ORACLE

Oracle® Fusion Middleware
Getting Started Guide for Oracle Complex Event Processing

11gRelease 1 (11.1.1.6.0)
E14476-06

November 2011

Documentation for administrators and developers that
describes how to get started with Oracle Complex Event
Processing (Oracle CEP), a Java server for developing
high-performance event-driven applications. It includes an
overview of features and concepts, sample applications, and
installation guidelines.

Oracle Fusion Middleware Getting Started Guide for Oracle Complex Event Processing 11g Release 1
(11.1.1.6.0)

E14476-06
Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Peter Purich

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Contents

Preface ... xiii
ATAIEIICE ... b e Xiii
Documentation AcCesSIDIlityccociiiiiiiiiiiiiiiiii e Xiii
Related DOCUIMENLEScvviviiiiiiiiiiii s Xiii
CONVENTIONS ..ottt ens e b a st Xiv

1 Overview of Oracle CEP
1.1 Introduction to Oracle Complex Event Processing..........ccceuevecueiniineieineccieccccieees 1-1
1.2 Conceptual Overview of Oracle CEP..........cccoooiviiiiiiniicce s 1-1
1.3 Event Processing NetWOTKS.......cccccciiiiiiiiiiiiccececce e 1-3
1.4 USE CASES....cviniiiniiiiciiii bbb s 1-4
1.5 Summary of Oracle CEP Featuresccccccovviviiiiniiininniniccnncnsne e 1-4
1.6 Supported PLatfOrms.......c.ccccciiiiiiiiicece e 1-6
1.7 Oracle CEP IDE for ECLIPse......ccoviuiiiiiiiiiiiiiiiiiiciccit s 1-6
1.8 Oracle CEP VISUALZETc.ccooiviiiiiiiieiecieeteetete ettt es 1-8
1.9 INEXE SEEPS vt 1-8

2 Oracle CEP Samples
2.1 Overview of the Samples Provided in the Distribution Kit.........cccccocoviiiiiinnnnnnn, 2-1
2.1.1 Ready-to-Run Samples............cooeueioiiiieiiiccee e 2-2
2.1.2 SAMPLE SOUICE ...t 2-2
2.2 Installing the Default ocep_domain and Samples ..o 2-3
2.3 Using Oracle CEP Visualizer With the Samples.............ccooooiiiii 2-3
2.4 Increasing the Performance of the Samples ... 2-4
2.5 Setting Your Development Environment...........cccooiiiiiiiiiiiiiiiicees 2-4
2.5.1 How to Set Your Development Environment on Windows...........cccoeeviicciiiiirnnnnn. 2-4
252 How to Set Your Development Environment on UNIXccccoooviiiiiiniiinne. 2-6
2.6 HelloWorld EXample.........cccoviiiiiiiiiiiiiicc e 2-7
2.6.1 Running the HelloWorld Example from the helloworld Domain...........cccccccovrunneee. 2-8
2.6.2 Building and Deploying the HelloWorld Example from the Source Directory 2-8
2.6.3 Description of the Ant Targets to Build Hello Worldccoooiii, 2-9
2.6.4 Implementation of the HelloWorld Example..........c.ccoooiiiiiiiiiiniicce 2-10
2.6.5 The HelloWorld EPN Assembly Fileccccccocviviiiiiiniiiinincncncnccae 2-11
2.6.6 The HelloWorld Component Configuration File.........c.ccccooviiiiiiiiiiiiiie 2-13
2.7 Oracle Continuous Query Language (CQL) Example..........cccocoooiiiiiiiiiiniiiiiicc 2-14

3

2.71 Running the CQL Examplecccccovviiiiiiiniiiiiiiiiiics 2-16

2.7.2 Building and Deploying the CQL Example.........cccccoooiriiiiiiiiiiiniiccecce e 2-17
2.7.3 Description of the Ant Targets to Build the CQL Example.........cccccceeuicicvnncnnnnne. 2-18
2.7.4 Implementation of the CQL Example........c.cccccoviiiniiiniiiiiiiiiiiinciccccces 2-18
2.7.41 Creating the Missing Event QUery........cccoooiiiiiiriiicc e, 2-18
2742 Creating the Moving Average QUETYc.cccoceuieuiuiuiiieeeieiceeeeeneneenenenenenens 2-42
2.8 Oracle Spatial EXampIe ... s 2-81
2.8.1 Running the Oracle Spatial Example..........cccoooeiiiiiiiiiiiicc 2-83
2.8.2 Building and Deploying the Oracle Spatial Example.........c.ccccccceinniiivnvnncnnene. 2-86
2.8.3 Description of the Ant Targets to Build the Oracle Spatial Example........................ 2-87
2.8.4 Implementation of the Oracle Spatial Example...........cccccoooeuiiiiiiiiniiiie 2-87
2.8.5 Oracle Spatial Example EPN Assembly File.........cccccocoviiiniiiinnniicrccceeene 2-88
2.8.6 Oracle Spatial Example Component Configuration File...........cccccccoeviiiinnnnnn 2-91
2.9 Foreign Exchange (FX) EXample.........cccoooiiiiiiiiiic s 2-92
2.9.1 Running the Foreign Exchange Example ... 2-93
2.9.2 Building and Deploying the Foreign Exchange Example from the Source Directory.......
2-95
2.9.3 Description of the Ant Targets to Build FX.........ccooii 2-96
294 Implementation of the FX EXampleccccccciueiiiiiiiiiiiiicicceeeeeceeeeeeeeeees 2-96
2.9.5 The FX EPN Assembly Filecoooiiiiiii 2-98
2.9.6 The FX Processor Component Configuration Filesccccocooiiiiin, 2-101
2.9.6.1 FX Processor Component Configuration File: spreader.xmlc.ccccccceeee. 2-102
2.9.6.2 FX Processor Component Configuration File: SummarizeResults.xml........... 2-104
2.10 Signal Generation EXampleccoooiiiiiiiiiiiiiciicci s 2-105
2.10.1 Running the Signal Generation Example.........ccccccocoeiriiiinnnnnnnereccees 2-106
2.10.2 Building and Deploying the Signal Generation Example from the Source Directory.......
2-108
2.10.3 Description of the Ant Targets to Build Signal Generation...........c.cccooeeviiirnnnne. 2-109
2.10.4 Implementation of the Signal Generation Example.........cccccccoouvvvnnnnnnnnnnccne. 2-109
2.10.5 The Signal Generation EPN Assembly File.........cccoooviiiii 2-110
2.10.6 The Signal Generation Component Configuration Files...........cccccoooiriia. 2-113
2.11 Event Record and Playback Exampleccccocoeuiiiiiniininiiirnnnnrrrnnre e 2-116
2.11.1 Running the Event Record /Playback Examplecccoooeieiiiiiiiiiiiinii 2-117

2.11.2 Building and Deploying the Event Record /Playback Example from the Source
Directory 2-123

2.11.3 Description of the Ant Targets to Build the Record and Playback Example.......... 2-124
2114 Implementation of the Record and Playback Example...........cccccooevviniininninnnninnn 2-125

Installing Oracle CEP

3.1 Installation OVeIrVIEWcoiiiiiiiiiiiiiiiii e 3-1
3.1.1 Before You Start the Installation Program ... 3-2
3.1.2 Choosing YOUT JVM ...t 3-2
3.1.2.1 Oracle JROCKit Real Timec.ceciiiruiriiiiiniiniinieieeteteteer e e 3-2
3.1.22 SUN JVM L.ttt 3-3
3.1.23 Other Platform-Specific JVMS.....c.cccccoiiiiiiiiicccereeeeeeeeeeee e 3-3
3.1.3 Default Oracle CEP Domain ocep_domain and Samples..........ccccveiriiniiniiiinnninnnns 3-3
3.14 Oracle Fusion Middleware Directory Structure and Concepts.........ccccevvveerereiinnnnn. 3-3

3.1.4.1
3.1.4.2
3.1.5
3.1.5.1
3.1.5.2
3.1.5.3
3.2

3.3

3.4
3.4.1
3.4.2
3.4.3
3.5

3.6
3.6.1
3.6.1.1
3.7

3.8
3.8.1
3.8.2
3.8.3
3.8.4

3.8.5

Glossary

Index

Oracle CEP-Specific Middleware Home.............cccooeuriiiiiiiiniiiiiciicccccens 3-3
Existing Oracle Fusion Middleware Homeccccooooiiiniiiiic, 3-4
Installation MOde.........ccviiiiiiiiiiiii s 3-5
Graphical Mode ..o 3-5
ConsSole MOde ... 3-6
SIeNt MOde.....oooviiiiiiiiiic s 3-6
Installing Oracle CEP in Graphical Modecoooeiiiiiiiiiiiiic e 3-6
Installing Oracle CEP in Console Mode ..o 3-9
Installing Oracle CEP in Silent Mode.........ccccccociiiiiiiniiiiicceeeeeeeeese e 3-12
Creating a silent.xml File for Silent-Mode Installationcccooiiiiiiininnnne. 3-14
Guidelines for Component Selection ... 3-15
Returning Exit Codes to the Command Window ... 3-16
Installing an Oracle CEP Patch ... 3-16
Post-Installation StePScceueiiiiieieiicici s 3-16
Configuring Oracle CEP for the IBM JDK........ccccccciiiiiiiiiiiicrcceceereeeeeenes 3-17
How to Configure Oracle CEP for the IBM JVM on IBM AIX (64-bit) 3-17
Installing the Oracle CEP IDE for EClipsecccooveiiiimiiieiiicieccc e 3-17
Upgrading to Oracle CEP 11¢g Release 1 (11.1.1.6.0) c...ccueveviueiinniiiiiiiccccrreceeeeceees 3-18
Upgrading a WebLogic Event Server 2.0 Domain to Oracle CEP 10.3...................... 3-18
Upgrading an Oracle CEP 10.3 Domain to Oracle CEP 11g Release 1 (11.1.1.6.0).. 3-20
Upgrading a WebLogic Event Server 2.0 Application to Run on Oracle CEP 10.3. 3-21
Upgrading an Oracle CEP 10.3 Application to Run on Oracle CEP 11g Release 1
(11.1.1.6.0) 3-23
Backward Compatibility ISSUEScceueiiiiiiiiiccicc s 3-25

vi

List of Examples

2—1 HelloWorld EPN Assembly File ... 2-11
2-2 HelloWorld Component Configuration File...........cccccccoiiiiiinniniiiiiiii, 2-13
2-3 Oracle Spatial Example EPN Assembly File ..., 2-89
2-4 Oracle Spatial Example Component Configuration File..........cccccccovviiiinnninnnnn 2-91
2-5 FX EPN AsSemDIY Filecocviiiiiiiiiiiiiiiiciccc e 2-98
2-6 Nested Component Definition...........ccccevviiiiiiiiiiiies 2-101
2—-7 FX Processor Component Configuration File: spreader.xml...........ccooooiiiiiiiinnnns 2-102
2-8 FX Processor Component Configuration File: SummarizeResults.xmlccccc... 2-105
2-9 Signal Generation EPN Assembly File...........cccoooiiiiiiiiiie 2-111
2-10 Signal Generation Component Configuration File...........ccccooviiiiiiiiiii, 2-113
2-11 recplay Application Configuration File config.xml: adapter Element........................... 2-120
3-1 Sample silent.xml File for Silent-Mode Installation.............cccocevviinnnnninnniininnn, 3-14
3-2 Sample Windows Command File Displaying Silent-Mode Exit Codes.............ccccc......... 3-16
3-3 Adapter Using loadgen Provider ... 3-23
3-4 Registering a StockTick Event.............oooiiii e 3-23
3-5 Spring-DM Declared Adapter FActOry.........cocoocuiiiiiiiciiiiiiieeccc 3-25
3-6 WIEVSHACTOTY ... 3-25

vii

List of Figures

viii

ONOOOTA~WN-—=-O

Example Event -Driven Systemccouoiiiiiiiiic e 1-2
Oracle CEP APPLCAtIONo.cviiicicie s s 1-3
Oracle CEP IDE for EClipse.......cccociuiiiiiiiiiiiiiiiniiis s 1-7
Oracle CEP VISUALZETocuiiiiiiciiiet e 1-8
The HelloWorld Example Event Processing Networkcooovoiiiiiiiii 2-7
The CQL Example Event Processing Network.........cccooooiiiiiiiiiiic 2-15
Oracle CEP Visualizer LOZON SCIEENcoooiiiiiiiiiiiiccictci i 2-19
Oracle CEP Visualizer Dashboard.............oooiuiiiiiiiiiii 2-20
CQL Application Screen: General Tab............cccooiiiiiiiiiiii 2-21
CQL Application: Event Processing Network Tabccccooiiii 2-22
Oracle CQL Processor: General Tab.........ccccvovuieiiiiieeeniecieecese et 2-23
Oracle CQL Processor: Query Wizard Tab ... 2-24
Template Tab ... 2-25
SSource Configuration DIialog.........cceveiurieiiiiicieieiiciecc s 2-26
Pattern Configuration Dialog: Pattern Tabccccoooiii 2-27
Pattern Configuration Dialog: Define Tabccccooiiiiiii 2-28
Expression Builder: CustOrder..........ooooiiiiiicc s 2-29
Pattern Configuration Dialog: Define Tab With CustOrder Condition...........ccccc.coc..... 2-30
Expression Builder: NOAPPIoval ..o 2-31
Expression Builder: Shipment............cooiiiii 2-32
Pattern Configuration Dialog: Define Tab Completecoooiiiiiiiiiiiii 2-33
Measure Tab..........oo s 2-34
Expression Builder: orderid.........cooiiiiiiiii s 2-35
Expression Builder: amountooiiii 2-36
Measure Tab: COMPIEtec.c.oiiiiii e 2-37
Select Configuration Dialog: Project Tab............ccooiiiiiii 2-38
Select Configuration Dialog: Project Tab Completeccocovoiiiiiiiiiciiiiiciicc 2-39
Output Configuration Dialog.........ccoueviiiiiiiiiiiei s 2-40
Inject Rule Confirmation Dialogcccueiiirieiiiici i 2-40
CQL Rules Tab With Tracking QUETYccocueuiiiiiiiiiiiicice s 2-41
Stream Visualizer: Showing Missing EVeNtscccooiiiiiiiniiiicecc 2-42
Oracle CEP Visualizer LOZON SCIEeNc.coiuiiiiiiiciiicciec s 2-43
Oracle CEP Visualizer Dashboard.............cooiuiiiiiiiiii 2-44
CQL Application Screen: General Tab............cccoooiiiiiiiiiiii 2-45
CQL Application: Event Processing Network Tabccccocooiiiiiiiiiiiiccc 2-46
Oracle CQL Processor: General Tab........ccocvoiieiiiiieieciecieeeceee et 2-47
Oracle CQL Processor: Query Wizard Tabcccooooiiiiiiiiiicecc 2-48
Query Wizard: SSOUICE........cccccuiiiiiiiiiiiiiiic s 2-49
SSource Configuration Dialog...........cccciiiiiiiiiiiiiiies 2-50
Query Wizard: FIITer ... 2-51
Connecting the SSource and Filter ICONScccoovoiiiiiiiiiiiiicc 2-51
Filter Configuration Dialog ..o 2-52
Filter Expression Builder ... 2-53
Filter Configuration Dialog: After Adding the Filterccccccccoiiiiiiiiiiiiie 2-54
Query Wizard: Select ... 2-55
Select Configuration Dialog: Properties Selected............ccocooviriniiiiiiice 2-56
Query Wizard: OUtPUL.......ccccoiiiiiiiiiii s 2-57
Output Configuration Dialog...........cccciiiiiiiiiiiiiiiiicee s 2-58
Inject Rule Confirmation Dialog ... 2-58
CQL Rules Tab With View StockVOIGt1000ccvevveereeviierieieereeieereeere e eveeeve e v 2-59
Oracle CEP Visualizer LOZONn SCreemnccccccuiuiuiiiiiiiiiiiiiiiiiiiiciciceceeeceeseeees 2-60
Oracle CEP Visualizer Dashboard...........cccccccoeiiiiniiiiiiiiniiiiiiiniincncs 2-61
CQL Application Screen: General Tab...........cccccevuiiiiiininiiiiiiiiiiiics 2-62
CQL Application: Event Processing Network Tabcccccoviriiiiiiinicc 2-63

I\)I\JI\)I\)I})I\)I\)I\)I\J
GO oo oo
©CoNOOCOaR~WN =

NDNDMNPDMNPDMNPDMNPDNODNPDNPDMNPDMNODNPODNDDNODNDNDNDPDNODNODNDNDN

|
= 00000 NNNNNNNNANODODODOO D
GPRPWOUN-2L0O0CONOOOAORWON—-=-00OC0ONO OGN

T
[V

Oracle CQL Processor: General Tab..........cocoereieriiiiieiieneneeese sttt 2-64

Oracle CQL Processor: Query Wizard Tab ... 2-65
Query Wizard: SSource for Moving Average QUEeTY.........cccoevvieiieieieieieiiieeiieeenens 2-66
SSource Configuration Dialog: Moving Average QUeTYcccooiveucieieiiirinieiiccieens 2-67
Query Wizard: Window for Moving Average QUErYcccocevviiiiniininiininiiieeaes 2-68
Window Configuration Dialog: After Adding Window.........cccoviiiiiiiiniininnn, 2-69
Query Wizard: Select for Moving Average QUery.........ccooeueiirieiiiniiiceecce s 2-70
Select Configuration Dialog: Source Property symbol Selectedccccceeviviiiinnnnnnnnn. 2-71

Select Configuration Dialog: Source Property symbol Mapped to Output Event Property....
2-72

Select Configuration Dialog: Source Property price Selectedccoovviiriiiiinieiinne, 2-73
Expression Builder: Applying the AVG Function..........ccccocevviiiiiniinni 2-74
Select Configuration Dialog: With EXpression ... 2-75
Select Configuration Dialog: Source Property price Mapped to Output Event Property........
2-76

Validation Error: GROUP BY ... 2-76
Group Tab: With symbol Grouping Property ..., 2-77
Query Wizard: OUtPULouiiii s 2-78
Output Configuration DIialog........cccoeueuiuiiiiiiiiieiiei e 2-79
Inject Rule Confirmation Dialog..........cceueiiiirieiiiiiciiici e 2-79
CQL Rules Tab With View MOVINGAVETagEecoerveviiiirieieiiiicieci s 2-80
Stream Visualizer: Showing Moving Average Query Outputccoccoveiiiiiiiiiiinne, 2-81
Oracle Spatial Example Event Processing Network ..., 2-82
Oracle Spatial Web Pagecoooiiiiiii s 2-84
Oracle Spatial Web Page: Bus Stop Arrivals Tab ... 2-85
Oracle Spatial Web Page: Bus Tracking............ccoouiueieiiiciiiiiiicccice 2-86
FX Example Event Processing NetwWork..........ooiiioiiiiiiic 2-93
The Signal Generation Example Event Processing Networkcccooeiiiininnnnan 2-105
Signal Generation Dashboardcoooieii e 2-108
The Event Record and Playback Example Event Processing Network.......................... 2-116
Oracle CEP Visualizer LOZON SCIEENcooueiiiiiiiiiieiicieti s 2-118
Oracle CEP Visualizer Dashboard............ccccouiieieiiiiiiiiiiic s 2-119
Event Record Tab ... 2-120
Start Recording Alert DIialogccuoueeiueiiiiiiiiiicci s 2-121
Event Playback Tab.........ccoouoiiiiiici s 2-121
Start Playback Alert Dialogcoeueviiiiiiiiiieic s 2-122
Stream VISUALIZETc.coiiiiiic s 2-123
Oracle CEP-Specific Middleware Home...........ccccooiiiiiiiiiiiiiiccc 3-4
Oracle CEP in an Existing Oracle Fusion Middleware Home...........cccccoooiiiiiinininne. 3-5

List of Tables

Valid Order WOTKILOWcouviiiiiiie ittt ettt ettt eve e e veeeteeeveeevaesaaeenbaesnneenseees 2-18
Invalid Order WOrKELOWooviiiiicieeeeceeeeee ettt ettt et e eve et eveesaaeeane e 2-18
MATCH_RECOGNIZE Pattern QUantifiersccceevveeieeeieeieiiiecceeeeie e e 2-27
CoNAitioN DEfINIIONS ...c.veiiuiiiieieiie ettt ettt eete e e eeeeveeeteeeeteeeseeeabeessaesaseesaesaseenseenes 2-28
Home Directories and Oracle CEP-Specific Middleware Homeccccccoeviviiiiinininnnne. 3-4
Home Directories and Existing Middleware Homecccccoevviiiiiiiininin 3-5
Values for the silent. Xml FIle.........coooiiiiiiiiiiiiccecceeeeee ettt e 3-14
EXIE COAES vttt ettt e et e et e e ete e s taeese e teesabeeesaeeabeeesaesaseenbeesaseenreenes 3-16
Upgrade Paths ... 3-18

xi

Xii

Audience

Preface

This document provides general background information and detailed code samples
to help you learn about Oracle Complex Event Processing (Oracle CEP) and the Oracle
Continuous Query Language (Oracle CQL).

This document is intended for users interested in learning about Oracle CEP and
Oracle CQL. Readers should be familiar with basic Java development. Some
knowledge of SQL would be helpful.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following:

» Oracle Fusion Middleware Administrator’s Guide for Oracle Complex Event Processing

xiii

» Oracle Fusion Middleware Developer’s Guide for Oracle Complex Event Processing for
Eclipse

» Oracle Fusion Middleware Visualizer User’s Guide for Oracle Complex Event Processing
» Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing

» Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event
Processing

» Oracle Fusion Middleware EPL Language Reference for Oracle Complex Event Processing

» Oracle Database SQL Language Reference at
http://download.oracle.com/docs/cd/B28359_
0l/server.111/b28286/toc.htm

s SQL99 Specifications (ISO/IEC 9075-1:1999, ISO/IEC 9075-2:1999, ISO /IEC
9075-3:1999, and ISO/IEC 9075-4:1999)

s Oracle CEP Forum:
http://forums.oracle.com/forums/forum. jspa? forumID=820

s Oracle CEP Samples:
http://www.oracle.com/technologies/soa/complex-event-processi
ng.html

s Oracle Event Driven Architecture Suite sample code:
http://www.oracle.com/technology/sample_
code/products/event-driven-architecture

Conventions

Xiv

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Overview of Oracle CEP

This chapter provides an overview of Oracle Complex Event Processing (Oracle CEP). It
describes key concepts, features, and use cases, including event processing networks,
developing with the Eclipse IDE, and managing applications with Oracle CEP Visualizer.

» Section 1.1, "Introduction to Oracle Complex Event Processing"
» Section 1.2, "Conceptual Overview of Oracle CEP"

= Section 1.3, "Event Processing Networks"

m Section 1.4, "Use Cases"

= Section 1.5, "Summary of Oracle CEP Features"

= Section 1.6, "Supported Platforms"

= Section 1.7, "Oracle CEP IDE for Eclipse"

s Section 1.8, "Oracle CEP Visualizer"

= Section 1.9, "Next Steps"

1.1 Introduction to Oracle Complex Event Processing

Oracle CEP (formally known as the WebLogic Event Server) is a Java server for the
development and deployment of high-performance event driven applications. It is a
lightweight Java application container based on Equinox OSGi, with shared services,
including the Oracle CEP Service Engine, which provides a rich, declarative
environment based on Oracle Continuous Query Language (Oracle CQL) - a query
language based on SQL with added constructs that support streaming data - to
improve the efficiency and effectiveness of managing business operations. Oracle CEP
supports ultra-high throughput and microsecond latency using JRockit Real Time and
provides Oracle CEP Visualizer and Oracle CEP IDE for Eclipse developer tooling for
a complete real time end-to-end Java Event-Driven Architecture (EDA) development
platform.

Oracle CEP has the capability of deploying user Java code (POJOs) which contain the
business logic. Running the business logic within Oracle CEP provides a highly tuned
framework for time and event driven applications.

1.2 Conceptual Overview of Oracle CEP

Figure 1-1 provides a high level view of an event-driven system.

Overview of Oracle CEP 1-1

Conceptual Overview of Oracle CEP

Figure 1-1 Example Event -Driven System

‘. Currency cross rate calculation
Detection of clustered stock movermnent
Best-effort stock trading

i across savaral locations)

Climate control {e.0. temperature drops

queries

,”
data feads

Reutars pe i
Bloomberg [l L ! L

L
U
ordinary events notable events -
B (- - HHC = L
- F -
Realtime ‘{'
devices _J_-’L Event-Driven o

(A:‘v C Application \\ event subscribers

&) Kr\ back-end

-
SENS0rs . iy A

analyfic engines queries

A

An event-driven system is generally comprised of several event sources, the real-time
event-driven applications, and event sinks. Oracle CEP server and the Oracle CEP
applications you deploy to it comprises the event-driven applications. The event
sources generate streams of ordinary event data. The Oracle CEP applications listen to
the event streams, process these events, and generate notable events. Event sinks
receive the notable events.

Event sources, event-driven applications, and event sinks are decoupled from each
other; one can add or remove any of these components without causing changes to the
other components. This is a key attribute of event-driven architectures.

Event-driven applications are rule-driven. In Oracle CEP, rules are expressed as
queries using the Oracle Continuous Query Language (Oracle CQL). These queries are
persisted to a data store and are used for processing the inbound stream of events and
generating the outbound stream of events. Queries typically perform filtering and
aggregation functions to discover and extract notable events from the inbound event
streams. As a result, the number of outbound events is generally much lower than that
of the inbound events.

Oracle CEP is a middleware for the development of event-driven applications. An
Oracle CEP application is essentially an event-driven application.

Next, consider the application itself, which is hosted by the Oracle CEP server, a
light-weight container as shown in Figure 1-2.

1-2 Oracle Complex Event Processing Getting Started

Event Processing Networks

Figure 1-2 Oracle CEP Application

StreamOrRelationSource 1 Adapter

StreamiOrRelationSourcezAdapter

UserCode

e

= Channel3
CQLProcessor eventBean StreamOrRelationinkl

Channelz @

StreamOrRelationSink2

An Oracle CEP application is typically composed of the following main component
types:

Adapters interface directly to the inbound and outbound stream and relation
sources and sinks. Adapters understand the inbound and outbound protocol, and
are responsible for converting the event data into a normalized form that can be
queried by a processor. Adapters forward the normalized event data into channels
or outbound stream and relation sinks.

Channels are event processing endpoints. Among other things, streams are
responsible for queuing event data until the event processing agent can act upon
it.

Processors (or event processing agents) consume normalized event data from a

channel, process it using queries, and may generate new events to an output
channel.

Beans register to listen to the output channel, and are triggered by the insertion of
a new event into the output channel. This user code is generally a
plain-old-Java-object (POJO). The user application makes use of a set of external
services, such as JMS, Web services, and file writers, to forward the generated
events to external event sinks.

Event Beans register to listen to the output channel, and is triggered by the
insertion of a new event into the output channel. This user code uses the Oracle
CEP event bean API so that the bean can be managed by Oracle CEP.

1.3 Event Processing Networks

Adapters, channels, processors, and business logic POJOs can be connected arbitrarily
to each other, forming event processing networks (EPN). Examples of topologies of
EPNs are:

Adapter - Channel - Business Logic POJO

Scenario: no processing is needed; only adaptation from proprietary protocol to
some normalized model.

Adapter - Channel - Processor - Channel - Business Logic POJO
Scenario: straight through processing to user code.

Adapter - Channel - Processor - Channel - Business Logic POJO - Channel -
Processor - Channel - Business Logic POJO

Scenario: two layers of event processing; the first processor creates causality
between events and the second processor aggregates events into complex (notable)
events.

Overview of Oracle CEP 1-3

Use Cases

EPNs have two important attributes:

1.4 Use Cases

Event processing networks can be used to create a hierarchy of processing agents,
and thus achieve very complex processing of events. Each layer of the EPN
aggregates events of its layer into complex events that become simple events in the
layer above it.

Event processing networks improve integrability, that is, the quality of having
separately developed components work correctly together. For example, one can
add user code and reference to external services at several places in the network.

The use cases for Oracle CEP span a variety of businesses and applications. Just a few
of these diverse use cases include:

Financial: Algorithmic Trading

Automate stock trading based on market movement. Sample query: if, within any
20 second window, StockB rises by more than 2% and StockA does not, then
automatically buy StockA.

For an example, see Section 2.10, "Signal Generation Example".
Transportation: Security and Fraud Detection

Discover fraudulent activity by detecting patterns among events. Sample query: if
a single ID card is used twice in less than 5 seconds to gain access to a city's
subway system, alert security for piggybacking.

Energy and Telecommunications: Alarm Correlation

Reduce false positive alarms. Sample query: When 15 alarms are received within
any 5 second window, but less than 5 similar alarms detected within 30 seconds,
then do nothing.

Health Care: Patient Monitoring

Monitor the vital signs of a patient and perform some task if a particular event
happens. Sample query: When a change in medication is followed by a rise in
blood pressure within 20% of maximum allowable for this patient within any 10
second window, alert nearest nurse.

1.5 Summary of Oracle CEP Features

The following list summarizes the main features of Oracle CEP:

New in 11g Release 1 (11.1.1): Oracle Continuous Query Language (Oracle CQL)
is a query language based on SQL with added constructs that support streaming
data. Using Oracle CQL, you can express queries on data streams to perform
complex event processing (CEP) using Oracle CEP. Oracle CQL is scalable and
comprehensive. It provides a wide range of operators (including extensive
window operators), functions (including built-in, Colt, and java.lang.Math
functions), and statements. Oracle CQL supersedes EPL.

New in 11g Release 1 (11.1.1): Support for Coherence clustering and distributed
cache.

New in 11g Release 1 (11.1.1): Oracle CEP Visualizer query constructor, query
plan generator, and support for Coherence clustering and distributed cache.

1-4 Oracle Complex Event Processing Getting Started

Summary of Oracle CEP Features

Event Caching—Applications can optionally publish or consume events to and
from a cache to increase the availability of the events and increase the performance
of their applications.

Event Record and Playback—The event repository feature of Oracle CEP allows
you to record events flowing through an EPN and store them so you can later play
back the events.

Built-in HTTP Publish-Subscribe Adapters—The three built-in HTTP
publish-subscribe adapters allow an application to easily to publish (locally and
remotely) and subscribe to an HTTP publish-subscribe server channel.

Built-in JMS Adapters—The two JMS adapters (inbound and outbound) allow you
to send and receive messages to and from a JMS queue, respectively, from your
application without writing any Java code

Oracle CEP Visualizer—A Web 2.0 application that consumes data Oracle CEP,
displays it in a useful and intuitive way to system administrators and operators,
and, for specified tasks, accepts data that is then passed back to Oracle CEP so as
to change it configuration

Multi-server domains (sometimes referred to as clustering)—Oracle CEP now
allows multiple servers to be logically connected together for the purposes of
management, and physically connected using a shared User Datagram Protocol
(UDP) multicast address and port.

An application server that supports deployment of Plain Old Java applications
(POJOs), or Spring applications, for handling large volumes of streaming data
with low latency requirements.

Oracle CEP applications are developed and deployed as event driven applications,
that is, a set of custom Spring tags is used to define the event processing network
in the EPN assembly file, which extends the standard Spring context file, of your
application.

The application server contains a set of real time services that include a complex
event processor (CEP), adapters, and streams. The server is highly tuned for high
message throughput and low latency and deterministic behavior.

The complex event processor is a high performance, continuous query engine for
processing high volumes of streaming data. It has full support for filtering,
correlation, and aggregation of streaming data from one or more streams.

The Event Processing Language (EPL), an SQL-like language that allows event
data from streams to be declaratively filtered, correlated, aggregated, and merged,
with the ability to insert results into other streams for further downstream
processing. You define the EPL rules either in an XML file that configures the
complex event processor or programmatically using APIs. Oracle CQL supersedes
EPL.

An Adapter SDK that provides all the tools you need to create adapters that listen
to incoming data feeds.

A set of product samples that show both a simple Hello World scenario to get you
started and more complex foreign exchange and algorithmic trading scenarios to
showcase additional features of Oracle CEP.

A load generator utility that simulates a data feed, useful for testing your
application without needing to connect to a live data feed.

A monitoring service that includes pre-built instrumentation for measuring
throughput and latency at the component level.

Overview of Oracle CEP 1-5

Supported Platforms

A static and dynamic configuration framework. Static configuration is performed
using XML files; dynamic configuration is performed by accessing configuration
and runtime MBeans using JMX and with the command-line utility
wlevs.Admin.

Oracle CEP is built on the Oracle microServices Architecture (mSA) which uses an
OSGi-based framework to manage services provided by modules or feature sets.
Oracle mSA provides the following services:

Jetty, an HTTP container for running servlets.

javax.sqgl.DataSource implementation and thin JDBC drivers for accessing a
relational database.

Logging and debugging.

Authentication and authorization security.

1.6 Supported Platforms

For detailed information on the platforms that Oracle CEP supports, see:
http://www.oracle.com/technology/software/products/ias/files/ora
cle%20fusion%20middleware%2011gR1%20(11.1.1.x)%20certification%2
Omatrix.xls.

You can find the installation program appropriate for your platform here:
http://www.oracle.com/technology/software/products/middleware/ht
docs/111110_fmw.html. For more information, see Section 3.1, "Installation
Overview".

1.7 Oracle CEP IDE for Eclipse

Oracle CEP IDE for Eclipse is targeted specifically to programmers that want to
develop Oracle CEP applications as Figure 1-3 shows.

1-6 Oracle Complex Event Processing Getting Started

Oracle CEP IDE for Eclipse

Figure 1-3 Oracle CEP IDE for Eclipse

& Java - COL Test - Eclipse Platform

File Edit MNavigate Search Project RBun ‘Window Help
i] : - al i T ¥
i > H#-0-Q- EHG- S @ o) &) ava |
[Z packa 52 f: Hierar | — O @ EPM: CQLTest 2 |X| citipoc, conkext,xml |X]| com.orade. cep.sample. f, context, xml o] @ Task List &2 o]
E] G | 8 T |[Fier w FulEFn Ab AL 100% E | =] T8 E- @7
3 SRR = & -
7 COLDBTest i » u Find: »oal b oA
e COLFx 0'-‘ g FxCQuotestream § =
= tPJ COLTest b'?t » iﬁ FindCrossRat 5 Uncategorized
2 sre) FilkerAsiaStream) -
B RE System Library [jre1.6 FxMarketasia Filterasia
(= buid _ 725
(= dist w _ ﬁ
=2 METATNE b el
=3 spring Foo T FilkerEuro
|X| citipoc, conkexk,xml -
] com.oracle.cep.sar FiltetEuroStraam
B g wlevs . 5% outline 53 |
1% channel,xml b .
|X] citipoc, <l FrtarketEuro i@ [. -
[%] processar.xml . j"“ "":j A tr o
[¥] PubSubAdapterCar @) bbaProcessc 2= .
E & E
X = & > [— 5 g
el spreade.r anl pricestream filkeredstream e i = '{.‘ = &
p#| SummarizeResults, Pricendapter ,@
EJ MANIFEST,MF _ N= 8
[build.properties analyticsProce:
5@ build, =l
bundle. properties I
-, hd
5 CoLTestz . adapter .
i csfb
1= MyCEPProf Derview
= Servers [21 Problems | @ Javadoc | [} Declaration | 47 Servers 52 I 0 & Ee = O
Server State Status
q Oracle CEP w11 E‘E\ Stopped Reepublish
< >
=j<>

The Oracle CEP IDE for Eclipse is a set of plugins for the Eclipse IDE designed to help
develop, deploy, and debug Oracle CEP applications.

The key features of Oracle CEP IDE for Eclipse are:

= Project creation wizards and templates to quickly get started building event
driven applications.

= Advanced editors for source files including Java and XML files common to Oracle
CEP applications.

= Integrated server management to seamlessly start, stop, and deploy to Oracle CEP
server instances all from within the IDE.

= Integrated debugging.

s Event Processing Network (EPN) visual design views for orienting and navigating
in event processing applications.

= Integrated support for the Oracle CEP Visualizer so you can use the Oracle CEP
Visualizer from within the IDE (see Section 1.8, "Oracle CEP Visualizer").

For more information, see:
= Section 3.7, "Installing the Oracle CEP IDE for Eclipse"

» Oracle Fusion Middleware Developer’s Guide for Oracle Complex Event Processing for
Eclipse

Overview of Oracle CEP 1-7

Oracle CEP Visualizer

m http://www.oracle.com/technology/products/event-driven-architec
ture/cep-ide/1ll/index.html

1.8 Oracle CEP Visualizer

Oracle CEP provides an advanced run-time administration console called the Oracle
CEP Visualizer as Figure 1-4 shows.

Figure 1-4 Oracle CEP Visualizer

{2 Oracle Complex Event Processing Visualizer - Windows Internet Explorer |._HE|E|
@'C} - \g, hittp:/flocalhost: 9002 fwlewvs) V| 5[% ‘ -
i3 —— 3 = . »
w ‘* [@Oracle Complex Event Processing Yisualizer l I ﬁ b ﬂ BT I-_;}Eage = Q} Tools ~
ONACI_G' CEP Visua"zer Huotme: Security L"j Dashboard P “iewStream Lot @ Full Screen Preference @ Help Jl
Welcome : wlevs £ Processor: cacheProcessor - cal@MNonClusteredServer m={==E]
=2 Query Wizard
v [, NonClusteredServer
choose layout. . v 2
v I Anplications Bt OO B Lo
i
orn bheawlevs data:
- @ COL Constructs |
» [Cache Systems =221 a Ea
v @ Stages = SSource RSournce Cache-Table
=51 B=0 T
w81 Fattern Output Select
3, adapter @
= alertChannel @ E’
3, alertoutput FCache-Table Jain Windows Filter
L { j
@ bean = 4Join 5Select 6:0utput Q)% % (2221
.E@cacheF‘rocESE @ [a ‘i|\ Union Intersect Minus
s movingAvgChe 1:550mse J:WWL/_» 55 55 S5
3 movingOutput e > ;i
|Stream DStream FiStream
™, orderCysadar
o Aprarhannal L
Open ltems
iz] Dashboard (3]
= ool @MonClusteredServer %]
& Pracessor. cacheProcessor -, [Temalates |
‘D Uszer-defined templates |
ol
Done ‘ﬂ Local inkranet H100% - 1

Using Oracle CEP Visualizer, you can manage, tune, and monitor Oracle CEP server
domains and the Oracle CEP applications you deploy to them all from a browser.
Oracle CEP Visualizer provides a variety of sophisticated run-time administration
tools, including support for Oracle CQL and EPL rule maintenance and creation.

Oracle CEP Visualizer is pre-installed in every Oracle CEP server.

For more information, see Oracle Fusion Middleware Visualizer User's Guide for Oracle
Complex Event Processing

1.9 Next Steps
s Install Oracle CEP 11g Release 1 (11.1.1).
See Chapter 3, "Installing Oracle CEP."

1-8 Oracle Complex Event Processing Getting Started

Next Steps

Run the samples from their respective domains.

See:

— Section 2.1, "Overview of the Samples Provided in the Distribution Kit"

- Section 2.6.1, "Running the HelloWorld Example from the helloworld Domain"
- Section 2.9.1, "Running the Foreign Exchange Example"

- Section 2.10.1, "Running the Signal Generation Example"

- Section 2.11.1, "Running the Event Record /Playback Example"

- Section 2.7.1, "Running the CQL Example"

Understand how the sample applications have been programmed by viewing the
source and configuration files and then building them from their respective source
directories.

See:

- Section 2.6.2, "Building and Deploying the HelloWorld Example from the
Source Directory”

- Section 2.9.2, "Building and Deploying the Foreign Exchange Example from
the Source Directory”

- Section 2.10.2, "Building and Deploying the Signal Generation Example from
the Source Directory”

Create your own Oracle CEP domain.
See:

s "Creating an Oracle CEP Standalone-Server Domain" in the Oracle Fusion
Middleware Administrator’s Guide for Oracle Complex Event Processing

s "Creating an Oracle CEP Multi-Server Domain" in the Oracle Fusion Middleware
Administrator’s Guide for Oracle Complex Event Processing

Create a new Oracle CEP application and deploy it to your new domain.

See "Overview of Creating Oracle CEP Applications" in the Oracle Fusion
Middleware Developer’s Guide for Oracle Complex Event Processing for Eclipse.

Pose questions and find solutions using the Oracle CEP forum:
http://forums.oracle.com/forums/forum. jspa? forumID=820

Overview of Oracle CEP 1-9

Next Steps

1-10 Oracle Complex Event Processing Getting Started

2

Oracle CEP Samples

This chapter introduces sample code provided with Oracle Complex Event Processing
(Oracle CEP), describing how to set up and use code ranging from simple "Hello
World" to applications of Oracle Continuous Query Language (CQL), as well as for
spatial and industry-focused scenarios.

Section 2.1, "Overview of the Samples Provided in the Distribution Kit"
Section 2.2, "Installing the Default ocep_domain and Samples"

Section 2.3, "Using Oracle CEP Visualizer With the Samples"

Section 2.4, "Increasing the Performance of the Samples"

Section 2.5, "Setting Your Development Environment"

Section 2.6, "HelloWorld Example"

Section 2.7, "Oracle Continuous Query Language (CQL) Example"
Section 2.8, "Oracle Spatial Example"

Section 2.9, "Foreign Exchange (FX) Example"

Section 2.10, "Signal Generation Example"

Section 2.11, "Event Record and Playback Example"

2.1 Overview of the Samples Provided in the Distribution Kit

Oracle CEP includes the following samples:

HelloWorld: a basic skeleton of a typical Oracle CEP application.

Oracle Continuous Query Language (CQL): an example that shows how to use the
Oracle CEP Visualizer Query Wizard to construct various Oracle CQL queries to
process event streams.

Oracle Spatial: an example that shows how to use Oracle Spatial with Oracle CQL
queries to process a stream of Global Positioning System (GPS) events to track the
GPS location of buses and generate alerts when a bus arrives at its pre-determined
bus stop positions.

Foreign Exchange (FX): a complete example that includes multiple components.
Signal Generation: an example that simulates market trading and trend detection.

Event record and playback: an example that shows how to configure event record
and playback using a persistent event store.

These samples are provided in two forms, as follows:

Oracle CEP Samples 2-1

Overview of the Samples Provided in the Distribution Kit

Section 2.1.1, "Ready-to-Run Samples"

Section 2.1.2, "Sample Source"

The samples use Ant as their development tool; for details about Ant and installing it
on your computer, see http: //ant.apache.org/.

Note: "Additional Oracle CEP sample code can be found at
http://www.oracle.com/technology/sample_
code/products/event-driven-architecture".

2.1.1 Ready-to-Run Samples

Out-of-the-box sample domains pre-configured to deploy an assembled application;
each sample has its own domain for simplicity. Each domain is a standalone server
domain; the server files are located in the defaultserver subdirectory of the
domain directory. To deploy the application you simply start the default server in the
domain.

The sample HelloWorld domain is located in \MIDDLEWARE_HOME\ocep_
11.1\samples\domains\helloworld_domain, where MIDDLEWARE _HOME
refers to the Middleware directory you specified when you installed Oracle CEP,
such as d:\Oracle\Middleware.

See Section 2.6.1, "Running the HelloWorld Example from the helloworld Domain"
for details.

The sample CQL domain is located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\cgl_domain.

See Section 2.7.1, "Running the CQL Example" for details.

The sample Oracle Spatial domain is located in MITDDLEWARE_HOME\ ocep_
11.1\samples\domains\spatial_domain.

See Section 2.8.1, "Running the Oracle Spatial Example" for details.

The sample Foreign Exchange domain is located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\fx_domain.

See Section 2.9.1, "Running the Foreign Exchange Example" for details.

The sample Signal Generation domain is located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\signalgeneration_domain.

See Section 2.10.1, "Running the Signal Generation Example" for details.

The sample Record and Playback domain is located in MIDDLEWARE_
HOME\ocep_11.1\samples\domains\recplay_domain.

See Section 2.11.1, "Running the Event Record /Playback Example" for details.

2.1.2 Sample Source

The Java and configuration XML source for each sample is provided in a separate
source directory that describes a sample development environment.

2-2

The HelloWorld source directory is located in MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\helloworld, where MIDDLEWARE,
HOME refers to the Middleware directory you specified when you installed Oracle
CEP, such as d: \Oracle\Middleware.

Oracle Complex Event Processing Getting Started

Using Oracle CEP Visualizer With the Samples

See Section 2.6.4, "Implementation of the HelloWorld Example" for details.

s The CQL source directory is located in MTDDLEWARE_HOME\ocep_
11.1\\samples\source\applications\cqgl.

See Section 2.7 .4, "Implementation of the CQL Example" for details.

s The Oracle Spatial source directory is located in MIDDLEWARE_HOME\ocep_
11.1\\samples\source\applications\spatial.

See Section 2.8.4, "Implementation of the Oracle Spatial Example" for details.

s The Foreign Exchange source directory is located in MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\fx.

See Section 2.9.4, "Implementation of the FX Example" for details.

= The Signal Generation source directory is located in MIDDL.EWARE_HOME\ ocep_
11.1\samples\source\applications\signalgeneration.

See Section 2.10.4, "Implementation of the Signal Generation Example" for details.

s The Record and Playback source directory is located in MIDDLEWARE_
HOME\ocep_11.1\\samples\source\applications\recplay.

See Section 2.11.4, "Implementation of the Record and Playback Example" for
details.

2.2 Installing the Default ocep_domain and Samples

To install all Oracle CEP components including the default ocep_domain domain
(with default passwords) and the samples, you must chose the Custom option to also
install the samples. The Typical option does not include the default ocep_domain
and samples.

If you previously installed Oracle CEP using the Typical option, and you now want
to also install the samples, re-run the Oracle CEP installation process and specify the
same Oracle CEP home directory; a later step in the installation process allows you to
then install just the samples.

2.3 Using Oracle CEP Visualizer With the Samples

The Oracle CEP Visualizer is a Web 2.0 application that consumes data from Oracle
CEP, displays it in a useful and intuitive way to system administrators and operators,
and, for specified tasks, accepts data that is then passed back to Oracle CEP so as to
change it configuration.

Visualizer is itself an Oracle CEP application and is automatically deployed in each
server instance. To use it with the samples, be sure you have started the server
(instructions provided for each sample below) and then invoke the following URL in
your browser:

http://host:9002/wlevs
where host refers to the name of the computer hosting Oracle CEP; if it is the same as
the computer on which the browser is running you can use localhost.

Security is disabled for the HelloWorld application, so you can click Logon at the login
screen without entering a username and password. For the FX and signal generation
samples, however, security is enabled, so use the following to logon:

User Id: wlevs

Oracle CEP Samples 2-3

Increasing the Performance of the Samples

Password: wlevs

For more information about Visualizer, see Section 1.8, "Oracle CEP Visualizer".

2.4 Increasing the Performance of the Samples

To increase the throughput and latency when running the samples, and Oracle CEP
applications in general, Oracle recommends the following:

Use the JRockit JDK included in Oracle JRockit Real Time and enable the
deterministic garbage collector by passing the -dgc parameter to the command
that starts the Oracle CEP instance for the appropriate domain:

prompt> startwlevs.cmd -dgc

By default the deterministic garbage collector is disabled for the samples.

For more information on Oracle JRockit Real Time, see
http://www.oracle.com/technology/products/jrockit/jrrt/index.
html.

When running Oracle CEP on a computer with a larger amount of memory, you
should set the load generator and server heap sizes appropriately for the size of
the computer. On computers with sufficient memory, Oracle recommend a heap
size of 1 GB for the server and between 512MB - 1GB for the load generator.

2.5 Setting Your Development Environment

You must set your development environment before you can start Oracle CEP
instances and run the samples. In particular, you must set the PATH and JAVA_HOME
environment variables so that you are using the correct version of the JRockit JDK.

There are two ways in which JRockit might have been installed on your computer:

As part of the Oracle JRockit Real Time installation. This version of the JRockit
JDK includes the deterministic garbage collector.

As part of the Oracle CEP 11g Release 1 (11.1.1) installation. This version of the
JRockit JDK does not include the deterministic garbage collector, and is provided
for testing purposes only.

Although not required, Oracle recommends that you run Oracle CEP using the JRockit
JDK version included in Oracle JRockit Real Time for best results; however, the
following procedures describe how to set your environment for either case.

For more information about JRockit, see Section 2.4, "Increasing the Performance of the
Samples".

This section describes:

Section 2.5.1, "How to Set Your Development Environment on Windows"

Section 2.5.2, "How to Set Your Development Environment on UNIX"

2.5.1 How to Set Your Development Environment on Windows

This procedure describes how to set your development environment on Windows.

To make it easier to reset your development environment after logging out of a
session, you can create a command file, such as setEnv . cmd, that contains the set
commands this section describes.

2-4 Oracle Complex Event Processing Getting Started

Setting Your Development Environment

You can also set the required environment variables permanently on your Windows
computer by invoking the Control Panel > System window;, clicking the Advanced
tab, and then clicking the Environment Variables button. You can set the environment
variables for the current user or for the entire system.

To set your development environment on Windows:

1.

Update your PATH environment variable to include the bin directory of the
JRockit JDK. Also, be sure that your PATH environment variable includes the bin
directory of your Ant installation:

a. If using the JRockit JDK installed with Oracle JRockit Real Time:

If you installed Oracle JRockit Real Time in the d: \ jrockit directory and
Ant is installed in the d: \ant directory, set your PATH environment variable
as shown:

prompt> set PATH=d:\jrockit\[JRRT_HOME]\bin;d:\ant\bin;$PATH%

where JRRT_HOME is the JRockit Real Time directory.
b. If using the JRockit JDK installed with Oracle CEP:

If you installed Oracle CEP in the d: \Oracle\Middleware directory and
Ant is installed in the d: \ant directory, set your PATH environment variable
as shown:

prompt> set PATH=d:\Oracle\Middleware\jrockit_160_20\bin;d:\ant\bin;%$PATH%
Ensure that the JAVA_HOME variable in the setDomainEnv. cmd script points to
the correct JRockit JDK. If it does not, edit the script.

The setDomainEnv . cmd script is located in the defaultserver subdirectory of
the main domain directory; the defaultserver subdirectory contains the files
for the standalone server of each domain. For example, the HelloWor1ld domain
is located in MIDDLEWARE _HOME\ocep_
11.1\samples\domains\helloworld_domain, where MIDDLEWARE HOME
refers to the Middleware home directory you specified when you installed Oracle
CEP, such as d: \Oracle\Middleware.

a. If using the JRockit JDK installed with Oracle JRockit Real Time:
The set command should be as follows:

set JAVA_HOME=d:\jrockit\[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.
b. If using the JRockit JDK installed with Oracle CEP:
The set command should be as follows:

set JAVA_HOME=d:\Oracle\Middleware\jrockit_160_20

Set the JAVA_HOME variable in your own development environment to point to
the JRockit JDK.

a. If using the JRockit JDK installed with Oracle JRockit Real Time:
The set command should be as follows:

prompt> set JAVA_HOME=d:\jrockit\ [JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.

Oracle CEP Samples 2-5

Setting Your Development Environment

b. If using the JRockit JDK installed with Oracle CEP:
The set command should be as follows:

prompt> set JAVA_HOME=d:\Oracle\Middleware\jrockit_160_20

2.5.2 How to Set Your Development Environment on UNIX

This procedure describes how to set your development environment on UNIX.

To make it easier to reset your development environment after logging out of a
session, you can create a command file, such as setEnv . sh, that contains the set
commands this section describes.

To set your development environment on UNIX:

1. Update your PATH environment variable to include the bin directory of the
JRockit JDK. Also, be sure that your PATH environment variable includes the bin
directory of your Ant installation.

a. If using the JRockit JDK installed with Oracle JRockit Real Time:

If you installed Oracle JRockit Real Time in the /jrockit directory and Ant
is installed in the /ant directory, set your PATH environment variable as
follows:

prompt> PATH=/jrockit/j [JRRT_HOME] /bin:/ant/bin:$PATH

where JRRT_HOME is the JRockit Real Time directory.
b. If using the JRockit JDK installed with Oracle CEP:

If you installed Oracle CEP in the /Oracle/Middleware directory and Ant
is installed in the /ant directory, set your PATH environment variable as
shown:

prompt> PATH=/Oracle/Middleware/jrockit_160_20/bin:/ant/bin:SPATH
2. Ensure that the JAVA_HOME variable in the setDomainEnv. sh script points to
the correct JRockit JDK. If it does not, edit the script.

The setDomainEnv. sh script is located in the defaultserver subdirectory of
the main domain directory; the defaultserver subdirectory contains the files
for the standalone server of each domain. For example, the HelloWorld domain is
located in MIDDLEWARE_HOME/ocep_11.1/samples/domains/helloworld_
domain, where MIDDLEWARE_HOME refers to the Middleware home directory you
specified when you installed Oracle CEP, such as /Oracle/Middleware.

a. If using the JRockit JDK installed with Oracle JRockit Real Time:
The JAVA_HOME variable should be set as follows:

JAVA_HOME=/jrockit/[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.
b. If using the JRockit JDK installed with Oracle CEP:
The JAVA_HOME variable should be set as follows:

JAVA_HOME=/Oracle/Middleware/jrockit_160_20

3. Set the JAVA_HOME variable in your development environment to point to the
JRockit JDK.

2-6 Oracle Complex Event Processing Getting Started

HelloWorld Example

a. If using the JRockit JDK installed with Oracle JRockit Real Time:
The JAVA_HOME variable should be set as follows:

prompt> JAVA_HOME=/jrockit/[JRRT_HOME]

where JRRT_HOME is the JRockit Real Time directory.
b. If using the JRockit JDK installed with Oracle CEP:
The JAVA_HOME variable should be set as follows:

prompt> JAVA_HOME=/Oracle/Middleware/jrockit_160_20

2.6 HelloWorld Example

The first example that shows how to create an Oracle CEP application is the
ubiquitous HelloWorld.

Figure 2-1 shows the HelloWorld example Event Processing Network (EPN). The EPN
contains the components that make up the application and how they fit together.

Figure 2—1 The HelloWorld Example Event Processing Network

e a— —m N

helloworldInputChannel i
hellawarldadapter hellowarldProcessar Hella\ orldBean

RA . 9

Adapter Channel Processor Business
Ohject
(POJO)

The example includes the following components:

» helloworldAdapter—Component that generates Hello World messages every
second. In a real-world scenario, this component would typically read a stream of
data from a source, such as a data feed from a financial institution, and convert it
into a stream of events that the complex event processor can understand. The
HelloWorld application also includes a HelloWorldAdapterFactory that
creates instances of HelloWorldAdapter.

s helloworldInputChannel—Component that streams the events generated by
the adapter (in this case Hello World messages) to the complex event processor.

» helloworldProcessor—Component that simply forwards the messages from
the helloworldAdapter component to the POJO that contains the business
logic. In a real-world scenario, this component would typically execute additional
and possibly much more complex processing of the events from the stream, such
as selecting a subset of events based on a property value, grouping events, and so
on using Oracle CQL.

s helloworldOutputChannel—Component that streams the events processed by
the complex event processor to the POJO that contains the user-defined business
logic.

s helloworldBean—POJO component that simply prints out a message every
time it receives a batch of messages from the processor via the output channel. In a
real-world scenario, this component would contain the business logic of the

Oracle CEP Samples 2-7

HelloWorld Example

application, such as running reports on the set of events from the processor,
sending appropriate emails or alerts, and so on.

2.6.1 Running the HelloWorld Example from the helloworld Domain

The HelloWorld application is pre-deployed to the helloworld domain. To run the
application, you simply start an instance of Oracle CEP server.

To run the HelloWorld example from the helloworld domain:

1.

Open a command window and change to the default server directory of the
helloworld domain directory, located in MITDDLEWARE_HOME\ocep_
11.1\samples\domains\helloworld_domain\defaultserver, where
MIDDLEWARE_HOME refers to the Middleware home directory you specified when
you installed Oracle CEP, such as d: \Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\helloworld_
domain\defaultserver

Ensure the environment is set correctly in the server startup script.
For more information, see Section 2.5, "Setting Your Development Environment."

Start Oracle CEP by executing the appropriate script with the correct command
line arguments:

a. On Windows:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the ~dgc parameter
to the command:

prompt> startwlevs.cmd -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

b. On UNIX:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.sh -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

After server status messages scroll by, you should see the following message
printed to the output about every second:

Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example is running correctly.

2.6.2 Building and Deploying the HelloWorld Example from the Source Directory

The HelloWorld sample source directory contains the Java source, along with other
required resources such as configuration XML files, that make up the HelloWorld
application. The build.xml Ant file contains targets to build and deploy the
application to the helloworld domain.

2-8 Oracle Complex Event Processing Getting Started

HelloWorld Example

For more information, see Section 2.6.3, "Description of the Ant Targets to Build Hello
World".

To build and deploy the HelloWorld example from the source directory:

1.

If the helloworld Oracle CEP instance is not already running, follow the procedure
in Section 2.6.1, "Running the HelloWorld Example from the helloworld Domain"
to start the server.

You must have a running server to successfully deploy the rebuilt application.

Open a new command window and change to the HelloWorld source directory,
located in MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\helloworld where MIDDLEWARE._
HOME is the Middleware home directory you specified when you installed Oracle
CEP.

For example:

prompt> cd d:\Oracle\Middleware\ocep_
11.1\samples\source\applications\helloworld

Set your development environment.
For more information, see Section 2.5, "Setting Your Development Environment."
Execute the a1l Ant target to compile and create the application JAR file:

prompt> ant all

Execute the deploy Ant target to deploy the application JAR file to Oracle CEP:

prompt> ant -Daction=update deploy

Caution: This target overwrites the existing helloworld application
JAR file in the domain directory.

You should see the following message printed to the output about every second:

Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example has been redeployed and is
running correctly.

2.6.3 Description of the Ant Targets to Build Hello World

The build.xml file, located in the top level of the HelloWorld source directory,
contains the following targets to build and deploy the application:

clean—This target removes the dist and output working directories under the
current directory.

all—This target cleans, compiles, and JARs up the application into a file called
com.bea.wlevs.example.helloworld 11.1.1.4_0.jar, and places the
generated JAR file into a dist directory below the current directory.

deploy—This target deploys the JAR file to Oracle CEP using the Deployer
utility.

For more information, see "Deployer Command-Line Reference" in the Oracle
Fusion Middleware Administrator’s Guide for Oracle Complex Event Processing.

Oracle CEP Samples 2-9

HelloWorld Example

2.6.4 Implementation of the HelloWorld Example

The implementation of the HelloWorld example generally follows "Creating Oracle
CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer’s Guide for
Oracle Complex Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical
development process.

The HelloWorld example, because it is relatively simple, does not use all the
components and configuration files described in the general procedure for creating an
Oracle CEP application.

All the example files are located relative to the MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\helloworld directory, where
MIDDLEWARE_HOME refers to the Middleware directory you specified when you
installed Oracle CEP c: \Oracle\Middleware. Oracle recommends that you use this
example directory setup in your own environment, although it is obviously not
required.

The files used by the HelloWorld example include:

= An EPN assembly file that describes each component in the application and how
all the components are connected together. The EPN assembly file extends the
standard Spring context file. The file also registers the event types used in the
application. You are required to include this XML file in your Oracle CEP
application.

In the example, the file is called
com.bea.wlevs.example.helloworld-context.xml and is located in the
META-INF/spring directory.

For details, see Section 2.6.5, "The HelloWorld EPN Assembly File."
= Java source file for the helloworldAdapter component.

In the example, the file is called HelloWorldAdapter . java and is located in the
src/com/bea/wlevs/adapter/example/helloworld directory.

For a detailed description of this file and how to program the adapter Java files in
general, see "Extending the Oracle CEP Event Processing Network" in the Oracle
Fusion Middleware Developer’s Guide for Oracle Complex Event Processing for Eclipse.

= Java source file that describes the HelloWorldEvent event type.

In the example, the file is called HelloWorldEvent . java and is located in the
src/com/bea/wlevs/event/example/helloworld directory.

For a detailed description of this file, as well as general information about
programming event types, see "Creating the Event Types" in the Oracle Fusion
Middleware Developer’s Guide for Oracle Complex Event Processing for Eclipse.

= An XML file that configures the helloworldProcessor and
helloworldOutputChannel components. An important part of this file is the
set of EPL rules that select the set of events that the HelloWorld application
processes. You are required to include a processor configuration file in your
Oracle CEP application, although the adapter and channel configuration is
optional.

In the example, the file is called config.xml and is located in the
META-INF/wlevs directory.

For details, see Section 2.6.6, "The HelloWorld Component Configuration File."

2-10 Oracle Complex Event Processing Getting Started

HelloWorld Example

= AJava file that implements the helloworldBean component of the application, a
POJO that contains the business logic.

In the example, the file is called HelloWorldBean. java and is located in the
src/com/bea/wlevs/example/helloworld directory.

For a detailed description of this file, as well as general information about
programming event sinks, see "Extending the Oracle CEP Event Processing
Network" in the Oracle Fusion Middleware Developer’s Guide for Oracle Complex Event
Processing for Eclipse.

s A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle CEP.

In the example, the MANIFEST . MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application
Assembly and Deployment" in the Oracle Fusion Middleware Developer’s Guide for
Oracle Complex Event Processing for Eclipse.

The HelloWorld example uses a build.xml Ant file to compile, assemble, and deploy
the OSGi bundle; see Section 2.6.2, "Building and Deploying the HelloWorld Example
from the Source Directory" for a description of this build.xml file if you also use Ant
in your development environment.

2.6.5 The HelloWorld EPN Assembly File

One of the main purposes of the EPN assembly file is to define the event processing
network by declaring the components of the application and how they are all
connected, or in other word, which components listen to which other components.
Oracle CEP provides a set of custom Spring tags used to declare the network. You also
use the EPN assembly file to register the event types used by your application and its
EPL rules.

You use the EPN assembly file in the typical way to define the application component
beans in the Spring application context; the application components beans are those
implemented with Java classes, such as adapters and the POJO that contains the
business logic.

For more information, see:

= "Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd" in the Oracle
Fusion Middleware Developer’s Guide for Oracle Complex Event Processing for Eclipse

= "Oracle CEP Schemas" in the Oracle Fusion Middleware Developer’s Guide for Oracle
Complex Event Processing for Eclipse

Example 2-1 shows the EPN assembly file used in the HelloWorld sample application;
see the explanation after the example for details about the entries in bold.

Example 2—-1 HelloWorld EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd

Oracle CEP Samples 2-11

HelloWorld Example

http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-vll_1_1_6.xsd">

<wlevs:event-type-repository>

<wlevs:event-type type-name="HelloWorldEvent">
<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:class>

</wlevs:event-type>

</wlevs:event-type-repository>

<wlevs:adapter id="helloworldAdapter"

class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >

<wlevs:instance-property name="message" value="HelloWorld - the currenttime is:"/>

</wlevs:adapter>

<wlevs:processor id="helloworldProcessor" />

<wlevs:channel id="helloworldInstream" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="helloworldAdapter"/>

</wlevs:channel>

<wlevs:channel id="helloworldOutstream" manageable="true">
<wlevs:listener>

<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>

</wlevs:listener>
<wlevs:source ref="helloworldProcessor"/>

</wlevs:channel>

</beans>

In the preceding example:

s Thewlevs:event-type-repository element registers the event types that are
used throughout the application; in the HelloWorld application, there is just a
single event type: HelloWorldEvent, implemented with the
com.bea.wlevs.event.example.helloworld.HelloWorldEvent class.
Oracle CEP automatically creates instances of this data type when needed. You
can also reference this data type in the EPL rules of the application.

» Thewlevs:adapter,wlevs:processor, and wlevs:channel elements
together define the event processor network by declaring each component in the
network:

- Thewlevs:adapter element defines the adapter component of the
HelloWorld application:

<wlevs:adapter id="helloworldAdapter"
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter" >
<wlevs:instance-property name="message" value="HelloWorld - the
currenttime is:"/>
</wlevs:adapter>

The id attribute specifies a unique identifier for this component; the id will be
referenced later by other components. The class attribute specifies the class
that implements the adapter; in this case it is
com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapter

The wlevs:instance-property child element passes an instance variable
to the adapter instance; the name of the variable is message and the value is
HelloWorld - the current time is:

- Thewlevs:processor element defines the processor component of the
application:

<wlevs:processor id="helloworldProcessor" />

The id attribute functions the same as that of wlevs:adapter element.

2-12 Oracle Complex Event Processing Getting Started

HelloWorld Example

— Thewlevs:channel elements define the two channel components of the
application:

<wlevs:channel id="helloworldInstream" >
<wlevs:listener ref="helloworldProcessor"/>
<wlevs:source ref="helloworldAdapter"/>
</wlevs:channel>
<wlevs:channel id="helloworldOutstream" manageable="true">
<wlevs:listener>
<bean class="com.bea.wlevs.example.helloworld.HelloWorldBean" />
</wlevs:listener>
<wlevs:source ref="helloworldProcessor"/>
</wlevs:channel>

The id attribute for streams functions the same as that of wlevs:adapter.
The manageable attribute enables monitoring of the channel; by default the
manageability of components is disabled.

The wlevs:channel element with id="helloworldInstream" uses the
wlevs:listener child element to specify that the helloworldProcessor
listens to the channel, and the wlevs: source child element to specify that
the channel gets its events from the helloworldAdapter component.

The wlevs:channel element with id="helloworldOutstream" also uses
these listener and source tags. One difference, however, is that it directly nests
the definition of the business logic POJO in the wlevs:listener element
rather than reference a unique identifier. In this case, the nested tag is a
standard Spring bean element that specifies that the POJO is implemented
with the com.bea.wlevs.example.helloworld.HelloWorldBean class.

2.6.6 The HelloWorld Component Configuration File

The HelloWorld application configures the processor in the component configuration
file that Example 2-2 shows.

Example 2-2 HelloWorld Component Configuration File
<?xml version="1.0" encoding="UTF-8"?>
<nl:config xmlns:nl="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<processor>
<name>helloworldProcessor</name>
<rules>
<query id="helloworldRule">
<! [CDATA[select * from helloworldInputChannel]]>
</query>
</rules>
</processor>
</nl:config>

If your application contains multiple processors, adapters or streams, you can either
declare them all in a single configuration file, or create separate configuration files for
each component; the method you chose depends on which you find easier to manage.

For each component you configure, you must add the name child element to explicitly
declare the specific component to which you are referring. The value of the name
element must correspond to the component's unique identifier of its declaration in the
EPN assembly file.

For example, assume a processor is declared in the EPN assembly file as follows:

<wlevs:processor id="helloworldProcessor" ...>

Oracle CEP Samples 2-13

Oracle Continuous Query Language (CQL) Example

Then its corresponding XML configuration would be as follows:

<processor>
<name>helloworldProcessor</name>

</processor>

The HelloWorld example uses a single configuration file for one processor with the
name helloworldProcessor. This name corresponds with the declaration of the
components in the EPN assembly file.

The processor element configures the processor component. The most important
part of the processor configuration is the declaration of the set of Oracle Continuous
Query Language (Oracle CQL) rules that this processor executes; these rules select the
set of events that are eventually passed to the application business object. Each rule is
declared with a query or relation element using an XML <! [CDATA[...]]1>
section; all query and relation elements are grouped together within a single
rules element. You can define as many rules as you want for a particular processor.

The HelloWorld application has a single, very simple rule:

select * from helloworldInputChannel

The purpose of this query is to show how to pass input data through as is (without
manipulation) and output this data as a stream (not a relation). That is why this query
does not use a window operator (such as [now] or [range 1]). With a window
operator, the output is a relation and not a stream. Consider the downstream
HelloWorldBean POJO: it only implements StreamSink (and not RelationSink)
because the output of this query is a stream (not a relation generated by a window
operator). Consequently, the HelloWorldBean POJO prints only the insert events. It
will not print the delete events since it does not implement RelationSink.Typically,
you create queries (and views) that output relations (using a window operator) for
consumption by subsequent queries or views that produce streams.

For additional information and samples about using Oracle CEP query languages, see:

» Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event
Processing.

» Oracle Fusion Middleware EPL Language Reference for Oracle Complex Event
Processing.

Note: Oracle EPL is superseded by Oracle CQL.

2.7 Oracle Continuous Query Language (CQL) Example

The CQL example shows how to use the Oracle CEP Visualizer Query Wizard to
construct various types of Oracle CQL queries.

Figure 2-2 shows the CQL example Event Processing Network (EPN). The EPN
contains the components that make up the application and how they fit together.

2-14 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-2

|

Loader

+

orderCYSAdapter

+1

stockCWSAdapker

&

adapter

The CQL Example Event Processing Network

Legend

B —0O %

Cache Afapter Channel Processor Dusiness
Ohject
(POUO)

alertChannel

orderChannel e
orderProcessaor alerkOutput

7=
L —
stockChannel E movingdygChannel &
stockProcessor maovingCukput

51 7
E 5z
cacheProcessor Bean

stockCache

The application contains three separate event paths in its EPN:

= Missing events: this event path consists of an adapter orderCvSaAdapter
connected to a channel orderChannel. The orderChannel is connected to
processor orderProcessor which is connected to channel alertChannel
which is connected to adapter alertOutput.

This event path is used to detect missing events in a customer order workflow.

For more information on how to construct the query that the cglProc processor
executes, see Section 2.7.4.1, "Creating the Missing Event Query".

= Moving average: this event path consists of channel stockChannel connected to
processor stockProcessor which is connected to channel movingAvgChannel
which is connected to adapter movingOutput.

This event path is used to compute a moving average on stock whose volume is
greater than 1000.

For more information on how to construct the query that the cqglProc processor
executes, see Section 2.7.4.2, "Creating the Moving Average Query".

= Cache: this event path consists of adapter adapter connected to channel S1
connected to Oracle CQL processor cacheProcessor connected to channel S2
connected to bean Bean. There is a cache stockCache also connected to the
Oracle CQL processor cacheProcessor. There is also a bean Loader.

This event path is used to access information from a cache in an Oracle CQL

query.

Note: For more information about the various components in the
EPN, see the other samples in this book.

Oracle CEP Samples 2-15

Oracle Continuous Query Language (CQL) Example

2.7.1 Running the CQL Example

For optimal demonstration purposes, Oracle recommends that you run this example
on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel,
with a minimum of 2 GB of RAM.

The CQL application is pre-deployed to the cql_domain domain. To run the
application, you simply start an instance of Oracle CEP server.

To run the CQL example:

1.

Open a command window and change to the default server directory of the CQL
domain directory, located in MIDDLEWARE_HOME\ ocep_
11.1\samples\domains\cgl_domain\defaultserver, where
MIDDLEWARE_HOME refers to the Middleware directory you specified when you
installed Oracle CEP, such as d: \Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\cqgl_
domain\defaultserver

Set your development environment, as described in Section 2.5, "Setting Your
Development Environment."

Start Oracle CEP by executing the appropriate script with the correct command
line arguments:

a. On Windows:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.cmd -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

b. On UNIX:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.sh -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

The CQL application is now ready to receive data from the data feeds.

To simulate the data feed for the missing event query, open a new command
window and set your environment as described in Section 2.5, "Setting Your
Development Environment."

Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator
directory, where MIDDLEWARE_HOME refers to the Middleware directory you
specified when you installed Oracle CEP, such as d: \Oracle\Middleware.

Run the load generator using the orderData.prop properties file:
a. On Windows:

prompt> runloadgen.cmd orderData.prop

2-16 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

10.

b. On UNIX:
prompt> runloadgen.sh orderData.prop
To simulate the data feed for the moving average query, open a new command

window and set your environment as described in Section 2.5, "Setting Your
Development Environment."

Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator
directory, where MIDDLEWARE_HOME refers to the Middleware directory you
specified when you installed Oracle CEP, such as d: \Oracle\Middleware.

Run the load generator using the stockData . prop properties file:
a. On Windows:

prompt> runloadgen.cmd stockData.prop

b. On UNIX:

prompt> runloadgen.sh stockData.prop

To simulate the data feed for the cache query, you only need to run the example.

The load data is generated by Adaptor . java and the cache data is generated by
Loader . java. You can verify that data is flowing through by turning on statistics
in the Oracle CEP Visualizer Query Plan.

2.7.2 Building and Deploying the CQL Example

The CQL sample source directory contains the Java source, along with other required
resources such as configuration XML files, that make up the CQL application. The
build.xml Ant file contains targets to build and deploy the application to the cql_
domain domain, as described in Section 2.7.3, "Description of the Ant Targets to Build
the CQL Example."

To build and deploy the CQL example from the source directory:

1.

If the CQL Oracle CEP instance is not already running, follow the procedure in
Section 2.7.1, "Running the CQL Example" to start the server.

You must have a running server to successfully deploy the rebuilt application.

Open a new command window and change to the CQL source directory, located
in MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\cqgl,
where MIDDLEWARE_HOME refers to the Middleware directory you specified when
you installed Oracle CEP, such as d: \Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\cqgl

Set your development environment, as described in Section 2.5, "Setting Your
Development Environment."

Execute the a1l Ant target to compile and create the application JAR file:

prompt> ant all

Execute the deploy Ant target to deploy the application JAR file to Oracle CEP:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

Oracle CEP Samples 2-17

Oracle Continuous Query Language (CQL) Example

Caution: This target overwrites the existing CQL application JAR file
in the domain directory.

6. If the load generators required by the CQL application are not running, start them
as described in Section 2.7.1, "Running the CQL Example."

2.7.3 Description of the Ant Targets to Build the CQL Example

The build.xml file, located in the top-level directory of the CQL source, contains the
following targets to build and deploy the application:

s clean—This target removes the dist and output working directories under the
current directory.

s all—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.cqgl_11.1.1.4_0.jar, and places the generated
JAR file into a dist directory below the current directory.

s deploy—This target deploys the JAR file to Oracle CEP using the Deployer
utility.

For more information, see "Deployer Command-Line Reference" in the Oracle
Fusion Middleware Administrator’s Guide for Oracle Complex Event Processing.

2.7.4 Implementation of the CQL Example

This section describes how to create the queries that the CQL example uses, including;:
» Section 2.7.4.1, "Creating the Missing Event Query"
s Section 2.7.4.2, "Creating the Moving Average Query"

2.7.4.1 Creating the Missing Event Query

This section describes how to use the Oracle CEP Visualizer Query Wizard to create
the Oracle CQL pattern matching query that the cqlProc processor executes to detect
missing events.

Consider a customer order workflow in which you have customer order workflow
events flowing into the Oracle CEP system.

In a valid scenario, you see events in the order that Table 2-1 lists:

Table 2-1 Valid Order Workflow

Event Type Description

C Customer order
A Approval

S Shipment

However, it is an error if an order is shipped without an approval event as Table 2-2
lists:

Table 2-2 Invalid Order Workflow

Event Type Description

C Customer order

2-18 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Table 2-2 (Cont.) Invalid Order Workflow

Event Type Description

S Shipment

You will create and test a query that detects the missing approval event and generates
an alert event:

» "To create the missing event query:" on page 2-19

= "To test the missing event query:" on page 2-41

To create the missing event query:

1. If the CQL Oracle CEP instance is not already running, follow the procedure in
Section 2.7.1, "Running the CQL Example" to start the server.

You must have a running server to use the Oracle CEP Visualizer.
2. Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle CEP is running and
port refers to the Jetty NetlO port configured for the server (default value 9002).

The Logon screen appears as Figure 2-3 shows.

Figure 2-3 Oracle CEP Visualizer Logon Screen

) Oracle Complex Event Processing Visualizer, - Mozilla Firefox

Wiews History Bookmarks Tools Help

o c A I: |j Ehttp:,l’,l’localhost:QDDZ,I’WIevs,I’

|j Dracle Complex Event Processing...ﬂ |

CORACLE CEP Yisualizer

Welcome

User Id |

FPassword

Log In

I Dione I

3. Inthe Logon screen, enter the User Id wlevs and Password wlevs, and click Log
In.

Oracle CEP Samples 2-19

Oracle Continuous Query Language (CQL) Example

The Oracle CEP Visualizer dashboard appears as Figure 2—4 shows.

Figure 2—4 Oracle CEP Visualizer Dashboard

ORACLE‘ CEP Visualizer Hitne: Security || Dashboard 2 WiewsStream (§) Logout (3] Full Screen Preterence (2) Help
Welcome : wlevs i2] Dashboard === e
v @ WLEventServerDormain Management Events Clear. b
@ information
v [NonClusteredServer
¥ [Applications
» 55 Senices 1\, Warning
Security Performance Monitoring (Drag a diagnostic profile into the table)
Average Throughput {Number of Events} Latency {Microseconds)
5 100 5 100 Threshold 150
% a0 [t
H g
< B0 2 B0
3 E
£ I 2 a0
£ 4
& 20 S 0
£ g
T oo T o
19:00:00 10:00:00
Open Items Time Time
i] Dashboard (3]}
Frofile Mame Application Stage Throughtput Average Late Max Latency Op

For more information about the Oracle CEP Visualizer user interface, see
"Understanding the Oracle CEP Visualizer User Interface" in the Oracle Fusion
Middleware Visualizer User’s Guide for Oracle Complex Event Processing.

4. In the right-hand pane, expand WLEventServerDomain > NonClusteredServer >

Applications.

Select the cql node.
The CQL application screen appears as Figure 2-5 shows.

2-20 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-5 CQL Application Screen: General Tab

[# cql @NonClusteredServer D@[

General Information

Application Mame ool

State RLINMING

6. Select the Event Processing Network tab.

The Event Processing Network screen appears as Figure 2—-6 shows.

Oracle CEP Samples 2-21

Oracle Continuous Query Language (CQL) Example

Figure 2-6 CQL Application: Event Processing Network Tab

& cql @NonClusteredServer

Event Processor Network Graphical View

l Event Processing Network _-

AR

il

B

COLSockTick

s—e—s Layout | hierarchic v mm ——— @ 2| & | &
==} (@] [4][a][a]
orderCSV Adapter orderProcessar aletCutput
orderCharmel alertCliannel
% — OrderTracking ' e AlertEvent %
stockCEV Adapter stockProcessor movingJutput
P StockChanwel o tevirghvaClare] 4
% " DataStockTick @J ! MovingveBrent %
stockCache
E carheProcessor . bean
. %
StockEvent
adapter

7.

Double-click the orderProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 2-7 shows.

2-22 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-7 Oracle CQL Processor: General Tab
"’:’E‘u Processor: cqlProc - cql@NonClusteredServer

O E =

Processor Properties

Frocessor Type

CaLProcessar

@ Create Diagnostics

L

8. Select the Query Wizard tab.

The Query Wizard screen appears as Figure 2-8 shows

Oracle CEP Samples 2-23

Oracle Continuous Query Language (CQL) Example

Figure 2-8 Oracle CQL Processor: Query Wizard Tab

F i}
'E’%‘L Processor: FilterAmer - fx@NonClusteredServer B@
[aseied o
choose layout.. L4 | Zoom: 025
' ' '
.HCQL Constructs .
SSource RSource Cache-Table |
Fas
@=0 1)
Fattemn Output Select
Join Wifindow Filter |
Union Intersect hdinus
I1Stream DEtream REtream
iDTemplates
iD User-defined templates
| ————————————————— |

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query
from a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL query from a template.

For more information, see "Creating a Rule in an Oracle CQL Processor Using the
Query Wizard" in the Oracle Fusion Middleware Visualizer User’s Guide for Oracle
Complex Event Processing.

9. Click the Templates tab.
The Templates tab appears as Figure 2-9 shows.

2-24 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-9 Template Tab

» 'E*.ﬁ‘u Processor: cqlProc - cql@NonClusteredServer D@L@ﬂ
|chooselayout.. v| |9||E||_ DHOVEF|Q||Q||E||O\|Z°°"’" 025
B
|ﬁ CEL Constructs
IDTemplates
L IR,
I R S i
= /
Jdoin Template
1:SSmmce 2:Pattern 3:Select 4:Ontput 1:3‘%'?@ ;?:i;]m ;;ﬁct :{G%:jm
L:Zaurce 2indow S:Projact A: Cukput
S
Wiewd Template
IDUser-defined templates
[.J
10. Click and drag the Pattern Match Template from the Templates palette and drop

it anywhere in the Query Wizard canvas as shown in Figure 2-9.

11.

Double-click the SSource icon.

The SSource configuration screen appears as Figure 2-10 shows.

Oracle CEP Samples 2-25

Oracle Continuous Query Language (CQL) Example

Figure 2-10 SSource Configuration Dialog

L Stream [ID: 1] x

Source Froperies Froperties (4)

Type (3) Stream () Wiew

| orderChannel Y| AS

amount javalang.lLong

ts jawa.lang.String

eventType java.lang. String

orderid jawa.lang.String

Generated CQL Staternent

SELECT * FROM orderChannel

(@) Help | o Validate | | B save | | @ cancel |

12,

13.
14.
15.

The source of your query will be the orderChannel stream.
Configure the SSource as follows:

= Select Stream as the Type.

= Select orderChannel from the Select a source pull-down menu.
Click Save.

Click Save Query.

Double-click the Pattern icon.

The Pattern configuration screen appears as Figure 2-11 shows.

2-26 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-11 Pattern Configuration Dialog: Pattern Tab

ea| Pattern Match [ID: 2] x

Pattern || Define || Suhset ” Measure |

Step 1 - Create Pattern

Pattern Expression ¢y starder Moappraval™? Shipment

(e.0. AB*? C)

Duration

(e.0. 1 minute)

Partition B deri
i IOI(leII(l Tl | + | =

Fattern Alias Orders

O i Matches

Generated Pattern Match Statement
SELECT * FROM orderChannel MATCH_RECOGNIZE { PARTITION BY orderid PATTERM(CustOrder
MoApproval® Shipment) AS Orders

(2) Help o validate | Save Cancel
@ | || || |

Using the Pattern tab, you will define the pattern expression that matches when
missed events occur. The expression is made in terms of named conditions that
you will specify on the Define tab in a later step.

16. Enter the following expression in the Pattern Expression field:
CustOrder NoApproval*? Shipment
This pattern uses the Oracle CQL pattern quantifiers that Table 2-3 lists. Use the
pattern quantifiers to specify the allowed range of pattern matches. The
one-character pattern quantifiers are maximal or "greedy"; they will attempt to

match the biggest quantity first. The two-character pattern quantifiers are minimal
or "reluctant"; they will attempt to match the smallest quantity first.

Table 2-3 MATCH_RECOGNIZE Pattern Quantifiers

Maximal | Minimal | Description

* *72 0 or more times
+ +? 1 or more times.
? ?7? 0 or 1 time.

For more information, see:

s "PATTERN Condition" in the Oracle Fusion Middleware CQL Language Reference
for Oracle Complex Event Processing

s "MATCH_RECOGNIZE Condition" in the Oracle Fusion Middleware CQL
Language Reference for Oracle Complex Event Processing

Oracle CEP Samples 2-27

Oracle Continuous Query Language (CQL) Example

17. Select orderid from the Partition By pull-down menu and click the Plus Sign
button to add this property to the PARTITION BY clause.

This ensures that Oracle CEP evaluates the missing event query on each order.
18. Enter Orders in the Alias field.

This assigns an alias (Orders) for the pattern to simplify its use later in the query.
19. Click the Define tab.

The Define tab appears as Figure 2-12 shows.

Figure 2-12 Pattern Configuration Dialog: Define Tab

1 Pattern Match [ID:2] b3

| Pattarn " Define " Subset " Measure |

Step 2 - Define objects in the pattern from step 1

Qhject Mame AS

Ohject List {click to select) X

Froperies (00

Generated Pattern Match Statement
SELECT *FROM arderChannel MATCH_RECOGHIZE { PARTITION BY arderid PATTERM{ CustOrder
MoApproval®™ Shipment)) AS Orders

= ; F
@ Help | o Validate | | E Save | @ Cancel |

You will now define each of the conditions named in the pattern clause as
Table 2—4 lists:

Table 2-4 Condition Definitions

Condition Name Definition

CustOrder orderChannel .eventType = 'C’
NoApproval NOT (orderChannel .eventType = ‘A’)
Shipment orderChannel .eventType = 'C’

20. Enter CustOrder in the Object Name field.

21. Click the Expression Builder button and configure the Expression Builder as
follows (see Figure 2-13):

= In the Variables list, double-click eventType.

2-28 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

= In the Operands list, double-click =.

= After the = operand, enter the value 'C".

Figure 2-13 Expression Builder: CustOrder

el emn i

Expression Builder

arderChannel eventType = 'C'|
Variables Functions Operands
orderChannel v | | Select a function type - | i =
Froperties (00 Functions I
amount java.lang.Long = 7
!
te jawa.lang.String ==
B eventType java.lang.Sting -
orderid jawa.lang.String
=
== il

Function Description

@ Help | E Save | | @Cancel |

22, Click Save.
23. Click the Plus Sign button.

The condition definition is added to the Object List as Figure 2-14 shows.

Oracle CEP Samples 2-29

Oracle Continuous Query Language (CQL) Example

Figure 2-14 Pattern Configuration Dialog: Define Tab With CustOrder Condition

| Pattern Match [ID:2] x

[t o b Mo

Step 2 - Define objects in the pattern from step 1

Ohject Mame A5

Ohject List {click to select) b

Froperies (171

CustOrder orderChanneleventType ='C'

Generated Pattern Match Statement

SELECT * FROM orderChannel MATCH_RECOGNIZE { PARTITION BY orderid PATTERM(CustOrder
MoApproval® Shipment) DEFINE CustOrder AS arderChannel eveniType = 'C% AS Orders

(@) Help | & validate || [save || @ Cancel

24. Enter NoApproval in the Object Name field.

25. Click the Expression Builder button and configure the Expression Builder as
follows (see Figure 2-15):

= In the Variables list, double-click eventType.
= In the Operands list, double-click =.

= After the = operand, enter the value 'A’.

= Place parenthesis around the expression.

= Place the insertion bar at the beginning of the expression, outside the open
parenthesis.

= In the Operands list, double-click NOT.

2-30 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-15 Expression Builder: NoApproval

el Pattern Match [ID: 2] x
Expression Builder) @ &

MOT{orderChannel eventType = 'A%

Variables Functions Operands
| orderChannel v | | Select a function type hd | == &=
Propertias (00 Functions =
amount java.lang.Long ==

ts jawa.lang.String =

1 i

o> eventType java.lang.String .

orderid jawa.lang.String

Function Description

@ Help | E Save | | @Cancel |

26.
27.

28.
29.

Click Save.

Click the Plus Sign button.

The condition definition is added to the Object List.
Enter Shipment in the Object Name field.

Click the Expression Builder button and configure the Expression Builder as
follows (see Figure 2-16):

= In the Variables list, double-click eventType.
= In the Operands list, double-click =.

= After the = operand, enter the value 'S’.

Oracle CEP Samples 2-31

Oracle Continuous Query Language (CQL) Example

Figure 2-16 Expression Builder: Shipment

Expression Builder

arderChannel eventType = 'S'|

Variables Functions

orderChannel v | | Select a function type

Operands

vl ==

D

Propertias (00 Functions

amount java.lang.Long

ts jawa.lang.String

o> eventType java.lang.String

W w
1
i

orderid jawa.lang.String

==

MNOT

Function Description

[

ARND

@ Help

30. Click Save.
31. Click the Plus Sign button.
The Define tab appears as Figure 2-17 shows.

2-32 Oracle Complex Event Processing Getting Started

| E Save | | @Cancel |

Oracle Continuous Query Language (CQL) Example

Figure 2-17 Pattern Configuration Dialog: Define Tab Complete

el emn

Cl

Step 2 - Define objects in the pattern from step 1

Ohject Mame A5

Ohject List {click to select)

Froperies (27

CustOrder orderChanneleventType ='C'

NoApproval MOTiorderChannel.eventType ="A%

Shipment orderChannel eventType ='5"

Generated Pattern Match Statement

a A

SELECT *FROM orderChannel MATCH_RECOGHNIZE { PARTITION BY orderid PATTERM{ CustOrder

MoApproval® Shipment) DEFINE CustOrder AS arderChannel eveniType = 'C', MoApproval AS
MoT{orderChannel eventType = 'A% | Shipment AS arderChannel eventType = "85 AS Orders

@ Help

| o Validate | | E Save | | @Cancel |

32. Click the Measure tab.
The Measure tab appears as Figure 2-18 shows.

Oracle CEP Samples 2-33

Oracle Continuous Query Language (CQL) Example

Figure 2-18 Measure Tab

o= Pattern Match [ID :2] x

[Pattern I[Define H Subset " Measure |

Step 4 - Create measure ohjects

Ohject Mame A5

heasure List (click to select) b

Froperties (07

Generated Pattern Match Statement

SELECT * FROM orderChannel MATCH_RECOGHNIZE { PARTITION BY arderid PATTERN{ CustOrder
MoApproval® Shipment) DEFINE CustOrder AS arderChannel eveniType = 'C', MoApproval AS
MoT{orderChannel eventType = 'A% | Shipment AS arderChannel eventType = "85 AS Orders

@ Help | o Validate | | E Save | | @ Cancel

33.
34.

Use the Measure tab to define expressions in a MATCH_RECOGNIZE condition and
to bind stream elements that match conditions in the DEFINE clause to arguments
that you can include in the select statement of a query.

Use the Measure tab to specify the following:
m CustOrder.orderid AS orderid

m CustOrder.amount AS amount

For more information, see:

= "MEASURES Clause" in the Oracle Fusion Middleware CQL Language Reference
for Oracle Complex Event Processing

s "MATCH_RECOGNIZE Condition" in the Oracle Fusion Middleware CQL
Language Reference for Oracle Complex Event Processing

Enter orderid in the Object Name field.

Click the Expression Builder button and configure the Expression Builder as
follows (see Figure 2-19):

s In the Variables list, double-click CustOrder.orderid.

2-34 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-19 Expression Builder: orderid

g Bﬁem ﬁatcﬂ i HB :E | =

Expression Builder) i @ i é

CustOrder.arderid

Variables Functions Operands

| v | | Select a function type hd | + =
Properties(12) | Functions - =

1

CustOrder.amount javalang. Lo ® |

CustOrderts jawva.lang.String I

CustOrderewentType java.lang

1

G CustOrderorderid java.lang.Str

Shipment.amount java.lang.L

Shipmentts jawa.lang.String ==

Shipment.ewentType javalang ™ = bt

Function Description

@ Help | E Save | | @Cancel |

35. Click Save.
36. Click the Plus Sign button.
37. Enter amount in the Object Name field.

38. Click the Expression Builder button and configure the Expression Builder as
follows (see Figure 2-20):

s In the Variables list, double-click CustOrder.amount.

Oracle CEP Samples 2-35

Oracle Continuous Query Language (CQL) Example

Figure 2-20 Expression Builder: amount

Expression Builder

CustOrder.armount
Variables Functions Operands
v | | Select a function type v + lisy
Properties (12) | Functians - =
E» CustOrderamount java.lang.Lo ™ | - -
CustOrderts jawva.lang.String I
CustOrder.eventType ja\ra.langE ”
CustOrderarderid java.lang. St
=
MosApproval.amount java.lang.
MoApprowal.ts java.lang.String ==
MNoApprowal.eventType ja\ra.laT = |

Function Description

—

39. Click Save.
40. Click the Plus Sign button.

| B save || @ cancel |

The Measure tab appears as Figure 2-21 shows.

2-36 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-21 Measure Tab: Complete

e emn i

Measure

Step 4 - Create measure ohjects

Ohject Mame

heasure List (click to select)

AS

Froperies (23

orderid CustOrderorderid

amount CustOrder.amount

Generated Pattern Match Statement

SELECT *FROM orderChannel MATCH_RECOGHNIZE ([PARTITION BY orderid MEASURES

CustOrder.orderid AS orderid, CustOrder amount AS amount PATTERMN{ CustOrder MoApproval®?
Shipment) DEFINE CustOrder AS orderChannel eventType = 'C' NoApproval AS
MOT(orderChannel eventType = 'A%, Shipment AS orderChannel eventType = '579 AS Orders

@ Help

41. Click Save.

42. Double-click the Select icon.

o Validate | | E Save | | @Cancel |

The Select configuration screen appears as Figure 2-22 shows.

Oracle CEP Samples 2-37

Oracle Continuous Query Language (CQL) Example

Figure 2-22 Select Configuration Dialog: Project Tab

\@ Select[ID:3] x

|P|‘oiect || Group || Candition || Order |

Step 1- Project

[Distinct Results Target Event Type Select or Input Event Type I;I
Source Propetties (select frorm here) Source Propetties ~
| Select a source Tl Select List (0]

Propeties (03

Froject Expression

b i

Generated CQL Statement

SELECT * FROM orderChannel MATCH_RECOGNIZE { PARTITICN BY arderid MEASURES CustOrder. orderid AS
orderid, CustOrder.amount AS amount PATTERM{ CustOrder MoAppraval®™? Shipment) DEFINE CustOrder AS
arderChannel eventType = 'C' MoApproval AS MOT(orderChannel eventType = A%, Shipment AS

arderChannel eventType = '8% AS Orders

| @ Help | g Walidate | | B Save | | @ Cancel |

43. Configure the Project tab as follows:
= Select AlertEvent from the Select or Input Event Type pull-down menu.
= Select Orders from the Select a source pull-down menu.

44. Double-click orderid in the Properties list and select orderid from the Select or
Input Alias pull-down menu.

45. Click the Plus Sign button to add the property to the Generated CQL Statement.

46. Double-click amount in the Properties list and select amount from the Select or
Input Alias pull-down menu.

47. Click the Plus Sign button to add the property to the Generated CQL Statement.

48. Click in the Project Expression field and enter the value "Error - Missing
Approval" and select alertType from the Select or Input Alias pull-down menu.

49. Click the Plus Sign button to add the property to the Generated CQL Statement.
The Project tab appears as Figure 2-23 shows.

2-38 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-23 Select Configuration Dialog: Project Tab Complete

W

Step 1- Project

[Distinct Results

Target Event Tvpe AlertBEvent

i
Source Propetties (select frorm here) Source Propetties M
Orders v | Select List(3)
Froperies (2) Orders.orderid
Orders.amount
orderid CustOrderorderid
"Errar - Missing Ewant"
amount CustOrder.amount

Froject Expression

i i

Generated CQL Statement

SELECT Qrders.orderid AS orderid Orders amount AS amoaount,"Errar - Missing Event' AS alerdType FROM arderChannel
MATCH_RECOGHIZE { PARTITION BY arderid MEASURES CustOrder.orderid AS orderid, CustOrder amount AS
amount PATTERM{ CustOrder MoApproval™ Shipment) DEFIME CustOrder AS arderChannel eventTwpe = 'C
MoApproval AS NOT(orderChannel eventType = 'A%, Shipment AS orderChannel eveniType = '57 AS Orders

@ Help

¢ Yalidate | | B save | | @-Cancel |

50. Click Save.
51. Click Save Query.
52. Double-click the Output icon.

The Output configuration screen appears as Figure 2-24 shows.

Oracle CEP Samples 2-39

Oracle Continuous Query Language (CQL) Example

Figure 2-24 Output Configuration Dialog

7] output [ID: 41 x

Type («) Guery

Query Mame Tracking

Enable (a) true () false

O Wiew

Yiew Mame

Wiew Schema

Froject List

Froperies (3

1 Orders.orderid:orderid

2 Orderz.amaunt:amount

2 "Ermor- Missing Ewent':aledType

Generated CQAL Statement

SELECT Orders. orderid AS arderid Orders. amount AS amaount "Errar - Missing Event' AS alertType
FROM orderChannel MATCH_RECOGNIZE (PARTITION BY orderid MEASURES
CustOrder.orderid AS orderid, CustOrder.amount AS armount PATTERMN{ CustOrder MoApproval®?
Shipment) DEFINE CustOrder AS orderChannel eventType = 'C' NoApproval AS
MOT(orderChannel eventType = 'A%, Shipment AS orderChannel eventType = '579 AS Orders

| (@ Help | | [iE Inject Rule | | & Replace Rule | | f Validate | | B save | | @ cancel |

53. Configure the Output as follows:

= Select Query.

= Enter Tracking as the Query Name.
54, Click Inject Rule.

The Inject Rule Confirmation dialog appears as Figure 2-25 shows.

Figure 2-25 Inject Rule Confirmation Dialog

m

55. Click OK.
The Query Wizard adds the rule to the cqlProc processor.
56. Click Save.
57. Click on the CQL Rules tab.
The CQL Rules tab appears as Figure 2-26 shows.
58. Click on the Query radio button.

Confirm that your Tracking query is present.

2-40 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-26 CQL Rules Tab With Tracking Query

r

% Processor: stockProcessor - cql@NonClusteredServer H@@

| General ” Record H Playhack ” Query Wizard || COL Rules H Query Plan || Trace Event || Inject Event |

() View (s) Query () All Rules

Rule D Rule Type Qrdering Running

MovingAverage SELECT Stockvalt D00.symianl AS svmbal A¥G(Stockiol3t1 000 price) AS movingivgPrice FROM | GUERY false
StockoGH000 [PARTITION BY syméol ROWS 2] GROUP BY Stockol Gt 000.symbol

Warking Area - for Modify and Delete Oparation, select a rule from the table

Query 1D
Ordering Constraints v
Fartition Exprassion A

Queny

Enahle

| [A auery || 3 Delete Ml Queries | & Vi o 7 A (] (@) Help

To test the missing event query:

1.

To simulate the data feed for the missing event query, open a new command
window and set your environment as described in Section 2.5, "Setting Your
Development Environment."

Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator
directory, where MIDDLEWARE_HOME refers to the Middleware directory created
when you installed Oracle CEP, such as d: \Oracle\Middleware.

Run the load generator using the orderData . prop properties file:
a. On Windows:

prompt> runloadgen.cmd orderData.prop

b. On UNIX:

prompt> runloadgen.sh orderData.prop

In the Oracle CEP Visualizer, click the ViewStream button in the top pane.

The Stream Visualizer screen appears as Figure 2-27 shows.

Oracle CEP Samples 2-41

Oracle Continuous Query Language (CQL) Example

Figure 2-27 Stream Visualizer: Showing Missing Events

r

Stream Visualizer L@@@I@I
CEP ServerMame NonClusteredServer Fubsub Senver Name pubsub
PubiSub Server URL hiti1 41.144.184.207:3002 pubsub B [0 Disconnect

Publish ‘Suhsuil)e |

| Channel Mame

fevsmonitor

O| O

fevsalant

fevesdomainchange

istockmaving

Output messages from subscription E@ Retfresh
|.'stock@ ‘

symhbol""Google" "mavingfvgPrice" 32}
"symbal"Google","movingAwg Price” 31}

symbol""IBM" movingAvgPrice”. 15 45999595053591 7}
symbol""IBM" " movingAvgPrice” 15 459895950535 956}
syrnbol""Sun""moving&egPrice™1 0.8}
symbol""Sun""movingAvgPrice” 1 0.8}

symbol""Oracle” "movingAvgPrice":14.100000000000003}
syrnhol""Oracle” "movingfvgPrice":14.1}
symbol""Google" "mavingAvgPrice” 30}
symbol""Google" "mavingdvgPrice” 30}
symbol""BM","movingAvgPrice” 15 409995 980850481 T}
symbol""IBM" " movingAvgPrice” 15 443095950535957}

S

¢
{
¢
¢
;
'
¢
'
{
{
{
{

[+

[Z] Subsctibe Clean Text
| Il J

Click Initialize Client.
Click the Subscribe tab.
Select the orderalert radio button.

Click Subscribe.

©® N o o

As missing events are detected, the Oracle CEP updates the Received Messages
area showing the AlertEvents generated.

2.7.4.2 Creating the Moving Average Query

This section describes how to use the Oracle CEP Visualizer Query Wizard to create
the Oracle CQL moving average query that the stockProc processor executes.

You do this in two steps:

» First, you create a view (the Oracle CQL equivalent of a subquery) that serves as
the source of the moving average query.

See "To create a view source for the moving average query:" on page 2-43.
= Second, you create the moving average query using the source view.

See "To create the moving average query using the view source:" on page 2-59.
= Finally, you test the moving average query.

See "To test the moving average query:" on page 2-80.

2-42 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

To create a view source for the moving average query:

1. If the CQL Oracle CEP instance is not already running, follow the procedure in
Section 2.7.1, "Running the CQL Example" to start the server.

You must have a running server to use the Oracle CEP Visualizer.
2. Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle CEP is running and
port refers to the Jetty NetlO port configured for the server (default value 9002).

The Logon screen appears as Figure 2-28 shows.

Figure 2-28 Oracle CEP Visualizer Logon Screen

2 Oracle Complex Event Processing Visualizer, - Mozilla Firefox

File Edit View History Bookmarks Tools Help

o c A I: |j Ehttp:,l’,l’localhost:QDDZ,I’WIevs,I’

|j Dracle Complex Event Processing...ﬂ -

CORACLE CEP Yisualizer

Welcome

User Id |

FPassword

Log In

I Dione I

3. Inthe Logon screen, enter the User Id wlevs and Password wlevs, and click Log
In.

The Oracle CEP Visualizer dashboard appears as Figure 2-29 shows.

Oracle CEP Samples 2-43

Oracle Continuous Query Language (CQL) Example

Figure 2-29 Oracle CEP Visualizer Dashboard

@ Help

ORACLE' CEP Visualizer Home Security [Dashboard 2 WiewStream (@) Logout [5] Full Screen Preference
Welcome : wlevs t~| Dashboard (=)= [)
v @ WLEventSerserDomain Management Events Clear -
eployment @ information
v [} MonClusteredServer
v [y Applications
> mm.beawlevs. data:
|
» £ Benices 1 Wisrning
Security Performance Monitoring (Drag a diagnostic profile into the table)
Average Throughput {Number of Events) Latency {Microseconds)
5 100 5 100 Thresheld 150
%m0 % a0
i H
< 60 Z &0
s @ I % a0
S g
;o H 20
| T oo
19:00:00 19:00:00
Qpen ltems Time Time
i Dashhoard 3]}
Frafile Mame Application Stage Throughtput mverage Late Wax Latency op

For more information about the Oracle CEP Visualizer user interface, see
"Understanding the Oracle CEP Visualizer User Interface" in the Oracle Fusion
Middleware Visualizer User’s Guide for Oracle Complex Event Processing.

4. In the right-hand pane, expand WLEventServerDomain > NonClusteredServer >

Applications.

5. Select the cql node.

The CQL application screen appears as Figure 2-30 shows.

2-44 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-30 CQL Application Screen: General Tab

[cql @NonClusteredServer =1 @L@

Gene...

General Information

Application Mame cql

State RUNMNING

6. Select the Event Processing Network tab.

The Event Processing Network screen appears as Figure 2-31 shows.

Oracle CEP Samples 2-45

Oracle Continuous Query Language (CQL) Example

Figure 2-31 CQL Application: Event Processing Network Tab

[E cql @NonClusteredServer

Event Processor Network Graphical View

— Layout: |hierarchic
===

HoEEEE

o] moom i pt @] @][&]l&]

adapter

COLStockTick

orderC5V Adapter s) orderProcessor At) alertCutput
p o harne hanme .
»EEE] . » 31 55
OrderTracking |cQu AlertEwvent
tockCEV Adapt tockP: i tput
stoc . pler . g Dj ToCessoY — . Wu pul
% d DataStockTick 'ﬁll " IavinghvgBent '%
stockCache
cacheProcessor bean

¥

52
StockEwvent 't

7. Double-click the stockProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 2-32 shows.

2-46 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-32 Oracle CQL Processor: General Tab

& Processor: stockProcessor - cql@NonClusteredServer (= =l [[=)
Processor Properties

Processor Type

CQLPracessor

| [Create Diagnostics

8. Select the Query Wizard tab.

The Query Wizard screen appears as Figure 2-33 shows.

Oracle CEP Samples 2-47

Oracle Continuous Query Language (CQL) Example

Figure 2-33 Oracle CQL Processor: Query Wizard Tab

ﬁ& Processor: stockProcessor - cgl@NonClusteredServer DL@L@
|chooselay\:ut.. vl | @ || E || _ ‘ DHUVEI’ | Q H Q || E || q | Zoom: 025 2.00
[N T
—_—

@CQL Constructs |

SSource RSource Cache-Table

= (W

Fattarn Output Salact

® Q B

Jain Wi d oo Filter

(2229 L2229 [222]

Union Interzect Minus

222k 22k 22y

|Stream DStream R&traam

|DTempIates |
|DUser-defined templates |

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query
from a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL view and query from
individual Oracle CQL constructs.

For more information, see "Creating a Rule in an Oracle CQL Processor Using the
Query Wizard" in the Oracle Fusion Middleware Visualizer User’s Guide for Oracle
Complex Event Processing.

9. Click and drag an SSource icon (Stream Source) from the CQL Constructs palette
and drop it anywhere in the Query Wizard canvas as Figure 2-34 shows.

2-48 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-34 Query Wizard: SSource

% Processor: stockProcessor - cql@MNonClusteredServer DL@L@
Query Wizard
| sheose lzyout.. | v | (] | =] | = [] Hover | & &, =] O Zosm 025 2.00

—_——

& coL Constructs

RSnource Cache-Tahle

= (2 =

Pattern Output Select

® Q9 3

Jain Wi d Filtar

222y 2239 222]

Union Intersect Minus

(2225 2224 222

IStream [Stream RStream

»}3)3’ 1.5350urce

|DTempIates |
|DUser-defined templates |

10. Double-click the SSource icon.

The SSource configuration screen appears.

The source of your view will be the stockChannel stream. You want to select
stock events from this stream where the volume is greater than 1000. This will be
the source for your moving average query.

11. Configure the SSource as follows (as shown in Figure 2-35):
= Select Stream as the Type.
The source of your view is the stockChannel stream.
» Select stockChannel from the Select a source pull-down menu.

» Enter the alias StockVolGt1000 in the AS field.

Oracle CEP Samples 2-49

Oracle Continuous Query Language (CQL) Example

Figure 2-35 SSource Configuration Dialog

}
Ui Stream [ID: 1] x

Type @ Stream O Wiew

| stockChannel Y| As

Source Properties Froperties (5

price java.lang.Double

symbol jawa.lang.String

percChange javalang.Double

wolume jawa.lang.Long

lastPrice java.lang.Double

ELEMEMNT_TIME timestamp

Generated CQOL Statement

SELECT * FROM stockChannel AS StockVolGt1000

(@) Help | of Validate | | A save | | @ cancel

12. Click Save.
13. Click Save Query.
14. When prompted, enter StockVolGt1000 in the Query Id field.
15. Click Save.
Next, you will add an Oracle CQL filter.

16. Click and drag a Filter icon from the CQL Constructs palette and drop it anywhere
in the Query Wizard canvas as Figure 2-36 shows.

2-50 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-36 Query Wizard: Filter

5 Processor: stockProcessor - cql@NonClusteredServer = = f

Query Wizard

|chooselay\:ut.. vl |®||E||: DHUVEV|Q||Q||E||Q\|Z°°W D.?SI . . IQ_IDD
—_—

@CQL Constructs |

SSource RSource Cache-Table
E'] ﬂ
Fattern Output Selact
ml:ss . 3 Filter Join Window
Union Intersect Minus
1S5tream DStream RStream
|Tl Templates |

|DUser-defined templates |

17. Click on the SSource icon and drag to the Window icon to connect the Oracle CQL
constructs as Figure 2-37 shows.

Figure 2-37 Connecting the SSource and Filter Icons

m 135 oree 2Filter

18. Double-click the Filter icon.

The Filter configuration screen appears as Figure 2-38 shows.

Oracle CEP Samples 2-51

Oracle Continuous Query Language (CQL) Example

Figure 2-38 Filter Configuration Dialog

&)/ Fiter [ID: 2] "

Filter Predicate - type directly into the text area OR use Builder

Generated Filter Staterment

SELECT *FROM stockChannel AS StockiolGH1000

| @ el | | [E Ao fiter || 5 | & validate | | [save | | @ Cancel

19. Click the Expression Builder button.
The Expression Builder dialog appears.
20. Configure the Expression Builder as follows (as shown in Figure 2-39):

= Select StockVolGt100 from the Select an Event Type pull-down menu to
define the variables you can use in this expression.

= Double-click the volume variable to add it to the Expression Builder field.
= Double-click > in the Operands list to add it to the Expression Builder field.
= Enter the value 1000 after the > operand.

2-52 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-39 Filter Expression Builder

iter [1D :

Expression Builder

StockVolGt 000volume = 1000

\ariables Functions Operands
StockVolGt1000 ¥ | | Select a function type L4 + =l
Froperties (001 Functions - £
price javalang.Double * =
symbol jawa.lang.String !
percChange javalang.Double I
B wolume java.lang.long
=
lastPrice java.lang.Double
ELEMENT_TIME timestamp ==
I - |

Function Description

@ Help | E Sﬁe_‘ | @ Cancel |

21. Click Save.
22. Click Add Filter.

The Query Wizard adds the expression to the Generated CQL Statement as
Figure 2-40 shows.

Oracle CEP Samples 2-53

Oracle Continuous Query Language (CQL) Example

Figure 2—40 Filter Configuration Dialog: After Adding the Filter

|5 Filter [ID:2] *

Filter Fredicate - type directly into the text area OR use Builder

StockvolGt1000.valume = 1000

Generated Filter Statement

SELECT * FROM stockChannel AS StockWolGH 000 WHERE StockVolGt1 000valurme = 1000

(3 Help | [E Add filter | | G Delete filter | | & Validate || [SEve | @ cancel

23. Click Save.
24. Click Save Query.
Next you want to add a select statement.

25. Click and drag a Select icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as Figure 2—41 shows.

2-54 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-41 Query Wizard: Select

m‘ IZSSMR—@Z;Fﬂter GiSelect

£ Processor: stockProcessor - cql@NonClusteredServer D@L@
Query Wizard
|chooselayout.. vl | @ || E || | DHDVEI’ | Q || Q || E || Q | Zoom: 025 Q.00
—_—

@CQL Constructs |

|DTempIates |

SSource RSource Cache-Table

GO F

Fattern Output

® Q B

Join Wfind o Filter

(2229 222 [222]

Unian Intersect Minus

(222 2224 222p

I5tream DStream RStream

|DUser-defined templates |

26. Click on the Filter icon and drag to the Select icon to connect the Oracle CQL

constructs.

27. Double-click the Select icon.

The Select configuration screen appears.

You want to select price, symbol, and volume from your StockvVolGt1000

stream.

28. Configure the Select as follows:

= Select StockVolGt1000 from the Select a source pull-down menu.

= Select the price property and click the Plus Sign button.

The Query Wizard adds the property to Generated CQL Statement

= Repeat for the symbol and volume properties.

The Select configuration dialog appears as Figure 2-42 shows.

Oracle CEP Samples 2-55

Oracle Continuous Query Language (CQL) Example

Figure 2-42 Select Configuration Dialog: Properties Selected

M

Step 1- Project

[Distinct Results

TargetEvent Type Select or Input Event Type m

Source Properties (select from hera)

Selected Properties b4
| StockVolGt 1000 - | Select List (2)
Properties () Sto oWl GH1000. price
Sto ool GH1000. symb ol
price java.lang.Double
Sto Vol GH000 volume
symbol jawa.lang.String

parcChange javalang.Double

B wvolume javalang.Long

lastPrice java.lang.Double

ELEMEMNT_TIME timestamp

Project Exprassion

MEN

Generated COL Staterment

SELECT StockyolG1 000 price, Stocky ol Gt 000.symbol Stockvol G000 volume FROM stockChannel AS
StockvolGt 000 WHERE StockvolGt1 000.wolume = 1000

Help o validate Hsave Cancel
(@ [votone | Bgeee | (@ core

29. Click Save.
30. Click Save Query.

Finally, you will add an Output.
31. Click and drag an Output icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as Figure 2—43 shows.

2-56 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-43 Query Wizard: Output

ENET
Y vssomee—of om0

ECQL Constructs

‘&1 Processor: stockProcessor - cql@NonClusteredServer D@[@
Query Wizard
|choose|ayout.. vl | @ || B || _ DHUVEI’ | Q || Q || E || Q | Zoom: 0.25 9.00
—_—

SSource

e

Fattern

™

Jdoin

RZource

AN

Wiind o

Cache-Table

Select

Filter

222y 2oy 22,

Unian

Intersect

Minus

0% g Doy

1Stream

DStream

‘DTemplates

RStream

[l user-defined templates |

32. Click on the Select icon and drag to the Output icon to connect the Oracle CQL

constructs.
33. Double-click the Output icon.

The Output configuration screen appears.

34. Configure the Output as follows (as shown in Figure 2—44):

= Select View.
s Configure View Name as StockVolGt1000.

m Delete the contents of the View Schema field.

You can let the Oracle CEP server define the view schema for you.

Oracle CEP Samples 2-57

Oracle Continuous Query Language (CQL) Example

Figure 2-44 Output Configuration Dialog
[output [ID: 4] x

Type () Query

Guery Mame
Enahle ®

(@) Wiew

View Mame | StockvalGt 000 |

Wiew Schema

Froject List

Froperies (32

1 StockdfolGH000. price

2 StockolGt1000 symbol

3 StockWolEH1000 wolume

Generated CQL Statement

SELECT StockVolGH 000 price, StockdolGt1 000 symbol Stockyol GH 000 volurme FROM stockChannel AS StockyolGt 000
WHERE StockiolGt1 000 volume = 1000

(@) Help | Inject[RuIe | & Replace Rule | | o ‘alidate | | A save | | @ cancel |

35. Click Inject Rule.

The Inject Rule Confirmation dialog appears as Figure 2—45 shows.

Figure 2—45 Inject Rule Confirmation Dialog

36. Click OK.

The Query Wizard adds the rule to the cglProc processor.
37. Click Save.
38. Click on the CQL Rules tab.

The CQL Rules tab appears as Figure 2-46 shows.
39. Click on the View radio button.

Confirm that your StockVolGt1000 view is present.

2-58 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-46 CQL Rules Tab With View StockVolGt1000

& Processor: stockProcessor - cql@NonClusteredServer ==

(oo | e |Fiamae Gboy W co o Gy T v | et vn|

(&) Wiew () GQuery () All Rules

Rule ID Rule Type Qrdering Runnirg

StackvalGt 000 SELECT StockWolGt! 000 price, StockvolG 000 symbol, StockvolGH 000valurme FROM BN false
stockChannel AS StackvolGH D00 WHERE StackolGt 000 volume = 1000

Working Area - for Modify and Delete Operation, select 4 rule fram the table

Wiew D
Wiew Schema
Ordering Constraints T
Paition Expression v

Wiew

Enable

| [Avd view | | F Delete All views | V4 o 7] a8 [ix] @) Help

To create the moving average query using the view source:

1.

If the CQL Oracle CEP instance is not already running, follow the procedure in
Section 2.7.1, "Running the CQL Example" to start the server.

You must have a running server to use the Oracle CEP Visualizer.

2. Invoke the following URL in your browser:

http://host:port/wlevs

where host refers to the name of the computer on which Oracle CEP is running and
port refers to the Jetty NetIO port configured for the server (default value 9002).

The Logon screen appears as Figure 2—47 shows.

Oracle CEP Samples 2-59

Oracle Continuous Query Language (CQL) Example

Figure 2-47 Oracle CEP Visualizer Logon Screen

) Oracle Complex Event Processing Visualizer - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@@ C X & (|j |http:,l’,l’localhost:QDDZIwIevs,l’ w '| |'|G009|9 IO|

J |j Oracle Complex Event Processing... 3 l |T

CORACLE CEP Yisualizer

Welcome

UserId

Password

Dione

3. Inthe Logon screen, enter the User Id wlevs and Password wlevs, and click Log
In.

The Oracle CEP Visualizer dashboard appears as Figure 2—48 shows.

2-60 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-48 Oracle CEP Visualizer Dashboard

ORACLE' CEP Visualizer Home Security [Dashboard 2 WiewStream (@) Logout [5] Full Screen Preference (3) Help

Welcome : wlevs t~| Dashboard (=)= [)
v @ WLEventSerserDomain Management Events Clear -
Deplayment @ information
v [NonClustersdServer
v [y Applications
7 com. beawlevs. data:
col
» £ Benices 1 Wisrning
Security Performance Monitoring (Drag a diagnostic profile into the table)
Average Throughput {Number of Events) Latency {Microseconds)

: 100 5 100 Thrashold 150

£ a0 @ @n

Fy g

< 80 z B0

s @ I % a0

S g

;o H 20

| T oo

19.00.00 19:00:00
Open ltems Time Time
i Dashhoard 3]}
Profile Mame Application Stage Throughtput Average Late Max Latency op
. |

For more information about the Oracle CEP Visualizer user interface, see
"Understanding the Oracle CEP Visualizer User Interface" in the Oracle Fusion
Middleware Visualizer User’s Guide for Oracle Complex Event Processing.

4. In the left-hand pane, expand WLEventServerDomain > NonClusteredServer >
Applications.

5. Select the cql node.

The CQL application screen appears as Figure 2—49 shows.

Oracle CEP Samples 2-61

Oracle Continuous Query Language (CQL) Example

Figure 2-49 CQL Application Screen: General Tab

[# cal @NonClusteredServer D@L@

General Information

Application Mame ool

State RLINMING

6. Select the Event Processing Network tab.

The Event Processing Network screen appears as Figure 2-50 shows.

2-62 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-50 CQL Application: Event Processing Network Tab

[cal @NonClusteredServer

Event Processor Network Graphical View

LoE RN

— o —a Layaout: hierarchic v Zootm: I‘;{I L @ @ a Q
=== (@] (][] (&)
orderCEV Adapter orderProcessor alertOutput
orderChannel alertChannel
% " OrderTracking ' " AlertEvent '%
stockCSV Adapter stockProcessor rorvingOutput
E stockChannel ey moringborgChannel P
d DataStockTick 'ﬁll " ovingboeBvent
stockCache

adapter

COLStockTick

hean

52
" StockEwvent -t

7.

Double-click the stockProcessor Oracle CQL processor icon.

The Oracle CQL processor screen appears as Figure 2-51 shows.

Oracle CEP Samples 2-63

Oracle Continuous Query Language (CQL) Example

Figure 2-51 Oracle CQL Processor: General Tab

-EE‘U Processor: stockProcessor - coli@NoenClusteredServer

(8 [r=T = JIE
Processor Properties

Processor Type ColLProcessor

| [Create Diagnostics

8. Select the Query Wizard tab.

The Query Wizard screen appears as Figure 2-52 shows. If you have been recently

creating or editing queries for this processor, you might see those queries on the
Query Wizard canvas. Otherwise, the canvas will be blank.

2-64 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-52 Oracle CQL Processor: Query Wizard Tab

-ﬁ}t Processor: stockProcessor - cql@NonClusteredServer D@L@
|choose|ayout.. vl | @ || E || & D Hover | Q || Q || E ‘| Q | Zoom: 025 9.00
[
—_—

@CQL Constructs |

SSource RSournce Cache-Table

= (2 (m

Fattern Qutput Select

® 9 =

Jain Mfind o Filter

(2229 2239 222]

Union Intersect Minus
15tream DStream RStream
|DTemplates |

|DUser-defined templates |

You can use the Oracle CQL Query Wizard to construct an Oracle CQL query
from a template or from individual Oracle CQL constructs.

In this procedure, you are going to create an Oracle CQL view and query from
individual Oracle CQL constructs.

For more information, see "Creating a Rule in an Oracle CQL Processor Using the
Query Wizard" in the Oracle Fusion Middleware Visualizer User’s Guide for Oracle
Complex Event Processing.

9. Click and drag an SSource icon (Stream Source) from the CQL Constructs palette
and drop it anywhere in the Query Wizard canvas as Figure 2-53 shows.

Oracle CEP Samples 2-65

Oracle Continuous Query Language (CQL) Example

Figure 2-53 Query Wizard: SSource for Moving Average Query

& Processor: stockProcessor - cql@NonClusteredServer D@[@
ereoreime. 7| (@ [[B[E | Ovover [& [& [[8 |[Q] 2om 02 0
#

i coL Constructs

=]
&)

o

Source Cache-Table

= (R

Fattern

»

Jain

b\)\)\i 1:550mee m

Unien

2%l Dby Z23)

IStream [Etream R&tream

[Templates
] User-defined templates

10. Double-click the SSource icon.
The SSource configuration screen appears.

11. Configure the SSource dialog as follows (as shown in Figure 2-54):
= Select View as the Type.

= Select the StockVolGt1000 view from the Select a source pull-down menu.

2-66 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-54 SSource Configuration Dialog: Moving Average Query

- -
e Stream [ID: 1]

Type () Stream (s) Wiew

| StockVolGt 1000

v | a3

Source Properies Froperties (4)

price double

symbol java.lang.String

wolume long

ELEMENT_TIME timestamp

Generated CQL Staterment

SELECT * FROM StockWVolGt1 000

(@) Help

12. Click Save.
13. Click Save Query.

| o ‘alidate | | A save | | @ cancel

14. Click and drag a Window icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as Figure 2-55 shows.

Oracle CEP Samples 2-67

Oracle Continuous Query Language (CQL) Example

Figure 2-55 Query Wizard: Window for Moving Average Query

-&i Processor: stockProcessor - cql@NonClusteredServer DL@L@
|chooselayout.. vl | @ || E || o DHDVEI’ | Q || a || E || Q | Zoom: 0.25 0.00
—_—yl—

@CQL Constructs

SSource RSource Cache-Table

= % (m

Pattern Output Select

® (@ =

Jain Filter

Booe wing ool

(D222 1550w 2:Windnw Union Intersact Minus
I5tream [Stream RStream
|1 Templates

|D User-defined templates

15. Click on the SSource icon and drag to the Window icon to connect the Oracle
CQL constructs.

16. Double-click the Window icon.
The SSource configuration screen appears.

You want to create a sliding window over the last 2 events, partitioned by
symbol.

17. Configure the Window dialog as follows (as shown in Figure 2-56):
= Select symbol in the Source Property List to add it to the Partition List.
= Select Partition as the Type.
» Select Row Based and enter 2 in the Row Based field.

18. Click Add Window.

The Query Wizard adds the sliding window to the Generated CQL Statement as
Figure 2-56 shows.

2-68 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-56 Window Configuration Dialog: After Adding Window

Q Window [ID:2] b4
Fartition Source Property List Fartition List {select from the list)
price o syrnbol
=
symbal ﬂ
Type (=) Partition

[] Row Based 2

[] Time Bazed

Slide

Generated CQL Staterment

SELECT *FROM StockVolGt1 000 [PARTITION BY symbol ROWS 2]

@ Help | Aol Windo | | 4 Yalidate | Bﬁave | @ Cancel

19. Click Save.
20. Click Save Query.

21. Click and drag a Select icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as Figure 2-57 shows.

Oracle CEP Samples 2-69

Oracle Continuous Query Language (CQL) Example

Figure 2-57 Query Wizard: Select for Moving Average Query

-&i Processor: stockProcessor - cql@NonClusteredServer DL@L@
|choose|ay0ut.. vl | @ || E || _ | |:|Hover | Q || a || @ || Q | Zoom: 025 2.00
%=

@CQL Constructs |

SSource RSource Cache-Table

)
Fattern Output

® Q@ =

Jain Wfind o Filter

(2220 2229 222
ma—_ssomm—@l%ndow 31591901 Unian Intersect Minus
222L 2224 222

1S5tream DStream RStream

|DTempIates |
|DUser-deflned templates |

22,

23.

24.

25.

26.

Click on the Window icon and drag to the Select icon to connect the Oracle CQL
constructs.

Double-click the Select icon.
The Select configuration screen appears.
Select StockVolGt1000 from the Select a source pull-down menu.

This is the source of moving average query: the view you created earlier (see "To
create a view source for the moving average query:" on page 2-43).

Select MovingAvgEvent from the Target Event Type pull-down menu.

This is the output event your moving average query will produced. You will map
properties from the source events to this output event.

In the Source Properties list, select symbol.

The selected source property is added to the Project Expression as Figure 2-58
shows.

2-70 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-58 Select Configuration Dialog: Source Property symbol Selected

M

Step 1- Project

[J Distinct Results Target Event Type MovingAvaBEvent ILI
Source Properies {(select from here) Selected Froperties x
| StockWolGt 1000 - | Select List (1)

Froperties (@)

price double

& symbol jawa.lang.Sting

wolume long

ELEMENT_TIME timestamp

Project BXpression oigciyalGi! 000.symbal

7] L+

Generated CGQL Statement

SELECT * FROM StockyalGti00on [PARTITION BY symbol ROWS 2]

@ Help

| 4 Yalidate | | A save | | @-Cancel |

In this case, you just want to map the source property symbol to output event

property symbol as is.

27. Click on the pull-down menu next to the AS field and select symbol.

28. Click the Plus Sign button.

The source property is added to the project expression of the Generated CQL
Statement as Figure 2-59 shows.

Oracle CEP Samples 2-71

Oracle Continuous Query Language (CQL) Example

Figure 2-59 Select Configuration Dialog: Source Property symbol Mapped to Output
Event Property

ﬂ!eleallﬂ:ﬂ

Step 1- Project

[J Distinct Results

TargetEvent Type MovingAvogEvent

Source Properties (select from here) Selected Properies x

v Select List (1)

StockWVolGt1000

Froperties (41 Stodddol GHO000.symbol:aymbol

price double

-3 symbol jawa.lang.String

walume long

ELEMENT_TIME timestamp

Froject Expression

MIEN

Generated CQOL Statement

SELECT StockVolGH000.symbol AS symbol FROM StockyolG 000 [PARTITION BY syrmbol ROWS 2]

@Help | o Validate | | E Save | | @ Cancel |

29. In the Source Properties list, select price.

The selected source property is added to the Project Expression as Figure 2-60
shows.

2-72 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-60 Select Configuration Dialog: Source Property price Selected

\m Select[ID:3] x

T

Step 1- Project

|:| Distinct Results Target Event Type MovingAvaBvent Ll
Source Properies {select from here) Selected Properties x

| StockWolGt 1000 - | Select List (1)

FProperties (4) StoddWol 31000 symbol:symbal

B price double

symbol jawa.lang.String

walume long

ELEMENT_TIME timestamp

Project EXQrEssion coeivnlGH 000 price | L
Generated CQL Statement

SELECT StockMalGt 000 symbol AS symbaol FROM StockiolGH 000 [PARTITION BY symbol ROWS 2]

@ Help | o Yalidate | | E Save | | @Cancel |

In this case, you want to process the source property price before you map it to
the output event.

30. Click the Expression Builder button.
The Expression Builder dialog appears.
31. Select Aggregate Function from the Select a function type pull-down menu.

A list of the aggregate functions that Oracle CQL provides is displayed. You are
going to use the AVG function.

32. Select the StockVolGt1000.price in the Expression Builder field.
33. Double-click the AVG function.

The AVG () function is wrapped around your selection in the Expression Builder
field as Figure 2-61 shows.

Oracle CEP Samples 2-73

Oracle Continuous Query Language (CQL) Example

Figure 2-61 Expression Builder: Applying the AVG Function

:Selec“t[ID:S] x

Expression Builder @ @ ?

AVGE StockalGt 000 price)|

Variables Functions Operands
| Select a source - | | Aggregate Function - | + =
Froperies (0} Funections | H
AVG -l 7 =
COUNT i
FIRST = I
LAasST -
hA£, L B
MIN ==
SUM v = -]

Function Description

Syntax:
AWGE higint expr), AVG] float expr), AVGinteger expr)

@ Help | E Save | | @- Cancel |

34. Click Save.

The expression is added to the Project Expression field as Figure 2-62 shows.

2-74 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-62 Select Configuration Dialog: With Expression

M

Step 1- Project

[J Distinct Results

Target Event Type MovingAvaBvent m
Source Properies {select from here) Selected Properties Iil
| StockWolGt 1000 - | Select List (1)
Properties (@) St chiviol GH1000.symbolsymbol

B price double

symbol jawa.lang.String

walume long

ELEMENT_TIME timestamp

Froject Expression

AVG(StockyalGt 000 price) m +
Generated CQL Statement
SELECT StockMolGt 000 symbol AS symbol frorm StockWolGH 000 [pardition by symboal rows 2]
@ Help | o Yalidate | | E Save | | @Cancel |

35. Click on the pull-down menu next to the AS field and select movingAvgPrice.
36. Click the plus Sign button.

The source property is added to the project expression of the Generated CQL
Statement as Figure 2-63 shows.

Oracle CEP Samples 2-75

Oracle Continuous Query Language (CQL) Example

Figure 2-63 Select Configuration Dialog: Source Property price Mapped to Output Event
Property

Step 1- Project

[Distinct Results TargetEvent Type MovingAvoEvent |L|
Source Properies {(select from here) Selected Properties E
| StockVolGt1000 v Gelact List(2)

Sto ol G000 symbaolsymbal

Froperies ()

AVG StoddalGH000. price tmovingAwgPrice

& price double

symbol jawa.lang.String

wolume long

ELEMENT_TIME timestamp

Project Expression AS |L| +

Generated CGQL Staterment

SELECT StockMolGt 000 symbol AS symbol AVG StockiWolGH1 000 price) AS movingfgPrice from StockyolGt1 000
[parition by symbol rows 2]

o Validate | | A save | | @Cancel |

37. Click Validate.

A validation error dialog is shown as Figure 2-64 shows.

Figure 2-64 Validation Error: GROUP BY

to the attribute in

Because you are partitioning, you must specify a GROUP BY clause.
38. Select the Group tab.

The Group tab appears.
39. Configure the Group tab as follows (as shown in Figure 2-65):

n Select StockVolGt1000 from the Select a source pull-down menu.

2-76 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

= Select symbol from the Properties list.
s Click the Plus Sign button.
The symbo1l property is added to GROUP BY clause as Figure 2-65 shows.

Figure 2-65 Group Tab: With symbol Grouping Property

ESEIEH[ID:S] x
Step 2 - GROUP BY

| StockVolGt1000 = | + Selected Grouping Properties x

Select List (1)

Froperties ()

StoddSol GH000.symbol

price double

-3 symbol jawa.lang.String

wolume long

ELEMENT_TIME timestamp

Generated CQL Staterment

SELECT StockdolGH 000 svmbol AS symbol AVG StockiolGH1 000 price) AS movingfvg Price from StockholGti 000
[padition by symbol rows 2] GROLUP BY StockyolGH 000 svmbol

@Help | o Validate | | A save | | @ Cancel |

40. Click Save.
41. Click Save Query.
Next, you want to connect the query to an output.

42. Click and drag an Output icon from the CQL Constructs palette and drop it
anywhere in the Query Wizard canvas as Figure 2—-66 shows.

Oracle CEP Samples 2-77

Oracle Continuous Query Language (CQL) Example

Figure 2-66 Query Wizard: Output

{*.f‘u Processor: stockProcessor - cql@NonClusteredServer D@L@
| shoose layout. | v | |@||E||: DHover|Q||Q||E||Q\‘Zoom: I
—_—
| coL constructs |
222
SSource RSource Cache-Table

Fattern Select

® 9 3

Jain Wiind ow Filter

S:5elect AN gy
:Output Unian Intersect hdinus

[222] oy 222

IStream DStream RStream

E]

] Templates
[Juser-defined templates

43. Click on the Select icon and drag to the Output icon to connect the Oracle CQL
constructs.

44. Double-click the Output icon.
The Output configuration screen appears.

45. Configure the Output as follows (as shown in Figure 2-67):
= Select Query.
= Enter MovingAverage as the Query Name.

2-78 Oracle Complex Event Processing Getting Started

Oracle Continuous Query Language (CQL) Example

Figure 2-67 Output Configuration Dialog
%] output [ID:6] x

Type (=) Query

Query Marme | MovingAverage

Enable () True () False

(O view

Wiew Mame

Wiew Schema

Project List

Fraperies (23

1 StodValGH000.symbalsymbal

2 AG0 Stodd ol GH 000, price tmovingAvgPrice

Generated CQL Staterment

SELECT StockVolGt 000 symbol AS syrmbol AVGE StockdWalGt1 000 price) AS movingAegPrice from StockiolGH 000
[partition by symbol rows 2] GROUP BY StockvolGt1 000 symbaol

Hel o Inject Rule Replace Rule Walidate Save Cancel
P | g I [P

46. Click Inject Rule.

The Inject Rule Confirmation dialog appears as Figure 2-68 shows.

Figure 2-68 Inject Rule Confirmation Dialog

P ———

Rule has heen 51 :fully added.

47. Click OK.
The Query Wizard adds the rule to the cglProc processor.
48. Click Save.
49. Click on the CQL Rules tab.
The CQL Rules tab appears as Figure 2-69 shows.
50. Click on the Query radio button.

Confirm that your MovingAverage query is present.

Oracle CEP Samples 2-79

Oracle Continuous Query Language (CQL) Example

Figure 2-69 CQL Rules Tab With View MovingAverage

{"ﬁ Processor: stockProcessor - cql@NonClusteredServer BL@JL@I

| Genearal ” Record H Playback ” Query Wizard " COL Rules H Query Plan " Trace Event " Inject Event ‘

() Wiew (&) @uery () All Rules

Rule ID ‘ Rule Type Ordering Running

MovingAverage SELECT Stockval Gt 000 symbnl AS symbal AVG(StockvolGt D00_price) AS movingavgPrice FROM | QUERY false
Stocki/alGH 000 [PARTITION BY symianl ROWS 3] GROUP BY StockvalGt 000 symbaol

Working Area - for Modify and Delete Operation, select a rule from the table

GQuery D
Ordering Constraints
Fartition Exprassion

Query

Enable

| [Add Guery I 3¢ Delete &1l Queries || & v (¥} 7% =) Q (@) Help

To test the moving average query:

1. To simulate the data feed for the moving average query, open a new command
window and set your environment as described in Section 2.5, "Setting Your
Development Environment."

2. Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator
directory, where MIDDLEWARE_HOME refers to the Middleware directory you
specified when you installed Oracle CEP, such as d: \Oracle\Middleware.

3. Run the load generator using the stockData.prop properties file:
a. On Windows:

prompt> runloadgen.cmd stockData.prop

b. On UNIX:

prompt> runloadgen.sh stockData.prop

4. In the Oracle CEP Visualizer, click the ViewStream button in the top pane.

The Stream Visualizer screen appears as Figure 2-70 shows.

2-80 Oracle Complex Event Processing Getting Started

Oracle Spatial Example

Figure 2-70 Stream Visualizer: Showing Moving Average Query Output

Stream Visualizer

CEP ServerName yonClusteredServer

Pubsub Serer Name

Fubi3ub Server URL hittpoi1 41.144.184.207:9002/pubsub

Fublish ‘ Subscribe

(AEEEIE]

| Channel Mame

O | revsmonitar
O | fevsalert
) | levsdomainchange

(s) | Istockmaoving

Output messages from subscription

|.'slock@ ‘

{"gymbol"
{"symbol”
{"symbal""
symbol
{"symbol""
{"symbol”
{"symbal""
symbol"
{"gymbol"
{"symbol”
{"symbal""
"symbol

Google","movingAvgPrice":32}
Google","movingfwgPrice™ 31}

IBM" " movingdvg Price”:15. 493993959 550951 T}
IBM","movingAvg Price”: 15.499999999999956}
Sun”,'mavingaygPrice” 1 0.8}
Sun”,"movingéwgPrice™ 10,8}

Oracle” "movingAvgPrice14.100000000000003}
Oracle’ "movingAvaPrice™14.7}
Google","movingAvgPrice":30}
Google","movingAwgPrice™ 30}

IBM" " movingdvg Price”:15. 493993959 550951 T}
BN, movingAvg Price”: 15.443393993933957)

| [F] Subscribe | | 'B Clean Text |

5. Click Initialize Client.

6. Enter /stockmoving in the Initialize client field.

7. Click Subscribe.

Glﬁ Refresh

[~

As the moving average query outputs events, the Oracle CEP updates the

Received Messages area showing the events generated.

2.8 Oracle Spatial Example

This example shows how to use Oracle Spatial with Oracle CQL queries to process a
stream of Global Positioning System (GPS) events to track the GPS location of buses
and generate alerts when a bus arrives at its pre-determined bus stop positions.

Figure 2-71 shows Oracle Spatial example Event Processing Network (EPN). The EPN
contains the components that make up the application and how they fit together.

Oracle CEP Samples 2-81

Oracle Spatial Example

Figure 2-71 Oracle Spatial Example Event Processing Network

BusPositionzen h . b

&

2 % BusStopRelation BusStopChannel =
@ BusStopadapter BusatopPub

b

&

BusPosStream BusPosChannel

Processar BusPosPu

&

77 b 1 BusStopdrrivalChannel =
¢ i e BusStoparrivalPub

Adapter Channel Processar Event @
Bean

BusStoparrivalOutputBean

The example includes the following components:

BusPositionGen—Component that simulates an input stream of bus position
GPS events. It uses the Oracle CEP loadgen utility and csvgen adapter provider to
read in comma separated values (CSV) and deliver them to the EPN as BusPos
events.

BusStopAdapter—Custom adapter component that generates bus stop positions
based on MIDDLEWARE _HOME\ocep_11l.1l\samples\domains\spatial_
domain\defaultserver\applications\spatial_sample\bus_

stops . csv, where MIDDLEWARE_HOME refers to the Middleware directory you
specified when you installed Oracle CEP, such as d: \Oracle\Middleware.

BusPosStream—Component that transmits BusPos events to the Processor as
a stream.

BusStopRelation—Component that transmits BusPos events to the
Processor as a relation.

Processor—Component that executes Oracle CQL queries on the incoming
BusPos events.

BusStopChannel, BusPosChannel, and
BusStopArrivalChannel—Components that each specify a different selector to
transmit the results of a different query from the Processor component to the
appropriate outbound adapter or output bean.

BusStopPub, BusPosPub, and BusStopArrivalPub—Components that
publish the results of the Processor component’s queries.

BusStopArrivalOutputBean—POJO event bean component that logs a
message for each insert, delete, and update event to help visualize the relation
offered by the BusStopArrivalChannel.

Note: For more information about data cartridges, see:

= "Introduction to Data Cartridges" in the Oracle Fusion Middleware
CQL Language Reference for Oracle Complex Event Processing

= "Oracle Spatial" in the Oracle Fusion Middleware CQL Language
Reference for Oracle Complex Event Processing

2-82 Oracle Complex Event Processing Getting Started

Oracle Spatial Example

2.8.1 Running the Oracle Spatial Example

The Oracle Spatial application is pre-deployed to the spatial_domain domain. To
run the application, you simply start an instance of Oracle CEP server.

To run the Oracle Spatial example from the spatial_domain domain:

1.

Open a command window and change to the default server directory of the Oracle
Spatial example domain directory, located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\spatial_ domain\defaultserver, where
MIDDLEWARE_HOME refers to the Middleware directory you specified when you
installed Oracle CEP, such as d: \Oracle\Middleware.

prompt> cd d:\Oracle iddleware\ocep_11.1\samples\domains\spatial_
domain\defaultserver

Ensure the environment is set correctly in the server startup script.
For more information, see Section 2.5, "Setting Your Development Environment."

Start Oracle CEP by executing the appropriate script with the correct command
line arguments:

a. On Windows:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.cmd -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

b. On UNIX:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.sh -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

Wait for the console log to show:

<Mar 4, 2010 2:13:15 PM EST> <Notice> <Spring> <BEA-2047000> <The application
context for "spatial_sample" was started successfully>
<Mar 4, 2010 2:13:15 PM EST> <Notice> <Server> <BEA-2046000> <Server STARTED>

This message indicates that the Oracle Spatial example is running correctly.

On the same host as the Oracle Spatial example is running, launch a browser and
navigate to http://localhost:9002/bus/main.html.

Note: You cannot run this example on one host and browse to it
from another host. This is a limitation of the Google API Key that the
example uses and is not a limitation of Oracle CEP.

Oracle CEP Samples 2-83

Oracle Spatial Example

The Oracle Spatial example Web page appears as Figure 2-72 shows.

Figure 2-72 Oracle Spatial Web Page

?) Mozilla Firefox

Eile:

Edit View

History Bookmarks Tools Help

e }& Ly |j http: fflacalhost: 2002 bus main. html

Central SEEEEE T S T ——
Richmond 2 5 & & & m F F L T map | Satelite | Hybrid | Terrain |
Anza St Anza St L FICTITTGTT
2 g
: 3 A
Bahoa
e
s Balboa St Balboa 5t @ N A 2]
o % 3 o ¥ =
WEEVRE e e P! 2 : 3
=, > S Ly e o cal
= £y e @ o Cabrilla St 10
a 3, Cabrillo 5t Caprilla St 1§ ol | LY ‘3 "5‘. 2
Cabrillo St i 2=l |3 3 2 B
b 2 551 15 b TE 2
: : el e o
g g % Fulton St
Fulton St
) \ <1
s F Kerne
tel |\De o California "
Loydiake. < Japaness) Sy« Academy Uiy Pone
J600F Konmey D v;. U Tea Garden of Sciences A
eow“w %Q = 4
Golden (o =] Wartin
Gate Park ‘O’Ir%
Middle Cr W D ' o8
&
Elk Glen %}_
l? P ake S San Francisco
MeGe, La";ﬁgm%J o W o Botanical Garden D
FOWERED EY r
i 3 pharin W4T Maypyp L0 5
Vimmnbes Nl WRBslstaE010 Gongle - Teigns B tse

| Bus Stop Arrivals

1 Match case

Click the Bus Top Arrivals tab to view bus stop arrivals as Figure 2-73 shows.

2-84 Oracle Complex Event Processing Getting Started

Oracle Spatial Example

Figure 2-73 Oracle Spatial Web Page: Bus Stop Arrivals Tab

%) Mozilla Firefox

File Edit Miew Histary EBookmarks Tools Help

| b e A |j httpe fflacalhost: 9002 bus main, html {j -

IT' Google)'| @ 5

J |:] http:/ /localhost:9002/bus /main.html |T| | -

Bus Tracking

E@][Bus Stop Arrivals

S SR
T B d B Stop Id
| Satellite | Hybrid | Terrain | b o St

@

i=
H
Balboa St @
@

=

any WZL

ag UL

Cabrille St

g Uil
By UZISUNS

E

ey WL

ANy PG

bl

L Deh
Japanese
Tea Garden

Martn L,

San Francisco
Botanical Garden

o utnel
s
qﬁ:agﬂﬁ?”%m 0 Google - Termf of UgRo

¥ Find: ext Erevious & Highlight all] Match case

5. Execute the Oracle CEP load generator to generate sample data:

a. On Windows:

* Open a command prompt and navigate to MIDDLEWARE_HOME/ocep_
11.1/utils/load-generator
* runloadgen.cmd bus_positions.prop
b. On UNIX:
* Open a terminal window and navigate to MIDDLEWARE_HOME/ocep_
11.1/utils/load-generator
*

runloadgen.sh bus_positions.prop

6. Observe the bus movements and alerts in the browser as Figure 2-74 shows.

Oracle CEP Samples 2-85

Oracle Spatial Example

Figure 2-74 Oracle Spatial Web Page: Bus Tracking

) Mozilla Firefox

File Edit Wew History Bookmarks Toaols Help
v e) |j http: jilacalhost: 9002 bus/main. html T '-.' . _}- @ b
|j http:/ /localhost:9002 /bus/main.html -
Bus Tracking
E @ Bus Stop Arrivals E E
E £ e " - Ti Bus 1d Bus Stop Id
= 3 [wap | sateite | Hyorig | Terrain |4 bk e i
= iz o x i3 2010 Mar, 4 14:23 PM] 1
! # a ey 1T
Lk I X T oy “a, Z0L0 Mar, 4 14:24 PM 2 z
i o BNy 5 /M ¢ 5
& 4 ’% H & Y
o) & S
i erce 5t Ik Ast k' ASt L%
s A s ® Ve, sa EES S =
B Sk | SR Ay =
| | o .
= or Ave JE colma &3 st @ C8t
= o EAR: B o E |
B e b
i I 2 = armete
- 1B e FSt F &t
ED ol =
o g
[£9E = iz 3
= <9E 53 %’u Cemet
- i H 8 Woodlawn -
i = EE [Cemetery - N2
E@ =
i H
= E’ i o
= ¢ g
g s B & ks
2 g Metra Mall >
=
i s Greenlawn
R o Cemetery, Colma 3
o
(};Q\‘ ’gie Map data @2010 Google - Termsr%bﬁse
X Find: [match case

2.8.2 Building and Deploying the Oracle Spatial Example
The Oracle Spatial sample source directory contains the Java source, along with other
required resources such as configuration XML files, that make up the Oracle Spatial
application. The build.xml Ant file contains targets to build and deploy the
application to the spatial_ domain domain.
For more information, see Section 2.8.3, "Description of the Ant Targets to Build the
Oracle Spatial Example".

To build and deploy the Oracle Spatial example from the source directory:
1. If the spatial_domain Oracle CEP instance is not already running, follow the
procedure in Section 2.8.1, "Running the Oracle Spatial Example" to start the

server.

You must have a running server to successfully deploy the rebuilt application.

2. Open a new command window and change to the Oracle Spatial source directory,

located in MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\spatial where MIDDLEWARE HOME

is the Middleware directory you specified when you installed Oracle CEP.

For example:

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\spatial

3. Set your development environment.

2-86 Oracle Complex Event Processing Getting Started

Oracle Spatial Example

For more information, see Section 2.5, "Setting Your Development Environment."
4. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

5. Execute the deploy Ant target to deploy the application JAR file to Oracle CEP:

prompt> ant -Daction=update deploy

Caution: This target overwrites the existing Oracle Spatial
application JAR file in the domain directory.

2.8.3 Description of the Ant Targets to Build the Oracle Spatial Example

The build.xml file, located in the top level of the Oracle Spatial source directory,
contains the following targets to build and deploy the application:

s clean—This target removes the dist and output working directories under the
current directory.

» all—This target cleans, compiles, and JARs up the application into a file called
com.bea.wlevs.example.helloworld_11.1.1.4_0.jar, and places the
generated JAR file into a dist directory below the current directory.

» deploy—This target deploys the JAR file to Oracle CEP using the Deployer
utility.

For more information, see "Deployer Command-Line Reference" in the Oracle
Fusion Middleware Administrator’s Guide for Oracle Complex Event Processing.

2.8.4 Implementation of the Oracle Spatial Example

The implementation of the Oracle Spatial example generally follows "Creating Oracle
CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer’s Guide for
Oracle Complex Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical
development process.

All the files of the Oracle Spatial example are located relative to the MIDDLEWARE_
HOME\ocep_11.1\samples\source\applications\spatial directory, where
MIDDLEWARE_HOME refers to the Middleware directory you specified when you
installed Oracle CEP, such as c: \Oracle\Middleware. Oracle recommends that you
use this example directory setup in your own environment, although it is obviously
not required.

The files used by the Oracle Spatial example include:

= An EPN assembly file that describes each component in the application and how
all the components are connected together. You are required to include this XML
file in your Oracle CEP application.

In the example, the file is called context .xml and is located in the
META-INF/spring directory.

For details, see Section 2.8.5, "Oracle Spatial Example EPN Assembly File."

= A component configuration file that configures the various components on the
EPN including the processor component of the application:

Oracle CEP Samples 2-87

Oracle Spatial Example

In the example, this file is called config.xml and is located in the
META-INF/wlevs directory.

For details, see Section 2.8.6, "Oracle Spatial Example Component Configuration
File."

Java files that implement:

- BusStopAdapter: Custom adapter component that generates bus stop
positions based on MIDDLEWARE_HOME\ocep_
11.1\samples\domains\spatial_
domain\defaultserver\applications\spatial_sample\bus_
stops.csv, where MIDDLEWARE_HOME refers to the Middleware directory
you specified when you installed Oracle CEP, such as
d:\Oracle\Middleware.

- OutputBean: POJO event bean component that logs a message for each
insert, delete, and update event to help visualize the relation offered by the
BusStopArrivalChannel

— OrdsHelper: Helper class that provides method getOrds to return the
ordinates from a JGeometry as a List of Double values.

These Java files are located in the
sourcelapplications\spatial\src\com\oracle\cep\sample\spatial
directory.

For additional information about the Oracle CEP APIs referenced in this POJO, see
Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing.

A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle CEP.

In the example, the MANIFEST . MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application
Assembly and Deployment" in the Oracle Fusion Middleware Developer’s Guide for
Oracle Complex Event Processing for Eclipse.

The Oracle Spatial example uses a build.xml Ant file to compile, assemble, and
deploy the OSGi bundle; see Section 2.8.2, "Building and Deploying the Oracle
Spatial Example" for a description of this build.xml file if you also use Ant in
your development environment.

2.8.5 Oracle Spatial Example EPN Assembly File

One of the main purposes of the EPN assembly file is to define the event processing
network by declaring the components of the application and how they are all
connected, or in other word, which components listen to which other components.
Oracle CEP provides a set of custom Spring tags used to declare the network. You also
use the EPN assembly file to register the event types used by your application and its
Oracle CQL or EPL rules.

You use the EPN assembly file in the typical way to define the application component
beans in the Spring application context; the application components beans are those
implemented with Java classes, such as adapters and the POJO that contains the
business logic.

For more information, see:

2-88 Oracle Complex Event Processing Getting Started

Oracle Spatial Example

= "Schema Reference: EPN Assembly spring-wlevs-v1l_1_1_6.xsd" in the Oracle
Fusion Middleware Developer’s Guide for Oracle Complex Event Processing for Eclipse

= "Oracle CEP Schemas" in the Oracle Fusion Middleware Developer’s Guide for Oracle
Complex Event Processing for Eclipse

Example 2-3 shows the EPN assembly file used in the Oracle Spatial sample
application.

Example 2-3 Oracle Spatial Example EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-vll_1_1_6.xsd">

<wlevs:event-type-repository>
<wlevs:event-type type-name="BusPos">
<wlevs:properties type="tuple">
<wlevs:property name="busId" type="int"/>
<wlevs:property name="seq" type="int"/>
<wlevs:property name="longitude" type="double"/>
<wlevs:property name="latitude" type="double"/>
</wlevs:properties>
</wlevs:event-type>

<wlevs:event-type type-name="BusStop">
<wlevs:properties type="tuple">
<wlevs:property name="busId" type="int"/>
<wlevs:property name="seq" type="int"/>
<wlevs:property name="geom"
type="com.oracle.cep.cartridge.spatial.Geometry" />
</wlevs:properties>
</wlevs:event-type>

<wlevs:event-type type-name="BusPosEvent">
<wlevs:properties type="tuple">
<wlevs:property name="busId" type="int"/>
<wlevs:property name="seq" type="int"/>
<wlevs:property name="geom"
type="com.oracle.cep.cartridge.spatial.Geometry" />
</wlevs:properties>
</wlevs:event-type>

<wlevs:event-type type-name="BusStopArrivalEvent">
<wlevs:properties type="tuple">
<wlevs:property name="incidentTime" type="int"/>
<wlevs:property name="busId" type="int"/>
<wlevs:property name="stopSeq" type="int"/>
</wlevs:properties>
</wlevs:event-type>

<wlevs:event-type type-name="BusPosPubEvent">
<wlevs:properties type="tuple">
<wlevs:property name="lastTime" type="int"/>
<wlevs:property name="busId" type="int"/>
<wlevs:property name="longitude" type="double"/>
<wlevs:property name="latitude" type="double"/>

Oracle CEP Samples 2-89

Oracle Spatial Example

</wlevs:properties>
</wlevs:event-type>

<wlevs:event-type type-name="BusStopPubEvent">
<wlevs:properties type="tuple">
<wlevs:property name="busId" type="int"/>
<wlevs:property name="id" type="int"/>
<wlevs:property name="coords" type="java.util.List"/>
</wlevs:properties>
</wlevs:event-type>

</wlevs:event-type-repository>
<!-- Assemble EPN (event processing network) -->

<wlevs:adapter id="BusPositionGen" provider="csvgen">
<wlevs:instance-property name="port" value="9020"/>
<wlevs:instance-property name="eventTypeName" value="BusPos"/>
<wlevs:instance-property
name="eventPropertyNames"
value="busId, seq, longitude, latitude" />
<wlevs:listener ref="BusPosStream"/>
<wlevs:listener ref="BusStopAdapter"/>
</wlevs:adapter>

<wlevs:adapter id="BusStopAdapter" class="com.oracle.cep.sample.spatial.BusStopAdapter" >
<wlevs:instance-property name="path" value="bus_stops.csv"/>
<wlevs:instance-property name="eventType" value="BusStop"/>

<wlevs:instance-property name="buffer" value="30.0"/>
</wlevs:adapter>

<wlevs:channel id="BusPosStream" event-type="BusPos"
max-size="0" max-threads="0">
<wlevs:listener ref="Processor"/>
</wlevs:channel>

<wlevs:channel id="BusStopRelation" event-type="BusStop" is-relation="true" >
<wlevs:listener ref="Processor"/>
<wlevs:source ref="BusStopAdapter"/>

</wlevs:channel>

<wlevs:processor id="Processor" >
</wlevs:processor>

<!-- bus stops -->
<wlevs:channel id="BusStopChannel" event-type="BusStopPubEvent">
<wlevs:listener ref="BusStopPub" />
<wlevs:source ref="Processor"/>
</wlevs:channel>

<wlevs:adapter id="BusStopPub" provider="httppub" />

<!-- bus position -->
<wlevs:channel id="BusPosChannel" event-type="BusPosPubEvent">
<wlevs:listener ref="BusPosPub" />
<wlevs:source ref="Processor"/>
</wlevs:channel>

<wlevs:adapter id="BusPosPub" provider="httppub" />

<!-- bus stop arrival -->
<wlevs:channel id="BusStopArrivalChannel" event-type="BusStopArrivalEvent">
<wlevs:listener ref="BusStopArrivalPub" />
<wlevs:listener ref="BusStopArrivalOutputBean" />
<wlevs:source ref="Processor"/>

2-90 Oracle Complex Event Processing Getting Started

Oracle Spatial Example

</wlevs:channel>

<wlevs:event-bean id="BusStopArrivalOutputBean"
class="com.oracle.cep.sample.spatial.OutputBean">
</wlevs:event-bean>

<wlevs:adapter id="BusStopArrivalPub" provider="httppub" />

</beans>

2.8.6 Oracle Spatial Example Component Configuration File

The Oracle Spatial application uses five processors: three to handle the three data
feeds, one that joins the resulting events, and one that generates summarized results.

These XML files contain the Oracle CEP queries executed against input events. This
sample uses the Oracle CQL language. For additional information and samples about
using Oracle CEP query languages, see:

» Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event
Processing.

» Oracle Fusion Middleware EPL Language Reference for Oracle Complex Event
Processing.

Note: Oracle EPL is superseded by Oracle CQL.

Example 2—4 shows the component configuration file used in the Oracle Spatial
sample application.

The processor element contains the Oracle CQL views and queries that use the Oracle
Spatial to process geometric data using Oracle CEP.

Note: For more information about data cartridges, see:

s "Introduction to Data Cartridges" in the Oracle Fusion Middleware
CQL Language Reference for Oracle Complex Event Processing

s "Oracle Spatial" in the Oracle Fusion Middleware CQL Language
Reference for Oracle Complex Event Processing

Example 2-4 Oracle Spatial Example Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<nl:config
xsi:schemalocation="http://www.bea.com/ns/wlevs/config/application wlevs_application_
config.xsd"
xmlns:nl="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<http-pub-sub-adapter>
<name>BusPosPub</name>
<server-url>http://localhost:9002/pubsub</server-url>
<channel>/bus/buspos</channel>
<event-type>BusPosPubEvent</event-type>
</http-pub-sub-adapter>

<http-pub-sub-adapter>
<name>BusStopPub</name>
<server-url>http://localhost:9002/pubsub</server-url>
<channel>/bus/busstop</channel>
<event-type>BusStopPubEvent</event-type>

Oracle CEP Samples 2-91

Foreign Exchange (FX) Example

</http-pub-sub-adapter>

<http-pub-sub-adapter>
<name>BusStopArrivalPub</name>
<server-url>http://localhost:9002/pubsub</server-url>
<channel>/bus/busstoparrival</channel>
<event-type>BusStopArrivalEvent</event-type>
</http-pub-sub-adapter>

<processor>
<name>Processor</name>
<rules>

<view id="BusPosGeomStream" >
select bus.busId as busId, bus.seq as seq,
com.oracle.cep.cartridge.spatial.Geometry.createPoint (8307, bus.longitude,
bus.latitude) as geom
from BusPosStream as bus
</view>

<query id="BusArrival">
ISTREAM (
select systimestamp() as incidentTime, bus.busId as busId, busstop.seq as stopSeq
from BusPosGeomStream[NOW] as bus, BusStopRelation as busstop
where CONTAIN@spatial (busstop.geom, bus.geom, 0.0d) = true and
bus.busId = busstop.busId
)
</query>

<query id="BusStopOut">
select busId, seq as id, com.oracle.cep.sample.spatial.OrdsHelper.getOrds (geom) as
coords from BusStopRelation
</query>

<query 1d="BusPosOut">
select systimestamp() as lastTime, busId, longitude, latitude from BusPosStream
</query>
</rules>
</processor>

<channel>
<name>BusStopArrivalChannel</name>
<selector>BusArrival</selector>
</channel>

<channel>
<name>BusPosChannel</name>
<selector>BusPosOut</selector>
</channel>

<channel>
<name>BusStopChannel</name>
<selector>BusStopOut</selector>
</channel>

</nl:config>

2.9 Foreign Exchange (FX) Example

The foreign exchange example, called FX for simplicity, is a more complex example
than the HelloWorld example because it includes multiple processors that handle
information from multiple data feeds. In the example, the data feeds are simulated
using the Oracle CEP load generator utility.

2-92 Oracle Complex Event Processing Getting Started

Foreign Exchange (FX) Example

Figure 2-75 shows the FX example Event Processing Network (EPN). The EPN
contains the components that make up the application and how they fit together.

Figure 2-75 FX Example Event Processing Network

e, .

FilterAmerStream
FxMarketAmer

FxMarketAsia

Filterasiastream

N
S,
csvTestDats
o
rJ
£)j
FilterAmer & '; ki o) T OutputBean M
5 FxQuoteStream CrossRateStream = o
g1 2 FindCrossRates e) OutputBean
2) B e
= SummaryResulbsStreann v
Filterisia summarizeResults @
o
'f_) PublishSummaryResults

FilterEuroStream

FilterEura

0%

Processor Business
Object
(PCJIOY

Aclapter Channe|

In this scenario, three data feeds, simulated using the load generator, send a constant
pair of values from different parts of the world; the value pairs consist of a currency
pair, such as USDEUR for US dollar - European euro, and an exchange rate between
the two currencies. The fxMarketAmer, fxMarketAsia, and fxMarketEuro
adapters receive the data from the feeds, convert them into events, and pass them to
the corresponding FilterAmer, FilterAsia, and FilterEuro processors. Each
processor performs an initial stale check to ensure that no event is more than 1 second
old and then a boundary check to ensure that the exchange rate between the two
currencies is within a current boundary. The processor also only selects a specific
currency pair from a particular channel; for example, the server selects USDEUR from
the simulated American data feed, but rejects all other pairs, such as USDAUD
(Australian dollar).

After the data from each data feed provider passes this initial preparation phase, a
different processor, called FindCrossRate, joins all events across all providers,
calculates the mid-point between the maximum and minimum rate, and then applies a
trader-specified spread. Finally, the processor forwards the rate to the POJO that
contains the business code; in this example, the POJO simply publishes the rate to
clients.

The Oracle CEP monitor is configured to watch if the event latency in the last step
exceeds some threshold, such as no updated rates in a 30 second time-span, and if
there is too much variance between two consecutive rates for the same currency pair.
Finally, the last rate of each currency pair is forwarded to the Oracle CEP http pub-sub
server.

2.9.1 Running the Foreign Exchange Example

For optimal demonstration purposes, Oracle recommends that you run this example
on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel,
with a minimum of 2 GB of RAM.

The Foreign Exchange (FX) application is pre-deployed to the £x_domain domain. To

run the application, you simply start an instance of Oracle CEP server.

To run the foreign exchange example:

1. Open a command window and change to the default server directory of the FX
domain directory, located in MIDDLEWARE_HOME\ocep_

Oracle CEP Samples 2-93

Foreign Exchange (FX) Example

11.1\samples\domains\fx_domain\defaultserver, where MIDDLEWARE
HOME refers to the Middleware directory you specified when you installed Oracle
CEP, such as d: \Oracle\Middleware.

prompt> cd d:\Oracle iddleware\ocep_11.1\samples\domains\fx_
domain\defaultserver

2. Set your development environment, as described in Section 2.5, "Setting Your
Development Environment."

3. Start Oracle CEP by executing the appropriate script with the correct command
line arguments:

a. On Windows:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.cmd -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

b. On UNIX:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.sh -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

The FX application is now ready to receive data from the data feeds.

4. To simulate an American data feed, open a new command window and set your
environment as described in Section 2.5, "Setting Your Development
Environment."

5. Change to the MIDDLEWARE_HOME\ocep_11.1\utils\load-generator
directory, where MIDDLEWARE_HOME refers to the Middleware directory you
specified when you installed Oracle CEP, such as d: \Oracle\Middleware.

6. Run the load generator using the fxAmer . prop properties file:
a. On Windows:

prompt> runloadgen.cmd fxAmer.prop

b. On UNIX:

prompt> runloadgen.sh fxAmer.prop

7. Repeat steps 4 - 6 to simulate an Asian data feed, using the £xAsia.prop
properties file:

a. On Windows:

prompt> runloadgen.cmd fxAsia.prop

b. On UNIX:

2-94 Oracle Complex Event Processing Getting Started

Foreign Exchange (FX) Example

prompt> runloadgen.sh fxAsia.prop

Repeat steps 4 - 6 to simulate an European data feed, using the £xEuro.prop
properties file:

a. On Windows:

prompt> runloadgen.cmd fxEuro.prop

b. On UNIX:

prompt> runloadgen.sh fxEuro.prop

After the server status messages scroll by in the command window from which
you started the server, and the three load generators start, you should see
messages similar to the following being printed to the server command window
(the message will likely be on one line):

OutputBean:onEvent () +
<TupleValue>
<EventType>SpreaderOuputEvent</EventType>
<ObjectName>FindCrossRatesRule</ObjectName>
<Timestamp>1843704855846</Timestamp>
<TupleKind>null</TupleKind>
<DoubleAttribute>
<Value>90.08350000074516</Value>
</DoubleAttribute>
<CharAttribute>
<Value>USD</Value>
<Length>3</Length>
</CharAttribute>
<CharAttribute>
<Value>JPY</Value>
<Length>3</Length>
</CharAttribute>
<IsTotalOrderGuarantee>false</IsTotalOrderGuarantee>
</Tuplevalue>

These messages indicate that the Foreign Exchange example is running correctly.
The output shows the cross rates of US dollars to Japanese yen and US dollars to
UK pounds sterling.

2.9.2 Building and Deploying the Foreign Exchange Example from the Source Directory

The Foreign Exchange (FX) sample source directory contains the Java source, along
with other required resources such as configuration XML files, that make up the FX
application. The build.xml Ant file contains targets to build and deploy the
application to the fx_domain domain, as described in Section 2.9.3, "Description of the
Ant Targets to Build FX."

To build and deploy the foreign exchange example from the source directory:

1.

If the FX Oracle CEP instance is not already running, follow the procedure in
Section 2.9.1, "Running the Foreign Exchange Example" to start the server.

You must have a running server to successfully deploy the rebuilt application.

Open a new command window and change to the FX source directory, located in
MIDDLEWARE_HOME\ocep_11.1\samples\source\applications\fx,
where MIDDLEWARE_HOME refers to the Middleware directory you specified when

Oracle CEP Samples 2-95

Foreign Exchange (FX) Example

you installed Oracle CEP installation directory, such as
d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\fx

Set your development environment, as described in Section 2.5, "Setting Your
Development Environment."

Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

Execute the deploy Ant target to deploy the application JAR file to Oracle CEP:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

Caution: This target overwrites the existing FX application JAR file
in the domain directory.

If the load generators required by the FX application are not running, start them as
described in Section 2.9.1, "Running the Foreign Exchange Example."

After server status messages scroll by, you should see the following message
printed to the output:

{crossRate=USDJPY, internalPrice=119.09934499999781}, {crossRate=USDGBP,
internalPrice=0.5031949999999915}, {crossRate=USDJPY,
internalPrice=117.73945624999783}

This message indicates that the FX example has been redeployed and is running
correctly.

2.9.3 Description of the Ant Targets to Build FX

The build.xml file, located in the top-level directory of the FX source, contains the
following targets to build and deploy the application:

clean—This target removes the dist and output working directories under the
current directory.

all—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.fx_11.1.1.4_0.jar, and places the generated
JAR file into a dist directory below the current directory.

deploy—This target deploys the JAR file to Oracle CEP using the Deployer
utility.

For more information, see "Deployer Command-Line Reference" in the Oracle
Fusion Middleware Administrator’s Guide for Oracle Complex Event Processing.

2.9.4 Implementation of the FX Example

The implementation of the foreign exchange (FX) example generally follows "Creating
Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer’s
Guide for Oracle Complex Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical
development process.

2-96 Oracle Complex Event Processing Getting Started

Foreign Exchange (FX) Example

All the files of the FX example are located relative to the MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\fx directory, where MIDDLEWARE HOME
is the Middleware home directory you specified when you installed Oracle CEP
c:\Oracle\Middleware. Oracle recommends that you use this example directory
setup in your own environment, although it is obviously not required.

The files used by the FX example include:

An EPN assembly file that describes each component in the application and how
all the components are connected together. You are required to include this XML
file in your Oracle CEP application.

In the example, the file is called com.oracle.cep.sample. fx.context.xml
and is located in the META-INF/spring directory.

For details, see Section 2.9.5, "The FX EPN Assembly File."
Two XML files that configure the processor components of the application:

The first XML file configures the filterAmer, filterAsia, filterEuro, and
FindCrossRates processors, all in a single file. This XML file includes the Oracle
CQL rules that select particular currency pairs from particular simulated market
feeds and joins together all the events that were selected by the pre-processors,
calculates an internal price for the particular currency pair, and then calculates the
cross rate. In the example, this file is called spreader .xml and is located in the
META-INF/wlevs directory.

The second XML file configures the summarizeResults processor and includes
the Oracle CQL rule that summarizes the results of the FindCrossRates
processor. In the example, this file is called SummarizeResults.xml and is
located in the META-INF/wlevs directory.

For details, see Section 2.9.6, "The FX Processor Component Configuration Files."

An XML file that configures the PublishSummaryResults http pub-sub
adapter. In the example, this file is called PubSubAdapterConfiguration.xml
and is located in the META-INF/wlevs directory.

A Java file that implements the Output Bean component of the application, a
POJO that contains the business logic. This POJO prints out to the screen the
events that it receives, programmed in the onEvent method. The POJO also
registers into the event type repository the ForeignExchangeEvent event type.

In the example, the file is called OutputBean. java and is located in the
src/com/oracle/cep/sample/fx directory.

For additional information about the Oracle CEP APIs referenced in this POJO, see
Oracle Fusion Middleware Java API Reference for Oracle Complex Event Processing.

A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle CEP.

In the example, the MANIFEST . MF file is located in the META-INF directory.

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application
Assembly and Deployment" in the Oracle Fusion Middleware Developer’s Guide for
Oracle Complex Event Processing for Eclipse.

The FX example uses a build.xml Ant file to compile, assemble, and deploy the
OSGi bundle; see Section 2.9.2, "Building and Deploying the Foreign Exchange
Example from the Source Directory" for a description of this build.xml file if you
also use Ant in your development environment.

Oracle CEP Samples 2-97

Foreign Exchange (FX) Example

2.9.5 The FX EPN Assembly File

One of the main purposes of the EPN assembly file is to define the event processing
network by declaring the components of the application and how they are all
connected, or in other word, which components listen to which other components.
Oracle CEP provides a set of custom Spring tags used to declare the network. You also
use the EPN assembly file to register the event types used by your application and its
Oracle CQL or EPL rules.

You use the EPN assembly file in the typical way to define the application component
beans in the Spring application context; the application components beans are those
implemented with Java classes, such as adapters and the POJO that contains the
business logic.

For more information, see:

= "Schema Reference: EPN Assembly spring-wlevs-v1l_1_1_6.xsd" in the Oracle
Fusion Middleware Developer’s Guide for Oracle Complex Event Processing for Eclipse

= "Oracle CEP Schemas" in the Oracle Fusion Middleware Developer's Guide for Oracle
Complex Event Processing for Eclipse

Example 2-5 shows the EPN assembly file used in the FX sample application; see the
explanation after the example for details about the entries in bold.

Example 2-5 FX EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-vll_1_1_6.xsd">

<wlevs:event-type-repository>
<wlevs:event-type type-name="StockTick">
<wlevs:properties>
<wlevs:property name="lastPrice" type="double"/>
<wlevs:property name="symbol" type="char"/>
</wlevs:properties>
</wlevs:event-type>
<wlevs:event-type type-name="CrossRateEvent">
<wlevs:properties>
<wlevs:property name="price" type="double"/>
<wlevs:property name="fromRate" type="char"/>
<wlevs:property name="toRate" type="char"/>
</wlevs:properties>
</wlevs:event-type>
<wlevs:event-type type-name="SpreaderOuputEvent">
<wlevs:properties type="tuple">
<wlevs:property name="internalPrice" type="double"/>
<wlevs:property name="crossRatel" type="char"/>
<wlevs:property name="crossRate2" type="char"/>
</wlevs:properties>
</wlevs:event-type>
<wlevs:event-type type-name="CrossrateSummaryEvent">
<wlevs:properties>
<wlevs:property name="averageInternalPrice" type="double"/>
<wlevs:property name="crossRatePair" type="char"/>

2-98 Oracle Complex Event Processing Getting Started

Foreign Exchange (FX) Example

<wlevs:property name="totalCount" type="int"/>
</wlevs:properties>
</wlevs:event-type>
</wlevs:event-type-repository>

<!-- Assemble EPN (event processing network) -->
<wlevs:adapter id="fxMarketAmer" provider="loadgen">
<wlevs:instance-property name="port" value="9011"/>
<wlevs:listener ref="FilterAmerStream"/>
</wlevs:adapter>

<!-- This processor is simply here to filter the inbound event data
to make it appear more realistic. It would not normally be required
in a real application -->
<wlevs:channel id="FilterAmerStream" event-type="StockTick">
<wlevs:listener ref="FilterAmer"/>
</wlevs:channel>
<wlevs:processor id="FilterAmer" provider="cgl">
<wlevs:listener ref="FxQuoteStream"/>
</wlevs:processor>

<wlevs:adapter id="fxMarketAsia" provider="loadgen">
<wlevs:instance-property name="port" value="9012"/>
<wlevs:listener ref="FilterAsiaStream"/>
</wlevs:adapter>

<!-- This processor is simply here to filter the inbound event data
to make it appear more realistic. It would not normally be required
in a real application -->
<wlevs:channel id="FilterAsiaStream" event-type="StockTick">
<wlevs:listener ref="FilterAsia"/>
</wlevs:channel>
<wlevs:processor id="FilterAsia" provider="cqgl">
<wlevs:listener ref="FxQuoteStream"/>
</wlevs:processor>

<wlevs:adapter id="fxMarketEuro" provider="loadgen">
<wlevs:instance-property name="port" value="9013"/>
<wlevs:listener ref="FilterEuroStream"/>
</wlevs:adapter>

<!-- This processor is simply here to filter the inbound event data
to make it appear more realistic. It would not normally be required
in a real application -->
<wlevs:channel id="FilterEuroStream" event-type="StockTick">
<wlevs:listener ref="FilterEuro"/>
</wlevs:channel>
<wlevs:processor id="FilterEuro" provider="cqgl">
<wlevs:listener ref="FxQuoteStream"/>
</wlevs:processor>

<!-- this it to allow delivery of specifc values for testing -->
<wlevs:adapter id="csvTestData" provider="csvgen">
<wlevs:instance-property name="port" value="9014"/>
<wlevs:instance-property name="eventTypeName" value="StockTick"/>
<wlevs:instance-property
name="eventPropertyNames"
value="symbol, lastPrice"/>
<wlevs:listener ref="FxQuoteStream"/>
</wlevs:adapter>

<wlevs:channel id="FxQuoteStream" event-type="CrossRateEvent">
<wlevs:listener ref="FindCrossRates"/>

</wlevs:channel>

<wlevs:processor id="FindCrossRates" provider="cqgl">

Oracle CEP Samples 2-99

Foreign Exchange (FX) Example

<wlevs:listener ref="CrossRateStream"/>
</wlevs:processor>

<wlevs:channel id="CrossRateStream" event-type="SpreaderOuputEvent" advertise="true">
<wlevs:listener ref="summarizeResults"/>
<wlevs:listener>
<bean class="com.oracle.cep.sample.fx.OutputBean" autowire="byName"/>
</wlevs:listener>
</wlevs:channel>

<wlevs:processor id="summarizeResults" provider="cgl">
<wlevs:listener ref="SummaryResultsStream"/>
</wlevs:processor>

<wlevs:adapter id="PublishSummaryResults" provider="httppub"></wlevs:adapter>
<wlevs:channel id="SummaryResultsStream"
event-type="CrossrateSummaryEvent">
<wlevs:listener>
<bean class="com.oracle.cep.sample.fx.OutputBean" autowire="byName"/>
</wlevs:listener>

<wlevs:listener ref="PublishSummaryResults"/>

</wlevs:channel>

</beans>

In the preceding example:

The wlevs:event-type-repository element registers the event types that are
used throughout the application. These events are all of type tuple and include:

- StockTick: input events.

- CrossRateEvent: event type output by the FilterAmer, FilterAsia, and
FilterEuro processors.

- SpreaderOutputEvent: event type output by the FindCrossRates
processor.

— CrossrateSummaryEvent: event type output by the summarizeResults
processor.

Oracle CEP automatically creates instances of these event types when needed. You
can then reference this data in the Oracle CQL rules of the application, the adapter
Java class, and the POJO.

For more information, see "Event Types" in the Oracle Fusion Middleware
Developer’s Guide for Oracle Complex Event Processing for Eclipse .

The set of wlevs:adapter,wlevs:processor, and wlevs:channel elements
set up the event processor network by declaring each component in the network.
The network consists of three adapters, four processors, and five streams, as
described in Figure 2-75.

Each component is given a unique ID which can be referenced by other
components when they declare their listeners and sources.

- Thewlevs:adapter elements specify adapter components, for example:

<wlevs:adapter id="fxMarketAmer" provider="loadgen">
<wlevs:instance-property name="port" value="9011"/>
</wlevs:adapter>

The fxMarketAmer, fxMarketAsia, and £xMarketEuro adapters provide
the principle input data sources. These adapters use the

2-100 Oracle Complex Event Processing Getting Started

Foreign Exchange (FX) Example

provider="loadgen" attribute of each wlevs:adapter element to specify
that the adapters get their data from the Oracle CEP load generator utility. The
wlevs:instance-property child element specifies the port number to
which the adapter should listen.

The csvTestData adapter is an optional adapter you can use to feed test
data into the application. This adapter uses the provider="csvgen"
attribute to specify that this adapter gets its data from a comma separated
value (CSV) file. For more information, see "Testing Applications With the
Load Generator and csvgen Adapter" in the Oracle Fusion Middleware
Developer’s Guide for Oracle Complex Event Processing for Eclipse

The PublishSummaryResults adapter outputs events to the Oracle CEP
http pub-sub server.

- Thewlevs:processor elements specify the complex event processors, for
example:

<wlevs:processor id="FilterAmer" provider="cql">
<wlevs:listener ref="FxQuoteStream"/>
</wlevs:processor>

You can use the 1isteners attribute, common to all component elements, or
awlevs:listener child element to specify the components that listen to the
processor; in this case, it is a channel called FxQuoteStream.

- Thewlevs:channel elements specify the event streams between
components, for example:

<wlevs:channel id="FxQuoteStream"
event-type="CrossRateEvent"> <wlevs:listener
ref="FindCrossRates"/></wlevs:channel>

As with all components, you can use the wlevs:listener and
wlevs:source child elements to specify the other components that act as
listeners and sources for this component.

In the example, the FindCrossRates processor listens to the
FxQuoteStream channel.

Example 2-6 shows how you can nest the definition of a component inside a
wlevs:listener element:

Example 2-6 Nested Component Definition

<wlevs:channel id="CrossRateStream" event-type="SpreaderOuputEvent"
advertise="true">
<wlevs:listener ref="summarizeResults"/>
<wlevs:listener>
<bean class="com.oracle.cep.sample.fx.OutputBean" autowire="byName"/>
</wlevs:listener>
</wlevs:channel>

In Example 2-6, the OutputBean POJO, declared as a standard Spring bean
using the <bean> tag, listens to the CrossRateStream channel.

2.9.6 The FX Processor Component Configuration Files

The FX application uses five processors: three to handle the three data feeds, one that
joins the resulting events, and one that generates summarized results.

Oracle CEP Samples 2-101

Foreign Exchange (FX) Example

The first four processors are configured in a single XML file, called spreader .xml.
For more information, see Section 2.9.6.1, "FX Processor Component Configuration
File: spreader.xml."

The fifth processor is configured in the XML file called SummarizeResults.xml. For
more information, see Section 2.9.6.2, "FX Processor Component Configuration File:
SummarizeResults.xml."

These XML files contain the Oracle CEP queries executed against input events. This
sample uses the Oracle CQL language. For additional information and samples about
using Oracle CEP query languages, see:

» Oracle Fusion Middleware CQL Language Reference for Oracle Complex Event
Processing.

» Oracle Fusion Middleware EPL Language Reference for Oracle Complex Event
Processing.

Note: Oracle EPL is superseded by Oracle CQL.

2.9.6.1 FX Processor Component Configuration File: spreader.xml

The first four processors are configured in a single XML file, called spreader.xml, as
Example 2-7 shows.

Example 2-7 FX Processor Component Configuration File: spreader.xml

<?xml version="1.0" encoding="UTF-8"?>
<nl:config xsi:schemalocation="http://www.bea.com/ns/wlevs/config/application
wlevs_application_config.xsd"
xmlns:nl="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<processor>
<name>FilterAmer</name>
<rules>
<view 1d="UsdToEur" schema="lastPrice symbol"><![CDATA[
select lastPrice, symbol from FilterAmerStream [range 1] where
symbol="USDEUR"
11></view>
<view id="UsdToEurPre" schema="price fromRate toRate"><![CDATA[
select avg(lastPrice) as price, "USD" as fromRate, "EUR" as toRate
from UsdToEur
where lastPrice < 3.0 and lastPrice > 0.25
1]1></view>
<query id="AmerFilterCrossRates"><![CDATA[select * from
UsdToEurPre]] ></query>
</rules>
</processor>
<processor>
<name>FilterAsia</name>
<rules>
<view id="EurToJpy" schema="lastPrice symbol"><![CDATA[
select lastPrice, symbol from FilterAsiaStream [range 1] where
symbol="EURJPY"
1]1></view>
<view id="EurToJpyPre" schema="price fromRate toRate"><![CDATA[
select avg(lastPrice) as price, "EUR" as fromRate, "JPY" as toRate
from EurToJdpy
where lastPrice < 200.0 and lastPrice > 100.0
1]></view>

2-102 Oracle Complex Event Processing Getting Started

Foreign Exchange (FX) Example

<query id="AsiaFilterCrossRates"><![CDATA[select * from
EurToJdpyPre]] ></query>
</rules>
</processor>
<processor>
<name>FilterEuro</name>
<rules>
<view id="EurToGbp" schema="lastPrice symbol"><![CDATA[
select lastPrice, symbol from FilterEuroStream [range 1] where
symbol="EURGBP"
11></view>
<view id="EurToGbpPre" schema="price fromRate toRate"><![CDATA[
select avg(lastPrice) as price, "EUR" as fromRate, "GBP" as toRate
from EurToGbp
where lastPrice < 1.5 and lastPrice > 0.5
11></view>
<query id="EuroFilterCrossRates"><![CDATA[select * from
EurToGbpPre]] ></query>
</rules>
</processor>

<processor>
<name>FindCrossRates</name>
<rules>
<query id="FindCrossRatesRule"><![CDATA[
select ((a.price * b.price) + 0.05) as internalPrice,
a.fromRate as crossRatel,
b.toRate as crossRate2
from FxQuoteStream [range 1] as a, FxQuoteStream [range 1] as b

where

NOT (a.price IS NULL)
and

NOT (b.price IS NULL)
and

a.toRate = b.fromRate
]1></query>

</rules>

</processor>

</nl:config>

The FilterAmer, FilterAsia, and FilterEuro processors in this file are all
essentially the same; the differences lie only in the values used in the Oracle CQL
queries for querying different items from the data feeds and applying different
boundary conditions. For this reason, this section will discuss just the FilterAmer
processor.

The Oracle CQL rules executed by the FilterAmer processor are:

<processor>
<name>FilterAmer</name>
<rules>
<view i1d="UsdToEur" schema="lastPrice symbol"><![CDATA[
select lastPrice, symbol from FilterAmerStream [range 1] where
symbol="USDEUR"
11></view>
<view id="UsdToEurPre" schema="price fromRate toRate"><![CDATA[
select avg(lastPrice) as price, "USD" as fromRate, "EUR" as toRate
from UsdToEur
where lastPrice < 3.0 and lastPrice > 0.25
11></view>
<query id="AmerFilterCrossRates"><![CDATA[select * from

Oracle CEP Samples 2-103

Foreign Exchange (FX) Example

UsdToEurPre]] ></query>

</rules>
</processor>

To understand the query, one must look at the various clauses, as follows:

The UsdToEur view serves as a subquery that selects only those items from the
StockTick data feed in which the symbol value is USDEUR (US dollar -
European euro exchange) and should reject all other items. The from clause
specifies also specifies that the window of time for which this Oracle CQL query
executes is 1 second.

The UsdToEurPre view serves as a subquery that selects from the UsdToEur
view. Its where clause specifies the boundary condition to ensure that the rates for
a particular item from the feed fall within an accepted range; in this case, the
lastPrice for a particular item from the feed must be between $3.00 and $0.25.

The AmerFilterCrossRates query selects everything from the UsdToEurPre view.
Only the results of a query are output to the down-stream channels that listen to a
processor.

The Oracle CQL rule executed by the FindCrossRates processor are:

<processor>
<name>FindCrossRates</name>
<rules>
<query id="FindCrossRatesRule"><![CDATA[
select ((a.price * b.price) + 0.05) as internalPrice,
a.fromRate as crossRatel,
b.toRate as crossRate2
from FxQuoteStream [range 1] as a, FxQuoteStream [range 1] as b
where
NOT (a.price IS NULL)
and
NOT (b.price IS NULL)
and
a.toRate = b.fromRate
11></query>
</rules>
</processor>

To understand the query, one must look at the various clauses, as follows:

The from and where clauses join two events from the CrossRateEvent object
(which contains events selected by the FilterAmer, FilterAsia, and
FilterEuro processors) where the value of the toRate and fromRate are the
same. The from clause also sets the processing window, again of 1 second.

The select clause calculates an internal price of a particular currency, which
averages the to and from rate of a the currency plus a fee of $.05, and also
calculates a cross rate, which is defined as the price of one currency in terms of
another currency in the market of a third country.

The result of this query is then sent to the business object POJO and the
summarizeResults processor.

2.9.6.2 FX Processor Component Configuration File: SummarizeResults.xml

The fifth processor is configured in the XML file called SummarizeResults.xml as
Example 2-8 shows.

2-104 Oracle Complex Event Processing Getting Started

Signal Generation Example

Example 2-8 FX Processor Component Configuration File: SummarizeResults.xml

<?xml version="1.0" encoding="UTF-8"?>
<wlevs:config xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application">

<processor>
<name>summarizeResults</name>
<rules>
<query id="Rule"><![CDATA[
select

crossRatel || crossRate2 as crossRatePair,
count (*) as totalCount,
avg (internalPrice) as averageInternalPrice
from CrossRateStream [RANGE 1 SLIDE 1]
group by crossRatel,crossRate2
having count(*) > 0
11></query>
</rules>
</processor>
</wlevs:config>

The result of this query is then sent to the business object POJO and the
PublishSummaryResults adapter.

2.10 Signal Generation Example

The signal generation sample application receives simulated market data and verifies
if the price of a security has fluctuated more than two percent. The application also
detects if there is a trend occurring by keeping track of successive stock prices for a
particular symbol; if more than three successive prices fluctuate more than two
percent, this is considered a trend.

Figure 2-76 shows the signal generation example Event Processing Network (EPN).
The EPN contains the components that make up the application and how they fit
together.

Figure 2-76 The Signal Generation Example Event Processing Network

2

SymbolsCacheloader

il b o iz
StockTickStream § _ TrendStream
loadgenadapter _
== §

processorl 0, SignalgenoutputBean

PercentStream
symbolsCache

Legend

Adapter Channel Cache Processor Busineszs
Object
(POJOY

The application simulates a market data feed using the Oracle CEP load generator
utility; in this example, the load generator generates up to 10,000 messages per second.
The example includes an HTML dashboard which displays the matched events along
with the latencies; events consist of a stock symbol, a timestamp, and the price.

Oracle CEP Samples 2-105

Signal Generation Example

The example demonstrates very low latencies, with minimum latency jitter under high
throughputs. Once the application starts running, the processor matches an average of
800 messages per second. If the application is run on the minimum configured system,
the example shows very low average latencies (30-300 microsecond, on average) with
minimal latency spikes (low milliseconds).

The example computes and displays latency values based on the difference between a
timestamp generated on the load generator and timestamp on Oracle CEP. Computing
valid latencies requires very tight clock synchronization, such as 1 millisecond,
between the computer running the load generator and the computer running Oracle
CEP. For this reason, Oracle recommends running both the load generator and Oracle
CEP on a single multi-CPU computer where they will share a common clock.

The example also shows how to use the Oracle CEP event caching feature. In
particular the single processor in the EPN sends events to both an event bean and a
cache.

The example also demonstrates how to use Oracle CQL queries.

2.10.1 Running the Signal Generation Example

For optimal demonstration purposes, Oracle recommends that you run this example
on a powerful computer, such as one with multiple CPUs or a 3 GHz dual-core Intel,
with a minimum of 2 GB of RAM.

The signalgeneration_domain domain contains a single application: the signal
generation sample application. To run the signal generation application, you simply
start an instance of Oracle CEP in that domain.

To run the signal generation example:

1. Open a command window and change to the default server directory of the
signalgeneration_domain domain directory, located in MIDDLEWARE_
HOME\ocep_11.1\samples\domains\signalgeneration_
domain\defaultserver, where MIDDLEWARE_HOME refers to the Middleware
home directory you specified when you installed Oracle CEP, such as
d:\Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\signalgeneration_
domain\defaultserver

2. Set your development environment, as described in Section 2.5, "Setting Your
Development Environment."

3. Start Oracle CEP by executing the appropriate script with the correct command
line arguments:

a. On Windows:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.cmd -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

b. On UNIX:

2-106 Oracle Complex Event Processing Getting Started

Signal Generation Example

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the ~dgc parameter
to the command:

prompt> startwlevs.sh -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

Wait until you see console messages like this:

<Apr 24, 2009 11:40:37 AM EDT> <Notice> <Server> <BEA-2046000> <Server STARTED>
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0
Throughput (msg per second): 0. Average latency (microseconds): 0

The signal generation application is now ready to receive data from the data feeds.

Next, to simulate a data feed, you use a load generator programmed specifically
for the example.

Open a new command window.

Change to the MIDDLEWARE_HOME\ocep_
11.1\samples\domains\signalgeneration_
domain\defaultserver\utils directory, where MIDDLEWARE_HOME refers to
the Middleware home directory you specified when you installed Oracle CEP,
such as d:Oracle\Middleware.

Run the startDataFeed command:
a. On Windows:

prompt> startDataFeed.cmd

b. On UNIX:

prompt> startDataFeed.sh

Invoke the example dashboard by starting a browser and opening the following
HTML page:

http://host:9002/signalgeneration/dashboard.html

Replace host with the name of the computer on which Oracle CEP is running; if it
is the same computer as your browser, you can use localhost.

In the browser, click Start on the HTML page.

You should start seeing the events that match the Oracle CQL rules configured for
this example as Figure 2-77 shows.

Oracle CEP Samples 2-107

Signal Generation Example

Figure 2-77 Signal Generation Dashboard

ﬂ; WLEvS Signal Generation Demo - Windows Internet Explorer

@ i |g http:fflocalhost: 2002 fsignalgeneration/dashboard.html V| he NP9 | | P
° File Edit View Favorites Tools Help
PO : 0 o 0 0
W e | & WLEvS Signal Generation Demo | | {1 & f v |52 Page - {0 Tooks +
e
Start || S10p | Laency Max Y[400 | (us) | Update |
Percentage |
Change
N : B0 et L L e
Time Symbol Price Change =
07:53:15 WEX 514389 287 §
07:32:15 EIA 520.32 -2.40 a
07:07:32 RIC 539.44 243 E
06:42:24 XSD 519.96 -5] \ 8,
o143 | &I 5008 307 g;_w A TR (1 N
05:51:16 XSD 52117 Py % PR _a
05:45:16 NRO $151.74 24 g . & a R *
5. - X i -
05:33:46 NKN 510411 21 § - - - W— "
05:14:05 XLK $50.52 -3.83 E
04:50:26 NEI'WS 5161.48 -3.57 2 .,
Trend Time
Time Symbol Price Trend
23:39:43 ERB 57838 4
20:08:50 PEJ 510139 4
15:11:31 PWO 375.64 4
13:21:05 FSI 597.75 4
10:48:28 MHG 503.18 4
041141 JPLD s123.7 4
02:43:3% ADG §23.12 4
01:40:34 ERB 57353 4
012202 PYR 5168.87 4
00:30:19 JPLD 512236 4
|
ad 2
Done % Local intranet F 0%k T

2.10.2 Building and Deploying the Signal Generation Example from the Source
Directory

The signal generation sample source directory contains the Java source, along with
other required resources, such as configuration XML files, EPN assembly file, and
DOJO client JavaScript libraries, that make up the signal generation application. The
build.xml Ant file contains targets to build and deploy the application to the
signalgeneration_domain domain, as described in Section 2.10.3, "Description of
the Ant Targets to Build Signal Generation."

To build and deploy the signal generation example from the source directory:

1. If the signal generation Oracle CEP instance is not already running, follow the
procedure in Section 2.10.1, "Running the Signal Generation Example" to start the
server. You must have a running server to successfully deploy the rebuilt
application.

2. Open a new command window and change to the signal generation source
directory, located in MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\signalgeneration, where
MIDDLEWARE_HOME refers to the Middleware home directory you specified when
you installed Oracle CEP, such as d: \Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_
11.1\samples\source\applications\signalgeneration

2-108 Oracle Complex Event Processing Getting Started

Signal Generation Example

3. Set your development environment, as described in Section 2.5, "Setting Your
Development Environment."

4. Execute the all Ant target to compile and create the application JAR file:
prompt> ant all
5. Execute the deploy Ant target to deploy the application JAR file to the

MIDDLEWARE_HOME\ocep_11.1l\samples\domains\signalgeneration_
domain\defaultserver\applications\signalgeneration directory:

prompt> ant deploy

Caution: This target overwrites the existing signal generation
application JAR file in the domain directory.

6. If the load generator required by the signal generation application is not running,
start it as described in Section 2.10.1, "Running the Signal Generation Example."

7. Invoke the example dashboard as described in Section 2.10.1, "Running the Signal
Generation Example."

2.10.3 Description of the Ant Targets to Build Signal Generation

The build.xml file, located in the top-level directory of the signal generation
example source, contains the following targets to build and deploy the application:

s clean—This target removes the dist and output working directories under the
current directory.

= all—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.signalgen_11.1.1.4_0.jar, and places the
generated JAR file into a dist directory below the current directory.

» deploy—This target deploys the JAR file to Oracle CEP using the Deployer
utility.

For more information, see "Deployer Command-Line Reference" in the Oracle
Fusion Middleware Administrator’s Guide for Oracle Complex Event Processing.

2.10.4 Implementation of the Signal Generation Example

The implementation of the signal generation example generally follows "Creating
Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer’s
Guide for Oracle Complex Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical
development process.

All the files of the signal generation are located relative to the MIDDLEWARE_
HOME\ocep_11.1\samples\source\applications\signalgeneration
directory, where MIDDLEWARE_HOME refers to the Middleware home directory you
specified when you installed Oracle CEP, such as c: \Oracle\Middleware. Oracle
recommends that you use this example directory setup in your own environment,
although it is obviously not required.

The files used by the signal generation example include:

Oracle CEP Samples 2-109

Signal Generation Example

= A EPN assembly file that describes each component in the application and how all
the components are connected together.

In the example, the file is called epn_assembly.xml and is located in the
META-INF/spring directory.

For details, see Section 2.10.5, "The Signal Generation EPN Assembly File."

= An XML file that configures the processor component of the application; this file is
called config.xml and is located in the META-INF/wlevs directory

The config.xml file configures the processorl Oracle CQL processor, in
particular the Oracle CQL rules that verify whether the price of a security has
fluctuated more than two percent and whether a trend has occurred in its price.

For details, see Section 2.10.6, "The Signal Generation Component Configuration
Files."

= AJava file that implements the SignalgenOutputBean component of the
application, a POJO that contains the business logic. This POJO is an
HttpServlet and an EventSink. Its onEvent method consumes
PercentTick and TrendTick event instances, computes latency, and displays
dashboard information.

In the example, the file is called SignalgenOutputBean. java and is located in
the src/oracle/cep/example/signalgen directory.

For a detailed description of this file, as well as general information about
programming event sinks, see "Stream Sources and Stream Sinks and Relation
Sources and Relation Sinks" in the Oracle Fusion Middleware Developer’s Guide for
Oracle Complex Event Processing for Eclipse.

s A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle CEP.

In the example, the MANIFEST . MF file is located in the META-INF directory

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application
Assembly and Deployment” in the Oracle Fusion Middleware Developer’s Guide for
Oracle Complex Event Processing for Eclipse.

= Adashboard.html file in the main example directory; this HTML file is the
example dashboard that displays events and latencies of the running signal
generation application. The HTML file uses Dojo JavaScript libraries from
http://dojotoolkit.org/,located in the dojo directory.

For additional information about the Oracle CEP APIs referenced in
ForeignExchangeBuilderFactory, see Oracle Fusion Middleware Java API Reference
for Oracle Complex Event Processing.

The signal generation example uses a build.xml Ant file to compile, assemble, and
deploy the OSGi bundle; see Section 2.10.2, "Building and Deploying the Signal
Generation Example from the Source Directory" for a description of this build.xml
file if you also use Ant in your development environment.

2.10.5 The Signal Generation EPN Assembly File

One of the main purposes of the EPN assembly file is to define the event processing
network by declaring the components of the application and how they are all
connected, or in other word, which components listen to which other components.
Oracle CEP provides a set of custom Spring tags used to declare the network. You also

2-110 Oracle Complex Event Processing Getting Started

Signal Generation Example

use the EPN assembly file to register the event types used by your application and its
Oracle CQL rules.

You use the EPN assembly file in the typical way to define the application component
beans in the Spring application context; the application components beans are those
implemented with Java classes, such as adapters and the POJO that contains the
business logic.

For more information, see:

s "Schema Reference: EPN Assembly spring-wlevs-v11_1_1_6.xsd" in the Oracle

Fusion Middleware Developer’s Guide for Oracle Complex Event Processing for Eclipse

= "Oracle CEP Schemas" in the Oracle Fusion Middleware Developer’s Guide for Oracle
Complex Event Processing for Eclipse

Example 2-9 shows the EPN assembly file used in the signal generation sample
application; see the explanation after the example for details about the entries in bold.

Example 2-9 Signal Generation EPN Assembly File

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:osgi="http://www.springframework.org/schema/osgi"
xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
xmlns:cqglx="http://www.oracle.com/schema/cglx"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/osgi
http://www.springframework.org/schema/osgi/spring-osgi.xsd
http://www.bea.com/ns/wlevs/spring
http://www.bea.com/ns/wlevs/spring/spring-wlevs-vll_1_1_6.xsd">

<wlevs:event-type-repository>
<wlevs:event-type type-name="TrendTick">
<wlevs:properties>
<wlevs:property name="symbol" type="char"/>
<wlevs:property name="lastPrice" type="double"/>
<wlevs:property name="trendLastPrice" type="bigint"/>
<wlevs:property name="startTimestamp" type="bigint"/>
</wlevs:properties>
</wlevs:event-type>
<wlevs:event-type type-name="PercentTick">
<wlevs:properties>
<wlevs:property name="symbol" type="char"/>
<wlevs:property name="lastPrice" type="double"/>
<wlevs:property name="percentLastPrice" type="double"/>
<wlevs:property name="startTimestamp" type="bigint"/>
</wlevs:properties>
</wlevs:event-type>
<wlevs:event-type type-name="Symbols">
<wlevs:properties>
<wlevs:property name="symbol" type="char" length="10"/>
</wlevs:properties>
</wlevs:event-type>
</wlevs:event-type-repository>

<wlevs:adapter id="loadgenAdapter" provider="loadgen">
<wlevs:instance-property name="port" value="9001"/>
<wlevs:instance-property name="threadContextTimestamp" value="true"/>
</wlevs:adapter>

<!-- definition for cache that holds the symbols -->

<wlevs:caching-system id="signalgenCachingSystem"/>
<wlevs:cache id="symbolsCache" key-properties="symbol" value-type="Symbols">

Oracle CEP Samples 2-111

Signal Generation Example

<wlevs:caching-system ref="signalgenCachingSystem"/>
<wlevs:cache-loader ref="symbolsCacheLoader"/>
</wlevs:cache>

<wlevs:processor id="processorl">
<wlevs:cache-source ref="symbolsCache"/>
</wlevs:processor>

<!-- Streams are just place-holders in this scenario, they just pass-through -->
<wlevs:channel id="StockTickStream" max-threads="0" max-size="0"
event-type="OracleStockTick">
<wlevs:listener ref="processorl"/>
<wlevs:source ref="loadgenAdapter"/>
</wlevs:channel>

<!-- advertise for monitoring -->
<wlevs:channel id="TrendStream" max-threads="0" max-size="0" advertise="true"
event-type="TrendTick">

<wlevs:listener ref="outputbean"/>
<wlevs:source ref="processorl"/>
</wlevs:channel>

<wlevs:channel id="PercentStream" max-threads="0" max-size="0" advertise="true"
event-type="PercentTick">

<wlevs:listener ref="outputbean"/>
<wlevs:source ref="processorl"/>
</wlevs:channel>

<bean id="outputbean" class="oracle.cep.example.signalgen.SignalgenOutputBean">
<property name="timestampProperty" value="startTimestamp"/>
</bean>

<bean id="symbolsCacheLoader" class="oracle.cep.example.signalgen.SymbolsCacheLoader">

<property name="symbolsFileName" value="applications/MySigGen/symbols.txt"/>
<property name="eventTypeName" value="Symbols"/>
</bean>

</beans>

In the preceding example:

s Thewlevs:event-type-repository element creates the event types that are
used throughout the application as tuples; in the signal generation application,

there are the following events:

- TrendTick: defined in the EPN assembly file.

- PercentTick: defined in the EPN assembly file.
- Symbols: defined in the EPN assembly file.

m Thesetof wlevs:adapter,wlevs:processor,wlevs:channel, and
wlevs:caching-system entries set up the event processor network by
declaring each component in the network as described in Figure 2-76.

Each component is given a unique ID which can be referenced by other
components when they declare their listeners and sources.

- Thewlevs:adapter element specifies the adapter, for example:

<wlevs:adapter id="loadgenAdapter" provider="loadgen">
<wlevs:instance-property name="port" value="9001"/>

<wlevs:instance-property name="threadContextTimestamp" value="true"/>

</wlevs:adapter>

2-112 Oracle Complex Event Processing Getting Started

Signal Generation Example

The wlevs:adapter element provider="1loadgen" attribute specifies that
the adapter gets its data from the Oracle CEP load generator utility. The
wlevs:instance-property child element specifies the port number to
which the adapter should listen.

- Thewlevs:processor element specifies the Oracle CQL processor, for
example:

<wlevs:processor id="processorl">
<wlevs:cache-source ref="symbolsCache"/>
</wlevs:processor>

The 1istener attribute, common to all component tags, specifies the
component that listens to the processor; in this case, the listener is
symbolsCache.

- Thewlevs:caching-system element specifies the Oracle CEP local event
cache the application uses to improve performance, for example:

<wlevs:caching-system id="signalgenCachingSystem"/>
<wlevs:cache id="symbolsCache" key-properties="symbol"
value-type="Symbols">
<wlevs:caching-system ref="signalgenCachingSystem"/>
<wlevs:cache-loader ref="symbolsCacheLoader"/>
</wlevs:cache>

For more information on caches, see "Configuring Oracle CEP Caching" in the
Oracle Fusion Middleware Developer’s Guide for Oracle Complex Event Processing
for Eclipse.

2.10.6 The Signal Generation Component Configuration Files

The Signal Generation application configures its processor and cache in a component
configuration file that Example 2-10 shows.

Example 2-10 Signal Generation Component Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<!-- this is here to test that you ignore this file -->
<nl:config xsi:schemalocation="http://www.bea.com/ns/wlevs/config/application wlevs_
application_config.xsd"
xmlns:nl="http://www.bea.com/ns/wlevs/config/application"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" >
<processor>
<name>processorl</name>
<rules>
<view id="S" schema="symbol price">
<! [CDATA[
RStream(select T.symbol, T.lastPrice from StockTickStream[now] as T, symbolsCache
as R where T.symbol = R.symbol)
11>
</view>
<query id="percent">
<! [CDATA[
select symbol, lastPrice, percentlLastPrice, startTimestamp
from S MATCH_RECOGNIZE (
PARTITION BY symbol
MEASURES
B.symbol as symbol,
B.price as lastPrice,
100* (B.price - A.price)/A.price as percentLastPrice,
B.ELEMENT TIME as startTimestamp

Oracle CEP Samples 2-113

Signal Generation Example

ALL MATCHES
PATTERN (A B)
DEFINE
B AS (100*(B.price - A.price)/A.price > 2.0
or 100* (B.price - A.price)/A.price < -2.0
)
) as T
11>
</query>
<view id="vTrend" schema="symbol lastPrice trendLastPrice">
<! [CDATA[

select symbol, lastPrice, trendLastPrice

from S MATCH_RECOGNIZE (

PARTITION BY symbol

MEASURES
Z.symbol as symbol,
Z.price as lastPrice,
count (A.*)-count (B.*) as trendLastPrice

ALL MATCHES

PATTERN (X (A|B|C) (A|B|C) (a|B|C) (a|B|C))

SUBSET Z = (A, B, C)

DEFINE
A AS (A.price PREV(A.price)),
B AS (B.price PREV(B.price))
C AS (C.price = PREV(C.price))

) as T

AV

’

11>
</view>
<query id="trend">
<! [CDATA[
select symbol, lastPrice, trendLastPrice, ELEMENT TIME as startTimestamp from vTrend
where trendLastPrice > 2
11>
</query>
</rules>
</processor>
<channel>
<name>TrendStream</name>
<selector>trend</selector>
</channel>
<channel>
<name>PercentStream</name>
<selector>percent</selector>
</channel>
</nl:config>

If your application contains multiple processors, adapters or channels, you can either
declare them all in a single configuration file, or create separate configuration files for
each component; the method you chose depends on which you find easier to manage.

For each component you configure, you must add the name child element to explicitly
declare the specific component to which you are referring. The value of the name
element must correspond to the component's unique identifier of its declaration in the
EPN assembly file.

For example, assume a processor is declared in the EPN assembly file as follows:

<wlevs:processor id="processorl" ...>

Then its corresponding XML configuration would be as follows:

<processor>
<name>processorl</name>

</processor>

2-114 Oracle Complex Event Processing Getting Started

Signal Generation Example

The Signal Generation example uses a single configuration file for one processor with
the name processorl and one cache with the name symbolsCache. These names
correspond with the declaration of the components in the EPN assembly file.

The processor element configures the processor component. The most important
part of the processor configuration is the declaration of the set of Oracle Continuous
Query Language (Oracle CQL) rules that this processor executes; these rules select the
set of events that are eventually passed to the application business object. Each rule is
declared with a query or relation element using an XML <! [CDATA[...]]1>
section; all query and relation elements are grouped together within a single
rules element. You can define as many rules as you want for a particular processor.

The Signal Generation application has the following rules:

<rules>
<view id="S" schema="symbol price">
<! [CDATA[
RStream(select T.symbol, T.lastPrice from StockTickStream[now] as T, symbolsCache
as R where T.symbol = R.symbol)
11>
</view>
<query id="percent">
<! [CDATA[
select symbol, lastPrice, percentlLastPrice, startTimestamp
from S MATCH_RECOGNIZE (
PARTITION BY symbol
MEASURES
B.symbol as symbol,
B.price as lastPrice,
100* (B.price - A.price)/A.price as percentLastPrice,
B.ELEMENT_TIME as startTimestamp
ALL MATCHES
PATTERN (A B)
DEFINE
B AS (100* (B.price - A.price)/A.price > 2.0
or 100* (B.price - A.price)/A.price < -2.0
)
) as T
11>
</query>
<view id="vTrend" schema="symbol lastPrice trendLastPrice">
<! [CDATA[
select symbol, lastPrice, trendLastPrice
from S MATCH_RECOGNIZE (
PARTITION BY symbol
MEASURES
Z.symbol as symbol,
Z.price as lastPrice,
count (A.*)-count (B.*) as trendLastPrice
ALL MATCHES
PATTERN (X (A|B|C) (A|B|C) (a|B|C) (a|B|C))
SUBSET Z = (A, B, C)
DEFINE
A AS (A.price PREV(A.price)),
B AS (B.price PREV(B.price)),
C AS (C.price = PREV(C.price))
) as T

AV

11>
</view>
<query id="trend">
<! [CDATA[
select symbol, lastPrice, trendLastPrice, ELEMENT_TIME as startTimestamp from vTrend
where trendLastPrice > 2
11>

Oracle CEP Samples 2-115

Event Record and Playback Example

</query>
</rules>

For more information, see Oracle Fusion Middleware CQL Language Reference for Oracle
Complex Event Processing.

2.11 Event Record and Playback Example

The record and playback example shows how to configure a component to record
events to an event store and then configure another component in the network to
playback events from the store. The example uses the Oracle CEP-provided default
Berkeley database to store the events. The example also shows how to configure a
publishing HTTP pub-sub adapter as a node in the event processing network.

Figure 2-78 shows the event record and playback example Event Processing Network
(EPN). The EPN contains the components that make up the application and how they
fit together.

Figure 2-78 The Event Record and Playback Example Event Processing Network

€, (o €
g <
3 @ e
= eventStrean =
simpleEventSource recplayEventSink playbackHttpPublisher
Legend
A .—- P
£y —
Adapter Channel Evert
Bean

The application contains four components in its event processing network:

» simpleEventSource: an adapter that generates simple events for purposes of
the example. This component has been configured to record events, as shown in
the graphic.

The configuration source for this adapter is:

<adapter>
<name>simpleEventSource</name>
<record-parameters>

</record-parameters>
</adapter>

= eventStream: a channel that connects the simpleEventSource adapter and
recplayEventSink event bean. This component has been configured to
playback events.

The configuration source for this channel is:

<channel>
<name>eventStream</name>
<playback-parameters>

</playback-parameters>

</channel>

2-116 Oracle Complex Event Processing Getting Started

Event Record and Playback Example

recplayEventSink: an event bean that acts as a sink for the events generated by
the adapter.

playbackHttpPublisher: a publishing HTTP pub-sub adapter that listens to
the recplayEventSink event bean and publishes to a channel called
/playbackchannel of the Oracle CEP HTTP Pub-Sub server.

2.11.1 Running the Event Record/Playback Example

The recplay_domain domain contains a single application: the record and playback
sample application. To run this application, you first start an instance of Oracle CEP in
the domain, as described in the following procedure.

The procedure then shows you how to use Oracle CEP Visualizer to start the recording
and playback of events at the simpleEventSource and eventStream components,
respectively. Finally, the procedure shows you how to use Oracle CEP Visualizer to
view the stream of events being published to a channel by the
playbackHttpPublisher adapter.

To run the event record/playback example:

1.

Open a command window and change to the default server directory of the
recplay_domain domain directory, located in MIDDLEWARE_HOME\ocep_
11.1\samples\domains\recplay domain\defaultserver, where
MIDDLEWARE_HOME refers to the Middleware directory you specified when you
installed Oracle CEP, such as d: \Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\domains\recplay_
domain\defaultserver

Set your development environment, as described in Section 2.5, "Setting Your
Development Environment."

Start Oracle CEP by executing the appropriate script with the correct command
line arguments:

a. On Windows:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.cmd -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.cmd

b. On UNIX:

* If you are using the JRockit JDK included in Oracle JRockit Real Time,
enable the deterministic garbage collector by passing the -dgc parameter
to the command:

prompt> startwlevs.sh -dgc

* If you are not using the JRockit JDK included in Oracle JRockit Real Time:

prompt> startwlevs.sh

After server status messages scroll by, you should see the following message
printed to the output:

Oracle CEP Samples 2-117

Event Record and Playback Example

SimpleEvent created at: 14:33:40.441
This message indicates that the Oracle CEP server started correctly and that the
simpleEventSource component is creating events.
4. Invoke the following URL in your browser:
http://host:port/wlevs
where host refers to the name of the computer on which Oracle CEP is running and
port refers to the Jetty NetlO port configured for the server (default value 9002).

The Logon screen appears as Figure 2-79 shows.

Figure 2-79 Oracle CEP Visualizer Logon Screen

) Oracle Complex Event Processing Visualizer - Mozilla Firefox

Wiews History Bookmarks Tools Help

o c A O I: |j Ehttp:,l’,l’localhost:QDDZIwIevs,l’

|j Dracle Complex Event Processing...ﬂ -

CORACLE CEP Yisualizer

Welcome

UserId

Password

I Dione

5. In the Logon screen, enter the User Id wlevs and Password wlevs, and click Log
In.

The Oracle CEP Visualizer dashboard appears as Figure 2-80 shows.

2-118 Oracle Complex Event Processing Getting Started

Event Record and Playback Example

Figure 2-80 Oracle CEP Visualizer Dashboard

ORACLE' CEP Visualizer Home Security [Dashboard 2 WiewStream (@) Logout [5] Full Screen Preference (3) Help

Welcome : wlevs :~| Dashboard B@@J@
v @ WLEventSerserDomain Management Events Clear... -
[Bciees ARRRRE AV
Deplayment @ information
v [l NonClusteradServer
v [y Applications
7 com. beawlevs. data:
ool
» £ Benices 1 Wisrning
Security Performance Monitoring (Drag a diagnostic profile into the table)
Average Throughput (Number of Events) Latency {Microseconds)
; 100 5 100 Threshold 150
% a0 & 80
H g
2 60 s
s @ I % a0
S g
: 20 H 20
| T oo
19.00:00 18:00:00
Open ltems Time Time
i Dashhoard 3]}
Profile Marme Application Stage Throughtput mverage Late May Latency Cp
. J

For more information about the Oracle CEP Visualizer user interface, see
"Understanding the Oracle CEP Visualizer User Interface" in the Oracle Fusion
Middleware Visualizer User’s Guide for Oracle Complex Event Processing.

6. In the left pane, select WLEventServerDomain > NonClusteredServer >
Applications > recplay > Stages > simpleEventSource.

7. In the right pane, select the Record tab as shown in Figure 2-81.

Oracle CEP Samples 2-119

Event Record and Playback Example

Figure 2-81 Event Record Tab

. -
% Adapter: simpleEventSource - recplay@NonClusteredServer (==

|.General " Record " Playback |

Recording Current Status
Recording Parameters Event Type List

SimpleEvent

DataSet Mame recplay_sample

Frovider Mame test-rdbms-provider

Recording Schedule Entry

Start Time End Time
+ # Edit [Start | =] (x|
|- -

The DataSet Name field contains the value of the record-parameters child
element dataset-name element from the simpleEventSource adapter
application configuration file ORACLE-CEP-HOME\ocep_
11.1\samples\domains\recplay_
domain\defaultserver\applications\recplay\config.xml as
Example 2-11 shows.

Example 2-11 recplay Application Configuration File config.xml: adapter Element

<adapter>
<name>simpleEventSource</name>
<record-parameters>
<dataset-name>recplay_sample</dataset-name>
<event-type-list>
<event-type>SimpleEvent</event-type>
</event-type-list>
<batch-size>1</batch-size>
<batch-time-out>10</batch-time-out>
</record-parameters>
</adapter>

8. At the bottom of the Record tab, click Start.

An Alert dialog appears as shown in Figure 2-82.

2-120 Oracle Complex Event Processing Getting Started

Event Record and Playback Example

Figure 2-82 Start Recording Alert Dialog
S —
|

You are aboutto start recording immediately

9. Click OK.
The Current Status field reads Recording....

As soon as you click OK, events start to flow out of the simpleEventSource
component and are stored in the configured database.

You can further configure when events are recorded using the Start Recording
and Stop Recording fields.

10. In the left pane, select eventStream.

11. In the right pane, select the Playback tab as shown in Figure 2-83.

Figure 2-83 Event Playback Tab

r-:> Stream: eventStream - recplayi@NonClusteredServer D@ﬂ
Playback Current Status
PlayBack Parameters Event Type List
SimpleEvent

DataSetMame recplay_sample "l

Fravider Mame test-rdbms-provider v

Playback Filter Entry

Filter Start Time Filter End Tirme

Playback Schedule Entry

Schedule Start Time Schedule End Time Speed Repeat
1.0 Talse
Change Playback Filter Parameters Change Playback Schedule Parameters
Filter Start Time oo oo on -k Schedule Start Time oo oo on -k
Filter End Time oo oo on -k Schedule End Time oo oo on -k
Speed 40 Repeat | ralse v
. [/Edn} |ﬁstart] = a °
- .}

12. At the bottom of the tab, click Start.
An Alert dialog appears as shown in Figure 2-84.

Oracle CEP Samples 2-121

Event Record and Playback Example

Figure 2-84 Start Playback Alert Dialog

Alert

Ok Cancel |

13. Click OK.
The Current Status field reads Playing....

As soon as you click OK, events that had been recorded by the
simpleEventSource component are now played back to the simpleStream
component.

You should see the following messages being printed to the command window
from which you started Oracle CEP server to indicate that both original events and
playback events are streaming through the EPN:

SimpleEvent created at: 14:33:11.501
Played back: Original time=14:15:23.141 Playback time=14:33:11.657

You can further configure the playback parameters, such as the recorded time
period for which you want playback events and the speed that they are played
back, by updating the appropriate field and clicking Change Parameters. You
must restart the playback after changing any playback parameters.

14. To view the events that the playbackHttpPublisher adapter is publishing to a
channel, follow these steps:

a. In the top pane, select Viewstream.

The Viewstream window appears as shown in Figure 2-85.

2-122 Oracle Complex Event Processing Getting Started

Event Record and Playback Example

Figure 2-85 Stream Visualizer

Home Security f] Dashboard 2 Wiew Stream () Logout [E3) Full Screen Preference ® Help
Stream Visualizer ===
CEP SemerMame ponClusteredServer Pubsub SenerName pupsub

Pub/Sub Server URL hittp:ir1 41.144.178.24:9002/pubsub B [l Disconnect

Publish | Subscribe

| Channel Name

fewsmanitar

C

fevsalert

fevsdomainchange

@ O| C

Iplaybackchannel

Qutput messages from subscription @ﬂ Refrezh
| iplayb.[x%] |

[

MereationTime™" 111716, 706" "plavhackTime""11:19:29. 143"}
MereationTire™" 11171 7.002" "plavhackTime""11:19:20 440"}
MereationTime™"11:17:17.3158" "plavhackTime""11:19:28. 752"}
MereationTime™" 11171761 2" "plavhackTime""11:19:30 045"}
MereationTirne™"11:17:17.909" "plavhackTime""11:19:30 346"}
MereationTime™"11:17:18.221" "plavhackTime""11:19:30 639"}
MereationTime™"11:17:18.518" "plavhackTime""11:19:30 956"}
MereationTire™"11:17:18.815" "plavhackTimea""11:19:31 252"}
MereationTime™"11:17:19.11 2" "plavhackTime""11:19:31 545"}
MereationTime™"11:17:19. 424" "plavhackTime""11:19:31 862"}
MereationTire™" 1117197 21" "plavhackTime""11:19:32 159"}
ereationTime™"11:17:20001 8" "playhackTime""11:19:32 456"} —

[

| & Subscrike | | TR Clean Text |

b. In the right pane, click Initialize Client.
c. In the Subscribe Channel text box, enter /playbackchannel.
d. Click Subscribe.

The Received Messages text box displays the played back event details. The
played back events show the time at which the event was created and the time at
which it was played back.

2.11.2 Building and Deploying the Event Record/Playback Example from the Source

Directory

The record and playback sample source directory contains the Java source, along with
other required resources, such as configuration XML file and EPN assembly file that
make up the application. The build.xml Ant file contains targets to build and deploy
the application to the signalgeneration_domain domain, as described in Section 2.11.3,
"Description of the Ant Targets to Build the Record and Playback Example."

Oracle CEP Samples 2-123

Event Record and Playback Example

To build and deploy the event record/playback example from the source
directory:

1.

If the record /playback Oracle CEP instance is not already running, follow the
procedure in Section 2.11.1, "Running the Event Record /Playback Example" to
start the server. You must have a running server to successfully deploy the rebuilt
application.

Open a new command window and change to the record/playback source
directory, located in MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\recplay, where MIDDLEWARE_HOME
refers to the Middleware home directory you specified when you installed Oracle
CEP, such as d: \Oracle\Middleware.

prompt> cd d:\Oracle\Middleware\ocep_11.1\samples\source\applications\recplay
Set your development environment, as described in Section 2.5, "Setting Your
Development Environment."

Execute the all Ant target to compile and create the application JAR file:
prompt> ant all

Execute the deploy Ant target to deploy the application JAR file to the

MIDDLEWARE_HOME\ocep_11.1l\samples\domains\recplay_
domain\defaultserver\applications\recplay directory:

prompt> ant -Dusername=wlevs -Dpassword=wlevs -Daction=update deploy

Caution: This target overwrites the existing event record /playback
application JAR file in the domain directory.

After an application redeploy message, you should see the following message
printed to the output about every second:

SimpleEvent created at: 14:33:40.441
This message indicates that the record and playback example has been redeployed
and is running correctly.

Follow the instructions in Section 2.11.1, "Running the Event Record /Playback
Example," starting at step 4, to invoke Oracle CEP Visualizer and start recording
and playing back events.

2.11.3 Description of the Ant Targets to Build the Record and Playback Example

The build.xml file, located in the top-level directory of the record/playback source,
contains the following targets to build and deploy the application:

clean—This target removes the dist and output working directories under the
current directory.

all—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.recplay_ 11.1.1.4_0.jar, and places the
generated JAR file into a dist directory below the current directory.

deploy—This target deploys the JAR file to Oracle CEP using the Deployer
utility.

2-124 Oracle Complex Event Processing Getting Started

Event Record and Playback Example

For more information, see "Deployer Command-Line Reference" in the Oracle
Fusion Middleware Administrator’s Guide for Oracle Complex Event Processing.

2.11.4 Implementation of the Record and Playback Example

The implementation of the signal generation example generally follows "Creating
Oracle CEP Applications: Typical Steps" in the Oracle Fusion Middleware Developer’s
Guide for Oracle Complex Event Processing for Eclipse.

Refer to that section for a task-oriented procedure that describes the typical
development process.

All the files of the example are located relative to the MIDDLEWARE_HOME\ocep_
11.1\samples\source\applications\recplay directory, where MIDDLEWARE_
HOME refers to the Middleware home directory you specified when you installed
Oracle CEP, such as c: \Oracle\Middleware. Oracle recommends that you use this
example directory setup in your own environment, although it is obviously not
required.

The files used by the record and playback example include:

= An EPN assembly file that describes each component in the application and how
all the components are connected together as shown in Figure 2-78.

In the example, the file is called
com.bea.wlevs.example.recplay-context.xml and is located in the
META-INF/spring directory.

= Java source file for the simpleEventSource adapter.

In the example, the file is called SimpleEventSource. java and is located in the
src/com/bea/wlevs/adapter/example/recplay directory.

For a detailed description of this file and how to program the adapter Java files in
general, see "Creating Custom Adapters and Event Beans" in the Oracle Fusion
Middleware Developer’s Guide for Oracle Complex Event Processing for Eclipse.

» Java source file that describes the PlayedBackEvent and SimpleEvent event
types. The SimpleEvent event type is the one originally generated by the
adapter, but the PlayedBackEvent event type is used for the events that are
played back after having been recorded. The PlayedBackEvents look almost
exactly the same as SimpleEvent except they have an extra field, the time the
event was recorded.

In the example, the two events are called SimpleEvent. java and
PlayedBackEvent.java and are located in the
src/com/bea/wlevs/event/example/recplay directory.

For a detailed description of this file, as well as general information about
programming event types, see "Creating the Event Types" in the Oracle Fusion
Middleware Developer’s Guide for Oracle Complex Event Processing for Eclipse.

= AJava file that implements the recplayEventSink event bean of the
application, which is an event sink that receives both realtime events from the
simpleEventSource adapter as well as playback events.

In the example, the file is called RecplayEventSink. java and is located in the
src/com/bea/wlevs/example/recplay directory.

For a detailed description of this file and how to program the adapter Java files in
general, see "Creating Custom Adapters and Event Beans" in the Oracle Fusion
Middleware Developer’s Guide for Oracle Complex Event Processing for Eclipse.

Oracle CEP Samples 2-125

Event Record and Playback Example

= An XML file that configures the simpleEventSource adapter and
eventStream channel components. The adapter includes a
<record-parameters> element that specifies that the component will record
events to the event store; similarly, the channel includes a
<playback-parameters> element that specifies that it receives playback
events.

In the example, the file is called config.xml and is located in the
META-INF/wlevs directory.

s A MANIFEST.MF file that describes the contents of the OSGi bundle that will be
deployed to Oracle CEP.

In the example, the MANIFEST . MF file is located in the META-INF directory

For more information about creating this file, as well as a description of creating
the OSGi bundle that you deploy to Oracle CEP, see "Overview of Application
Assembly and Deployment" in the Oracle Fusion Middleware Developer’s Guide for
Oracle Complex Event Processing for Eclipse.

The record/playback example uses a build.xml Ant file to compile, assemble, and
deploy the OSGi bundle; see Section 2.11.2, "Building and Deploying the Event
Record /Playback Example from the Source Directory" for a description of this
build.xml file if you also use Ant in your development environment.

2-126 Oracle Complex Event Processing Getting Started

3

Installing Oracle CEP

This chapter describes how to install and upgrade Oracle Complex Event Processing
(Oracle CEP), including development tools for use with the Eclipse IDE.

Section 3.1, "Installation Overview"

Section 3.2, "Installing Oracle CEP in Graphical Mode"

Section 3.3, "Installing Oracle CEP in Console Mode"

Section 3.4, "Installing Oracle CEP in Silent Mode"

Section 3.5, "Installing an Oracle CEP Patch"

Section 3.7, "Installing the Oracle CEP IDE for Eclipse"

Section 3.6, "Post-Installation Steps"

Section 3.8, "Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)"

3.1 Installation Overview
To install Oracle CEP 11¢ Release 1 (11.1.1.6.0):

1.

Download the Oracle CEP installer appropriate for your platform.
See Section 1.6, "Supported Platforms".

Choose the JVM you will use.

See Section 3.1.2, "Choosing Your JVM"

Decide if you are installing in a production environment or development
environment.

See Section 3.1.3, "Default Oracle CEP Domain ocep_domain and Samples".

Familiarize yourself with Oracle Fusion Middleware directory structure and
concepts.

See Section 3.1.4, "Oracle Fusion Middleware Directory Structure and Concepts".
Install Oracle CEP using the installer mode of your choice.

See Section 3.1.5, "Installation Mode".

Install Oracle CEP patches, if required.

See Section 3.5, "Installing an Oracle CEP Patch".

Perform post-installation tasks, if applicable.

See Section 3.6, "Post-Installation Steps".

Installing Oracle CEP 3-1

Installation Overview

8. Decide whether or not you need to upgrade Oracle CEP and Oracle CEP
applications to the current release.

See Section 3.8, "Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)".
9. Install Apache Ant, a Java-based build tool.
See the Apache Ant Projectat http://ant.apache.org/.

3.1.1 Before You Start the Installation Program

Before you start the installation program, review the following information:

s If you are using the Generic Package installer or the Linux 64-bit installer to install
Oracle CEP on a UNIX or Linux system, Oracle recommends that you set the
umask to 027 on your system prior to installation. This ensures that WebLogic
Server file permissions will be set properly during installation. Use the following
command:

umask 027

You must enter this command in the same terminal window from which you plan
to run the Oracle CEP installer.

3.1.2 Choosing Your JVM

Oracle CEP supports the following Java Virtual Machines (JVM):
s Section 3.1.2.1, "Oracle JRockit Real Time"

s Section 3.1.2.2, "Sun JVM"

= Section 3.1.2.3, "Other Platform-Specific JVMs"

3.1.2.1 Oracle JRockit Real Time

By default, Oracle CEP includes its own version of JRockit (in MIDDLEWARE_
HOME/jrockit_JAVA-VERSION RJROCKIT-VERSION), but it does notinclude the
deterministic garbage collector.

Note: The Oracle CEP installer for the Sun JVM does not include a
version of JRockit.

Oracle CEP performs optimally when it can access certain features from Oracle JRockit
Real Time, in particular the JRockit deterministic garbage collector.

If your application requires low latency, optionally install Oracle JRockit Real Time.

Caution: Be sure you install the version of Oracle JRockit Real Time
for Java version 5.0 or 6.0. Oracle JRockit Real Time for Java version
1.4.2 is not compatible with Oracle CEP 11g Release 1 (11.1.1.6.0).

For more information on Oracle JRockit Real Time, see
http://www.oracle.com/technology/products/jrockit/jrrt/index.htm
1.

3-2 Oracle Complex Event Processing Getting Started

Installation Overview

3.1.2.2 Sun JVM

The Sun JVM is the default JVM on Solaris SPARC and is included in the Solaris
SPARC installer. If you want to use the Sun JVM (instead of JRockit) on platforms
other than Solaris, download the JVM from the Oracle Java SE download site.

For more information, see:
= Section 1.6, "Supported Platforms"

m http://www.oracle.com/technetwork/java/javase/downloads/index.h
tml

3.1.2.3 Other Platform-Specific JVMs

For other platforms (such as HP or IBM/AIX), ensure that you have the appropriate
platform-specific JVM installed.

For more information, see:
= Section 1.6, "Supported Platforms"
= Section 3.6.1, "Configuring Oracle CEP for the IBM JDK"

3.1.3 Default Oracle CEP Domain ocep_domain and Samples

When you choose a Typical install, the installation does not include the default ocep_
domain domain (with default passwords) and the product samples.

If you want to install the default ocep_domain and samples (recommended), choose
the Custom option.

The Typical install is appropriate for a production environment while the Custom
install is appropriate for a development environment.

3.1.4 Oracle Fusion Middleware Directory Structure and Concepts

When you install Oracle CEP, consider the following scenarios:
= Section 3.1.4.1, "Oracle CEP-Specific Middleware Home"
= Section 3.1.4.2, "Existing Oracle Fusion Middleware Home"

For more information, see "Oracle Fusion Middleware Directory Structure and
Concepts" in the Oracle Fusion Middleware Installation Planning Guide.

3.1.4.1 Oracle CEP-Specific Middleware Home

In this scenario, you install Oracle CEP in a stand-alone configuration, in its own
Middleware Home directory as Figure 3-1 shows.

Installing Oracle CEP 3-3

Installation Overview

Figure 3—1 Oracle CEP-Specific Middleware Home
|

Middleware Home

——1

CEP Oracle Home User Projects
[ocep_11.1) {user_projects)
Domains
(domaing)

CEP Domain
{ocep_domain)

l

0

cepserver] cepserver?

Table 3-1 lists the various home directories applicable to Oracle CEP in this scenario.

Table 3-1 Home Directories and Oracle CEP-Specific Middleware Home

Home Directory Type | Home Directory

Middleware Home As selected by the user at Oracle CEP install time.

WebLogic Server Home | N/A

Oracle Product Home! | ocep_11.1

Oracle Common Home | N/A

Domain MIDDLEWARE_HOME/user_projects/domains/ocep_domain

1 Also known as simply the Oracle Home.

3.1.4.2 Existing Oracle Fusion Middleware Home
In this scenario, you install Oracle CEP into an existing Oracle Fusion Middleware
home as Figure 3-2 shows.

In this scenario, you install Oracle CEP into its own Product Oracle Home but you
create Oracle CEP domains in the existing ORACLE_FUSION_MIDDLEWARE_
HOME/user_projects/domains directory as Figure 3-2 shows.

3-4 Oracle Complex Event Processing Getting Started

Installation Overview

Figure 3-2 Oracle CEP in an Existing Oracle Fusion Middleware Home

Middleware Home
|
I | | 1 |

~—

Oracle Commeon Home CEP Oracle Home SOM Oracle Home User Projects WebLogic Server Home
[ocep_11.1) {user_projects)
Domains
(domains)
CEP Domain SOA Domain
{ocep_domain} {goa_domain}
| 1 I |

cepserver] cepserverz Admin soa_serverl

Server Server

In this example topology, there are two Oracle products installed in the same
Middleware Home:

s Oracle CEP
m Oracle SOA Suite

Table 3-2 lists the various home directories applicable to Oracle CEP in this scenario.

Table 3-2 Home Directories and Existing Middleware Home

Home Directory Type | Home Directory

Middleware Home As selected by the user at Oracle Fusion Middleware install time.

WebLogic Server Home | As determined by Oracle Fusion Middleware installer.

Oracle Product Home! | ocep_11.1

Oracle Common Home | As determined by Oracle Fusion Middleware installer.

Domain MIDDLEWARE_HOME/user_projects/domains/ocep_domain

1 Also known as simply the Oracle Home.

3.1.5 Installation Mode

You use the Oracle CEP installer in the following modes:
= Section 3.1.5.1, "Graphical Mode"

s Section 3.1.5.2, "Console Mode"

m Section 3.1.5.3, "Silent Mode"

3.1.5.1 Graphical Mode

Graphical-mode installation is an interactive, GUI-based method for installing your
software. It can be run on both Windows and UNIX systems. See Section 3.2,
"Installing Oracle CEP in Graphical Mode."

Installing Oracle CEP 3-5

Installing Oracle CEP in Graphical Mode

Caution: If you want to run graphical-mode installation, the console
attached to the machine on which you are installing the software must
support a Java-based GUI. All consoles for Windows systems support
Java-based GUISs, but not all consoles for UNIX systems do. If you
attempt to start the installation program in graphical mode on a
system that cannot support a graphical display, the installation
program automatically starts console-mode installation.

3.1.5.2 Console Mode

Console-mode installation is an interactive, text-based method for installing your
software from the command line, on either a UNIX system or a Windows system. See
Section 3.3, "Installing Oracle CEP in Console Mode."

3.1.5.3 Silent Mode

Silent-mode installation is a non-interactive method of installing your software that
requires the use of an XML properties file for selecting installation options. You can
run silent-mode installation in either of two ways: as part of a script or from the
command line. Silent-mode installation is a way of setting installation configurations
only once and then using those configurations to duplicate the installation on many
machines. See Section 3.4, "Installing Oracle CEP in Silent Mode."

3.2 Installing Oracle CEP in Graphical Mode

This section describes how to install using the Oracle CEP installer in graphical mode.

For more information, see Section 3.1, "Installation Overview".

To install Oracle CEP in graphical mode:
1. Log in to the Windows or UNIX computer on which you want to install Oracle
CEP.

Be sure you log in to the computer as the user that will be the main administrator
of the Oracle CEP installation.

2. Download the product distribution file for the platform on which you want to
install Oracle CEP.

3. Launch the installation program in graphical mode using the commands listed in
the following table appropriate for your platform.

Platform Instructions

Windows Using Windows Explorer, double-click the appropriate installation program file
from its download directory.

3-6 Oracle Complex Event Processing Getting Started

Installing Oracle CEP in Graphical Mode

Platform Instructions

Linux or Open a command window, change to the download directory, and enter these
Solaris commands:

prompt> chmod a+x filename
prompt> ./filename

In the preceding commands, filename is the name of the installation program
specific to your platform (for more information, see
http://www.oracle.com/technology/software/products/middleware
/htdocs/111110_fmw.html.)

If you want to create an installation log, use the -1og=full_path_to_log_file
option; for example:

prompt> ./filename -log=C:\logs\server_install.log

After the installation program has finished loading, you will see the standard
Welcome window.

4. Click Next.

5. In the Choose Middleware Home Directory window, you can specify either an
existing Oracle Middleware Home directory or create a new one:

a. Toinstall into an existing Oracle Middleware Home directory:
— Select Use an Existing Middleware Home.

— Select an existing Oracle Middleware Home directory from the list on the
right.

b. To install into a new Oracle Middleware Home directory:
- Select Create a New Middleware Home.

- Click the Browse button to browse your computer to select an existing
directory or click Reset to reset the directory to the default,
C:\Oracle\Middleware.

— Click Open.

The Oracle Middleware Home directory is the main installation directory for
Oracle CEP, such as c¢: \oracle_cep. You can have one or many Oracle
Middleware Home directories on your computer, whichever suits your
development and production environments best.

For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory
Structure and Concepts".

6. Click Next.
7. In the Choose Install Type window, you can choose one of the following options:

a. To install all Oracle CEP components except the samples and use the Oracle
JRockit JVM included with Oracle CEP:

* Select Typical.
* Click Next.
* Proceed to step 10.

The installer program checks to see if the Oracle Middleware Home directory
contains the version of JRockit required by this release of Oracle CEP:

— Ifit finds the required JRockit installation, it does not install a new one.

Installing Oracle CEP 3-7

Installing Oracle CEP in Graphical Mode

- Ifit does not find an appropriate JRockit installation, then the installer
installs its own version in the Oracle Middleware Home directory.

b. To install all Oracle CEP components including the default ocep_domain
domain (with default passwords) and the samples and select a previously
installed Sun or platform-specific JVM (or use the Oracle JRockit JVM
included with Oracle CEP):

* Select Custom.

* In the Choose Products and Components window, check the components
you want to install, such as the product samples.

* (Click Next.

Note: By default, the complete installation does not include the
default ocep_domain domain (with default passwords) and the
product samples. If you want to install the samples (recommended),
choose the Custom option.

If you want to use a Sun or platform-specific JVM, you must choose
the Custom option.

The installer program allows you to choose the JDK to use and to decide
whether or not to install the Oracle JRockit JVM included with Oracle CEP.

8. In the JDK Selection window, you can choose the JDK for the Oracle CEP server.

Use the Browse button to select the Sun or platform-specific JDK you installed
previously.

If you do not want the installer to install the Oracle JRockit JVM included with
Oracle CEP, uncheck this item.

9. Click Next.

10. In the Choose Product Installation Directories window, you can change the default
name of the Oracle Product Home directory for Oracle CEP, ocep_11.1.

Although you can name this directory anything you want, Oracle recommends
that you use the default name for clarity and standardization. For example, the
documentation assumes that the Oracle Product Home directory is ocep_11.1.

For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory
Structure and Concepts".

11. Click Next.

12. If you are installing on Windows, and you logged in as a user with Administrator
privileges, then you will see the Choose Shortcut Location window where you can
choose where you want the Start Menu folder to appear. The following table
describes the options available:

If you select ... The following occurs ...

All Users Recommended. All users registered on the machine are provided with access
to the installed software. Subsequently, if users without Administrator
privileges use the Configuration Wizard from this installation to create
domains, Start menu shortcuts to the domains are not created. In this case,
users can manually create shortcuts in their local Start menu folders, if
desired.

3-8 Oracle Complex Event Processing Getting Started

Installing Oracle CEP in Console Mode

If you select ... The following occurs ...

Local user Other users registered on this machine will not have access to the Start menu

entries for this installation.

13.
14.

15.

16.
17.

If you logged in as a user without Administrator privileges, the Start menu entries
are created in your user's local Start menu folder.

Click Next.

The Installation Summary window shows the products and components you are
about to install, along with the approximate size in MB. This window is for your
information only; to change the components to be installed, use the Previous
button to return to the appropriate window.

Click Next.

The installer program installs Oracle CEP. The Installation Complete window
indicates that the product was installed successfully.

Click Done to exit the program.

Review the post-installation steps that Section 3.6, "Post-Installation Steps"
describes.

3.3 Installing Oracle CEP in Console Mode

This section describes how to install using the Oracle CEP installer in console mode.

Console-mode installation is an interactive, text-based method for installing your
software from the command line, on either a UNIX or Windows system.

When installing in console-mode, respond to the prompts in each section by entering
the number associated with your choice or by pressing Enter to accept the default. To
exit the installation process, enter exit (or x, for short) in response to any prompt. To
review or change your selection, enter previous (or p, for short) at the prompt. To
proceed to the following window, enter next (or n, for short).

Note: In the following procedure, Windows conventions (such as
back-slashes in pathnames) are used, for example, C: \oracle_
cep\ocep_11.1. When entering pathnames on a UNIX system, be
sure to use UNIX conventions, instead. For example, use forward
slashes in pathnames, such as /oracle_cep/ocep_11.1.

For more information, see Section 3.1, "Installation Overview".

To install Oracle CEP in graphical mode:

1.

Log in to the Windows or Linux computer on which you want to install Oracle
CEP.

Be sure you log in to the computer as the user that will be the main administrator
of the Oracle CEP installation.

Download the product distribution file for the platform on which you want to
install Oracle CEP.

Launch the installation program in console mode using the commands listed in
the following table appropriate for your platform.

Installing Oracle CEP 3-9

Installing Oracle CEP in Console Mode

Platform Instructions

Windows Open a command window, change to the download directory, and enter the
following command:

prompt> filename -mode=console

In the preceding command, f£ilename is the name of the installation program
specific to your platform (for more information, see
http://www.oracle.com/technology/software/products/middleware
/htdocs/111110_fmw.html).

If you want to create an installation log, use the -1log=full_path_ to_log file
option; for example:

prompt> filename -mode=console -log=C:\logs\server_install.log

Linux Open a command window, change to the download directory, and enter these
commands:

prompt> chmod a+x filename

prompt> ./filename -mode=console

In the preceding commands, £ilename is the name of the installation program
specific to your platform (for more information, see

http://www.oracle.com/technology/software/products/middleware
/htdocs/111110_fmw.html).

If you want to create an installation log, use the -1og=full_path_to_log_file
option; for example:

prompt> ./filename -mode=console -log=C:\logs\server_install.log

4. At the Welcome prompt, type next (or n for short) or press Enter to continue with
the installation process.

5. In the Choose Middleware Home Directory window, you can specify either an
existing Oracle Middleware Home directory or create a new one:

a. To install into an existing Oracle Middleware Home directory:

- Type the number of the existing Oracle Middleware Home directory.
b. To install into a new Oracle Middleware Home directory:

- Type 1 to create a new Oracle Middleware Home directory.

- The installation program guides you through the required steps to create
the new Oracle Middleware Home.

Be sure to enter the full path of the Oracle Middleware Home directory,
for example C: \oracle_cep2.

Note: Do not terminate the path with a file separator character. That
is, enter C: \mydir and not C: \mydir\.

If you specify a directory that does not exist, the installation program cre-
ates it for you.

The Oracle Middleware Home directory is the main installation directory for
Oracle CEP, such as c: \oracle_cep. You can have one or many Oracle
Middleware Home directories on your computer, whichever suits your
development and production environments best.

For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory
Structure and Concepts".

3-10 Oracle Complex Event Processing Getting Started

Installing Oracle CEP in Console Mode

6. Confirm your choice for Oracle Middleware Home directory and enter next (or

n).

7. In the Choose Install Type window, you can choose one of the following options:

a.

To install all Oracle CEP components except the samples and use the Oracle
JRockit JVM included with Oracle CEP:

* Type 1 to choose a Typical install.
* Proceed to step 9.

The installer program checks to see if the Oracle Middleware Home directory
contains the version of JRockit required by this release of Oracle CEP:

- Ifit finds the required JRockit installation, it does not install a new one.

- Ifit does not find an appropriate JRockit installation, then the installer
installs its own version in the Oracle Middleware Home directory.

To install all Oracle CEP components including the default ocep_domain
domain (with default passwords) and the samples and select a previously
installed Sun or platform-specific JVM (or use the Oracle JRockit JVM
included with Oracle CEP):

* Type 2 to choose a Custom install.

* In the Choose Components to Install window, enter the numbers in
brackets to toggle the components you want to install, such as the
samples. To toggle a selection in the list, types its number. When a check
mark appears next to the option, the option is selected. To unselect the
option, enter its number again to remove the check mark

* Enter next (or n) when you have chosen the components.

Note: By default, the complete installation does not include the
default ocep_domain domain (with default passwords) and the
product samples. If you want to install the samples (recommended),
choose the Custom option.

If you want to use a Sun or platform-specific JVM, you must choose
the Custom option.

The installer program allows you to choose the JDK to use and to decide
whether or not to install the Oracle JRockit JVM included with Oracle CEP.

8. In the JDK Selection window, you can choose the JDK for the Oracle CEP server:

To add a local JDK, select the Add Local JDK option (1).

The installation program guides you through the required steps to add a local
JDK.

Be sure to enter the full path to the JDK directory, for example:

C:\Program Files\Java\jdkl.6.0_14

To add additional JDKs, select 1 again.

In the JDK Selection window, enter the numbers in brackets to toggle the JDKs
you want. To toggle a selection in the list, types its number. When a check
mark appears next to the option, the option is selected. To unselect the option,
enter its number again to remove the check mark.

Installing Oracle CEP 3-11

Installing Oracle CEP in Silent Mode

10.

If you do not want the installer to install the Oracle JRockit JVM included with
Oracle CEP, uncheck this item.

s Enter next (or n) when you have selected the local JDK.

In the Choose Product Installation Directories window, you can change the default
name of the Oracle Product Home directory for Oracle CEP, ocep_11.1.

Although you can name this directory anything you want, Oracle recommends
that you use the default name for clarity and standardization. For example, the
documentation assumes that the Oracle Product Home directory is ocep_11.1.

For more information, see Section 3.1.4, "Oracle Fusion Middleware Directory
Structure and Concepts".

Enter next (or n) when you are done.

If you are installing on Windows, and you logged in as a user with Administrator
privileges, then you will see the Choose Shortcut Location window where you can
choose where you want the Start Menu folder to appear. The following table
describes the options available:

If you select ... The following occurs ...

1"All Users" Recommended. All users registered on the machine are provided with access

to the installed software. Subsequently, if users without Administrator
privileges use the Configuration Wizard from this installation to create
domains, Start menu shortcuts to the domains are not created. In this case,
users can manually create shortcuts in their local Start menu folders, if
desired.

2 "Local user" Other users registered on this machine will not have access to the Start menu

entries for this installation.

11.
12.

13.

14.
15.

If you logged in as a user without Administrator privileges, the Start menu entries
are created in your user's local Start menu folder.

Enter the appropriate number.
Enter next (or n) when you are done.

The Installation Summary window shows the products and components you are
about to install, along with the approximate size in MB. This window is for your
information only; to change the components to be installed, type Previous to
return to the appropriate window.

Enter next (or n).

The installer program installs Oracle CEP. The Installation Complete window
indicates that the product was installed successfully.

Type exit to exit the program.

Review the post-installation steps that Section 3.6, "Post-Installation Steps"
describes.

3.4 Installing Oracle CEP in Silent Mode

This section describes how to install using the Oracle CEP installer in silent mode.

Silent-mode installation is a non-interactive method of installing your software that
requires the use of an XML properties file for selecting installation options.

For more information, see Section 3.1, "Installation Overview".

3-12 Oracle Complex Event Processing Getting Started

Installing Oracle CEP in Silent Mode

To install Oracle CEP in silent mode:

1. Log in to the Windows or UNIX computer on which you want to install Oracle
CEP.

Be sure you log in to the computer as the user that will be the main administrator
of the Oracle CEP installation.

2. Download the product distribution file for the platform on which you want to
install Oracle CEP.

3. Createa silent.xml file that defines the configuration settings normally entered
by a user during an interactive installation process.

See Section 3.4.1, "Creating a silent.xml File for Silent-Mode Installation."

Note: Incorrect entries in the silent .xml file can cause installation
failures. To help you determine the cause of a failure, we recommend
that you create a log file when you launch the installation program.

4. Launch the installation program in silent mode using the commands in the
following table appropriate for your platform.

Platform Instructions

Windows Open a command window, change to the download directory, and enter the
following command:

prompt> filename -mode=silent -silent_xml=path_to_xml_file

In the preceding command, filename is the name of the installation program
specific to your platform (for more information, see
http://www.oracle.com/technology/software/products/middleware

/htdocs/111110_fmw.html) and path_to_xml_fileis the full pathname of
the silent .xml template file you created in the preceding step.

If you want to create an installation log, use the -1log=full_path_ to_log file
option; for example:

prompt> filename -mode=silent -silent_xml=path to_xml_file
-log=C:\logs\server_install.log

Linux or Open a command window, change to the download directory, and enter these
Solaris commands:

prompt> chmod a+x filename

prompt> ./filename -mode=silent -silent_xml=path to_xml_file

In the preceding commands, filename is the name of the installation program
specific to your platform (for more information, see
http://www.oracle.com/technology/software/products/middleware
/htdocs/111110_fmw.html) and path_to_xml_fileis the full pathname of
the silent.xml template file you created in the preceding step.

If you want to create an installation log, use the -1og=full_path_to_log_file
option; for example:

prompt> ./filename -mode=silent -silent_xml=path_to xml_file
-log=C:\logs\server_install.log

An Oracle Installer window is displayed, indicating that the files are being
extracted. No other prompt or text is displayed.

The installation is complete when the Oracle Installer window disappears.

See Section 3.4.3, "Returning Exit Codes to the Command Window" for getting
information about the success or failure of the silent installation.

Installing Oracle CEP 3-13

Installing Oracle CEP in Silent Mode

5. Review the post-installation steps that Section 3.6, "Post-Installation Steps"
describes.

3.4.1 Creating a silent.xml File for Silent-Mode Installation

When you install Oracle CEP in silent mode, the installation program uses an XML file
(silent.xml) to determine which installation options should be implemented.

To create a silent.xml file for silent-mode installation:

1. Using your favorite text editor, create an empty file called silent .xml on the
computer on which you want to install Oracle CEP in silent mode.

2. Copy the contents of the sample XML file, shown in Example 3-1, into your own
silent.xml file.

Example 3—1 Sample silent.xml File for Silent-Mode Installation

<?xml version="1.0" encoding="UTF-8"?>
<!-- Silent installer option: -mode=silent -silent_xml=C:\oracle\silent.xml -->
<bea-installer>
<input-fields>
<data-value name="BEAHOME" value="C:\oracle_cep" />
<data-value name="USER_INSTALL_DIR" value="C:\oracle_cep\ocep_11.1" />
<data-value name="INSTALL_SHORTCUT_IN_ALL_USERS_FOLDER" value="yes"/>
<data-value name="COMPONENT_ PATHS" value="Oracle Complex Event Processing" />
</input-fields>
</bea-installer>

3. Inthe silent.xml file you just created, edit the values for the keywords shown
in Table 3-3 to reflect your configuration.

For example, if you want to install into the ORACLE_CEP_HOME directory
e:\oracle_cep, update the corresponding <data-value> element as follows

<data-value name="BEAHOME" value="e:\oracle_cep" />

Table 3-3 Values for the silent.xml File

For this data-value name... Enter the following value...

BEAHOME! The full pathname for the Oracle Middleware Home
directory of your choice.

For more information, see Section 3.1.4, "Oracle Fusion
Middleware Directory Structure and Concepts".

USER_INSTALL_DIR The full pathname for the Oracle Product Home
directory for Oracle CEP of your choice.

For more information, see Section 3.1.4, "Oracle Fusion
Middleware Directory Structure and Concepts".

INSTALL_SHORTCUT_IN_ALL_USERS_FOLDER Windows only. Specify:

M true, or yes, to create the shortcuts in the All
Users folder.

" false, or no, to create the shortcuts in the local
users folder.

The user performing the installation must have
Administrator privileges to install the Start menu
shortcuts in the All Users folder.

The default value for this parameter, if you do not
specify it, is true.

3-14 Oracle Complex Event Processing Getting Started

Installing Oracle CEP in Silent Mode

Table 3-3 (Cont.) Values for the silent.xml File

For this data-value name... Enter the following value...

COMPONENT_PATHS Specify the components and subcomponents of Oracle
CEP you want to install on your system. Use the
following values:

n Oracle Complex Event Processing

n Oracle Complex Event Processing/Event
Server

u Oracle Complex Event Processing/Event
Server Samples

For additional information about entering these values,
see Section 3.4.2, "Guidelines for Component Selection."

If you do not include the COMPONENT_PATHS
data-value name in the silent.xml file, the complete
Oracle CEP product is installed.

LOCAL_JVMS Option to select supported JVM, which is already
installed.

Note: The presence of the LOCAL_JVMS token negates
any default selection and only sets the values assigned
for the token as user selection. The value of the token
can be a pipe (|) separated JavaHomes.

1 Do not terminate the pathname with a file separator. That is, enter this C: \mydirectory and not
C:\mydirectory\.

Note: Silent install does not support the LOCAL_JVMS data-value. To
define a local JVM, you must use graphical mode installation as
Section 3.2, "Installing Oracle CEP in Graphical Mode" describes.

4. Save the file in the directory of your choice.

3.4.2 Guidelines for Component Selection

Use the following guidelines when you specify values for the COMPONENT_PATHS
data-value name:

= When you specify a product component to be installed, all subcomponents that
are installed by default in a complete installation are also installed. For example,
the following entry installs both Oracle CEP and the samples:

<data-value name="COMPONENT PATHS"
value="Oracle Complex Event Processing" />

s To install multiple components or subcomponents, separate the components with
abar (I). Do not leave a space before or after the bar.

s To specify subcomponents, you must specify a component/subcomponent
combination for each entry. For example, to explicitly install Oracle CEP and the
samples, enter the following line in the file:

<data-value name="COMPONENT_PATHS" value="Oracle Complex Event Processing/Event
Server |Oracle Complex Event Processing/Event Server Samples" />

Note: Because this release of Oracle CEP includes only the server
itself and samples, the preceding example is equivalent to the example
in the first bullet.

Installing Oracle CEP 3-15

Installing an Oracle CEP Patch

3.4.3 Returning Exit Codes to the Command Window

When run in silent mode, the installation program generates exit codes that indicate
the success or failure of the installation. These exit codes are shown in Table 3—4.

Table 3—-4 Exit Codes

Code Description

0 Installation completed successfully
-1 Installation failed due to a fatal error
-2 Installation failed due to an internal XML parsing error

Example 3-2 provides a sample Windows command file that invokes the installation
program in silent mode and echoes the exit codes to the command window from
which the script is executed.

Example 3-2 Sample Windows Command File Displaying Silent-Mode Exit Codes
rem Execute the installer in silent mode

@echo off

ofm_ocep_generic_11.1.1.1.0_32_diskl_lofl.exe -mode=silent -silent_
xml=C:\downloads\silent.xml -log=C:\logs\products_silent.log

@rem Return an exit code to indicate success or failure of installation
set exit_code=%ERRORLEVEL%

@echo.

@echo Exitcode=%exit_code%

@echo.

@echo Exit Code Key

@echo ----———-------—-

@echo 0O=Installation completed successfully

@echo -1l=Installation failed due to a fatal error

@echo -2=Installation failed due to an internal XML parsing error
@echo.

3.5 Installing an Oracle CEP Patch

You can download maintenance and security updates for Oracle CEP from My Oracle
Support. For more information, see Oracle Smart Update Applying Patches to Oracle
WebLogic Server.

3.6 Post-Installation Steps
After installing Oracle CEP:

s If you installed Oracle CEP for use with the IBM JVM on IBM AIX (64-bit), then in
each Oracle CEP domain directory, make the changes that Section 3.6.1,
"Configuring Oracle CEP for the IBM JDK" describes.

s Try out the product examples. For information about the examples and how to run
them, see Chapter 2, "Oracle CEP Samples."

= Install the Oracle CEP IDE for Eclipse as Section 3.7, "Installing the Oracle CEP
IDE for Eclipse" describes.

= Optionally, create your own Oracle CEP domain:

3-16 Oracle Complex Event Processing Getting Started

Installing the Oracle CEP IDE for Eclipse

See:

s "Creating an Oracle CEP Standalone-Server Domain" in the Oracle Fusion
Middleware Administrator’s Guide for Oracle Complex Event Processing

s "Creating an Oracle CEP Multi-Server Domain" in the Oracle Fusion Middleware
Administrator’s Guide for Oracle Complex Event Processing

Note: If you installed Oracle CEP using the default option, you must
create your own Oracle CEP domain. For more information, see
Section 3.1.3, "Default Oracle CEP Domain ocep_domain and
Samples".

» Create an Oracle CEP application and deploy it to your domain.

For a description of the programming model, details about the various
components that make up an application, and how they all fit together, see
"Overview of Creating Oracle CEP Applications" in the Oracle Fusion Middleware
Developer’s Guide for Oracle Complex Event Processing for Eclipse.

3.6.1 Configuring Oracle CEP for the IBM JDK

If you installed Oracle CEP for use with the IBM JDK, depending on your operating
system and processor architecture, you must make changes to the IBM AIX network
options and the setDomainEnv script in each Oracle CEP domain directory. This
section describes:

= Section 3.6.1.1, "How to Configure Oracle CEP for the IBM JVM on IBM AIX
(64-bit)"

3.6.1.1 How to Configure Oracle CEP for the IBM JVM on IBM AIX (64-bit)

If you installed Oracle CEP for use with the IBM JDK on IBM AIX (64-bit), you must
make changes to the IBM AIX network options and the setDomainEnv script in each
Oracle CEP domain directory.

To configure Oracle CEP for the IBM JVM on IBM AIX (64-bit):

1. Execute the following commands (using super user privileges or sudo) to modify
the AIX network options:

no -o rfcl323=1
no -o sb_max=4194304

2. Go to the domain directory.

For example, MIDDLEWARE_HOME/user_projects/domains/ocep_
domain/defaultserver

3. Edit the setDomainEnv. sh script and add the following line:

export IBM_JAVA_OPTIONS="-Djava.net.preferIPv4Stack=true
-Djava.net.preferIPv6Addresses=false"

3.7 Installing the Oracle CEP IDE for Eclipse

Oracle CEP IDE for Eclipse is a set of plugins for the Eclipse IDE designed to help
develop, deploy, and debug applications for Oracle CEP.

For more information, see:

Installing Oracle CEP 3-17

Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)

s '"Installing the Latest Oracle CEP IDE for Eclipse" in the Oracle Fusion Middleware
Developer’s Guide for Oracle Complex Event Processing for Eclipse

s 'Installing the Oracle CEP IDE for Eclipse Distributed With Oracle CEP" in the
Oracle Fusion Middleware Developer’s Guide for Oracle Complex Event Processing for
Eclipse

3.8 Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)

Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0) is a two-step process: first you must
upgrade your applications and then you must upgrade the domain to which the
applications are deployed.

Table 3-5 lists the steps you must take for each supported upgrade path:

Table 3-5 Upgrade Paths

From Rel To Rel 10.3 To Release 11gR1 (11.1.1)
2.0 1. Section 3.8.1, "Upgrading a WebLogic Event 1. Section 3.8.1, "Upgrading a WebLogic Event Server
Server 2.0 Domain to Oracle CEP 10.3" 2.0 Domain to Oracle CEP 10.3"
2. Section 3.8.3, "Upgrading a WebLogic Event 2. Section 3.8.2, "Upgrading an Oracle CEP 10.3
Server 2.0 Application to Run on Oracle CEP Domain to Oracle CEP 11g Release 1 (11.1.1.6.0)"
10.3"

3. Section 3.8.3, "Upgrading a WebLogic Event Server
2.0 Application to Run on Oracle CEP 10.3"

4. Section 3.8.4, "Upgrading an Oracle CEP 10.3
Application to Run on Oracle CEP 11g Release 1
(11.1.1.6.0)"

10.3 Not Applicable. 1. Section 3.8.2, "Upgrading an Oracle CEP 10.3
Domain to Oracle CEP 11g Release 1 (11.1.1.6.0)"

2. Section 3.8.4, "Upgrading an Oracle CEP 10.3
Application to Run on Oracle CEP 11g Release 1
(11.1.1.6.0)"

For more information, see Section 3.8.5, "Backward Compatibility Issues".

3.8.1 Upgrading a WebLogic Event Server 2.0 Domain to Oracle CEP 10.3

This section describes the steps you must take to upgrade a WebLogic Event Server 2.0
domain so that it runs correctly in Oracle CEP 10.3. For clarity, it is assumed that the
existing WebLogic Event Server 2.0 domain is located in the /bea/user_
projects/domains/mydomain20 directory.

To upgrade a WebLogic Event Server 2.0 domain to Oracle CEP 10.3:

1. Using the Configuration Wizard, create a temporary Oracle CEP 10.3 domain.
Later steps in this procedure require you to use or refer to files in a new Oracle
CEP 10.3 domain, and it is best to use a new domain. You can later delete this
domain if you want.

For the purposes of this procedure, it is assumed that the new Oracle CEP 10.3
domain is called mydomain30, it contains a single server called defaultserver,
and the server files are located in the /oracle_cep/user_
projects/domains/mydomain30/defaultserver directory.

See "Creating an Oracle CEP Standalone-Server Domain" in the Oracle Fusion
Middleware Administrator’s Guide for Oracle Complex Event Processing.

2. If the WebLogic Event Server 2.0 server is currently running, stop it.

3-18 Oracle Complex Event Processing Getting Started

Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)

10.

Make a backup copy of your WebLogic Event Server 2.0 domain in case you need
to revert back.

Replace the following two files in the WebLogic Event Server 2.0 domain with the
equivalent files from the Oracle CEP 10.3 domain.

s lib/XACMLAuthorizerInit.ldift
s lib/XACMLRoleMapperInit.ldift

The WebLogic Event Server 2.0 files are located relative to the domain directory
(/bea/user_projects/domains/mydomain20 in our example) and the Oracle
CEP 10.3 files are located relative to the server directory under the domain
directory (/oracle_cep/user_
projects/domains/mydomain30/defaultserver in our example).

Using your favorite text editor, open the atnstore. txt file in the WebLogic
Event Server 2.0 domain, located in the config sub-directory of the main domain
directory, and add the new Oracle 10.3 groups:

group: wlevsDeployers
description:

group: wlevsApplicationAdmins
description:

group: wlevsBusinessUsers
description:

group: wlevsOperators
description:

Remove the following files and directories (if they exist) in the WebLogic Event
Server 2.0 domain:

m FileBasedDefaultCredentialMappermy-realmInit.initialized
m FileBasedXACMLAuthorizermy-realmInit.initialized

s FileBasedXACMLRoleMappermy-realmInit.initialized

] rm
u cm
n atz

Update the startwlevs.cmd (Windows) or startwlevs. sh (Unix) command
scripts in the WebLogic Event Server 2.0 domain to point to the new Oracle 10.3
binaries.

Update the stopwlevs.cmd (Windows) or stopwlevs. sh (Unix) command
scripts in the WebLogic Event Server 2.0 domain to point to the new Oracle 10.3
binaries.

Start the server in the 2.0 domain using the Oracle 10.3 binaries.

"Starting and Stopping an Oracle CEP Server in a Standalone-Server Domain" in
the Oracle Fusion Middleware Administrator's Guide for Oracle Complex Event
Processing.

This upgrade procedure might have changed the security configuration of your 2.0
domain, especially if you created new users and assigned them to groups. If this is
the case, use Visualizer to reconfigure the security.

See:

Installing Oracle CEP 3-19

Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)

s "Security Tasks" in the Oracle Fusion Middleware Visualizer User’s Guide for
Oracle Complex Event Processing

s "Configuring Security for Oracle CEP" in the Oracle Fusion Middleware
Administrator’s Guide for Oracle Complex Event Processing

3.8.2 Upgrading an Oracle CEP 10.3 Domain to Oracle CEP 11g Release 1 (11.1.1.6.0)

This section describes the steps you must take to upgrade an Oracle CEP 10.3 domain
so that it runs correctly in Oracle CEP 11g Release 1 (11.1.1). For clarity, it is assumed
that the existing Oracle CEP 10.3 domain is located in the /bea/user_
projects/domains/mydomainl03 directory.

To upgrade an Oracle CEP 10.3 domain to Oracle CEP release 11g Release 1
(11.1.1.6.0):

1.

Using the Configuration Wizard, create a temporary Oracle CEP 11¢ Release 1
(11.1.1.6.0) domain. Later steps in this procedure require you to use or refer to files
in a new Oracle CEP 11¢ Release 1 (11.1.1.6.0) domain, and it is best to use a new
domain. You can later delete this domain if you want.

For the purposes of this procedure, it is assumed that the new Oracle CEP 11g
Release 1 (11.1.1) domain is called mydomainll, it contains a single server called
defaultserver, and the server files are located in the /oracle_cep/user_
projects/domains/mydomainll/defaultserver directory.

See "Creating an Oracle CEP Standalone-Server Domain" in the Oracle Fusion
Middleware Administrator’s Guide for Oracle Complex Event Processing.

If the WebLogic Event Server 10.3 server is currently running, stop it.

Make a backup copy of your WebLogic Event Server 10.3 domain in case you need
to revert back.

Replace the following two files in the WebLogic Event Server 10.3 domain with the
equivalent files from the Oracle CEP 11g Release 1 (11.1.1) domain.

s lib/XACMLAuthorizerInit.ldift
s lib/XACMLRoleMapperInit.ldift

The WebLogic Event Server 10.3 files are located relative to the domain directory
(/bea/user_projects/domains/mydomain30 in our example) and the Oracle
CEP 11g Release 1 (11.1.1) files are located relative to the server directory under
the domain directory (/oracle_cep/user_
projects/domains/mydomainll/defaultserver in our example).

Using your favorite text editor, open the atnstore. txt file in the WebLogic
Event Server 10.3 domain, located in the config sub-directory of the main
domain directory, and add the new Oracle 11¢ Release 1 (11.1.1.6.0) groups:

group: wlevsDeployers
description:

group: wlevsApplicationAdmins
description:

group: wlevsBusinessUsers
description:

group: wlevsOperators
description:

Remove the following files and directories (if they exist) in the WebLogic Event
Server 10.3 domain:

3-20 Oracle Complex Event Processing Getting Started

Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)

10.

m FileBasedDefaultCredentialMappermy-realmInit.initialized
m FileBasedXACMLAuthorizermy-realmInit.initialized

s FileBasedXACMLRoleMappermy-realmInit.initialized

[] rm
[] cm
n atz

Update the startwlevs.cmd (Windows) or startwlevs. sh (Unix) command
scripts in the WebLogic Event Server 10.3 domain to point to the new Oracle 11¢
Release 1 (11.1.1.6.0) binaries.

Update the stopwlevs. cmd (Windows) or stopwlevs. sh (Unix) command
scripts in the WebLogic Event Server 10.3 domain to point to the new Oracle 11¢
Release 1 (11.1.1.6.0) binaries.

Start the server in the 10.3 domain using the Oracle 11g Release 1 (11.1.1.6.0)
binaries.

"Starting and Stopping an Oracle CEP Server in a Standalone-Server Domain" in
the Oracle Fusion Middleware Administrator’s Guide for Oracle Complex Event
Processing.

This upgrade procedure might have changed the security configuration of your
10.3 domain, especially if you created new users and assigned them to groups. If
this is the case, use Visualizer to reconfigure the security.

See:

s "Security Tasks" in the Oracle Fusion Middleware Visualizer User’s Guide for
Oracle Complex Event Processing

s "Configuring Security for Oracle CEP" in the Oracle Fusion Middleware
Administrator’s Guide for Oracle Complex Event Processing

3.8.3 Upgrading a WebLogic Event Server 2.0 Application to Run on Oracle CEP 10.3

This section describes the steps you must take to upgrade an application that you
developed in Version 2.0 of WebLogic Event Server so that it runs on Oracle CEP 10.3.

To upgrade a WebLogic Event Server 2.0 application to run on Oracle CEP 10.3:

1.

Update the MANIFEST . MF file to import new versions of Spring framework and
Oracle CEP packages, as well as new required packages. In particular:

= Update the version of all imported Spring framework packages to 2.5.5. For
example:

Import-Package:
org.springframework.aop. framework;version="2.5.5",
org.springframework.aop;version="2.5.5",

= Update the version of any imported Oracle CEP packages to 3.0.0.0. For
example:

Import-Package:
com.bea.wlevs.ede;version="3.0.0.0",
com.bea.wlevs.ede.api;version="3.0.0.0",

Installing Oracle CEP 3-21

Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)

= Add the following packages to the Import-Package header if they are not
already included:

Import-Package:
com.bea.wlevs.management.configuration.spi;version="3.0.0.0",
com.bea.wlevs.management.spi;version="3.0.0.0",
com.bea.wlevs.monitor;version="3.0.0.0",
com.bea.wlevs.spi;version="3.0.0.0",
com.bea.wlevs.spring.support;version="3.0.0.0",
commonj.work;version="1.4.0.0",
org.springframework.osgi.extensions.annotation;version="1.1.0",
com.bea.wlevs.ede.spi;version="3.0.0.0",
com.bea.wlevs.configuration.internal;version="3.0.0.0",

2, If you use Spring or Spring Dynamic Modules for OSGI (Spring DM) features in
your application, it is possible that the declaration of the features in the Spring
application context file has changed. If this is the case, you must update these
declarations in the EPN assembly file of your Oracle CEP application.

Note: This change is a result of the upgrade of the Spring framework
(from 2.0 to 2.5) that occurred between WebLogic Event Server 2.0 and
Oracle CEP 10.3, not as a direct result of the Oracle CEP upgrade

Refer to the appropriate 2.5 XSD Schemas for any changes:

= Spring:
http://www.springframework.org/schema/beans/spring-beans.x
sd

s Spring DM:

http://www.springframework.org/schema/osgi/spring-osgi.xsd

The following bullets list some of the typical changes you might have to make; the
following list is not complete:

= When specifying a property to the <osgi:service-property> tag, use the
<entry> tag with the key and value attributes, rather than the old <prop>
tag.

For example, change the following 2.0 tag from:

<osgi:service-properties>
<prop key="type">SocketAdapterType</prop>
</osgi:service-properties>

To:

<osgi:service-properties>
<entry key="type" value="SocketAdapterType"/>
</osgi:service-properties>

s Thevalue or ref attribute of an instance-property must always be set
to an explicit value; it can no longer be an empty string to indicate an implicit
use of a default value.

For example, change the following 2.0 tag from:

<wlevs:adapter id="fileAdapter" provider="FileAdapterType">
<!-- file: empty value uses default
<wlevs:instance-property name="file" value="" />

3-22 Oracle Complex Event Processing Getting Started

Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)

<wlevs:listener ref="algoTradingProcessor"/>
</wlevs:adapter>

To:

<wlevs:adapter id="fileAdapter" provider="FileAdapterType">
<wlevs:instance-property name="file" value="test.file" />
<wlevs:listener ref="algoTradingProcessor"/>
</wlevs:adapter>

3. Recompile the Java code of your 2.0 adapter and business POJO implementations
using your IDE. If you get compile-time errors, check the latest 10.3 Javadoc
(http://download.oracle.com/docs/cd/E13157_
01/wlevs/docs30/javadocs/wlevs/index.html) that describe the new
Oracle CEP APIs and make the appropriate source code changes.

4. If your 2.0 application has an adapter that uses the 1oadgen provider as
Example 3-3 shows, then you must register a StockTick event type in your EPN
assembly file as Example 3—4 shows.

Example 3-3 Adapter Using loadgen Provider

<wlevs:adapter id="fxMarketAmer" provider="loadgen">
<wlevs:instance-property name="port" value="9011"/>
</wlevs:adapter>

Example 3-4 Registering a StockTick Event

<wlevs:event-type-repository>
<wlevs:event-type type-name="StockTick">
<wlevs:class>com.bea.wlevs.adapter.defaultprovider.StockTickEvent</wlevs:c
lass>
</wlevs:event-type>
</wlevs:event-type-repository>

5. After you have made the preceding changes, reassemble the application and
deploy it to Oracle CEP 10.3.

See "Assembling and Deploying Oracle CEP Applications" in the Oracle Fusion
Middleware Developer’s Guide for Oracle Complex Event Processing for Eclipse.

If, during deployment, you get an exception that indicates that a package is
invisible, add this package to the Import-Package header of the MANIFEST . MF
file, then reassemble and redeploy the application. Keep adding packages in this
manner until the application deploys successfully.

3.8.4 Upgrading an Oracle CEP 10.3 Application to Run on Oracle CEP 11g Release 1

(11.1.1.6.0)

This section describes the steps you must take to upgrade an application that you
developed in Oracle CEP 10.3 so that it runs on Oracle CEP 11g Release 1 (11.1.1.6.0).

To upgrade an Oracle CEP 10.3 application to run on Oracle CEP release 1111g
Release 1 (11.1.1.6.0):

1. Update the MANIFEST . MF file to import new versions of Spring framework and
Oracle CEP packages, as well as new required packages.

Installing Oracle CEP 3-23

Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)

Note that alternatively you can specify unversioned packages which will not
require updating and also that you can specify larger versions in order to avoid
minor version updates, that is, use "2.5" instead of "2.5.6".

In particular:

= Update the version of all imported Spring framework packages to 2.5.6. For
example:

Import-Package:
org.springframework.aop.framework;version="2.5.6",
org.springframework.aop;version="2.5.6",

= Update the version of all imported Spring-DM framework packages to 1.2.0.
For example:

Import-Package:
org.springframework.osgi.context="1.2.0",

= Update the version of any imported Oracle CEP packages to 11.1.1.4_0. For
example:

Import-Package:
com.bea.wlevs.ede;version="11.1.1.4_0",
com.bea.wlevs.ede.api;version="11.1.1.4_0",

= Add the following packages to the Import-Package header if they are not
already included (see the sample source for a complete list of headers that
may be required):

Import-Package:
com.bea.wlevs.management.spi;version="11.1.1.4_0",
com.bea.wlevs.spring.support;version="11.1.1.4_0",
com.bea.wlevs.ede.spi;version="11.1.1.4_0",
org.springframework.osgi.extensions.annotation;version="1.2.0",

2. If you use Spring or Spring Dynamic Modules for OSGI (Spring DM) features in
your application, it is possible that the declaration of the features in the Spring
application context file has changed. If this is the case, you must update these
declarations in the EPN assembly file of your Oracle CEP application.

Note: This change is a result of the upgrade of the Spring-DM
framework (from 1.1 to 1.2) that occurred between Oracle CEP 10.3
and Oracle CEP 11.1, not as a direct result of the Oracle CEP upgrade.

Refer to the appropriate 2.5 XSD Schemas for any changes:

= Spring:
http://www.springframework.org/schema/beans/spring-beans.x
sd

= Spring DM:

http://www.springframework.org/schema/osgi/spring-osgi.xsd

In particular convert any Spring-DM declared adapter factories to use the
<wlevs:factory/> tag instead. For example, if your 10.3 EPN assembly file

3-24 Oracle Complex Event Processing Getting Started

Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)

contains the service that Example 3-5 shows, then you must replace this service
with the wlevs: factory that Example 3—6 shows.

Example 3-5 Spring-DM Declared Adapter Factory

<osgi:service interface="com.bea.wlevs.ede.api.AdapterFactory">

/>

<0sgi:service-properties>

<entry key="type" value="SocketAdapterType"/>
</osgi:service-properties>
<bean class="com.bea.wlevs.example.algotrading.adapter.SocketAdapterFactory"

</osgi:service>

Example 3-6 wlevs:factory

<wlevs:factory provider-name="SocketAdapterType"

class="com.bea.wlevs.example.algotrading.adapter.SocketAdapterFactory"/>

Recompile the Java code of your 10.3 adapter and business POJO implementations
using your IDE. If you get compile-time errors, check the latest 11g Release 1
(11.1.1) Javadoc (see Oracle Fusion Middleware Java API Reference for Oracle Complex
Event Processing) that describe the new Oracle CEP APIs and make the appropriate
source code changes.

Consider changing deprecated Java API and Oracle CEP schema:
s "Deprecated API and Schemas" in the Oracle Fusion Middleware Release Notes
= "Adapter Changes" in the Oracle Fusion Middleware Release Notes

After you have made the preceding changes, reassemble the application and
deploy it to Oracle CEP 11g Release 1 (11.1.1).

See "Assembling and Deploying Oracle CEP Applications" in the Oracle Fusion
Middleware Developer’s Guide for Oracle Complex Event Processing for Eclipse.

If, during deployment, you get an exception that indicates that a package is
invisible, add this package to the Import-Package header of the MANIFEST . MF
file, then reassemble and redeploy the application. Keep adding packages in this
manner until the application deploys successfully.

3.8.5 Backward Compatibility Issues

The following are non-backward compatible changes in the management framework:

The following classes have been deprecated and removed from all operation
signatures:

— com.bea.wlevs.management.ManagementException
— com.bea.wlevs.management .ManagementRuntimeException
— com.bea.wlevs.management .MbeanOperationsException

The following methods have been removed from all MBeans: isRegistered(),
preRegister (), postRegister (), getMBeanInfo().

The monitoring-related methods have been removed from StageMBean and
replaced by

com.bea.wlevs.monitor.management .MonitorRuntimeMBean.

The com.bea.wlevs.management .boot . BootMBean has been removed.

Installing Oracle CEP 3-25

Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)

s The com.bea.wlevs.management.configuration.ConfigSessionBean
has been removed.

s The ObjectName for the AppDeploymentMBean has been changed to include the
DomainMBean as a parent.

s The class
com.bea.wlevs.server.management .mbean.ServerRuntimeMBean has
been changed to
com.bea.wlevs.management.runtime.ServerRuntimeMBean.

s Two additional modules have been added: com.bea .wlevs .management.api_
* and com.bea.wlevs.management.spi_¥*, in addition to the existing
com.bea.wlevs.management_*.

s Theservice com.bea.wlevs.spi.ManagementService has been moved from
bundle com.bea.wlevs.spi_* to com.bea.wlevs.management.spi_*.

3-26 Oracle Complex Event Processing Getting Started

Glossary

Adapter

An element of the EPN that interfaces directly to an inbound event source. Adapters
understand the inbound protocol, and are responsible for converting the event data
into a normalized form that can be queried by a POJO. Adapters forward the
normalized event data into a Stream.

Aggregate Function

Aggregate functions return a single aggregate result based on group of tuples, rather
than on a single tuple.

See also Function and Single-Row Function.

CEP

Complex Event Processing.

Channel

A channel represents the physical conduit through which events flow between other
types of components, such as between an Adapter and a Processor, and between a
Processor and an Event Bean. A channel can model a Stream or Relation.
Condition

An Oracle CQL condition specifies a combination of one or more expressions and
logical (Boolean) operators and returns a value of TRUE, FALSE, or UNKNOWN.

Constant value

A fixed data value. Synonymous with Literal.

caL

Oracle Continuous Query Language. Supersedes EPL.

Data Feed

A synonym for Event Source.

Destination

An Oracle CQL destination identifies a consumer of query results such as the
Enterprise Link BAM Adapter, JMS queue or topic, or file.

Glossary-1

Deterministic Garbage Collection

Glossary-2

Deterministic Garbage Collection

Short, predictable pause times for memory heap garbage collection, which is the
process of clearing dead objects from the heap, thus releasing that space for new
objects.

DStream

A relation-to-stream operator that represents deleted tuples.

EDA

Event-Driven Architecture.

EPL
Oracle Event Processing Language. Superseded by CQL.

EPN

Oracle Event Processing Network. An EPN is the arbitrary interconnection of Adapter,
Stream, POJO, and business logic POJOs used by Oracle CEP to process events.

Event Bean

A POJO to that contains the business logic executed when a notable event is detected.
An event bean is an Event Sink.

Event Rule

A query, expressed in CQL or EPL, executed by a POJO to filter and aggregate events.

Event Sink

A component that consumes events, such as a Processor.

See also Event Source.

Event Source

A component that provides events, such as a sensor, wire service, or stock ticker.

See also Data Feed and Event Sink.

Expressions

An Oracle CQL expression is a combination of one or more values, operators, and
Oracle CQL functions that evaluates to a value. An expression generally assumes the
datatype of its components.

See also Condition and Function.

Format model

A character literal that describes the format of datetime or numeric data stored in a
character string.

Function

Oracle CQL functions are similar to operators in that they manipulate data items and
return a result. Functions differ from operators in the format of their arguments. This
format enables them to operate on zero, one, two, or more arguments.

See also Condition, Aggregate Function, and Single-Row Function.

Partitioned window

Incremental Processing

A user-defined aggregate function design pattern that improves scalability and
performance by ensuring that the cost of (re)computation on arrival of new events will
be proportional to the number of new events as opposed to the total number of events
seen thus far.

If your user-defined aggregate function supports incremental processing, you specify
the supports incremental processing clausein the register function
statement to instruct the Oracle CEP Service Engine to supply only the new event data
as opposed to performing a rescan over already processed event data.

IStream

A relation-to-stream operator that represents inserted tuples.

Join

A query that combines rows from two or more streams, views, or relations.

Latency

An expression of how much time it takes for data to get from one designated point to
another.

Literal

A fixed data value. Synonymous with Constant value.

Monotonic

A sequence of values that are consistently increasing and never decreasing or
consistently decreasing and never increasing. The sequence may contain multiple
consecutive occurrences of the same value.

Now window

A special case of the time-based sliding window on a stream S that takes a
time-interval T as a parameter and is specified by: S [Range T]. A Now window is
defined as: S [Now] (short for S [Range 0]). When T = 0, the relation at time t
consists of tuples obtained from elements of S with timestamp t.

See also Sliding window.

Operators

Oracle CQL operators manipulate data items and return a result. Syntactically, an
operator appears before or after an operand or between two operands.

OSGi

A dynamic module system for Java that provides a service-oriented, component-based
environment and standardized software lifecycle management. Oracle CEP
applications are packaged and deployed as OSGi bundles. For more information, see
http://www.osgi.org/.

Partitioned window

A partitioned sliding window on a stream S takes a positive integer number of tuples

N and a subset {Al, ... Ak} of the stream's attributes as parameters and is specified

by: S[Partition By Al ... Ak Rows N] or, optionally, S[Partition By Al
Ak Rows N Range T].

See also Sliding window.

Glossary-3

POJO

Glossary-4

POJO
A Plain Old Java Object. A Java class that is not required to implement a third-party

interface or extend a third-party class. In Oracle CEP, you can express your business
logic using POJOs.
Processor

An element of the EPN that consumes normalized event data from a stream, processes
it using queries (expressed in CQL or EPL), and may generate new events to an output
stream.

Query
A query is an operation that retrieves data from one or more streams or views. In this
reference, a top-level SELECT statement is called a query.

Real-time

A level of computer responsiveness that a user senses as sufficiently immediate or that
enables the computer to keep up with some external process (for example, to present
visualizations of the weather as it constantly changes).

Relation

A relation is time-varying bag of tuples. Here "time" refers to an instant in the time
domain. At every instant of time, a relation is a bounded set. It can also be represented
as a sequence of timestamped tuples that includes insertions, deletions, and updates to
capture the changing state of the relation. The updates are required to arrive at the
system in the order of increasing timestamps. Like streams, relations have a fixed
schema to which all tuples conform.

RStream
A relation-to-stream operator that maintains the entire current state of its input
relation and outputs all of the tuples as insertions at each time step.

Single-Row Function

Single-row functions return a single result row for every row of a queried stream or
view.

See also Function and Aggregate Function.

Sliding window

A stream-to-relation operator based on the window specification derived from SQL99.
See also: Now window, Partitioned window, Unbounded window, tuple-based, and
Unbounded window, time-based.

Source

An Oracle CQL source identifies a producer of data that a Oracle CQL query operates
on such as the Enterprise Link BAM Adapter, JMS queue or topic, or file.

Spring Framework

A light-weight, open source application framework for Java. Oracle CEP server uses
the Spring Framework to host Oracle CEP applications. For more information, see
http://www.springframework.org/.

View

Stream

A stream is a sequence of timestamped tuples. There could be more than one tuple
with the same timestamp. The tuples of an input stream are required to arrive at the
system in the order of increasing timestamps. A stream has an associated schema
consisting of a set of named attributes, and all tuples of the stream conform to the
schema.

A stream is a bag (or multi-set) of tuple-timestamp pairs, which can be represented as
a sequence of timestamped tuple "insertions".

In Oracle CEP, a stream is modeled as a channel component.

See also Tuple and Channel.

Throughput

An Oracle CQL source identifies a producer of data that a Oracle CQL query operates
on such as the Enterprise Link BAM Adapter, J]MS queue or topic, or file.

Tuple

The term "tuple of a stream" denotes the ordered list of data (excluding timestamp
data) portion of a stream element (the s of <s, t>). For example, a stock ticker data
stream might appear like this where each stream element is made up of <t imestamp
value>, <stock symbol>,and <stock price>:

<timestampN> NVDA, 4
<timestampN+1> ORCL, 62
<timestampN+2> PCAR, 38
<timestampN+3> SPOT, 53
<timestampN+4> PDCO, 44
<timestampN+5> PTEN, 50

In the stream element <timestampN+1> ORCL, 62, the tuple is ORCL, 62.

See also Stream.

Unbounded window, time-based

A special case of the time-based sliding window on a stream S that takes a
time-interval T as a parameter and is specified by: S [Range T].An Unbounded
window is defined as: S [Range Unbounded] (shortfor S [Range infinityl]).
When T = infinity, the relation at time t consists of tuples obtained from all
elements of Sup to t.

See also Sliding window.

Unbounded window, tuple-based

A special case of the tuple-based sliding window on a stream S that takes a number of
tuples N as a parameter and is specified by: S [Rows N]. An Unbounded window is

defined as: S [Rows Unbounded] (shortfor S [Rows infinity] and equivalent

to S [Range Unbounded]). When T = infinity, the relation at time t consists of
tuples obtained from all elements of S up to t.

See also Sliding window.
View

An Oracle CQL view represents an alternative selection on a stream or relation. In
Oracle CQL, you use a view instead of a subquery.

Glossary-5

View

Glossary-6

Symbols

*

maximal pattern quantifier (0 or more
times), 2-27
*?
minimal pattern quantifier (0 or more times), 2-27
+
maximal pattern quantifier (1 or more
times), 2-27
+?
minimal pattern quantifier (1 or more times), 2-27
?
maximal pattern quantifier (0 or 1 time), 2-27
??
minimal pattern quantifier (0 or 1 time), 2-27

A

adapters, 1-3
Ant
CQL sample targets, 2-18
Event Record and Playback sample targets, 2-124
FX sample targets, 2-96
HelloWorld sample targets, 2-9
installing, 3-1
Oracle Spatial sample targets, 2-87
Signal Generation sample targets, 2-109

beans, 1-3

Cc

channels, 1-3
CQL sample
about, 2-14
Ant targets, 2-18
building, 2-17
deploying, 2-17
running, 2-16

D

data cartridge samples
Oracle Spatial

Index

about, 2-81
Ant targets, 2-87
building, 2-86
component configuration file, 2-91
deploying, 2-86
EPN assembly file, 2-88
implementation, 2-87
running, 2-83
development environment, 2-4

E

EDA
decoupled components, 1-2
event sinks, 1-2
event sources, 1-2
event streams, 1-2
example, 1-1
rule driven, 1-2
environment, 2-4
EPN
about, 1-3
FX sample assembly file, 2-98
HelloWorld sample assembly file, 2-11
Oracle Spatial sample assembly file, 2-88
Signal Generation sample assembly file, 2-110
topologies, 1-3
event beans, 1-3
Event Processing Network. See EPN
Event Record and Playback sample
about, 2-116
Ant targets, 2-124
building, 2-123
deploying, 2-123
implementation, 2-125
running, 2-117
event sinks, 1-2
event sources, 1-2
event streams, 1-2
Event-Driven Architecture. See EDA

F

FX sample
about, 2-92
Ant targets, 2-96

Index-1

building, 2-95

component configuration file, 2-101
deploying, 2-95

EPN assembly file, 2-98
implementation, 2-96

running, 2-93

H

HelloWorld sample
about, 2-7
Ant targets, 2-9
building, 2-8
component configuration file, 2-13
deploying, 2-8
EPN assembly file, 2-11
implementation, 2-10
running, 2-8

about, 3-17

installing, 3-17
Oracle CEP Visualizer, 2-3
Oracle Spatial sample

about, 2-81

Ant targets, 2-87

building, 2-86

component configuration file, 2-91

deploying, 2-86

EPN assembly file, 2-88

implementation, 2-87

running, 2-83

P

patches, 3-16
platforms, 1-6
processors, 1-3

| S
installation samples
Ant, 3-1 about, 2-1
default domain, 3-3 Ant targets
file name, 1-6 CQL, 2-18
installation programs, 1-6 Event Record and Playback, 2-124
installers, 1-6 FX, 2-96
JRockit, 3-1 HelloWorld, 2-9
JVM, 3-2 Oracle Spatial, 2-87
middleware home, 3-3 Signal Generation, 2-109
mode building
console, 3-6 CcQL, 2-17
graphical, 3-5 Event Record and Playback, 2-123
silent, 3-6 FX, 295

Oracle CEP IDE for Eclipse, 3-17

Oracle Fusion Middleware directory, 3-3
patches, 3-16

post-installation tasks, 3-16
pre-installation tasks, 3-1

samples, 2-3,3-3

J

JRockit
installing, 3-1
JVM
about, 3-2
HP, 3-3
IBM/AIX, 3-3
Oracle JRockit Real Time, 3-2
SunJVM, 3-3

MATCH_RECOGNIZE clause, 2-34
MEASURES clause, 2-34
middleware home, 3-3

(o)

Oracle CEP IDE for Eclipse

Index-2

HelloWorld, 2-8

Oracle Spatial, 2-86

Signal Generation, 2-108
component configuration file

FX, 2-101

HelloWorld, 2-13

Oracle Spatial, 2-91

Signal Generation, 2-113
deploying

CQL, 2-17

Event Record and Playback, 2-123

EX, 2-95

HelloWorld, 2-8

Oracle Spatial, 2-86

Signal Generation, 2-108
development environment, 2-4
EPN assembly file

FX, 2-98

HelloWorld, 2-11

Oracle Spatial, 2-88

Signal Generation, 2-110
implementation

Event Record and Playback, 2-125

FX, 2-96

HelloWorld, 2-10

Oracle Spatial, 2-87

Signal Generation, 2-109
installing, 2-3
Oracle CEP Visualizer, 2-3
performance, 2-4
ready-to-run, 2-2
running
CQL, 2-16
Event Record and Playback, 2-117
FX, 2-93
HelloWorld, 2-8
Oracle Spatial, 2-83
Signal Generation, 2-106
source, 2-2
Signal Generation sample
about, 2-105
Ant targets, 2-109
building, 2-108
component configuration file, 2-113
deploying, 2-108
EPN assembly file, 2-110
implementation, 2-109
running, 2-106
supported platforms, 1-6

T

tools
Oracle CEP IDE for Eclipse
about, 1-6
installing, 3-17
Oracle CEP Visualizer
about, 1-8
topologies, 1-3

U

user code, 1-3

Index-3

Index-4

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Overview of Oracle CEP
	1.1 Introduction to Oracle Complex Event Processing
	1.2 Conceptual Overview of Oracle CEP
	1.3 Event Processing Networks
	1.4 Use Cases
	1.5 Summary of Oracle CEP Features
	1.6 Supported Platforms
	1.7 Oracle CEP IDE for Eclipse
	1.8 Oracle CEP Visualizer
	1.9 Next Steps

	2 Oracle CEP Samples
	2.1 Overview of the Samples Provided in the Distribution Kit
	2.1.1 Ready-to-Run Samples
	2.1.2 Sample Source

	2.2 Installing the Default ocep_domain and Samples
	2.3 Using Oracle CEP Visualizer With the Samples
	2.4 Increasing the Performance of the Samples
	2.5 Setting Your Development Environment
	2.5.1 How to Set Your Development Environment on Windows
	2.5.2 How to Set Your Development Environment on UNIX

	2.6 HelloWorld Example
	2.6.1 Running the HelloWorld Example from the helloworld Domain
	2.6.2 Building and Deploying the HelloWorld Example from the Source Directory
	2.6.3 Description of the Ant Targets to Build Hello World
	2.6.4 Implementation of the HelloWorld Example
	2.6.5 The HelloWorld EPN Assembly File
	2.6.6 The HelloWorld Component Configuration File

	2.7 Oracle Continuous Query Language (CQL) Example
	2.7.1 Running the CQL Example
	2.7.2 Building and Deploying the CQL Example
	2.7.3 Description of the Ant Targets to Build the CQL Example
	2.7.4 Implementation of the CQL Example
	2.7.4.1 Creating the Missing Event Query
	2.7.4.2 Creating the Moving Average Query

	2.8 Oracle Spatial Example
	2.8.1 Running the Oracle Spatial Example
	2.8.2 Building and Deploying the Oracle Spatial Example
	2.8.3 Description of the Ant Targets to Build the Oracle Spatial Example
	2.8.4 Implementation of the Oracle Spatial Example
	2.8.5 Oracle Spatial Example EPN Assembly File
	2.8.6 Oracle Spatial Example Component Configuration File

	2.9 Foreign Exchange (FX) Example
	2.9.1 Running the Foreign Exchange Example
	2.9.2 Building and Deploying the Foreign Exchange Example from the Source Directory
	2.9.3 Description of the Ant Targets to Build FX
	2.9.4 Implementation of the FX Example
	2.9.5 The FX EPN Assembly File
	2.9.6 The FX Processor Component Configuration Files
	2.9.6.1 FX Processor Component Configuration File: spreader.xml
	2.9.6.2 FX Processor Component Configuration File: SummarizeResults.xml

	2.10 Signal Generation Example
	2.10.1 Running the Signal Generation Example
	2.10.2 Building and Deploying the Signal Generation Example from the Source Directory
	2.10.3 Description of the Ant Targets to Build Signal Generation
	2.10.4 Implementation of the Signal Generation Example
	2.10.5 The Signal Generation EPN Assembly File
	2.10.6 The Signal Generation Component Configuration Files

	2.11 Event Record and Playback Example
	2.11.1 Running the Event Record/Playback Example
	2.11.2 Building and Deploying the Event Record/Playback Example from the Source Directory
	2.11.3 Description of the Ant Targets to Build the Record and Playback Example
	2.11.4 Implementation of the Record and Playback Example

	3 Installing Oracle CEP
	3.1 Installation Overview
	3.1.1 Before You Start the Installation Program
	3.1.2 Choosing Your JVM
	3.1.2.1 Oracle JRockit Real Time
	3.1.2.2 Sun JVM
	3.1.2.3 Other Platform-Specific JVMs

	3.1.3 Default Oracle CEP Domain ocep_domain and Samples
	3.1.4 Oracle Fusion Middleware Directory Structure and Concepts
	3.1.4.1 Oracle CEP-Specific Middleware Home
	3.1.4.2 Existing Oracle Fusion Middleware Home

	3.1.5 Installation Mode
	3.1.5.1 Graphical Mode
	3.1.5.2 Console Mode
	3.1.5.3 Silent Mode

	3.2 Installing Oracle CEP in Graphical Mode
	3.3 Installing Oracle CEP in Console Mode
	3.4 Installing Oracle CEP in Silent Mode
	3.4.1 Creating a silent.xml File for Silent-Mode Installation
	3.4.2 Guidelines for Component Selection
	3.4.3 Returning Exit Codes to the Command Window

	3.5 Installing an Oracle CEP Patch
	3.6 Post-Installation Steps
	3.6.1 Configuring Oracle CEP for the IBM JDK
	3.6.1.1 How to Configure Oracle CEP for the IBM JVM on IBM AIX (64-bit)

	3.7 Installing the Oracle CEP IDE for Eclipse
	3.8 Upgrading to Oracle CEP 11g Release 1 (11.1.1.6.0)
	3.8.1 Upgrading a WebLogic Event Server 2.0 Domain to Oracle CEP 10.3
	3.8.2 Upgrading an Oracle CEP 10.3 Domain to Oracle CEP 11g Release 1 (11.1.1.6.0)
	3.8.3 Upgrading a WebLogic Event Server 2.0 Application to Run on Oracle CEP 10.3
	3.8.4 Upgrading an Oracle CEP 10.3 Application to Run on Oracle CEP 11g Release 1 (11.1.1.6.0)
	3.8.5 Backward Compatibility Issues

	Glossary
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	H
	I
	J
	M
	O
	P
	S
	T
	U

