entity dialog as shown in Figure 13–3.

Figure 13–3 Edit Entity Window for Global Incompatibility

9. To specify self incompatibility, select Self Incompatible.

10. Save the incompatibility.

13.2.2 How to Define a Domain Incompatibility
An Oracle Enterprise Scheduling Service domain incompatibility is defined by a name,
a package, entities, and properties for each entity.

To create an incompatibility:
1. In Oracle JDeveloper, right-click in the project to view the New Gallery.

2. Under Categories, expand Business Tier and select Enterprise Scheduler
Metadata.

Defining Incompatibility with Oracle JDeveloper

Defining and Using a Job Incompatibility 13-5

3. Under Items, select Incompatibility and click OK. This displays the Create
Incompatibility window.

4. Use the Create Incompatibility dialog to specify the following:

a. In the Name field, enter a name for the incompatibility or accept the default
name.

b. In the Package field, optionally enter a package name for the incompatibility.

c. The Location field displays the full path of the directory where the
incompatibility file is stored.

d. In the Incompatibility Type field, select Domain, as shown in Figure 13–4.

Figure 13–4 Create Incompatibility Window

Click OK. This creates the incompatibility and displays the Incompatibility
Editor.

5. In the Incompatibility Editor pane, in the Description field enter a description for
the incompatibility.

6. In the Incompatibility Entities area, click Add.

The Add Entity window displays.

7. Select one or more jobs or job sets to add to the incompatibility and click OK.

The Incompatibility Editor displays.

8. To specify a self incompatibility or modify an entity or its properties, under the
Entities field, double-click an entity.

The Edit Entity window displays, as shown in Figure 13–5.

What Happens at Runtime to Handle Job Incompatibility

13-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 13–5 Incompatibility Edit Entity Window

9. To specify self incompatibility, select Self Incompatible.

10. Save the incompatibility.

13.3 What Happens at Runtime to Handle Job Incompatibility
At runtime, Oracle Enterprise Scheduling Service handles incompatibility definitions
according to the incompatibility type, global or domain (property-based). When a job
request is submitted, Oracle Enterprise Scheduling Service determines which
incompatibility definitions reference the job or job set definition used for the request
submission. For each domain incompatibility it also determines the value of the
resource, property, for that incompatibility. When the request is ready to be executed,
Oracle Enterprise Scheduling Service checks if there are any incompatible requests
already executing. If so, the request is blocked until all requests for which it is
incompatible have completed.

13.3.1 What Happens to Subrequests with an Incompatible Parent Request
A request which is incompatible with another request is also incompatible with the
subrequests of that request (the children). A request that has been blocked by a
subrequest parent remains blocked while any subrequests execute and until the
subrequest parent request is resumed and completes.

13.3.2 What Happens to the Scope of Request Incompatibility
Every validated request is assigned to an enterprise. Incompatibility is supported only
among requests that are associated with the same enterprise. A request for one
enterprise is never incompatible with a request for a different enterprise even if an
incompatibility has been defined between the job definitions used by those requests.

Note: The value of the property for a domain incompatibility is
determined at request submission, and originates either in the job
definition or a request parameter passed during submission. If no
such parameter is found, that incompatibility is ignored during
subsequent request processing. The request will be compatible with
any other request with regard to that incompatibility definition. This
initial value as specified at request submission time is used even if it is
subsequently altered.

14

Using the Runtime Service 14-1

14Using the Runtime Service

This chapter describes how to use the Oracle Enterprise Scheduling Service runtime
service APIs for submitting and managing job requests and for querying job request
information from the job request history.

This chapter includes the following sections:

■ Section 14.1, "Introduction to the Runtime Service"

■ Section 14.2, "Accessing the Runtime Service"

■ Section 14.3, "Submitting Job Requests"

■ Section 14.4, "Managing Job Requests"

■ Section 14.5, "Querying Job Requests"

■ Section 14.6, "Submitting Ad Hoc Job Requests"

14.1 Introduction to the Runtime Service
Oracle Enterprise Scheduling Service lets you define and run different job types
including: Java classes, PL/SQL procedures, and process job types (forked processes).
To run these job types you need to submit a job definition.

You can use the runtime service to perform different types of operations, including:

■ Submit: These operations let you supply a job definition to Oracle Enterprise
Scheduling Service to create job requests.

■ Manage: These operations allow you to change the state of job requests and to
update job requests.

■ Query: These operations let you find the status of job requests and report job
request history.

14.2 Accessing the Runtime Service
Like the metadata service, Oracle Enterprise Scheduling Service provides a runtime
MBean proxy interface.

The runtime service open() method begins each Oracle Enterprise Scheduling Service
runtime service user transaction. In an Oracle Enterprise Scheduling Service
application client you obtain a RuntimeServiceHandle reference that is created by
open() and you pass the reference to runtime service methods. The
RuntimeServiceHandle reference provides a connection to the runtime service for the
client application. In the client application you must explicitly close the runtime
service by calling close(). This ends the transaction and causes the transaction to be

Submitting Job Requests

14-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

committed or rolled back (undone). The close() not only controls the transactional
behavior within the runtime service, but it also allows Oracle Enterprise Scheduling
Service to release the resources associated with the RuntimeServiceHandle.

14.2.1 How to Access the Runtime Service and Obtain a Runtime Service Handle
Oracle Enterprise Scheduling Service exposes the runtime service to your application
program as a Stateless Session Enterprise Java Bean (EJB). You can use JNDI to locate
the Oracle Enterprise Scheduling Service runtime service Stateless Session EJB.

Example 14–1 shows a lookup for the Oracle Enterprise Scheduling Service runtime
service using the RuntimeServiceLocalHome object.

Example 14–1 JNDI Lookup to Access Oracle Enterprise Scheduling Service Runtime
Service

import oracle.as.scheduler.core.JndiUtil;
// Demonstration of how to lookup runtime service from a
// Java EE application component

 RuntimeService runtime = JndiUtil.getRuntimeServiceEJB();
 RuntimeServiceHandle rHandle = null;
 .
 .
 .
 try
 {
 ...
 rHandle = runtime.open();
 ...
 }
 finally
 {
 if (rHandle != null)
 {
 runtime.close(rHandle);
 }
 }

14.3 Submitting Job Requests
When you submit a job definition you create a new job request. You can submit a job
request using a job definition that is persisted to a metadata repository, or you can

Note: When you access the runtime service:

■ JndiUtil.getRuntimeServiceEJB() assumes that the
RuntimeService EJB has been mapped to the local JNDI location
"ess/runtime". This happens automatically in the hosted
application's message-driven bean (MDB).

■ The open() call provides a RuntimeServiceHandle reference. You
use this reference with the methods that access the runtime
service in your application program.

■ When you finish using the runtime service you must call close()
to release the resources associated with the
RuntimeServiceHandle.

Submitting Job Requests

Using the Runtime Service 14-3

create a job request in an ad hoc manner where the job definition or the schedule is not
stored in the metadata repository (for information about ad hoc requests, see
Section 14.6, "Submitting Ad Hoc Job Requests").

14.3.1 How to Submit a Request to the Runtime Service
You create a job request by calling submitRequest(). Depending on your needs, you
can create a job request with one of the following formats:

■ Create a new job request using a job definition stored in the metadata repository,
to run once at a specific time.

■ Create a new job request using a job definition and a schedule, each stored in the
metadata repository.

Example 14–2 shows the submitRequest() method that creates a new job request with
a job definition that resides in the metadata repository. You can also submit an ad hoc
job request where the job definition and schedule are not stored in the metadata
repository. For more information, see Section 14.6, "Submitting Ad Hoc Job Requests".
You can also submit a sub-request. For more information, see Chapter 15, "Using
Subrequests".

Example 14–2 Creating a Job Request with submitRequest()

long requestID = 0L;
MetadataObjectId jobDefnId;

RequestParameters p = new RequestParameters();

p.add(SystemProperty.CLASS_NAME, "demo.jobs.Job");

Calendar start = Calendar.getInstance();
start.add(Calendar.SECOND, startsIn);

requestID =
 runtime.submitRequest(r,
 "My Java job",
 jobDefnId,
 start,
 p);

14.3.2 What You Should Know About Default System Properties When You Submit a
Request

When you create a job request Oracle Enterprise Scheduling Service resolves and
stores the properties associated with the job request. Oracle Enterprise Scheduling
Service requires that certain system properties are associated with a job request. If you
do not set these required properties anywhere in the properties hierarchy when a job

Note: When you submit a job request using the runtime service:

■ You obtain the runtime service handle as shown in Example 14–1.

■ The runtime service internally uses the metadata service to obtain
job definition metadata with the supplied MetadataObjectId,
jobDefnId.

Managing Job Requests

14-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

request is submitted, then Oracle Enterprise Scheduling Service provides default
values.

Table 14–1 shows the runtime service field names and the corresponding system
properties for the required job request properties.

14.3.3 What You Should Know About Metadata When You Submit a Request
All Oracle Enterprise Scheduling Service Metadata associated with a job request is
persisted in the runtime store at the time of request submission. Persisted metadata
objects include job definition, job type, job set, schedule, incompatibility definitions,
and exclusion definition. Metadata is stored in the context of a top level request, and
each metadata object is uniquely identified by the absolute parent request id and its
metadata id. Each unique metadata object is stored only once for a top-level request,
even if the definition is used multiple times in the request. This ensures that every
child request uses the same definition.

When a request is submitted, all known metadata for the request is persisted. For
subrequests, the metadata is not know until the subrequest is submitted, so subrequest
metadata is persisted when the subrequest is submitted, after first checking that the
metadata object is not already persisted in the runtime store.

Metadata persisted in the runtime store is removed when the absolute parent request
is deleted.

14.4 Managing Job Requests
After you submit a job request, using the requestID you can do the following:

■ Get request information

■ Change the state of the request

■ Update request parameters

■ Purge a request

Table 14–1 Runtime Service Default Value Fields and Corresponding System Properties

Value
Runtime Service Default Value
Field

Corresponding System
Property Description

0 DEFAULT_REQUEST_EXPIRATION REQUEST_EXPIRATION The default expiration time, in minutes,
for a request. The default value is 0
which means the request will never
expire.

4 DEFAULT_PRIORITY PRIORITY The default system priority associated
with a request.

5 DEFAULT_REPROCESS_DELAY REPROCESS_DELAY The default period, in minutes, in
which processing must be postponed
by a callout handler that returns
Action.DELAY.

0 DEFAULT_RETRIES RETRIES The default number of times a failed
request will be retried. The default
value is 0 which means a failed request
is not retried.

Managing Job Requests

Using the Runtime Service 14-5

14.4.1 How to Get Job Request Information with getRequestDetail
Using the runtime service, with a requestID, you can obtain information about a job
request that is in the system. Table 14–2 shows the runtime service methods that allow
you to obtain job request information.

Example 14–3 shows code that determines if there is any immediate child request in
the HOLD state.

Example 14–3 Determining Whether Any Immediate Child Job Requests Are on Hold

 h = s_runtime.open();
 try {

 s_runtime.holdRequest(h,reqid);

 Enumeration e = s_runtime.getRequests(h, reqid);

 boolean foundHold = false;
 while (e.hasMoreElements()) {

 long childid = ((Long)e.nextElement()).longValue();
 State state = s_runtime.getRequestState(h,childid);
 if (state == State.HOLD) {
 foundHold = true;
 break;
 }
 }

14.4.2 How to Change Job Request State
Using the runtime service, with a requestID, you can change the state of a job request.
Table 14–3 shows the runtime service job request state change methods. The job
request management methods allow you to change the state of a request, depending
on the state of the job request. For example, you cannot cancel a request with
cancelRequest() if the request is in the COMPLETED state.

Table 14–2 Runtime Service Get Request Methods

Runtime Service Method Description

getRequestDetail() Retrieves complete runtime details for the specified request

getRequestDetailBasic() Retrieves basic runtime details of the specified request. The
RequestDetail returned by this method includes most of the
information as getRequestDetail(), but certain less
commonly used information is omitted to improve
performance.

getRequestParameter() Retrieves the value of a request parameter.

getRequests() Retrieves an enumeration of immediate child request
identifiers associated with the specified request

getRequestState() Retrieves the current state of the specified request

Table 14–3 Runtime Service Job Request State Methods

Runtime Service
Method Description

cancelRequest() Cancels the processing of a request that is not in a terminal state.

Managing Job Requests

14-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Example 14–4 shows a submitRequest() with methods that control the state of the job
request. The holdRequest() holds the processing of the job request. The corresponding
releaseRequest() releases the request. This example does not show the conditions
that require the hold for the request.

Example 14–4 Runtime Service releaseRequest() Usage

rHandle = s_runtime.open();
try {
 s_runtime.holdRequest(rHandle,reqid);
 Enumeration e = s_runtime.getRequests(rHandle, reqid);
 while (e.hasMoreElements()) {

 long childid = ((Long)e.nextElement()).longValue();
 State state = s_runtime.getRequestState(rHandle,childid);
 if (state == State.HOLD) {
 foundHold = true;
 break;
 }
 }
.
.
.
 s_runtime.releaseRequest(rHandle, reqid);
.
.
.

14.4.3 How to Update Job Request Priority and Job Request Parameters
Using the runtime service you can update job request system properties or request
parameters. Table 14–4 shows the runtime service methods that allow you to lock and
update up a job request.

deleteRequest() Marks a request in a terminal state for deletion.

holdRequest() Withholds further processing of a request that is in WAIT or READY
state.

releaseRequest() Releases a request from the HOLD state.

Note: Note the following in Example 14–4:

■ You obtain the runtime service handle, rHandle, as shown in
Example 14–1.

■ The holdRequest() places the request in the HOLD state.

■ You may do some required processing while the request is in the
HOLD state.

■ The releaseRequest() releases the request from the HOLD state.

Table 14–3 (Cont.) Runtime Service Job Request State Methods

Runtime Service
Method Description

Querying Job Requests

Using the Runtime Service 14-7

Example 14–5 shows code that updates a job request parameter. This code would be
wrapped in a try/finally block as shown in Example 14–1.

Example 14–5 Sample Runtime Service Parameter Update

...
 s_runtime.lockRequest(rhandle, reqid);
 s_runtime.updateRequestParameter(rhandle, reqId, paramName, "yy");
...

Example 14–5 shows the following:

■ Obtain the runtime service handle, rhandle, as shown in Example 14–1.

■ Acquire a lock for either the request using lockRequest()

■ Perform the update operation with updateRequestParameter()

■ Use close() to cause the transaction to be committed or rolled back (undone). The
close() not only controls the transactional behavior within the runtime service,
but it also allows Oracle Enterprise Scheduling Service to release the resources
associated with the RuntimeServiceHandle.

14.5 Querying Job Requests
Using the runtime service you can query job request information. This involves the
following steps:

■ Query for request identifiers and limit results with a filter.

■ Get request details to provide additional information for each request ID that the
query returns.

There is only one query method; the runtime service queryRequests() method returns
an enumeration of request IDs that match the query. The queryRequests() method
includes a filter argument that contains field, comparator, and value combinations that
help select query results. For more information on filters, see Section 6.4.1, "How to
Create a Filter".

When you create a filter for a query, you can use any of the field names shown in
Table 14–5 when querying the runtime store.

Table 14–4 Runtime Service Update Methods

Runtime Service Method Description

lockRequest() Acquires a lock for the given request. The lock is released
when close() operation is subsequently invoked or the
encompassing transaction is committed. If an application
tries to invoke this operation while the lock is being held by
another thread, this method will block until the lock is
released. Use this method to ensure data consistency when
updating request parameters or system properties.

updateRequestParameter() Updates the property value of the specified request subject to
the property read-only constraints.

Querying Job Requests

14-8 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Table 14–5 Query Filter Fields For Querying the Runtime (Defined in Enum RuntimeService.QueryField)

Name Description

ABSPARENTID The absolute parent request ID of a request.

APPLICATION The application name.

ASYNCHRONOUS Indicates if the job is asynchronous, synchronous or unknown. The value of the field
is not set until the request is processed. The field data type is java.lang.Boolean. The
value may be NULL if the nature of the job has not yet been determined.

CLASSNAME The name of the executable class that processed the request

COMPLETED_TIME The date and time that Oracle Enterprise Scheduling Service finished processing the
request. This field represents the time the process phase was set to COMPLETED.

DEFINITION The job definition ID (Metadata Object ID).

ELAPSEDTIME The amount of time, in milliseconds, that elapsed while the request was running.

ENTERPRISE_ID The enterprise ID.

ERROR_TYPE The request error type.

EXTERNAL_ID The identifier for an external portion of an Oracle Enterprise Scheduling Service
asynchronous Java job.

INSTANCEPARENTID The request ID of the instance parent request.

JOB_TYPE The job type ID (Metadata Object ID).

NAME The request description.

PARENTREQUESTID The parent request ID.

PRIORITY The priority of the request.

PROCESS_PHASE The process phase of the request.

PROCESSEND The date and time that the process ended. The PROCESSSTART is set only when a
request transitions from READY to RUNNING. This implies that (PROCESSEND -
PROCESSSTART) encompasses the entire span of execution: from the time the state
becomes RUNNING to the time it transitions to a terminal state.

PROCESSOR The name of the instance that processed the request.

PROCESSSTART The date and time that the process started. The PROCESSSTART is set only when a
request transitions from READY to RUNNING. This implies that (PROCESSEND -
PROCESSSTART) encompasses the entire span of execution: from the time the state
becomes RUNNING to the time it transitions to a terminal state.

PRODUCT The product name.

READYWAIT_TIME The amount of time, in milliseconds, a request has been waiting to run since it became
READY.

REQUEST_CATEGORY The request category specified for the request.

REQUESTEDEND The requested end time.

REQUESTEDSTART The requested start time.

REQUESTID The request ID of a submitted request.

REQUESTTYPE The type of request (that is, an element of RequestType)

RESULTINDEX Controls the starting and ending index of the returned results. This field allows users
to express result constraints such as "return only results 10 through 20".

RETRIED_COUNT The retried count associated with a job. This field represents the number of times the
job was retried.

SCHEDULE The schedule ID (Metadata Object ID).

Submitting Ad Hoc Job Requests

Using the Runtime Service 14-9

Table 14–6 shows the runtime service method for querying job requests and
Example 14–6 shows the use of this method.

Example 14–6 Using queryRequest() Method

 Filter filter =
 new Filter(RuntimeService.QueryField.DEFINITION.fieldName(),
 Filter.Comparator.EQUALS,
 m_myJavaSucJobDef.toString())
 .and(RuntimeService.QueryField.STATE.fieldName(),
 Filter.Comparator.EQUALS,
 new Integer(12));

 //
 Enumeration requests =
 s_runtime.queryRequests(h,
 filter,
 RuntimeService.QueryField.REQUESTID,
 false);

14.6 Submitting Ad Hoc Job Requests
To use an ad hoc request you supply request parameters, a job definition, and
optionally a schedule that you create and define without saving it to a metadata
repository. An ad hoc request does not require you define the details of a job request
in a metadata repository. Thus, ad hoc requests support an abbreviated job request
submission process that can occur without using a connection to the metadata
repository.

SCHEDULED The time when the request is scheduled to be executed.

STATE The job request state.

SUBMISSION The submission time of the request.

SUBMITTER The submitter of the request.

SUBMITTERGUID The submitter GUID of the request.

TIMED_OUT Indicates whether the job has timed out.

TYPE The execution type of the request.

USERNAME The name of the user who submitted the request.

WAITTIME The amount of time, in milliseconds, a request has been waiting to run.

WORKASSIGNMENT The name of the work assignment that was active when the request was processed.

Table 14–6 Runtime Service Query Methods

Runtime Query Method Description

queryRequests() Gets a summary of requests.

Note: Ad hoc requests have the following limitation: job sets are not
supported with ad hoc requests.

Table 14–5 (Cont.) Query Filter Fields For Querying the Runtime (Defined in Enum

Name Description

Submitting Ad Hoc Job Requests

14-10 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

14.6.1 How to Create an Ad Hoc Request
To create an ad hoc request you use the ad hoc version of submitRequest(). For the
job definition, instead of supplying a job definition MetadataObjectId, you can define
the job definition object and use a system property that corresponds to the job type, as
shown in Table 14–7.

With one signature of the ad hoc version of submitRequest() you do not need to
supply MetadataObjectIds, you can provide the Schedule object as an argument as
object instances directly to submitRequest(). Other ad hoc submitRequest()
signatures allow you to submit a job request using a job definition from metadata and
an instance for the Schedule object.

Example 14–7 shows sample code for an ad hoc request submission that uses a
schedule.

Example 14–7 Creating Request Parameters and a Schedule for an Ad Hoc Request

 RequestParameters p = new RequestParameters();
 String propName = "testProp";
 String propValue = "testValue";
 p.add(propName, propValue);
 p.add(SystemProperty.REQUEST_EXPIRATION, new Integer(10));
 p.add(SystemProperty.LISTENER, "test.listener.TestListener");
 p.add(SystemProperty.EXECUTE_PAST, "TRUE");
 p.add("application", getApplication());
 p.add(SystemProperty.CLASS_NAME, "test.job.HelloWorld");

 Calendar start = Calendar.getInstance();
 start.add(Calendar.SECOND, 5);
 Calendar end = (Calendar) start.clone();
 end.add(Calendar.SECOND, 5);

 Recurrence recur = new Recurrence(RecurrenceFields.FREQUENCY.SECONDLY,
 2,
 start,
 end);

 Schedule schedule = new Schedule("mySchedule",
 "Run every 2 sec for 3 times.",
 recur);

 // adhoc submission, no metadata definitions passed
 reqId = s_runtime.submitRequest(h,
 "testAdhocJavaWithSchedule",
 JobType.ExecutionType.JAVA_TYPE,
 schedule,
 null,
 Calendar.getInstance(),
 null,

Table 14–7 Ad Hoc Request Job Definition System Properties for Job Types

System Property Description

CLASS_NAME Specifies the Java class to execute (for a Java job type).

PROCEDURE_NAME Specifies the PL/SQL stored procedure to execute (for an SQL job type).

CMDLINE Specifies the command line used to invoke an external program for a process job
request.

Implementing Pre-Process and Post-Process Handlers

Using the Runtime Service 14-11

 p);

In this example, note the following ad hoc specific details for the request submission:

■ The CLASS name is set to define the Java class that runs when Oracle Enterprise
Scheduling Service executes the job request: p.add(SystemProperty.CLASS_NAME,
"test.job.HelloWorld");

■ The submitRequest() includes an argument that specifies the job type:
JobType.ExecutionType.JAVA_TYPE.

■ Specify the Java class, the procedure name, or the command line program to
execute when the ad hoc Request is processed by setting one of the system
properties shown in Table 14–7.

■ Call the ad hoc version of submitRequest() specifying the type argument to
correspond with the system property you set to define the request. The type you
supply must be one of JAVA_TYPE, SQL_TYPE, or PROCESS_TYPE.

■ As with any job request, set the appropriate system properties to be associated
with the job request.

14.6.2 What Happens When You Create an Ad Hoc Request
The ad hoc submitRequest() returns the request identifier for the request. You can use
this request identifier with runtime calls such as updateRequestParameter() or
getRequestDetail() as you would with any other job request.

There is only one submitRequest signature that will create a request with an ad hoc job
definition. The job definition ID, obtained from RequestDetail.getJobDefn(), is null
in this case. Without an ad hoc job definition, a request cannot be considered ad hoc.

14.6.3 What You Need to Know About Ad Hoc Requests
If you want to define a schedule to use with an ad hoc request and you want to specify
exclusion dates, you need to exclude the dates using the addExclusionDate() method
for the schedule. For ad hoc requests, you cannot use a schedule that specifies
exclusion dates using addExclusion() method for the schedule.

Currently, if the schedule is ad hoc, a check of ExclusionDefinition is skipped. Thus,
if you use a schedule and use addExclusion() and submit an ad hoc job request, then
Oracle Enterprise Scheduling Service does not use the ExclusionsDefinition IDs with
the job request.

14.7 Implementing Pre-Process and Post-Process Handlers
Along with the core logic of your job, you can include code that executes before and
after the job’s main execution code. With code that executes before, known as a
pre-process handler, you can do such things as set up certain conditions for the job
executable. With code that executes after, known as a post-process handler, you can do
such things as processing the results of the job executable, perhaps by printing reports
or sending notifications.

You provide pre- and post-process handlers by implementing specific interfaces, then
connecting your implementations to the service through a system property that
indicates which of your classes to use.

Implementing Pre-Process and Post-Process Handlers

14-12 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

14.7.1 Implementing a Pre-Process Handler
With a pre-process handler, your code can do things to create an environment for your
job to execute. This could include creating connections to resources that your job
requires, for example.

The pre-processor is instantiated and invoked at the start of request execution when
the request transitions to RUNNING state. This is done each time the request is
executed, including when a failed request is retried or a paused request is resumed
after its sub-requests have completed.

You create a pre-process handler by implementing the
oracle.as.scheduler.PreProcessHandler interface. With your pre-process handler
class in hand, you specify that it should be used by setting the SYS_preProcess system
property to the fully-qualified name of your handler class. You can define the property
on job metadata or include it in the request submission parameters.

14.7.1.1 Implementing the PreProcessHandler Interface
Your PreProcessHandler implementation should do the pre-process actions your job
requires, then return an oracle.as.scheduler.HandlerAction instance from the
interface’s one method, preProcess. (Your class may also implement the Cancellable
interface if you want the job to support cancellation. It must also provide an empty
constructor.)

The HandlerAction instance your preProcess implementation returns should give
status about whether, and under what conditions, the job should proceed. When
constructing the HandlerAction class, you pass it a HandlerStatus instance that
indicates the status of pre-processing for the request.

Supported HandlerStatus values and actions are listed below. An unsupported status
will cause the request to transition to an error state and be subject to retries if
configured.

■ PROCEED informs Oracle Enterprise Scheduling Service that request processing
should commence. The request will remain in RUNNING state.

■ WARN informs Oracle Enterprise Scheduling Service that request processing should
commence but that a warning should be logged. The request will remain in
RUNNING state.

■ CANCEL informs Oracle Enterprise Scheduling Service that request pre-processing
has been cancelled. The request will transition to CANCELLED state.

■ DELAY informs Oracle Enterprise Scheduling Service to postpone request
processing by the quantum of time specified by the SYS_reprocessDelay system
property. The request remains in RUNNING state during the delay.

■ SYSTEM_ERROR informs Oracle Enterprise Scheduling Service that the handler has
experienced an error. The request will transition to an error state and is subject to
retries if configured.

■ BIZ_ERROR informs Oracle Enterprise Scheduling Service that the handler has
experienced a business error. The request will transition to an error state not
subject to retries.

14.7.2 Implementing a Post-Process Handler
With a post-process handler, your code can do things that should take place after your
job has executed. This could include releasing connections to resources that your job
required, for example, or generating a report based on request-specific data or status.

Implementing Pre-Process and Post-Process Handlers

Using the Runtime Service 14-13

The post-processor is instantiated and invoked after job execution, when the request
transtitions to COMPLETED state. The post-processor is invoked only once for a
request, in contrast to the pre-processor.

You create a post-process handler by implementing the
oracle.as.scheduler.PostProcessHandler interface. With your post-process handler
class in hand, you specify that it should be used by setting the SYS_postProcess
system property to the fully-qualified name of your handler class. You can define the
property on job metadata or include it in the request submission parameters.

14.7.2.1 Implementing the PostProcessHandler Interface
Your PostProcessHandler implementation should do the post-process actions your
job requires, then return an oracle.as.scheduler.HandlerAction instance from the
interface’s one method, postProcess. (Your class may also implement the
Cancellable interface if you want the job to support cancellation. It must also provide
an empty constructor.)

The HandlerAction instance your postProcess implementation returns should give
status about whether, and under what conditions, the job should conclude. When
constructing the HandlerAction class, you pass it a HandlerStatus instance that
indicates the status of post-processing for the request.

Supported HandlerStatus values and actions are listed below. An unsupported status
will cause the request to transition to WARNING state.

■ PROCEED to inform Oracle Enterprise Scheduling Service that request
post-processing completed successfully. The request will transition to
SUCCEEDED state or WARNING state depending on the status of the request
prior to invoking the post-processor.

■ WARN to inform Oracle Enterprise Scheduling Service that request post-processing
resulted in a warning. The request will transition to WARNING state.

■ CANCEL informs Oracle Enterprise Scheduling Service that request post-processing
has been cancelled. The request will transition to WARNING state.

■ DELAY to inform Oracle Enterprise Scheduling Service to postpone request
processing by the quantum of time specified by the SYS_reprocessDelay system
property. The request remains in COMPLETED state during the delay.

■ SYSTEM_ERROR to inform Oracle Enterprise Scheduling Service that the handler has
experienced an error. The request will transition WARNING state.

■ BIZ_ERROR to inform Oracle Enterprise Scheduling Service that the handler has
experienced a business error. The request will transition to WARNING state.

Implementing Pre-Process and Post-Process Handlers

14-14 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

15

Using Subrequests 15-1

15Using Subrequests

This chapter describes how to use Oracle Enterprise Scheduling Service subrequests to
process data in parallel, particularly in a dynamic context, where the number of
parallel requests can vary.

■ Section 15.1, "Introduction to Using Subrequests"

■ Section 15.2, "Sample Subrequest"

■ Section 15.3, "Creating and Managing Subrequests"

■ Section 15.4, "Creating a Java Procedure that Submits a Subrequest"

■ Section 15.5, "Creating a PL/SQL Procedure that Submits a Subrequest"

15.1 Introduction to Using Subrequests
Oracle Enterprise Scheduling Service subrequests are useful when you want to process
data in parallel. A request submitted from a running job is called a subrequest. You can
submit multiple subrequests from a single parent request. The customary method of
parallel execution in Oracle Enterprise Scheduling Service is the job set concept but
there might be cases where the number of parallel processes may not be fixed in
number. For example, when you want to allocate one request per million rows and in
the last week 9.7 million rows have accumulated to process. In this case, you would
allocate ten requests as opposed to 5 for a week that accumulated 4.6 million rows.

Oracle Enterprise Scheduling Service supports subrequest functionality so that a given
running request (Job Request) can submit a subrequest and wait for the completion of
such a request before it continues.

Oracle Enterprise Scheduling Service supports subrequests by exposing an overloaded
subrequest method submitRequest(). An application that submits a job request can
invoke this API to submit a subrequest.

The following restrictions apply to subrequests:

■ A subrequest can be submitted only for onetime execution. No schedule can be
specified. The subrequest is always treated as a "run now" request.

■ Ad hoc subrequests are not supported. A subrequest must be submitted for an
existing JobDefinition object in the application.

■ Job sets are not supported for subrequests. A subrequest can only be submitted to
a JobDefinition object. However, any running job (which may be part of a job set)
can submit a subrequest.

These restrictions simplify the execution of subrequests and avoid any complications
and delays in the execution of the submitting request itself.

Sample Subrequest

15-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

There are different kinds of parent requests in Oracle Enterprise Scheduling Service,
for the description in this chapter, a parent request refers to the request that is
submitting a subrequest.

A subrequest follows the normal flow of a regular one-time request. However the
processing of a subrequest starts only when the parent request pauses its execution. To
indicate this, Oracle Enterprise Scheduling Service uses the PAUSED state. This state
implies that the parent request is paused and waiting for the subrequest to finish.

Once a parent request submits a subrequest, that parent must return control back to
Oracle Enterprise Scheduling Service, in the manner appropriate for its job type,
indicating that it has paused execution. Oracle Enterprise Scheduling Service then sets
the parent state to PAUSED and starts processing the subrequest. Once the subrequest
finishes, Oracle Enterprise Scheduling Service places the parent request on the ready
queue, where it remains PAUSED, until it is picked up by an appropriate request
processor. The parent is then set to RUNNING state and re-run as a resumed request.

15.2 Sample Subrequest
Example 15–1 is a sample PL/SQL job that submits five subrequests. The subrequests
are submitted one at a time. Each time a subrequest is submitted, the parent exits to a
paused state, so that it does not consume any resources while waiting for the child
request to complete. When the child completes the parent is restarted.

Example 15–1 PL/SQL Procedure Subrequest

procedure fusion_plsql_subreq_sample(
 errbuf out NOCOPY varchar2,
 retcode out NOCOPY varchar2,
 no_requests in varchar2 default '5',
) is
 req_cnt number := 0;
 sub_reqid number;
 submitted_requests varchar2(100);
 request_prop_table_t jobProp;
 begin
 -- Write log file content using FND_FILE API
 FND_FILE.PUT_LINE(FND_FILE.LOG, "About to run the sample program with sub-request
functionality");

 -- Requesting the PAUSED_STATE property set by job identifies request as
 -- having started for the first time or restarting after being paused.
 if (ess_runtime.get_reqprop_varchar(fnd_job.job_request_id, 'PAUSED_STATE')) is null)
 -- first time start
 then
 -- Implement the business logic of the job here.
 FND_FILE.PUT_LINE(FND_FILE.OUT, " About to submit sub-requests : " || no_requests);

 -- Loop through all the sub-requests.
 for req_cnt 1..no_requests loop
 -- Retrieve the request handle and submit the subrequest.
 sub_reqid := ess_runtime.submit_subrequest(request_handle => fnd_job.request_handle,
 definition_name => 'sampleJob',
 definition_package => 'samplePkg',
 props => jobProp);
 submitted_requests := sub_reqid || ',';
 end loop;

 -- Pause the parent request.

Creating and Managing Subrequests

Using Subrequests 15-3

 ess_runtime.update_reqprop_varchar(fnd_job.request_id, 'STATE', ess_job.PAUSED_STATE);

 -- Update the parent request with the state of the sub-request, enabling
 -- the job to retrieve the status during restart.
 ess_runtime.update_reqprop_int(fnd_job.request_id, 'PAUSED_STATE', submitted_requests);

 else
 -- Restart the request, retrieve job completion status and return the
 -- status to Oracle Enterprise Scheduling Service.
 errbuf := fnd_message.get("FND", "COMPLETED NORMAL");
 retcode := 0;
 end if;
 end;

15.3 Creating and Managing Subrequests
■ Section 15.3.1, "How to Submit Subrequests"

■ Section 15.3.2, "How to Cancel Subrequests"

■ Section 15.3.3, "How to Hold Subrequests"

■ Section 15.3.4, "How to Delete Subrequests"

■ Section 15.3.5, "How to Submit Multiple Subrequests"

■ Section 15.3.6, "How to Manage Paused Subrequests"

■ Section 15.3.7, "How Subrequests Are Processed"

■ Section 15.3.8, "How to Identify Subrequests"

■ Section 15.3.9, "How to Manage Subrequests and Incompatibility"

15.3.1 How to Submit Subrequests
A subrequest can be submitted by calling the submitRequest API. The subrequest is
set to WAIT state, but Oracle Enterprise Scheduling Service will not process the request
while the parent request is running. A subrequest can be processed only once the
parent request has paused.

15.3.2 How to Cancel Subrequests
There are two main ways a subrequest can be cancelled, either by the user cancelling
the subrequest directly or as a result of the parent request being cancelled. For either
method, the cancellation process of the subrequest is handled in the same manner as
any other executable request. The difference lies in how Oracle Enterprise Scheduling
Service treats the parent request once all pending subrequests have completed and
reached a terminal state.

Oracle Enterprise Scheduling Service sets a subrequest that is in WAIT or READY state
directly to CANCELLED. If a subrequest is currently running, then the subrequest is set to
CANCELLING and Oracle Enterprise Scheduling Service then attempts to cancel the
running executable in the manner appropriate for its job type. Usually, the subrequest
ends up in CANCELLED state, but it may end in some other terminal state depending on
the life cycle stage where the subrequest was at. The parent request remains in PAUSED
or CANCELLING state until all subrequests have reached a terminal state.

If the user cancels a subrequest, then Oracle Enterprise Scheduling Service cancels that
subrequest, as described previously. The parent request remains in PAUSED state until
all subrequests are complete, at which point Oracle Enterprise Scheduling Service

Creating and Managing Subrequests

15-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

resumes or restarts the parent request. This enables the parent request to handle the
completion of the subrequest, possibly as cancelled, in an appropriate fashion.
Cancellation of subrequests is thus not propagated upwards.

If the user cancels the parent request, Oracle Enterprise Scheduling Service sets the
parent request to CANCELLING state, and then initiates a cancellation for all pending
subrequests in the manner described previously. Once all subrequests have completed,
Oracle Enterprise Scheduling Service sets the parent request to CANCELLED, and the
parent request does not resume. Cancellation of a parent request is propagated down
to its subrequests.

15.3.3 How to Hold Subrequests
A subrequest has the same life cycle as an ordinary request, and can be held when it is
in WAIT or READY state. The parent request remains in PAUSED state while the subrequest
is on hold.

15.3.4 How to Delete Subrequests
The delete operation will not be allowed on a subrequest, since it might lead to
ambiguous data where the information about the subrequest will get lost. A
subrequest is automatically purged when its parent request is purged.

15.3.5 How to Submit Multiple Subrequests
Oracle Enterprise Scheduling Service allows requests to submit multiple subrequests.
A running request may submit more than one subrequest. All of these subrequests are
processed by Oracle Enterprise Scheduling Service when the parent request pauses
and goes to PAUSED state.

In case of multiple such subrequests, the parent request will be resumed only when all
the subrequests finish.

Also it is possible to submit subrequests up to any depth. This creates nested
subrequests. As such there are no restrictions on the depth of such subrequest
submissions. This is kind of similar to stack push and pop operations.

15.3.6 How to Manage Paused Subrequests
■ Section 15.3.6.1, "Indicating Paused Status"

■ Section 15.3.6.2, "Storing the Paused State for a Parent Request"

15.3.6.1 Indicating Paused Status
A Java executable can submit subrequests using RuntimeService.submitRequest.
After the subrequest has been submitted, the parent request must indicate to Oracle
Enterprise Scheduling Service that it is pausing to allow the subrequest to be
processed. This is accomplished by the parent throwing an
ExecutionPausedExcpetion which causes the request to transition to PAUSED state.

Once the subrequests have completed, the parent request is runs again as a resumed
request. The RequestExecutionContext can be used to determine if the executable is
being run as a resumed request.

15.3.6.2 Storing the Paused State for a Parent Request
When a job execution pauses after submitting a subrequest, Oracle Enterprise
Scheduling Service regards its execution as complete, for all intents and purposes, as

Creating and Managing Subrequests

Using Subrequests 15-5

implementation-wise there is no notion of pausing an execution thread. Therefore, to
resume such a paused job, Oracle Enterprise Scheduling Service must restart the job.
In such cases, the job execution restarts from the beginning, whereas the desired
behavior is to continue from the point at which execution was paused. This requires
the job execution to store some kind of execution state that would represent the
paused point. On resuming, the job can retrieve such a state and jump to the paused
point to continue from there.

In general, it is incumbent on individual jobs to define an execution state that would
allow it to resume in a deterministic way from each pause point throughout the
business logic (jobs can have multiple pause points). In some cases, it can be as simple
as storing the step number and jumping to that particular step on resuming, while in
other cases it can be a huge data set that stores critical state for the business logic when
it pauses. Oracle Enterprise Scheduling Service cannot provide a complete solution or
framework to store the entire state.

Oracle Enterprise Scheduling Service provides a simplistic means for jobs to store their
pause point in the form of a string that can be specified when the parent job pauses its
execution. Upon resuming the parent job, the paused state value can be obtained by
the parent to use as required.

Java jobs can specify a paused state string using a special ExecutionPausedException
constructor. The state parameter represents the paused state string saved by Oracle
Enterprise Scheduling Service when it sets the parent request to PAUSED state.

public ExecutionPausedException(String message, String state)

The resumed parent can retrieve the paused state value by calling getPausedState()
on the RequestExecutionContext passed to the parent executable.

In case a single string value is not sufficient, the parent job can write any number of
properties back into Oracle Enterprise Scheduling Service using
setRequestParameter(), and retrieve those properties on resuming using
getRequestParameter().

15.3.7 How Subrequests Are Processed
When a subrequest is submitted, Oracle Enterprise Scheduling Service sets the request
state to WAIT but in a deferred mode so it will not be dispatched until the parent
request pauses.

The parent request of a Java job indicates that it is ready for subrequests to be
processed by throwing ExecutionPausedException. When the Oracle Enterprise
Scheduling Service receives such an exception, it sets the parent request state to
PAUSED, publishes a system event message that the parent has paused, and then
dispatches all waiting subrequests for that parent to the ready queue.

Subrequest execution follows the normal life cycle within Oracle Enterprise
Scheduling Service. Once all subrequests for a given parent request are finished, the
parent request can be resumed.

When a parent is ready to resume, Oracle Enterprise Scheduling Service places the
parent request in the ready queue. The parent state remains as PAUSED while it is
waiting to be picked up. Once Oracle Enterprise Scheduling Service picks up the
parent request from the ready queue, the request state will be set to RUNNING and the
request executable called as a resumed request.

If a request is paused without submitting any subrequests, it will be treated as if all
subrequests had finished. That is, it will be placed in the ready queue, at PAUSED state,
to be picked up for processing as a resumed request.

Creating a Java Procedure that Submits a Subrequest

15-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

The final state of a subrequest does not influence how Oracle Enterprise Scheduling
Service handles the parent request or the final state of the parent request once that
parent executable has completed. When the parent request resumes, the parent request
job logic can retrieve information about the subrequest, using this data as needed to
determine subsequent actions. The final state of the parent request is based entirely on
the state in which the parent request completed: succeeded, error, warning or
cancelled.

15.3.8 How to Identify Subrequests
In Oracle Enterprise Scheduling Service, each request has a RequestType attribute.
That attribute indicates whether the request is a singleton, part of a job set, a recurring
request, a subrequest, and so on.

A subrequest has a RequestType of SUB_REQUEST or UNVALIDATED_SUB_REQUEST. An
UNVALIDATED_SUB_REQUEST represents a subrequest that was submitted via the Oracle
Enterprise Scheduling Service PL/SQL interface but has not yet been validated. The
RequestType of the parent request is either SINGLETON, RECUR_CHILD, JOBSET_STEP, or
SUBREQUEST. All other request types represent requests that can never be the parent of
a subrequest.

The parent request ID attribute for a subrequest is the request that submitted the
subrequest.

15.3.9 How to Manage Subrequests and Incompatibility
In general, a request acquires incompatibility locks when the request transition from
READY to RUNNING state. Those locks are not released until the request finishes and is set
to a terminal state; for example, SUCCEEDED, ERROR, WARNING, CANCELLED.

Incompatibility locks acquired by a subrequest parent remain in effect even while a
parent request is in a PAUSED state. Any requests that were blocked by a subrequest
parent remain blocked while the subrequests execute and until the parent request is
resumed and finishes.

Subrequests follow all the rules of incompatibility. A subrequest therefore may get
blocked if any incompatible requests are currently running when Oracle Enterprise
Scheduling Service is ready to execute the subrequest. During such time windows, the
parent request remains in PAUSED state while the subrequest transitions to BLOCKED
state.

15.4 Creating a Java Procedure that Submits a Subrequest
This is an example of the Java class for a Java job type that submits subrequests. The
procedure submits two subrequests, pausing between each one. Each subrequest uses
the same JobDefinition but specifies a different value for the request parameter
named SubRequestData. The oracle.as.scheduler.Executable.execute method of
the parent request is called a total of three times for a given Oracle Enterprise
Scheduling Service request and the following summaries the expected conditions and
actions for each.

In the first call to execute method as a non-resumed request:
Entry condition:

■ RequestExecutionContext.isResumed() will be false

■ RequestExecutionContext.getPausedState() will be null

Creating a Java Procedure that Submits a Subrequest

Using Subrequests 15-7

Method Action:

■ Submit a subrequest with request parameter value of 'MyData1'

■ Throw ExecutionPausedException with pausedState of 'MyPausedState1"

Oracle Enterprise Scheduling Service will transition the request to PAUSED state,
execute the subrequest, and then resume the request once the subrequest has
completed.

First call to execute method as resumed request:
Entry condition:

■ RequestExecutionContext.isResumed() will be true

■ RequestExecutionContext.getPausedState() will be 'MyPausedState1'

Method Action:

■ Submit a subrequest with request parameter value of 'MyData2'

■ Throw ExecutionPausedException with pausedState of 'MyPausedState2"

Oracle Enterprise Scheduling Service will transition the request to PAUSED state,
execute the subrequest, and then resume the request once the subrequest has
completed.

Second call to execute method as resumed request:
Entry condition:

■ RequestExecutionContext.isResumed() will be true

■ RequestExecutionContext.getPausedState() will be 'MyPausedState2'

Method Action:

■ Exit normally, no exception.

Oracle Enterprise Scheduling Service will transition the request to SUCCEEDED state.

Example 15–2 shows a Java procedure with a subrequest.

Example 15–2 Java Procedure with Subrequest

// constants for the pausedState values
private final static String PAUSED_STATE_1 = "MyPausedState1";
private final static String PAUSED_STATE_2 = "MyPausedState2";

public class SubRequestSubmittor implements Executable {

 // method called by Oracle Enterprise Scheduling Service when the request is
executed
 public void execute(RequestExecutionContext execCtx,
 RequestParameters props)
 throws ExecutionWarningException,
 ExecutionErrorException,
 ExecutionPausedException,
 ExecutionCancelledException {

 long requestId = execCtx.getRequestId();
 boolean isResumed = execCtx.isResumed();
 String pausedState = execCtx.getPausedState();

 if (!isResumed) {

Creating a Java Procedure that Submits a Subrequest

15-8 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 // Method being called for first time, as non-resumed request.
 // Submit first subrequest.
 submitSubRequest(execCtx, "MyData1");
 throw new ExecutionPausedException("first subrequest", PAUSED_STATE_1);

 } else if (PAUSED_STATE_1.equals(pausedState)) {

 // Method being called for a resumed request.
 // Submit next subrequest.
 submitSubRequest(execCtx, "MyData2");
 throw new
 ExecutionPausedException("second subrequest", PAUSED_STATE_2);

 } else if (PAUSED_STATE_2.equals(pausedState)) {

 // Method being called for a resumed request.
 // All done, just return.

 } else {

 // Method being called for a resumed request.
 // Unknown paused state (should never happen).
 String msg = "Request " + requestId +
 " was resumed with unexpected pause state " + pausedState;
 throw new ExecutionErrorException(msg);

 }
 }

 // Submit subrequest with request parameter having the given value.
 private void submitSubRequest(RequestExecutionContext execCtx,
 String paramValue)
 throws ExecutionErrorException{

 RuntimeService rs = null;
 RuntimeServiceHandle rh = null;

 try {
 rs = getRuntimeService();

 // Retrieve MetadataObjectId of the subrequest job definition
 String jobDef = "MySubRequestJobDef";
 MetadataObjectId jobDefId = getJobDefinition(jobDef);

 // Set value for the request parameter used by subrequest.
 RequestParameters rp = new RequestParameters();
 rp.add("SubRequestData", paramValue);

 // Submit the subrequest
 rh = rs.open();

 long subReqId = rs.submitRequest(rh, execCtx,
 "subrequest submitter",
 jobDefId, rp);

 } catch (Exception e) {

 String msg = "Error while submitting subrequest for request " +
 ExecCtx.getRequestId();

Creating a PL/SQL Procedure that Submits a Subrequest

Using Subrequests 15-9

 throw new ExecutionErrorException(msg, e);

 } finally {

 if (null != rh) {
 try {
 rs.close(rh);
 } catch (Exception e) {
 String msg = "Error while submitting subrequest for request "
 + ExecCtx.getRequestId();
 throw new ExecutionErrorException(msg, e);
 }
 }
 }
 }

 // Get RuntimeService.
 private RuntimeService getRuntime()
 throws ExecutionErrorException {
 // implementation not shown
 }

 // Retrieve MetadataObjectId for a given job definition name.
 private MetadataObjectId getJobDefinition(String jobDef)
 throws ExecutionErrorException {
 // implementation not shown
 }

}

15.5 Creating a PL/SQL Procedure that Submits a Subrequest
The ESS_RUNTIME PL/SQL package is used by an SQL job request to submit a
subrequest. It also contains support to determine if the request procedure is being
executed as a resumed request and retrieve the paused state string.

For a Java request, the parent request submits a subrequest using a
RuntimeService.submitRequest method and then throws ExecutionPausedException
when it is ready to be paused to allow the subrequest to execute.

For a SQL request, ess_runtime.submit_subrequest is used to submit the subrequest.
The parent request must call ess_runtime.mark_paused when it is ready for the
subrequest to run, commit the transaction and return successfully, without raising an
exception. The mark_paused method informs Oracle Enterprise Scheduling Service
that, upon successful return from the parent request procedure, the parent request
should be set to PAUSED and the subrequest allowed to execute. The mark_paused
method supports an optional argument by which the paused state string can be
specified.

It is important to note that subrequest will not be executed until the parent request has
called mark_paused, commits, and returns normally, without raising an exception. If
an exception is raised, Oracle Enterprise Scheduling Service will not set parent request
to PAUSED state, but instead, it the parent state will be set to ERROR or WARNING
depending on the SQL error code. Furthermore, the subrequests will be automatically
CANCELLED and will not be executed.

Once the subrequest has finished, PL/SQL procedure for the parent request will be
re-executed again as resumed request, similar to what occurs for a Java Executable.

Creating a PL/SQL Procedure that Submits a Subrequest

15-10 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

For a Java executable, the RequestExecutionContext indicates if the request is being
resumed and has the paused state string specified via the ExecutionPausedException
thrown when the parent request paused.

For an SQL request, ess_runtime.is_resumed indicates whether the request
procedure is being executed for a resumed request. The method ess_runtime.get_
paused_state returns the paused state string specified via the ess_runtime.mark_
paused procedure when the request was paused.

This is an example of the PL/SQL stored procedure for a SQL job type that submits
subrequests using the ESS_RUNTIME package. The procedure submits two subrequests,
pausing between each one. Each subrequest uses the same JobDefinition but
specifies a different value for the request parameter named SubRequestData. The
PL/SQL stored procedure would be called a total of three times for a given Oracle
Enterprise Scheduling Service request and the following summaries the expected
conditions and actions for each.

First call to procedure as non-resumed request:
Entry condition:

■ ess_runtime.is_resumed will be false

■ ess_runtime.get_paused_state will be null

Procedure Action:

■ Submit a subrequest with request parameter value of 'MyData1'

■ Mark request as paused using paused state of 'MyPausedState1'

■ Exit normally, no exception

Oracle Enterprise Scheduling Service will transition the request to PAUSED state,
execute the subrequest, and then resume the request once the subrequest has
completed.

First call to procedure as resumed request:
Entry condition:

■ ess_runtime.is_resumed will be true

■ ess_runtime.get_paused_state will be 'MyPausedState1'

Procedure Action:

■ Submit a subrequest with request parameter value of 'MyData2'

■ Mark request as paused using paused state of 'MyPausedState2'

■ Exit normally, no exception

Oracle Enterprise Scheduling Service will transition the request to PAUSED state,
execute the subrequest, and then resume the request once the subrequest has
completed.

Second call to procedure as resumed request:
Entry condition:

■ ess_runtime.is_resumed will be true

■ ess_runtime.get_paused_state will be 'MyPausedState2'

Procedure Action:

Creating a PL/SQL Procedure that Submits a Subrequest

Using Subrequests 15-11

■ Exit normally, no exception.

Oracle Enterprise Scheduling Service will transition the request to SUCCEEDED state.

Example 15–3 shows a PL/SQL procedure with a subrequest.

Example 15–3 PL/SQL Procedure with Subrequest

procedure fusion_plsql_subreq_sample(
 errbuf out NOCOPY varchar2,
 retcode out NOCOPY varchar2,
 no_requests in varchar2 default '5',
) is
 req_cnt number := 0;
 sub_reqid number;
 submitted_requests varchar2(100);
 request_prop_table_t jobProp;
 begin
 -- Write log file content using FND_FILE API
 FND_FILE.PUT_LINE(FND_FILE.LOG, "About to run the sample program with
 sub-request functionality");

 -- Requesting the PAUSED_STATE property set by job identifies request as
 -- having started for the first time or restarting after being paused.
 if (ess_runtime.get_reqprop_varchar(fnd_job.job_request_id,
 'PAUSED_STATE')) is null)
 -- first time start
 then
 -- Implement the business logic of the job here.
 FND_FILE.PUT_LINE(FND_FILE.OUT, " About to submit sub-requests : " ||
 no_requests);

 -- Loop through all the sub-requests.
 for req_cnt 1..no_requests loop
 -- Retrieve the request handle and submit the subrequest.

 v_idx := v_idx + 1;
 v_req_props.extend;
 v_req_props(v_idx).prop_name := 'SubRequestData';
 v_req_props(v_idx).prop_datatype := ess_runtime.STRING_DATATYPE;
 v_req_props(v_idx).prop_value := 'MyData1';

 ess_runtime.set_submit_args(v_req_props, 'MyData1', 'MyData12',
 '1998-11-29')

 sub_reqid := ess_runtime.submit_subrequest(request_handle =>
 fnd_job.request_handle,
 definition_name => 'sampleJob',
 definition_package => 'samplePkg',
 props => jobProp);
 submitted_requests := sub_reqid || ',';
 end loop;

 -- Pause the parent request.
 ess_runtime.update_reqprop_varchar(fnd_job.request_id, 'STATE',
 ess_job.PAUSED_STATE);

 -- Update the parent request with the state of the sub-request, enabling
 -- the job to retrieve the status during restart.
 ess_runtime.update_reqprop_int(fnd_job.request_id, 'PAUSED_STATE',

Creating a PL/SQL Procedure that Submits a Subrequest

15-12 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 submitted_requests);

 else
 -- Restart the request, retrieve job completion status and return the
 -- status to Oracle Enterprise Scheduling Service.
 errbuf := fnd_message.get("FND", "COMPLETED NORMAL");
 retcode := 0;
 end if;
 end;

16

Working with Asynchronous Java Jobs 16-1

16Working with Asynchronous Java Jobs

This chapter describes how to use Oracle Enterprise Scheduling Service to invoke
asynchronous Java jobs to support long-running or non-container-managed jobs that
invoke Java code.

This chapter includes the following sections:

■ Section 16.1, "Introduction to Working with Asynchronous Java Jobs"

■ Section 16.2, "Creating an Asynchronous Java Job"

■ Section 16.3, "A Use Case Illustrating the Implementation of a BPEL Process as an
Asynchronous Job"

■ Section 16.4, "How to Implement BPEL with an Asynchronous Job"

■ Section 16.5, "Handling Time Outs and Recovery for Asynchronous Jobs"

■ Section 16.6, "Oracle Enterprise Scheduling Service Interfaces and Classes"

16.1 Introduction to Working with Asynchronous Java Jobs
Normally Oracle Enterprise Scheduling Service Java job requests run inside Oracle
WebLogic Server in a dedicated thread; however, there are cases that require the
ability to submit long running or non-container managed Java job requests.

Oracle Enterprise Scheduling Service supports asynchronous Java job invocation with
the following features:

■ From the Oracle Enterprise Scheduling Service user point of view there is no
difference in scheduling asynchronous Java job invocation.

■ From Oracle Enterprise Scheduling Service perspective, the asynchronous Java job
invocation job request is submitted and is added to the queue, and returns
immediately after running (and the job request enters the RUNNING state). Oracle
Enterprise Scheduling Service continues operating until it hears back from the job
at which point Oracle Enterprise Scheduling Service can apply post-processing or
complete the job.

■ Asynchronous Java jobs begin any variety of external jobs outside of Oracle
Enterprise Scheduling Service. The external job, or the entity that manages it, must
communicate the status of the job to Oracle Enterprise Scheduling Service.

16.2 Creating an Asynchronous Java Job
An Oracle Enterprise Scheduling Service asynchronous Java job consists of an Oracle
Enterprise Scheduling Service job request and an external mechanism. The Oracle

Creating an Asynchronous Java Job

16-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Enterprise Scheduling Service job request is implemented similarly to a standard
Oracle Enterprise Scheduling Service Java job request; however, unlike a standard
Oracle Enterprise Scheduling Service request, an asynchronous Java job request might
not do any work, depending on the scenario. The only purpose of an asynchronous
Java job request is to trigger the external mechanism. The external mechanism executes
the payload (monitoring a database, calculating pi, or any other long lived process),
and must be separable from the thread running the Oracle Enterprise Scheduling
Service Java job. The external mechanism can be a SOA composite (BPEL) or
asynchronous Oracle ADF Business Components web service, another thread, JVM,
machine, or some other mechanism. The means of communication between the
external mechanism and the client application is left to the job owner. However, an
important point for the asynchronous Java job is that the pointer to the physical Java
object representing the asynchronous job is not stored in Oracle Enterprise Scheduling
Service memory. This is because:

■ The job can run for an indeterminate amount of time and caching this handle is a
waste of resources.

■ Long lived jobs should be able to survive container restarts. Because this object is
not cached and most likely garbage collected, the job should be stateless and its
submitting application is responsible for maintaining the correlation between job
requests and the external mechanisms running them. Oracle Enterprise
Scheduling Service provides the job request ID and job request handle for this
reason. This information should be persisted in order to survive restarts.

16.2.1 Implementing the Asynchronous Java Job Asynchronous Interface
An asynchronous Java job invocation must implement the AsyncExecutable interface.

16.2.2 Asynchronous Java Job execute() Method
The duty of an asynchronous Java jobs's execute() method is to set up the external
mechanism in which the real work runs; this should start the external mechanism and
then return. The asynchronous Java job invocation execute() method may not do any
actual work. An exception can be thrown during the execute method to tell Oracle
Enterprise Scheduling Service that this job had a problem during initialization and
failed to run. The exception during the execute method does not tell Oracle Enterprise
Scheduling Service that the actual work running on the external mechanism
encountered a problem. It is the responsibility of the job owner to make sure any
resources that may have been started or used are released, since Oracle Enterprise
Scheduling Service does no further processing if it catches an exception. Assuming no
exception is thrown, Oracle Enterprise Scheduling Service puts the job into the
running state and then releases the handle on the job's object so that it may be garbage
collected.

16.2.3 Invoking a Remote Job from an Asynchronous Java Job
An asynchronous Java job can set web service addressing headers to simplify the work
of the remote job.

Correlation
The WSA messageID header is used to correlate the response message with the
request. Oracle Enterprise Scheduling Service provides the method
RequestExecutionContext.getIdString, which returns an ID to be used for the value
of the WSA messageID header.

Creating an Asynchronous Java Job

Working with Asynchronous Java Jobs 16-3

Reply Addressing
The WSA ReplyTo and FaultTo headers can be used to direct replies to the Oracle
Enterprise Scheduling Service generic callback service. There is currently no Oracle
Enterprise Scheduling Service support for obtaining these addresses.

16.2.4 Calling Back to Oracle Enterprise Scheduling Service with Status Updates
Oracle Enterprise Scheduling Service provides a web service operation for
asynchronous callbacks, setAsyncRequestStatus (see the interface in Example 16–15).
It requires typed information such as status and the status message, as well as the
correlation information to be explicitly given.

Oracle Enterprise Scheduling Service provides another mechanism: a generic Java
Required Files web service provider for asynchronous callbacks. The web service
provider accepts payloads of any type, and messages are delivered as SOAPMessage
objects. The WSA relatesTo header is extracted so as to correlate the message with the
request. This header is populated with the WSA messageID header of the original
request. The Action header is used to determine whether the response is due to the
completion of the asynchronous job or a fault. If the response is due to a fault, the
asynchronous job request status is provisionally set to ERROR. If the response is due to
the successful completion of the asynchronous job, the asynchronous job request status
is provisionally set to SUCCESS. The SOAPMessage body is extracted and converted to a
string which is passed to the Updatable.onEvent method.

The web service provider address is
http://<host>:<port>/ess-async/essasynccallback.

16.2.5 Updating the Asynchronous Java Job
Oracle Enterprise Scheduling Service provides the interface
oracle.as.scheduler.Updatable, which allows the job request to receive update
events initiated by the application code. When a job request is updated, Oracle
Enterprise Scheduling Service determines whether the client class implements the
Updatable interface. If the client class does implement the Updatable interface, it
instantiates a new object of the job class and calls the onEvent method in the context of
the MDB of the hosting application. This method accepts the request status as
determined by the web service invocation and a string representing information in a
format known to the job, for example, the SOAPMessage body from the Oracle
Enterprise Scheduling Service web service. This method may log information or do
some other processing. It then returns an UpdateAction object including a status and a
status message.

The call to onEvent occurs in the context of the user associated with the execution of
the request.

If the job does not implement the Updatable interface, the event is processed based on
the status passed to onEvent, for example, the status determined from the
asynchronous callback to Oracle Enterprise Scheduling Service.

For more information about the Updatable interface, see Example 16–12.

16.2.6 Notifying Oracle Enterprise Scheduling Service When an Asynchronous Job
Completes

There are two ways to notify Oracle Enterprise Scheduling Service when an
asynchronous job completes:

■ Using a web service interface.

Creating an Asynchronous Java Job

16-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

■ Using an EJB interface.

16.2.6.1 Using the Web Service to Notify When an Asynchronous Job Completes
When you invoke the Oracle Enterprise Scheduling Service web service operation,
setAsyncRequestStatus, this sets the asynchronous request's status and associated
information. Associated with this operation, the following pieces of information are
needed:

setAsyncRequestStatus(String requestExecutionContext, AsyncStatus status, String
statusMessage)

Where:

■ requestExecutionContext is a string that should be passed in as part of the
initiating event. This parameter is derived from the Oracle Enterprise Scheduling
Service job's RequestExecutionContext object.

■ status is one of the following: SUCCESS, ERROR, WARNING, PAUSE, CANCEL, BIZ_ERROR
or UPDATE.

■ statusMessage is:

– An error message if the status is ERROR or BIZ_ERROR.

– A warning message if the status is WARNING.

– A paused state if the status is PAUSED.

– A customized string you define and have the job interpret accordingly if the
status is UPDATE.

– The value is ignored if the status is SUCCESS or CANCEL.

For more information about implementing a web service in a web application, see the
chapters "Integrating Web Services Into a Fusion Web Application" in Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework and
"Securing and Administering WebLogic Web Services" in Oracle Fusion Middleware
Security and Administrator's Guide for Web Services.

16.2.6.2 Using EJB to Notify When an Asynchronous Job Completes
When an asynchronous Java jobs's execute() method is successful and the job request
is running on the external mechanism, Oracle Enterprise Scheduling Service continues
processing other jobs. When the job request is complete or encounters an error, it must
communicate back to its submitting application. This communication channel is the
responsibility of the agent and the client application owners. The submitting
application then communicates the status of the job to Oracle Enterprise Scheduling
Service through a local EJB. This EJB will also have a remote interface, so alternatively
the external mechanism may invoke the remote EJB itself. The EJB sets the job status
and does any appropriate post-processing. A helper class is provided which
encapsulates all the EJB references. This helper only works when it is used inside the
container since the helper uses dependency injection. The helper class contains
methods for communicating success, errors, warnings, and cancellations.

16.2.7 Asynchronous Java Job AsyncCancellable Interface
If you want the job to be cancellable, you must also implement the AsyncCancellable
interface. This interface differs from the normal cancellable interface in that its cancel
method also provides the RequestExecutionContext and the RequestParameters for
that job. The provided context and parameters should be used to determine which

Creating an Asynchronous Java Job

Working with Asynchronous Java Jobs 16-5

external mechanism is running the payload and then ask it to stop. The external
mechanism (rather than the job's AsyncCancellable.cancel() implementation)
notifies Oracle Enterprise Scheduling Service that the job has been cancelled.

16.2.8 Sample Asynchronous Java Job Invoking a BPEL Process Through Event
Delivery Network

Using an asynchronous request you can invoke a BPEL process from Oracle Enterprise
Scheduling Service. An asynchronous Oracle Enterprise Scheduling Service Java job is
used to invoke the BPEL process. When the BPEL process completes, whether
successfully, with an error or warning, or if it is canceled, the BPEL process notifies
Oracle Enterprise Scheduling Service using a Oracle Enterprise Scheduling Service
web service operation.

This method for invoking a BPEL process involves the following steps:

1. Create an asynchronous Oracle Enterprise Scheduling Service Java job.

2. Invoke a BPEL process from the Oracle Enterprise Scheduling Service Java job.

3. When the BPEL process is done, call back to the Oracle Enterprise Scheduling
Service web service with the completion status. Use the web service operation
method to inform Oracle Enterprise Scheduling Service of the request completion.
For more information, see Section 16.2.6.1, "Using the Web Service to Notify When
an Asynchronous Job Completes".

4. Once Oracle Enterprise Scheduling Service has the completion information, it will
complete any required post-processing of the request (if required).

You can invoke the associated web service directly or you can publish an event telling
the event mediator to start the BPEL process, as shown in Example 16–1.

Example 16–1 Job that Initiates a BPEL Process Through an Event Mediator

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RequestExecutionContext;

import javax.xml.namespace.QName;
import oracle.fabric.blocks.event.BusinessEventConnection;
import oracle.fabric.blocks.event.BusinessEventConnectionFactory;
import oracle.fabric.common.BusinessEvent;
import oracle.integration.platform.blocks.event.BusinessEventBuilder;
import
oracle.integration.platform.blocks.event.BusinessEventConnectionFactorySupport;
import oracle.xml.parser.v2.XMLDocument;
import org.w3c.dom.Element;

// Async imports
import oracle.as.scheduler.AsyncExecutable;
import oracle.as.scheduler.AsyncCancellable;

Note: Currently, there is no way to terminate a running
asynchronous Oracle ADF Business Components web service process.

Creating an Asynchronous Java Job

16-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

public class BPELJob implements AsyncExecutable, AsyncCancellable
{
 public BPELJob() {
 }

 public void execute(RequestExecutionContext ctx, RequestParameters params)
 throws ExecutionErrorException,
 ExecutionWarningException,
 ExecutionCancelledException,
 ExecutionPausedException
 {
 // Publish an event to the Event Mediator
 publishEvent(ctx.getRequestId() + "", ctx.toString(), "ESS_EVENT");
 }

 // Cancel

 public void cancel (RequestExecutionContext ctx,
 RequestParameters requestParams) {
 publishEvent(ctx.getRequestId() + "", ctx.toString(), "CANCEL_ESS_EVENT");
 return;
 } // cancel

 // Event publishing

 private final String eventName = "ESSDemoEvent";
 private final String eventElement = "ESSDemoEventElement";
 private final String eventNamespace =
 "http://xmlns.oracle.com/apps/ta/essdemo/events/edl";
 private final String schemaNamespace =
 "http://xmlns.oracle.com/apps/ta/essdemo/events/schema";

 private XMLDocument buildEventPayload(String correlationId, String key, String
 eventType) {
 Element masterElem, childElem1, childElem2, childElem3;
 XMLDocument document = new XMLDocument();
 masterElem = document.createElementNS(schemaNamespace, eventElement);
 document.appendChild(masterElem);
 childElem1 = document.createElementNS(schemaNamespace, "requestId");
 childElem1.appendChild(document.createTextNode(correlationId));
 masterElem.appendChild(childElem1);
 childElem2 = document.createElementNS(schemaNamespace,
 "executionContext");
 childElem2.appendChild(document.createTextNode(key));
 masterElem.appendChild(childElem2);
 childElem3 = document.createElementNS(schemaNamespace, "eventType");
 childElem3.appendChild(document.createTextNode(eventType));
 masterElem.appendChild(childElem3);
 return document;
 }

 private void publishEvent(String correlationId, String key, String eventType)
{

 try {
 // Get event connection
 BusinessEventConnectionFactory cf =
 BusinessEventConnectionFactorySupport.

Creating an Asynchronous Java Job

Working with Asynchronous Java Jobs 16-7

 findRelevantBusinessEventConnectionFactory(true);

 if (cf != null) {
 BusinessEventConnection conn =
 cf.createBusinessEventConnection();

 // Build event
 BusinessEventBuilder builder =
 BusinessEventBuilder.newInstance();

 // Specify the event name and namespace. In this prototype,
 // they are constants, eventNamespace, eventName
 builder.setEventName(new QName(eventNamespace, eventName));

 // Specify the event payload. In this prototype, the
 // getXMLPayload custom method constructs the payload
 builder.setBody(buildEventPayload(correlationId, key,
 eventType).getDocumentElement());
 BusinessEvent event = builder.createEvent();

 // Publish event
 conn.publishEvent(event, 5);

 // For debug only
 System.out.println("Event was sent sucessfully");
 } else {
 // For debug only
 System.out.println("cf is null");
 }
 } catch (Exception exp) {
 // For debug only
 System.out.println("Failed sending event: " + exp.getMessage());
 exp.printStackTrace();
 }
 } // publishEvent
}

16.2.8.1 Sample BPEL Process Design Time with Oracle Enterprise Scheduling
Service
You can use an asynchronous java job to run a BPEL process. The process initiated by
an event, handled by the Event Mediator which starts the process. For an example, see
Figure 16–1.

■ The real work of the process is done in the DoMyWork module.

■ If the work completes successfully, control will flow to
AssignAsyncSuccess/AsyncCallbackSUCCESS, which invokes the Oracle
Enterprise Scheduling Service web service callback specifying SUCCESS for the
status and no status message.

■ If the Oracle Enterprise Scheduling Service request is canceled, the Oracle
Enterprise Scheduling Service job's cancel method will be called. The job object
would then notify the remote job that it should be canceled. If the cancel succeeds,
the remote job notifies Oracle Enterprise Scheduling Service using the callback
mechanism, setting the status to CANCEL. In this case, control would jump to the
branch on the far right.

■ If a fault occurs, control will jump to the middle branch. AsyncCallbackERROR
invokes the Oracle Enterprise Scheduling Service web service callback specifying

Creating an Asynchronous Java Job

16-8 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

ERROR for the status and an error message from the fault. AsyncCallbackCANCEL
invokes the Oracle Enterprise Scheduling Service web service callback specifying
CANCEL for the status and no status message.

Figure 16–1 Java Job to Call a BPEL Process and Return with Asynchronous Request

In the BPEL process, you need the web service operation values to the Oracle
Enterprise Scheduling Service asynchronous callback, as shown in Figure 16–2,
Figure 16–3, and Figure 16–4 for the AssignAsyncError assignment activity.

Creating an Asynchronous Java Job

Working with Asynchronous Java Jobs 16-9

Figure 16–2 AsyncCallBackError Argument Mapping for statusMessage Element

Figure 16–3 AsyncCallbackError Argument Mapping for requestExecutionContext

A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job

16-10 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 16–4 AsyncCallbackError Argument Mapping for status Element

16.3 A Use Case Illustrating the Implementation of a BPEL Process as an
Asynchronous Job

Use cases for implementing a BPEL process as an asynchronous job are as follows:

■ Gaining approval for a task using human workflow notifications and other
SOA-specific activities.

■ Notifying Oracle Enterprise Scheduling Service that a job has completed, while
allowing other jobs to run or proceed to the next job in a set.

Design Pattern Summary
Asynchronous Oracle Enterprise Scheduling Service jobs are Java jobs that implement
the AsyncExecutable interface, which is invoked by Oracle Enterprise Scheduling
Service by implementing the execute() method. This method enables initiating a long
running or remote task where the execute() method completes (such as raising a
business event), while Oracle Enterprise Scheduling Service keeps the job in RUNNING
status. The remote task completes and notifies Oracle Enterprise Scheduling Service of
its completion using a status message using one of the following implementations:

■ The RuntimeService EJB

■ The Oracle Enterprise Scheduling Service web service setAsyncRequestStatus
operation.

This pattern assumes the remote task to be invoked is a BPEL process which is
triggered by raising a business event in the execute() method of the asynchronous
job. Upon termination of the process through completion, error or cancellation, the
BPEL process invokes the Oracle Enterprise Scheduling Service web service and sets
the status accordingly.

A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job

Working with Asynchronous Java Jobs 16-11

Involved Components
Oracle Enterprise Scheduling Service, SOA Meditator and BPEL, as shown in
Figure 16–5.

Figure 16–5 BPEL Call from Oracle Enterprise Scheduling Service Asynchronous Job

16.3.1 Introduction to the Recommended Design Pattern
There are use cases where Oracle Enterprise Scheduling Service jobs need to invoke
BPEL processes in a bi-directional fashion to track completion of that BPEL before
moving on to other jobs. As invoking asynchronous web services from Java code
(Oracle Enterprise Scheduling Service or Oracle ADF Business Components) in Oracle
Fusion Applications is prohibited, an Oracle Enterprise Scheduling Service job cannot
invoke an asynchronous BPEL process directly and must rely on the asynchronous job
implementation type.

This approach is recommended because it leverages existing functionality in Oracle
Fusion Middleware, such as events and BPEL.

16.3.2 Potential Approaches
Instead of the asynchronous Oracle Enterprise Scheduling Service job functionality,
the following approaches are possible but not allowed:

■ Invoking asynchronous web services such as Oracle ADF Business Components or
BPEL via JAX-WS proxies - blocked threads and callback services are disallowed
in Oracle Enterprise Scheduling Service.

■ Raising a business event to trigger BPEL, BPEL invokes an Oracle ADF Business
Components service which invokes the RuntimeService EJB to set the status, a
complex and error prone procedure.

16.3.3 Use Case Summary
An Expenses system has a periodic Oracle Enterprise Scheduling Service job which
runs to import and process expenses which requires submission of BPEL processes to
leverage Human Workflow for notification and approvals. In this use case, an Oracle
Enterprise Scheduling Service job would be responsible for importing the expenses
and lines and submitting subrequests for each expense to trigger the asynchronous
BPEL functionality per expense. This subrequest is implemented as an asynchronous
Oracle Enterprise Scheduling Service job which raises a business event, completing it's
Java execute() method, and staying in a running state while BPEL is initiated, submits
the Human Task notification and awaits the outcome from user interaction. Once this

How to Implement BPEL with an Asynchronous Job

16-12 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

outcome is obtained, BPEL invokes the Oracle Enterprise Scheduling Service web
service signaling that this particular subrequest is completed.

16.4 How to Implement BPEL with an Asynchronous Job
Implementing an Oracle Enterprise Scheduling Service asynchronous job in BPEL
requires performing the following steps:

1. Author the Oracle Enterprise Scheduling Service Java job to implement the
AsyncExecutable and AsyncCancellable interfaces by writing execute() and
cancel() methods.

2. Create the asynchronous Oracle Enterprise Scheduling Service job definition.

3. Design the event payload schema (XSD) and event definition (EDL) files.

4. Programmatically raise a business event from the asynchronous Oracle Enterprise
Scheduling Service job execute() and (optionally) cancel methods.

5. Design the SOA Composite with Meditator and BPEL.

6. Add fault handling and correlated onMessage branch for error and cancel job
status updates.

16.4.1 Use Case: Add Oracle JDeveloper Libraries
In your Oracle Enterprise Scheduling Service Application, be sure to add the
Applications Core, and Enterprise Scheduler Service Oracle JDeveloper libraries and
create a new Java class with appropriate class naming and directory structure (per
standards) which will implement both the Oracle Enterprise Scheduling Service
AsyncExecutable and AsyncCancellable interfaces. Importing both of these interfaces
require you to implement the execute() and cancel() methods which Oracle
Enterprise Scheduling Service RuntimeService bean invokes to initiate the desired
behavior in your Oracle Enterprise Scheduling Service job, as shown in Example 16–2.

Example 16–2 Adding Oracle JDeveloper Libraries

public class ASMEventAsyncJob implements AsyncExecutable, AsyncCancellable {
 public ASMEventAsyncJob() {
 super();
 }

 public void execute(RequestExecutionContext ctx, RequestParameters params)
 throws ExecutionErrorException,
 ExecutionWarningException,
 ExecutionCancelledException,
 ExecutionPausedException
 {
 publishEvent(ctx.getRequestId() + "", ctx.toString(), "ESS_EVENT");
 return;

 }

 public void cancel (RequestExecutionContext ctx,
 RequestParameters requestParams) {
 publishEvent(ctx.getRequestId() + "", ctx.toString(), "CANCEL_ESS_EVENT");
 return;
 } // cancel

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 16-13

16.4.2 Use Case: Create the Asynchronous Job Definition
In your Oracle Enterprise Scheduling Service JDeveloper workspace, click "New',
choose the Enterprise Scheduler Service technology group and select "Job Definition".
Enter the name off your Oracle Enterprise Scheduling Service job definition, choose
the provided "JavaJobType" and select the class build in step 1 as the overriding Java
class for this job definition, as shown in Figure 16–6.

Figure 16–6 Create Job Definition

Now choose the class developed in Step 1 as the overriding Java class for this job
definition, define parameters and access control as required by your use case, as
shown in Figure 16–7.

Figure 16–7 Create Job Definition with Job Type Defined

How to Implement BPEL with an Asynchronous Job

16-14 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

16.4.3 Use Case: Design the Event Payload Schema and Event Definition Files
The SOA composite designer has UI features to assist in designing business event
payload definitions (EDL); however your schema (.xsd) will need to be designed first.
Example 16–3 shows a sample XSD file.

Example 16–3 Sample XSD File

<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://xmlns.oracle.com/apps/ta/essdemo/events/schema"

targetNamespace="http://xmlns.oracle.com/apps/ta/essdemo/events/schema"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified">
 <xsd:element name="ESSDemoEventElement" type="ESSDemoEventElementType"/>
 <xsd:complexType name="ESSDemoEventElementType">
 <xsd:sequence>
 <xsd:element name="requestId" type="xsd:string"/>
 <xsd:element name="executionContext" type="xsd:string"/>
 <xsd:element name="eventType" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>

</xsd:schema>

With the payload element type completed, you can either create the EDL by hand or
use the event definition builder. To use the builder, open the SOA composite editor
and click the lightning bolt icon at the top of the UI to open the Event Definition
Creation window, as shown in Figure 16–8

Figure 16–8 Event Definition Creation

Next, assign a name and namespace and click Add to add a new event to this
definition, as shown in Figure 16–9.

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 16-15

Figure 16–9 Add an Event

 Click OK. The event definition summary displays the completed event definition.
Add more events as needed for your requirements, as shown in Figure 16–10.

Figure 16–10 Events List

Example 16–4 shows a sample of the EDL file that is created.

Example 16–4 EDL File

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<definitions xmlns="http://schemas.oracle.com/events/edl"
 targetNamespace="http://xmlns.oracle.com/
 AsyncEssDemoComposite/EventDefinition1">
 <schema-import namespace="http://xmlns.oracle.com/singleString"
 location="xsd/singleString.xsd"/>
 <schema-import namespace="http://xmlns.oracle.com/apps/ta
 /essdemo/events/schema"
 location="xsd/ESSDemoEventSchema.xsd"/>
 <event-definition name="ESSEvent">
 <content xmlns:ns1="http://xmlns.oracle.com/apps/ta/essdemo/events/schema"
 element="ns1:ESSDemoEventElement"/>
 </event-definition>
</definitions>

16.4.4 Programmatically Raise a Business Event from the Asynchronous Job Methods
The business event raised from the asynchronous Oracle Enterprise Scheduling
Service job must contain the request execution context's toString() value in order for
BPEL to indicate which job is completed/cancelled/errored. Programmatically
Raising Business Events from Java is covered in the "Initiating SOA from ADF" section
which contains the specifics on how to write Java code that raises business events. You
will need to design an event schema (.xsd) and definition (EDL) in order to
declaratively build the SOA composite which will subscribe to this raised business
event. Your Java code must create this XML document from scratch and it must
exactly match QName values such as element and namespace attributes in the payload
structure.

How to Implement BPEL with an Asynchronous Job

16-16 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Note that your execute() method is invoked when Oracle Enterprise Scheduling
Service starts to run your job, when an end user or external entity instructs Oracle
Enterprise Scheduling Service to cancel the running job, Oracle Enterprise Scheduling
Service sets the job's status to 'CANCELLING" and will then invoke the cancel()
method. It's recommended that both methods raise events that contain similar payload
types/namespaces so correlation sets can be used and the cancel event can be sent to
the in-flight BPEL process in order to have it perform alternative functionality and
then invoke the Oracle Enterprise Scheduling Service web service to set the job status
to 'CANCELLED'.

This sample places the event raising code in the Oracle Enterprise Scheduling Service
job's class code, however, the best approach is to share the code as an Oracle ADF
Library which you can then import into this project to reduce duplication of
publishing code.

Sample code calling the event raising code passing in requestID (for the BPEL
correlation set to allow in-flight cancel) and the execution context's toString() value:

publishEvent(ctx.getRequestId() + "", ctx.toString(), "ESS_EVENT");

Sample event raising code is shown in Example 16–5.

Example 16–5 Event Raising Code

 private final String eventElement = "ESSDemoEventElement";
 private final String eventNamespace =
"http://xmlns.oracle.com/apps/ta/essdemo/events/edl";
 private final String schemaNamespace =
"http://xmlns.oracle.com/apps/ta/essdemo/events/schema";

 private XMLDocument buildEventPayload(String correlationId, String key, String
 eventType) {
 Element masterElem, childElem1, childElem2, childElem3;
 XMLDocument document = new XMLDocument();
 masterElem = document.createElementNS(schemaNamespace, eventElement);
 document.appendChild(masterElem);
 childElem1 = document.createElementNS(schemaNamespace, "requestId");
 childElem1.appendChild(document.createTextNode(correlationId));
 masterElem.appendChild(childElem1);
 childElem2 = document.createElementNS(schemaNamespace,
 "executionContext");
 childElem2.appendChild(document.createTextNode(key));
 masterElem.appendChild(childElem2);
 childElem3 = document.createElementNS(schemaNamespace, "eventType");
 childElem3.appendChild(document.createTextNode(eventType));
 masterElem.appendChild(childElem3);
 return document;
 }

 public void publishEvent(String correlationId, String key, String eventType) {
 // Determine whether we are outside of a JTA transaction
 try {
 // Get event connection
 BusinessEventConnectionFactory cf =
BusinessEventConnectionFactorySupport.findRelevantBusinessEventConnectionFactory
 (true);

 if (cf != null) {
 BusinessEventConnection conn =

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 16-17

 cf.createBusinessEventConnection();

 // Build event
 BusinessEventBuilder builder =
BusinessEventBuilder.newInstance();

 // Specify the event name and namespace. In this prototype,
 // they are constants, eventNamespace, eventName
 builder.setEventName(new QName(eventNamespace, eventName));

 // Specify the event payload. In this prototype, the
 // getXMLPayload custom method constructs the payload
 builder.setBody(buildEventPayload(correlationId, key,
 eventType).getDocumentElement());
 BusinessEvent event = builder.createEvent();

 // Publish event
 conn.publishEvent(event, 5);

 // For debug only
 System.out.println("Event was sent sucessfully");
 conn.close();
 } else {
 // For debug only
 System.out.println("cf is null");
 }
 } catch (Exception exp) {
 // For debug only
 System.out.println("Failed sending event: " + exp.getMessage());
 exp.printStackTrace();
 }
 } // publishEvent
}

16.4.5 Design the SOA Composite with Meditator and BPEL
Since this use case depends on BPEL functionality it is necessary to build a SOA
composite which contains a Mediator for event subscription which can then transform
the payload and initiate the BPEL process.

In your SOA workspace, create a new SOA composite. To setup the composite for this
pattern, add a Mediator that subscribes to your Oracle Enterprise Scheduling Service
raised event and wire it to a BPEL process. Add a service reference to the Oracle
Enterprise Scheduling Service web service WSDL. For example,

http://myhost.com:7001/ess/esswebservice?WSDL

Continue to build the required functionality in the BPEL process using one or more
nested scopes. Bear in mind that your functionality should reside within at least one
primary scope on which you can add an onMessage event (for in-flight cancel message
receipt) and fault handler branches, as shown in Figure 16–11.

How to Implement BPEL with an Asynchronous Job

16-18 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 16–11 Composite with BPEL and ESSWebService

For more information about invoking the Oracle Enterprise Scheduling Service web
service, see Chapter 11, "Using the Oracle Enterprise Scheduling Service Web Service."

16.4.6 Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job
Oracle Enterprise Scheduling Service does not perform any sort of heartbeat
monitoring of asynchronous Oracle Enterprise Scheduling Service jobs after the
execute() method's Java code has completed. Once the job is submitted it exists in a
RUNNING state within the Oracle Enterprise Scheduling Service infrastructure until the
remote job code, BPEL, or end user interacts with Oracle Enterprise Scheduling Service
directly to set the status of the job. Because of this caveat, developers need to design
their BPEL processes to handle, at a minimum, two types of scenarios that will most
often occur in the life span of an Oracle Enterprise Scheduling Service job and,
whenever possible, push that state information back to Oracle Enterprise Scheduling
Service so monitoring UIs can reflect the correct state of the job to end users.

BPEL Handling Cancellation:
For example, if the end user interacts with the monitoring UI and requests that the job
be cancelled Oracle Enterprise Scheduling Service will then update the job's status to
CANCELLING and wait for the remote functionality to tidy up and confirm that it has
cancelled, as shown in Figure 16–12.

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 16-19

Figure 16–12 BPEL Handling Cancellation

BPEL Handling Error
Additionally, when the remote functionality encounters a failure, the responsibility to
notify Oracle Enterprise Scheduling Service of this failure falls on the shoulders of the
remote functionality (in this case, BPEL) to notify Oracle Enterprise Scheduling Service
that the job's status is ERROR and provide a status message in addition to any logging
that was performed. This is illustrated in Figure 16–13.

Figure 16–13 BPEL Handling Error

In order to acknowledge cancellation and arbitrate proper status back to the Oracle
Enterprise Scheduling Service infrastructure, BPEL must be designed within a certain
layout to support receipt of the incoming cancellation message and trapping of any
failures such that, in either case, the Oracle Enterprise Scheduling Service subsystem
can be updated. For this purpose, in the BPEL Process, there should be at least one
scope which will contain the functionality for this asynchronous job. This will allow
sufficient control for handling cancel and error states which must then be sent to the
Oracle Enterprise Scheduling Service web service in order to update the job's status in
the Oracle Enterprise Scheduling Service runtime.

To build the basic process flow to support these states, the following steps should be
completed in order:

1. Create the correlation set and flag it for imitate on the incoming Receive activity.

2. Create the onMessage branch with use of correlation set created in sub-step 1.

3. Create the fault handling branch.

How to Implement BPEL with an Asynchronous Job

16-20 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

4. Populate the onMessage and fault handling branches with cleanup activities as
needed and invoke the Oracle Enterprise Scheduling Service web service with
appropriate status.

16.4.6.1 Create Correlation Set and Define Initiate Activity
In order to support receiving the cancel event while the BPEL process is in the middle
of performing other activities or waiting for an asynchronous callback the process
must be configured with a correlation set. A correlation set is key value that is built
from one or more incoming payload attributes which are used to uniquely identify the
BPEL process to the BPEL engine whereby additional service requests that contain
matching sets of attributes can be routed to the process that is currently running
instead of initiating a new one. While correlation is standard functionality used for
asynchronous request responses, it can also be used to change the flow of execution in
a BPEL process through scope-level onMessage branches.

To setup the correlation set, open the BPEL process in the designer, double-click the
Receive activity and click the correlations tab.

Note that coarctation sets have an "initiate" property which indicates which activity
will be the starting point for this correlation set's life cycle. In this case, the start of the
BPEL process will be the point at which the correlation set's life cycle should begin
allowing correlated events to route to this process at any point during the process.

To create a correlation set:

■ Click the "New" icon in the Correlations tab of any Receive, Invoke or onMessage
activity and provide a name for the correlation set.

■ Next, click "Add" to define one or more property attributes to use as the
correlation key.

■ Choose a variable attribute as the set property and click "OK".

■ Repeat steps 2 and 3 as necessary to build an attribute set that will always be
unique.

■ Set the initiate flag on the correlation to "Yes" on the activity for which the
correlation set's life cycle should begin.

Primary (first) Receive Activity with Defined Correlation Set and "Initiate" flagged to
"Yes", as shown in Figure 16–14.

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 16-21

Figure 16–14 Correlations for Receive Activity

CorrelationSet_1 definition with a single property defined (define more as needed to
ensure unique keys are created), as shown in Figure 16–15.

Figure 16–15 Edit Correlation Set

16.4.6.2 Create the onMessage Branch with Use of Correlation Set
Once the correlation set has been defined and set for initiate it's now possible to create
the onMessage branch on the scope which will contain the activities necessary to accept
the incoming cancellation message, perform any compensation or cleanup and then
assign the job's completion status to CANCEL.

The following steps guide you through adding the previously created correlation set
to the onMessage branch activity, as shown in Figure 16–16.

Note: At this point, the onMessage branch could contain the invoke
activity or finish allowing a higher order scope to perform the invoke,
reducing the overall number of necessary invoke activities in the flow.

How to Implement BPEL with an Asynchronous Job

16-22 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

■ On the nested scope containing the process functionality, click the 'Add
onMessage branch' icon which should create a new flow off to the side of the
scope.

■ Double-click the onMessage branch activity to open the activity editor.

■ Choose the "Correlations" tab.

■ Click the Add '+' icon and select the previously created correlation set ensuring
that the initiate flag is set to 'No' and click "Ok".

Figure 16–16 BPEL OnMessage Branch

16.4.6.3 Create the Fault Branch
Through the course of performing the various activities in the nested work scope BPEL
may encounter faults from business services or system functionality. In most cases,
business services will define one or more WSDL-defined faults that can be thrown
back to the calling process. Ordinarily, a BPEL CatchAll fault branch will trap any and
all faults that are raised regardless of their type and origin but there may be cases
where product teams have requirements to perform different sets of behavior in
response to specific business faults. In cases where it's desirable to perform unique
compensation behavior for specific business faults, the developer should create a
named fault handling branch for each WSDL-defined fault. In addition to these named
fault handler branches, it is still necessary to add a CatchAll fault handling branch to
trap any system level or unmanaged faults that are raised from the scope.

Click the CatchFault and CatchAll scope icons to create the desired fault handling
branches, then double-click the named fault handling branches and define the named
fault those branches will catch.

Note the available status, as shown in Figure 16–17.

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 16-23

Figure 16–17 Catch Branch for BPEL Flow

16.4.6.4 Populate the onMessage and Fault Branch
You need to populate the onMessage and Fault branch with cleanup activities as
needed and invoke Oracle Enterprise Scheduling Service web service with appropriate
status.

In the event of a fault or receipt of the cancellation message through the onMessage
branch the Oracle Enterprise Scheduling Service infrastructure needs to be updated
directly via the Oracle Enterprise Scheduling Service web service in order to reflect the
job's status and status message properly in the monitoring UIs. As a result, each fault
handling or onMessage branch should assign the correct status and status message
value to the Oracle Enterprise Scheduling Service web service invoke variable and
optionally contain the invoke activity or, by design, return to a higher order scope
which is designed to be agnostic to the outcome of the job status and will perform the
invoke activity on the Oracle Enterprise Scheduling Service web service before
completing.

Additionally, drag activities into the onMessage and fault branches as needed to
cleanup/log/compensate.

Example scope with onMessage and Fault handling branches is shown in
Figure 16–18.

How to Implement BPEL with an Asynchronous Job

16-24 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 16–18 Entire BPEL Flow Sample

16.4.7 Validating the Deployment
To test that the functionality works you must perform the following sequence of steps:

1. Turn on the EDN-DB-LOG page by navigating to the following site to make sure it
reads "Log is Enabled". If not, click the link for "Enable",

http://host:port/soa-infra/events/edn-db-log

2. Submit your job through your own application, Fusion Middleware Control the
task flow user interface for submitting job requests and confirm that the status of
the job is RUNNING.

3. Your event should immediately show up in the EDN-DB-LOG page. Check for this
event payload, as shown in Example 16–6.

Example 16–6 Event Payload

Example:Enqueing event:
http://xmlns.oracle.com/apps/ta/essdemo/events/edl::ESSDemoEvent from J
Body: <business-event
xmlns:ns="http://xmlns.oracle.com/apps/ta/essdemo/events/edl"
xmlns="http://oracle.com/fabric/businessEvent">
<name>ns:ESSDemoEvent</name>
<id>df8e34c1-4c65-4379-b9be-2c692670ebbe</id>
<content>
<ESSDemoEventElement
xmlns="http://xmlns.oracle.com/apps/ta/essdemo/events/schema">
<requestId>3</requestId>
<executionContext>3, false, null, 6A4A16757764CD60E0402382B7703F44,
12</executionContext>
<eventType>ESS_EVENT</eventType>
</ESSDemoEventElement>
</content>
</business-event>
Subject name:
Enqueing complete
Enqueing event: http://xmlns.oracle.com/apps/ta/essdemo/events/edl::ESSDemoEvent

How to Implement BPEL with an Asynchronous Job

Working with Asynchronous Java Jobs 16-25

from J
Body: <business-event
xmlns:ns="http://xmlns.oracle.com/apps/ta/essdemo/events/edl"
xmlns="http://oracle.com/fabric/businessEvent">
<name>ns:ESSDemoEvent</name>
<id>a4104da8-5579-4434-ab8b-d31a226e3b0f</id>
<content>
<ESSDemoEventElement
xmlns="http://xmlns.oracle.com/apps/ta/essdemo/events/schema">
<requestId>4</requestId>
<executionContext>4, false, null, 6A4A2BC7E5477C60E0402382B77041C9,
12</executionContext>
<eventType>ESS_EVENT</eventType>
</ESSDemoEventElement>
</content>
</business-event>

4. Your subscribing mediator will have been triggered, you can check Fusion
Middleware Control ($DOMAIN_HOME/as.log) or soa-diagnostic logs
($DOMAIN_HOME/servers/<serverName>logs/<serverName>.log) to see any
mediator activity as a result of your event, as shown in Example 16–7.

Example 16–7 Mediator Activity

INFO: MediatorServiceEngine received an event =
{http://xmlns.oracle.com/apps/ta/ess/demo/events/edl}ESSDemoEvent
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.common.persistence.MediatorPersistor
persistCallback
INFO: No call back info set in incoming message
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.common.persistence.MediatorPersistor
persistCallback
INFO: Message properties :
{id=041ecfcf-8b73-4055-b5c0-0b89af04f425, tracking.compositeInstanceId=50003,
tracking.ecid=0000I2pqzVCBLA5xrOI7SY19uEYF00004g:47979}
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher
dispatch
INFO: Executing Routing Service..
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher
processCases
INFO: Unfiltered case list size :1
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.monitor.MediatorActivityMonitor
createMediatorCaseInstance
INFO: Creating case instance with name :ESSDemoProcess.essdemoprocess_
client.process
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.dispatch.InitialMessageDispatcher
processCase
INFO: Immediate case
{ESSDemoProcess.adedemoprocess_client.process}with case id :
{5B52B4A02B9211DEAF64D3EF6E2FB21D}will be executed
Apr 17, 2009 1:57:26 PM oracle.tip.mediator.service.filter.FilterFactory
createFilterHandler
INFO: No Condition defined

5. Check the Oracle Enterprise Manager Fusion Middleware Control Console for an
instance of your SOA composite and check for errors.

http://host:port/em

Handling Time Outs and Recovery for Asynchronous Jobs

16-26 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

6. If your BPEL process has not errored and is expecting a response from the human
workflow notification, navigate to the worklist, login as the assigned approver and
approve or reject the notification per your design requirements.

7. From here, the BPEL process should complete and invoke the Oracle Enterprise
Scheduling Service web service to set the job's completion status and status
message. Check the monitoring UI diagnostic logs for stack traces and log
messages.

8. Additionally, you can check the REQUEST_HISTORY table in the Oracle Enterprise
Scheduling Service schema for details on your job's state.

16.4.8 Troubleshooting the Use Case
To troubleshoot issues with the Oracle ADF UI functionality such as the monitoring
and submission task flows use the server's console log, applications log and server
diagnostic logs for information on what is failing and why.

To troubleshoot issues with the events functionality, such as the event not reaching the
BPEL process with request execution context intact, use the EDN database log page
(http://host:post/soa-infra/events/edn-db-log) to inspect the event payload and
carefully compare it to the schema definition, even slight mismatches can cause the
transformation to 'succeed' but produce an skeleton payload to BPEL which is missing
any request context values. Oracle JDeveloper and third-party tools can be used to
validate the schema of the event payload and debug the transformation against that
payload.

To troubleshoot the mediator, BPEL SOA functionality, use the Oracle Enterprise
Manager and server console or diagnostics log files for diagnostics and AppsLogger
Sensor variables for logging.

For more information about troubleshooting Oracle Enterprise Scheduling Service at
run time, see the chapter "Troubleshooting Oracle Enterprise Scheduling Service" in
Oracle Fusion Middleware Administrator's Guide for Oracle Enterprise Scheduling Service.

16.5 Handling Time Outs and Recovery for Asynchronous Jobs
Oracle Enterprise Scheduling Service asynchronous Java jobs depend on the remote
job to update Oracle Enterprise Scheduling Service with its completion status before it
can finish processing the request. Due to the nature of remote communication, there
may be cases where Oracle Enterprise Scheduling Service does not receive the remote
request status because of network failures, and so on. In these cases, the request may
be stuck in a non-terminal state.

Transitioning a timed out request to a terminal state is important as it:

■ Frees any incompatibility locks held by that job request.

■ If the job request is a job set step, allows the job set to continue.

■ If the request is a subrequest, allows the parent request to resume.

■ Allows the job request to be deleted or purged.

16.5.1 Asynchronous Request Time Outs
An Oracle Enterprise Scheduling Service system property, SystemProperty.ASYNC_
REQUEST_TIMEOUT, enables setting job request time out values for asynchronous Java
jobs. By default, the property is not enabled, such that its value is less than or equal to
zero.

Handling Time Outs and Recovery for Asynchronous Jobs

Working with Asynchronous Java Jobs 16-27

The property may be set in the job definition metadata or when the job request is
submitted. The value represents the duration, in minutes, from the time the job request
begins local execution until a terminal asynchronous job status is received from the
remote job.

16.5.1.1 Setting the TIme Out Value
For a given asynchronous job request, set the system property
SystemProperty.ASYNC_REQUEST_TIMEOUT to a value greater than 0.

16.5.1.2 Discovering the Asynchronous Job Requests that Have Timed Out
For a given request, RequestDetail.isTimedOut indicates the status of the time out.
Requests that have timed out can be discovered using the query shown in
Example 16–8.

Example 16–8 Indicating the Time Out Status

Filter timedOutRunningFilter = new Filter(
 RuntimeService.QueryField.TIMED_OUT.fieldName(),
 Filter.Comparator.EQUALS,
 Boolean.TRUE)
.and(
 RuntimeService.QueryField.STATE.fieldName(),
 Filter.Comparator.EQUALS,
 State.RUNNING.value());
runtimeService.queryRequests(handle, timedOutRunningFilter, null, true);

A similar query can be run using REQUEST_HISTORY_VIEW, as shown in Example 16–9.

Example 16–9 Using REQUEST_HISTORY_VIEW

SELECT requestId FROM request_history_view WHERE timedout='Y' AND state=3;

16.5.1.3 Completing Asynchronous Requests without a Time Out
In the absence of a time out value, asynchronous requests whose remote job has
completed without delivering the status to Oracle Enterprise Scheduling Service may
be completed directly using RuntimeMXBean.completeAsyncRequest. Because there is
no time out value to flag the request as needing attention, you must carefully track
requests without time outs.

For more information about managing job requests without time outs, see the chapter
"Troubleshooting Oracle Enterprise Scheduling Service" in Oracle Fusion Middleware
Administrator's Guide for Oracle Enterprise Scheduling Service.

16.5.1.4 What Happens When an Asynchronous Job Request Times Out
Oracle Enterprise Scheduling Service periodically checks for asynchronous job
requests on which the property SystemProperty.ASYNC_REQUEST_TIMEOUT has been
set. When the time has exceeded without a terminal status having been received, the
job is flagged as timed out. Otherwise, the job state is unaffected, and remains in a
RUNNING state. Meanwhile, Oracle Enterprise Scheduling Service continues to accept
status updates from the remote job. The flag indicates that the status of the remote job
may need to be investigated.

Handling Time Outs and Recovery for Asynchronous Jobs

16-28 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

16.5.2 Handling Asynchronous Jobs Marked for Manual Recovery
If the remote job completed but its status was not delivered to Oracle Enterprise
Scheduling Service, you can complete the request manually.

In some cases, the status of a job status cannot be determined automatically, such that
it is unknown whether or not a job is executing, for example. If the job is executing, the
job request must not transition to a terminal state. If the job does transition to a
terminal state, incompatibility locks could be released, possibly causing incompatible
job requests to run simultaneously.

For example:

■ An asynchronous Java job encounters an error when starting a remote service,
such that it is unclear that the remote service has actually been invoked. The job
request must not go to an error state until it is determined whether the remote job
is running. If the job might be running, the job should throw an
oracle.as.scheduler.ExecutionManualRecoveryException to indicate to Oracle
Enterprise Scheduling Service that the job request must transition to ERROR_
MANUAL_RECOVERY state.

■ An Oracle Enterprise Scheduling Service asynchronous Java job throws a
java.lang.Error which does not indicate to Oracle Enterprise Scheduling Service
whether the remote service has been invoked.

■ A spawned job is running in a clustered environment, with the job request
running on Oracle Enterprise Scheduling Service instance1. The Oracle Enterprise
Scheduling Service instance1 server goes down, along with the associated Perl
agent. If instance1 is not going to recover for a while, the job status is unknown.
The property State.ERROR_MANUAL_RECOVERY is used for this type of situation. This
is a non-terminal state that suspends processing on a job request until a recovery
operation is manually invoked. Any incompatibility locks acquired will be
retained until manual recovery completes.

For more information about handling asynchronous jobs marked for manual recovery,
see the section "Handling Stuck Asynchronous Jobs Requiring Manual Recovery" in
the chapter "Troubleshooting Oracle Enterprise Scheduling Service" in Oracle Fusion
Middleware Administrator's Guide for Oracle Enterprise Scheduling Service.

16.5.3 Using RecoverRequest to Manually Recover a Job Request
If some job requests are stuck in an incomplete state, it should first be determined
whether the job requests can complete by normal means. For instance, if a job request
is in RUNNING state, it may be for an asynchronous Java job running remotely. If the
remote job is unable to respond, then you must try to cancel the job request. This
transitions the job request to CANCELLING state. If the job request does not transition to
CANCELLED state, then it may be a candidate for recovery.

All child requests of the request to be recovered must have already completed,
meaning that its process phase is ProcessPhase.Complete. You can retrieve the
process phase by executing RequestDetail.getProcessPhase().

Using RuntimeService.queryRequests, you can run a query to determine incomplete
child requests using the filter shown in Example 16–10.

Example 16–10 Filtering for Incomplete Child Requests

Filter filter =
 new Filter(RuntimeService.QueryField.ABSPARENTID.fieldName(),
 Filter.Comparator.EQUALS, requestId)

Oracle Enterprise Scheduling Service Interfaces and Classes

Working with Asynchronous Java Jobs 16-29

 .and(RuntimeService.QueryField.REQUESTID.fieldName(),
 Filter.Comparator.NOT_EQUALS, requestId)
 .and(RuntimeService.QueryField.PROCESS_PHASE.fieldName(),
 Filter.Comparator.NOT_EQUALS,
 ProcessPhase.Complete.value());

If it is determined that any child requests require manual recovery, then invoke
recoverRequest for those jobs first. If recoverRequest is invoked on a parent request
with incomplete child requests, an exception will be thrown. The exception message
will list child requests that are incomplete. Example 16–11 shows the recoverRequest
syntax.

Example 16–11 recoverRequest

 /**
 * Attempts to force a request to complete under certain conditions.
 * <p>
 * 1. The request must already by in a terminal state, {@code
 * State.CANCELLING}, or {@code State.ERROR_MANUAL_RECOVER}.
 * If a request is in another state,
 * {@code RuntimeService.cancel} must be called first. If the
 * request does not eventually transition to {@code State.CANCELLED},
 * then this operation may be invoked on the request.
 * 2. All child requests of the given request must already be complete.
 * <p>
 * A completed> request is a request in a terminal state with
 * a process phase of {@code ProcessPhase.Complete}.
 * <p>
 * Note that this operation will lock the request.
 * <p>
 * @param requestId the request identifier of the request.
 * @throws IOException if a protocol error occurred.
 * @throws InstanceNotFoundException if the request is not found
 * @throws OperationException if the given request has child requests
 * that are not complete.
 * @throws RuntimeOperationsException if a RuntimeService subsystem failure
 * occurs.
 */
 public void recoverRequest(long requestId)
 throws IOException, InstanceNotFoundException, OperationsException,
 RuntimeOperationsException;

For more information about manually handling synchronous Java jobs, see the section
"Handling Synchronous Java Jobs Requiring Manual Recovery" in "Troubleshooting
Oracle Enterprise Scheduling Service" in Oracle Fusion Middleware Administrator's Guide
for Oracle Enterprise Scheduling Service.

16.6 Oracle Enterprise Scheduling Service Interfaces and Classes
Sample code illustrating the new Oracle Enterprise Scheduling Service asynchronous
callback interfaces and classes are shown in Example 16–12, Example 16–13,
Example 16–14 and Example 16–15.

Example 16–12 Oracle Enterprise Scheduling Service Updatable Interface

public interface Updatable
{
 /**
 * Invoked by Enterprise Scheduler when a job request is updated.

Oracle Enterprise Scheduling Service Interfaces and Classes

16-30 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 * This method must eventually return control to the caller.
 *
 * @param context An oracle.as.scheduler.RequestExecutionContext
 * object for this request.
 *
 * @param parameters the request parameters associated with this request
 *
 * @param resultCode the {@code
 * oracle.as.scheduler.async.UpdateAction.ActionCode} indicating the
 * action that generated this event.
 *
 * @param messagePayload a {@code String} representing the body of this
 * event. The content and format are not known by the Enterprise Scheduling
 * Service.
 */
 public UpdateAction onEvent(RequestExecutionContext context,
RequestParameters parameters,
 oracle.as.scheduler.async.AsyncStatus resultCode,
 String messagePayload);
}

The UpdateAction class is returned by Updatable.onEvent.

Example 16–13 Oracle Enterprise Scheduling Service UpdateAction Class

package oracle.as.scheduler.async;

/**
 * Enumeration of return values from application execution callout. The
 * action returned determines how the subsequent processing of the request
 * will proceed.
 */
public class UpdateAction
{
 /**
 * Constructor. Creates an UpdateAction object from the status
 * and message components.
 *
 * @param status Indicates the status of execution of this update event.
 * This status may result in a state transition for the request.
 *
 * @param message A message that, depending on the value of {@code status},
 * may be used for various purposes.
 */
 public UpdateAction(AsyncStatus status, String message);

 public AsyncStatus getAsyncStatus();

 public String getMessage();
}

The AsyncStatus enum has been modified.

Example 16–14 Oracle Enterprise Scheduling Service AsyncStatus Enum

Package oracle.as.scheduler.async;

/**
* Valid values for the callback status of an asynchronous java job.
 * Returning an {@code AsyncStatus} does not guarantee that the state of the

Oracle Enterprise Scheduling Service Interfaces and Classes

Working with Asynchronous Java Jobs 16-31

 * request will change to the corresponding value. The new state of the request
 * will depend on the old state, the async status, the result of the
 * post-Process handler (if any), and any errors that may occur in
 * subsequent processing.
 */
public enum AsyncStatus
{
 /**
 * The asynchronous job ran successfully.
 */
 SUCCESS,

 /**
 * The asynchronous job has paused for the execution of sub-requests.
 */
 PAUSE,

 /**
 * The asynchronous job is issuing a WARNING.
 */
 WARNING,

 /**
 * The asynchronous job encountered an error.
 */
 ERROR,

 /**
 * The asynchronous job has canceled its execution. Usually this
 * originates from a {@code RuntimeService.cancel} call.
 */
 CANCEL,

 /**
 * The asynchronous job is updated. The request state is not changed
 * by this action.
 */
 UPDATE
}
 /**
 * The asynchronous job encountered a business error.
 */
 BIZ_ERROR,

 /**
 * The asynchronous job requests manual recovery to complete the request.
 */
 ERROR_MANUAL_RECOVERY;

Example 16–15 Existing Asynchronous Callback Web Service Operation

 /**
 * Set the status of an Oracle Enterprise Scheduling Service asynchronous java job.
 *
 * @param requestExecutionContext A java.lang.String representing
 * an oracle.as.scheduler.RequestExecutionContext object.
 * @param status
 * @param statusMessage
 * An error message if the status is ERROR,

Oracle Enterprise Scheduling Service Interfaces and Classes

16-32 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 * A business error message if the status is BIZ_ERROR,
 * A warning message if the status is WARNING,
 * A paused state if the status is PAUSED.
 * The value is ignored if the status is SUCCESS or CANCEL.
 *
 */
 public void setAsyncRequestStatus(String requestExecutionContext,
 AsyncStatus status,
 String statusMessage)
 throws RequestNotFoundException, RuntimeServiceException ;

17

Creating Job Request Logs and Output 17-1

17Creating Job Request Logs and Output

This chapter describes how to use Oracle Enterprise Scheduling Service to generate job
request logs and output that should be saved for later use by administrators and users.

Logs generated by job requests help administrators diagnose problems and see
job-specific status. Logs are accessible throught the Fusion Middleware Control. In
addition, some jobs generate output as part of their work, such as a report about
job-specific data that a user can review after the job has completed. Your code can
create and store request log information as well as request output.

This chapter includes the following sections:

■ Section 17.1, "Creating Request Logs"

■ Section 17.2, "Creating Request Output"

17.1 Creating Request Logs
You can create job request logs from your job code. Oracle Enterprise Scheduling
Service provides APIs for creating and writing logs and interacting with the content
store.

Oracle Enterprise Scheduling Service supports supports a single log per request. The
log will have a name of the form REQUESTID.log. The logging APIs log directly to the
content store, and log content may not be rolled back.

For more about viewing job request logs with Fusion Middleware Control, see
Viewing Job Request Logs in Oracle Fusion Middleware Administrator's Guide for Oracle
Enterprise Scheduling Service.

17.1.1 System Properties
When logging for Java and PL/SQL jobs, what actually shows up in the log will be
constrained by how the SYS_EXT_requestLogLevel system property has been set. The
property determines the logging level supported by the Java and PL/SQL request
logging APIs.

The property’s value defaults to INFO. The complete set of valid values are SEVERE,
WARNING, INFO, CONFIG, FINE, FINER, FINEST. Use Java and PL/SQL APIs to
discover the request log level.

Note that because process jobs do not use the logging API, logging levels aren’t
supported in them.

Creating Request Logs

17-2 Product Title/BookTitle as a Variable

17.1.2 APIs for Handling Request Logs
You can use methods of the oracle.as.scheduler.RuntimeService class to handle logs
stored in the Oracle Enterprise Scheduling Service content store. You’ll need to first
get a RuntimeServiceHandle instance. You’ll pass this instance as an argument for
each of these RuntimeService methods.

For more on the RuntimeServiceHandle, see Section 14.2.1, "How to Access the
Runtime Service and Obtain a Runtime Service Handle".

17.1.3 Log Header
Your logging code will write entries to a log that begins with the following heading
information. This header is prefixed to each record written to the log.

Example 17–1

####[TIMESTAMP] [LOGLEVEL]

Sample log lines:
####[2011-07-11T14:20:32.276-07:00] [INFO] This is a log record.
####[2011-07-11T14:20:32.282-07:00] [INFO] This is the first line of a multi-line
log record:
second line of multi-line log record.

17.1.4 Creating Request Logs from a Java Job
You can use the Java request logger to log during the execute and update stages of a
Java or asynchronous Java job, as well as during pre-processing and post-processing
for all job execution types.

The job logic must use the ContentFactory API to get the request logger. Oracle
Enterprise Scheduling Service will use the current value of the SYS_EXT_
requestLogLevel system property to constained logging level each time the logger is
retrieved.

Table 17–1 RuntimeService Methods for Handling Request Logs

Method Description

getLogContentDetail(RuntimeService
Handle handle, long requestId)

Returns a ContentDetail instance with the log content
detail for the request, or null if the log does not exist.

openLogContent(
RuntimeServiceHandle handle, long
requestId)

Returns a ContentHandle instance from opening the
request log to retrieve log data for the specified
request. You can use the handle to retrieve output
data. The content must be closed to release the handle.

getLogLines(RuntimeServiceHandle
handle, ContentHandle
contentHandle, int maxLines)

Returns a String array with at most maxLines lines
from the request log, continuing from the last call to
this method. The content handle is from the previous
call to openLogContent. This returns a String array of
lines from the log without line terminators; if no more
lines, array will be empty.

getTextContent(
RuntimeServiceHandle handle,
ContentHandle contentHandle, int
maxChars)

Returns a char array with at most maxChars characters
from the log or output text content.

closeContent(RuntimeServiceHandle
handle, ContentHandle
contentHandle)

Closes the previously opened log or output content
and releases the handle.

Creating Request Logs

Creating Job Request Logs and Output 17-3

17.1.4.1 APIs for Java Job Logging
In your Java job’s logic, you can use the oracle.as.scheduler.request.ContentFactory
class getRequestLogger method (see Table 17–2) to get a RequestLogger instance for
adding log entries. Note that the request logger will not support a resource bundle.

The Java APIs available for handling logs include the following:

■ Use the ContentFactory class to get instances of a RequestLogger you can use to
create the log and add entries. See Table 17–2.

■ Use the RequestLogger class to write the log. See Table 17–3.

The oracle.as.scheduler.request.ContentFactory class provides methods to get your
code access to the output content framework, as well as to an instance you can use to
create the output itself.

Once you have a logger instance, you can use the methods in Table 17–3 to add entries.

17.1.4.2 Example
Example 17–2 shows a very simple Java job example that does logging.

Example 17–2 Java Request Logging Example

import oracle.as.scheduler.request.ContentFactory;
import oracle.as.scheduler.request.RequestLogger;
import java.util.logging.Level;

class ExampleJavaLogger{

 private boolean m_loggingEnabled = false;
 private RequestLogger m_requestLogger = null;

Table 17–2 ContentFactory Methods for Creating Request Logs

Method Description

getRequestLogger(long requestId) Returns a RequestLogger instance for the specified
requestId and creates log content named requestId.log
in Oracle Enterprise Scheduling Service content store.

Table 17–3 RequestLogger Methods for Creating Request Logs

Method Description

log(Level level, String msg)

fine(String msg)

finer(String msg)

finest(String msg)

These methods log messages at the specified levels.

The message is logged only if the specified logging
level is equal or greater than the log level specified by
the SYS_EXT_requestLogLevel system property. If the
property isn’t set, the default log level is INFO.

When using the log method, the java.util.logging.Level
supports the following values, in descending order.

■ SEVERE

■ WARNING

■ INFO

■ CONFIG

■ FINE

■ FINER

■ FINEST

Creating Request Logs

17-4 Product Title/BookTitle as a Variable

 public void execute(RequestExecutionContext ctx,
 RequestParameters params)
 {
 try
 {
 m_requestLogger = ContentFactory.getRequestLogger(ctx.getRequestId());
 m_loggingEnabled = true;
 }
 catch (Exception ex)
 {
 // failed to get request logger
 }

 log(Level.INFO, "Starting the job.");
 // ...
 log(Level.INFO, "Ending the job.");
 }

 private void log(Level level, String message)
 {
 if (m_loggingEnabled)
 {
 m_requestLogger.log(level, message);
 }
 }
}

17.1.5 Creating Request Logs from a PL/SQL Job
To create logs from PL/SQL, your code can use the ESS_JOB PL/SQL package to write
log entries.

17.1.5.1 ESS_JOB Package Support for Creating Logs
Oracle Enterprise Scheduling Service provides the ESS_JOB package with functions
and procedures for logging from PL/SQL code.

Creating Request Logs

Creating Job Request Logs and Output 17-5

17.1.5.2 PL/SQL Request Logging Example
An example of request logging by a SQL request job procedure is shown below.

Example 17–3 PLSQL Request Logging

create or replace procedure log_example_job
(request_handle in varchar2)
as
 v_request_id number := null;
begin
 ess_job.write_log(ess_job.level_fine,
 'LOG_EXAMPLE_JOB Procedure Begin');

 -- Oracle Enterprise Scheduling Service request id being executed.
 begin
 v_request_id := ess_runtime.get_request_id(request_handle);
 exception
 when others then
 ess_job.write_log(ess_job.level_severe,
 'Bad request handle: '||request_handle);
 raise_application_error(-20000,
 'Failed to get request id for request handle '||request_handle,
 true);
 end;

 -- Job logic
 ess_job.write_log(ess_job.level_info,
 'Executing job logic...');

 ess_job.write_log(ess_job.level_fine,
 'LOG_EXAMPLE_JOB Procedure End');
end;
/

Table 17–4 ESS_JOB Functions and Procedures for Request Logging

Method Description

procedure write_log(p_level in
integer, p_text in varchar2);

Writes p_text as a message to request log content for
the Oracle Enterprise Scheduling Service request
associated with the current session.

The message is logged only if the specified logging
level is equal or greater than the log level specified by
the SYS_EXT_requestLogLevel system property. If the
property isn’t set, the default log level is LEVEL_
INFO.

Log level values correspond to those defined in
java.util.logging.Level.

Use the following values for the p_level parameter
(shown in descending order):

■ LEVEL_SEVERE

■ LEVEL_WARNING

■ LEVEL_INFO

■ LEVEL_CONFIG

■ LEVEL_FINE

■ LEVEL_FINER

■ LEVEL_FINEST

Creating Request Output

17-6 Product Title/BookTitle as a Variable

17.1.6 Creating Request Logs from a Process Job
You can write to the job request log from process job. The way this works is quite
different from Java and PL/SQL jobs, where the executing code has access to an API
for writing entries at a particular level. Instead, for a process job, the job's standard
output and standard error are redirected to a file in the request's log work directory (a
location set by Oracle Enterprise Scheduling Service). Oracle Enterprise Scheduling
Service will import this file and append it to the request log in the content store.

In other words, to log from a process job, you need only write to standard output from
job logic code.

The encoding used to read the log file is determined as follows. If the application
ess-config.xml defines LANG in the Env properties, Oracle Enterprise Scheduling
Service will use the encoding from that. Otherwise, Oracle Enterprise Scheduling
Service will use the default encoding of the container.

Note that you can’t log at particular levels from a process job (where the API for
setting the level isn’t available). So the SYS_EXT_requestLogLevel system property
will not constrain log contents. Oracle Enterprise Scheduling Service will always
append the contents of the log file to the request log in the content store.

17.2 Creating Request Output
You can have your job write files as output at run time. For example, your job might
collect data that would be useful in a report for users. When you generate output at
run time, it’s available to be retrieved later through a client user interface or the Fusion
Middleware Control.

The output your code creates can be imported into the Oracle Enterprise Scheduling
Service content store, from which it can be retrieved later. You can do this either by
writing to the file system in the usual way, or by using Oracle Enterprise Scheduling
Service APIs to import directly to the store.

When you use the file system, you write to a particular directory whose location has
been configured in the Oracle Enterprise Scheduling Service ess-config.xml file. Oracle
Enterprise Scheduling Service creates a request file directory to contain files written
from all requests. Your code writes to a subdirectory of this created specifically for the
request. Oracle Enterprise Scheduling Service automatically imports all of the
request’s output to the content store, then deletes request-specific subdirectories.

Oracle Enterprise Scheduling Service provides APIs for accessing the content store and
writing output from both Java and PL/SQL code.

17.2.1 Using the Request File Directory
The request file directory is specified in the Oracle Enterprise Scheduling Service
ess-config.xml file. For each request, Oracle Enterprise Scheduling Service can create
request-specific subdirectories of this request file directory: a working directory for
temporary files and an output directory for output files that should be saved in the
content store.

Your code can write temporary and output files to their respective request-specific
directories at run time. Oracle Enterprise Scheduling Service will import to the content
store files in the request’s output directory. When the content is imported depends on
whether the request file directory is shared or local, as described in Section 17.2.1.1,
Section 17.2.1.2, and Section 17.2.1.3.

Creating Request Output

Creating Job Request Logs and Output 17-7

After automatically importing all of the request’s output to the content store, Oracle
Enterprise Scheduling Service deletes the request-specific output directory and its
contents.

The request file directory can be local, meaning that it is used only for work done on a
single server. It can also instead be shared, in which a single directory is used for work
done on multiple servers. Run time behavior differs depending on whether the
directory is configured to be local or shared.

The directory is specified in the ess-config.xml file, as shown in Example 17–4.

Example 17–4 Request File Directory Configuration with ess-config.xml file

<ess:EssConfig xmlns:ess="http://ess.oracle.com"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ess:EssProperties>
 <ess:EssProperty key="RequestFileDirectory" value="/etc/outputfiles"
 immutable="true"/>
 <ess:EssProperty key="RequestFileDirectoryShared" value="false"
 immutable="true"/>
 </ess:EssProperties>
</ess:EssConfig>

17.2.1.1 Common Request File Directory Behavior
Oracle Enterprise Scheduling Service will automatically import all request output files
from the output directory to the content store, and will delete the request working
directory and all files in it.

Imported files always overwrite existing content of the same file name as long as the
existing content was previously imported. If the existing content was created using the
API, then it is considered to be distinct from the new file, and the new file will not
overwrite and will be ignored. In other words, content created with the API has
precedence.

Oracle Enterprise Scheduling Service will not import output files of zero length.

17.2.1.2 Shared Request File Directory Behavior
Any files created by the request will remain in its working and output directories until
the request completes and goes to a terminal state. Any files created by a request in a
shared file directory will be available to all stages of the request.

17.2.1.2.1 Error Handling When a Shared Request File Directory is Used Oracle Enterprise
Scheduling Service creates the request work directory before the job request
transitions to RUNNING state. Any error while creating the directory results in a
system error for the request.

For process a job, importing the log occurs after the request transitions to a terminal
state. If an error occurs while importing the log, the error is logged and the request log
is left in the file system. You will need to manually import the log to the content store.

Importing output files for any job type occurs after the request transitions to a terminal
state. If there is an error while importing output files, the error is logged and the
output files are left in their directories on the file system. You will need to remove the
output files.

Creating Request Output

17-8 Product Title/BookTitle as a Variable

17.2.1.3 Local Request File Directory Behavior
Oracle Enterprise Scheduling Service will create request-specific directories before any
stage of the request runs. If the request file directory is local, it must be a location that
is guaranteed to exist locally on every server. In this case, files created by one stage of
the request are not guaranteed to be available in the next stage because stages are
independent units of work and may run on different servers.

For a local request file directory, the common behavior holds except that Oracle
Enterprise Scheduling Service performs the actions for each stage. The reason is that
each stage may execute on a different server, and it is necessary for Oracle Enterprise
Scheduling Service to capture and clean up the files for each stage because they may
not be there for the next stage.

In case a request needs access to all previously imported output files, it can set the
parameter SYS_EXT_executeAutoExport = true. If this is set, at the beginning of the
execute stage, Oracle Enterprise Scheduling Service will automatically export
previously imported output files to the request's working output directory. This gives
you an opportunity to update the file before it is imported back to the content store at
the end of the execute stage. (Note that the content isn’t removed from the content
store when the content is exported.) Furthermore, Oracle Enterprise Scheduling
Service provides an API for a request to selectively export previously imported output
files.

17.2.1.3.1 Error Handling When a Local Request File Directory is Used When a local request
file directory is used, file imports happen at the end of each stage (pre-processing,
execution, update, post-processing). If an error occurs while importing logs or output
files, the log and output files that failed to import will be moved to a mirror directory
at <request_file_directory>/preserve. For example, for request 18 this would be
<request_file_directory>/preserve/18.

For the pre-processing stage, an error creating the request directory at the beginning of
the stage or importing output files at the end of the stage will result in a system error
for the request.

For the post-processing stage, an error creating the request directory at the beginning
of the stage or importing output files at the end of the stage will result in a warning for
the request.

For the execution stage of a Java job, asynchronous Java job, and process job request,
an error creating the request directory or automatically exporting previously imported
output files (such as when the SYS_EXT_executeAutoExport system property is used)
at the beginning of the stage or importing output files at the end of the stage will result
in a system error for the request.

If the request is a process job, an error importing the request log will be logged and not
treated as an error. The log will be left in the file system, and you may manually
import it to the content store. If there is an internal error during execution of a process
job, log and output files will not be imported because the job could still be running.
The log and output files will be imported when the job is terminated, either
automatically or manually by the user. If the job goes to ERROR_MANUAL_
RECOVERY, it is the user's responsibility to clean up the request log and output files.

For the update stage, an error creating the request directory or importing output files
is logged only.

Creating Request Output

Creating Job Request Logs and Output 17-9

17.2.2 System Properties
Setting the SYS_EXT_supportOutputFiles system property is essential to using the
request file directory and automatic importing of output files.

To use the request output directory to create output files, the job must define a
parameter using the system property SYS_EXT_supportOutputFiles. Depending on
what sort of files the job wants to create, the property can be set in one of the following
ways:

■ Set it to "output" in order to have files written to the request output directory
imported to the content store.

■ Set it to "work" in order to write files to the request working directory that are not
intended for import, such as temporary files.

■ Set it to "none", or leave it undefined, if the job doesn’t create any output or
temporary files.

17.2.3 APIs for Handling Request Output
You can use methods of the oracle.as.scheduler.RuntimeService class to handle request
output stored in the Oracle Enterprise Scheduling Service content store. You’ll need to
first get a RuntimeServiceHandle instance. You’ll pass this instance as an argument for
each of these RuntimeService methods.

For more on the RuntimeServiceHandle, see Section 14.2.1, "How to Access the
Runtime Service and Obtain a Runtime Service Handle".

Table 17–5 System Properties for Creating Request Output

Method Description

SYS_EXT_supportOutputFiles String property indicating whether job will create files
in the file system. Supported values are "work",
"output", and "none". An invalid value is treated as
"none".

SYS_EXT_executeAutoExport Boolean property indicating whether previously
imported output files shall be exported at the start of
the execute stage. The content isn’t removed from the
content store when it is automatically exported.

Table 17–6 RuntimeService Methods for Handling Request Output

Method Description

getOutputContentDetail(
RuntimeServiceHandle handle, long
requestId, String contentName)

Returns a ContentDetail instance for the specified
output content for the specified request, or null if the
content does not exist.

getOutputContentDetail(
RuntimeServiceHandle handle, long
requestId)

Returns a ContentDetail List instance for all output
content for the request. The list will be empty if there
is no output content.

openOutputContent(
RuntimeServiceHandle handle, long
requestId, String contentName)

Opens the specified request output to retrieve output
data for the specified content, returning
ContentHandle instance. You can use the handle to
retrieve output data. The content must be closed to
release the handle.

getTextContent(
RuntimeServiceHandle handle,
ContentHandle contentHandle, int
maxChars)

Returns a char array with at most maxChars characters
from the log or output text content.

Creating Request Output

17-10 Product Title/BookTitle as a Variable

17.2.4 Creating Request Output from a Java Job
To create request output from Java, your job’s code can use the Oracle Enterprise
Scheduling Service API to import directly to the content store, or it can create files in
the request output directory that are automatically imported to the content store.

Using the API, the job can create text or binary output content. Imported output files
are always imported as binary content, meaning the bytes are uninterpreted.

17.2.4.1 APIs for Handling Request Output from a Java Job
The Java APIs available for handling request output include the following:

■ Use the ContentFactory class to get instances of other classes you can use to create
content and write output. See Table 17–7.

■ Use the RequestOutput class to write output. See Table 17–8.

■ Use the OutputContentHelper class to interact with the content store and with the
request file directory. See Table 17–9.

The oracle.as.scheduler.request.ContentFactory class provides methods to get
your code access to the output content framework, as well as to an instance you can
use to create the output itself.

The oracle.as.scheduler.request.RequestOutput class represents the output your code
is creating. You get an instance of this class from ContentFactory.getRequestOutput,
then use its write methods to add content to the output you’re creating.

getBinaryContent(
RuntimeServiceHandle handle,
ContentHandle contentHandle, int
maxBytes)

Returns a byte array with at most maxBytes bytes from
the binary content.

closeContent(RuntimeServiceHandle
handle, ContentHandle
contentHandle)

Closes the previously opened log or output content
and releases the handle.

Table 17–7 ContentFactory Methods for Java Request Output

Method Description

getRequestOutput(
RuntimeServiceHandle rsh, long
requestId, ContentType contentType,
String contentName)

Returns a RequestOutput instance with output for the
specified request and creates the output content for the
request. Each write will use the specified request
service handle; your calling code is responsible for
committing or rolling back the transaction.

getOutputContentHelper(long
requestId)

Returns a OutputContentHelper instance for creating
output content for requests with Standard or Extended
request mode. Each operation will be performed in a
separate transaction.

getOutputContentHelper(long
requestId, RuntimeServiceHandle rsh
)

Returns a OutputContentHelper instance for creating
output content for requests with Standard or Extended
request mode. Each operation will use the provided
handle, and it is the caller's responsibility to commit or
rollback the transaction.

Table 17–6 (Cont.) RuntimeService Methods for Handling Request Output

Method Description

Creating Request Output

Creating Job Request Logs and Output 17-11

Methods of the oracle.as.scheduler.request.OutputContentHelper class do the heavy
lifting for output handling in Java jobs. Using these methods, your code can work with
the request file directory and the content store itself.

Note that methods for importing content to the content store take a
OutputContentHelper.CommitSemantics enum instance that you can use to specify
transaction semantics during import. For more information, see Table 17–10.

Table 17–8 RequestOutput Methods for Java Request Output

Method Description

writeln(String str) Appends str to the text output content, followed by a
line feed character.

write(String str) Appends str to the text output content.

write(String str, int offset, int length) Appends str to the text output content.

write(char[] chars) Appends chars to the text output content.

write(char[] chars, int offset, int
length)

Appends chars to the text output content.

write(byte[] bytes) Appends bytes to the binary output content.

write(byte[] bytes, int offset, int
length)

Appends bytes to the binary output content.

Table 17–9 OutputContentHelper Methods for Java Request Output

Method Description

workDirectoryExists() Returns true if the request's work directory exists.
Allows the job at any stage to determine if the work
directory exists before it attempts to create temporary
files.

The job must define the SYS_EXT_supportOutputFiles
system property with a value of "work" or "output" to
cause Oracle Enterprise Scheduling Service to create
the work directory.

outputDirectoryExists(); Returns true if the request's output directory exists.
Allows the job at any stage, such as update, to
determine if the output directory exists before it
attempts to create output files.

The job must define the SYS_EXT_supportOutputFiles
system property with a value of "output" to cause
Oracle Enterprise Scheduling Service to create the
output directory.

isRequestWorkDirectoryShared(); Returns true if the request file directory is shared. If it
is, then any files created in the request work dir or
output dir in any stage will be available to all
subsequent stages of the request.

getResolvedWorkDirectory(); Returns a String with the request work directory as
resolved to the current server. The job may create
temporary files in the work directory, and Oracle
Enterprise Scheduling Service will automatically
delete the work directory at the end of request
execution if the RequestFileDirectory is shared, or at
the end of each stage (pre-processing, execution,
update, post-processing) if the RequestFileDirectory is
local.

Creating Request Output

17-12 Product Title/BookTitle as a Variable

Use the oracle.as.scheduler.request.OutputContentHelper.CommitSemantics enum to
specify what should happen if errors occur while importing content to the content
store.

getResolvedOutputDirectory(); Returns a String with the request output directory,
resolved to the current server. The job may create
output files in the output directory that can be
autmoatically or manually imported to the Oracle
Enterprise Scheduling Service content store.

importOutputFiles(List<String>
fileNames, CommitSemantics
semantics);

Returns an ImportExportResult instance from
importing the specified files from the resolved output
directory. Imported content overwrites existing
content of the same name, unless the existing content
was created using the API. In that case, the file will not
be imported.

importOutputFiles(
CommitSemantics semantics);

Returns an ImportExportResult instance from
importing all files from the resolved output directory.
Imported content overwrites existing content of the
same name, unless the existing content was created
using the API. In that case, the file will not be
imported.

exportOutputContent(List<String>
contentNames);

Returns an ImportExportResult from exporting the
specified previously imported output content to files
in the request output directory. The exported files will
overwrite any existing files of the same names. Note
that output content created using the API can not be
exported.

exportOutputContent(); Returns an ImportExportResult instance from
exporting all previously imported output content to
files in the request output directory. The exported files
will overwrite any existing files of the same names.
Note that output content created using the API can not
be exported.

queryOutputContent() Returns a List of ContentDetail instances with detailed
information for all existing output content in the
content store. This returns information on both output
content that was imported and output content created
using the API.

queryOutputContent(String
contentName)

Returns a ContentDetail instance with detailed
information for the output content in the content store,
if it exists (null if it doesn’t). This returns information
on both output content that was imported and output
content created using the API.

outputContentExists(String
contentName)

Returns true if the specified output content exists in
the content store for the request. This returns
information on output content that was imported and
output content created using the API.

deleteOutputContent(List<String>
contentNames)

Deletes the specified output content from the content
store for the request. Can delete output content that
was imported and output content created using the
API.

Table 17–9 (Cont.) OutputContentHelper Methods for Java Request Output

Method Description

Creating Request Output

Creating Job Request Logs and Output 17-13

17.2.4.2 Example
The following example illustrates how to create an output file in the request output
directory. Remember that the job must define the SYS_EXT_supportOutputFiles
system property as "output". This example is appropriate for a Java job, an
asynchronous Java job, a pre-processor, or a post-processor.

Example 17–5 Creating an Output File

import oracle.as.scheduler.request.ContentFactory;
import oracle.as.scheduler.request.OutputContentHelper;

class ExampleOutputCreator{

 OutputContentHelper helper = ContentFactory.getOutputContentHelper(requestId);
 String outputDir = helper.getResolvedOutputDirectory();

 File f = new File(outputDir, "myfile");
 f.createNewFile();
 if (f.exists())
 {
 // write to file
 }
}

The following example shows how to manually export and import output files. This
would be useful if you need to create content from files during update. Be aware that
you can export only files that have been imported and not files that were created using
the API.

The example illustrates the scenario that a file that may have been created previously
needs to be updated and imported.

Example 17–6 Manual Export and Import of Request Output

import oracle.as.scheduler.request.ContentFactory;
import oracle.as.scheduler.request.ImportExportResult;
import oracle.as.scheduler.request.ImportExportResult.ImportExportStatus;
import oracle.as.scheduler.request.OutputContentHelper;
import oracle.as.scheduler.request.OutputContentHelper.CommitSemantics;

class ExampleExportImport{

 OutputContentHelper helper = ContentFactory.getOutputContentHelper(requestId);

 if (!helper.outputDirectoryExists())
 {
 // error - make sure job definition defines SYS_EXT_supportOutputFiles
 }

Table 17–10 CommitSemantics Enum Members to Express Commit Semantics

Field Description

StopOnFirstError Stop the operation for all files when there is an error
on a file. If the handle is internal, it will be committed.

IgnoreErrors Attempt the operation on all files regardless of errors.
If the handle is internal, it will be committed.

Transactional Stop the operation for all files when any file has an
error. This is not valid with a user-provided handle.

Creating Request Output

17-14 Product Title/BookTitle as a Variable

 String outputDir = helper.getResolvedOutputDirectory();
 String fileName = "myfile.out";
 List<String> fileNamesList = new ArrayList<String>();
 fileNamesList.add(fileName);

 // Export the file if it exists; otherwise, create it.

 if (helper.outputContentExists(fileName))
 {
 ImportExportResult exportResult = exportOutputContent(fileNamesList);
 if (exportResult.getStatus() != ImportExportStatus.Success)
 {
 // handle error
 }
 }
 else
 {
 File f = new File(outputDir, fileName);
 f.createNewFile();
 }

 // ... update the file as needed ...

 // Import the new or updated file.
 // Updated file overwrites previous contents.

 ImportExportResult importResult =
 helper.importOutputFile(fileNamesList, CommitSemantics.IgnoreErrors);

 if (importResult.getStatus() != ImportExportStatus.Success)
 {
 // handle error
 }
}

17.2.5 Creating Request Output from a PL/SQL Job
To create request output from PL/SQL, your code can use the ESS_JOB PL/SQL
package to create output content directly in the content store.

Using functions and procedures in the package, the job can create text or binary output
content.

17.2.5.1 PL/SQL Package Support for Creating Output

Table 17–11 ESS_JOB Procedures and Functions for Request Output

Method Description

open_text_output_content(p_
content_name in varchar2) return
varchar2

open_binary_output_content(p_
content_name in varchar2) return
varchar2

Returns a handle from opening the specified output
content for the request associated with the current
session.

These are convenience functions that call open_
output_content with the appropriate content type
constant. See open_output_content for additional
details.

Creating Request Output

Creating Job Request Logs and Output 17-15

open_output_content(p_content_
name in varchar2, p_content_type in
integer) return varchar2;

Returns an opaque handle from opening the output
content p_content_name for the request associated
with the current session.

This creates a new output content entry if one does not
already exist for the given name. If one already exists,
then the specified content type must match that
already established for that name.

p_content_type represents content type with one of the
content type constants:

CONTENT_TYPE_TEXT (value: 1) for text content.

CONTENT_TYPE_BINARY (value: 2) for binary
content.

This returns an opaque handle that is passed to
subsequent procedures that operate on that output
content.

The content entry is locked on successful return from
this function. It may or may not be locked if this
procedure fails. A commit or rollback releases the lock.
The write_text_content or write_ntext_content
procedures must be used to write data for text content,
while the write_binary_content procedure must be
used to write data for binary content.

You should call close_content to free any resources
associated with the handle returned by this method.
The close should be done prior to transaction commit
or rollback.

NOTE: The content output support has DML
semantics. The caller is responsible for the
commit/rollback.

write_ntext_content(p_content_
handle in varchar2, p_data in
nvarchar2)

write_text_content(p_content_handle
in varchar2, p_data in varchar2);

Writes data as p_data to the output content associated
with the given handle. These operations are supported
only for CONTENT_TYPE_TEXT content type.

p_content_handle is the output handle from a prior
open_output_content call.

NOTE: The content output support has DML
semantics. The caller is responsible for the
commit/rollback.

write_binary_content(p_content_
handle in varchar2, p_data in raw);

Writes binary data as p_data to the output content
associated with the given handle. This operation is
supported only for CONTENT_TYPE_BINARY
content type.

p_content_handle is the output handle from a prior
open_output_content call.

NOTE: The content output support has DML
semantics. The caller is responsible for the
commit/rollback.

Table 17–11 (Cont.) ESS_JOB Procedures and Functions for Request Output

Method Description

Creating Request Output

17-16 Product Title/BookTitle as a Variable

17.2.5.2 PL/SQL Output Creation Examples
Example 17–7 illustrates how to write text content into output, as well as how to write
log entries along the way.

Example 17–7 PL/SQL Request Text Output

create or replace procedure text_output_example_job
(request_handle in varchar2)
as
 v_request_id number := null;
 v_content_name varchar2(100) := 'mycontent.txt';
 v_content_handle varchar2(100);
 v_ntext nvarchar2(100);
begin
 ess_job.write_log(ess_job.LEVEL_FINE,
 'TEXT_OUTPUT_EXAMPLE_JOB Procedure Begin');

 -- Oracle Enterprise Scheduling Service request id being executed.
 begin
 v_request_id := ess_runtime.get_request_id(request_handle);
 exception
 when others then
 ess_job.write_log(ess_job.LEVEL_SEVERE,
 'Bad request handle: '||request_handle);
 raise_application_error(-20000,
 'Failed to get request id for request handle '||request_handle,
 true);
 end;

 begin
 -- ----------
 -- Delete content entry if it already exists.
 -- ----------
 if (not ess_job.output_content_exists(v_content_name)) then
 ess_job.write_log(ess_job.LEVEL_FINEST,

close_content(p_content_handle in
varchar2);

Closes the output content handle. This releases
resources associated with the given handle and it is no
longer valid. Call this method before transaction
commit or rollback.

p_content_handle is the output handle from a prior
open_output_content call.

NOTE: The content output support has DML
semantics. The caller is responsible for the
commit/rollback. This method does not automatically
perform a commit or rollback

output_content_exists(p_content_
name in varchar2) return boolean;

Returns true if an output content entry having the
specified name already exists for the request
associated with the current session.

p_content_name is the name of the output content
entity.

delete_output_content(p_content_
name in varchar2);

Deletes the specified output content entry for the
request associated with the current session.

p_content_name is the name of the output content
entity.

Table 17–11 (Cont.) ESS_JOB Procedures and Functions for Request Output

Method Description

Creating Request Output

Creating Job Request Logs and Output 17-17

 'Content does not exist: ' || v_content_name);
 else
 ess_job.write_log(ess_job.LEVEL_INFO,
 'Deleting existing content: ' || v_content_name);
 ess_job.delete_output_content(v_content_name);
 commit;
 end if;

 -- ----------
 -- Write text content. Source data has some non-ascii chars.
 -- Illustrate multiple writes.
 -- ----------
 ess_job.write_log(ess_job.LEVEL_FINE,
 'Write text content: '||v_content_name);

 v_content_handle := null;
 v_content_handle := ess_job.open_text_output_content(v_content_name);

 ess_job.write_text_content(v_content_handle,
 'Data ');
 ess_job.write_ntext_content(v_content_handle,
 unistr('(NTEXT data:\00c4\00c5)'));
 ess_job.write_text_content(v_content_handle,
 ' for CONTENT ' || v_content_name);

 ess_job.close_content(v_content_handle);
 v_content_handle := null;
 commit;
 exception
 when others then
 ess_job.write_log(ess_job.LEVEL_WARNING,
 'Error during text output operations. ' ||
 'content: ' || v_content_name || chr(10) ||
 'Error_Stack...' || chr(10) ||
 dbms_utility.format_error_stack() || chr(10) ||
 'Error_Backtace...' || chr(10) ||
 dbms_utility.format_error_backtrace());
 if v_content_handle is not null then
 ess_job.close_content(v_content_handle);
 v_content_handle := null;
 end if;
 rollback;
 raise_application_error(-20000,
 'Output content operations failed for '||v_content_name);
 end;

 ess_job.write_log(ess_job.level_info,
 'TEXT_OUTPUT_EXAMPLE_JOB Procedure End');
end;
/

Example 17–8 illustrates how to write binary content for output.

Example 17–8 PLSQL Request Binary Output Example

create or replace procedure binary_output_example_job
(request_handle in varchar2)
as
 v_request_id number := null;
 v_content_name varchar2(100) := 'mycontent.bin';

Creating Request Output

17-18 Product Title/BookTitle as a Variable

 v_content_handle varchar2(100);
 v_nchar_cs varchar2(100);
 v_dest_cs varchar2(100);
 v_ntext nvarchar2(100);
 v_raw raw(500);
begin
 ess_job.write_log(ess_job.LEVEL_FINE,
 'BINARY_OUTPUT_EXAMPLE_JOB Procedure Begin');

 -- Oracle Enterprise Scheduling Service request id being executed.
 begin
 v_request_id := ess_runtime.get_request_id(request_handle);
 exception
 when others then
 ess_job.write_log(ess_job.LEVEL_SEVERE,
 'Bad request handle: '||request_handle);
 raise_application_error(-20000,
 'Failed to get request id for request handle '||request_handle,
 true);
 end;

 begin
 -- ----------
 -- Delete content entry if it already exists.
 -- ----------
 if (not ess_job.output_content_exists(v_content_name)) then
 ess_job.write_log(ess_job.LEVEL_FINEST,
 'Content does not exist: ' || v_content_name);
 else
 ess_job.write_log(ess_job.LEVEL_INFO,
 'Deleting existing content: ' || v_content_name);
 ess_job.delete_output_content(v_content_name);
 commit;
 end if;

 -- ----------
 -- Write binary content.
 -- This will be UTF-8 representation of a string for a known byte
 -- encoding rather than whatever the charset/national charset
 -- happens to be for this database.
 -- Source data has couple non-ascii chars.
 -- ----------

 -- database national character set being used
 select value into v_nchar_cs
 from nls_database_parameters
 where parameter = 'NLS_NCHAR_CHARACTERSET';
 ess_job.write_log(ess_job.LEVEL_FINEST,
 'NLS_NCHAR_CHARACTERSET = '||v_nchar_cs);

 ess_job.write_log(ess_job.LEVEL_FINE,
 'Write binary content: '||v_content_name);

 v_content_handle := null;
 v_content_handle := ess_job.open_binary_output_content(v_content_name);

 v_ntext := unistr('Data (NTEXT data:\00c4\00c5) for CONTENT ' ||
 v_content_name);

 v_dest_cs := 'AL32UTF8';

Creating Request Output

Creating Job Request Logs and Output 17-19

 v_raw := utl_raw.cast_to_raw(convert(v_ntext, v_dest_cs, v_nchar_cs));
 ess_job.write_binary_content(v_content_handle, v_raw);
 ess_job.write_log(ess_job.LEVEL_FINE,
 'Wrote '||utl_raw.length(v_raw)||' bytes' ||
 ' using ' || v_dest_cs || ' charset');

 ess_job.close_content(v_content_handle);
 v_content_handle := null;
 commit;
 exception
 when others then
 ess_job.write_log(ess_job.LEVEL_WARNING,
 'Error during binary output operations. ' ||
 'content_name=' || v_content_name || chr(10) ||
 'Error_Stack...' || chr(10) ||
 dbms_utility.format_error_stack());
 if v_content_handle is not null then
 ess_job.close_content(v_content_handle);
 v_content_handle := null;
 end if;
 rollback;
 raise_application_error(-20000,
 'Output content operations failed for '||v_content_name);
 end;

 ess_job.write_log(ess_job.level_info,
 'BINARY_OUTPUT_EXAMPLE_JOB Procedure End');
end;
/

17.2.6 Creating Request Output from a Process Job
You create output from a process job logic by writing the content to the location
specified by the ESS_OUTPUT_WORK_DIR environment variable that is available for
all process jobs. As with other jobs, ensure that the SYS_EXT_supportOutputFiles
system property is set to "output" so that the environment variable will be defined for
the job.

After your process code writes the file, Oracle Enterprise Scheduling Service will
automatically import output files in the directory into the content store as binary
content.

Creating Request Output

17-20 Product Title/BookTitle as a Variable

18

Oracle Enterprise Scheduling Service Security 18-1

18Oracle Enterprise Scheduling Service
Security

This chapter describes Oracle Enterprise Scheduling Service Security security features
that provide access control for its resources and application identity propagation for
job execution.

■ Section 18.1, "Introduction to Oracle Enterprise Scheduling Service Security"

■ Section 18.2, "Configuring Metadata Security for Oracle Enterprise Scheduling
Service"

■ Section 18.3, "Configuring Web Service Security for Oracle Enterprise Scheduling
Service"

■ Section 18.4, "Configuring PL/SQL Job Security for Oracle Enterprise Scheduling
Service"

■ Section 18.5, "Elevating Privileges for Oracle Enterprise Scheduling Service Jobs"

■ Section 18.6, "Configuring a Single Policy Stripe in Oracle Enterprise Scheduling
Service"

18.1 Introduction to Oracle Enterprise Scheduling Service Security
Oracle Enterprise Scheduling Service Security includes the following:

■ Protected operations on MetadataService; protected by MetadataPermission,
which enforces metadata access control. Access control on metadata objects. Only
privileged user may create, delete, and update job and schedule metadata. For
more information see Section 18.1.1, "Oracle Enterprise Scheduling Service
Metadata Access Control."

■ Support for the use of an application identity. Using an application identity
enables elevated privileges for completing a job that requires higher privileges
than those allotted to the submitting user. For more information, see Section 18.1.2,
"Oracle Enterprise Scheduling Service Job Execution Security."

18.1.1 Oracle Enterprise Scheduling Service Metadata Access Control
At design time the Metadata creator needs to decide which job functions can access
which Metadata objects. This is expressed by associating each Metadata object with
one or more roles and specifying one or more actions for each role. Figure 18–1 shows
the metadata security summary.

Configuring Metadata Security for Oracle Enterprise Scheduling Service

18-2 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

Figure 18–1 Design Time Metadata Security for Oracle Enterprise Scheduling Service

18.1.2 Oracle Enterprise Scheduling Service Job Execution Security
During job submission, the user under whose permissions the job request is submitted
is called the submitting user. At request execution time all user Java code including
pre-processing, post-processing, Java jobs, and substitution, is run as the submitting
user, retaining all roles and credentials.

If the job metadata specifies SYS_RUNAS_APPLICAITONID, however, the job runs under
the elevated privileges of an application ID. For more information, see Section 18.5,
"Elevating Privileges for Oracle Enterprise Scheduling Service Jobs."

18.2 Configuring Metadata Security for Oracle Enterprise Scheduling
Service

When a user accesses Oracle Enterprise Scheduling Service services using the
RuntimeService or MetadataService, the identity of the user is acquired and Oracle
Enterprise Scheduling Service checks if the user has the required permissions to access
resources (for example Metadata objects). For example, if a user named teller1 needs to
call getJobDefinition to access a Metadata object named caclulateFees, Oracle
Enterprise Scheduling Service ensures that teller1 has READ permission for the
Metadata object caclulateFees before returning the object.

At design time the Metadata creator needs to decide which job functions can access
which Metadata objects. This is expressed by associating each Metadata object with
one or more roles and specifying one or more actions for each role.

There are two options for Metadata role assignments:

■ Using Oracle JDeveloper Tools Oracle ADF Security Wizard

■ Using Oracle JDeveloper Oracle Enterprise Scheduling Service add-in Metadata
pages

Configuring Metadata Security for Oracle Enterprise Scheduling Service

Oracle Enterprise Scheduling Service Security 18-3

Oracle JDeveloper ADF Security wizard creates the roles you use; the roles must be
created before you can register roles with a metadata object.

18.2.1 How to Enable Application Security with Oracle ADF Security Wizard
These steps describe a minimal, validated security setup for an application using
Oracle Enterprise Scheduling Service.

Follow these steps to create a working jps-config.xml and a partially-populated
jazn-data.xml. Use these steps to configure servlets to work with JPS.

To enable security using the ADF Security wizard:
1. In Oracle JDeveloper, with an application open, from the Application menu select

Secure.

2. From the dropdown list, select Configure ADF Security. The Configure ADF
Security wizard displays.

3. In the Enable ADF Security page, select either ADF Authentication and
Authorization or ADF Authentication and click Next.

4. In the Select authentication type page, select either HTTP Basic Authentication or
Form-Based Authentication and click Next.

5. In the Enable automatic policy grants page, select the appropriate options from the
Enable Automatic Grant area, and click Next.

6. In the Specify authenticated welcome page, select options as needed and click
Next.

7. In the Summary page verify the options and click Finish.

8. In the Security Infrastructure Created dialog, click OK.

Next, to enable security and to ensure that the jazn-data.xml is included in the
application deployment, perform the following steps after assembling the EAR file for
the application. For more information, see Section 5.6.3, "How to Assemble the EAR
File for Oracle Enterprise Scheduling Service Sample Application."

Ensure the security related files are included with EAR file:
1. In Oracle JDeveloper, select Application > Application Properties.

2. In the Application Properties page, in the Navigator select Deployment.

3. In the Deployment Profiles area, select the EAR file Deployment descriptor. For
example, for the sample application this is shown in Section 5.6.3, "How to
Assemble the EAR File for Oracle Enterprise Scheduling Service Sample
Application".

4. Click Edit. This displays the Edit EAR Deployment Profile Properties page.

5. In the Edit EAR Deployment Profile Properties page, expand File Groups >
Application Descriptors > Filters.

6. In the Filters area, select the Files tab.

7. Ensure that the files jazn-data.xml, jps-config.xml, and
weblogic-application.xml are selected under the META-INF folder.

8. Click OK to save the descriptor.

Configuring Metadata Security for Oracle Enterprise Scheduling Service

18-4 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

18.2.2 How to Define Principals for Security
You need to define roles before the roles are used in Oracle Enterprise Scheduling
Service security. There are two types of roles that may be defined:

■ Enterprise roles: These are defined directly in Oracle WebLogic Server either using
the Oracle WebLogic Server console, using the WLST scripts, or using the ADF
Security Wizard in Oracle JDeveloper.

■ Application roles: These can be defined in the jazn-data.xml file or using the
ADF Security Wizard.

To define principals security:
1. In Oracle JDeveloper, open the application and expand Application Resources in

the Application Navigator.

2. In the Application Resources area, expand Descriptors and META-INF.

3. In META-INF, double-click to open jazn-data.xml.

4. In the page showing jazn-data.xml, select the Overview tab. Note, if the
Overview tab is not shown, try closing jazn-data.xml and then opening it again.

5. Click Application Roles...(Manage Users and Roles).

6. On the Edit JPS Identity and Policy Store page, in the navigator expand Identity
Store and jazn.com.

7. In the navigator, select Roles and click Add.... This displays the Add Role dialog.

8. In the Add Role dialog, enter a name in the Name field.

9. Click OK.

10. On the Edit JPS Identity and Policy Store page, in the navigator select Application
Policy Store. If there is a sub-element with the same name as the application, go to
the next step, Otherwise, do the following:

a. Select Application Policy Store.

b. Click New... . This displays the Create Application Policy dialog.

c. In the Create Application Dialog the Display Name field should contain the
application name.

d. Click OK to accept the default Display Name.

11. On the Edit JPS Identity and Policy Store page, in the navigator expand
Application Policy Store and expand the application name.

12. In the navigator, select Application Roles. This displays the Application Roles
page.

13. In the Application Roles page, click Add... to add roles. For correct functionality at
least one enterprise role must be mapped to the application role by adding
enterprise roles in the Member Roles tab.

14. Click OK.

18.2.3 How to Create Grants with Oracle Enterprise Scheduling Service Metadata
Pages

Access to all Metadata is controlled by grants. In order to ensure access by the right
identities, you need to give the correct grants. It is expected that most Metadata grants
will be done using the Oracle Enterprise Scheduling Service Oracle JDeveloper add-in.

Configuring Metadata Security for Oracle Enterprise Scheduling Service

Oracle Enterprise Scheduling Service Security 18-5

First, create any required Oracle Enterprise Scheduling Service Metadata in an
application using File > New > Business Tier > Enterprise Scheduler Metadata. For
more information on creating Metadata, see Section 5.5, "Creating Metadata for Oracle
Enterprise Scheduling Service Sample Application."

Using Oracle JDeveloper, you can add security grants to Oracle Enterprise Scheduling
Service metadata objects.

To secure Oracle Enterprise Scheduling Service metadata objects:
1. Open the Editor page for any Oracle Enterprise Scheduling Service Metadata

object.

2. In the Access Control area, click Add to add a new access control item.

3. In the Add Access Control dialog, select a Role from the dropdown list. This
selects a role to grant access privileges.

4. Select one or more actions from the list, Read, Execute, Update, or Delete.

5. Click OK. This displays the updated role, as shown in Figure 18–2.

6. Repeat for as many roles as needed.

Figure 18–2 Security Roles for Oracle Enterprise Scheduling Service Metadata

18.2.4 How to Create Grants with Oracle ADF Security Wizard
There may be occasions where you want to create grants explicitly, for example when
using wildcards. These steps show how to set up grants using the ADF Security
wizard.

Note that these steps assume you have already created application roles.

To specify grants with the ADF Security wizard:
1. In the Application Navigator, expand the Application Resources panel.

Configuring Metadata Security for Oracle Enterprise Scheduling Service

18-6 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

2. Expand Descriptors and META-INF, as shown in Figure 18–3.

Figure 18–3 Security Configuration Files Including jazn-data.xml in META-INF

3. Double-click jazn-data.xml to open the file. In the editor panel for
jazn-data.xml, select the Overview tab, and click Application Roles... (Manage
Users and Roles). This displays the JPS Identity & Policy Store dialog. Note, if the
Overview tab is not shown, try closing jazn-data.xml and then opening it again.

4. In the JPS Identity & Policy Store dialog, in the navigator expand Application
Policy Store.

5. Expand application-name, and select Application Roles.

6. Click New.

7. Enter the display name you wish for this grant, and click OK.

8. Select the Principals tab, and click Add... .

9. Enter the name of the application role which will receive the grant; this should be
one of the role names created. Leave the Class field as is.

10. Click OK.

11. With the new role selected in the Principals tab, make sure the Type is role.

12. Select the Permissions tab, and click Add....

13. For the Name field, enter a full permission string or a partial string with
wildcards; see Table 18–1 for examples. In the Class field, enter
oracle.as.scheduler.security.MetadataPermission. Click OK.

14. With the new permission selected in the Permissions tab, enter the desired actions
in the Actions Field.

15. Click OK to save the grant.

Configuring Metadata Security for Oracle Enterprise Scheduling Service

Oracle Enterprise Scheduling Service Security 18-7

18.2.5 About MetadataPermission APIs
Grants for Metadata are part of the class oracle.as.scheduler.
security.MetadataPermission. The name, or target of the permission is based on the
package, Metadata object type, and name of the Metadata object being protected; this
identifier can be retrieved from MetdataObjectId#toPermissionString().

Table 18–2 lists the actions for the grants. The notation <Type> is a placeholder for all
of the metadata object types. For example, get<Type>() refers to the methods
getJobDefinition(), getJobType(), getJobSet().

If you are submitting ad-hoc requests, you can have full wildcard ("*") permission with
both EXECUTE and CREATE actions. When submitting ad-hoc requests, that is, using
submitRequest() without certain MetadataObjectIds, you can grant permissions with
the full wildcard ("*") name using the EXECUTE and CREATE actions.

18.2.6 What Happens When You Configure Metadata Security
Each time a user application calls a MetdataService or RuntimeService method,
Oracle Enterprise Scheduling Service checks the current subject for privileges on the
metadata accessed by the methods. For example, submitting a request requires
EXECUTE permissions on the job definition or job set metadata object associated with
the submission. Methods that change metadata, for example calling
updateJobDefinition(), require UPDATE permissions.

Note: If necessary, use the following workaround:

1. Right-click the jazn-data.xml file and select Open.

2. Click the Source tab.

3. Under <jazn-policy><grant><grantee>, remove the elements
<display-name> and <type>.

Table 18–1 Sample Permission Grants for Security Using Oracle ADF

Name Actions Effect

package-part.JobDefinition
.MyJavaSucJobDef

EXECUTE Grants the ability to submit requests
for a single Metadata item.

mypackage.subpackage.* CREATE,EXECUTE Grants to ability to create and execute
any new Metadata items in
/mypackage/subpackage

JobDefinition.SYS_
AdHocRequest

CREATE,EXECUTE Grants ad hoc submission permission

mypackage.* CREATE,EXECUTE,DELETE Grants wide-open permissions

Table 18–2 Grant Actions for Metadata Security

Action Implies Metadata Functions

READ None get<Type>(), query<Type>()

EXECUTE READ submitRequest()

CREATE READ add<Type>()

UPDATE READ update<Type>()

DELETE READ delete<Type>()

Configuring Web Service Security for Oracle Enterprise Scheduling Service

18-8 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

For all MetadataService methods except queries, an exception is thrown when the
user tries to access a Metadata object for which the user does not have permission.

The MetadataService query methods have different behavior. When a user performs a
query Oracle Enterprise Scheduling Service only returns Metadata objects that have
READ permission. Thus a user who has no permissions on Metadata objects receives an
empty list for all queries, but this user would not see an exception thrown due to lack
of permissions.

The value of SystemProperty.USER_NAME is overwritten at submission time; the user
cannot spoof an identity at submission time using SystemProperty.USER_NAME.

18.3 Configuring Web Service Security for Oracle Enterprise Scheduling
Service

For information about securing the Oracle Enterprise Scheduling Service web service,
see Section 11.9, "Securing the Oracle Enterprise Scheduling Service Web Service."

18.4 Configuring PL/SQL Job Security for Oracle Enterprise Scheduling
Service

The PL/SQL job does not enforce data security checks when calling ess_runtime
package apis.

18.5 Elevating Privileges for Oracle Enterprise Scheduling Service Jobs
When a user accesses Oracle Enterprise Scheduling Service services using the
RuntimeService or MetadataService interfaces, the identity of the user calling the
methods is acquired. This identity is used to check whether the user has the required
permissions to access certain resources such as metadata objects. For example, if user
teller1 calls the method getJobDefinition for metadata object caclulateFees,
Oracle Enterprise Scheduling Service ensures that teller1 has read permissions for
metadata object caclulateFees before returning the object.

The caller identity is also used to run jobs requested by the user. For example, if user
teller1 calls the method submitRequest() for a Java job, the requested jobs run under
teller1 and retain all roles and credentials assigned to that user.

Oracle Enterprise Scheduling Service supports the use of an application identity.
Using an application identity enables elevated privileges for completion of a job that
requires higher privileges than those allotted to the submitting user.

18.6 Configuring a Single Policy Stripe in Oracle Enterprise Scheduling
Service

Oracle Platform Security policy store serves as the repository for authorization
policies. Authorization policies load at run time into the Java Virtual Machine, and are
used to make decisions regarding authorization. Authorization policies comprise a
hierarchy of application roles, the mapping of enterprise roles to application roles and
permissions grants to application roles. Application roles can also be hierarchical.

Aside from authorization policies, Oracle Platform Security policy store also stores
administrative constructs that help in maintaining these authorization policies,
including resource catalogs (with associated resource types), permission sets and role

Configuring a Single Policy Stripe in Oracle Enterprise Scheduling Service

Oracle Enterprise Scheduling Service Security 18-9

categories. The authorization polices and administrative components are scoped to an
application. This is known as an application stripe.

An application stripe is a collection of JAAS policies applicable to the application with
which it is associated. Out of the box, an application stripe maps to an Oracle Java EE
application. Oracle Platform Security also supports mapping multiple Java EE
applications to one application stripe. The application ID string identifies the name of
the application or applications.

18.6.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduling Service
Oracle Enterprise Scheduling Service allows specifying an applicationStripe name
and mapping it to a JPS policy context ID. You can assign multiple Oracle Enterprise
Scheduling Service hosting applications to a single policy context.

To configure an Oracle Enterprise Scheduling Service hosting application to a
specific applicationStripe:
1. Open the ejb-jar.xml file.

2. Under the message-driven element, add an activation-config-properties
element with the value applicationStripe.

3. Under the jpsinterceptor-class element, configure the JpsInterceptor.

Make sure to match the value of applicationStripe under the <message-driven>
element with the application.name value under the <interceptor> element.

Example 18–1 shows an applicationStripe configuration for the policy context
ESS_FUNCTIONAL_TEST_APP_STRIPE.

Example 18–1 Configuring the applicationStripe and the JpsInterceptor

<ejb-jar>

 <enterprise-beans>
 <message-driven>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
 <activation-config>

 <activation-config-property>
 <activation-config-property-name>applicationStripe</activation-config-property-name>
 <activation-config-property-value>ESS_FUNCTIONAL_TESTS_APP_
 STRIPE</activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>

 </enterprise-beans>

 <interceptors>
 <interceptor>
 <interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ESS_FUNCTIONAL_TESTS_APP_STRIPE</env-entry-value>
 <injection-target>

Configuring a Single Policy Stripe in Oracle Enterprise Scheduling Service

18-10 Oracle Fusion Middleware Developer's Guide for Oracle Enterprise Scheduling Service

 <injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor
 </injection-target-class>
 <injection-target-name>application_name</injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 </interceptors>
</ejb-jar>

4. If your application has a web module, configure the web module JpsFilter to use
the same applicationStripe in the file web.xml. Example 18–2 shows a code
sample.

Example 18–2 Configuring the Web Module in web.xml

<web-app>
 <filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 ...
 <init-param>
 <param-name>application.name</param-name>
 <param-value>ESS_FUNCTIONAL_TESTS_APP_STRIPE</param-value>
 </init-param>
 </filter>

</web-app>

18.6.2 What Happens When You Configure a Single Policy Stripe
At design time, an application stripe manifests as:

■ An <application> element under the <policystore> element in the
jazn-data.xml file.

■ A node under the node
cn=<Weblogic.domain.name>,cn=JPSContext,cn=<root.node>, such as
cn=ATGDemo,cn=base_domain,cn=JPSContext,cn=MY_Node.

18.6.3 What Happens at Runtime
At run time, an application stripe manifests as an instance of the class
oracle.security.jps.service.policystore.ApplicationPolicy.

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Oracle Enterprise Scheduling Service
	1.1 About Oracle Enterprise Scheduling Service
	1.2 Oracle Enterprise Scheduling Service Overview for Application Developers
	1.2.1 Introduction to Working with Oracle Enterprise Scheduling Service at Design-Time
	1.2.2 Introduction to Working with Oracle Enterprise Scheduling Service at Runtime
	1.2.3 Oracle Enterprise Scheduling Service Job Requests
	1.2.4 Overview of Integration Steps

	1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduling Service

	2 Verifying the Oracle Enterprise Scheduling Service Installation
	2.1 Introduction to Verifying the Oracle Enterprise Scheduling Service Installation
	2.2 How to Verify the Oracle Enterprise Scheduling Service Installation Using a Browser
	2.3 How to Programmatically Verify the Oracle Enterprise Scheduling Service Installation
	2.4 What Happens When You Verify the Oracle Enterprise Scheduling Service Installation
	2.5 What Happens at Runtime: How the Oracle Enterprise Scheduling Service Installation is Verified

	3 Using Ant to Generate a Hosting Application
	3.1 Introduction to Generating a Hosting Application with Ant
	3.1.1 Prerequisites for Using the Ant Build Files

	3.2 Ant Targets for Creating and Deploying a Hosting Application
	3.3 Creating a Hosting Application and Project Workspace with Ant
	3.4 Creating a Java Job as a Shared Library with Ant
	3.5 Packaging a Java Job as a Shared Library with Ant
	3.6 Deploying a Shared Library with Ant
	3.7 Packaging a Hosting Application with Ant
	3.8 Deploying a Hosting Application with Ant
	3.9 Configuring the Generated Ant Targets

	4 Using Oracle JDeveloper to Generate an Oracle Enterprise Scheduling Service Application
	4.1 How to Start JDeveloper to Support Building Oracle Enterprise Scheduling Service Applications
	4.2 Building a Combined Oracle Enterprise Scheduling Service Application
	4.2.1 Creating the Application and Projects for EssDemoApp Application
	4.2.1.1 How to Create the EssDemoApp Application and Host Project
	4.2.1.2 How to Create the Client Project

	4.2.2 Creating Metadata and an Implementation Class for the EssDemoApp Application
	4.2.2.1 How to Create Metadata for the EssDemoApp Application

	4.2.3 Adding Application Code to Submit Job Requests
	4.2.3.1 How to Add Application Code to Submit Job Requests

	4.2.4 Setting Oracle Enterprise Scheduling Service Properties
	4.2.4.1 How to Set Oracle Enterprise Scheduling Service Properties for the Application

	4.2.5 Assembling the EssDemoApp Application
	4.2.5.1 How to Create the EJB-JAR Deployment Profile for the EssDemoApp
	4.2.5.2 How To Update the WAR Archive Options
	4.2.5.3 How to Update the EAR Options

	4.2.6 Deploying and Running the EssDemoApp Application
	4.2.6.1 How to Deploy the EssDemoApp Application
	4.2.6.2 How to Run the EssDemoApp Sample Application
	4.2.6.3 How to Purge Jobs in the EssDemoApp Sample Application

	4.3 Building Split Submitting and Hosting Applications
	4.3.1 How to Create the Back-End Hosting Application for EssDemoApp
	4.3.1.1 Creating the Back-End Hosting Application
	4.3.1.2 Configuring Security for the Back-End Hosting Application
	4.3.1.3 Defining Metadata for the Back-End Hosting Application
	4.3.1.4 Creating a Java Implementation Class in the Back-End Hosting Application
	4.3.1.5 Setting Oracle Enterprise Scheduling Service Properties
	4.3.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise Scheduling Service
	4.3.1.6.1 How to Assemble the EJB JAR File for the Back-End Hosting Application
	4.3.1.6.2 How to Assemble the MAR and EAR Files for the Back-End Hosting Application

	4.3.1.7 Deploying the Back-End Hosting Application

	4.3.2 How to Create the Front-End Submitter Application for Oracle Enterprise Scheduling Service
	4.3.2.1 Creating the Front-End Submitter Application
	4.3.2.2 Creating the SuperWeb Project
	4.3.2.3 Configuring Security for the Front-End Submitter Application
	4.3.2.4 Creating the HTTP Servlet for the Front-End Submitter Application
	4.3.2.5 Editing the web.xml File for the Front-End Submitter Application
	4.3.2.6 Editing the weblogic-application.xml file for the Front-End Submitter Application
	4.3.2.7 Editing the adf-config file for the Front-End Submitter Application
	4.3.2.8 Assembling the Front-End Submitter Application for Oracle Enterprise Scheduling Service
	4.3.2.8.1 How to Assemble the EJB JAR File for the Front-End Submitter Application
	4.3.2.8.2 How to Assemble the WAR File for the Front-End Submitter Application
	4.3.2.8.3 How to Assemble the MAR and EAR Files for the Front-End Hosting Application

	4.3.2.9 Deploying the Front-End Submitter Application
	4.3.2.10 Running the Split Application

	5 Use Case Oracle Enterprise Scheduling Service Sample Application (Deprecated)
	5.1 Introduction to the Oracle Enterprise Scheduling Service Sample Application
	5.2 Creating the Application and Projects for the Sample Application
	5.2.1 How to Create the EssDemoApp Application
	5.2.2 How to Create a Project in the Sample Application
	5.2.3 How to Set Project Properties for Oracle Enterprise Scheduling Service

	5.3 Creating a Java Implementation Class for the Sample Application
	5.3.1 How to Create a Java Class Using the Executable Interface
	5.3.2 What Happens When You Create a Java Class That Implements the Executable Interface
	5.3.3 What You Need to Know About the Executable Interface

	5.4 Adding Application Code to Submit Oracle Enterprise Scheduling Service Job Requests
	5.4.1 How to Add Required Libraries to Project
	5.4.2 How to Create the EssDemo Servlet

	5.5 Creating Metadata for Oracle Enterprise Scheduling Service Sample Application
	5.5.1 How to Create a Job Type for Java
	5.5.2 How to Create a Job Definition for Java

	5.6 Assembling the Oracle Enterprise Scheduling Service Sample Application
	5.6.1 How to Assemble the EJB Jar Files for Oracle Enterprise Scheduling Service Sample Application
	5.6.2 How to Assemble the MAR File for User Metadata
	5.6.3 How to Assemble the EAR File for Oracle Enterprise Scheduling Service Sample Application
	5.6.4 Add oracle.ess Library Weblogic Application Descriptor

	5.7 Deploying and Running the Oracle Enterprise Scheduling Service Sample Application
	5.7.1 How to Deploy the EssDemoApp Application
	5.7.2 How to Run the Oracle Enterprise Scheduling Service Sample Application
	5.7.3 How to Purge Jobs in the Oracle Enterprise Scheduling Service Sample Application

	5.8 Troubleshooting the Oracle Enterprise Scheduling Service Sample Application
	5.8.1 How to Create the Oracle Enterprise Scheduling Service Database Schema
	5.8.2 How to Drop the Oracle Enterprise Scheduling Service Runtime Schema

	5.9 Using Submitting and Hosting Split Applications
	5.9.1 How to Create the Back-End Hosting Application for Oracle Enterprise Scheduling Service
	5.9.1.1 Creating the Back-End Hosting Application
	5.9.1.2 Configuring Security for the Back-End Hosting Application
	5.9.1.3 Defining the Deployment Descriptors for the Back-End Hosting Application
	5.9.1.4 Creating a Java Implementation Class in the Back-End Hosting Application
	5.9.1.5 Creating Metadata for the Back-End Hosting Application
	5.9.1.6 Assembling the Back-End Hosting Application for Oracle Enterprise Scheduling Service
	5.9.1.7 Deploying the Back-End Hosting Application

	5.9.2 How to Create the Front-End Submitter Application for Oracle Enterprise Scheduling Service
	5.9.2.1 Creating the Front-End Submitter Application
	5.9.2.2 Configuring the ejb-jar.xml File for the Front-End Submitter Application
	5.9.2.3 Creating the SuperWeb Project
	5.9.2.4 Configuring Security for the Front-End Submitter Application
	5.9.2.5 Creating the HTTP Servlet for the Front-End Submitter Application
	5.9.2.6 Editing the web.xml File for the Front-End Submitter Application
	5.9.2.7 Editing the weblogic-application.xml file for the Front-End Submitter Application
	5.9.2.8 Editing the adf-config file for the Front-End Submitter Application
	5.9.2.9 Assembling the Front-End Submitter Application for Oracle Enterprise Scheduling Service
	5.9.2.10 Deploying the Back-End Hosting Application

	6 Using the Metadata Service
	6.1 Introduction to Using the Metadata Service
	6.1.1 Introduction to Metadata Service Namespaces
	6.1.2 Introduction to Metadata Service Operations
	6.1.3 Introduction to Metadata Service Transactions

	6.2 Accessing the Metadata Service
	6.2.1 How to Access the Metadata Service with a Stateless Session EJB

	6.3 Accessing the Metadata Service with Oracle JDeveloper
	6.4 Querying Metadata Using the Metadata Service
	6.4.1 How to Create a Filter
	6.4.2 How to Query Metadata Objects

	7 Using Parameters and System Properties
	7.1 Introduction to Using Parameters and System Properties
	7.1.1 What You Need to Know About Application Defined Property and System Property Naming
	7.1.2 What You Need to Know About Parameter Conflict Resolution and Parameter Materialization
	7.1.2.1 What You Need to Know About Job Definition Parameter Materialization
	7.1.2.2 What You Need to Know About Job Set Level Parameter Materialization

	7.2 Using Parameters with the Metadata Service
	7.2.1 How to Use Parameters and System Properties in Metadata Objects

	7.3 Using Parameters with the Runtime Service
	7.3.1 How to Use Parameters with the Runtime Service
	7.3.2 How to Use Parameters with a Step ID for Job Set Steps

	7.4 Using System Properties

	8 Creating and Using PL/SQL Jobs
	8.1 Introduction to Using PL/SQL Stored Procedure Job Definitions
	8.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduling Service
	8.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature
	8.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduling Service PL/SQL Stored Procedure
	8.2.3 How to Access Job Request Information In PL/SQL Stored Procedures
	8.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure

	8.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures
	8.3.1 How to Grant PL/SQL Stored Procedure Permissions
	8.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions

	8.4 Creating and Storing Job Definitions for PL/SQL Job Types
	8.4.1 How to Create a PL/SQL Job Type
	8.4.2 How to Create and Store a Job Definition for PL/SQL Job Type
	8.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduling Service Application

	9 Creating and Using Process Jobs
	9.1 Introduction to Creating Process Job Definitions
	9.2 Creating and Storing Job Definitions for Process Job Types
	9.2.1 How to Create and Store a Process Job Type
	9.2.2 How to Create and Store a Process Type Job Definition

	9.3 Using a Perl Agent Handler for Process Jobs

	10 Defining and Using Schedules
	10.1 Introduction to Schedules
	10.2 Defining a Recurrence
	10.2.1 How to Define a Recurrence with a Recurrence Fields Helper
	10.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification
	10.2.3 What You Need to Know When You Use a Recurrence Fields Helper
	10.2.4 What You Need to Know When You Use an iCalendar Expression

	10.3 Defining an Explicit Date
	10.3.1 How to Define an Explicit Date
	10.3.2 What You Need to Know About Explicit Dates

	10.4 Defining and Storing Exclusions
	10.4.1 How to Define an Exclusion
	10.4.2 How to Create an Exclusions Definition

	10.5 Defining and Storing Schedules
	10.5.1 How to Define and Store a Schedule
	10.5.2 What Happens When You Define and Store a Schedule
	10.5.3 What You Need to Know About Handling Time Zones with Schedules

	10.6 Identifying Job Requests That Use a Particular Schedule
	10.7 Updating and Deleting Schedules

	11 Using the Oracle Enterprise Scheduling Service Web Service
	11.1 Introduction to the Oracle Enterprise Scheduling Service Web Service
	11.2 Developing and Using ESSWebservice Applications
	11.2.1 How to Develop and Use an ESSWebservice Java EE Application
	11.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL
	11.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation
	11.2.4 Limitations for ESSWebservice
	11.2.5 ESSWebservice Implementation

	11.3 ESSWebservice WSDL File
	11.4 Use Case Using Oracle Enterprise Scheduling Service ESSWebservice from a BPEL Process
	11.5 Creating the ESSWebService Application and a SOA Project
	11.5.1 How to Create the ESSWebService Application and Project

	11.6 Creating the ESSWebService Reference
	11.6.1 How to Add the ESSWebService Partner Link

	11.7 Adding the BPEL Process to Call the ESSWebService
	11.7.1 How to Add a BPEL Process to Call the ESSWebService
	11.7.2 Copy Types Into BPEL Process Schema
	11.7.3 How to Invoke the ESSWebService submitRequest Operation
	11.7.4 Assign Required Input Parameters for Request Submission
	11.7.5 Invoke the getCompletionStatus Operation
	11.7.6 Assign Input to the getCompletionStatus Operation
	11.7.7 Receive the Job Completion Status
	11.7.8 Return Result to Client

	11.8 Using Additional ESSWebService Operations
	11.8.1 How to Invoke the ESSWebService submitRecurringRequest Operation
	11.8.2 How to Invoke the ESSWebService setSubmitArgs Operation
	11.8.3 How to Invoke the ESSWebService addPPActions Operation
	11.8.4 How to Invoke the ESSWebService setStepsArgs Operation

	11.9 Securing the Oracle Enterprise Scheduling Service Web Service
	11.9.1 How to Secure the Oracle Enterprise Scheduling Service Web Service
	11.9.2 What Happens When You Secure the Oracle Enterprise Scheduling Service Web Service

	11.10 Deploying and Testing the Project
	11.10.1 How to Test the Web Service

	12 Defining and Using Job Sets
	12.1 Introduction to Defining and Using Job Sets
	12.2 Defining Job Sets
	12.2.1 How to Define a Job Set
	12.2.2 How to Define Serial Job Set Steps
	12.2.3 How to Define Parallel Job Set Steps
	12.2.4 What Happens When You Define a Job Set
	12.2.5 What You Need to Know About Serial Job Sets
	12.2.6 What You Need to Know About Job Set Application Defined Properties and System Properties
	12.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions

	12.3 Cross Application Job Sets
	12.3.1 Overview of Cross Application Job Sets
	12.3.2 Requirements for Cross Application Job Sets

	12.4 Using Input and Output Forwarding
	12.4.1 Supporting Input and Output Forwarding in Job Sets

	13 Defining and Using a Job Incompatibility
	13.1 Introduction to Using a Job Incompatibility
	13.1.1 Job Self Incompatibility

	13.2 Defining Incompatibility with Oracle JDeveloper
	13.2.1 How to Define a Global Incompatibility
	13.2.2 How to Define a Domain Incompatibility

	13.3 What Happens at Runtime to Handle Job Incompatibility
	13.3.1 What Happens to Subrequests with an Incompatible Parent Request
	13.3.2 What Happens to the Scope of Request Incompatibility

	14 Using the Runtime Service
	14.1 Introduction to the Runtime Service
	14.2 Accessing the Runtime Service
	14.2.1 How to Access the Runtime Service and Obtain a Runtime Service Handle

	14.3 Submitting Job Requests
	14.3.1 How to Submit a Request to the Runtime Service
	14.3.2 What You Should Know About Default System Properties When You Submit a Request
	14.3.3 What You Should Know About Metadata When You Submit a Request

	14.4 Managing Job Requests
	14.4.1 How to Get Job Request Information with getRequestDetail
	14.4.2 How to Change Job Request State
	14.4.3 How to Update Job Request Priority and Job Request Parameters

	14.5 Querying Job Requests
	14.6 Submitting Ad Hoc Job Requests
	14.6.1 How to Create an Ad Hoc Request
	14.6.2 What Happens When You Create an Ad Hoc Request
	14.6.3 What You Need to Know About Ad Hoc Requests

	14.7 Implementing Pre-Process and Post-Process Handlers
	14.7.1 Implementing a Pre-Process Handler
	14.7.1.1 Implementing the PreProcessHandler Interface

	14.7.2 Implementing a Post-Process Handler
	14.7.2.1 Implementing the PostProcessHandler Interface

	15 Using Subrequests
	15.1 Introduction to Using Subrequests
	15.2 Sample Subrequest
	15.3 Creating and Managing Subrequests
	15.3.1 How to Submit Subrequests
	15.3.2 How to Cancel Subrequests
	15.3.3 How to Hold Subrequests
	15.3.4 How to Delete Subrequests
	15.3.5 How to Submit Multiple Subrequests
	15.3.6 How to Manage Paused Subrequests
	15.3.6.1 Indicating Paused Status
	15.3.6.2 Storing the Paused State for a Parent Request

	15.3.7 How Subrequests Are Processed
	15.3.8 How to Identify Subrequests
	15.3.9 How to Manage Subrequests and Incompatibility

	15.4 Creating a Java Procedure that Submits a Subrequest
	15.5 Creating a PL/SQL Procedure that Submits a Subrequest

	16 Working with Asynchronous Java Jobs
	16.1 Introduction to Working with Asynchronous Java Jobs
	16.2 Creating an Asynchronous Java Job
	16.2.1 Implementing the Asynchronous Java Job Asynchronous Interface
	16.2.2 Asynchronous Java Job execute() Method
	16.2.3 Invoking a Remote Job from an Asynchronous Java Job
	16.2.4 Calling Back to Oracle Enterprise Scheduling Service with Status Updates
	16.2.5 Updating the Asynchronous Java Job
	16.2.6 Notifying Oracle Enterprise Scheduling Service When an Asynchronous Job Completes
	16.2.6.1 Using the Web Service to Notify When an Asynchronous Job Completes
	16.2.6.2 Using EJB to Notify When an Asynchronous Job Completes

	16.2.7 Asynchronous Java Job AsyncCancellable Interface
	16.2.8 Sample Asynchronous Java Job Invoking a BPEL Process Through Event Delivery Network
	16.2.8.1 Sample BPEL Process Design Time with Oracle Enterprise Scheduling Service

	16.3 A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job
	16.3.1 Introduction to the Recommended Design Pattern
	16.3.2 Potential Approaches
	16.3.3 Use Case Summary

	16.4 How to Implement BPEL with an Asynchronous Job
	16.4.1 Use Case: Add Oracle JDeveloper Libraries
	16.4.2 Use Case: Create the Asynchronous Job Definition
	16.4.3 Use Case: Design the Event Payload Schema and Event Definition Files
	16.4.4 Programmatically Raise a Business Event from the Asynchronous Job Methods
	16.4.5 Design the SOA Composite with Meditator and BPEL
	16.4.6 Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job
	16.4.6.1 Create Correlation Set and Define Initiate Activity
	16.4.6.2 Create the onMessage Branch with Use of Correlation Set
	16.4.6.3 Create the Fault Branch
	16.4.6.4 Populate the onMessage and Fault Branch

	16.4.7 Validating the Deployment
	16.4.8 Troubleshooting the Use Case

	16.5 Handling Time Outs and Recovery for Asynchronous Jobs
	16.5.1 Asynchronous Request Time Outs
	16.5.1.1 Setting the TIme Out Value
	16.5.1.2 Discovering the Asynchronous Job Requests that Have Timed Out
	16.5.1.3 Completing Asynchronous Requests without a Time Out
	16.5.1.4 What Happens When an Asynchronous Job Request Times Out

	16.5.2 Handling Asynchronous Jobs Marked for Manual Recovery
	16.5.3 Using RecoverRequest to Manually Recover a Job Request

	16.6 Oracle Enterprise Scheduling Service Interfaces and Classes

	17 Creating Job Request Logs and Output
	17.1 Creating Request Logs
	17.1.1 System Properties
	17.1.2 APIs for Handling Request Logs
	17.1.3 Log Header
	17.1.4 Creating Request Logs from a Java Job
	17.1.4.1 APIs for Java Job Logging
	17.1.4.2 Example

	17.1.5 Creating Request Logs from a PL/SQL Job
	17.1.5.1 ESS_JOB Package Support for Creating Logs
	17.1.5.2 PL/SQL Request Logging Example

	17.1.6 Creating Request Logs from a Process Job

	17.2 Creating Request Output
	17.2.1 Using the Request File Directory
	17.2.1.1 Common Request File Directory Behavior
	17.2.1.2 Shared Request File Directory Behavior
	17.2.1.2.1 Error Handling When a Shared Request File Directory is Used

	17.2.1.3 Local Request File Directory Behavior
	17.2.1.3.1 Error Handling When a Local Request File Directory is Used

	17.2.2 System Properties
	17.2.3 APIs for Handling Request Output
	17.2.4 Creating Request Output from a Java Job
	17.2.4.1 APIs for Handling Request Output from a Java Job
	17.2.4.2 Example

	17.2.5 Creating Request Output from a PL/SQL Job
	17.2.5.1 PL/SQL Package Support for Creating Output
	17.2.5.2 PL/SQL Output Creation Examples

	17.2.6 Creating Request Output from a Process Job

	18 Oracle Enterprise Scheduling Service Security
	18.1 Introduction to Oracle Enterprise Scheduling Service Security
	18.1.1 Oracle Enterprise Scheduling Service Metadata Access Control
	18.1.2 Oracle Enterprise Scheduling Service Job Execution Security

	18.2 Configuring Metadata Security for Oracle Enterprise Scheduling Service
	18.2.1 How to Enable Application Security with Oracle ADF Security Wizard
	18.2.2 How to Define Principals for Security
	18.2.3 How to Create Grants with Oracle Enterprise Scheduling Service Metadata Pages
	18.2.4 How to Create Grants with Oracle ADF Security Wizard
	18.2.5 About MetadataPermission APIs
	18.2.6 What Happens When You Configure Metadata Security

	18.3 Configuring Web Service Security for Oracle Enterprise Scheduling Service
	18.4 Configuring PL/SQL Job Security for Oracle Enterprise Scheduling Service
	18.5 Elevating Privileges for Oracle Enterprise Scheduling Service Jobs
	18.6 Configuring a Single Policy Stripe in Oracle Enterprise Scheduling Service
	18.6.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduling Service
	18.6.2 What Happens When You Configure a Single Policy Stripe
	18.6.3 What Happens at Runtime

