

Oracle® Fusion Middleware
User’s Guide for the Oracle Java CAPS Migration Tool

11g Release 1 (11.1.1.6.0)

E24884-01

November 2011

Documentation for developers that describes how to use the
automated migration tool to migrate existing Oracle Java
CAPS Repository projects with Java Collaboration
Definitions to Oracle SOA Suite projects with Spring
components, and to migrate Repository and JBI projects with
BPEL business processes to Oracle SOA Suite BPEL projects.

Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool, 11g Release 1 (11.1.1.6.0)

E24884-01

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: C. Thom

Contributing Author:

Contributor: Oracle SOA Suite and Oracle Java CAPS development, product management, and quality
assurance teams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Related Documents ... vi
Conventions ... vi

1 Introduction to the Oracle Java CAPS Migration Tool

1.1 Oracle Java CAPS Common Abbreviations .. 1-1
1.2 Overview of the Migration Process.. 1-1
1.2.1 How Projects are Migrated... 1-2
1.2.1.1 Repository Project Migration.. 1-2
1.2.1.2 JBI Project Migration .. 1-3
1.2.1.3 Oracle Java CAPS Repository Mapping to Oracle SOA Suite 1-3
1.2.1.4 Migration Tool Process Flow .. 1-3
1.2.2 Support for Repository Project Migration.. 1-4
1.2.2.1 Support for Java Collaboration Definition Migration ... 1-6
1.2.2.2 Support for Adapters and OTDs.. 1-6
1.2.2.3 Support for Oracle Java CAPS Framework Classes .. 1-8
1.2.3 OTD to XSD and XSD to JAXB Conversion ... 1-9
1.2.4 JAXB Generation During Migration ... 1-9
1.2.5 Support for JBI Project Migration... 1-10
1.2.5.1 WS-I Version 1 Compliance ... 1-10
1.2.5.2 Same Target Namespace for Different Message Definitions 1-10
1.2.5.3 System Properties .. 1-11
1.2.5.4 BPEL 2.0 Constructs .. 1-11
1.3 About the Migrated Oracle SOA Suite Projects... 1-11
1.3.1 About the Conversion to Spring... 1-11
1.4 Migration Considerations... 1-13
1.4.1 Deciding Whether to Migrate ... 1-13
1.4.2 Deciding How to Migrate.. 1-14
1.5 Limitations of the Migration Tool ... 1-14

2 Installing the Oracle Java CAPS Migration Tool

2.1 About the Installation... 2-1
2.1.1 Prerequisites ... 2-1

iv

2.2 Installing the Migration Tool .. 2-1

3 Migrating the Projects

3.1 Overview of the Migration Tool Process... 3-1
3.2 Migrating Oracle Java CAPS Projects .. 3-1
3.2.1 Before you Begin .. 3-1
3.2.1.1 Verify JBI Projects for Compliance... 3-2
3.2.1.2 Modify Business Processes.. 3-2
3.2.1.3 Modify Projects with File Write Operations... 3-2
3.2.1.4 Rebuild and Redeploy the Projects to Migrate... 3-2
3.2.2 Setting the Migration Logging Properties.. 3-2
3.2.3 Migrating a Project Using the Wizard .. 3-4
3.2.4 Migrating a Project Using the Command Line.. 3-7
3.2.4.1 Migration Tool Usage .. 3-7
3.3 Converting OTD to XSD Format .. 3-8
3.4 Converting XSD to JAXB Format.. 3-9

4 Post-Migration Tasks

4.1 Opening a Migrated Project in Oracle JDeveloper... 4-1
4.2 Configuring Migrated JBI Projects ... 4-2
4.2.1 Configuring Migrated Binding Components .. 4-2
4.2.1.1 Changes for JMS Adapters .. 4-3
4.2.2 Adding Service Elements.. 4-3
4.2.3 Configuring Quality of Service Properties... 4-4
4.2.4 Verifying the BPEL Structure... 4-4
4.3 Configuring Migrated Adapters and OTDs.. 4-4
4.3.1 Enabling File or JMS Message Types as Opaque .. 4-5
4.3.2 Configuring a Project with the Same XSD and FCX OTDs for Inbound and Outbound..

4-6
4.3.3 Configuring FCX OTDs .. 4-7
4.3.4 Adding Adapters not Converted by the Migration Tool... 4-7
4.4 Configuring Converted Oracle SOA Suite Spring Components.. 4-8
4.4.1 Modifying the Spring Bean Java Class ... 4-9
4.4.2 Converting a Byte Array Input to String.. 4-9
4.4.3 Configuring the Spring Bean Class for File or JMS Outbound Adapters................. 4-10
4.4.4 Accessing JMS Header Properties .. 4-11
4.4.5 Configuring Sub-Collaborations Called from Java Collaboration Definitions........ 4-11
4.5 Configuring Business Processes .. 4-12
4.5.1 Migrating User Activities in Business Processes.. 4-12
4.5.2 Migrating Correlation Initialization in Marshal and Unmarshal Activities 4-12
4.6 Adding JAR Files to a Migrated Project ... 4-13
4.7 Creating JMS Resources .. 4-15
A.1 Sample Code for Migrating a Stand-Alone JCD.. A-1
A.2 Sample Code for Migrating a JCD Called from a Business Process A-4

Glossary

v

Preface

Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool describes
how to migrate Repository and JBI projects from Oracle Java CAPS to Oracle SOA
Suite.

Audience
This document is intended for developers responsible for migrating Oracle SOA Suite
projects to Oracle SOA Suite projects.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users who are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so our documentation can be
accessible to all of our customers. For information about Oracle's commitment to
accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/accessibility.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing impaired.

vi

Related Documents
For more information, see the following Oracle resources:

■ Oracle Java CAPS 6.3 Documentation Library
(http://download.oracle.com/docs/cd/E21454_01/index.html)

■ Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to the Oracle Java CAPS Migration Tool 1-1

1Introduction to the Oracle Java CAPS
Migration Tool

This chapter provides an overview of the process of migrating Oracle Java CAPS
Repository and JBI projects to Oracle SOA Suite using the Oracle Java CAPS Migration
Tool.

This chapter includes the following topics:

■ Section 1.1, "Oracle Java CAPS Common Abbreviations"

■ Section 1.2, "Overview of the Migration Process"

■ Section 1.3, "About the Migrated Oracle SOA Suite Projects"

■ Section 1.4, "Migration Considerations"

■ Section 1.5, "Limitations of the Migration Tool"

1.1 Oracle Java CAPS Common Abbreviations
This section lists abbreviations and acronyms that are commonly used for Oracle Java
CAPS components and the technologies used by Oracle Java CAPS. These are used
throughout this document. You can find definitions for these components in the
Glossary.

■ JCD: Java Collaboration Definition

■ OTD: Object Type Definition

■ FCX OTD: XMLBean OTD, also called a First Class OTD

■ UD OTD: User-defined OTD

■ JBI: Java Business Integration

■ JAXB: Java Architecture for XML Binding

■ JAX-WS: Java API for XML Web Services

■ DOM: Document Object Model

1.2 Overview of the Migration Process
The Oracle Java CAPS Migration Tool automates much of the transformation required
to migrate existing Oracle Java CAPS Repository and JBI projects to Oracle SOA Suite
projects, preserving mappings and business logic in the converted projects. The
migration tool starts with a deployed Oracle Java CAPS JBI composite application (ZIP
file) or a Repository project's archive (EAR file). The migration tool reads the input ZIP

Overview of the Migration Process

1-2 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

or EAR file, and then generates the required project components for Oracle SOA Suite
in a file structure compatible with Oracle JDeveloper.

Oracle Java CAPS Repository project components, such as BPEL 1.0 business
processes, XSD files, WSDL files, messageable OTDs, and Java Collaboration
Definitions (JCDs), are parsed and transformed to be compatible with Oracle SOA
Suite components. JBI project components, such as BPEL 2.0 business processes, WSDL
files, and XSD files, are transferred to an Oracle SOA Suite project structure with fewer
changes since they are more compatible with Oracle SOA Suite.

The output of the Oracle Java CAPS Migration Tool is an Oracle SOA Suite project that
can be opened, viewed, and edited in Oracle JDeveloper. The migrated project also
includes Oracle Java CAPS JAR files on which the project depends. You can use the
migration tool to migrate the following Oracle Java CAPS versions: 5.0.5, any update
release; 5.1.3 any update release; and Release 6 or later.

1.2.1 How Projects are Migrated
Migrating Repository projects is a more complex process than migrating JBI projects,
which have a more direct mapping to Oracle SOA Suite projects. In either case, the
migration tool starts with the generated deployment file. For Repository projects, this
is an EAR file; for JBI projects it is the build ZIP file. The migration tool does not
perform any validation on the input project, which is assumed to be valid since it has
been successfully built and deployed in Oracle Java CAPS.

1.2.1.1 Repository Project Migration
When you migrate a Repository project that contains a business process, the BPEL 1.0
code is transformed to BPEL 2.0 in the Oracle SOA Suite project. Java Collaboration
Definitions (JCDs) are converted to Spring components and the associated Spring
context files are generated. The required and available JAR files from the Oracle Java
CAPS project are copied to the Oracle SOA Suite project. JCDs that are exposed as web
services are converted to a Spring context exposed as a service in the migrated project.
Projects with business processes that call JCDs are converted to business processes that
call Spring components.

The migration tool can migrate File, JMS, and web service adapters, but does not
migrate the code for other types of adapters. When you migrate a project that uses
specialized adapters (such as database adapters), the migration tool generates
placeholder endpoints in the migration project, which are just basic WSDL interfaces.
To complete the conversion of these projects, you need to add the corresponding
Oracle SOA Suite adapter to the migrated project in Oracle JDeveloper and map it to
the corresponding Spring component or business process. For more information, see
Section 4.3.4, "Adding Adapters not Converted by the Migration Tool."

Most marshal and unmarshal operations in business processes are converted into Java
Embedding activities in the business process in the migrated project, including XSD,
DTD, User-Defined, and SWIFT OTD marshal and unmarshal operations. In addition,
all JCDs that are converted into Spring components can marshal and unmarshal the
generated JAXB objects using the helper methods from the OTDUtil class.

When you migrate a Repository project, the folder structure for the new Oracle SOA
Suite project is created in a directory you specify. This folder includes all the required
Oracle SOA Suite files, such as BPEL files, WSDL documents, the composite file, the
project file, and so on. The migration tool also creates a temporary folder in the
migration tool directory to store the original code from the migrated Oracle Java CAPS
project. This allows you to compare the common files between the Oracle Java CAPS

Overview of the Migration Process

Introduction to the Oracle Java CAPS Migration Tool 1-3

and Oracle SOA Suite projects, compare the JCD source code with the migrated code,
compare the BPEL files, and so on.

1.2.1.2 JBI Project Migration
The mapping between project components for Oracle SOA Suite and Oracle Java
CAPS JBI is more direct and requires fewer transformations. Instead of using OTDs, as
in Oracle Java CAPS Repository projects, both JBI and Oracle SOA Suite projects
convert native message formatting to XML and back again. When you migrate a JBI
project, the migration tool extracts the information from the composite application’s
build ZIP file. It retrieves the endpoint and service connection information from the
jbi.xml file, and then generates the BPEL file, associated WSDL and JCA files, the
Oracle JDeveloper composite.xml file, and the project JPR file.

Not all Oracle Java CAPS JBI projects types can be converted using the migration tool.
The projects that are most directly converted use business processes with the File, JMS,
or HTTP binding components. Specialized service engines (such as Worklist Manager
and Data Mashup) and binding components (such as Scheduler and HL7) are not
migrated.

1.2.1.3 Oracle Java CAPS Repository Mapping to Oracle SOA Suite
Table 1–1 lists each Oracle Java CAPS Repository component along with the
corresponding Oracle SOA Suite component to which it is migrated. As mentioned
earlier, Oracle Java CAPS JBI projects have a more direct one-to-one mapping with
Oracle SOA Suite projects.

1.2.1.4 Migration Tool Process Flow
1. The migration tool runs in one of two modes: command-line or wizard mode. The

input is the Oracle Java CAPS archive file (either a ZIP or EAR file), the output
directory, and the Oracle SOA Suite project name for the migrated project.

2. The migration tool extracts the contents of the input file into a temporary location
and selects the required files to start the migration process.

Note: In the migrated Oracle SOA Suite project, the concrete binding
information and service elements are moved from the WSDL files to
the composite and binding configuration (JCA) files. In Oracle SOA
Suite, WSDL files are abstract, and binding type information is
specified directly in the composite.xml and adapter JCA files.

Table 1–1 Oracle Java CAPS Repository Component Mapping to Oracle SOA Suite

This Oracle Java CAPS Component Maps to This Oracle SOA Suite Component

Canonical data: OTD Canonical data: XML Object

Canonical interface: OTD, WSDL Canonical interface: WSDL

Proprietary Standard

JCD Spring Context

Connectivity Map Composite

Business Process Invoking JCD Business Process Invoking Spring Context

JCD as a Service Spring Context as a Service

Overview of the Migration Process

1-4 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

3. The migration tool derives the project’s endpoints, which determine the wires in
the Oracle SOA Suite composite.

4. The migration tool invokes a series of parsers:

■ The BPEL parser retrieves partner link definitions and, for Repository projects,
transforms the BPEL 1.0 code to BPEL 2.0.

■ The WSDL parser maps the partner link defined in the WSDL document to the
converted BPEL. It also converts the message types so they are compatible
with WS-I Basic Profile.

■ The JCD parser parses the JCD Java code to derive the inbound and outbound.
It adds the JAX-WS proxy method and all the accessor methods for the Logger,
CollaborationContext, and TypeConverter.

■ The Connectivity parser parses the endpoints and builds the wire information
in the Oracle SOA Suite composite.

■ The Descriptor parser reads the Oracle Java CAPS endpoints properties file for
File and JMS adapters, and creates the required JCA files for the Oracle SOA
Suite project. The parser reads through the project’s ra.xml and ejb.xml files
to derive the endpoint properties and create the metadata needed to generate
the JCA files.

5. The migration tool generates the following project components:

■ Java Embedding activity in migrated business process for each of the
marshal/unmarshal processes for messageable OTDs.

■ JAX-WS interface for JCDs invoked by a business process and JCDs exposed as
web services.

■ XSD files for the messageable OTDs in the project.

■ Spring contexts and component types for each JCD.

■ Oracle SOA Suite composite.xml file.

■ JCA files.

■ Oracle SOA Suite project file (.jpr), which is required to open the migrated
project in Oracle JDeveloper.

6. The migration tool extracts the required Oracle Java CAPS libraries from the
source file and copies them to the /SCA-INF/lib directory of the migrated project.

1.2.2 Support for Repository Project Migration
For Repository projects, both business process and JCD projects can be migrated.
However, there are cases where Oracle SOA Suite does not provide an exact
correspondence to the adapters is use. The migration tool can migrate certain adapters
and OTDs fully, but others require manual adjustments after the migration tool
completes its conversion.

Business Processes and Java Collaboration Definitions
The migration tool converts projects that include standalone business processes or
JCDs, or that include combinations of business processes and JCDs, such as calling
sub-processes or sub-collaborations. For example, the following are supported:

■ A business process (BPEL 1.0) invokes a sub-process or a sub-collaboration.

Overview of the Migration Process

Introduction to the Oracle Java CAPS Migration Tool 1-5

■ A JCD invokes a sub-collaboration (this requires manual changes to reconnect the
JCDs).

■ A JCD is exposed as a web service. Any web service outbound in the JCD is not
migrated.

File, JMS, and Web Service OTDs
The migration tool supports the following types of File, JMS, and Web Service OTD
projects:

■ Repository projects that include business processes and File, JMS, or web services
endpoints (both inbound and outbound).

■ Repository projects that include a business process with File or JMS adapters as
inbound and other adapters, such as Oracle or SAP, as outbound. The outbound
adapters are not be automatically migrated, but placeholder endpoints are
generated for the migrated project.

■ Repository projects that include a Java Collaboration Definition (JCD) with
inbound and outbound File or JMS adapters.

■ Repository projects that include a JCD with File or JMS adapters as inbound and
other adapters, such as Oracle or SAP, as outbound. The outbound adapters are
not be automatically migrated, but you can create and wire a corresponding
Oracle SOA Suite adapter in the migration project.

XSD, DTD, and UD OTDs
The migration tool supports migrating Repository projects with marshal and
unmarshal operations in XSD, DTD, and User-Defined OTDs.

First Class (FCX) OTDs
The migration tool supports the following types of FCX OTD projects:

■ Repository projects with FCX OTDs as inbound and outbound in the JCD.

■ Repository projects that include a JCD exposed as a web service with FCX OTDs
as inbound and outbound.

■ Repository projects that include a business process that invokes a JCD with FCX
OTDs as inbound and outbound.

HL7 OTDs
The migration tool supports the following types of HL7 OTD projects:

■ Repository projects that include marshal and unmarshal operations in an HL7
OTD message in a business process. Note that data mappings for HL7 OTD
message are preserved in the converted project.

■ Repository projects that include a business process that invokes a JCD with HL7 as
both the input and output OTD message.

SWIFT OTDs
Oracle Java CAPS Repository projects with SWIFT OTDs in business processes and
JCDs are automatically migrated by the migration tool. Some of the supported models
with the SWIFT OTDs include:

■ Repository projects that include a business process with marshal and unmarshal
activities from a SWIFT OTD.

Overview of the Migration Process

1-6 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

■ A standalone JCD with File or JMS inbound and outbound and SWIFT OTD as the
other OTD of the JCD. The File or JMS content is unmarshaled into the SWIFT
OTD.

1.2.2.1 Support for Java Collaboration Definition Migration
The migration tool converts Oracle Java CAPS projects that contain Java Collaboration
Definitions (JCDs) implemented in the ways described in Section 1.2.2, "Support for
Repository Project Migration." When a JCD is migrated, the migration tool reads and
parses the JCD source code from the EAR file. Based on the type of JCD
implementation, the JCD parser modifies the original source code.

For standalone JCDs that use either the File Adapter or JMS adapter for the inbound or
outbound connection, the parser identifies the inbound connection type and modifies
the JCD to implement the corresponding Oracle SOA Suite adapter interface. The
parser creates a method for the interface using pseudocode, in which a call to the
original JCD method is made.

For JCDs that are called from a business process and for standalone JCDs that use File
or JMS adapters for the inbound connection but not the outbound connection, the
parser modifies the JCD to implement a JAX-WS interface, which is generated by the
Oracle SOA Suite JAX-WS tool. The original JCD input and output OTD types are
converted to JAXB. The generated JAXB objects are represented by several Java classes.

All Spring Beans created during the migration from JCDs can marshal and unmarshal
the generated JAXB objects using the helper methods from the OTDUtil class.

For additional information and sample code for converted JCDs, see Appendix A,
"Examples of Java Collaboration Definition Conversions."

1.2.2.2 Support for Adapters and OTDs
The Oracle Java CAPS Migration tool supports the migration of the following Object
Type Definitions (OTDs): User-defined, XSD, DTD, SWIFT, and HL7. The migration
tool converts all OTDs used in a Oracle Java CAPS project into XSD files, and provides
utility methods to convert the XML data (JAXB/DOM defined by the XSD) to OTD
and the OTD data back to XML data. The migration tool’s OTD parser reads OTD
metadata from the OTD JAR files in the input EAR file. It then creates an XSD file that
represents the OTD and places the XSD file in the migrated Oracle SOA Suite project’s
xsd folder.

The migration tool names the XSD file based on the name of the OTD from which it
was generated. The generated WSDL documents are modified to use these XSDs to
define the message type so any business processes using the OTDs can resolve OTD
message types.

The generated XSD files use the OTD field names for the element names unless the
element name would be invalid. BPEL XPath expressions that use OTD types are
transformed to match the generated XSD file. You can use the provided OTDUtil
methods to convert data between OTD and XML data. The migration tool includes the
OTDUtil class, and packages it in the migrated Oracle SOA Suite project. The OTDUtil
class provides utility methods to perform native OTD operations by invoking the OTD
operations on the OTD implementation and convert data back to XML defined by
generated XSD. For more information, see the migration.caps.runtime.OTDUtil
javadocs, which are packaged in the caps.migration.runtime.util.jar file packaged
with the migration tool (in
migration_tool_home/oracle.migrationtool.jcaps.libraries/lib). This JAR file is
also included with the migrated Oracle SOA Suite project.

Overview of the Migration Process

Introduction to the Oracle Java CAPS Migration Tool 1-7

1.2.2.2.1 Migrating Projects with JMS Adapter receiveWait Operations

The Java CAPS JMS Adapter supports receiveWait web service operations, which
have no equivalent in Oracle SOA Suite. Projects that include an outbound JMS
Adapter with receiveWait and send operations can be migrated to Oracle SOA Suite
and deployed successfully in Oracle JDeveloper. The Oracle Java CAPS Migration Tool
removes the receiveWait operation for outbound JMS Adapters.

1.2.2.2.2 Migrating Projects with HL7 OTDs

 The following Oracle Java CAPS project models with HL7 OTDs are good candidates
for migration.

■ The project contains a business process with HL7 OTD marshal and unmarshal
activities.

■ The project contains a business process that invokes a JCD with HL7 OTDs as both
inbound and outbound connections.

■ The project contains a standalone JCD unmarshaling and marshalling into an HL7
OTD structure from a File or JMS inbound adapter.

When you migrate projects that have HL7 OTDs as input and output in a JCD, do not
use the -usejaxb option. Using the -usejaxb option in this case could cause the
compilation of the migrated JCD Java code to fail because not all methods are available
in the JAXB objects. This can also occur with other types of OTDs.

1.2.2.2.3 Marshal and Unmarshal Migration

OTD marshal and unmarshal operations and functoids in business processes are
modified by the migration tool to include embedded Java code that uses OTDUtil
methods to perform marshalToString and unmarshalFromString operations. These
operations are incorporated as BPEL business process Java Embedding activities. You
can leave the Java Embedding activities as is in the business process, or you can
modify the project’s input JCA endpoint using the Adapter Configuration Wizard to
use a different message schema. This internally converts the messages to the specified
schema type so the marshal and unmarshal operations can be removed. If the input is
a user-defined OTD, you can use the embedded Java implementation, modify the
input to be an XML message, or define a schema for native format (nxsd).

1.2.2.2.4 About the Marshal and Unmarshal Processes

The marshal/unmarshal process has three primary steps:

■ Call the getVariableData method of Oracle SOA Suite’s BPELXExecLet class to
retrieve the input variable.

■ Call the OTDUtil.otdOperation method, using the OTD class name, OTD
operation name, input element, and output container part name as parameters.
This creates the OTD object, invokes the unmarshalFromString and
marshalToString operations, and wraps the result in a DOM element with the
root as the output container part name.

■ Call the setVariableData method of Oracle SOA Suite’s BPELXExecLet class to set
the output to a BPEL variable.

1.2.2.2.5 Marshal and Unmarshal Examples for BPEL

The following examples illustrate migrated unmarshal and marshal operations.

Overview of the Migration Process

1-8 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

Example 1–1 Migrated Unmarshal Operation

//1: Get OTD marshal/unmarshal operation input by passing inputvariable and part
name
org.w3c.dom.Element inputelem = (org.w3c.dom.Element)getVariableData
 ("customerunmarshalFromStringInput","text");
String otdClass = "ud1.customer689211042.Customer";
 //Name of OTD class generated by Java CAPS

//2: Invoke OTDUtil.otdOperation by passing OTDClassType, operationname, and input
element
Object output = migration.caps.runtime.OTDUtil.otdOperation(otdClass,
 "unmarshalFromString",inputelem,"customer");

//3 : Set OTD marshal/unmarshal operation output by passing outputvariable, part
name, and data element
setVariableData("customerunmarshalFromStringOutput","customer",output,false);

Example 1–2 Migrated Marshal Operation

//1: Get OTD marshal/unmarshal operation input by passing inputvariable and part
name
org.w3c.dom.Element inputelem =
 (org.w3c.dom.Element)getVariableData("customermarshalToStringInput","customer");
String otdClass = "ud1.customer689211042.Customer";
 //Name of OTD class generated by Java CAPS

//2:Invoke OTDUtil.otdOperation by passing OTDClassType, operationname, and input
element
Object output = migration.caps.runtime.OTDUtil.otdOperation(otdClass,
 "marshalToString",inputelem,"text");

//3:Set OTD marshal/unmarshal operation output by passing outputvariable, part
name, and data element
setVariableData("customermarshalToStringOutput","text",output,false);

The otdClass parameter is null for FCX OTDs because they cannot be loaded in Oracle
SOA Suite due to XMLBean incompatibility. The OTDClass parameter can be null for
XML-based OTDs, in which case the marshal/unmarshal operation is done without
loading the actual OTD. In this case, OTDUtil transforms the XML DOM to a string
(marshal) or a string XML back to XML DOM (unmarshal).

1.2.2.2.6 Marshal and Unmarshal Operations in JCDs

The Oracle Java CAPS Migration Tool converts OTDs used in JCDs to JAXB objects.
Migrated Spring classes can use these JAXB objects in most cases. You can also use the
jaxbMarshalToOTD and jaxbUnmarshalFromOTD methods from OTDUtil to convert
JAXB to OTD and OTD to JAXB if required.

1.2.2.3 Support for Oracle Java CAPS Framework Classes
During the migration, code is generated to handle Oracle Java CAPS framework
classes in Oracle SOA Suite. This includes the logger, collaboration context, and type
converter classes. Alerter classes are not handled by the migration tool. The migrated
code includes access methods for these classes, and the references to these classes are
instantiated by Spring context injection. The classes are located in
jcaps_interfaces.jar in the Application Sources folder of the migration project.

Overview of the Migration Process

Introduction to the Oracle Java CAPS Migration Tool 1-9

1.2.3 OTD to XSD and XSD to JAXB Conversion
The migration tool provides can be run in different modes to convert OTDs to XSD
format, and XSD format to JAXB objects after the initial project migration is complete.

■ Use the -xsd2jaxb option to convert XSD to JAXB. For more information, see
Section 3.4, "Converting XSD to JAXB Format."

■ Use the -otd2xsd option to convert OTD to XSD. For more information, see
Section 3.3, "Converting OTD to XSD Format."

By default, the migration tool retains the original JCD interface. An additional option,
-usejaxb, indicates to use JAXB objects in the JCD’s input and output arguments
instead of converting them to OTDs to gain slightly better performance during
runtime.

1.2.4 JAXB Generation During Migration
Oracle Java CAPS projects that contain a business process that invokes a JCD or that
contain a JCD exposed as web service are special migration cases. These projects
contain a WSDL interface that is converted to a JAX-WS proxy interface during
migration. The OTD message types defined in the WSDL document are converted to
JAXB objects.

To generate the JAXB objects, the migration tool uses a specific version of the following
JAXB and XJC libraries. The versions listed below cannot be used within WebLogic
Server, and are solely included for use with the Oracle Java CAPS Migration Tool.

■ Oracle_SOA_Home/oracle_common/modules/glassfish.jaxb.xjc_1.0.0.0_2-1-12.j
ar

■ Oracle_SOA_Home/oracle_common/modules/glassfish.jaxb_1.0.0.0_2-1-12.jar

The above versions of these libraries include the following processing rules in order to
remain consistent with the original OTD behavior.

■ Underscores in the original XSD files are retained in the generated JAXB objects.

■ Lowercase letters after an underscore remain in lowercase in the generated JAXB
objects.

■ When there are nested complex types in the original XSD file, the getter method
for the generated JAXB object checks if the object is null and creates a new object if
it is.

The generated JAX-WS proxy classes are located in the Oracle SOA Suite projects src
folder under the WSDL packages. The file name for the proxy classes is
ExecutePortType.java.

Overview of the Migration Process

1-10 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

Figure 1–1 Generated JAX-WS Proxy Classes in an Oracle SOA Suite Project

1.2.5 Support for JBI Project Migration
The migration tool migrates all Oracle Java CAPS JBI projects that use business
processes with File, JMS, or HTTP binding components. It also migrates business
processes that call subprocesses. JBI projects are more similar to Oracle SOA Suite
projects, and require less transformation than Repository projects.

While both Oracle Java CAPS JBI and Oracle SOA Suite support BPEL 2.0, certain
constructs are not supported in Oracle SOA Suite and will require some manual
changes after the project is converted by the migration tool.

1.2.5.1 WS-I Version 1 Compliance
Oracle SOA Suite is compliant with the Web Services Interoperability Organization’s
(WS-I) Basic Profile, version 1.0. This means that the WSDL document can only have
one part, which must have a type of element. It cannot be complextype or simpletype.
Make sure any JBI projects to be migrated are WS-I compliant; otherwise the migrated
project might fail during build, deployment, or runtime. The migration utility does not
check for WS-I compliance.

1.2.5.2 Same Target Namespace for Different Message Definitions
Oracle Java CAPS JBI projects allow WSDL documents to use the same target
namespace but override the message definitions. In other words, the element name is
the same but the structure is different. In Oracle SOA Suite, only the first WSDL
document is loaded and the overridden definitions are lost. If the JBI project you are

About the Migrated Oracle SOA Suite Projects

Introduction to the Oracle Java CAPS Migration Tool 1-11

migrating contains multiple WSDL documents with the same target namespace,
modify the target namespace so it has a unique name, or make sure that the WSDL
documents using the same target namespace do not define message type definitions
with same name.

1.2.5.3 System Properties
In Oracle Java CAPS, additional Quality of Service (QoS) properties can be configured
on the service connections, such as redelivery and throttling. Oracle SOA Suite does
not have corresponding properties. The migration tool ignores these configurations
during the migration. You can configure the project after the migration using available
Oracle SOA Suite properties. For more information, see Section 4.2.3, "Configuring
Quality of Service Properties."

1.2.5.4 BPEL 2.0 Constructs
Some of the BPEL 2.0 constructs that Oracle Java CAPS JBI supports are not available
in the Oracle SOA Suite. During migration, the BPEL 2.0 code is converted without
any modifications to the BPEL constructs. Some constructs that worked in Oracle Java
CAPS will not work in Oracle SOA Suite, including the following:

■ Compensation and termination handlers

■ The standard faults: forcedTermination, repeatedCompensation, and invalidReply

■ The partner concept (a partner groups several partnerLink elements, but it did not
have any executable properties so it was removed from BPEL 2.0)

For compensation and termination handlers, the partner links are migrated as
placeholders that you need to recreate. The switch element was also removed from
BPEL 2.0, but the migration tool replaces the switch element with the if element in the
Oracle SOA Suite project.

For post-migration steps to address unsupported constructs, see Section 4.2.4,
"Verifying the BPEL Structure."

1.3 About the Migrated Oracle SOA Suite Projects
In the migrated Oracle SOA Suite project, all JCDs are now Spring Context
components, and any BPEL 1.0 business processes are now BPEL 2.0 processes. For
every supported JCD in the original Oracle Java CAPS project, the Oracle SOA Suite
project includes a Spring component and context XML file with the respective services
and references nodes. The business processes and Spring Contexts are automatically
wired to the inbound and external systems, though additional wiring might be
required after the project is migrated.

1.3.1 About the Conversion to Spring
Each JCD is converted to a Spring component with an associated Spring context XML
file. The JCD Java class is also brought over to the Oracle SOA Suite project and is
modified to implement the JAX-WS proxy method along with all the accessor methods
for the logger, collaboration context, and type converter.

The generated Spring Context includes a bean element that represents the original JCD
class. In addition to defining JCD logic, the Bean defines additional properties such as
the logger, collaboration context, and type converter, which are injected into the Spring
context at runtime.

About the Migrated Oracle SOA Suite Projects

1-12 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

Figure 1–2 Spring Context XML File

For each JMS or File adapter outbound interaction in the original JCD code, the Spring
Context includes an additional bean element reference, which is also injected at
runtime. You need to invoke the Bean’s API to interact with the outbound adapters.

Figure 1–3 Spring Component Type File

For each JCD, a Spring component type is also generated. The component type defines
the JAX-WS interface class that was implemented by the JCD class. All the JAX-WS
proxy classes and SOA Suite adapter interface classes are placed in the same
Application Sources folder in the Oracle SOA Suite project.

Migration Considerations

Introduction to the Oracle Java CAPS Migration Tool 1-13

Figure 1–4 Application Sources in the Oracle SOA Suite Project

1.4 Migration Considerations
The Oracle Java CAPS Migration Tool supports business process and JCD Repository
projects at versions 5.0.5 at any update level, 5.1.3 at any update level, and 6.0 or later.
The migration tool supports JBI projects at version 6.0 or later. Depending on the
individual project, there are variable levels of reuse for the mappings and other
business logic in the project. The recommended reuse level depends on many factors,
including the number of mappings, the complexity of the mappings, the types of
OTDs used, the adapters and binding components used, and so on. Although all
mappings can be retained as-is in most cases, this might not be the best approach.

Generally, the best candidates for a JCD-to-Spring migration are those that meet the
following criteria:

■ The Java code is longer than 100 lines and contains several mappings.

■ Mappings are complex.

■ Adapters in the project include File, JMS, or Web Service.

■ The project includes user-defined OTDs or complex message OTDs, such as X12 or
HL7.

■ The project uses custom JAR files that are invoked inline within several mappings.

1.4.1 Deciding Whether to Migrate
Below are a few considerations to take into account when making migration decisions
for Oracle Java CAPS projects.

■ Is this a trivial JCD project with, for example, fewer than 100 lines of code and
with simple mappings? If so, consider rewriting the JCD using Oracle SOA Suite
components and native XML instead of reusing the legacy Oracle Java CAPS
OTDs. Exclusive use of Oracle SOA Suite components is likely to outperform a
blend of Oracle Java CAPS and Oracle SOA Suite due to the conversion overhead
to and from the Oracle Java CAPS OTD format.

■ Is there a better way to do the necessary processing using just Oracle SOA Suite
components that were not available in Oracle Java CAPS? For example, routing
logic could be abstracted into a higher level Oracle Mediator project for improved
design.

Limitations of the Migration Tool

1-14 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

■ The effort to migrate certain Oracle Java CAPS projects to Oracle SOA Suite can be
very large, depending on the complexity of the project.

■ Migrating Repository projects that include business processes requires
transforming the BPEL 1.0 code to BPEL 2.0. This conversion is performed
automatically by the migration tool, but might require some manual changes due
to support for different BPEL 2.0 constructs between Oracle Java CAPS and Oracle
SOA Suite. A manual transformation process would require additional resources
and time to complete a seamless integration with the remaining components.

■ While much of the migration is performed automatically, the migration of
Repository projects that include JCD's require to some manual conversion of the
JCD Java code to Oracle SOA Spring component.

■ Migrating Repository projects with certain messageable OTDs could require a
significant amount of rework and redesign to work in Oracle SOA Suite.

1.4.2 Deciding How to Migrate
Once the decision is made to migrate an Oracle Java CAPS JCD project, ask yourself
the following questions to determine how to proceed:

■ Are there relatively few JCD mappings that rely on Oracle Java CAPS adapter
methods?

If the number of mappings affected is minimal, replace the Oracle Java CAPS OTD
used in the Oracle Java CAPS mappings in the Oracle SOA Suite project with the
corresponding Oracle SOA Suite adapter API. This eliminates the need for Oracle
Java CAPS adapter code from your JCD, which means there will be no runtime
dependencies on legacy Oracle Java CAPS adapter APIs.

■ Is there a large number of JCD mappings that rely on Oracle Java CAPS methods?

If the number of mappings affected by the adapter code is very large with Oracle
Java CAPS adapter methods heavily embedded in the mappings, you might want
to leave the Oracle Java CAPS adapter OTD as is to allow maximum reuse of the
existing mappings. The downside is that the migrated code would have
dependencies on legacy Oracle Java CAPS adapter libraries. You would also need
to create additional code outside of the mapping to translate the Oracle Java CAPS
adapter OTD to the Oracle SOA Suite adapter’s XML object. For example, you
might need to create additional code to map database OTD fields to Database
Adapter XML format.

1.5 Limitations of the Migration Tool
While the Oracle Java CAPS Migration tool automates several tasks for migrating
existing Oracle Java CAPS projects to Oracle SOA Suite, there are some limitations in
the project migration due to the wide variety of possible component combinations in
an Oracle Java CAPS project. As a result, manual steps are required to complete most
migrations. The required changes might be due to the nature of the artifacts to migrate,
or they might be because the tool cannot convert the artifacts to corresponding Oracle
SOA Suite artifacts. It is also possible that the artifact relies on features or constructs
that are not supported in Oracle SOA.

Below are some of the limitations that we came across when developing the Migration
tool.

Limitations of the Migration Tool

Introduction to the Oracle Java CAPS Migration Tool 1-15

Oracle Java CAPS Repository Project Migrations
■ The input message content needs to be wrapped with an element if the message

type is not defined as opaque. Both File and JMS messages require this wrapper
node when not defined as opaque. In Oracle SOA Suite, only XML messages are
processed when the message type is not defined as opaque.

For more information, see Section 4.3.1, "Enabling File or JMS Message Types as
Opaque."

■ Certain Repository products are not supported by the migration tool at this time.
This includes components such as Oracle Java CAPS Master Index, Oracle Java
CAPS Data Integrator, Oracle Java CAPS B2B Suite, Oracle Java CAPS BAM, and
so on.

Adapters other than File, JMS, and web services are migrated as placeholders,
which can later be replaced with the corresponding Oracle SOA Suite adapters.

■ Certain JBI products are not supported by the migration tool at this time,
including service engines other than the Oracle Java CAPS BPEL Service Engine.

Binding components other than File, HTTP, and JMS are migrated as placeholders,
which can later be replaced with the corresponding Oracle SOA Suite adapters.

■ The migrated JCD code requires some modification in the Spring Bean when there
are methods with multiple return statements. An example would be to have a
conditional returns within a method.

■ Receive operations on Flow branches with the createInstance set to yes are not
permitted in Oracle SOA Suite and will fail during the build process.

■ When a project includes multiple business processes, the target namespace and the
business process name cannot be the same.

■ Oracle SOA Suite expects the start activity to be a message activity. No other
activities are allowed before the start activity that creates the business process
instance.

■ Only inbound Web Service adapters, inbound and outbound File adapters, and
inbound and outbound JMS adapters are supported with a standalone JCD.

■ The migration tool cannot migrate user activities (Worklist Manager) in business
processes. The business process would contain BPEL constructs specific to Oracle
Java CAPS, which would need to be manually replaced with the Oracle SOA Suite
work flow.

■ When correlation initialization for a business process is in the marshal and
unmarshal Invoke activities, it is ignored because marshal and unmarshal
activities are converted to Java Embedding activities in the migrated business
process. Manual modifications are required in the migrated project.

■ Version control for Repository projects is not migrated.

■ Concatenating optional nodes in an assign activity succeeds in the migrated
project even when one or more nodes in the concatenated from expression is
missing or has no data. This is due to the ignoreMissingFromData property being
set to yes in Oracle SOA Suite, as shown below.

<assign name="SetdataNascimento">
 <copy ignoreMissingFromData="yes">
 <from>concat(concat(concat(concat(
 $DateunmarshalFromStringOutput1.Date/YEAR, '-'),
 $DateunmarshalFromStringOutput1.Date/Month), '-'),
 $DateunmarshalFromStringOutput1.Date/Day)

Limitations of the Migration Tool

1-16 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

 </from>
 <to>$ICObterNomeDnNatMorValPortTypeICObterNomeDnNatMorValInput.
 ICObterNomeDnNatMorValResponse/qual3:dadosPesquisa/qual3:dataNascimento
 </to>
 </copy>

Note: The above code has been wrapped for ease of viewing.

2

Installing the Oracle Java CAPS Migration Tool 2-1

2Installing the Oracle Java CAPS Migration
Tool

This chapter describes how to install the Oracle Java CAPS Migration Tool and
associated JAR files, and how to configure the Oracle Java CAPS environment for
migration.

This chapter includes the following topics:

■ Section 2.1, "About the Installation"

■ Section 2.2, "Installing the Migration Tool"

2.1 About the Installation
The migration tool is provided in a ZIP file, and installing the tool involves simply
downloading and extracting the file. The installation includes the following files:

■ MigrationTool.jar: This utility converts an Oracle Java CAPS project to an Oracle
SOA Suite project. It can also be used to convert OTD format to XSD, and XSD
format to JAXB objects.

■ logging.properties: This file sets the logging levels for the migration process.

■ oracle.migrationtool.jcaps.libraries: This folder contains all the required
libraries for the migration tool.

Before you can use the migration tool, you need to install additional JAR files and
configure the Oracle Java CAPS IDE. Both processes are described in this chapter.

2.1.1 Prerequisites
In order to run the migration tool, you must have the following installed and
accessible from the location of the migration tool:

■ Oracle Fusion Middleware (specifically, the oracle_common directory)

■ Oracle SOA Suite

Additionally, you need to have access to Oracle Java CAPS 6.x or 5.x because certain
projects need to be rebuilt and redeployed prior to migration.

2.2 Installing the Migration Tool
Installing the migration tool includes extracting the tool to a location on your
computer, installing additional JAR files, and configuring the Oracle Java CAPS
environment.

Installing the Migration Tool

2-2 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

To install the migration tool
1. Download the MigrationTool.zip to a folder on your computer where you want

to store the tool.

2. Extract the ZIP file.

To install third-party JAR files
■ Download the following three files to the

oracle.migrationtool.jcaps.libraries/lib folder in the migration tool
installation:

– Swing Application Framework:
http://download.java.net/maven/2/org/jdesktop/appframework/1.0.3/ap
pframework-1.0.3.jar

– Swing Worker API:
http://download.java.net/maven/2/org/jdesktop/swing-worker/1.1/swin
g-worker-1.1.jar

– Java Parser:
https://docs.google.com/uc?id=0B6K9IqkgGbcgZTg3ZWMzMzYtNDQ4Zi00NzBm
LWI1OTUtOTM2MTViMjYyMmEw&export=download&hl=en_US

To set up the Oracle Java CAPS environment
Adding a new flag to the Oracle Java CAPS IDE preserves the Java code from any
JCDs in the generated EAR files, which is required for the migration to complete
successfully.

1. If you are migrating Oracle Java CAPS 6.x Repository projects that contain Java
Collaboration Definitions (JCDs), do the following:

a. In your Oracle Java CAPS home directory, navigate to /netbeans/etc.

b. Open netbeans.conf in a text editor.

c. Append the following flag to the end of the netbeans_default_options
property before the closing double quote:

-J-Drun.mode=debug

d. Save and close the file.

2. If you are migrating Oracle Java CAPS 5.x projects, do the following:

a. In your Oracle Java CAPS home directory, navigate to /edesigner/bin.

b. Open runed.bat in a text editor.

Do not double-click the file to open it; double-clicking the file launches
Enterprise Designer.

c. Append the following flag to the end of the netbeans_default_options
property before the closing double quote:

"-J-Drun.mode=debug"

d. Save and close the file.

Note: This link requires a login to a Google account.

3

Migrating the Projects 3-1

3Migrating the Projects

This chapter provides instructions on how to perform an Oracle Java CAPS to Oracle
SOA Suite migration using the provided migration tool.

This chapter includes the following topics:

■ Section 3.1, "Overview of the Migration Tool Process"

■ Section 3.2, "Migrating Oracle Java CAPS Projects"

■ Section 3.3, "Converting OTD to XSD Format"

■ Section 3.4, "Converting XSD to JAXB Format"

3.1 Overview of the Migration Tool Process
You can run the migration tool in either wizard mode or command-line mode. Wizard
mode provides more visibility into the migration process by letting you view the
Oracle Java CAPS components and file content that will be migrated and the Oracle
SOA Suite files and content that will be generated. The migration tool uses the
generated project EAR or ZIP file from the Oracle Java CAPS project in order to
determine how to generate the Oracle SOA Suite project.

The output of the migration tool includes the necessary project components along with
the Oracle JDeveloper project file (a JPR file). These artifacts include the
composite.xml file, and can also include Spring component files, BPEL business
process files, WSDL files, schema definitions, JAR files, Java classes, and so on.

Certain projects will require manual changes to the migration tool output, such as
projects with outbound adapters other than File or JMS that would require you to
replace the generated placeholders with Oracle SOA Suite adapters. Changes that you
might need to make to the migration tool output are described in Chapter 4,
"Post-Migration Tasks."

3.2 Migrating Oracle Java CAPS Projects
This section describes running the migration tool in both wizard and command-line
modes. Make sure to complete the steps listed in Section 3.2.1, "Before you Begin" prior
to running the migration tool

3.2.1 Before you Begin
The Oracle Java CAPS files to be migrated need to be configured correctly and then
rebuilt and redeployed with the new debug options described in the installation
instructions. Perform the following before running the migration tool. The first two

Migrating Oracle Java CAPS Projects

3-2 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

steps are optional, depending on the type of project you are migration, but the final
step must be performed in order for the migration to process correctly.

■ Verify JBI Projects for Compliance

■ Modify Business Processes

■ Modify Projects with File Write Operations

■ Rebuild and Redeploy the Projects to Migrate

3.2.1.1 Verify JBI Projects for Compliance
While most JBI BPEL projects can be successfully migrated, you should verify the
project components for compliance with Oracle SOA Suite supported standards. For
information about the differences between Oracle Java CAPS JBI and Oracle SOA Suite
and any changes you might need to make, see Section 1.2.5, "Support for JBI Project
Migration."

3.2.1.2 Modify Business Processes
If you are migrating a project that includes multiple business processes, the target
namespace and business process name cannot be the same in order for the migration
to process correctly. If you have multiple business processes with the same namespace,
modify one of the names prior to the migration.

Oracle SOA Suite requires that the start activity be a message activity, while Oracle
Java CAPS allows an assign activity to be the first activity. If you have any projects in
which the start activity is not a message activity in a business process, modify the
business process prior to beginning the migration.

If the prefixes in the assign activities have duplicate definitions with different
namespaces, you need to resolve the ambiguity and assign the mapping with the
correct prefix.

3.2.1.3 Modify Projects with File Write Operations
Some older Oracle Java CAPS projects have a File Write operation with no output
container. These projects will not build in Oracle SOA Suite. If you have any projects
with this condition, set the output variable before performing the migration.

3.2.1.4 Rebuild and Redeploy the Projects to Migrate
In order to perform the migration for Repository projects, you need to rebuild and
redeploy the projects using the updated debug flags, as described in To set up the
Oracle Java CAPS environment. You then need to make the generated EAR file from
the project accessible from the location of the migration tool. For JBI projects, the
generated Composite Application Service Assembly (CASA) ZIP file needs to be made
available. Both Repository and JBI projects need to be rebuilt and redeployed with the
updated flags.

3.2.2 Setting the Migration Logging Properties
You can configure how much of the migration processing information is logged in the
migration log files and is written to the console where you run the migration tool.
Logging levels are set on three levels: global, per handler, and for the migration tool
itself. The handler settings override the global settings.

You can specify the following log levels, listed in order from least information given to
most:

Migrating Oracle Java CAPS Projects

Migrating the Projects 3-3

■ SEVERE (failure messages only)

■ WARNING

■ INFO

■ CONFIG

■ FINE

■ FINER

■ FINEST (most detailed logging)

To configure the migration logging properties
1. Navigate to the location where you installed the Oracle Java CAPS Migration Tool.

2. Open logging.properties in a text editor.

3. Modify any of the properties listed in the following table, and then save and close
the file.

Property Description

handlers A comma-delimited list of log handler classes to use for the
migration. The default is java.util.logging.FileHandler,
java.util.logging.ConsoleHandler. This sends log messages
to both the log file in the migration tool folder and to the console
from which you run the migration tool.

level (global) An indicator of the granularity of log messages across all
loggers. This value is overridden by the log levels you specify
for each logger later in the file. By default, it is commented out
and not used.

FileHandler Properties

pattern A pattern indicating the name given to each log file. The default
value is migrationtool_%u.log, which creates log files name
migrationtool##.log where ## indicates a number that is
incremented for each log file.

level An indicator of the granularity of log messages for the events
logged in the log file.

limit The maximum number of bytes logged in each file. If this value
is 0 (zero), there is no limit.

count The number of output files to cycle through.

formatter The name of the Java formatter class to use to format the
messages in the log file. The default is
java.util.logging.SimpleFormatter.

ConsoleHandler Properties

level An indicator of the granularity of log messages for the events
displayed on the console.

formatter The name of the Java formatter class to use to format the
messages on the console. The default is
java.util.logging.SimpleFormatter.

Migration Tool Properties

level An indicator of the granularity of log messages for the migration
tool in general.

Migrating Oracle Java CAPS Projects

3-4 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

3.2.3 Migrating a Project Using the Wizard
The migration tool wizard provides a graphical view of the project components from
the original Oracle Java CAPS project and the components generated by the migration
tool for the Oracle SOA Suite project.

To migrate a project using the wizard
1. From a command line, run the following command:

java -jar MigrationTool.jar -soahome middleware_home -wizard

2. On the migration wizard, enter the following information:

■ Source Folder: The path and filename of the Oracle Java CAPS EAR
(Repository project) or ZIP (JBI project) file to migrate.

■ Project Name: This is automatically populated with the name of the EAR file
or composite application.

■ Location: The directory where the migration tool will place the generated
Oracle SOA Suite project. If not supplied, the current working directory is
used.

■ Project Folder: This is automatically populated with the full path where the
migrated Oracle SOA Suite project will be placed.

Figure 3–1 Oracle Java CAPS Migration Tool - Select Sources Page

Note: If the project being migrated includes JCDs that are either
invoked by a business process or that are exposed as web services,
add the -usejaxb option to the end of the command. The
middleware_home directory is the path to oracle_common in your Oracle
Fusion Middleware installation. For more information about these
options, see Section 3.2.4.1, "Migration Tool Usage."

Migrating Oracle Java CAPS Projects

Migrating the Projects 3-5

3. Click Next.

The migration tool parses through the project’s ZIP or EAR file, extracts the
required artifacts, and, if there are any business processes in the project, displays
the artifacts in the wizard.

Figure 3–2 Oracle Java CAPS Migration Tool - Source Composite App Page

4. Do one of the following:

a. If there are no business processes in the project, skip to step 8.

b. If there are business processes in the project, verify the contents of the artifacts
by clicking on the name in the canvas on the right.project explorer.

5. Click Next.

The wizard renders the parsing results to display the services, references,
connections, and properties for the project (again for business processes only).

Migrating Oracle Java CAPS Projects

3-6 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

Figure 3–3 Oracle Java CAPS MIgration Tool - Endpoints & Connections

6. Click on any of the exposed or referenced endpoints to view their associated
partner links. Click on a connection to highlight the two partner links for the
connected components (this represents a "wire" in the Oracle SOA Suite
composite).

7. Click Next.

The migration tool generates the Oracle SOA Suite files and presents them to you
for review. You can check the console window for processing messages and status.
If an error or exception occurs, the migration process stops and the console
displays the cause of the error.

8. On the Review page, review the content of the migrated artifacts and check the
output project location for the files.

Migrating Oracle Java CAPS Projects

Migrating the Projects 3-7

Figure 3–4 Oracle Java CAPS MIgration Tool - Review Page

9. When you are ready, click Next.

10. On the Finish page, click Finish.

When the migration process is complete, the wizard returns to the Select Sources
page so you can begin migrating another project if desired. You can check the log
files in the migration tool directory to review the migration process.

11. Certain components require manual changes or manual migration. For more
information and instructions, see the following:

■ Chapter 3.4, "Converting XSD to JAXB Format"

■ Chapter 3.3, "Converting OTD to XSD Format"

■ Chapter 4, "Post-Migration Tasks"

3.2.4 Migrating a Project Using the Command Line
When you migrate an Oracle Java CAPS project using the command line mode instead
of the wizard mode, you specify all of the required information in the command, and
do not see a preview of the components and files that will be migrated or the
components and files that will be generated. The console displays the processing
status of the migration along with any warnings or errors that occur.

3.2.4.1 Migration Tool Usage

Syntax
java -jar MigrationTool.jar <-soahome parent_directory_of_oracle_common>
 [-archive path_of_input_file] [-projectname output_project]
 [-output output_folder] [-wizard] [-usejaxb]

Converting OTD to XSD Format

3-8 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

Example 3–1 Command Line Syntax

java -jar MigrationTool.jar -soahome C:\Oracle\Middleware\ -archive
 C:\javacaps\migration_projects\JCDOTD_CAPSProject_20110930.ear -projectname
 PurchaseOrder -output C:\SOA_Suite\mywork -usejaxb

3.3 Converting OTD to XSD Format
The migration tool converts most of the OTDs during the migration process. For any
OTDs that are not automatically converted, the migration tool provides an option,
-otd2xsd, that generates an XSD file based on the provided OTD class. The generated
XSD file can then be used in a migrated BPEL business process or to generate JAXB
objects using -xsd2jaxb option as describes in Section 3.4, "Converting XSD to JAXB

Table 3–1 Command Line Options and Flags

Option/Flag Description

-soahome The path to the Oracle Fusion Middleware Home directory. This
is the parent directory to the oracle_common directory, which is
required for JAX-WS interface generation. For example,
C:\Oracle\Middleware.

This option is required for both command-line and wizard
modes.

-archive The path and filename of the Oracle Java CAPS EAR or ZIP file
to migrate.

-projectname The name of the Oracle SOA Suite project that the migration tool
will generate.

-output The directory where the migration tool will place the generated
Oracle SOA Suite project. If not supplied, the current working
directory is used.

-wizard A flag that starts the migration tool in wizard mode, launching a
graphical interface where you can specify migration options and
view project components. When the command is run in this
mode, all other options except -soahome are optional. If you
provide the other options, their values are automatically
populated in the migration wizard.

-usejaxb A flag that modifies the original JCD interfaces to use JAXB
objects directly to avoid copying them to and from Oracle Java
CAPS OTD objects in the migrated code.

This flag is only valid for migrating projects with JCDs that are
invoked by a BPEL business process, and with standalone JCDs
that are exposed as web services. The tool automatically enables
this option when the JCD uses First Class (FCX) OTDs and
replaces the FCX OTDs (XMLBeans) with the JAXB objects.
When migrating projects that have HL7 OTDs as input and
output in a JCD, do not use the this option.

Caution: When the migration tool is run using the -usejaxb
option, the JCD Java code might fail to compile in the migrated
Oracle SOA Suite project because some of the OTD helper
methods are not available on the generated JAXB objects. Only
the getter and setter methods for the XSD fields are available.
When an OTD includes additional helper methods other than
getter and setter methods for OTD fields, do not use this option
when running the migration tool.

Converting XSD to JAXB Format

Migrating the Projects 3-9

Format." Use this method when an OTD does not have a corresponding schema
definition.

Running the following command generates XSD files for the specified OTD. The XSDs
are made available to the JAR files supplied with the -otdclasspath option.

java -jar MigrationTool.jar <-soahome parent_directory_of_oracle_common>
 <-otd2xsd> <-otdclass OTD class name to search in the supplied jar files>
 <-otdclasspath comma separated list of OTD and dependent jar files>

Example 3–2 Converting OTD to XSD

java -jar MigrationTool.jar -soahome C:\Oracle\Middleware\ -otd2xsd -otdclass
 xsd.xsdICP_ICPOutput.ICPOutput -otdclasspath
 C:/migration_projects/xsdICP_ICPOutput.jar,
 C:/migration_projects/xsdICP_ICPOutput2.jar

The above text is wrapped for readability; enter the command all in one line with no
spaces between the JAR file names. After running the OTD to XSD conversion, you can
either convert the XSD to JAXB objects, as described in Section 3.4, "Converting XSD to
JAXB Format," or add the XSD files to the migrated projects in Oracle JDeveloper.

3.4 Converting XSD to JAXB Format
If you use the migration tool to convert a project that uses Java Collaboration
Definitions with FCX OTDs used as other OTDs, the migrated project fails at runtime
because the FCX OTDs generated by Oracle Java CAPS are not compatible with Oracle
SOA Suite. You need to run the migration tool again in XSD to JAXB conversion mode,
which converts the FCX OTDs to JAXB objects.

Running the following command generates a JAXB object using the existing FCX OTD
XML schema:

java -jar MigrationTool.jar <-soahome parent_directory_of_oracle_common>
 <-xsd2jaxb> <-jaxboutput JAXB output folder> <-schema XSD schema location>
 [-jaxbpackage package for generated JAXB objects]

Table 3–2 Command Line Options and Flags

Option/Flag Description

-soahome The path to the Oracle Fusion Middleware Home directory. This
is the parent directory to the oracle_common directory, which is
required for JAX-WS interface generation. For example,
C:\Oracle\Middleware.

-otd2xsd An indicator to the migration tool to run in OTD to XSD
conversion mode.

-otdclass The class name of the OTD to be converted to XSD.

-otdclasspath A comma-separated list of the absolute paths and filenames of
the OTD and dependent JAR files.

Table 3–3 Command Line Options and Flags

Option/Flag Description

-soahome The path to the Oracle Fusion Middleware Home directory. This
is the parent directory to the oracle_common directory, which is
required for JAX-WS interface generation. For example,
C:\Oracle\Middleware.

Converting XSD to JAXB Format

3-10 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

Example 3–3 Converting FCX OTDs to JAXB

java -jar MigrationTool.jar -soahome C:\Oracle\Middleware\ -xsd2jaxb -jaxboutput
 C:\javacaps\migration_projects\FCX_JAXB -schema
 C:\javacaps\migration_projects\JavaCAPS_FCX.xsd -jaxbpackage
 com.oracle.caps.conversion

The above text is wrapped for readability. After running the XSD to JAXB conversion,
you need to add the JAXB objects to the migrated Oracle SOA Suite project and then
modify the Spring components that contain the migrated JCD code to use the JAXB
objects in place of the FCX OTD.

-xsd2jaxb An indicator to the migration tool to run in XSD to JAXB
conversion mode.

-jaxboutput The absolute path to the location where you want the generated
JAXB objects to be stored.

-schema The absolute path and file name of the XSD file to use for the
conversion.

-jaxbpackage The Java package for the generated JAXB objects. This parameter
is optional.

Table 3–3 (Cont.) Command Line Options and Flags

Option/Flag Description

4

Post-Migration Tasks 4-1

4Post-Migration Tasks

This chapter provides instructions for updates you need to make to a project that was
migrated from Oracle Java CAPS to Oracle SOA Suite. After the migration tool
converts the project, you need to open the project in Oracle JDeveloper and modify
some of the generated components and in some cases, add new components. You can
then deploy those projects to a WebLogic Server.

This chapter includes the following topics:

■ Section 4.1, "Opening a Migrated Project in Oracle JDeveloper"

■ Section 4.2, "Configuring Migrated JBI Projects"

■ Section 4.3, "Configuring Migrated Adapters and OTDs"

■ Section 4.4, "Configuring Converted Oracle SOA Suite Spring Components"

■ Section 4.5, "Configuring Business Processes"

■ Section 4.6, "Adding JAR Files to a Migrated Project"

4.1 Opening a Migrated Project in Oracle JDeveloper
Once the Oracle Java CAPS Migration Tool completes a project migration, you need to
open the generated Oracle SOA Suite file in Oracle JDeveloper to verify the project,
and in some cases modify or add project components.

To open a migrated project in Oracle JDeveloper
1. Launch Oracle JDeveloper.

You can launch Oracle JDeveloper by navigating to jdeveloper_home/jdev/bin
and running the jdev executable file.

2. In the Oracle JDeveloper main menu, click File and select Open.

3. In the dialog that appears, browse to the folder where the migrated project files are
located, and select the project file.

4. Click Open on the dialog.

The Create Application to Contain Project dialog appears.

5. On the dialog, enter a name for the application and click OK.

The project files appear in the Application navigation panel on the left.

6. In the navigation tree, expand SOA Content and open the composite.xml file.

Tip: This is the file with the JPR extension.

Configuring Migrated JBI Projects

4-2 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

Figure 4–1 shows an example of a converted project in Oracle JDeveloper. It
includes a service, a business process, a Spring component, and several references.

Figure 4–1 Converted Oracle Java CAPS Project in Oracle JDeveloper

4.2 Configuring Migrated JBI Projects
After you process an Oracle Java CAPS JBI project using the migration tool, manual
steps might be required to complete the migration and perform a successful
deployment of the migrated project. The following are some updates you might need
to make to your migrated JBI projects.

■ Section 4.2.1, "Configuring Migrated Binding Components"

■ Section 4.2.2, "Adding Service Elements"

■ Section 4.2.3, "Configuring Quality of Service Properties"

■ Section 4.2.4, "Verifying the BPEL Structure"

4.2.1 Configuring Migrated Binding Components
Not all Oracle Java CAPS binding component properties have a one-to-one
correspondence with Oracle SOA Suite adapter properties, so the migration tool
migrates only the essential set of properties. Before deploying your migrated project,
you should run the configuration wizard for each service and reference in the
composite to verify or update the configuration.

To configure a service or reference
1. Open the project and its composite in Oracle JDeveloper as described in

Section 4.1, "Opening a Migrated Project in Oracle JDeveloper."

2. Double-click the service or reference you want to configure, or right-click the
component and select Edit.

The configuration wizard for that component appears.

3. Follow the steps on the wizard to complete the configuration.

Configuring Migrated JBI Projects

Post-Migration Tasks 4-3

4.2.1.1 Changes for JMS Adapters
On the JMS Provider page of the JMS Adapter Configuration Wizard, by default the
selected option is Third Party for migrated projects. If the JMS provider is Oracle
WebLogic JMS or Oracle Advanced Queueing, you need to change the selection to
Oracle Enterprise Messaging Service and then select the provider to use.

For JMS adapters, you need to create a new connection factory and destinations in the
Oracle WebLogic Server Administration Console, making sure to match the names
specified in the JMS adapter configuration. As an alternative, you can reconfigure the
adapter to use an existing connection factory and destination. For instructions on
creating JMS resources in WebLogic Server, see Section 4.7, "Creating JMS Resources."

4.2.2 Adding Service Elements
WSDL supports multiple operations for a given port type. In Oracle Java CAPS, there
can be one service definition for a port type, but Oracle SOA Suite requires that
multiple service elements be defined for each operation. For references in the
composite, there is no need for multiple reference elements for a port type with
multiple operations. In Oracle SOA Suite project with binding types other than SOAP,
the binding configuration in the JCA file defines multiple endpoint activation and
endpoint interaction elements, one for each operation.

For Oracle Java CAPS WSDL documents that have port types with multiple
operations, the migration tool populates multiple endpoint activation and endpoint
interaction elements in the migrated WSDL and JCA files, but it does not define
multiple service elements (one for each operation) in the generatedcomposite.xml file.

For such project, you need to manually edit the generated composite.xml file by
creating multiple service elements, one for each operation. You also need to qualify the
binding.jca attribute of the service element with an operation attribute.

Example 4–1 Manual Changes for Port Types with Multiple Operations

For this example, the original Java CAPS binding component defined two operations
for the inbound File endpoint. Below is the service element in the composite.xml file
generated by the migration tool.

<service name="FileInboundService_FileInWSDL_InboundPort"
 ui:wsdlLocation="FileInWSDL.wsdl">
 <interface.wsdl interface="http://j2ee.netbeans.org/wsdl/FileInOut/
 FileInWSDL#wsdl.interface(FileInboundPortType)"/>
 <binding.jca
 config="FileInboundService_FileInWSDL_InboundPort_file.jca"/>
</service>

After making the necessary modifications, the service element in composite.xml
looks like this:

<service name="FileInboundService_FileInWSDL_InboundPort"
 ui:wsdlLocation="FileInWSDL.wsdl">
 <interface.wsdl interface="http://j2ee.netbeans.org/wsdl/FileInOut/
 FileInWSDL#wsdl.interface(FileInboundPortType)"/>
 <binding.jca
 config="FileInboundService_FileInWSDL_InboundPort_file.jca"
 operation="pollMain"/>
</service>
<service name="FileInboundService_FileInWSDL_InboundPort"
 ui:wsdlLocation="FileInWSDL.wsdl">
 <interface.wsdl interface="http://j2ee.netbeans.org/wsdl/FileInOut/
 FileInWSDL#wsdl.interface(FileInboundPortType)"/>

Configuring Migrated Adapters and OTDs

4-4 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

 <binding.jca
 config="FileInboundService_FileInWSDL_InboundPort_file.jca"
 operation="pollBackupDir"/>
</service>

4.2.3 Configuring Quality of Service Properties
For Oracle Java CAPS JBI projects, you can configure certain Quality of Service
properties. Not all of these properties transfer directly to Oracle SOA Suite features.
Throttling and redelivery properties are not migrated by the Oracle Java CAPS
Migration tool. Throttling allows you to set the maximum number of concurrent
messages that are processed by a particular endpoint in order to maintain consistent
performance. Redelivery settings handle message delivery when first-time delivery
fails.

For throttling, you can limit the number of requests in memory for the BPEL process
service engine. This affects in-only inbound requests. To set this limit, configure the
MaximumNumberOfInvokeMessagesInCache property for the BPEL process service
engine. For more information, see "Configuring BPEL Process Service Components
and Engines" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite
and Oracle Business Process Management Suite.

Rich redelivery can be configured using fault policies in the BPEL process service
engine. For more information, see "Using the Fault Management Framework" in
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.

4.2.4 Verifying the BPEL Structure
Since Oracle Java CAPS JBI supports some BPEL 2.0 that are not available in the Oracle
SOA Suite, you need to verify the converted BPEL code for projects that use the
following constructs. These are not supported in Oracle SOA Suite, but are included in
the converted BPEL code.

■ Compensation and termination handlers: When these exist in the original Java
CAPS business process, partner links are included in the migrated BPEL as
placeholders. After the migration, you need to recreate and configure the partner
links.

■ Standard faults: These include forcedTermination, repeatedCompensation, and
invalidReply.

■ Partners: A partner groups several partnerLink elements, but they were removed
from BPEL 2.0 because the partner concept did not have any executable properties.

4.3 Configuring Migrated Adapters and OTDs
While the migration tool supports File, JMS, and Web Services Adapters as well as
messageable OTDs, some manual steps are required to complete the migration of these
components.

For JMS adapters, you need to create new destinations in the Oracle WebLogic Server
Administration Console, making sure to match the names specified in the JMS adapter
configuration. Make sure to verify the JMS adapter configuration using the adapter
configuration wizard. For information about creating JMS destinations, see Section 4.7,
"Creating JMS Resources."

The following are some updates you might need to make to your migrated JBI
projects.

Configuring Migrated Adapters and OTDs

Post-Migration Tasks 4-5

■ Section 4.3.1, "Enabling File or JMS Message Types as Opaque"

■ Section 4.3.2, "Configuring a Project with the Same XSD and FCX OTDs for
Inbound and Outbound"

■ Section 4.3.3, "Configuring FCX OTDs"

■ Section 4.3.4, "Adding Adapters not Converted by the Migration Tool"

You should also verify the migrated adapter configuration, as described in
Section 4.2.1, "Configuring Migrated Binding Components" and Section 4.2.1.1,
"Changes for JMS Adapters". The information under Section 4.2.2, "Adding Service
Elements" also applies to Oracle Java CAPS Repository projects.

4.3.1 Enabling File or JMS Message Types as Opaque
The Oracle Java CAPS Migration Tool converts all the File and JMS inbound and
outbound adapters to use Oracle SOA Suite File and JMS adapters. Converted JMS
and File adapters are configured to use the XML schema types
ewaytype:FileTextMessage and ewaytype:Message in their corresponding WSDL
documents. The WSDL documents are imported by the migrated adapter connections
in the composite, so changes to these files affect all the connections of that adapter.

The defined ewaytype is an element type, which means that the input message should
be wrapped inside an XML tag, as illustrated in Example 4–2. Oracle SOA Suite
always requires an XML element as the input message for File and JMS endpoints that
are not defined as opaque. In the converted WSDL documents, the message part is
defined as a string element by default.

Example 4–2

<?xml version="1.0" encoding="UTF-8" ?>
<FileTextMessage xmlns=" http://xml.netbeans.org/schema/eWayTypes " >
 <<Actual messagse input>>
</FileTextMessage>

You can modify the WSDL document to convert the input message part from an
ewaytype element type to an opaque element type in Oracle SOA Suite. If the message
part is converted to opaque, Oracle SOA Suite adapters process the message as a
Base64-encoded string. The input and output messages can be a simple string, similar
to Oracle Java CAPS adapters, if the opaque message type is used.

To enable the message type as opaque
1. Open the converted project in Oracle JDeveloper, and then open the WSDL

document you want to modify.

2. In the WSDL document, scroll to the message element.

Below is an excerpt of the types and message elements. You can see the
commented section describing how to define the element as opaque.

<types>
 <schema targetNamespace="http://xml.netbeans.org/schema/eWayTypes"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="Message" type="string"/>
 </schema>
 <schema targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/opaque/"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="Message" type="base64Binary"/>
 </schema>
</types>

Configuring Migrated Adapters and OTDs

4-6 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

<message name="Message">
 <part name="Message" element="ewaytype:Message"/>
<!-- This is an opaque message type, comment out Message part defined above
 and uncomment following Message part to use opaque message type
 <part name="Message" element="opaque:Message"/>
-->
</message>

3. To change the message type to opaque, comment out the line immediately above
the instructional comments, and uncomment <part name="Message"
element="opaque:Message"/>.

4. Do the following for the opaque message type before using the input string
message or before writing or sending the output message:

a. Decode Base64-encoded input using the
oracle.soa.common.util.Base64Decoder.decode() method to get the string
message.

b. Convert the output message to Base64 string using the
oracle.soa.common.util.Base64Encoder.encode() method.

5. For the opaque message type, do one of the following:

■ If you use the OTDUtil.otdOperation method to marshal or unmarshal
opaque messages, set the last parameter to true as shown below:

OTDUtil.otdOperation(otdClass,"marshalToString",inputelem,"text",true);

■ If you do not use the OTDUtil.otdOperation method, you need to add logic to
call the encode or decode methods to convert the message before using it in
the business process or Spring output.

4.3.2 Configuring a Project with the Same XSD and FCX OTDs for Inbound and
Outbound

When you migrate a project that includes a JCD with the same XSD and FCX OTDs for
inbound and outbound, you need to retrieve the value from the JAX-WS holder as
shown below. The JAX-WS proxy generated for this type of implementation creates a
JAX-WS holder encapsulating the JAXB object.

public void test(Holder<org.netbeans.xml.schema.synchronous.TypeA> input,
Holder<org.netbeans.xml.schema.synchronous.TypeA> output) throws Throwable {
//output.setTypeA(input.getTypeA()); ? Replace this line
output.value = input.value; ? Retrieve the value from the input Holder to output.

Note: With the last parameter of OTDUtil.otdOperation set to true,
the following occurs, depending on the OTD operation used:

■ The output is converted to Base64 after a marshalToString
operation.

■ The input is decoded using Base64Decoder before an
unmarshalFromString operation.

Oracle SOA Suite adapters might not work as expected if the message
is not encoded to Base64 before invoking the outbound adapter.

Configuring Migrated Adapters and OTDs

Post-Migration Tasks 4-7

4.3.3 Configuring FCX OTDs
The migration tool automates the migration of Repository projects with FCX OTDs in
a business process or in a JCD. The supported models include the following:

■ A business process with FCX OTDs performing marshal and unmarshal activities.

■ A business process calling a JCD with an FCX OTD as both inbound and
outbound.

■ A standalone JCD exposed as a web service with FCX OTDs as request and reply
types.

In the above cases, the migration tool converts the FCX OTDs, which are based on
XMLBeans, by replacing them with JAXB objects. The mappings in the Oracle Java
CAPS project’s FCX OTD are preserved in the JAXB objects.

For Oracle Java CAPS projects that include a JCD with FCX OTDs used as other OTDs,
the migration tool does not convert the OTDs to JAXB objects. Use the -xsd2jaxb
option to convert the FCX OTD used as other OTD to JAXB.

To update an FCX OTD used as other OTDs
1. Run the migration tool on the project’s EAR file as described in Section 3.2,

"Migrating Oracle Java CAPS Projects."

If you navigate to the converted Java code, you will see the FCX OTD used as
other OTDs remains as an OTD and was not converted to JAXB.

2. Run the migration tool using the -xsd2jaxb option to convert the FCX OTDs to
JAXB objects.

This is described in Section 3.4, "Converting XSD to JAXB Format."

3. Replace the FCX OTD in the converted JCD code with the generated JAXB object
in the converted Java code.

4.3.4 Adding Adapters not Converted by the Migration Tool
While the migration tool automatically generates code for JMS, File, and Web Service
OTDs, certain adapters are not handled by the migration tool and need to be added
manually to the project. The migration tool creates placeholders for these endpoints in
business process projects, and the placeholders need to be replaced by the
corresponding Oracle SOA Suite adapter.

To add unconverted adapters in Spring
1. In Oracle JDeveloper, open the migrated Oracle SOA Suite project and then open

its associated composite.xml file.

2. In the Component Palette, locate the Oracle SOA Suite equivalent adapter to the
unmigrated adapter, and drag it to either the services or references swim lane.

Note: The converted Oracle SOA Suite project will build and deploy
with no errors if you do not perform these steps; but an error will
occur at runtime due to an XMLBean conflict.

Note: These instructions are also published in the Spring Bean Java
class file that you need to modify when adding an unconverted
adapter to a migrated project in Oracle JDeveloper.

Configuring Converted Oracle SOA Suite Spring Components

4-8 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

3. Follow the steps in the configuration wizard to configure the adapter.

4. Connect the new adapter to the Spring component that was generated for the
appropriate JCD (that is, the JCD that was connected to the unmigrated adapter in
the original Oracle Java CAPS project).

5. In the Application Navigator, expand Application Sources and locate the Java
class for the Spring component you just connected.

You can find the package and class name for the Spring Bean Java class in the bean
element of the Spring XML file. An example is shown below.

<bean name="Consume_Message_ptt"
class="CAPSJCDProj_JMSInFileJMSOut.Collaboration_JMSIn">

6. Open the Java class file and add a global field of a type of the adapter interface
class that was generated when you connected the new adapter above. Create the
accessor methods for the field.

7. Validate and then save and close the Java file.

8. In the composite.xml, right-click the Spring component and select Edit.

The Spring XML file opens in the Oracle JDeveloper editor.

9. In the Spring XML file, locate the adapter reference that was generated when you
connected the adapter and Spring component. Add the global field you created
above to the bean element of the Spring class and refer to the adapter reference
from the property.

Example 4–3 Adding an Unmigrated Adapter

As an example of the above, a database adapter is added to a migrated project with the
following conditions:

■ The global field added to the Java class in step 6 above is identified by the
following statement:

private xe.projectname.db.adapter.pcbpel.com.oracle.xmlns.XE_ptt database;

■ Connecting the adapter to the Spring component generates the following reference
in the Spring XML file:

<reference type="xe.projectname.db.adapter.pcbpel.com.oracle.xmlns.XE_ptt"
 name="XE" xmlns="http://xmlns.oracle.com/weblogic/weblogic-sca" />

You would need to add the following property to the Spring XML file:

<property name="database" ref="XE" />

4.4 Configuring Converted Oracle SOA Suite Spring Components
The Spring Bean Java class generated by the migration tool from the original JCD code
requires some modification for outbound File or JMS Adapters and for projects where
a JCD calls a sub-collaboration. Perform the following steps to configure the Java class.

■ Section 4.4.1, "Modifying the Spring Bean Java Class"

Note: The global adapter field created above is automatically
instantiated at runtime. You can use it as if it is already instantiated.

Configuring Converted Oracle SOA Suite Spring Components

Post-Migration Tasks 4-9

■ Section 4.4.2, "Converting a Byte Array Input to String"

■ Section 4.4.3, "Configuring the Spring Bean Class for File or JMS Outbound
Adapters"

■ If you need to access the JMS header properties, follow the steps in Section 4.4.4,
"Accessing JMS Header Properties".

■ If the original Java CAPS project has a JCD that calls a sub-collaboration, follow
the steps in Section 4.4.5, "Configuring Sub-Collaborations Called from Java
Collaboration Definitions".

4.4.1 Modifying the Spring Bean Java Class
Regardless of whether your project includes any of the special cases included in this
section, it is important to review the migrated Java class that contains the original JCD
logic. This class contains comments and notes that give you more information about
changes you might need to make for your specific JCD implementation.

To modify the Spring Bean Java class
1. In Oracle JDeveloper, open the Spring component XML file.

2. Locate the bean element containing the name of the Bean class and note the
package and class names. The element looks similar to the following:

<bean name="Consume_Message_ptt"
class="CAPSJCDProj_JMSInFileJMSOut.Collaboration_JMSIn"

3. In the left navigation panel of Oracle JDeveloper, expand Application Sources,
and then expand the package specified by bean element.

4. Open the Java class file with the name specified by the bean element.

5. Review the code and look for comments generated by the migration tool. These
are preceded by the text ***Migration Tool*** so they are easy to locate in the file.

6. When you are done making changes, save and close the file.

4.4.2 Converting a Byte Array Input to String
By default, Oracle SOA Suite receives input messages as a Byte message for inbound
JMS and File Adapters. In the Oracle Java CAPS project, the input can be a String
message. In this case, you need to convert the byte array to a string in the generated
code.

To convert a byte input array to string
1. Locate and open the Spring Bean class as described in Section 4.4.1, "Modifying

the Spring Bean Java Class."

2. In the Spring Bean Java class file, check whether the input is text. For example:

public void receive(com.stc.connectors.jms.Message input,
 com.stc.connector.appconn.file.FileApplication FileClient_1,
 com.stc.connectors.jms.JMS JMS_1) throws Throwable {
 String in = input.getTextMessage();
 ...

3. If the original JCD receives a TextMessage as input for a File Adapter, convert the
byte[] to String, as shown below:

String in = new String(input.getBytesMessage());

Configuring Converted Oracle SOA Suite Spring Components

4-10 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

4. If the original JCD receives a TextMessage as input for a JMS Adapter, set the
TextMessage in the code for the consumeMessage method, as shown below:

public void consumeMessage(byte opaque[]) {
 com.stc.connectors.jms.Message input = new
 com.stc.connectors.jms.impl.MessageImpl();
 //input.setBytesMessage(opaque);
 input.setTextMessage(new String(input.getBytesMessage()));

5. Save and close the file.

4.4.3 Configuring the Spring Bean Class for File or JMS Outbound Adapters
For converted outbound File and JMS Adapters, locate any code in the generated
Spring Bean class that uses the Oracle Java CAPS File or JMS outbound references and
replace it with Oracle SOA Suite calls using the Spring Bean reference.

To configure the Spring Bean class for File or JMS outbound Adapters
1. Locate and open the Spring Bean class as described in Section 4.4.1, "Modifying

the Spring Bean Java Class."

2. Open the Spring XML file and locate the Bean properties. For example:

<bean name="Consume_Message_ptt"
class="CAPSJCDProj_JMSInFileJMSOut.Collaboration_JMSIn">
 <property name="JMSOUT_Collaboration_JMSIn_JMS_1"
 ref="JMSOUT_Collaboration_JMSIn_JMS_1"/>
 <property name="FILEOUT_Collaboration_JMSIn_FileClient_1"
 ref="FILEOUT_Collaboration_JMSIn_FileClient_1"/>
 <property name="collabContext" ref="collabCtxBean"/>

3. Make a note of the property names for the outbound adapters.

4. In the Spring Bean Java class file, locate any variables that represent the Java CAPS
outbound File and JMS Adapters that are used as parameters to a method. For
example:

public void receive(com.stc.connectors.jms.Message input,
 com.stc.connector.appconn.file.FileApplication FileClient_1,
 com.stc.connectors.jms.JMS JMS_1) throws Throwable {
 String in = new String(input.getBytesMessage());
 System.out.println("@@ Input message " + in);
 System.out.println("@@ Sending text message to File " + in);
 FileClient_1.setText(in);
 FileClient_1.write();
 System.out.println("@@ Sending text message to JMS " + in);
 JMS_1.sendText(in);
 }

5. Replace the Java CAPS adapter references with the Oracle SOA Suite adapter
Spring Bean properties from the Spring XML file. For example:

 String in = new String(input.getBytesMessage());
 System.out.println("@@ Input message " + in);

Note: The above code has been wrapped for readability.

Configuring Converted Oracle SOA Suite Spring Components

Post-Migration Tasks 4-11

 System.out.println("@@ Sending text message to File " + in);
 this.FILEOUT_Collaboration_JMSIn_FileClient_1.write(in.getBytes());
 System.out.println("@@ Sending text message to JMS " + in);
 this.JMSOUT_Collaboration_JMSIn_JMS_1.produceMessage(in.getBytes());

6. Save and close the file.

4.4.4 Accessing JMS Header Properties
Oracle Java CAPS supports the JMS message, which encapsulates the JMS header
along with the payload. In Oracle SOA Suite, the JMS header and the payload are not
associated in one object, but you can define code to access the header properties.

To access JMS header properties from a Spring Component
1. In Oracle JDeveloper, open the Spring context that you need to modify.

2. Add the following property to the Spring Context in the appropriate bean element:

<property name="headerHelper" ref="headerHelperBean"/>

3. In an editor, open the class file for the Spring Bean to which you added the
property, and do the following:

a. Add an import statement for the IHeaderHelperBean helper class:

import oracle.soa.platform.component.spring.beans.IHeaderHelperBean;

b. Declare a variable with the name headerHelper (the name used in the Spring
context file).

private IHeaderHelperBean headerHelper;

c. Define the getter and setter methods for the headerHelper variable in the Bean
class.

Use the get and set properties from the header helper Bean. For all the custom
properties use the prefix jca.jms.JMSProperty.<PROPERTY_NAME>:

headerHelper.setHeaderProperty("jca.jms.JMSDestinationName",
"queue_TMHException");

4.4.5 Configuring Sub-Collaborations Called from Java Collaboration Definitions
When an Oracle Java CAPS project contains a main Java Collaboration Definition
(JCD) that calls another JCD (known as a sub-collaboration), the model is not fully
migrated. The code for both JCDs is converted to the generated Oracle SOA Suite
project, so you can manually update the project to complete the migration.

Only the main JCD is converted into a Spring Bean class. The sub-collaboration
requires some manual conversions and wiring to the main JCD.

To migrate a sub-collaboration
1. Create a Java interface and add the method definition (that is, the main operation)

of the sub-collaboration.

2. Update the sub-collaboration to implement the new interface.

Note: This is only supported in Oracle SOA Suite 11.1.1.6.0 and later.

Configuring Business Processes

4-12 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

3. Modify the sub-collaboration’s Spring component XML file by adding the service
and Bean nodes. Refer to the interface for the service node type, and refer to the
sub-collaboration’s Bean class for the Bean node class.

4. Modify the Spring component XML file for the main JCD by adding a reference
node with the type as the Java interface you created earlier.

5. Add a Bean property and set the ref attribute to the reference node of the
sub-collaboration.

6. Create a class variable named the same as the Bean property name you added to
the main JCD’s Spring component XML file.

7. In the main JCD’s Bean class, define getter and setter methods for the Bean
property defined above.

In the Oracle SOA Suite project’s composite.xml file, the Spring components for
both the main JCD and the sub-collaboration have new endpoints exposed after
you make the above changes.

8. Wire the main JCD’s Spring component to the sub-collaboration’s Spring
component by linking the two endpoints.

9. Modify the main JCD’s Spring component XML file to replace the reference to the
JCD invoking the sub-collaboration with the Spring Bean reference for the
sub-collaboration.

10. Save the project.

4.5 Configuring Business Processes
Following are some updates you might need to make for migration Repository projects
with business processes:

■ Section 4.5.1, "Migrating User Activities in Business Processes"

■ Section 4.5.2, "Migrating Correlation Initialization in Marshal and Unmarshal
Activities"

4.5.1 Migrating User Activities in Business Processes
The migration tool cannot migrate business processes with user activities (Worklist
Manager). The original business process contains BPEL constructs specific to Oracle
Java CAPS, which need to be manually replaced with Oracle SOA Suite human
workflow services. For more information about using Oracle SOA Suite human
workflow services, see "Getting Started with Human Workflow" in Oracle Fusion
Middleware Developer's Guide for Oracle SOA Suite.

4.5.2 Migrating Correlation Initialization in Marshal and Unmarshal Activities
When correlation is initialized in the marshal and unmarshal (Invoke) activities in a
business process, the initialization is ignored in the migrated business process because
the marshal and unmarshal activities are replaced with embedded Java activities.

To address this, move the correlation initialization logic outside the marshal and
unmarshal activities before migrating a project with this condition. Replace the
correlation property alias definition in the WSDL document with an element attribute
instead of a messagetype attribute by doing the following:

■ Change the messageType attribute to its corresponding element attribute

Adding JAR Files to a Migrated Project

Post-Migration Tasks 4-13

■ Remove the part attribute in the propertyAlias definition

Below is an example of the code before and after the required changes.

<message name="ReserveVehicleIn">
<part name="itinerary" element="ota:TravelItinerary"/>
</message>

<bpws:propertyAlias
propertyName="tres:ItineraryRefId"
messageType="vres:ReserveVehicleIn"
part="itinerary">
<bpws:query>/ota:TravelItinerary/ota:ItineraryRef/ota:UniqueID</bpws:query>
</bpws:propertyAlias>

Change the propertyAlias definition as shown below:

<bpws:propertyAlias
propertyName="tres:ItineraryRefId"
element="ota:TravelItinerary">
<bpws:query>/ota:TravelItinerary/ota:ItineraryRef/ota:UniqueID</bpws:query>
</bpws:propertyAlias>

4.6 Adding JAR Files to a Migrated Project
Some Repository projects that include JCDs use additional JAR files that are specific to
Oracle Java CAPS. These files are also required in the migrated Oracle SOA Suite
project, and are added to the generated project in the /SCA-INF/lib directory (since
they are packaged in the source EAR file). Most of the JAR files are automatically
added to the JDeveloper project file by the Migration Tool. If there are additional JAR
files that need to be added to the project, you can load them into Oracle JDeveloper.

To add a JAR file to a migrated project
1. Open the migrated project in Oracle JDeveloper.

2. In the Application Navigator, right-click the project name, and select Project
Properties.

The Project Properties editor appears.

Adding JAR Files to a Migrated Project

4-14 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

Figure 4–2 Project Properties - Project Source Paths

3. In the left navigation pane, select Libraries and Classpath.

The Libraries and Classpath page appears.

Creating JMS Resources

Post-Migration Tasks 4-15

Figure 4–3 Project Properties - Libraries and Classpath

4. Click Add JAR/Directory.

5. Browse to and select the JAR file to add, and click Select.

The JAR file is added to the Classpath Entries list.

6. Repeat the previous two steps for any additional JAR files you need to add.

4.7 Creating JMS Resources
The steps required to create JMS resources vary depending on whether you are using
Oracle WebLogic JMS as the message provider or third-party message providers. You
can use existing JMS modules and servers, or add new ones if needed. If you are using
a JMS server other than WebLogic, you may need to create and configure a foreign
server, and add connection factories to the new server.

General instructions for adding a destination to a JMS module are provided below. For
specific information and instructions on creating JMS resources using the Oracle
WebLogic Server Administration Console, see Oracle Fusion Middleware Configuring and
Managing JMS for Oracle WebLogic Server.

To add destinations to the JMS Module
1. In a Web browser, launch the Oracle WebLogic Server Administration Console:

http://hostname:port_number/console

2. Under Services, select JMS Modules.

The JMS Modules page appears.

Creating JMS Resources

4-16 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

3. In the JMS Modules table, select the module to which you want to add the
destination.

The Settings page for the module you selected appears.

4. In the Summary of Resources table, click New.

The Create a New JMS System Module Resource page appears.

5. Select Queue or Topic, and then click Next.

6. In the Name field, enter a name for this topic or queue. This is a logical name that
is referenced by Oracle WebLogic Server.

7. In the JNDI Name field, enter the local JNDI name that you will use in your
application to look up this destination

8. Click Next.

9. To use a subdeployment for the destination, do the following:

a. Select an existing subdeployment from the Subdeployments field or click
Create a New Subdeployment to create a new one.

b. Select the target server for the subdeployment.

10. Click Finish.

The new destination is added to the Summary of Resources table.

11. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes.

12. Restart the server.

A

Examples of Java Collaboration Definition Conversions A-1

AExamples of Java Collaboration Definition
Conversions

This appendix provides code samples that illustrate how a stand-alone Java
Collaboration Definition (JCD) is converted to SOA Suite and how a JCD called from a
business process is converted.

This appendix includes the following topics:

■ Section A.1, "Sample Code for Migrating a Stand-Alone JCD"

■ Section A.2, "Sample Code for Migrating a JCD Called from a Business Process"

For more information about migrating JCDs, see Section 1.2.2.1, "Support for Java
Collaboration Definition Migration."

A.1 Sample Code for Migrating a Stand-Alone JCD
The following example illustrates how a JCD with a File inbound connection and both
File and JMS outbound connections is converted to a SOA Suite Spring Bean class.

Sample Source JCD Code for Stand-Alone JCD
package CAPSProject1;
public class Collaboration_1
{
 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;
 public com.stc.codegen.util.TypeConverter typeConverter;

 public void receive(com.stc.connector.appconn.file.FileTextMessage input,
 com.stc.connector.appconn.file.FileApplication FileClient_1,
 com.stc.connectors.jms.JMS JMS_1,employees.EmployeesOTD Employees_1)
 throws Throwable
 {
 logger.info("inside receive.");
 com.stc.connectors.jms.Message msg =
 JMS_1.createTextMessage(input.getText());
 employees.EMPLOYEES emp = Employees_1.getEMPLOYEES();
 logger.info(emp.getLAST_NAME());
 JMS_1.send(msg);
 FileClient_1.setText(input.getText());
 FileClient_1.write();
 }
}

Sample Code for Migrating a Stand-Alone JCD

A-2 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

Sample Output Generated for SOA Suite for a Stand-Alone JCD
package CAPSProject1;

public class Collaboration_1 implements
FILEIN_Collaboration_1_input.capsproject1.file.adapter.pcbpel.com.oracle.xmlns.Rea
d_ptt {

 private JMSOUT_Collaboration_1_JMS_
 1.capsproject1.jms.adapter.pcbpel.com.oracle.xmlns.Produce_Message_ptt
 JMSOUT_Collaboration_1_JMS_1;
 private FILEOUT_Collaboration_1_FileClient_
 1.capsproject1.file.adapter.pcbpel.com.oracle.xmlns.Write_ptt
 FILEOUT_Collaboration_1_FileClient_1;

 public void read(byte opaque[]) {
 com.stc.connector.appconn.file.FileTextMessage input = new
 com.stc.connector.appconn.file.FileTextMessageImpl();
 input.setByteArray(opaque);
 com.stc.connector.appconn.file.FileApplication FileClient_1 = new
 com.stc.connector.appconn.file.FileApplication();
 com.stc.connectors.jms.JMS JMS_1 = new com.stc.connectors.jms.JMS();
 employees.EmployeesOTD Employees_1 = new employees.EmployeesOTD();
 try {
 this.receive(input, FileClient_1, JMS_1, Employees_1);
 } catch (Throwable exp_0) {
 throw new java.lang.RuntimeException(exp_0);
 } finally {
 }

 //JMSOUT_Collaboration_1_JMS_1.produceMessage(opaque);
 //FILEOUT_Collaboration_1_FileClient_1.write(opaque);
 }

 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;
 public com.stc.codegen.util.TypeConverter typeConverter;
 public void receive(com.stc.connector.appconn.file.FileTextMessage input,
 com.stc.connector.appconn.file.FileApplication
 FileClient_1, com.stc.connectors.jms.JMS JMS_1, employees.EmployeesOTD
 Employees_1) throws Throwable {
 logger.info("inside receive.");
 com.stc.connectors.jms.Message msg = JMS_1.createTextMessage(input.getText());
 employees.EMPLOYEES emp = Employees_1.getEMPLOYEES();
 logger.info(emp.getLAST_NAME());
 JMS_1.send(msg);
 FileClient_1.setText(input.getText());
 FileClient_1.write();
 }

 public final void setJMSOUT_Collaboration_1_JMS_1(JMSOUT_Collaboration_1_JMS_
 1.capsproject1.jms.adapter.pcbpel.com.oracle.xmlns.Produce_Message_ptt
 JMSOUT_Collaboration_1_JMS_1) {
 this.JMSOUT_Collaboration_1_JMS_1 = JMSOUT_Collaboration_1_JMS_1;
 }

 public final JMSOUT_Collaboration_1_JMS_1.capsproject1.jms.adapter.pcbpel.com.
 oracle.xmlns.Produce_Message_ptt getJMSOUT_Collaboration_1_JMS_1() {
 return this.JMSOUT_Collaboration_1_JMS_1;
 }

Sample Code for Migrating a Stand-Alone JCD

Examples of Java Collaboration Definition Conversions A-3

 public final void setFILEOUT_Collaboration_1_FileClient_1(FILEOUT_Collaboration_
 1_FileClient_1.capsproject1.file.adapter.pcbpel.com.
 oracle.xmlns.Write_ptt FILEOUT_Collaboration_1_FileClient_1) {
 this.FILEOUT_Collaboration_1_FileClient_1 = FILEOUT_Collaboration_1_
 FileClient_1;
 }

 public final FILEOUT_Collaboration_1_FileClient_1.capsproject1.file.adapter.
 pcbpel.com.oracle.xmlns.Write_ptt getFILEOUT_Collaboration_1_FileClient_1() {
 return this.FILEOUT_Collaboration_1_FileClient_1;
 }

 public final void setLogger(com.stc.codegen.logger.Logger logger) {
 this.logger = logger;
 }

 public final com.stc.codegen.logger.Logger getLogger() {
 return this.logger;
 }

 public final void setAlerter(com.stc.codegen.alerter.Alerter alerter) {
 this.alerter = alerter;
 }

 public final com.stc.codegen.alerter.Alerter getAlerter() {
 return this.alerter;
 }

 public final void setCollabContext(com.stc.codegen.util.CollaborationContext
 collabContext) {
 this.collabContext = collabContext;
 }

 public final com.stc.codegen.util.CollaborationContext getCollabContext() {
 return this.collabContext;
 }

 public final void setTypeConverter(com.stc.codegen.util.TypeConverter
 typeConverter) {
 this.typeConverter = typeConverter;
 }

 public final com.stc.codegen.util.TypeConverter getTypeConverter() {
 return this.typeConverter;
 }
}

You can see in the above samples that the migrated JCD class now implements the
SOA Suite File Adapter interface, and the implemented interface method public void
read(byte opaque[]) replaces the following method from the original JCD:

public void receive(com.stc.connector.appconn.file.FileTextMessage input,
 com.stc.connector.appconn.file.FileApplication FileClient_1,
 com.stc.connectors.jms.JMS JMS_1, employees.EmployeesOTD Employees_1)

This is the triggering method when an input file is present in the input directory. The
configuration of the SOA Suite File Adapter is defined in a JCA file generated by the
migration tool. You can modify the configuration in Oracle JDeveloper.

Sample Code for Migrating a JCD Called from a Business Process

A-4 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

The interface method invokes the original JCD method. The following two class fields
represent the outbound SOA Suite File and JMS adapters:

private
JMSOUT_Collaboration_1_JMS_1.capsproject1.jms.adapter.pcbpel.com.oracle.xmlns.Prod
uce_Message_ptt JMSOUT_Collaboration_1_JMS_1;
private
FILEOUT_Collaboration_1_FileClient_1.capsproject1.file.adapter.pcbpel.com.oracle.x
mlns.Write_ptt FILEOUT_Collaboration_1_FileClient_1;

The above two class fields, as well as the following class fields in the original JCD, are
not instantiated, but getter and setter methods are generated for them. This allows
them to be instantiated using SOA Suite’s context injection.

public com.stc.codegen.logger.Logger logger;
public com.stc.codegen.alerter.Alerter alerter;
public com.stc.codegen.util.CollaborationContext collabContext;
public com.stc.codegen.util.TypeConverter typeConverter;

A.2 Sample Code for Migrating a JCD Called from a Business Process
The following example illustrates how a JCD that is invoked from a business process is
converted to a SOA Suite Spring Bean class.

Sample JCD Source Code for a JCD Invoked from a Business Process
package Jcd_Bpel_Project;

public class Collaboration_3
{
 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;
 public com.stc.codegen.util.TypeConverter typeConverter;
 public void op1_vikas(dtd.otdInputDTD_2111422138.DBemployee input,
 dtd.otdOutputDTD_1854792262.DBemployee output)
 throws Throwable
 {
 output.setEmpNo(input.getEmpNo());
 output.setLastname(input.getLastname());
 output.setFirstname(input.getFirstname());
 output.setRate(input.getRate());
 output.setLastDate(input.getLastDate());
 Thread.sleep(120000);
 }
}

Sample Output Code Generated for a JCD Invoked from a Business Process
package Jcd_Bpel_Project;

import oracle.migrationtool.migration.caps.runtime.OTDUtil;

public class Collaboration_3 implements
urn_stc_egate_jce_collaboration_1wsdl.ExecutePortType {
 private stc.egate.otd.dtd.otdoutputdtd_1854792262.DBemployee output;

 public stc.egate.otd.dtd.otdoutputdtd_1854792262.DBemployee
 op1Vikas(stc.egate.otd.dtd.otdinputdtd_2111422138.DBemployee DBemployee)

Sample Code for Migrating a JCD Called from a Business Process

Examples of Java Collaboration Definition Conversions A-5

 throws urn_stc_egate_jce_collaboration_1wsdl.JavaExceptionMessage {
 this.output = new stc.egate.otd.dtd.otdoutputdtd_1854792262.DBemployee();
 try {
 this.op1_vikas(DBemployee, this.output);
 } catch (Throwable exp_0) {
 throw new urn_stc_egate_jce_collaboration_1wsdl.JavaExceptionMessage
 (exp_0.getMessage(), null, exp_0);
 } finally {
 }
 return this.output;
 }

 public com.stc.codegen.logger.Logger logger;
 public com.stc.codegen.alerter.Alerter alerter;
 public com.stc.codegen.util.CollaborationContext collabContext;
 public com.stc.codegen.util.TypeConverter typeConverter;

 public void op1_vikas(stc.egate.otd.dtd.otdinputdtd_2111422138.DBemployee input,
 stc.egate.otd.dtd.otdoutputdtd_1854792262.DBemployee output) throws Throwable {
 output.setEmpNo(input.getEmpNo());
 output.setLastname(input.getLastname());
 output.setFirstname(input.getFirstname());
 output.setRate(input.getRate());
 output.setLastDate(input.getLastDate());
 Thread.sleep(120000);
 }

 public final void setOutput(stc.egate.otd.dtd.otdoutputdtd_1854792262.DBemployee
 output) {
 this.output = output;
 }

 public final stc.egate.otd.dtd.otdoutputdtd_1854792262.DBemployee getOutput() {
 return this.output;
 }

 public final void setLogger(com.stc.codegen.logger.Logger logger) {
 this.logger = logger;
 }

 public final com.stc.codegen.logger.Logger getLogger() {
 return this.logger;
 }

 public final void setAlerter(com.stc.codegen.alerter.Alerter alerter) {
 this.alerter = alerter;
 }

 public final com.stc.codegen.alerter.Alerter getAlerter() {
 return this.alerter;
 }

 public final void setCollabContext(com.stc.codegen.util.CollaborationContext
 collabContext) {
 this.collabContext = collabContext;
 }

 public final com.stc.codegen.util.CollaborationContext getCollabContext() {
 return this.collabContext;
 }

Sample Code for Migrating a JCD Called from a Business Process

A-6 Oracle Fusion Middleware User's Guide for the Oracle Java CAPS Migration Tool

 public final void setTypeConverter(com.stc.codegen.util.TypeConverter
 typeConverter) {
 this.typeConverter = typeConverter;
 }

 public final com.stc.codegen.util.TypeConverter getTypeConverter() {
 return this.typeConverter;
 }
}

The converted class implements a JAXB proxy interface and the original OTD classes
of the JCD are replaced by JAXB objects.Getters and setters are generated for the
Spring context injection.

Most comments in the original JCD are preserved in the migrated SOA Spring Bean
class. Comments without a following Java statement are not preserved during the
migration. To ensure comments are preserved, add a semicolon (;) after comments
without a following Java statement in the original JCD so that the comment can be
preserved.

Glossary-1

Glossary

Adapter (also eWay Adapter)

A link between a Java Collaboration Definition or business process and an external
connection, including the message server connection (topic or queue) or external
application. Adapters are specific to Repository projects, and provide a similar
functionality as Oracle Java CAPS JBI Binding Components and Oracle SOA Suite
Adapters.

Document Object Model (DOM)

A language-independent standard for accessing and manipulating objects in XML
documents from the programming language being used.

Document Type Definition (DTD)

A set of declarations that define the structure for an XML document (a precursor to
XML schema).

Enterprise Archive (EAR)

A file format for packaging Java CAPS Repository modules into a single archive that
can be deployed to an application server.

First Class (FCX) OTD

An XMLBean based Object Type Definition (OTD).

Java Business Integration (JBI)

A specification for implementing a service-oriented architecture (SOA), which includes
web services, a container for service producers and consumers, binding components to
define connectivity, service engines, and a normalized message router.

Java Collaboration Definition (JCD)

Business rules and logic written in Java format in a Java CAPS Repository project.
Typically, the encoding consists of operations on an Object Type Definition.

JAXB

A Java API for mapping Java classes to XML representations. Java Architecture for
XML Binding (JAXB) is part of the Java EE platform.

JAX-WS

A Java API for creating web services. Java API for XML Web Services (JAX-WS) is part
of the Java EE platform.

JBI Projects

Glossary-2

JBI Projects

Oracle Java CAPS projects based on JBI technologies. These projects use service
engines and binding components to define business logic and connectivity. The source
code is stored in a file system.

Marshal

An OTD operation that serializes an XML structure or object to String, Bytes, or Stream
format.

Messageable OTD

An OTD with marshal and unmarshal methods (serializable objects). These OTDs are
not associated with any adapters, but are used to define the data structure for a
specific message format.

Object Type Definition (OTD)

The data structure and rules that define an object. OTDs define the API used to map
data and external systems into canonical objects that can be used in mappings
throughout Oracle Java CAPS.

Repository Projects

Oracle Java CAPS projects based on Oracle Java CAPS 5.1.3 technology. These projects
use Object Type Definitions, Java Collaboration Definitions, BPEL 1.0 business
processes, and eWay Adapters to define business logic and connectivity. The source
code is stored in an encoded repository.

User-Defined OTD (UD OTD)

A custom OTD that you create and configure manually or from a flat file. You can add
or delete nodes in a user-defined OTD, and edit their properties.

Unmarshal

An OTD operation that deserializes a message in String, Stream, or Bytes format to an
OTD object.

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to the Oracle Java CAPS Migration Tool
	1.1 Oracle Java CAPS Common Abbreviations
	1.2 Overview of the Migration Process
	1.2.1 How Projects are Migrated
	1.2.1.1 Repository Project Migration
	1.2.1.2 JBI Project Migration
	1.2.1.3 Oracle Java CAPS Repository Mapping to Oracle SOA Suite
	1.2.1.4 Migration Tool Process Flow

	1.2.2 Support for Repository Project Migration
	1.2.2.1 Support for Java Collaboration Definition Migration
	1.2.2.2 Support for Adapters and OTDs
	1.2.2.2.1 Migrating Projects with JMS Adapter receiveWait Operations
	1.2.2.2.2 Migrating Projects with HL7 OTDs
	1.2.2.2.3 Marshal and Unmarshal Migration
	1.2.2.2.4 About the Marshal and Unmarshal Processes
	1.2.2.2.5 Marshal and Unmarshal Examples for BPEL
	1.2.2.2.6 Marshal and Unmarshal Operations in JCDs

	1.2.2.3 Support for Oracle Java CAPS Framework Classes

	1.2.3 OTD to XSD and XSD to JAXB Conversion
	1.2.4 JAXB Generation During Migration
	1.2.5 Support for JBI Project Migration
	1.2.5.1 WS-I Version 1 Compliance
	1.2.5.2 Same Target Namespace for Different Message Definitions
	1.2.5.3 System Properties
	1.2.5.4 BPEL 2.0 Constructs

	1.3 About the Migrated Oracle SOA Suite Projects
	1.3.1 About the Conversion to Spring

	1.4 Migration Considerations
	1.4.1 Deciding Whether to Migrate
	1.4.2 Deciding How to Migrate

	1.5 Limitations of the Migration Tool

	2 Installing the Oracle Java CAPS Migration Tool
	2.1 About the Installation
	2.1.1 Prerequisites

	2.2 Installing the Migration Tool

	3 Migrating the Projects
	3.1 Overview of the Migration Tool Process
	3.2 Migrating Oracle Java CAPS Projects
	3.2.1 Before you Begin
	3.2.1.1 Verify JBI Projects for Compliance
	3.2.1.2 Modify Business Processes
	3.2.1.3 Modify Projects with File Write Operations
	3.2.1.4 Rebuild and Redeploy the Projects to Migrate

	3.2.2 Setting the Migration Logging Properties
	3.2.3 Migrating a Project Using the Wizard
	3.2.4 Migrating a Project Using the Command Line
	3.2.4.1 Migration Tool Usage

	3.3 Converting OTD to XSD Format
	3.4 Converting XSD to JAXB Format

	4 Post-Migration Tasks
	4.1 Opening a Migrated Project in Oracle JDeveloper
	4.2 Configuring Migrated JBI Projects
	4.2.1 Configuring Migrated Binding Components
	4.2.1.1 Changes for JMS Adapters

	4.2.2 Adding Service Elements
	4.2.3 Configuring Quality of Service Properties
	4.2.4 Verifying the BPEL Structure

	4.3 Configuring Migrated Adapters and OTDs
	4.3.1 Enabling File or JMS Message Types as Opaque
	4.3.2 Configuring a Project with the Same XSD and FCX OTDs for Inbound and Outbound
	4.3.3 Configuring FCX OTDs
	4.3.4 Adding Adapters not Converted by the Migration Tool

	4.4 Configuring Converted Oracle SOA Suite Spring Components
	4.4.1 Modifying the Spring Bean Java Class
	4.4.2 Converting a Byte Array Input to String
	4.4.3 Configuring the Spring Bean Class for File or JMS Outbound Adapters
	4.4.4 Accessing JMS Header Properties
	4.4.5 Configuring Sub-Collaborations Called from Java Collaboration Definitions

	4.5 Configuring Business Processes
	4.5.1 Migrating User Activities in Business Processes
	4.5.2 Migrating Correlation Initialization in Marshal and Unmarshal Activities

	4.6 Adding JAR Files to a Migrated Project
	4.7 Creating JMS Resources

	A Examples of Java Collaboration Definition Conversions
	A.1 Sample Code for Migrating a Stand-Alone JCD
	A.2 Sample Code for Migrating a JCD Called from a Business Process

	Glossary

