

Oracle® Fusion Middleware
User's Guide for Oracle MapViewer

11g Release 1 (11.1.1)

E10145-06

November 2011

Describes how to use Oracle MapViewer, a tool that renders
maps showing different kinds of spatial data.

Oracle Fusion Middleware User's Guide for Oracle MapViewer, 11g Release 1 (11.1.1)

E10145-06

Copyright © 2001, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Chuck Murray

Contributors: Joao Paiva, L.J. Qian, Ji Yang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

List of ExamplesList of FiguresList of Tables

Preface .. xvii

Audience.. xvii
Documentation Accessibility .. xvii
Related Documentation... xvii
Conventions ... xviii

New and Changed Features.. xix

MapViewer Core ... xix
Oracle Maps .. xxii

1 Introduction to MapViewer

1.1 Overview of MapViewer ... 1-1
1.1.1 Basic Flow of Action with MapViewer... 1-2
1.1.2 MapViewer Architecture .. 1-3
1.2 Getting Started with MapViewer ... 1-4
1.3 Prerequisite Software for MapViewer ... 1-4
1.4 Installing and Deploying MapViewer ... 1-4
1.4.1 Deploying MapViewer in a WebLogic Server Environment .. 1-5
1.4.1.1 Unpacking the MapViewer EAR Archive... 1-6
1.4.1.2 Configuring WebLogic Server .. 1-7
1.4.1.3 Deploying and Starting MapViewer in WebLogic Server...................................... 1-7
1.4.1.4 Using the MapViewer Administration Page ... 1-11
1.4.2 Deploying MapViewer in an Oracle Fusion Middleware 10gR3 Environment 1-12
1.4.3 Installing MapViewer with a Standalone Installation of OC4J.................................. 1-15
1.4.4 After Deploying MapViewer .. 1-15
1.4.4.1 Verifying That the Deployment Was Successful... 1-15
1.4.4.2 Running SQL Scripts ... 1-16
1.4.4.3 Creating MapViewer Array Types, if Necessary.. 1-16
1.5 Administering MapViewer... 1-17
1.5.1 Logging in to the MapViewer Administration Page ... 1-17
1.5.2 Configuring MapViewer ... 1-18
1.5.2.1 Specifying Logging Information ... 1-25
1.5.2.2 Specifying Map File Storage and Life Cycle Information.................................... 1-27
1.5.2.3 Restricting Administrative (Non-Map) Requests ... 1-28

iv

1.5.2.4 Specifying a Web Proxy.. 1-29
1.5.2.5 Specifying Global Map Configuration Options .. 1-29
1.5.2.6 Customizing the Spatial Data Cache .. 1-31
1.5.2.7 Specifying the Security Configuration ... 1-31
1.5.2.8 Registering a Custom Image Renderer.. 1-32
1.5.2.9 Registering a Custom Spatial Provider ... 1-32
1.5.2.10 Registering Custom Nonspatial Data Providers... 1-32
1.5.2.11 Customizing SRS Mapping .. 1-33
1.5.2.12 Customizing WMS GetCapabilities Responses... 1-33
1.5.2.13 Configuring the Map Tile Server for Oracle Maps ... 1-34
1.5.2.14 Defining Permanent Map Data Sources ... 1-34
1.5.3 Performing MapViewer Administrative Tasks .. 1-37
1.6 Oracle Real Application Clusters and MapViewer... 1-38
1.6.1 Creating a Container Oracle RAC Data Source.. 1-38
1.6.2 Adding the userThreads Option to the OC4J Container .. 1-40
1.6.2.1 Adding userThreads for a Standalone OC4J Instance ... 1-40
1.6.2.2 Adding userThreads for a Full Oracle Fusion Middleware 10gR3 Installation 1-40
1.6.3 Creating a MapViewer Data Source... 1-40
1.7 High Availability and MapViewer.. 1-41
1.7.1 Deploying MapViewer on a Multiprocess OC4J Instance .. 1-41
1.7.2 Deploying MapViewer on a Middle-Tier Cluster.. 1-41
1.8 Secure Map Rendering .. 1-42
1.8.1 How Secure Map Rendering Works .. 1-43
1.8.2 Getting the User Name from a Cookie .. 1-45
1.8.3 Authenticating Users: Options and Demo.. 1-45
1.9 MapViewer Demos and Tutorials ... 1-46

2 MapViewer Concepts

2.1 Overview of MapViewer ... 2-1
2.2 Styles ... 2-2
2.2.1 Scaling the Size of a Style (Scalable Styles) .. 2-3
2.2.2 Specifying a Label Style for a Bucket .. 2-4
2.2.3 Orienting Text Labels and Markers .. 2-6
2.2.3.1 Controlling Text Style Orientation... 2-6
2.2.3.2 Controlling Marker Orientation ... 2-7
2.2.4 Making a Text Style Sticky ... 2-8
2.2.5 Getting a Sample Image of Any Style ... 2-8
2.3 Themes... 2-10
2.3.1 Predefined Themes ... 2-10
2.3.1.1 Styling Rules in Predefined Spatial Geometry Themes 2-11
2.3.1.2 How MapViewer Formulates a SQL Query for a Styling Rule 2-12
2.3.1.3 Styling Rules with Binding Parameters.. 2-14
2.3.1.4 Applying Multiple Rendering Styles in a Single Styling Rule............................ 2-14
2.3.1.5 Caching of Predefined Themes.. 2-15
2.3.1.6 Feature Labels and Internationalization .. 2-16
2.3.2 JDBC Themes... 2-19
2.3.2.1 Defining a Point JDBC Theme Based on Two Columns 2-20

v

2.3.2.2 Storing Complex JDBC Themes in the Database .. 2-22
2.3.3 Image Themes ... 2-22
2.3.3.1 Creating Predefined Image Themes ... 2-24
2.3.4 GeoRaster Themes .. 2-25
2.3.4.1 Creating Predefined GeoRaster Themes .. 2-27
2.3.4.2 Using Bitmap Masks with GeoRaster Themes .. 2-32
2.3.4.3 Reprojection of GeoRaster Themes ... 2-33
2.3.5 Network Themes... 2-33
2.3.5.1 Creating Predefined Network Themes... 2-35
2.3.5.2 Using MapViewer for Network Analysis .. 2-36
2.3.6 Topology Themes ... 2-37
2.3.6.1 Creating Predefined Topology Themes ... 2-39
2.3.7 WFS Themes .. 2-40
2.3.7.1 Creating Predefined WFS Themes .. 2-42
2.3.8 Custom Geometry Themes.. 2-43
2.3.9 Annotation Text Themes ... 2-47
2.3.10 Thematic Mapping ... 2-51
2.3.10.1 Thematic Mapping Using External Attribute Data .. 2-57
2.3.11 Attributes Affecting Theme Appearance .. 2-60
2.4 Maps... 2-61
2.4.1 Map Size and Scale ... 2-62
2.4.2 Map Legend... 2-64
2.5 Data Sources ... 2-67
2.6 How a Map Is Generated.. 2-68
2.7 Cross-Schema Map Requests ... 2-69
2.8 Workspace Manager Support in MapViewer .. 2-71
2.9 MapViewer Metadata Views.. 2-74
2.9.1 xxx_SDO_MAPS Views ... 2-75
2.9.2 xxx_SDO_THEMES Views .. 2-75
2.9.3 xxx_SDO_STYLES Views... 2-75

3 MapViewer Map Request XML API

3.1 Map Request Examples .. 3-2
3.1.1 Simple Map Request.. 3-2
3.1.2 Map Request with Dynamically Defined Theme.. 3-3
3.1.3 Map Request with Base Map, Center, and Additional Predefined Theme................. 3-3
3.1.4 Map Request with Center, Base Map, Dynamically Defined Theme, and Other

Features 3-4
3.1.5 Map Request for Point Features with Attribute Value and Dynamically Defined

Variable Marker Style 3-5
3.1.6 Map Request with an Image Theme ... 3-6
3.1.7 Map Request for Image of Map Legend Only ... 3-7
3.1.8 Map Request with SRID Different from Data SRID ... 3-8
3.1.9 Map Request Using a Pie Chart Theme.. 3-9
3.1.10 Map Request Using Ratio Scale and Mixed Theme Scale Modes.............................. 3-11
3.1.11 Map Request Using Predefined Theme (Binding Parameter and Custom Type) ... 3-12
3.1.12 Map Request Using Advanced Styles and Rendering Rules...................................... 3-12

vi

3.1.13 Map Request Using Stacked Styles .. 3-14
3.1.14 WFS Map Requests ... 3-15
3.1.15 Java Program Using MapViewer.. 3-18
3.1.16 PL/SQL Program Using MapViewer .. 3-20
3.2 Map Request DTD ... 3-21
3.2.1 map_request Element... 3-26
3.2.1.1 map_request Attributes .. 3-27
3.2.2 bounding_themes Element.. 3-31
3.2.3 box Element ... 3-34
3.2.4 center Element... 3-35
3.2.5 geoFeature Element .. 3-35
3.2.6 jdbc_georaster_query Element.. 3-38
3.2.7 jdbc_image_query Element ... 3-38
3.2.8 jdbc_network_query Element ... 3-40
3.2.9 jdbc_query Element .. 3-40
3.2.10 jdbc_topology_query Element .. 3-42
3.2.11 legend Element.. 3-42
3.2.12 map_tile_theme Element ... 3-46
3.2.13 north_arrow Element ... 3-46
3.2.14 operation Element... 3-47
3.2.15 operations Element... 3-48
3.2.16 parameter Element ... 3-48
3.2.17 scale_bar Element ... 3-48
3.2.18 style Element ... 3-49
3.2.19 styles Element.. 3-50
3.2.20 theme Element... 3-51
3.2.21 themes Element ... 3-54
3.2.22 theme_modifiers Element.. 3-54
3.3 Information Request DTD .. 3-55
3.4 Map Response DTD... 3-56
3.5 MapViewer Exception DTD .. 3-57
3.6 Geometry DTD (OGC) .. 3-57

4 MapViewer JavaBean-Based API

4.1 Usage Model for the MapViewer JavaBean-Based API .. 4-1
4.2 Preparing to Use the MapViewer JavaBean-Based API .. 4-3
4.3 Using the MapViewer Bean... 4-3
4.3.1 Creating the MapViewer Bean... 4-4
4.3.2 Setting Up Parameters of the Current Map Request .. 4-4
4.3.3 Adding Themes or Features to the Current Map Request... 4-6
4.3.4 Adding Dynamically Defined Styles to a Map Request .. 4-8
4.3.5 Manipulating Themes in the Current Map Request.. 4-10
4.3.6 Sending a Request to the MapViewer Service.. 4-12
4.3.7 Extracting Information from the Current Map Response... 4-13
4.3.8 Obtaining Information About Data Sources... 4-13
4.3.9 Querying Nonspatial Attributes in the Current Map Window 4-14
4.3.10 Using Optimal Methods for Thick Clients .. 4-15

vii

5 MapViewer JSP Tag Library

5.1 Using MapViewer JSP Tags... 5-2
5.2 MapViewer JSP Tag Reference Information ... 5-3
5.2.1 addJDBCTheme.. 5-3
5.2.2 addPredefinedTheme.. 5-5
5.2.3 getMapURL .. 5-5
5.2.4 getParam ... 5-6
5.2.5 identify .. 5-6
5.2.6 importBaseMap.. 5-8
5.2.7 init .. 5-8
5.2.8 makeLegend ... 5-8
5.2.9 run.. 5-9
5.2.10 setParam... 5-10
5.3 JSP Example (Several Tags) for MapViewer .. 5-11

6 MapViewer PL/SQL API

6.1 Installing the SDO_MVCLIENT Package.. 6-1
6.2 Using the SDO_MVCLIENT Package .. 6-2
6.2.1 Granting Network Access .. 6-2
6.2.2 Creating a MapViewer Client Handle .. 6-3
6.2.3 Preparing a Map Request ... 6-3
6.2.4 Sending the Request to the MapViewer Service ... 6-4
6.2.5 Extracting Information from the Map Request ... 6-4

7 MapViewer XML Requests: Administrative and Other

7.1 Managing Data Sources ... 7-1
7.1.1 Adding a Data Source (Administrative)... 7-2
7.1.2 Removing a Data Source (Administrative) .. 7-4
7.1.3 Redefining a Data Source ... 7-4
7.1.4 Listing All Data Sources (Administrative or General-Purpose) 7-5
7.1.5 Checking the Existence of a Data Source (General-Purpose).. 7-6
7.2 Listing All Maps (General-Purpose) .. 7-7
7.3 Listing Themes (General-Purpose)... 7-8
7.4 Listing Styles (General-Purpose) .. 7-9
7.5 Listing Styles Used by a Predefined Theme (General-Purpose) 7-10
7.6 Managing In-Memory Caches.. 7-11
7.6.1 Clearing Metadata Cache for a Data Source (Administrative) 7-11
7.6.2 Clearing Spatial Data Cache for a Theme (Administrative)....................................... 7-12
7.7 Editing the MapViewer Configuration File (Administrative)... 7-13
7.8 Restarting the MapViewer Server (Administrative)... 7-13

8 Oracle Maps

8.1 Overview of Oracle Maps.. 8-1
8.1.1 Architecture for Oracle Maps Applications... 8-2
8.1.2 Simple Example Using Oracle Maps .. 8-3

viii

8.1.3 How Map Content Is Organized ... 8-6
8.1.3.1 Map Tile Layers .. 8-6
8.1.3.2 Theme-Based FOI Layers... 8-7
8.1.3.3 User-Defined FOI Layers... 8-7
8.1.3.4 Information Window Layer .. 8-8
8.1.3.5 Fixed Figures Layer.. 8-8
8.2 Map Tile Server ... 8-8
8.2.1 Map Tile Server Concepts... 8-9
8.2.1.1 Map Tile Layers and Map Tile Sources ... 8-9
8.2.1.2 Storage of Map Image Tiles... 8-9
8.2.1.3 Coordinate System for Map Tiles... 8-9
8.2.1.4 Tile Mesh Codes... 8-10
8.2.1.5 Tiling Rules... 8-11
8.2.2 Map Tile Server Configuration ... 8-11
8.2.2.1 Global Map Tile Server Configuration ... 8-12
8.2.2.2 Map Tile Layer Configuration ... 8-12
8.2.3 External Map Source Adapter... 8-17
8.3 Feature of Interest (FOI) Server ... 8-21
8.3.1 Theme-Based FOI Layers... 8-22
8.3.1.1 Predefined Theme-Based FOI Layers ... 8-22
8.3.1.2 Templated Predefined Themes.. 8-23
8.3.1.3 Dynamic JDBC Query Theme-Based FOI Layers ... 8-24
8.3.2 User-Defined FOI Requests... 8-24
8.4 Oracle Maps JavaScript API ... 8-24
8.5 Developing Oracle Maps Applications... 8-25
8.5.1 Creating One or More Map Tile Layers... 8-26
8.5.2 Defining FOI Metadata .. 8-26
8.5.3 Creating the Client Application.. 8-26
8.6 Using Google Maps and Bing Maps.. 8-28
8.6.1 Defining Google Maps and Bing Maps Tile Layers on the Client Side 8-28
8.6.2 Defining the Built-In Map Tile Layers on the Server Side.. 8-28
8.7 Transforming Data to a Spherical Mercator Coordinate System...................................... 8-29
8.7.1 Creating a Transformation Rule to Skip Datum Conversion..................................... 8-30
8.8 Dynamically Displaying an External Tile Layer ... 8-31

9 Oracle Map Builder Tool

9.1 Running Oracle Map Builder .. 9-1
9.2 Oracle Map Builder User Interface... 9-2

A XML Format for Styles, Themes, Base Maps, and Map Tile Layers

A.1 Color Styles ... A-2
A.2 Marker Styles .. A-2
A.2.1 Vector Marker Styles .. A-3
A.2.2 Image Marker Styles... A-4
A.2.3 TrueType Font-Based Marker Styles.. A-4
A.2.4 Using Marker Styles on Lines ... A-5
A.3 Line Styles ... A-6

ix

A.4 Area Styles .. A-7
A.5 Text Styles ... A-7
A.6 Advanced Styles... A-8
A.6.1 Bucket Styles.. A-9
A.6.1.1 Collection-Based Buckets with Discrete Values.. A-9
A.6.1.2 Individual Range-Based Buckets... A-10
A.6.1.3 Equal-Ranged Buckets .. A-10
A.6.2 Color Scheme Styles ... A-11
A.6.3 Variable Marker Styles... A-12
A.6.4 Dot Density Marker Styles .. A-12
A.6.5 Bar Chart Marker Styles... A-13
A.6.6 Collection Styles.. A-13
A.6.7 Variable Pie Chart Styles ... A-14
A.6.8 Heat Map Styles .. A-15
A.7 Themes: Styling Rules ... A-16
A.8 Base Maps.. A-21
A.9 Map Tile Layers.. A-22

B JavaScript Functions for SVG Maps

B.1 Navigation Control Functions.. B-1
B.2 Display Control Functions.. B-2
B.3 Mouse-Click Event Control Functions.. B-2
B.3.1 Predefined Mouse-Click Control Functions ... B-2
B.3.2 User-Defined Mouse Event Control Functions .. B-3
B.3.2.1 Map-Level Functions .. B-3
B.3.2.2 Theme-Level Functions .. B-4
B.3.2.3 Selection Event Control Functions .. B-5
B.4 Other Control Functions ... B-5

C Creating and Registering a Custom Image Renderer

D Creating and Registering a Custom Spatial Data Provider

D.1 Implementing the Spatial Provider Class... D-2
D.2 Registering the Spatial Provider with MapViewer... D-5
D.3 Rendering the External Spatial Data ... D-5

E OGC WMS Support in MapViewer

E.1 Setting Up the WMS Interface for MapViewer.. E-1
E.1.1 Required Files.. E-1
E.1.2 Data Source Named wms .. E-2
E.1.3 SDO to EPSG SRID Mapping File .. E-2
E.2 WMS Specification and Corresponding MapViewer Concepts.. E-2
E.2.1 Supported GetMap Request Parameters ... E-3
E.2.1.1 BASEMAP Parameter (MapViewer-Only)... E-3
E.2.1.2 BBOX Parameter .. E-4
E.2.1.3 BGCOLOR Parameter ... E-4

x

E.2.1.4 DATASOURCE Parameter (MapViewer-Only) .. E-4
E.2.1.5 DYNAMIC_STYLES Parameter (MapViewer-Only).. E-4
E.2.1.6 EXCEPTIONS Parameter.. E-4
E.2.1.7 FORMAT Parameter ... E-4
E.2.1.8 HEIGHT Parameter... E-4
E.2.1.9 LAYERS Parameter ... E-4
E.2.1.10 LEGEND_REQUEST Parameter (MapViewer-Only)... E-5
E.2.1.11 MVTHEMES Parameter (MapViewer-Only)... E-5
E.2.1.12 REQUEST Parameter .. E-5
E.2.1.13 SERVICE Parameter .. E-5
E.2.1.14 SRS (1.1.1) or CRS (1.3.0) Parameter ... E-5
E.2.1.15 STYLES Parameter... E-5
E.2.1.16 TRANSPARENT Parameter... E-5
E.2.1.17 VERSION Parameter... E-6
E.2.1.18 WIDTH Parameter... E-6
E.2.2 Supported GetCapabilities Request and Response Features E-6
E.2.3 Supported GetFeatureInfo Request and Response Features .. E-8
E.2.3.1 GetMap Parameter Subset for GetFeatureInfo Requests E-9
E.2.3.2 EXCEPTIONS Parameter.. E-9
E.2.3.3 FEATURE_COUNT Parameter ... E-9
E.2.3.4 INFO_FORMAT Parameter ... E-10
E.2.3.5 QUERY_LAYERS Parameter ... E-10
E.2.3.6 QUERY_TYPE Parameter (MapViewer-Only) .. E-10
E.2.3.7 RADIUS Parameter (MapViewer-Only)... E-10
E.2.3.8 UNIT Parameter (MapViewer-Only).. E-10
E.2.3.9 X and Y or I and J Parameters.. E-10
E.2.3.10 Specifying Attributes to Be Queried for a GetFeatureInfo Request E-10
E.3 Adding a WMS Map Theme... E-11
E.3.1 XML API for Adding a WMS Map Theme ... E-11
E.3.2 Predefined WMS Map Theme Definition.. E-14
E.3.3 Authentication with WMS Map Themes... E-14
E.3.4 JavaBean-Based API for Adding a WMS Map Theme .. E-15

Index

xi

List of Examples

1–1 Sample MapViewer Configuration File.. 1-19
1–2 Restricting Administrative Requests... 1-28
1–3 PL/SQL Package for Secure Map Rendering .. 1-43
1–4 View for Secure Map Rendering.. 1-44
1–5 Data Source Definition for Secure Map Rendering... 1-44
1–6 Data Source Definition Specifying Cookie Name ... 1-45
2–1 Scalable Marker Style ... 2-4
2–2 Scalable Line Style... 2-4
2–3 Advanced Style with Text Label Style for Each Bucket .. 2-4
2–4 Labeling an Oriented Point ... 2-7
2–5 Text Style with Sticky Attribute.. 2-8
2–6 XML Definition of Styling Rules for an Airport Theme... 2-11
2–7 Styling Rules Using the <rendering> Element .. 2-15
2–8 JDBC Theme in a Map Request.. 2-20
2–9 JDBC Theme Based on Columns ... 2-21
2–10 JDBC Theme Based on Columns, with Query Window... 2-21
2–11 Complex Query in a Predefined Theme ... 2-22
2–12 Creating a Predefined Image Theme .. 2-24
2–13 GeoRaster Theme Containing a SQL Statement.. 2-27
2–14 GeoRaster Theme Specifying a Raster ID and Raster Data Table..................................... 2-27
2–15 Creating a Predefined GeoRaster Theme ... 2-27
2–16 Preparing GeoRaster Data for Use with a GeoRaster Theme.. 2-28
2–17 Bitmap Mask in Predefined GeoRaster Theme.. 2-32
2–18 Reprojection Mode in Predefined GeoRaster Theme ... 2-33
2–19 Network Theme ... 2-35
2–20 Creating a Predefined Network Theme.. 2-35
2–21 Network Theme for Shortest-Path Analysis .. 2-36
2–22 Network Theme for Within-Cost Analysis .. 2-37
2–23 Topology Theme .. 2-38
2–24 Topology Theme Using Debug Mode... 2-39
2–25 Creating a Predefined Topology Theme .. 2-39
2–26 WFS Request with a Dynamic WFS Theme ... 2-42
2–27 Creating a Predefined WFS Theme ... 2-42
2–28 Map Request with Predefined WFS Theme ... 2-43
2–29 Defining a Dynamic Custom Geometry Theme.. 2-46
2–30 Storing a Predefined Custom Geometry Theme ... 2-46
2–31 Styling Rules for a Predefined Annotation Text Theme .. 2-48
2–32 Dynamic Annotation Text Theme Definition ... 2-49
2–33 Dynamic Annotation Text Theme with Default Annotation Column 2-49
2–34 Script to Generate Annotation Text Data ... 2-49
2–35 XML Definition of Styling Rules for an Earthquakes Theme.. 2-52
2–36 Advanced Style Definition for an Earthquakes Theme.. 2-53
2–37 Mapping Population Density Using a Graduated Color Scheme..................................... 2-54
2–38 Mapping Average Household Income Using a Graduated Color Scheme 2-54
2–39 Mapping Average Household Income Using a Color for Each Income Range 2-55
2–40 Advanced Style Definition for Gasoline Stations Theme... 2-56
2–41 Styling Rules of Theme Definition for Gasoline Stations... 2-56
2–42 Nonspatial (External) Data Provider Implementation ... 2-58
2–43 XML Definition of a Base Map... 2-61
2–44 Legend Included in a Map Request... 2-64
2–45 Map Request with Automatic Legend ... 2-65
2–46 Automatic Legend with Themes Specified .. 2-66
2–47 Cross-Schema Access: Geometry Table .. 2-69
2–48 Cross-Schema Access: GeoRaster Table ... 2-70

xii

2–49 Cross-Schema Access: Topology Feature Table .. 2-70
2–50 Cross-Schema Access: Network Tables .. 2-71
2–51 Workspace Manager-Related Attributes in a Map Request .. 2-72
2–52 <list_workspace_name> Element in an Administrative Request..................................... 2-72
2–53 <list_workspace_session> Element in an Administrative Request 2-73
2–54 Finding Styles Owned by the MDSYS Schema.. 2-76
3–1 Simple Map Request ("Hello World") .. 3-3
3–2 Simple Map Request with a Dynamically Defined Theme... 3-3
3–3 Map Request with Base Map, Center, and Additional Predefined Theme 3-3
3–4 Map Request with Center, Base Map, Dynamically Defined Theme, Other Features...... 3-4
3–5 Map Request for Point Features with Attribute Value and Dynamically Defined Variable

Marker Style 3-5
3–6 Map Request with an Image Theme... 3-6
3–7 Map Request for Image of Map Legend Only .. 3-7
3–8 Map Request with SRID Different from Data SRID... 3-8
3–9 Map Request Using a Pie Chart Theme... 3-9
3–10 JDBC Theme Using a Pie Chart Style.. 3-10
3–11 Map Request Using Ratio Scale and Mixed Theme Scale Modes 3-11
3–12 Map Request Using Predefined Theme (Binding Parameter and Custom Type) 3-12
3–13 Map Request Using Advanced Styles and Rendering Rules... 3-12
3–14 Map Request Using Stacked Styles ... 3-14
3–15 Map Request Using Predefined WFS Theme... 3-15
3–16 Map Request Using Dynamic WFS Theme .. 3-16
3–17 Map Request Using Dynamic WFS Theme with an Advanced Style............................... 3-17
3–18 Java Program That Interacts with MapViewer.. 3-18
3–19 PL/SQL Program That Interacts with MapViewer... 3-20
3–20 North Arrow... 3-46
3–21 Normalization Operation with a GeoRaster Theme... 3-47
3–22 Styling Rules with Normalization Operation in a GeoRaster Theme 3-48
3–23 Scale Bar .. 3-49
3–24 MapViewer Information Request .. 3-56
3–25 Map Response .. 3-57
5–1 MapViewer Operations Using JSP Tags ... 5-12
6–1 Preparing a Map Request... 6-3
7–1 Adding a Data Source by Specifying Detailed Connection Information............................ 7-3
7–2 Adding a Data Source by Specifying the Container Data Source.. 7-3
7–3 Removing a Data Source.. 7-4
8–1 Source Code for the Simple Application ... 8-5
8–2 XML Definition of an Internal Map Tile Layer.. 8-14
8–3 XML Definition of an External Map Tile Layer ... 8-14
8–4 External Map Source Adapter.. 8-18
8–5 MapSourceAdapter.getTileImageBytes Implementation .. 8-20
8–6 XML Styling Rules for Predefined Theme Used for FOI Layer .. 8-22
8–7 XML Styling Rules for a Templated Predefined Theme .. 8-23
8–8 Theme for Dynamic JDBC Query ... 8-24
8–9 Transformation Rules Defined in the csdefinition.sql Script .. 8-30
C–1 Custom Image Renderer for ECW Image Format... C-2
D–1 Implementing the Spatial Provider Class... D-2
D–2 Map Request to Render External Spatial Data .. D-6
E–1 GetMap Requests ... E-3
E–2 GetCapabilities Response (Excerpt) .. E-7
E–3 GetFeatureInfo Request... E-8
E–4 GetFeatureInfo Response.. E-9
E–5 Adding a WMS Map Theme (XML API) .. E-13
E–6 Creating a Predefined WMS Theme.. E-14

xiii

E–7 WMS Theme with Authentication Specified ... E-15

xiv

List of Figures

1–1 Basic Flow of Action with MapViewer .. 1-3
1–2 MapViewer Architecture ... 1-3
1–3 WebLogic Administration Console (Deployments)... 1-8
1–4 WebLogic Administration Console (Location)... 1-9
1–5 WebLogic Administration Console (Source Accessibility) .. 1-10
1–6 WebLogic Administration Console (Starting MapViewer) ... 1-11
1–7 Starting MapViewer Deployment ... 1-13
1–8 Specifying the mapviewer.ear Location ... 1-14
1–9 Specifying the Application Name.. 1-14
1–10 MapViewer Welcome Page .. 1-17
1–11 MapViewer Administration Page.. 1-18
1–12 Administration Tab for Creating Oracle RAC Container Data Source............................ 1-39
1–13 Testing the Connection for the Data Source .. 1-39
2–1 Varying Label Styles for Different Buckets ... 2-5
2–2 Map Display of the Label for an Oriented Point .. 2-7
2–3 Oriented Marker.. 2-8
2–4 Sample Image of a Specified Marker Style.. 2-9
2–5 Sample Image of a Specified Line Style ... 2-9
2–6 Specifying a Resource Bundle for a Theme.. 2-18
2–7 Image Theme and Other Themes Showing Boston Roadways ... 2-23
2–8 Thematic Mapping: Advanced Style and Theme Relationship .. 2-52
2–9 Map with Legend... 2-65
3–1 Map Display Using a Pie Chart Theme .. 3-10
3–2 Bounding Themes .. 3-34
3–3 Orientation Vector ... 3-36
3–4 Map with <geoFeature> Element Showing Two Concentric Circles 3-38
3–5 Two-Column Map Legend ... 3-44
4–1 MapViewer Bean Usage Scenarios ... 4-2
8–1 Architecture for Oracle Maps Applications .. 8-2
8–2 Application Created Using Oracle Maps .. 8-4
8–3 Layers in a Map... 8-6
8–4 Workflow of the Map Tile Server ... 8-8
8–5 Tiling with a Longitude/Latitude Coordinate System .. 8-10
8–6 Tile Mesh Codes ... 8-11
9–1 Oracle Map Builder Main Window.. 9-2
A–1 Shield Symbol Marker for a Highway .. A-5
A–2 Text Style with White Background.. A-8
A–3 Heat Map Showing Pizza Restaurant Concentration ... A-15
D–1 Map Image Using Custom Geometry Theme and External Spatial Data.......................... D-7
E–1 Using Map Builder to Specify Authentication with a WMS Theme E-15

xv

List of Tables

2–1 Style Types and Applicable Geometry Types.. 2-3
2–2 Table Used with Gasoline Stations Theme.. 2-57
2–3 xxx_SDO_MAPS Views.. 2-75
2–4 xxx_SDO_THEMES Views .. 2-75
2–5 xxx_SDO_STYLES Views... 2-75
3–1 Image processing Options for GeoRaster Theme Operations .. 3-47
5–1 JSP Tags for MapViewer ... 5-3
5–2 addJDBCTheme Tag Parameters ... 5-4
5–3 addPredefinedTheme Tag Parameters ... 5-5
5–4 getParam Tag Parameter... 5-6
5–5 identify Tag Parameters .. 5-6
5–6 importBaseMap Tag Parameter ... 5-8
5–7 init Tag Parameters.. 5-8
5–8 makeLegend Tag Parameters... 5-9
5–9 run Tag Parameters... 5-10
5–10 setParam Tag Parameters .. 5-10
8–1 USER_SDO_CACHED_MAPS View ... 8-12

xvi

xvii

Preface

Oracle Fusion Middleware User's Guide for Oracle MapViewer describes how to install and
use Oracle MapViewer (MapViewer), a tool that renders maps showing different kinds
of spatial data.

Audience
This document is intended primarily for programmers who develop applications that
require maps to be drawn. You should understand Oracle database concepts and the
major concepts associated with XML, including DTDs. You should also be familiar
with Oracle Spatial or Oracle Locator concepts, or at least have access to Oracle Spatial
Developer's Guide.

This document is not intended for end users of Web sites or client applications.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documentation
For more information, see the following documents in the Oracle Database
documentation set:

■ Oracle Spatial Developer's Guide

■ Oracle Spatial GeoRaster Developer's Guide

■ Oracle Spatial Topology and Network Data Models Developer's Guide

■ Oracle Database Concepts

■ Oracle Database SQL Language Reference

See also the following document in the Oracle Fusion Middleware documentation set:

xviii

■ Oracle Fusion Middleware High Availability Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xix

New and Changed Features

This section describes major features that are new or changed since the previous
release of MapViewer, which was included in Oracle Application Server Release
10.1.3.1. This section groups the new features into "MapViewer Core" and "Oracle
Maps" subsections.

In addition, the MapViewer JSP tag library and PL/SQL API are deprecated features.
For more information, see the notes at the beginning of Chapter 5, "MapViewer JSP
Tag Library" and Chapter 6, "MapViewer PL/SQL API".

MapViewer Core
This section describes features related to MapViewer generally, including the Map
Builder Tool.

Secure Map Rendering
MapViewer now supports secure map rendering based on a Web user’s identity. Users
with different roles or permissions will see different feature sets when viewing the
same theme. For more information, see Section 1.8.

WFS Themes
Web Feature Service (WFS) features can now be viewed through MapViewer’s WFS
themes. These themes support the parsing and caching of WFS capabilities, and the
use of feature conditions and queries. WFS theme support also works with Oracle
Maps; for example, you can display a WFS theme as an interactive feature of interest
(FOI) layer. For information about WFS themes, see Section 2.3.7.

Map Builder Enhancements
The Map Builder tool now supports the creation of WFS themes and Annotation
Text-based themes. The base map panel also supports identifying features (and a list of
rendered themes) on mouse clicks. For information about Map Builder, see Chapter 9.

Improved Nonspatial Data Provider Support
MapViewer now supports a default provider and format for applications to supply
XML-based nonspatial data for thematic mapping. You can also specify columns from
the nonspatial data set to be used in conjunction with an advanced style. For
information about thematic mapping using nonspatial external attribute data, see
Section 2.3.10.1.

xx

Multiple Rendering Styles for a Single Feature
Previously, a feature could be rendered by only one rendering style. You can now use
multiple rendering styles when rendering a theme’s features. For example, you can
shade a polygon with a color style while also plotting a pie chart on top of it, without
defining two themes. This is done using stacked styles in a theme’s definition. For an
example of map request using stacked styles, see Section 3.1.13.

Automatic Reduction of Repetitive Labels
Previously, repetitive street labels or highway shields on linear features were
displayed when such features consisted of many small segments. You can now use the
Map Builder tool to specify the No Repetitive Labels option in the base map
properties, to cause features (such as road segments) with same name to be labeled
only once. For information about specific options in Map Builder, see the online help
for that tool.

Scale Ranges for Theme Labeling
In the context of a base map, you can now assign scale limits to its themes’ labels.
These scale limits control when a theme’s features will display their label texts. For
more information and an example, see Section 2.4.1.

PDF Output
Full PDF map output support is provided. If you use PDF_URL or PDF_STREAM as the
map format in your XML map request, MapViewer will generate vector PDF maps.
For more information, see the explanation of the format attribute in Section 3.2.1.1.

Text Style Enhancements
The TEXT style has been improved to support customizable spacing between letters. It
also supports additional (vertical) alignment options when labeling linear features.

Heat Map Support
MapViewer now supports heat maps, which are two-dimensional color maps of point
data sets. Heat map styles are described in Section A.6.8.

Scalable Styles
MapViewer now supports scalable styles. A scalable style (such as a MARKER or
LINE style) uses real-world units such as meter or mile to specify its size and other
dimensional attributes; however, at run time MapViewer automatically scales the style
so that the features rendered by the style always show the correct size, regardless of
the current map display scale. For information about using scalable styles, see
Section 2.2.1.

Custom Tags for Theme and Base Map Definitions
The XML definition of a theme or base map now supports application-specific
attribute tags. You can use the Custom Tags option in the theme definition in Map
Builder to specify tags and their values, which can be interpreted by your application
but are ignored by MapViewer itself.

Getting Style Names Referred to in a Predefined Theme
The new <list_theme_styles> element enables you to get the names of styles
referred to in a predefined theme. This element is described in Section 7.5.

xxi

Simple URL Request to Get a Sample Image for a Style
You can now issue a simple URL request to the MapViewer server and get back a
sample image of any style that you specified in the URL. This is useful if you want to
build a custom map legend. For information about getting a sample image of any
style, see Section 2.2.5.

Annotation Text
Support is provided for OpenGIS Consortium standard annotation text. Oracle Spatial
in Oracle Database Release 11g supports storage of annotation text objects in the
database, and MapViewer now supports displaying such annotation texts on a map.
For information about annotation text themes, see Section 2.3.9.

Logging Mechanism Changes
A new logging mechanism based on Java logging is provided. You can also use the
Oracle Application Server management console to customize how MapViewer logs
things at run time.

Custom (External) Spatial Data Providers
MapViewer now supports rendering of geospatial data stored in non-Oracle Spatial
repositories. This is achieved through a Custom Spatial Data Provider API, where you
can implement an Interface that feeds your own (proprietary) spatial data to
MapViewer for rendering. Note that you will still need an Oracle Database to manage
the mapping metadata, such as styles and themes definitions. For more information,
see Section 1.5.2.9.

User-Specified JDBC Fetch Size for Predefined Themes
You can now specify a nondefault row fetch size on a theme, by setting the Fetch Size
base map property with the Map Builder tool. MapViewer can use this value when
fetching theme features from the database. Specifying an appropriate value can make
performance tuning easier in certain situations.

New Array Types (MV_xxxLIST)
MapViewer uses the SQL array types MV_STRINGLIST, MV_NUMBERLIST, and
MV_DATELIST, which support array-type binding variables that might exist in some
predefined themes. In some situations, you will need to create these types. For more
information, see Section 1.4.4.3.

transparent_nodata Attribute for GeoRaster Themes
The optional transparent_nodata attribute can be specified for GeoRaster themes
(described in Section 2.3.4). If transparent_nodata is true, any GeoRaster
NODATA value is to be rendered as transparent. The default value is false.

Reprojection of GeoRaster Themes
Effective with Oracle Spatial GeoRaster for Release 11.2.0.1, GeoRaster objects can be
reprojected into a different SRID. For more information, see Section 2.3.4.3.

Authentication with Predefined WMS Map Themes
You can specify the user and password in a predefined WMS map theme for a WMS
server that requires authentication for access to the WMS data. For more information,
see Section E.3.3.

xxii

Oracle Maps
This section describes features for Oracle Maps, which is documented in Chapter 8.

Multi-Touch Mobile Device Support
Effective with Oracle Fusion Middleware Release 11.1.1.6, the Oracle Maps JavaScript
API fully supports multi-touch gestures on popular iOS (iPhones and iPads) and
late-version Android devices. Your Oracle Maps applications can take full advantage
of this enhancement without any modification in your code.

Displaying Google Maps and Bing Maps Tiles as Built-in Map Tile Layer
Applications can now display Google Maps tiles or Microsoft Bing Maps tiles as a
built-in map tile layer. Internally, the Oracle Maps client uses the official Google Maps
or Bing Maps API to display the map that is directly served by the Google Maps
server. For more information, see Section 8.6, "Using Google Maps and Bing Maps". (If
you need to overlay your own spatial data on top of the Google Maps or Microsoft
Bing Maps tile layer, see also Section 8.7, "Transforming Data to a Spherical Mercator
Coordinate System".)

Effective with Oracle Fusion Middleware Release 11.1.1.6, Google Maps API Version 3
and Bing Maps Version 7 are the default APIs used for those technologies by Oracle
Maps.

MVBaseMap Renamed to MVMapTileLayer
The class MVBaseMap in the Oracle Maps Javascript API is renamed to
MVMapTileLayer to prevent possible confusion with the concept of MapViewer base
map. For more information, see the JavaScript API documentation for
MVMapTileLayer.

Web-Based User Interface for Map Tile Layer Management
A new Web-based user interfaced has been added to the MapViewer Web
administration console for editing map tile layer definitions, as well as previewing and
managing map tiles.

External Map Tile Support
The Oracle Maps JavaScript client can now display map tiles rendered directly by an
external map tile server without caching the tiles with the MapViewer map tile server.
For more information, see Section 8.8, "Dynamically Displaying an External Tile Layer"
and the JavaScript API documentation for MVCustomMapTileLayer.

Improved Client-Side Support for Accessing Cross-Domain Map Tile Server
and FOI Server
The Oracle Maps client can now communicate with cross-domain map cache tile and
FOI servers without relying on a proxy server, which was previously required. For
more information, see the JavaScript API documentation for
MVMapView.enableXMLHTTP.

Dynamic Client Side Styles
More support is provided for rendering FOI data using dynamic client side styles for
business intelligence (BI) applications. New classes are added to the Javascript API to
support client side defined styles such as color style (MVStyleColor), marker style
(MVStyleMarker), bar chart style (MVBarChartStyle), pie chart style

xxiii

(MVPieChartStyle), bucket style (MVBucketStyle), as well as any MapViewer
supported style defined in XML (MVXMLStyle).

JDBC Theme-Based FOI
Oracle Maps now supports client side dynamically constructed JDBC theme-based FOI
layers. For more information, see the JavaScript API documentation for
MVThemeBasedFOI.

Simplified Dynamic BI Data Injection and Visualization
Business Intelligence applications can now visualize application generated nonspatial
attribute data on the map through the combined use of a nonspatial data provider and
theme-based FOIs. For more information, see the JavaScript API documentation for
MVNSDP.

Improved Information Window
The positioning, styling, and sizing of the information window have been improved.
Previously, the Oracle Maps client always displayed the information window at a
fixed position relative to the specified map location. The Oracle Maps client now can
place the information window at the optimal variable position relative to the specified
map location. As the result, the map does not to be panned in order to make the
information window visible inside the map. In addition, you can specify tabs for the
information window.

For more information, see the JavaScript API documentation for
MVMapView.displayInfoWindow and
MVMapView.displayTabbedInfoWindow. The Tabbed info window demo on the
Oracle Maps tutorial page shows how to display a tabbed information window.

Enhanced Map Decoration
The client now supports multiple collapsible map decoration components that can be
positioned at arbitrary positions inside the map container. Map decoration can now be
dragged inside the map container. For more information, see the JavaScript API
documentation for MVMapDecoration.

Flexible Placement and Visibility for Navigation Panel and Scale Bar
The navigation panel and the scale bar can now be placed inside a map decoration
component, which can be displayed or hidden and can be placed at a position of your
choice inside the map container. For more information, see the JavaScript API
documentation for addNavigationPanel.

Navigation Panel Informational Tips
Applications can now define mouseover informational tips or labels for map zoom
levels. The informational tips are displayed when the user moves the mouse over the
navigation panel. The user can then zoom to a selected zoom level by clicking on the
corresponding info tip. For more information, see the JavaScript API documentation
for MVNavigationPanel.setZoomLevelInfoTips and the Navigation Panel
demo on the Oracle Maps tutorial page

Polygon Theme-Based FOI Layer Labeling
Applications can now choose whether to label the polygon features of a polygon
theme-based FOI layer. For more information, see the JavaScript API documentation
for MVThemeBasedFOI.

xxiv

Image-Less Polygon Themes with FOI Layers
You can now base a feature of interest (FOI) layer on an image-less polygon theme,
causing FOI images not to be rendered if the theme is already rendered as part of the
base map. This feature can result in much faster performance with polygon layers. For
more information, see the JavaScript API documentation for MVThemeBasedFOI.

FOI Layer Automatic Selection and Highlighting
You can now associate a filtering geometry with any predefined theme-based FOI
layer so that only the features that fall inside the filtering geometry are rendered on
the map. This feature is part of the new support for proximity and within-distance
mapping. It can be used with the selection tools (circle, rectangle, or polygon) to
implement theme feature highlighting. For more information, see the JavaScript API
documentation for MVThemeBasedFOI.

Client-Side Construction of Geodetic Geometries Based on Earth Distance
Parameters
You can now construct the following type of geometries in geodetic coordinate
systems with parameters based on Earth distance: a circle polygon geometry specified
by its center and radius, a rectangle with its height and width specified, and a point
geometry at the specified distance and bearing from the start point. These geometries,
especially the first two, can be used for implementing proximity and within-distance
type mapping. For more information, see the JavaScript API documentation for
MVSdoGeometry.

Animated Loading Icon for Maps and Themes
The Oracle Maps client now displays an animated icon during the loading of a base
map or a theme. This is especially useful for providing visual reassurance to users
with maps and themes that take a long time to load.

User-Defined FOI Customizations
The JavaScript API now provides methods for applications to modify the geometry
representation and rendering style of an already rendered user-defined FOI, as well as
the custom marker image for a user-defined point FOI. For more information, see the
JavaScript API documentation for MVFOI.

Prompt Mode for Marquee Zoom Tool
The new prompt mode provides enhanced user control over marquee zoom
operations. Prompt mode zooms the map when the use clicks on the marquee zoom
rectangle, which eliminates the possible problem of accidental zooming associated
with "continuous" mode. For more information, see the JavaScript API documentation
for MVMapView.startMarqueeZoom.

Mouse Cursor Customization
Applications can now customize the appearance of the mouse cursor when the cursor
is over different map components, such as map tiles, FOIs, and map decorations.

Built-in Toolbar and Distance Measurement
Applications can now use a built-in distance measurement tool to measure distance on
the map. The built-in toolbar provides an easy graphic user interface for accessing
utilities such as the redline tool, rectangle tool, circle tool, distance measurement tool,
and any user-defined capabilities. For more information, see the JavaScript API

xxv

documentation for MVToolBar and the Tool bar demo on the Oracle Maps tutorial
page.

Automatic Determination for Whole Image Theme Display
Displaying a theme-based FOI layer as a whole image may greatly improve the
application performance, but it may be difficult for application developers to
determine when to display a theme as a whole image theme. However, you can now
choose to let MapViewer make the determination automatically. For more
information, see the JavaScript API documentation for
MVThemeBasedFOI.enableAutoWholeImage.

Automatic Long Tile Administrative Request Recovery
Long running tile admin requests that are interrupted due to Fusion Middleware or
MapViewer shutdown will be able to resume automatically after MapViewer is
restarted. (You do not need to do anything to enable this feature, other than creating
the new database view USER_SDO_TILE_ADMIN_TASKS if it does not already exist.
For more information, see Section 2.9.)

Wraparound Map Display
Applications can now display a map in the wrap-around manner. When the map is
displayed in this manner, the map wraps around at the map coordinate system
boundary horizontally and therefore can be scrolled endlessly. For more information,
see the JavaScript API documentation for MVMapView.enableMapWrapAround.

Individual Theme Feature Highlighting (Selection)
Applications can enable the user to select and highlight individual theme features
(FOIs) by clicking the mouse on the features. For more information, see the JavaScript
API documentation for MVThemeBasedFOI.enbleHightlight and the Highlighting
individual features of a theme based FOI layer demo on the Oracle Maps tutorial page.

Enhanced Redline Tool
The redline line tool can now be used to create polyline, polygon, and point
geometries. The redline line tool also supports an editing mode, in which you can
move an existing redline point or line segment, remove a redline point or line
segment, or add a redline point or line segment programmatically. For information
about redlining using the Oracle Maps JavaScript API, see Section 8.4.

Error Reporting
Previously, all error messages thrown by the Oracle Maps client were displayed as
browser alerts. Now applications can customize how the error messages are handled
by using a custom error handler. For more information, see the JavaScript API
documentation for MVMapView.setErrorHandler.

New Tutorials
Many new Oracle Maps tutorials illustrate the new features. To access the MapViewer
demos and tutorials, go to:

http://host:port/mapviewer/fsmc/tutorial/demos.html

xxvi

1

Introduction to MapViewer 1-1

1 Introduction to MapViewer

Oracle Mapviewer (MapViewer) is a programmable tool for rendering maps using
spatial data managed by Oracle Spatial or Oracle Locator (also referred to as Locator).
MapViewer provides tools that hide the complexity of spatial data queries and
cartographic rendering, while providing customizable options for more advanced
users. These tools can be deployed in a platform-independent manner and are
designed to integrate with map-rendering applications.

This chapter contains the following major sections:

■ Section 1.1, "Overview of MapViewer"

■ Section 1.2, "Getting Started with MapViewer"

■ Section 1.3, "Prerequisite Software for MapViewer"

■ Section 1.4, "Installing and Deploying MapViewer"

■ Section 1.5, "Administering MapViewer"

■ Section 1.6, "Oracle Real Application Clusters and MapViewer"

■ Section 1.7, "High Availability and MapViewer" (for advanced users)

■ Section 1.8, "Secure Map Rendering"

■ Section 1.9, "MapViewer Demos and Tutorials"

1.1 Overview of MapViewer
MapViewer is shipped as part of Oracle Fusion Middleware. Its main deliverable is a
J2EE application that can be deployed to a J2EE container, such as that for Oracle
Fusion Middleware. MapViewer includes the following main components:

■ A core rendering engine (Java library) named SDOVIS that performs cartographic
rendering. A servlet is provided to expose the rendering functions to Web
applications.

■ A suite of application programming interfaces (APIs) that allow programmable
access to MapViewer features. These APIs include XML, Java, PL/SQL, and an
AJAX-based JavaScript API.

■ A graphical Map builder tool that enables you to create map symbols, define
spatial data rendering rules, and create and edit MapViewer objects.

■ Oracle Map, which includes map cache and FOI (feature of interest) servers that
facilitate the development of interactive geospatial Web applications.

The core rendering engine connects to the Oracle database through Java Database
Connectivity (JDBC). It also reads the map metadata (such as map definitions, styling

Overview of MapViewer

1-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

rules, and symbologies created through the Map Builder tool) from the database, and
applies the metadata to the retrieved spatial data during rendering operations.

The XML API provides application developers with a versatile interface for submitting
a map request to MapViewer and retrieving the map response. The JavaBean-based
API and the PL/SQL API provide access to MapViewer's rendering capabilities. The
JavaScript API enables you to create highly interactive web applications that use the
Oracle Maps feature of MapViewer.

The Map Builder tool simplifies the process of creating and managing map, theme,
and symbology metadata in a spatial database. For information about this tool, see
Chapter 9.

Oracle Maps, built on core MapViewer features, uses a map tile server that caches map
image tiles, and a feature of interest (FOI) server that streams live data out of a
database to be displayed as interactive features on a map. You can use the AJAX-based
JavaScript API with Oracle Maps to provide sophisticated mapping solutions. Oracle
Maps also allows for advanced customization and querying capabilities.

The primary benefit of MapViewer is its integration with Oracle Spatial, Oracle
Locator, and Oracle Fusion Middleware. MapViewer supports two-dimensional vector
geometries stored in Oracle Spatial, as well as GeoRaster data and data in the Oracle
Spatial topology and network data models. Oracle MapViewer is also an Open
Geospatial Consortium (OGC)-compliant Web Map Service (WMS) server.

1.1.1 Basic Flow of Action with MapViewer
With MapViewer, the basic flow of action follows a two-step request/response model,
whether the client requests a map or some MapViewer administrative action.

For a map request:

1. The client requests a map, passing in the map name, data source, center location,
map size, and, optionally, other data to be plotted on top of a map.

2. The server returns the map image (or a URL for the image) and the minimum
bounding rectangle (MBR) of the map, and the status of the request.

For a MapViewer administrative request:

1. The client requests a MapViewer administrative action, passing in the specific type
of request and appropriate input values.

2. The server returns the status of the request and the requested information.

Figure 1–1 shows the basic flow of action with MapViewer.

Overview of MapViewer

Introduction to MapViewer 1-3

Figure 1–1 Basic Flow of Action with MapViewer

1.1.2 MapViewer Architecture
Figure 1–2 illustrates the architecture of MapViewer.

Figure 1–2 MapViewer Architecture

As shown in Figure 1–2:

■ MapViewer is part of the Oracle Fusion Middleware middle tier.

■ MapViewer includes a rendering engine.

■ MapViewer can communicate with a client Web browser or application using the
HTTP protocol.

■ MapViewer performs spatial data access (reading and writing Oracle Spatial and
Oracle Locator data) through JDBC calls to the database.

■ The database includes Oracle Spatial or Oracle Locator, as well as mapping
metadata.

Oracle Spatial

MapViewer

Mapping Client
Map Request:
 - Map Name
 - Data Source
 - Center and Size
or
Administrative Request:
 - Type of Request
 - Input Values

Map Response:
 - Map Image
 - MBR of the Map
 - Status
or
Administrative Response:
 - Status
 - Output Values

MapViewer

Client

 Middle Tier
(Oracle

Application
Server)

Database

JDBC

HTTP

(rendering engine)

Web Browser or Application

Spatial or
Locator

Mapping
Metadata

Getting Started with MapViewer

1-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

1.2 Getting Started with MapViewer
To get started using MapViewer, follow these steps:

1. Either before or after you install and deploy MapViewer, read Chapter 2 to be sure
you understand important terms and concepts.

2. Ensure that you have the prerequisite software (see Section 1.3).

3. Install (if necessary) and deploy MapViewer (see Section 1.4).

4. Use MapViewer for some basic tasks. For example, create an Oracle Maps
application (see Chapter 8.

5. Optionally, use the Map Builder tool (described in Chapter 9) to familiarize
yourself with styles, themes, and maps, and the options for each, and optionally to
preview spatial data.

1.3 Prerequisite Software for MapViewer
To use MapViewer, you must have the following software:

■ A J2EE server supported by Oracle MapViewer (see
http://www.oracle.com/technetwork/middleware/mapviewer/j2ee-s
erver-support-097757.html)

■ Oracle Database with Spatial or Locator (Release 9i or later)

■ Oracle Client (Release 9i or later), if you need to use JDBC Oracle Call Interface
(OCI) features. Note that in general, the JDBC thin driver is recommended for use
with MapViewer, in which case Oracle Client is not required.

■ Java SDK 1.5 or later

MapViewer also supports the headless AWT mechanism in J2SE SDK, which enables
MapViewer to run on Linux or UNIX systems without setting any X11 DISPLAY
variable. To enable AWT headless mode on Linux or UNIX systems, specify the
following in the command line to start MapViewer:

-Djava.awt.headless=true

1.4 Installing and Deploying MapViewer
This section describes how to install (if necessary) and deploy MapViewer to run in the
middle tier. As mentioned previously, MapViewer runs as a J2EE Web application and
listens for incoming map requests on the container’s HTTP port.

You can deploy MapViewer either in a full Oracle Fusion Middleware environment or
to a standalone installation of OC4J. Choose the procedure that applies to your needs:

■ If you have already installed WebLogic Server 10 or later and you want deploy
MapViewer to it, follow the instructions in Section 1.4.1.

■ If you have already installed Oracle Fusion Middleware and you want to deploy
MapViewer to that instance, follow the instructions in Section 1.4.2.

■ If you have not installed Oracle Fusion Middleware, but have installed the OC4J
standalone kit and now want to install and deploy MapViewer, follow the
instructions in Section 1.4.3. OC4J standalone is a small footprint J2EE container
and Web server provided by Oracle.

■ Alternatively, you can download the latest MapViewer Quick Start kit from the
MapViewer page on the Oracle Technology Network (OTN). This kit includes a

Installing and Deploying MapViewer

Introduction to MapViewer 1-5

standalone OC4J with MapViewer already deployed and configured. It takes only
minutes to get MapViewer running, and is convenient for testing and basic
development.

Regardless of where and how MapViewer is deployed, the application server (or
standalone OC4J) will create a home directory for MapViewer during deployment.
This directory is typically located under the following directory:

$ORACLE_HOME/j2ee/<oc4j_instance_name>/applications

$ORACLE_HOME is the top directory of either the Application Server or standalone
OC4J install. The value for <oc4j_instance_name> is typically home if deployed to
standalone OC4J, or the name of the target OC4J instance if deployed to a full Oracle
Fusion Middleware installation. This MapViewer directory is typically named
mapviewer (or the same as the context path under which MapViewer is deployed),
and has many subdirectories. You may wish to familiarize yourself with some of the
subdirectories in case you want to perform debugging, administration, or manual
configuration.

The following are the main subdirectories of a MapViewer deployment:

/mapviewer
 sql/
 web/
 fsmc/
 WEB-INF/
 lib/
 conf/
 log/
 mapcache/
 classes/
 admin/

The /mapviewer/sql directory contains several SQL scripts that are necessary for
installing the MapViewer PL/SQL API package into the database. The
/mapviewer/web/fsmc directory contains the JavaScript API library and several
tutorials for Oracle Maps. The /mapviewer/web/WEB-INF directory and its
subdirectories contain libraries and MapViewer administration and configuration files.

If you want to use GeoRaster themes to view GeoRaster data, after successfully
deploying MapViewer you may need to ensure that certain JAI (Java Advanced
Imaging) library files are in the MapViewer Java classpath. The library files are jai_
core.jar, jai_codec.jar, and jai_imageio.jar, and they can be found in a
full Oracle Fusion Middleware or Oracle Database installation, usually under the
directory for Oracle Multimedia (formerly called Oracle interMedia) files. You can
copy them into the MapViewer WEB-INF/lib directory.

For annotation themes, MapViewer uses the JAXB 2.x libraries jsr173_api.jar,
jaxb-api.jar, jaxb-impl.jar, and activation.jar. If you deploy
MapViewer with a 10g OC4J instance, you must copy these files to a directory in the
MapViewer CLASSPATH definition, such as the WEB-INF/lib directory.

1.4.1 Deploying MapViewer in a WebLogic Server Environment
This section explains how to deploy MapViewer to WebLogic Server Version 10 or 10.3.
(Deployment to earlier WebLogic versions has not been tested.) For the deployment:

■ MapViewer must be deployed from an exploded directory.

■ The WebLogic console is used in this section, although you could also use the WLS
command line instead.

Installing and Deploying MapViewer

1-6 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ A new WebLogic domain is created to host MapViewer. This approach is
recommend because MapViewer is a resource-intensive application, and it is better
to run it in a separate environment such as its own domain. However, it is also
possible (although not recommended) to deploy MapViewer to an existing
WebLogic domain.

The main steps for deploying MapViewer to WebLogic Server are the following:

1. Unpack the MapViewer EAR Archive.

2. Configure WebLogic Server.

3. Deploy and Start MapViewer in WebLogic Server.

4. As needed, use the MapViewer Administration Page.

1.4.1.1 Unpacking the MapViewer EAR Archive
You must deploy MapViewer from an exploded directory, that is, a directory where
mapviewer.ear has already been unpacked. (If you instead, and incorrectly, deploy
from the unpacked mapviewer.ear file, MapViewer will fail at run time.)

You can unpack the mapveiwer.ear archive to any directory on the server where
WebLogic is running. This directory will become the working folder of your
MapViewer installation, in that MapViewer will (by default) read the configuration file
from this location, and will save generated map images to a folder under this directory.
It is recommended that the directory be a permanent (not temporary) one. It can be a
shared directory if you want the same MapViewer binaries to be deployed to multiple
WebLogic servers running on multiple hosts.

In the following instructions, assume that you have created a directory named
/ul/mapviewer as the top MapViewer directory. (If you create another directory,
adapt the instructions accordingly.) Follow these steps:

1. Copy mapviewer.ear into /ul/mapviewer.

2. If /ul/mapviewer is not already your current directory, go there.

3. Rename mapviewer.ear to mapviewer1.ear.

4. Create a subdirectory named mapviewer.ear.

5. Unpack mapviewer1.ear into mapviewer.ear (that is, into
/ul/mapviewer/mapviewer.ear).

6. Go to mapviewer.ear.

7. Rename web.war to web1.war.

8. Create a subdirectory named web.war.

9. Unzip web1.war into web.war (that is, into
/ul/mapviewer/mapviewer.ear/web.war).

10. Modify the Mapviewer configuration file
(/ul/mapviewer/mapviewer.ear/web.war/WEB-INF/conf/mapViewerCo
nfig.xml) as needed, such as to change its logging level or to add permanent
data source definitions. You can also modify this configuration file at any time
later.

MapViewer is now unpacked and configured. You must next ensure that WebLogic
Server is properly configured for MapViewer, so that you will be able to deploy and
run MapViewer in WebLogic Server.

Installing and Deploying MapViewer

Introduction to MapViewer 1-7

1.4.1.2 Configuring WebLogic Server
To configure WebLogic Server, follow these steps:

1. Create a new WebLogic domain to host MapViewer by running the following
script:

$BEA_HOME/wlserver_10.0/common/bin/config.sh

This script starts a configuration wizard. It is suggested that you name the
administration user weblogic; although if you use a different name, you can
specify it when you configure MapViewer. You will use the administration user to
log in to the MapViewer Administration page.

2. Start the domain by running the following script:

$BEA_HOME/user_projects/domains/map-domain/startWebLogic.sh

where map-domain is the name of the domain that you created in step 1.

1.4.1.3 Deploying and Starting MapViewer in WebLogic Server
After the new domain is running, you can log in to its console to start deploying
MapViewer. Follow these steps.

1. Log in to the console, which is typically accessed at:

http://<host>:7001/console

where <host> is the host name or IP address of the system running WebLogic
server.

2. In the Change Center, if a Lock & Edit button is visible, click it.

If a Lock & Edit button is not visible, go to the next step. If this button is not
visible, it probably means that the WebLogic server has been configured with the
Automatically Acquire Lock and Activate Changes option enabled.

3. Under Domain Structure, click Deployments.

The administration console page will look similar to Figure 1–3.

Installing and Deploying MapViewer

1-8 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Figure 1–3 WebLogic Administration Console (Deployments)

4. Under Deployments, click Install.

The next page is displayed, as shown in Figure 1–4. Note that the location of the
MapViewer directory (/ul/mapviewer/mapviewer.ear in this case) is the
name of the directory, not the name of the .ear file.

Installing and Deploying MapViewer

Introduction to MapViewer 1-9

Figure 1–4 WebLogic Administration Console (Location)

5. Click Next.

6. Select Install this deployment as an application, and click Next.

A page with the Source Accessibility section is displayed, as shown in Figure 1–5

Installing and Deploying MapViewer

1-10 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Figure 1–5 WebLogic Administration Console (Source Accessibility)

7. In the Source Accessibility section, select I will make the deployment accessible
from the following location.

This option causes the unpacked MapViewer location to becomes the "working"
directory of MapViewer. It also makes it easier if you want to upgrade MapViewer
in the future, in which case you simply unpack the new mapviewer.ear file to
this directory and restart WebLogic Server.

8. Click Finish, to start the deployment of MapViewer.

9. If the WebLogic server has been configured with the Automatically Acquire Lock
and Activate Changes option enabled, skip the rest of this step and go to the next
step when the deployment is finished.

Installing and Deploying MapViewer

Introduction to MapViewer 1-11

If the WebLogic server has not been configured with the Automatically Acquire
Lock and Activate Changes option enabled, when the deployment is finished, go
to the Change Center, and click Activate Changes and then Release
Configuration to complete the deployment process.

10. Start MapViewer by selecting mapviewer from Deployments, clicking Start, and
selecting Servicing all requests, as shown in Figure 1–6

Figure 1–6 WebLogic Administration Console (Starting MapViewer)

11. Go to the following location to access MapViewer.

http://<host>:7001/mapviewer

where <host> is the host name or IP address of the system running WebLogic
server.

1.4.1.4 Using the MapViewer Administration Page
When you first click the Admin button on the MapViewer home page, you are
prompted for login information. You can use the default WebLogic administration
account user name of weblogic to log in; however, if your WebLogic domain
administration account uses a different user name, you must change the MapViewer

Installing and Deploying MapViewer

1-12 Oracle Fusion Middleware User's Guide for Oracle MapViewer

weblogic.xml file, located in $MAPVIEWER_
HOME/mapviewer.ear/web.war/WEB-INF/.

To change the weblogic.xml file, open it is a text editor and replace the two
occurrences of weblogic with the actual administration account name. The following
except shows the lines with the name to be replaced:

<security-role-assignment>
 <role-name>map_admin_role</role-name>
 <principal-name>weblogic</principal-name>
</security-role-assignment>

<security-role-assignment>
 <role-name>secure_maps_role</role-name>
 <principal-name>weblogic</principal-name>
</security-role-assignment>

1.4.2 Deploying MapViewer in an Oracle Fusion Middleware 10gR3 Environment
If you have already successfully installed Oracle Fusion Middleware 10gR3, you can
deploy the MapViewer using the Oracle Enterprise Manager Server Control web
interface. The main steps are the following:

1. Select an OC4J instance as the target for deploying MapViewer. You can select an
existing OC4J instance, or create a new instance specifically for MapViewer. It is
suggested that you create a new instance for MapViewer, but it is not required.

2. Locate the mapviewer.ear file. This file is either shipped with the Oracle Fusion
Middleware 10gR3 software or can be downloaded from OTN.

3. Deploy the mapviewer.ear file to the selected OC4J instance using the Server
Control web interface, or use Oracle Fusion Middleware 10gR3 command-line
admin tool to deploy MapViewer (or any other J2EE application). For information
about using the admin tool, see the Oracle Fusion Middleware Administration Guide.

To start deploying MapViewer, navigate to the Oracle Fusion Middleware 10gR3
Server Control page and select the desired OC4J instance, as shown in Figure 1–7,
where the default home OC4J instance is selected.

Installing and Deploying MapViewer

Introduction to MapViewer 1-13

Figure 1–7 Starting MapViewer Deployment

Click Deploy to display a page (shown in Figure 1–8) in which you enter the location
of the mapviewer.ear file (a directory named tmp in this figure).

Installing and Deploying MapViewer

1-14 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Figure 1–8 Specifying the mapviewer.ear Location

Click Next to display a page (shown in Figure 1–9) in which you specify the name of
the application.

Figure 1–9 Specifying the Application Name

For Application Name, specify mapviewer. The Context Root will be set to
/mapviewer by default. Do not use any other value for Context Root. Using any other
value will prevent MapViewer from operating.

Click Next to display the Deployment Setting page. You usually do not need to change
any of the settings on this page.

Installing and Deploying MapViewer

Introduction to MapViewer 1-15

Click Deploy on the Deployment Setting page to start the deployment of MapViewer.
If the deployment is successful, the Confirmation page is displayed indicating that
deployment of the application was successful.

After you complete the deployment, see Section 1.4.4.

1.4.3 Installing MapViewer with a Standalone Installation of OC4J
To install and deploy MapViewer with a standalone installation of OC4J, you must
have installed OC4J on your system. The standalone OC4J installation kit is a single
zip file that you can download from OTN. It contains the Oracle Container for J2EE
and also a lightweight Web server. After you unzip this file, you can start the OC4J
instance up by entering the command java –jar oc4j.jar from the $OC4J_
HOME/j2ee/home directory, where $OC4J_HOME is the top directory into which you
unzipped the installation file.

Note that you must have the Java 1.5 SDK installation, not the JRE installation, in your
environment path in order for OC4J to start up and function properly.

Because standalone OC4J version 10.1.3 (or later) comes with its own Server Control
Web interface, the deployment of MapViewer is almost exactly as described in
Section 1.4.2 once you log in to its Server Control Web page. The only difference is that
you will not be able to choose a different OC4J instance, because you are running in a
single standalone OC4J instance.

After you complete the deployment, see Section 1.4.4.

1.4.4 After Deploying MapViewer
After successfully deploying MapViewer to Oracle Fusion Middleware 10gR3,
standalone OC4J, or WebLogic Server, you may want to verify whether it is actually
working, as described in Section 1.4.4.1. It is also a good idea to become familiar with
its Web interface, particularly the administration pages.

You must also run at least one, and perhaps several, SQL scripts, as explained in
Section 1.4.4.2.

1.4.4.1 Verifying That the Deployment Was Successful
To test if the MapViewer server has started correctly, point your browser to that OC4J
instance. For example, if MapViewer is installed on a system named
www.example.com and the HTTP port is 8888, enter the following URL to invoke the
MapViewer server with a simple get-version request:

http://www.example.com:8888/mapviewer/omserver?getv=t

If MapViewer is running correctly, it should immediately send back a response text
string indicating the version and build number, such as the following:

Ver10131_B060225

The actual version and build number will reflect the version that you installed.

If the server has not been started and initialized correctly, there will be no response, or
the message 500 internal server error will be displayed.

If the response message includes wording like MapServer is not ready. Please try again
later, it could mean that the MapViewer server is initializing, but the process will take
some additional time (for example, because the system is slow or because multiple
predefined data sources are specified in the configuration file and MapViewer is

Installing and Deploying MapViewer

1-16 Oracle Fusion Middleware User's Guide for Oracle MapViewer

attempting to connect to these databases). In this case, you can wait at least a few
seconds and try the preceding request again.

However, if you continue to get this response message, there may be a problem with
the deployment. Check for any error messages, either in the OC4J console for a
standalone OC4J deployment or in the redirected output/errors log file of the OC4J
instance for a full Oracle Fusion Middleware 10gR3 deployment. The following are
common causes of this problem:

■ On a UNIX or Linux operating system, the Java virtual machine (JVM) was not
started with the –Djava.awt.headless=true option, and no DISPLAY
environment variable is set. This causes the MapViewer server to fail because the
server accesses the Java graphics library, which on UNIX and Linux systems relies
on the X11 windowing system.

■ You deployed the mapviewer.ear file to an incompatible version of Oracle
Fusion Middleware or standalone OC4J. Note that the MapViewer 10.1.3.1 must be
deployed to Application Server 10gR3 (or standalone OC4J) 10.1.3 or later. It will
not work properly with earlier versions of Oracle Application Server or OC4J.

1.4.4.2 Running SQL Scripts
This section describes SQL scripts, one or more of which you must run while
connected as the MDSYS user. For each script that you run, you must run it on each
target Oracle database from which MapViewer will render spatial data.

MapViewer uses a set of system views to store necessary mapping metadata in a target
database. A target database is a database with Oracle Spatial or Oracle Locator
(Release 8.1.6 or later) installed and from which you want MapViewer to be able to
render maps. MapViewer requires following system views:

■ USER_SDO_MAPS

■ USER_SDO_THEMES

■ USER_SDO_STYLES

■ USER_SDO_CACHED_MAPS

The USER_SDO_CACHED_MAPS view is used by the Oracle Maps feature. It stores
definitions of map tile cache instances. You must create this view manually by running
the following script while connected as the SYS user:

$MV_HOME/web/WEB-INF/admin/mcsdefinition.sql

If the target database is release 9.2 or later, the other three views (USER_SDO_MAPS,
USER_SDO_THEMES, and USER_SDO_STYLES) are created and populated
automatically. However, if the target database has a release number lower than 9.2,
you must manually create and populate these views by running the following scripts
while connected as the MDSYS user:

$MV_HOME/web/WEB-INF/admin/mapdefinition.sql

$MV_HOME/web/WEB-INF/admin/defaultstyles.sql

1.4.4.3 Creating MapViewer Array Types, if Necessary
For each database schema that it connects to, MapViewer checks for the existence of
the following SQL array types that support array-type binding variables that might
exist in some predefined themes:

■ MV_STRINGLIST

■ MV_NUMBERLIST

Administering MapViewer

Introduction to MapViewer 1-17

■ MV_DATELIST

If these types do not exist, MapViewer attempts to create them in the database schema
associated with the MapViewer data source. However, if the user associated with that
schema does not have sufficient privileges to create new types, a privileged user must
create the types by connecting to the data source schema and entering the following
statements:

CREATE or REPLACE type MV_STRINGLIST as TABLE of VARCHAR2(1000);
CREATE or REPLACE type MV_NUMBERLIST as TABLE of NUMBER;
CREATE or REPLACE type MV_DATELIST as TABLE of DATE;

1.5 Administering MapViewer
This section introduces the MapViewer Administration page and some administrative
and configuration tasks that you can perform, such as adding new data sources,
managing map tile layers used by Oracle Maps, and setting logging levels.

1.5.1 Logging in to the MapViewer Administration Page
After you have verified that MapViewer is running properly, it is suggested that you
log in to the MapViewer Administration page. To do this, go first to the MapViewer
Welcome page, which is typically http://<host>:<port>/mapviewer, where
<host> and <port> should be replaced by the correct value for your installation.
Figure 1–10 shows the MapViewer Welcome page

Figure 1–10 MapViewer Welcome Page

Click the Admin icon at the top right or text link at the bottom. A login prompt is
displayed, asking for user name and password for the MapViewer administration
page.

Administering MapViewer

1-18 Oracle Fusion Middleware User's Guide for Oracle MapViewer

User Name: Enter oc4jadmin.

Password: Enter the password that you use to log in to the Server Control page of the
Oracle Fusion Middleware or OC4J standalone installation.

After you log in, the MapViewer administration page is displayed, as shown in
Figure 1–11.

Figure 1–11 MapViewer Administration Page

You can use this page to perform administrative tasks, such as configuring MapViewer
to your site’s specific requirements, adding predefined data sources so that
MapViewer will automatically connect to the specified target database whenever it is
started, and managing map tile layers. For detailed about configuration tasks, see
Section 1.5.2; for information about administrative tasks, see Section 1.5.3.

1.5.2 Configuring MapViewer
If the default configuration settings for running MapViewer are not adequate, you can
configure MapViewer by editing the MapViewer configuration file,
mapViewerConfig.xml, which is located in the $ORACLE_
HOME/lbs/mapviewer/web/WEB-INF/conf directory. To modify this file, you can
use a text editor, or you can use the MapViewer Administration page.

After you modify this file, you must restart OC4J to have the changes take effect;
however, you can instead use the MapViewer Administration page to restart only the
MapViewer servlet (instead of the entire OC4J instance, which may have other
applications deployed and running) if either of the following applies:

■ You installed MapViewer with a standalone OC4J instance.

■ The MapViewer OC4J instance with Oracle Fusion Middleware is configured to
have only one OC4J process running (the default) and not to be clustered (that is,
not to be in an island).

If you deployed MapViewer to an OC4J instance with multiple processes (thus
with multiple physical JVMs on the same host), or if you deployed to an OC4J
instance that is in a clustered island (with multiple OC4J instances running on
multiple hosts), you must restart the OC4J instance itself for the changes to the
MapViewer configuration file to take effect in all MapViewer servers. In the latter
case (clustered OC4J instances), you may also need to modify the MapViewer
configuration file in the MapViewer directory hierarchy for each host’s OC4J

Administering MapViewer

Introduction to MapViewer 1-19

instance in the cluster. For more information about repository-based middle-tier
clustering, see Oracle Fusion Middleware High Availability Guide.

The MapViewer configuration file defines the following information in XML format:

■ Logging information, defined either through container-controlled logging
(recommended) or in the <logging> element (see Section 1.5.2.1)

■ Map image file information, defined in the <save_images_at> element (see
Section 1.5.2.2)

■ Administrative request restrictions, defined in the <ip_monitor> element (see
Section 1.5.2.3)

■ Web proxy information for accessing external information across a firewall,
defined in the <web_proxy> element (see Section 1.5.2.4)

■ Global map "look and feel" configuration, defined in the <global_map_config>
element (see Section 1.5.2.5)

■ Internal spatial data cache settings, defined in the <spatial_data_cache>
element (see Section 1.5.2.6)

■ Custom image renderer registration, defined in the <custom_image_renderer>
element (see Appendix C)

■ Permanent map data sources, defined in the <map_data_source> element (see
Section 1.5.2.14)

■ Security configurations, defined in the <security_config> element

■ WMS services configurations, defined in the <wms_config> element

■ External attribute data provider registration, defined in <ns_data_provider>
elements

■ Map tile server configurations, defined in the <map_tile_server> element

All path names in the mapViewerConfig.xml file are relative to the directory in
which the file is stored, unless otherwise specified.

Example 1–1 shows a sample mapViewerConfig.xml file.

Example 1–1 Sample MapViewer Configuration File

<?xml version="1.0" ?>
<!-- This is the configuration file for MapViewer. -->
<!-- Note: All paths are resolved relative to this directory (where
 this config file is located), unless specified as an absolute
 path name.
 -->

<MapperConfig>

 <!-- ** -->
 <!-- ************************ Logging Settings ************************ -->
 <!-- ** -->

 <!-- Uncomment the following to modify logging. Possible values are:
 log_level = "fatal"|"error"|"warn"|"info"|"debug"|"finest"
 default: info) ;
 log_thread_name = "true" | "false" ;
 log_time = "true" | "false" ;
 one or more log_output elements.
 -->

Administering MapViewer

1-20 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 <!--
 <logging log_level="info" log_thread_name="false"
 log_time="true">
 <log_output name="System.err" />
 <log_output name="../log/mapviewer.log" />
 </logging>
 -->

 <!-- ** -->
 <!-- ********************** Map Image Settings ************************ -->
 <!-- ** -->

 <!-- Uncomment the following only if you want generated images to
 be stored in a different directory, or if you want to customize
 the life cycle of generated image files.

 By default, all maps are generated under
 $ORACLE_HOME/lbs/mapviewer/web/images.

 Images location-related attributes:
 file_prefix: image file prefix, default value is "omsmap"
 url: the URL at which images can be accessed. It must match the 'path'
 attribute below. Its default value is "%HOST_URL%/mapviewer/images"
 path: the corresponding path in the server where the images are
 saved; default value is "%ORACLE_HOME%/lbs/mapviewer/web/images"

 Images life cycle-related attributes:
 life: the life period of generated images, specified in minutes.
 If not specified or if the value is 0, images saved on disk will
 never be deleted.
 recycle_interval: this attribute specifies how often the recycling
 of generated map images will be performed. The unit is minute.
 The default interval (when not specified or if the value is 0)
 is 8*60, or 8 hours.

 -->
 <!--
 <save_images_at file_prefix="omsmap"
 url="http://mypc.mycorp.com:8888/mapviewer/images"
 path="../web/images"
 />
 -->

 <!-- ** -->
 <!-- ********************* IP Monitoring Settings ********************* -->
 <!-- ** -->

 <!-- Uncomment the following to enable IP filtering for administrative
 requests.
 Note:
 - Use <ips> and <ip_range> to specify which IPs (and ranges) are allowed.
 Wildcard form such as 20.* is also accepted. Use a comma-delimited
 list in <ips>.

 - Use <ips_exclude> and <ip_range_exclude> for IPs and IP ranges
 prohibited from accessing eLocation.

 - If an IP falls into both "allowed" and "prohibited" categories, it is
 prohibited.

Administering MapViewer

Introduction to MapViewer 1-21

 - If you put "*" in an <ips> element, then all IPs are allowed, except
 those specified in <ips_exclude> and <ip_range_exclude>.
 On the other hand, if you put "*" in an <ips_exclude> element, no one
 will be able to access MapViewer (regardless of whether an IP is in
 <ips> or <ip_range>).

 - You can have multiple <ips>, <ip_range>, <ips_exclude>, and
 <ip_range_exclude> elements under <ip_monitor>.

 - If no <ip_monitor> element is present in the XML configuration
 file, then no IP filtering will be performed (all allowed).

 - The way MapViewer determines if an IP is allowed is:

 if(IP filtering is not enabled) then allow;
 if(IP is in exclude-list) then not allow;
 else if(IP is in allow-list) then allow;
 else not allow;
 -->

 <!--
 <ip_monitor>
 <ips> 138.1.17.9, 138.1.17.21, 138.3.*, 20.* </ips>
 <ip_range> 24.17.1.3 - 24.17.1.20 </ip_range>
 <ips_exclude> 138.3.29.* </ips_exclude>
 <ip_range_exclude>20.22.34.1 - 20.22.34.255</ip_range_exclude>
 </ip_monitor>
 -->

 <!-- ** -->
 <!-- ********************** Web Proxy Setting ************************ -->
 <!-- ** -->
 <!-- Uncomment and modify the following to specify the Web proxy setting.
 This is only needed for passing background image URLs to
 MapViewer in map requests or for setting a logo image URL, if
 such URLs cannot be accessed without the proxy.
 -->

 <!--
 <web_proxy host="www-proxy.my_corp.com" port="80" />
 -->

 <!-- ** -->
 <!-- *********************** Security Configuration ******************* -->
 <!-- ** -->
 <!-- Here you can set various security related configurations of MapViewer.
 -->

 <security_config>
 <disable_direct_info_request> false </disable_direct_info_request>
 </security_config>

 <!-- ** -->
 <!-- *********************** Global Map Configuration ***************** -->
 <!-- ** -->
 <!-- Uncomment and modify the following to specify systemwide parameters
 for generated maps. You can specify your copyright note, map title, and
 an image to be used as a custom logo shown on maps. The logo image must
 be accessible to this MapViewer and in either GIF or JPEG format.
 Notes:

Administering MapViewer

1-22 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 - To disable a global note or title, specify an empty string ("") for
 the text attribute of <note> and <title> element.
 - position specifies a relative position on the map where the
 logo, note, or title will be displayed. Possible values are
 NORTH, EAST, SOUTH, WEST, NORTH_EAST, SOUTH_EAST,
 SOUTH_WEST, NORTH_WEST, and CENTER.
 - image_path specifies a file path or a URL (starts with "http://")
 for the image.

 <rendering> element attributes:
 - Local geodetic data adjustment: If allow_local_adjustment="true",
 MapViewer automatically performs local data
 "flattening" with geodetic data if the data window is less than
 3 decimal degrees. Specifically, MapViewer performs a simple
 mathematical transformation of the coordinates using a tangential
 plane at the current map request center.
 If allow_local_adjustment="false" (default), no adjustment is
 performed.
 - Automatically applies a globular map projection (geodetic data only):
 If use_globular_projection="true", MapViewer will
 apply a globular projection on the fly to geometries being displayed.
 If use_globular_projection="false" (the default), MapViewer does no map
 projection to geodetic geometries. This option has no effect on
 non-geodetic data.
 -->

 <!--
 <global_map_config>
 <note text="Copyright 2009, Oracle Corporation"
 font="sans serif"
 position="SOUTH_EAST"/>
 <title text="MapViewer Demo"
 font="Serif"
 position="NORTH" />
 <logo image_path="C:\\images\\a.gif"
 position="SOUTH_WEST" />

 <rendering allow_local_adjustment="false"
 use_globular_projection="false" />
 </global_map_config>
 -->

 <!-- ** -->
 <!-- ****************** Spatial Data Cache Setting ******************* -->
 <!-- ** -->
 <!-- Uncomment and modify the following to customize the spatial data cache
 used by MapViewer. The default is 64 MB for in-memory cache.

 To disable the cache, set max_cache_size to 0.

 max_cache_size: Maximum size of in-memory spatial cache of MapViewer.
 Size must be specified in megabytes (MB).
 report_stats: If you would like to see periodic output of cache
 statistics, set this attribute to true. The default
 is false.
 -->

 <!--
 <spatial_data_cache max_cache_size="64"
 report_stats="false"

Administering MapViewer

Introduction to MapViewer 1-23

 />
 -->

 <!-- ** -->
 <!-- ******************** Custom Image Renderers ********************** -->
 <!-- ** -->
 <!-- Uncomment and add as many custom image renderers as needed here,
 each in its own <custom_image_renderer> element. The "image_format"
 attribute specifies the format of images that are to be custom
 rendered using the class with full name specified in "impl_class".
 You are responsible for placing the implementation classes in the
 MapViewer's classpath.
 -->
 <!--
 <custom_image_renderer image_format="ECW"
 impl_class="com.my_corp.image.ECWRenderer" />
 -->

 <!-- ** -->
 <!-- ****************** Custom WMS Capabilities Info ****************** -->
 <!-- ** -->
 <!-- Uncomment and modify the following tag if you want MapViewer to
 use the following information in its getCapabilities response.
 Note: all attributes and elements of <wms_config> are optional.
 -->
 <!--
 <wms_config host="www.my_corp.com" port="80">
 <title>
 WMS 1.1 interface for Oracle Mapviewer
 </title>
 <abstract>
 This WMS service is provided through MapViewer.
 </abstract>
 <keyword_list>
 <keyword>bird</keyword>
 <keyword>roadrunner</keyword>
 <keyword>ambush</keyword>
 </keyword_list>
 <sdo_epsg_mapfile>
 ../config/epsg_srids.properties
 </sdo_epsg_mapfile>
 </wms_config>
 -->

 <!-- ** -->
 <!-- **************** Custom Non-Spatial Data Provider **************** -->
 <!-- ** -->
 <!-- Uncomment and add as many custom non-spatial data provider as
 needed here, each in its own <ns_data_provider> element.
 You must provide the id and full class name here. Optionally you
 can also specify any number of global parameters, which MapViewer
 will pass to the data provider implementation during initialization.
 The name and value of each parameter is interpreted only by the
 implementation.
 -->

 <!-- this is the default data provider that comes with MapViewer; please
 refer to the MapViewer User's Guide for instructions on how to use it.

 <ns_data_provider

Administering MapViewer

1-24 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 id="defaultNSDP"
 class="oracle.sdovis.NSDataProviderDefault"
 />
 -->

 <!-- this is a sample NS data provider with prameters:
 <ns_data_provider
 id="myProvider1" class="com.mycorp.bi.NSDataProviderImpl" >

 <parameters>
 <parameter name="myparam1" value="value1" />
 <parameter name="p2" value="v2" />
 </parameters>

 </ns_data_provider>
 -->

 <!-- ** -->
 <!-- ******************* Map Tile Server Setting ******************* -->
 <!-- ** -->
 <!-- Uncomment and modify the following to customize the map tile server.

 <tile_storage> specifies the default root directory under which the
 cached tile images are to be stored if the cache instance configuration
 does not specify the root directory for the cache instance. If the
 default root directory is not set or not valid, the default root
 direcotry will be set to be $MAPVIEWER_HOME/web/tilecache

 default_root_path: The default root directory under which the cached
 tile images are stored.
 -->

 <!--
 <map_tile_server>
 <tile_storage default_root_path="/scratch/tilecachetest/"/>
 </map_tile_server>
 -->

 <!-- ** -->
 <!-- ******************** Predefined Data Sources ******************** -->
 <!-- ** -->
 <!-- Uncomment and modify the following to predefine one or more data
 sources.
 Note: You must precede the jdbc_password value with a '!'
 (exclamation point), so that when MapViewer starts the next
 time, it will encrypt and replace the clear text password.
 -->

 <!--
 <map_data_source name="mvdemo"
 jdbc_host="elocation.us.oracle.com"
 jdbc_sid="orcl"
 jdbc_port="1521"
 jdbc_user="scott"
 jdbc_password="!password"
 jdbc_mode="thin"
 number_of_mappers="3"
 />
 -->

Administering MapViewer

Introduction to MapViewer 1-25

</MapperConfig>

1.5.2.1 Specifying Logging Information
MapViewer provides a flexible logging mechanism to record run-time information and
events. You can configure the granularity, volume, format, and destination of the log
output. You can also configure the maximum size of log files as well as automatic log
file rotation.

There are two ways to configure MapViewer’s logging, the container-controlled
approach and legacy logging using the <logging> element in the configuration file:

■ Container-controlled logging: Use Oracle Fusion Middleware 10gR3 Control if
MapViewer is deployed to an Oracle Fusion Middleware 10gR3 instance, or
directly edit the $OC4J_HOME/j2ee/home/config/j2ee-logging.xml file if
MapViewer is deployed to a standalone OC4J instance. This approach takes full
advantage of the Fusion Middleware 10gR3 diagnostic logging mechanisms and
allows such advanced features such as maximum log file size and log file rotation.

■ Legacy logging: Involves using the <logging> element in the
mapViewerConfig.xml file. When MapViewer is deployed to WebLogic Server,
legacy logging is the only supported way of configuring MapViewer logging
behavior.

Container-Controlled Logging

To configure MapViewer logging when it is deployed to an OC4J 11g standalone
instance, edit the $OC4J_HOME/j2ee/home/config/j2ee-logging.xml file. For
example, the following code in that file logs all messages from MapViewer at the
FINEST level to the default OC4J log file
(j2ee/home/log/oc4j/diagnostic.log):

<log_handler name='oc4j-handler'
class='oracle.core.ojdl.logging.ODLHandlerFactory'>
 <property name='path' value='../log/oc4j'/>
 <property name='maxFileSize' value='10485700'/>
 <property name='maxLogSize' value='1048576'/>
 <property name='encoding' value='UTF-8'/>
 <property name='supplementalAttributes' value='J2EE_APP.name,J2EE_
MODULE.name,WEBSERVICE.name,WEBSERVICE_PORT.name'/>
 </log_handler>

The preceding code defines the default OC4J log handler. It specifies where the log file
will be saved, its maximum file size, and other information. A log handler like this can
be associated with multiple actual loggers that are created by OC4J components and
applications (such as MapViewer).

The following example associates a MapViewer logger, in this case one that is
responsible for generating all internal log messages, with the preceding log handler:

Note: For container-controlled logging to work, you must comment
out or remove the <logging> element in the
mapViewerConfig.xml file. By default that element is commented
out (disabled), so that container-controlled logging settings will
function properly. If you enable the <logging> element (even if you
make no other changes to its attributes), then the container-controlled
logging settings are ignored by MapViewer.

Administering MapViewer

1-26 Oracle Fusion Middleware User's Guide for Oracle MapViewer

<logger name="oracle.mapviewer.logger" level="FINEST" useParentHandlers='false'>
 <handler name='oc4j-handler'/>
</logger>

The preceding example tells OC4J that all log records produced by the logger named
oracle.mapviewer.logger should be handled by the log handler named
oc4j-handler. It sets the logging level to FINEST so that all messages generated by
MapViewer will be visible in the log file. The possible logging levels supported here
are the following standard Java logging levels: SEVERE, WARNING, INFO, CONFIG,
FINE, FINER, and FINEST.

The following loggers are used by MapViewer for container-controlled logging:

■ oracle.mapviewer.logger is used by all server side components of
MapViewer to generate diagnostic records.

■ oracle.mapviewer.access is used by MapViewer for logging only user access
records.

The preceding example associated an existing log handler named oc4j-handler,
which is already defined in the j2ee-logging.xml file. You can also define your
own log handler in the j2ee-logging.xml file and specify a different log file
location and name, as well as the maximum file size and the file rotation. The
following example creates a new log handler to store only MapViewer access records:

<log_handler name='mv-handler' class='oracle.core.ojdl.logging.ODLHandlerFactory'>
 <property name='path' value='../log/mapaccess/access.log'/>
 <property name='maxFileSize' value='600000'/>
 <property name='maxLogSize' value='10000'/>
 <property name='format' value='ODL-TEXT'/>
 <property name='encoding' value='UTF-8'/>
 <property name='supplementalAttributes' value='J2EE_APP.name'/>
</log_handler>

The following example associates this new log handler to the MapViewer access logger
named oracle.mapviewer.access:

<logger name='oracle.mapviewer.access' level='FINEST' useParentHandlers='false'>
 <handler name='mv-handler'/>
</logger>

Note that the level must be FINEST or FINER in order for the access log messages to
appear in the log file. Now, if you restart OC4J and make map requests, you should see
a new log file (access.log) in the OC4J log/mapaccess directory that contains
records of users accessing MapViewer.

For more information about logging configuration, specifically how to configure
logging using Fusion Middleware 10gR3 Control, see Oracle Containers for J2EE
Configuration and Administration Guide

Legacy Logging
If you do not use container-controlled logging, you can use the legacy approach, which
is to uncomment-out and modify the <logging> element in the MapViewer
configuration file.

You can specify the following information as attributes or subelements of the
<logging> element:

■ The log_level attribute controls the levels of information that are recorded in
the log, which in turn affect the log output volume. Set the log_level attribute
value to one of the following, listed from most restrictive logging to least

Administering MapViewer

Introduction to MapViewer 1-27

restrictive logging: FATAL, ERROR, WARN, INFO, DEBUG, and FINEST. The FATAL
level outputs the least log information (only unrecoverable events are logged), and
the other levels are progressively more inclusive, with the FINEST level causing
the most information to be logged. For production work, a level of WARN or more
restrictive (ERROR or FATAL) is recommended; however, for debugging you may
want to set a less restrictive level.

■ The log_thread_name attribute controls whether or not to include the name of
the thread that encountered and logged the event.

■ The log_time attribute controls whether or not the current time is included when
a logging event occurs.

■ The log_output subelement identifies output for the logging information. By
default, log records are written to the system error console. You can change this to
the system output console or to one or more files, or some combination. If you
specify more than one device through multiple log_output subelements, the
logging records are sent to all devices, using the same logging level and attributes.

1.5.2.2 Specifying Map File Storage and Life Cycle Information
Map image file information is specified in the <save_images_at> element. By
default, images are stored in the $ORACLE_HOME /lbs/mapviewer/web/images
directory. You do not need to modify the <save_images_at> element unless you
want to specify a different directory for storing images.

A mapping client can request that MapViewer send back the URL for an image file
instead of the actual map image data, by setting the format attribute of the <map_
request> element (described in Section 3.2.1.1) to GIF_URL or PNG_URL. In this case,
MapViewer saves the requested map image as a file on the host system where
MapViewer is running and sends a response containing the URL of the image file back
to the map client.

You can specify the following map image file information as attributes of the <save_
images_at> element:

■ The file_prefix attribute identifies the map image file prefix. A map image file
name will be a fixed file prefix followed by a serial number and the image type
suffix. For example, if the map image file prefix is omsmap, a possible GIF map
image file could be omsmap1.gif.

Default value: file_prefix=omsmap

■ The url attribute identifies the map image base URL, which points to the
directory under which all map image files are saved on the MapViewer host. The
map image URL sent to the mapping client is the map image base URL plus the
map image file name. For example, if the map image base URL is
http://dev04.example.com:1521/mapviewer/images, the map image
URL for omsmap1.gif will be
http://dev04.example.com:1521/mapviewer/images/omsmap1.gif.

Default value: url=$HOST_URL/mapviewer/images

■ The path attribute identifies the path of the directory where all map image files
are saved on the MapViewer host system. This directory must be accessible by
HTTP and must match the map image URL. Map image files saved in the
directory specified by the path attribute should be accessible from the URL
specified by the url attribute.

However, if you are deploying MapViewer to WebLogic Server, the default value
for the path attribute (../web/images) is not correct. The path attribute value in

Administering MapViewer

1-28 Oracle Fusion Middleware User's Guide for Oracle MapViewer

this case should be ../../images, because the physical "images" directory is
mapviewer.ear/web.war/images; so using relative path, the value should be
../../images for the path attribute to resolve to the physical directory.

■ The life attribute specifies the number of minutes that a generated map image is
guaranteed to stay on the file system before the image is deleted. If the life
attribute is specified, the recycle_interval attribute controls how frequently
MapViewer checks for possible files to delete.

Default: MapViewer never deletes the generated map images.

■ The recycle_interval attribute specifies the number of minutes between times
when MapViewer checks to see if it can delete any image files that have been on
the file system longer than the number of minutes for the life attribute value.

Default value: 480 (8 hours)

1.5.2.3 Restricting Administrative (Non-Map) Requests
In addition to map requests, MapViewer accepts administrative (non-map) requests,
such as requests to list all data sources and to add and delete data sources. (Chapter 7
describes the administrative requests.) By default, all MapViewer users are permitted
to make administrative requests.

However, if you want to restrict the ability to submit administrative requests, you can
edit the MapViewer configuration file to allow administrative requests only from users
with specified IP addresses.

To restrict administrative requests to users at specified IP addresses, add the <ip_
monitor> element to the MapViewer configuration file (or uncomment and modify
an existing element, if one is commented out). Example 1–2 shows a sample <ip_
monitor> element excerpt from a configuration file.

Example 1–2 Restricting Administrative Requests

<MapperConfig>
 . . .
 <ip_monitor>
 <ips> 138.1.17.9, 138.1.17.21, 138.3.*, 20.* </ips>
 <ip_range> 24.17.1.3 - 24.17.1.20 </ip_range>
 <ips_exclude> 138.3.29.* </ips_exclude>
 <ip_range_exclude>20.22.34.1 - 20.22.34.255</ip_range_exclude>
 </ip_monitor>
 . . .
</MapperConfig>

In Example 1–2:

■ The following IP addresses are explicitly included as able to submit administrative
requests (unless excluded by an <ips_exclude> element): 138.1.17.9, 138.1.17.21,
all that start with 138.3., all that start with 20., and all in the range (inclusive) of
24.17.1.3 to 24.17.1.20.

■ The following IP addresses are explicitly excluded from submitting administrative
requests: all starting with 138.3.29., and all in the range (inclusive) of 20.22.34.1 to
20.22.34.255.

■ All other IP addresses that are not explicitly included cannot submit
administrative requests.

Syntax notes for the <ip_monitor> element:

Administering MapViewer

Introduction to MapViewer 1-29

■ Use <ips> and <ip_range> elements to specify which IP addresses (and ranges)
are allowed. Asterisk wildcards (such as 20.*) are acceptable. Use a
comma-delimited list for addresses.

■ Use <ips_exclude> and <ip_range_exclude> elements to exclude IP
addresses and address ranges from submitting administrative requests. If an
address falls into both the included and excluded category, it is excluded.

■ If you specify the asterisk wildcard in an <ips> element, all associated IP
addresses are included except any specified in <ips_exclude> and <ip_
range_exclude> elements.

1.5.2.4 Specifying a Web Proxy
Sometimes the MapViewer server needs to make HTTP connections to external Web
servers, such as to obtain a background image through a URL or to contact an external
WMS server to fetch its map images. In such cases, if there is a firewall between the
MapViewer server and the target Web server, you may need to specify the HTTP proxy
information to MapViewer so that it will not be blocked by the firewall. The following
example specifies Web proxy information:

<web_proxy host="www-proxy.mycorp.com" port="80" />

1.5.2.5 Specifying Global Map Configuration Options
You can specify the following global "look and feel" options for the display of each
map generated by MapViewer:

■ Title

■ Note (such as a copyright statement or a footnote)

■ Logo (custom symbol or corporate logo)

■ Local geodetic data adjustment

■ Splitting geometries along the 180 meridian

To specify any of these options, use the <global_map_config> element. For
example:

<global_map_config>
 <note text="Copyright (c) 2009, Example Corporation"
 font="sans serif"
 position="SOUTH_EAST"/>
 <title text="Map Courtesy of Example Corp."
 font="Serif"
 position="NORTH"/>
 <logo image_path="C:\\images\\a.gif"
 position="SOUTH_WEST"/>

 <rendering allow_local_adjustment="false"
 use_globular_projection="false"/>
</global_map_config>

Set the map title through the <title> element of the <global_map_config>
element. You can also set the map title in an individual map request by specifying the
title attribute with the <map_request> element, and in this case, the title in the
map request is used instead of the global title in the MapViewer configuration file.
Note the following information about the attributes of the <title> element:

■ The text attribute specifies the title string.

Administering MapViewer

1-30 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ The font attribute specifies a font. The font must exist on the system where
MapViewer is running.

■ The position attribute provides a positioning hint to MapViewer when
determining where the map title will be drawn on a map. Possible values are:
NORTH, EAST, SOUTH, WEST, NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_
WEST, and CENTER.

Default value: NORTH

Set the map note through the <note> element of the <global_map_config>
element. Note the following information about the attributes of the <note> element:

■ The text attribute specifies the note string.

■ The font attribute specifies a font. The font must exist on the system where
MapViewer is running.

■ The position attribute provides a positioning hint to MapViewer when
determining where the map note will be drawn on a map. Possible values are:
NORTH, EAST, SOUTH, WEST, NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_
WEST, and CENTER.

Default value: SOUTH_EAST

Set the map logo through the <logo> element of the <global_map_config>
element. The map logo image must be in either JPEG or GIF format. The image can be
stored in a local file system where the MapViewer instance will have access to it, or it
can be obtained from the Web by specifying its URL. To specify a map logo,
uncomment the <map_logo> element in the MapViewer configuration file and edit its
attributes as needed.

Note the following information about the attributes of the <logo> element:

■ The image_path attribute must specify a valid file path name, or a URL starting
with http://.

■ The position attribute provides a positioning hint to MapViewer when
determining where the map logo will be drawn on a map. Possible values are:
NORTH, EAST, SOUTH, WEST, NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_
WEST, and CENTER.

Default value: SOUTH_WEST

If the logo image is obtained through a URL that is outside your firewall, you may
need to set the Web proxy in order for MapViewer to retrieve the logo image. For
information about specifying a Web proxy, see Section 1.5.2.4.

If you also specify a map legend, be sure that its position is not the same as any
position for a map title, note, or logo. (Map legends are explained in Section 2.4.2 and
Section 3.2.11. The default position for a map legend is SOUTH_WEST.)

To have MapViewer automatically project geodetic data to a local non-geodetic
coordinate system before displaying it if the map data window is less than 3 decimal
degrees, specify allow_local_adjustment="true" in the <rendering> element.

To have MapViewer automatically apply a globular map projection (that is, a map
projection suitable for viewing the world, and specifically the azimuthal equidistant
projection for MapViewer), specify use_globular_projection="true" in the
<rendering> element. This option applies to geodetic data only.

Administering MapViewer

Introduction to MapViewer 1-31

1.5.2.6 Customizing the Spatial Data Cache
You can customize the in-memory cache that MapViewer uses for spatial data by using
the <spatial_data_cache> element. For example:

<spatial_data_cache max_cache_size="64"
 report_stats="true"
/>

You can specify the following information as attributes of the <spatial_data_
cache> element:

■ The max_cache_size attribute specifies the maximum number of megabytes
(MB) of in-memory cache.

Default value: 64

■ The report_stats attribute, if set to true, instructs the MapViewer server to
periodically (every 5 minutes) output cache statistics, such as the number of
objects cached, the total size of cache objects, and data relating to the efficiency of
the internal cache structure. The statistics are provided for each data source and
for each predefined theme. They can help you to determine the optimal setting of
the in-memory cache. For example, if you want to pin all geometry data for certain
themes in the memory cache, you need to specify a max_cache_size value that
is large enough to accommodate these themes.

Default value: false

The spatial data cache is always enabled by default, even if the element is commented
out in the configuration file. To completely disable the caching of spatial data, you
must specify the max_cache_size attribute value as 0 (zero).

For detailed information about the caching of predefined themes, see Section 2.3.1.5.

1.5.2.7 Specifying the Security Configuration
You can use the <security_config> element to specify whether MapViewer should
reject <info_request> elements in requests. An <info_request> element is a
type of request from a client that asks MapViewer to execute a simple SQL statement
and return the result rows in plain text or XML format. This request is often used by
MapViewer applications written in JSP to identify features displayed on a map, or to
run simple spatial search queries.

However, if the MapViewer data source information is exposed, malicious attackers
might be able to abuse this capability and obtain sensitive information. To prevent this
from happening, you can make sure MapViewer always connects to a database schema
that has very limited access rights and hosts only non-sensitive information, and you
can also reject all <info_request> requests by specifying the <security_config>
element as follows:

<security_config>
 <disable_direct_info_request> true </disable_direct_info_request>
</security_config>

Note: The disk-based spatial cache, which was supported in the
previous release, is no longer supported, because performance tests
have shown that disk-based spatial caching was often less efficient
than fetching spatial objects directly from the database when needed
(that is, in cases where the cached objects frequently did not need to
be retrieved again after caching).

Administering MapViewer

1-32 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Note, however, that this setting affects some Mapviewer features. For example, the
identify() method of the MapViewer Java API will no longer work, and
applications will need to implement their own identify() method through other
means.

1.5.2.8 Registering a Custom Image Renderer
MapViewer can display images stored in a database BLOB through its image theme
capability. When the image data stored in the BLOB is in a format unknown to
MapViewer, such as ECW, you can register a custom image renderer so that
MapViewer can use it to display such images. For information about creating and
registering a custom image renderer, see Appendix C.

To specify a custom image renderer, use the <custom_image_renderer> element,
as shown in the following example:

<custom_image_renderer image_format="ECW"
 impl_class="com.my_corp.image.ECWRenderer" />

The image_format attribute specifies the image format name with which this custom
image renderer should be associated.

The impl_class attribute specifies the name of the class that implements the custom
image renderer.

1.5.2.9 Registering a Custom Spatial Provider
MapViewer can render spatial data that is in an external (non-Oracle Spatial) native
format, such as Shapefile, if there is a spatial provider implementation registered for
the format. For information about implementing an external spatial data provider (in
connection with custom geometry themes), see Section 2.3.8.

To register an external spatial data provider, use the <s_data_provider> element,
as shown in the following example:

<s_data_provider
 id="shapefileSDP"
 class="oracle.sdovis.ShapefileDataProvider"
 >
 <parameters>
 <parameter name="datadir" value="/temp/data" />
 </parameters>
</s_data_provider>

The class attribute specifies the name of the class that implements the external
spatial data provider.

The <parameters> element specifies a set of initialization parameters that are used
by the data provider during its initialization process. In this example, the Shapefile
provider has a data directory ("datadir") parameter that points to directory where
MapViewer can look for the data.

1.5.2.10 Registering Custom Nonspatial Data Providers
When generating thematic map layers, MapViewer can dynamically join nonspatial
attribute data (such as sales for each region) that originates from an external source
with the base geometries (boundaries of all the regions) that are stored in the database.
For information about thematic mapping using external attribute data from nonspatial
data providers, see Section 2.3.10.1.

Administering MapViewer

Introduction to MapViewer 1-33

To register a nonspatial data provider, use the <ns_data_provider> element, as
shown in the following example:

<ns_data_provider id="testProvider"
 class="com.mycorp.GetSalesData" >
 <parameters>
 <parameter name="bi_database" value="stadb32.mycorp.com" />
 <parameter name="sid" value="bidata" />
 </parameters>
</ns_data_provider>

The id attribute uniquely identifies a nonspatial data provider. Use this id value in
any map request that involves the provider.

The class attribute specifies the name of the class that implements the nonspatial
data provider.

The <parameters> element specifies a set of initialization parameters that are used
by the nonspatial data provider during its initialization process.

1.5.2.11 Customizing SRS Mapping
You can use the <srs_mapping> element to specify an SDO to EPSG SRID mapping
file, which define mappings between Oracle Spatial SDO_SRID values and EPSG
codes. As explained in Section E.1.3, each line in the specified mapping file must
contain an SDO_SRID value and the corresponding EPSG code. The <srs_mapping>
element can be used with WMS and WFS themes.

The following example uses the <srs_mapping> element to specify an SDO to EPSG
SRID mapping file:

<srs_mapping>
 <sdo_epsg_mapfile>
 ../config/epsg_srids.properties
 </sdo_epsg_mapfile>
</srs_mapping>

1.5.2.12 Customizing WMS GetCapabilities Responses
MapViewer can be used as an Open Geospatial Consortium WMS (Web Map Server)
1.1.1 compliant server. As such, a WMS client can send MapViewer the
GetCapabilities request. In response, MapViewer will send back the list of themes
that it hosts and other important information, such as the data provider’s name and a
list of keywords, that might of interest to the requesting client.

You can use the <wms_config> element to customize the descriptive information sent
back to the client as part of the GetCapabilities response, as shown in the
following example:

<wms_config host="www.my_corp.com" port="80"
 protocol="http" default_datasource="dsrc1"
 public_datasources="dsrc1,dsrc2">
 <title>
 WMS 1.1 interface for Oracle Application Server 10g MapViewer
 </title>
 <abstract>
 This WMS service is provided through Oracle MapViewer.
 </abstract>
 <keyword_list>
 <keyword>bird</keyword>
 <keyword>roadrunner</keyword>
 <keyword>ambush</keyword>

Administering MapViewer

1-34 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 </keyword_list>
 <sdo_epsg_mapfile>
 ../config/epsg_srids.properties
 </sdo_epsg_mapfile>
</wms_config>

The host attribute specifies the host part of the service request URL that the client
should use for future WMS requests made to this MapViewer server.

The port attribute specifies the port part of the service request URL that the client
should use for future WMS requests made to this MapViewer server.

The protocol attribute specifies the protocol part of the service request URL that the
client should use for future WMS requests made to this MapViewer server.

The default_datasource attribute specifies the base data source used to retrieve
the capabilities response. If this attribute is not defined, the data source WMS is used,
and that data source must exist in this MapViewer server.

The public_datasources attribute specifies which data source contents are to be
listed in the GetCapabilities response. If this attribute is not defined, all data source
contents will be listed.

The <title> element specifies the service title to be included as part of the response.

The <abstract> element specifies the abstract to be included as part of the response.

The <keyword_list> element specifies a list of keywords that best describe the types
of layers served by this MapViewer server.

The <sdo_epsg_mapfile> element specifies a text file that defines mappings from
Oracle Spatial (SDO) SRID values to the corresponding EPSG SRID values that are
typically used in most WMS requests and responses. For information about this
mapping file, see Section E.1.3.

1.5.2.13 Configuring the Map Tile Server for Oracle Maps
The Oracle Maps feature of MapViewer can pre-generate base map image tiles and
cache them through the map tile server. You can use the <map_tile_server> element to
provide configuration information to the map tile server, such as default location for
map tile file storage, and logging information, as shown in the following example:

<map_tile_server>
 <tile_storage default_root_path="/scratch/tilecache/" />
 <logging log_level="finest" log_thread_name="false" log_time="true">
 <log_output name="System.err"/>
 </logging>
</map_tile_server>

The <tile_storage> element specifies the default root directory where all map
image tiles generated by this MapViewer server will be stored.

The <logging> element specifies logging information specific to the map tile server.

1.5.2.14 Defining Permanent Map Data Sources
Every map request must have a data source attribute that specifies a map data source,
which is a database user with geospatial data. You can predefine available map data
sources by using the <map_data_source> element. For example:

<map_data_source name="mvdemo"
 jdbc_host="mapsrus.us.oracle.com"
 jdbc_sid="orcl"

Administering MapViewer

Introduction to MapViewer 1-35

 jdbc_port="1521"
 jdbc_user="scott"
 jdbc_password="!password"
 jdbc_mode="thin"
 number_of_mappers="5"
 max_connections="100"
 allow_jdbc_theme_based_foi="true"
 plsql_package="web_user_info"
/>

You can specify the following information as attributes of the <map_data_source>
element:

■ The name attribute specifies a unique data source name to MapViewer. You must
specify the data source name in all map requests that identify a data source.

■ You must specify all necessary connection information, or a container data source
name, or a net service name (TNS name). That is, you must specify only one of the
following, which are described in this section: jdbc_host, jdbc_sid, jdbc_
port, and jdbc_user; or container_ds; or jdbc_tns_name.

Note that if the database on which you defined a data source on is restarted, and if
the data source is created from jdbc_host/jdbc_sid/jdbc_port or jdbc_
tns_name attributes, MapViewer will resume normal operation (for example
responding to map requests with properly created maps) as soon as the database is
back online.

■ The jdbc_host, jdbc_sid, jdbc_port, and jdbc_user attributes specify the
database connection information and the database user name. (As an alternative to
specifying these attributes and the jdbc_password and jdbc_mode attributes,
you can specify the container_ds attribute, described later in this section.)

■ The jdbc_password attribute specifies the database user's login password. It
must be prefixed with an exclamation point (!) when you specify the password for
the first time. When MapViewer next restarts, it will automatically obfuscate and
replace the clear text password.

Note that MapViewer does not change this password string in any way; no
conversion to upper or lower case is performed. If the database uses case-sensitive
passwords, the specified password must exactly match the password in the
database.

■ The jdbc_mode attribute tells MapViewer which Oracle JDBC driver to use when
connecting to the database. The default is thin (for the "thin" driver). The other
possible value is oci8, which requires that you also have the Oracle Database
client installed on the same host on which MapViewer is running.

■ The container_ds attribute lets you specify the J2EE container name (from the
ejb-location attribute value) instead of specifying the jdbc_host, jdbc_sid,
jdbc_port, jdbc_user, jdbc_password, and jdbc_mode attributes. For
example, assume that the <data_source> element in the data-source.xml
file for the standalone OC4J instance contains
ejb-location="jdbc/OracleDS". In this case, instead of using the example at
the beginning of this section, you can define the permanent MapViewer data
source as follows:

<map_data_source name="mvdemo"
 container_ds="jdbc/OracleDS"
 number_of_mappers="5"
 max_connections="100"
/>

Administering MapViewer

1-36 Oracle Fusion Middleware User's Guide for Oracle MapViewer

To use the container_ds attribute in the MapViewer configuration file, you
must start the OC4J instance with the -userThreads option. MapViewer
processes its configuration file in a separate user thread; if the -userThreads
option is not specified, the container’s context information is not available to user
threads. However, if you are dynamically defining a data source through the
MapViewer Administration page, you can use the container_ds attribute
regardless of whether you started the OC4J instance with the -userThreads
option.

If you use the container_ds attribute, and if you want MapViewer to resume
normal operation (for example responding to map requests with properly created
maps) automatically after the database on which you defined a data source on is
restarted, you must instruct the container data source to always validate a
connection before it can be returned to the application. Check your middleware
documentation for whether this option is supported and, if it is supported, how to
enable it.

■ The jdbc_tns_name attribute identifies a net service name that is defined in the
tnsnames.ora file.

■ The number_of_mappers attribute identifies the maximum number of map
renderers available (and thus the maximum number of map requests that
MapViewer can process in parallel for the data source) for this data source. Any
unprocessed map requests are queued and eventually processed. For example, if
the value is 3, MapViewer will be able to process at most three mapping requests
concurrently. If a fourth map request comes while three requests are being
processed, it will wait until MapViewer has finished processing one of the current
requests.

Specifying a large number_of_mappers value (such as 50 or 100) can improve
the overall throughput, but it will also increase run-time memory and CPU usage
at times of peak loads, since MapViewer will attempt to process more concurrent
map requests. It will also increase the number of active database sessions.
Therefore, be sure that you do not set too large a number for this attribute.

■ The max_connections attribute specifies the maximum number of database
connections or sessions open for the data source at any given time. In most cases
you should not specify this attribute, and accept the default value of 100.

If you specify a value that is too small, the effect on performance can be
significant. For example, if you specify max_connections="5" for a map
request with 12 predefined themes, 12 connections will still be created temporarily
to meet the demand, but 7 of them will be closed immediately upon the
completion of the request (leaving only 5 open connections). MapViewer will then
dynamically create database connections whenever it needs more than 5 to meet
the demand when processing map requests, because the number of permanently
open database connections will never exceed the specified max_connections
attribute value. Specifying a value that is too small will almost certainly increase
the time it takes to process a map request, because opening a new database
connection involves significant processing overhead.

■ The allow_jdbc_theme_based_foi attribute lets you specify whether to allow
JDBC theme-based FOI requests to be performed against this data source. A JDBC
theme-based FOI request is based on a dynamic SQL query constructed by the
JavaScript client application.

By default, such FOI requests are not allowed unless you set this attribute to true.
Due to the potential security threat, JDBC theme-based FOI requests should be

Administering MapViewer

Introduction to MapViewer 1-37

used with caution. You should only allow JDBC theme-based FOI requests on
database connections that are granted very low privilege and contain only data
that you want to expose. See Section 8.3.1.3 for more information about JDBC
theme-based FOI requests.

■ The plsql_package attribute lets you specify a PL/SQL package to be used for
secure map rendering, as explained in Section 1.8.

■ The web_user_type attribute (not shown in the example in this section) lets you
specify the source for the authenticated user’s name. It is especially useful for
getting the authenticated user’s name from a cookie, in conjunction with
specifying a PL/SQL package to be used for secure map rendering. For more
information about the web_user_type attribute and an example of its use, see
Section 1.8.2.

1.5.3 Performing MapViewer Administrative Tasks
Besides knowing how to configure MapViewer, you should also know how to perform
other important administrative tasks using the MapViewer administration page. To log
in to this page, see the instructions in Section 1.5.1.

The tasks you can do as a MapViewer administrator include the following:

■ Editing the configuration file

Click Manage MapViewer, then Configuration.

■ Creating dynamic data sources

Click Manage MapViewer, then Datasources. Enter the appropriate parameters,
then click Submit.

■ Refreshing the list of data sources

Click Manage MapViewer, then Datasources. Click Refresh.

■ Clearing cached definitions of MapViewer styles, themes, and base maps

Click Manage MapViewer, then Datasources. Select the data source, then click
Purge Cached Metadata.

■ Clearing cached geometry data for predefined themes

Click Manage MapViewer, then Geometry Cache. Under Purge Cached
Geometries, select the data source and theme, and click Submit.

■ Creating map tile layers for Oracle Maps

Click Manage Map Caches, then Create. Select Internal or External for the map
source type, and click Continue.

Internal map source: Enter the map cache name, then select the data source and
base map. Also define parameters for cache storage (where tiles will be stored),
zoom levels, minimum and maximum scale, spatial reference ID (SRID), data
bounding box (MBR), and tile size and format. Click Submit to create the map tile
layer. You can also define the map cache properties in XML by clicking XML.

External map source: Enter the map cache name, then select the data source. To
provide access to the external source, define parameters such as the map service
URL, the request method (GET or POST), the proxy information (if needed), the
java adapter class name and its location on the server, and additional adapter
properties. Also define parameters for cache storage (where tiles will be stored),
zoom levels, minimum and maximum scale, spatial reference ID (SRID), data

Oracle Real Application Clusters and MapViewer

1-38 Oracle Fusion Middleware User's Guide for Oracle MapViewer

bounding box (MBR), and tile size and format. Click Submit to create the map tile
layer. You can also define the map cache properties in XML by clicking XML.

■ Managing map tile layers for Oracle Maps

Click Manage Map Caches, then Manage. Then do any of the following:

To refresh map caches, click Refresh.

To edit a map tile layer, under Existing Map Tile Layers, select the data source. At
the cache level, you can delete the cache, view cache details, and place the cache
offline or online. At the tile level, you can perform operations such as clearing,
prefetching, and refreshing the tiles, specifying the zoom level, and specifying the
bounding box.

To check the status of a request, enter the request ID and click Submit.

1.6 Oracle Real Application Clusters and MapViewer
When the database is an Oracle Real Application Cluster (Oracle RAC), you cannot
create MapViewer data sources that directly connect to it. Instead, MapViewer must
connect to an Oracle RAC database through the data source of the J2EE container. To
enable MapViewer to connect to an Oracle RAC database, you must do the following:

1. Create a JDBC data source that connects to the Oracle RAC database at the OC4J
level, as explained in Section 1.6.1. The data source can then be used by
applications such as MapViewer through JNDI lookup.

2. Configure the OC4J instance so that it publishes the JNDI location of the Oracle
RAC data source so that MapViewer can access it, as explained in Section 1.6.2.

3. Define a MapViewer data source that reuses the container data source through the
JNDI location in its configuration file, as explained in Section 1.6.3.

4. Restart MapViewer.

1.6.1 Creating a Container Oracle RAC Data Source
With either a full Oracle Fusion Middleware or standalone OC4J installation, use
Oracle Enterprise Manager to create a data source that connects to the Oracle RAC
database. For example, if using Oracle Application Server release 10.1.3 or later, you
can log in to Enterprise Manager, navigate to the OC4J instance that contains the
MapViewer server, click the Administration tab, and click the JDBC Resources Go to
Task link to start creating a new data source, as shown in Figure 1–12.

Oracle Real Application Clusters and MapViewer

Introduction to MapViewer 1-39

Figure 1–12 Administration Tab for Creating Oracle RAC Container Data Source

For more information about creating a data source to connect to an Oracle RAC
database, see Oracle Application Server Administrator's Guide.

After creating the data source, you should test the connection using Enterprise
Manager, by clicking the Test Connection icon for the connection, as shown in
Figure 1–13.

Figure 1–13 Testing the Connection for the Data Source

Oracle Real Application Clusters and MapViewer

1-40 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Be sure to note the JNDI Location value (which is jdbc/mvdemods in Figure 1–13),
because you will need this value when you create the MapViewer data source
(explained in Section 1.6.3).

1.6.2 Adding the userThreads Option to the OC4J Container
You must specify the userThreads option to tell the OC4J instance to publish the
JNDI locations, such as the one for the newly created data source, to all user threads.
Without this option, MapViewer cannot access the JNDI location that references the
data source, because by default OC4J makes such JNDI locations available only to the
main thread within which OC4J itself is running. MapViewer, however, is started in a
separate user thread.

The mechanism for specifying the userThreads option depends on whether you re
using a standalone OC4J instance or a full Oracle Fusion Middleware installation.

1.6.2.1 Adding userThreads for a Standalone OC4J Instance
With a standalone OC4J instance, you must start the OC4J instance with the
-userThreads option, as in the following example:

java –jar oc4j.jar –userThreads

1.6.2.2 Adding userThreads for a Full Oracle Fusion Middleware 10gR3 Installation
With a full Oracle Fusion Middleware 10gR3 installation, the Java startup parameters
are defined in the $OAS_HOME/opmn/conf/opmn.xml configuration file. (opmn is
the master process that starts and stops various Oracle Fusion Middleware 10gR3
components, such as OC4J instances.)

In this file you can specify Java JVM startup parameters for the OC4J instance running
MapViewer. For example, if you deployed MapViewer to the home OC4J instance, add
the text -Doc4j.userThreads=true, as shown in the following example:

 <ias-component id="OC4J">
 <process-type id="home" module-id="OC4J" status="enabled">
 <module-data>
 <category id="start-parameters">
 <data id="java-options" value="-server
 -Djava.security.policy=$ORACLE_HOME/j2ee/home/config/java2.policy
 -Djava.awt.headless=true -Dhttp.webdir.enable=false
 -Doc4j.userThreads=true"/>
 </category>
 ...

After editing and saving the opmn.xml file, you must restart the OC4J instance for the
userThreads option to take effect; and if that does not work, restart Oracle Fusion
Middleware 10gR3. For information about restarting the OC4J instance or Oracle
Fusion Middleware 10gR3, see Oracle Application Server Administrator's Guide.

1.6.3 Creating a MapViewer Data Source
Create a new MapViewer data source that enables it to connect to the Oracle RAC
database, by using the container_ds attribute of the MapViewer data source.
Specifically, you must add an entry like the following in the mapViewerConfig.xml
file:

<map_data_source name="mvdemo"
 container_ds="jdbc/mvdemods"
 number_of_mappers="7" />

High Availability and MapViewer

Introduction to MapViewer 1-41

In the preceding example:

■ The name attribute specifies the MapViewer data source name, which is needed
for map requests.

■ The value for the container_ds attribute must match the JNDI Location string
that you noted when you created the container Oracle RAC data source (see
Section 1.6.1).

■ The number_of_mappers attribute specifies the maximum number of supported
concurrent map requests that can target this data source.

For more information about the name and number_of_mappers attributes, see
Section 1.5.2.14.

After adding the data source definition, you must restart MapViewer to have the new
data source created. After you do this, whenever you request a map from this data
source, MapViewer obtains the necessary database connections from the container
before proceeding.

1.7 High Availability and MapViewer

MapViewer users can benefit from the high availability features of Oracle Database
and Oracle Fusion Middleware.

1.7.1 Deploying MapViewer on a Multiprocess OC4J Instance
You can safely deploy MapViewer in an OC4J instance of Oracle Fusion Middleware
that has multiple processes. Oracle Fusion Middleware lets you configure the number
of actual processes (JVMs) that can be started for each OC4J instance. On a
multiprocessor host, starting multiple processes for a single OC4J can better utilize the
system resources. (Releases of MapViewer before 10g Release 2 (10.1.2) could not take
advantage of this feature and thus could not be deployed on such OC4J instances.)

When MapViewer is deployed to an OC4J instance with multiple processes, each
process has a MapViewer server running inside it. These MapViewer servers all reside
on the same host but in different Java processes. Map requests sent to this OC4J
instance are automatically dispatched to the individual MapViewer servers. Each
MapViewer server generates map image files according to a unique naming scheme,
with the names coordinated when the different MapViewer servers are first started
(that is, when the containing OC4J instance is started). This avoids the possibility of
two MapViewer servers generating map files in the same sequence with the same file
names.

1.7.2 Deploying MapViewer on a Middle-Tier Cluster
OC4J instances in different Oracle Fusion Middleware 10gR3 installations can be
clustered into an island. This provides a middle-tier fail-safe option. MapViewer can
be deployed to an OC4J island. You must take care, however, about how the generated

Note: This section is intended for advanced users who want to take
full advantage of the high availability features of Oracle Fusion
Middleware with MapViewer. You must have a strong understanding
of high availability features, which are described in Oracle Fusion
Middleware High Availability Guide.

Secure Map Rendering

1-42 Oracle Fusion Middleware User's Guide for Oracle MapViewer

image files on each host are named and referenced through URLs by client
applications.

Consider the following sample scenario. When a map request is sent to the front Web
server, it reaches the MapViewer server running on host A. MapViewer on host A then
sends back the URL for the generated map image, and the client then sends a second
request to fetch the actual image. This second request might be received by the OC4J
container running on host B, which has no such image (or which will send back an
incorrect image with the same name).

There is no single best solution for this problem in all environments. One option is to
have the hosts share common networked storage, so that the map images are
deposited in the same virtual (networked) file system by different MapViewer servers
running on different hosts. You must configure the map file storage information (see
Section 1.5.2.2) for each MapViewer instance so that the images are deposited in
different subdirectories or so that they have different file prefixes. Otherwise, the
image files generated by the multiple MapViewer servers might overwrite each other
on the disk. By properly configuring the map file storage information, you ensure that
each URL sent back to the client uniquely identifies the correct map on the network
drive.

If you cannot use networked drives, consider using a load balancer. You may first need
to configure the map file storage information for each MapViewer instance (as
explained in the preceding paragraph), so that each MapViewer instance names its
generated images using an appropriate scheme to ensure uniqueness. You can then
specify rules in the load balancer to have it redirect image requests to a certain host if
the URL matches a certain pattern, such as containing a specified map image file
prefix.

1.8 Secure Map Rendering
This section describes how to implement secure map rendering based on a Web user’s
identity. Users with different roles or permissions will see different feature sets when
viewing the same theme. The basic idea is that MapViewer will always invoke a
specified PL/SQL package to set the Web user's identity in the database whenever
accessing the database for any themes. This user information can be used by the
database to enforce data access control.

MapViewer will connect directly to a database schema that stores all the geospatial
data. To enforce access control for MapViewer on the data in this schema, you must
perform the following steps:

1. Create a PL/SQL package in the database schema. The package must have at least
two named procedures: set_user(username) and clear_user().

2. Create views, set access rights on database objects, and perform other tasks, based
on the user identity stored in the PL/SQL package (which is set by MapViewer
through the set_user procedure for each database session).

Note: In this section, the terms user and authenticated user refer to the
application or Web user that logs into Oracle Fusion Middleware or
Oracle Single Sign-On (SSO). It is not the same as the database user.
MapViewer itself will connect directly to a database schema that stores
all the geospatial data.

Secure Map Rendering

Introduction to MapViewer 1-43

3. Create a MapViewer data source to the schema, providing the name of the
PL/SQL package as part of the data source definition. This is considered a secured
data source.

4. Create MapViewer themes that are based on the views created in step 2.

5. Establish Web authentication for users accessing your MapViewer application
page or pages, so that when a map request reaches the MapViewer servlet, the
Web session object should contain an authenticated user's identity.

6. Issue map and FOI (feature of interest) requests that view the themes defined in
step 4, either directly or through the use of base maps and Oracle Maps.

MapViewer will automatically pass the user identity to the database using the
PL/SQL package before it executes any query for these themes. Only those rows
that are visible to the identified user will be returned from the database and
rendered by MapViewer.

Section 1.8.1 explains how secure map rendering works and provides implementation
details and examples. Section 1.8.3 describes some options for authenticating users and
refers to a supplied demo.

1.8.1 How Secure Map Rendering Works
MapViewer, as a J2EE application, can obtain the identity of a web user that has been
authenticated to Oracle Fusion Middleware or Oracle Single Sign-On (SSO). This user
information can then be preserved and propagated to the database, where secure
access to map layers and tables can be set up based on the user identity. For example, a
database administrator (DBA) can create a view of a base table that selects only those
spatial features visible to a specific user.

To pass the Web user identity from Oracle Fusion Middleware or Oracle Single
Sign-On (SSO) to the database, use a secure PL/SQL package that sets the user identity
in the database. This PL/SQL package is created by a DBA or application developer
and installed in the data source schema. Such a package can have any number of
procedures and functions, but it must contain at least the following two procedures:

■ set_user(username)

■ clear_user()

Whenever a theme is requested from a secured data source, MapViewer invokes the
set_user procedure in the associated PL/SQL package before it executes any data
query for the theme, and it invokes the clear_user procedure when the querying
process is complete for the theme.

Example 1–3 shows a PL/SQL package that you can use for secure map rendering.
You can create this package in the example MVDEMO schema.

Example 1–3 PL/SQL Package for Secure Map Rendering

CREATE OR REPLACE PACKAGE web_user_info
AS
 PROCEDURE set_user (p_name IN VARCHAR2);
 PROCEDURE clear_user;
 FUNCTION get_user
 RETURN VARCHAR2;
END;
CREATE OR REPLACE PACKAGE BODY web_user_info
AS
 w_name VARCHAR2 (32767);

Secure Map Rendering

1-44 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 PROCEDURE set_user (p_name IN VARCHAR2)
 AS
 BEGIN
 w_name := LOWER (p_name);
 END;

 PROCEDURE clear_user
 AS
 BEGIN
 w_name := null;
 END;

 FUNCTION get_user
 RETURN VARCHAR2
 AS
 BEGIN
 RETURN w_name;
 END;
END;
/

In Example 1–3, set_user and clear_user are two required methods, and get_user is a
convenience function that can be used in creating views or for other data access control
purposes

After you create the package (which essentially contains the user identity for the
current database session), you can set up an elaborate virtual private database that
uses this user information (see Oracle Database Security Guide for information about
using Oracle Virtual Private Database, or VPD). For simplicity, however, this section
does not discuss VPD creation, but shows that you can create views that use this user
information to enforce data access control.

For example, in the example MVDEMO schema you can add a column named
ACCOUNT_MGR to the existing CUSTOMERS table, and assign an account manager
to each customer stored in this table. You can then create a view that returns only
customer rows for a specific account manager, as shown in Example 1–4.

Example 1–4 View for Secure Map Rendering

CREATE OR REPLACE VIEW customers_view
AS
 SELECT * FROM customers
 WHERE account_mgr = web_user_info.get_user;

You can now define a MapViewer theme based on this view, so that whenever account
managers log in and want to view customer data on a map, each will only see his or
her own customers.

After you have installed the PL/SQL package, you can pass the name of this package
to MapViewer as part of the definition of a data source by using the plsql_package
attribute, as shown in Example 1–5.

Example 1–5 Data Source Definition for Secure Map Rendering

<map_data_source name="mvdemo"
 jdbc_host="stadb32.us.oracle.com"
 jdbc_sid="mv"
 jdbc_port="15214"
 jdbc_user="mvdemo"
 jdbc_password="password"

Secure Map Rendering

Introduction to MapViewer 1-45

 jdbc_mode="thin"
 number_of_mappers="3"
 allow_jdbc_theme_based_foi="true"
 plsql_package="web_user_info"
 />

When you specify a PL/SQL package name in a data source definition, MapViewer
flags the data source as a secure data source, and it automatically invokes the
package's set_user and clear_user procedures whenever performing any theme
queries on the data source.

1.8.2 Getting the User Name from a Cookie
Sometimes the authenticated user's name is not passed to MapViewer through a J2EE
or OSSO session. such as when you integrate MapViewer within Application Express
(APEX), where authentication is carried out by APEX and the user name is not
available through a J2EE or OSSO session. To enable you to work around this issue,
MapViewer also supports getting the user name from a cookie. Note that it is your
responsibility to set up the cookie within APEX to hold the authenticated user name.

To ensure that MapViewer picks up the user name from a named cookie, you must
specify the web_user_type attribute in the data source definition (in addition to the
mandatory plsql_package attribute). For example, if you want MapViewer to pick
up the user name from a cookie named MON_USER, your secure data source
definition should look like Example 1–6.

Example 1–6 Data Source Definition Specifying Cookie Name

<map_data_source name="mvdemo"
 jdbc_host="stadb32.us.oracle.com"
 jdbc_sid="mv"
 jdbc_port="25650"
 jdbc_user="mvdemo"
 jdbc_password="LfCDQ6NH59nuV7zbeY5QY06sqN7XhiUQ"
 jdbc_mode="thin"
 number_of_mappers="3"
 allow_jdbc_theme_based_foi="true"
 plsql_package="web_user_info"
 web_user_type="MON_USER"
 />

The possible values for the web_user_type attribute are:

■ J2EE_USER: tells MapViewer to get the authenticated user name from a J2EE
session

■ OSSO_USER: tells MapViewer to get the authenticated user from an OSSO session.

■ <cookie-name>: tells MapViewer to get the authenticated user from a cookie
with the specified name. The cookie name is not case sensitive.

If web_user_type is not specified, MapViewer first looks for the user name in the
J2EE session; and if none is found, it looks for the user name in the OSSO session (if
present).

1.8.3 Authenticating Users: Options and Demo
How, when, and where users are authenticated depend on the requirements of your
application and the setup of your installation. For example, your options include the
following:

MapViewer Demos and Tutorials

1-46 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ Deploy MapViewer as part of an enterprise portal site, so that end users always
first log onto the portal before performing any mapping functions through
MapViewer.

■ Deploy MapViewer on a separate system, and have users authenticate to a central
Oracle SSO server.

As long as the HTTP requests reaching MapViewer contain the authenticated user
information, MapViewer will be able to pass the requests on to the database, and the
secure data access approach will work as expected.

The demo files supplied with MapViewer (see Section 1.9) include an explanation, plus
related files, for restricting a single mapping page to be accessible only by
authenticated users. This demo involves making simple changes to MapViewer's own
deployment files. In this case, this protected page is the entry point that causes users to
be authenticated, and the authentication is performed by the OC4J instance running
MapViewer.

1.9 MapViewer Demos and Tutorials
Several demos and tutorials are supplied with MapViewer. For information about
them, go to:

http://host:port/mapviewer/fsmc/tutorial/demos.html

2

MapViewer Concepts 2-1

2 MapViewer Concepts

This chapter explains concepts that you should be familiar with before using
MapViewer.

Some fundamental concepts include style, theme, base map, mapping metadata, and map.

■ Styles define rendering properties for features that are associated with styles. For
example, a text style determines how such a feature is labeled on a map, while a
line style determines the rendition of a linear feature such as a road.

■ A theme is a collection of features (entities with spatial and nonspatial attributes)
that are associated with styles through the use of styling rules.

■ A base map consists of one or more themes.

■ Mapping metadata consists of a repository of styles, themes, and base maps stored
in a database.

■ A map is one of the components that MapViewer creates in response to a map
request. The map can be an image file, the object representation of an image file, or
a URL referring to an image file.

This chapter contains the following major sections:

■ Section 2.1, "Overview of MapViewer"

■ Section 2.2, "Styles"

■ Section 2.3, "Themes"

■ Section 2.4, "Maps"

■ Section 2.5, "Data Sources"

■ Section 2.6, "How a Map Is Generated"

■ Section 2.8, "Workspace Manager Support in MapViewer"

■ Section 2.9, "MapViewer Metadata Views"

2.1 Overview of MapViewer
When an application uses MapViewer, it applies specific styles (such as colors and
patterns) to specific themes (that is, collections of spatial features, such as cities, rivers,
and highways) to render a map (such as a GIF image for display on a Web page). For
example, the application might display a map in which state parks appear in green
and restaurants are marked by red stars. A map typically has several themes
representing political or physical entities, or both. For example, a map might show
national and state boundaries, cities, mountain ranges, rivers, and historic sites. When
the map is rendered, each theme represents a layer in the complete image.

Styles

2-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

MapViewer lets you define styles, themes, and base maps, including the rules for
applying one or more styles to each theme. These styles, themes, base maps, and
associated rules are stored in the database in map definition tables under the MDSYS
schema, and they are visible to you through metadata views. All styles in a database
instance are shared by all users. The mapping metadata (the set of styles, themes, and
base maps) that you can access is determined by the MapViewer metadata views
described in Section 2.9 (for example, USER_SDO_STYLES, USER_SDO_THEMES,
and USER_SDO_MAPS). The set of map definition objects that a given user can access
is sometimes called that user’s mapping profile. You can manage styles, themes, and
base maps with the standalone Map Builder tool, described in Chapter 9.

2.2 Styles
A style is a visual attribute that can be used to represent a spatial feature. The basic
map symbols and labels for representing point, line, and area features are defined and
stored as individual styles. Each style has a unique name and defines one or more
graphical elements in an XML syntax.

Each style is of one of the following types:

■ Color: a color for the fill or the stroke (border), or both.

■ Marker: a shape with a specified fill and stroke color, or an image. Markers are
often icons for representing point features, such as airports, ski resorts, and
historical attractions.

When a marker style is specified for a line feature, the rendering engine selects a
suitable point on the line and applies the marker style (for example, a shield
marker for a U.S. interstate highway) to that point.

■ Line: a line style (width, color, end style, join style) and optionally a center line,
edges, and hash mark. Lines are often used for linear features such as highways,
rivers, pipelines, and electrical transmission lines. You can also use cased line
styles, which are useful for drawing streets and highways.

■ Area: a color or texture, and optionally a stroke color. Areas are often used for
polygonal features such as counties and census tracts.

■ Text: a font specification (size and family) and optionally highlighting (bold, italic)
and a foreground color. Text is often used for annotation and labeling (such as
names of cities and rivers).

■ Advanced: a composite used primarily for thematic mapping, which is described
in Section 2.3.10. The key advanced style is BucketStyle, which defines the
relationship between a set of simple rendering (and optionally labeling) styles and
a set of buckets. For each feature to be plotted, a designated value or set of values
from that feature is used to determine which bucket the feature falls into, and then
the style associated with that bucket is used to plot the feature. Bucket styles are
described in Section A.6.1.

Two special types of bucket styles are also provided: color scheme (described in
Section A.6.2) and variable (graduated) marker (described in Section A.6.3). Other
advanced styles are dot density (described in Section A.6.4), bar chart (described
in Section A.6.5), collection (described in Section A.6.6), variable pie chart
(described in Section A.6.7), and heat map (described in Section A.6.8).

Table 2–1 lists the applicable geometry types for each type of style.

Styles

MapViewer Concepts 2-3

All styles for a database user are stored in that user’s USER_SDO_STYLES view, which
is described in Section 2.9 and Section 2.9.3.

You can also create dynamically defined styles (that is, temporary styles) of any style
type as part of a map request. The way to create them depends on which API you are
using:

■ With the native XML API, define the style using its XML elements within the
<map_request> element.

■ With the JavaBean API, add a dynamically defined style to a map request, as
explained in Section 4.3.4.

■ With the Oracle Maps JavaScript API, use classes and methods to create all types
of styles dynamically.

In each case, what you are actually creating is the XML definition of the styles; it is the
MapViewer server that actually creates such dynamically defined styles from the
definitions when it processes the map request, and it discards the dynamically created
styles when the request is completed.

For more detailed information about the types of styles, including information about
the XML format for defining each type, see Appendix A.

2.2.1 Scaling the Size of a Style (Scalable Styles)
If you specify a unit other than the default of pixels (px) in a style definition, the style
becomes scalable: that is, the size of features associated with the style is scaled as users
zoom in or out on a map. For example, if you specify a marker style’s width and
height as 100m, the marker is displayed as a square 100 meters on each side according
to the map scale at the current zoom level.

The following are style types and the attributes that can have an associated size unit:

■ Marker styles: marker size (height and width) and text attributes (font size, label
offsets)

■ Line styles: overall line width, center line width and dash pattern, wing line width
and dash pattern, hash mark, and marker pattern (size, offset, interval)

■ Text styles: font size, halo width

■ Bar chart styles: bar width and height

■ Dot density styles: dot width and height

■ Pie chart styles: pit radius

Example 2–1 defines a star-shaped marker within a bounding box 15 kilometers
(15.0km) on each size. This definition might be useful for identifying capital cities of

Table 2–1 Style Types and Applicable Geometry Types

Style Type Applicable Geometry Types

Color (any type)

Marker point, line

Line line

Area polygon

Text (any type)

Advanced (any type)

Styles

2-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

states on a map showing all or a large part of a country; however, it would not be
useful for a display zoomed in on a specific city and its local surrounding area.

Example 2–1 Scalable Marker Style

<style name="M.STAR_CAPITAL_CITY">
 <svg width="1in" height="1in">
 <desc/>
 <g class="marker"
style="stroke:#000000;fill:#FF0000;fill-opacity:0;width:15.0km;height:15.0km;font-
family:Dialog;font-size:12;font-fill:#FF0000">
 <polyline
points="138.0,123.0,161.0,198.0,100.0,152.0,38.0,198.0,61.0,123.0,0.0,76.0,76.0,76
.0,100.0,0.0,123.0,76.0,199.0,76.0"/>
 </g>
 </svg>
</style>

Example 2–2 defines a line style with an overall line width of 10 meters (10.0m) and a
border line width of 1 meter (1.0m). This definition might be useful for identifying
capital cities of primary highways.

Example 2–2 Scalable Line Style

<style name="L.PRIMARY_HIGHWAY">
 <svg width="1in" height="1in">
 <desc></desc>
 <g class="line" cased="true" style="fill:#33a9ff;stroke-width:10.0m">
 <line class="parallel" style="fill:#aa55cc;stroke-width:1.0m"/>
 </g>
 </svg>
</style>

When MapViewer renders or labels styles that have size units other than pixel, it first
transforms the size units into screen pixels based on the current map area and display
area, and it then renders the or labels the style. The size of a scalable style changes as
users zoom in or out on a map. If zooming out results in an overall style size less than
or equal to zero, the style is not rendered or labeled.

Size units can be used only with data associated with a known spatial reference system
(SRS). If the data has no SRS or an unknown SRS, pixels are used for all size values.
Note also that pixel values are used instead of any specified size unit in legends and in
previews rendered by the Map Builder utility. (Legends are explained in Section 2.4.2.)

Scalable styles work with MapViewer Release 11g (11.1.1) or later; they cannot be used
with earlier releases of MapViewer.

2.2.2 Specifying a Label Style for a Bucket
For collection-based bucket styles and individual range-based bucket styles (described
in Section A.6.1.1 and Section A.6.1.2, respectively), you can specify a labeling style by
using the label_style attribute in each bucket element. Example 2–3 creates an
advanced style named V.RB1 in which each bucket is assigned a text label style (using
the label_style attribute), with some styles being used for several buckets.

Example 2–3 Advanced Style with Text Label Style for Each Bucket

<?xml version="1.0" ?>
<AdvancedStyle>
 <BucketStyle>

Styles

MapViewer Concepts 2-5

 <Buckets>
 <RangedBucket seq="0" label="10k or less" high="10000"
 style="c.rb13_1" label_style="T.AIRPORT NAME"/>
 <RangedBucket seq="1" label="10k - 20k" low="10000" high="20000"
 style="c.rb13_2" label_style="T.CITY NAME"/>
 <RangedBucket seq="2" label="20k - 30k" low="20000" high="30000"
 style="c.rb13_3" label_style="T.CITY NAME"/>
 <RangedBucket seq="4" label="30k - 40k" low="30000" high="40000"
 style="c.rb13_4" label_style="T.CITY NAME"/>
 <RangedBucket seq="5" label="40k - 50k" low="40000" high="50000"
 style="c.rb13_5" label_style="T.CITY NAME"/>
 <RangedBucket seq="6" label="50k - 75k" low="50000" high="75000"
 style="c.rb13_6" label_style="T.ROAD NAME"/>
 <RangedBucket seq="7" label="75k - 100k" low="75000" high="100000"
 style="c.rb13_7" label_style="T.PARK NAME"/>
 <RangedBucket seq="8" label="100k - 125k" low="100000" high="125000"
 style="c.rb13_8" label_style="T.RED STREET"/>
 <RangedBucket seq="9" label="125k - 250k" low="125000" high="250000"
 style="c.rb13_9" label_style="T.ROAD NAME"/>
 <RangedBucket seq="10" label="250k - 450k" low="250000" high="450000"
 style="c.rb13_10" label_style="T.ROAD NAME"/>
 <RangedBucket seq="11" label="450k - 650k" low="450000" high="650000"
 style="c.rb13_11" label_style="T.ROAD NAME"/>
 <RangedBucket seq="12" label="650k up" low="650000" style="c.rb13_13"/>
 </Buckets>
 </BucketStyle>
</AdvancedStyle>

For individual range-based buckets, the lower-bound value is inclusive, while the
upper-bound value is exclusive (except for the range that has values greater than any
value in the other ranges; its upper-bound value is inclusive). No range is allowed to
have a range of values that overlaps values in other ranges.

If the V.RB1 style in Example 2–3 is used in a map request, it displays a map that
might look like the display in Figure 2–1, where the county names are shown with
labels that reflect various text styles (in this case depending on the county’s total
population).

Figure 2–1 Varying Label Styles for Different Buckets

In Example 2–3, all buckets except the last one specify a label style. For any features
that fall into a bucket that has no specified label style, the label style (if any) applied to
the feature depends on the following:

Styles

2-6 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ If the <label> element of the theme’s styling rules specifies a label style other
than the advanced style itself, the specified label style is used to label the feature.
In the following example, because the <label> element’s style specification
(T.STATE_NAME) is different from the <features> element’s style specification
(V.RB1), features that fall into a bucket with no specified label style are labeled
using the T.STATE_NAME style:

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule column="TOTPOP">
 <features style="V.RB1">
 </features>
 <label column="county" style="T.STATE NAME">
 1
 </label>
 </rule>
</styling_rules>

■ If the <label> element of the theme’s styling rules specifies the advanced style as
its label style, the feature is not labeled. (This is why some counties in Figure 2–1
are not labeled.) In the following example, because the <features> and
<label> elements both specify the advanced style V.RB1, features that fall into a
bucket with no specified label style are not labeled:

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule column="TOTPOP">
 <features style="V.RB1">
 </features>
 <label column="county" style="V.RB1">
 1
 </label>
 </rule>
</styling_rules>

2.2.3 Orienting Text Labels and Markers
You can control the orientation of text labels and markers on a map by using oriented
points. The oriented point is a special type of point geometry introduced in Oracle
Spatial for Oracle Database 10g Release 1 (10.1). In an oriented point, the coordinates
represent both the location of the point and a virtual end point, to indicate an
orientation vector. The text is aligned or the marker symbol is rotated according to the
orientation vector, which is explained in Section 3.2.5 and illustrated in Figure 3–3 in
that section. For more information about oriented points, see Oracle Spatial Developer's
Guide.

2.2.3.1 Controlling Text Style Orientation
To orient the text label of a point in the direction of an orientation vector, you can
specify the point as an Oracle Spatial oriented point in the map request. When
MapViewer labels an oriented point, it automatically centers the text label on the point
position, and aligns the label so that it points in the direction of the orientation vector.

For each feature to be so labeled, you must specify its location as an oriented point.
You can group these oriented points in a single table and create a spatial index on the
column containing the point geometries. You can then create a theme based on the
table, specifying a desired text style as the labeling, and specifying transparent color
style as the rendering style so that the points themselves are not displayed on the map.

Styles

MapViewer Concepts 2-7

Example 2–4 is a map request that labels a single oriented point with coordinates
(12,14, 0.3,0.2), where (12,14) represents the X and Y coordinates of the point and
(0.3,0.2) represents the orientation vector. It renders the point using a dynamically
defined transparent color style (named transparent_color) to ensure that the text
is displayed but the underlying point is not displayed.

Example 2–4 Labeling an Oriented Point

<map_request
 title="Labeling Oriented Points"
 datasource="my_datasource" width="400" height="300"
 antialiase="true"
 format="PNG_STREAM">

 <themes>
 <theme name="theme1">
 <jdbc_query
 spatial_column="geom" jdbc_srid="8265"
 render_style="transparent_color"
 label_column="label" label_style="t.street name"
 datasource="tilsmenv">
 SELECT SDO_GEOMETRY(2001, 8265, NULL,
 SDO_ELEM_INFO_ARRAY(1, 1, 1, 3, 1, 0),
 SDO_ORDINATE_ARRAY(12, 14, .3, .2))
 geom, 'Oriented Point' label FROM dual
 </jdbc_query>
 </theme>
 </themes>

 <styles>
 <style name="transparent_color">
 <svg width="1in" height="1in">
 <g class="color" style="stroke:#ff0000;stroke-opacity:0">
 <rect width="50" height="50"/>
 </g>
 </svg>
 </style>
 </styles>
</map_request>

Figure 2–2 shows part of the map generated by the request in Example 2–4. (The label
is the phrase Oriented Point.)

Figure 2–2 Map Display of the Label for an Oriented Point

2.2.3.2 Controlling Marker Orientation
When a marker style is applied to an oriented point, MapViewer automatically rotates
the marker style so that it points to the orientation vector. Any necessary rotation of
the marker style is around the center of the marker.

Styles

2-8 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Figure 2–3 shows how you can use an oriented point to control the orientation of
marker styles. In this figure, the original marker style is first shown without any
rotation. However, when the marker is applied to the same oriented point shown in
Example 2–4 in Section 2.2.3.1, the marker style is rotated accordingly (in this case
about 34 degrees counterclockwise) to reflect the orientation vector.

Figure 2–3 Oriented Marker

2.2.4 Making a Text Style Sticky
You can specify that a text style is "sticky," which means that any feature that uses it as
a label style will always have its text label drawn on a map. Example 2–5 shows an
XML definition of a style with the sticky attribute set to true.

Example 2–5 Text Style with Sticky Attribute

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
<desc></desc>
 <g class="text" sticky="true" style =
"font-style:plain;font-family:Serif;font-size:11pt;font-weight:bold;fill:#000000">
 Hello World!
</g>
</svg>

2.2.5 Getting a Sample Image of Any Style
To get a sample image for any pre-defined style stored in a database, you can issue a
simple HTTP request to the MapViewer server. This request can specify the size of the
sample image, the background color, and the format of the returned image. Such
requests are useful if you want to display a visual list of styles on a Web page, to build
a custom map legend, or just to see how various styles will appear.

The HTTP request has the following parameters, all of which are optional except for
sty:

■ sty (required) specifies the name of the style.

■ ds specifies the data source where the style can be accessed. By default, the default
MapViewer data source is used.

■ w specifies the width of the sample image in pixels. The default value is 20.

■ h specifies the height of the sample image in pixels. The default value is 20.

(12,14, 0.3,0.2)

Original marker style

Oriented point

Marker style applied
to the oriented point

Styles

MapViewer Concepts 2-9

■ f specifies the format of the sample image. Possible values are png for direct PNG
image stream, png_url for the URL of a PNG image, gif for direct GIF image
stream, or gif_url for the URL of a GIF image. The default value is png, which
means the MapViewer server will directly stream the generated PNG image data
back to the client without first saving it to the server disk.

■ bg specifies the background color of the sample image. The format must be a
hexadecimal string in the form of 0xrrggbb, such as 0x808080 for a gray color.
The default value is 0xffffff (white).

For a transparent background, specify bg as an extended hexadecimal string to
include the alpha values, in the format of 0xaarrggbb. For example, 0x00ffffff
will make the style image's background completely transparent, while 0x55ffffff is
a white background with a transparency value of 0x55 (decimal value 80). The
alpha value can range from 0x00 (completely transparent) to 0xff (completely
opaque).

■ aa specifies whether the sample image should be rendered in antialiasing mode.
The default value is the string true. Specify the string false if you do not want
to use antialiasing.

The following example generates an antialiased PNG image with a gray background
with the default size of 20x20 pixels, displaying the marker style named M.STAR from
the MapViewer default data source:

http://www.mycorp.com/mapviewer/omserver?sty=m.star&bg=808080

The preceding request generates a display similar to that in Figure 2–4.

Figure 2–4 Sample Image of a Specified Marker Style

The following example generates an antialiased GIF image with the default white
background, a width of 60 pixels, and a height of 25 pixels, displaying the line style
named L.PH from the MapViewer data source named mvdemo:

http://www.mycorp.com/mapviewer/omserver?sty=l.ph&ds=mvdemo&f=gif&w=60&h=25&aa=true

The preceding request generates a display similar to that in Figure 2–5.

Figure 2–5 Sample Image of a Specified Line Style

Themes

2-10 Oracle Fusion Middleware User's Guide for Oracle MapViewer

2.3 Themes
Theme is perhaps the most important concept in MapViewer. A theme is a visual
representation of a particular data layer. Conceptually, a theme is a collection of
geographic features that share similar attributes, plus the rendering and labeling rules
that tell MapViewer what styles to use to render and label the features. To be more
exact, when you define a theme, you are actually providing MapViewer with the
following information: where and how to get the data, and how to render and label the
data.

Depending on how a theme is created, it can also be categorized as either a predefined
theme or a dynamic (JDBC) theme. For a predefined theme, the theme’s definition is
created in the standalone Map Builder tool and stored in the database. For a dynamic
theme, the theme’s definition (XML) is created in real time by an application. Dynamic
themes typically employee a custom SQL query constructed by the application to get
its data.

Typically, the data for a theme comes from a spatially enabled table, that is, a database
table or view with a column of type SDO_GEOMETRY. For example, a theme named
US_STATES might be based on a STATES table that has a column named GEOMETRY,
plus any other nonspatial attribute columns. This type of theme is often called a
geometry theme. Besides geometric data, other types of database-managed geographic
data can be associated with corresponding types of themes; for example:

■ Georeferenced images stored in BLOBs (image themes)

■ Oracle Spatial GeoRaster data (GeoRaster themes)

■ Oracle Spatial network data model (network themes)

■ Oracle Spatial topology data model (topology themes)

■ Cartographic annotation text (annotation themes)

MapViewer themes can be used to render not only geographic data stored in a
database, but also data originating from other sources, such as Web services (WFS and
WMS) or the local file system (through the custom spatial data provider interface).

Regardless of what type of data is associated with a theme (except for WMS themes,
which represent externally rendered map layers), the MapViewer styling rules still
need to be defined for each theme, and the styles referenced by the styling rules must
exist and be stored in the database as part of the mapping metadata.

2.3.1 Predefined Themes
A predefined theme is a theme whose definition is stored in a user’s database schema.
All predefined themes for a database user are stored in that user’s USER_SDO_
THEMES view (described in Section 2.9, especially Section 2.9.2). When you include a
predefined theme in a map request, you need to specify only the theme name.
MapViewer automatically finds the theme’s definition, constructs a query based on it,
retrieves the relevant spatial and attribute data, and renders the data according to the
styling rules for the theme.

Each predefined theme must have an associated base table or view. If you base a theme
on a view, you must insert a row in the view owner’s USER_SDO_GEOM_
METADATA view (described in Oracle Spatial Developer's Guide) specifying the view
and its spatial column. If the view is a join view (that is, if it is based on multiple
tables), you must specify the key_column attribute (described in Section A.7) in the
theme’s styling rules. The reason for this requirement is that MapViewer by default
caches geometries for a predefined theme based on the rowid in the base table;

Themes

MapViewer Concepts 2-11

however, for a join view there is no ROWID pseudocolumn, so you must specify a key
column.

For most types of predefined themes (but not WMS themes), you can use the Map
Builder tool to create and preview themes. For information about the Map Builder
tool, see Chapter 9.

2.3.1.1 Styling Rules in Predefined Spatial Geometry Themes
Each predefined theme is always associated with one or more styling rules,
specifications in XML format that control aspects of how the theme is displayed. This
section describes styling rules for predefined spatial geometry themes, such as the
airport theme shown in Example 2–6. Other types of themes, such as image,
GeoRaster, network, and topology themes, have their own distinct styling rules
requirements, and these are discussed in sections that explain these themes. However,
the styling rules for all types of themes are grouped under the <styling_rules>
element in an XML document, which is stored in the STYLING_RULES column for
each predefined theme in the USER_SDO_THEMES view. (The <styling_rules>
DTD is described in Section A.7.)

Example 2–6 XML Definition of Styling Rules for an Airport Theme

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule>
 <features style="c.black gray">
 runway_number > 1
 </features>
 <label column="name" style="t.airport name">
 1
 </label>
 </rule>
 <rule>
 <features style="m.airplane">
 runway_number = 1
 </features>
 </rule>
</styling_rules>

Each styling rule has a required <features> element and an optional <label>
element. The <features> element specifies which row or rows (features) in the table
or view will be selected based on the user-defined predicate and on the style to be
used for the selected features. You can specify any valid SQL predicate as the value of
this element. The <label> element specifies whether or not to annotate the selected
features, and if so, which column in the table or view to use for text labels.

Note: The following naming conventions are used for prefixes in
style names in the examples in this chapter: v. indicates variable
(advanced style), m. indicates marker, c. indicates color, l.
indicates line, and t. indicates text. (If the style is not under the
current user’s schema, you must specify the owner’s schema name
followed by a colon. For example: mdsys:c.red.)

In the content (character data) of an XML document, < and
> must be used to represent < and >, respectively. Otherwise, <
or >, such as in WHERE CATEGORY > ’B’, will be interpreted by
the XML parser as part of an XML tag.

Themes

2-12 Oracle Fusion Middleware User's Guide for Oracle MapViewer

In Example 2–6, there are two styling rules associated with the Airport theme:

■ The first rule specifies that only those rows that satisfy the condition runway_
number > 1 (that is, runway number greater than 1) will be selected, and
these will be rendered using the style named c.black gray. If no value is
supplied, no WHERE clause condition is applied. For example, assume that the
definition had been the following (that is, omitting the runway_number > 1
condition):

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule>
 <features style="c.black gray"/>
 <label column="name" style="t.airport name">
 1
 </label>
 </rule>
</styling_rules>

In this case, all airport features would be selected and would be rendered using
the color style named c.black gray.

The first rule also has a <label> element, which specifies that the NAME column
in the table or view will be used to annotate each airport, using the text style
t.airport name. The value of the <label> element, which can be any SQL
expression that evaluates to a numeric value, is used to determine whether or not
a feature will be annotated. If the numeric value is greater than zero, the feature
will be annotated. In this case, because the value is the constant 1, all features
specified by the <features> element will be annotated, using the values in the
NAME column. If the value is less than or equal to zero for a feature, that feature
will not be annotated.

■ The second rule, which applies to those airports with only one runway, does not
have a <label> element, thus preventing all such airports from being annotated.
In addition, the features that satisfy the second rule will be rendered using a
different style (m.airplane), as specified in its <features> element.

You can think of each styling rule as a filter into the base table or view of the theme,
because it selects only a subset of the rows and applies the rendering and labeling
styles of that rule. In fact, MapViewer formulates a complete SQL query for each
styling rule. This query string follows a fixed format, as described in Section 2.3.1.2.

2.3.1.2 How MapViewer Formulates a SQL Query for a Styling Rule
To see how MapViewer formulates a SQL query for a styling rule, consider the first
styling rule from the airport theme example (Example 2–6 in Section 2.3.1.1):

<styling_rules>
 <rule>
 <features style="c.black gray">
 runway_number > 1
 </features>
 <label column="name" style="t.airport name">
 1
 </label>
 </rule>
 . . .
</styling_rules>

Themes

MapViewer Concepts 2-13

When MapViewer processes this theme, it formulates a query string for this styling
rule that looks like this:

SELECT ROWID, GEOMETRY, 'C.BLACK GRAY', NAME, 'T.AIRPORT NAME', 1, 'rule#0’
 FROM AIRPORT_POINT
 WHERE MDSYS.SDO_FILTER(GEOMETRY,
 MDSYS.SDO_GEOMETRY(2003, 8265, NULL, MDSYS.SDO_ELEM_INFO_ARRAY(1, 1003, 3),
 MDSYS.SDO_ORDINATE_ARRAY(:mvqboxxl, :mvqboxyl, :mvqboxxh, :mvqboxyh)),
 'querytype=WINDOW') = 'TRUE'

In the preceding query string:

■ The base table name of the theme, AIRPORT_POINT, appears in the FROM clause

■ The SELECT list includes ROWID as the first column. ROWID is the default key_
column attribute of a predefined theme.

■ The next column in the SELECT list is GEOMETRY. This is the geometry column
of this theme.

■ The next column in the SELECT list is the literal string ‘C.BLACK GRAY’, which
is the rendering style name for this rule.

■ The next column in the SELECT list is the column NAME, which will provide the
label text. It is specified in the <label> element of this styling rule.

■ The next column in the SELECT list is the literal string ‘T.AIRPORT NAME’,
which is the labeling style name specified in the <label> element.

■ The next column in the SELECT list is the literal value 1, which is the value of the
<label> element itself.

■ The next column in the SELECT list is the literal string ‘rule#0’. This is used
internally by MapViewer only.

■ The large WHERE clause is essentially an Oracle Spatial filtering operator, SDO_
FILTER. This WHERE clause is automatically added by MapViewer (and is not
something you need to specify when defining a theme). It ensures that only those
geographic features that are in contact with the current map viewing window will
be fetched from the base table. The four binding variables, mvqboxxl, mvqboxyl,
mvqboxxh and mvqboxyh, will be automatically filled in with the coordinates for
the current map viewing window.

MapViewer always uses the preceding format when constructing SQL queries for the
styling rules of a predefined geometry theme’s styling rules. It uses different formats
for the queries for other types of themes, such as a topology or GeoRaster theme. The
formats for these other queries are not described here; however, if you are interested,
you can set the logging level of your MapViewer instance to FINEST, submit a map
request containing a particular type of theme, and check the MapViewer log file to see
the exact query that MapViewer constructs.

Each row (or feature) in the query’s result set now contains all the information
MapViewer needs: the spatial data, the rendering and labeling style names, the label
text, and the labeling conditions. MapViewer then constructs an in-memory feature
object for each row and sends them to the rendering pipeline to be displayed on the
map.

If two or more styling rules are specified for a theme, a UNION ALL operation is
performed on the SQL queries for the rules (from first to last) to fetch the qualified
features from the table or view.

Themes

2-14 Oracle Fusion Middleware User's Guide for Oracle MapViewer

If an advanced style is specified in a rule, the SELECT list of the query for that rule will
include the additional attribute column or columns that are required by the advanced
style.

2.3.1.3 Styling Rules with Binding Parameters
As explained in Section 2.3.1.2, the <features> element of a styling rule can define a
query condition to select features from the base table or view. This query condition
typically contains hard-coded SQL expressions, such as runway_num > 1 in the
airport theme. However, you can instead include binding variables in the query
predicate. Such a theme is often called a templated theme, because it is essentially
defining a template for how to display certain features, and the exact set of features is
determined at run time by providing a binding value to the query predicate.

The concept of templated theme allows you to define a single theme and to have the
binding values change between map requests. For example, consider the following
styling rule:

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule>
 <features style="C.RED"> (state_abrv=:1) </features>
 <label column="STATE" style="T.STATE NAME"> 1 </label>
 </rule>
</styling_rules>

The preceding styling rule defines a <features> element with a query condition
based on the value of the state_abrv attribute, which the application must supply.
In MapViewer requests, the binding parameter must be defined on the theme section,
and each binding parameter is defined by a value and by a SQL type. In the following
theme definition on a map request, the state abbreviation value is ME and the variable
SQL type is String. The value ME will be used with the predefined theme styling rule.

<theme name="THEME_US_DYN_STATES" >
 <binding_parameters>
 <parameter value="ME" type="String"/>
 </binding_parameters>
</theme>

2.3.1.4 Applying Multiple Rendering Styles in a Single Styling Rule
The <feature> element of a styling rule allows you to specify only one rendering
style using the style attribute. If you want to apply multiple rendering styles to a
feature without using multiple themes, you cannot specify multiple styling rules,
because each rule selects a different subset of features. To apply multiple rendering
styles to a feature without using multiple themes, you must use the <rendering>
element instead of the style attribute of the <features> element.

The <rendering> element has the format shown in the following example:

<rendering>
 <style name="V.POIVMK" value_columns="FEATURE_CODE">
 <substyle name="V.POIVBKT" value_columns="POINT_ID" changes="FILL_COLOR"/>
 </style>
</rendering>

In the <rendering> element, the <style> element specifies the name of the style to
use when rendering features, and one or more value columns (comma-delimited) for
use with advanced styles. In the preceding example, the style name is V.POIMVK and
the value column is FEATURE_CODE.

Themes

MapViewer Concepts 2-15

In the <style> element, the <substyle> element enables rendering of a feature
using a combination of two attribute values.,such as defining the feature shape by the
<style> element and the feature color by the <substyle> element. This is useful for
rendering point features once but based on two attribute values. You can specify one
or more value columns (comma-delimited), and the change to be applied (only FILL_
COLOR is currently supported).

You can specify multiple <style> elements with a <rendering> element, to achieve
the following goals:

■ To create an advanced style in which a base advanced style, associated with some
attributes (columns), can have its rendering affected by some other attributes
through the use of a substyle. For example, an advanced style can display markers
of different sized based on one value column, while using a secondary color style
to change the fill color of those markers based on another value column.

■ To use multiple styles to render a feature (achieving the effect of stacked styles).

Example 2–7 shows a predefined theme styling rule that uses the <rendering>
element. The <features> element is part of the rules and must be define, because it
also specified the query condition, but no style attribute is specified. The
<rendering> element defines how to render the features.

Example 2–7 Styling Rules Using the <rendering> Element

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule>
 <features> </features>
 <label column="NAME" style="T.STREET2"> 1 </label>
 <rendering>
 <style name="V.POIVMK" value_columns="FEATURE_CODE">
 <substyle name="V.POIVBKT" value_columns="POINT_ID" changes="FILL_COLOR"/>
 </style>
 </rendering>
 </rule>
</styling_rules>

See also Section 3.1.12, which contains an example that uses the <rendering>
element.

The <rendering> element can also be used with dynamic themes, geometry themes,
and topology themes.

2.3.1.5 Caching of Predefined Themes
By default, MapViewer automatically caches the spatial data for a predefined theme
when it is fetched from the database for processing by the MapViewer rendering
engine. By contrast, data for dynamic (JDBC) themes is never cached in MapViewer. If
you do not want any data for a predefined theme to be cached (such as for a theme
whose underlying base table is constantly being updated), you can set the caching
attribute to NONE in the <styling_rules> element for the theme. (The <styling_
rules> element, including the caching attribute, is described in Section A.7.)

Note: The use of styling rules with the <rendering> element, as
shown in Example 2–7, is not compatible with MapViewer release
10.1.3.1 and earlier releases.

Themes

2-16 Oracle Fusion Middleware User's Guide for Oracle MapViewer

For frequently used themes whose base data is static or read-only, specify caching
ALL for the best performance. This causes MapViewer, when it first accesses the theme
definition, to fetch all the features (including spatial data, attribute data, and styling
information associated with them) and cache them in the MapViewer memory,
creating an in-memory R-tree for the theme’s spatial data. All subsequent requests
requiring that theme occur locally instead of going to the database.

If the caching attribute value is NORMAL (the default), each time a map involving that
theme is requested, MapViewer queries the database to get the spatial data and any
associated attribute data. However, if any of the spatial geometry data, as referenced
by rowid or a user-specified key column, has already been cached, the unpickling
process (the conversion from the raw database geometry format to a Java geometry
object) is skipped. Still, if memory is not an issue and if a frequently used theme can
completely fit in the cache, you should specify caching ALL, to eliminate virtually
all database access for that theme after the initial loading.

Because the MapViewer spatial data cache is global, all predefined themes that are
accessed by MapViewer compete for a global fixed-sized memory cache. The cache
resides completely in memory, and you can specify the maximum size of the cache as
explained in Section 1.5.2.6. When the cache limit is reached, older cached data is
removed from the cache to make room for the most recently accessed data, except that
data for themes specified with caching ALL is not removed from the cache, and
MapViewer does not requery the database for these themes.

Caching is currently disabled for predefined annotation and custom geometry themes.
For custom geometry themes, you can implement a caching mechanism in your
provider implementation. However, for each request, a new instance of your provider
is created; and if you implement a local caching mechanism, it will be lost.

2.3.1.6 Feature Labels and Internationalization
MapViewer includes support for translated theme labels. Typically with a predefined
MapViewer theme, you can specify a label column that will provide all the text strings
for labeling each feature of the theme. These text strings are string values stored in the
database table column, in a specific language (such as English). However, you can also
supply different translations of these stored string values by using a resource bundle.
When such translated text strings are available, you can instruct MapViewer to label
the features of a theme using a specific language or locale.

The steps for supplying translations and instructing MapViewer to label a theme using
a specific user language are as follows:

1. Prepare the translations.

A typical MapViewer predefined geometry theme gets all the underlying data
from a table. You can specify one of the (string type) columns as the labeling
column for this theme. This is called the label column. When a label column needs
to be translated into different languages, you extract all the values from the table,
and store them in a properties file, such as StringResources.properties.
(Note that file name StringResources.properties assumes that the
extracted texts are all in English. If they are not, then the properties file name
needs to follow a convention where the language code, and an optional region or
country code, is a suffix in the file name. For example, StringResources_

Note: Only predefined geometry themes support resource bundles at
this time.

Themes

MapViewer Concepts 2-17

fr.properties will contain French translations only, while
StringResources_zh_CN.properties is for simplified Chinese.)

A properties file is a plain text file that follows a very simple format. For example,
a simple StringResources.properties file might contain the following:

This is the English version of the strings.
California = California
Nevada = Nevada
Montana = Montana

The first line is a comment, and starts with the # character. Each subsequent line
contains one pair of key (first string) and value (second string). The keys come
directly from the label column, whereas the values are corresponding translations.
Because this particular file contains the default English text strings, the key and
the value (translation) are the same in each case. Note that the keys should always
be in English.

From this default properties file, your translation specialists should create a set of
property files, one file for each translation. Using the preceding simple example,
the translated file for simplified Chinese (StringResources_zh_
CN.properties) should look like the following, in which the value of each key
has been replaced by the Chinese translation of the key, encoded as a Unicode
string:

This is the Chinese version of the strings.
California = \u6CA1\u6709\u8981\u5448\u73B0\u7684\u4E3B\u9898\u3002
Nevada = \u65E0\u6CD5\u52A0\u8F7D\u4E3B\u9898\u3002
Montana = \u65E0\u6CD5\u52A0\u8F7D\u6837\u5F0F\u3002

The default properties file, StringResouces.properties, plus all the
language specific files that share the same file name (except for the language and
region suffixes) collectively form what is called a resource bundle. In this case the
resource bundle is named StringResources. You can name your resource
bundles with any name you like, but different bundles (containing different set of
keys) should always use different base names.

For more information about Java resource bundles and properties files, see the
Java language documentation.

2. Supply the translated text strings as a Java Resource Bundle, which can be based
on either Java resource classes or plain properties files.

After all the label text strings have been translated, you must place all the files (the
resource bundle) in the MapViewer CLASSPATH so that MapViewer can find
these files at run time. Typically, you can use the MapViewer WEB-INF/classes
folder: copy all the files including the base StringResources.properties and
language-specific files (such as StringResources_fr.properties and
StringResources_zh_CN.properties) into this folder.

Note that if you place all the files of a resource bundle into a subfolder under
WEB-INF/classes, then the name of the resource bundle (as known to
MapViewer) will need to be prefixed with this subfolder name. This is similar to
how one places a Java class in a directory structure that follows the package
names. For example, if you put all the StringResources*.properties files in
WEB-INF/classes/i18n/, then later when you register the resource bundle
with MapViewer, the actual name of your resource bundle should be
i18n.StringResources.

3. Specify the name of the resource bundle in the theme definition by registering the
resource bundle with MapViewer.

Themes

2-18 Oracle Fusion Middleware User's Guide for Oracle MapViewer

For MapViewer to find your translated classes, you must specify the complete
name of your resource bundle in the theme definition. The easiest way to do this is
with the Map Builder utility, specifying the resource bundle name as the
Translation Class in the Advanced Parameters pane of the theme editor. Figure 2–6
shows StringResources being specified for the Translation Class.

Figure 2–6 Specifying a Resource Bundle for a Theme

As mentioned in the preceding step, if your resource bundle files are located in a
subfolder of , then the subfolder name must the base name of your resource
bundle, separated by a period, as if the resource bundle files were Java classes in a
package.

4. Specify a language parameter when requesting a map or theme.

Specify the preferred language for each map request the Oracle Maps JavaScript
API (described in Section 8.4) or the XML map request API (described in
Chapter 3).

■ In JavaScript code, specify the label language code in the call to the
MVThemeBasedFOI class. The following example causes the FOI theme to
display its labels in simplified Chinese:

themebasedfoi = new MVThemeBasedFOI('themebasedfoi1','mvdemo.theme_demo_
states');
themebasedfoi.setLabelLanguageCode("zh-cn");
themebasedfoi.enableLabels(true);

With the setLabelLanguageCode(lang_code) method, you can specify a
language code so that MapViewer labels the features using the text strings for

Themes

MapViewer Concepts 2-19

the specified language, which must be a 2 letter language code (such as zh),
followed optionally a hyphen (-) and a 2-letter country code (such as zh-cn).
The language codes are defined by the ISO 639 standards and are listed at
several Web sites, such as
http://www.loc.gov/standards/iso639-2/php/English_
list.php. If no translated text strings for the specified language code are
found, the English text strings (or whatever the default strings are for the
theme) will be used for labeling.

■ In an XML map request, specify the language in the lang attribute. The
following example causes the labels to be displayed in simplified Chinese:

<map_request title="Oracle LBS MAP"
basemap="demo_map"
datasource = "mvdemo"
width="640" height="480"
lang="zh-CN"
format="PNG_STREAM">

<center size="5.15">
<geoFeature> <geometricProperty typeName="center">
 <Point> <coordinates>-122.2615, 37.5266</coordinates>
 </Point> </geometricProperty>
</geoFeature>
</center>
</map_request>

Only language codes and country codes specified by the ISO 639 standards
can be used as possible lang values. If an optional country code is used, it
must be connected to the language code by a hyphen (-). Country codes and
language codes are not case sensitive.

If the lang attribute is specified as part of the XML map request, every theme
rendered to the result map it checked to see if it has an associated resource
bundle. If a theme does not have an associated resource bundle, or the
translated text strings for the specified language cannot be found, the default
values (those stored in the table column) are used.

If the lang attribute is not specified as part of the XML map request, the
default text string values (those stored in the table column) are always used,
regardless of which locale in effect for MapViewer itself (or rather, its
containing JVM).

2.3.2 JDBC Themes
A JDBC theme is a theme that is dynamically defined with a map request. JDBC
themes are not stored permanently in the database, as is done with predefined themes.

For a JDBC theme, you must specify a valid SQL query that retrieves all the necessary
spatial data (geometries or other types of data, such as image, GeoRaster, network, or
topology). If attribute data is needed, such as for thematic mapping or spatial data
analysis, the query must also select it. In other words, you must provide a correct and
complete query for a JDBC theme. In addition to the query, you can also specify the
rendering and labeling styles to be used for the theme.

For a JDBC theme based on spatial geometries, MapViewer processed the columns
specified in the query according to the following rules:

■ The column of type SDO_GEOMETRY is treated as the spatial data column.

Themes

2-20 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ Any column whose name or alias matches that specified in the JDBC theme’s
label_column attribute is treated as the labeling column, whose values are used
as text for labels.

■ Any other columns are treated as attribute data columns, which may or may not
be used by MapViewer. For example, if the rendering style is an advanced style,
any attribute columns are processed by that style in the order in which they
appear in the SELECT list in the query. Thus, if you are performing thematic
mapping and using an advanced style, you must specify all attribute columns that
are needed for the thematic mapping, in addition to the geometry column and
optional labeling column. (A labeling column can also be an attribute column, in
which case you do not need to specify that column in the SELECT list.)

Example 2–8 is a map request that includes a JDBC theme.

Example 2–8 JDBC Theme in a Map Request

<?xml version="1.0" standalone="yes"?>
<map_request title="My MAP" datasource = "mvdemo">

 <themes>
 <theme name="jdbc_theme_1">
 <jdbc_query
 datasource="mvdemo"
 jdbc_srid="41052"
 spatial_column="geometry"
 render_style="C.RED">
 SELECT geometry from states where name='MA'
 </jdbc_query>
 </theme>
 </themes>

</map_request>

The full query that MapViewer executes for the JDBC theme in Example 2–8 is:

SELECT geometry FROM states WHERE name='MA’;

For this request, MapViewer generates a map that contains only the selected geometry
as a result of executing this JDBC theme's query. In a more typical case, however, the
map request will need to use several JDBC themes to plot additional dynamic data on
top of the base map. Furthermore, the map request may have a query window
associated with it; that is, the user may want to see only a portion of the area included
in the whole base map. In this case, the SQL queries in the JDBC themes will be
subjected to a spatial window query, to eliminate any unwanted results.

For more information about JDBC themes, see the information about the <jdbc_
query> element in Section 3.2.9.

2.3.2.1 Defining a Point JDBC Theme Based on Two Columns
If a database table uses two columns (such as longitude and latitude) to represent a
point coordinate, you can define a JDBC theme based on the two columns to render
points. The table does not need to have a spatial geometry column, but it can have one;
however, if the theme request defines the point columns and also the geometry
column, MapViewer will try to render the points using the two columns, not the
geometry column.

Example 2–9 is a JDBC theme that renders points from two columns, named LONG_
LOC and LAT_LOC, of a table named POI. The x_column and y_column attributes

Themes

MapViewer Concepts 2-21

specify the columns containing the point coordinate values. In this example, the points
are rendered using the C.RED style, and the table values from the NAME column are
rendered using the T.POI_NAME style.

Example 2–9 JDBC Theme Based on Columns

<map_request>
 . . .
 <center>
 . . .
 </center>
 <themes>
 <theme name="theme1" >
 <jdbc_query
 datasource="mvdemo"
 jdbc_srid="8265"
 x_column="long_loc"
 y_column="lat_loc"
 render_style="C.RED"
 label_column="name"
 label_style="T.POI_NAME"
 >SELECT long_loc, lat_loc,name FROM poi
 </jdbc_query>
 </theme>
 </themes>
</map_request>

If the request specifies a valid query window (that is, not the full extent), a WHERE
expression based on the size of the request window is automatically added to the
query.

If the table has a geometry column, you can specify SQL code to use the geometry
column as a filter. Example 2–10 is similar to Example 2–9, but it adds the use of the
SDO_FILTER operator to specify a query window based on the geometry in the
column named GEOMETRY. In Example 2–10, the question mark (?) characters
indicate that the lower-left and upper-right coordinates of the query window rectangle
are taken from values supplied at run time (not shown in this example).

Example 2–10 JDBC Theme Based on Columns, with Query Window

<map_request>
 . . .
 <center>
 . . .
 </center>
 <themes>
 <theme name="theme1" >
 <jdbc_query
 datasource="mvdemo"
 jdbc_srid="8265"
 x_column="long_loc"
 y_column="lat_loc"
 render_style="C.RED"
 label_column="name"
 label_style="T.POI_NAME"
 >SELECT long_loc, lat_loc FROM poi WHERE
 SDO_FILTER(geometry,MDSYS.SDO_GEOMETRY(2003, 8265, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1, 1003, 3),
 MDSYS.SDO_ORDINATE_ARRAY(?,?,?,?)),
 'querytype=WINDOW') = 'TRUE'

Themes

2-22 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 </jdbc_query>
 </theme>
 </themes>
</map_request>

2.3.2.2 Storing Complex JDBC Themes in the Database
Sometimes the SQL query for a JDBC theme is so complex that you may want to save
the query. In such cases, you can define a predefined theme (whose definition is stored
in the database's USER_SDO_THEMES view), and then include the full SQL query as
the content of the <features> element in the styling rules for that theme.

The feature style specified in the <features> element is then used to render the
geometries retrieved using the full query. The base table as defined for such a theme is
ignored because the full SQL query already includes a FROM clause. The geometry
column defined in the USER_SDO_THEMES view is still needed, and it must be the
same as the geometry column selected in the user-supplied SQL query. If you have a
<label> element for a styling rule, the label style specified is used to label the
geometries, as long as the query selects a column that contains label text.

Example 2–11 is a sample <styling_rules> element of a predefined theme with a
complex SQL query.

Example 2–11 Complex Query in a Predefined Theme

<?xml version="1.0" standalone="yes"?>
 <styling_rules>
 <rule>
 <features style="L.POOR_ROADS" asis="true">
 select sdo_lrs.clip_geom_segment(geometry,start_measure,end_measure)
 geometry
 from (select /*+ no_merge use_hash(a b) */
 a.street_id, name, start_measure, end_measure, geometry
 from (select /*+ no_merge */ a.street_id, name, geometry
 from philly_roads a
 where sdo_filter(geometry,sdo_geometry(2002,41124,null,
 sdo_elem_info_array(1,2,1),
 sdo_ordinate_array(?,?,?,?)),
 'querytype=window')='TRUE') a,
 philly_road_conditions b
 where condition='POOR' and a.street_id = b.street_id)
 </features>
 </rule>
 </styling_rules>

Even though Example 2–11 is defined as a predefined theme, MapViewer still treats it
as a JDBC theme at run time when a user requests a map that includes this theme. As
with a normal JDBC theme, MapViewer by default imposes a window filtering process
(if a query window was included in the map request) on top of the SQL query. To
override this default behavior and have the supplied query string executed without
any modification, specify asis="true" in the <features> element, as shown in
Example 2–11. (For information about the asis attribute, see Section 3.2.9.)

2.3.3 Image Themes
An image theme is a special kind of MapViewer theme useful for visualizing
geographically referenced imagery (raster) data, such as from remote sensing and
aerial photography.

Themes

MapViewer Concepts 2-23

You can define an image theme dynamically or permanently (as a predefined theme)
in the database. You can use image themes with vector (nonimage) themes in a map.
Figure 2–7 shows a map in which an image theme (showing an aerial photograph of
part of the city of Boston) is overlaid with themes showing several kinds of roadways
in the city.

Figure 2–7 Image Theme and Other Themes Showing Boston Roadways

Before you can define an image theme, you must follow these rules in organizing your
image data:

■ Store image data in its original format (such as JPEG) in a BLOB column in a
database table, or as an Oracle Multimedia object (ORDSYS.ORDImage) that
points to the original image file. For information about creating an
ORDSYS.ORDImage object, see Oracle Multimedia User's Guide.

■ Add a geometry (SDO_GEOMETRY) column to the same table, and store the
minimum bounding rectangle (MBR) for each image in that column.

Each geometry in the MBR column contains the geographic bounds for an image,
not its size in the pixel space. For example, if an orthophoto image is 2000 by 2000
pixels in size, but covers a ground rectangle starting at the corner of (936000,
248000) and having a width and height of 8000 meters, the MBR for the geometry
column should be populated with (936000, 248000, 944000, 256000).

■ Insert an entry for the geometry column in the USER_SDO_GEOM_METADATA
view.

■ Create a spatial index on the geometry column.

To predefine an image theme, follow the guidelines in Section 2.3.3.1. To define a
dynamic image theme in a map request, follow the guidelines for defining a JDBC

Themes

2-24 Oracle Fusion Middleware User's Guide for Oracle MapViewer

theme, as explained in Section 2.3.2 and Section 3.2.9, but note the following additional
considerations with dynamic image themes:

■ You must provide the original image resolution information when defining an
image theme.

■ MapViewer by default automatically scales the image data when generating a map
with an image theme, so that it fits the current query window. To disable this
automatic scaling, specify imagescaling="false" in the map request.

For any image theme definition, MapViewer supports only GIF, JPEG, PNG, and TIFF
image formats. To enable MapViewer to visualize data in any other image format, you
must implement a custom image renderer using the
oracle.sdovis.CustomImageRenderer interface in Java, and then register your
implementation class in the mapViewerConfig.xml file (to tell MapViewer which
custom image renderer to use for image data in a specific format). For detailed
information about implementing and registering a custom image renderer, see
Appendix C.

For an example of a map request specifying an image theme, including an explanation
of how MapViewer processes the request, see Example 3–6 in Section 3.1.6.

2.3.3.1 Creating Predefined Image Themes
To create a predefined image theme, you must store the definition of the image theme
in the database by inserting a row into the USER_SDO_THEMES view (described in
Section 2.9.2). Example 2–12 stores the definition of an image theme.

Example 2–12 Creating a Predefined Image Theme

INSERT INTO user_sdo_themes VALUES (
 'IMAGE_LEVEL_2',
 'Orthophotos at pyramid level 2',
 'IMAGES',
 'IMAGE_MBR',
 '<?xml version="1.0" standalone="yes"?>
 <styling_rules theme_type="image" image_column="image"
 image_format="JPEG" image_resolution="2"
 image_unit="M">
 <rule >
 <features style="C.RED"> plevel=2 </features>
 </rule>
 </styling_rules>');

Example 2–12 creates an image theme named IMAGE_LEVEL_2. The base table (where
all image data and associated MBRs are stored) is named IMAGES, and the minimum
bounding rectangles (MBRs) for the images are stored in the column named IMAGE_
MBR. In the STYLING_RULES column of the USER_SDO_THEMES view, an XML
document with one <styling_rules> element is inserted.

The <styling_rules> element for an image theme has the following attributes:

■ theme_type must be image in order for this theme to be recognized as an image
theme.

■ image_column specifies the column in the base table or view that stores the
actual image data.

■ image_format is a string identifying the format of the image data. If you specify
GIF or JPEG, MapViewer can always render the image data. If you specify any
other value, such as ECW, you must have implemented a custom image renderer

Themes

MapViewer Concepts 2-25

and registered it to MapViewer in order for the image to be rendered properly. For
information about implementing a custom image renderer, see Appendix C.

■ image_resolution is an optional attribute that identifies the original image
resolution (number of image_unit units for each pixel).

■ image_unit is an optional attribute, except it is required if you specify the
image_resolution attribute. The image_unit attribute specifies the unit of the
resolution, such as M for meter. The value for this attribute must be one of the
values in the SDO_UNIT column of the MDSYS.SDO_DIST_UNITS table. In
Example 2–12, the image resolution is 2 meters per pixel.

The DTD for the <styling_rules> element is presented in Section A.7.

2.3.4 GeoRaster Themes
A GeoRaster theme is a special kind of MapViewer theme useful for visualizing
GeoRaster objects. GeoRaster is a feature of Oracle Spatial that lets you store, index,
query, analyze, and deliver raster image and gridded data and its associated metadata.
GeoRaster objects are defined using the SDO_GEORASTER data type. For detailed
information about GeoRaster, see Oracle Spatial GeoRaster Developer's Guide.

Before you can use MapViewer with GeoRaster themes, you must ensure that the Java
Advanced Imaging (JAI) library files (jai_core.jar and jai_codec.jar) are in
the MapViewer library path, as explained in Section 1.4. You must also perform the
following actions with the GeoRaster data:

1. Georeference the GeoRaster data to establish the relationship between cell
coordinates of the GeoRaster data and real-world ground coordinates (or some
other local coordinates).

If you are using Oracle Database Release 10.1, you must also set the spatial
resolution values.

2. Generate or define the spatial extent (footprint) associated with the raster data.

3. Optionally, generate pyramid levels that represent the raster image or data at
different sizes and degrees of resolution.

4. Insert a row into the USER_SDO_GEOM_METADATA view that specifies the
name of the GeoRaster table and the SPATIALEXTENT attribute of the GeoRaster
column (that is, the column of type SDO_GEORASTER). The following example
inserts a row for a table named GEOR_TABLE with a GeoRaster column named
GEOR_COLUMN:

INSERT INTO USER_SDO_GEOM_METADATA VALUES
('geor_table',
 'geor_column.spatialextent',
 SDO_DIM_ARRAY(
 SDO_DIM_ELEMENT('X', 496602.844, 695562.844, 0.000005),
 SDO_DIM_ELEMENT('Y',8788409.499,8973749.499, 0.000005)
),
 82279 -- SRID
);

5. Create a spatial index on the spatial extent of the GeoRaster table. The following
example creates a spatial index named GEOR_IDX on the spatial extent of the
table named GEOR_TABLE:

CREATE INDEX geor_idx ON geor_table(geor_column.spatialextent)
 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

Themes

2-26 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Example 2–16 in Section 2.3.4.1 prepares GeoRaster data for use and stores a
GeoRaster theme in the database.

MapViewer supports two types of map requests with objects from a GeoRaster table:

■ A request containing a SQL statement to select one or more GeoRaster objects

■ A request specifying a single GeoRaster object by the combination of its raster data
table name and its rasterID attribute value in the SDO_GEORASTER object.
(The rasterID attribute value in the SDO_GEORASTER object is distinct from
and unrelated to any primary key or ID column in the GeoRaster table.)

The following elements and attributes apply to the definition of a GeoRaster theme:

■ <jdbc_georaster_query> element: Specifies that this is a dynamically defined
GeoRaster theme. For a theme that uses a SQL statement to select one or more
GeoRaster objects, this element contains the SQL query statement (without a
terminating semicolon). The complete DTD for this element is included in the map
request DTD in Section 3.2.

■ georaster_table attribute: Specifies the name of the GeoRaster table.

■ georaster_column attribute: Specifies the name of the column of type SDO_
GEORASTER in the GeoRaster table.

■ polygon_mask attribute (optional): Specifies a set of two-dimensional
coordinates representing a polygon, to be used as a mask to make transparent the
part of the GeoRaster image that is outside the polygon mask. The coordinates are
defined as x1,y1,x2,y2, The mask coordinates must be in the data coordinate
space.

■ raster_bands attribute (optional): Specifies the band composition to be assigned
to the red, green, and blue channels. If you specify only one value, the resulting
image uses one band (gray levels for monochromatic images). If you specify two
values, they are used for the red and green channels, and the default blue band
stored in the GeoRaster metadata is used for the blue channel. If you do not
specify this attribute, MapViewer uses the default values stored in the GeoRaster
metadata.

■ raster_pyramid attribute (optional): Specifies the pyramid level (level of
resolution). If you do not specify this attribute, MapViewer calculates the best
pyramid level for the current window query and device area.

■ raster_id attribute (only if the definition does not include a SQL statement):
Specifies the rasterID attribute value in the SDO_GEORASTER object definition
of the single GeoRaster object for the map request.

■ raster_table attribute (optional, and only if the definition does not include a
SQL statement): Specifies the raster data table associated with the single GeoRaster
object for the map request.

■ transparent_nodata attribute (optional): Specifies if any GeoRaster NODATA
value is to be rendered as transparent. The default value is "false".

Example 2–13 defines a GeoRaster theme that contains a SQL statement that selects a
single GeoRaster object. The theme assigns band 1 to the red channel, band 2 to the
green channel, and band 3 to the blue channel. Because the raster_pyramid
attribute is not specified, MapViewer calculates the best pyramid level by using the
spatial resolution values set during or after the georeferencing process. (Note that in
Example 2–13, georid=1 in the WHERE clause refers to a column named GEORID in
the GeoRaster table named PCI_IMAGE.)

Themes

MapViewer Concepts 2-27

Example 2–13 GeoRaster Theme Containing a SQL Statement

<theme name="georaster_theme">
 <jdbc_georaster_query
 georaster_table="pci_image"
 georaster_column="georaster"
 raster_bands="1,2,3"
 jdbc_srid="82301"
 datasource="mvdemo"
 asis="false"> SELECT georaster FROM pci_image WHERE georid =1
 </jdbc_georaster_query>
</theme>

Example 2–14 defines a GeoRaster theme that specifies the single GeoRaster object
whose rasterID attribute value in the SDO_GEORASTER object is 1 (raster_
id="1") and associated with the raster data table named RDT_PCI. The theme
specifies 2 as the pyramid level.

Example 2–14 GeoRaster Theme Specifying a Raster ID and Raster Data Table

<theme name="georaster_theme">
 <jdbc_georaster_query
 georaster_table="pci_image"
 georaster_column="georaster"
 raster_id="1"
 raster_table="rdt_pci"
 raster_pyramid="2"
 raster_bands="1,2,3"
 jdbc_srid="82301"
 datasource="mvdemo"
 asis="false">
 </jdbc_georaster_query>
</theme>

2.3.4.1 Creating Predefined GeoRaster Themes
To create a predefined GeoRaster theme, you must store the definition of the
GeoRaster theme in the database by inserting a row into the USER_SDO_THEMES
view (described in Section 2.9.2). Example 2–15 stores the definition of a GeoRaster
theme.

Example 2–15 Creating a Predefined GeoRaster Theme

INSERT INTO user_sdo_themes VALUES (
 'GEOR_BANDS_012',
 'Band 0 for red, 1 for green, 2 for blue',
 'GEOR_TABLE',
 'GEOR_COLUMN',
 '<?xml version="1.0" standalone="yes"?>
 <styling_rules theme_type="georaster" raster_table="RDT_PCI"
 raster_id="1" raster_bands="0,1,2">
 </styling_rules>');

Example 2–15 creates a GeoRaster theme named GEOR_BANDS_012, in which band 0
is assigned to the red channel, band 1 to the green channel, and band 2 to the blue
channel. The GeoRaster table name (GEOR_TABLE in this example) is inserted in the
BASE_TABLE column of the USER_SDO_THEMES view, the GeoRaster column name
(GEOR_COLUMN in this example) is inserted in the GEOMETRY_COLUMN column,
and an XML document with one <styling_rules> element is inserted in the
STYLING_RULES column.

Themes

2-28 Oracle Fusion Middleware User's Guide for Oracle MapViewer

In the <styling_rules> element for a GeoRaster theme, theme_type must be
georaster in order for this theme to be recognized as a GeoRaster theme.

The <styling_rules> element for a GeoRaster theme can contain the attributes
described in Section 2.3.4, including raster_bands, raster_pyramid, raster_id,
and raster_table, as shown in Example 2–15. Alternatively, the <styling_
rules> element for a GeoRaster theme can be a rule definition. For example, to create
a GeoRaster theme that selects a GeoRaster object from the GeoRaster table satisfying
the WHERE clause condition georid=1, replace the <styling_rules> element in
Example 2–15 with the following:

<styling_rules theme_type="georaster">
 <rule>
 <features> georid=1
 </features>
 </rule>
</styling_rules>

The <styling_rules> element for a GeoRaster theme can also specify one or more
bitmap masks, as explained in Section 2.3.4.2.

The DTD for the <styling_rules> element is presented in Section A.7.

Example 2–16 prepares GeoRaster data for use with a GeoRaster theme that is stored
in the database. Comments in the code example briefly describe the main steps. For
detailed information about requirements and steps for using GeoRaster data, see
Oracle Spatial GeoRaster Developer's Guide.

Example 2–16 Preparing GeoRaster Data for Use with a GeoRaster Theme

connect scott
Enter password: password

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 100
SET PAGESIZE 10000
SET SERVEROUTPUT ON SIZE 5000
SET LONG 20000
SET TIMING ON
call dbms_java.set_output(5000);

-- Create a GeoRaster table (a table that has a
-- column of SDO_GEORASTER object type).

create table georaster_table
 (georid number primary key,
 type varchar2(32),
 georaster sdo_georaster);

-- Create the GeoRaster DML trigger on the GeoRaster table, if
-- the Oracle Database release is before 11.1. (In Release 11.1 and later
-- this trigger is created automatically, so you do not need to create
-- it manually.)

call sdo_geor_utl.createDMLTrigger('georaster_table', 'georaster');

Themes

MapViewer Concepts 2-29

-- Create a raster data table (RDT).
--
-- It is used to store cell data of GeoRaster objects.
-- This step is not a requirement. If the RDT table does not
-- exist, the GeoRaster procedures or functions will generate it
-- automatically whenever needed.
-- However, for huge GeoRaster objects, some tuning and setup on those
-- tables can improve the scalability and performance significantly.
-- In those cases, it is better for users to create the RDTs.
-- The primary key must be added to the RDT if you create it.

create table rdt_geor of sdo_raster
 (primary key (rasterId, pyramidLevel, bandBlockNumber,
 rowBlockNumber, columnBlockNumber))
 lob(rasterblock) store as (nocache nologging);

commit;

-- Import the image.

connect system;
Enter password: password

call dbms_java.grant_permission('MDSYS','SYS:java.io.FilePermission',
 'lbs/demo/images/l7_ms.tif', 'read');

call dbms_java.grant_permission('SCOTT','SYS:java.io.FilePermission',
 'lbs/demo/images/l7_ms.tif', 'read');

connect scott;
Enter password: password

 declare
 geor SDO_GEORASTER;
begin
 delete from georaster_table where georid = 1;
 insert into georaster_table
 values(1, 'TIFF', sdo_geor.init('rdt_geor', 1));
 select georaster into geor
 from georaster_table where georid = 1 for update;
 sdo_geor.importFrom(geor, '', 'TIFF', 'file',
 'lbs/demo/images/l7_ms.tif');
 update georaster_table set georaster = geor where georid = 1;
 commit;
end;
/

connect system;
Enter password: password

call dbms_java.revoke_permission('MDSYS','SYS:java.io.FilePermission',
 'lbs/demo/images/l7_ms.tif', 'read');

call dbms_java.revoke_permission('SCOTT','SYS:java.io.FilePermission',
 'lbs/demo/images/l7_ms.tif', 'read');

Themes

2-30 Oracle Fusion Middleware User's Guide for Oracle MapViewer

connect scott;
Enter password: password

-- Change the GeoRaster format, if needed.
-- To do this, you can call SDO_GEOR.changeFormatCopy.
-- The following operations for pyramiding, spatial resolution setup, and
-- spatial extent generation can also be combined into one PLSQL block.

declare
 gr1 sdo_georaster;
begin
 --
 -- Using changeFormat with a GeoRaster object:
 --

 -- 1. Select the source GeoRaster object.
 select georaster into gr1
 from georaster_table where georid = 1;

 -- 2. Make changes. (Interleaving is application-dependent. For TIFF images,
 -- the default interleaving is BSQ.)
 sdo_geor.changeFormat(gr1, 'blocksize=(512,512,3) interleaving=BIP');

 -- 3. Update the GeoRaster object in the GeoRaster table.
 update georaster_table set georaster = gr1 where georid = 1;

 commit;
end;
/

-- Generate pyramid levels (strongly recommended, but optional).

declare
 gr sdo_georaster;
begin

 -- 1. Select the source GeoRaster object.
 select georaster into gr
 from georaster_table where georid = 1 for update;

 -- 2. Generate pyramids.
 sdo_geor.generatePyramid(gr, 'resampling=NN');

 -- 3. Update the original GeoRaster object.
 update georaster_table set georaster = gr where georid = 1;

 commit;
end;
/

-- Georeference the GeoRaster object.

DECLARE

Themes

MapViewer Concepts 2-31

 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid = 1 FOR UPDATE;
 sdo_geor.georeference(gr, 82216, 1,
 sdo_number_array(30, 0, 410000.000000),
 sdo_number_array(0, -30,3759000.000000));
 UPDATE georaster_table SET georaster = gr WHERE georid = 1;
 COMMIT;
END;
/

-- Set the spatial resolutions (required for 10gR1 only)

-- If you are using Oracle Database Release 10.1, set spatial resolutions. (Not
-- required if you are using Release 10.2.) The spatial resolution values of
-- (30, 30) are from the ESRI world file or from the georeferencing information;
-- however, you may have to compute these values if they are not part of
-- the original georeferencing metadata.
DECLARE
 gr sdo_georaster;
BEGIN
 SELECT georaster INTO gr FROM georaster_table WHERE georid = 1 FOR UPDATE;
 sdo_geor.setSpatialResolutions(gr, sdo_number_array(30, 30));
 UPDATE georaster_table SET georaster = gr WHERE georid = 1;
 COMMIT;
END;
/

-- Update the spatial extent.

DECLARE
 sptext sdo_geometry;
BEGIN
 SELECT sdo_geor.generateSpatialExtent(a.georaster) INTO sptext
 FROM georaster_table a WHERE a.georid=1 FOR UPDATE;
 UPDATE georaster_table a SET a.georaster.spatialextent = sptext WHERE
a.georid=1;
 COMMIT;
END;
/

commit;

--
-- Create metadata information for the GeoRaster spatial extent column.
--

INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (
 'GEORASTER_TABLE',
 'georaster.spatialextent',
 SDO_DIM_ARRAY(
 SDO_DIM_ELEMENT('X', 410000.0, 470000.0, 0.000005),
 SDO_DIM_ELEMENT('Y', 3699000.0,3759000., 0.000005)
),
 82216 -- SRID
);

Themes

2-32 Oracle Fusion Middleware User's Guide for Oracle MapViewer

-- Create a spatial index on the spatial extent.

CREATE INDEX georaster_idx ON georaster_table(georaster.spatialextent)
INDEXTYPE IS MDSYS.SPATIAL_INDEX;

--
-- Create a predefined GeoRaster theme for MapViewer.
--

INSERT INTO user_sdo_themes VALUES (
 'GEORASTER_TABLE',
 'GeoTiff image',
 'GEORASTER_TABLE',
 'GEORASTER',
 '<?xml version="1.0" standalone="yes"?>
 <styling_rules theme_type="georaster" raster_table="RDT_GEOR"
 raster_id="1" raster_bands="0,1,2">
 </styling_rules>');

commit;

2.3.4.2 Using Bitmap Masks with GeoRaster Themes
Effective with Oracle Spatial GeoRaster for Release 11.1, bitmap masks can be assigned
to GeoRaster layers stored in the database. A bitmap mask is a special one-bit deep
rectangular raster grid with each pixel having either the value of 0 or 1. It is used to
define an irregularly shaped region inside another image. The 1-bits define the interior
of the region, and the 0-bits define the exterior of the region. For more information
about bitmap masks, see Oracle Spatial GeoRaster Developer's Guide.

To specify a bitmap mask with a GeoRaster theme, use the <bitmap_masks> element
in the <styling_rules> element for the predefined theme, as shown in
Example 2–17.

Example 2–17 Bitmap Mask in Predefined GeoRaster Theme

<styling_rules theme_type="georaster" raster_id="1"
 raster_table="RDT_MASS_COLOR_MOSAIC">
 <bitmap_masks>
 <mask layers="1,2" zeromapping="0" onemapping="255"/>
 </bitmap_masks>
</styling_rules>

The <bitmap_masks> element contains one or more <mask> elements, each with a
mask definition for a specific GeoRaster object. In Example 2–17, a mask is defined for
layers 1 and 2 of the GeoRaster object with the raster ID of 1 in the RDT_MASS_
COLOR_MOSAIC table. The <mask> element has the following attributes:

■ raster_id specifies the raster ID value of the GeoRaster object.

■ raster_table specifies the raster data table (RDT).

■ layers specifies the layer numbers in the GeoRaster object to be used for the
mask.

■ zeromapping specifies the transparency value to be applied during rendering on
bitmap pixels with a value of 0 (zero). The attribute value can be from 0
(completely transparent) to 255 (completely opaque).

Themes

MapViewer Concepts 2-33

■ onemapping specifies the transparency value to be applied during rendering on
bitmap pixels with a value of 1. The attribute value can be from 0 (completely
transparent) to 255 (completely opaque).

2.3.4.3 Reprojection of GeoRaster Themes
Effective with Oracle Spatial GeoRaster for Release 11.2.0.1, GeoRaster objects can be
reprojected into a different SRID. It is recommended that you apply Oracle Database
patch 10259201, to avoid black boundaries for adjacent reprojected GeoRaster objects
when the objects are rendered in MapViewer. For more information, see My Oracle
Support document ID 1272931.1, Black Lines After Reprojection Of Georaster Data Via
Wms In Oracle Mapviewer.

In MapViewer, a GeoRaster theme will be reprojected if its SRID is different from the
map request SRID. The reprojection is just for rendering, with no changes made to the
original GeoRaster object. For older databases without reprojection support, the
GeoRaster object will not be reprojected.

The reprojection modes available are BILINEAR (used as default), NN, CUBIC,
AVERAGE4, AVERAGE16. For more information about reprojection, see Oracle Spatial
GeoRaster Developer's Guide.

To specify a reprojection mode with a GeoRaster theme, use the reproj_mode
keyword in the <styling_rules> element for the predefined theme, as shown in
Example 2–18.

Example 2–18 Reprojection Mode in Predefined GeoRaster Theme

<styling_rules theme_type="georaster" reproj_mode="CUBIC">
</styling_rules>

2.3.5 Network Themes
A network theme is a special kind of MapViewer theme useful for visualizing
networks defined using the Oracle Spatial network data model. A network consists of
a set of nodes and links. A network can be directed or undirected, although links and
paths typically have direction. A network can be organized into different levels of
abstraction, called a network hierarchy. MapViewer assumes that network spatial
tables in a network use the same coordinate system, and that these tables are indexed
and registered as described in Oracle Spatial Topology and Network Data Models
Developer's Guide.

Network node, link, and path tables store geometries of type SDO_GEOMETRY. You
can create JDBC themes that use these geometries. In addition, you can define dynamic
themes that consider aspects of the network, such as the direction of links for a
directed network.

The following elements and attributes apply to the definition of a network theme:

■ <jdbc_network_query> element: Specifies that this is a dynamically defined
network theme. The complete DTD for this element is included in the map request
DTD in Section 3.2.

■ network_name attribute: Specifies the name of the network.

■ network_level attribute (optional): Specifies the network hierarchy level to
which this theme applies. (For a nonhierarchical network, specify 1, which is the
default value.)

■ link_style attribute (optional): Specifies the style name to be used for links.

Themes

2-34 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ direction_style attribute (optional): Specifies the style name to be used for a
link direction marker (for example, a directional arrow image).

■ bidirection_style attribute (optional): Specifies the style name to be used for
a bidirected link.

■ direction_position attribute (optional): Specifies the position of the direction
marker relative to the link start, as a number between 0 and 1. For example, 0.85
indicates 85 percent of the way between the link start and end points.

■ direction_markersize attribute (optional): Specifies the size (number of
pixels) of the direction marker.

■ direction_multimarker attribute (optional): Specifies if the direction marker
should be repeated over the link: true repeats the marker at a specified start
position and each subsequent interval of that distance; false (the default) does
not repeat the marker.

■ link_labelstyle attribute (optional): Specifies the style name to be used for
link labels in the column specified in the link_labelcolumn attribute.

■ link_labelcolumn attribute (optional): Specifies the name of the column
containing link labels to be rendered using the style specified in the link_
labelstyle attribute.

■ node_style attribute (optional): Specifies the style name to be used for nodes.

■ node_markersize attribute (optional): Specifies the size (number of pixels) of
the node marker.

■ node_labelstyle attribute (optional): Specifies the style name to be used for
node labels in the column specified in the node_labelcolumn attribute.

■ node_labelcolumn attribute (optional): Specifies the name of the column
containing node labels to be rendered using the style specified in the node_
labelstyle attribute.

■ path_ids attribute (optional): Specifies one or more path ID values of stored
paths to be rendered. For more than one path, use commas to delimit the path ID
values. For example, path_ids="1,3,4" specifies that the paths with path ID
values 1, 3, and 4 are to be rendered.

■ path_styles attribute (optional): Specifies one or more style names associated
with the paths specified in the path_ids attribute. For example, path_
styles="C.RED,C.GREEN,C.BLUE" specifies styles to be used to render the
first, second, and third paths (respectively) specified in the path_ids attribute.

■ path_labelstyle attribute (optional): Specifies the style name to be used for
path labels in the column specified in the path_labelcolumn attribute.

■ path_labelcolumn attribute (optional): Specifies the name of the column
containing path labels to be rendered using the style specified in the path_
labelstyle attribute.

Additional network theme attributes related to network analysis are described in
Section 2.3.5.2.

A network theme can combine attributes for links, nodes, and paths, or any
combination. In such cases, MapViewer first renders the links, then the paths, and then
the nodes.

Example 2–19 defines a network theme that specifies attributes for the display of links
and nodes in the network named NYC_NET.

Themes

MapViewer Concepts 2-35

Example 2–19 Network Theme

<theme name="net_theme" user_clickable="false">
 <jdbc_network_query
 network_name="NYC_NET"
 network_level="1"
 jdbc_srid="8307"
 datasource="mvdemo"
 link_style="C.RED"
 direction_style="M.IMAGE105_BW"
 direction_position="0.85"
 direction_markersize="8"
 node_style="M.STAR"
 node_markersize="5"
 asis="false">
 </jdbc_network_query>
</theme>

2.3.5.1 Creating Predefined Network Themes
To create a predefined network theme, you must store the definition of the network
theme in the database by inserting a row into the USER_SDO_THEMES view
(described in Section 2.9.2). Example 2–20 stores the definition of a network theme.

Example 2–20 Creating a Predefined Network Theme

INSERT INTO user_sdo_themes VALUES (
 'NYC_NET_1',
 'New York City network',
 'NYC_NET_LINK_TABLE',
 'GEOMETRY',
 '<?xml version="1.0" standalone="yes"?>
 <styling_rules
 theme_type="network"
 network_name="NYC_NET"
 network_level="1">
 <rule>
 <features>
 <link
 style="C.RED"
 direction_style="M.IMAGE105_BW"
 direction_position="0.85"
 direction_markersize="8">
 </link>
 <path
 ids="1,3"
 styles="C.BLUE,C.GREEN">
 </path>
 <node
 style="M.CIRCLE"
 markersize="5">
 </node>
 </features>
 <label>
 <link column="LINK_ID" style="T.STREET NAME"> 1 </link>
 </label>
 </rule>
 </styling_rules>');

Example 2–20 creates a network theme named NYC_NET_1 for level 1 of the network
named NYC_NET. The network table name (NYC_NET_LINK_TABLE in this example)

Themes

2-36 Oracle Fusion Middleware User's Guide for Oracle MapViewer

is inserted in the BASE_TABLE column of the USER_SDO_THEMES view, the link
geometry column name (GEOMETRY in this example) is inserted in the GEOMETRY_
COLUMN column, and an XML document with one <styling_rules> element is
inserted in the STYLING_RULES column.

In the <styling_rules> element for a network theme, theme_type must be
network in order for this theme to be recognized as a network theme. Elements for
links, paths, and nodes can be specified in the same <features> element, as is done
in Example 2–20:

■ The link feature rule specifies the style C.RED and direction marker attributes for
all links.

■ The path feature rule specifies the style C.BLUE for paths with the path ID value 1,
and the style C.GREEN for paths with the path ID value 3.

■ The node feature rule specifies the style M.CIRCLE and a marker size of 5.

Example 2–20 also contains a <label> element for links, specifying the link column
LINK_ID and the label style T.STREET NAME.

The DTD for the <styling_rules> element is presented in Section A.7.

2.3.5.2 Using MapViewer for Network Analysis
The network model Java API provides several network analysis capabilities. You can
define MapViewer network themes that support the shortest-path and within-cost
analysis capabilities. Some attributes apply to both capabilities, and some attributes
apply only to the relevant associated capability.

For all network analysis capabilities, the <jdbc_network_query> element and the
network-related attributes described in Section 2.3.5 apply to the definition of the
network theme.

For shortest-path analysis, the following attributes apply to the definition of the
network theme:

■ analysis_algorithm attribute: Specifies the shortest-path analysis algorithm to
use. Must be either DIJKSTRA or ASEARCH.

■ shortestpath_style attribute: Specifies the style name to be used for the
shortest path.

■ shortestpath_startnode attribute: Specifies the start node to be used for the
analysis.

■ shortestpath_endnode attribute: Specifies the end node to be used for the
analysis.

■ shortestpath_startstyle attribute (optional): Specifies the style name to be
used for the start node.

■ shortestpath_endstyle attribute (optional): Specifies the style name to be
used for the end node.

Example 2–21 defines a network theme that can be used for shortest-path analysis.

Example 2–21 Network Theme for Shortest-Path Analysis

<theme name="shortest_path_theme" user_clickable="false">
 <jdbc_network_query
 network_name="BI_TEST"
 network_level="1"
 jdbc_srid="0"

Themes

MapViewer Concepts 2-37

 datasource="mvdemo"
 analysis_algorithm="DIJKSTRA"
 shortestpath_style="L.PH"
 shortestpath_startnode="20"
 shortestpath_endnode="101"
 shortestpath_startstyle="M.STAR"
 shortestpath_endstyle="M.CIRCLE"
 asis="false">
 </jdbc_network_query>
</theme>

For within-cost analysis, the following attributes apply to the definition of the network
theme:

■ analysis_algorithm attribute: Must be WITHINCOST.

■ withincost_startnode attribute: Specifies the start node to be used for the
analysis.

■ withincost_cost attribute: Specifies the cost cutoff value for nodes to be
included. All nodes that can be reached from the start node at a cost less than or
equal to the specified value are included in the resulting display. Nodes that
cannot be reached from the start node or that can be reached only at a cost greater
than the specified value are not included.

■ withincost_startstyle attribute (optional): Specifies the style name to be
used for the start node.

■ withincost_style attribute: Specifies the style name to be used for links in the
displayed paths between the start node and each node that is within the specified
cost cutoff value.

Example 2–22 defines a network theme that can be used for within-cost analysis.

Example 2–22 Network Theme for Within-Cost Analysis

<theme name="within_cost_theme" user_clickable="false">
 <jdbc_network_query
 network_name="BI_TEST"
 network_level="1"
 jdbc_srid="0"
 datasource="mvdemo"
 analysis_algorithm="WITHINCOST"
 withincost_startnode="20"
 withincost_style="L.PH"
 withincost_cost="1"
 withincost_startstyle="M.STAR"
 asis="false">
 </jdbc_network_query>
</theme>

2.3.6 Topology Themes
A topology theme is a special kind of MapViewer theme useful for visualizing
topologies defined using the Oracle Spatial topology data model. The topology data
model lets you work with data about nodes, edges, and faces in a topology. The spatial
representations of nodes, edges, and faces are spatial geometries of type SDO_
GEOMETRY. For nodes and edges, the geometries are explicitly stored; for faces, the
initial lines (exterior and interior) are stored, allowing the face geometry to be
generated.

Themes

2-38 Oracle Fusion Middleware User's Guide for Oracle MapViewer

In addition to the spatial representation of nodes, edges, and faces, a topology can
have features. A feature (also called a topology geometry) is a spatial representation of
a real-world object. Each feature is defined as an object of type SDO_TOPO_
GEOMETRY, which identifies the topology geometry type, topology geometry ID,
topology geometry layer ID, and topology ID. For detailed information, see Oracle
Spatial Topology and Network Data Models Developer's Guide.

MapViewer can render topology features. It can also render a theme in debug mode
(explained later in this section) to show the nodes, edges, and faces of a topology. For
each topology theme, MapViewer uses the topology metadata information stored in
the USER_SDO_TOPO_METADATA view.

The following elements and attributes apply to the definition of a topology theme:

■ <jdbc_topology_query> element: Specifies that this is a dynamically defined
topology theme. The element can specify a SQL query statement (without a
terminating semicolon). The complete DTD for this element is included in the map
request DTD in Section 3.2.

■ topology_name attribute: Specifies the name of the topology.

■ feature_table attribute: Specifies the name of the feature table.

■ spatial_column attribute: Specifies the name of the spatial feature column of
type SDO_TOPO_GEOMETRY.

■ label_column attribute: Specifies the column in the feature table that contains
the text label to be used with each feature.

■ label_style attribute: Specifies the name of the text style to be used to render
the labels in the label column.

■ render_style attribute: Specifies the name of the style to be used to render the
topology.

Example 2–23 defines a topology theme that specifies attributes for the display of
features and labels from the LAND_PARCELS table in the CITY_DATA topology. The
SQL statement specifies the spatial feature column and the label column, and it
includes all rows in the feature table.

Example 2–23 Topology Theme

<theme name="topo_theme" user_clickable="false">
 <jdbc_topology_query
 topology_name="CITY_DATA"
 feature_table="LAND_PARCELS"
 label_column="FEATURE_NAME"
 spatial_column="FEATURE"
 label_style="T.CITY NAME"
 render_style="C.COUNTIES"
 jdbc_srid="0"
 datasource="topology"
 asis="false">select feature, feature_name from land_parcels
 </jdbc_topology_query>
</theme>

MapViewer also supports a debug mode that renders the nodes, edges, and faces of a
topology. To specify debug mode, include the mode="debug" attribute in the
<theme> element. In addition to the <jdbc_topology_query> attributes
mentioned earlier in this section, the following attributes can be used in debug mode:

■ edge_style attribute: Specifies the name of the style to be used to render edges.

Themes

MapViewer Concepts 2-39

■ edge_label_style attribute: Specifies the name of the text style to be used to
render edge labels.

■ edge_marker_style attribute: Specifies the name of the marker style to be used
for edge markers.

■ edge_marker_size attribute: Specifies the size (number of pixels) of for edge
markers.

■ node_style attribute: Specifies the name of the style to be used to render nodes.

■ node_label_style attribute: Specifies the name of the text style to be used to
render node labels.

■ face_style attribute: Specifies the name of the style to be used to render faces.

■ face_label_style attribute: Specifies the name of the text style to be used to
render face labels.

Example 2–24 defines a debug-mode topology theme for rendering features, edges,
nodes, and faces from all feature tables in the CITY_DATA topology.

Example 2–24 Topology Theme Using Debug Mode

<theme name="topo_theme" mode="debug" user_clickable="false">
 <jdbc_topology_query
 topology_name="CITY_DATA"
 edge_style="C.RED"
 edge_marker_style="M.IMAGE105_BW"
 edge_marker_size="8"
 edge_label_style="T.EDGE"
 node_style="M.CIRCLE"
 node_label_style="T.NODE"
 face_style="C.BLUE"
 face_label_style="T.FACE"
 jdbc_srid="0"
 datasource="topology"
 asis="false">
 </jdbc_topology_query>
</theme>

2.3.6.1 Creating Predefined Topology Themes
To create a predefined topology theme, you must store the definition of the topology
theme in the database by inserting a row into the USER_SDO_THEMES view
(described in Section 2.9.2). Example 2–25 stores the definition of a topology theme.

Example 2–25 Creating a Predefined Topology Theme

INSERT INTO user_sdo_themes VALUES (
 'LANDPARCELS',
 'Topology theme for land parcels',
 'LAND_PARCELS',
 'FEATURE',
 '<?xml version="1.0" standalone="yes"?>
 <styling_rules theme_type="topology" topology_name="CITY_DATA">
 <rule>
 <features style="C.RED"></features>
 <label column="FEATURE_NAME" style="T.TEXT STYLE"> </label>
 </rule>
 </styling_rules>');

Themes

2-40 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Example 2–25 creates a topology theme named LANDPARCELS for the topology named
CITY_DATA. The feature table name (LAND_PARCELS in this example) is inserted in
the BASE_TABLE column of the USER_SDO_THEMES view, the feature column name
(FEATURE in this example) is inserted in the GEOMETRY_COLUMN column, and an
XML document with one <styling_rules> element is inserted in the STYLING_
RULES column.

In the <styling_rules> element for a topology theme, theme_type must be
topology in order for this theme to be recognized as a topology theme. The theme in
Example 2–25 defines one styling rule that renders all land parcel features from the
CITY_DATA topology using the C.RED style and using the T.TEXT STYLE label style
for values in the FEATURE_NAME column of the feature table.

The DTD for the <styling_rules> element is presented in Section A.7.

2.3.7 WFS Themes
A WFS theme is a special kind of MapViewer theme that supports the rendering of
data delivered using the Open GIS Consortium (OGC) Web Feature Service (WFS)
protocol, specifically the WFS 1.0.0 implementation specification.

WFS theme are conceptually similar to geometry themes, and users are able to render
and label features. The WFS operations GetCapabilities,
DescribeFeatureType, and GetFeature are used when rendering a WFS theme.
When a WFS service is accessed, MapViewer caches the information about capabilities
and feature types.

■ GetCapabilities retrieves the server general information, including the URL
addresses to issue requests and the features available. In general, a WFS capability
request has the form:

http://localhost:1979/geoserver/wfs/GetCapabilities?SERVICE=WFS&VERSION=1.0.0&R
EQUEST=GetCapabilities

The result includes a <Capabilities> element with the URL addresses for the WFS
requests. For example, the following includes the GetCapabilities URLs for HTTP
GET and POST requests.

<Capability>
 <Request>
 <GetCapabilities>
 <DCPType>
 <HTTP>
 <Get onlineResource="http://localhost:1979/geoserver/wfs/GetCapabilities?"
/>
 </HTTP>
 </DCPType>
 <DCPType>
 <HTTP>
 <Post
onlineResource="http://localhost:1979/geoserver/wfs/GetCapabilities?" />
 </HTTP>
 </DCPType>
 </GetCapabilities>
. . .
</Capability>

■ DescribeFeatureType retrieves the feature information, including attributes
and types.

Themes

MapViewer Concepts 2-41

■ GetFeature retrieves the feature geometries and attributes. The output format
for GetFeature requests is GML2.

The following attributes apply to the definition of a WFS theme:

■ datasource attribute: Specifies the MapViewer data source from which styles
will be loaded.

■ feature_attributes attribute: Specifies feature attributes (besides geometry
and label columns) that can be used with advanced styles.

■ feature_ids attribute: Specifies the WFS feature IDs to be retrieved. Feature IDs
are represented with the fid name in the WFS responses. If feature IDs are
specified, spatial filter and query conditions are not used in the WFS request.

■ feature_name attribute: Specifies the WFS feature name.

■ key_column attribute: Specifies the attribute to be used as a key column. Applies
to predefined themes, and can be used in Oracle Maps applications. If key_
column is not specified, fid is used as the key column.

■ label_column attribute: Specifies the column in the feature table that contains
the text label to be used with each WFS feature.

■ label_style attribute: Specifies the name of the text style to be used to render
the labels in the label column.

■ query_condition attribute: Specifies a WHERE clause condition to be applied to
the WFS theme. Cannot be a complex condition with a hierarchy of expressions
defined using multiple parentheses. Each string in the query must be separated by
a blank space. If the condition cannot be parsed, it is ignored on the WFS request.
Any query conditions are ignored if you specify the feature_ids attribute. The
following are examples of valid expressions:

state_name = 'New Hampshire' or state_name = 'New York'
(state_name = 'New Hampshire' or state_name = 'New York') and top_pop > 700000
(state_name = 'New Hampshire' or state_name = 'New York') and (top_pop >
700000)

■ render_style attribute: Specifies the name of the style to be used to render the
geometry.

■ service_url attribute: Corresponds to the capabilities address for HTTP GET
requests. The service_url parameter for MapViewer must be the online resource
address for HTTP GET in the <GetCapabilities> element. In the preceding
example, the value to be used is:
http://localhost:1979/geoserver/wfs/GetCapabilities?

Do not include the Capabilities parameters SERVICE, VERSION, and REQUEST;
use just the URL from the capabilities information.

■ spatial_column attribute: Specifies the name of the spatial feature column of
type SDO_TOPO_GEOMETRY.

■ srs attribute: Specifies the spatial reference system (coordinate system) name for
the WFS feature, in EPSG or Oracle Spatial format. For example, EPSG:4325,
SDO:8307, and 8307 (the Spatial SRID value) specify the same SRS. If an EPSG
SRS value is specified, MapViewer tries to identify an equivalent Spatial (SDO)
SRID; and if no matching SRID is found, the SRID for the theme is assumed to be
zero (0). MapViewer looks for matching SRID values as follows:

1. Use any custom mapping specified in an SDO to EPSG SRID mapping file
specified MapViewer configuration file, as explained inSection 1.5.2.11.

Themes

2-42 Oracle Fusion Middleware User's Guide for Oracle MapViewer

2. Use the Spatial function SDO_CS.MAP_EPSG_SRID_TO_ORACLE to get the
equivalent SDO code (if this function is available in the version of Oracle
Database used to store the data).

3. Use the EPSG code that is in the MDSYS.CS_SRS table, if a match can be
found.

Example 2–26 shows a request with a dynamic WFS theme. The WFS service is
geoserver, and it is installed on the local system.

Example 2–26 WFS Request with a Dynamic WFS Theme

<?xml version="1.0" standalone="yes"?>
<map_request
 title="WFS MAP"
 datasource = "mvdemo"
 width="640"
 height="480"
 bgcolor="#a6cae0"
 antialiase="true"
 mapfilename="wfs_map"
 format="PNG_URL">
 <center size="20.">
 <geoFeature >
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-70., 44.</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>

 <themes>
 <theme name="wfs" >
 <wfs_feature_request
 service_url="http://localhost:1979/geoserver/wfs/GetCapabilities?"
 srs="EPSG:4326"
 feature_name="states"
 spatial_column="the_geom"
 render_style="C.COUNTIES"
 label_column="STATE_NAME"
 label_style="T.STATE NAME"
 datasource="mvdemo" />
 </theme>
 </themes>

</map_request>

2.3.7.1 Creating Predefined WFS Themes
To create a predefined WFS theme, you must store the definition of the WFS theme in
the database by inserting a row into the USER_SDO_THEMES view (described in
Section 2.9.2). Example 2–27 stores the definition of a WFS theme.

Example 2–27 Creating a Predefined WFS Theme

INSERT INTO user_sdo_themes VALUES (
 'WFS_THEME1',
 'WFS',
 'POI',
 'THE_GEOM',

Themes

MapViewer Concepts 2-43

'<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="wfs" service_
url="http://localhost:1979/geoserver/wfs/GetCapabilities?" srs="EPSG:4326">
 <hidden_info>
 <field column="NAME" name="name"/>
 <field column="MAINPAGE" name="mainpage"/>
 </hidden_info>
 <rule>
 <features style="M.STAR"> </features>
 <label column="NAME" style="T.STREET NAME"> 1 </label>
 </rule>
</styling_rules>');

In Example 2–27, the WFS feature POI is used as the base table, and the attribute THE_
GEOM is the spatial column. The styling rule information contains the service_url
and srs information; and although not shown inExample 2–27, it can also specify a
key_column value. The <features> and <label> elements of the styling rules are
similar to the rules used in geometry themes. Hidden information (<hidden_info>
element) can also be defined and used in Oracle Maps applications.

Example 2–28 shows a map request that uses the predefined theme created in
Example 2–27.

Example 2–28 Map Request with Predefined WFS Theme

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Predefined WFS MAP"
 datasource = "mvdemo"
 width="640"
 height="480"
 bgcolor="#a6cae0"
 antialiase="true"
 format="PNG_STREAM">

 <themes>
 <theme name="wfs_theme1" />
 </themes>

</map_request>

See also the WFS map request examples in Section 3.1.14.

In some cases, proxy information may affect the access to WFS servers. If this occurs,
specify the appropriate proxy parameters in the MapViewer configuration file.

2.3.8 Custom Geometry Themes
Custom geometry themes are associated with external spatial data (spatial data in a
native format other than Oracle Spatial, such as Shapefile). A custom geometry theme
uses a spatial provider class to retrieve the native data, and the external provider must
use the spatial data provider plug-in mechanism. MapViewer provides a spatial
provider interface class that the external provider must implement. The interface
implementation has the following methods:

public interface SDataProvider
{
 /**
 * Returns the initialization parameter names for the provider.
 * These names can be used by applications to populate user interface

Themes

2-44 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 * components.
 * @return
 */
 public String[] getInitParameterNames();

 /**
 * Returns runtime parameter names. Runtime parameters are additional parameters
 * that the provider may use when retrieving the data objects.
 * These names can be used by applications to populate user interface
 * components.
 *
 * @return
 */
 public String[] getRuntimeParameterNames();

 /**
 * This method is used to set the initialization parameters for the specific
 * data provider. In mapViewer these parameters are defined on the
 * configuration file, when registering the spatial provider.
 * @param params to be used by the initialization method.
 * @return true if success; false otherwise
 */
 public boolean init(Properties params);

 /**
 * This method creates and returns an instance of SDataSet which contains
 * the feature spatial data and attributes produced by this provider, based on
 * the given parameters for a specific incoming map request.
 *

 * MapViewer calls this method on the custom theme producer implementation.
 * The SDataSet class stores for each feature its spatial representation and
 * and the attribute values that are requested.
 *
 * @param queryWin the search area to retrieve spatial objects. The window is
assumed
 * to be already on data provider spatial reference system.
 * @param nonSpatialColumns the list of attributes that will return with objects.
 * @param params parameters that the provider may use to retrieve the data.
 * @return an instance of SDataSet; null if failed.
 */
 public SDataSet buildDataSet(Rectangle2D queryWin,String []nonSpatialColumns,
 Properties params);

 /**
 * Returns the list of existing attributes for this data provider.
 * @param params parameters that the provider may use to get the attribute list.
 * @return
 */
 public Field[] getAttributeList(Properties params);

 /**
 * Returns the data set spatial extent MBR.
 * @param params parameters that the provider may use to get the data extents
 * @return
 */
 public Rectangle2D getDataExtents(Properties params);

 /**
 * Builds a spatial index on the data set.
 * @param params parameters that the provider may use to build the spatial

Themes

MapViewer Concepts 2-45

index.
 * @return
 */
 public boolean buildSpatialIndex(Properties params);
}

The init and buildDataSet methods must be implemented. The other method
implementations can be empty; however applications (such as the Oracle Map Builder
Tool) can make use of these methods to handle the information about spatial data
providers. A provider can implement its own spatial indexing mechanism; MapViewer
offers an implementation for the Shapefile provider, and the buildSpatialIndex
method creates an indexing file with the .oix extension in the shapefile directory.
Appendix D contains an example of how to implement and register a sample spatial
provider with MapViewer.

To render native data in MapViewer with custom geometry themes, follow these steps:

1. Implement a spatial provider class based on the plug-in interface, and generate a
jar file with the provider implementation. Copy the jar file to a directory that is
part of the MapViewer CLASSPATH definition.

2. Register the provider in the MapViewer configuration file. MapViewer already
offers a spatial provider implementation for the Shapefile format, and its
registration section in the configuration file looks like this:

<s_data_provider
 id="shapefileSDP"
 class="oracle.sdovis.ShapefileDataProvider"
 >
 <parameters>
 <parameter name="datadir" value="/temp/data" />
 </parameters>
</s_data_provider>

Each provider must have id and class names defined: id is a unique name that
identifies the provider, and class corresponds to the Java class implementation.
The <parameters> element defines the initialization parameters of the provider.

For the Shapefile provider, the initialization parameter datadir defines where
MapViewer will look for the data files, and thus it should be a directory that is
accessible to MapViewer. MapViewer first looks for data files based on the theme
definition information; and if the data path defined in the theme definition is not
accessible, MapViewer looks for the data path defined in the configuration file.

3. Create custom geometry themes associated with the external spatial data provider.

Although the external spatial data is outside the Oracle database, you still need to
have a database connection to render this data. The database is used to store the
metadata information related with the theme, as well as the styling information used
to render and to label the data.

Example 2–29 shows the definition for a dynamic custom geometry theme. The XML
element <custom_geom_theme> identifies a custom geometry theme. The
<parameters> element defines the runtime parameters to be used by the provider. In
this case "filename" is a runtime parameter, and
"/lbs/demo/shapefile/parcel.shp" defines the file path. MapViewer first
attempts to use this file path definition; but if it is not accessible, it uses the data
directory value defined in the configuration file for the Shapefile spatial provider.

Themes

2-46 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Example 2–29 Defining a Dynamic Custom Geometry Theme

<theme name="custom_geom_theme_1" >
 <custom_geom_theme
 provider_id="shapefileSDP"
 srid="26986"
 render_style="C.RED"
 label_column="parcel_id"
 label_style="T.CITY NAME"
 datasource="mvdemo">
 <parameters>
 <parameter name="filename" value="/lbs/demo/shapefile/parcel.shp"/>
 </parameters>
 </custom_geom_theme>
</theme>

The available attributes for a dynamic custom geometry theme are:

■ provider_id specifies the spatial provider.

■ datasource specifies the Oracle database connection. This connection is used to
retrieve the styles to render the spatial data.

■ srid specifies the spatial reference system (Oracle Spatial coordinate system).

■ render_style specifies the style to be used when rendering the features.

■ label_column specifies the name of the column containing label text to be used
with the theme.

■ label_style specifies the style to be used when labeling the features.

■ feature_attributes specifies additional attributes that can be used with
advanced styles.

■ key_column specifies a key attribute that can be used in Oracle Maps
applications.

Example 2–30 shows how to store a predefined custom geometry theme definition.
Use GEOMETRY as the geometry column name, and you can specify any name for the
base table name. The "theme_type=geom_custom" attribute identifies the theme as
a custom theme. The <rule> element has the same function as for an Oracle Spatial
geometry theme. The <parameters> element defines the runtime parameters that the
provider accepts. For the Shapefile provider, the runtime parameter filename defines
the path to the Shapefile data.

Example 2–30 Storing a Predefined Custom Geometry Theme

insert into user_sdo_themes values (
'SHAPE_THEME',
'Shapefile theme',
'CUSTOM_TABLE',
'GEOMETRY',
'<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="geom_custom" srid="26986" provider_id="shapefileSDP">
 <rule>
 <features style="C.RED"> </features>
 <label column="PARCEL_ID" style="T.CITY NAME"> 1 </label>
 </rule>
 <parameters>
 <parameter name="filename" value="/lbs/demo/shapefile/parcel.shp"/>
 </parameters>
</styling_rules>'

Themes

MapViewer Concepts 2-47

);

You can override the runtime parameters section of a predefined custom geometry
theme by the specifying the parameters in a map_request. For example, you can
include the following in a <map_request> element:

<theme name="CUSTOM_THEME" >
 <parameters>
 <parameter name="filename" value="/lbs/demo/shapefile/counties.shp"/>
 </parameters>
</theme>

2.3.9 Annotation Text Themes
Oracle Spatial supports annotation text as specified in the OpenGIS Implementation
Specification for Geographic information - Simple feature access - Part 1: Common
architecture, which defines annotation text as "simply placed text that can carry either
geographically-related or ad-hoc data and process-related information as displayable
text. This text may be used for display in editors or in simpler maps. It is usually
lacking in full cartographic quality, but may act as an approximation to such text as
needed by any application."

Oracle Spatial provides the ST_ANNOTATION_TEXT object type for storing
annotation text, and the USER_ANNOTATION_TEXT_METADATA and ALL_
ANNOTATION_TEXT_METADATA views for storing metadata related to annotation
text. For more information about annotation text support, see Oracle Spatial Developer's
Guide.

Each annotation text object may have one or more elements, and each element is
defined by the following:

■ Value: Text associated with element. If the value is null, the text is derived from
the first non-null preceding element value. If all preceding elements have null
values, the text is a text expression value derived from the metadata.

■ Location: Spatial location associated with the annotation text object.

■ Leader line: Linear feature associated with the annotation text object.

■ Attributes: Graphic attributes used to display the text. If the value is null, graphic
attributes are derived from the attributes value in the metadata.

The text expression in the metadata views can be any of the following:

■ A column name.

■ A function applied to a column name. For example: substr(my_col,1,3)

■ The concatenation of two or more column names. For example: column_1 ||
column_2 || column_3

■ A text value that is unrelated to a column name. In this case, it is treated as a
simple text string that is used for any text element that has a null value.

Annotation text themes in MapViewer are associated with database tables that have a
column of type ST_ANNOTATION_TEXT. For each annotation text element,
MapViewer will render:

■ The value (if not null) of the annotation text element as a string, using a text style
that is created at real time based on the element attributes.

■ The leader line (if not null) associated with the annotation text element. In this
case, users can select a MapViewer style to render the leader line.

Themes

2-48 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Each annotation text element has an envelope represented by a geometry, and which is
used for spatial indexing. Therefore, you must do the following to use spatial indexing
with annotation text tables in MapViewer:

1. Insert a row into the USER_ANNOTATION_TEXT_METADATA view that
specifies the name of the annotation text table and the PRIVATEENVELOPE
attribute of the annotation text column (that is, the column of type ST_
ANNOTATION_TEXT).

The following example inserts a row for a table named ANNOTEXT_TABLE with
an annotation text column named TEXTOBJ:

INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (
 'ANNOTEXT_TABLE',
 'TEXTOBJ.PRIVATEENVELOPE',
 SDO_DIM_ARRAY(
 SDO_DIM_ELEMENT('X', 0.0, 10.0, 0.0005),
 SDO_DIM_ELEMENT('Y', 0.0,10.0, 0.0005)
),
 null -- SRID
);

2. Create a spatial index on the annotation text envelope of the annotation text table.

The following example creates a spatial index named ANNO_TEXT_IDX on the
annotation envelope of the table named ANNOTEXT_TABLE:

CREATE INDEX anno_text_idx ON annotext_table(textobj.privateenvelope)
 INDEXTYPE IS mdsys.spatial_index;

For themes with valid SRID information, if the metadata base map scale is defined, the
element text sizes will be scaled as maps zoom in or out.

Example 2–31 defines the styling rules for a predefined annotation text theme in
MapViewer. The structure is similar to other MapViewer themes. Currently, just one
styling rule is processed for each annotation theme. In this example, the theme type is
annotation, the feature style L.PH is used to render leader lines, and the query
condition (id = 1 or id = 2) is appended on the final query.

Example 2–31 Styling Rules for a Predefined Annotation Text Theme

<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="annotation">
 <rule>
 <features style="L.PH"> (id = 1 or id = 2) </features>
 </rule>
</styling_rules>

Example 2–32 shows the theme definition for a dynamic annotation text theme. The
parameters defined are:

■ datasource: the data source name

■ jdbc_srid: the spatial reference identifier

■ annotation_table: the annotation text table

■ annotation_column: the annotation text column

■ leaderline_style: the leader line style to be used

Themes

MapViewer Concepts 2-49

Example 2–32 Dynamic Annotation Text Theme Definition

<themes>
 <theme name="theme1" >
 <jdbc_annotation_query
 datasource="tilsmenv"
 jdbc_srid="0"
 annotation_table="ANNOTEXT_TABLE"
 annotation_column="textobj"
 leaderline_style="L.PH"
 >select textobj from annotext_table
 </jdbc_annotation_query>
 </theme>
</themes>

Example 2–33 is similar to Example 2–32, but it adds the behavior that if the
annotation_column column contains a null value, then the value in the textexpr_
column is used for the annotation instead. In Example 2–33, assume that the
ANNOTATION_TABLE table contains a column named DEFAULT_ANNOTATION
(which is used in Example 2–34). This additional column is specified in the
textexpr_column attribute and in the SELECT statement.

Example 2–33 Dynamic Annotation Text Theme with Default Annotation Column

<themes>
 <theme name="theme1" >
 <jdbc_annotation_query
 datasource="tilsmenv"
 jdbc_srid="0"
 annotation_table="ANNOTEXT_TABLE"
 annotation_column="textobj"
 textexpr_column="default_annotation"
 leaderline_style="L.PH"
 >select textobj, default_annotation from annotext_table
 </jdbc_annotation_query>
 </theme>
</themes>

Example 2–34 creates an annotation text table and prepares it to be used with
MapViewer.

Example 2–34 Script to Generate Annotation Text Data

SET ECHO ON
SET FEEDBACK 1
SET NUMWIDTH 10
SET LINESIZE 100
SET PAGESIZE 10000
SET SERVEROUTPUT ON SIZE 5000
SET LONG 20000
SET TIMING ON
call dbms_java.set_output(5000);

-- Create an annotation text table (a table that has a
-- column of ST_ANNOTATION_TEXT object type), and insert some records.

create table annotext_table (
 id number,
 default_annotation varchar2(32),

Themes

2-50 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 textobj ST_ANNOTATION_TEXT);

insert into annotext_table values (1,'Text_1',
ST_ANNOTATION_TEXT(
 ST_ANNOTATIONTEXTELEMENT_ARRAY(
 ST_ANNOT_TEXTELEMENT_ARRAY(
 ST_ANNOTATIONTEXTELEMENT('Sample Label 1',
 SDO_GEOMETRY(2001, null, sdo_point_type(1,1,null),null,null),
 SDO_GEOMETRY(2002,null,null,
 SDO_ELEM_INFO_ARRAY(1,2,1),
 SDO_ORDINATE_ARRAY(0,0, 1,1)), NULL)))));

insert into annotext_table values (2,'Text_2',
ST_ANNOTATION_TEXT(
 ST_ANNOTATIONTEXTELEMENT_ARRAY(
 ST_ANNOT_TEXTELEMENT_ARRAY(
 ST_ANNOTATIONTEXTELEMENT('Sample Label 2',
 SDO_GEOMETRY(2001,null,sdo_point_type(10,10,null),null,null),
 SDO_GEOMETRY(2002,null,null,
 SDO_ELEM_INFO_ARRAY(1,2,1),
 SDO_ORDINATE_ARRAY(5,10, 10,10)), NULL)))));

insert into annotext_table values (3, 'Text_3',
ST_ANNOTATION_TEXT(
 ST_ANNOTATIONTEXTELEMENT_ARRAY(
 ST_ANNOT_TEXTELEMENT_ARRAY(
 ST_ANNOTATIONTEXTELEMENT(null,
 SDO_GEOMETRY(2002, null, null,
 SDO_ELEM_INFO_ARRAY(1,2,1),
 SDO_ORDINATE_ARRAY(2,5,4,5,6,5)),
 SDO_GEOMETRY(2002,null,null,
 SDO_ELEM_INFO_ARRAY(1,2,1),
 SDO_ORDINATE_ARRAY(4,3, 4,5)),
'<?xml version="1.0" encoding="UTF-8" ?>
<textAttributes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../../annotation_text.xsd">
 <textStyle fontFamily="Dialog" fontSize="14" fill="blue"/>
 <textlayout/>
</textAttributes>'
)))));

-- Register the annotation text table in the user metadata view.

insert into USER_ANNOTATION_TEXT_METADATA values(
 'ANNOTEXT_TABLE', 'TEXTOBJ', null, null, null);

-- Update the metadata information.

update user_annotation_text_metadata set
text_expression='default_annotation',
text_attributes =
'<?xml version="1.0" encoding="UTF-8" ?>
<textAttributes xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="../../annotation_text.xsd">
 <textStyle fontFamily="Serif" fontSize="14" fill="#ff0000"/>
 <textlayout/>

Themes

MapViewer Concepts 2-51

</textAttributes>';

-- Register the annotation text geometry envelope on the user
-- metadata view of geometries.

INSERT INTO USER_SDO_GEOM_METADATA
 VALUES (
 'ANNOTEXT_TABLE',
 'TEXTOBJ.PRIVATEENVELOPE',
 SDO_DIM_ARRAY(
 SDO_DIM_ELEMENT('X', 0.0, 10.0, 0.0005),
 SDO_DIM_ELEMENT('Y', 0.0,10.0, 0.0005)
),
 null -- SRID
);

-- Create a spatial index on the annotation text envelope.

create index anno_text_idx on annotext_table(textobj.privateenvelope)
 indextype is mdsys.spatial_index;

-- Insert a predefined theme into MapViewer's theme view.

INSERT INTO user_sdo_themes VALUES (
 'ANNOTEXT_THEME',
 'Annotation text',
 'ANNOTEXT_TABLE',
 'TEXTOBJ',
 '<?xml version="1.0" standalone="yes"?>
 <styling_rules theme_type="annotation">
 <rule >
 <features style="L.PH"> </features>
 </rule>
 </styling_rules>');

commit;

2.3.10 Thematic Mapping
Thematic mapping refers to the drawing of spatial features based on their attribute
values. MapViewer uses thematic mapping to create maps in which colors or symbols
are applied to features to indicate their attributes. For example, a Counties theme can
be drawn using colors with different hues that map directly to the population density
of each county, or an Earthquakes theme can be plotted with filled circles whose
sizes map to the scale or damage of each earthquake.

To achieve thematic mapping, you must first create an advanced style that is suitable
for the type of thematic map, and then create a theme for the features specifying the
advanced style as the rendering style. In the styling rules for the theme, you must also
specify attribute columns in the table or view whose values will be used to determine
exactly how a feature will be rendered thematically by the advanced style.

For example, assume that you wanted to display a map in which the color used for
each region reflects the level of sales for a particular product. To do this, create an

Themes

2-52 Oracle Fusion Middleware User's Guide for Oracle MapViewer

advanced style that defines a series of individual range-based buckets (see
Section A.6.1.2), where each bucket contains a predefined range of sales values for a
product, and each bucket has an associated rendering style. (Each region will be
rendered using the style associated with the range in which that region's sales value
falls.) Also specify the name of the column or columns that provide the attribute
values to be checked against the ranges. In other words, the advanced style defines
how to map regions based on their sales values, and the theme’s styling rules tie
together the advanced style and the attribute column containing the actual sales
values.

Figure 2–8 shows the relationship between an advanced style and a theme, and how
the style and the theme relate to the base table. In this figure, the advanced style
named V.SALES defines the series of buckets. The predefined theme named SALES_
BY_REGION specified the V.SALES style in its styling rules. The theme also identifies
the SALES column in the REGIONS table as the column whose value is to be
compared with the bucket ranges in the style. (Each bucket could be associated with a
labeling style in addition to or instead of a rendering style, as explained in
Section 2.2.2.)

Figure 2–8 Thematic Mapping: Advanced Style and Theme Relationship

In addition to the individual range-based buckets shown in Figure 2–8, MapViewer
supports other bucket styles, as explained in Section A.6.1. You can also use more than
one attribute column for thematic mapping, such as when drawing pie charts
(explained in Section 3.1.9).

The rest of this section presents additional examples of thematic mapping.

Example 2–35 is the XML definition for an Earthquakes theme.

Example 2–35 XML Definition of Styling Rules for an Earthquakes Theme

<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="nature">

Themes

MapViewer Concepts 2-53

 <rule column="RICHTER_SCALE">
 <features style="v.earthquakes">
 </features>
 </rule>
</styling_rules>

The theme in Example 2–35 has only one rule. The <rule> element includes an
attribute named column that does not appear in the Airport theme in Example 2–6.
The column attribute specifies one or more columns (comma-delimited) that provide
the attribute values needed for thematic mapping. The style specified for the
<features> element is named v.earthquakes, and it is an advanced style.

Another part of the definition of the Earthquakes theme specifies the table that
contains the data to be rendered. This table must contain a column named RICHTER_
SCALE in addition to a column (of type SDO_GEOMETRY) for the spatial data. (The
table and the column of type SDO_GEOMETRY must be identified in the BASE_
TABLE and GEOMETRY_COLUMN columns, respectively, of the USER_SDO_
THEMES view, which is described in Section 2.9.2.) The RICHTER_SCALE column
must be of type NUMBER. To understand why, look at the advanced style definition in
Example 2–36.

Example 2–36 Advanced Style Definition for an Earthquakes Theme

<?xml version="1.0" ?>
<AdvancedStyle>
 <VariableMarkerStyle basemarker="m.circle" startsize="7" increment="4">
 <Buckets>
 <RangedBucket seq="0" label="less than 4" high="4"/>
 <RangedBucket seq="1" label="4 - 5" low="4" high="5"/>
 <RangedBucket seq="2" label="5 - 6" low="5" high="6"/>
 <RangedBucket seq="3" label="6 - 7" low="6" high="7"/>
 <RangedBucket seq="4" label="7 and up" low="7"/>
 </Buckets>
 </VariableMarkerStyle>
</AdvancedStyle>

This style specifies that the marker named m.circle is used to indicate the location
of an earthquake. The size of the marker to be rendered for an earthquake depends on
the numeric value of the RICHTER_SCALE column for that row. In this example there
are five buckets, each covering a predetermined range of values. For example, if an
earthquake is of magnitude 5.7 on the Richter scale, the marker size will be 15 pixels (7
+ 4 + 4), because the value 5.7 falls in the third bucket (5 - 6) and the starting marker
size is 7 pixels (startsize="7") with an increment of 4 for each range
(increment="4").

Example 2–36 used the <VariableMarkerStyle> tag. The following examples use
the <ColorSchemeStyle> tag in creating thematic maps of census blocks in
California. Example 2–37 illustrates the use of a graduated color scale for a thematic
mapping of population density. Example 2–38 is a thematic mapping of average

Note: The label attribute value (for example, label="less
than 4") is not displayed on the map, but is used only in a label
that is compiled for an advanced style.

The seq attribute value (for example, seq="0") is ignored by
MapViewer, which determines sequence only by the order in which
elements appear in a definition.

Themes

2-54 Oracle Fusion Middleware User's Guide for Oracle MapViewer

household income using a graduated color scale. Example 2–39 is also a thematic
mapping of average household income, but it uses a specific color style for each
income range rather a graduated scale.

Example 2–37 Mapping Population Density Using a Graduated Color Scheme

ca pop density usbg_hhinfo
<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="political">
<rule column="densitycy">
 <features style="v.CA Pop density">
 </features>
 </rule>
</styling_rules>

The table named USBG_HHINFO includes a column named DENSITYCY (used in
Example 2–37). The definition of the style (v.CA Pop density) that corresponds to
this population density theme is as follows:

<?xml version="1.0" ?>
<AdvancedStyle>
 <ColorSchemeStyle basecolor="#ffff00" strokecolor="#00aaaa">
 <Buckets low="0.0" high="20000.0" nbuckets="10"/>
 </ColorSchemeStyle>
</AdvancedStyle>

The base color (basecolor) and the stroke color (strokecolor) are 24-bit RGB
(red-green-blue) values specified using a hexadecimal notation. The base color value is
used for the first bucket. The color value for each subsequent bucket is obtained by
first converting the base color from the RGB to the HSB (hue-saturation-brightness)
model and then reducing the brightness by a fixed increment for each bucket. Thus,
the first bucket is the brightest and the last is the darkest.

As in Example 2–37, Example 2–38 illustrates the use of a base color and a graduated
color scheme, this time to show household income.

Example 2–38 Mapping Average Household Income Using a Graduated Color Scheme

<?xml version="1.0" standalone="yes"?>
<!-- # ca hh income theme table = usbg_hhinfo -->
<styling_rules>
<rule column="avghhicy">
 <features style="v.ca income">
 </features>
 </rule>
</styling_rules>

The table named USBG_HHINFO includes a column named AVGHHICY (used in
Example 2–38 and Example 2–39). The definition of the style (v.ca income) that
corresponds to this average household income theme is as follows:

<?xml version="1.0" ?>
<AdvancedStyle>
 <ColorSchemeStyle basecolor="#ffff00" strokecolor="#00aaaa">
 <!-- # income range with a color gradient -->
 <Buckets>
 <RangedBucket seq="0" label="less than 10k" high="10000"/>
 <RangedBucket seq="1" label="10-15k" low="10000" high="15000"/>
 <RangedBucket seq="2" label="15-20k" low="15000" high="20000"/>
 <RangedBucket seq="3" label="20-25k" low="20000" high="25000"/>

Themes

MapViewer Concepts 2-55

 <RangedBucket seq="4" label="25-35k" low="25000" high="35000"/>
 <RangedBucket seq="5" label="35-50k" low="35000" high="50000"/>
 <RangedBucket seq="6" label="50-75k" low="50000" high="75000"/>
 <RangedBucket seq="7" label="75-100k" low="75000" high="100000"/>
 <RangedBucket seq="8" label="100-125k" low="100000" high="125000"/>
 <RangedBucket seq="9" label="125-150k" low="125000" high="150000"/>
 <RangedBucket seq="10" label="150-250k" low="150000" high="250000"/>
 <RangedBucket seq="11" label="250-500k" low="250000" high="500000"/>
 <RangedBucket seq="12" label="500k and up" low="500000"/>
 </Buckets>
 </ColorSchemeStyle>
</AdvancedStyle>

For individual range-based buckets, the lower-bound value is inclusive, while the
upper-bound value is exclusive (except for the range that has values greater than any
value in the other ranges; its upper-bound value is inclusive). No range is allowed to
have a range of values that overlaps values in other ranges.

Example 2–39 uses specific color styles for each average household income range.

Example 2–39 Mapping Average Household Income Using a Color for Each Income
Range

<?xml version="1.0" standalone="yes"?>
<!-- # ca hh income theme table = usbg_hhinfo -->
<styling_rules>
<rule column="avghhicy">
 <features style="v.ca income 2">
 </features>
 </rule>
</styling_rules>

The definition of the v.ca income 2 style is as follows:

<?xml version="1.0" ?>
<AdvancedStyle>
 <BucketStyle>
 <Buckets>
 <!-- # income ranges with specific colors -->
 <RangedBucket seq="0" label="less than 10k" high="10000" style="c.rb13_1"/>
 <RangedBucket seq="1" label="10-15k" low="10000" high="15000" style="c.rb13_2"/>
 <RangedBucket seq="2" label="15-20k" low="15000" high="20000" style="c.rb13_3"/>
 <RangedBucket seq="3" label="20-25k" low="20000" high="25000" style="c.rb13_4"/>
 <RangedBucket seq="4" label="25-35k" low="25000" high="35000" style="c.rb13_5"/>
 <RangedBucket seq="5" label="35-50k" low="35000" high="50000" style="c.rb13_6"/>
 <RangedBucket seq="6" label="50-75k" low="50000" high="75000" style="c.rb13_7"/>
 <RangedBucket seq="7" label="75-100k" low="75000" high="100000" style="c.rb13_8"/>
 <RangedBucket seq="8" label="100-125k" low="100000" high="125000" style="c.rb13_9"/>
 <RangedBucket seq="9" label="125-150k" low="125000" high="150000" style="c.rb13_10"/>
 <RangedBucket seq="10" label="150-250k" low="150000" high="250000" style="c.rb13_11"/>
 <RangedBucket seq="11" label="250-350k" low="250000" high="350000" style="c.rb13_12"/>
 <RangedBucket seq="12" label="350k and up" low="350000" style="c.rb13_13"/>
 </Buckets>
 </BucketStyle>
</AdvancedStyle>

Each <RangedBucket> definition has a specified style.

The following examples create an advanced style to identify gasoline stations operated
by different oil companies, and a theme that uses the style. A <CollectionBucket>
tag is used to associate a column value (Shell; Esso; Texaco; BP; any of Avia,
Benzinex, Q8, Total, Witte Pomp; and all others for a default category) with a
style appropriate for that company’s stations, as shown in Example 2–40.

Themes

2-56 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Example 2–40 Advanced Style Definition for Gasoline Stations Theme

<?xml version="1.0" ?>
<AdvancedStyle>
<BucketStyle>
 <Buckets>
 <CollectionBucket seq="0" label="Shell" style="m.shell gasstation">
 Shell
 </CollectionBucket>
 <CollectionBucket seq="1" label="Esso" style="m.esso gasstation">
 Esso
 </CollectionBucket>
 <CollectionBucket seq="2" label="Texaco" style="m.texaco gasstation">
 Texaco
 </CollectionBucket>
 <CollectionBucket seq="3" label="BP" style="m.bp gasstation">
 BP
 </CollectionBucket>
 <CollectionBucket seq="4" label="Other" style="m.generic gasstation">
 Avia,Benzinex,Q8,Total,Witte Pomp
 </CollectionBucket>
 <CollectionBucket seq="5" label="DEFAULT" style="m.default gasstation">
 #DEFAULT#
 </CollectionBucket>
 </Buckets>
</BucketStyle>
</AdvancedStyle>

Notes on Example 2–40:

■ m.esso gasstation, m.texaco gasstation, and the other style names have
a space between the words in their names.

■ The names are not case-sensitive. Therefore, be sure not to use case as a way of
differentiating names. For example, m.esso gasstation and M.ESSO
GASSTATION are considered the same name.

■ A default collection bucket can be specified by using #DEFAULT# as its value. This
bucket is used for any column values (gas station names) that are not specified in
the other buckets.

A theme (theme_gasstation) is then defined that specifies the column (MERK) in
the table that contains company names. The styling rules of the theme are shown in
Example 2–41.

Example 2–41 Styling Rules of Theme Definition for Gasoline Stations

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule column="merk">
 <features style="v.gasstations">
 </features>
 <label column="merk" style="t.SansSerif red 10">
 1
 </label>
 </rule>
</styling_rules>

This theme depends on a table named NED_GASSTATIONS, which has the columns
shown in Table 2–2 (with column names reflecting the fact that the developer’s
language is Dutch).

Themes

MapViewer Concepts 2-57

In this table, the GEOM column contains spatial geometries, and the MERK column
contains company names (Shell, Esso, and so on).

The styling rules for the theme_gasstation theme specify that the marker (style
v.gasstations) at a location specified by the content of the GEOM column is
determined by the value of the MERK column for that row. The style v.gasstations
(see Example 2–40) specifies that if the column value is Shell, use the style m.shell
gasstation; if the column value is Esso, use the style m.esso gasstation; and
so on, including if the column value is any one of Avia, Benzinex, Q8, Total, and
Witte Pomp, use the style m.generic gasstation; and if the column value is
none of the preceding, use the style m.default gasstation.

2.3.10.1 Thematic Mapping Using External Attribute Data
Previous discussion of thematic mapping has assumed that both the attribute data
(such as population of sales totals) and the geospatial data (geometry objects
representing boundaries, locations, and so on) are in the same database. However, the
attribute data can come from a source outside the current database; for example, the
attribute data might reflect aggregated results of a business intelligence (BI) query
performed on a different database, or the attribute data might come from a
comma-delimited list of sales values exported from a spreadsheet. Such attribute data,
from outside the database that contains the geospatial data, is called external attribute
data.

To use external attribute data with MapViewer, you must use the nonspatial data
provider plug-in mechanism, in which a custom data provider is associated with a
MapViewer theme (predefined or dynamic) in the same map request. When
MapViewer process the theme, it calls the nonspatial data provider to join nonspatial
attribute data with the spatial data that has been fetched for the theme.

To use a nonspatial data provider, follow these steps:

1. Implement your Java nonspatial data provider by implementing the MapViewer
defined interface oracle.mapviewer.share.ext.NSDataProvider.

2. Register the nonspatial data provider implementation with MapViewer (in its
configuration file). There you can also specify a set of global parameters that your

Table 2–2 Table Used with Gasoline Stations Theme

Column Data Type

FID NOT NULL NUMBER

ID NUMBER

NAAM VARCHAR2(31)

STRAAT_ VARCHAR2(30)

NR NUMBER

TV VARCHAR2(1)

AAND VARCHAR2(2)

PCODE VARCHAR2(6)

PLAATS VARCHAR2(10)

GEOM SDO_GEOMETRY

MERK VARCHAR2(40)

Themes

2-58 Oracle Fusion Middleware User's Guide for Oracle MapViewer

implementation may depend on. Note that each custom data provider
implementation class must have a unique ID that you assign.

3. Place a library containing the nonspatial data provider implementation classes in
the library path of MapViewer, such as its web/WEB-INF/lib directory.

4. Include the nonspatial data provider implementation in a map request by
invoking the following method on the MapViewer Java client API class
MapViewer:

addNSDataProvider(java.lang.String providerId,
 java.lang.String forTheme,
 java.lang.String spatialKeyColumn,
 java.lang.String customRenderingStyle,
 java.util.Properties params,
 long timeout)

For information about the addNSDataProvider parameters, see the Javadoc
reference information for MapViewer, available at a URL in the form
http://host:port/mapviewer/mapclient, where host and port indicate
where OC4J or Oracle Fusion Middleware listens for incoming requests. For
example: http://www.mycorp.com:8888/mapviewer/mapclient

Example 2–42 shows a simple nonspatial data provider implementation. This
implementation is also supplied with MapViewer as a default nonspatial data
provider.

Example 2–42 Nonspatial (External) Data Provider Implementation

import java.io.BufferedReader;
import java.io.FileReader;
import java.util.Properties;
import java.util.Vector;

import oracle.mapviewer.share.ext.NSDataSet;
import oracle.mapviewer.share.ext.NSDataProvider;
import oracle.mapviewer.share.ext.NSRow;
import oracle.lbs.util.Logger;

import oracle.mapviewer.share.Field;

/**
 * A simple implementation of the NSDataProvider interface. When invoked, it
supplies tabular attribute data to MapViewer out
 * of a file or URL. The data in the file must be orgazined as following:

 *
 * The first line contain a single character which is the delimiter
 * between columns in the subsequent lines.
 * Each line after the first in the file represent one data row
 * Each field in the row must be separated by the delimiter char only
 * The first field in each line must be a string (key) that serves as the
 * key; the rest of the fields must be numeric values
 *
 *
 * When incorporating this data provider in a map request, one of the following
 * two parameters must be specified:
 *
 * file if the custom data is stored in a local file; this parameter
 * specifies the full path to that file
 * url if the custom data can be accessed from a web; this parameter
 * specifeis the full URL to the data file.

Themes

MapViewer Concepts 2-59

 *
 *
 *
 */
public class NSDataProviderDefault implements NSDataProvider
{
 private static Logger log = Logger.getLogger("oracle.sdovis.nsdpDefault");

 public boolean init(Properties params)
 {
 return true;
 }

 public NSDataSet buildDataSet(Properties params)
 {
 String file = params.getProperty("file");
 if(file!=null)
 return readFromFile(file);

 String url = params.getProperty("url");
 if(url!=null)
 return readFromUrl(url);

 log.error("Must supply either file or url for default NS data provider.");
 return null;
 }

 public void destroy()
 {
 }

 protected NSDataSet readFromFile(String file)
 {
 BufferedReader in = null;
 try{
 in = new BufferedReader(new FileReader(file));
 String line = in.readLine();
 String delimiter = line.substring(0,1);

 Vector rows = new Vector();

 while ((line=in.readLine()) != null)
 {
 NSRow row = buildRow(line, delimiter);
 if(row!=null)
 rows.add(row);
 }

 NSDataSet res = new NSDataSet(rows);
 return res;
 }catch(Exception ex)
 {
 log.error(ex);
 return null;
 } finally
 {
 try{
 if(in!=null)
 in.close();
 }catch(Exception e){}

Themes

2-60 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 }
 }

 protected NSDataSet readFromUrl(String url)
 {
 log.error("url not supported yet.");
 return null;
 }

 protected NSRow buildRow(String line, String delimiter)
 {
 if(line==null || line.length()<1)
 return null;

 String[] fields = line.split(delimiter);
 if(fields==null || fields.length==0)
 return null;

 Field[] row = new Field[fields.length];

 Field a = new Field(fields[0]);
 a.setKey(true);

 row[0] = a;

 for (int i = 1; i < fields.length; i++)
 {
 try{
 double d = Double.parseDouble(fields[i]);
 a = new Field(d);
 row[i] = a;
 }catch(Exception e)
 {
 log.warn("invalid row field (key="+fields[0]+")");
 return null;
 }
 }

 return new NSRow(row);

 }
}

2.3.11 Attributes Affecting Theme Appearance
Some attributes of the <theme> element affect only the appearance of the map display,
rather than determining the data to be associated with the theme. These
appearance-related attributes control whether and how the theme is processed and
rendered when a map is generated. Examples include the following attributes:

■ min_scale and max_scale determine whether or not a theme is displayed at
various map scales (levels of resolution). For example, if you are displaying a map
of streets, there are certain map scales at which the streets would become too
dense for a usable display, such as when viewing an entire state or province. In
this case, you should create a theme for streets, and specify minimum and
maximum scale values to ensure that individual streets affected by the theme are
displayed when the scale is appropriate and otherwise are not displayed.

■ labels_always_on determines whether or not labels for the theme will be
displayed if they would overlap another label. By choosing appropriate labels_

Maps

MapViewer Concepts 2-61

always_on values and choosing an appropriate order of themes to be processed
within a map request, you can control how cluttered the labels might become and
which labels have priority in getting displayed.

■ fast_unpickle determines the unpickling (unstreaming) method to be used,
which can involve a trade-off between performance and precision in the display.

■ fixed_svglabel, visible_in_svg, selectable_in_svg, onclick,
onmousemove, onmouseover, and onmouseout affect the appearance of SVG
maps.

To specify any appearance-related attributes, use the <theme> element (described in
Section 3.2.20) with the XML API or the JavaBean-based API (see especially
Section 4.3).

2.4 Maps
A map can consist of a combination of elements and attributes, such as the following:

■ Background image

■ Title

■ Legend

■ Query window

■ Footnote (such as for a copyright notice)

■ Base map

■ Predefined themes (in addition to any in the base map)

■ JDBC themes (with dynamic queries)

■ Dynamically defined (temporary) styles

These elements and attributes, when specified in a map request, define the content and
appearance of the generated map. Chapter 3 contains detailed information about the
available elements and attributes for a map request.

A map can have a base map and a stack of themes rendered on top of each other in a
window. A map has an associated coordinate system that all themes in the map must
share. For example, if the map coordinate system is 8307 (for Longitude / Latitude (WGS
84), the most common system used for GPS devices), all themes in the map must have
geometries defined using that coordinate system.

You can add themes to a map by specifying a base map name or by using the
programming interface to add themes. The order in which the themes are added
determines the order in which they are rendered, with the last specified theme on top,
so be sure you know which themes you want in the background and foreground.

All base map names and definitions for a database user are stored in that user’s USER_
SDO_MAPS view, which is described in Section 2.9 and Section 2.9.1. The
DEFINITION column in the USER_SDO_MAPS view contains an XML definition of a
base map.

Example 2–43 shows a base map definition.

Example 2–43 XML Definition of a Base Map

<?xml version="1.0" ?>
<map_definition>
<theme name="theme_us_states" min_scale="10" max_scale="0"/>

Maps

2-62 Oracle Fusion Middleware User's Guide for Oracle MapViewer

<theme name="theme_us_parks" min_scale="5" max_scale="0"/>
<theme name="theme_us_highways" min_scale="5" max_scale="0"/>
<theme name="theme_us_streets" min_scale="0.05" max_scale="0"/>
</map_definition>

Each theme in a base map can be associated with a visible scale range within which it
is displayed. In Example 2–43, the theme named theme_us_streets is not
displayed unless the map request is for a map scale of 0.05 or less and greater than 0
(in this case, a scale showing a great deal of detail). If the min_scale and max_scale
attributes are not specified, the theme is displayed whenever the base map is
displayed. (For more information about map scale, see Section 2.4.1.)

The display order of themes in a base map is the same as their order in the base map
definition. In Example 2–43, the theme_us_states theme is rendered first, then
theme_us_parks, then theme_us_highways, and finally (if the map scale is within
all specified ranges) theme_us_streets.

2.4.1 Map Size and Scale
Map size is the height of the map in units of the map data space. For example, if the
map data is in WGS 84 geographic coordinates, the map center is (-120.5, 36.5), and the
size is 2, then the height of the map is 2 decimal degrees, the lower Y (latitude) value is
35.5 degrees, and the upper Y value is 37.5 decimal degrees.

Map scale is expressed as units in the user's data space that are represented by 1 inch
on the screen or device. Map scale for MapViewer is actually the denominator value in
a popular method of representing map scale as 1/n, where:

■ 1, the numerator, is 1 unit (1 inch for MapViewer) on the displayed map.

■ n, the denominator, is the number of units of measurement (for example, decimal
degrees, meters, or miles) represented by 1 unit (1 inch for MapViewer) on the
displayed map.

For example:

■ If 1 inch on a computer display represents 0.5 decimal degree of user data, the
fraction is 1/0.5. The decimal value of the fraction is 2.0, but the scale value for
MapViewer is 0.5.

■ If 1 inch on a computer display represents 2 miles of user data, the fraction is 1/2.
The decimal value of the fraction is 0.5, but the scale value for MapViewer is 2.

■ If 1 inch on a computer display represents 10 miles of user data, the fraction is
1/10. The decimal value of the fraction is 0.1, but the scale value for MapViewer is
10.

The min_scale and max_scale attributes in a <theme> element describe the visible
scale range of a theme. These attributes control whether or not a theme is displayed,
depending on the current map scale. The default scale value for min_scale is
positive infinity, and the default value for max_scale is negative infinity (or in other
words, by default display the theme for all map scales, if possible given the display
characteristics).

■ min_scale is the value to which the display must be zoomed in for the theme to
be displayed. For example, if parks have a min_scale value of 5 and if the
current map scale value is 5 or less but greater than the max_scale value, parks
will be included in the display; however, if the display is zoomed out so that the
map scale value is greater than 5, parks will not be included in the display.

Maps

MapViewer Concepts 2-63

■ max_scale is the value beyond which the display must be zoomed in for the
theme not to be displayed. For example, if counties have a max_scale value of 3
and if the current map scale value is 3 or less, counties will not be included in the
display; however, if the display is zoomed out so that the map scale value is
greater than 3, counties will be included in the display.

A high min_scale value is associated with less map detail and a smaller scale in
cartographic terms, while a high max_scale value is associated with greater map
detail and a larger scale in cartographic terms. (Note that the MapViewer meaning of
map scale is different from the popular meaning of cartographic map scale.) The min_
scale value for a theme should be larger than the max_scale value. Example 2–43 in
Section 2.4 includes min_scale and max_scale values.

You also assign scale values for theme labels, to enable the showing or hiding of labels
with values different from the base theme scales, by using the theme label scale
parameters label_min_scale and label_max_scale. These parameters are
similar to the min_scale and max_scale parameters, but the labels are shown if the
map scale is in the visible range defined by label_min_scale and label_max_
scale. (The label scale values are ignored if the theme is not in the visible scale range
defined by min_scale and max_scale.) The following is a theme definition with
label scale values; the labels will be shown when the map scale is between 5 and 2, but
the theme features will be shown when the map scale is between 10 and 0:

<theme name="theme_us_states" min_scale="10" max_scale="0"
 label_min_scale="5" label_max_scale="2"/>

To determine the current map scale for a map returned by MapViewer, first find the
map size, namely the height (vertical span) of the map in terms of the coordinate
system associated with the map data. For example, assume that a map with a height of
10 (miles, meters, decimal degrees, or whatever unit of measurement is associated
with the data) is requested, and that the map is drawn on a device with a size of 500 by
350 pixels, where 350 is the height. MapViewer assumes a typical screen resolution of
96 dpi. Because 96 pixels equals 1 inch, the height of the returned map is 3.646 inches
(350/96 = 3.646). In this example, the size of the map is 10, and therefore the map scale
is approximately 2.743 (10/3.646 = 2.743).

Alternatively, you can request a map using a map scale value without specifying a
unit, such as 50000 for a scale of 1:50000, by specifying the scale_mode theme
attribute value as ratio. (If the scale_mode theme attribute value is screen_inch,
the scale refers to a unit.) To use a scale defined without a unit, request the map
specifying the center and ratio scale.

To find the equivalent MapViewer screen inch scale for a ratio scale, follow these steps:

1. Find the numerical fraction of a meter associated with one screen pixel. For
example, if the screen resolution is 96 dpi (dots per inch), the number of meters on
the screen for each screen pixel is 0.000265 (that is, 0.0254/96).

2. Find the map scale for one screen pixel (the mapdotScale value), as follows:

■ For projected data (meters), multiply the result of step 1 by the ratio scale. For
example, if the ratio scale is 50000 (50 thousand) and the screen resolution is 96
dpi, the result is 13.25 meters for each pixel (50000 * 0.000265).

■ For geodetic data (degrees), multiply the result of step 1 by the number of
meters (on the surface of the Earth) for each degree. (This number will depend
on the coordinate system associated with the data.) For example, if one degree
= 111195 meters and if the screen resolution is 96 dpi, the result is 29.466675
meters for each pixel (111195 * 0.000265).

Maps

2-64 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ For data using any other unit, use the approach for projected data using
meters.

3. Because the MapViewer scale is per screen inch instead of per screen pixel,
multiply the result of step 2 by the dpi value. For example, if the result of step 2 is
13.25 meters at 96 dpi, the number of meters for each screen inch is 1272 (13.25 *
96).

2.4.2 Map Legend
A map legend is an inset illustration drawn on top of the map and describing what
various colors, symbols, lines, patterns, and so on represent. You have flexibility in
specifying the content and appearance of the legend. You can:

■ Customize the background, border style, and font

■ Have one or more columns in the legend

■ Add space to separate legend entries

■ Indent legend entries

■ Use any MapViewer style, including advanced styles

Example 2–44 is an excerpt from a request that includes a legend.

Example 2–44 Legend Included in a Map Request

<?xml version="1.0" standalone="yes"?>
<map_request
 basemap="density_map"
 datasource = "mvdemo">
 <center size="1.5">
 . . .
 </center>

 <legend bgstyle="fill:#ffffff;fill-opacity:128;stroke:#ff0000"
 position="NORTH_WEST" font="Dialog">
 <column>
 <entry text="Map Legend" is_title="true"/>
 <entry style="M.STAR" text="center point"/>
 <entry style="M.CITY HALL 3" text="cities"/>
 <entry is_separator="true"/>
 <entry style="C.ROSY BROWN STROKE" text="state boundary"/>
 <entry style="L.PH" text="interstate highway"/>
 <entry text="County population:"/>
 <entry style="V.COUNTY_POP_DENSITY" tab="1"/>
 </column>
 </legend>

 <themes>
 . . .
 </themes>

</map_request>

Figure 2–9 shows a map with the legend specified in Example 2–44.

Maps

MapViewer Concepts 2-65

Figure 2–9 Map with Legend

Notes on Example 2–44 and Figure 2–9:

■ This example shows a legend with a single column, although you can create
multiple columns in a legend.

■ Each entry in the column definition can identify label text and whether the text is
the legend title (is_title="true"), a style name and associated text, or a
separator (is_separator="true") for vertical blank space to be added (after
the cities entry in this example).

As an alternative to specifying the legend content in one or more <column> elements,
you can request an automatic legend based on the map request. With an automatic
legend, you specify the legend header, and MapViewer generates the legend based on
the themes that have any interaction with the map area. Themes from the map request
and from the base map are considered. (Some legend items might not be visible,
though, such as if a theme interacts with the query window but no features of the
theme are visible on the map.)

Example 2–45 is a map request that requests an automatic legend (because the
<legend> element does not include any <column> elements).

Example 2–45 Map Request with Automatic Legend

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Automatic legend"
 datasource = "mvdemo"
 width="640"

Maps

2-66 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 height="480"
 bgcolor="#a6cae0"
 antialiase="false"
 format="PNG_STREAM">
 <center size="4.5">
 <geoFeature >
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>

 <themes>
 <theme name="THEME_COUNTIES_3397829" />
 <theme name="THEME_US_ROAD1" />
 <theme name="THEME_US_AIRPORT" />
 </themes>

 <legend bgstyle="fill:#ffffff;fill-opacity:128;stroke:#ff0000;stroke-opacity:128"
profile="medium" font="Courier">
 </legend>

</map_request>

Example 2–46 requests an automatic legend in which the <legend> elements specifies
the themes to be used to generate the legend items. In this example, even if the map
result shows more themes, the legend items are based on the THEME_COUNTIES_
3397829 and THEME_US_AIRPORT themes specified in the <legend> element.

Example 2–46 Automatic Legend with Themes Specified

<map_request
 title="Legend with themes defined"
 datasource = "mvdemo"
 width="640"
 height="480"
 bgcolor="#a6cae0"
 antialiase="false"
 format="PNG_STREAM">
 <center size="4.5">
 <geoFeature >
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>

 <themes>
 <theme name="THEME_COUNTIES_3397829" />
 <theme name="THEME_US_ROAD1" />
 <theme name="THEME_US_AIRPORT" />
 </themes>

 <legend bgstyle="fill:#ffffff;fill-opacity:128;stroke:#ff0000;stroke-opacity:128"
profile="medium" font="Courier">
 <themes>

Data Sources

MapViewer Concepts 2-67

 <theme name="THEME_COUNTIES_3397829" />
 <theme name="THEME_US_AIRPORT" />
 </themes>
 </legend>

</map_request>

You cannot combine an automatic legend with the use of <column> elements. If the
<legend> element contains any <column> elements, a column/entry legend is
created.

MapViewer used the following considerations when it builds automatic legend items:

■ Each legend column has a maximum of five entries (an advanced style is
considered one entry).

■ The legend text for simple rendering styles comes from the theme description if
defined, otherwise from the theme name.

■ If a rendering style is used in more than one theme, the style is repeated in the
legend but with text related to the theme to which it applies.

■ Labeling styles are not repeated in the legend. The style text for labeling styles
comes from the style description.

■ Advanced styles are not repeated in the legend.

For detailed information about adding a legend to a map request, see Section 3.2.11.

If you also specify a map title, note, or logo (or any combination), be sure that the
legend and the other features have different positions. (Map titles, notes, and logos are
explained in Section 1.5.2.5.) The default position for a legend is SOUTH_WEST.

2.5 Data Sources
A data source corresponds to a database schema or user. Before you can draw any
spatial data in a database schema, you must first define (create) a data source for the
schema, either permanently or dynamically:

■ You can define a data source permanently by specifying its connection information
and user login credentials in the MapViewer configuration file
(mapViewerConfig.xml).

■ You can define or modify a data source dynamically using the MapViewer
administration (Admin) page.

Each map request must specify a master data source. You can, however, specify a
different data source for individual themes added to the map request. This makes it
easy to aggregate data stored across different database schemas. If a theme has no
specified data source, it is associated with the master data source. A base map (and
thus the themes included in it) is always associated with the master data source. When
a theme is processed, all of its underlying data, as well as the styles referenced in its
definition, must be accessible from the data source or sources associated with the
theme.

Each data source has associated renderers (sometimes called mappers or map makers),
the number of which is determined by the number_of_mappers attribute in the
<map_data_source> element. This attribute and the max_connections attribute
(both described in Section 1.5.2.14) affect the number of database connections created
for each data source when map requests are processed. The number of renderers
specified in a data source also is the maximum number of concurrent requests that can

How a Map Is Generated

2-68 Oracle Fusion Middleware User's Guide for Oracle MapViewer

be processed for that data source. Each additional renderer requires only a small
amount of memory, so the main potential disadvantage of specifying a large number
of renderers (such as 100) is that the underlying CPU resource might be strained if too
many map requests are allowed to come through, thus affecting the performance of
the entire MapViewer server.

Each data source has its own internal metadata cache. The metadata cache holds the
definitions of all accessed styles, as well as of all predefined themes that originate from
the data source. This eliminates the need to query the database repeatedly for the
definition of a style or predefined theme whenever it is needed.

2.6 How a Map Is Generated
When a map request arrives at the MapViewer server, the server picks a free renderer
associated with the master data source in the request. This section describes the
process that the MapViewer server follows to generate a map. In brief, MapViewer
performs the following steps:

1. Parse and process the incoming XML map request.

2. Prepare the data for each theme (executed in parallel).

3. Render and label each theme.

4. Generate final images or files.

Each map generated by MapViewer results from its receiving a valid XML map
request. (If you use the JavaBean-based API, the request is automatically converted to
an XML document and passed to the MapViewer server.) The XML map request is
parsed and its content is validated. MapViewer then creates any dynamic styles
specified in the XML request. It builds a theme list from all themes included in the
base map (if a base map is specified), as well as any specified predefined or JDBC
themes. All individual features in the request are grouped into a single temporary
theme. In other words, after parsing the incoming request, all data that must be shown
on the map is presented in a list of themes to the MapViewer rendering engine.

The ordering of the themes in the list is important, because it determines the order in
which the themes are rendered. All themes included in the base map (when present)
are added to the list first, followed by all specified themes (predefined or JDBC). The
theme that contains all the individual features is added as the last theme on the list.
Any other requested features of a map (such as legend, map title, or footnote), are
created and saved for rendering later.

For each theme in the request, MapViewer then creates a separate execution thread to
prepare its data, so that preparation of the themes takes place in parallel. For a
predefined theme, this means formulating a query based on the theme's definition and
any other information, such as the current map request window. This query is sent to
the database for execution, and the result set is returned. MapViewer creates
individual renderable objects based on the result set.

■ For predefined themes that are fully cached, no query is sent to the database,
because all renderable objects are readily available.

■ For JDBC themes, the query supplied by the user is either executed as is (when the
asis attribute value is TRUE in the JDBC theme definition) or with a spatial filter
subquery automatically applied to it. The spatial filter part is used to limit the
results of the user’s query to those within the current requested window.

■ For themes that already have renderable features (such as the one containing all
individual features in a request), there is no need to create renderable objects.

Cross-Schema Map Requests

MapViewer Concepts 2-69

After all themes for the map request have been prepared and all necessary data has
been collected, MapViewer starts to render the map. It creates an empty new
in-memory image to hold the result map, and paints the empty image with the
necessary backgrounds (color or image). It then renders all of the themes in the theme
list.

For each theme, features are rendered in an order determined internally by
MapViewer. The rendering of each feature involves invoking the drawing methods of
its rendering style. After all themes have been rendered, the labeling process starts. For
each theme whose features must be labeled with text, MapViewer invokes algorithms
to label each feature, with the specific algorithm depending on the type of feature
(such as polygon or line).

After all themes have been rendered and (when needed) labeled, MapViewer plots any
additional map features (such as a legend) on the internal map image. MapViewer
then converts that image into the desired format (such as PNG or GIF) specified in the
original map request; however, for SVG maps, instead of using an internal image,
MapViewer initially creates an empty SVG map object, then creates an SVG document
as a result of the rendering process, and inserts it into the map object.

2.7 Cross-Schema Map Requests
A database user can issue a map request specifying a theme that uses data associated
with another database user, to select data from tables that the other data source user is
authorized to access. For example, assume that user SCOTT wants to issue a map
request using data associated with user MVDEMO. In general, user SCOTT must be
granted SELECT access on relevant tables owned by user MVDEMO, and the
<theme> element should generally specify any tables in schema-name.table-name
format. In this example scenario:

■ For a geometry table, grant the SELECT privilege on the geometry table of
MVDEMO to SCOTT (see Example 2–47).

■ For a GeoRaster table, grant the SELECT privilege on the GeoRaster table and
raster data table or tables of MVDEMO to SCOTT (see Example 2–48).

■ For a topology data model table, grant the SELECT privilege on the topology table
and related topology information tables (topology-name_EDGE$, topology-name_
NODE$, topology-name_FACE$, topology-name_RELATION$) of MVDEMO to
SCOTT (see Example 2–49).

■ For network data model tables, grant the SELECT privilege on the network link,
node, path, and path-link tables of MVDEMO to SCOTT (see Example 2–50).

Example 2–47 shows a dynamic theme that accesses the MVDEMO.STATES geometry
table from a data source defined on the SCOTT user.

Example 2–47 Cross-Schema Access: Geometry Table

SQL> grant select on STATES to SCOTT;
. . .
<themes>

Note: All image or GeoRaster themes are always rendered first,
regardless of their position in the theme list. All other themes,
however, are rendered in the order in which they appear in the theme
list.

Cross-Schema Map Requests

2-70 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 <theme name="theme1">
 <jdbc_query
 datasource="scottds"
 spatial_column="geom"
 render_style="MVDEMO:C.COUNTIES"
 jdbc_srid="8265"
 >SELECT geom from MVDEMO.STATES</jdbc_query>
 </theme>
</themes>

Example 2–48 shows a dynamic theme that accesses the MVDEMO.GEORASTER_
TABLE GeoRaster table and its RDT from a data source defined on the SCOTT user.
Specify the base (GeoRaster) table in schema-name.table-name format.

Example 2–48 Cross-Schema Access: GeoRaster Table

SQL> grant select on GEORASTER_TABLE to SCOTT;
SQL> grant select on RDT_GEOR1 to SCOTT;
. . .
<themes>
 <theme name="georaster_theme">
 <jdbc_georaster_query
 georaster_table="MVDEMO.georaster_table"
 georaster_column="georaster"
 raster_table="rdt_geor1"
 raster_id="1"
 jdbc_srid="8307"
 datasource="scottds"
 asis="false">
 </jdbc_georaster_query>
 </theme>
</themes>

Example 2–49 shows a dynamic theme that accesses the MVDEMO.LAND_PARCELS
topology table and information tables for the CITY_DATA topology from a data source
defined on the SCOTT user. Specify the feature table and the topology in
schema-name.object-name format, if they are owned by a different schema than the one
associated with the data source.

Example 2–49 Cross-Schema Access: Topology Feature Table

SQL> grant select on CITY_DATA_FACE$ to SCOTT;
SQL> grant select on CITY_DATA_EDGE$ to SCOTT;
SQL> grant select on CITY_DATA_NODE$ to SCOTT;
SQL> grant select on CITY_DATA_RELATION$ to SCOTT;
SQL> grant select on LAND_PARCELS to SCOTT;
. . .
<themes>
 <theme name="topo_theme" >
 <jdbc_topology_query
 topology_name="MVDEMO.CITY_DATA"
 feature_table="MVDEMO.LAND_PARCELS"
 spatial_column="FEATURE"
 render_style="MVDEMO:C.COUNTIES"
 jdbc_srid="0"
 datasource="scottds"
 asis="false">select feature from MVDEMO.land_parcels
 </jdbc_topology_query>
 </theme>
</themes>

Workspace Manager Support in MapViewer

MapViewer Concepts 2-71

Example 2–50 shows a dynamic theme that accesses the MVDEMO.BI_TEST network
and its link, node, path, and path-link tables. Specify the network name in
schema-name.network-name format.

Example 2–50 Cross-Schema Access: Network Tables

SQL> grant select on BI_TEST_LINK$ to SCOTT;
SQL> grant select on BI_TEST_NODE$ to SCOTT;
SQL> grant select on BI_TEST_PATH$ to SCOTT;
SQL> grant select on BI_TEST_PLINK$ to SCOTT;
. . .
<themes>
 <theme name="net_theme" >
 <jdbc_network_query
 network_name="MVDEMO.BI_TEST"
 network_level="1"
 jdbc_srid="0"
 datasource="scottds"
 link_style="MVDEMO:C.RED"
 node_style="MVDEMO:M.CIRCLE"
 node_markersize="5"
 asis="false">
 </jdbc_network_query>
 </theme>
</themes>

2.8 Workspace Manager Support in MapViewer
Workspace Manager is an Oracle Database feature that lets you version-enable one or
more tables in the database. After a table is version-enabled, users in a workspace
automatically see the correct version of database rows in which they are interested. For
detailed information about Workspace Manager, see Oracle Database Workspace Manager
Developer's Guide.

You can request a map from a specific workspace, at a specific savepoint in a
workspace, or at a point close to a specific date in a workspace. The following
attributes of the <theme> element are related to support for Workspace Manager:

■ workspace_name attribute: specifies the name of the workspace from which to
get the map data.

■ workspace_savepoint attribute: specifies the name of the savepoint to go to in
the specified workspace.

■ workspace_date attribute: specifies the date to go to (that is, a point at or near
the specified date) in the specified workspace.

■ workspace_date_format attribute: specifies the date format. The default is
mmddyyyyhh24miss. This attribute applies only if you specified the
workspace_date attribute.

■ workspace_date_nlsparam attribute: specifies globalization support options.
The options and default are the same as for the nlsparam argument to the TO_
CHAR function for date conversion, which is described in Oracle Database SQL
Language Reference.

■ workspace_date_tswtz attribute: specifies a Boolean value. TRUE means that
the input date is in timestamp with time zone format; FALSE (the default) means
that the input date is a date string.

Workspace Manager Support in MapViewer

2-72 Oracle Fusion Middleware User's Guide for Oracle MapViewer

The workspace_name attribute is required for the use of Workspace Manager
support in MapViewer.

If you specify neither the workspace_savepoint nor workspace_date attribute,
MapViewer goes to the latest version of the workspace defined. If you specify both the
workspace_savepoint and workspace_date attributes, MapViewer uses the
specified date instead of the savepoint name.

Example 2–51 shows the definition of a dynamic theme that uses attributes (shown in
bold) related to Workspace Manager support. In this example, MapViewer will render
the data related to workspace wsp_1 at the savepoint sp1.

Example 2–51 Workspace Manager-Related Attributes in a Map Request

<?xml version="1.0" standalone="yes"?>
<map_request
 . . .
 <themes>
 <theme name="wmtheme" user_clickable="false"
 workspace_name="wsp_1" workspace_savepoint="sp1" >
 <jdbc_query
 spatial_column="GEOM"
 render_style="stylename"
 jdbc_srid="8307"
 datasource="mvdemo"
 asis="false"> select GEOM,ATTR from GEOM_TABLE
 </jdbc_query>
 </theme>
 </themes>
 . . .
</map_request>

The following considerations apply to MapViewer caching of predefined themes
(explained in Section 2.3.1.5) and the use of Workspace Manager-related MapViewer
attributes:

■ The Workspace Manager-related attributes are ignored for predefined themes if
the caching attribute is set to ALL in the <styling_rules> element for the
theme.

■ No caching data is considered if you specify the workspace_name attribute.

For MapViewer administrative requests (discussed in Chapter 7), the following
elements are related to Workspace Manager support:

■ <list_workspace_name>

■ <list_workspace_session>

The <list_workspace_name> element returns the name of the current workspace,
as specified with the workspace_name attribute in the most recent map request. If no
workspace has been specified (that is, if the workspace_name attribute has not been
specified in a map request in the current MapViewer session), or if the LIVE
workspace has been specified, the LIVE workspace is returned. If Workspace Manager
is not currently installed in Oracle Database, the request fails.

Example 2–52 uses the <list_workspace_name> element in an administrative
request.

Example 2–52 <list_workspace_name> Element in an Administrative Request

<?xml version="1.0" standalone="yes"?>

Workspace Manager Support in MapViewer

MapViewer Concepts 2-73

<non_map_request>
 <list_workspace_name data_source="mvdemo"/>
</non_map_request>

If wsp_1 is the current workspace, the response for Example 2–52 will be:

<?xml version="1.0" ?>
<non_map_response>
 <workspace_name succeed="true" name="wsp_1"/>
</non_map_response>

If no workspace has been specified or if the LIVE workspace has been specified, the
response for Example 2–52 will be:

<?xml version="1.0" ?>
<non_map_response>
 <workspace_name succeed="true" name="LIVE"/>
</non_map_response>

If Workspace Manager is not currently installed in Oracle Database, the response for
Example 2–52 will be:

<?xml version="1.0" ?>
<non_map_response>
 <workspace_name succeed="false"/>
</non_map_response>

The <list_workspace_session> element returns the names of the current
workspace and current context. If no workspace has been specified (that is, if the
workspace_name attribute has not been specified in a map request in the current
MapViewer session), or if the LIVE workspace has been specified, information for the
LIVE workspace is returned. If Workspace Manager is not currently installed in Oracle
Database, the request fails.

Example 2–53 uses the <list_workspace_session> element in an administrative
request.

Example 2–53 <list_workspace_session> Element in an Administrative Request

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_workspace_session data_source="mvdemo"/>
</non_map_request>

If wsp_1 is the current workspace and if the context is LATEST, the response for
Example 2–53 will be:

<?xml version="1.0" ?>
<non_map_response>
 <workspace_session succeed="true" name="wsp_1" context="LATEST"
 context_type="LATEST"/>
</non_map_response>

If no workspace has been specified or if the LIVE workspace has been specified, and if
the context is LATEST, the response for Example 2–53 will be:

<?xml version="1.0" ?>
<non_map_response>
 <workspace_session succeed="true" name="LIVE" context="LATEST"
 context_type="LATEST"/>
</non_map_response>

MapViewer Metadata Views

2-74 Oracle Fusion Middleware User's Guide for Oracle MapViewer

If Workspace Manager is not currently installed in Oracle Database, the response for
Example 2–53 will be:

<?xml version="1.0" ?>
<non_map_response>
 <workspace_session succeed="false"/>
</non_map_response>

2.9 MapViewer Metadata Views
The mapping metadata describing base maps, themes, and styles is stored in the global
tables SDO_MAPS_TABLE, SDO_THEMES_TABLE, and SDO_STYLES_TABLE, which
are owned by MDSYS. However, you should never directly update these tables. Each
MapViewer user has the following views available in the schema associated with that
user:

■ USER_SDO_MAPS and ALL_SDO_MAPS contain information about base maps.
These views are described in Section 2.9.1.

■ USER_SDO_THEMES and ALL_SDO_THEMES contain information about
themes. These views are described in Section 2.9.2.

■ USER_SDO_STYLES and ALL_SDO_STYLES contain information about styles.
These views are described in Section 2.9.3.

The USER_SDO_xxx views contain metadata information about mapping elements
(styles, themes, base maps) owned by the user (schema), and the ALL_SDO_xxx views
contain metadata information about mapping elements on which the user has SELECT
permission.

The ALL_SDO_xxx views include an OWNER column that identifies the schema of the
owner of the object. The USER_SDO_xxx views do not include an OWNER column.

All styles defined in the database can be referenced by any user to define that user’s
themes, markers with a text style, or advanced styles. However, themes and base maps
are not shared among users; so, for example, you cannot reference another user’s
themes in a base map that you create.

The following rules apply for accessing the mapping metadata:

■ If you need to add, delete, or modify any metadata, you must perform the
operations using the USER_SDO_xxx views. The ALL_SDO_xxx views are
automatically updated to reflect any changes that you make to USER_SDO_xxx
views.

■ If you need only read access to the metadata for all styles, you should use the
ALL_SDO_STYLES view. Both the OWNER and NAME columns make up the
primary key; therefore, when you specify a style, be sure to include both the
OWNER and NAME.

The preceding MapViewer metadata views are defined in the following file:

$ORACLE_HOME/lbs/admin/mapdefinition.sql

Note: You can use the Map Builder tool (described in Chapter 9)
to manage most mapping metadata. However, for some features
you must use SQL statements to update the MapViewer metadata
views.

MapViewer Metadata Views

MapViewer Concepts 2-75

MapViewer also uses some other metadata views, which may be defined in other files.
You should never modify the contents of these views, which include the following:

■ MDSYS.USER_SDO_CACHED_MAPS is used by the map tile server, which is part
of Oracle Maps (described in Chapter 8).

■ MDSYS.USER_SDO_TILE_ADMIN_TASKS includes information about long tasks
related to map tile management. If you stop a long map tile layer task such as
prefetching and then restart the task, MapViewer uses the information in the
USER_SDO_TILE_ADMIN_TASKS view to resume the task rather than start over
at the beginning.

2.9.1 xxx_SDO_MAPS Views
The USER_SDO_MAPS and ALL_SDO_MAPS views have the columns listed in
Table 2–3.

2.9.2 xxx_SDO_THEMES Views
The USER_SDO_THEMES and ALL_SDO_THEMES views have the columns listed in
Table 2–4.

2.9.3 xxx_SDO_STYLES Views
The USER_SDO_STYLES and ALL_SDO_STYLES views have the columns listed in
Table 2–5.

Table 2–3 xxx_SDO_MAPS Views

Column Name Data Type Description

OWNER VARCHAR2 Schema that owns the base map (ALL_SDO_MAPS only)

NAME VARCHAR2 Unique name to be associated with the base map

DESCRIPTION VARCHAR2 Optional descriptive text about the base map

DEFINITION CLOB XML definition of the list of themes and their scale value
range information to be associated with the base map

Table 2–4 xxx_SDO_THEMES Views

Column Name Data Type Description

OWNER VARCHAR2 Schema that owns the theme (ALL_SDO_THEMES only)

NAME VARCHAR2 Unique name to be associated with the theme

DESCRIPTION VARCHAR2 Optional descriptive text about the theme

BASE_TABLE VARCHAR2 Table or view containing the spatial geometry column

GEOMETRY_
COLUMN

VARCHAR2 Name of the spatial geometry column (of type SDO_
GEOMETRY)

STYLING_
RULES

CLOB XML definition of the styling rules to be associated with
the theme

Table 2–5 xxx_SDO_STYLES Views

Column Name Data Type Description

OWNER VARCHAR2 Schema that owns the style (ALL_SDO_STYLES only)

NAME VARCHAR2 Unique name to be associated with the style

MapViewer Metadata Views

2-76 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Depending on the Oracle Database release, the ALL_SDO_STYLES view may contain
sample styles owned by the MDSYS schema. If these styles are defined on your
system, you can specify them in theme definitions and map requests, and you can
examine the XML definitions for ideas to use in defining your own styles.

To specify a style (or other type of MapViewer object) that is owned by a schema other
than the one for the current user, you must specify the schema name, and you must
use a colon (:), not a period, between the schema name and the object name. The
following excerpt from a <jdbc_query> element refers to the style named C.RED
owned by the MDSYS schema:

<jdbc_query . . . render_style="MDSYS:C.RED">
. . .
 </jdbc_query>

Example 2–54 finds the names of all currently defined styles owned by the MDSYS
schema, and it displays the type, description, and XML definition of one of the styles.
(The example output is reformatted for readability.)

Example 2–54 Finding Styles Owned by the MDSYS Schema

SELECT owner, name FROM all_sdo_styles
 WHERE owner = 'MDSYS';

OWNER NAME
-------------------------------- --------------------------------
MDSYS C.BLACK
MDSYS C.BLACK GRAY
MDSYS C.BLUE
MDSYS C.COUNTIES
MDSYS C.FACILITY
. . .
MDSYS L.MAJOR STREET
MDSYS L.MAJOR TOLL ROAD
MDSYS L.MQ_ROAD2
MDSYS L.PH
MDSYS L.POOR_ROADS
MDSYS L.PTH
MDSYS L.RAILROAD
MDSYS L.RAMP
MDSYS L.SH
MDSYS L.STATE BOUNDARY
. . .
MDSYS M.REDSQ
MDSYS M.SMALL TRIANGLE

TYPE VARCHAR2 One of the following values: COLOR, MARKER, LINE,
AREA, TEXT, or ADVANCED

DESCRIPTION VARCHAR2 Optional descriptive text about the style

DEFINITION CLOB XML definition of the style

IMAGE BLOB Image content (for example, airport.gif) for marker or
area styles that use image-based symbols (for markers) or
fillers (for areas)

GEOMETRY SDO_
GEOMETRY

(Reserved for future use)

Table 2–5 (Cont.) xxx_SDO_STYLES Views

Column Name Data Type Description

MapViewer Metadata Views

MapViewer Concepts 2-77

MDSYS M.STAR
MDSYS M.TOWN HALL
MDSYS M.TRIANGLE
MDSYS T.AIRPORT NAME
MDSYS T.CITY NAME
MDSYS T.MAP TITLE
MDSYS T.PARK NAME
MDSYS T.RED STREET
MDSYS T.ROAD NAME
MDSYS T.SHIELD1
MDSYS T.SHIELD2
MDSYS T.STATE NAME
MDSYS T.STREET NAME
. . .

-- Display the type, description, and XML definition of one style.
SET LONG 4000;
SELECT owner, name, type, description, definition
 FROM all_sdo_styles WHERE name = 'L.PH';

OWNER NAME TYPE DESCRIPTION
------ ----- ------ ------------------
MDSYS L.PH LINE Primary highways

DEFINITION

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
<desc></desc>
<g class="line" style="fill:#33a9ff;stroke-width:4">
<line class="parallel" style="fill:#aa55cc;stroke-width:1.0"/>
</g>
</svg>

MapViewer Metadata Views

2-78 Oracle Fusion Middleware User's Guide for Oracle MapViewer

3

MapViewer Map Request XML API 3-1

3 MapViewer Map Request XML API

This chapter explains how to submit map requests in XML format to MapViewer, and
it describes the XML document type definitions (DTDs) for the map requests (input)
and responses (output). XML is widely used for transmitting structured documents
using the HTTP protocol. If an HTTP request (GET or POST method) is used, it is
assumed the request has a parameter named xml_request whose value is a string
containing the XML document for the request.

(In addition to map requests, the MapViewer XML API can be used for administrative
requests, such as adding new data sources. Administrative requests are described in
Chapter 7.)

As shown in Figure 1–1 in Section 1.1.1, the basic flow of action with MapViewer is
that a client locates a remote MapViewer instance, binds to it, sends a map request,
and processes the map response returned by the MapViewer instance.

A request to the MapViewer servlet has the following format:

http://hostname[:port]/MapViewer-servlet-path?xml_request=xml-request

In this format:

■ hostname is the network path of the server on which MapViewer is running.

■ port is the port on which the Web server listens.

■ MapViewer-servlet-path is the MapViewer servlet path (for example,
mapviewer/omserver).

■ xml-request is the URL-encoded XML request submitted using the HTML GET
or POST method.

The input XML is required for all requests. The output depends on the content of the
request: the response can be either an XML document, or a binary object containing
the (generated image) file requested by the user.

In an input request, you must specify a data source, and you can specify one or more
of the following:

■ Themes and styles.

■ A center point or a box for the map display, and options such as highlight, label,
and styles.

■ A predefined base map, which can be reused and overlaid with custom data.

■ A custom theme with the user data points (or any geometry) retrieved
dynamically and plotted directly from an accessible database.

Map Request Examples

3-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ Custom features (point, circles, or any geometry) specified in the XML request
string to be plotted. These require that you provide the dynamic data in the format
of the <geoFeature> element (described in Section 3.2.5), as defined in the DTD.
The geometry portion of the <geoFeature> element adopts the Geometry DTD
as specified in Open GIS Consortium Geography Markup Language Version 1.0
(OGC GML v1.0).

■ Thematic mapping.

You can manage the definition of base maps, themes, and styles (individual
symbologies) using the Map Builder tool, which is described in Chapter 9.

For the current release, MapViewer accepts only a coordinate pair to identify the
location for a map request; it cannot take a postal address as direct input for a map.

This chapter first presents some examples of map requests (see Section 3.1), and then
presents detailed explanations of the following XML DTDs for requests and other
operations:

■ Map Request DTD

■ Information Request DTD

■ Map Response DTD

■ MapViewer Exception DTD

■ Geometry DTD (OGC)

3.1 Map Request Examples
This section provides examples of map requests. It refers to concepts, elements, and
attributes that are explained in detail in Section 3.2. It contains sections with the
following examples:

■ Section 3.1.1, "Simple Map Request"

■ Section 3.1.2, "Map Request with Dynamically Defined Theme"

■ Section 3.1.3, "Map Request with Base Map, Center, and Additional Predefined
Theme"

■ Section 3.1.4, "Map Request with Center, Base Map, Dynamically Defined Theme,
and Other Features"

■ Section 3.1.5, "Map Request for Point Features with Attribute Value and
Dynamically Defined Variable Marker Style"

■ Section 3.1.6, "Map Request with an Image Theme"

■ Section 3.1.7, "Map Request for Image of Map Legend Only"

■ Section 3.1.8, "Map Request with SRID Different from Data SRID"

■ Section 3.1.9, "Map Request Using a Pie Chart Theme"

■ Section 3.1.15, "Java Program Using MapViewer"

■ Section 3.1.16, "PL/SQL Program Using MapViewer"

3.1.1 Simple Map Request
Example 3–1 is a very simple map request. It requests a map consisting of a blank blue
image (from the mvdemo data source) with the string Hello World drawn on top. (The

Map Request Examples

MapViewer Map Request XML API 3-3

datasource attribute is required for a map request, even though this specific map
request does not retrieve any map data from the data source.)

Example 3–1 Simple Map Request ("Hello World")

<?xml version="1.0" standalone="yes"?>
<map_request title="Hello World" datasource = "mvdemo"/>

3.1.2 Map Request with Dynamically Defined Theme
Example 3–2 is a simple map request with one dynamically defined theme. It requests
a map of all Oracle Spatial geometries from the COUNTIES table.

Example 3–2 Simple Map Request with a Dynamically Defined Theme

<?xml version="1.0" encoding="UTF-8" ?>
<map_request datasource="lbs_data">
 <themes>
 <theme name="t1">
 <jdbc_query spatial_column = "GEOM"
 datasource = "lbs_data">
 SELECT geom FROM counties
 </jdbc_query>
 </theme>
 </themes>
</map_request>

3.1.3 Map Request with Base Map, Center, and Additional Predefined Theme
Example 3–3 requests a map with a specified center for the result map, and specifies a
predefined theme (poi_theme_us_restaurants) to be rendered in addition to the
predefined themes that are part of the base map (basemap="us_base").

Example 3–3 Map Request with Base Map, Center, and Additional Predefined Theme

<?xml version="1.0" encoding="UTF-8" ?>
<map_request datasource="lbs_data" title="LBS CUSTOMER MAP"
 basemap="us_base" width="500" height="375"
 bgcolor="#a6cae0" format="GIF_URL">
 <center size="1">
 <geoFeature typeName="mapcenter" label="Motel 1" text_style="T.MOTEL"
 render_style="M.MOTEL" radius="300">
 <geometricProperty>
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <srs>SDO:8265</srs>
 <themes>
 <theme name="poi_theme_us_restaurants"/>
 </themes>
</map_request>

Notes on Example 3–3:

■ Because basemap is specified, MapViewer first draws all predefined themes for
that base map before drawing the specified theme (poi_theme_us_
restaurants).

Map Request Examples

3-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ The center will be drawn with a marker of the M.MOTEL style and the label Motel
1 in the T.MOTEL style.

■ A circle with a radius of 300 meters will be drawn around the center.

3.1.4 Map Request with Center, Base Map, Dynamically Defined Theme, and Other
Features

Example 3–4 requests a map with a specified center, a predefined theme named
theme_lbs_customers, a dynamically defined theme named sales_by_region,
and all base themes in the base map us_base_road, plus two features: a polygon
representing the top sales region, and a point. The requested map will be stored at the
MapViewer host and a URL to that GIF image (format="GIF_URL") will be returned
to the requester.

Example 3–4 Map Request with Center, Base Map, Dynamically Defined Theme, Other
Features

<?xml version="1.0" encoding="UTF-8" ?>
<map_request datasource="lbs_data2" title="LBS CUSTOMER MAP 2"
 width="400" height="300" format="GIF_URL" basemap="us_base_road">
 <center size="1.5">
 <geoFeature typeName="nil">
 <geometricProperty>
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="theme_lbs_customers"/>
 <theme name="sales_by_region">
 <jdbc_query spatial_column ="region"
 label_column="manager"
 render_style="V.SALES COLOR"
 label_style="T.SMALL TEXT"
 jdbc_host="data.my_corp.com"
 jdbc_sid="orcl"
 jdbc_port="1521"
 jdbc_user="scott"
 jdbc_password="password"
 jdbc_mode="thin"
 > select region, sales, manager from my_corp_sales_2001
 </jdbc_query>
 </theme>
 </themes>
 <geoFeature typeName="nil" label="TopSalesRegion"
 text_style="9988" render_style="2837">
 <geometricProperty>
 <Polygon srsName="SDO:8265">
 <outerBoundaryIs>
 <LinearRing>
 <coordinates>42.9,71.1 43.2,72.3 39.2,73.0 39.0,
 73.1 42.9,71.1</coordinates>
 </LinearRing>
 </outerBoundaryIs>
 </Polygon>
 </geometricProperty>

Map Request Examples

MapViewer Map Request XML API 3-5

 </geoFeature>
 <geoFeature render_style="1397" text_style="9987">
 <geometricProperty>
 <Point>
 <coordinates>-122.5615, 37.3266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
</map_request>

In Example 3–4, sales_by_region is a dynamically defined theme. For information
about dynamically defining a theme, see Section 3.2.20 and Section 3.2.9.

3.1.5 Map Request for Point Features with Attribute Value and Dynamically Defined
Variable Marker Style

Example 3–5 shows a map request to render point features with a dynamically defined
variable marker style. The attribute_values attribute defines the value that will
be used to find the appropriate bucket (for the range into which the value falls), as
defined in the variable marker style.

Example 3–5 Map Request for Point Features with Attribute Value and Dynamically
Defined Variable Marker Style

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Point Features with Variable Marker Style"
 datasource="mvdemo"
 srid="0"
 width="500"
 height="375"
 bgcolor="#a6caf0"
 antialiase="true"
 format="PNG_URL">
 <center size="19.2">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-116.65,38.92</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <geoFeature
 render_style="varmarkerpf"
 attribute_values="50000.0">
 <geometricProperty>
 <Point>
 <coordinates>-112.0,43.0</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 <geoFeature
 render_style="varmarkerpf"
 attribute_values="125000.0">
 <geometricProperty>
 <Point>
 <coordinates>-123.0,40.0</coordinates>
 </Point>

Map Request Examples

3-6 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 </geometricProperty>
 </geoFeature>
 <geoFeature
 render_style="varmarkerpf"
 attribute_values="200000.0">
 <geometricProperty>
 <Point>
 <coordinates>-116.64,38.92</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 <geoFeature
 render_style="varmarkerpf"
 attribute_values="300000.0">
 <geometricProperty>
 <Point>
 <coordinates>-112.0,35.0</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 <styles>
 <style name="varmarkerpf">
 <AdvancedStyle>
 <VariableMarkerStyle basemarker="mkcircle" startsize="10"
 increment="5">
 <Buckets>
 <RangedBucket label="less than 100k" high="100000.0"/>
 <RangedBucket label="100k - 150k" low="100000.0" high="150000.0"/>
 <RangedBucket label="150k - 250k" low="150000.0" high="250000.0"/>
 <RangedBucket label="250k - 350k" low="250000.0" high="350000.0"/>
 </Buckets>
 </VariableMarkerStyle>
 </AdvancedStyle>
 </style>

 <style name="mkcircle">
 <svg>
 <g class="marker" style="stroke:blue;fill:red;">
 <circle r="20"/>
 </g>
 </svg>
 </style>

 </styles>
</map_request>

3.1.6 Map Request with an Image Theme
Example 3–6 requests a map in which an image theme is to be plotted underneath all
other regular vector data. The image theme is specified in the <jdbc_image_query>
element as part of the <theme> element in a map request. (For an explanation of
image themes, see Section 2.3.3.)

Example 3–6 Map Request with an Image Theme

<?xml version="1.0" encoding="UTF-8" ?>
<map_request datasource="lbs_data" title="LBS Image MAP"
 basemap="us_roads" format="GIF_STREAM">
 <center size="1">
 <geoFeature>

Map Request Examples

MapViewer Map Request XML API 3-7

 <geometricProperty>
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="anImageTheme">
 <jdbc_image_query image_format="ECW"
 image_column="image"
 image_mbr_column="img_extent"
 jdbc_srid="33709"
 datasource="lbs_data">
 SELECT image, img_extent, image_id FROM my_images
 </jdbc_image_query>
 </theme>
 </themes>
</map_request>

MapViewer processes the request in Example 3–6 as follows:

1. MapViewer retrieves the image data by executing the user-supplied query
(SELECT image, img_extent, image_id FROM my_images) in the current
map window context.

2. MapViewer checks its internal list of all registered image renderers to see if one
supports the ECW format (image_format="ECW"). Because MapViewer as
supplied by Oracle does not support the ECW format, you must implement and
register a custom image renderer that supports the format, as explained in
Appendix C.

3. MapViewer calls the renderImages method, and image data retrieved from the
user-supplied query is passed to the method as one of its parameters.

4. MapViewer retrieves and renders any requested vector data on top of the
rendered image.

3.1.7 Map Request for Image of Map Legend Only
Example 3–7 requests a map with just the image of the map legend, but without
rendering any spatial data. In this example, the legend explains the symbology used
for identifying cities, state boundaries, interstate highways, and county population
density. (Map legends are explained in Section 3.2.11.)

Example 3–7 Map Request for Image of Map Legend Only

<?xml version="1.0" standalone="yes"?>
<map_request
 datasource = "mvdemo"
 format="PNG_URL">

 <legend bgstyle="fill:#ffffff;stroke:#ff0000" profile="MEDIUM" position="SOUTH_
EAST">
 <column>
 <entry text="Map Legend" is_title="true"/>
 <entry style="M.STAR" text="center point"/>
 <entry style="M.CITY HALL 3" text="cities"/>
 <entry is_separator="true"/>
 <entry style="C.ROSY BROWN STROKE" text="state boundary"/>

Map Request Examples

3-8 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 <entry style="L.PH" text="interstate highway"/>
 <entry text="County population:"/>
 <entry style="V.COUNTY_POP_DENSITY" tab="1"/>
 </column>
 </legend>

</map_request>

Generating just the map legend image, as in Example 3–7, can save processing time if
you display the stored map legend image on a Web page separately from the actual
displayed maps. This avoids the need to generate a legend each time there is a map
request.

3.1.8 Map Request with SRID Different from Data SRID
Example 3–8 requests a map displayed in a coordinate system (srid="32775" for US
- Equal Area Projection) that is different from the coordinate system associated with
the county theme data (jdbc_srid="8265" for Longitude/Latitude - NAD 83). As a
result, during the rendering process, MapViewer converts all geometries from the data
SRID to the map request SRID.

If no coordinate system is associated with the theme data, MapViewer assumes that
the data is associated with the coordinate system of the map request, and no
conversion occurs.

Example 3–8 Map Request with SRID Different from Data SRID

<?xml version="1.0" standalone="yes"?>
<map_request
 title="US Counties: Equal-Area Projection (SRID=32775)"
 datasource="mvdemo"
 srid="32775"
 width="500"
 height="375"
 bgcolor="#a6caf0"
 antialiase="true"
 format="PNG_URL">
 <center size="4000000.0">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-218191.9643,1830357.1429</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="county_th" user_clickable="false">
 <jdbc_query
 spatial_column="geom"
 render_style="C.COUNTIES"
 jdbc_srid="8265"
 datasource="mvdemo"
 asis="false">select geom from counties</jdbc_query>
 </theme>
 </themes>
</map_request>

Map Request Examples

MapViewer Map Request XML API 3-9

3.1.9 Map Request Using a Pie Chart Theme
This section shows how to use thematic mapping with a pie chart theme. The result is
a map in which each county contains a pie chart in which the size of each slice reflects
the proportion of the population in a specified household income level category (low,
medium, or high) in the county.

The basic steps are as follows.

1. Create an advanced style that defines the characteristics of the pie charts to be
used. The following example creates an advanced style named V.PIECHART1.

INSERT INTO user_sdo_styles VALUES (
'V.PIECHART1', 'ADVANCED', null,
'<?xml version="1.0" ?>
<AdvancedStyle>
 <PieChartStyle pieradius="10">
 <PieSlice name="low" color="#ff0000"/>
 <PieSlice name="medium" color="#ffff00"/>
 <PieSlice name="high" color="#00ff00"/>
 </PieChartStyle>
</AdvancedStyle>', null, null);

When the style defined in the preceding example is applied to a geographic
feature, a pie chart is created with three slices. The pieradius attribute specifies
the size of each pie chart in pixels. Each slice (<PieSlice> element) has a color
defined for it. The name attribute for each slice is ignored by MapViewer.

2. Create a new theme that uses the style that you created, as in the following
example:

INSERT INTO user_sdo_themes VALUES (
'THEME_PIE_CHART', null, 'COUNTIES', 'GEOM',
'<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule column="INC_LOW,INC_MED,INC_HIGH">
 <features style="C.US MAP YELLOW"> </features>
 <label column="''dummy''" style="V.PIECHART1"> 1 </label>
 </rule>
</styling_rules>');

In the theme definition in the preceding example, the <label> element of the
styling rule specifies style="V.PIECHART1", to indicate that this pie chart style
(the style created in Step 1) is used to label each geometry displayed on the map.

The column attribute (column="''dummy''" in this example) is required, even
though it has no effect on the resulting map. The column attribute value can be
dummy or any other string, and the value must be enclosed on both sides by two
single quotation marks.

Because the V.PIECHART1 style is defined with three slices, the preceding
example must specify the names of three columns from the COUNTIES table, and
these columns must have a numeric data type. The column names are INC_LOW,
INC_MED, and INC_HIGH. These columns will supply the value that will be used
to determine the size of each pie slice.

3. Issue a map request that uses the theme that you created. Example 3–9 requests a
map that uses the THEME_PIE_CHART theme that was created in Step 2.

Example 3–9 Map Request Using a Pie Chart Theme

<?xml version="1.0" standalone="yes"?>

Map Request Examples

3-10 Oracle Fusion Middleware User's Guide for Oracle MapViewer

<map_request datasource = "mvdemo"
 format="PNG_STREAM">
 <themes>
 <theme name="THEME_PIE_CHART"/>
 </themes>
</map_request>

Figure 3–1 shows part of a display resulting from the map request in Example 3–9.

Figure 3–1 Map Display Using a Pie Chart Theme

You can also use the pie chart style in a dynamic (JDBC) theme when issuing a map
request. You must specify the complete SQL query for a JDBC theme in the map
request, because you must identify the attribute columns that are needed by the pie
chart style. Any columns in the SELECT list that are not SDO_GEOMETRY columns or
label columns are considered to be attribute columns that can be used by an advanced
style.

Example 3–10 is a sample request with a JDBC theme using a pie chart style. The SQL
query (SELECT geom, ’dummy’, sales, service, training FROM
support_centers) is included in the theme definition.

Example 3–10 JDBC Theme Using a Pie Chart Style

<?xml version="1.0" standalone="yes"?>

Map Request Examples

MapViewer Map Request XML API 3-11

<map_request
 basemap="CA_MAP"
 datasource = "mvdemo"
 format="PNG_URL">
 <themes>
 <theme name="support_center">
 <jdbc_query spatial_column="geom" datasource="tilsmenv"
 label_column="dummy",
 label_style="V.PIECHART1">
 SELECT geom, ’dummy’, sales, service, training
 FROM support_centers
 </jdbc_query>
 </theme>
 </themes>
</map_request>

3.1.10 Map Request Using Ratio Scale and Mixed Theme Scale Modes
Example 3–11 requests a map specifying a center and a ratio scale to define the map
area. Two themes are used: a predefined theme named THEME_US_COUNTIES1, which
uses the default screen inch scale mode, and a JDBC theme names STATES_TH, which
uses the ratio mode.

Example 3–11 Map Request Using Ratio Scale and Mixed Theme Scale Modes

<?xml version="1.0" standalone="yes"?>
<map_request
title="States (ratio), counties (screen inch), center and scale"
datasource="tilsmenv"
width="500"
height="400"
bgcolor="#a6caf0"
antialiase="true"
format="PNG_URL"
>
<center scale="5000000">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-90.0,32.0</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
</center>
<themes>
 <theme name="STATES_TH" min_scale="5.0E7" max_scale="1.0E7" scale_mode="ratio">
 <jdbc_query
 label_column="STATE"
 spatial_column="geom"
 label_style="T.STATE NAME"
 render_style="C.COUNTIES"
 jdbc_srid="8265"
 datasource="tilsmenv"
 asis="false">select geom,state from states
 </jdbc_query>
 </theme>
 <theme name="THEME_US_COUNTIES1" min_scale="2.286" />
</themes>
</map_request>

Map Request Examples

3-12 Oracle Fusion Middleware User's Guide for Oracle MapViewer

3.1.11 Map Request Using Predefined Theme (Binding Parameter and Custom Type)
Example 3–12 requests a map using a predefined theme with a styling rule that selects
all counties where a state abbreviation is in the selection list. When the predefined
theme is created, the selection list is represented as a binding parameter, as follows:

INSERT INTO user_sdo_themes VALUES (
 'COUNTIES_BY_STATES', null, 'COUNTIES', 'GEOM',
 '<styling_rules>
 <rule>
 <features style="C.COUNTIES"> (state_abrv in (select column_value from
table(:1))) </features>
 <label column="COUNTY" style="T.CITY NAME"> 1 </label>
 </rule>
</styling_rules>');

This binding parameter can accept one or more values, for which you can create a
custom SQL data type that represents this set of values, as follows:

CREATE OR REPLACE TYPE string_array AS TABLE OF VARCHAR2(64);

Then, you can use this custom data type on the binding parameter of the map request,
as shown in Example 3–12.

Example 3–12 Map Request Using Predefined Theme (Binding Parameter and Custom
Type)

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Binding Parameters and STRING_ARRAY type"
 datasource = "mvdemo"
 width="640"
 height="480"
 bgcolor="#a6cae0"
 antialiase="false"
 format="PNG_STREAM">

 <themes>
 <theme name="COUNTIES_BY_STATES" >
 <binding_parameters>
 <parameter value="FL,ME,CA,OH" type="STRING_ARRAY"/>
 </binding_parameters>
 </theme>
 </themes>

</map_request>

3.1.12 Map Request Using Advanced Styles and Rendering Rules
Example 3–13 requests a map using the <rendering> element, and it combines two
advanced styles that are based on different columns. In this example, an advanced
style named POPVMK is based on column POP90, and another advanced style named
EQRBRANK is based on column RANK90. Point features (from the CITIES table) are
rendered. The shape of the feature is defined by the advanced style associated with
column POP90, and the feature color is defined by the advanced style associated with
column RANK90.

Example 3–13 Map Request Using Advanced Styles and Rendering Rules

<?xml version="1.0" standalone="yes"?>

Map Request Examples

MapViewer Map Request XML API 3-13

<map_request
 title="Cross advanced styles"
 datasource="mvdemo"
 width="640"
 height="480"
 bgcolor="#a6caf0"
 antialiase="false"
 format="PNG_STREAM"
>
 <center size="7.7">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-72.96,41.25</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>

 <themes>
 <theme name="cities">
 <jdbc_query
 label_column="city"
 spatial_column="location"
 label_style="T.CITY NAME"
 jdbc_srid="8265"
 datasource="mvdemo"
 asis="false">select location,city,pop90,rank90 from cities
 </jdbc_query>
 <rendering>
 <style name="POPVMK" value_columns="POP90">
 <substyle name="EQRBRANK" value_columns="RANK90" changes="FILL_
COLOR"/>
 </style>
 </rendering>
 </theme>
 </themes>

 <styles>
 <style name="STAR_TRANSP">
<svg width="1in" height="1in">
 <desc/>
 <g class="marker"
style="stroke:#000000;fill:#FF0000;fill-opacity:0;width:15;height:15;font-family:D
ialog;font-size:12;font-fill:#FF0000">
 <polyline
points="138.0,123.0,161.0,198.0,100.0,152.0,38.0,198.0,61.0,123.0,0.0,76.0,76.0,76
.0,100.0,0.0,123.0,76.0,199.0,76.0"/>
 </g>
</svg>
 </style>

 <style name="POPVMK">
 <AdvancedStyle>
 <VariableMarkerStyle basemarker="STAR_TRANSP" startsize="7" increment="5">
 <Buckets>
 <RangedBucket seq="0" label="100217 - 1905803.75" low="100217"
high="1905803.75"/>
 <RangedBucket seq="1" label="1905803.75 - 3711390.5" low="1905803.75"
high="3711390.5"/>

Map Request Examples

3-14 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 <RangedBucket seq="2" label="3711390.5 - 5516977.25" low="3711390.5"
high="5516977.25"/>
 <RangedBucket seq="3" label="5516977.25 - 7322564" low="5516977.25"
high="7322565"/>
 </Buckets>
 </VariableMarkerStyle>
 </AdvancedStyle>
 </style>

 <style name="EQRBRANK">
 <AdvancedStyle>
 <BucketStyle>
 <Buckets low="1" high="196" nbuckets="4" styles="C.RED,C.RB13_1,C.RB13_
6,C.SEQ6_01"/>
 </BucketStyle>
 </AdvancedStyle>
 </style>
 </styles>

 <legend bgstyle="fill:#ffffff;fill-opacity:50;stroke:#ff0000" profile="SMALL"
position="SOUTH_EAST">
 <column>
 <entry text="Map Legend" is_title="true" />
 <entry text="POP90:" />
 <entry style="POPVMK" tab="1" />
 <entry text="RANK90:" />
 <entry style="EQRBRANK" tab="1" />
 </column>
 </legend>
</map_request>

3.1.13 Map Request Using Stacked Styles
Example 3–14 requests a map using the <rendering> element, and it defines multiple
styles (C.COUNTIES and PIECHART1) to be applied on each theme feature.

Example 3–14 Map Request Using Stacked Styles

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Theme with Stacked Styles"
 datasource="mvdemo"
 width="600"
 height="450"
 bgcolor="#a6caf0"
 antialiase="true"
 format="PNG_STREAM"
>
 <center size="18">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-122.729,40.423</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="STACKEDSTYLES">
 <jdbc_query

Map Request Examples

MapViewer Map Request XML API 3-15

 label_column="state"
 spatial_column="geom"
 label_style="T.STATE NAME"
 jdbc_srid="8265"
 datasource="mvdemo"
 asis="false">select geom,state,HHI0_10,HHI10_15,HHI100UP,HHI15_25,HHI25_
35 from states
 </jdbc_query>
 <rendering>
 <style name="C.COUNTIES"/>
 <style name="PIECHART1" value_columns="HHI0_10,HHI10_15,HHI100UP,HHI15_
25,HHI25_35"/>
 </rendering>
 </theme>
 </themes>

 <styles>
 <style name="piechart1">
 <AdvancedStyle>
 <PieChartStyle pieradius="10">
 <PieSlice name="A" color="#FFFF00"/>
 <PieSlice name="B" color="#000000"/>
 <PieSlice name="H" color="#FF00FF"/>
 <PieSlice name="I" color="#0000FF"/>
 <PieSlice name="W" color="#FFFFFF"/>
 </PieChartStyle>
 </AdvancedStyle>
 </style>
 </styles>

</map_request>

3.1.14 WFS Map Requests
This section contains examples of WFS map requests, one using a predefined theme
and one using a dynamic theme.

Example 3–15 requests a map using a predefined WFS theme named BC_
MUNICIPALITY, which is defined as follows:

INSERT INTO user_sdo_themes VALUES (
 'BC_MUNICIPALITY',
 'WFS theme',
 'BC_MUNICIPALITY',
 'THE_GEOM',
'<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="wfs" service_
url="http://www.refractions.net:8080/geoserver/wfs/GetCapabilities?"
srs="EPSG:3005">
 <rule>
 <features style="C.BLUE"> </features>
 <label column="name" style="T.CITY NAME"> 1 </label>
 </rule>
</styling_rules>');

Example 3–15 shows a map request that renders this predefined WFS theme.

Example 3–15 Map Request Using Predefined WFS Theme

<?xml version="1.0" standalone="yes"?>
<map_request

Map Request Examples

3-16 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 title="Predefined WFS MAP"
 datasource = "mvdemo"
 width="640"
 height="480"
 bgcolor="#a6cae0"
 antialiase="true"
 format="PNG_STREAM">

 <center size="76000">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>1260500,470000</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>

 <themes>
 <theme name="bc_municipality" />
 </themes>

</map_request>

Example 3–16 shows a map request that uses a dynamic WFS theme.

Example 3–16 Map Request Using Dynamic WFS Theme

<?xml version="1.0" standalone="yes"?>
<map_request
 title="WFS MAP"
 datasource = "mvdemo"
 width="640"
 height="480"
 bgcolor="#a6cae0"
 antialiase="true"
 format="PNG_STREAM">

 <center size="76000">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>1260500,470000</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>

 <themes>
 <theme name="wfs" >
 <wfs_feature_request
 service_
url="http://www.refractions.net:8080/geoserver/wfs/GetCapabilities?"
 srs="EPSG:3005"
 feature_name="bc_hospitals"
 spatial_column="the_geom"
 render_style="M.STAR"
 label_column="name"
 label_style="T.CITY NAME"
 datasource="mvdemo" />

Map Request Examples

MapViewer Map Request XML API 3-17

 </theme>
 </themes>

</map_request>

Example 3–17 shows a map request for a dynamic WFS theme with an advanced style
to render features.

Example 3–17 Map Request Using Dynamic WFS Theme with an Advanced Style

<?xml version="1.0" standalone="yes"?>
<map_request
 title="WFS Theme with Advanced Style"
 datasource = "mvdemo"
 width="640"
 height="480"
 bgcolor="#a6cae0"
 antialiase="true"
 format="PNG_STREAM">
 <center size="10.">
 <geoFeature >
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-70., 44.</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>

 <themes>
 <theme name="wfs" >
 <wfs_feature_request
 service_url="http://199.29.1.81:8181/miwfs/GetFeature.ashx?"
 srs="EPSG:4326"
 feature_name="usa"
 spatial_column="obj"
 render_style="CBSTATES"
 label_column="STATE_NAME"
 label_style="T.CITY NAME"
 feature_attributes="state"
 datasource="mvdemo" />
 </theme>
 </themes>

 <styles>
 <style name="CBSTATES">
 <AdvancedStyle>
 <BucketStyle>
 <Buckets default_style="C.COUNTIES">
 <CollectionBucket seq="0" type="string" style="C.RB13_
13">MA</CollectionBucket>
 <CollectionBucket seq="1" type="string" style="C.RB13_
1">NH</CollectionBucket>
 <CollectionBucket seq="2" type="string" style="C.RB13_
7">ME</CollectionBucket>
 </Buckets>
 </BucketStyle>
 </AdvancedStyle>
 </style>
 </styles>

Map Request Examples

3-18 Oracle Fusion Middleware User's Guide for Oracle MapViewer

</map_request>

3.1.15 Java Program Using MapViewer
Example 3–18 uses the java.net package to send an XML request to MapViewer and
to receive the response from MapViewer. (Note, however, most programmers will find
it more convenient to use the JavaBean-based API, described in Chapter 4, or the JSP
tag library, described in Chapter 5.)

Example 3–18 Java Program That Interacts with MapViewer

import java.net.*;
import java.io.*;

/**
 * A sample program that shows how to interact with MapViewer
 */
public class MapViewerDemo
{
 private HttpURLConnection mapViewer = null;

 /**
 * Initializes this demo with the URL to the MapViewer server.
 * The URL is typically http://my_corp.com:8888/mapviewer/omserver.
 */
 public MapViewerDemo(String mapViewerURLString)
 {
 URL url;

 try
 {
 url = new URL(mapViewerURLString);
 mapViewer = (HttpURLConnection) url.openConnection();
 mapViewer.setDoOutput(true);
 mapViewer.setDoInput(true);
 mapViewer.setUseCaches(false);
 }
 catch (Exception e)
 {
 e.printStackTrace(System.err);
 System.exit(1);
 }
 }

 /**
 * Submits an XML request to MapViewer.
 * @param xmlreq the XML document that is a MapViewer request
 */
 public void submitRequest(String xmlreq)
 {
 try
 {
 mapViewer.setRequestMethod("POST"); //Use HTTP POST method.
 OutputStream os = mapViewer.getOutputStream();
 //MapViewer expects to find the request as a parameter
 //named "xml_request".
 xmlreq = "xml_request="+URLEncoder.encode(xmlreq);
 os.write(xmlreq.getBytes());
 os.flush();
 os.close();

Map Request Examples

MapViewer Map Request XML API 3-19

 }
 catch (Exception e)
 {
 e.printStackTrace(System.err);
 System.exit(1);
 }
 }

 /**
 * Receives an XML response from MapViewer.
 */
 public String getResponse()
 {
 ByteArrayOutputStream content = new ByteArrayOutputStream();
 InputStream is = null;
 try
 {
 is = mapViewer.getInputStream();
 int c;
 while ((c = is.read()) != -1)
 content.write(c);
 is.close();
 content.flush();
 content.close();
 return content.toString();
 }
 catch (Exception e)
 {
 e.printStackTrace(System.err);
 return null;
 }
 }

 // A simple main program that sends a list_data_sources XML
 // request to MapViewer through HTTP POST
 public static void main(String[] args)
 {
 if(args.length<1)
 {
 System.out.println("Usage: java MapViewerDemo <mapviewer url>");
 System.out.println("Example: java MapViewerDemo http://my_
corp.com/mapviewer/omserver");
 System.exit(1);
 }

 // A sample XML request for MapViewer
 String
 listDataSources = "<?xml version=\"1.0\" standalone=\"yes\"?>" +
 " <non_map_request>" +
 " <list_data_sources/>" +
 " </non_map_request>";

 MapViewerDemo tester = null;
 tester = new MapViewerDemo(args[0]);
 System.out.println("submitting request:\n"+listDataSources);
 tester.submitRequest(listDataSources);
 String response = tester.getResponse();
 System.out.println("response from MapViewer: \n" + response);
 }
}

Map Request Examples

3-20 Oracle Fusion Middleware User's Guide for Oracle MapViewer

3.1.16 PL/SQL Program Using MapViewer
Example 3–19 is a sample PL/SQL program that sends an XML request to the
MapViewer server.

Example 3–19 PL/SQL Program That Interacts with MapViewer

set serverout on size 1000000;

--
-- Author: Clarke Colombo
--
declare

 l_http_req utl_http.req;
 l_http_resp utl_http.resp;
 l_url varchar2(4000):= 'http://my_corp.com:8888/mapviewer/omserver';

 l_value varchar2(4000);
 img_url varchar2(4000);
 response sys.xmltype;

 output varchar2(255);

 map_req varchar2(4000);

begin

 utl_http.set_persistent_conn_support(TRUE);

 map_req := '<?xml version="1.0" standalone="yes"?>
 <map_request title="MapViewer Demonstration"
 datasource="mvdemo"
 basemap="course_map"
 width="500"
 height="375"
 bgcolor="#a6cae0"
 antialiasing="false"
 format="GIF_URL">
 <center size="5">
 <geoFeature>
 <geometricProperty>
 <Point>
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 </map_request>';

 l_http_req := utl_http.begin_request(l_url, 'POST', 'HTTP/1.0');

 --
 -- Sets up proper HTTP headers.
 --
 utl_http.set_header(l_http_req, 'Content-Type',
'application/x-www-form-urlencoded');
 utl_http.set_header(l_http_req, 'Content-Length', length('xml_request=' || map_
req));
 utl_http.set_header(l_http_req, 'Host', 'my_corp.com');

Map Request DTD

MapViewer Map Request XML API 3-21

 utl_http.set_header(l_http_req, 'Port', '8888');
 utl_http.write_text(l_http_req, 'xml_request=' || map_req);
 --
 l_http_resp := utl_http.get_response(l_http_req);

 utl_http.read_text(l_http_resp, l_value);

 response := sys.xmltype.createxml (l_value);

 utl_http.end_response(l_http_resp);

 img_url := response.extract('/map_response/map_image/map_
content/@url').getstringval();

 dbms_output.put_line(img_url);

end;
/

3.2 Map Request DTD
The following is the complete DTD for a map request, which is followed by reference
sections that describe each element and its attributes.

<?xml version="1.0" encoding="UTF-8"?>
<!-- <box> is defined in OGC GML v1.0 -->
<!ELEMENT map_request ((box | center | bounding_themes)?, srs?, legend?, themes?,
 styles?, scale_bar?, north_arrow?, geoFeature*)>
<!ATTLIST map_request
 datasource CDATA #REQUIRED
 srid CDATA #IMPLIED
 basemap CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 antialiasing (TRUE|FALSE) "FALSE"
 imagescaling (TRUE|FALSE) "TRUE"
 format (GIF|GIF_URL|GIF_STREAM|JAVA_IMAGE|
 PNG_STREAM|PNG_URL|PNG8_STREAM|PNG8_URL|
 JPEG_STREAM|JPEG_URL|PDF_STREAM|PDF_URL|
 SVG_STREAM|SVGZ_STREAM|SVGTINY_STREAM|
 SVG_URL|SVGZ_URL|SVGTINY_URL) "GIF_URL"
 transparent (TRUE|FALSE) "FALSE"
 title CDATA #IMPLIED
 bgcolor (CDATA) "#A6CAF0"
 bgimage CDATA #IMPLIED
 zoomlevels CDATA #IMPLIED
 zoomfactor CDATA #IMPLIED
 zoomratio CDATA #IMPLIED
 initscale CDATA #IMPLIED
 navbar (TRUE|FALSE) "TRUE"
 infoon (TRUE|FALSE) "TRUE"
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 rasterbasemap (TRUE|FALSE) "FALSE"
 onrectselect CDATA #IMPLIED
 onpolyselect CDATA #IMPLIED
 use_cached_basemap (TRUE|FALSE) "FALSE"
 snap_to_cache_scale (TRUE|FALSE) "FALSE"
 title_style CDATA #IMPLIED
 footnote CDATA #IMPLIED

Map Request DTD

3-22 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 footnote_style CDATA #IMPLIED
 rotation CDATA #IMPLIED*
 >
<!ELEMENT center (geoFeature)>
<!ATTLIST center
 size CDATA #REQUIRED
>
<!ELEMENT box (coordinates) >
<!ATTLIST box
 ID CDATA #IMPLIED
 srsName CDATA #REQUIRED
 preserve_aspect_ratio (TRUE|FALSE) "FALSE"
>
<!ELEMENT bounding_themes (#PCDATA) >
<!ATTLIST bounding_themes
 border_margin CDATA #IMPLIED
 preserve_aspect_ratio CDATA "TRUE"
 size_hint CDATA #IMPLIED
>
<!ELEMENT srs (#PCDATA) >

<!ELEMENT themes (theme+) >
<!ELEMENT theme (jdbc_query | jdbc_image_query | jdbc_georaster_query
 | jdbc_network_query | jdbc_topology_query
 | map_tile_theme
)? >
<!ATTLIST theme
 name CDATA #REQUIRED
 datasource CDATA #IMPLIED
 max_scale CDATA #IMPLIED
 min_scale CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 fast_unpickle (TRUE|FALSE) "TRUE"
 mode CDATA #IMPLIED
 min_dist CDATA #IMPLIED
 fixed_svglabel (TRUE|FALSE) "FALSE"
 visible_in_svg (TRUE|FALSE) "TRUE"
 selectable_in_svg (TRUE|FALSE) "FALSE"
 part_of_basemap (TRUE|FALSE) "FALSE"
 simplify_shapes (TRUE|FALSE) "TRUE"
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 onmouseover CDATA #IMPLIED
 onmouseout CDATA #IMPLIED
 workspace_name CDATA #IMPLIED
 workspace_savepoint CDATA #IMPLIED
 workspace_date CDATA #IMPLIED
 workspace_date_format CDATA #IMPLIED
>
<!ELEMENT jdbc_query (#PCDATA, hidden_info?)>
<!ATTLIST jdbc_query
 asis (TRUE|FALSE) "FALSE"
 spatial_column CDATA #REQUIRED
 key_column CDATA #IMPLIED
 label_column CDATA #IMPLIED
 label_style CDATA #IMPLIED
 render_style CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED

Map Request DTD

MapViewer Map Request XML API 3-23

 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT hidden_info (field+)>
<!ELEMENT field (#PCDATA)>
<!ATTLIST field
 column CDATA #REQUIRED
 name CDATA #IMPLIED
>
<!ELEMENT jdbc_image_query (#PCDATA) >
<!ATTLIST jdbc_image_query
 asis (TRUE|FALSE) "FALSE"
 image_format CDATA #REQUIRED
 image_column CDATA #REQUIRED
 image_mbr_column CDATA #REQUIRED
 image_resolution CDATA #IMPLIED
 image_unit CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT jdbc_georaster_query (#PCDATA) >
<!ATTLIST jdbc_georaster_query
 asis (TRUE|FALSE) "FALSE"
 georaster_table CDATA #REQUIRED
 georaster_column CDATA #REQUIRED
 raster_id CDATA #IMPLIED
 raster_table CDATA #IMPLIED
 raster_pyramid CDATA #IMPLIED
 raster_bands CDATA #IMPLIED
 datasource CDATA #IMPLIED
 polygon_mask CDATA #IMPLIED
 transparent_nodata CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin">
<!ELEMENT jdbc_network_query (#PCDATA) >
<!ATTLIST jdbc_network_query
 asis (TRUE|FALSE) "FALSE"
 network_name CDATA #REQUIRED
 network_level CDATA #IMPLIED
 link_style CDATA #IMPLIED
 direction_style CDATA #IMPLIED
 direction_position CDATA #IMPLIED
 direction_markersize CDATA #IMPLIED
 link_labelstyle CDATA #IMPLIED
 link_labelcolumn CDATA #IMPLIED
 node_style CDATA #IMPLIED

Map Request DTD

3-24 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 node_markersize CDATA #IMPLIED
 node_labelstyle CDATA #IMPLIED
 node_labelcolumn CDATA #IMPLIED
 path_ids CDATA #IMPLIED
 path_styles CDATA #IMPLIED
 path_labelstyle CDATA #IMPLIED
 path_labelcolumn CDATA #IMPLIED
 analysis_algorithm CDATA #IMPLIED
 shortestpath_style CDATA #IMPLIED
 shortestpath_startnode CDATA #IMPLIED
 shortestpath_endnode CDATA #IMPLIED
 shortestpath_startstyle CDATA #IMPLIED
 shortestpath_endstyle CDATA #IMPLIED
 withincost_startnode CDATA #IMPLIED
 withincost_style CDATA #IMPLIED
 withincost_cost CDATA #IMPLIED
 withincost_startstyle CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT jdbc_topology_query (#PCDATA)>
<!ATTLIST jdbc_topology_query
 asis (TRUE|FALSE) "FALSE"
 topology_name CDATA #REQUIRED
 feature_table CDATA #REQUIRED
 spatial_column CDATA #REQUIRED
 label_column CDATA #IMPLIED
 label_style CDATA #IMPLIED
 render_style CDATA #IMPLIED
 datasource CDATA #IMPLIED
 edge_style CDATA #IMPLIED
 edge_marker_style CDATA #IMPLIED
 edge_marker_size CDATA #IMPLIED
 edge_label_style CDATA #IMPLIED
 node_style CDATA #IMPLIED
 node_label_style CDATA #IMPLIED
 face_style CDATA #IMPLIED
 face_label_style CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT map_tile_theme (#PCDATA)>
<!ATTLIST map_tile_theme
 map_tile_layer CDATA # REQUIRED
 snap_to_tile_scale (TRUE|FALSE) "FALSE"
>
<!ELEMENT geoFeature (description?, property*,
 geometricProperty)>
<!ATTLIST geoFeature

Map Request DTD

MapViewer Map Request XML API 3-25

 typeName CDATA #IMPLIED
 id CDATA #IMPLIED
 render_style CDATA #IMPLIED
 text_style CDATA #IMPLIED
 label CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 marker_size CDATA #IMPLIED
 radius CDATA #IMPLIED
 attribute_values CDATA #IMPLIED
 orient_x CDATA #IMPLIED
 orient_y CDATA #IMPLIED
 orient_z CDATA #IMPLIED
 selectable_in_svg (TRUE|FALSE) "FALSE"
 onclick CDATA #IMPLIED
 hidden_info CDATA #IMPLIED
>
<!ELEMENT legend column+ >
<!ATTLIST legend
 bgstyle CDATA #implied
 font CDATA #implied
 location_x CDATA #implied
 location_y CDATA #implied
 offset_x CDATA #implied
 offset_y CDATA #implied
 profile (MEDIUM|SMALL|LARGE) "MEDIUM"
 position (SOUTH_WEST|SOUTH_EAST|SOUTH|NORTH|
 NORTH_WEST|NORTH_EAST|EAST|WEST|CENTER) "SOUTH_WEST"
>
<!ELEMENT column entry+ >
<!ATTLIST entry
 is_title (true|false) "false"
 is_separator (true|false) "false"
 tab CDATA "0"
 style CDATA #implied
 text CDATA #implied
>
<!ELEMENT scale_bar >
<!ATTLIST scale_bar
 mode (METRIC_MODE|US_MODE|DUAL_MODES) "METRIC_MODE"
 position (SOUTH_WEST|SOUTH_EAST|SOUTH|NORTH|
 NORTH_WEST|NORTH_EAST) "NORTH_EAST"
 offset_y CDATA #implied
 offset_y CDATA #implied
 color1 CDATA #implied
 color1_opacity CDATA #implied
 color2 CDATA #implied
 color2_opacity CDATA #implied
 length_hint CDATA #implied
 label_color CDATA #implied
 label_font_family CDATA #implied
 label_font_size CDATA #implied
 label_halo_size CDATA #implied
 label_position (TOP|BOTTOM) "TOP"
>
<!ELEMENT styles (style+) >
<!ELEMENT style (svg | AdvancedStyle)?>
<!ATTLIST style
 name CDATA #REQUIRED
>
<!ELEMENT north_arrow (style, location?, size?) >

Map Request DTD

3-26 Oracle Fusion Middleware User's Guide for Oracle MapViewer

The main elements and attributes of the map request DTD are explained in sections
that follow. The <map_request> element is described in Section 3.2.1. The remaining
related elements are described, in alphabetical order by element name, in the following
sections:

■ Section 3.2.2, "bounding_themes Element"

■ Section 3.2.3, "box Element"

■ Section 3.2.4, "center Element"

■ Section 3.2.5, "geoFeature Element"

■ Section 3.2.6, "jdbc_georaster_query Element"

■ Section 3.2.7, "jdbc_image_query Element"

■ Section 3.2.8, "jdbc_network_query Element"

■ Section 3.2.9, "jdbc_query Element"

■ Section 3.2.10, "jdbc_topology_query Element"

■ Section 3.2.11, "legend Element"

■ Section 3.2.12, "map_tile_theme Element"

■ Section 3.2.13, "north_arrow Element"

■ Section 3.2.14, "operation Element"

■ Section 3.2.15, "operations Element"

■ Section 3.2.16, "parameter Element"

■ Section 3.2.17, "scale_bar Element"

■ Section 3.2.18, "style Element"

■ Section 3.2.19, "styles Element"

■ Section 3.2.20, "theme Element"

■ Section 3.2.21, "themes Element"

3.2.1 map_request Element
The <map_request> element has the following definition:

<!ELEMENT map_request ((box | center | bounding_themes)?, srs?, legend?, themes?,
 styles?, geoFeature*)>
<!ELEMENT map_request ((box | center | bounding_themes)?, srs?, legend?, themes?,
 styles?, geoFeature*, north_arrow?)>

The root element of a map request to MapViewer is always named map_request.

<map_request> can have a child element that is <box> (see Section 3.2.3),
<center> (see Section 3.2.4), or <bounding_themes> (see Section 3.2.2), which
specifies the range of the user data to be plotted on a map. If none of these child
elements is specified, the result map is drawn using all data available to MapViewer.

The optional <srs> child element is ignored by the current version of MapViewer.

The optional <legend> element (see Section 3.2.11) is used to draw a legend (map
inset illustration) on top of a generated map, to make the visual aspects of the map
more meaningful to users.

Map Request DTD

MapViewer Map Request XML API 3-27

The optional <themes> element (see Section 3.2.21) specifies predefined or
dynamically defined themes.

The optional <styles> element (see Section 3.2.19) specifies dynamically defined
styles.

The <geoFeature> element (see Section 3.2.5) can be used to specify any number of
individual geometries and their rendering attributes.

The optional <north_arrow> element (see Section 3.2.13) is used to draw a north
arrow marker based on the request rotation.

MapViewer first draws the themes defined in a base map (if a base map is specified as
an attribute in the root element), then any user-provided themes, and finally any
geoFeature elements.

3.2.1.1 map_request Attributes
The root element <map_request> has a number of attributes, some required and the
others optional. The attributes are defined as follows:

<!ATTLIST map_request
 datasource CDATA #REQUIRED
 srid CDATA #IMPLIED
 basemap CDATA #IMPLIED
 width CDATA #IMPLIED
 height CDATA #IMPLIED
 antialiasing (TRUE|FALSE) "FALSE"
 imagescaling (TRUE|FALSE) "TRUE"
 format (GIF|GIF_URL|GIF_STREAM|JAVA_IMAGE|
 PNG_STREAM|PNG_URL|PNG8_STREAM|PNG8_URL|
 JPEG_STREAM|JPEG_URL|PDF_STREAM|PDF_URL|
 SVG_STREAM|SVGZ_STREAM|SVGTINY_STREAM|
 SVG_URL|SVGZ_URL|SVGTINY_URL) "GIF_URL"
 transparent (TRUE|FALSE) "FALSE"
 title CDATA #IMPLIED
 title_style CDATA #IMPLIED
 footnote CDATA #IMPLIED
 footnote_style CDATA #IMPLIED
 rotation CDATA #IMPLIED*
 bgcolor (CDATA) "#A6CAF0"
 bgimage CDATA #IMPLIED
 zoomlevels CDATA #IMPLIED
 zoomfactor CDATA #IMPLIED
 zoomratio CDATA #IMPLIED
 initscale CDATA #IMPLIED
 navbar (TRUE|FALSE) "TRUE"
 infoon (TRUE|FALSE) "TRUE"
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 rasterbasemap (TRUE|FALSE) "FALSE"
 onrectselect CDATA #IMPLIED
 onpolyselect CDATA #IMPLIED
 keepthemesorder CDATE #IMPLIED
 use_cached_basemap (TRUE|FALSE) "FALSE"
 snap_to_cache_scale (TRUE|FALSE) "FALSE"
 title_style CDATA #IMPLIED
 footnote CDATA #IMPLIED
 footnote_style CDATA #IMPLIED
 rotation CDATA #IMPLIED*
>

Map Request DTD

3-28 Oracle Fusion Middleware User's Guide for Oracle MapViewer

datasource is a required attribute that specifies a data source. A data source
provides information to MapViewer about where to fetch the user data (and the
mapping metadata) that is required to render a map.

srid is an optional attribute. If it is specified, it provides the SRID value of the
coordinate system (spatial reference system) for the map request. If necessary, theme
geometries will be converted to the specified coordinate system before being rendered,
although geometries with an undefined coordinate system will not be converted. If
this attribute is not specified, MapViewer uses the coordinate system of the first theme
to be rendered as the coordinate system for the map request.

basemap is an optional attribute. When it is specified, MapViewer renders all themes
that are specified for this base map. The definition of a base map is stored in the user’s
USER_SDO_MAPS view, as described in Section 2.9.1. Use this attribute if you will
always need a background map on which to plot your own themes and geometry
features.

width and height are optional attributes that together specify the size (in device
units) of the resulting map image. This size is different from the size specified in the
center element or box element, which is the range of the window into a user’s
source data. The default width and height values are 500 and 375 pixels, respectively.
The unit is in pixels except for PDF formats, in which case pt is used as the unit, and
the relationship with pixels is approximately 1 pt = 1.333 px (or, 1px = 0.75 pt). Thus,
for example, if you request a map with size 500x375 "pt" in PDF format, this should
generate an image of approximately 667x500 pixels.

antialiasing is an optional attribute. When its value is TRUE, MapViewer renders
the map image in an antialiased manner. This usually provides a map with better
graphic quality, but it may take longer for the map to be generated. The default value
is FALSE (for faster map generation). (For backward compatibility, antialiase is a
synonym for antialiasing, but you are encouraged to use antialiasing.)

imagescaling is an optional attribute. When its value is TRUE (the default),
MapViewer attempts to scale the images to fit the current querying window and the
generated map image size. When its value is FALSE, and if an image theme is included
directly or indirectly (such as through a base map), the images from the image theme
are displayed in their original resolution. This attribute has no effect when no image
theme is involved in a map request.

format is an optional attribute that specifies the file format of the returned map
image. The default value is GIF_URL, which is a URL to a GIF image stored on the
MapViewer host system.

■ If you specify GIF, the generated GIF image data is embedded in a MapResponse
object and returned to the client. If you specify GIF_STREAM, the generated image
map content is returned directly to the client through the HTTP MIME type
image/gif.

■ If you specify JAVA_IMAGE, a Java 2D BufferedImage object with a color model
of TYPE_INT_RGB is embedded in a MapResponse object and returned to the
client.

■ If you specify PNG_STREAM, the stream of the image in nonindexed PNG format is
returned directly; if you specify PNG_URL, a URL to a nonindexed PNG image
stored on the MapViewer host system is returned. (The PNG image format has
some advantages over the GIF format, including faster image encoding and true
color support.)

■ If you specify PNG8_STREAM, the stream of the image in indexed PNG format is
returned directly; if you specify PNG8_URL, a URL to an indexed PNG image

Map Request DTD

MapViewer Map Request XML API 3-29

stored on the MapViewer host system is returned. (The PNG image format has
some advantages over the GIF format, including faster image encoding and true
color support. The indexed PNG format limits the total number of colors available
for displaying the map to 256.)

■ If you specify JPEG_STREAM, the stream of the image in JPEG format is returned
directly; if you specify JPEG_URL, a URL to a JPEG image stored on the
MapViewer host system is returned.

■ If you specify PDF_STREAM, the stream of the image in PDF document format is
returned directly; if you specify PDF_URL, a URL to a PDF document stored on the
MapViewer host system is returned.

■ If you specify SVG_STREAM, the stream of the image in SVG Basic (SVGB) format
is returned directly; if you specify SVG_URL, a URL to an SVG Basic image stored
on the MapViewer host system is returned.

■ If you specify SVGZ_STREAM, the stream of the image in SVG Compressed (SVGZ)
format is returned directly; if you specify SVGZ_URL, a URL to an SVG
Compressed image stored on the MapViewer host system is returned. SVG
Compressed format can effectively reduce the size of the SVG map by 40 to 70
percent compared with SVG Basic format, thus providing better performance.

■ If you specify SVGTINY_STREAM, the stream of the image in SVG Tiny (SVGT)
format is returned directly; if you specify SVGTINY_URL, a URL to an SVG Tiny
image stored on the MapViewer host system is returned. (The SVG Tiny format is
designed for devices with limited display capabilities, such as cell phones.)

transparent is an optional attribute that applies to indexed PNG (PNG8_STREAM or
PNG8_URL) formats only. When its value is TRUE, MapViewer makes the map
background color completely transparent. The default value is FALSE.

title is an optional attribute that specifies the map title to be displayed on the top of
the resulting map image.

title_style is an optional attribute that specifies the name of the text style to be
used when rendering the title.

footnote is an optional attribute that specifies the footnote text to be added on the
final map.

footnote_style is an optional attribute that specifies the name of the text style to be
used when rendering the footnote.

bgcolor is an optional attribute that specifies the background color in the resulting
map image. The default is water-blue (RGB value #A6CAF0). It must be specified as a
hexadecimal value.

bgimage is an optional attribute that specifies the background image (GIF or JPEG
format only) in the resulting map image. The image is retrieved at run time when a
map request is being processed, and it is rendered before any other map features,
except that any bgcolor value is rendered before the background image.

zoomlevels is an optional attribute that specifies the number of zoom levels for an
SVG map. The default is 4.

zoomfactor is an optional attribute that specifies the zoom factor for an SVG map.
The zoom factor is the number by which to multiply the current zoom ratio for each
integer increment (a zoomin operation) in the zoom level. The inverse of the
zoomfactor value is used for each integer decrement (a zoomout operation) in the
zoom level. For example, if the zoomfactor value is 2 (the default), zooming in from
zoom level 4 to 5 will enlarge the detail by two; for example, if 1 inch of the map at

Map Request DTD

3-30 Oracle Fusion Middleware User's Guide for Oracle MapViewer

zoom level 4 represents 10 miles, 1 inch of the map at zoom level 5 will represent 5
miles. The zoom ratio refers to the relative scale of the SVG map, which in its original
size (zoom level 0) has a zoom ratio of 1.

zoomratio is an optional attribute that specifies the zoom ratio when an SVG map is
initially displayed. The default value is 1, which is the original map size (zoom level
0). Higher zoom ratio values show the map zoomed in, and lower values show the
map zoomed out.

initscale is an optional attribute that specifies the initial scale when an SVG map is
first displayed. The default value is 1, which is the original map size (zoom level 0).
Higher values will show the SVG map zoomed in when it is first displayed.

navbar is an optional attribute that specifies whether to display the built-in
navigation bar on an SVG map. If its value is TRUE (the default), the navigation bar is
displayed; if it is set to FALSE, the navigation bar is not displayed.

infoon is an optional attribute that specifies whether to display hidden information
when the mouse moves over features for which hidden information is provided. If its
value is TRUE (the default), hidden information is displayed when the mouse moves
over such features; if it is set to FALSE, hidden information is not displayed when the
mouse moves over such features. Regardless of the value, however, hidden
information is always rendered in an SVG map; this attribute only controls whether
hidden information can be displayed. (To specify the hidden information for a feature,
use the hidden_info attribute in the <geoFeature> element, as explained in
Section 3.2.5.)

onclick is an optional attribute that specifies the name of the JavaScript function to
be called when a user clicks on an SVG map. The JavaScript function must be defined
in the HTML document outside the SVG definition. This function must accept two
parameters: x and y, which specify the coordinates inside the SVG window where the
click occurred. The coordinates are defined in the local SVG window coordinate
system, which starts at (0, 0) at the upper-left corner and ends at (width, height) at the
lower-right corner. For information about using JavaScript functions with SVG maps,
see Appendix B.

onmousemove is an optional attribute that specifies the name of the JavaScript
function to be called when a user moves the mouse on an SVG map. The JavaScript
function must be defined in the HTML document outside the SVG definition. This
function must accept two parameters: x and y, which specify the coordinates inside the
SVG window where the move occurred. The coordinates are defined in the local SVG
window coordinate system, which starts at (0, 0) at the upper-left corner and ends at
(width, height) at the lower-right corner. For information about using JavaScript
functions with SVG maps, see Appendix B.

rasterbasemap is an optional attribute. If the map format is SVG and the value of
this attribute is TRUE, MapViewer renders the base map as a raster image. In this case,
the base map image becomes the background image for the SVG map, and all other
vector features are rendered on top of it.

onrectselect is an optional attribute that specifies the name of the JavaScript
function to be called when a user draws a rectangular selection area by clicking and
dragging the mouse (to indicate two diagonally opposite corners) on an SVG map. The
JavaScript function must be defined in the HTML document outside the SVG
definition. This function must not accept any parameters. For information about using
JavaScript functions with SVG maps, see Appendix B.

onpolyselect is an optional attribute that specifies the name of the JavaScript
function to be called when a user draws a polygon-shaped selection area by clicking
and dragging the mouse (to indicate more than two vertices) on an SVG map. The

Map Request DTD

MapViewer Map Request XML API 3-31

JavaScript function must be defined in the HTML document outside the SVG
definition. This function must not accept any parameters. For information about using
JavaScript functions with SVG maps, see Appendix B.

keepthemesorder is an optional attribute. If the map format is not SVG and the
value of this attribute is TRUE, MapViewer always renders the themes in the order
specified in the map request; if the value of this attribute is FALSE, raster themes will
be rendered before vector themes.

use_cached_basemap is an optional attribute. If the value of this attribute is TRUE
and if a map tile layer caches the same base map specified by the basemap attribute,
MapViewer tries to use the map images cached by the map tile server to render the
map specified by the map request. For information about the map tile server, see
Section 8.2.

snap_to_cache_scale is an optional attribute that is effective only when the use_
cached_basemap attribute value is TRUE. It affects the behavior of MapViewer only
when the map scale specified by the map request does not match that of any
predefined cached zoom level. If this attribute is FALSE, MapViewer uses the cached
map images to render the base map only when the map scale specified by the map
request matches the scale of a cached predefined zoom level. If this attribute is TRUE,
MapViewer always uses the cached map images to render the base map and adjusts
the map scale to fit that of a cached predefined zoom level when the request map scale
does not match any of the cached predefined zoom levels.

title_style is an optional attribute that defines the text style to be used for the title.

footnote is an optional attribute that defines the text for a footnote to be added to
the map.

footnote_style is an optional attribute that defines the text style to be used for the
footnote text.

rotation is an optional attribute defined in degrees to apply a rotation on the map.
Positive values means counterclockwise rotation of the map. Rotation values are
ignored if the request does not have a window defined (no center and size defined, or
using bounding themes). Rotation is not supported for requests using base maps
coming from the Oracle Maps cache.

3.2.2 bounding_themes Element
The <bounding_themes> element has the following definition:

<!ELEMENT bounding_themes (#PCDATA) >
<!ATTLIST bounding_themes
 border_margin CDATA #IMPLIED
 preserve_aspect_ratio CDATA "TRUE"
 size_hint CDATA #IMPLIED
>

You can specify one or more themes as the bounding themes when you cannot
predetermine the data size for a map. For example, you may have one dynamic theme
that selects all data points that meet certain criteria, and you then want to plot those
data points on a map that is just big enough to enclose all the selected data points. In
such cases, you can use the <bounding_themes> element to specify the names of
such dynamic themes. MapViewer first processes any themes that are specified in the
<bounding_themes> element, generates a bounding box based on the resulting
features of the bounding themes, and then prepares other themes according to the new
bounding box.

Map Request DTD

3-32 Oracle Fusion Middleware User's Guide for Oracle MapViewer

The <bounding_themes> element is ignored if you specify the <box> or <center>
element in the map request.

border_margin is an optional attribute that specifies the percentage to be added to
each margin of the generated bounding box. For example, if you specify a value of
0.025, MapViewer adds 2.5% of the width to the left and right margins of the
generated bounding box (resulting in a total 5% width expansion in the x-axis);
similarly, 2.5% of the height is added to the top and bottom margins. The default value
is 0.05, or 5% to be added to each margin.

preserve_aspect_ratio is an optional attribute that indicates whether or not the
bounding box generated after processing the bounding themes should be further
modified so that it has the same aspect ratio as the map image or device. The default is
TRUE, which modifies the bounding box to preserve the aspect ratio, so as not to
distort the resulting map image.

size_hint is an optional attribute that specifies the vertical span of the map in terms
of the original data unit. For example, if the user’s data is in decimal degrees, the
size_hint attribute specifies the number of decimal degrees in latitude. If the user’s
data is projected with meter as its unit, MapViewer interprets size_hint in meters.

The size_hint attribute can be used to extend the boundary limit. This is useful
when the bounding theme has just one point feature. For example, the bounding
theme can be a point resulting from a geocoding query, and you want to place this
point in the middle of the map and extend the boundary from that point.

The element itself contains a comma-delimited list of names of the bounding themes.
The theme names must exactly match their names in the map request or the base map
used in the map request. The following example shows a map request with two
bounding themes, named theme1 and theme3, and with 2 percent (border_
margin="0.02") added to all four margins of the minimum bounding box needed to
hold features associated with the two themes:

<?xml version="1.0" standalone="yes"?>
<map_request
 title="bounding themes"
 datasource = "tilsmenv"
 basemap="qa_map"
 width="400"
 height="400"
 bgcolor="#a6cae0"
 antialiase="false"
 mapfilename="tilsmq202"
 format="PNG_STREAM">

 <bounding_themes border_margin="0.02">theme1, theme3</bounding_themes>

 <themes>
 <theme name="theme1" min_scale="5.0E7" max_scale="0.0">
 <jdbc_query
 datasource="tilsmenv"
 jdbc_srid="8265"
 spatial_column="geom" label_column="STATE"
 render_style="myPattern" label_style="myText"
 >SELECT geom, state from states where state_abrv='IL'</jdbc_query>
 </theme>
 <theme name="theme3" min_scale="5.0E7" max_scale="0.0">
 <jdbc_query
 datasource="tilsmenv"
 jdbc_srid="8265"
 spatial_column="geom" label_column="STATE"

Map Request DTD

MapViewer Map Request XML API 3-33

 render_style="myPattern" label_style="myText"
 >SELECT geom,state from states where state_abrv='IN'</jdbc_query>
 </theme>

 </themes>

 <styles>
 <style name="myPattern">
 <svg width="1in" height="1in">
 <desc></desc>
 <g class="area"
 style="stroke:#0000cc;fill:#3300ff;fill-opacity:128;line-style:L.DPH">
 </g>
 </svg>
 </style>
 <style name="myText">
 <svg width="1in" height="1in">
 <g class="text" float-width="3.0"
 style="font-style:bold;font-family:Serif;font-size:18pt;fill:#000000">
 Hello World!
 </g>
 </svg>
 </style>
 </styles>
</map_request>

The preceding example displays a map in which the states of Illinois and Indiana are
displayed according to the specifications in the two <theme> elements, both of which
specify a rendering style named myPattern. In the myText style, the text "Hello
World!" is displayed only when the style is being previewed in a style creation tool,
such as the Map Builder tool. When the style is applied to a map, it is supplied with an
actual text label that MapViewer obtains from a theme.

Figure 3–2 shows the display from the preceding example.

Map Request DTD

3-34 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Figure 3–2 Bounding Themes

3.2.3 box Element
The <box> element has the following definition:

<!ELEMENT box (coordinates) >
<!ATTLIST box
 ID CDATA #IMPLIED
 srsName CDATA #REQUIRED
 preserve_aspect_ratio (TRUE|FALSE) "FALSE"
>

The <box> element is used to specify the bounding box of a resulting map. It uses a
<coordinates> element to specify two coordinate value pairs that identify the
lower-left and upper-right corners of the rectangle. The coordinate values are
interpreted in terms of the user's data. For example, if the user's data is geodetic and is
specified in decimal degrees of longitude and latitude, a <coordinates>
specification of -72.84, 41.67, -70.88, 42.70 indicates a bounding box with
the lower-left corner at longitude-latitude coordinates (-72.84, 41.67) and the
upper-right corner at coordinates (-70.88, 42.70), which are in the New England region
of the United States. However, if the data is projected with meter as its unit of
measurement, the coordinate values are interpreted in meters.

preserve_aspect_ratio is an optional attribute that indicates whether or not the
box coordinates should be further modified so that it has the same aspect ratio as the
map image or device. The default is FALSE, in order to keep compatibility with
previous versions that do not have this attribute. If this value is set to TRUE, the box is
modified to preserve the aspect ratio, so as not to distort the resulting map image.

Map Request DTD

MapViewer Map Request XML API 3-35

3.2.4 center Element
The <center> element has the following definition:

<!ELEMENT center (geoFeature)>
<!ATTLIST center
 size CDATA #REQUIRED
>

The <center> element is used to specify the center of a resulting map. It has a
required attribute named size, which specifies the vertical span of the map in terms
of the original data unit. For example, if the user’s data is in decimal degrees, the size
attribute specifies the number of decimal degrees in latitude. If the user’s data is
projected with meter as its unit, MapViewer interprets the size in meters.

The center itself must embed a <geoFeature> element, which is specified in
Section 3.2.5.

3.2.5 geoFeature Element
The <geoFeature> element has the following definition:

<!ELEMENT geoFeature (description?, property*,
 geometricProperty)>
<!ATTLIST geoFeature
 typeName CDATA #IMPLIED
 id CDATA #IMPLIED
 render_style CDATA #IMPLIED
 text_style CDATA #IMPLIED
 label CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 marker_size CDATA #IMPLIED
 radius CDATA #IMPLIED
 attribute_values CDATA #IMPLIED
 orient_x CDATA #IMPLIED
 orient_y CDATA #IMPLIED
 orient_z CDATA #IMPLIED
 selectable_in_svg (TRUE|FALSE) "FALSE"
 onclick CDATA #IMPLIED
 hidden_info CDATA #IMPLIED
>

<geoFeature> elements are used to provide individual geospatial entities to be
rendered on a map. The main part of a <geoFeature> element is the geometry
(<geometricProperty> element), which must be supplied in compliance with the
OGC GML v1.0 Geometry DTD (described in Section 3.6).

typeName is an optional attribute that is ignored by the current release of MapViewer.

id is an optional attribute that can be used to uniquely identify the feature among all
the geospatial features on the SVG map. (See the explanation of the selectable_in_
svg attribute.) Otherwise, this attribute is ignored by MapViewer.

render_style is an optional attribute. When it is omitted, the geoFeature is not
rendered. If it is supplied, its value must be the name of a style stored in the user’s
USER_SDO_STYLES view.

text_style is an optional attribute. If it is supplied (and if the render_style and
label attributes are present and valid), it identifies the style to be used in labeling the
feature. If it is not specified, a default text style is used.

Map Request DTD

3-36 Oracle Fusion Middleware User's Guide for Oracle MapViewer

label is an optional attribute. If it is supplied (and if the render_style and label
attributes are present and valid), it identifies text that is used to label the feature.

label_always_on is an optional attribute. If it is set to TRUE, MapViewer labels the
features even if two or more labels will overlap in the display of a theme. (MapViewer
always tries to avoid overlapping labels.) If label_always_on is FALSE (the
default), when it is impossible to avoid overlapping labels, MapViewer disables the
display of one or more labels so that no overlapping occurs. The label_always_on
attribute can also be specified for a theme (theme element, described in Section 3.2.20).
Specifying label_always_on as TRUE for a feature in the geoFeature element
definition gives you control over which features will have their labels displayed if
label_always_on is FALSE for a theme and if overlapping labels cannot be avoided.

marker_size is an optional attribute. If it is supplied with a point feature, and if
render_style is a marker-type style, the specified size is used by MapViewer in
rendering this feature. This provides a mechanism to override the default value
specified for a marker style.

radius is an optional attribute. If it is supplied, it specifies a number or a
comma-delimited list of numbers, with each number representing the radius of a circle
to be drawn centered on this feature. For geodetic data, the unit is meters; for
non-geodetic data, the unit is the unit of measurement associated with the data.

attribute_values is an optional attribute. If it is supplied, it specifies a value or a
comma-delimited list of values to be used with bucket ranges of an advanced style (for
example, values for pie chart segments or bucket values for variable markers).

orient_x and orient_y optionally specify a virtual end point to indicate an
orientation vector for rotating a marker symbol (such as a shield symbol to indicate a
highway) or text at a specified point. (orient_z is reserved for future use by Oracle.)
The value for each must be from -1 to 1. The orientation start point is assumed to be
(0,0), and it is translated to the location of the physical point to which it corresponds.

Figure 3–3 illustrates an orientation vector of approximately 34 degrees
(counterclockwise from the x-axis), resulting from specifying orient_x="0.3"
orient_y="0.2". (To have an orientation that more precisely matches a specific
angle, refer to the cotangent or tangent values in the tables in a trigonometry
textbook.)

Figure 3–3 Orientation Vector

selectable_in_svg is an optional attribute that specifies whether or not the feature
is selectable on an SVG map. The default is FALSE; that is, the feature is not selectable
on an SVG map. If this attribute is set to TRUE and if theme feature selection is
allowed, the feature can be selected by clicking on it. If the feature is selected, its color
is changed and its ID is recorded. You can get a list of the ID values of all selected
features by calling the JavaScript function getSelectedIdList() defined in the
SVG map. (For feature selection to work correctly, the id attribute value of the feature
must be set to a value that uniquely identifies it among all the geospatial features on
the SVG map.) For information about using JavaScript functions with SVG maps, see
Appendix B.

Map Request DTD

MapViewer Map Request XML API 3-37

onclick is an optional attribute that specifies the name of the JavaScript function to
be called when a user clicks on the feature. The JavaScript function must be defined in
the HTML document outside the SVG definition. This function must accept only four
parameters: the theme name, the key of the feature, and x and y, which specify the
coordinates (in pixels) of the clicked point on the SVG map. For information about
using JavaScript functions with SVG maps, see Appendix B.

hidden_info is an optional attribute that specifies an informational note or tip to be
displayed when the mouse is moved over the feature. To specify multiple lines, use
"\n" between lines. For example, hidden_info="State park
with\nhistorical attractions" specifies a two-line tip. (To enable the display
of hidden information in the map, you must specify infoon="true" in the <map_
request> element, as explained in Section 3.2.1.1.)

The following example shows a <geoFeature> element specification for a restaurant
at longitude and latitude coordinates (-78.1234, 41.0346). In this case, the feature will
be invisible because the render_style and text_style attributes are not specified.

<geoFeature typeName="Customer" label="PizzaHut in Nashua">
 <geometricProperty>
 <Point srsName="SDO:8265">
 <coordinates>-78.1234,41.0346</coordinates>
 </Point>
 </geometricProperty>
</geoFeature>

The following example shows a <geoFeature> element specification for a point of
interest at longitude and latitude coordinates (-122.2615, 37.5266). The feature will be
rendered on the generated map because the render_style attribute is specified. The
example specifies some label text (A Place) and a text style for drawing the label text.
It also instructs MapViewer to draw two circles, centered on this feature, with radii of
1600 and 4800 meters. (In this case, the srsName attribute of the <Point> element
must be present, and it must specify an Oracle Spatial SRID value using the format
"SDO:<srid>". Because SRID value 8265 is associated with a geodetic coordinate
system, the radius values are interpreted as 1600 and 4800 meters.)

<geoFeature render_style="m.star"
 radius="1600,4800"
 label="A Place"
 text_style="T.Name">
 <geometricProperty>
 <Point srsName="SDO:8265">
 <coordinates>-122.2615, 37.5266</coordinates>
 </Point>
 </geometricProperty>
</geoFeature>

Figure 3–4 is a map drawn using the <geoFeature> element in the preceding
example. The feature is labeled with the text A Place, and it is represented by a red
star marker surrounded by two concentric circles.

Map Request DTD

3-38 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Figure 3–4 Map with <geoFeature> Element Showing Two Concentric Circles

3.2.6 jdbc_georaster_query Element
The <jdbc_georaster_query> element, which is used to define a GeoRaster
theme, has the following definition:

<!ELEMENT jdbc_georaster_query (#PCDATA) >
<!ATTLIST jdbc_georaster_query
 asis (TRUE|FALSE) "FALSE"
 georaster_table CDATA #REQUIRED
 georaster_column CDATA #REQUIRED
 raster_id CDATA #IMPLIED
 raster_table CDATA #IMPLIED
 raster_pyramid CDATA #IMPLIED
 raster_bands CDATA #IMPLIED
 datasource CDATA #IMPLIED
 polygon_mask CDATA #IMPLIED
 transparent_nodata CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>

For detailed usage and reference information about GeoRaster themes, see
Section 2.3.4.

3.2.7 jdbc_image_query Element
The <jdbc_image_query> element, which is used to define an image theme
(described in Section 2.3.3), has the following definition:

<!ELEMENT jdbc_image_query (#PCDATA) >
<!ATTLIST jdbc_image_query
 asis (TRUE|FALSE) "FALSE"
 image_format CDATA #REQUIRED

Map Request DTD

MapViewer Map Request XML API 3-39

 image_column CDATA #REQUIRED
 image_mbr_column CDATA #REQUIRED
 image_resolution CDATA #IMPLIED
 image_unit CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>

To define a theme dynamically, you must supply a valid SQL query as the content of
the <jdbc_image_query> element. You must specify the JDBC connection
information for an image theme (either datasource or the combination of jdbc_
host, jdbc_port, jdbc_sid, jdbc_user, and jdbc_password).

jdbc_srid is an optional attribute that specifies the coordinate system (SDO_SRID
value) of the data to be rendered.

jdbc_mode identifies the Oracle JDBC driver (thin or oci8) to use to connect to the
database.

asis is an optional attribute. If it is set to TRUE, MapViewer does not attempt to
modify the supplied query string. If asis is FALSE (the default), MapViewer embeds
the SQL query as a subquery of its spatial filter query. For example, assume that you
want a map centered at (-122, 37) with size 1, and the supplied query is:

SELECT geometry, sales FROM crm_sales WHERE sales < 100000;

If asis is FALSE, the actual query that MapViewer executes is similar to:

SELECT * FROM
 (SELECT geometry, sales FROM crm_sales WHERE sales < 100000)
WHERE sdo_filter(geometry, sdo_geometry(. . . -122.5, 36.5, -123.5, 37.5 . . .)
='TRUE';

In other words, the original query is further refined by a spatial filter query for the
current map window. However, if asis is TRUE, MapViewer executes the query as
specified, namely:

SELECT geometry, sales FROM crm_sales WHERE sales < 100000;

image_format identifies the format (such as GIF or JPEG) of the image data. If the
image format is not supported by MapViewer, you must create and register a custom
image renderer for the format, as explained in Appendix C.

image_column identifies the column of type BLOB where each image is stored.

image_mbr_column identifies the column of type SDO_GEOMETRY where the
footprint (minimum bounding rectangle, or MBR) of each image is stored.

image_resolution is an optional attribute that identifies the original image
resolution (number of image_unit units for each pixel).

image_unit is an optional attribute, except it is required if you specify the image_
resolution attribute. The image_unit attribute specifies the unit of the resolution,
such as M for meter. The value for this attribute must be one of the values in the SDO_
UNIT column of the MDSYS.SDO_DIST_UNITS table. In Example 2–12 in
Section 2.3.3.1, the image resolution is 2 meters per pixel.

Map Request DTD

3-40 Oracle Fusion Middleware User's Guide for Oracle MapViewer

For an example of using the <jdbc_image_query> element to specify an image
theme, see Example 3–6 in Section 3.1.6.

3.2.8 jdbc_network_query Element
The <jdbc_network_query> element, which is used to define a network theme, has
the following definition:

<!ELEMENT jdbc_network_query (#PCDATA) >
<!ATTLIST jdbc_network_query
 asis (TRUE|FALSE) "FALSE"
 network_name CDATA #REQUIRED
 network_level CDATA #IMPLIED
 link_style CDATA #IMPLIED
 direction_style CDATA #IMPLIED
 bidirection_style CDATA #IMPLIED
 direction_position CDATA #IMPLIED
 direction_markersize CDATA #IMPLIED
 direction_multimarker (TRUE|FALSE) "FALSE"
 link_labelstyle CDATA #IMPLIED
 link_labelcolumn CDATA #IMPLIED
 node_style CDATA #IMPLIED
 node_markersize CDATA #IMPLIED
 node_labelstyle CDATA #IMPLIED
 node_labelcolumn CDATA #IMPLIED
 path_ids CDATA #IMPLIED
 path_styles CDATA #IMPLIED
 path_labelstyle CDATA #IMPLIED
 path_labelcolumn CDATA #IMPLIED
 analysis_algorithm CDATA #IMPLIED
 shortestpath_style CDATA #IMPLIED
 shortestpath_startnode CDATA #IMPLIED
 shortestpath_endnode CDATA #IMPLIED
 shortestpath_startstyle CDATA #IMPLIED
 shortestpath_endstyle CDATA #IMPLIED
 withincost_startnode CDATA #IMPLIED
 withincost_style CDATA #IMPLIED
 withincost_cost CDATA #IMPLIED
 withincost_startstyle CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>

For detailed usage and reference information about network themes, see Section 2.3.5.

3.2.9 jdbc_query Element
The <jdbc_query> element is used to define a theme dynamically. This element and
its associated <hidden_info> element have the following definitions:

<!ELEMENT jdbc_query (#PCDATA, hidden_info?)>
<!ATTLIST jdbc_query
 asis (TRUE|FALSE) "FALSE"
 spatial_column CDATA #REQUIRED

Map Request DTD

MapViewer Map Request XML API 3-41

 key_column CDATA #IMPLIED
 label_column CDATA #IMPLIED
 label_style CDATA #IMPLIED
 render_style CDATA #IMPLIED
 x_column CDATA #IMPLIED
 y_column CDATA #IMPLIED
 datasource CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>
<!ELEMENT hidden_info (field+)>
<!ELEMENT field (#PCDATA)>
<!ATTLIST field
 column CDATA #REQUIRED
 name CDATA #IMPLIED
>

To define a theme dynamically, you must supply a valid SQL query as the content of
the <jdbc_query> element. You must specify the spatial_column (column of type
SDO_GEOMETRY) and the JDBC connection information for a dynamically defined
theme (either datasource or the combination of jdbc_host, jdbc_port, jdbc_
sid, jdbc_user, and jdbc_password).

If the selectable_in_svg attribute value is TRUE in the <theme> element, you
must use the key_column attribute in the <jdbc_query> element to specify the
name of a column that can uniquely identify each selected feature from the JDBC
query. The specified column must also appear in the SELECT list in the JDBC query.

render_style and label_style are optional attributes. For render_style, for
point features the default is a red cross rotated 45 degrees, for lines and curves it is a
black line 1 pixel wide, and for polygons it is a black border with a semitransparent
dark gray interior.

x_column and y_column are optional attributes. If specified, they are used to define
a point JDBC theme based on two columns in a table, so that MapViewer can render a
point theme based on values in these columns. For more information, see
Section 2.3.2.1.

jdbc_srid is an optional attribute that specifies the coordinate system (SDO_SRID
value) of the data to be rendered.

jdbc_mode identifies the Oracle JDBC driver (thin or oci8) to use to connect to the
database.

asis is an optional attribute. If it is set to TRUE, MapViewer does not attempt to
modify the supplied query string. If asis is FALSE (the default), MapViewer embeds
the SQL query as a subquery of its spatial filter query. For example, assume that you
want a map centered at (-122, 37) with size 1, and the supplied query is:

SELECT geometry, sales FROM crm_sales WHERE sales < 100000;

If asis is FALSE, the actual query that MapViewer executes is similar to:

SELECT * FROM
 (SELECT geometry, sales FROM crm_sales WHERE sales < 100000)
WHERE sdo_filter(geometry, sdo_geometry(. . . -122.5, 36.5, -123.5, 37.5. . .)
='TRUE';

Map Request DTD

3-42 Oracle Fusion Middleware User's Guide for Oracle MapViewer

In other words, the original query is further refined by a spatial filter query using the
current map window. However, if asis is TRUE, MapViewer executes the query as
specified, namely:

SELECT geometry, sales FROM crm_sales WHERE sales < 100000;

The <hidden_info> element specifies the list of attributes from the base table to be
displayed when the user moves the mouse over the theme’s features. The attributes
are specified by a list of <field> elements.

Each <field> element must have a column attribute, which specifies the name of the
column from the base table, and it can have a name attribute, which specifies the
display name of the column. (The name attribute is useful if you want a text string
other than the column name to be displayed.)

For examples of using the <jdbc_query> element to define a theme dynamically, see
Example 3–2 in Section 3.1.2 and Example 3–4 in Section 3.1.4.

3.2.10 jdbc_topology_query Element
The <jdbc_topology_query> element, which is used to define a topology theme,
has the following definition:

<!ELEMENT jdbc_topology_query (#PCDATA)>
<!ATTLIST jdbc_topology_query
 asis (TRUE|FALSE) "FALSE"
 topology_name CDATA #REQUIRED
 feature_table CDATA #REQUIRED
 spatial_column CDATA #REQUIRED
 label_column CDATA #IMPLIED
 label_style CDATA #IMPLIED
 render_style CDATA #IMPLIED
 datasource CDATA #IMPLIED
 edge_style CDATA #IMPLIED
 edge_marker_style CDATA #IMPLIED
 edge_marker_size CDATA #IMPLIED
 edge_label_style CDATA #IMPLIED
 node_style CDATA #IMPLIED
 node_label_style CDATA #IMPLIED
 face_style CDATA #IMPLIED
 face_label_style CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_srid CDATA #IMPLIED
 jdbc_mode (thin|oci8) "thin"
>

For detailed usage and reference information about topology themes, see Section 2.3.6.

3.2.11 legend Element
The <legend> element has the following definition:

<!ELEMENT legend (column,themes)? >
<!ATTLIST legend
 bgstyle CDATA #implied
 font CDATA #implied

Map Request DTD

MapViewer Map Request XML API 3-43

 location_x CDATA #implied
 location_y CDATA #implied
 offset_x CDATA #implied
 offset_y CDATA #implied
 profile (MEDIUM|SMALL|LARGE) "MEDIUM"
 position (SOUTH_WEST|SOUTH_EAST|SOUTH|NORTH|
 NORTH_WEST|NORTH_EAST|EAST|WEST|CENTER) "SOUTH_WEST"
>
<!ELEMENT column entry+ >
<!ATTLIST entry
 is_title (true|false) "false"
 is_separator (true|false) "false"
 tab CDATA "0"
 style CDATA #implied
 text CDATA #implied
 text_size CDATA #implied
 width CDATA #implied
 height CDATA #implied
>
<!ELEMENT themes theme+ >
<!ATTLIST theme
 name CDATA #REQUIRED
>

<legend> elements are used to draw a legend (map inset illustration) on top of a
generated map, to make the visual aspects of the map more meaningful to users. The
main part of a <legend> element is one or more <column> elements, each of which
defines a column in the legend. (If no <column> elements are present, an automatic
legend is created, as explained in Section 2.4.2.) A one-column legend will have all
entries arranged from top to bottom. A two-column legend will have the two columns
side by side, with the first column on the left, and each column having its own legend
entries. Figure 2–9 in Section 2.4.2 shows a one-column legend. Figure 3–5 shows a
two-column legend.

Map Request DTD

3-44 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Figure 3–5 Two-Column Map Legend

bgstyle is an optional attribute that specifies the overall background style of the
legend. It uses a string with syntax similar to scalable vector graphics (SVG) to specify
the fill and stroke colors for the bounding box of the legend. If you specify an opacity
(fill-opacity or stroke-opacity) value, the fill and stroke colors can be
transparent or partially transparent. The following example specifies a background
that is white and half transparent, and a stroke (for the legend box boundary) that is
red:

bgstyle="fill:#ffffff;fill-opacity:128;stroke:#ff0000"

font is an optional attribute that specifies the name of the font to be used for text that
appears in the legend image. You can specify a logical font name that is supported by
Java (serif, sansserif, monospaced, dialog, or dialoginput). You can also
specify the name of a physical font that is available on the system where the
MapViewer server is running.

location_x and location_y are optional attributes that specify the X and Y
coordinates (in screen units) of the start of the legend. If you specify these attributes,
they override any specification for the position attribute.

offset_x and offset_y are optional attributes to be used with the position
attribute. The default distance from the borders for the position hint corresponds to 10
pixels. You can use these offset parameters to override the default value.

profile is an optional attribute that specifies a relative size of the legend on the map,
using one of the following keywords: SMALL, MEDIUM (the default), or LARGE.

position is an optional attribute that specifies where the legend should be drawn on
the map. The default is SOUTH_WEST, which draws the legend in the lower-left corner
of the resulting map.

Map Request DTD

MapViewer Map Request XML API 3-45

is_title is an optional attribute of the <entry> element. When its value is TRUE,
the entry is used as the title for the column, which means that the description text
appears in a more prominent font than regular legend text, and any other style
attribute defined for the entry is ignored. The default is FALSE.

is_separator is an optional attribute of the <entry> element. When its value is
TRUE, the entry is used to insert a blank line for vertical spacing in the column. The
default is FALSE.

tab is an optional attribute of the <entry> element. It specifies the number of tab
positions to indent the entry from the left margin of the column. The default is 0 (zero),
which means no indentation.

style is an optional attribute of the <entry> element. It specifies the name of the
MapViewer style (such as a color or an image) to be depicted as part of the entry.

text is an optional attribute of the <entry> element. It specifies the description text
(for example, a short explanation of the associated color or image) to be included in
the entry.

text_size is an optional attribute of the <entry> element. It specifies the size (in
display units) of the description text to be included in the entry. The specified value
overrides the MapViewer predefined profile size.

width and height are optional attributes that together specify the size (in device
units) of the legend entry Any specified values override the defaults, which depend on
the MapViewer profile values for small, medium, and large text.

The following example shows the <legend> element specification for the legend in
Figure 2–9 in Section 2.4.2.

<legend bgstyle="fill:#ffffff;fill-opacity:128;stroke:#ff0000"
 position="NORTH_WEST">
 <column>
 <entry text="Map Legend" is_title="true"/>
 <entry style="M.STAR" text="center point"/>
 <entry style="M.CITY HALL 3" text="cities"/>
 <entry is_separator="true"/>
 <entry style="C.ROSY BROWN STROKE" text="state boundary"/>
 <entry style="L.PH" text="interstate highway"/>
 <entry text="County population:"/>
 <entry style="V.COUNTY_POP_DENSITY" tab="1"/>
 </column>
</legend>

In the preceding example:

■ The background color has an opacity value of 128 (fill-opacity:128), which
means that the white background will be half transparent.

■ The legend boundary box will be red (stroke:#ff0000).

■ The legend boundary box will be positioned in the upper-left part of the display
(position="NORTH_WEST").

■ The legend will be the default size, because the profile attribute (which has a
default value of MEDIUM) is not specified.

■ The legend will have a single column, with entries arranged from top to bottom.

■ The first entry is the legend title, with the text Map Legend.

■ The fourth entry is a separator for adding a blank line.

Map Request DTD

3-46 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ The seventh entry is description text (County population:) that users of the
generated map will associate with the next (and last) entry, which specifies an
advanced style. The County population: text entry is helpful because advanced
styles usually have their own descriptive text, and you do not want users to
become confused about which text applies to which parts of the legend.

■ The last entry specifies an advanced style (style="V.COUNTY_POP_DENSITY"),
and it is indented one tab position (tab="1") so that the colors and text
identifying various population density ranges will be easy for users to distinguish
from the preceding County population: description text.

3.2.12 map_tile_theme Element
The <map_tile_theme> element is used to define a map tile theme, which produces
a map image layer rendered by the map tile server with pregenerated map image tiles.
The map image tiles can be served by any internal or external map service providers.
This element has the following definition:

<!ELEMENT map_tile_theme (#PCDATA)>
<!ATTLIST map_tile_theme
 map_tile_layer CDATA # REQUIRED
 snap_to_tile_scale (TRUE|FALSE) "FALSE"
>

map_tile_name specifies the name of the map tile layer that has been predefined
with MapViewer.

snap_to_tile_scale is an optional attribute that specifies whether to adjust the
map scale to fit that of one of the predefined map tile layer zoom levels. If this
attribute is FALSE, the scale of the result map is always the same as what the map
request specifies; and if the map request scale does not fit any of the predefined map
tile layer zoom levels, the map tile images are scaled to fit the map request scale. If this
attribute is TRUE, the scale of the result map is adjusted to fit one of the predefined
map tile layer zoom levels when the request map scale does not fit any of the
predefined zoom levels.

3.2.13 north_arrow Element
The <north_arrow> element specifies a style (usually a marker) to point to the north
direction on the map. It uses the map request rotation attribute to define its
orientation. This element has the following definition:

<!ELEMENT north_arrow (style, location?, size?) >

The <style> element specifies the name of the style (typically a marker style) for the
north arrow.

The <location> element is optional. It specifies the X and Y coordinate values (in
pixels) of the position on the map for the north arrow. The default value is (25, 25).

The <size> element is optional. It specifies the width and height (in pixels) to be used
by MapViewer in rendering the north arrow. The default value is (16, 32).

Example 3–20 shows a north arrow definition using style m.image41_bw, located at
position (35, 35) of the map image, and with width 16 and height 32.

Example 3–20 North Arrow

<north_arrow>
 <style> m.image41_bw </style>

Map Request DTD

MapViewer Map Request XML API 3-47

 <location> 35,35 </location>
 <size> 16,32 </size>
</north_arrow>

3.2.14 operation Element
The <operation> element enables you to perform additional transformations on the
original data during rendering. The <operation> element has the following
definition:

<!ELEMENT operation (parameter+) >
<!ATTLIST parameter
 name CDATA #REQUIRED
>

Currently this element is used in GeoRaster themes (described in Section 2.3.4). You
can perform some image processing operations on the original image, such as
normalization, equalization, linear stretch, piecewise linear stretch, brightness and
contrast adjustment, and threshold change.

Example 3–21 specifies the normalization operation with a GeoRaster theme.

Example 3–21 Normalization Operation with a GeoRaster Theme

<theme name="geor_theme" >
 <jdbc_georaster_query
 jdbc_srid="0"
 datasource="mvdemo"
 georaster_table="dem"
 georaster_column="georaster"
 asis="false"> select georaster from dem
 </jdbc_georaster_query>
 <operations>
 <operation name="normalize">
 </operation>
 </operations>
 </theme>

The following code segment shows a manual linear stretch operation. (For automatic
linear stretch, include the <operation> element but no <parameter> elements.)

 <operation name="linearstretch">
 <parameter name="autostretch" value="false"/>
 <parameter name="lowstretch" value="50"/>
 <parameter name="highstretch" value="150"/>
 </operation>

Table 3–1 lists the image processing operations, their <operation> element name
keyword values, and (where relevant) associated <parameter> element values.

Table 3–1 Image processing Options for GeoRaster Theme Operations

Operation <operation> name value <parameter> values

Normalization normalize (Not applicable)

Equalization equalize (Not applicable)

Linear stretch linearstretch name=autostretch (automatic)

name=lowstretch (low stretch)

name=highstretch (high stretch)

Map Request DTD

3-48 Oracle Fusion Middleware User's Guide for Oracle MapViewer

3.2.15 operations Element
The <operations> element specifies one or more <operation> elements
(described in Section 3.2.14). The <operations> element has the following definition:

<!ELEMENT operations (oepration+) >

For a predefined GeoRaster theme, the <operations> element will be part of the styling
rule definition. Example 3–21 shows the styling rules for a GeoRaster theme that uses
the normalization operation.

Example 3–22 Styling Rules with Normalization Operation in a GeoRaster Theme

<styling_rules theme_type="georaster" raster_table="RDT_DEM"
 raster_id="1">
 <operations>
 <operation name="normalize"/>
 </operations>
</styling_rules>

3.2.16 parameter Element
The <parameter> element defines values to be used in an operation to be applied on
themes. (The operation is specified in an <operations> element, described in
Section 3.2.14.) The <parameter> element has the following definition:

<!ELEMENT parameter >
<!ATTLIST parameter
 name CDATA #REQUIRED
 value CDATA #REQUIRED
>

Each parameter must have a name and value associated with it.

3.2.17 scale_bar Element
The <scale_bar> element defines a scale bar (to show how many kilometers or miles
are represented by a distance marked on the bar) to be added to the map request, if the
map has a known spatial reference system (SRS). You can specify a single display
mode (Metric or US) or dual mode (both Metric and US). The <scale_bar> element
has the following definition:

<!ELEMENT scale_bar >
<!ATTLIST scale_bar
 mode (METRIC_MODE|US_MODE|DUAL_MODES) "METRIC_MODE"
 position (SOUTH_WEST|SOUTH_EAST|SOUTH|NORTH|
 NORTH_WEST|NORTH_EAST) "NORTH_EAST"

Piecewise linear stretch piecewiselinearstretch (Not applicable)

Brightness brightness value=[number]

Contrast contrast value=[number]

Change threshold changethreshold name=threshold (threshold)

name=lowsthreshold (low threshold)

name=highthreshold (high threshold)

Table 3–1 (Cont.) Image processing Options for GeoRaster Theme Operations

Operation <operation> name value <parameter> values

Map Request DTD

MapViewer Map Request XML API 3-49

 offset_y CDATA #implied
 offset_y CDATA #implied
 color1 CDATA #implied
 color1_opacity CDATA #implied
 color2 CDATA #implied
 color2_opacity CDATA #implied
 length_hint CDATA #implied
 label_color CDATA #implied
 label_font_family CDATA #implied
 label_font_size CDATA #implied
 label_halo_size CDATA #implied
 label_position (TOP|BOTTOM) "TOP"
>

All <scale_bar> attributes are optional.

mode specifies if the scale bar should be in metric or US mode, or in both modes. The
default is METRIC_MODE.

position defines the relative location on the map to place the scale bar. The default
is NORTH_EAST.

offset_x and offset_y define the X and Y values to offset the scale bar position
from the map margin. The default value for each is 0.

color1, color1_opacity, color2, and color2_opacity define the colors to be
used when rendering the scale bar. color1 and color2 have a default value for red,
green, blue; color1_opacity has a default value of (0x44, 0x44, 0x44, 210); and color
2_opacity has a default value of (0xee, 0xee, 0xee, 210).

length_hint defines the preferred number of pixels to be used to render the scale
bar. The default is approximately 17% of the map width.

label_color, label_font_family, label_font_size, and label_halo_size
affect the scale bar text. The defaults are black color, Serif font family, 12pt font size,
and no halo (0 halo size).

label_position defines the position of the text relative to the scale bar (TOP or BOTTOM).
The default is TOP.

Example 3–23 defines a scale bar.

Example 3–23 Scale Bar

<scale_bar
 position="SOUTH_WEST"
 mode="US_MODE"
 color1="#ff0000"
 color1_opacity="128"
 color2="#00ffff"
 label_font_family="Dialog"
 label_font_size="15"
 label_font_style="italic"
 label_font_weight="bold"
 label_halo_size="2.8"
 label_position="bottom"
 offset_y="5"
/>

3.2.18 style Element
The <style> element has the following definition:

Map Request DTD

3-50 Oracle Fusion Middleware User's Guide for Oracle MapViewer

<!ELEMENT style (svg | AdvancedStyle)?>
<!ATTLIST style
 name CDATA #REQUIRED
>

The <style> element lets you specify a dynamically defined style. The style can be
either of the following:

■ An SVG description representing a color, line, marker, area, or text style

■ An advanced style definition (see Section A.6) representing a bucket, a color
scheme, or a variable marker style

The name attribute identifies the style name.

The following example shows an excerpt that dynamically defines two styles (a color
style and an advanced style) for a map request:

<map_request . . .>
 . . .
 <styles>
 <style name="color_red">
 <svg width="1in" height="1in">
 <g class="color"
 style="stroke:red;stroke-opacity:100;fill:red;fill-opacity:100">
 <rect width="50" height="50"/>
 </g>
 </svg>
 </style>

 <style name="ranged_bucket_style">
 <AdvancedStyle>
 <BucketStyle>
 <Buckets>
 <RangedBucket seq="0" label="less than 100k"
 high="100000.0" style="C.RB13_13"/>
 <RangedBucket seq="1" label="100k - 150k" low="100000.0"
 high="150000.0" style="C.RB13_1"/>
 <RangedBucket seq="2" label="150k - 250k" low="150000.0"
 high="250000.0" style="C.RB13_4"/>
 <RangedBucket seq="3" label="250k - 350k" low="250000.0"
 high="350000.0" style="C.RB13_7"/>
 <RangedBucket seq="4" label="350k - 450k" low="350000.0"
 high="450000.0" style="C.RB13_10"/>
 </Buckets>
 </BucketStyle>
 </AdvancedStyle>
 </style>
 </styles>
</map_request>

3.2.19 styles Element
The <styles> element has the following definition:

<!ELEMENT styles (style+) >

The <styles> element specifies one or more <style> elements (described in
Section 3.2.18).

Map Request DTD

MapViewer Map Request XML API 3-51

3.2.20 theme Element
The <theme> element has the following definition:

<!ELEMENT theme (jdbc_query | jdbc_image_query | jdbc_georaster_query
 | jdbc_network_query | jdbc_topology_query | map_tile_theme)?,
 operations? >
<!ATTLIST theme
 name CDATA #REQUIRED
 datasource CDATA #IMPLIED
 template_theme CDATA #IMPLIED
 max_scale CDATA #IMPLIED
 min_scale CDATA #IMPLIED
 label_max_scale CDATA #IMPLIED
 label_min_scale CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 fast_unpickle (TRUE|FALSE) "TRUE"
 mode CDATA #IMPLIED
 min_dist CDATA #IMPLIED
 fixed_svglabel (TRUE|FALSE) "FALSE"
 visible_in_svg (TRUE|FALSE) "TRUE"
 selectable_in_svg (TRUE|FALSE) "FALSE"
 part_of_basemap (TRUE|FALSE) "FALSE"
 simplify_shapes (TRUE|FALSE) "TRUE"
 transparency CDATA #IMPLIED
 minimum_pixels CDATA #IMPLIED
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 onmouseover CDATA #IMPLIED
 onmouseout CDATA #IMPLIED
 workspace_name CDATA #IMPLIED
 workspace_savepoint CDATA #IMPLIED
 workspace_date CDATA #IMPLIED
 workspace_date_format CDATA #IMPLIED
 fetch_size CDATA #IMPLIED
 timeout CDATA #IMPLIED
>

The <theme> element lets you specify a predefined or dynamically defined theme.

■ For a predefined theme, whose definition is already stored in your USER_SDO_
THEMES view, only the theme name is required.

■ For a dynamically defined theme, you must provide the information in one of the
following elements: <jdbc_query> (described in Section 3.2.9), <jdbc_image_
query> (described in Section 3.2.7), <jdbc_georaster_query> (described in
Section 2.3.4), <jdbc_network_query> (described in Section 2.3.5), or <jdbc_
topology_query> (described in Section 2.3.6).

■ For a GeoRaster theme, you can define some image processing options (described
in Section 3.2.14).

The name attribute identifies the theme name. For a predefined theme, the name must
match a value in the NAME column of the USER_SDO_THEMES view (described in
Section 2.9.2). For a dynamically defined theme, this is just a temporary name for
referencing the jdbc_query-based theme.

datasource is an optional attribute that specifies a data source for the theme. If you
do not specify this attribute, the data source for the map request is assumed (see the
datasource attribute explanation in Section 3.2.1.1). By specifying different data
sources for different themes, you can use multiple data sources in a map request.

Map Request DTD

3-52 Oracle Fusion Middleware User's Guide for Oracle MapViewer

template_theme is an optional attribute that can be used to render two or more
themes when a predefined theme has same name in multiple data sources. You cannot
repeat theme names in a map request, but if you have two different data sources with
same predefined theme name, you can use this attribute to render both themes. The
following example specifies two themes that are based on a US_STATES theme that
exists in two data sources, but that has a different content in each data source.

<themes>
 <theme name="US_STATES" datasource="dsrc"/>
 <theme name="OTHER_US_STATES" template_theme="US_STATES" datasource="other_dsrc"
/>
</themes>

The max_scale and min_scale attributes affect the visibility of this theme. If max_
scale and min_scale are omitted, the theme is always rendered, regardless of the
map scale. (See Section 2.4.1 for an explanation of max_scale and min_scale.)

The label_max_scale and label_min_scale attributes affect the visibility of
feature labels of this theme. If label_max_scale and label_min_scale are
omitted, the theme feature labels are always rendered when the map scale is within
the visible range of theme scales (that is, within the max_scale and min_scale
range). (See Section 2.4.1 for an explanation of label_max_scale and label_min_
scale.)

label_always_on is an optional attribute. If it is set to TRUE, MapViewer labels all
features of the theme even if two or more labels will overlap in the display.
(MapViewer always tries to avoid overlapping labels.) If label_always_on is FALSE
(the default), when it is impossible to avoid overlapping labels, MapViewer disables
the display of one or more labels so that no overlapping occurs. The label_always_
on attribute can also be specified for a map feature (geoFeature element, described
in Section 3.2.5), thus allowing you to control which features will have their labels
displayed if label_always_on is FALSE for a theme and if overlapping labels
cannot be avoided.

fast_unpickle is an optional attribute. If it is TRUE (the default), MapViewer uses
its own fast unpickling (unstreaming) algorithm instead of the generic JDBC
conversion algorithm to convert SDO_GEOMETRY objects fetched from the database
into a Java object accessible to MapViewer. This process improves performance, but
occasionally the coordinates may lose some precision (around 0.00000005), which can
be significant in applications where all precision digits of each coordinate must be
kept. If fast_unpickle is set to FALSE, MapViewer uses the generic JDBC
conversion algorithm. This process is slower than MapViewer’s fast unpickling
process, but there is never any loss of precision.

mode is an optional attribute. For a topology theme, you can specify mode="debug"
to display edges, nodes, and faces, as explained in Section 2.3.6. The mode attribute is
ignored for other types of themes.

min_dist is an optional attribute. It specifies the minimum on-screen distance
(number of pixels) between two adjacent shape points on a line string or polygon for
rendering of separate shape points. If the on-screen distance between two adjacent
shape points is less than the min_dist value, only one shape point is rendered. The
default value is 0.5. You can specify higher values to reduce the number of shape
points rendered on an SVG map, and thus reduce the size of the resulting SVG file.
You can specify different values in different theme definitions, to allow for customized
levels of detail in SVG maps.

fixed_svglabel is an optional attribute that specifies whether to display the labels
on an SVG map using the original "fixed" labels, but having them appear larger or

Map Request DTD

MapViewer Map Request XML API 3-53

smaller as the zoom level increases (zoomin) or decreases (zoomout), or to use
different labels with the same text but different actual sizes so that the apparent size of
each label remains the same at all zoom levels. If the fixed_svglabel value is
specified as TRUE, the same theme labels are displayed on the map at all zoom levels,
with the labels zoomed in and out as the map is zoomed in and out. If the value is
FALSE (the default), different theme labels are displayed at different zoom levels so
that the size of each displayed label appears not to change during zoomin and
zoomout operations.

visible_in_svg is an optional attribute that specifies whether or not to display the
theme on an SVG map. If its value is TRUE (the default), the theme is displayed; if it is
set to FALSE, the theme is not displayed. However, even if this attribute is set to
FALSE, the theme is still rendered to the SVG map: the theme is initially invisible, but
you can make it visible later by calling the JavaScript function showTheme() defined
in the SVG map. For information about using JavaScript functions with SVG maps, see
Appendix B.

selectable_in_svg is an optional attribute that specifies whether or not the theme
is selectable on an SVG map. The default is FALSE; that is, the theme is not selectable
on an SVG map. If this attribute is set to TRUE and if theme feature selection is
allowed, each feature of the theme displayed on the SVG map can be selected by
clicking on it. If the feature is selected, its color is changed and its ID (its rowid by
default) is recorded. You can get a list of the ID values of all selected features by
calling the JavaScript function getSelectedIdList() defined in the SVG map. For
information about using JavaScript functions with SVG maps, see Appendix B.

part_of_basemap is an optional attribute. If the map format is SVG and the value of
this attribute is TRUE, MapViewer renders the theme as part of and on top of the base
map, which is rendered as a raster image.

simplify_shapes is an optional attribute that specifies whether or not the shapes
are simplified before being rendered. Simplification is useful when you want a map
display with less fine resolution than the original geometries. For example, if the
display resolution cannot show the hundreds or thousands of turns in the course of a
river or in a political boundary, better performance might result if the shapes were
simplified to show only the major turns. The default is TRUE; that is, shapes are
simplified before being rendered. If this attribute is set to FALSE, MapViewer attempts
to render all vertices and line segments from the original geometries, and performance
may be slower.

transparency is an optional parameter to define the basic alpha composing value to be
applied on themes during rendering. The value can be from 0 to 1, with 0 meaning
completely transparent and 1 (the default) meaning completely opaque (no
transparency).

minimum_pixels is an optional parameter that defines the level of resolution to be
used on the spatial filter query. This may be useful to avoid rendering too many
elements at the same position of the screen. (See the Oracle Spatial documentation
about the min_resolution and max_resolution options for the SDO_FILTER
operator.) The unit for minimum_pixels is screen pixels. For example, minimum_
pixels=1 means that the spatial filter query will not return features with a resolution
less than the amount that 1 pixel represents for the current device window and current
query window

onclick is an optional attribute that specifies the name of the JavaScript function to
be called when a user clicks on an SVG map and theme feature selection is allowed
(see the selectable_in_svg attribute explanation). The JavaScript function must be
defined in the HTML document that has the SVG map embedded. This function must
accept only four parameters: the theme name, the key of the feature, and x and y,

Map Request DTD

3-54 Oracle Fusion Middleware User's Guide for Oracle MapViewer

which specify the coordinates (in pixels) of the clicked point on the SVG map. For
information about using JavaScript functions with SVG maps, see Appendix B.

onmousemove is an optional attribute that specifies the name of the JavaScript
function to be called when a user moves the mouse on top of any feature of the theme
on an SVG map. The JavaScript function must be defined in the HTML document that
has the SVG map embedded. This function must accept only four parameters: the
theme name, the key of the feature, and x and y, which specify the coordinates (in
pixels) of the point for the move on the SVG map. For information about using
JavaScript functions with SVG maps, see Appendix B.

onmouseover is an optional attribute that specifies the name of the JavaScript
function to be called when a user moves the mouse into a feature of the theme on an
SVG map. (Unlike the onmousemove function, which is called whenever the mouse
moves inside the theme, the onmouseover function is called only once when the
mouse moves from outside a feature of the theme to inside a feature of the theme.) The
JavaScript function must be defined in the HTML document that has the SVG map
embedded. This function must accept only four parameters: the theme name, the key
of the feature, and x and y, which specify the coordinates (in pixels) of the point at
which the mouse moves inside a feature on the SVG map. For information about using
JavaScript functions with SVG maps, see Appendix B.

onmouseout is an optional attribute that specifies the name of the JavaScript function
to be called when a user moves the mouse out of a feature of the theme on an SVG
map. The JavaScript function must be defined in the HTML document that has the
SVG map embedded. This function must accept only four parameters: the theme
name, the key of the feature, and x and y, which specify the coordinates (in pixels) of
the point at which the mouse moves out of a feature on the SVG map. For information
about using JavaScript functions with SVG maps, see Appendix B.

workspace_name, workspace_savepoint, workspace_date, and workspace_
date_format are optional attributes related to support for Workspace Manager in
Mapviewer, which is explained in Section 2.8.

fetch_size is an optional attribute that specifies how many rows will be prefetched
into memory. The default value is 100.

timeout is an optional attribute that specifies the number of milliseconds to wait for
the connection to the WMS or WFS server.

3.2.21 themes Element
The <themes> element has the following definition:

<!ELEMENT themes (theme+) >

The <themes> element specifies one or more <theme> elements (described in
Section 3.2.20). If you have specified a base map (basemap attribute of the map_
request element), any themes that you specify in a <themes> element are plotted
after those defined in the base map. If no base map is specified, only the specified
themes are rendered.

Inside this <themes> element there must be one or more <theme> child elements,
which are rendered in the order in which they appear.

3.2.22 theme_modifiers Element
The <theme_modifiers> element has the following definition:

<!ELEMENT theme_modifiers (theme_decorations)? >

Information Request DTD

MapViewer Map Request XML API 3-55

The theme modifiers enable you to override the theme definition on a base map,
without having to edit and change the base map definition. The <theme_
decorations> element has the same attributes as the <theme> element (described in
Section 3.2.20).

The following example overrides the labels_always_on attribute for the theme_
us_airport theme on the base map FORCED_LABELING.

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Override labeling on map definition"
 basemap="FORCED_LABELING"
 datasource="tilsmenv"
 width="500"
 height="375"
 bgcolor="#a6caf0"
 antialiase="true"
 format="PNG_URL">
 <center size="15.0">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-122.4,37.8</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <theme_modifiers>
 <theme_decorations name="theme_us_airport" label_always_on="false"/>
 </theme_modifiers>
</map_request>

3.3 Information Request DTD
In addition to issuing map requests (see Section 3.2) and administrative requests (see
Chapter 7), you can issue information requests to MapViewer. An information request
is an XML request string that you can use to execute SQL queries and obtain the result
as an array of strings or an XML document. The SQL query must be a SELECT
statement and must select only primitive SQL types (for example, not LOB types or
user-defined object types).

The following is the DTD for a MapViewer information request.

<!ELEMENT info_request (#PCDATA) >
<!ATTLIST info_request
 datasource CDATA #REQUIRED
 format (strict | non-strict) "strict"
>

datasource is a required attribute that specifies the data source for which to get the
information.

format is an optional attribute. If it is strict (the default), all rows are formatted
and returned in an XML document. If format is set to non-strict, all rows plus a
column heading list are returned in a comma-delimited text string.

Example 3–24 shows an information request to select the city, 1990 population, and
state abbreviation from the CITIES table, using the connection information in the

Map Response DTD

3-56 Oracle Fusion Middleware User's Guide for Oracle MapViewer

mvdemo data source and returning the information as an XML document
(format="strict").

Example 3–24 MapViewer Information Request

<?xml version="1.0" standalone="yes"?>
<info_request datasource="mvdemo" format="strict">
 SELECT city, pop90 population, state_abrv state FROM cities
</info_request>

Example 3–24 returns an XML document that includes the following:

<?xml version="1.0" encoding="UTF-8"?>
 <ROWSET>
 <ROW num="1">
 <CITY>New York</CITY>
 <POPULATION>7322564</POPULATION>
 <STATE>NY</STATE>
 </ROW>
 <ROW num="2">
 <CITY>Los Angeles</CITY>
 <POPULATION>3485398</POPULATION>
 <STATE>CA</STATE>
 </ROW>
 <ROW num="3">
 <CITY>Chicago</CITY>
 <POPULATION>2783726</POPULATION>
 <STATE>IL</STATE>
 </ROW>
 <ROW num="4">
 <CITY>Houston</CITY>
 <POPULATION>1630553</POPULATION>
 <STATE>TX</STATE>
 </ROW>
 . . .
 </ROWSET>

3.4 Map Response DTD
The following is the DTD for the map response resulting from normal processing of a
map request. (Section 3.5 shows the DTD for the response if there was an exception or
unrecoverable error.)

<!ELEMENT map_response (map_image)>
<!ELEMENT map_image (map_content, box, themes, WMTException)>
<!ELEMENT map_content EMPTY>
<!ATTLIST map_content url CDATA #REQUIRED>
<!ELEMENT WMTException (#PCDATA)>
<!ATTLIST WMTException version CDATA "1.0.0"
 error_code (SUCCESS|FAILURE) #REQUIRED
>

The response includes the URL for retrieving the image, as well as any error
information. When a valid map is generated, its minimum bounding box is also
returned, along with the list of themes that have features within the minimum
bounding rectangle (MBR) that intersects with the bounding box.

Example 3–25 shows a map response.

Geometry DTD (OGC)

MapViewer Map Request XML API 3-57

Example 3–25 Map Response

<?xml version="1.0" encoding="UTF-8" ?>
<map_response>
 <map_image>
 <map_content url="http://map.oracle.com/output/map029763.gif"/>
 <box srsName="default">
 <coordinates>-122.260443,37.531621 -120.345,39.543</coordinates>
 </box>
 <themes>
 <theme name="US_STATES" />
 <theme name="US_HIGHWAYS" />
 </themes>
 <WMTException version="1.0.0" error_code="SUCCESS">
 </WMTException>
 </map_image>
</map_response>

3.5 MapViewer Exception DTD
The following DTD is used by the output XML when an exception or unrecoverable
error is encountered while processing a map request:

<!ELEMENT oms_error (#PCDATA)>

The exception or error message is embedded in this element.

3.6 Geometry DTD (OGC)
MapViewer supports the Geometry DTD as defined in the Open Geospatial
Consortium (OGC) GML v1.0 specification. This specification and other, more recent,
versions are available at the following URL:

http://www.opengeospatial.org/specs/

This specification has the following copyright information:

Copyright © 2000 OGC All Rights Reserved.

This specification includes the following status information, although its current
official status is Deprecated Recommendation Paper:

This document is an OpenGIS® Consortium Recommendation Paper. It is similar to a
proposed recommendation in other organizations. While it reflects a public
statement of the official view of the OGC, it does not have the status of a OGC
Technology Specification. It is anticipated that the position stated in this
document will develop in response to changes in the underlying technology.
Although changes to this document are governed by a comprehensive review
procedure, it is expected that some of these changes may be significant.

The OGC explicitly invites comments on this document. Please send them to
gml.rfc@opengis.org

The following additional legal notice text applies to this specification:

THIS DOCUMENT IS PROVIDED "AS IS," AND COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE;
THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS

Geometry DTD (OGC)

3-58 Oracle Fusion Middleware User's Guide for Oracle MapViewer

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR
IMPLEMENTATION OF THE CONTENTS THEREOF.

The OGC Geometry DTD in this specification is as follows:

<!-- == -->
<!-- G e o g r a p h y -->
<!-- M a r k u p -->
<!-- L a n g u a g e -->
<!-- -->
<!-- (G M L) -->
<!-- -->
<!-- G E O M E T R Y D T D -->
<!-- -->
<!-- Copyright (c) 2000 OGC All Rights Reserved. -->
<!-- == -->

<!-- the coordinate element holds a list of coordinates as parsed character
data. Note that it does not reference a SRS and does not constitute a proper
geometry class. -->
<!ELEMENT coordinates (#PCDATA) >
<!ATTLIST coordinates
 decimal CDATA #IMPLIED
 cs CDATA #IMPLIED
 ts CDATA #IMPLIED >

<!-- the Box element defines an extent using a pair of coordinates and a SRS name.
-->
<!ELEMENT Box (coordinates) >
<!ATTLIST Box
 ID CDATA #IMPLIED
 srsName CDATA #REQUIRED >

<!-- == -->
<!-- G E O M E T R Y C L A S S D e f i n i t i o n s -->
<!-- == -->

<!-- a Point is defined by a single coordinate. -->
<!ELEMENT Point (coordinates) >
<!ATTLIST Point
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!-- a LineString is defined by two or more coordinates, with linear
interoplation between them. -->
<!ELEMENT LineString (coordinates) >
<!ATTLIST LineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >

<!-- a Polygon is defined by an outer boundary and zero or more inner
boundaries. These boundaries are themselves defined by LinerRings. -->
<!ELEMENT Polygon (outerBoundaryIs, innerBoundaryIs*) >
<!ATTLIST Polygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT outerBoundaryIs (LinearRing) >
<!ELEMENT innerBoundaryIs (LinearRing) >

Geometry DTD (OGC)

MapViewer Map Request XML API 3-59

<!-- a LinearRing is defined by four or more coordinates, with linear
interpolation between them. The first and last coordinates must be
coincident. -->
<!ELEMENT LinearRing (coordinates) >
<!ATTLIST LinearRing
 ID CDATA #IMPLIED >

<!-- a MultiPoint is defined by zero or more Points, referenced through a
pointMember element. -->
<!ELEMENT MultiPoint (pointMember+) >
<!ATTLIST MultiPoint
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT pointMember (Point) >

<!-- a MultiLineString is defined by zero or more LineStrings, referenced
through a lineStringMember element. -->
<!ELEMENT MultiLineString (lineStringMember+) >
<!ATTLIST MultiLineString
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT lineStringMember (LineString) >

<!-- a MultiPolygon is defined by zero or more Polygons, referenced through a
polygonMember element. -->
<!ELEMENT MultiPolygon (polygonMember+) >
<!ATTLIST MultiPolygon
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT polygonMember (Polygon) >

<!-- a GeometryCollection is defined by zero or more geometries, referenced
through a geometryMember element. A geometryMember element may be any one of
the geometry classes. -->
<!ENTITY % GeometryClasses "(
 Point | LineString | Polygon |
 MultiPoint | MultiLineString | MultiPolygon |
 GeometryCollection)" >

<!ELEMENT GeometryCollection (geometryMember+) >
<!ATTLIST GeometryCollection
 ID CDATA #IMPLIED
 srsName CDATA #IMPLIED >
<!ELEMENT geometryMember %GeometryClasses; >

<!-- == -->
<!-- G E O M E T R Y P R O P E R T Y D e f i n i t i o n s -->
<!-- == -->

<!-- GML provides an 'endorsed' name to define the extent of a feature. The
extent is defined by a Box element, the name of the property is boundedBy. -->
<!ELEMENT boundedBy (Box) >

<!-- the generic geometryProperty can accept a geometry of any class. -->
<!ELEMENT geometryProperty (%GeometryClasses;) >

<!-- the pointProperty has three descriptive names: centerOf, location and
position. -->
<!ELEMENT pointProperty (Point) >
<!ELEMENT centerOf (Point) >

Geometry DTD (OGC)

3-60 Oracle Fusion Middleware User's Guide for Oracle MapViewer

<!ELEMENT location (Point) >
<!ELEMENT position (Point) >

<!-- the lineStringProperty has two descriptive names: centerLineOf and
edgeOf. -->
<!ELEMENT lineStringProperty (LineString) >
<!ELEMENT centerLineOf (LineString)>
<!ELEMENT edgeOf (LineString)>

<!-- the polygonProperty has two descriptive names: coverage and extentOf. -->
<!ELEMENT polygonProperty (Polygon) >
<!ELEMENT coverage (Polygon)>
<!ELEMENT extentOf (Polygon)>

<!-- the multiPointProperty has three descriptive names: multiCenterOf,
multiLocation and multiPosition. -->
<!ELEMENT multiPointProperty (MultiPoint) >
<!ELEMENT multiCenterOf (MultiPoint) >
<!ELEMENT multiLocation (MultiPoint) >
<!ELEMENT multiPosition (MultiPoint) >

<!-- the multiLineStringProperty has two descriptive names: multiCenterLineOf
and multiEdgeOf. -->
<!ELEMENT multiLineStringProperty (MultiLineString) >
<!ELEMENT multiCenterLineOf (MultiLineString) >
<!ELEMENT multiEdgeOf (MultiLineString) >

<!-- the multiPolygonProperty has two descriptive names: multiCoverage and
multiExtentOf. -->
<!ELEMENT multiPolygonProperty (MultiPolygon) >
<!ELEMENT multiCoverage (MultiPolygon) >
<!ELEMENT multiExtentOf (MultiPolygon) >

<!ELEMENT geometryCollectionProperty (GeometryCollection) >

<!-- == -->
<!-- F E A T U R E M E T A D A T A D e f i n i t i o n s -->
<!-- == -->

<!-- Feature metadata, included in GML Geometry DTD for convenience; name and
description are two 'standard' string properties defined by GML. -->

<!ELEMENT name (#PCDATA)>
<!ELEMENT description (#PCDATA)>

4

MapViewer JavaBean-Based API 4-1

4 MapViewer JavaBean-Based API

This chapter describes the JavaBean-based MapViewer API. This API exposes all
capabilities of MapViewer through a single JavaBean,
oracle.lbs.mapclient.MapViewer. This bean is a lightweight client that handles
all communications with the actual MapViewer service running on the middle tier on
behalf of a user making map requests.

All communications between the bean and the actual MapViewer service follow a
request/response model. Requests are always sent as XML documents to the service.
Depending on the type and nature of a request, the response received by the bean is
either an XML document or some binary data. However, using the MapViewer bean is
easier than manipulating XML documents for forming and sending MapViewer
requests, as well as for extracting information from the responses.

The bean delegates most of map data processing and rendering to the MapViewer
service. All the bean does is formulate user requests into valid MapViewer XML
requests and send them to a MapViewer service for processing.

This chapter contains the following major sections:

■ Section 4.1, "Usage Model for the MapViewer JavaBean-Based API"

■ Section 4.2, "Preparing to Use the MapViewer JavaBean-Based API"

■ Section 4.3, "Using the MapViewer Bean"

4.1 Usage Model for the MapViewer JavaBean-Based API
The MapViewer bean can be created and used in either server-side objects such as
JavaServer Pages (JSP) and servlets, or in client-side objects such as Java applets or
standalone Java applications. The bean is a lightweight class that maintains an active
HTTP connection to the MapViewer service and the current map request and map
response objects. In most cases, you will create only one MapViewer bean and use it
for all subsequent tasks; however, you can create more than one bean and use these
beans simultaneously. For example, you may need to create a Web page where a small
overview map displays the whole world and a large map image displays a more
detailed map of the region that is selected on the overview map. In this case, it is
probably easier to create two MapViewer beans, one dedicated to the smaller
overview map, and the other to the larger detail map.

Figure 4–1 shows some possible usage scenarios for the MapViewer bean.

Usage Model for the MapViewer JavaBean-Based API

4-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Figure 4–1 MapViewer Bean Usage Scenarios

The MapViewer bean can communicate through the HTTP protocol with the
MapViewer service in several usage scenarios, the following of which are shown in
Figure 4–1:

■ In a Java application

■ In a Java applet

■ In a servlet within a Java 2 Enterprise Edition (J2EE) container different from the
J2EE container that contains the MapViewer service

■ In JavaServer Pages (JSP) code within the J2EE container that contains the
MapViewer service

In all usage models, the same JavaBean class is used, and most of its methods apply.
However, some methods work or are useful only in a JSP HTML-based context, and
other methods work or are useful only in an interactive standalone Java application or
applet context (thick clients). For example, consider the following methods of the bean:

■ java.awt.Image getGeneratedMapImage

■ String getGeneratedMapImageURL

Both methods extract the generated map image information from a response received
from a MapViewer service; however, the first method returns the actual binary image
data that is a java.awt.BufferedImage class, and the second method returns an
HTTP URL string to the generated map image that is stored in the host running the
MapViewer service. Clearly, if your application is a JavaServer Page, you should use
the second method, because otherwise the JSP page will not know how to handle the
BufferedImage. However, if you are programming a standalone Java application
where you have a Java panel or window for displaying the map, you can use the first
method to get the actual image and render it inside your panel or window, plus any
other features that you may have created locally and want to render on top of the map.

The set of methods that are only applicable in the thick client context, which are
designed to achieve optimal performance for such clients, are described in more detail
in Section 4.3.10.

MapViewer
Bean

MapViewer
Beans

MapViewer
Bean

MapViewer
Bean

Java Applications

Applets

Servlet

J2EE Container

JSP

MapViewer Service

J2EE Container

HTTP

HTTP

HTTP

HTTP

Using the MapViewer Bean

MapViewer JavaBean-Based API 4-3

4.2 Preparing to Use the MapViewer JavaBean-Based API
Before you can use the MapViewer JavaBean, the MapViewer mvclient.jar library
must be in a directory that is included in the CLASSPATH definition. After you
deploy the mapviewer.ear file in OC4J or Oracle Fusion Middleware, the
mvclient.jar file is located in the $MAPVIEWER/web/WEB-INF/lib directory.
($MAPVIEWER is the base directory that the mapviewer.ear file is unpacked into by
OC4J. In a typical OC4J installation, if you placed the mapviewer.ear file in $OC4J_
HOME/j2ee/home/applications, the base directory for unpacked MapViewer is
$OC4J_HOME/j2ee/home/applications/mapviewer.)

Before you use the MapViewer JavaBean, you should examine the Javadoc-generated
API documentation and try the JSP demo:

■ Javadoc documentation for the MapViewer bean API is available at a URL with
the following format:

http://host:port/mapviewer/mapclient

In this format, host and port indicate where OC4J or Oracle Fusion Middleware
listens for incoming requests.

■ A demo supplied with MapViewer shows how to use the bean. After you have set
up the MapViewer demo data set (which can be downloaded from the Oracle
Technology Network) by importing it into a database and running all necessary
scripts, you can try the JSP demo. The URL for the JSP demo has the following
format:

http://host:port/mapviewer/demo/mapinit.jsp

In this format, host and port indicate where OC4J or Oracle Fusion Middleware
listens for incoming requests. This JSP page confirms the MapViewer service URL
and then proceeds to the real demo page, map.jsp.

4.3 Using the MapViewer Bean
To use the MapViewer bean, you must create the bean (see Section 4.3.1), after which
you can invoke methods to do the following kinds of operations:

■ Set up parameters of the current map request (see Section 4.3.2)

■ Add themes or features to the current map request (see Section 4.3.3)

■ Add dynamically defined styles to a map request (see Section 4.3.4)

■ Manipulate the themes in the current map request (see Section 4.3.5)

■ Send a request to the MapViewer service (see Section 4.3.6)

■ Extract information from the current map response (see Section 4.3.7)

■ Obtain information about data sources (see Section 4.3.8)

■ Query nonspatial attributes in the current map window (see Section 4.3.9)

■ Use optimal methods for thick clients (see Section 4.3.10)

The sections about methods for kinds of operations provide introductory information
about what the bean can do. For detailed descriptions of each method, including its
parameters and return type, see the Javadoc-generated API documentation (described
in Section 4.2).

Using the MapViewer Bean

4-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

4.3.1 Creating the MapViewer Bean
The first step in any planned use of the MapViewer bean is to create the bean, as
shown in the following example:

import oracle.lbs.mapclient.MapViewer;
MapViewer mv = new MapViewer("http://my_corp.com:8888/mapviewer/omserver");

The only parameter to the constructor is a URL to an actual MapViewer service.
Unless you change it to something else using setServiceURL, the MapViewer
service at this URL will receive all subsequent requests from this bean. When a
MapViewer bean is created, it contains an empty current map request. There are a few
parameters in the current request that are initialized with default values, such as the
width and height of the map image and the background color for maps. These default
values are explained in the XML API element and attribute descriptions in Chapter 3.

4.3.2 Setting Up Parameters of the Current Map Request
As explained in Chapter 3, a map request can have many parameters that affect the
final look of the generated map image. When you use the MapViewer JavaBean, such
parameters can be set through a group of methods whose names start with set. Many
of these parameters have a corresponding method that starts with get. For example,
setAntiAliasing sets antialiasing on or off, and getAntiAliasing returns the
current antialiasing setting.

The methods for setting parameters of the current map request include the following:

■ setAntiAliasing(boolean aa) specifies whether or not the map should be
rendered using the antialiasing technique.

■ setBackgroundColor(java.awt.Color bg) sets the background color for
the map to be generated.

■ setBackgroundImageURL(java.lang.String bgImgUrl) sets the URL for
the background image to be rendered in the map.

■ setBaseMapName(java.lang.String name) sets the name of the base map
to be rendered before any explicitly added themes.

■ setBoundingThemes(String[] themeNames, double borderMargin,
boolean preserveAspectRatio) sets the bounding themes for the current
map request. Any previous center point and box settings will be cleared as a result
of calling this method.

■ setBox(double xmin, double ymin, double xmax, double ymax)
sets the map query window box in the data coordinate space. Any previous center
point and size settings will be lost as a result of calling this method.

■ setCenter(double cx, double cy) sets the center point for this map
request. The coordinates must be in the user data space.

■ setCenterAndSize(double cx, double cy, double size) sets the map
center and size for the map to be generated. All data must be in the user data
space.

■ setDataSourceName(java.lang.String name) sets the name of the data
source to be used when loading data for the map.

■ setDefaultStyleForCenter(java.lang.String defRenderStyleName,
java.lang.String defLabelStyleName, java.lang.String
defLabel, double[] defRadii) sets the default styling and labeling
information for the center (point) of the map. Each subsequent map generated will

Using the MapViewer Bean

MapViewer JavaBean-Based API 4-5

have its center point rendered and optionally labeled with circles of the specified
radii.

■ setDeviceSize(java.awt.Dimension dsz) sets the image dimension of the
map to be generated.

■ setFullExtent() tells the MapViewer server not to impose any center and size
restriction for the next map request. This effectively removes the current map
center and size settings. The resulting map will be automatically centered at the
full extent of all features being displayed.

■ setImageFormat(int f) sets the image format that MapViewer should use
when generating the map. For JSP pages, you should always set it to FORMAT_
PNG_URL or FORMAT_GIF_URL.

■ setImageScaling(boolean is) specifies whether images in an image theme
should automatically be rescaled to fit the current query window. The default is
TRUE. If you specify FALSE, the images will be rendered without any scaling by
MapViewer; however, the original query window may be slightly modified to
allow other (vector) themes to overlay properly with the images. In all cases, the
map center is not changed.

■ setMapLegend(java.lang.String legendSpec) sets the map legend (in
XML format) to be plotted with current map. The legend must be specified in the
legendSpec parameter, in the format for the <legend> element that is
documented in Section 3.2.11.

■ setMapLegend(java.lang.String fill, java.lang.String
fillopacity, java.lang.String stroke, java.lang.String
profile, java.lang.String position, java.lang.String
fontFamily, java.lang.String[][][] legenddata) sets the map
request legend to be plotted with current map. The legenddata attribute
contains the legend items, and its structure is String [x][y][z]
legenddata, where x is the number of legend columns, y is the number of
column items, and z is the legend attributes (index 0 = legend text, index 1 = style
name, index 2 = is title or not, index 3 = tab, index 4 = is separator or not).

■ setMapLegend(java.lang.String fill, java.lang.String
fillopacity, java.lang.String stroke, java.lang.String
profile, java.lang.String position, java.lang.String[][][]
legenddata) is the same as the preceding method, but without the fontFamily
attribute.

■ setMapRequestSRID(int d) sets the map request output SRID, which must
match an SRID value in the MDSYS.CS_SRS table. Themes whose SRID value is
different from the map request SRID will be automatically converted to the output
SRID if the theme SRID is not null or not equal to 0. If no map request SRID is
defined (equal to zero), MapViewer will use the theme’s SRID as reference, but no
transformation will be performed if the themes have different SRID values.

■ setMapResultFileName(String mapFile) sets the name of the resulting
map image file on the server side. If the name is set to null (the default),
MapViewer will generate map image files based on the prefix omsmap and a
counter value. You do not need to specify the extension (.gif or .png) when
specifying a custom map file name.

■ setMapTitle(java.lang.String title) sets the map title for the map to be
generated.

■ setServiceURL(java.lang.String url) sets the MapViewer service URL.

Using the MapViewer Bean

4-6 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ setSize(double size) sets the height (size) in the user data space for the map
to be generated.

■ setShowSVGNavBar(boolean s) specifies whether or not to show the built-in
SVG navigation bar. The default value is TRUE (that is, show the navigation bar).

■ setSVGOnClick(java.lang.String onClick) sets the onClick function
for an SVG map. The onClick function is a JavaScript function defined in the
Web page in which the SVG map is embedded. The onClick function is called
whenever the SVG map is clicked if both theme feature selection and window
selection are disabled. For information about using JavaScript functions with SVG
maps, see Appendix B.

■ setSVGShowInfo(boolean info) specifies whether or not to display hidden
information when the mouse moves over features for which hidden information is
provided. If its value is TRUE (the default), hidden information is displayed when
the mouse moves over such features; if it is set to FALSE, hidden information is
not displayed when the mouse moves over such features. Regardless of the value,
however, hidden information is always rendered in an SVG map; this method
only controls whether hidden information can be displayed.

■ setSVGZoomFactor(double zfactor) sets the zoom factor for an SVG map.
The zoom factor is the number by which to multiply the current zoom ratio for
each integer increment (a zoomin operation) in the zoom level. The inverse of the
zoom factor value is used for each integer decrement (a zoomout operation) in the
zoom level. For example, if the zfactor value is 2 (the default), zooming in from
zoom level 4 to 5 will enlarge the detail by two; for example, if 1 inch of the map at
zoom level 4 represents 10 miles, 1 inch of the map at zoom level 5 will represent 5
miles. The zoom ratio refers to the relative scale of the SVG map, which in its
original size (zoom level 0) has a zoom ratio of 1.

■ setSVGZoomLevels(int zlevels) sets the number of zoom levels for an SVG
map.

■ setSVGZoomRatio(double s) sets the zoom factor to be used when an SVG
map is initially loaded. The default value is 1, which is the original map size
(zoom level 0). Higher zoom ratio values show the map zoomed in, and lower
values show the map zoomed out.

■ setWebProxy(java.lang.String proxyHost, java.lang.String
proxyPort) sets the Web proxy to be used when connecting to the MapViewer
service. This is needed only if there is a firewall between the Web service and this
bean.

You can remove the map legend from the current map request by calling the
deleteMapLegend method.

4.3.3 Adding Themes or Features to the Current Map Request
Besides specifying a base map to be included in a map request, you can add themes or
individual point and linear features, such as a point of interest or a dynamically
generated route, to the current map request. The themes can be predefined themes
whose definitions are stored in the database, or dynamic themes where you supply the
actual query string when you add the theme to the current request.

There are several kinds of dynamic themes: to retrieve geometric data (JDBC theme),
to retrieve image data (image theme), to retrieve GeoRaster data (GeoRaster theme), to
retrieve network data (network theme), and to retrieve topology data (topology
theme). For dynamic themes and features, you must explicitly specify the styles you

Using the MapViewer Bean

MapViewer JavaBean-Based API 4-7

want to be used when rendering them. Being able to add dynamic themes and features
gives you flexibility in adapting to application development needs.

The methods for adding themes or features to the current map request have names
that start with add, and they include the following:

■ addGeoRasterTheme and its variants add GeoRaster data to the current map
request. In some cases you supply the query string to retrieve the raster data; in
other cases you supply the necessary GeoRaster information to retrieve a specific
image. (Section 2.3.4 explains GeoRaster themes.)

■ addImageTheme and its variants add an image theme, for which you must
supply the query string for retrieving the image data to be rendered as part of the
map. (Section 2.3.3 explains image themes.)

■ addJDBCTheme and its variants add a JDBC theme, for which you must supply
the query string for retrieving the geometric data. (Section 2.3.2 explains JDBC
themes.)

■ addLinearFeature and its variants add a single linear feature (line string) to the
current map request. You must specify a rendering style. You can specify the
labeling text and text style for drawing the label, and you can also specify if the
label will always be present regardless of any overlapping. The coordinates must
be in the user data space. There is no limit to the number of linear features that
you can add.

■ addLinksWithinCost adds a network theme to the current map request; the
theme will be a result of the within-cost analysis on network data. The within-cost
analysis finds all nodes that are within a specified cost, and generates the shortest
path to each node.

■ addNetworkLinks adds network links to the current map request as a network
theme, for which you must supply the rendering styles.

■ addNetworkNodes adds the network nodes to the current map request as a
network theme, for which you must supply the rendering styles.

■ addNetworkPaths adds the network paths to the current map request as a
network theme, for which you must supply the rendering styles.

■ addNetworkTheme and its variants add the network links, nodes, and paths to
the current map request as a network theme, for which you must supply the
rendering styles. (Section 2.3.5 explains network themes.)

■ addPointFeature and its variants add a single feature that is a point to the
current map request. This point will be rendered using the supplied rendering
style on the map after all themes have been rendered. You can optionally supply a
labeling text to be drawn alongside the point feature, and you can specify if the
label will always be present regardless of any overlapping. You can also supply an
array of radii (the units are always in meters), in which case a series of circles will
be drawn centering on the point. The coordinates x and y must be in the user data
space. You can assign attribute values to the point feature for use with an
advanced style. For oriented point features, you can specify orientation
parameters. There is no limit to the number of point features you can add.

■ addPredefinedTheme and its variants add a predefined theme to the current
map request.

■ addShortestPath and its variants add a network theme to the current map
request; the theme will be a result of the shortest-path analysis on a network data.
You must supply the necessary parameters for the shortest-path algorithm.

Using the MapViewer Bean

4-8 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ addThemesFromBaseMap(java.lang.String basemap) adds all predefined
themes in the specified base map to the current map request. This has an
advantage over setBaseMapName, in that you can manipulate the themes for the
current map request, as explained in Section 4.3.5.

■ addTopologyDebugTheme and its variants add the topology data structure as a
topology debug-mode theme to the current map request. You must supply the
rendering styles for the edges, nodes, and faces. (Section 2.3.6 explains topology
themes, including the debug mode.)

■ addTopologyTheme adds the topology features as a topology theme to the
current map request. You must supply the query string. (Section 2.3.6 explains
topology themes.)

You can remove all added point and linear features by calling the
removeAllPointFeatures and removeAllLinearFeatures methods,
respectively.

4.3.4 Adding Dynamically Defined Styles to a Map Request
Besides the styles stored on the USER_SDO_STYLES view, you can also add
dynamically defined (temporary) styles to a map request. These dynamically defined
styles provide temporary information for the map request, and they should always be
added to the map request before it is sent to the server.

The methods for adding dynamically defined styles to the map request have names
that start with add. Effective with release 11g, you can add any kind of dynamically
defined style to a map request with the single method addStyle, which has the
following definition:

public void addStyle(java.lang.String name,
 StyleModel tempStyle)

In the preceding definition, StyleModel is an interface defined in the Java client
package oracle.mapviewer.share.style. This package and the
oracle.mapviewer.share.stylex package also contain concrete style model
classes that represent the definitions of all types of styles supported by MapViewer.
See the Javadoc reference documentation for information about these packages.

The following code excerpt shows how to use the addStyle method and the
ColorStyleModel class to add a dynamic color style to a map request:

import oracle.lbs.mapclient.*;
import oracle.mapviewer.share.*
…
ColorStyleModel csm = new ColorStyleModel();
csm.setFillColor(new Color(255, 0, 0, 100));
csm.setStrokeColor(new Color(0, 0, 255, 100));
mapViewer.addStyle("my_color", csm);

As an alternative to using the addStyle method, you can use the following methods
for adding specific types of styles:

■ addBucketStyle(java.lang.String name, java.lang.String low,
java.lang.String high, int nbuckets, java.lang.String
[]styleName) adds a bucket style with equal intervals, for which you specify
the range values, the number of buckets, and the style name for each bucket.

■ addCollectionBucketStyle(java.lang.String name,
java.lang.String []label, java.lang.String []styleName,

Using the MapViewer Bean

MapViewer JavaBean-Based API 4-9

java.lang.String [][]value) adds a collection bucket style, for which you
specify the label, the style name, and the values for each bucket.

■ addColorSchemeStyle(java.lang.String name, java.lang.String
baseColor, java.lang.String strokeColor, java.lang.String
low, java.lang.String high, int nbuckets) adds a color scheme style
with equal intervals, for which you specify the color parameters, the range values,
and the number of buckets.

■ addColorSchemeStyle(java.lang.String name, java.lang.String
baseColor, java.lang.String strokeColor, java.lang.String
[]label, java.lang.String []low, java.lang.String []high) adds
a color scheme style, for which you specify the color parameters and the range
values.

■ addColorStyle(java.lang.String name, java.lang.String stroke,
java.lang.String fill, int strokeOpacity, int fillOpacity)
adds a color style with the specified color parameters.

■ addImageAreaStyleFromURL(java.lang.String styleName,
java.lang.String imgURL) adds a GIF or JPEG image as an area symbol to
the MapViewer client.

■ addImageAreaStyleFromURL(java.lang.String styleName,
java.lang.String imgURL, java.lang.String lineStyle) adds a GIF
or JPEG image as an area symbol to the MapViewer client. You can also specify
parameters for stroking the boundary of the area being filled.

■ addImageMarkerStyleFromURL(java.lang.String styleName,
java.lang.String imgURL, java.lang.String strokeColor, float
strokeWidth, int strokeOpacity) adds a GIF image as a marker symbol to
the MapViewer client.

■ addImageMarkerStyleFromURL(java.lang.String styleName,
java.lang.String imgURL) adds a GIF image as a marker symbol to the
MapViewer client. You can also specify parameters for the desired width and
height of the image when applied to features on a map, as well as the font
properties of any text label that will go inside or on top of the marker.

■ addImageMarkerStyleFromURL(java.lang.String styleName,
java.lang.String imgURL) adds a GIF image as a marker symbol to the
MapViewer client.

■ addImageMarkerStyleFromURL(java.lang.String styleName,
java.lang.String imgURL, int desiredWidth, int desiredHeight,
java.lang.String fontName, int fontSize, java.lang.String
fontStyle, java.lang.String fontWeight, java.lang.String
fontColor) adds a GIF image as a marker symbol to the MapViewer client. You
can also specify parameters for the desired width and height of the image when
applied to features on a map, as well as the font properties of any text label that
will go inside or on top of the marker.

■ addLineStyle(java.lang.String name, java.lang.String fill,
java.lang.String strokeWidth, boolean hasBase,
java.lang.String baseFill, java.lang.String baseStroke,
java.lang.String baseDash, boolean hasParallel,
java.lang.String fillParallel, java.lang.String
strokeParallel, boolean hasHashMark, java.lang.String
fillHash, java.lang.String dashHash) adds a line style to the
MapViewer client.

Using the MapViewer Bean

4-10 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ addLineStyle(java.lang.String name, java.lang.String fill,
java.lang.String strokeWidth, boolean hasBase,
java.lang.String baseFill, java.lang.String baseStroke,
java.lang.String baseDash, boolean hasParallel,
java.lang.String fillParallel, java.lang.String
strokeParallel, boolean hasHashMark, java.lang.String
fillHash, java.lang.String dashHash, java.lang.String
measureMarker, double measurePosition, int measureSize) adds a
line style to the MapViewer client.

■ addMarkerStyle(java.lang.String name, int mktype,
java.lang.String strokeColor, java.lang.String fillColor,
java.lang.String markerWidth, java.lang.String markerHeight,
java.lang.String coords, java.lang.String radius) adds a vector
marker style with the given parameters. The available vector marker style types
are MARKER_POLYGON, MARKER_POLYLINE, MARKER_CIRCLE, and MARKER_
RECT.

■ addTextStyle(java.lang.String name, java.lang.String style,
java.lang.String family, java.lang.String size,
java.lang.String weight, java.lang.String fill) adds a text style
with the specified parameters.

■ addVariableMarkerStyle(java.lang.String name,
java.lang.String []label, java.lang.String baseMarker, int
startSize,int increment, java.lang.String []low,
java.lang.String []high) adds a variable marker style, for which you
specify the parameters for the base marker, and also the label and the values for
each bucket.

You can remove a dynamically defined style from the current map request by calling
the deleteStyle(java.lang.String name) method, or you can remove all
dynamically defined styles from the current map request by calling the
removeAllDynamicStyles method.

4.3.5 Manipulating Themes in the Current Map Request
After you add themes using any of the methods that start with add, you can
manipulate them, performing such operations as listing their names, moving them up
or down in rendering order for the current request, and even disabling themes and
enabling themes that had been disabled. However, you cannot manipulate themes that
are implicitly included when you set a base map (using the setBaseMapName
method), because the list of themes in the base map is not actually included until the
MapViewer service processes the request.

The methods for manipulating themes in the current map request include the
following:

■ deleteAllThemes deletes all added themes from the current map request.

■ deleteTheme(java.lang.String name) deletes an explicitly added theme
from the current map request.

■ enableThemes(java.lang.String[] themes) enables all themes whose
names appear in the supplied list.

■ getActiveTheme(double currentScale) gets the name of the active theme,
that is, the top theme on the current display map.

■ getEnabledThemes gets a list of all themes that are currently enabled.

Using the MapViewer Bean

MapViewer JavaBean-Based API 4-11

■ getThemeEnabled(java.land.String themeName) determines whether or
not a specified theme is currently enabled.

■ getThemeNames returns an ordered list of names of themes that have been
explicitly added to the current map request.

■ getThemePosition(java.lang.String name) returns the position in the
rendering sequence of an explicitly added theme.

■ getThemeVisibleInSVG(java.lang.String name) determines whether or
not a specified theme is currently visible in an SVG map. (If the theme is not
visible, it is hidden.)

■ hasThemes checks to see if the current map request has any explicitly added
themes. For example, if you have only set the name of the base map in the current
request, but have not added any other theme through one of the add*Theme
methods, this method returns FALSE.

■ moveThemeDown(int index) moves a theme down one position in the list of
themes to be rendered, so that it is rendered later.

■ moveThemeUp(int index) moves a theme up one position in the list of themes
to be rendered, so that it is rendered sooner.

■ setAllThemesEnabled(boolean v) sets all themes to be enabled or disabled.

■ setGeoRasterThemePolygonMask(java.lang.String name,double
[]coords) sets the polygon mask to be applied on the GeoRaster theme. The
GeoRaster area outside the polygon mask will be transparent. The coordinates are
defined as x1,y1,x2,y2, The mask coordinates must be in the data coordinate
space.

■ setLabelAlwaysOn(boolean labelAlwaysOn, java.lang.String
name) controls whether or not MapViewer labels all features in a theme even if
two or more labels will overlap in the display of a theme. (MapViewer always tries
to avoid overlapping labels.) If labelAlwaysOn is TRUE, MapViewer displays the
labels for all features even if two or more labels overlap. If labelAlwaysOn is
FALSE, when it is impossible to avoid overlapping labels, MapViewer disables the
display of one or more labels so that no overlapping occurs.

■ setNetworkThemeLabels(java.lang.String name, java.lang.String
linkLabelStyle, java.lang.String linkLabelColumn,
java.lang.String nodeLabelStyle, java.lang.String
nodeLabelColumn, java.lang.String pathLabelStyle,
java.lang.String pathLabelColumn) sets network theme label parameters
for links, nodes, and paths. The attribute column name must be an existing
attribute of the link, node, and path tables.

■ setThemeAlpha(java.lang.String themeName, float alpha) sets the
transparency value for an image theme.

■ setThemeEnabled(boolean v, java.lang.String themeName) sets a
specified theme to be enabled or disabled in the current map request.

■ setThemeFastUnpickle(java.lang.String name, boolean
noUnpickler) specifies whether to use the MapViewer fast unpickling
algorithm (TRUE, the default) or the generic JDBC conversion algorithm (FALSE)
to convert SDO_GEOMETRY objects fetched from the database into a Java object
accessible to MapViewer. The MapViewer fast unpickling algorithm improves
performance, but occasionally the coordinates may lose some precision (around
0.00000005), which can be significant in applications where all precision digits of
each coordinate must be kept. The generic JDBC conversion algorithm is slower

Using the MapViewer Bean

4-12 Oracle Fusion Middleware User's Guide for Oracle MapViewer

than the MapViewer fast unpickling process, but there is never any loss of
precision.

■ setThemeOnClickInSVG (java.lang.String theme,
java.lang.String onClickFunction) sets the theme’s onClick function
for an SVG map. The onClick function is a JavaScript function defined in the
Web page in which the SVG map is embedded. The onClick function is called
whenever the SVG map is clicked if both theme feature selection and window
selection are disabled. For information about using JavaScript functions with SVG
maps, see Appendix B.

■ setThemeScale(java.lang.String name, double minScale, double
maxScale) sets the minimum and maximum scale values for displaying a theme.

■ setThemeSelectableInSVG (java.lang.String theme, boolean sel)
sets the theme to be selectable (TRUE) or not selectable (FALSE) in an SVG map. If
the theme is set to selectable, any feature of the theme can be selected in the SVG
map by clicking on it. If the feature is selected, its color is changed and its ID (its
rowid by default) is recorded. You can get a list of the ID values of all selected
features by calling the JavaScript function getSelectedIdList() defined in the
SVG map. For information about using JavaScript functions with SVG maps, see
Appendix B.

■ setThemeUnitAndResolution(java.lang.String themeName,
java.lang.String unit, double resolution) sets the unit and
resolution values for an image theme.

■ setThemeVisible(java.lang.String name, boolean vis) sets the
theme to be visible (TRUE) or hidden (FALSE) in an SVG map. If the theme is set
to be hidden, the theme will be still rendered, but will be invisible.

4.3.6 Sending a Request to the MapViewer Service
As an application developer, you typically issue a new map request as a result of
certain user input (such as a mouse click on the currently displayed map) or after you
have modified some aspect of the map request (such as setting a new background
color). In fact, you can issue a map request any time you want, as long as you do not
overwhelm the middle-tier MapViewer service with too many rapid requests from the
MapViewer bean or beans. The MapViewer service tries to process requests in the
order in which they arrive; if you send a second request before receiving the response
from the first one, MapViewer continues to process the first request completely before
starting to process the second request.

Any modifications to the current map request, such as changing to a new background
color or moving a theme down in the rendering sequence, do not take effect in the
map display until you send the map request, at which time the MapViewer service
actually receives the request and processes it.

The methods for sending a map request to the MapViewer service include the
following:

■ run sends the current map request to the MapViewer service, and obtains a map
response as sent back by the MapViewer service.

■ pan(int x, int y) pans to the specified device point. Each coordinate is in
the screen or display unit, in this case, pixel.

■ zoomIn(double factor) zooms in on the map without changing the other
map request parameters.

Using the MapViewer Bean

MapViewer JavaBean-Based API 4-13

■ zoomIn(int x, int y, double factor) zooms in on the specified device
point.

■ zoomIn(int x1, int y1, int x2, int y2) zooms in on the specified
device rectangle.

■ zoomOut(double factor) zooms out on the current map without changing the
other map request parameters.

■ zoomOut(int x, int y, double factor) zooms out and recenters the
current map.

Each of these methods assembles a single XML map request document based on all
properties of the current map request, and then sends it to the MapViewer service.
After the MapViewer bean receives the response from the MapViewer service, the
bean does any necessary postprocessing and makes the response ready for your use.

As an alternative to using these methods, you can formulate an XML request string
outside the bean, and then use the sendXMLRequest(java.lang.String req)
method to send the request to the MapViewer service. However, if you use this
method, you are responsible for receiving and unpacking the response using the
getXMLResponse method, and for parsing and interpreting the response string
yourself. The state of the bean remains unchanged, because the methods are only
making use of the bean’s capability to open an HTTP connection to send and receive
documents over the connection.

All methods described in this section throw an exception if any unrecoverable error
occurs during the transmission of the request or response, or in the MapViewer service
during processing. You are responsible for taking care of such exceptions in any way
you consider appropriate, such as by trying the request again or by reporting the
problem directly to the user.

4.3.7 Extracting Information from the Current Map Response
You can extract information, such as the generated map image or the URL for the
image, from the current map response. The methods for extracting information from
the map response include the following:

■ getGeneratedMapImage returns the actual map image data contained in the
response from the MapViewer service. You must have set the image format to
FORMAT_RAW_COMPRESSED using the setImageFormat method. The
getGeneratedMapImage method is primarily used in thick clients, although you
may also use it in a JavaServer Page or a servlet (for example, to save the image in
a format that is not supported by MapViewer).

■ getGeneratedMapImageURL returns the URL to the currently generated map
image in the application server. You must have set the image format to FORMAT_
PNG_URL or FORMAT_GIF_URL using the setImageFormat method.

■ getMapMBR returns the MBR (minimum bounding rectangle) for the currently
generated map, in the user's data space.

■ getMapResponseString returns the last map response in XML format.

4.3.8 Obtaining Information About Data Sources
The MapViewer bean has methods that you can use to obtain information about data
sources. These methods include the following:

■ dataSourceExists(java.lang.String dsrc) checks if a given data source
exists in (that is, is known to) the MapViewer service.

Using the MapViewer Bean

4-14 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ getDataSources() lists the currently available data sources in the server. This
method lists only the names and no other details about each data source (such as
database host or user login information).

4.3.9 Querying Nonspatial Attributes in the Current Map Window
It is often necessary to query nonspatial attributes that are associated with the spatial
features being displayed in the current map image. For example, assume that you just
issued a map request to draw a map of all customer locations within a certain county
or postal code. The next logical step is to find more information about each customer
being displayed in the resulting map image. In the JSP or HTML environment, because
you get only an image back from the MapViewer service, you will need another
round-trip to the service to fetch the nonspatial information requested by the user.
This section describes a set of methods that can help you do just that. (You can,
however, obtain both the nonspatial attribute values of a certain theme and the
resulting map image in a single request when the bean is used in a standalone Java
application or applet environment, as described in Section 4.3.10.)

A typical situation is that the user clicks on a feature on the displayed map and then
wants to find out more (nonspatial attributes) about the feature. This action can be
essentially implemented using a query with the desired nonspatial attributes in its
SELECT list, and a spatial filter as its WHERE clause. The spatial filter is an Oracle
Spatial SQL operator that checks if the geometries in a table column (the column of
type SDO_GEOMETRY in the customer table) spatially interact with a given target
geometry (in this case, the user’s mouse-click point). The spatial filter in the WHERE
clause of the query selects and returns only the nonspatial attributes associated with
the geometries that are being clicked on by the user.

You will need to call an Oracle Spatial operator to perform the filtering; however, you
can use the MapViewer bean-based API to obtain information, and to preassemble the
spatial filter string to be appended to the WHERE clause of your query. The
identify method simplifies the task even further.

The methods for querying nonspatial attributes in the current map window include
the following:

■ doQuery and variants execute a supplied SQL query and return an array of
strings representing the result set. These are convenient methods to issue your
own query without manually opening a JDBC connection to the database from the
bean.

■ doQueryInMapWindow and variants are extensions of doQuery and its variants.
They automatically subject the user-supplied query to a spatial filtering process
using the current map window.

■ getSpatialFilter(java.lang.String spatialColumn, int srid,
boolean pre9i) returns a spatial filter string that can be used as a WHERE
clause condition in formulating your own queries in the current map window
context. The spatial filter evaluates to TRUE for any geometries that are being
displayed in the entire map window. You can use this method to obtain
information about every spatial feature of a theme that is being displayed.

■ getSpatialFilter(java.lang.String spatialColumn, int srid,
double xl, double yl, double xh, double yh, boolean pre9i)
returns a spatial filter string that can be used as a query condition in formulating
your queries in the given window. This filter evaluates to TRUE for all geometries
that interact with the supplied (xl,yl, xh,yh) data window. The window is
not in device or screen coordinate space, but in the user’s data space; therefore,
you must first call the getUserPoint method to convert the user’s mouse-click

Using the MapViewer Bean

MapViewer JavaBean-Based API 4-15

point to a point in the user data space before using the getSpatialFilter
method.

■ getUserPoint(int x, int y) returns the user data space point
corresponding to the mouse click.

■ getUserPoint(int x, int y, java.lang.String dataSource, int
outSRID) returns the user data space point corresponding to the mouse click,
using the specified coordinate system (SRID value).

■ getUserPoint(int x, int y, java.lang.String dataSource,
java.lang.String themeName) returns the user data space point
corresponding to the mouse click, using the coordinate system (SRID value)
associated with the specified theme.

■ getWhereClauseForAnyInteract(java.lang.String spatialColumn,
int srid, double x, double y) returns geometries that have any
interaction with a specified point in the user's data space. This provides a WHERE
clause string that will use a more precise spatial filtering method than the one
provided by the getSpatialFilter method.

■ getWhereClauseForAnyInteract(java.lang.String spatialColumn,
int srid, double xl, double yl, double xh, double yh) returns
the WHERE clause that can be used to find geometries that have any interaction
with the specified user space window. It is similar to the getSpatialFilter
method, but uses a more precise version of the Oracle Spatial filtering method.

■ identify and variants provide a convenient method for identifying nonspatial
attributes. This is desirable if you do not need more flexibility and control over
how a nonspatial attribute query should be formulated. As with the doQuery
methods, all identify methods return a double String array that contains the
result set of the query.

4.3.10 Using Optimal Methods for Thick Clients
When you use the MapViewer bean in a JavaServer Page in an HTML file, a second
round-trip to the MapViewer service is needed to obtain nonspatial attributes of
features being displayed. It is also true that with a JavaServer Page in an HTML file,
even if most themes remain unchanged from one map request to the next (such as
when zooming in to the center of a map), all themes must still be reprocessed each
time the MapViewer service processes the page, which causes the data for each theme
to be retrieved again from the database. (This is mainly due to the stateless nature of
the MapViewer service and the insufficient mechanism provided in the JSP context for
handling user interaction, which must be based on the request/response model.)

However, when you are working in a thick client environment, such as with J2SE (Java
2 Platform Standard Edition) applications and applets, you can reduce the processing
and bandwidth overhead when using the bean. This is primarily because in such
environments you have greater control of how content (including the map) should be
displayed, you can better respond to the user’s interaction, and you can devote more
resources to maintaining the states on the client side.

A key optimization available only to the thick client context is live features. Basically,
a live feature is a spatial feature that originates from the MapViewer service but exists
in the thick client. Each live feature contains the actual shape representing the
geometry data, and a set of nonspatial attributes that the user might be interested in.
To obtain live features, a thick client must set its parent theme to be clickable. When a
map request is sent to the MapViewer service with a clickable theme, MapViewer does
not attempt to render features for that theme in the resulting map. Rather, the set of

Using the MapViewer Bean

4-16 Oracle Fusion Middleware User's Guide for Oracle MapViewer

features that would have been drawn as part of the map is returned to the requesting
client as an array of live feature objects. The rest of the map is still rendered and
transmitted as a single image to the client. After the client has received both the live
features and the base image, it must render the live features on top of the
accompanying map image, using one of the methods described later in this section.

One benefit of using live features is that the thick client will not need to issue a request
for the clickable theme every time a map request is sent. For example, if the request is
to zoom in to the current map, the client can determine for each live feature if it should
be displayed in the zoomed-in map image. Another, and probably more significant,
advantage is that the nonspatial attributes for all features displayed in the map are
now readily available to the user. For example, as the user moves the mouse over a
range of features on the map, the thick client can immediately get the corresponding
nonspatial attributes and display them in a pop-up window that follows the mouse
trail. No round-trip to the MapViewer service is needed for this type of action, and the
feedback to the user is more responsive.

The methods that are optimal for thick clients include the following:

■ drawLiveFeatures(java.awt.Graphics2D g2, java.awt.Color
stroke, java.awt.Color fill, double pointRadius, double
strokeWidth) draws all live features that are returned to this client from
MapViewer.

■ getLiveFeatureAttrs(int x, int y, int tol) gets the nonspatial
attributes of the feature being clicked on by the user.

■ getNumLiveFeatures returns the number of live features currently available.

■ hasLiveFeatures checks if there are any live (clickable) features.

■ highlightFeatures and variants highlight all live features that are intersecting
the user-specified rectangle. These methods also let you specify the style for
highlighting features.

■ isClickable(java.lang.String themeName) checks if the specified theme
is clickable (that is, if users can click on the theme to get its attributes).

■ setClickable(boolean v, java.lang.String themeName) sets the
theme clickable (so that its features will be available to the client as live features
that users can click on and get attributes of).

To obtain a set of features and keep them live at the thick client, you must first call
setClickable to set the theme whose features you want to be live. Then, after you
issue the current map request, the bean processes the response from the MapViewer
service, which (if it succeeded) contains both a base map image and an array of
LiveFeature instances. You can then call getGeneratedMapImage to get and draw
the base image, and use drawLiveFeatures to render the set of live features on top
of the base map. If the user clicks or moves the mouse over a certain position on the
map, you can use the highlightFeatures method to highlight the touched features
on the map. You can also use the getLiveFeatureAttrs method to obtain the
associated nonspatial attributes of the features being highlighted. You do not have
direct access to the LiveFeature instances themselves.

The behavior of calling the methods described in this section in the context of JSP
pages is not defined.

5

MapViewer JSP Tag Library 5-1

5 MapViewer JSP Tag Library

This chapter explains how to submit requests to MapViewer using JavaServer Pages
(JSP) tags in an HTML file. Through an XML-like syntax, the JSP tags provide a set of
important (but not complete) MapViewer capabilities, such as setting up a map
request, zooming, and panning, as well as identifying nonspatial attributes of
user-clicked features.

You can develop a location-based application by using any of the following
approaches:

■ Using the XML API (see Chapter 3)

■ Using the JavaBean-based API (see Chapter 4)

■ Using JSP files that contain XML or HTML tags, or both, and that include custom
Oracle-supplied JSP tags (described in this chapter)

Creating JSP files is often easier and more convenient than using the XML or
JavaBean-based API, although the latter two approaches give you greater flexibility
and control over the program logic. However, you can include calls to the Java API
methods within a JavaServer Page, as is done with the call to the getMapTitle
method in Example 5–1 in Section 5.3.

All MapViewer JSP tags in the same session scope share access to a single MapViewer
bean.

This chapter contains the following major sections:

■ Section 5.1, "Using MapViewer JSP Tags"

Deprecated Feature: MapViewer JSP Library: The MapViewer JSP
library is deprecated, and will not be included in future releases of the
documentation.

Instead, you are encouraged to use the MapViewer Java API, which is
more comprehensive and up to date. Moreover, if you prefer to use
tags, consider using the GeoMap tags in the JDeveloper Application
Development Framework (ADF).

Note: The MapViewer JSP tag library will not work with
Oracle9iAS Release 9.0.2 or the standalone OC4J Release 9.0.2. The
minimum version required is Oracle9iAS Release 9.0.3 or the
standalone OC4J Release 9.0.3.

Using MapViewer JSP Tags

5-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ Section 5.2, "MapViewer JSP Tag Reference Information"

■ Section 5.3, "JSP Example (Several Tags) for MapViewer"

5.1 Using MapViewer JSP Tags
Before you can use MapViewer JSP tags, you must perform one or two steps,
depending on whether or not the Web application that uses the tags will be deployed
in the same OC4J instance that is running MapViewer.

1. If the Web application will be deployed in the same OC4J instance that is running
MapViewer, skip this step and go to Step 2.

If the Web application will be deployed in a separate OC4J instance, you must
copy the mvclient.jar file (located in the $MAPVIEWER/web/WEB-INF/lib
directory) and the mvtaglib.tld file (located in the
$MAPVIEWER/web/WEB-INF directory) to that OC4J instance's application
deployment directory. Then you must define a <taglib> element in your
application's web.xml file, as shown in the following example:

<taglib>
 <taglib-uri>
 http://xmlns.oracle.com/spatial/mvtaglib
 </taglib-uri>
 <taglib-location>
 /WEB-INF/mvtaglib.tld
 </taglib-location>
 </taglib>

2. Import the tag library (as you must do with any JSP page that uses custom tags),
by using the taglib directive at the top of the JSP page and before any other
MapViewer tags. For example:

<%@ taglib uri="http://xmlns.oracle.com/spatial/mvtaglib"
 prefix="mv" %>

The taglib directive has two parameters:

■ uri is the unique name that identifies the MapViewer tag library, and its
value must be http://xmlns.oracle.com/spatial/mvtaglib, because
it is so defined in the MapViewer web.xml initialization file.

■ prefix identifies the prefix for tags on the page that belong to the
MapViewer tag library. Although you can use any prefix you want as long as
it is unique in the JSP page, mv is the recommended prefix for MapViewer,
and it is used in examples in this guide.

The following example shows the mv prefix used with the setParam tag:

<mv:setParam title="Hello World!" bgcolor="#ffffff"
 width="500" height="375" antialiasing="true"/>

The tags enable you to perform several kinds of MapViewer operations:

■ To create the MapViewer bean and place it in the current session, use the init tag,
which must come before any other MapViewer JSP tags.

■ To set parameters for the map display and optionally a base map, use the setParam
tag.

■ To add themes and a legend, use the addPredefinedTheme, addJDBCTheme,
importBaseMap, and makeLegend tags.

MapViewer JSP Tag Reference Information

MapViewer JSP Tag Library 5-3

■ To get information, use the getParam, getMapURL, and identify tags.

■ To submit the map request for processing, use the run tag.

5.2 MapViewer JSP Tag Reference Information
This section provides detailed information about the Oracle-supplied JSP tags that you
can use to communicate with MapViewer. Table 5–1 lists each tag and briefly describes
the information specified by the tag.

Except where noted, you can use JSP expressions to set tag attribute values at run
time, using the following format:

<mv:tag attribute="<%= jspExpression %>" >

The following sections (in alphabetical order by tag name) provide reference
information for all parameters available for each tag: the parameter name, a
description, and whether or not the parameter is required. If a parameter is required, it
must be included with the tag. If a parameter is not required and you omit it, a default
value is used.

Short examples are provided in the reference sections for JSP tags, and a more
comprehensive example is provided in Section 5.3.

5.2.1 addJDBCTheme
The addJDBCTheme tag adds a dynamically defined theme to the map request. (It
performs the same operation as the <jdbc_query> element, which is described in
Section 3.2.9.)

Table 5–2 lists the addJDBCTheme tag parameters.

Table 5–1 JSP Tags for MapViewer

Tag Name Explanation

init Creates the MapViewer bean and places it in the current session.
Must come before any other MapViewer JSP tags.

setParam Specifies one or more parameters for the current map request.

addPredefinedTheme Adds a predefined theme to the current map request.

addJDBCTheme Adds a dynamically defined theme to the map request.

importBaseMap Adds the predefined themes that are in the specified base map
to the current map request.

makeLegend Creates a legend (map inset illustration) drawn on top of the
generated map.

getParam Gets the value associated with a specified parameter for the
current map request.

getMapURL Gets the HTTP URL for the currently available map image, as
generated by the MapViewer service.

identify Gets nonspatial attribute (column) values associated with spatial
features that interact with a specified point or rectangle on the
map display, and optionally uses a marker style to identify the
point or rectangle.

run Submits the current map request to the MapViewer service for
processing. The processing can be to zoom in or out, to recenter
the map, or to perform a combination of these operations.

MapViewer JSP Tag Reference Information

5-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Table 5–2 addJDBCTheme Tag Parameters

Parameter
Name Description Required

name Name for the dynamically defined theme. Must be unique
among all themes already added to the associated MapViewer
bean.

Yes

min_scale The value to which the display must be zoomed in for the
theme to be displayed, as explained in Section 2.4.1. If min_
scale and max_scale are not specified, the theme is
displayed for all map scales, if possible given the display
characteristics.

No

max_scale The value beyond which the display must be zoomed in for the
theme not to be displayed, as explained in Section 2.4.1. If
min_scale and max_scale are not specified, the theme is
displayed for all map scales, if possible given the display
characteristics.

No

spatial_
column

Column of type SDO_GEOMETRY containing geometry
objects for the map display

Yes

srid Coordinate system (SDO_SRID value) of the data to be
rendered. If you do not specify this parameter, a null
coordinate system is assumed.

No

datasource Name of the data source instance that contains information for
connecting to the database

Yes1

1 You must specify either datasource or the combination of jdbc_host, jdbc_port, jdbc_sid,
jdbc_user, and jdbc_password.

jdbc_host Host name for connecting to the database Yes1

jdbc_port Port name for connecting to the database Yes1

jdbc_sid SID for connecting to the database Yes1

jdbc_user User name for connecting to the database Yes1

jdbc_
password

Password for connecting to the database Yes1

jdbc_mode The Oracle JDBC driver (thin or oci8) to use to connect to
the database. The default is thin.

No

asis If set to TRUE, MapViewer does not attempt to modify the
supplied query string. If FALSE (the default), MapViewer
embeds the SQL query as a subquery of its spatial filter query.
(For more information and an example, see Section 3.2.9.)

No

render_
style

Name of the style to be used to render the spatial data
retrieved for this theme. For point features the default is a red
cross rotated 45 degrees, for lines and curves it is a black line 1
pixel wide, and for polygons it is a black border with a
semitransparent dark gray interior.

No

label_style Name of the text style to be used to draw labeling text on the
spatial feature for this theme. If you specify label_style,
you must also specify label_column. If you do not specify
label_style, no label is drawn for the spatial feature of this
theme.

No

label_
column

The column in the SELECT list of the supplied query that
contains the labeling text for each feature (row). If label_
style is not specified, any label_column value is ignored.

No

MapViewer JSP Tag Reference Information

MapViewer JSP Tag Library 5-5

The following example creates a new dynamic theme named bigCities, to be
executed using the mvdemo data source and specifying the LOCATION column as
containing spatial data. Note that the greater-than (>) character in the WHERE clause
is valid here.

<mv:addJDBCTheme name="bigCities" datasource="mvdemo"
 spatial_column="location">
 SELECT location, name FROM cities WHERE pop90 > 450000
</mv:addJDBCTheme>

5.2.2 addPredefinedTheme
The addPredefinedTheme tag adds a predefined theme to the current map request.
(It performs the same operation as the <theme> element, which is described in
Section 3.2.20.) The predefined theme is added at the end of the theme list maintained
in the associated MapViewer bean.

Table 5–3 lists the addPredefinedTheme tag parameters.

The following example adds the theme named THEME_DEMO_CITIES to the current
Map request:

<mv:addPredefinedTheme name="THEME_DEMO_CITIES"/>

5.2.3 getMapURL
The getMapURL tag gets the HTTP URL (uniform resource locator) for the currently
available map image, as generated by the MapViewer service. This map image URL is
kept in the associated MapViewer bean, and it does not change until after the run tag
is used.

The getMapURL tag has no parameters.

The following example displays the currently available map image, using the
getMapURL tag in specifying the source (SRC keyword value) for the image:

<IMG SRC="<mv:getMapURL/>" ALIGN="top">

Table 5–3 addPredefinedTheme Tag Parameters

Parameter
Name Description Required

name Name of the predefined theme to be added to the current map
request. This theme must exist in the USER_SDO_THEMES
view of the data source used by the associated MapViewer
bean.

Yes

datasource Name of the data source from which the theme will be loaded.
If you do not specify this parameter, the default data source for
the map request is used.

No

min_scale The value to which the display must be zoomed in for the
theme to be displayed, as explained in Section 2.4.1. If min_
scale and max_scale are not specified, the theme is
displayed for all map scales, if possible given the display
characteristics.

No

max_scale The value beyond which the display must be zoomed in for the
theme not to be displayed, as explained in Section 2.4.1. If
min_scale and max_scale are not specified, the theme is
displayed for all map scales, if possible given the display
characteristics.

No

MapViewer JSP Tag Reference Information

5-6 Oracle Fusion Middleware User's Guide for Oracle MapViewer

5.2.4 getParam
The getParam tag gets the value associated with a specified parameter for the current
map request.

Table 5–4 lists the getParam tag parameter.

The following example displays the value of the title parameter for the current map
request:

<P> The current map title is: <mv:getParam name="title"/> </P>

5.2.5 identify
The identify tag gets nonspatial attribute (column) values associated with spatial
features that interact with a specified point or rectangle on the map display, and it
optionally uses a marker style to identify the point or rectangle. For example, if the
user clicks on the map and you capture the X and Y coordinate values for the mouse
pointer when the click occurs, you can retrieve values of nonspatial columns
associated with spatial geometries that interact with the point. For example, if the user
clicks on a point in Chicago, your application might display the city name, state
abbreviation, and population of Chicago, and it might also display a "city" marker on
the map near where the click occurred.

The attributes are returned in a String[][] array of string arrays, which is exposed
by this tag as a scripting variable.

The list of nonspatial columns to fetch must be provided in the tag body, in a
comma-delimited list, which the MapViewer bean uses to construct a SELECT list for
its queries.

You can optionally associate a highlighting marker with each feature that is identified
by using the style attribute and specifying a marker style. To display a new map that
includes the highlighting markers, use the getMapURL tag.

Table 5–5 lists the identify tag parameters.

Table 5–4 getParam Tag Parameter

Parameter
Name Description Required

name Name of the parameter whose value is to be retrieved. It must be
one of the valid parameter names for the setParam tag. The
parameter names are case-sensitive. (This attribute must have a
literal value; it cannot take a JSP expression value.)

Yes

Table 5–5 identify Tag Parameters

Parameter
Name Description Required

id Name for the scripting variable through which the returned
nonspatial attribute values will be exposed. The first array
contains the column names. (This attribute must have a literal
value; it cannot take a JSP expression value.)

Yes

datasource Name of the MapViewer data source from which to retrieve
the nonspatial information.

No

table Name of the table containing the column identified in
spatial_column. (This attribute must have a literal value; it
cannot take a JSP expression value.)

Yes

MapViewer JSP Tag Reference Information

MapViewer JSP Tag Library 5-7

The following example creates an HTML table that contains a heading row and one
row for each city that has any spatial interaction with a specified point (presumably,
the city where the user clicked). Each row contains the following nonspatial data: city
name, population, and state abbreviation. The String[][] array of string arrays that
holds the nonspatial information about the associated city or cities is exposed through
the scripting variable named attrs. The scriptlet after the tag loops through the array
and outputs the HTML table (which in this case will contain information about one
city).

<mv:identify id="attrs" style="M.CYAN PIN"
 table="cities" spatial_column="location"
 x="100" y="200">
 City, Pop90 Population, State_abrv State
</mv:identify>

<%
 if(attrs!=null && attrs.length>0)
 {
 out.print("<CENTER> <TABLE border=\"1\">\n");
 for(int i=0; i<attrs.length; i++)
 {
 if(i==0) out.print("<TR BGCOLOR=\"#FFFF00\">");
 else out.print("<TR>\n");
 String[] row = attrs[i];
 for(int k=0; k<row.length; k++)
 out.print("<TD>"+row[k]+"</TD>");
 out.print("</TR>\n");
 }
 out.print("</TABLE></CENTER>");
 }
%>

spatial_
column

Column of type SDO_GEOMETRY containing geometry
objects to be checked for spatial interaction with the specified
point or rectangle. (This attribute must have a literal value; it
cannot take a JSP expression value.)

Yes

srid Coordinate system (SDO_SRID value) of the data in spatial_
column. If you do not specify this parameter, a null coordinate
system is assumed.

No

x The X ordinate value of the point; or the X ordinate value of
the lower-left corner of the rectangle if x2 and y2 are specified.

Yes

y The Y ordinate value of the point; or the Y ordinate value of
the lower-left corner of the rectangle if x2 and y2 are specified.

Yes

x2 The X ordinate value of the upper-right corner of the rectangle. No

y2 The Y ordinate value of the upper-right corner of the rectangle. No

style Name of the marker style to be used to draw a marker on
features that interact with the specified point or rectangle. To
display a new map that includes the highlighting markers, use
the getMapURL tag.

No

Table 5–5 (Cont.) identify Tag Parameters

Parameter
Name Description Required

MapViewer JSP Tag Reference Information

5-8 Oracle Fusion Middleware User's Guide for Oracle MapViewer

5.2.6 importBaseMap
The importBaseMap tag adds the predefined themes that are in the specified base
map to the current map request. (This has the same effect as using the setParam tag
with the basemap attribute.)

Table 5–6 lists the importBaseMap tag parameter.

The following example adds the predefined themes in the base map named demo_map
at the end of the theme list for the current map request:

<mv:importBaseMap name="demo_map"/>

5.2.7 init
The init tag creates the MapViewer bean and places it in the current session. This
bean is then shared by all other MapViewer JSP tags in the same session. The init tag
must come before any other MapViewer JSP tags.

Table 5–7 lists the init tag parameters.

The following example creates a data source named mvdemo with an id value of
mvHandle:

<mv:init url="http://mycompany.com:8888/mapviewer/omserver"
 datasource="mvdemo" id="mvHandle"/>

5.2.8 makeLegend
The makeLegend tag accepts a user-supplied XML legend specification and creates a
standalone map legend image. The legend image is generated by the MapViewer

Table 5–6 importBaseMap Tag Parameter

Parameter
Name Description Required

name Name of the base map whose predefined themes are to be
added at the end of the theme list for the current map
request. This base map must exist in the USER_SDO_MAPS
view of the data source used by the associated MapViewer
bean.

Yes

Table 5–7 init Tag Parameters

Parameter
Name Description Required

url The uniform resource locator (URL) of the MapViewer
service. It must be in the form
http://host:port/mapviewer/omserver, where host
and port identify the system name and port, respectively, on
which Oracle Fusion Middleware or OC4J listens.

Yes

datasource Name of the MapViewer data source to be used when
requesting maps and retrieving mapping data. If you have
not already created the data source, you must do so before
using the init tag. (For information about defining a data
source, see Section 1.5.2.14.)

Yes

id Name that can be used to refer to the MapViewer bean
created by this tag. (This attribute must have a literal value; it
cannot take a JSP expression value.)

Yes

MapViewer JSP Tag Reference Information

MapViewer JSP Tag Library 5-9

service, and a URL for that image is returned to the associated MapViewer bean. This
tag exposes the URL as a scripting variable.

The body of the tag must contain a <legend> element. See Section 3.2.11 for detailed
information about the <legend> element and its attributes.

Table 5–8 lists the makeLegend tag parameters.

The following example creates a single-column legend with the id of myLegend, and
it displays the legend image.

<mv:makeLegend id="myLegend">
 <legend bgstyle="fill:#ffffff;stroke:#ff0000" profile="MEDIUM">
 <column>
 <entry text="Legend:" is_title="true"/>
 <entry style="M.STAR" text="center point"/>
 <entry style="M.CITY HALL 3" text="cities"/>
 <entry is_separator="true"/>
 <entry style="C.ROSY BROWN STROKE" text="state boundary"/>
 <entry style="L.PH" text="interstate highway"/>
 <entry text="County population density:"/>
 <entry style="V.COUNTY_POP_DENSITY" tab="1"/>
 </column>
 </legend>
</mv:makeLegend>

<P> Here is the map legend: <IMG SRC="<%=myLegend%>"> </P>

5.2.9 run
The run tag submits the current map request to the MapViewer service for processing.
The processing can be to zoom in or out, to recenter the map, or to perform a
combination of these operations.

The run tag does not output anything to the JSP page. To display the map image that
MapViewer generates as a result of the run tag, you must use the getMapURL tag.

Table 5–9 lists the run tag parameters.

Table 5–8 makeLegend Tag Parameters

Parameter
Name Description Required

id Name for the scripting variable that can be used to refer to
the URL of the generated legend image. (This attribute must
have a literal value; it cannot take a JSP expression value.)

Yes

datasource Name of the MapViewer data source from which to retrieve
information about styles specified in the legend request

No

format Format of the legend image to be created on the server. If
specified, must be GIF_URL (the default) or PNG_URL.

No

MapViewer JSP Tag Reference Information

5-10 Oracle Fusion Middleware User's Guide for Oracle MapViewer

The following example requests a zooming in on the map display (with the default
zoom factor of 2), and recentering of the map display at coordinates (100, 250) in the
device space.

<mv:run action="zoomin" x="100" y="250"/>

5.2.10 setParam
The setParam tag specifies one or more parameters for the current map request. You
can set all desired parameters at one time with a single setParam tag, or you can set
different parameters at different times with multiple setParam tags. Most of the
parameters have the same names and functions as the attributes of the <map_
request> root element, which is described in Section 3.2.1.1. The parameter names
are case-sensitive.

Table 5–10 lists the setParam tag parameters.

Table 5–9 run Tag Parameters

Parameter
Name Description Required

action One of the following values to indicate the map navigation action
to be taken: zoomin (zoom in), zoomout (zoom out), or
recenter (recenter the map).

For zoomin or zoomout, factor specifies the zoom factor; for all
actions (including no specified action), x and y specify the new
center point; for all actions (including no specified action), x2 and
y2 specify (with x and y) the rectangular area to which to crop the
resulting image.

If you do not specify an action, the map request is submitted for
processing with no zooming or recentering, and with cropping
only if x, y, x2, and y2 are specified.

No

x The X ordinate value of the point for recentering the map, or the X
ordinate value of the lower-left corner of the rectangular area to
which to crop the resulting image if x2 and y2 are specified

No

y The Y ordinate value of the point for recentering the map, or the Y
ordinate value of the lower-left corner of the rectangular area to
which to crop the resulting image if x2 and y2 are specified

No

x2 The X ordinate value of the upper-right corner of the rectangular
area to which to crop the resulting image

No

y2 The Y ordinate value of the upper-right corner of the rectangular
area to which to crop the resulting image

No

factor Zoom factor: a number by which the current map size is
multiplied (for zoomin) or divided (for zoomout). The default is
2. This parameter is ignored if action is not zoomin or
zoomout.

No

Table 5–10 setParam Tag Parameters

Parameter
Name Description Required

antialiasing When its value is TRUE, MapViewer renders the map image
in an antialiased manner. This usually provides a map with
better graphic quality, but it may take longer for the map to
be generated. The default value is FALSE (for faster map
generation).

No

JSP Example (Several Tags) for MapViewer

MapViewer JSP Tag Library 5-11

The following example uses two setParam tags. The first setParam tag sets the
background color, width, height, and title for the map. The second setParam tag sets
the center point and vertical span for the map.

<mv:setParam bgcolor="#ff0000" width="800" height="600"
 title="My Map!"/>

<mv:setParam centerX="-122.35" centerY="37.85" size="1.5"/>

5.3 JSP Example (Several Tags) for MapViewer
This section presents an example of using JSP code to perform several MapViewer
operations.

Example 5–1 initializes a MapViewer bean, sets up map request parameters, issues a
request, and displays the resulting map image. It also obtains the associated
MapViewer bean and places it in a scripting variable (myHandle), which is then
accessed directly in the statement:

Displaying map: <%=myHandle.getMapTitle()%>

basemap Base map whose predefined themes are to be rendered by
MapViewer. The definition of a base map is stored in the
user’s USER_SDO_MAPS view, as described in Section 2.9.1.
Use this parameter if you will always need a background
map on which to plot your own themes and geometry
features.

No

bgcolor The background color in the resulting map image. The
default is water-blue (RGB value #A6CAF0). It must be
specified as a hexadecimal value.

No

bgimage The background image (GIF or JPEG format only) in the
resulting map image. The image is retrieved at run time when
a map request is being processed, and it is rendered before
any other map features, except that any bgcolor value is
rendered before the background image.

No

centerX X ordinate of the map center in the data coordinate space No

centerY Y ordinate of the map center in the data coordinate space No

height The height (in device units) of the resulting map image No

imagescaling When its value is TRUE (the default), MapViewer attempts to
scale the images to fit the current querying window and the
generated map image size. When its value is FALSE, and if an
image theme is included directly or indirectly (such as
through a base map), the images from the image theme are
displayed in their original resolution. This parameter has no
effect when no image theme is involved in a map request.

No

size Vertical span of the map in the data coordinate space No

title The map title to be displayed on the top of the resulting map
image

No

width The width (in device units) of the resulting map image No

Table 5–10 (Cont.) setParam Tag Parameters

Parameter
Name Description Required

JSP Example (Several Tags) for MapViewer

5-12 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Example 5–1 MapViewer Operations Using JSP Tags

<%@ page contentType="text/html" %>
<%@ page session="true" %>
<%@ page import="oracle.lbs.mapclient.MapViewer" %>

<%@ taglib uri="http://xmlns.oracle.com/spatial/mvtaglib"
 prefix="mv" %>
<HTML>
<BODY>
Initializing client MapViewer bean. Save the bean in the session
using key "mvHandle"....<P>
 <mv:init url="http://my_corp.com:8888/mapviewer/omserver"
 datasource="mvdemo" id="mvHandle"/>

Setting MapViewer parameters...<P>
<mv:setParam title="Hello World!" bgcolor="#ffffff" width="500" height="375"
antialiasing="true"/>

Adding themes from a base map...<P>
<mv:importBaseMap name="density_map"/>

Setting initial map center and size...<P>
<mv:setParam centerX="-122.0" centerY="37.8" size="1.5"/>

Issuing a map request... <P>
<mv:run/>

<%
 // Place the MapViewer bean in a Java variable.
 MapViewer myHandle = (MapViewer) session.getAttribute("mvHandle");
%>

Displaying map: <%=myHandle.getMapTitle()%>
<IMG SRC="<mv:getMapURL/>" ALIGN="top"/>
</BODY>
</HTML>

6

MapViewer PL/SQL API 6-1

6 MapViewer PL/SQL API

This chapter describes the PL/SQL application programming interface (API) to
MapViewer. This API consists of the PL/SQL package SDO_MVCLIENT, which is
intended for Oracle Database users who want to access MapViewer services from
inside an Oracle database. This package exposes most capabilities of MapViewer, and
it handles all communication with the actual MapViewer server running on a middle
tier on behalf of a user making map requests.

6.1 Installing the SDO_MVCLIENT Package
The SDO_MVCLIENT package is not currently installed by default. Instead, you must
install the package by running two SQL scripts that are supplied with MapViewer:
sdomvclh.sql and sdomvclb.sql.

To perform the installation, go to the sql directory under the $MAPVIEWER_HOME
directory, start SQL*Plus, connect as a user that has the DBA role (for example,
SYSTEM), and enter the following commands:

@sdomvclh
@sdomvclb

After you run these two scripts, exit SQL*Plus, go to the $MAPVIEWER_
HOME/web/WEB-INF/lib directory, and use the shall command loadjava to load
the mvclient.jar file into the MDSYS schema. For example (and assuming the use
of the SYSTEM account with the password manager):

loadjava -force -schema mdsys -grant PUBLIC -user system mvclient.jar
Password: password

Database users can now use the SDO_MVCLIENT PL/SQL package, as described in
Section 6.2.

Deprecated Feature: MapViewer PL/SQL API: The MapViewer
PL/SQL API is deprecated, and will not be included in future releases
of the documentation.

Instead, you are encouraged to either (A) use one of the other
supported MapViewer APIs, or (B) use Oracle Application Express
(APEX) with the MapViewer JavaScript API.

Using the SDO_MVCLIENT Package

6-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

6.2 Using the SDO_MVCLIENT Package
The SDO_MVCLIENT PL/SQL package communicates with a remote MapViewer
service through the HTTP protocol. For each database session, it maintains a global
MapViewer client handle, as well as the current map request and map response
objects.

The usage model for the SDO_MVCLIENT package is almost identical to that of
MapViewer JavaBean-based API (described in Chapter 4). Most methods implemented
in the MapViewer JavaBean-Based API (oracle.lbs.mapclient.MapViewer) are
available in this PL/SQL package, and the package uses the same method names and
parameters used by the JavaBean-Based API. For usage and reference information
about specific functions or procedures, see the description of the associated
JavaBean-Based API. methods and interfaces in Chapter 4.

The basic workflow for accessing the MapViewer service through this PL/SQL
package is almost identical to that for using the Java client API, except for some initial
setup. Follow these major steps, each of which is described in a section to follow:

1. Grant network access (see Section 6.2.1).

2. Create a MapViewer client handle (see Section 6.2.2).

3. Prepare a map request (see Section 6.2.3).

4. Send the request to the MapViewer service (see Section 6.2.4).

5. Optionally, extract information from the map request (see Section 6.2.5).

6.2.1 Granting Network Access
Grant network access permission to each database user that will use the SDO_
MVCLIENT package. For example, if database user SCOTT will need to use the
package, you must enter a statement in the following general form while connected as
a user with DBA privileges:

call dbms_java.grant_permission('SCOTT', 'SYS:java.net.SocketPermission',
 'www.mycorp.com',
 'connect, resolve');

In the preceding example, change www.mycorp.com to the host on which the
MapViewer service is running.

Depending on the Oracle Database version, you may also need to grant network
access to the database user MDSYS, which owns the SDO_MVCILENT package. To do
this, enter a statement in the following general form while connected as a user with
DBA privileges:

call dbms_java.grant_permission('MDSYS', 'SYS:java.net.SocketPermission',
 'www.mycorp.com:8888',
 'connect, resolve');

In the preceding example, change www.mycorp.com to the host on which the
MapViewer service is running.

The call to dbms_java.grant_permission needs to be done only once for each affected
database user; the permission remains valid for all subsequent database sessions for
these users.

Using the SDO_MVCLIENT Package

MapViewer PL/SQL API 6-3

6.2.2 Creating a MapViewer Client Handle
Before each database session, you must create a MapViewer client handle before using
any functions or procedures of the SDO_MVCLIENT package. The following example
creates a MapViewer client handle:

connect scott
Enter password: password
call sdo_mvclient.createmapviewerclient(
 'http://www.mycorp.com:8888/mapviewer/omserver') ;

The preceding example creates, in the current session, a unique MapViewer client
handle to the MapViewer service URL
http://www.mycorp.com:8888/mapviewer/omserver. To use this example,
change www.mycorp.com to the host on which the MapViewer service is running.

After you have created a MapViewer client handle, you can perform the following
query to check that MapViewer is running correctly:

select sdo_mvclient.getdatasources() datasources from dual;

The SQL function sdo_mvclient.getdatasources() is part of the MapViewer
PL/SQL package API; and when it is executed, it connects to the remote MapViewer
server and gets a list of all known data sources. If the installation is successful and the
MapViewer server is running, the result of the preceding example is output similar to
the following, with the string array containing the names of the data sources that are
defined in the MapViewer server:

DATASOURCES
--
SDO_1D_STRING_ARRAY('mvdemo', 'wms')

6.2.3 Preparing a Map Request
Call various methods in the PL/SQL package to prepare a map request, which will
eventually be sent to the MapViewer server for processing. You can specify the basic
characteristics of the map to be created, and you can add temporary styles and
multiple themes to the current map request.

Example 6–1 sets the data source and other map characteristics, adds a dynamically
defined color style to the map request, and manipulates a theme.

Example 6–1 Preparing a Map Request

call sdo_mvclient.setDataSourceName('mvdemo');
call sdo_mvclient.setImageFormat('PNG_URL');
call sdo_mvclient.setAntiAliasing('true');
call sdo_mvclient.setBaseMapName('qa_map') ;
call sdo_mvclient.setBox(-122.3615, 37.4266, -121.1615, 37.6266);
call sdo_mvclient.setDevicesize(500,400);

call sdo_mvclient.addColorStyle('colorst', 'blue', 'yellow', 100,100);

select sdo_mvclient.addJDBCTheme('mvdemo', 'theme1',
 'select geom from states where state_abrv = ''CA''',
 'geom', '8307', 'C.RED', null, null, 'FALSE') from dual ;

Using the SDO_MVCLIENT Package

6-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

6.2.4 Sending the Request to the MapViewer Service
The following example effectively sends the current map request to the remote
MapViewer server for processing. It will return after the request has been processed at
the server.

select sdo_mvclient.run() from dual;

You can also use such methods as sdo_mvclient.zoomIn() and sdo_
mvclient.zoomOut() to get zoomed maps.

6.2.5 Extracting Information from the Map Request
The following example extracts the URL string of the generated map image:

select sdo_mvclient.getgeneratedMapImageURL() from dual;

After you have the URL of the map image, you can do various things, such as fetch
and store the image in a database table, or present the map with other information on
a HTML page.

7

MapViewer XML Requests: Administrative and Other 7-1

7 MapViewer XML Requests: Administrative
and Other

The main use of MapViewer is for processing various map requests. However,
MapViewer also accepts through its XML API various administrative (non-map)
requests, such as to add a data source, as well as other (general-purpose) requests
useful in developing applications, such as to list available themes and base maps. All
MapViewer administrative requests require that you log in to the MapViewer
administration (Admin) page, for which there is a link on the main MapViewer page;
the general-purpose requests can be made from an application without the
requirement to log in. This section describes the format for each request and its
response.

All XML requests are embedded in a <non_map_request> element and all responses
are embedded in a <non_map_response> element, unless an exception is thrown by
MapViewer, in which case the response is an <oms_error> element (described in
Section 3.5).

The administrative requests are described in sections according to the kinds of tasks
they perform:

■ Managing Data Sources

■ Listing All Maps (General-Purpose)

■ Listing Themes (General-Purpose)

■ Listing Styles (General-Purpose)

■ Managing In-Memory Caches

■ Editing the MapViewer Configuration File (Administrative)

■ Restarting the MapViewer Server (Administrative)

The section titles often indicate whether a request is administrative or
general-purpose.

7.1 Managing Data Sources
You can add, remove, redefine, and list data sources. (For information about data
sources and how to define them, see Section 1.5.2.14.)

Managing Data Sources

7-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

7.1.1 Adding a Data Source (Administrative)

The <add_data_source> element has the following definition:

<!ELEMENT non_map_request add_data_source>
<!ELEMENT add_data_source EMPTY>
 <!ATTLIST add_data_source
 name CDATA #REQUIRED
 container_ds CDATA #IMPLIED
 jdbc_tns_name CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_mode (oci8 | thin) #IMPLIED
 number_of_mappers INTEGER #REQUIRED
 >

The name attribute identifies the data source name. The name must be unique among
MapViewer data sources. (Data source names are not case-sensitive.)

You must specify a container data source name, a net service name (TNS name), or all
necessary connection information. That is, you must specify only one of the following:

■ container_ds

■ jdbc_tns_name

■ jdbc_host, jdbc_port, jdbc_sid, jdbc_mode, jdbc_user, and jdbc_
password

The container_ds attribute identifies a data source name that is defined in the J2EE
container's Java Naming and Directory Interface (JNDI) namespace. For OC4J, it
should be the ejb-location attribute of the data source defined in the
data-source.xml file.

The jdbc_tns_name attribute identifies a net service name that is defined in the
tnsnames.ora file.

The jdbc_host attribute identifies the database host system name.

The jdbc_port attribute identifies the TNS listener port number.

The jdbc_sid attribute identifies the SID for the database.

The jdbc_user attribute identifies the user to connect to (map).

The jdbc_password attribute identifies the password for the user specified with the
jdbc_user attribute. Note that MapViewer does not change this password string in
any way; no conversion to upper or lower case is performed. If the database uses
case-sensitive passwords, the specified password must exactly match the password in
the database.

Note: This request is typically used during development or testing,
when you want to add a data source quickly and dynamically without
creating a permanent one (which would involve editing the
mapViewerConfig.xml file). For production use, or to take full
advantage of what MapViewer provides with a data source, you
should always use a permanent data source.

Managing Data Sources

MapViewer XML Requests: Administrative and Other 7-3

The jdbc_mode attribute identifies the JDBC connection mode: thin or oci8. If you
specify oci8, you must have Oracle Client installed in the middle tier in which
MapViewer is running. You do not need Oracle Client if thin is used for all of your
data sources.

The number_of_mappers attribute identifies the number of map renderers to be
created (that is, the number of requests that MapViewer can process at the same time)
for this data source. Any unprocessed map requests are queued and eventually
processed. For example, if the value is 3, MapViewer will be able to process at most
three mapping requests concurrently. If a fourth map request comes while three
requests are being processed, it will wait until MapViewer has finished processing one
of the current requests. The maximum number of mappers for a single data source is
64.

Example 7–1 adds a data source named mvdemo by specifying all necessary connection
information.

Example 7–1 Adding a Data Source by Specifying Detailed Connection Information

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <add_data_source
 name="mvdemo"
 jdbc_host="elocation.us.oracle.com"
 jdbc_port="1521"
 jdbc_sid="orcl"
 jdbc_user="scott"
 jdbc_password="password"
 jdbc_mode="thin"
 number_of_mappers="5"/>
</non_map_request>

Example 7–2 adds a data source named mvdemo by specifying the container data
source name.

Example 7–2 Adding a Data Source by Specifying the Container Data Source

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <add_data_source
 name="mvdemo"
 container_ds="jdbc/OracleDS"
 number_of_mappers="5"/>
</non_map_request>

The DTD for the response to an add_data_source request has the following format:

<!ELEMENT non_map_response add_data_source>
<!ELEMENT add_data_source EMPTY>
<!ATTLIST add_data_source
 succeed (true | false) #REQUIRED
 comment CDATA #IMPLIED
>

The comment attribute appears only if the request did not succeed, in which case the
reason is in the comment attribute. In the following example, succeed="true"
indicates that the user request has reached the server and been processed without any
exception being raised regarding its validity. It does not indicate whether the user's
intended action in the request was actually fulfilled by the MapViewer server. In this
example, the appearance of the comment attribute indicates that the request failed,

Managing Data Sources

7-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

and the string associated with the comment attribute gives the reason for the failure
("data source already exists").

<?xml version="1.0" ?>
 <non_map_response>
 <add_data_source succeed="true" comment="data source already exists"/>
</non_map_response>

7.1.2 Removing a Data Source (Administrative)
The <remove_data_source> element can be used to remove a permanent data
source or a dynamically added data source. This element has the following definition:

<!ELEMENT non_map_request remove_data_source>
<!ELEMENT remove_data_source EMPTY>
<!ATTLIST remove_data_source
 data_source CDATA #REQUIRED
 jdbc_password CDATA #REQUIRED
>

The data_source attribute identifies the name of the data source to be removed.

The jdbc_password attribute identifies the login password for the database user in
the data source. jdbc_password is required for security reasons (to prevent people
from accidentally removing data sources from MapViewer).

Removing a data source only affects the ability of MapViewer to use the
corresponding database schema; nothing in that schema is actually removed.

Example 7–3 removes a data source named mvdemo.

Example 7–3 Removing a Data Source

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <remove_data_source data_source="mvdemo" jdbc_password="password"/>
</non_map_request>

The DTD for the response to a remove_data_source request has the following
format:

<!ELEMENT non_map_response remove_data_source>
<!ELEMENT remove_data_source EMPTY>
<!ATTLIST remove_data_source
 succeed (true | false) #REQUIRED
>

For example:

<?xml version="1.0" ?>
 <non_map_response>
 <remove_data_source succeed="true"/>
</non_map_response>

7.1.3 Redefining a Data Source

Note: You should use request only during development or testing,
and not for production work.

Managing Data Sources

MapViewer XML Requests: Administrative and Other 7-5

For convenience, MapViewer lets you redefine a data source. Specifically, if a data
source with the same name already exists, it is removed and then added using the new
definition. If no data source with the name exists, a new data source is added. If an
existing data source has the same name, host, port, SID, user name, password, mode,
and number of mappers as specified in the request, the request is ignored.

The <redefine_data_source> element has the following definition:

<!ELEMENT non_map_request redefine_data_source>
<!ELEMENT redefine_data_source EMPTY>
<!ATTLIST redefine_data_source
 name CDATA #REQUIRED
 container_ds CDATA #IMPLIED
 jdbc_tns_name CDATA #IMPLIED
 jdbc_host CDATA #IMPLIED
 jdbc_port CDATA #IMPLIED
 jdbc_sid CDATA #IMPLIED
 jdbc_user CDATA #IMPLIED
 jdbc_password CDATA #IMPLIED
 jdbc_mode (oci8 | thin) #IMPLIED
 number_of_mappers INTEGER #REQUIRED
>

The attributes and their explanations are the same as for the <add_data_source>
element, which is described in Section 7.1.1.

The DTD for the response to a redefine_data_source request has the following
format:

<!ELEMENT non_map_response redefine_data_source>
<!ELEMENT redefine_data_source EMPTY>
<!ATTLIST redefine_data_source
 succeed (true | false) #REQUIRED
>

For example:

<?xml version="1.0" ?>
 <non_map_response>
 <redefine_data_source succeed="true"/>
</non_map_response>

7.1.4 Listing All Data Sources (Administrative or General-Purpose)
The <list_data_sources> element lists all data sources known to the currently
running MapViewer. It has the following definition:

<!ELEMENT non_map_request list_data_sources>
<!ELEMENT list_data_sources EMPTY>

For example:

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_data_sources/>
</non_map_request>

The DTD for the response to a list_data_sources request has the following
format:

<!ELEMENT non_map_response map_data_source_list>
<!ELEMENT map_data_source_list (map_data_source*) >

Managing Data Sources

7-6 Oracle Fusion Middleware User's Guide for Oracle MapViewer

<!ATTLIST map_data_source_list
 succeed (true|false) #REQUIRED
>
<!ELEMENT map_data_source EMPTY>
<!ATTLIST map_data_source
 name CDATA #REQUIRED
 container_ds CDATA #IMPLIED
 host CDATA #IMPLIED
 sid CDATA #IMPLIED
 port CDATA #IMPLIED
 user CDATA #IMPLIED
 mode CDATA #IMPLIED
 numMappers CDATA #REQUIRED
 >

For each data source:

■ If the user issuing the request is logged in as a MapViewer administrator, all data
source information except the password for the database user is returned.

■ If the user issuing the request is not logged in as a MapViewer administrator, only
the data source name is returned.

The following example is a response that includes information about two data sources
when the request is issued by a MapViewer administrator.

<?xml version="1.0" ?>
<non_map_response>
<map_data_source_list succeed="true">
 <map_data_source name="mvdemo" host="elocation.us.oracle.com"
 sid="orcl" port="1521" user="scott" mode="thin" numMappers="3"/>
 <map_data_source name="geomedia" host="geomedia.us.oracle.com"
 sid="orcl" port="8160" user="scott" mode="oci8" numMappers="7"/>
</map_data_source_list>
</non_map_response>

The following example is a response when the same request is issued by a user that is
not a MapViewer administrator.

<?xml version="1.0" ?>
<non_map_response>
<map_data_source_list succeed="true">
 <map_data_source name="mvdemo"/>
 <map_data_source name="geomedia"/>
</map_data_source_list>
</non_map_response>

7.1.5 Checking the Existence of a Data Source (General-Purpose)
The <data_source_exists> element lets you find out if a specified data source
exists. It has the following definition:

<!ELEMENT non_map_request data_source_exists>
<!ELEMENT data_source_exists EMPTY>
<!ATTLIST data_source_exists
 data_source CDATA #REQUIRED
>

For example:

<?xml version="1.0" standalone="yes"?>
<non_map_request>

Listing All Maps (General-Purpose)

MapViewer XML Requests: Administrative and Other 7-7

 <data_source_exists data_source="mvdemo"/>
</non_map_request>

The DTD for the response to a data_source_exists request has the following
format:

<!ELEMENT non_map_response data_source_exists>
<!ELEMENT data_source_exists EMPTY>
<!ATTLIST data_source_exists
 succeed (true | false) #REQUIRED
 exists (true | false) #REQUIRED
>

The succeed attribute indicates whether or not the request was processed
successfully.

The exists attribute indicates whether or not the data source exists.

For example:

<?xml version="1.0" ?>
<non_map_response>
 <data_source_exists succeed="true" exists="true"/>
</non_map_response>

7.2 Listing All Maps (General-Purpose)
The <list_maps> element lists all base maps in a specified data source. It has the
following definition:

<!ELEMENT non_map_request list_maps>
<!ELEMENT list_maps EMPTY>
<!ATTLIST list_maps
 data_source CDATA #REQUIRED
>

The following example lists all base maps in the data source named mvdemo.

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_maps data_source="mvdemo"/>
</non_map_request>

The DTD for the response to a list_maps request has the following format:

<!ELEMENT non_map_response map_list>
<!ELEMENT map_list (map*) >
<!ATTLIST map_list
 succeed (true | false) #REQUIRED
>
<!ATTLIST map
 name CDATA #REQUIRED
>

The succeed attribute indicates whether or not the request was processed
successfully.

The name attribute identifies each map.

For example:

<?xml version="1.0" ?>
<non_map_response>

Listing Themes (General-Purpose)

7-8 Oracle Fusion Middleware User's Guide for Oracle MapViewer

<map_list succeed="true">
 <map name="DEMO_MAP"/>
 <map name="DENSITY_MAP"/>
</map_list>
</non_map_response>

7.3 Listing Themes (General-Purpose)
The <list_predefined_themes> element lists either all themes defined in a
specified data source or all themes defined in a specified data source for a specified
map.

The DTD for requesting all themes defined in a data source regardless of the map
associated with a theme has the following definition:

<!ELEMENT non_map_request list_predefined_themes>
<!ELEMENT list_predefined_themes EMPTY>
<!ATTLIST list_predefined_themes
 data_source CDATA #REQUIRED
>

The following example lists all themes defined in the data source named mvdemo.

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_predefined_themes data_source="mvdemo"/>
</non_map_request>

The DTD for requesting all themes defined in a data source and associated with a
specific map has the following definition:

<!ELEMENT non_map_request list_predefined_themes>
<!ELEMENT list_predefined_themes EMPTY>
<!ATTLIST list_predefined_themes
 data_source CDATA #REQUIRED
 map CDATA #REQUIRED
>

The following example lists all themes defined in the data source named tilsmenv
and associated with the map named QA_MAP.

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_predefined_themes data_source="tilsmenv" map="QA_MAP"/>
</non_map_request>

The DTD for the response to a list_predefined_themes request has the following
format:

<!ELEMENT non_map_response predefined_theme_list>
<!ELEMENT predefined_theme_list (predefined_theme*) >
<!ATTLIST predefined_theme_list
 succeed (true | false) #REQUIRED
>
<!ELEMENT predefined_theme EMPTY>
<!ATTLIST predefined_theme
 name CDATA #REQUIRED
>

The succeed attribute indicates whether or not the request was processed
successfully.

Listing Styles (General-Purpose)

MapViewer XML Requests: Administrative and Other 7-9

The name attribute identifies each theme.

For example:

<?xml version="1.0" ?>
<non_map_response>
<predefined_theme_list succeed="true">
 <predefined_theme name="THEME_DEMO_CITIES"/>
 <predefined_theme name="THEME_DEMO_BIGCITIES"/>
 <predefined_theme name="THEME_DEMO_COUNTIES"/>
 <predefined_theme name="THEME_DEMO_COUNTY_POPDENSITY"/>
 <predefined_theme name="THEME_DEMO_HIGHWAYS"/>
 <predefined_theme name="THEME_DEMO_STATES"/>
 <predefined_theme name="THEME_DEMO_STATES_LINE"/>
</predefined_theme_list>
</non_map_response>

Note that the order of names in the returned list is unpredictable.

7.4 Listing Styles (General-Purpose)
The <list_styles> element lists styles defined for a specified data source. It has the
following definition:

<!ELEMENT non_map_request list_styles>
<!ELEMENT list_styles EMPTY>
<!ATTLIST list_styles
 data_source CDATA #REQUIRED
 style_type (COLOR|LINE|MARKER|AREA|TEXT|ADVANCED) #IMPLIED
>

If you specify a value for style_type, only styles of that type are listed. The possible
types of styles are COLOR, LINE, MARKER, AREA, TEXT, and ADVANCED. If you do not
specify style_type, all styles of all types are listed.

The following example lists only styles of type COLOR:

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <list_styles data_source="mvdemo" style_type="COLOR"/>
</non_map_request>

The DTD for the response to a list_styles request has the following format:

<!ELEMENT non_map_response style_list>
<!ELEMENT style_list (style*) >
<!ATTLIST style_list
 succeed (true | false) #REQUIRED
>
<!ELEMENT style EMPTY>
<!ATTLIST style
 name CDATA #REQUIRED
>

The following example shows the response to a request for styles of type COLOR:

<?xml version="1.0" ?>
 <non_map_response>
 <style_list succeed="true">
 <style name="SCOTT:C.BLACK"/>
 <style name="SCOTT:C.BLACK GRAY"/>
 <style name="SCOTT:C.BLUE"/>

Listing Styles Used by a Predefined Theme (General-Purpose)

7-10 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 <style name="SCOTT:C.CRM_ADMIN_AREAS"/>
 <style name="SCOTT:C.CRM_AIRPORTS"/>
</style_list>
</non_map_response>

Each style name in the response has the form OWNER:NAME (for example,
SCOTT:C.BLACK), where OWNER is the schema user that owns the style.

7.5 Listing Styles Used by a Predefined Theme (General-Purpose)
The <list_theme_styles> element lists all the rendering styles that are referenced
in a predefined theme. This is particularly useful if you want to build a legend for a
theme yourself, where you need to know which styles are actually being used in that
theme. This element has the following definition:

<!ELEMENT non_map_request list_theme_styles>
<!ELEMENT list_theme_styles EMPTY>
<!ATTLIST list_styles
 data_source CDATA #REQUIRED
 theme CDATA #REQUIRED
>

The following example requests the styles used by the THEME_DEMO_STATES
predefined theme:

<non_map_request>
 <list_theme_styles data_source="mvdemo" theme="THEME_DEMO_STATES" />
</non_map_request>

The following example shows the response to the preceding request:

<non_map_response>
 <theme_style name="C.US MAP YELLOW" type="COLOR" render="true" label="false"
 highlight="false" description="Primary color for US maps."/>
 <theme_style name="T.STATE NAME" type="TEXT" render="false" label="true"
 highlight="false" description="name for states"/>
</non_map_response>

The DTD for the response to a list_theme_styles request has the following
format:

<!ELEMENT non_map_response (theme_style*)>
<!ELEMENT theme_style EMPTY>
<!ATTLIST theme_style
 name CDATA #REQUIRED
 type CDATA (COLOR|LINE|MARKER|AREA|TEXT|ADVANCED) #REQUIRED
 render CDATA (true|false) #REQUIRED
 label CDATA (true|false) #REQUIRED
 highlight CDATA (true|false) #REQUIRED
 description CDATA #IMPLIED
>

In the preceding DTD:

■ The name attribute identifies the name of the style.

■ The type attribute identifies the MapViewer style type.

■ The render attribute indicates whether or not the style is used as a rendering style
by the theme.

■ The label attribute indicates whether or not the style is used as a labeling style.

Managing In-Memory Caches

MapViewer XML Requests: Administrative and Other 7-11

■ The highlight attribute indicates whether or not the style is used as only a
highlight style.

■ The description attribute identifies the description as specified in the style
definition.

7.6 Managing In-Memory Caches
MapViewer uses two types of in-memory cache:

■ Metadata cache for mapping metadata, such as style, theme, and base map
definitions, and the SRID value for SDO_GEOMETRY columns in tables in the
cache

■ Spatial data cache for predefined themes (the geometric and image data used in
generating maps)

The use of these caches improves performance by preventing MapViewer from
accessing the database for the cached information; however, the MapViewer displays
might reflect outdated information if that information has changed in the database
since it was placed in the cache.

If you want to use the current information without restarting MapViewer, you can
clear (invalidate) the content of either or both of these caches. If a cache is cleared, the
next MapViewer request will retrieve the necessary information from the database,
and will also store it in the appropriate cache.

7.6.1 Clearing Metadata Cache for a Data Source (Administrative)
As users request maps from a data source, MapViewer caches such mapping metadata
as style, theme, and base map definitions for that data source, as well as the SRID
value for SDO_GEOMETRY columns in tables (such as when rendering a theme for
the first time). This prevents MapViewer from unnecessarily accessing the database to
fetch the mapping metadata. However, modifications to the mapping metadata, such
as those you make using the Map Builder tool, do not take effect until MapViewer is
restarted.

If you want to use the changed definitions without restarting MapViewer, you can
request that MapViewer clear (that is, remove from the cache) all cached mapping
metadata and cached table SRID values for a specified data source. Clearing the
metadata cache forces MapViewer to access the database for the current mapping
metadata.

The <clear_cache> element clears the MapViewer metadata cache. It has the
following definition:

<!ELEMENT non_map_request clear_cache>
<!ELEMENT clear_cache EMPTY>
<!ATTLIST clear_cache
 data_source CDATA #REQUIRED
>

The data_source attribute specifies the name of the data source whose metadata is
to be removed from the MapViewer metadata cache.

The following example clears the metadata for the mvdemo data source from the
MapViewer metadata cache:

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <clear_cache data_source="mvdemo"/>

Managing In-Memory Caches

7-12 Oracle Fusion Middleware User's Guide for Oracle MapViewer

</non_map_request>

The DTD for the response to a clear_cache request has the following format:

<!ELEMENT non_map_response clear_cache>
<!ELEMENT clear_cache EMPTY>
<!ATTLIST clear_cache
 succeed (true | false) #REQUIRED
>

For example:

<?xml version="1.0" ?>
<non_map_response>
 <clear_cache succeed="true"/>
</non_map_response>

7.6.2 Clearing Spatial Data Cache for a Theme (Administrative)
MapViewer caches spatial data (geometries or georeferenced images) for a predefined
theme as it loads the data from the database into memory for rendering, unless it is
told not to do so. (MapViewer does not cache the data for dynamic or JDBC themes.)
Thus, if a predefined theme has been frequently accessed, most of its data is probably
in the cache. However, if the spatial data for the theme is modified in the database, the
changes will not be visible on maps, because MapViewer is still using copies of the
data from the cache. To view the modified theme data without having to restart
MapViewer, you must first clear the cached data for that theme.

The <clear_theme_cache> element clears the cached data of a predefined theme. It
has the following definition:

<!ELEMENT non_map_request clear_theme_cache>
<!ELEMENT clear_theme_cache EMPTY>
<!ATTLIST clear_theme_cache
 data_source CDATA #REQUIRED
 theme CDATA #REQUIRED
>

The data_source attribute specifies the name of the data source. The theme
attribute specifies the name of the predefined theme in that data source.

The following example clears the cached spatial data for the predefined theme named
STATES in the mvdemo data source:

<?xml version="1.0" standalone="yes"?>
<non_map_request>
 <clear_theme_cache data_source="mvdemo" theme="STATES"/>
</non_map_request>

The DTD for the response to a clear_theme_cache request has the following
format:

<!ELEMENT non_map_response clear_theme_cache>
<!ELEMENT clear_theme_cache EMPTY>
<!ATTLIST clear_theme_cache
 succeed (true | false) #REQUIRED
>

For example:

<?xml version="1.0" ?>
<non_map_response>

Restarting the MapViewer Server (Administrative)

MapViewer XML Requests: Administrative and Other 7-13

 <clear_theme_cache succeed="true"/>
</non_map_response>

7.7 Editing the MapViewer Configuration File (Administrative)
The <edit_config_file> element lets you edit the MapViewer configuration file
(mapViewerConfig.xml). It has the following definition:

<!ELEMENT non_map_request edit_config_file>
<!ELEMENT edit_config_file EMPTY>

Specify the request as follows:

<?xml version="1.0" standalone="yes">
<non_map_request>
 <edit_config_file/>
</non_map_request>

After you submit the request, you are presented with an HTML form that contains the
current contents of the MapViewer configuration file. Edit the form to make changes
to the content, and click the Save button to commit the changes. However, the changes
will not take effect until you restart the MapViewer server (see Section 7.8).

7.8 Restarting the MapViewer Server (Administrative)
In general, the safest method for restarting the MapViewer server is to restart its
containing OC4J instance. However, if you are running MapViewer in a standalone
OC4J environment, or if the OC4J instance is not clustered and it has only one Java
process started, you can use the <restart> element to restart MapViewer quickly
without restarting the entire OC4J instance. The <restart> element has the
following definition:

<!ELEMENT non_map_request edit_config_file>
<!ELEMENT restart EMPTY>

Specify the request as follows:

<?xml version="1.0" standalone="yes">
<non_map_request>
 <restart/>
</non_map_request>

Note: Use the <edit_config_file> element only if you are
running MapViewer in the standalone OC4J environment or in a
nonclustered OC4J instance with only one process started. Otherwise,
the modifications that you make will be applied only to one
MapViewer instance, and inconsistencies may occur.

Restarting the MapViewer Server (Administrative)

7-14 Oracle Fusion Middleware User's Guide for Oracle MapViewer

8

Oracle Maps 8-1

8 Oracle Maps

Oracle Maps is the name for a suite of technologies for developing high-performance
interactive Web-based mapping applications. Oracle Maps is included with
MapViewer.

This chapter contains the following major sections:

■ Section 8.1, "Overview of Oracle Maps"

■ Section 8.2, "Map Tile Server"

■ Section 8.3, "Feature of Interest (FOI) Server"

■ Section 8.4, "Oracle Maps JavaScript API"

■ Section 8.5, "Developing Oracle Maps Applications"

■ Section 8.6, "Using Google Maps and Bing Maps"

■ Section 8.7, "Transforming Data to a Spherical Mercator Coordinate System"

■ Section 8.8, "Dynamically Displaying an External Tile Layer"

8.1 Overview of Oracle Maps
Oracle Maps consists of the following main components:

■ A map tile server that caches and serves pregenerated map image tiles

■ A feature of interest (FOI) server that renders geospatial features that are managed
by Oracle Spatial

■ An Ajax-based JavaScript mapping client. (Ajax is an acronym for asynchronous
JavaScript and XML.) This client provides functions for browsing and interacting
with maps, as well as a flexible application programming interface (API).

The map tile server (map image caching engine) automatically fetches and caches map
image tiles rendered by Oracle MapViewer or other Web-enabled map providers. It
also serves cached map image tiles to the clients, which are Web applications
developed using the Oracle Maps client API. The clients can then automatically stitch
multiple map image tiles into a seamless large map. Because the map image tiles are
pregenerated and cached, the application users will experience fast map viewing
performance.

The feature of interest (FOI) server (rendering engine) renders spatial feature layers
managed by Oracle Spatial, as well as individual geospatial features of point, line, or
polygon type that are created by an application. Such FOIs, which typically include
both an image to be rendered and a set of associated attribute data, are then sent to the
client where a user can interact with them. Unlike the cached image tiles, which

Overview of Oracle Maps

8-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

typically represent static content, FOIs are dynamic and represent real-time database
or application contents. The dynamic FOIs and the static cached map tiles enable you
to build Web mapping applications.

The JavaScript mapping client is a browser side map display engine that fetches map
content from the servers and presents it to client applications. It also provides
customizable map-related user interaction control, such as map dragging and clicking,
for the application. The JavaScript mapping client can be easily integrated with any
Web application or portal.

8.1.1 Architecture for Oracle Maps Applications
Figure 8–1 shows the architecture of Web mapping applications that are developed
using Oracle Maps.

Figure 8–1 Architecture for Oracle Maps Applications

Referring to Figure 8–1, applications interact with the Oracle Maps architecture as
follows:

■ The application is developed using JavaScript, and it runs inside the JavaScript
engine of the Web browser.

■ The application invokes the JavaScript map client to fetch the map image tiles
from the map tile server, and then it displays the map in the Web browser.

■ The application invokes the JavaScript map client to fetch dynamic spatial features
from the FOI server and display them on top of the map tiles.

MapViewer

Database

JDBC

HTTP

Map Rendering Engine

Spatial or Locator

Web Browser
(JavaScript Engine)

JavaScript Map Client

JavaScript API

Web Mapping Application External Map
Provider

Map Tile Server FOI ServerAdapter

Overview of Oracle Maps

Oracle Maps 8-3

■ The JavaScript map client controls map-related user interaction for the application.

■ When the map tile server receives a map image tile request, it first checks to see if
the requested tile is already cached. If the tile is cached, the cached tile is returned
to the client. If the tile is not cached, the map tile server fetches the tile into the
cache and returns it to the client. Tiles can be fetched either directly from the
MapViewer map rendering engine or from an external Web map services provider.

■ When the FOI server receives a request, it uses the MapViewer map rendering
engine to generate the feature images and to send these images, along with feature
attributes, to the client.

8.1.2 Simple Example Using Oracle Maps
Figure 8–2 shows the interface of a simple application created using Oracle Maps. This
example is shipped with MapViewer, and can be accessed at
http://host:port/mapviewer/fsmc/sampleApp.html. To run this application,
follow the instructions in
http://host:port/mapviewer/fsmc/tutorial/setup.html to set up the
database schema and the necessary map tile layers.

Overview of Oracle Maps

8-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Figure 8–2 Application Created Using Oracle Maps

The application shown in Figure 8–2 displays customers on the map. The map consists
of two layers:

■ The map tile layer displays the ocean, county boundaries, cities, and highways.
The whole map tile layer displayed in the Web browser consists of multiple map
image tiles that are rendered by the map tile server.

■ The FOI layer displays customers as red dot markers on top of the map tile layer. If
the user clicks on the marker for a customer, an information window is displayed
showing some attributes for that customer. The customer markers and attributes
are rendered by the FOI server.

In addition to these two layers, a scale bar is displayed in the lower-left corner of the
map, and a navigation panel is displayed in the upper-right corner.

Overview of Oracle Maps

Oracle Maps 8-5

The application user can use the mouse to drag the map. When this happens, new
image tiles and FOIs are automatically fetched for the spatial region that the map
currently covers. The user can also use the built-in map navigation tool to pan and
zoom the image, and can show or hide the customers (red dot markers) by checking or
unchecking the Show customers box.

Example 8–1 shows the complete source code for the simple application shown in
Figure 8–2.

Example 8–1 Source Code for the Simple Application

<html>
<head>
<META http-equiv="Content-Type" content="text/html" charset=UTF-8">
<TITLE>A sample Oracle Maps Application</TITLE>
<script language="Javascript" src="jslib/loadscript.js"></script>
<script language=javascript>
var themebasedfoi=null
function on_load_mapview()
{
 var baseURL = "http://"+document.location.host+"/mapviewer";
 // Create an MVMapView instance to display the map
 var mapview = new MVMapView(document.getElementById("map"), baseURL);
 // Add a map tile layer as background.
 mapview.addMapTileLayer(new MVMapTileLayer("mvdemo.demo_map"));
 // Add a theme-based FOI layer to display customers on the map
 themebasedfoi = new MVThemeBasedFOI('themebasedfoi1','mvdemo.customers');
 themebasedfoi.setBringToTopOnMouseOver(true);
 mapview.addThemeBasedFOI(themebasedfoi);
 // Set the initial map center and zoom level
 mapview.setCenter(MVSdoGeometry.createPoint(-122.45,37.7706,8307));
 mapview.setZoomLevel(4);
 // Add a navigation panel on the right side of the map
 mapview.addNavigationPanel('east');
 // Add a scale bar
 mapview.addScaleBar();
 // Display the map.
 mapview.display();
}
function setLayerVisible(checkBox)
{
 // Show the theme-based FOI layer if the check box is checked and
 // hide the theme-based FOI layer otherwise.
 if(checkBox.checked)
 themebasedfoi.setVisible(true) ;
 else
 themebasedfoi.setVisible(false);
}
</script>
</head>
<body onload= javascript:on_load_mapview() >
<h2> A sample Oracle Maps Application</h2>
<INPUT TYPE="checkbox" onclick="setLayerVisible(this)" checked/>Show customers
<div id="map" style="width: 600px; height: 500px"></div>
</body>
</html>

The components of this sample application and the process for creating a client
application are described in Section 8.5.3.

Overview of Oracle Maps

8-6 Oracle Fusion Middleware User's Guide for Oracle MapViewer

8.1.3 How Map Content Is Organized
This section describes how the JavaScript client internally organizes various map
contents when displayed a map inside a Web browser. An application typically places
one master HTML DIV object on a Web page, and the JavaScript client adds various
content layers inside this DIV object.

The map content displayed by the map client is organized by layers. When the
application script invokes appropriate map client API, map layers are created inside a
map container. The map container is a user-defined HTML DIV object. You can
customize the size and the positioning of the map container inside the Web page.
Figure 8–3 shows the layout of the map layers.

Figure 8–3 Layers in a Map

As shown in Figure 8–3, there are five different types of map content layers: map tiles,
theme-based FOI, user-defined FOI or redline, information window, and fixed figures.
All layers except the fixed figures layer are moved as a whole when the user drags the
map. These movable layers are automatically updated by the map client when the map
is dragged or zoomed. (The fixed figures layer is never moved.).

8.1.3.1 Map Tile Layers
A typical Oracle Maps application has at least one map tile layer, which assembles and
displays pregenerated map image tiles from the map tile server. The map tile layer
displays static map content that does not change very often, and it is typically used as
the background map by the client application. For example, in the sample application
described in Section 8.1.2 and illustrated in Figure 8–2, the ocean, county boundaries,
cities, and highways are all displayed as a map tile layer. Only limited user interaction,
such as map dragging, can be performed with a map tile layer.

Map Tile Layer(s)

Theme-Based
FOI Layer(s)

User-Defined FOI and
Redline Layer(s)

Information Window
Layer

Fixed Figures
Layer

Map Container HTML DIV Object

Overview of Oracle Maps

Oracle Maps 8-7

A map tile layer is usually associated with a MapViewer base map, and is managed by
the MapViewer server. However, you can configure a map tile layer to cache map
image tiles served by an external (non-MapViewer) map provider.

The Oracle Maps client can also display a custom or built-in external tile layer served
directly by an external tile server. The built-in Google Maps and Microsoft Bing Maps
tile layers are examples. For more information, see Section 8.6, "Using Google Maps
and Bing Maps" and the JavaScript API documentation for class
MVGoogleTileLayer and MVBingTileLayer. (If you need to overlay your own
spatial data on top of the Google Maps or Bing Maps tile layer, see also Section 8.7,
"Transforming Data to a Spherical Mercator Coordinate System".)

Map tile layers are always placed at the bottom of the layer hierarchy. These layers
display static and background map contents. When multiple such layers are included,
they must all have the same coordinate system and zoom level definitions.

Internally, the map tile layers are usually larger than the size of the map DIV container
window. This allows additional tiles to be fetched and cached by the browser. As a
result, these tiles will be immediately visible when the map layers are dragged around
by the user.

8.1.3.2 Theme-Based FOI Layers
There can be one or more theme-based FOI layers. Each theme-based FOI layer
consists of a collection of interactive FOIs that meet certain query criteria defined in a
MapViewer predefined theme. FOIs can be points, lines, or polygons. For example, all
stores with a sales volume greater than $100,000 can be displayed as a point
theme-based FOI layer.

Users can interact with the FOIs by moving the mouse over them or clicking on them.
The application can customize how the map client reacts to such user interaction.

All features (geographic and non-geographic) of a theme-based FOI layer are stored in
the database. Features are queried and rendered by the FOI server when client
applications request them. The query window for the theme-based FOI layers can be
customized to be larger than the map DIV window, so that it gives some extra room
for dragging the map without refreshing the theme-based FOI layers from server. For
more information about theme-based FOI layers, see Section 8.3.1.

8.1.3.3 User-Defined FOI Layers
A user-defined FOI is an interactive feature defined on the client side. The FOI can be a
point, line, or polygon feature. Users can interact with a user-defined FOIs in the same
way they can with a theme-based FOIs. However, in contrast with a theme-based FOI
layer which is rendered as a collection of features, each user-defined FOI is requested
and rendered individually. All attributes of the user-defined FOI, including the
geometry representation and rendering style, must be provided by the application. For
example, a route geometry based on user specified start and end addresses should be
displayed as a user-defined line FOI on the map.

The handling of user-defined FOI layers depends on Web browser in which the
application is running:

■ With Microsoft Internet Explorer, all user-defined individual FOIs added by the
application are placed inside a layer directly above the theme-based FOI layers.
There can be at most one such layer.

■ With Opera and Mozilla-based browsers such as Netscape and Firefox, all
user-defined individual FOIs are placed inside two layers, one for point features

Map Tile Server

8-8 Oracle Fusion Middleware User's Guide for Oracle MapViewer

and the other for non-point features such as polylines and polygons. The
non-point feature layer is placed under the point feature layer.

8.1.3.4 Information Window Layer
An information window is a small pop-up window that displays customizable content
in the map. All information windows, when displayed, are placed inside a layer
directly above the user-defined individual FOI layer or layers. There can be at most
one information window layer.

8.1.3.5 Fixed Figures Layer
The topmost layer contains any fixed figures, which are immovable elements such as
copyright notes, a scale bar, a navigation panel, and user-defined map decoration
features. (A user-defined map decoration feature is an application defined element
that can contain any custom HTML content, such as a map title or a custom control
button.) The fixed figures layer is displayed on top of everything else, and it is not
moved when the user drags the map.

8.2 Map Tile Server
The map tile server is a map image caching engine that caches and serves
pregenerated, fixed-size map image tiles. It is implemented as a Java servlet that is
part of the MapViewer server. The map tile server accepts requests that ask for map
image tiles specified by tile zoom level and tile location (mesh code), and it sends the
requested tiles back to clients.

Figure 8–4 shows the basic workflow of the map tile server.

Figure 8–4 Workflow of the Map Tile Server

Receive request
 for a map tile

Search for the tile
in the cache

storage system

Is the tile
cached?

Fetch the tile

Save the tile
in cache

Send the tile to the client

No

Yes

Map Tile Server

Oracle Maps 8-9

As shown in Figure 8–4, when the map tile server receives a request for a map tile, it
searches for the tile in the cache storage system. If the tile is cached, the map tile server
sends the tile to the client. If the tile is not cached, the map tile server fetches the tile,
saves in the cache, and sends it to the client.

You can use the MapViewer administration tool to manage the map tile server.

8.2.1 Map Tile Server Concepts
This section explains map tile server concepts that you need to know to be able to use
Oracle Maps effectively.

8.2.1.1 Map Tile Layers and Map Tile Sources
All map tile layers are managed by the map tile server. The map tile server fetches and
stores the map image tiles that belong to the map tile layer and returns map image
tiles to the client. The map tile server can manage multiple map tile layers.

Each map tile layer can have multiple predefined zoom levels. Each zoom level is
assigned a zoom level number ranging from 0 to n-1, where n is the total number of
zoom levels. Zoom level 0 is the most zoomed out level and zoom level n-1 is the most
zoomed in level.

The map is evenly divided into same-sized small map image tiles on each zoom level.
Clients specify a map tile by its zoom level and tile mesh code.

A map tile layer can come from two different types of sources:

■ Internal MapViewer base maps rendered by the MapViewer map rendering
engine. A MapViewer base map consists of a set of predefined themes and must be
predefined in the database view USER_SDO_MAPS.

■ Maps rendered by an external Web map services providers. An external Web map
services provider is a server that renders and serves maps upon client requests
over the web. If you properly configure an adapter that can fetch maps from the
external map services provider, the map tile server can fetch and cache map tiles
generated by the external map services provider. (A MapViewer instance other
than the MapViewer inside which the map tile server is running is also considered
an external map services provider.)

8.2.1.2 Storage of Map Image Tiles
Oracle Maps uses the local file system to store cached image tiles. You can customize
the path that is used for this storage as part of the map tile server configuration
settings.

8.2.1.3 Coordinate System for Map Tiles
Map images are cached and managed by the map tile server as small same-size
rectangular image tiles. Currently we support tiling on any two-dimensional Cartesian
coordinate system. A geodetic coordinate system can also be supported when it is
mapped as if it is a Cartesian coordinate system, where longitude and latitude are
treated simply as two perpendicular axes, as shown in Figure 8–5.

Map Tile Server

8-10 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Figure 8–5 Tiling with a Longitude/Latitude Coordinate System

On each zoom level, the map tiles are created by equally dividing the whole map
coordinate system along the two dimensions (X and Y, which inFigure 8–5 represent
latitude and longitude). The map tile server needs this dimensional information of the
map coordinate system in order to create map image tiles, and therefore you must
include this information in the map tile layer configuration settings.

The whole map coordinate system can be represented by a rectangle, and its boundary
is specified by (Xmin, Ymin) and (Xmax, Ymax), where Xmin is the minimum X value
allowed in the coordinate system, Ymin is the minimum Y value allowed, Xmax is the
maximum X value allowed and Ymax is the maximum Y value allowed. In Figure 8–5,
Xmin is –180, Ymin is –90, Xmax is 180, and Ymax is 90.

You must also specify the spatial referencing ID (SRID) of the coordinate system to
enable the map tile server to calculate map scales.

8.2.1.4 Tile Mesh Codes
Each map tile is specified by a mesh code, which is defined as a pair of integers (Mx,
My), where Mx specifies the X dimension index of the tile and My specifies the Y
dimension index of the tile. If the tile is the ith tile on X dimension starting from Xmin,
then Mx should be i-1. If the tile is the jth tile on Y dimension starting from Ymin, then
My should be j-1. Figure 8–6 shows the mesh codes of the tiles on a map.

Map Tile Server

Oracle Maps 8-11

Figure 8–6 Tile Mesh Codes

The JavaScript map client automatically calculates which tiles it needs for displaying
the map in the Web browser, and it sends requests with the mesh codes to the server.
Mesh codes are transparent to the application, and application developers do not need
to deal with mesh codes directly.

8.2.1.5 Tiling Rules
You must create tiling rules that determine how the map is divided and how tiles are
created. The map tile server uses these tiling rules to divide the map into small map
image tiles that are stored in the tile storage system. These rules are also used by the
JavaScript map client.

Because all tiles on a given zoom level are the same size, the map tile server needs to
know the following information to perform the tile division:

■ The map tile image size (width and height), specified in screen pixels. This is the
physical size of the tile images.

■ The tile size specified according to the map coordinate system. For example, if the
map uses a geodetic coordinate system, the tile width and height should be
defined in degrees. The size can be specified either explicitly by tile width and
height or implicitly by map scale. (Map scale, combined with tile image size, can
be used to derive the tile width and height according to the map coordinate
system.)

The preceding information constitutes the tiling rule for a given zoom level. Each
zoom level must have its own tiling rule. You must define the tiling rules when you
specify the configuration settings for the map tile server, as described in Section 8.2.2.

8.2.2 Map Tile Server Configuration
Map tile server configuration settings are stored in local configuration files and in
database views. You can customize these settings.

Xmin,Ymin

0,3 1,3

1,2

1,1

2,2

2,0

3,3

2,1

2,3

0,0 1,0

0,2

0,1

3,2

3,1

3,0 4,0

4,1

4,2

4,3

Xmax,Ymax
Y

X

Map Tile Server

8-12 Oracle Fusion Middleware User's Guide for Oracle MapViewer

8.2.2.1 Global Map Tile Server Configuration
Global map tile server settings, such as logging options and the default cache storage
directory, are stored in the MapViewer configuration file mapViewerConfig.xml,
which is under the directory $MAPVIEWER_HOME/web/WEB-INF/conf.

The map tile server configuration settings are defined in element <map_tile_
server> inside the top-level <mapperConfig> element, as shown in the following
example:

<map_tile_server>
 <tile_storage default_root_path="/scratch/tilecache/"/>
</map_tile_server>

The <tile_storage> element specifies the map tiles storage settings. The default_
root_path attribute specifies the default file system directory under which the
cached tile images are to be stored. If the default root directory is not set or not valid,
the default root directory is $MAPVIEWER_HOME/web/tilecache. A subdirectory
under this directory will be created and used for a map tile layer if the map tile layer
configuration does not specify the map tiles storage directory for itself. The name of
the subdirectory will be the same as the name of the map tile layer.

8.2.2.2 Map Tile Layer Configuration
The configuration settings for a map tile layer are stored in the USER_SDO_CACHED_
MAPS metadata view. You should normally not manipulate this view directly, but
should instead use the MapViewer administration tool, which uses this view to
configure map tile layers.

Each database user (schema) has its own USER_SDO_CACHED_MAPS view. Each
entry in this view stores the configuration settings for one map tile layer. If the map
tile layer is based on an internal MapViewer base map, the base map associated with
the map tile layer must be defined in the same database schema where the map tile
layer configuration settings are stored.

The map tile server obtains the map source configuration by querying the USER_
SDO_CACHED_MAPS view using the database connections specified by MapViewer
data sources. This happens when the map tile server is started or a new data source is
added to MapViewer as the result of a MapViewer administration request.

The USER_SDO_CACHED_MAPS view has the columns listed in Table 8–1.

Table 8–1 USER_SDO_CACHED_MAPS View

Column Name Data Type Description

NAME VARCHAR2 Unique name of the cached map source

DESCRIPTION VARCHAR2 Optional descriptive text about the cached map source

TILES_TABLE VARCHAR2 (Not currently used)

IS_ONLINE VARCHAR2 YES if the map tile layer is online, or NO if the map tile
layer is offline. When a tile is missing from the cache and
the map tile layer is online, the map tile server will fetch
the tile and return the fetched tile to the client. When a tile
is missing and the map tile layer is offline, the map tile
server will not fetch the tile but will return a blank image
to the client.

IS_INTERNAL VARCHAR2 YES if the map source is an internal map source, or NO if
the map source is an external map source

Map Tile Server

Oracle Maps 8-13

For the DEFINITION column, the map source definition has the following general
format:

 <map_tile_layer
 name = “map tile layer name”
 image_format ="tile-image-format">
 <internal_map_source
 data_source=”name-of-data-source”
 base_map="name-of-MapViewer-base-map"
 bgcolor="base-map-background-color"
 antialias=”whether-to-turn-on-antialiasing”
 />
 </internal_map_source>
 <external_map_source
 url="external-map-service-url"
 adapter_class="name-of-adapter-class"
 proxy_host=" proxy-server-host "
 proxy_port="proxy-server-port"
 timeout="request-timeout"
 request_method="http-request-method: 'GET'|'POST'">
 <properties>
 <property name="property-name" value="property-value"/>
 …
 </properties>
 </external_map_source>
 <tile_storage
 root_path="disk-path-of-cache-root-directory"
 </tile_storage>
 <coordinate_system
 srid="coordinate-system-srid"
 minX="minimum-allowed-X-value"
 maxX="maximum-allowed-X-value"
 minY="minimum-allowed-Y-value"
 maxY="maximum-allowed-Y-value">
 </coordinate_system>
 <tile_image
 width="tile-image-width-in-screen-pixels"
 height="tile-image-height-in-screen-pixels" >
 </tile_image>
 <tile_bound>
 <coordinates> … </coordinates>
 </tile_bound>
 <zoom_levels
 levels="number-of-zoom-levels"
 min_scale="map-scale-at-highest-zoom-level"
 max_scale="map-scale-at-lowest-zoom-level"
 min_tile_width="tile-width-specified-in-map-data-units-at-
 highest-zoom-level"

DEFINITION CLOB XML definition of the map tile layer, as described later in
this section.

BASE_MAP VARCHAR2 Name of the cached MapViewer base map, if the map
source is an internal map source

MAP_
ADAPTER

BLOB The jar file that contains the adapter Java classes of the
external map services provider, as described later in this
section.

Table 8–1 (Cont.) USER_SDO_CACHED_MAPS View

Column Name Data Type Description

Map Tile Server

8-14 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 max_tile_width="tile-width-specified-in-map-data-units-at-
 lowest-zoom-level">
 <zoom_level
 description="zoom-level-description"
 level_name="zoom-level-name"
 scale="map-scale-of-zoom-level"
 tile_width ="tile-width-specified-in-map-data-units"
 tile_height ="tile-height-specified-in-map-data-units">
 <tile_bound>
 <coordinates> … </coordinates>
 </tile_bound>
 </zoom_level>
 …
 </zoom_levels>
 </map_tile_layer>

The DTD of the map tile layer definition XML is listed in Section A.9.

Example 8–2 shows the XML definition of an internal map tile layer, and Example 8–3
shows the XML definition of an external map tile layer. Explanations of the <map_
tile_layer> element and its subelements follow these examples.

Example 8–2 XML Definition of an Internal Map Tile Layer

<?xml version = '1.0'?>
<!-- XML definition of an internal map tile layer.
-->
 <map_tile_layer image_format="PNG">
 <internal_map_source base_map="demo_map"/>
 <tile_storage root_path="/scratch/mapcache/"/>
 <coordinate_system
 srid="8307"
 minX="-180" maxX="180"
 minY="-90" maxY="90"/>
 <tile_image width="250" height="250"/>
 <zoom_levels>
 <zoom_level description="continent level" scale="10000000"/>
 <zoom_level description="country level" scale="3000000"/>
 <zoom_level description="state level" scale="1000000"/>
 <zoom_level description="county level" scale="300000"/>
 <zoom_level description="city level" scale="100000"/>
 <zoom_level description="street level" scale="30000"/>
 <zoom_level description="local street level" scale="10000"/>
 </zoom_levels>
 </map_tile_layer>

Example 8–3 XML Definition of an External Map Tile Layer

<?xml version = '1.0'?>
<!-- XML definition of an external map tile layer.
-->
 <map_tile_layer image_format="PNG">
 <external_map_source
 url="http://elocation.oracle.com/elocation/lbs"
 adapter_class="mcsadapter.MVAdapter">
 <properties>
 <property name="data_source" value="elocation"/>
 <property name="base_map" value="us_base_map"/>
 </properties>
 </external_map_source>
 <tile_storage root_path="/scratch/mapcache"/>

Map Tile Server

Oracle Maps 8-15

 <coordinate_system
 srid="8307"
 minX="-180" maxX="180"
 minY="-90" maxY="90"/>
 <tile_image width="250" height="250"/>
 <!—
 The following <zoom_levels> element does not have any
 <zoom_level> element inside it. But since it has its levels,
 min_scale and max_scale attributes set, map tile server will
 automatically generate the <zoom_level> elements for the 10
 zoom levels.
 -->
 <zoom_levels levels="10" min_scale="5000" max_scale="10000000" />
 </map_tile_layer>

The top-level element is <map_tile_layer>. The image_format attribute specifies
the tile image format; the currently supported values for this attribute are PNG, GIF,
and JPG. PNG and GIF images are generally better for vector base maps, while JPG
images are generally better for raster maps, such as satellite imagery, because of a
better compression ratio. Currently, only tile images in PNG format can have
transparent background.

The <internal_map_source> element is required only if the map tiles are rendered
by the local MapViewer instance. The base_map attribute is required and specifies the
predefined MapViewer base map that is cached by the map tile server; its value should
match an entry in the BASE_MAP column in the USER_SDO_CACHED_MAPS view.
The bgcolor attribute is optional and specifies the background color of the map. If the
value of this attribute is set to NONE, the background will be transparent. (Currently
MapViewer can only render transparent PNG map tiles.)

The <external_map_source> element is required only if the map tiles are rendered
by an external map services provider. This element has the following attributes:

■ The url attribute is required and specifies the map service URL from which the
map tiles can be fetched (for example,
http://myhost/mapviewer/omserver).

■ The adapter_class attribute is required and specifies the full name of the map
adapter class, including the package names (for example,
mcsadapter.MVAdapter).

■ The proxy_host and proxy_port attributes are needed only if the external map
provider server must be accessed through a proxy server; these attributes specify
the host name and port number, respectively, of the proxy server. If proxy_host
is specified as NONE, all map tile requests will be sent directly to the remote server
without going through any proxy server. If proxy_host is omitted or specifies an
empty string, the global MapViewer proxy setting defined in the
mapViewerConfig.xml file will be used when map tile requests are sent.

■ The timeout attribute is optional and specifies the number of milliseconds for
which the map tile server must wait for an external map tile image before giving
up the attempt. The default timeout value is 15000.

■ The request_method attribute is optional and the HTTP request method for
sending map tile requests; its value can be POST (the default) or GET.

The <properties> element in the <external_map_source> element can include
multiple <property> elements, each of which specifies a user-defined parameter for
use by the map adapter when it fetches map tiles. The same map source adapter can
use different set of parameters to fetch different map tile layers. For example, the

Map Tile Server

8-16 Oracle Fusion Middleware User's Guide for Oracle MapViewer

sample MapViewer adapter mcsadapter.MVAdapter shipped with MapViewer
accepts parameters defined as follows:

<properties>
 <property name="data_source" value="elocation"/>
 <property name="base_map" value="us_base_map"/>
</properties>

However, by changing the value attribute values, you can use this adapter to fetch a
different base map from the same data source or a different data source.

The <tile_storage> element specifies storage settings for the map tile layer. The
optional root_path attribute specifies the file system directory to be used as the root
directory of the tile storage. If this attribute is omitted or invalid, the default root
directory defined in the mapViewerConfig.xml file is used.

The <coordinate_system> element specifies the map coordinate system, and it has
several required attributes. The srid attribute specifies the spatial reference ID of the
coordinate system. The minX attribute specifies the lower bound of the X dimension;
the minY attribute specifies the lower bound of the Y dimension; the maxX attribute
specifies the upper bound of the X dimension; and the maxY attribute specifies the
upper bound of the Y dimension. For the standard longitude/latitude (WGS 84)
coordinate system, the srid value is 8307; and the minX, minY, maxX, and maxY
values are -180, -90, 180, and 90, respectively.

For an internal map tile layer, the map coordinate system can be different from the
data coordinate system. If the two are different, the map tile server transforms the map
data into the coordinate system defined in the <coordinate_system> element and
renders map tile images using this coordinate system.

The <tile_image> element specifies the tile image size settings, and it has the
following required attributes: width specifies the width of the tile images in screen
pixels, and height specifies the height of the tile images in screen pixels.

The optional <tile_bound> element specifies the bounding box of the cached map
tiles. The map tile server only fetches tiles inside this box, and returns a blank tile if the
requested tile is outside this box. The bounding box is specified by a rectangle in the
map data coordinate system. The rectangle is specified by a <coordinates> element
in the following format:

<coordinates>minX, minY, maxX, maxY</coordinates>

The default cache bounding box is the same bounding box specified in the
<coordinate_system> element.

The <zoom_levels> element specifies the predefined zoom levels. Only image tiles
at predefined zoom levels will be cached and served by the map tile server. The
<zoom_levels> element can have multiple <zoom_level> elements, each of which
specifies one predefined zoom level. If there are no <zoom_level> elements, the map
tile server automatically generates the <zoom_level> elements by using the
following attributes inside the <zoom_levels> element. (These attributes can be
omitted and will be ignored if any <zoom_level> elements exist.)

■ levels specifies the total number of zoom levels.

■ min_scale specifies the scale of map images at the highest (zoomed in the most)
zoom level.

■ max_scale specifies the scale of map images at the lowest (zoomed out the most)
zoom level.

Map Tile Server

Oracle Maps 8-17

■ min_tile_width specifies the width of map tiles at the highest zoom level. The
width is specified in map data units.

■ max_tile_width specifies the width of the map tiles at the lowest zoom level. The
width is specified in map data units.

For the map tile server to be able to generate the definitions of individual zoom levels
automatically, you must specify either of the following combinations of the preceding
attributes:

■ levels, min_scale, and max_scale

■ levels, min_tile_width, and max_tile_width

When the zoom levels are defined this way, the map tile server automatically derives
the definition of all the individual zoom levels and updates the XML definition with
the <zoom_level> elements generated for the zoom levels. You can then make
adjustments to each zoom level if you want.

Each zoom level is assigned a zoom level number by the map tile server based on the
order in which the zoom levels are defined. The first zoom level defined in the <zoom_
levels> element is zoom level 0, the second zoom level is zoom level 1, and so on.
These zoom level numbers are used in the tile requests to refer to the predefined zoom
levels.

The <zoom_level> element specifies a predefined zoom level, and it has several
attributes. The description attribute is optional and specifies the text description of
the zoom level. The level_name attribute is optional and specifies the name of the
zoom level. The scale attribute specifies the map scale of the zoom level; it is
required if the attributes tile_width and tile_height are not defined. The tile_
width and tile_height attributes specify the tile width and height, respectively, in
map data units. The fetch_larger_tiles attribute is optional and specifies
whether to fetch larger map images instead of the small map image tiles; a value of
TRUE (the default) means that larger map images that may consist multiple map tiles
will be fetched and broken into small map image tiles, which might save network
round trips between the map tile server and the map services provider.

In the <zoom_level> element, you must specify either the scale attribute or both
the tile_width and tile_height elements.

The <tile_bound> element within the <zoom_level> element optionally specifies
the bounding box of the cached map tiles for the zoom level. The map tile server only
fetches tiles inside this box, and returns a blank tile if the requested tile is outside this
box. The bounding box is specified by a rectangle specified in map data coordinate
system. The rectangle is specified by a <coordinates> element (explained earlier in
this section) If you specify the <tile_bound> element within the <zoom_level>
element, it overrides the overall cache bounding box settings specified by the <tile_
bound> element that is above it in the XML hierarchy.

8.2.3 External Map Source Adapter
An external map source adapter is the interface between a map tile server and an
external map services provider. When a map image tile needs to be fetched from the
external map services provider, the map tile server calls the adapter with information
about the zoom level, size, and location of the tile. The adapter then constructs a
provider-specific request, sends the request to the external map services provider, and
return the resulting image tile to the map tile server.

Map Tile Server

8-18 Oracle Fusion Middleware User's Guide for Oracle MapViewer

The external map source adapter is a Java class that must extends the abstract Java
class oracle.mapviewer.share.mapcache.MapSourceAdapter, which is
defined as follows:

public abstract class MapSourceAdapter
{
 public abstract String getMapTileRequest(TileDefinition tile);
 public byte[] getTileImageBytes(TileDefinition tile) ;
 public Properties getProperties() ;
}

An adapter that extends this class must implement the following method:

■ public String getMapTileRequest(TileDefinition tile)

This method should implement the logic to construct the HTTP request string that
can be sent to the map services provider to fetch the map image tile. For example,
if the URL of a map tile is
http://myhost/mymapserver?par1=v1&par2=v2&par3=v3, the HTTP
request string returned by this method should be par1_v1&par2=v2&par3=v3.

When the map tile server cannot find a specific map tile, it calls the
getTileImageBytes method to fetch the binary data of the tile image, and that
method calls the getMapTileRequest method to construct the map tile request
before fetching the tile. The getMapTileRequest method takes one parameter: a
TileDefinition object that specifies the zoom level, bounding box, image size
and image format of the requested tile. This method returns the HTTP request
string.

The map source adapter also inherits all methods implemented in class
MapSourceAdapter. Among them, the following methods are more important than
the others:

■ public byte[] getTileImageBytes(TileDefinition tile)

This method fetches the actual binary map tile image data from the external map
service provider. This method is already implemented. It calls the abstract method
getMapTileRequest to construct the map tile request and sends the request to
the external map services provider. If the map tiles cannot be fetched by sending
HTTP requests, you can override this method to implement the appropriate logic
to fetch an image tile from the map source. This method takes one parameter: a
TileDefinition object that specifies the zoom level, bounding box, image size,
and image format of the requested tile. This method returns the binary tile image
data encoded in the image format specified in the map tile layer configuration
settings.

■ public Properties getProperties()

This method returns the provider-specific parameters defined in the map tile layer
configuration settings explained in Section 8.2.2.2.

The MapSourceAdapter and TileDefinition classes are packaged inside
mvclient.jar, which can be found under the directory $MAPVIEWER_
HOME/web/WEB/lib.

Example 8–4 shows an external map source adapter.

Example 8–4 External Map Source Adapter

/**
 * This is a sample map source adapter that can be used to fetch map
 * tiles from a MapViewer instance.

Map Tile Server

Oracle Maps 8-19

 */
package mcsadapter ;

import java.awt.Dimension;
import java.net.URL;
import java.util.Properties;
import oracle.lbs.mapclient.MapViewer;
import oracle.lbs.mapcommon.MapResponse;
import oracle.mapviewer.share.mapcache.*;

/**
 * The map source adapter must extend class
 * oracle.lbs.mapcache.cache.MapSourceAdapter.
 */

public class MVAdapter extends MapSourceAdapter
{
 /**
 * Gets the map tile request string that is to be sent to the map
 * service provider URL.
 * @param tile tile definition
 * @return request string
 */
 public String getMapTileRequest(TileDefinition tile)
 {
 // Get map source specified parameters
 Properties props = this.getProperties() ;
 String dataSource = props.getProperty("data_source") ;
 String baseMap = props.getProperty("base_map") ;
 // Use oracle.lbs.mapclient.MapViewer to construct the request string
 MapViewer mv = new MapViewer(this.getMapServiceURL()) ;
 mv.setDataSourceName(dataSource);
 mv.setBaseMapName(baseMap);
 mv.setDeviceSize(new Dimension(tile.getImageWidth(),
 tile.getImageHeight()));
 mv.setCenterAndSize(tile.getBoundingBox().getCenterX(),
 tile.getBoundingBox().getCenterY(),
 tile.getBoundingBox().getHeight());
 int format = MapResponse.FORMAT_PNG_STREAM ;
 String req = null ;
 switch(tile.getImageFormat())
 {
 case TileDefinition.FORMAT_GIF:
 mv.setImageFormat(MapResponse.FORMAT_GIF_URL);
 req = mv.getMapRequest().toXMLString().replaceFirst(
 "format=\"GIF_URL\"", "format=\"GIF_STREAM\"") ;
 break ;
 case TileDefinition.FORMAT_PNG:
 mv.setImageFormat(MapResponse.FORMAT_PNG_URL);
 req = mv.getMapRequest().toXMLString().replaceFirst(
 "format=\"PNG_URL\"", "format=\"PNG_STREAM\"") ;
 break ;
 case TileDefinition.FORMAT_JPEG:
 mv.setImageFormat(MapResponse.FORMAT_JPEG_URL);
 req = mv.getMapRequest().toXMLString().replaceFirst(
 "format=\"JPEG_URL\"", "format=\"JPEG_STREAM\"");
 break ;
 }

 byte[] reqStr = null ;

Map Tile Server

8-20 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 try
 {
 reqStr = req.getBytes("UTF8") ;
 }
 catch(Exception e)
 {}
 // Return the request string.
 return "xml_request="+ new String(reqStr);
 }
}

Example 8–5 shows the implementation of the
MapSourceAdapter.getTileImageBytes method.

Example 8–5 MapSourceAdapter.getTileImageBytes Implementation

/**
 * Fetches the map image tile from the external map service provider by
 * sending the HTTP map tile request to the map service provider, and
 * return the binary tile image data. You can rewrite this method so that
 * the adapter can fetch the tile from an external map service provider
 * that does not accept HTTP requests at all.
 * @param tile the tile definition
 * @return the binary tile image data.
 * @throws Exception
 */
public byte[] getTileImageBytes(TileDefinition tile)
 throws Exception
{
 // construct request string
 String request = getMapTileRequest(tile) ;

 if(request == null)
 {
 throw new Exception("Null map tile request string in map source adapter!") ;
 }

 // set proxy settings
 Proxy proxy = null ;

 /* If the proxyHost is "NONE", the request is sent directly to the
 * external server. If the proxyHost is a valid host, that host will
 * be used as the proxy server. If the proxyHost is empty of omitted,
 * the global proxy setting in mapViewerConfig.xml will be in effect.
 */
 boolean noProxy = "NONE".equalsIgnoreCase(getProxyHost()) ;
 if(getProxyHost()!=null && !noProxy)
 {
 SocketAddress addr = new InetSocketAddress(proxyHost, proxyPort);
 proxy = new Proxy(Proxy.Type.HTTP, addr);
 }

 // send the request and get the tile image binary
 PrintWriter wr = null ;
 BufferedInputStream bis = null;
 try
 {
 String urlStr = mapServiceURL ;
 if("GET".equalsIgnoreCase(httpMethod))
 urlStr = mapServiceURL + "?" + request ;

Feature of Interest (FOI) Server

Oracle Maps 8-21

 log.finest("http "+httpMethod+": "+urlStr);

 URL url = new URL(urlStr);
 // Open a URL connection based on current proxy setting
 URLConnection conn =
 proxy!=null? url.openConnection(proxy):
 (noProxy? url.openConnection(Proxy.NO_PROXY):
 url.openConnection()) ;
 conn.setConnectTimeout(timeOut);
 if("GET".equalsIgnoreCase(getHTTPMethod()))
 conn.connect();
 else
 {
 conn.setDoOutput(true);
 wr = new PrintWriter(conn.getOutputStream());
 wr.print(request);
 wr.flush();
 wr.close();
 wr = null ;
 }
 bis = new BufferedInputStream(conn.getInputStream());
 byte[] result = toBytes(bis) ;
 bis.close();
 bis = null ;
 return result;
 }
 catch(Exception ioe)
 {
 throw new Exception("Failed to fetch external map tile.", ioe);
 }
 finally
 {
 try
 {
 if(bis != null)
 {
 bis.close();
 bis = null;
 }
 if(wr != null)
 {
 wr.close();
 wr = null;
 }
 }
 catch(IOException ioee)
 {
 throw ioee;
 }
 }
}

8.3 Feature of Interest (FOI) Server
A feature of interest (FOI) is a business entity or geographical feature that can be
manipulated or interacted with by a JavaScript map client running in the Web browser.
FOI data is dynamically displayed and is not part of the map tile layer. FOIs can be
any spatial geometry type, such as points, line strings, and polygons. The ability to
search, browse, inspect, and interact with FOIs is essential for location-based services.

Feature of Interest (FOI) Server

8-22 Oracle Fusion Middleware User's Guide for Oracle MapViewer

The FOI server is a Java servlet running inside MapViewer. It responds to FOI requests
from a JavaScript map client by querying the database, rendering FOI images, and
sending the FOI images along with FOI attribute data to the client. The JavaScript map
client displays the FOI images to the end user and provides interaction with the
images.

The FOI server accepts the following types of FOI requests: theme-based and
user-defined. Each type of FOI request returns a data layer appropriate for the request
type.

8.3.1 Theme-Based FOI Layers
A theme-based FOI layer is a collection of spatial features that have similar
characteristics and that are stored in the database. The client fetches a theme-based
FOI layer by sending a theme-based FOI layer request to the FOI server. The result of
this request is a collection of FOI data entries that meets certain query criteria. Each
FOI data entry contains the FOI image, as well as FOI attributes that can be used by
the JavaScript map client to implement client-side interactivity.

A theme-based FOI layer is based on a predefined MapViewer theme (see
Section 8.3.1.1) or a dynamic JDBC query theme (see Section 8.3.1.3, which defines all
information necessary for FOI data rendering. The information includes the table in
which the geometry features are stored, the criteria to use during the database query,
the attributes that are part of the FOI data, and the style to use when rendering the FOI
images. Predefined themes can be defined and configured using the Map Builder tool,
which is described in Chapter 9.

8.3.1.1 Predefined Theme-Based FOI Layers
When the client requests FOI data using a predefined theme-based FOI request, it
must specify the name of a predefined theme, the scale of the feature images, and the
query window used to query the geometry features. The theme name must be defined
by the application, while the scale of the feature images and the query window are
automatically calculated by the JavaScript map client.

For example, a predefined theme named CUSTOMERS could be defined on a table
named CUSTOMERS, which has the following definition:

SQL> DESCRIBE CUSTOMERS
 Name Null? Type
 --------------------------------- ------ ----------------------------
 NAME VARCHAR2(64 CHAR)
 CITY VARCHAR2(64 CHAR)
 COUNTY VARCHAR2(64 CHAR)
 STATE VARCHAR2(64 CHAR)
 LOCATION SDO_GEOMETRY
 SALES NUMBER

The LOCATION column is the spatial column that is used for rendering the customer
markers.

The XML styling rules for the CUSTOMERS theme are shown in Example 8–6.

Example 8–6 XML Styling Rules for Predefined Theme Used for FOI Layer

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <hidden_info>
 <field column="CITY" name="City"/>
 <field column="SALES" name="Sales"/>

Feature of Interest (FOI) Server

Oracle Maps 8-23

 </hidden_info>
 <rule>
 <features style="M.CIRCLE"> </features>
 <label column="NAME" style="T.TEXT"> 1 </label>
 </rule>
</styling_rules>

The styling rules in Example 8–6 specify the following. To see how these specifications
affect the map display, see Figure 8–2, "Application Created Using Oracle Maps" in
Section 8.1.2.

■ The marker style M.CIRCLE is used to render the customers.

■ The NAME column is used as the labeling attribute (label column="NAME").
The value in the NAME column (the name of the customer) is included in the
information window that the JavaScript map client displays when the user moves
the mouse over the customer marker.

■ The information window also includes the values in columns specified in the
<hidden_info> element (CITY and SALES in this example) for that customer.
Each <field> element specifies two attributes: column to identify the database
column and name to identify a text string to be used in the information window.

8.3.1.2 Templated Predefined Themes
The predefined MapViewer theme can be a standard predefined theme or a templated
predefined theme. Both types of predefined themes are defined in the USER_SDO_
THEMES view. However, the query conditions of a standard predefined theme are
fixed, whereas the query conditions of a templated predefined theme can contain
dynamic binding variables whose values can be changed when the theme request is
issued.

Example 8–7 shows the XML styling rules for a templated predefined theme that uses
two binding variables (with the relevant text shown in bold in the <features>
element).

Example 8–7 XML Styling Rules for a Templated Predefined Theme

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <hidden_info>
 <field column="NAME" name="Name"/>
 <field column="CITY" name="City"/>
 <field column="SALES" name="Sales"/>
 </hidden_info>
 <rule>
 <features style="M.CIRCLE">(city=:1 and sales>:2)</features>
 <label column="NAME" style="T.TEXT"> 1 </label>
 </rule>
</styling_rules>

In Example 8–7, the binding variable :1 specifies the name of the city in which the
qualifying features must be located, and the binding variable :2 specifies the
minimum sales volume of the qualifying features. (That is, only customers in a
specified city and with sales above a certain minimum will have store markers
displayed.) The values of these two binding variables are not fixed when the theme is
defined; instead, they are provided in the requests that the client sends to the server.

Oracle Maps JavaScript API

8-24 Oracle Fusion Middleware User's Guide for Oracle MapViewer

8.3.1.3 Dynamic JDBC Query Theme-Based FOI Layers
When the client requests FOI data using a dynamic JDBC theme-based FOI request, it
must specify the complete definition of the JDBC theme. The theme definition must
specify the rendering style and the SQL query that is to be used to query FOI data,
including all geometry and non-geometry attributes.

Example 8–8 shows some JavaScript client code to create an FOI layer that displays a
buffer around each customer location.

Example 8–8 Theme for Dynamic JDBC Query

var theme = '<themes><theme name="JDBC_THEME" >' +
 '<jdbc_query asis="true" spatial_column="location"
 jdbc_srid="8307" render_style="C.RED"
 datasource="mvdemo">' +
 'select sdo_geom.sdo_buffer(A.location,1,0.005,'+
 '\'unit=mile arc_tolerance=0.005\') location '+
 ' from customers A' +
 '</jdbc_query></theme></themes>' ;
buffertheme = new MVThemeBasedFOI('buffertheme',theme);

8.3.2 User-Defined FOI Requests
A user-defined FOI is a feature defined on the client side. Unlike the theme-based FOI
layer, which is rendered as a collection of features, the user-defined FOI is requested
and rendered on an individual basis.

All attributes of the user-defined FOI, including the geometry representation and
rendering style, must be provided by the application. The JavaScript map client sends
the request, with the geometry representation and rendering style information, to the
FOI server. The FOI server renders the FOI image and returns it to the client. The
rendering style must be predefined in the USER_SDO_STYLES view.

8.4 Oracle Maps JavaScript API
The Oracle Maps JavaScript client is a browser-based map visualization engine that
works on top of the map tile server and the FOI server. It implements the following
functions:

■ Fetching map tiles from the map tile server and displaying them as a map tile
layer in the Web browser.

■ Sending FOI requests to the FOI server, and overlaying user-defined features and
Oracle Spatial query-based features on top of the map tile layer.

■ Controlling user interaction, such as dragging for map navigation, clicking FOIs,
drawing rectangles, and redlining.

Drawing a rectangle refers to the application user creating a rectangle by clicking
and holding the mouse button at one corner of the rectangle, dragging the mouse
to the diagonally opposite corner, and releasing the mouse button.

Redlining refers to the application user creating a polygon or polyline by clicking
the mouse button and then moving the mouse and clicking multiple times, with
each click extending the redline by a straight line. (Redline drawings are often
rendered in red, although you can specify a line style that uses any color.)

To access these functions, use the JavaScript API, which consists of several JavaScript
classes, including the following:

Developing Oracle Maps Applications

Oracle Maps 8-25

■ The MVMapView class is the main entry point of the API. It implements most of the
map control interfaces.

■ The MVMapTileLayer class (formerly called the MVBaseMap class) defines a map
tile layer that displays map tiles rendered by the map tile server.

■ The MVThemeBasedFOI class defines and controls the theme based FOI layers.

■ The FOI class defines and controls user-defined FOIs.

■ The MVSdoGeometry class defines a geometry object. The geometry can be in any
geometry type that is supported by Oracle Spatial.

■ The MVRedLineTool class defines and controls the redline utility.

■ The MVRectangleTool class defines and controls the rectangle tool.

■ The MVOverviewMap class defines and controls the overview map that displays
the miniature overview of the main map as a small rectangle (which is itself inside
a rectangle tool).

■ The MVMapDecoration class defines and controls map decorations.

MVMapView is the main entry class for all map operations inside the Web browser.
MVMapView and the other classes provide all essential interfaces for adding logic to
your Web mapping applications. These logical operations can include the following:

■ Create a map client instance and associate it with the map container DIV object
created in the Web page.

■ Configure map parameters such as map center and map zoom level.

■ Create and manipulate map tile layers.

■ Create and manipulate theme-based FOI layers.

■ Create and manipulate user-defined individual FOIs.

■ Display an information window on the map.

■ Create fixed map decorations, such as a map title, custom copyright notes, and
control buttons.

■ Access built-in utilities such as the navigation bar, scale bar, rectangle tool, redline
tool, and overview map.

■ Use event listeners to customize the event handling. You can add event listeners to
the MVMapView, MVThemeBasedFOI, and MVFOI classes using the appropriate
API methods.

For detailed information about all classes in the Oracle Maps JavaScript API, see the
Javadoc-style reference documentation, which is included with MapViewer and is
available at the following location:

http://host:port/mapviewer/fsmc/apidoc

8.5 Developing Oracle Maps Applications
If you have all your map data stored in an Oracle database and have MapViewer
deployed in Oracle Fusion Middleware, you can develop a Web-based mapping
application using Oracle Maps by following the instructions in this section.

Developing Oracle Maps Applications

8-26 Oracle Fusion Middleware User's Guide for Oracle MapViewer

8.5.1 Creating One or More Map Tile Layers
For each map tile layer displayed on the client side that is served by MapViewer, you
must create the corresponding map tile layer on the MapViewer server side. For
example, for the sample application described in Section 8.1.2, you must create a map
tile layer on the server side to display oceans, county boundaries, cities and highways
as a map tile layer on the client. However, if the tile layer is a custom or built-in eternal
tile layer, you do not need to define the tile layer on the server side.

Before you can create a map tile layer, you must ensure that the map source from
which the map tiles images are to be rendered is ready. If the map tile images are
rendered based on map data stored in the database, you must create a MapViewer
base map that consists of a set of predefined themes. (You can create the base map
using the Map Builder tool, which is described in Chapter 9.) If the map tiles images
are rendered by an external map provider, you must write a map source adapter that
can fetch map images from the external server using the tile image definition specified
by the map tile server.

When the map source is ready, you can create the map tile layer using the MapViewer
administration page, as described in Section 1.5.3. When you create the map tile layer,
you must provide proper coordinate system definition, map source definition (internal
or external), and zoom level definition (number of zoom levels and map scales).

After you create the map tile layer, you can test it by using a JavaServer Page (JSP)
demo application shipped with MapViewer. The JSP demo application can be accessed
at http://host:port/mapviewer/fsmc/omaps.jsp. Based on your input, this
application can display maps served by any map tile layer defined with the
MapViewer instance.

8.5.2 Defining FOI Metadata
If your application needs to display dynamic features based on database query results
as theme-based FOI layers, you must create a predefined MapViewer theme for each
theme-based FOI layer. If your application needs to display individual dynamic
features as user-defined FOIs, you must define the rendering style or styles used by
the FOI server to render the FOI images. You can use the Map Builder tool (described
in Chapter 9) to create predefined themes and rendering styles.

8.5.3 Creating the Client Application
Oracle Maps client applications running inside Web browsers are pure HTML and
JavaScript pages that do not require any plug-ins. Therefore, you can build the
application using any Web technology that delivers content as pure HTM. Such
technologies include JavaServer Pages, Java Servlets, ASP, and .NET C#. This section
discusses client application development only in pure HTML format, but you can
easily apply this information to other Web technologies.

As shown in Example 8–1 in Section 8.1.2, the source code for an Oracle Maps
application is typically packaged in an HTML page, which consists of the following
parts:

■ A <script> element that loads the Oracle Maps client library into the browser
JavaScript engine. In Example 8–1, this element is:

<script language="Javascript" src="jslib/loadscript.js"></script>

■ An HTML DIV element that is used as the map container in the Web page. The
size and positioning of the DIV element can be customized to suit your needs. In
Example 8–1, this element is:

Developing Oracle Maps Applications

Oracle Maps 8-27

<div id="map" style="left:10; top:60;width: 600px; height: 500px"></div>

■ JavaScript code that creates and initializes the map client instance. It creates the
map client instance, sets up the initial map content (map tile layer, FOI layers, and
so on), sets the initial map center and zoom level, implements application-specific
logic, displays the map, and implements other application-specific logic.

This code should be packaged inside a JavaScript function, which is executed
when the HTML page is loaded from the server to the client Web browser. In
Example 8–1, this function is named on_load_mapview:

function on_load_mapview()
{
 var baseURL = "http://"+document.location.host+"/mapviewer";
 // Create an MVMapView instance to display the map
 var mapview = new MVMapView(document.getElementById("map"), baseURL);
 // Add a map tile layer as background.
 mapview.addMapTileLayer(new MVMapTileLayer("mvdemo.demo_map"));
 // Add a theme-based FOI layer to display customers on the map
 var themebasedfoi = new MVThemeBasedFOI('themebasedfoi1','mvdemo.customers');
 themebasedfoi.setBringToTopOnMouseOver(true);
 mapview.addThemeBasedFOI(themebasedfoi);
 // Set the initial map center and zoom level
 mapview.setCenter(MVSdoGeometry.createPoint(-122.45,37.7706,8307));
 mapview.setZoomLevel(4);
 // Add a navigation panel on the right side of the map
 mapview.addNavigationPanel('east');
 // Add a scale bar
 mapview.addScaleBar();
 // Display the map.
 mapview.display();
}

This function is specified in the onload attribute of the <body> element, so that it
is executed after the Web page is loaded. In Example 8–1, this code is as follows:

<body onload= JavaScript:on_load_mapview() >

■ Additional HTML elements and JavaScript code implement other
application-specific user interfaces and control logic. In Example 8–1 in
Section 8.1.2, a JavaScript function setLayerVisible is implemented to show or
hide the theme-based FOI layer when the user checks or unchecks the Show
customers check box. The setLayerVisible function is coded as follows:

function setLayerVisible(checkBox)
{
 // Show the theme-based FOI layer if the check box is checked
 // and hide the theme-based FOI layer otherwise.
 if(checkBox.checked)
 themebasedfoi.setVisible(true) ;
 else
 themebasedfoi.setVisible(false);
}

This function is specified in the onclick attribute of the <INPUT> element that
defines the check box, so that it is executed whenever the user clicks on the check
box. In Example 8–1, this code is as follows:

<INPUT TYPE="checkbox" onclick="setLayerVisible(this)" checked/>Show customers

Using Google Maps and Bing Maps

8-28 Oracle Fusion Middleware User's Guide for Oracle MapViewer

8.6 Using Google Maps and Bing Maps
Applications can display Google Maps tiles or Microsoft Bing Maps tiles as a built-in
map tile layer, by creating and adding to the map window an instance of
MVGoogleTileLayer or MVBingTileLayer, respectively. Internally, the Oracle
Maps client uses the official Google Maps or Bing Maps API to display the map that is
directly served by the Google Maps or Microsoft Bing Maps server.

■ To use the Google Maps tiles, your usage of the tiles must meet the terms of
service specified by Google (see
http://code.google.com/apis/maps/terms.html).

■ To use the Bing Maps tiles, you must get a Bing Maps account. Your usage must
meet the licensing requirement specified by Microsoft (see
http://www.microsoft.com/maps/product/licensing.aspx).

If you need to overlay your own spatial data on top of the Google Maps or Microsoft
Bing Maps tile layer, see also Section 8.7, "Transforming Data to a Spherical Mercator
Coordinate System".)

The following sections describe the two options for using built-in map tile layers:

■ Section 8.6.1, "Defining Google Maps and Bing Maps Tile Layers on the Client
Side"

■ Section 8.6.2, "Defining the Built-In Map Tile Layers on the Server Side"

8.6.1 Defining Google Maps and Bing Maps Tile Layers on the Client Side
To define a built-in map tile layer on the client side, you need to create a
MVGoogleTileLayer or MVBingTileLayer object, and add it to the MVMapView
object. (As of Oracle Fusion Middleware Release 11.1.1.6, MVGoogleTileLayer uses
the Google Maps Version 3 API by default, and MVBingTileLayer uses the Bing
Maps Version 7 API by default.)

For example, to use Google tiles, add the Google tile layer to your map:

mapview = new MVMapView(document.getElementById("map"), baseURL);
tileLayer = new MVGoogleTileLayer() ;
mapview.addMapTileLayer(tileLayer);

In your application, you can invoke the method MVGoogleTileLayer.setMapType
or MVBingTileLayer.setMapType to set the map type to be one of the types
supported by the map providers, such as road, satellite, or hybrid.

For usage examples and more information, see the JavaScript API documentation for
MVGoogleTileLayer and MVBingTileLayer, and the tutorial demos Built-in
Google Maps Tile Layer and Built-in Bing Maps Tile Layer.

8.6.2 Defining the Built-In Map Tile Layers on the Server Side
You can define a built=-in map tile layer on the server side and use it as a regular
MapViewer tile layer on the client side. To define a built-in map tile layer on the server
side, follow these steps:

1. Log into the MapViewer Administration Page (explained in Section 1.5.1).

2. Select the Manage Map Tile Layers tab and click Create.

3. When you are asked to select the type of map source, choose Google Maps or
Bing Maps and click Continue.

Transforming Data to a Spherical Mercator Coordinate System

Oracle Maps 8-29

4. Select the data source where the tile layer is to be defined.

5. Set the license key that you have obtained from the map provider.

6. Click Submit to create the tile layer.

After you have created the built-in map tile layer on the server side, you can use it like
any other tile layer served by MapViewer. You do not need to add any <script> tag
to load the external JavaScript library.

The following example shows a Bing Maps tile layer defined on the server side:

mapview = new MVMapView(document.getElementById("map"), baseURL);
// The Bing tile layer is defined in data source “mvdemo”.
tileLayer = new MVMapTileLayer("mvdemo.BING_MAP") ;
mapview.addMapTileLayer(tileLayer);

In your application, you can invoke the method MVMapTileLayer.setMapType to
set the map type to be one of the types supported by the map providers, such as road,
satellite, or hybrid.

8.7 Transforming Data to a Spherical Mercator Coordinate System
Popular online map services such as Google Maps and Microsoft Bing Maps use a
spherical Mercator projection for their maps. If you are using an Oracle Database
release earlier than 11.1.0.7, and if you need to overlay your own spatial data on top of
such a tile layer, such as a Google Maps or Microsoft Bing Maps tile layer, you must set
up the database to properly handle coordinate system transformation between the
coordinate system of that tile layer and your own data coordinate system, if the two
coordinate systems are not the same.

Google Maps uses a Spherical Mercator coordinate system (EPSG: 3785), which is also
widely used among commercial API providers such as Yahoo! Maps and Microsoft
Bing Maps. This coordinate system (SRID 3785) was not provided with Oracle Spatial
before Release 11.1.0.7. In order to enable MapViewer and Oracle Spatial to transform
your own data to this coordinate system, you must first add this coordinate system
definition into your Oracle database if it is not already defined.

To check if this coordinate system is defined, you can enter the following statement:

SELECT srid FROM mdsys.cs_srs WHERE srid=3785;

If the preceding statement returns a row, you do not need to perform the actions in this
section. If the preceding statement does not return a row, you must perform the actions
in this section in order to be able to overlay your own spatial data on top of the tile
layer.

Follow these steps:

1. Connect to the database as a privileged user, such as one with the DBA role.

2. Run the csdefinition.sql script, as follows. (Replace $OC4J_HOME with the
root directory of the OC4J instance where your MapViewer is deployed, and enter
the command on a single line.)

Note: To perform the actions in this section, your database must be
Release 10.2.0.1 or later.

Transforming Data to a Spherical Mercator Coordinate System

8-30 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ Linux: $OC4J_
HOME/j2ee/home/applications/mapviewer/web/WEB-INF/admin/cs
definition.sql

■ Windows: $OC4J_
HOME\j2ee\home\applications\mapviewer\web\WEB-INF\admin\cs
definition.sql

3. If necessary, create a transformation rule to cause Oracle Spatial to skip datum
conversion when transforming data from a specified coordinate system to the
Spherical Mercator system. To find out if you need to create such a transformation
rule, see Section 8.7.1.

4. Either pre-transform your spatial data for better performance, or let MapViewer
transform the data at run time ("on the fly"). Note that if your database release is
earlier than 10.2.0.4, pre-transforming is the only option.

■ To pre-transform all your data into the Spherical Mercator coordinate system,
use the SDO_CS.TRANSFORM_LAYER procedure on all the data, and use the
transformed data for mapping. (See the SDO_CS.TRANSFORM_LAYER
reference section in Oracle Spatial Developer's Guide.)

■ To let MapViewer transform the data at run time, do not transform the data
before using it for mapping.

8.7.1 Creating a Transformation Rule to Skip Datum Conversion
Spatial data is often in a coordinate system based on an ellipsoid datum, such as
WGS84 or BNG. In such cases, Oracle Spatial by default applies datum conversion
when transforming the data into the Spherical Mercator system. This will introduce a
small amount of mismatch or error between your data and the Google Maps other
map service tiles. If you want to address this issue, you can create transformation rules
that tell Oracle Spatial to skip datum conversion when transforming data from a
specified coordinate system to the Spherical Mercator system.

Example 8–9 shows SQL statements that are included in the csdefinition.sql
script and that create such transformations rules. However, if the coordinate system of
your spatial data is not covered by the rules shown in Example 8–9, you can create
your own rule if the coordinate system of your data is not covered by these rules. (For
more information about creating coordinate system transformation rules, see Oracle
Spatial Developer's Guide.)

Example 8–9 Transformation Rules Defined in the csdefinition.sql Script

-- Create the tfm_plans, that is, the transformation rules.
-- Note: This will result in an incorrect conversion since it ignores a datum
-- datum between the ellipsoid and the sphere. However, the data will match
-- up better on Google Maps.

-- For wgs84 (8307)
call sdo_cs.create_pref_concatenated_op(83073785, 'CONCATENATED OPERATION 8307
3785', TFM_PLAN(SDO_TFM_CHAIN(8307, 1000000000, 4055, 19847, 3785)), NULL);

-- For 4326, EPSG equivalent of 8307
call sdo_cs.create_pref_concatenated_op(43263785, 'CONCATENATED_OPERATION_4326_
3785', TFM_PLAN(SDO_TFM_CHAIN(4326, 1000000000, 4055, 19847, 3785)), NULL);

-- For OS BNG, Oracle SRID 81989
call sdo_cs.create_pref_concatenated_op(819893785, 'CONCATENATED OPERATION 81989
3785', TFM_PLAN(SDO_TFM_CHAIN(81989, -19916, 2000021, 1000000000, 4055, 19847,

Dynamically Displaying an External Tile Layer

Oracle Maps 8-31

3785)), NULL);

-- For 27700, EPSG equivalent of 81989
call sdo_cs.create_pref_concatenated_op(277003785, 'CONCATENATED_OPERATION_27700_
3785', TFM_PLAN(SDO_TFM_CHAIN(27700, -19916, 4277, 1000000000, 4055, 19847,
3785)), NULL);
commit;

8.8 Dynamically Displaying an External Tile Layer
The Oracle Maps JavaScript API supports dynamically defining an external tile layer
without needing any server-side storage of either the definition or the tile images.
Basically, you can use the class MVCustomTileLayer to reference and display tile
layers served directly from any external map tile server on the Web, such as the ESRI
ArcGIS tile server, the OpenStreet map tile server, or other vendor-specific map tile
servers.

To do so, you need to do the following when creating a new MVCustomTileLayer
instance:.

■ Know the configuration of the map tile layer, specifically its coordinate system,
boundary, and zoom level.

■ Supply a function that can translate a tile request from Oracle Maps into a tile URL
from the external tile server.

The configuration of a tile layer takes the form of a JSON object, and is generally in the
format illustrated by the following example:

var mapConfig = {mapTileLayer:"custom_map", format:"PNG",
coordSys:{srid:8307,type:"GEODETIC",distConvFactor:0.0,
minX:-180.0,minY:-90.0,maxX:180.0,maxY:90.0},
zoomLevels:
[{zoomLevel:0,name:"level0",tileWidth:15.286028158107968,tileHeight:15.28602815810
7968,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:1,name:"level1",tileWidth:4.961746909541633,tileHeight:4.96174690954163
3,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:2,name:"level2",tileWidth:1.6105512127664132,tileHeight:1.6105512127664
132,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:3,name:"level3",tileWidth:0.5227742142726501,tileHeight:0.5227742142726
501,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:4,name:"level4",tileWidth:0.16968897570090388,tileHeight:0.169688975700
90388,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:5,name:"level5",tileWidth:0.05507983954154727,tileHeight:0.055079839541
54727,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:6,name:"level6",tileWidth:0.017878538533723076,tileHeight:0.01787853853
3723076,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:7,name:"level7",tileWidth:0.005803187729944108,tileHeight:0.00580318772
9944108,tileImageWidth:256,tileImageHeight:256},
{zoomLevel:8,name:"level8",tileWidth:0.0018832386690789012,tileHeight:0.0018832386
690789012,tileImageWidth:256,tileImageHeight:26},
{zoomLevel:9,name:"level9",tileWidth:6.114411263243185E-4,tileHeight:6.11441126324
3185E-4,tileImageWidth:256,tileImageHeight:256}]
};

For the a function that can translate a tile request from Oracle Maps into a tile URL
from the external tile server, specify a function such as the following example:

function getMapTileURL(minx, miny, width, height, level)
{
 var x = (minx-mapConfig.coordSys.minX)/mapConfig.zoomLevels[level].tileWidth ;

Dynamically Displaying an External Tile Layer

8-32 Oracle Fusion Middleware User's Guide for Oracle MapViewer

var y = (miny-mapConfig.coordSys.minY)/mapConfig.zoomLevels[level].tileHeight ;
return “http://localhost:8888/mapviewer/mcserver?request=gettile&format=" +
mapConfig.format + "&zoomlevel="+level+"&mapcache=mvdemo.demo_map&mx=" +
Math.round(x) + "&my=" + Math.round(y) ;
}

In the preceding example, the function getMapTileURL() is implemented by the
application to supply a valid URL from the external tile server that fetches a map tile
image whose top-left corner will be positioned at the map location (minx,miny) by
the Oracle Maps client. Each map tile image is expected to have the specified size
(width,height), and it should be for the specified zoom level (level). This specific
example is actually returning a gettile URL from the local MapViewer tile server;
however the approach also applies to any non-MapViewer tile servers.

The new custom tile layer is added to the client mapViewer just like a built-in map tile
layer.

9

Oracle Map Builder Tool 9-1

9 Oracle Map Builder Tool

This chapter briefly describes the MapViewer Map Builder tool, also referred to as
Oracle Map Builder. It does not provide detailed information about the tool’s interface;
for that you should use see online help available when you use Oracle Map Builder.

Oracle Map Builder is a standalone application that lets you create and manage the
mapping metadata (about styles, themes, and base maps) that is stored in the
database. For example, use this tool to create a style or to modify the definition of a
style. Besides handling the metadata, the tool provides interfaces to preview the
metadata (for example, to see how a line style will appear on a map) and also spatial
information.

Whenever possible, you should use Oracle Map Builder instead of directly modifying
MapViewer metadata views to create, modify, and delete information about styles,
themes, and maps. For any modifications made outside Oracle Map Builder, such as
with SQL statements, you should refresh the database connection in Oracle Map
Builder to get the current items.

To use Oracle Map Builder effectively, you must understand the MapViewer concepts
explained in Chapter 2 and the information about map requests in Chapter 3.

This chapter contains the following major sections:

■ Section 9.1, "Running Oracle Map Builder"

■ Section 9.2, "Oracle Map Builder User Interface"

9.1 Running Oracle Map Builder
Oracle Map Builder is shipped as a JAR file (mapbuilder.jar). You can run it as a
standalone Java application in a Java Development Kit (J2SE SDK) 1.5 or later
environment, as follows:

% java –jar mapbuilder.jar [Options]

Options:

-cache <cache_size> specifies the size of the in-memory geometry cache.
Example: -cache 64M

-config <config-file> specifies the location of the file containing Map Builder
configuration and preference information. If you do not specify this option, Map
Builder looks for a file named oasmapbuilder.xml in your home Java directory. For
more information about the configuration and preference file, see Section 1.5.2.

-connect causes Map Builder at startup to register connections for all data sources
specified in the oasmapbuilder.xml preferences file or the file specified with the

Oracle Map Builder User Interface

9-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

-config option, and it automatically connects to the first available data source. This
option increases the application startup time. If this option is not defined, startup is
faster, but you must then use the File menu or an icon to connect to any data sources
that you want to use (see Section 9.2, "Oracle Map Builder User Interface").

-help displays information about the available options.

9.2 Oracle Map Builder User Interface
Oracle Map Builder generally uses the left side for navigation to find and select
objects, and the right side to display information about selected objects. Figure 9–1
shows the main window of Oracle Map Builder, with the metadata navigation tree on
the left and a detail pane for a selected area style on the right.

Figure 9–1 Oracle Map Builder Main Window

The menus at the top contain standard entries, plus entries for features specific to
Oracle Map Builder.

Oracle Map Builder User Interface

Oracle Map Builder Tool 9-3

You can use shortcut keys to access menus and menu items: for example Alt+F for the
File menu and Alt+E for the Edit menu; or Alt+H, then Alt+A for Help, then About.

Icons under the menus perform the following actions:

■ Add new connection creates a new database connection for Oracle Map Builder to
use.

■ Load/Add/Remove connection loads or adds database connection for Oracle Map
Builder to use, or removes a database connection from the available connections
that Oracle Map Builder can use.

■ Create new metadata creates a new base map, theme, or style.

■ Open opens a base map, theme, or style.

■ Save saves any changes to the currently selected object.

■ Save All saves any changes to all open objects.

The left side of the Oracle Map Builder window has the Metadata navigator, including
a database connection selector, icons for performing actions, and a hierarchical tree
display for the MapViewer metadata objects (categorized by object type) accessible to
the currently selected database connection. To select an object, expand the appropriate
tree node or nodes, then double-click the object.

The right side of the Oracle Map Builder window has tabs and panes for detail views
of objects that you select or open

To switch among objects, click the desired tabs; to close a tab, click the X in the tab. If
you make changes to an object and click the X, you are asked if you want to save the
changes.

The Messages area is used for feedback information as appropriate (for example,
results of an action, or error or warning messages).

Detailed help is available within the Oracle Map Builder interface. See the online help
for more information about Oracle Map Builder, including information about specific
panes and dialog boxes.

Oracle Map Builder User Interface

9-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

A

XML Format for Styles, Themes, Base Maps, and Map Tile Layers A-1

A XML Format for Styles, Themes, Base Maps,
and Map Tile Layers

This appendix describes the XML format for defining style, themes, and base maps
using the MapViewer metadata views described in Section 2.9.

The metadata views for MapViewer styles (USER_SDO_STYLES and related views)
contain a column named DEFINITION. For each style, the DEFINITION column
contains an XML document that defines the style to the rendering engine.

Each style is defined using a syntax that is similar to SVG (scalable vector graphics). In
the MapViewer syntax, each style's XML document must contain a single <g> element,
which must have a class attribute that indicates the type or class of the style. For
example, the following defines a color style with a filling color component:

<?xml version="1.0" standalone="yes"?>
 <svg width="1in" height="1in">
 <desc> red </desc>
 <g class="color" style="fill:#ff1100"/>
 </svg>

The MapViewer XML parser looks only for the <g> element in a style definition; other
attributes such as the <desc> element are merely informational and are ignored.

The metadata views for MapViewer themes (USER_SDO_THEMES and related views)
contain a column named STYLING_RULES. For each theme in these views, the
STYLING_RULES column contains an XML document (a CLOB value) that defines the
styling rules of the theme.

The metadata views for MapViewer base maps (USER_SDO_MAPS and related views)
contain a column named DEFINITION. For each base map in these views, the
DEFINITION column contains an XML document (a CLOB value) that defines the
base map.

The following sections describe the XML syntax for each type of mapping metadata:

■ Section A.1, "Color Styles"

■ Section A.2, "Marker Styles"

■ Section A.3, "Line Styles"

Scalable Styles: You can make the size of a style scalable by
specifying a unit other than the default pixel (px) -- for example,
width:15.0km or stroke-width:10.0m. For information about
using scalable styles, see Section 2.2.1.

Color Styles

A-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ Section A.4, "Area Styles"

■ Section A.5, "Text Styles"

■ Section A.6, "Advanced Styles"

■ Section A.7, "Themes: Styling Rules"

■ Section A.8, "Base Maps"

■ Section A.9, "Map Tile Layers"

A.1 Color Styles
A color style has a fill color, a stroke color, or both. When applied to a shape or
geometry, the fill color (if present) is used to fill the interior of the shape, and the
stroke color (if present) is used to draw the boundaries of the shape. Either color can
also have an alpha value, which controls the transparency of that color.

For color styles, the class attribute of the <g> element must be set to "color". The
<g> element must have a style attribute, which specifies the color components and
their optional alpha value. For example:

■ <g class="color" style="fill:#ff0000"> specifies a color style with
only a fill color (whose RGB value is #ff0000).

■ <g class="color" style="fill:#ff0000;stroke:blue"> specifies a
color style with a fill color and a stroke color (blue).

You can specify a color value using either a hexadecimal string (such as #00ff00) or a
color name from the following list: black, blue, cyan, darkGray, gray, green, lightGray,
magenta, orange, pink, red, white, yellow.

To specify transparency for a color style, you can specify fill-opacity and
stroke-opacity values from 0 (completely transparent) to 255 (opaque). The
following example specifies a fill component with half transparency:

<g class="color" style="fill:#ff00ff;fill-opacity:128">

The following example specifies both stroke and fill opacity:

<g class="color" style= "stroke:red;stroke-opacity:70;
 fill:#ff00aa;fill-opacity:129">

The syntax for the style attribute is a string composed of one or more name:value
pairs delimited by semicolons. (This basic syntax is used in other types of styles as
well.)

For stroke colors, you can define a stroke width. The default stroke width when
drawing a shape boundary is 1 pixel. To change that, add a stroke-width:value
pair to the style attribute string. The following example specifies a stroke width of 3
pixels:

<g class="color" style="stroke:red;stroke-width:3">

A.2 Marker Styles
A marker style represents a marker to be placed on point features or on label points of
area and linear features. A marker can be either a vector marker or raster image
marker. A marker can also have optional notational text. For a vector marker, the
coordinates of the vector elements must be defined in its XML document. For a marker

Marker Styles

XML Format for Styles, Themes, Base Maps, and Map Tile Layers A-3

based on a raster image, the XML document for the style indicates that the style is
based on an external image.

The marker XML document specifies the preferred display size: the preferred width
and height are defined by the width:value;height:value pairs in the style
attribute of the <g> element. The class attribute must be set to "marker". Some
markers must be overlaid with some notational text, such as a U.S. interstate highway
shield marker, which, when rendered, must also have a route number plotted on top
of it. The style for such notational text is a style attribute with one or more of the
following name-value pairs: font-family:value, font-style:value,
font-size:value, and font-weight:value.

The following example defines an image-based marker that specifies font attributes
(shown in bold) for any label text that may be drawn on top of the marker:

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
<desc></desc>
<g class="marker"
 style="width:20;height:18;font-family:sans-serif;font-size:9pt;fill:#ffffff">
 <image x="0" y="0" width="9999" height="9999" type="gif"
 href="dummy.gif"/>
</g>
</svg>

In the preceding example, when the marker is applied to a point feature with a
labeling text, the label text is drawn centered on top of the marker, using the specified
font family and size, and with the fill color (white in this case) as the text foreground.
The label text (495) in Figure A–1 in Section A.2.4 has the text attributes specified in
this example.

A.2.1 Vector Marker Styles
A vector marker can be a simple polygon, an optimized rectangle (defined using two
points), a single polyline, or a circle, but not any combination of them. For each type of
vector marker, its <g> element must contain a corresponding subelement that specifies
the geometric information (coordinates for the polygon, optimized rectangle, or
polyline, or radius for the circle):

■ A polygon definition uses a <polygon> element with a points attribute that
specifies a list of comma-delimited coordinates. For example:

<g class="marker">
 <polygon points="100,20,40,50,60,80,100,20"/>
</g>

■ An optimized rectangle definition uses a <rect> element with a points attribute
that specifies a list of comma-delimited coordinates. For example:

<g class="marker">
 <rect points="0,0, 120,120"/>
</g>

■ A polyline definition uses a <polyline> element with a points attribute that
specifies a list of comma-delimited coordinates. For example:

<g class="marker">
 <polyline points="100,20,40,50,60,80"/>
</g>

Marker Styles

A-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ A circle definition uses a <circle> element with an r attribute that specifies the
radius of the circle. For example:

<g class="marker">
 <circle r="50"/>
</g>

You can specify a stroke or fill color, or both, for any vector-based marker. The syntax
is the same as for the style attribute for a color style. The following example defines a
triangle marker that has a black border and that is filled with a half-transparent
yellow:

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
<g class="marker" style="stroke:#000000;fill:#ffff00;fill-opacity:128">
 <polygon points="201.0,200.0, 0.0,200.0, 101.0,0.0"/>
</g>
</svg>

A.2.2 Image Marker Styles
For an image marker, its XML document contains an <image> element that identifies
the marker as based on an image. The image must be in GIF format, and is stored in
the IMAGE column in the styles metadata views.

The following example is an XML document for an image marker:

<?xml version="1.0" standalone="yes"?>
<svg>
 <g class="marker"
 style="width:20;height:18;font-family:sansserif;font-size:9pt">
 <image x="0" y="0" width="9999" height="9999" type="gif" href="dummy.gif"/>
 </g>
</svg>

Note that in the preceding example, it would be acceptable to leave the <image>
element empty (that is, <image/>) to create a valid definition with the image to be
specified later.

A.2.3 TrueType Font-Based Marker Styles
For a TrueType font-based marker, its marker symbol is stored in a TrueType font file,
which has the .ttf file extension and which typically contains many individual symbols
or glyphs. Many GIS software packages come with TrueType font files that contain
symbols useful for mapping.

Before MapViewer can use a symbol in a TrueType font file, you must do the
following:

1. Import the TrueType font file into the database, preferably by using the Map
Builder tool (described in Chapter 9), which causes the symbols in the font file to
be inserted into a single row in the system view USER_SDO_STYLES. In this new
row, the TYPE column contains the string TTF, and the IMAGE column contains
the contents of the TrueType font file. After the import operation, you can use the
Map Builder tool to view all the glyphs or symbols contained inside the TrueType
font file. Also, because the font file is now physically stored inside a database, it
can be shared by all MapViewer users.

2. Create a MapViewer marker style based on a glyph or symbol inside an imported
TrueType font, preferably using the Map Builder tool.

Marker Styles

XML Format for Styles, Themes, Base Maps, and Map Tile Layers A-5

The following example shows the use of a TrueType font-based marker (with
TrueType-specific material in bold):

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
<g class="marker" style="fill:#ff0000;width:25;height:25">
 <ttfSymbol fontName="ERS_INCIDENTS" charCode="118" />
</g>
</svg>

A.2.4 Using Marker Styles on Lines
Marker styles are usually applied to point features, in which case the marker style is
rendered on the point location that represents the feature. However, with line (line
string) features such as highways, the marker must be placed at some point along the
line to denote some information about the feature, such as its route number. For
example, on maps in the United States, a shield symbol is often placed on top of a
highway, with a route number inside the symbol, as shown with Route 495 in
Figure A–1.

Figure A–1 Shield Symbol Marker for a Highway

To achieve the result shown in Figure A–1, you must do the following:

1. Choose a marker style, and add a text style definition (font family, font size, fill
color, and so on), as shown in the example in Section A.2.

2. Specify the marker style as the labeling style in the styling rules for the theme. The
following example shows the XML document with the styling rules for a theme to
show highways. A marker style (shown in bold in the example) is specified. The
label text (495 in Figure A–1) is a value from the label column, which is named
LABEL in this example.

<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="political">
<rule>
 <features style="L.PH"> (name_class = 'I' and TOLL=0) </features>
 <label column="label" style="M.SHIELD1">1</label>
</rule>
<styling_rules>

MapViewer automatically determines the optimal position on the line for placement of
the marker style (the shield in this example).

Line Styles

A-6 Oracle Fusion Middleware User's Guide for Oracle MapViewer

A.3 Line Styles
A line style is applicable only to a linear feature, such as a road, railway track, or
political boundary. In other words, line styles can be applied only to Oracle Spatial
geometries with an SDO_GTYPE value ending in 2 (line) or 6 (multiline). (For
information about the SDO_GEOMETRY object type and SDO_GTYPE values, see
Oracle Spatial Developer's Guide.)

When MapViewer draws a linear feature, a line style tells the rendering engine the
color, dash pattern, and stroke width to use. A line style can have a base line element
which, if defined, coincides with the original linear geometry. It can also define two
edges parallel to the base line. Parallel line elements can have their own color, dash
pattern, and stroke width. If parallel lines are used, they must be located to each side
of the base line, with equal offsets to it.

To draw railroad-like lines, you need to define a third type of line element in a line
style called hashmark. For a <line> element of class hashmark, the first value in the
dash array indicates the gap between two hash marks, and the second value indicates
the length of the hash mark to either side of the line. The following example defines a
hash mark line with a gap of 8.5 screen units and a length of 3 screen units at each side
of the base line:

<line class="hashmark" style="fill:#003333" dash="8.5,3.0"/>

The following example defines a complete line style.

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
 <g class="line" style="fill:#ffff00;stroke-width:5">
 <line class="parallel" style="fill:#ff0000;stroke-width:1.0"/>
 <line class="base" style="fill:black;stroke-width:1.0" dash="10.0,4.0"/>
 </g>
</svg>

In the preceding example, class="line" identifies the style as a line style. The
overall fill color (#ffff00) is used to fill any space between the parallel lines and the
base line. The overall line width (5 pixels) limits the maximum width that the style can
occupy (including that of the parallel lines).

The line style in the preceding example has both base line and parallel line elements.
The parallel line element (class="parallel") is defined by the first <line>
element, which defines its color and width. (Because the definition does not provide a
dash pattern, the parallel lines or edges will be solid.) The base line element
(class="base") is defined by the second <line> element, which defines its color,
width, and dash pattern.

A marker (such as a direction marker) can be defined for a line style. The
marker-name parameter specifies the name of a marker style, the
marker-position parameter specifies the proportion (from 0 to 1) of the distance
along the line from the start point at which to place the marker, and the marker-size
parameter specifies the number of display units for the marker size. The marker
orientation follows the orientation of the line segment on which the marker is placed.

The following example defines a line style with direction marker:

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
 <g class="line" style="fill:#33a9ff;stroke-width:4;
 marker-name:M.IMAGE105_BW;marker-position:0.15;marker-size=8">
 <line class="parallel" style="fill:red;stroke-width:1.0"/>
 </g>

Text Styles

XML Format for Styles, Themes, Base Maps, and Map Tile Layers A-7

</svg>

To get multiple markers, add the multiple-marker attribute to the style definition.
In this case the marker-position will define the position for the first marker and the
space in between markers. The following example defines a line style with a direction
marker that starts at position 0.15 and that is repeated continually with a space of 0.15
between each occurrence.

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
 <g class="line" style="fill:#33a9ff;stroke-width:4;
 marker-name:M.IMAGE105_BW; marker-position:0.15;
 marker-size=8; multiple-marker=true">
 <line class="parallel" style="fill:red;stroke-width:1.0"/>
 </g>
</svg>

A.4 Area Styles
An area style defines a pattern to be used to fill an area feature. In the current release,
area styles must be image-based. That is, when you apply an area style to a geometry,
the image defining the style is plotted repeatedly until the geometry is completely
filled.

The definition of an area style is similar to that of an image marker style, which is
described in Section A.2.2.

The following example defines an area style:

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
 <g class="area" style="stroke:#000000">
 <image/>
 </g>
</svg>

In the preceding example, class="area" identifies the style as an area style. The
stroke color (style="stroke:#000000") is the color used to draw the geometry
boundary. If no stroke color is defined, the geometry has no visible boundary,
although its interior is filled with the pattern image.

You can also specify any line style to be used as the boundary for an area style. The
following area style definition uses the line-style keyword (shown in bold in the
example) to specify a line style to be used for the borders of features:

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
 <g class="area" style="line-style:L.DPH">
 <image x="0" y="0" width="9999" height="9999" type="gif" href="dummy.gif"/>
 </g>
</svg>

As with the image marker style, the image for an area style must be stored in a
separate column (identified in the IMAGE column in the USER_SDO_STYLES and
ALL_SDO_STYLES metadata views, which are described in Section 2.9.3).

A.5 Text Styles
A text style defines the font and color to be used in labeling spatial features. The
class attribute must have the value "text". For the font, you can specify its style

Advanced Styles

A-8 Oracle Fusion Middleware User's Guide for Oracle MapViewer

(plain, italic, and so on), font family, size, and weight. To specify the foreground color,
you use the fill attribute.

The following example defines a text style:

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
 <g class="text" style="font-style:plain; font-family:Dialog; font-size:14pt;
 font-weight:bold; fill:#0000ff">
 Hello World!
 </g>
</svg>

In the preceding example, the text "Hello World!" is displayed only when the style
itself is being previewed in a style creation tool, such as the Map Builder tool. When
the style is applied to a map, it is always supplied with an actual text label that
MapViewer obtains from a theme.

A text style can provide a floating white background around the rendered text, to
make the labels easier to read on a map that has many features. Figure A–2 shows the
label Vallejo with a white background wrapping tightly around the letters.

Figure A–2 Text Style with White Background

To achieve the result shown in Figure A–2, you must specify the float-width
attribute in the <g> element of the text style definition. The following example uses
the float-width attribute (shown in bold in the example) to specify a white
background that extends 3.5 pixels from the boundary of each letter. (The Hello
World! text is ignored when the style is applied to the display of labels.)

<?xml version="1.0" standalone="yes"?>
<svg width="1in" height="1in">
<desc></desc>
<g class="text" float-width="3.5"
 style="font-style:plain; font-family:Dialog; font-size:12pt; font-weight:bold;
 fill:#000000">
 Hello World!
</g>
</svg>

A.6 Advanced Styles
Advanced styles are structured styles made from simple styles. Advanced styles are
used primarily for thematic mapping. The core advanced style is the bucket style
(BucketStyle), and every advanced style is a form of bucket style. A bucket style is a
one-to-one mapping between a set of primitive styles and a set of buckets. Each bucket
contains one or more attribute values of features to be plotted. For each feature, one of
its attributes is used to determine which bucket it falls into or is contained within, and
then the style assigned to that bucket is applied to the feature.

Two special types of bucket styles are also provided: color scheme (described in
Section A.6.2) and variable (graduated) marker (described in Section A.6.3).

Advanced Styles

XML Format for Styles, Themes, Base Maps, and Map Tile Layers A-9

Other advanced styles are dot density (described in Section A.6.4), bar chart (described
in Section A.6.5), collection (described in Section A.6.6), and variable pie chart
(described in Section A.6.7).

A.6.1 Bucket Styles
A bucket style defines a set of buckets, and assigns one primitive style to each bucket.
The content of a bucket can be either of the following:

■ A collection of discrete values (for example, a bucket for all counties with a
hurricane risk code of 1 or 2, a bucket for all counties with a hurricane risk code of
3, and so on).

■ A continuous range of values (for example, a bucket for all counties with average
family income less than $30,000, a bucket for all counties with average family
income from $30,000 through $39,999, and so on). In this case, the ranges of a
series of buckets can be individually defined (each defined by an upper-bound
value and lower-bound value) or equally divided among a master range.

The following code excerpt shows the basic format of a bucket style:

<?xml version="1.0" ?>
<AdvancedStyle>
 <BucketStyle>
 <Buckets>
 . . .
 </Buckets>
 </BucketStyle>
</AdvancedStyle>

In contrast with the other (primitive) styles, an advanced style always has a root
element identified by the <AdvancedStyle> tag.

For bucket styles, a <BucketStyle> element is the only child of the
<AdvancedStyle> element. Each <BucketStyle> element has one or more
<Buckets> child elements, whose contents vary depending on the type of buckets.

A.6.1.1 Collection-Based Buckets with Discrete Values
If each bucket of a bucket style contains a collection of discrete values, use a
<CollectionBucket> element to represent each bucket. Each bucket contains one or
more values. The values for each bucket are listed as the content of the
<CollectionBucket> element, with multiple values delimited by commas. The
following example defines three buckets.

<?xml version="1.0" ?>
 <AdvancedStyle>
 <BucketStyle>
 <Buckets>
 <CollectionBucket seq="0" label="commercial"
 style="10015">commercial</CollectionBucket>
 <CollectionBucket seq="1" label="residential"
 style="10031">residential, rural</CollectionBucket>
 <CollectionBucket seq="2" label="industrial"
 style="10045">industrial, mining, agriculture</CollectionBucket>
 </Buckets>
 </BucketStyle>
</AdvancedStyle>

In the preceding example:

Advanced Styles

A-10 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ The values for each bucket are one or more strings; however, the values can also
be numbers.

■ The name of the style associated with each bucket is given.

■ The label attribute for each <CollectionBucket> element (commercial,
residential, or industrial) is used only in a label that is compiled for the advanced
style.

■ The order of the <CollectionBucket> elements is significant. However, the
values in the seq (sequence) attributes are informational only; MapViewer
determines sequence only by the order in which elements appear in a definition.

Although not shown in this example, if you want a bucket for all other values (if any
other values are possible), you can create a <CollectionBucket> element with
#DEFAULT# as its attribute value. It should be placed after all other
<CollectionBucket> elements, so that its style will be rendered last.

To apply label styles to collection-based buckets with discrete values, see Section 2.2.2.

A.6.1.2 Individual Range-Based Buckets
If each bucket of a bucket style contains a value range that is defined by two values,
use a <RangedBucket> element to represent each bucket. Each bucket contains a
range of values. The following example defines four buckets.

<?xml version="1.0" ?>
 <AdvancedStyle>
 <BucketStyle>
 <Buckets>
 <RangedBucket high="10" style="10015"/>
 <RangedBucket low="10" high="40" style="10024"/>
 <RangedBucket low="40" high="50" style="10025"/>
 <RangedBucket low="50" style="10029"/>
 </Buckets>
 </BucketStyle>
</AdvancedStyle>

Note that for individual range-based buckets, the lower-bound value is inclusive,
while the upper-bound value is exclusive (except for the range that has values greater
than any value in the other ranges; its upper-bound value is inclusive). No range is
allowed to have a range of values that overlaps values in other ranges.

For example, the second bucket in this example (low="10" high="40") will contain
any values that are exactly 10, as well as values up to but not including 40 (such as 39
and 39.99). Any values that are exactly 40 will be included in the third bucket.

As with the <CollectionBucket> element, the style associated with each
<RangedBucket> element is specified as an attribute.

To apply label styles to individual range-based buckets, see Section 2.2.2.

A.6.1.3 Equal-Ranged Buckets
If a bucket style contains a series of buckets that contain an equally divided range of a
master range, you can omit the use of <RangedBucket> elements, and instead
specify in the <Buckets> element the master upper-bound value and lower-bound
value for the overall range, the number of buckets in which to divide the range, and a
list of style names (with one for each bucket). The following example defines five
buckets (nbuckets=5) of equal range between 0 and 29:

<?xml version="1.0" ?>

Advanced Styles

XML Format for Styles, Themes, Base Maps, and Map Tile Layers A-11

<AdvancedStyle>
 <BucketStyle>
 <Buckets low="0" high="29" nbuckets="5"
 styles="10015,10017,10019,10021,10023"/>
 </BucketStyle>
 </AdvancedStyle>

In the preceding example:

■ If all values are integers, the five buckets hold values in the following ranges: 0 to
5, 6 to 11, 12 to 17, 18 to 23, and 24 to 29.

■ The first bucket is associated with the style named 10015, the second bucket is
associated with the style named 10017, and so on.

The number of style names specified must be the same as the value of the nbuckets
attribute. The buckets are arranged in ascending order, and the styles are assigned in
their specified order to each bucket.

A.6.2 Color Scheme Styles
A color scheme style automatically generates individual color styles of varying
brightness for each bucket based on a base color. The brightness is equally spaced
between full brightness and total darkness. Usually, the first bucket is assigned the
brightest shade of the base color and the last bucket is assigned the darkest shade.

You can include a stroke color to be used by the color style for each bucket. The stroke
color is not part of the brightness calculation. So, for example, if a set of polygonal
features is rendered using a color scheme style, the interior of each polygon is filled
with the color (shade of the base color) for each corresponding bucket, but the
boundaries of all polygons are drawn using the same stroke color.

You can include an opacity value (0 to 255, for transparent to opaque) for the base
color (using the basecolor_opacity attribute) and for the stroke color (using the
strokecolor_opacity attribute).

The following example defines a color scheme style with a black stroke color and four
buckets associated with varying shades of the base color of blue.

<?xml version="1.0" ?>
<AdvancedStyle>
 <ColorSchemeStyle basecolor="blue" strokecolor="black">
 <Buckets>
 <RangedBucket label="<10" high="10"/>
 <RangedBucket label="10 - 20" low="10" high="20"/>
 <RangedBucket label="20 - 30" low="20" high="30"/>
 <RangedBucket label=">=30" low="30"/>
 </Buckets>
 </ColorSchemeStyle>
</AdvancedStyle>

Note: For the following special characters, use escape sequences
instead.

For <, use: <

For >, use: >

For &, use: &

Advanced Styles

A-12 Oracle Fusion Middleware User's Guide for Oracle MapViewer

A.6.3 Variable Marker Styles
A variable marker style generates a series of marker styles of varying sizes for each
bucket. You specify the number of buckets, the start (smallest) size for the marker, and
the size increment between two consecutive markers.

Variable marker styles are conceptually similar to color scheme styles in that both base
buckets on variations from a common object: with a color scheme style the brightness
of the base color varies, and with a variable marker style the size of the marker varies.

The following example creates a variable marker style with four buckets, each
associated with different sizes (in increments of 4) of a marker (m.circle). The
marker for the first bucket has a radius of 10 display units, the marker for the second
bucket has a radius of 14 display units, and so on. This example assumes that the
marker named m.circle has already been defined.

 <?xml version="1.0" ?>
<AdvancedStyle>
 <VariableMarkerStyle basemarker="m.circle" startsize="10" increment="4">
 <Buckets>
 <RangedBucket label="<10" high="10"/>
 <RangedBucket label="10 - 20" low="10" high="20"/>
 <RangedBucket label="20 - 30" low="20" high="30"/>
 <RangedBucket label=">=30" low="30"/>
 </Buckets>
 </VariableMarkerStyle>
</AdvancedStyle>

A.6.4 Dot Density Marker Styles
A dot density advanced marker style, when applied to an area feature such as states or
counties, randomly draws a set of dots inside the area. The number of dots drawn
inside each area is determined by the count value associated with the area. When you
define a dot density style, you must specify a marker style that will be used for each of
the dots.

The following example shows the XML definition of a simple dot density style:

<?xml version="1.0" ?>
<AdvancedStyle>
 <DotDensityStyle MarkerStyle="M.STAR" DotWidth="8" DotHeight="8">
 </DotDensityStyle>
</AdvancedStyle>

In the preceding example, the marker style M.STAR is used for each dot, and the size
of each dot is 8 pixels wide and high.

When you use a dot density style, you should "scale" the count value to a proper
range. For example, if you want to apply a dot density style based on the population
count for each county, you would not want to use the population count directly (one
dot for each person), because this will result in an unacceptable number of drawn dots
(for example, if a county has 15,000 people). Instead, supply a scaled down value or
expression, such as population/1000, when you define the styling rules for the
theme. (MapViewer does not perform any scaling-down internally, so you must do it
at the SQL query level.)

Advanced Styles

XML Format for Styles, Themes, Base Maps, and Map Tile Layers A-13

A.6.5 Bar Chart Marker Styles
A bar chart advanced marker style is similar to a pie chart style, except that it draws a
bar graph for each feature to which it is applied. The following example shows the
XML definition of a bar chart style:

<?xml version="1.0" ?>
<AdvancedStyle>
 <BarChartStyle width="30" height="25" show_x_axis="true">
 <Bar name="1990" color="#FF0000" />
 <Bar name="1995" color="#FFC800" />
 <Bar name="1998" color="#0000FF" />
 <Bar name="2000" color="#00FF00" />
 <Bar name="2002" color="#00FFFF" />
 </BarChartStyle>
</AdvancedStyle>

In the preceding example, width and height specify the overall size of the bar chart,
including all individuals bars within it.

When a bar chart is drawn on a feature based on a set of values associated with that
feature, the height of each bar can be determined by either of two approaches: locally
scaled or globally scaled. A locally scaled bar chart determines the height of each bar
only from the associated values for that feature; and thus, for example, you cannot
compare the second bar of one chart to the second bar on another chart on the same
theme. A globally scaled bar chart uses the same bar scale for all charts on the map;
and thus, for example, you can compare the second bar of one chart to the second bar
on another chart on the same theme.

So, if you want to compare bars not only within the same chart, but also among all the
charts showing on the map, you must use globally scaled bar chart style by specifying
share_scale="true" in the definition of the bar chart style, as shown in the
following example:

<?xml version="1.0" ?>
<AdvancedStyle>
 <BarChartStyle width="40" height="30" share_scale="true"
 min_value="0.0" max_value="100">
 <Bar name="1990" color="#FF0000" />
 <Bar name="1995" color="#FFC800" />
 <Bar name="1998" color="#0000FF" />
 <Bar name="2000" color="#00FF00" />
 <Bar name="2002" color="#00FFFF" />
 </BarChartStyle>
</AdvancedStyle>

When the bar chart style in the preceding example is applied to a theme, MapViewer
considers the global range of values of all features in that theme, and then determines
the height of each bar based on where a specific value falls in the global range from the
minimum value to the maximum value.

A.6.6 Collection Styles
A collection advanced style is simply a collection of other types of styles that are
applied together to a feature. This can result in faster rendering of a collection theme
compared to using multiple themes based on different styles.

For example, a bar chart style, when applied to a county, draws only the bar chart
somewhere inside the county, but the county itself (its boundary and interior area) is
not drawn. However, you probably want to see the underlying boundaries of the

Advanced Styles

A-14 Oracle Fusion Middleware User's Guide for Oracle MapViewer

counties, to see which bar chart belongs to which county. To do this without a
collection style, you would have to define a second theme in which each county is
being associated with a color or area style. This approach would result in two
rendering passes (because two themes are involved) for essentially the same group of
features.

However, by using a collection style in this example, you can define a single style that
refers to both the bar chart and the color or area style, and then apply the collection
style to the theme for the counties. This theme, when rendered by MapViewer, will
show both the bar charts and the boundaries on the map.

Another typical use of a collection style is for rendering collection type topology
features, each of which can contain multiple types of geometries, such as polygons
(areas), points, and lines. In such cases, a collection style can include styles that are
most appropriate for each type of geometry in a collection topology feature.

The following example shows the XML definition of a collection style:

<?xml version="1.0" standalone="yes"?>
 <AdvancedStyle>
 <CollectionStyle>
 <style name="C.COUNTIES" shape="polygon" />
 <style name="L.PH" shape="line" />
 <style name="M.CIRCLE" shape="point" />
 </CollectionStyle>
 </AdvancedStyle>

A.6.7 Variable Pie Chart Styles
A variable pie chart generates a series of pie circles of varying sizes for each bucket.
You specify the pie slice information, the start (smallest) radius size for a pie circle,
and the radius size increment between two consecutive circles.

Variable pie chart styles are conceptually similar to variable marker styles. With a
variable marker style the base marker size varies, whereas with the variable pie chart
style the circle radius varies.

The following example creates a definition for a variable pie chart style with four
buckets, each associated with different sizes (in increments of 4) of a circle with start
radius of 5. The circle radius for the first bucket has a radius of 5 display units, the
circle for the second bucket has a radius of 9 display units, and so on.

<?xml version="1.0" ?>
<AdvancedStyle>
 <VariablePieChartStyle startradius="5" increment="4">
 <PieSlice name="WHITE" color="#FFFFFF"/>
 <PieSlice name="BLACK" color="#000000"/>
 <PieSlice name="HISPANIC" color="#FF0000"/>
 <Buckets>
 <RangedBucket seq="0" label="0 - 6194757.2" low="0" high="6194757.2" />
 <RangedBucket seq="1" label="6194757.2 - 1.23895144E7" low="6194757.2"
high="1.23895144E7"/>
 <RangedBucket seq="2" label="1.23895144E7 - 1.85842716E7" low="1.23895144E7"
high="1.85842716E7"/>
 <RangedBucket seq="3" label="1.85842716E7 - 2.47790288E7" low="1.85842716E7"
high="2.47790288E7"/>
 <RangedBucket seq="4" label="2.47790288E7 - 3.0973786E7" low="2.47790288E7"
high="3.0973786E7"/>
 </Buckets>
 </VariablePieChartStyle>
</AdvancedStyle>

Advanced Styles

XML Format for Styles, Themes, Base Maps, and Map Tile Layers A-15

A.6.8 Heat Map Styles
A heat map style can be used to generate a two-dimensional (2D) color map of any
point-type data set. The colors represent the distribution density or pattern of the
points or events across the region. Internally, MapViewer creates a 2D matrix and
assigns a value to each grid cell based on the result of a distance-weighted algorithm
run against the point data set.

You can create a heat map style using the Map Builder tool, and assign it as the
rendering style for a point-type geometry theme. You can then add this theme to a
base map, or add it as a theme-based FOI layer to an interactive Oracle Maps
application. Figure A–3 shows a map displayed using a theme based on a heat map
style. This map shows the concentration of pizza restaurants: red areas have the
highest concentration of pizza restaurants, with concentrations progressively lower for
orange, yellow, dark green, lighter green, pale green, and white areas.

Figure A–3 Heat Map Showing Pizza Restaurant Concentration

The following example creates a definition for a heat map style.

<?xml version="1.0" ?>
<AdvancedStyle>
 <HeatMapStyle>
 <color_stops num_steps="200" alpha="128">
 FFFFFF,00FF00, FFC800,FF0000
 </color_stops>
 <spot_light_radius>75.0mile</spot_light_radius>
 <grid_sample_factor>2.5</grid_sample_factor>
 <container_theme>THEME_DEMO_STATES</container_theme>
 </HeatMapStyle>
</AdvancedStyle>

The preceding example defines these essential aspects of the heat map:

Themes: Styling Rules

A-16 Oracle Fusion Middleware User's Guide for Oracle MapViewer

■ Color stops. Color stops are used to generate a color gradient. In this example, the
color gradient will go from white (maps to grid cells with a zero value) to green, to
orange, and finally to full red (maps to grid cells with highest values). The
gradient will have 200 colors that span these 4 color stops. All the colors will have
an alpha value of 128 (half transparent, where 0 would be fully transparent and
255 would be opaque).

■ Spot light radius. The spot light radius defines the radius around each grid cell
where events or points within this radius will be contributing to the final
aggregated value of that cell. The contribution of each point decreases as its
distance from the cell center increases, and becomes zero beyond this radius.

You can specify the radius in pixels or in a real ground unit such as mile. When
you specify the radius in pixels (the default if you do not specify a unit), the
mapping from the color gradient to the grid cells will vary as the user zooms in
and out on the map. This occurs because the number of points fall within the
radius is constantly changing as the user zooms in and out. To achieve a fixed heat
map regardless of map scale, you must specify the spotlight radius in a ground
unit such as meter, km, or mile. The preceding example uses mile.

■ Grid sample factor. The grid sample factor is used to sample the current map
window size when creating the internal matrix or grid for heat map calculation.
For example, a sample factor of 4 means that the internal heat map grid will be
one-fourth (0.25) the actual map window size. So, if the map is 1000x1000 pixels,
the internal heat map grid is 250x250. Thus, the lower the grid sample factor value,
the larger the internal heat map grid will be; and the higher the value, the smaller
the internal heat map grid will be.

The grid sample factor value probably has more effect on heat map rendering
performance than any other attribute, because a large internal heat map grid
(resulting from a low grid sample factor value) will significantly increase the
overall computation time. A good general guideline is to specify a grid sample
factor value high enough so that the internal heat map grid will be 512x512 pixels
or smaller.

■ Container theme name. The container theme name specifies the name of a theme
(predefined geometry theme in the same database schema) that defines the
boundary of the map for the heat map theme. For example, if you are generating a
heat map for a point data set that scatters all over the entire United States of
America, choose a theme that represents the US national boundary or all the states
as its container theme.

The specified container theme does not affect how the heat map itself is calculated
(which is solely based on the point distribution and the spotlight radius). Instead,
the container theme it masks out all colored cells that are outside the boundary of
the study region. This helps to ensure a "clean" look for the heat map.

After you create a heat map style, you can create a theme for point data and assign the
new heat map style as the rendering style for the theme.

Unlike other types of advanced styles, heat map styles do not require any attribute or
value columns.

Labels are not supported for themes rendered using heat map styles.

A.7 Themes: Styling Rules
A theme definition contains one <styling_rules> element, which may have several
other elements depending on the theme type. This <styling_rules> element is

Themes: Styling Rules

XML Format for Styles, Themes, Base Maps, and Map Tile Layers A-17

specified in the STYLING_RULES column of the USER_SDO_THEMES metadata
view, using the following DTD:

<!ELEMENT styling_rules (rule+, hidden_info?, operations?, bitmap_masks?,
parameters?)>
<!ATTLIST styling_rules theme_type CDATA #IMPLIED
 key_column CDATA #IMPLIED
 caching CDATA #IMPLIED "NORMAL"
 image_format CDATA #IMPLIED
 image_column CDATA #IMPLIED
 image_resolution CDATA #IMPLIED
 image_unit CDATA #IMPLIED
 raster_id CDATA #IMPLIED
 raster_table CDATA #IMPLIED
 raster_pyramid CDATA #IMPLIED
 raster_bands CDATA #IMPLIED
 polygon_mask CDATA #IMPLIED
 transparent_nodata CDATA #IMPLIED
 network_name CDATA #IMPLIED
 network_level CDATA #IMPLIED
 topology_name CDATA #IMPLIED
 service_url CDATA #IMPLIED
 srs CDATA #IMPLIED
 feature_ids CDATA #IMPLIED
 provider_id CDATA #IMPLIED
 srid CDATA #IMPLIED>

<!ELEMENT rule (features, label?, rendering?)>
<!ATTLIST rule column CDATA #IMPLIED>

<!ELEMENT features (#PCDATA?, link?, node?, path?)>
<!ATTLIST features style CDATA #REQUIRED>

<!ELEMENT label (#PCDATA?, link?, node?, path?)>
<!ATTLIST label column CDATA #REQUIRED
 style CDATA #REQUIRED>

<!ELEMENT link (#PCDATA)>
<!ATTLIST link style CDATA #REQUIRED
 direction_style CDATA #IMPLIED
 direction_position CDATA #IMPLIED
 direction_markersize CDATA #IMPLIED
 column CDATA #REQUIRED>

<!ELEMENT node (#PCDATA)>
<!ATTLIST node style CDATA #REQUIRED
 markersize CDATA #IMPLIED
 column CDATA #REQUIRED>

<!ELEMENT path (#PCDATA)>
<!ATTLIST path ids CDATA #REQUIRED
 styles CDATA #REQUIRED
 style CDATA #REQUIRED
 column CDATA #REQUIRED>

<!ELEMENT hidden_info (field+)>

<!ELEMENT field (#PCDATA)>
<!ATTLIST field column CDATA #REQUIRED
 name CDATA #IMPLIED>

Themes: Styling Rules

A-18 Oracle Fusion Middleware User's Guide for Oracle MapViewer

<!ELEMENT rendering (style+)>

<!ELEMENT style (substyle?)>
<!ATTLIST style name CDATA #REQUIRED
 value_columns CDATA #IMPLIED>

<!ELEMENT substyle (#PCDATA)>
<!ATTLIST substyle name CDATA #REQUIRED
 value_columns CDATA #REQUIRED
 changes CDATA #IMPLIED>

<!ELEMENT operations (operation?)>

<!ELEMENT operation (parameter?)>
<!ATTLIST operation name CDATA #REQUIRED>

<!ELEMENT parameters (parameter?)>

<!ELEMENT parameter (#PCDATA)>
<!ATTLIST parameter name CDATA #REQUIRED
 value DATA #REQUIRED>

<!ELEMENT bitmap_masks (mask+)>

<!ELEMENT mask (#PCDATA)>
<!ATTLIST mask raster_id CDATA #REQUIRED
 raster_table CDATA #REQUIRED
 layers CDATA #REQUIRED
 zeromapping CDATA #IMPLIED
 onemapping CDATA #IMPLIED>

The <styling_rules> element can have a theme_type attribute, which is used
mainly for certain types of predefined themes. (The default theme_type attribute
value is geometry, which indicates that the theme is based on spatial geometries.)
The theme_type attribute values for these special types of predefined themes are as
follows:

■ annotation specifies an annotation text theme. Annotation text themes are
explained in Section 2.3.9.

■ geom_custom specifies a custom geometry theme. You must also specify the
provider_id and srid attributes. Custom geometry themes are explained in
Section 2.3.8.

■ georaster specifies a GeoRaster theme. To use specified GeoRaster data (but not
if you use a query condition to retrieve the GeoRaster data), you must also specify
the raster_id and raster_table attributes. You can also specify the raster_
pyramid, raster_bands, polygon_mask, and transparent_nodata
attributes. GeoRaster themes are explained in Section 2.3.4.

■ image specifies an image theme. You must also specify the image_format and
image_column attributes, and you can specify the image_resolution and
image_unit attributes. Image themes are explained in Section 2.3.3.

■ network specifies a network theme. You must also specify the network_name
attribute. You can specify the network_level attribute, but the default value (1)
is the only value currently supported. Network themes are explained in
Section 2.3.5.

■ topology specifies a topology theme. You must also specify the topology_
name attribute. Topology themes are explained in Section 2.3.6.

Themes: Styling Rules

XML Format for Styles, Themes, Base Maps, and Map Tile Layers A-19

■ wfs specifies a WFS theme. You must also specify the service_url and srs
attributes. WFS themes are explained in Section 2.3.7.

The <styling_rules> element can have a key_column attribute. This attribute is
needed only if the theme is defined on a join view (a view created from multiple
tables). In such a case, you must specify a column in the view that will serve as the key
column to uniquely identify the geometries or images in that view. Without this key
column information, MapViewer will not be able to cache geometries or images in a
join view.

The <styling_rules> element can have a caching attribute, which specifies the
caching scheme for each predefined theme. The caching attribute can have one of the
following values: NORMAL (the default), NONE, or ALL.

■ NORMAL causes MapViewer to try to cache the geometry data that was just viewed,
to avoid repeating the costly unpickling process when it needs to reuse the
geometries. Geometries are always fetched from the database, but they are not
used if unpickled versions are already in the cache.

■ NONE means that no geometries from this theme will be cached. This value is
useful when you are frequently editing the data for a theme and you need to
display the data as you make edits.

■ ALL causes MapViewer to pin all geometry data of this theme entirely in the cache
before any viewing request. In contrast to the default value of NORMAL, a value of
ALL caches all geometries from the base table the first time the theme is viewed,
and the geometries are not subsequently fetched from the database.

For detailed information about the caching of predefined themes, see Section 2.3.1.5.

Each <rule> element must have a <features> element and can have a <label>
element and a <rendering> element. The <rendering> element can be used to
define multiple render styles, and in this case the render style in the <features>
element may be undefined. If the render style in the <features> element is defined
and <rendering> element is also defined, MapViewer will first render the style in
the <features> element and then render the styles in <rendering> element. (The
<rendering> element is explained later in this section.)

The optional column attribute of a <rule> element specifies one or more attribute
columns (in a comma-delimited list) from the base table to be put in the SELECT list of
the query generated by MapViewer. The values from such columns are usually
processed by an advanced style for this theme. The following example shows the use
of the column attribute:

<?xml version="1.0" standalone="yes"?>
<styling_rules >
 <rule column="TOTPOP">
 <features style="V.COUNTY_POP_DENSITY"> </features>
 </rule>
</styling_rules>

In the preceding example, the theme's geometry features will be rendered using an
advanced style named V.COUNTY_POP_DENSITY. This style will determine the color
for filling a county geometry by looking up numeric values in the column named
TOTPOP in the base table for this theme.

Each <features> element for a network theme must have a <link>, <node>, or
<path> element, or some combination of them. (The <link>, <node>, and <path>
elements apply only to network themes, which are explained in Section 2.3.5.) The
following example shows the styling rules for a network theme to render links and
nodes.

Themes: Styling Rules

A-20 Oracle Fusion Middleware User's Guide for Oracle MapViewer

<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="network"
 network_name="LRS_TEST" network_level="1">
 <rule>
 <features>
 <link style="C.RED"
 direction_style="M.IMAGE105_BW"
 direction_position="0.85"
 direction_markersize="8"></link>
 <node style="M.CIRCLE" markersize="5"></node>
 </features>
 </rule>
</styling_rules>

A <label> element must have a SQL expression as its element value for determining
whether or not a label will be applied to a feature. The column attribute specifies a
SQL expression for text values to label features, and the style attribute specifies a
text style for rendering labels.

The <rendering> element can be used to define multiple rendering styles. The styles
are rendered in the order that they appear. Each style in a <rendering> element is
defined by a <style> element, which must specify the name attribute and can specify
the value_columns attribute. (The value_columns attribute is used with advanced
styles, and the column names are added to the list of attributes defined in the column
attribute of <rule> element.)

In the <rendering> element, each <style> element can have a <substyle>
element that defines the attributes for filling the feature. A <substyle> element must
specify the name attribute and can specify the value_columns and changes
attributes. For the changes attribute, only the FILL_COLOR value is supported.

The following example shows the styling rules for a geometry theme using the
<rendering> element. It defines an advanced style named V.POIVMK to render the
feature shape and an advanced substyle named V.POIBKT to fill the feature shape.

<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <rule>
 <features> </features>
 <label column="NAME" style="T.STREET2"> 1 </label>
 <rendering>
 <style name="V.POIVMK" value_columns="FEATURE_CODE">
 <substyle name="V.POIVBKT" value_columns="POINT_ID" changes="FILL_COLOR"/>
 </style>
 </rendering>
 </rule>
</styling_rules>

For more information about using the <rendering> element to apply multiple
rendering styles in a single styling rule, see Section 2.3.1.4.

The <hidden_info> element specifies the list of attributes from the base table to be
displayed when the user moves the mouse over the theme’s features. The attributes
are specified by a list of <field> elements.

Each <field> element must have a column attribute, which specifies the name of the
column from the base table, and it can have a name attribute, which specifies the
display name of the column. (The name attribute is useful if you want a text string
other than the column name to be displayed.)

Base Maps

XML Format for Styles, Themes, Base Maps, and Map Tile Layers A-21

The <operations> element specifies the list of image processing operations to be
applied on a GeoRaster theme. The operations are specified by a list of <operation>
elements.

The <operation> element specifies the image processing operator and its parameters
to be applied on a GeoRaster theme. Each <operation> element may have a list of
<parameters> elements.

The <parameters> element defines a list of parameters to be used on a specific task.
The parameters are specified by a list of <parameter> elements.

The <parameter> element must have the name and value attributes defined.

The <bitmap_masks> element defines the image mask attributes to be used with a
GeoRaster theme. The bitmap masks are specified by a list of <mask> elements.

The <mask> element specifies a bitmap mask to be applied on a GeoRaster object. The
raster_id, raster_table, and layers attributes must be defined, while the
zeromapping and onemapping attributes are optional.

See Section 2.3.1.1 for more information about styling rules and for an example.

A.8 Base Maps
A base map definition consists of one or more themes. The XML definition of a base
map is specified in the DEFINITION column of the USER_SDO_MAPS metadata view,
using the following DTD:

<!ELEMENT map_definition (theme+)>

<!ELEMENT theme EMPTY>
<!ATTLIST theme name CDATA #REQUIRED
 name CDATA #REQUIRED
 datasource CDATA #IMPLIED
 template_theme CDATA #IMPLIED
 max_scale CDATA #IMPLIED
 min_scale CDATA #IMPLIED
 label_always_on (TRUE|FALSE) "FALSE"
 fast_unpickle (TRUE|FALSE) "TRUE"
 mode CDATA #IMPLIED
 min_dist CDATA #IMPLIED
 fixed_svglabel (TRUE|FALSE) "FALSE"
 visible_in_svg (TRUE|FALSE) "TRUE"
 selectable_in_svg (TRUE|FALSE) "FALSE"
 part_of_basemap (TRUE|FALSE) "FALSE"
 simplify_shapes (TRUE|FALSE) "TRUE"
 transparency CDATA #IMPLIED
 minimum_pixels CDATA #IMPLIED
 onclick CDATA #IMPLIED
 onmousemove CDATA #IMPLIED
 onmouseover CDATA #IMPLIED
 onmouseout CDATA #IMPLIED
 workspace_name CDATA #IMPLIED
 workspace_savepoint CDATA #IMPLIED
 workspace_date CDATA #IMPLIED
 workspace_date_format CDATA #IMPLIED
 fetch_size CDATA #IMPLIED
 timeout CDATA #IMPLIED
>

Map Tile Layers

A-22 Oracle Fusion Middleware User's Guide for Oracle MapViewer

The <map_definition> element contains one or more <theme> elements. Themes
are rendered on a map on top of each other, in the order in which they are specified in
the definition.

The <theme> element and its attributes are described in Section 3.2.20

See Section 2.4 for more information about defining base maps and for an example.

A.9 Map Tile Layers
An Oracle Maps map tile layer which assembles and displays pregenerated map
image tiles from the map tile server, as described in Section 8.2.2.2. The XML
configuration settings of a map tile layer is defined using the following DTD:

<!ELEMENT map_tile_layer ((internal_map_source|external_map_source), tile_storage,
coordinate_system, tile_image, tile_bound, zoom_levels)>
<!ATTLIST map_tile_layer
 name CDATA #REQUIRED
 image_format CDATA #IMPLIED>

<!ELEMENT internal_map_source EMPTY>
<!ATTLIST internal_map_source
 data_source CDATA #REQUIRED
 base_map CDATA #REQUIRED
 bgcolor CDATA #IMPLIED
 antialias (TRUE|FALSE) "TRUE">

<!ELEMENT external_map_source (properties?)>
<!ATTLIST external_map_source
 url CDATA #REQUIRED
 request_method CDATA #REQUIRED
 timeout CDATA #IMPLIED
 adapter_class CDATA #REQUIRED
 proxy_host CDATA #IMPLIED
 proxy_port CDATA #IMPLIED
 clipping_buffer CDATA #IMPLIED>

<!ELEMENT properties (property+) >

<!ELEMENT property EMPTY >
<!ATTLIST property
 name CDATA #REQUIRED
 value CDATA #REQUIRED>

<!ELEMENT tile_storage EMPTY >
<!ATTLIST tile_storage
 root_path CDATA #REQUIRED >

<!ELEMENT coordinate_system EMPTY >
<!ATTLIST coordinate_system
 srid CDATA #REQUIRED
 minX CDATA #REQUIRED
 minY CDATA #REQUIRED
 maxX CDATA #REQUIRED
 maxY CDATA #REQUIRED>

<!ELEMENT tile_bound (coordinates)>
<!ELEMENT coordinates (#PCDATA)>

<!ELEMENT tile_image EMPTY >

Map Tile Layers

XML Format for Styles, Themes, Base Maps, and Map Tile Layers A-23

<!ATTLIST tile_image
 width CDATA #REQUIRED
 height CDATA #REQUIRED>

<!ELEMENT zoom_levels (zoom_level+)>
<!ATTLIST zoom_levels
 levels CDATA #REQUIRED
 min_scale CDATA #IMPLIED
 max_scale CDATA #IMPLIED
 min_tile_width CDATA #IMPLIED
 min_tile_height CDATA #IMPLIED>

<!ELEMENT zoom_level (tile_bound?)>
<!ATTLIST zoom_level
 level CDATA #REQUIRED
 level_name CDATA #IMPLIED
 description CDATA #IMPLIED
 scale CDATA #REQUIRED
 tile_width CDATA #REQUIRED
 tile_height CDATA #REQUIRED>

Map Tile Layers

A-24 Oracle Fusion Middleware User's Guide for Oracle MapViewer

B

JavaScript Functions for SVG Maps B-1

B JavaScript Functions for SVG Maps

This appendix describes the MapViewer JavaScript application programming interface
(API) for SVG maps. This API contains predefined functions that can be called from
outside the SVG map, typically from the HTML document in which the SVG map is
embedded. In addition, you can create JavaScript functions to be called when certain
mouse-click actions occur. The predefined and user-defined functions can be used to
implement sophisticated client-side interactive features, such as customized
navigation.

If you use any of the JavaScript functions described in this appendix, end users must
use Microsoft Internet Explorer to view the SVG maps, and Adobe SVG Viewer 3.0 or
a later release must be installed on their systems.

This appendix contains the following major sections:

■ Section B.1, "Navigation Control Functions"

■ Section B.2, "Display Control Functions"

■ Section B.3, "Mouse-Click Event Control Functions"

■ Section B.4, "Other Control Functions"

B.1 Navigation Control Functions
The MapViewer JavaScript functions for controlling navigation include the following:

■ recenter(x, y) sets the center point of the current SVG map.

The input x and y values specify the coordinates (in pixels) of the new center
point, which is the point inside the SVG map to be displayed at the center of the
SVG viewer window. The SVG viewer window is the graphical area in the Web
browser displayed by the SVG viewer. The coordinates of the center point are
defined in the SVG map screen coordinate system, which starts from (0, 0) at the
upper-left corner of the map and ends at (width, height) at the lower-right corner.

■ setZoomRatio(zratio) sets the current map display zoom ratio.

This function can be used to zoom in or zoom out in the SVG map. (It does not
change the center point of the map.) The original map zoom ratio without any
zooming is 1, and higher zoom ratio values show the SVG map zoomed in. The
map zoom ratio should be set to those values that fit predefined zoom levels. For
example, if the zoomlevels value is 4 and zoomfactor value is 2, map zoom
ratios at zoom level 0, 1, 2, and 3 will be 1, 2, 4, and 8, respectively; thus, in this
example the zratio parameter value should be 1, 2, 4, or 8. For more information
about predefined zoom levels, see the descriptions of the zoomlevels,
zoomfactor, and zoomratio attributes in Section 3.2.1.1.

Display Control Functions

B-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

B.2 Display Control Functions
MapViewer provides functions to enable and disable the display of informational tips,
the map legend, hidden themes, and the animated loading bar. The display control
functions include the following:

■ switchInfoStatus() enables or disables the display of informational tips.
(Each call to the function reverses the previous setting.)

You can control the initial display of informational tips by using the <hidden_
info> element in theme styling rule definition (see Section A.7) and the infoon
attribute in a map request (see Section 3.2.1.1). The switchInfoStatus()
function toggles (reverses) the current setting for the display of informational tips.

■ switchLegendStatus() enables or disables the display of the map legend.
(Each call to the function reverses the previous setting.) The legend is initially
hidden when the map is displayed.

■ showTheme(theme) sets the specified theme to be visible on the map, and
hideTheme(theme) sets the specified theme to be invisible on the map.

■ showLoadingBar() displays the animated loading bar. The animated loading
bar provides a visible indication that the loading of a new map is in progress. The
bar is removed from the display when the loading is complete.

B.3 Mouse-Click Event Control Functions
MapViewer provides several predefined mouse-click event control functions, which
are explained in Section B.3.1. You can also create user-defined mouse event control
functions, as explained in Section B.3.2.

B.3.1 Predefined Mouse-Click Control Functions
MapViewer provides functions to enable and disable theme feature, rectangle, and
polygon selection in SVG maps. It also provides functions to get information about
selections and to toggle the selection status on and off. The functions for customizing
mouse-click event control on an SVG map include the following:

■ enableFeatureSelect() enables theme feature selection, and
disableFeatureSelect() disables theme feature selection.

Theme feature selection can be enabled if the selectable_in_svg attribute in
the <theme> element is TRUE either in the map request (see Section 3.2.20) or in
the base map (see Section A.8) definition. If the theme is selectable and theme
feature selection is enabled, each feature of the theme displayed on the SVG map
can be selected by clicking on it. If the feature is selected, its color is changed and
its ID (rowid by default) is recorded. Clicking on an already selected feature
deselects the feature. The list of IDs of all selected features can be obtained by
calling the getSelectedIdList() function, described in this section.

When theme feature selection is enabled, polygon selection and rectangle selection
are automatically disabled.

■ enablePolygonSelect() enables polygon selection, and
disablePolygonSelect() disables polygon selection.

If polygon selection is enabled, a polygon selection area can be defined by clicking
and moving the mouse on the SVG map. Each click creates a shape point for the
polygon. The coordinates of the polygon are recorded, and can be obtained by
calling the getSelectPolygon() function, described in this section.

Mouse-Click Event Control Functions

JavaScript Functions for SVG Maps B-3

When polygon selection is enabled, theme feature selection and rectangle selection
are automatically disabled.

■ enableRectangleSelect() enables rectangle selection, and
disableRectangleSelect() disables rectangle selection.

If rectangle selection is enabled, a rectangular selection window can be defined by
clicking and dragging the mouse on the SVG map. The coordinates of the
rectangle are recorded, and can be obtained by calling the
getSelectRectangle() function, described in this section.

When rectangle selection is enabled, theme feature selection and polygon selection
are automatically disabled.

■ getInfo(theme, key) returns the informational note or tip string of the feature
identified by theme name and key.

■ getSelectedIdList(theme) returns an array of all feature IDs that are
selected on the SVG map.

■ getSelectPolygon() returns an array of the coordinates of all shape points of
the selection polygon, using the coordinate system associated with the original
user data.

■ getSelectRectangle() returns an array of the coordinates of the upper-left
corner and the lower-right corner of the selection rectangle, using the coordinate
system associated with the original user data.

■ selectFeature(theme, key) toggles the selection status of a feature
(identified by its key value) in a specified theme.

■ setSelectPolygon(poly) sets the coordinates of all shape points of the
selection polygon, using the coordinate system associated with the original user
data. The coordinates are stored in the array poly. Calling this function after
enablePolygonSelect() draws a polygon on the SVG map.

■ setSelectRectangle(rect) sets the coordinates of the upper-left corner and
the lower-right corner of the selection rectangle, using the coordinate system
associated with the original user data. The coordinates are stored in the array
rect. Calling this function after enableRectangleSelect() draws a rectangle
on the SVG map.

B.3.2 User-Defined Mouse Event Control Functions
User-defined JavaScript mouse-event control functions can be combined with
predefined JavaScript functions (described in Section B.3.1) to implement further
interactive customization. You can create map-level, theme-level, and selection event
control functions.

B.3.2.1 Map-Level Functions
Map-level mouse event control functions can be defined for mouse-click events and
mouse-move events.

A mouse-click event function is called whenever a click occurs anywhere in the SVG
map, if both theme feature selection and window selection are disabled. The name of
the function is defined by the onclick attribute in the map request (see
Section 3.2.1.1).

A mouse-move event function is called whenever the mouse moves anywhere in the
SVG map. The name of the function is defined by the onmousemove attribute in the
map request (see Section 3.2.1.1).

Mouse-Click Event Control Functions

B-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

These JavaScript functions must be defined in the Web page that has the SVG map
embedded. Mouse-click and mouse-move event functions must accept two
parameters, x and y, which specify the coordinates inside the SVG viewer window
where the mouse click or move occurred. The coordinate is defined in the local SVG
viewer window coordinate system, which starts from (0,0) at the upper-left corner and
ends at (width, height) at the lower-right corner.

B.3.2.2 Theme-Level Functions
Theme-level mouse event control functions can be defined for mouse-click,
mouse-move, mouse-over, and mouse-out events.

A mouse-click event control function is called when theme feature selection is enabled
and a feature of the theme is clicked. Each theme in the map can have its own
mouse-click event control function. A theme-level mouse-click event control function
is specified by the onclick attribute in the <theme> element in the map request or
base map definition.

A mouse-move event control function is called whenever the mouse moves inside any
feature of the theme. Each theme in the map can have its own mouse-move event
control function. A theme-level mouse-move event control function is specified by the
onmousemove attribute in the <theme> element in the map request or base map
definition.

A mouse-over event control function is called whenever the mouse moves from
outside a feature of the theme to inside a feature of the theme. Each theme in the map
can have its own mouse-over event control function. A theme-level mouse-over event
control function is specified by the onmouseover attribute in the <theme> element in
the map request or base map definition.

A mouse-out event control function is called whenever the mouse moves out of a
feature of the theme. Each theme in the map can have its own mouse-out event control
function. A theme-level mouse-out event control function is specified by the
onmouseout attribute in the <theme> element in the map request or base map
definition.

These JavaScript functions must be defined in the Web page that has the SVG map
embedded. They take the following parameters:

■ Theme name

■ Key of the feature

■ X-axis value of the point in the SVG viewer window where the mouse click
occurred

■ Y-axis value of the point in the SVG viewer window where the mouse click
occurred

The key of the feature is the value of the key column from the base table, which is
specified by the key_column attribute of the <theme> element in the map request or
base map definition. ROWID is used as the default key column. For example, if the
onclick attribute is set to selectCounty for the COUNTY theme, the following
JavaScript function call is executed if the feature with rowid
AAAHQDAABAAALk6Abm of the COUNTY theme is clicked on the SVG map at
(100,120): selectCounty('COUNTY', 'AAAHQDAABAAALk6Abm', 100, 120).

The x-axis and y-axis values specify the coordinates inside the SVG viewer window
where the mouse event occurred. The coordinate is defined in the local SVG viewer
window coordinate system, which starts from (0,0) at the upper-left corner and ends at
(width, height) at the lower-right corner.

Other Control Functions

JavaScript Functions for SVG Maps B-5

B.3.2.3 Selection Event Control Functions
You can define a selection event control function for rectangle selection or polygon
selection, or for both.

A rectangle selection event control function is called whenever rectangle selection is
enabled and a rectangular selection area has been created by clicking and dragging the
mouse (to indicate two diagonally opposite corners) on an SVG map. The function is
called immediately after the selection of the rectangle is completed and the mouse key
is released. The function name is specified with the onrectselect attribute in the
map request (see Section 3.2.1.1).

A polygon selection event control function is called whenever polygon selection is
enabled and a polygon-shaped selection area has been created by clicking and
dragging the mouse at least four times on an SVG map, with the last click on the same
point as the first click to complete the polygon. The function is called immediately
after the selection of the polygon is completed. The function name is specified with the
onpolyselect attribute in the map request (see Section 3.2.1.1).

B.4 Other Control Functions
MapViewer provides other useful functions for working with SVG maps. These
functions include the following:

■ getUserCoordinate(x,y) converts the screen coordinates into the original
map data coordinates. This function returns the converted result in an array. The
first element of the array is the converted X coordinate, and the second element of
the array is the converted Y coordinate.

■ getScreenCoordinate(x,y) converts the original map data coordinates into
the screen coordinates. This function returns the converted result in an array. The
first element of the array is the converted X coordinate, and the second element of
the array is the converted Y coordinate.

Other Control Functions

B-6 Oracle Fusion Middleware User's Guide for Oracle MapViewer

C

Creating and Registering a Custom Image Renderer C-1

C Creating and Registering a Custom Image
Renderer

This appendix explains how to implement and register a custom image renderer for
use with an image theme. (Image themes are described in Section 2.3.3.)

If you want to create a map request specifying an image theme with an image format
that is not supported by MapViewer, you must first implement and register a custom
image renderer for that format. For example, the ECW format in Example 3–6 in
Section 3.1.6 is not supported by MapViewer; therefore, for that example to work, you
must first implement and register an image renderer for ECW format images.

The interface oracle.sdovis.CustomImageRenderer is defined in the package
sdovis.jar, which is located in the $ORACLE_HOME/lbs/lib directory in an
Oracle Fusion Middleware environment. If you performed a standalone installation of
OC4J, sdovis.jar is unpacked into $MAPVIEWER/web/WEB-INF/lib. The
following is the source code of this interface.

/**
 * An interface for a custom image painter that supports user-defined image
 * formats. An implementation of this interface can be registered with
 * MapViewer to support a custom image format.
 */
public interface CustomImageRenderer
{
 /**
 * The method is called by MapViewer to find out the image format
 * supported by this renderer.

 * This format string must match the one specified in a custom image renderer
 * element defined in the configuration file (mapViewerConfig.xml).
 */
 public String getSupportedFormat() ;

 /**
 * Renders the given images. MapViewer calls this method
 * to tell the implementor the images to render, the current map
 * window in user space, and the MBR (in the same user space) for each
 * image.
 *

 * The implementation should not retain any reference to the parameters
 * permanently.
 * @param g2 the graphics context to draw the images onto.
 * @param images an array of image data stored in byte array.
 * @param mbrs an array of double[4] arrays containing one MBR for each
 * image in the images array.
 * @param dataWindow the data space window covered by the current map.
 * @param deviceView the device size and offset.

C-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 * @param at the AffineTransform using which you can transform a point
 * in the user data space to the device coordinate space. You can
 * ignore this parameter if you opt to do the transformation
 * yourself based on the dataWindow and deviceView information.
 * @param scaleImage a flag passed from MapViewer to indicate whether
 * the images should be scaled to fit the current device window.
 * If it is set to false, render the image as-is without
 * scaling it.
 */
 public void renderImages(Graphics2D g2, byte[][] images, double[][] mbrs,
 Rectangle2D dataWindow, Rectangle2D deviceView,
 AffineTransform at, boolean scaleImage) ;
}

After you implement this interface, you must place your implementation class in a
directory that is part of the MapViewer CLASSPATH definition, such as the
$MAPVIEWER/web/WEB-INF/lib directory. If you use any native libraries to
perform the actual rendering, you must ensure that any other required files (such as
.dll and .so files) for these libraries are accessible to the Java virtual machine (JVM)
that is running MapViewer.

After you place your custom implementation classes and any required libraries in the
MapViewer CLASSPATH, you must register your class with MapViewer in its
configuration file, mapViewerConfig.xml (described in Section 1.5.2). Examine, and
edit as appropriate, the following section of the file, which tells MapViewer which
class to load if it encounters a specific image format that it does not already support.

 <!-- ** -->
 <!-- ******************** Custom Image Renderers ********************** -->
 <!-- ** -->
 <!-- Uncomment and add as many custom image renderers as needed here,
 each in its own <custom_image_renderer> element. The "image_format"
 attribute specifies the format of images that are to be custom
 rendered using the class with the full name specified in "impl_class".
 You are responsible for placing the implementation classes in the
 MapViewer classpath.
 -->
 <!--
 <custom_image_renderer image_format="ECW"
 impl_class="com.my_corp.image.ECWRenderer"/>
 -->

In this example, for any ECW formatted image data loaded through the <jdbc_
image_query> element of an image theme, MapViewer will load the class com.my_
corp.image.ECWRenderer to perform the rendering.

Example C–1 is an example implementation of the
oracle.sdovis.CustomImageRenderer interface. This example implements a
custom renderer for the ECW image format. Note that this example is for illustration
purposes only, and the code shown is not necessarily optimal or even correct for all
system environments. This implementation uses the ECW Java SDK, which in turn
uses a native C library that comes with it. For MapViewer to be able to locate the
native dynamic library, you may need to use the command-line option
-Djava.library.path when starting the OC4J instance that contains MapViewer.

Example C–1 Custom Image Renderer for ECW Image Format

package com.my_corp.image;
import java.io.*;
import java.util.Random;

Creating and Registering a Custom Image Renderer C-3

import java.awt.*;
import java.awt.geom.*;
import java.awt.image.BufferedImage;

import oracle.sdovis.CustomImageRenderer;
import com.ermapper.ecw.JNCSFile; // from ECW Java SDK

public class ECWRenderer implements CustomImageRenderer
{
 String tempDir = null;
 Random random = null;

 public ECWRenderer()
 {
 tempDir = System.getProperty("java.io.tmpdir");
 random = new Random(System.currentTimeMillis());
 }

 public String getSupportedFormat()
 {
 return "ECW";
 }

 public void renderImages(Graphics2D g2, byte[][] images,
 double[][] mbrs,
 Rectangle2D dataWindow,
 Rectangle2D deviceView,
 AffineTransform at)
 {
 // Taking the easy way here; you should try to stitch the images
 // together here.
 for(int i=0; i<images.length; i++)
 {
 String tempFile = writeECWToFile(images[i]);
 paintECWFile(tempFile, g2, mbrs[i], dataWindow, deviceView,at);
 }
 }

 private String writeECWToFile(byte[] image)
 {
 long l = Math.abs(random.nextLong());
 String file = tempDir + "ecw"+l+".ecw";
 try{
 FileOutputStream fos = new FileOutputStream(file);
 fos.write(image);
 fos.close();
 return file;
 }catch(Exception e)
 {
 System.err.println("cannot write ecw bytes to temp file: "+file);
 return null;
 }
 }

 private void paintECWFile(String fileName, Graphics2D g,
 double[] mbr,
 Rectangle2D dataWindow,
 Rectangle2D deviceView,
 AffineTransform at)
 {

C-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 JNCSFile ecwFile = null;
 boolean bErrorOnOpen = false;
 BufferedImage ecwImage = null;
 String errorMessage = null;

 try {
 double dFileAspect, dWindowAspect;
 double dWorldTLX, dWorldTLY, dWorldBRX, dWorldBRY;
 int bandlist[];
 int width = (int)deviceView.getWidth(),
 height = (int)deviceView.getHeight();
 int line, pRGBArray[] = null;

 ecwFile = new JNCSFile(fileName, false);

 // Work out the correct aspect for the setView call.
 dFileAspect = (double)ecwFile.width/(double)ecwFile.height;
 dWindowAspect = deviceView.getWidth()/deviceView.getHeight();

 if (dFileAspect > dWindowAspect) {
 height =(int)((double)width/dFileAspect);
 } else {
 width = (int)((double)height*dFileAspect);
 }

 // Create an image of the ecw file.
 ecwImage = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_RGB);
 pRGBArray = new int[width];

 // Set up the view parameters for the ecw file.
 bandlist = new int[ecwFile.numBands];
 for (int i=0; i< ecwFile.numBands; i++) {
 bandlist[i] = i;
 }
 dWorldTLX = ecwFile.originX;
 dWorldTLY = ecwFile.originY;
 dWorldBRX = ecwFile.originX +
 (double)(ecwFile.width-1)*ecwFile.cellIncrementX;
 dWorldBRY = ecwFile.originY +
 (double)(ecwFile.height-1)*ecwFile.cellIncrementY;

 dWorldTLX = Math.max(dWorldTLX, dataWindow.getMinX());
 dWorldTLY = Math.max(dWorldTLY, dataWindow.getMinY());
 dWorldBRX = Math.min(dWorldBRX, dataWindow.getMaxX());
 dWorldBRY = Math.min(dWorldBRY, dataWindow.getMaxY());

 // Set the view.
 ecwFile.setView(ecwFile.numBands, bandlist, dWorldTLX,
 dWorldTLY, dWorldBRX, dWorldBRY, width, height);

 // Read the scan lines.
 for (line=0; line < height; line++) {
 ecwFile.readLineRGBA(pRGBArray);
 ecwImage.setRGB(0, line, width, 1, pRGBArray, 0, width);
 }

 } catch(Exception e) {
 e.printStackTrace(System.err);
 bErrorOnOpen = true;

Creating and Registering a Custom Image Renderer C-5

 errorMessage = e.getMessage();
 g.drawString(errorMessage, 0, 50);
 }

 // Draw the image (unscaled) to the graphics context.
 if (!bErrorOnOpen) {
 g.drawImage(ecwImage, 0, 0, null);
 }

 }
}

C-6 Oracle Fusion Middleware User's Guide for Oracle MapViewer

D

Creating and Registering a Custom Spatial Data Provider D-1

D Creating and Registering a Custom Spatial
Data Provider

This appendix shows a sample implementation of a spatial data provider, and explains
how to register this provider to be used with MapViewer. The complete
implementation can be found under the MapViewer web/demo/spatialprovider
directory. The implementation uses then following files:

■ us_bigcities.xml: sample XML file that the provider parses

■ customSpatialProviderSample.java: Java implementation of the spatial
data provider

■ spatialprovider.jar: jar file with the compiled version of the
customSpatialProviderSample.java source file

The us_bigcities.xml file has sections to define the data attributes, the data
extents, and the feature information, including the geometry (in GML format) and the
attribute values. This file includes the following:

<?xml version="1.0" standalone="yes"?>
<spatial_data>

<data_attributes>
 <attribute name="city" type="string" />
 <attribute name="state_abrv" type="string" />
 <attribute name="pop90" type="double" />
</data_attributes>

<data_extents>
 <xmin> -122.49586 </xmin>
 <ymin> 29.45765 </ymin>
 <xmax> -73.943849 </xmax>
 <ymax> 42.3831 </ymax>
</data_extents>

<geoFeature>
 <attributes> New York,NY,7322564 </attributes>
 <geometricProperty>
 <Point>
 <coordinates>-73.943849, 40.6698</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>

. . .
</spatial_data>

Implementing the Spatial Provider Class

D-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

This appendix contains the following major sections:

■ Section D.1, "Implementing the Spatial Provider Class"

■ Section D.2, "Registering the Spatial Provider with MapViewer"

■ Section D.3, "Rendering the External Spatial Data"

D.1 Implementing the Spatial Provider Class
The provider must implement the class interface shown in Section 2.3.8. Example D–1
contains the partial code for the spatial provider in the supplied demo. Note that this
sample code is deliberately simplified; it is not optimized, and the provider does not
create any spatial indexing mechanism.

Example D–1 Implementing the Spatial Provider Class

package spatialprovider.samples;

import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.io.File;
import java.util.ArrayList;
import java.util.Properties;
import java.util.StringTokenizer;
import java.util.Vector;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import oracle.mapviewer.share.Field;
import oracle.mapviewer.share.ext.SDataProvider;
import oracle.mapviewer.share.ext.SDataSet;
import oracle.mapviewer.share.ext.SObject;
import org.w3c.dom.Document;
import org.w3c.dom.NamedNodeMap;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
import oracle.spatial.geometry.JGeometry;
import oracle.spatial.util.GML;

public class CustomSpatialProviderSample implements SDataProvider
{
 ...

 /**
 * Constructor.
 */
 public CustomSpatialProviderSample()
 {
 ...
 }

 /**
 * Returns the initialization parameters for the provider.
 * The "datadir" parameter should be registered on MapViewer
 * configuration file and can be used to access the data.
 * @return
 */
 public String[] getInitParameterNames()
 {
 return new String[]{ "datadir" };

Implementing the Spatial Provider Class

Creating and Registering a Custom Spatial Data Provider D-3

 }

 /**
 * Returns runtime parameter names. Runtime parameters are additional parameters
 * that the provider may use when retrieving the data objects.
 * @return
 */
 public String[] getRuntimeParameterNames()
 {
 return new String[]{ "filename" };
 }

 /**
 * Initializes the provider
 * @param params init properties
 * @return
 */
 public boolean init(Properties params)
 {
 dataDirectory = null;
 if(params == null)
 return true;
 dataDirectory = params.getProperty("datadir");
 if(dataDirectory == null || dataDirectory.trim().length() == 0)
 {
 // try upper case
 dataDirectory = params.getProperty("DATADIR");
 if(dataDirectory == null || dataDirectory.trim().length() == 0)
 System.out.println("FINE: Init properties does not define \"datadir\" parameter.");
 }
 return true;
 }

 /**
 * Returns the data set (geometries plus attributes) that intersects the
 * query window. In this sample the data is parsed just once and
 * there is no spatial index for searching. The search is sequential.
 * @param queryWin search area
 * @param nonSpatialColumns attribute columns
 * @param params runtime properties
 * @return
 */
 public SDataSet buildDataSet(Rectangle2D queryWin,
 String []nonSpatialColumns,
 Properties params)
 {
 if(!dataParsed)
 {
 dataParsed = parseData(params);
 if(!dataParsed)
 return null;
 }
 if(geometries.size() == 0)
 return null;

 SDataSet dataset = new SDataSet();
 boolean fullExtent = isFullExtent(queryWin);
 if(fullExtent)
 {
 for(int i=0;i<geometries.size();i++)

Implementing the Spatial Provider Class

D-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 {
 JGeometry geom = (JGeometry)geometries.get(i);
 SObject obj = new SObject(geom,getGeometryAttributes(nonSpatialColumns,i));
 dataset.addObject(obj); }
 }
 else
 {
 for(int i=0;i<geometries.size();i++)
 {
 JGeometry geom = (JGeometry)geometries.get(i);
 double []mbr = geom.getMBR();
 if(mbr == null)
 continue;
 Rectangle2D.Double rect = new Rectangle2D.Double(mbr[0],mbr[1],
 mbr[2]-mbr[0],
 mbr[3]-mbr[1]);
 if(rect.getWidth() == 0. && rect.getHeight() == 0.)
 {
 Point2D.Double pt = new Point2D.Double(mbr[0],mbr[1]);
 if(queryWin.contains(pt))
 {
 SObject obj = new SObject(geom,getGeometryAttributes(nonSpatialColumns,i));
 dataset.addObject(obj); }
 }
 else if(queryWin.contains(rect) || queryWin.intersects(rect))
 {
 SObject obj = new SObject(geom,getGeometryAttributes(nonSpatialColumns,i));
 dataset.addObject(obj);
 }
 } }
 if(dataset.getSize() == 0)
 return null;
 return dataset;
 }

 /**
 * Returns the data provider attribute list.
 * @return
 */
 public Field[] getAttributeList(Properties params)
 {
 if(!dataParsed)
 {
 dataParsed = parseData(params);
 if(!dataParsed)
 return null;
 }
 if(attributes.size() == 0)
 return null;

 return (Field[])attributes.toArray(new Field[attributes.size()]);
 }

 /**
 * Returns the data extents.
 * @return
 */
 public Rectangle2D getDataExtents(Properties params)
 {
 if(!dataParsed)

Rendering the External Spatial Data

Creating and Registering a Custom Spatial Data Provider D-5

 {
 dataParsed = parseData(params);
 if(!dataParsed)
 return null;
 }
 if(extents == null || extents.length < 4)
 return null;
 else
 return new Rectangle2D.Double(extents[0],extents[1],
 extents[2]-extents[0],
 extents[3]-extents[1]);
 }

 /**
 * Builds a spatial index for the data. In this sample there is no
 * spatial index. The data is loaded into memory when data is parsed.
 * @return
 */
 public boolean buildSpatialIndex(Properties params)
 {
 return true;
 }

}

After you have implemented the provider code, compile it and generate a jar file with
this compiled class. The file spatialprovider.jar in the demo directory contains
the compiled version of this sample code, and you can use it directly. Copy this jar file
to a directory that is part of MapViewer's CLASSPATH definition, such as the
web/WB-INF/lib directory.

D.2 Registering the Spatial Provider with MapViewer
To register the spatial provider with MapViewer, add the following in the spatial
provider section of the MapViewer configuration file, and then restart MapViewer:

<s_data_provider
 id="xmlProvider"
 class="spatialprovider.samples.CustomSpatialProviderSample"
 >
 <parameters>
 <parameter name="datadir" value="/temp/data" />
 </parameters>
</s_data_provider>

When you restart MapViewer, you should see a console message that the spatial
provider has been registered. For example:

2007-10-01 14:30:31.109 NOTIFICATION Spatial Provider xmlProvider has been
registered.

D.3 Rendering the External Spatial Data
To enable you to render the sample external spatial data that comes with MapViewer
kit., create a data source pointing to this data Example D–2 is an XML request that
contains a dynamic custom geometry theme.

Rendering the External Spatial Data

D-6 Oracle Fusion Middleware User's Guide for Oracle MapViewer

Example D–2 Map Request to Render External Spatial Data

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Custom Geometry Theme"
 datasource="mvdemo"
 width="500"
 height="400"
 bgcolor="#a6caf0"
 antialiase="true"
 format="PNG_STREAM"
>
 <center size="40">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>-90,32</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>

 <themes>
 <theme name="custom_theme" >
 <custom_geom_theme
 provider_id="xmlProvider"
 srid="8307"
 render_style="M.CIRCLE"
 label_column="city"
 label_style="T.CITY NAME"
 datasource="mvdemo">
 <parameters>
 <parameter name="filename" value="/lbs/demo/spatialprovider/us_bigcities.xml"/>
 </parameters>
 </custom_geom_theme>
 </theme>
 </themes>
</map_request>

In Example D–2, the file name in the <parameter> element points to
/lbs/demo/spatialprovider/us_bigcities.xml. If the file path is not
accessible to MapViewer, the map request may generate error messages in the log file,
such as the following:

07/09/28 10:26:47 ParseData: Can not access file: /lbs/demo/spatialprovider/us_
bigcities.xml
07/09/28 10:26:47 ParseData: File to be parsed: /temp/data\us_bigcities.xml
07/09/28 10:26:47 ParseData: File can not be accessed on provider data directory.
Copy files there.

When MapViewer searches for the file, it first tries to access the file using the original
theme definition parameter; and if that fails, it tries the data directory defined in the
MapViewer configuration file (/temp/data in the preceding example error
messages). Therefore, if the original theme definition data path is not accessible to
MapViewer, copy the data files to the directory defined in the configuration file before
you issue the map request.

If MapViewer can find the data file, the map request inExample D–2 should generate
an image like the one in Figure D–1.

Rendering the External Spatial Data

Creating and Registering a Custom Spatial Data Provider D-7

Figure D–1 Map Image Using Custom Geometry Theme and External Spatial Data

Rendering the External Spatial Data

D-8 Oracle Fusion Middleware User's Guide for Oracle MapViewer

E

OGC WMS Support in MapViewer E-1

E

OGC WMS Support in MapViewer

MapViewer supports the rendering of data delivered using the Open GIS Consortium
(OGC) Web Map Service (WMS) protocol, specifically the WMS 1.1.1 and 1.3.0
implementation specifications. MapViewer supports the GetMap, GetFeatureInfo, and
GetCapabilities requests as defined in the OGC document 01-068r3 and 06-042.

MapViewer does not currently support the optional Styled Layer Descriptor capability,
and MapViewer will not function as a Cascading Map Server in this release.

This appendix contains the following major sections:

■ Section E.1, "Setting Up the WMS Interface for MapViewer"

■ Section E.2, "WMS Specification and Corresponding MapViewer Concepts"

■ Section E.3, "Adding a WMS Map Theme"

E.1 Setting Up the WMS Interface for MapViewer
MapViewer is preconfigured to run as a WMS service. Internally, MapViewer
translates all incoming WMS requests into proper XML requests to the MapViewer
server. For example, the following HTTP request invokes the GetCapabilities service of
a MapViewer server:

http://localhost:8888/mapviewer/wms?REQUEST=GetCapabilities&SERVICE=WMS&VERSION=1.1.1
or
http://localhost:8888/mapviewer/wms?REQUEST=GetCapabilities&SERVICE=WMS&VERSION=1.3.0

As shown in this example, the URL for the MapViewer WMS service is typically
http://host:port/mapviewer/wms?, where host and port refer to the host and
HTTP port of the MapViewer server. The context path /mapviewer/wms refers to the
WMS interface of MapViewer.

E.1.1 Required Files
The following files are required for MapViewer WMS support: WMSFilter.jar and
classgen.jar.

■ The servlet filter and its required classes are packaged in WMSFilter.jar. This
should be located in the $MAPVIEWER_HOME/web/WEB-INF/lib directory.

■ The servlet filter also requires classgen.jar, which is part of the XML
Developer’s Kit (XDK) for Java. A standalone OC4J installation usually does not

Note: All WMS requests must be on a single line, so ignore any line
breaks that might appear in WMS request examples in this chapter.

WMS Specification and Corresponding MapViewer Concepts

E-2 Oracle Fusion Middleware User's Guide for Oracle MapViewer

have this file; however, an Oracle Database or full Oracle Fusion Middleware
installation will already have this file.

If your system does not already have the classgen.jar file, use a
classgen.jar file from the same XDK for Java version as the one that ships with
your standalone OC4J version. Place this file in the $MAPVIEWER_
HOME/web/WEB-INF/lib directory or in a directory that is in the library path for
OC4J.

The classgen.jar and xmlparserv2.jar files must be from the same XDK
release, because the classgen.jar file depends on the xmlparserv2.jar file.
Also, the XDK release for both files must be OC4J 10.0.0.3 or later, and preferably
10.1.2 or later.

E.1.2 Data Source Named wms
You must define a MapViewer data source named wms, unless every incoming WMS
request explicitly specifies a datasource CGI parameter. All requests that do not
specify the datasource parameter are by default directed to the data source named
wms. For example, the GetCapabilities request will by default list all the available
themes that are in the wms data source. (To configure the information returned by a
GetCapabilities request, see Section 1.5.2.12.)

E.1.3 SDO to EPSG SRID Mapping File
By default, MapViewer uses the Oracle Spatial (SDO) native SRID (spatial reference
ID) values when such information is requested in a WMS request such as
GetCapabilities. The EPSG SRID values, however, are more widely used in WMS
applications. To have MapViewer use EPSG SRID values when processing WMS
requests and generating responses, specify a mapping file. This mapping file is a text
file that tells MapViewer which SDO SRID values map to which EPSG SRID values.
(Each pair of matching SRID values refers to the same spatial reference system.)

The mapping file contains lines where each line defines one pair of equivalent SRID
values in the following format:

sdo_srid=epsg_srid

For example, the following lines define SDO SRID 8307 as equivalent to EPSG SRID
4326, and SDO SRID 81922 as equivalent to EPSG SRID 20248:

8307=4326
81922=20248

After you have created an SDO to EPSG mapping file, you can save it on the server
where MapViewer is running, and specify its location in the MapViewer configuration
file using the <sdo_epsg_mapfile> element in the <wms_config> element, as
explained in Section 1.5.2.12.

E.2 WMS Specification and Corresponding MapViewer Concepts
This section describes the association between, or interpretation of, terms and concepts
used in the WMS 1.1.1 and 1.3.0 specifications and MapViewer. It also includes some
parameters that are specific to MapViewer but that are not in the WMS 1.1.1 and 1.3.0
specifications.

WMS Specification and Corresponding MapViewer Concepts

OGC WMS Support in MapViewer E-3

E.2.1 Supported GetMap Request Parameters
This section describes the supported GetMap request parameters and their
interpretation by MapViewer. (Parameters that are specific to MapViewer and not
mentioned in the WMS 1.1.1 and 1.3.0 specifications are labeled MapViewer-Only.) The
supported parameters are in alphabetical order, with each in a separate subsection.
Example E–1 shows some GetMap requests. (Each URL should be entered as a single
string.)

Example E–1 GetMap Requests

http://localhost:8888/mapviewer/wms?REQUEST=GetMap&VERSION=1.1.1&FORMAT=image/gif&
SERVICE=WMS&BBOX=-121,37,-119,35&SRS=EPSG:4326&LAYERS=theme_demo_states,theme_
demo_counties,theme_demo_highways,theme_demo_cities&WIDTH=580&HEIGHT=500

http://localhost:8888/mapviewer/wms?REQUEST=GetMap&VERSION=1.3.0&FORMAT=image/gif&
SERVICE=WMS&BBOX=-121,37,-119,35&CRS=EPSG:4326&LAYERS=theme_demo_states,theme_
demo_counties,theme_demo_highways,theme_demo_cities&WIDTH=580&HEIGHT=500

http://localhost:8888/mapviewer/wms?request=GetMap&version=1.3.0&crs=none
&bbox=-122,36,-121,37&width=600&height=400&format=image/png&layers=theme_us_
states&mvthemes=<themes><theme%20name="theme_us_counties"/><theme%20name="theme_
us_road1"/></themes>&legend_
request=<legend%20bgstyle="fill:%23ffffff;stroke:%23ff0000"%20profile="medium"%20p
osition="SOUTH_EAST"><column><entry%20style="v.rb1"%20tab="1"/></column></legend>&

The default data source for a GetMap request is WMS. That is, if you do not specify the
DATASOURCE parameter in a GetMap request, it is assumed that a data source named
WMS was previously created using the <add_data_source> element (described in
Section 7.1.1) in a MapViewer administrative request.

The following optional GetMap parameters are not supported in the current release of
MapViewer:

■ TIME (time dimension)

■ ELEVATION (elevation dimension)

■ SLD and WFS URLs

The MapViewer-only parameters must contain valid XML fragments. Because these
are supplied in an HTTP GET request, they must be appropriately encoded using a
URL encoding mechanism. For example, replace each space () with %20 and each
pound sign (#) with %23. The following example shows the use of such encoding:

http://localhost:8888/mapviewer/wms?request=GetMap&version=1.1.1&srs=none&bbox=-12
2,36,-121,37&width=600&height=400&format=image/png&layers=theme_us_
states&mvthemes=<themes><theme%20name="theme_us_counties"/><theme%20name="theme_
us_road1"/></themes>&legend_
request=<legend%20bgstyle="fill:%23ffffff;stroke:%23ff0000"%20profile="medium"%20p
osition="SOUTH_EAST"><column><entry%20style="v.rb1"%20tab="1"/></column></legend>&

E.2.1.1 BASEMAP Parameter (MapViewer-Only)
The BASEMAP parameter specifies a named base map for the specified (or default) data
source. If you specify both the BASEMAP and LAYERS parameters, all themes specified
in the LAYERS parameters are added to the base map. Therefore, if you just want to get
a map using a named base map, specify the BASEMAP parameter but specify an empty
LAYERS parameter, as in the following examples:

REQUEST=GetMap&VERSION=1.1.1&BASEMAP=demo_
map&LAYERS=&WIDTH=500&HEIGHT=560&SRS=SDO:8307&BBOX=-122,36,-120,38.5&FORMAT=image/

WMS Specification and Corresponding MapViewer Concepts

E-4 Oracle Fusion Middleware User's Guide for Oracle MapViewer

png

REQUEST=GetMap&VERSION=1.3.0&BASEMAP=demo_
map&LAYERS=&WIDTH=500&HEIGHT=560&CRS=SDO:8307&BBOX=-122,36,-120,38.5&FORMAT=image/
png

E.2.1.2 BBOX Parameter
The BBOX parameter specifies the lower-left and upper-right coordinates of the
bounding box for the data from the data source to be displayed. It has the format
BBOX=minX,minY,maxX,maxY. For example: BBOX=-122,36,-120,38.5

E.2.1.3 BGCOLOR Parameter
The BGCOLOR parameter specifies background color for the map display using the
RBG color value. It has the format 0xHHHHHH (where each H is a hexadecimal value
from 0 to F). For example: BGCOLOR=0xF5F5DC (beige).

E.2.1.4 DATASOURCE Parameter (MapViewer-Only)
The DATASOURCE parameter specifies the name of the data source for the GetMap or
GetFeatureInfo request. The default value is WMS. The specified data source must exist
prior to the GetMap or GetFeatureInfo request. That is, it must have been created
using the <add_data_source> MapViewer administrative request or defined in the
MapViewer configuration file (mapViewerConfig.xml).

E.2.1.5 DYNAMIC_STYLES Parameter (MapViewer-Only)
The DYNAMIC_STYLES parameter specifies a <styles> element as part of the
GetMap request. For information about the <styles> element, see Section 3.2.19.

E.2.1.6 EXCEPTIONS Parameter
For the EXCEPTIONS parameter, the only supported value is the default:
EXCEPTIONS=application/vnd.ogc.se_xml for WMS 1.1.1 and
EXCEPTIONS=XML for WMS 1.3.0. The exception is reported as an XML document
conforming to the Service Exception DTD available at the following URLs:

http://schemas.opengis.net/wms/1.1.1/WMS_exception_1_1_1.dtd

http://schemas.opengis.net/wms/1.3.0/exceptions_1_3_0.xsd

The application/vnd.ogc.se_inimage (image overwritten with Exception
message), and application/vnd.ogc.se_blank (blank image because Exception
occurred) options are not supported.

E.2.1.7 FORMAT Parameter
The FORMAT parameter specifies the image format. The supported values are
image/gif, image/jpeg, image/png, image/png8, and image/svg+xml.

The default value is image/png.

E.2.1.8 HEIGHT Parameter
The HEIGHT parameter specifies the height for the displayed map in pixels.

E.2.1.9 LAYERS Parameter
The LAYERS parameter specifies a comma-delimited list of predefined theme names to
be used for the display. The specified values are considered to a be a case-sensitive,

WMS Specification and Corresponding MapViewer Concepts

OGC WMS Support in MapViewer E-5

ordered, comma-delimited list of predefined theme names in a default data source
(named WMS) or in a named data source specified by the parameter
DATASOURCE=<name>. For example, LAYERS=THEME_DEMO_STATES,theme_demo_
counties,THEME_demo_HIGHWAYS translates to the following <themes> element
in a MapViewer map request:

<themes>
<theme name="THEME_DEMO_STATES"/>
<theme name="theme_demo_counties"/>
<theme name="THEME_demo_HIGHWAYS"/>
</themes>

If you want to specify both a base map and one or more LAYERS values, see the
information about the BASEMAP parameter in Section E.2.1.1.

E.2.1.10 LEGEND_REQUEST Parameter (MapViewer-Only)
The LEGEND_REQUEST parameter specifies a <legend> element as part of the
GetMap request. For information about the <legend> element, see Section 3.2.11.

E.2.1.11 MVTHEMES Parameter (MapViewer-Only)
The MVTHEMES parameter specifies a <themes> element as part of the GetMap
request. For information about the <themes> element, see Section 3.2.21. The primary
purpose for the MVTHEMES parameter is to support JDBC themes in a MapViewer
request. The MVTHEMES parameter is not a substitute or synonym for the LAYERS
parameter; you still must specify the LAYERS parameter.

E.2.1.12 REQUEST Parameter
The REQUEST parameter specifies the type of request. The value must be GetMap,
GetFeatureInfo, or GetCapabilities.

E.2.1.13 SERVICE Parameter
The SERVICE parameter specifies the service name. The value must be WMS.

E.2.1.14 SRS (1.1.1) or CRS (1.3.0) Parameter
The SRS parameter (WMS 1.1.1) or the CRS parameter (WMS 1.3.0) specifies the spatial
reference system (coordinate system) for MapViewer to use. The value must be one of
the following: SDO:srid-value (where srid-value is a numeric Oracle Spatial
SRID value), EPSG:4326 (equivalent to SDO:8307), or none (equivalent to SDO:0).

Except for EPSG:4326 (the standard WGS 84 longitude/latitude coordinate system),
EPSG numeric identifiers are not supported. The namespace AUTO (WMS 1.1.1) or
AUTO2 (WMS 1.3.0), for projections that have an arbitrary center of projection, is not
supported.

E.2.1.15 STYLES Parameter
The STYLES parameter is ignored. Instead, use the LAYERS parameter to specify
predefined themes for the display.

E.2.1.16 TRANSPARENT Parameter
The TRANSPARENT=TRUE parameter (for a transparent image) is supported for PNG
images, that is, with FORMAT=image/png, or FORMAT=image/png8 for indexed
(8-bit) PNG format. MapViewer does not support transparent GIF (GIF89) images.

WMS Specification and Corresponding MapViewer Concepts

E-6 Oracle Fusion Middleware User's Guide for Oracle MapViewer

E.2.1.17 VERSION Parameter
The VERSION parameter specifies the WMS version number. The value must be 1.1.1
or 1.3.0.

E.2.1.18 WIDTH Parameter
The WIDTH parameter specifies the width for the displayed map in pixels.

E.2.2 Supported GetCapabilities Request and Response Features
A WMS GetCapabilities request to MapViewer should specify only the following
parameters:

■ REQUEST=GetCapabilities

■ VERSION=1.1.1 or VERSION=1.3.0

■ SERVICE=WMS

For example:

http://localhost:8888/mapviewer/wms?REQUEST=GetCapabilities&VERSION=1.1.1&SERVICE=
WMS
or
http://localhost:8888/mapviewer/wms?REQUEST=GetCapabilities&VERSION=1.3.0&SERVICE=
WMS

The response is an XML document conforming to the WMS Capabilities DTD available
at the following, depending on the value of the VERSION parameter (1.1.1 or 1.3.0):

http://schemas.opengis.net/wms/1.1.1/WMS_MS_Capabilities.dtd

http://schemas.opengis.net/wms/1.3.0/capabilities_1_3_0.xsd

However, the current release of MapViewer returns an XML document containing the
<Service> and <Capability> elements with the following information:

■ The <Service> element is mostly empty, with just the required value of OGC:WMS
for the <Service.Name> element. Support for more informative service
metadata is planned for a future release of MapViewer.

■ The <Capability> element has <Request>, <Exception>, and <Layer>
elements.

■ The <Request> element contains the GetCapabilities and GetMap elements that
describe the supported formats and URL for an HTTP GET or POST operation.

■ The <Exception> element defines the exception format. The Service Exception
XML is the only supported format in this release. The <Exception> element
returns an XML document compliant with the Service Exception DTD, but it does
not report exceptions as specified in the implementation specification. The current
release simply uses the CDATA section of a <ServiceException> element to
return the OMSException returned by the MapViewer server.

■ The <Layer> element contains a nested set of <Layer> elements. The first
(outermost) layer contains a name (WMS), a title (Oracle WebMapServer
Layers by data source), and one <Layer> element for each defined data
source. Each data source layer contains a <Layer> element for each defined base
map and one entry for each valid theme (layer) not listed in any base map. Each
base map layer contains a <Layer> element for each predefined theme in the base
map.

WMS Specification and Corresponding MapViewer Concepts

OGC WMS Support in MapViewer E-7

Themes that are defined in the USER_SDO_THEMES view, that have valid entries
in the USER_SDO_GEOM_METADATA view for the base table and geometry
column, and that are not used in any base map will be listed after the base maps
for a data source. These themes will have no <ScaleHint> element. They will
have their own <LatLonBoundingBox> and <BoundingBox> elements.

The Content-Type of the response is set to application/vnd.ogc.wms_xml, as
required by the WMS implementation specification.

Because the list of layers is output by base map, a given layer or theme can appear
multiple times in the GetCapabilities response. For example, the theme THEME_DEMO_
STATES, which is part of the base maps named DEMO_MAP and DENSITY_MAP,
appears twice in Example E–2, which is an excerpt (reformatted for readability) from a
GetCapabilities response.

Example E–2 GetCapabilities Response (Excerpt)

<Title>Oracle WebMapServer Layers by data source</Title>
<Layer>
 <Name>mvdemo</Name>
 <Title>Datasource mvdemo</Title>
 <Layer>
 <Name>DEMO_MAP</Name>
 <Title>Basemap DEMO_MAP</Title>
 <SRS>SDO:8307</SRS>
 <LatLonBoundingBox>-180,-90,180,90</LatLonBoundingBox>
. . .
 <Layer>
 <Name>DENSITY_MAP</Name>
 <Title>Basemap DENSITY_MAP</Title>
 <SRS>SDO:8307</SRS>
 <LatLonBoundingBox>-180,-90,180,90</LatLonBoundingBox>
 <Layer>
 <Name>THEME_DEMO_STATES</Name>
 <Title>THEME_DEMO_STATES</Title>
 <SRS>SDO:8307</SRS>
 <BoundingBox SRS="SDO:8307" minx="-180" miny="-90" maxx="180"
 maxy="90" resx="0.5" resy="0.5"/>
 <ScaleHint min="50.0" max="4.0"/>
 </Layer>
. . .
 </Layer>
 <Layer>
 <Name>IMAGE_MAP</Name>
 <Title>Basemap IMAGE_MAP</Title>
 <SRS>SDO:41052</SRS>
 <LatLonBoundingBox>-180,-90,180,90</ LatLonBoundingBox>
 <Layer>
 <Name>IMAGE_LEVEL_2</Name>
 <Title>IMAGE_LEVEL_2</Title>
 <SRS>SDO:41052</SRS>
 <BoundingBox SRS="SDO:41052" minx="200000" miny="500000" maxx="750000"
 maxy="950000" resx="0.5" resy="0.5"/>
 <ScaleHint min="1000.0" max="0.0"/>
 </Layer>
. . .
 </Layer>

In Example E–2, the innermost layer describes the IMAGE_LEVEL_2 theme. The
<ScaleHint> element lists the min_scale and max_scale values, if any, for that

WMS Specification and Corresponding MapViewer Concepts

E-8 Oracle Fusion Middleware User's Guide for Oracle MapViewer

theme in the base map definition. For example, the base map definition for IMAGE_
MAP is as follows:

SQL> select definition from user_sdo_maps where name='IMAGE_MAP';

DEFINITION
--
<?xml version="1.0" standalone="yes"?>
<map_definition>
 <theme name="IMAGE_LEVEL_2" min_scale="1000.0" max_scale="0.0"/>
 <theme name="IMAGE_LEVEL_8" min_scale="5000.0" max_scale="1000.0"/>
 <theme name="MA_ROAD3"/>
 <theme name="MA_ROAD2"/>
 <theme name="MA_ROAD1"/>
 <theme name="MA_ROAD0"/>
</map_definition>

In the innermost layer, the <SRS> and <BoundingBox> elements identify the SRID
and the DIMINFO information for that theme’s base table, as shown in the following
Spatial metadata query:

SQL> select srid, diminfo from user_sdo_geom_metadata, user_sdo_themes
 2 where name='IMAGE_LEVEL_2' and
 3 base_table=table_name and
 4 geometry_column=column_name ;

 SRID

DIMINFO(SDO_DIMNAME, SDO_LB, SDO_UB, SDO_TOLERANCE)
--
 41052
SDO_DIM_ARRAY(SDO_DIM_ELEMENT('X', 200000, 500000, .5), SDO_DIM_ELEMENT('Y', 750
000, 950000, .5))

In Example E–2, the <Layer> element for a base map has an <SRS> element and a
<LatLonBoundingBox> element. The <SRS> element is empty if all layers in the
base map definition do not have the same SRID value specified in the USER_SDO_
GEOM_METADATA view. If they all have the same SRID value (for example, 41052),
the SRS element contains that value (for example, SDO:41052). The required
<LatLonBoundingBox> element currently has default values (-180,-90,180,90).
When this feature is supported by MapViewer, this element will actually be the
bounds specified in the DIMINFO column of the USER_SDO_GEOM_METADATA
view for that layer, converted to geodetic coordinates if necessary and possible.

All layers are currently considered to be opaque and queryable. That is, all layers are
assumed to be vector layers, and not GeoRaster, logical network, or image layers.

E.2.3 Supported GetFeatureInfo Request and Response Features
This section describes the supported GetFeatureInfo request parameters and their
interpretation by MapViewer. Example E–3 shows some GetFeatureInfo requests.

Example E–3 GetFeatureInfo Request

http://localhost:8888/mapviewer/wms?REQUEST=GetFeatureInfo&VERSION=1.1.1&BBOX=0,-0
.0020,0.0040&SRS=EPSG:4326&LAYERS=cite:Lakes,cite:Forests&WIDTH=200&HEIGHT=100&INF
O_FORMAT=text/xml&QUERY_LAYERS=cite:Lakes,cite:Forests&X=60&Y=60

http://localhost:8888/mapviewer/wms?REQUEST=GetFeatureInfo&VERSION=1.3.0
&BBOX=0,-0.0020,0.0040&CRS=EPSG:4326&LAYERS=cite:Lakes,cite:Forests&WIDTH=200&HEIG

WMS Specification and Corresponding MapViewer Concepts

OGC WMS Support in MapViewer E-9

HT=100
&INFO_FORMAT=text/xml&QUERY_LAYERS=cite:Lakes,cite:Forests&I=60&J=60

The response is an XML document and the Content-Type of the response is text/xml.
Example E–4 is a response to a GetFeatureInfo request in Example E–3.

Example E–4 GetFeatureInfo Response

<?xml version="1.0" encoding="UTF-8" ?>
<GetFeatureInfo_Result>
 <ROWSET name="cite:Lakes">
 <ROW num="1">
 <ROWID>AAAK22AAGAAACUiAAA</ROWID>
 </ROW>
 </ROWSET>
 <ROWSET name="cite:Forests">
 <ROW num="1">
 <FEATUREID>109</FEATUREID>
 </ROW>
 </ROWSET>
</GetFeatureInfo_Result>

Most of the following sections describe parameters supported for a GetFeatureInfo
request. (Parameters that are specific to MapViewer and not mentioned in the WMS
1.1.1 specification are labeled MapViewer-Only.) Section E.2.3.10 explains how to
query attributes in a GetFeatureInfo request.

E.2.3.1 GetMap Parameter Subset for GetFeatureInfo Requests
A GetFeatureInfo request contains a subset of a GetMap request (BBOX, SRS [1.1.1] or
CRS [1.3.0], WIDTH, HEIGHT, and optionally LAYERS parameters). These parameters
are used to convert the X, Y (1.1.1) or I, J (1.3.0) point from screen coordinates to a
point in the coordinate system for the layers being queried. It is assumed all layers are
in the same coordinate system, the one specified by the SRS parameter.

E.2.3.2 EXCEPTIONS Parameter
The only supported value for the EXCEPTIONS parameter is the default:
application/vnd.ogc.se_xml for WMS 1.1.1 or xml for WMS 1.3.0. That is, only
Service Exception XML is supported. The exception is reported as an XML document
conforming to the Service Exception DTD available at the following, depending on the
version (1.1.1 or 1.3.0):

http://schemas.opengis.net/wms/1.1.1/WMS_exception_1_1_1.dtd

http://schemas.opengis.net/wms/1.3.0/exceptions_1_3_0.xsd

E.2.3.3 FEATURE_COUNT Parameter
The FEATURE_COUNT parameter specifies the maximum number of features in the
result set. The default value is 1. If more features than the parameter's value interact
with the query point (X, Y), then an arbitrary subset (of the size of the parameter's
value) of the features is returned in the result set. That is, a GetFeatureInfo call
translates into a query of the following general form:

SELECT <info_columns> FROM <layer_table>
 WHERE SDO_RELATE(<geom_column>,
 <query_point>, 'mask=ANYINTERACT')='TRUE'
 AND ROWNUM <= FEATURE_COUNT;

WMS Specification and Corresponding MapViewer Concepts

E-10 Oracle Fusion Middleware User's Guide for Oracle MapViewer

E.2.3.4 INFO_FORMAT Parameter
The value of the INFO_FORMAT parameter is always text/xml.

E.2.3.5 QUERY_LAYERS Parameter
The QUERY_LAYERS parameter specifies a comma-delimited list of layers to be
queried. If the LAYERS parameter is specified, the QUERY_LAYERS specification must
be a subset of the list specified in the LAYERS parameter.

If the QUERY_LAYERS parameter is specified, any BASEMAP parameter value is
ignored.

E.2.3.6 QUERY_TYPE Parameter (MapViewer-Only)
The QUERY_TYPE parameter limits the result set to a subset of possibly qualifying
features by specifying one of the following values:

■ at_point: returns only the feature at the specified point.

■ nn: returns only the nearest neighbor features, with the number of results
depending on the value of the FEATURE_COUNT parameter value (see
Section E.2.3.3). The result set is not ordered by distance.

■ within_radius (or within_distance, which is a synonym): returns only
results within the distance specified by the RADIUS parameter value (see
Section E.2.3.7), up to the number matching the value of the FEATURE_COUNT
parameter value (see Section E.2.3.3). The result set is an arbitrary subset of the
answer set of potential features within the specified radius. The result set is not
ordered by distance.

E.2.3.7 RADIUS Parameter (MapViewer-Only)
The RADIUS parameter specifies the radius of the circular search area for a query in
which the QUERY_TYPE parameter value is within_radius (see Section E.2.3.6). If
you specify the RADIUS parameter, you must also specify the UNIT parameter (see
Section E.2.3.8).

E.2.3.8 UNIT Parameter (MapViewer-Only)
The UNIT parameter specifies the unit of measurement for the radius of the circular
search area for a query in which the QUERY_TYPE parameter value is within_
radius (see Section E.2.3.6). The value must be a valid linear measure value from the
SHORT_NAME column of the SDO_UNITS_OF_MEASURE table, for example:
meter, km, or mile.

If you specify the UNIT parameter, you must also specify the RADIUS parameter (see
Section E.2.3.7).

E.2.3.9 X and Y or I and J Parameters
The X and Y (WMS 1.1.1) or I and J (WMS 1.3.0) parameters specify the x-axis and
y-axis coordinate values (in pixels), respectively, of the query point.

E.2.3.10 Specifying Attributes to Be Queried for a GetFeatureInfo Request
In a GetFeatureInfo request, the styling rule for each queryable layer (theme) must
contain a <hidden_info> element that specifies which attributes are queried and
returned in the XML response. The <hidden_info> element is the same as the one
used for determining the attributes returned in an SVG map request.

An example of such a styling rule as follows:

Adding a WMS Map Theme

OGC WMS Support in MapViewer E-11

SQL> select styling_rules from user_sdo_themes where name='cite:Forests';

STYLING_RULES
--
<?xml version="1.0" standalone="yes"?>
<styling_rules>
 <hidden_info>
 <field column="FID" name="FeatureId"/>
 </hidden_info>
 <rule>
 <features style="C.PARK FOREST"> </features>
 <label column="NAME" style="T.PARK NAME"> 1 </label>
 </rule>
</styling_rules>

This styling rule specifies that if cite:Forests is one of the QUERY_LAYERS
parameter values in a GetFeatureInfo request, the column named FID is queried, and
its tag in the response document will be <FEATUREID>. The tag is always in
uppercase. If no <hidden_info> element is specified in the styling rules for the
theme's query layer, then the rowid is returned. In Example E–4, the styling rule for
the cite:Lakes layer has no <hidden_info> element; therefore, the default
attribute ROWID is returned in the XML response. The cite:Forests layer,
however, does have a <hidden_info> element, which specifies that the attribute
column is FID, and that its tag name, in the response document, should be
<FEATUREID>.

E.3 Adding a WMS Map Theme
You can add a WMS map theme to the current map request. The WMS map theme is
the result of a GetMap request, and it becomes an image layer in the set of layers
(themes) rendered by MapViewer.

To add a WMS map theme, use the WMS-specific features of either the XML API (see
Section E.3.1) or the JavaBean-based API (see Section E.3.4).

E.3.1 XML API for Adding a WMS Map Theme
To add a WMS map theme to the current map request using the MapViewer XML API,
use the <wms_getmap_request> element in a <theme> element.

For better performance, the <wms_getmap_request> element should be used only to
request a map image from a Web map server (WMS) implementation. That is, the
<service_url> element in a <wms_getmap_request> element should specify a
WMS implementation, not a MapViewer instance. If you want to specify a MapViewer
instance (for example, specifying <service_url> with a value of
http://mapviewer.mycorp.com:8888/mapviewer/wms), consider using a
MapViewer predefined theme or a JDBC theme in the <themes> element instead of
using a <wms_getmap_request> element.

The following example shows the general format of the <wms_getmap_request>
element within a <theme> element, and it includes some sample element values and
descriptive comments:

<themes>
 <theme>
 <wms_getmap_request isBackgroundTheme="true">
 <!-- The wms_getmap_request theme is rendered in the order it
 appears in the theme list unless isBackgroundTheme is "true".
 -->

Adding a WMS Map Theme

E-12 Oracle Fusion Middleware User's Guide for Oracle MapViewer

 <service_url> http://wms.mapsrus.com/mapserver </service_url>
 <version> 1.1.1 </version>
 <!-- version is optional. Default value is "1.1.1".
 -->
 <layers> Administrative+Boundaries,Topography,Hydrography </layers>
 <!— layers is a comma-delimited list of names.
 If layer names contain spaces, use '+' instead of a space -->
 <!— styles is optional. It is a comma-delimited list, and it must
 have the same number of names as the layer list, if specified.
 If style names contain spaces, use '+' instead of a space -->
 <styles/>
 <srs> EPSG:4326 </srs>
 <format> image/png </format>
 <transparent> true </transparent>
 <bgcolor> 0xffffff </bgcolor>
 <exceptions> application/vnd.ogc.se_inimage </exceptions>
 <vendor_specific_parameters>
 <!-- one or more <vsp> elements each containing
 a <name> <value> pair -->
 <vsp>
 <name> datasource </name>
 <value> mvdemo </value>
 </vsp>
 <vendor_specific_parameters>
 <wms_getmap_request>
 </theme>
</themes>

The following attribute and elements are available with the <wms_getmap_request>
element:

■ The isBackgroundTheme attribute specifies whether or not this theme should be
rendered before the vector layers. The default value is false.

■ The <service_url> element specifies the URL (without the service parameters)
for the WMS service. Example: http://my.webmapserver.com/wms

■ The <version> element specifies the WMS version number. The value must be
one of the following: 1.0.0, 1.1.0, 1.1.1 (the default), or 1.3.0.

■ The <layers> element specifies a comma-delimited list of layer names to be
included in the map request.

■ The <styles> element specifies a comma-delimited list of style names to be
applied to the layer names in layers.

■ The <srs> element specifies the coordinate system (spatial reference system)
name. The default value is EPSG:4326.

■ The <format> element specifies the format for the resulting map image. The
default value is image/png.

■ The <transparent> element specifies whether or not the layer or layers being
added should be transparent in the resulting map image. The default value is
false. To make the layer or layers transparent, specify true.

■ The <bgcolor> element specifies the RGB value for the map background color.
Use hexadecimal notation for the value, for example, 0xAE75B1. The default
value is 0xFFFFFF (that is, white).

■ The <exceptions> element specifies the format for server exceptions. The
default value is application/vnd.ogc.se_inimage.

Adding a WMS Map Theme

OGC WMS Support in MapViewer E-13

■ The <vendor_specific_parameters> element contains one or more <vsp>
elements, each of which contains a <name> element specifying the parameter
name and a <value> element specifying the parameter value.

Example E–5 shows the <wms_getmap_request> element in a map request.

Example E–5 Adding a WMS Map Theme (XML API)

<?xml version="1.0" standalone="yes"?>
<map_request
 title="Raster WMS Theme and Vector Data"
 datasource="mvdemo" srid="0"
 width="500"
 height="375"
 bgcolor="#a6caf0"
 antialiase="true"
 mapfilename="wms_georaster" format="PNG_URL">
 <center size="185340.0">
 <geoFeature>
 <geometricProperty typeName="center">
 <Point>
 <coordinates>596082.0,8881079.0</coordinates>
 </Point>
 </geometricProperty>
 </geoFeature>
 </center>
 <themes>
 <theme name="WMS_TOPOGRAPHY" user_clickable="false" >
 <wms_getmap_request isBackgroundTheme="true">
 <service_url> http://wms.mapservers.com:8888/mapserver/wms </service_url>
 <layers> TOPOGRAPHY </layers>
 <srs> EPSG:29190 </srs>
 <format> image/png </format>
 <bgcolor> 0xa6caf0 </bgcolor>
 <transparent> true </transparent>
 <vendor_specific_parameters>
 <vsp>
 <name> ServiceType </name>
 <value> mapserver </value>
 </vsp>
 </vendor_specific_parameters>
 </wms_getmap_request>
 </theme>
 <theme name="cl_theme" user_clickable="false">
 <jdbc_query spatial_column="geom" render_style="ltblue"
 jdbc_srid="82279" datasource="mvdemo"
 asis="false">select geom from classes where vegetation_type = 'forests'
 </jdbc_query>
 </theme>
 </themes>
 <styles>
 <style name="ltblue">
 <svg width="1in" height="1in">
 <g class="color"
 style="stroke:#000000;stroke-opacity:250;fill:#33ffff;fill-opacity:100">
 <rect width="50" height="50"/>
 </g>
 </svg>
 </style>
 </styles>
</map_request>

Adding a WMS Map Theme

E-14 Oracle Fusion Middleware User's Guide for Oracle MapViewer

E.3.2 Predefined WMS Map Theme Definition
The predefined XML definition for a WMS theme uses the same structure of the
parameters in Section E.3.1, and adds the optional capabilities_url attribute,
which is used by Map Builder when editing a WMS theme. If the capabilities_
url attribute is defined, Map Builder will issue a GetCapabilities request to
populate some UI elements in the editor page.

Example E–6 shows how to create a predefined WMS theme in the metadata. The base
table and base column names can be any values, and in this example 'WMS' is used for
both.

Example E–6 Creating a Predefined WMS Theme

INSERT INTO user_sdo_themes VALUES (
 'PRED_WMS_THEME',
 'WMS data',
 'WMS',
 'WMS', '<?xml version="1.0" standalone="yes"?>
 <styling_rules theme_type="wms">
 <service_url>
http://sampleserver1b.arcgisonline.com/arcgis/services/Specialty/ESRI_
StateCityHighway_USA/MapServer/WMSServer </service_url>
 <layers> 0,1,2 </layers>
 <version> 1.3.0 </version>
 <srs> CRS:84 </srs>
 <format> image/png </format>
 <bgcolor> 0xA6CAF0 </bgcolor>
 <transparent> false </transparent>
 <styles> +,+,+ </styles>
 <exceptions> xml </exceptions>
 <capabilities_url>
http://sampleserver1.arcgisonline.com/ArcGIS/services/Specialty/ESRI_
StateCityHighway_USA/MapServer/WMSServer? </capabilities_url>
 </styling_rules>');

E.3.3 Authentication with WMS Map Themes
For a WMS server that requires authentication for access to the WMS data, the
following must be included in the theme definition:

■ <user> element specifying the user name

■ <password> element specifying the user password

If you use the Map Builder tool to create a WMS map theme, the password value
will be automatically encrypted. Figure E–1 shows the use of the Map Builder tool
to create a WMS theme with authentication information. In this figure, the
Authentication option is checked (enabled), and User and Password are specified.

Adding a WMS Map Theme

OGC WMS Support in MapViewer E-15

Figure E–1 Using Map Builder to Specify Authentication with a WMS Theme

Example E–7 shows how to create a WMS theme that includes authentication
information.

Example E–7 WMS Theme with Authentication Specified

<?xml version="1.0" standalone="yes"?>
<styling_rules theme_type="wms">
 <service_url> http://localhost:7001/mapviewer/wms </service_url>
 <user> wmsuser </user>
 <password> ******* </password>
 <layers> THEME_DEMO_STATES </layers>
 <version> 1.1.1 </version>
 <srs> EPSG:4326 </srs>
 <format> image/png </format>
 <bgcolor> 0xA6CAF0 </bgcolor>
 <transparent> true </transparent>
 <exceptions> application/vnd.ogc.se_xml </exceptions>
 <vendor_specific_parameters>
 <vsp>
 <name> datasource </name>
 <value> mvdemo </value>
 </vsp>
 </vendor_specific_parameters>
 <capabilities_url> http://localhost:7001/mapviewer/wms? </capabilities_url>
</styling_rules>

E.3.4 JavaBean-Based API for Adding a WMS Map Theme
To add a WMS map theme to the current map request using the MapViewer
JavaBean-based API, use the addWMSMapTheme method.

Adding a WMS Map Theme

E-16 Oracle Fusion Middleware User's Guide for Oracle MapViewer

This method should be used only to request a map image from a Web map server
(WMS) implementation. That is, the serviceURL parameter should specify a WMS
implementation, not a MapViewer instance.

The addWMSMapTheme method has the following format:

addWMSMapTheme(String name, String serviceURL, String isBackgroundTheme,
 String version, String[] layers, String[] styles,
 String srs, String format, String transparent,
 String bgcolor, String exceptions,
 Object[] vendor_specific_parameters
);

The name parameter specifies the theme name.

The serviceURL parameter specifies the URL (without the service parameters) for
the WMS service. Example: http://my.webmapserver.com/wms

The isBackgroundTheme parameter specifies whether or not this theme should be
rendered before the vector layers. The default value is false.

The version parameter specifies the WMS version number. The value must be one of
the following: 1.0.0, 1.1.0, or 1.1.1 (the default).

The layers parameter specifies a comma-delimited list of layer names to be included
in the map request.

The styles parameter specifies a comma-delimited list of style names to applied to
the layer names in layers.

The srs parameter specifies the coordinate system (spatial reference system) name.
The default value is EPSG:4326.

The format parameter specifies the format for the resulting map image. The default
value is image/png.

The transparent parameter specifies whether or not the layer or layers being added
should be transparent in the resulting map image. The default value is false. To
make the layer or layers transparent, specify true.

The bgcolor parameter specifies the RGB value for the map background color. Use
hexadecimal notation for the value, for example, 0xAE75B1. The default value is
0xFFFFFF (that is, white).

The exceptions parameter specifies the format for server exceptions. The default
value is application/vnd.ogc.se_inimage.

The vendor_specific_parameters parameter specifies a list of vendor-specific
parameters. Each element in the object array is a String array with two strings:
parameter name and value. Example: vsp = new Object[]{new
String[]{"DATASOURCE", "mvdemo"}, //param 1 new
String[]{"antialiasing", "true"} //param 2

Index-1

Index

A
accelerator keys

for Map Builder tool menus, 9-3
active theme

getting, 4-10
add_data_source element, 7-2
addBucketStyle method, 4-8
addCollectionBucketStyle method, 4-8
addColorSchemeStyle method, 4-9
addColorStyle method, 4-9
addGeoRasterTheme method, 4-7
addImageAreaStyleFromURL method, 4-9
addImageMarkerStyleFromURL method, 4-9
addImageTheme method, 4-7
adding themes to a map, 2-61
addJDBCTheme method, 4-7
addJDBCTheme tag, 5-3
addLinearFeature method, 4-7
addLineStyle method, 4-9, 4-10
addLinksWithinCost method, 4-7
addMarkerStyle method, 4-10
addNetworkLinks method, 4-7
addNetworkNodes method, 4-7
addNetworkPaths method, 4-7
addNetworkTheme method, 4-7
addPointFeature method, 4-7
addPredefinedTheme method, 4-7
addPredefinedTheme tag, 5-5
addShortestPath method, 4-7
addStyle method, 4-8
addTextStyle method, 4-10
addThemesFromBaseMap method, 4-8
addTopologyDebugTheme method, 4-8
addTopologyTheme method, 4-8
addVariableMarkerStyle method, 4-10
addWMSMapTheme method, E-15
administrative requests, 7-1

restricting, 1-28
Workspace Manager support, 2-72

advanced style, 2-2
pie chart example, 3-9
thematic mapping and, 2-51
XML format for defining, A-8

advanced styles
example, 3-12

ALL_SDO_MAPS view, 2-74, 2-75
ALL_SDO_STYLES view, 2-74, 2-75
ALL_SDO_THEMES view, 2-74, 2-75
allow_jdbc_theme_based_foi attribute, 1-36
allow_local_adjustment attribute, 1-30
animated loading bar, B-2
annotation text themes, 2-47
antialiasing

attribute of map request, 3-28
setAntiAliasing method, 4-4
setParam tag parameter, 5-10

APIs
JavaScript for Oracle Maps, 8-24
MapViewer JavaBean, 4-1

adding a WMS map theme, E-15
MapViewer JavaScript for SVG maps, B-1
MapViewer XML, 3-1

adding a WMS map theme, E-11
PL/SQL, 6-1

appearance
attributes affecting theme appearance, 2-60

area style, 2-2
XML format for defining, A-7

asis attribute, 3-41
aspect ratio

preserving, 3-32, 3-34
authentication

WMS map themes, E-14
automatic legends, 2-65
AWT headless mode support, 1-4
azimuthal equidistant projection

used by MapViewer for globular map
projection, 1-30

B
background color

for WMS requests, E-4
setting, 4-4

background image URL
setting, 4-4

bar chart marker style
XML format for defining, A-13

base maps, 2-61
adding themes from base map to current map

request, 4-8

Index-2

definition (example), 2-61
for WMS requests, E-3
importing, 5-8
listing for a data source, 7-7
part_of_basemap attribute for theme, 3-53
setting name of, 4-4
use_cached_basemap attribute, 3-31
XML format, A-1
XML format for defining, A-21

basemap
attribute of map request, 3-28
setParam tag parameter, 5-11

BASEMAP parameter (WMS), E-3
BBOX parameter (WMS), E-4
bean

MapViewer API for, 4-1
bgcolor

attribute of map request, 3-29
setParam tag parameter, 5-11

BGCOLOR parameter (WMS), E-4
bgimage

attribute of map request, 3-29
setParam tag parameter, 5-11

binding parameters, 2-14
example, 3-12

Bing Maps
built-in map tile layers, 8-28
displaying tile layer using Oracle Maps, 8-7
transforming data to the Microsoft Bing Maps

coordinate system, 8-29
bitmap masks

with GeoRaster themes, 2-32
border margin

for bounding themes, 3-32
bounding box

for WMS requests, E-4
specifying for map, 3-34

bounding themes
specifying for map, 3-31, 4-4

bounding_themes element, 3-31
box element, 3-34
bucket style

adding to map request, 4-8
specifying labels for buckets, 2-4
XML format for defining, A-9

built-in map tile layers, 8-28

C
cache

metadata, 2-68, 7-11
spatial data, 1-31, 7-12
with predefined themes, 2-15

caching attribute
for predefined theme, 2-16, A-19

center element, 3-35
center point

setting, 4-4
centerX

setParam tag parameter, 5-11

centerY
setParam tag parameter, 5-11

classgen.jar file, E-1
clear_cache element, 7-11
clear_theme_cache element, 7-12
clickable (live) features, 4-15
client handle, 6-3
cluster

deploying MapViewer on middle-tier
cluster, 1-41

collection bucket style
adding to map request, 4-8
with discrete values, A-9

collection style
XML format for defining, A-13, A-14

color scheme style
adding to map request, 4-9
XML format for defining, A-11

color stops (heat map), A-16
color style, 2-2

adding to map request, 4-9
XML format for defining, A-2

configuring MapViewer, 7-13
connection information

for adding a data source, 7-2
connections, maximum number of, 1-36
container data source, 1-35, 7-2
container theme name (heat map), A-16
container_ds attribute, 1-35, 7-2
container-controlled logging, 1-25
cookie

getting authenticated user’s name from, 1-45
coordinate system, 2-61

conversion by MapViewer for map request, 3-8
coordinate system ID

See SRID
cost analysis

of network nodes, 4-7
cross-schema map requests, 2-69
custom image renderer

creating and registering, C-1
custom_image_renderer element, 1-32

custom spatial provider
creating and registering, D-1
s_data_provider element, 1-32

D
data providers

nonspatial, 1-32
data source methods

using, 4-13
data sources

adding, 7-2
checking existence of, 4-13, 7-6
clearing metadata cache, 7-11
container_ds attribute, 1-35, 7-2
explanation of, 2-67
for WMS requests, E-4
listing, 7-5

Index-3

listing base maps in, 7-7
listing names of, 4-14
listing themes in, 7-8
permanent, 1-34
redefining, 7-4
removing, 7-4
setting name of, 4-4
using multiple data sources in a map request

(datasource attribute for theme), 3-51, 3-52
data_source_exists element, 7-6
datasource

attribute of map request, 3-28
attribute of theme specification in a map

request, 3-51, 3-52
DATASOURCE parameter (WMS), E-4
dataSourceExists method, 4-13
DBA_SDO_STYLES view, 2-75
debug mode

topology themes, 2-38
adding theme, 4-8

decorative aspects
attributes affecting theme appearance, 2-60

deleteAllThemes method, 4-10
deleteMapLegend method, 4-6
deleteStyle method, 4-10
deleteTheme method, 4-10
demo

MapViewer JavaBean API, 4-3
deploying MapViewer, 1-4
disableFeatureSelect function, B-2
disablePolygonSelect function, B-2
disableRectangleSelect function, B-3
doQuery method, 4-14
doQueryInMapWindow method, 4-14
dot density marker style

XML format for defining, A-12
drawLiveFeatures method, 4-16
DTD

exception, 3-57
Geometry (Open GIS Consortium), 3-57
information request, 3-55
map request, 3-21

examples, 3-2
map response, 3-56

dynamic themes
adding to map request, 4-6

DYNAMIC_STYLES parameter (WMS), E-4
dynamically defined styles, 2-3, 3-49

adding to map request, 4-8
for WMS requests, E-4
removing, 4-10

dynamically defined themes, 2-19, 3-40, 3-51
See also JDBC themes

E
edit_config_file element, 7-13
enableFeatureSelect function, B-2
enablePolygonSelect function, B-2
enableRectangleSelect function, B-3

enableThemes method, 4-10
EPSG

in SRS parameter (WMS), E-5
example programs using MapViewer

Java, 3-18
PL/SQL, 3-20

exception DTD, 3-57
EXCEPTIONS parameter (WMS)

for GetFeatureInfo request, E-9
for GetMap request, E-4

external attribute data, 2-57

F
fast_unpickle attribute, 3-52
feature labels

support for translation, 2-16
feature of interest (FOI), 8-21
feature selection

enabling and disabling, B-2
FEATURE_COUNT parameter (WMS), E-9
features

new, xix
features of interest (FOIs)

allow_jdbc_theme_based_foi attribute, 1-36
field element

for hidden information, 3-42, A-20
filter (spatial)

getting, 4-14
fixed_svglabel attribute, 3-52
FOI (feature of interest), 8-21
FOIs

allow_jdbc_theme_based_foi attribute, 1-36
footnote attribute, 3-29, 3-31

map request, 3-29
footnote_style attribute, 3-29, 3-31

map request, 3-29
format

attribute of map request, 3-28
FORMAT parameter (WMS), E-4

G
geodetic data

projecting to local non-geodetic coordinate
system, 1-30

geoFeature element, 3-35
Geometry DTD (Open GIS Consortium), 3-57
GeoRaster themes, 2-25

adding to current map request, 4-7
bitmap masks, 2-32
defining with jdbc_georaster_query element, 3-38
library files needed, 1-5
reprojection, 2-33
setting polygon mask, 2-26, 4-11
theme_type attribute in styling rules, A-18

getActiveTheme method, 4-10
getAntiAliasing method, 4-4
GetCapabilities request and response, E-6
getDataSources method, 4-14

Index-4

getEnabledThemes method, 4-10
GetFeatureInfo request

specifying attributes to be queried, E-10
supported features, E-8

getGeneratedMapImage method, 4-13
getGeneratedMapImageURL method, 4-13
getInfo function, B-3
getLiveFeatureAttrs method, 4-16
GetMap request

parameters, E-3
getMapMBR method, 4-13
getMapResponseString method, 4-13
getMapURL tag, 5-5
getNumLiveFeatures method, 4-16
getParam tag, 5-6
getScreenCoordinate function, B-5
getSelectedIdList function, B-3
getSelectPolygon function, B-3
getSelectRectangle function, B-3
getSpatialFilter method, 4-14
getThemeEnabled method, 4-11
getThemeNames method, 4-11
getThemePosition method, 4-11
getThemeVisibleInSVG method, 4-11
getUserCoordinate function, B-5
getUserPoint method, 4-15
getWhereClauseForAnyInteract method, 4-15
getXMLResponse method, 4-13
GIF format, 3-28
GIF_STREAM format, 3-28
GIF_URL format, 3-28
globular map projection, 1-30
Google Maps

built-in map tile layers, 8-28
displaying tile layer using Oracle Maps, 8-7
transforming data to the Google Maps coordinate

system, 8-29
grid sample factor (heat map), A-16

H
hasLiveFeatures method, 4-16
hasThemes method, 4-11
headless AWT mode support, 1-4
heat map style

XML format for defining, A-15
height

attribute of map request, 3-28
setParam tag parameter, 5-11

HEIGHT parameter (WMS), E-4
hidden information (SVG maps)

displaying when mouse moves over, 3-30, 4-6
hidden_info element, 3-40, 3-42, A-20

hidden themes
getThemeVisibleInSVG method, 4-11
setThemeVisible method, 4-12

hidden_info attribute, 3-37
hidden_info element, 3-40, 3-42, A-20
hideTheme function, B-2
high availability

using MapViewer with, 1-41
highlightFeatures method, 4-16

I
identify method, 4-15
identify tag, 5-6
image area style

adding to map request, 4-9
image format

for WMS requests, E-4
setting, 4-5

image marker style
adding to map request, 4-9
XML format for defining, A-4

image renderer
creating and registering, C-1
custom_image_renderer element, 1-32

image scaling
setting automatic rescaling, 4-5

image themes, 2-22
adding, 4-7
defining with jdbc_image_query element, 3-38
example, 3-6
setting scale values, 4-12
setting transparency value, 4-11
setting unit and resolution values, 4-12
theme_type attribute in styling rules, A-18

images
getting sample image for a style, 2-8

imagescaling
attribute of map request, 3-28
setParam tag parameter, 5-11

importBaseMap tag, 5-8
indexed PNG format support, 3-28
INFO_FORMAT parameter (WMS), E-10
info_request element, 3-55
infoon attribute, 3-30
information request DTD, 3-55
init tag, 5-8
initial scale, 3-30
initscale attribute, 3-30
installing MapViewer, 1-4
internationalization

translation of feature labels, 2-16
isClickable method, 4-16

J
jai_codec.jar file, 1-5
jai_core.jar file, 1-5
Java example program using MapViewer, 3-18
JAVA_IMAGE format, 3-28
JavaBean-based API for MapViewer, 4-1

demo, 4-3
Javadoc, 4-3

Javadoc
MapViewer JavaBean API, 4-3

JavaScript API for Oracle Maps, 8-24
JavaScript functions for SVG maps, B-1

Index-5

JavaServer Pages (JSP)
tag library for MapViewer, 5-1

JDBC theme-based features of interest, 1-36
JDBC themes, 2-19

adding, 4-7, 5-3
saving complex SQL queries, 2-22
using a pie chart style, 3-10

jdbc_georaster_query element, 3-38
jdbc_host attribute, 7-2
jdbc_image_query element, 3-38
jdbc_mode attribute, 7-3
jdbc_network_query element, 3-40
jdbc_password attribute, 7-2
jdbc_port attribute, 7-2
jdbc_query element, 3-40
jdbc_sid attribute, 7-2
jdbc_tns_name attribute, 7-2
jdbc_topology_query element, 3-42
jdbc_user attribute, 7-2
join view

key_column styling rule attribute required for
theme defined on join view, A-19

JPEG image format support, 3-29
JSP tag library for MapViewer, 5-1

K
keepthemesorder attribute, 3-31
key_column attribute

for theme defined on a join view, A-19

L
label attribute, 2-53
label_always_on attribute, 3-52
label_max_scale attribute, 2-63
label_min_scale attribute, 2-63
labeling of spatial features, 2-12

label styles for individual buckets, 2-4
translation of feature labels, 2-16

LAYERS parameter (WMS), E-4
legend, 2-64

automatic, 2-65
creating, 5-8
deleting, 4-6
element, 3-42
example, 2-64
for WMS requests, E-5
setting, 4-5

LEGEND_REQUEST parameter (WMS), E-5
legendSpec parameter, 4-5
line style, 2-2

adding to map request, 4-9, 4-10
XML format for defining, A-6

linear features
adding, 4-7
removing, 4-8

list_data_sources element, 7-5
list_maps element, 7-7
list_predefined_themes element, 7-8

list_styles element, 7-9
list_theme_styles element, 7-10
list_workspace_name element, 2-72
list_workspace_session element, 2-73
live features, 4-15
load balancer

using MapViewer with, 1-42
loading bar, B-2
local geodetic data adjustment

specifying for map, 1-30
logging element, 1-25
logging information, 1-25

container-controlled, 1-25
logo

specifying for map, 1-29
longitude/latitude coordinate system, 2-61

M
makeLegend tag, 5-8
Map Builder tool, 9-1

running, 9-1
user interface (UI), 9-2

map image file information, 1-27
map legend, 2-64

creating, 5-8
deleting, 4-6
example, 2-64
legend element, 3-42
setting, 4-5

map logo, 1-29
map note, 1-29
map rendering, 1-42
map request DTD, 3-21

examples, 3-2
map requests

cross-schema, 2-69
getting parameter value, 5-6
sending to MapViewer service, 4-12
setting parameters for, 5-10
submitting using run JSP tag, 5-9
XML API, 3-1

map response
extracting information from, 4-13

map response DTD, 3-56
map response string

getting, 4-13
map result file name

setting, 4-5
map size

setting, 4-6
map tile layers

built-in, 8-28
XML format for defining, A-22

map tile server, 8-8
configuring, 1-34

map title, 1-29
setting, 4-5

map URL
getting, 5-5

Index-6

map_data_source element, 1-34
map_request element, 3-26

attributes, 3-27
map_tile_server element, 1-34
map_tile_theme element, 3-46
mapbuilder.jar file, 9-1
mapdefinition.sql file, 2-74
map-level mouse-click event control functions, B-3
mappers (renderers), 2-67

number of, 1-36, 7-3
mapping profile, 2-2
maps, 1-42, 2-61

creating by adding themes and rendering, 2-61
explanation of, 2-61
how they are generated, 2-68
listing, 7-7
metadata view, 2-74
scale, 2-62
size, 2-62

MapViewer
Quick Start kit, 1-4

MapViewer bean
creating, 5-8

MapViewer client handle, 6-3
MapViewer configuration file

editing, 7-13
sample, 1-19

MapViewer exception DTD, 3-57
MapViewer information request DTD, 3-55
MapViewer server

restarting, 7-13
mapViewerConfig.xml configuration file

editing, 7-13
sample, 1-19

marker style, 2-2
adding to map request, 4-9, 4-10
orienting, 2-7
using on lines, A-5
XML format for defining, A-2

masks
bitmap (GeoRaster themes), 2-32

max_connections attribute, 1-36
max_scale attribute, 2-62
MBR

getting for map, 4-13
metadata cache, 2-68

clearing, 7-11
metadata views, 2-74

mapdefinition.sql file, 2-74
Microsoft Bing Maps

built-in map tile layers, 8-28
displaying tile layer using Oracle Maps, 8-7
transforming data to the Microsoft Bing Maps

coordinate system, 8-29
middle-tier cluster

deploying MapViewer on, 1-41
min_dist attribute, 3-52
min_scale attribute, 2-62
minimum bounding rectangle (MBR)

getting for map, 4-13

minimum_pixels attribute, 3-53
mixed theme scale mode, 3-11
mode attribute, 3-52
mouse click

event control functions for SVG maps, B-2
getting point associated with, 4-15

mouse-click event control function, 3-53, B-4
mouse-move event control function, 3-54, B-4
mouse-out event control function, 3-54, B-4
mouse-over event control function, 3-54, B-4
moveThemeDown method, 4-11
moveThemeUp method, 4-11
multiprocess OC4J instance

deploying MapViewer on, 1-41
MV_DATELIST type, 1-16
MV_NUMBERLIST type, 1-16
MV_STRINGLIST type, 1-16
mvclient.jar file, 5-2
mvtaglib.tld file, 5-2
MVTHEMES parameter (WMS), E-5

N
navbar attribute, 3-30
navigation bar (SVG map), 3-30, 4-6
network analysis

shortest-path, 2-36, 4-7
within-cost, 2-37, 4-7

network connection information
for adding a data source, 7-2

network themes, 2-33
adding, 4-7
defining with jdbc_network_query element, 3-40
library files needed, 1-5
setting labels, 4-11
theme_type attribute in styling rules, A-18

networked drives
using MapViewer with, 1-42

new features, xix
non_map_request element, 7-1
non_map_response element, 7-1
non-map requests

See administrative requests
nonspatial attributes

getting values, 5-6
identifying, 4-15
querying, 4-14

nonspatial data provider, 2-57
nonspatial data providers

registering, 1-32
north_arrow element, 3-46
note

specifying for map, 1-29
ns_data_provider element, 1-32
number_of_mappers attribute, 1-36, 2-67, 7-3

O
OGC (Open GIS Consortium)

Geometry DTD, 3-57

Index-7

WMS support by MapViewer, E-1
oms_error element, 3-57
omserver (in URL)

getting a sample image of a style, 2-9
onclick attribute, 3-37, 3-53

map request, 3-30
onClick function (SVG map), 4-6, 4-12
onmousemove attribute, 3-54

map request, 3-30
onmouseout attribute, 3-54
onmouseover attribute, 3-54
onpolyselect attribute, B-5

map request, 3-30
onrectselect attribute, B-5

map request, 3-30
Open GIS Consortium

Geometry DTD, 3-57
WMS support by MapViewer, E-1

operation element, 3-47
operations element, 3-48
Oracle Map Builder tool, 9-1
Oracle Maps, 8-1

feature of interest server, 8-21
JavaScript API, 8-24
map tile server, 8-8

Oracle Real Application Clusters (RAC)
using MapViewer with, 1-38

orientation vector, 3-36
using with an oriented point, 2-6

oriented points
pointing label or marker in direction of orientation

vector, 2-6

P
pan method, 4-12
parameter element, 3-48
parameter value for map request

getting, 5-6
parameters

binding, 2-14
parameters for map request

setting, 5-10
part_of_basemap attribute, 3-53
PDF image format support, 3-29
permanent data sources

defining, 1-34
pickling

fast_unpickle theme attribute, 3-52
setThemeFastUnpickle method, 4-11

pie chart
map request using, 3-9

PL/SQL
API for MapViewer, 6-1

PL/SQL example program using MapViewer, 3-20
plsql_package attribute, 1-37
PNG image format support, 3-28
PNG8 (indexed) image format support, 3-28
point features

adding, 4-7

removing, 4-8
polygon mask

setting for GeoRaster theme, 2-26, 4-11
polygon selection

enabling and disabling, B-2
polygon_mask attribute, 2-26
predefined mouse-click event control functions, B-2
predefined themes, 2-10, 3-51

adding, 4-7, 5-5
binding parameters example, 3-12
caching of, 2-15
LAYERS parameter (WMS), E-4
listing, 7-8
listing styles used by, 7-10
WMS map, E-14

prerequisite software for using MapViewer, 1-4
preserve_aspect_ratio attribute, 3-32, 3-34
progress indicator

loading of map, B-2
projection of geodetic data to local non-geodetic

coordinate system, 1-30
proxy (Web) for MapViewer service

setting, 4-6

Q
query type

for WMS requests, E-10
query window

setting, 4-4
QUERY_LAYERS parameter (WMS), E-10
QUERY_TYPE parameter (WMS), E-10
Quick Start kit, 1-4

R
RAC (Oracle Real Application Clusters)

using MapViewer with, 1-38
radius

for WMS requests, E-10
RADIUS parameter (WMS), E-10
rasterbasemap attribute, 3-30
ratio scale mode

example, 3-11
Real Application Clusters (Oracle RAC)

using MapViewer with, 1-38
recenter function, B-1
rectangle selection

enabling and disabling, B-3
redefine_data_source element, 7-4
redlining, 8-24
remove_data_source element, 7-4
removeAllDynamicStyles method, 4-10
removeAllLinearFeatures method, 4-8
removeAllPointFeatures method, 4-8
renderer

creating and registering custom image
renderer, C-1

custom_image_renderer element, 1-32
renderers (mappers), 2-67

Index-8

number_of_mappers attribute, 1-36, 7-3
rendering a map, 2-61

secure map rendering, 1-42
rendering rules

example, 3-12
reprojection

with GeoRaster themes, 2-33
REQUEST parameter (WMS)

GetMap or GetCapabilities, E-5
required software for using MapViewer, 1-4
resolution

setThemeUnitAndResolution method, 4-12
response string for map

getting, 4-13
restart element, 7-13
restarting the MapViewer server, 7-13
rotation attribute, 3-31
rules

styling, 2-11
run method, 4-12
run tag, 5-9

S
sample image

getting for a style, 2-8
save_images_at element, 1-27
scalable styles, 2-3
scale bar, 3-48
scale mode

mixed theme example, 3-11
ratio example, 3-11

scale of map, 2-62
setting for theme, 4-12

scale_bar element, 3-48
scaling

of image, 3-28, 5-11
SDO_MVCLIENT package, 6-1
sdonm.jar file, 1-5
secure, 1-42
secure map rendering, 1-42

plsql_package attribute, 1-37
web_user_type attribute, 1-37

secure rendering, 1-42
security

security_config element, 1-31
security_config element, 1-31
selectable themes (SVG map), 4-12
selectable_in_svg attribute, 3-36, 3-53
selectFeature function, B-3
selection event mouse-click event control

functions, B-5
sendXMLRequest method, 4-13
seq attribute, 2-53
SERVICE parameter (WMS), E-5
setAllThemesEnabled method, 4-11
setAntiAliasing method, 4-4
setBackgroundColor method, 4-4
setBackgroundImageURL method, 4-4
setBaseMapName method, 4-4

setBoundingThemes method, 4-4
setBox method, 4-4
setCenter method, 4-4
setCenterAndSize method, 4-4
setClickable method, 4-16
setDataSourceName method, 4-4
setDefaultStyleForCenter method, 4-4
setDeviceSize method, 4-5
setFullExtent method, 4-5
setGeoRasterThemePolygonMask method, 4-11
setImageFormat method, 4-5
setImageScaling method, 4-5
setLabelAlwaysOn method, 4-11
setMapLegend method, 4-5
setMapRequestSRID method, 4-5
setMapResultFileName method, 4-5
setMapTitle method, 4-5
setNetworkThemeLabels method, 4-11
setParam tag, 5-10
setSelectPolygon function, B-3
setSelectRectangle function, B-3
setServiceURL method, 4-5
setShowSVGNavBar method, 4-6
setSize method, 4-6
setSVGOnClick method, 4-6
setSVGShowInfo method, 4-6
setSVGZoomFactor method, 4-6
setSVGZoomLevels method, 4-6
setSVGZoomRatio method, 4-6
setThemeAlpha method, 4-11
setThemeEnabled method, 4-11
setThemeFastUnpickle method, 4-11
setThemeOnClickInSVG method, 4-12
setThemeScale method, 4-12
setThemeSelectableInSVG method, 4-12
setThemeUnitAndResolution method, 4-12
setThemeVisible method, 4-12
setWebProxy method, 4-6
setZoomRatio function, B-1
shortcut keys

for Map Builder tool menus, 9-3
shortest-path analysis, 2-36

addShortestPath method, 4-7
showLoadingBar function, B-2
showTheme function, B-2
simplify_shapes attribute, 3-53
size (map)

setting, 4-6
size of map, 2-62
size_hint attribute, 3-32
snap_to_cache_scale attribute, 3-31
spatial data cache

clearing, 7-12
customizing, 1-31

spatial data provider
custom, 1-32

spatial filter
getting, 4-14

spatial reference ID
See SRID

Index-9

spatial_data_cache element, 1-31
spot light radius (heat map), A-16
SRID

conversion by MapViewer for map request, 3-8
setting, 4-5

srid
attribute of map request, 3-28

SRS mapping
customizing, 1-33

SRS parameter (WMS), E-5
srs_mapping element, 1-33
stacked styles

example, 3-14
sticky attribute for text style, 2-8
style element, 3-49
styles, 2-2

adding to map request, 4-8
advanced, 2-2

pie chart example, 3-9
thematic mapping and, 2-51
XML format for defining, A-8

area, 2-2
XML format for defining, A-7

bar chart
XML format for defining, A-13

bucket
adding to map request, 4-8
specifying labels for buckets, 2-4
XML format for defining, A-9

collection
XML format for defining, A-13, A-14

color, 2-2
adding to map request, 4-9
XML format for defining, A-2

color scheme
adding to map request, 4-9
XML format for defining, A-11

dot density
XML format for defining, A-12

dynamically defined, 2-3, 3-49
adding to map request, 4-8

getting sample image, 2-8
heat map

XML format for defining, A-15
image marker

adding to map request, 4-9
XML format for defining, A-4

label styles for buckets, 2-4
line, 2-2

adding to map request, 4-9, 4-10
XML format for defining, A-6

listing, 7-9
listing those used by a predefined theme, 7-10
marker, 2-2

adding to map request, 4-10
XML format for defining, A-2

metadata view, 2-74
removing, 4-10
scaling size of, 2-3
stacked

example, 3-14
text, 2-2

adding to map request, 4-10
XML format for defining, A-7

TrueType font-based marker
XML format for defining, A-4

variable marker
adding to map request, 4-10
XML format for defining, A-12

vector marker
adding to map request, 4-10
XML format for defining, A-3

XML format, A-1
styles element, 3-50
STYLES parameter (WMS), E-5
styling rules, 2-11, A-1

XML format for specifying, A-16
SVG Basic (SVGB) image format support, 3-29
SVG Compressed (SVGZ) image format

support, 3-29
SVG maps

display control functions, B-2
fixed_svglabel attribute, 3-52
hidden themes, 4-12
hidden_info attribute, 3-37
infoon attribute, 3-30
initscale attribute, 3-30
JavaScript functions, B-1
mouse-click event control functions, B-2
navbar attribute, 3-30
navigation bar, 4-6
navigation control functions, B-1
onclick attribute, 3-30, 3-37, 3-53
onClick function, 4-6, 4-12
onmousemove attribute, 3-30, 3-54
onmouseout attribute, 3-54
onmouseover attribute, 3-54
onpolyselect attribute, 3-30, B-5
onrectselect attribute, 3-30, B-5
other control functions, B-5
part_of_basemap attribute, 3-53
rasterbasemap attribute, 3-30
selectable themes, 4-12
selectable_in_svg attribute, 3-36, 3-53
setSVGShowInfo method, 4-6
setSVGZoomFactor method, 4-6
setSVGZoomLevels method, 4-6
setSVGZoomRatio method, 4-6
setThemeOnClickInSVG method, 4-12
setThemeSelectableInSVG method, 4-12
setThemeVisible method, 4-12
SVG_STREAM and SVG_URL format attribute

values, 3-29
SVGTINY_STREAM and SVGTINY_URL format

attribute values, 3-29
SVGZ_STREAM and SVGZ_URL format attribute

values, 3-29
visible themes, 4-12
visible_in_svg attribute, 3-53
zoomfactor attribute, 3-29

Index-10

zoomlevels attribute, 3-29
zoomratio attribute, 3-30

SVG Tiny (SVGT) image format support, 3-29
switchInfoStatus function, B-2
switchLegendStatus function, B-2

T
taglib directive, 5-2
templated themes, 2-14
temporary styles

See dynamically defined styles
text style, 2-2

adding to map request, 4-10
orienting, 2-6
sticky attribute, 2-8
XML format for defining, A-7

thematic mapping, 2-51
using external attribute data, 2-57

theme element, 3-51
theme_modifiers element, 3-54
theme_type attribute

for certain types of predefined themes, A-18
theme-level mouse-event control functions, B-4
themes, 2-10

adding to a map, 2-61
annotation text, 2-47
attributes affecting appearance, 2-60
checking for, 4-11
clearing spatial data cache, 7-12
deleting, 4-10
disabling, 4-11
dynamic

adding to map request, 4-6
dynamically defined, 2-19, 3-40, 3-51
enabling, 4-10, 4-11
fast unpickling, 3-52, 4-11
feature selection

enabling and disabling, B-2
fixed SVG label, 3-52
for WMS requests, E-5
GeoRaster, 2-25

adding to current map request, 4-7
defining with jdbc_georaster_query

element, 3-38
setting polygon mask, 2-26, 4-11
theme_type attribute in styling rules, A-18

getting, 4-11
hidden information display, 3-30
image, 2-22

adding, 4-7
defining with jdbc_image_query element, 3-38
setting transparency value, 4-11
setting unit and resolution values, 4-12
theme_type attribute in styling rules, A-18

initial scale, 3-30
JavaScript function to call on click, 3-37, 3-53
JavaScript function to call on mouse-move

event, 3-54
JavaScript function to call on mouse-out

event, 3-54
JavaScript function to call on mouse-over

event, 3-54
JavaScript function to call on polygon

selection, B-5
JavaScript function to call on rectangle

selection, B-5
JDBC, 2-19
keeping in order, 3-31
listing, 4-11, 7-8
map_tile_theme element, 3-46
metadata view, 2-74
minimum distance, 3-52
moving down, 4-11
moving up, 4-11
navigation bar, 3-30
network, 2-33

adding, 4-7
defining with jdbc_network_query

element, 3-40
setting labels, 4-11
theme_type attribute in styling rules, A-18

north_arrow element, 3-46
part of base map, 3-53
predefined, 2-10, 3-51
raster base map, 3-30
resolution value

setting, 4-12
selectable in SVG maps, 3-36, 3-53, 4-12
setting GeoRaster theme polygon mask, 2-26,

4-11
setting labels always on, 3-52, 4-11
setting network theme labels, 4-11
setting scale values, 4-12
setting visible or hidden, 4-12
styling rules, A-16
templated, 2-14
topology, 2-37

adding, 4-8
debug mode, 2-38
debug mode (adding theme), 4-8
defining with jdbc_topology_query

element, 3-42
theme_type attribute in styling rules, A-18

unit value
setting, 4-12

visibility in SVG maps, 3-53
WFS, 2-40
WMS map

adding, E-11
adding (JavaBean-based API), E-15
adding (XML API), E-11
authentication with, E-14

Workspace Manager support, 2-71
XML format, A-1
zoom factor, 3-29
zoom levels, 3-29
zoom ratio, 3-30

themes element, 3-54
thick clients

Index-11

using optimal MapViewer bean methods
for, 4-15

tiny SVG images
SVG Tiny (SVGT) image format support, 3-29

tips
specifying using hidden_info attribute, 3-37

title
attribute of map request, 3-29
setParam tag parameter, 5-11
specifying for map, 1-29

title_style attribute, 3-29, 3-31
map request, 3-29

topology themes, 2-37
adding, 4-8
debug mode, 2-38

adding theme, 4-8
defining with jdbc_topology_query element, 3-42
theme_type attribute in styling rules, A-18

translation
of feature labels, 2-16

transparency
setThemeAlpha method, 4-11

transparency attribute, 3-53
transparent

attribute of map request, 3-29
TRANSPARENT parameter (WMS)

supported for PNG format, E-5
TrueType font-based marker style

XML format for defining, A-4

U
unit

setThemeUnitAndResolution method, 4-12
unit of measurement

for WMS requests, E-10
UNIT parameter (WMS), E-10
unpickling

fast_unpickle theme attribute, 3-52
setThemeFastUnpickle method, 4-11

use_cached_basemap attribute, 3-31
use_globular_projection option, 1-30
USER_SDO_CACHED_MAPS view, 2-75
USER_SDO_GEOM_METADATA view

entry for predefined theme based on a view, 2-10
inserting row into, 2-10

USER_SDO_MAPS view, 2-74, 2-75
USER_SDO_STYLES view, 2-74, 2-75
USER_SDO_THEMES view, 2-74, 2-75
USER_SDO_TILE_ADMIN_TASKS view, 2-75
user-defined mouse event control functions, B-3

theme-level, B-4
user-defined mouse-click event control functions

map-level, B-3
selection event, B-5

V
variable marker style

adding to map request, 4-10

XML format for defining, A-12
vector marker style

adding to map request, 4-10
XML format for defining, A-3

VERSION parameter (WMS), E-6
views

key_column styling rule attribute required for
theme defined on join view, A-19

metadata, 2-74
visible themes

getThemeVisibleInSVG method, 4-11
setThemeVisible method, 4-12

visible_in_svg attribute, 3-53

W
Web Map Service (WMS) protocol, E-1

adding a WMS map theme, E-11
setting up for MapViewer, E-1
See also entries starting with "WMS"

Web proxy for MapViewer service
setting, 4-6

web_user_type attribute, 1-37
WFS map requests

examples, 3-15
WFS themes, 2-40
WGS 84 coordinate system, 2-61
WHERE clause

getting, 4-15
width

attribute of map request, 3-28
setParam tag parameter, 5-11

WIDTH parameter (WMS), E-6
within-cost analysis, 2-37

addLinksWithinCost method, 4-7
WMS Capabilities responses

customizing, 1-33
WMS data source

default for GetMap requests, E-3
WMS map themes

adding, E-11
JavaBean-based API, E-15
XML API, E-11

authentication with, E-14
predefined, E-14

wms_config element, 1-33
wms_getmap_request element, E-11
WMSFilter.jar file, E-1
Workspace Manager

support in MapViewer, 2-71
workspace_date attribute, 2-71
workspace_date_format attribute, 2-71
workspace_date_nlsparam attribute, 2-71
workspace_date_tswtz attribute, 2-71
workspace_name attribute, 2-71
workspace_savepoint attribute, 2-71

X
X parameter (WMS), E-10

Index-12

X11 DISPLAY variable
no need to set when using AWT headless

mode, 1-4
XML

API for MapViewer, 3-1
format for base maps, map tile layers

XML format, A-1
format for map tile layers, A-1
format for styles, A-1
format for themes, A-1

xmlparserv2.jar file, E-2

Y
Y parameter (WMS), E-10

Z
zoom factor, 3-29, 4-6
zoom levels, 3-29, 4-6
zoom ratio, 3-30, 4-6

setting, B-1
zoomfactor attribute, 3-29
zoomIn method, 4-12, 4-13
zoomlevels attribute, 3-29
zoomOut method, 4-13
zoomratio attribute, 3-30

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

	New and Changed Features
	MapViewer Core
	Oracle Maps

	1 Introduction to MapViewer
	1.1 Overview of MapViewer
	1.1.1 Basic Flow of Action with MapViewer
	1.1.2 MapViewer Architecture

	1.2 Getting Started with MapViewer
	1.3 Prerequisite Software for MapViewer
	1.4 Installing and Deploying MapViewer
	1.4.1 Deploying MapViewer in a WebLogic Server Environment
	1.4.1.1 Unpacking the MapViewer EAR Archive
	1.4.1.2 Configuring WebLogic Server
	1.4.1.3 Deploying and Starting MapViewer in WebLogic Server
	1.4.1.4 Using the MapViewer Administration Page

	1.4.2 Deploying MapViewer in an Oracle Fusion Middleware 10gR3 Environment
	1.4.3 Installing MapViewer with a Standalone Installation of OC4J
	1.4.4 After Deploying MapViewer
	1.4.4.1 Verifying That the Deployment Was Successful
	1.4.4.2 Running SQL Scripts
	1.4.4.3 Creating MapViewer Array Types, if Necessary

	1.5 Administering MapViewer
	1.5.1 Logging in to the MapViewer Administration Page
	1.5.2 Configuring MapViewer
	1.5.2.1 Specifying Logging Information
	1.5.2.2 Specifying Map File Storage and Life Cycle Information
	1.5.2.3 Restricting Administrative (Non-Map) Requests
	1.5.2.4 Specifying a Web Proxy
	1.5.2.5 Specifying Global Map Configuration Options
	1.5.2.6 Customizing the Spatial Data Cache
	1.5.2.7 Specifying the Security Configuration
	1.5.2.8 Registering a Custom Image Renderer
	1.5.2.9 Registering a Custom Spatial Provider
	1.5.2.10 Registering Custom Nonspatial Data Providers
	1.5.2.11 Customizing SRS Mapping
	1.5.2.12 Customizing WMS GetCapabilities Responses
	1.5.2.13 Configuring the Map Tile Server for Oracle Maps
	1.5.2.14 Defining Permanent Map Data Sources

	1.5.3 Performing MapViewer Administrative Tasks

	1.6 Oracle Real Application Clusters and MapViewer
	1.6.1 Creating a Container Oracle RAC Data Source
	1.6.2 Adding the userThreads Option to the OC4J Container
	1.6.2.1 Adding userThreads for a Standalone OC4J Instance
	1.6.2.2 Adding userThreads for a Full Oracle Fusion Middleware 10gR3 Installation

	1.6.3 Creating a MapViewer Data Source

	1.7 High Availability and MapViewer
	1.7.1 Deploying MapViewer on a Multiprocess OC4J Instance
	1.7.2 Deploying MapViewer on a Middle-Tier Cluster

	1.8 Secure Map Rendering
	1.8.1 How Secure Map Rendering Works
	1.8.2 Getting the User Name from a Cookie
	1.8.3 Authenticating Users: Options and Demo

	1.9 MapViewer Demos and Tutorials

	2 MapViewer Concepts
	2.1 Overview of MapViewer
	2.2 Styles
	2.2.1 Scaling the Size of a Style (Scalable Styles)
	2.2.2 Specifying a Label Style for a Bucket
	2.2.3 Orienting Text Labels and Markers
	2.2.3.1 Controlling Text Style Orientation
	2.2.3.2 Controlling Marker Orientation

	2.2.4 Making a Text Style Sticky
	2.2.5 Getting a Sample Image of Any Style

	2.3 Themes
	2.3.1 Predefined Themes
	2.3.1.1 Styling Rules in Predefined Spatial Geometry Themes
	2.3.1.2 How MapViewer Formulates a SQL Query for a Styling Rule
	2.3.1.3 Styling Rules with Binding Parameters
	2.3.1.4 Applying Multiple Rendering Styles in a Single Styling Rule
	2.3.1.5 Caching of Predefined Themes
	2.3.1.6 Feature Labels and Internationalization

	2.3.2 JDBC Themes
	2.3.2.1 Defining a Point JDBC Theme Based on Two Columns
	2.3.2.2 Storing Complex JDBC Themes in the Database

	2.3.3 Image Themes
	2.3.3.1 Creating Predefined Image Themes

	2.3.4 GeoRaster Themes
	2.3.4.1 Creating Predefined GeoRaster Themes
	2.3.4.2 Using Bitmap Masks with GeoRaster Themes
	2.3.4.3 Reprojection of GeoRaster Themes

	2.3.5 Network Themes
	2.3.5.1 Creating Predefined Network Themes
	2.3.5.2 Using MapViewer for Network Analysis

	2.3.6 Topology Themes
	2.3.6.1 Creating Predefined Topology Themes

	2.3.7 WFS Themes
	2.3.7.1 Creating Predefined WFS Themes

	2.3.8 Custom Geometry Themes
	2.3.9 Annotation Text Themes
	2.3.10 Thematic Mapping
	2.3.10.1 Thematic Mapping Using External Attribute Data

	2.3.11 Attributes Affecting Theme Appearance

	2.4 Maps
	2.4.1 Map Size and Scale
	2.4.2 Map Legend

	2.5 Data Sources
	2.6 How a Map Is Generated
	2.7 Cross-Schema Map Requests
	2.8 Workspace Manager Support in MapViewer
	2.9 MapViewer Metadata Views
	2.9.1 xxx_SDO_MAPS Views
	2.9.2 xxx_SDO_THEMES Views
	2.9.3 xxx_SDO_STYLES Views

	3 MapViewer Map Request XML API
	3.1 Map Request Examples
	3.1.1 Simple Map Request
	3.1.2 Map Request with Dynamically Defined Theme
	3.1.3 Map Request with Base Map, Center, and Additional Predefined Theme
	3.1.4 Map Request with Center, Base Map, Dynamically Defined Theme, and Other Features
	3.1.5 Map Request for Point Features with Attribute Value and Dynamically Defined Variable Marker Style
	3.1.6 Map Request with an Image Theme
	3.1.7 Map Request for Image of Map Legend Only
	3.1.8 Map Request with SRID Different from Data SRID
	3.1.9 Map Request Using a Pie Chart Theme
	3.1.10 Map Request Using Ratio Scale and Mixed Theme Scale Modes
	3.1.11 Map Request Using Predefined Theme (Binding Parameter and Custom Type)
	3.1.12 Map Request Using Advanced Styles and Rendering Rules
	3.1.13 Map Request Using Stacked Styles
	3.1.14 WFS Map Requests
	3.1.15 Java Program Using MapViewer
	3.1.16 PL/SQL Program Using MapViewer

	3.2 Map Request DTD
	3.2.1 map_request Element
	3.2.1.1 map_request Attributes

	3.2.2 bounding_themes Element
	3.2.3 box Element
	3.2.4 center Element
	3.2.5 geoFeature Element
	3.2.6 jdbc_georaster_query Element
	3.2.7 jdbc_image_query Element
	3.2.8 jdbc_network_query Element
	3.2.9 jdbc_query Element
	3.2.10 jdbc_topology_query Element
	3.2.11 legend Element
	3.2.12 map_tile_theme Element
	3.2.13 north_arrow Element
	3.2.14 operation Element
	3.2.15 operations Element
	3.2.16 parameter Element
	3.2.17 scale_bar Element
	3.2.18 style Element
	3.2.19 styles Element
	3.2.20 theme Element
	3.2.21 themes Element
	3.2.22 theme_modifiers Element

	3.3 Information Request DTD
	3.4 Map Response DTD
	3.5 MapViewer Exception DTD
	3.6 Geometry DTD (OGC)

	4 MapViewer JavaBean-Based API
	4.1 Usage Model for the MapViewer JavaBean-Based API
	4.2 Preparing to Use the MapViewer JavaBean-Based API
	4.3 Using the MapViewer Bean
	4.3.1 Creating the MapViewer Bean
	4.3.2 Setting Up Parameters of the Current Map Request
	4.3.3 Adding Themes or Features to the Current Map Request
	4.3.4 Adding Dynamically Defined Styles to a Map Request
	4.3.5 Manipulating Themes in the Current Map Request
	4.3.6 Sending a Request to the MapViewer Service
	4.3.7 Extracting Information from the Current Map Response
	4.3.8 Obtaining Information About Data Sources
	4.3.9 Querying Nonspatial Attributes in the Current Map Window
	4.3.10 Using Optimal Methods for Thick Clients

	5 MapViewer JSP Tag Library
	5.1 Using MapViewer JSP Tags
	5.2 MapViewer JSP Tag Reference Information
	5.2.1 addJDBCTheme
	5.2.2 addPredefinedTheme
	5.2.3 getMapURL
	5.2.4 getParam
	5.2.5 identify
	5.2.6 importBaseMap
	5.2.7 init
	5.2.8 makeLegend
	5.2.9 run
	5.2.10 setParam

	5.3 JSP Example (Several Tags) for MapViewer

	6 MapViewer PL/SQL API
	6.1 Installing the SDO_MVCLIENT Package
	6.2 Using the SDO_MVCLIENT Package
	6.2.1 Granting Network Access
	6.2.2 Creating a MapViewer Client Handle
	6.2.3 Preparing a Map Request
	6.2.4 Sending the Request to the MapViewer Service
	6.2.5 Extracting Information from the Map Request

	7 MapViewer XML Requests: Administrative and Other
	7.1 Managing Data Sources
	7.1.1 Adding a Data Source (Administrative)
	7.1.2 Removing a Data Source (Administrative)
	7.1.3 Redefining a Data Source
	7.1.4 Listing All Data Sources (Administrative or General-Purpose)
	7.1.5 Checking the Existence of a Data Source (General-Purpose)

	7.2 Listing All Maps (General-Purpose)
	7.3 Listing Themes (General-Purpose)
	7.4 Listing Styles (General-Purpose)
	7.5 Listing Styles Used by a Predefined Theme (General-Purpose)
	7.6 Managing In-Memory Caches
	7.6.1 Clearing Metadata Cache for a Data Source (Administrative)
	7.6.2 Clearing Spatial Data Cache for a Theme (Administrative)

	7.7 Editing the MapViewer Configuration File (Administrative)
	7.8 Restarting the MapViewer Server (Administrative)

	8 Oracle Maps
	8.1 Overview of Oracle Maps
	8.1.1 Architecture for Oracle Maps Applications
	8.1.2 Simple Example Using Oracle Maps
	8.1.3 How Map Content Is Organized
	8.1.3.1 Map Tile Layers
	8.1.3.2 Theme-Based FOI Layers
	8.1.3.3 User-Defined FOI Layers
	8.1.3.4 Information Window Layer
	8.1.3.5 Fixed Figures Layer

	8.2 Map Tile Server
	8.2.1 Map Tile Server Concepts
	8.2.1.1 Map Tile Layers and Map Tile Sources
	8.2.1.2 Storage of Map Image Tiles
	8.2.1.3 Coordinate System for Map Tiles
	8.2.1.4 Tile Mesh Codes
	8.2.1.5 Tiling Rules

	8.2.2 Map Tile Server Configuration
	8.2.2.1 Global Map Tile Server Configuration
	8.2.2.2 Map Tile Layer Configuration

	8.2.3 External Map Source Adapter

	8.3 Feature of Interest (FOI) Server
	8.3.1 Theme-Based FOI Layers
	8.3.1.1 Predefined Theme-Based FOI Layers
	8.3.1.2 Templated Predefined Themes
	8.3.1.3 Dynamic JDBC Query Theme-Based FOI Layers

	8.3.2 User-Defined FOI Requests

	8.4 Oracle Maps JavaScript API
	8.5 Developing Oracle Maps Applications
	8.5.1 Creating One or More Map Tile Layers
	8.5.2 Defining FOI Metadata
	8.5.3 Creating the Client Application

	8.6 Using Google Maps and Bing Maps
	8.6.1 Defining Google Maps and Bing Maps Tile Layers on the Client Side
	8.6.2 Defining the Built-In Map Tile Layers on the Server Side

	8.7 Transforming Data to a Spherical Mercator Coordinate System
	8.7.1 Creating a Transformation Rule to Skip Datum Conversion

	8.8 Dynamically Displaying an External Tile Layer

	9 Oracle Map Builder Tool
	9.1 Running Oracle Map Builder
	9.2 Oracle Map Builder User Interface

	A XML Format for Styles, Themes, Base Maps, and Map Tile Layers
	A.1 Color Styles
	A.2 Marker Styles
	A.2.1 Vector Marker Styles
	A.2.2 Image Marker Styles
	A.2.3 TrueType Font-Based Marker Styles
	A.2.4 Using Marker Styles on Lines

	A.3 Line Styles
	A.4 Area Styles
	A.5 Text Styles
	A.6 Advanced Styles
	A.6.1 Bucket Styles
	A.6.1.1 Collection-Based Buckets with Discrete Values
	A.6.1.2 Individual Range-Based Buckets
	A.6.1.3 Equal-Ranged Buckets

	A.6.2 Color Scheme Styles
	A.6.3 Variable Marker Styles
	A.6.4 Dot Density Marker Styles
	A.6.5 Bar Chart Marker Styles
	A.6.6 Collection Styles
	A.6.7 Variable Pie Chart Styles
	A.6.8 Heat Map Styles

	A.7 Themes: Styling Rules
	A.8 Base Maps
	A.9 Map Tile Layers

	B JavaScript Functions for SVG Maps
	B.1 Navigation Control Functions
	B.2 Display Control Functions
	B.3 Mouse-Click Event Control Functions
	B.3.1 Predefined Mouse-Click Control Functions
	B.3.2 User-Defined Mouse Event Control Functions
	B.3.2.1 Map-Level Functions
	B.3.2.2 Theme-Level Functions
	B.3.2.3 Selection Event Control Functions

	B.4 Other Control Functions

	C Creating and Registering a Custom Image Renderer
	D Creating and Registering a Custom Spatial Data Provider
	D.1 Implementing the Spatial Provider Class
	D.2 Registering the Spatial Provider with MapViewer
	D.3 Rendering the External Spatial Data

	E OGC WMS Support in MapViewer
	E.1 Setting Up the WMS Interface for MapViewer
	E.1.1 Required Files
	E.1.2 Data Source Named wms
	E.1.3 SDO to EPSG SRID Mapping File

	E.2 WMS Specification and Corresponding MapViewer Concepts
	E.2.1 Supported GetMap Request Parameters
	E.2.1.1 BASEMAP Parameter (MapViewer-Only)
	E.2.1.2 BBOX Parameter
	E.2.1.3 BGCOLOR Parameter
	E.2.1.4 DATASOURCE Parameter (MapViewer-Only)
	E.2.1.5 DYNAMIC_STYLES Parameter (MapViewer-Only)
	E.2.1.6 EXCEPTIONS Parameter
	E.2.1.7 FORMAT Parameter
	E.2.1.8 HEIGHT Parameter
	E.2.1.9 LAYERS Parameter
	E.2.1.10 LEGEND_REQUEST Parameter (MapViewer-Only)
	E.2.1.11 MVTHEMES Parameter (MapViewer-Only)
	E.2.1.12 REQUEST Parameter
	E.2.1.13 SERVICE Parameter
	E.2.1.14 SRS (1.1.1) or CRS (1.3.0) Parameter
	E.2.1.15 STYLES Parameter
	E.2.1.16 TRANSPARENT Parameter
	E.2.1.17 VERSION Parameter
	E.2.1.18 WIDTH Parameter

	E.2.2 Supported GetCapabilities Request and Response Features
	E.2.3 Supported GetFeatureInfo Request and Response Features
	E.2.3.1 GetMap Parameter Subset for GetFeatureInfo Requests
	E.2.3.2 EXCEPTIONS Parameter
	E.2.3.3 FEATURE_COUNT Parameter
	E.2.3.4 INFO_FORMAT Parameter
	E.2.3.5 QUERY_LAYERS Parameter
	E.2.3.6 QUERY_TYPE Parameter (MapViewer-Only)
	E.2.3.7 RADIUS Parameter (MapViewer-Only)
	E.2.3.8 UNIT Parameter (MapViewer-Only)
	E.2.3.9 X and Y or I and J Parameters
	E.2.3.10 Specifying Attributes to Be Queried for a GetFeatureInfo Request

	E.3 Adding a WMS Map Theme
	E.3.1 XML API for Adding a WMS Map Theme
	E.3.2 Predefined WMS Map Theme Definition
	E.3.3 Authentication with WMS Map Themes
	E.3.4 JavaBean-Based API for Adding a WMS Map Theme

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

