

Oracle® Fusion Middleware
Configuring Server Environments for Oracle WebLogic Server

11g Release 1 (10.3.6)

E13701-06

November 2011

This document describes how to design, configure, and
manage WebLogic Server environments. It is a resource for
system administrators and operators responsible for
implementing a WebLogic Server installation.

Oracle Fusion Middleware Configuring Server Environments for Oracle WebLogic Server, 11g Release 1
(10.3.6)

E13701-06

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... ix

Documentation Accessibility ... ix
Conventions ... ix

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to This Document.. 1-1
1.3 Related Documentation.. 1-2
1.4 New and Changed Features in This Release... 1-2

2 Using Work Managers to Optimize Scheduled Work

2.1 Understanding How WebLogic Server Uses Thread Pools ... 2-1
2.2 Understanding Work Managers ... 2-2
2.2.1 Request Classes .. 2-3
2.2.2 Constraints.. 2-5
2.2.3 Stuck Thread Handling... 2-6
2.3 Work Manager Scope ... 2-6
2.3.1 The Default Work Manager.. 2-6
2.3.1.1 Overriding the Default Work Manager... 2-6
2.3.1.2 When to Use Work Managers... 2-6
2.3.2 Global Work Managers ... 2-7
2.3.3 Application-scoped Work Managers .. 2-7
2.4 Using Work Managers, Request Classes, and Constraints ... 2-7
2.4.1 Dispatch Policy for EJB ... 2-7
2.4.2 Dispatch Policy for Web Applications.. 2-8
2.5 Deployment Descriptor Examples ... 2-8
2.6 Work Managers and Execute Queues... 2-12
2.6.1 Enabling Execute Queues .. 2-12
2.6.2 Migrating from Execute Queues to Work Managers... 2-12
2.7 Accessing Work Managers Using MBeans... 2-12
2.8 Using CommonJ With WebLogic Server .. 2-13
2.8.1 Accessing CommonJ Work Managers ... 2-13
2.8.2 Mapping CommonJ to WebLogic Server Work Managers... 2-13

iv

3 Avoiding and Managing Overload

3.1 Configuring WebLogic Server to Avoid Overload Conditions ... 3-1
3.1.1 Limiting Requests in the Thread Pool .. 3-1
3.1.1.1 Work Managers and Thread Pool Throttling ... 3-2
3.1.2 Limiting HTTP Sessions ... 3-2
3.1.3 Exit on Out of Memory Exceptions... 3-2
3.1.4 Stuck Thread Handling... 3-3
3.2 WebLogic Server Self-Monitoring .. 3-3
3.2.1 Overloaded Health State... 3-3
3.3 WebLogic Server Exit Codes ... 3-3

4 Configuring Network Resources

4.1 Overview of Network Configuration .. 4-1
4.2 Understanding Network Channels .. 4-2
4.2.1 What Is a Channel? .. 4-2
4.2.1.1 Rules for Configuring Channels... 4-2
4.2.1.2 Custom Channels Can Inherit Default Channel Attributes 4-2
4.2.2 Why Use Network Channels?.. 4-3
4.2.2.1 Handling Channel Failures ... 4-3
4.2.2.2 Upgrading Quality of Service Levels for RMI.. 4-3
4.2.3 Standard WebLogic Server Channels ... 4-4
4.2.3.1 The Default Network Channel ... 4-4
4.2.3.2 Administration Port and Administrative Channel.. 4-4
4.2.3.2.1 Administration Port Capabilities .. 4-4
4.2.3.2.2 Administration Port Restrictions .. 4-5
4.2.3.2.3 Administration Port Requires SSL.. 4-5
4.2.3.2.4 Configure Administration Port ... 4-6
4.2.3.2.5 Booting Managed Servers to Use Administration Port 4-6
4.2.3.2.6 Booting Managed Servers to Use Administrative Channels........................... 4-6
4.2.3.2.7 Custom Administrative Channels .. 4-6
4.2.4 Using Internal Channels ... 4-7
4.2.4.1 Channel Selection ... 4-7
4.2.4.2 Internal Channels Within a Cluster ... 4-7
4.3 Configuring a Channel... 4-7
4.3.1 Guidelines for Configuring Channels .. 4-7
4.3.1.1 Channels and Server Instances .. 4-7
4.3.1.2 Dynamic Channel Configuration ... 4-8
4.3.1.3 Channels and Protocols ... 4-8
4.3.1.4 Reserved Names ... 4-8
4.3.1.5 Channels, Proxy Servers, and Firewalls .. 4-8
4.3.2 Configuring Network Channels For a Cluster .. 4-8
4.3.2.1 Create the Cluster ... 4-8
4.3.2.2 Create and Assign the Network Channel ... 4-9
4.3.2.3 Configuring a Replication Channel ... 4-9
4.3.2.4 Increase Packet Size When Using Many Channels ... 4-9
4.4 Assigning a Custom Channel to an EJB.. 4-10

v

5 Configuring Web Server Functionality

5.1 Overview of Configuring Web Server Components .. 5-1
5.2 Configuring the Server... 5-1
5.2.1 Configuring the Listen Port ... 5-2
5.3 Web Applications.. 5-2
5.3.1 Web Applications and Clustering ... 5-3
5.4 Configuring Virtual Hosting... 5-3
5.4.1 Virtual Hosting and the Default Web Application... 5-3
5.4.2 Setting Up a Virtual Host ... 5-4
5.5 How WebLogic Server Resolves HTTP Requests .. 5-4
5.6 Setting Up HTTP Access Logs .. 5-5
5.6.1 Log Rotation ... 5-5
5.6.2 Common Log Format .. 5-6
5.6.3 Setting Up HTTP Access Logs by Using Extended Log Format................................... 5-6
5.6.3.1 Creating the Fields Directive .. 5-6
5.6.3.2 Supported Field identifiers ... 5-7
5.6.3.2.1 IP address related fields: ... 5-7
5.6.3.2.2 DNS related fields ... 5-7
5.6.3.3 Creating Custom Field Identifiers.. 5-8
5.6.3.3.1 Get Methods of the HttpAccountingInfo Object .. 5-9
5.7 Preventing POST Denial-of-Service Attacks .. 5-11
5.8 Setting Up WebLogic Server for HTTP Tunneling .. 5-12
5.8.1 Configuring the HTTP Tunneling Connection... 5-12
5.8.2 Connecting to WebLogic Server from the Client ... 5-13
5.9 Using Native I/O for Serving Static Files (Windows Only) .. 5-13

6 Using the WebLogic Persistent Store

6.1 Overview of the Persistent Store .. 6-1
6.1.1 Features of the Persistent Store.. 6-2
6.1.2 High-Performance Throughput and Transactional Support... 6-2
6.1.3 Comparing File Stores and JDBC-accessible Stores.. 6-3
6.1.4 High Availability For Persistent Stores .. 6-3
6.1.4.1 Persistent Store Migration... 6-4
6.1.4.2 High Availability Storage Solutions .. 6-4
6.2 Using the Default Persistent Store.. 6-5
6.2.1 Default Store Location... 6-5
6.2.2 Example of a Default File Store ... 6-5
6.3 Using Custom File Stores and JDBC Stores .. 6-6
6.3.1 When to Use a Custom Persistent Store ... 6-6
6.3.2 Methods of Creating a Custom Persistent Store ... 6-6
6.3.3 Modifying Custom Persistent Store Parameters ... 6-7
6.4 Creating a Custom (User-Defined) File Store ... 6-7
6.4.1 Main Steps for Configuring a Custom File Store .. 6-7
6.4.2 Example of a Custom File Store... 6-7
6.4.3 Guidelines for Configuring a Synchronous Write Policy .. 6-8
6.4.3.1 Direct-Write-With-Cache Policy... 6-9

vi

6.4.3.2 Direct-Write Policy .. 6-10
6.4.3.3 Cache-Flush Policy .. 6-10
6.4.3.4 Disabled Policy .. 6-11
6.5 Creating JDBC-accessible Stores .. 6-11
6.5.1 Using a JDBC TLog Store... 6-11
6.5.1.1 Main Steps for Configuring a JDBC TLOG Store.. 6-11
6.5.1.1.1 Choosing a Data Source... 6-12
6.5.1.2 Example of a JDBC TLOG Store .. 6-12
6.5.1.3 Configuration Guidelines... 6-13
6.5.1.4 Additional Considerations .. 6-14
6.5.1.5 Server Migration when using a JDBC TLOG Store .. 6-14
6.5.1.6 Monitoring a JDBC TLOG Store .. 6-14
6.5.1.6.1 How to Monitor the JDBC TLOG Store Health State 6-15
6.5.1.6.2 How to Monitor Transaction Log Store Statistics.. 6-15
6.5.1.6.3 How to Monitor Transaction Log Store Connections 6-15
6.5.1.7 Security Considerations.. 6-15
6.5.2 Using a JDBC Store ... 6-15
6.5.2.1 Main Steps for Configuring a JDBC Store.. 6-15
6.5.2.2 Example of a JDBC Store .. 6-16
6.5.2.3 Supported JDBC Drivers .. 6-17
6.5.2.4 Creating a JDBC Store Table Using Default and Custom DDL Files................. 6-18
6.5.2.4.1 Creating a JDBC Store Table Using a Custom DDL File 6-18
6.5.2.4.2 Enabling Oracle BLOB Record Columns .. 6-18
6.5.2.5 Managing JDBC Store Tables... 6-20
6.5.2.5.1 Using the utils.Schema Utility to Delete a JDBC Store Table....................... 6-20
6.5.2.6 Guidelines for Configuring a JDBC Store .. 6-21
6.5.2.6.1 Using Prefixes with a JDBC Store .. 6-21
6.5.2.6.2 JDBC Store Table Rules ... 6-21
6.5.2.6.3 Prefix Name Format Guidelines... 6-21
6.5.2.6.4 Recommended JDBC Data Source Settings for JDBC Stores........................ 6-22
6.5.2.6.5 Automatic Reconnection to Failed Databases.. 6-22
6.5.2.6.6 Required Setting for Oracle DB2 Type 4 JDBC Drivers 6-22
6.5.2.6.7 Handling JMS Transactions with JDBC Stores... 6-22
6.5.2.7 Enabling I/O Multithreading for JDBC Stores.. 6-23
6.5.2.7.1 Rebuilding the Store Table Index for an Oracle Database 6-23
6.5.2.7.2 Build a Reverse Index for an Oracle Database ... 6-24
6.5.2.7.3 Build a Non-Reverse Index for an Oracle Database...................................... 6-24
6.5.2.7.4 Reducing Contention in a Non-Oracle Database... 6-24
6.6 Monitoring a Persistent Store... 6-25
6.6.1 Monitoring Stores ... 6-25
6.6.2 Monitoring Store Connections.. 6-25
6.7 Administering a Persistent Store ... 6-26
6.7.1 Store Administration Using a Java Command Line .. 6-27
6.7.1.1 Accessing Store Administration Help .. 6-27
6.7.1.2 Dumping the Contents of a File Store .. 6-28
6.7.1.3 Compacting a File Store.. 6-28
6.7.2 Store Administration Using WLST .. 6-28

vii

6.7.2.1 Accessing Store Administration Help .. 6-28
6.7.2.2 Dumping the Contents of a JDBC Store Using WLST.. 6-29
6.7.2.3 Compacting a File Store Using WLST .. 6-29
6.8 Security Considerations .. 6-30
6.9 Limitations of the Persistent Store... 6-30

viii

ix

Preface

This preface describes the document accessibility features and conventions used in this
guide—Configuring Server Environments for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

x

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

This chapter describes the contents and organization of this guide—Configuring Server
Environments for Oracle WebLogic Server.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to This Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "New and Changed Features in This Release"

1.1 Document Scope and Audience
This document describes how you design, configure, and manage WebLogic Server
environments. It is a resource for system administrators and operators responsible for
implementing a WebLogic Server installation. This document is relevant to all phases
of a software project, from development through test and production phases.

It is assumed that the reader is familiar with Java EE and Web technologies,
object-oriented programming techniques, and the Java programming language.

1.2 Guide to This Document
The document is organized as follows:

■ This chapter, Chapter 1, "Introduction and Roadmap" describes the scope of this
guide and lists related documentation.

■ Chapter 2, "Using Work Managers to Optimize Scheduled Work" describes the
WebLogic Server execution model and the process of configuring application
access to the execute queue.

■ Chapter 3, "Avoiding and Managing Overload" describes detecting, avoiding, and
recovering from overload conditions.

■ Chapter 4, "Configuring Network Resources" describes optimizing your WebLogic
Server domain for your network.

■ Chapter 5, "Configuring Web Server Functionality" describes using WebLogic
Server as a Web server.

■ Chapter 6, "Using the WebLogic Persistent Store" describes configuring and
monitoring the persistent store, a built-in, high-performance storage solution for
WebLogic Server subsystems and services that require persistence.

Related Documentation

1-2 Configuring Server Environments for Oracle WebLogic Server

1.3 Related Documentation
■ Understanding Domain Configuration for Oracle WebLogic Server

■ Oracle WebLogic Server Administration Console Help

1.4 New and Changed Features in This Release
This release includes a new JDBC TLOG store feature that you can use to persist
transaction logs to a database instead of the default persistent store. For more
information, see Section 6.5.1, "Using a JDBC TLog Store."

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

2

Using Work Managers to Optimize Scheduled Work 2-1

2Using Work Managers to Optimize
Scheduled Work

This chapter explains how WebLogic Server lets you configure how your application
prioritizes the execution of its work. Based on rules you define and by monitoring
actual run-time performance, WebLogic Server optimizes the performance of your
application and maintain service-level agreements. You define the rules and
constraints for your application by defining a Work Manger and applying it either
globally to a WebLogic Server domain or to a specific application component.

■ Section 2.1, "Understanding How WebLogic Server Uses Thread Pools"

■ Section 2.2, "Understanding Work Managers"

■ Section 2.3, "Work Manager Scope"

■ Section 2.4, "Using Work Managers, Request Classes, and Constraints"

■ Section 2.5, "Deployment Descriptor Examples"

■ Section 2.6, "Work Managers and Execute Queues"

■ Section 2.7, "Accessing Work Managers Using MBeans"

■ Section 2.8, "Using CommonJ With WebLogic Server"

2.1 Understanding How WebLogic Server Uses Thread Pools
In previous versions of WebLogic Server, processing was performed in multiple
execute queues. Different classes of work were executed in different queues, based on
priority and ordering requirements, and to avoid deadlocks. In addition to the default
execute queue, weblogic.kernel.default, there were pre-configured queues
dedicated to internal administrative traffic, such as weblogic.admin.HTTP and
weblogic.admin.RMI.

You could control thread usage by altering the number of threads in the default queue,
or configure custom execute queues to ensure that particular applications had access
to a fixed number of execute threads, regardless of overall system load.

Now WebLogic Server uses a single thread pool, in which all types of work are
executed. WebLogic Server prioritizes work based on rules you define, and run-time
metrics, including the actual time it takes to execute a request and the rate at which
requests are entering and leaving the pool.

The common thread pool changes its size automatically to maximize throughput. The
queue monitors throughput over time and based on history, determines whether to
adjust the thread count. For example, if historical throughput statistics indicate that a
higher thread count increased throughput, WebLogic increases the thread count.

Understanding Work Managers

2-2 Configuring Server Environments for Oracle WebLogic Server

Similarly, if statistics indicate that fewer threads did not reduce throughput, WebLogic
decreases the thread count. This new strategy makes it easier for administrators to
allocate processing resources and manage performance, avoiding the effort and
complexity involved in configuring, monitoring, and tuning custom executes queues.

2.2 Understanding Work Managers
WebLogic Server prioritizes work and allocates threads based on an execution model
that takes into account administrator-defined parameters and actual run-time
performance and throughput.

Administrators can configure a set of scheduling guidelines and associate them with
one or more applications, or with particular application components. For example, you
can associate one set of scheduling guidelines for one application, and another set of
guidelines for other applications. At run time, WebLogic Server uses these guidelines
to assign pending work and enqueued requests to execution threads.

To manage work in your applications, you define one or more of the following Work
Manager components:

■ Fair Share Request Class

■ Response Time Request Class

■ Min Threads Constraint

■ Max Threads Constraint

■ Capacity Constraint

■ Context Request Class

For more information on these components, see Section 2.2.1, "Request Classes" or
Section 2.2.2, "Constraints".

You can use any of these Work Manager components to control the performance of
your application by referencing the name of the component in the application
deployment descriptor. In addition, you may define a Work Manager that encapsulates
all of the above components (except Context Request Class; see Example 2–3) and
reference the name of the Work Manager in your application's deployment descriptor.
You can define multiple Work Managers—the appropriate number depends on how
many distinct demand profiles exist across the applications you host on WebLogic
Server.

You can configure Work Managers at the domain level, application level, and module
level in one of the following configuration files, or by using the WebLogic Server
Administration Console:

■ config.xml—Work Managers specified in config.xml can be assigned to any
application, or application component, in the domain.

■ weblogic-application.xml—Work Managers specified at the application
level can be assigned to that application, or any component of that application.

■ weblogic-ejb-jar.xml or weblogic.xml—Work Managers specified at the
component level can be assigned to that component.

■ weblogic.xml—Work Managers specified for a Web application.

Example 2–1 is an example of a Work Manager definition.

Understanding Work Managers

Using Work Managers to Optimize Scheduled Work 2-3

Example 2–1 Work Manager Stanza

<work-manager>
<name>highpriority_workmanager</name>
 <fair-share-request-class>
 <name>high_priority</name>
 <fair-share>100</fair-share>
 </fair-share-request-class>
 <min-threads-constraint>
 <name>MinThreadsCountFive</name>
 <count>5</count>
 </min-threads-constraint>
</work-manager>

To reference the Work Manager in Example 2–1 in the dispatch policy of a Web
application, add the code in Example 2–2 to the Web application web.xml file:

Example 2–2 Referencing the Work Manager in a Web Application

<init-param>
 <param-name>wl-dispatch-policy</param-name>
 <param-value>highpriority_workmanager</param-value>
</init-param>

The components you can define and use in a Work Manager are described in following
sections:

■ Section 2.2.1, "Request Classes"

■ Section 2.2.2, "Constraints"

■ Section 2.2.3, "Stuck Thread Handling"

2.2.1 Request Classes
A request class expresses a scheduling guideline that WebLogic Server uses to allocate
threads to requests. Request classes help ensure that high priority work is scheduled
before less important work, even if the high priority work is submitted after the lower
priority work. WebLogic Server takes into account how long it takes for requests to
each module to complete.

Request classes define a best effort. They do not guarantee that the configured ratio
will be maintained consistently. The observed ratio may vary due to several factors
during a period of sufficient demand, such as:

■ The mixture of requests from different request classes in the queue at any
particular time. For example, more requests than the configured ratio may be
processed for a lower priority request class if there are not enough requests from a
higher priority request class in the Work Manager queue.

■ Because the ratio is specified in terms of thread-usage time, a larger number of
shorter requests could be processed in the same amount of thread-usage time as a
smaller number of time-consuming requests.

There are multiple types of request classes, each of which expresses a scheduling
guideline in different terms. A Work Manager may specify only one request class.

■ fair-share-request-class—Specifies the average thread-use time required
to process requests. The default fair share value is 50.

Understanding Work Managers

2-4 Configuring Server Environments for Oracle WebLogic Server

For example, assume that WebLogic Server is running two modules. The Work
Manager for ModuleA specifies a fair-share-request-class of 80 and the
Work Manager for ModuleB specifies a fair-share-request-class of 20.

During a period of sufficient demand, with a steady stream of requests for each
module such that the number requests exceed the number of threads, WebLogic
Server will allocate 80% and 20% of the thread-usage time to ModuleA and
ModuleB, respectively.

■ response-time-request-class—Specifies a response time goal in
milliseconds. Response time goals are not applied to individual requests. Instead,
WebLogic Server computes a tolerable waiting time for requests with that class by
subtracting the observed average thread use time from the response time goal, and
schedules requests so that the average wait for requests with the class is
proportional to its tolerable waiting time.

For example, given that ModuleA and ModuleB in the previous example, have
response time goals of 2000 ms and 5000 ms, respectively, and the actual thread
use time for an individual request is less than its response time goal. During a
period of sufficient demand, with a steady stream of requests for each module
such that the number of requests exceed the number of threads, and no "think
time" delays between response and request, WebLogic Server will schedule
requests for ModuleA and ModuleB to keep the average response time in the ratio
2:5. The actual average response times for ModuleA and ModuleB might be higher
or lower than the response time goals, but will be a common fraction or multiple
of the stated goal. For example, if the average response time for ModuleA requests
is 1,000 ms., the average response time for ModuleB requests is 2,500 ms.

The previous sections described request classes based on fair share and response
time by relating the scheduling to other work using the same request class. A mix
of fair share and response time request classes is scheduled with a marked bias in
favor of response time scheduling.

■ context-request-class—Assigns request classes to requests based on context
information, such as the current user or the current user's group.

For example, the context-request-class in Example 2–3 assigns a request
class to requests based on the value of the request's subject and role properties.

Example 2–3 Context Request Class

<work-manager>
 <name>responsetime_workmanager</name>
 <response-time-request-class>
 <name>my_response_time</name>
 <goal-ms>2000</goal-ms>
 </response-time-request-class>
</work-manager>

<work-manager>
 <name>context_workmanager</name>
 <context-request-class>
 <name>test_context</name>

Note: The value of a fair share request class is specified as a relative
value, not a percentage. Therefore, in the above example, if the request
classes were defined as 400 and 100, they would still have the same
relative values.

Understanding Work Managers

Using Work Managers to Optimize Scheduled Work 2-5

 <context-case>
 <user-name>system</user-name>
 <request-class-name>high_fairshare</request-class-name>
 </context-case>
 <context-case>
 <group-name>everyone</group-name>
 <request-class-name>low_fairshare</request-class-name>
 </context-case>
 </context-request-class>
</work-manager>

2.2.2 Constraints
A constraint defines minimum and maximum numbers of threads allocated to execute
requests and the total number of requests that can be queued or executing before
WebLogic Server begins rejecting requests.

You can define the following types of constraints:

■ max-threads-constraint—Limits the number of concurrent threads
executing requests from the constrained work set. The default is unlimited. For
example, consider a constraint defined with maximum threads of 10 and shared by
3 entry points. The scheduling logic ensures that not more than 10 threads are
executing requests from the three entry points combined.

You can define a max-threads-constraint in terms of a the availability of the
resource that requests depend upon, such as a connection pool.

A max-threads-constraint might, but does not necessarily, prevent a request
class from taking its fair share of threads or meeting its response time goal. Once
the constraint is reached the server does not schedule requests of this type until
the number of concurrent executions falls below the limit. The server then
schedules work based on the fair share or response time goal.

■ min-threads-constraint—Guarantees the number of threads the server will
allocate to affected requests to avoid deadlocks. The default is zero. A
min-threads-constraint value of one is useful, for example, for a replication
update request, which is called synchronously from a peer.

A min-threads-constraint might not necessarily increase a fair share. This
type of constraint has an effect primarily when the server instance is close to a
deadlock condition. In that case, the constraint will cause WebLogic Server to
schedule a request even if requests in the service class have gotten more than its
fair share recently.

■ capacity—Causes the server to reject requests only when it has reached its
capacity. The default is -1. Note that the capacity includes all requests, queued or
executing, from the constrained work set. Work is rejected either when an
individual capacity threshold is exceeded or if the global capacity is exceeded.
This constraint is independent of the global queue threshold.

Note: If a Web application's Work Manager references a context
request class, the first user call will go through the default request
class; subsequent calls in same session will go through the
user-defined request class.

When using context request classes, set session timeout values to
prevent sessions from expiring while requests wait in the Work
Manager queue.

Work Manager Scope

2-6 Configuring Server Environments for Oracle WebLogic Server

2.2.3 Stuck Thread Handling
In response to stuck threads, you can define a Stuck Thread Work Manager component
that can shut down the Work Manager, move the application into admin mode, or
mark the server instance as failed.

For example, the Work Manager defined in Example 2–4 shuts down the Work
Manager when two threads are stuck for longer than 30 seconds.

Example 2–4 Stuck-Thread Work Manager

<work-manager>
 <name>stuckthread_workmanager</name>
 <work-manager-shutdown-trigger>
 <max-stuck-thread-time>30</max-stuck-thread-time>
 <stuck-thread-count>2</stuck-thread-count>
 </work-manager-shutdown-trigger>
</work-manager>

2.3 Work Manager Scope
Essentially, there are three types of Work Managers, each one characterized by its
scope and how it is defined and used.

■ Section 2.3.1, "The Default Work Manager"

■ Section 2.3.2, "Global Work Managers"

■ Section 2.3.3, "Application-scoped Work Managers"

2.3.1 The Default Work Manager
To handle thread management and perform self-tuning, WebLogic Server implements
a default Work Manager. This Work Manager is used by an application when no other
Work Managers are specified in the application's deployment descriptors.

In many situations, the default Work Manager may be sufficient for most application
requirements. WebLogic Server thread-handling algorithms assign each application its
own fair share by default. Applications are given equal priority for threads and are
prevented from monopolizing them.

2.3.1.1 Overriding the Default Work Manager
You can override the behavior of the default Work Manager by creating and
configuring a global Work Manager called default. This allows you to control the
default thread-handling behavior of WebLogic Server.

2.3.1.2 When to Use Work Managers
Use the following are guidelines to help you determine when you might want to use
Work Managers to customize thread management:

■ The default fair share (50) is not sufficient.

This usually occurs in situations where one application needs to be given a higher
priority over another.

Note: When you override the default Work Manager, all instances
are overridden.

Using Work Managers, Request Classes, and Constraints

Using Work Managers to Optimize Scheduled Work 2-7

■ A response time goal is required.

■ A minimum thread constraint needs to be specified to avoid server deadlock

2.3.2 Global Work Managers
You can create global Work Managers that are available to all applications and
modules deployed on a server, in the WebLogic Server Administration Console and in
config.xml.

An application uses a globally-defined Work Manager as a template. Each application
creates its own instance which handles the work associated with that application and
separates that work from other applications. This separation is used to handle traffic
directed to two applications which are using the same dispatch policy. Handling each
application's work separately, allows an application to be shut down without affecting
the thread management of another application. Although each application implements
its own Work Manager instance, the underlying components are shared.

2.3.3 Application-scoped Work Managers
In addition to globally-scoped Work Managers, you can also create Work Managers
that are available only to a specific application or module. You can define
application-scoped Work Managers in the WebLogic Server Administration Console
and in the following descriptors:

■ weblogic-application.xml

■ weblogic-ejb-jar.xml

■ weblogic.xml

If you do not explicitly assign a Work Manager to an application, it uses the default
Work Manager.

A method is assigned to a Work Manager, using the <dispatch-policy> element in
the deployment descriptor. The <dispatch-policy> can also identify a custom
execute queue, for backward compatibility. For an example, see Example 2–2.

2.4 Using Work Managers, Request Classes, and Constraints
Work Managers, Request Classes, and Constraints require the following:

■ A definition. You may define Work Managers, Request Classes, or Constraints
globally in the domain's configuration using the Administration Console, (see
Environments > Work Managers in the Administration Console) or you may
define them in one of the deployment descriptors listed previously. In either case,
you assign a name to each.

■ A mapping. In your deployment descriptors you reference one of the Work
Managers, Request Classes, or Constraints by its name.

2.4.1 Dispatch Policy for EJB
weblogic-ejb-jar.xml—The value of the existing dispatch-policy tag under
weblogic-enterprise-bean can be a named dispatch-policy. For backwards
compatibility, it can also name an ExecuteQueue. In addition, Oracle allows
dispatch-policy, max-threads, and min-threads, to specify named (or
unnamed with a numeric value for constraints) policy and constraints for a list of
methods, analogously to the present isolation-level tag.

Deployment Descriptor Examples

2-8 Configuring Server Environments for Oracle WebLogic Server

2.4.2 Dispatch Policy for Web Applications
weblogic.xml—Also supports mappings analogous to the filter-mapping of the
web.xml, where named dispatch-policy, max-threads, or min-threads are mapped for
url-patterns or servlet names.

2.5 Deployment Descriptor Examples
This section contains examples for defining Work Managers in various types of
deployment descriptors.

For additional reference, see the schema for these deployment descriptors:

■ weblogic-ejb-jar.xml schema:
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.2/weblogi
c-ejb-jar.xsd

■ weblogic-application.xml schema:
http://xmlns.oracle.com/weblogic/weblogic-application/1.3/web
logic-application.xsd

■ weblogic.xml schema: See "weblogic.xml Deployment Descriptor Elements" in
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

Example 2–5 weblogic-ejb-jar.xml With Work Manager Entries

<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar
 http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.2/weblogic-ejb-jar.xsd">

<weblogic-enterprise-bean>
 <ejb-name>WorkEJB</ejb-name>
 <jndi-name>core_work_ejb_workbean_WorkEJB</jndi-name>
 <dispatch-policy>weblogic.kernel.System</dispatch-policy>
</weblogic-enterprise-bean>

<weblogic-enterprise-bean>
 <ejb-name>NonSystemWorkEJB</ejb-name>
 <jndi-name>core_work_ejb_workbean_NonSystemWorkEJB</jndi-name>
 <dispatch-policy>workbean_workmanager</dispatch-policy>
</weblogic-enterprise-bean>

<weblogic-enterprise-bean>
 <ejb-name>MinThreadsWorkEJB</ejb-name>
 <jndi-name>core_work_ejb_workbean_MinThreadsWorkEJB</jndi-name>
 <dispatch-policy>MinThreadsCountFive</dispatch-policy>
</weblogic-enterprise-bean>

<work-manager>
 <name>workbean_workmanager</name>
</work-manager>

<work-manager>
 <name>stuckthread_workmanager</name>
 <work-manager-shutdown-trigger>
 <max-stuck-thread-time>30</max-stuck-thread-time>
 <stuck-thread-count>2</stuck-thread-count>
 </work-manager-shutdown-trigger>
</work-manager>

Deployment Descriptor Examples

Using Work Managers to Optimize Scheduled Work 2-9

<work-manager>
 <name>minthreads_workmanager</name>
 <min-threads-constraint>
 <name>MinThreadsCountFive</name>
 <count>5</count>
 </min-threads-constraint>
</work-manager>

<work-manager>
 <name>lowpriority_workmanager</name>
 <fair-share-request-class>
 <name>low_priority</name>
 <fair-share>10</fair-share>
 </fair-share-request-class>
</work-manager>

<work-manager>
<name>highpriority_workmanager</name>
 <fair-share-request-class>
 <name>high_priority</name>
 <fair-share>100</fair-share>
 </fair-share-request-class>
</work-manager>

<work-manager>
<name>veryhighpriority_workmanager</name>
 <fair-share-request-class>
 <name>veryhigh_priority</name>
 <fair-share>1000</fair-share>
 </fair-share-request-class>
</work-manager>

The EJBs in Example 2–6 are configured to get as many threads as there are instances
of a resource they depend upon—a connection pool, and an application-scoped
connection pool.

Example 2–6 weblogic-ejb-jar.xml with Connection Pool Based Max Thread Constraint

<weblogic-ejb-jar xmlns="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-ejb-jar
 http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.2/weblogic-ejb-jar.xsd">

 <weblogic-enterprise-bean>
 <ejb-name>ResourceConstraintEJB</ejb-name>
 <jndi-name>core_work_ejb_resource_ResourceConstraintEJB</jndi-name>
 <dispatch-policy>test_resource</dispatch-policy>
 </weblogic-enterprise-bean>

 <weblogic-enterprise-bean>
 <ejb-name>AppScopedResourceConstraintEJB</ejb-name>
 <jndi-name>core_work_ejb_resource_AppScopedResourceConstraintEJB
 </jndi-name>
 <dispatch-policy>test_appscoped_resource</dispatch-policy>
 </weblogic-enterprise-bean>

<work-manager>
 <name>test_resource</name>

Deployment Descriptor Examples

2-10 Configuring Server Environments for Oracle WebLogic Server

 <max-threads-constraint>
 <name>pool_constraint</name>
 <pool-name>testPool</pool-name>
 </max-threads-constraint>
</work-manager>

<work-manager>
 <name>test_appscoped_resource</name>
 <max-threads-constraint>
 <name>appscoped_pool_constraint</name>
 <pool-name>AppScopedDataSource</pool-name>
 </max-threads-constraint>
</work-manager>
</weblogic-ejb-jar>

Example 2–7 weblogic-ejb-jar.xml with commonJ Work Managers

For information using commonJ, see Section 2.8, "Using CommonJ With WebLogic
Server" and the commonJ Javadocs.

Example 2–8 weblogic-application.xml

<weblogic-application
xmlns="http://xmlns.oracle.com/weblogic/weblogic-application"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-application

http://xmlns.oracle.com/weblogic/weblogic-application/1.3/weblogic-application.xsd
">

 <max-threads-constraint>
 <name>j2ee_maxthreads</name>
 <count>1</count>
 </max-threads-constraint>

 <min-threads-constraint>
 <name>j2ee_minthreads</name>
 count>1</count>
 </min-threads-constraint>

 <work-manager>
 <name>J2EEScopedWorkManager</name>
 </work-manager>
</weblogic-application>

The Web application in Example 2–9 is deployed as part of the Enterprise application
defined in Example 2–8. This Web application's descriptor defines two Work
Managers. Both Work Managers point to the same max threads constraint, j2ee_
maxthreads, which is defined in the application's weblogic-application.xml
file. Each Work Manager specifies a different response time request class.

Example 2–9 Web Application Descriptor

<weblogic xmlns="http://xmlns.oracle.com/weblogic"
 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/weblogic
 http://xmlns.oracle.com/weblogic/1.0/weblogic.xsd">

Deployment Descriptor Examples

Using Work Managers to Optimize Scheduled Work 2-11

 <work-manager>
 <name>fast_response_time</name>
 <response-time-request-class>
 <name>fast_response_time</name>
 <goal-ms>2000</goal-ms>
 </response-time-request-class>
 <max-threads-constraint-name>j2ee_maxthreads
 </max-threads-constraint-name>
 </work-manager>

 <work-manager>
 <name>slow_response_time</name>
 <max-threads-constraint-name>j2ee_maxthreads
 </max-threads-constraint-name
 <response-time-request-class>
 <name>slow_response_time</name>
 <goal-ms>5000</goal-ms>
 </response-time-request-class>
 </work-manager>

</weblogic>

The descriptor in Example 2–10 defines a Work Manager using the
context-request-class.

Example 2–10 Web Application Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<weblogic-web-app xmlns="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.3/weblogic-web-app.xsd">
 <work-manager>
 <name>foo-servlet-1</name>
 <request-class-name>test-fairshare2</request-class-name>
 <max-threads-constraint>
 <name>foo-mtc</name>
 <pool-name>oraclePool</pool-name>
 </max-threads-constraint>
 </work-manager>

 <work-manager>
 <name>foo-servlet</name>
 <context-request-class>
 <name>test-context</name>
 <context-case>
 <user-name>anonymous</user-name>
 <request-class-name>test-fairshare1</request-class-name>
 </context-case>

 <context-case>
 <group-name>everyone</group-name>
 </context-request-class>
 </work-manager>
</weblogic-web-app>

Work Managers and Execute Queues

2-12 Configuring Server Environments for Oracle WebLogic Server

2.6 Work Managers and Execute Queues
This section describes how to enable backward compatibility with Execute Queues and
how to migrate applications from using Execute Queues to Work Managers.

2.6.1 Enabling Execute Queues
WebLogic Server, Version 8.1, implemented Execute Queues to handle thread
management in which you created thread-pools to determine how workload was
handled. WebLogic Server still provides Execute Queues for backward compatibility,
primarily to facilitate application migration. However, when developing new
applications, you should use Work Managers to perform thread management more
efficiently.

You can enable Execute Queues in the following ways:

■ Using the command line option
-Dweblogic.Use81StyleExecuteQueues=true

■ Setting the Use81StyleExecuteQueues property via the Kernel MBean in
config.xml.

Enabling Execute Queues disables all Work Manager configuration and thread self
tuning. Execute Queues behave exactly as they did in WebLogic Server 8.1. See "Using
the WebLogic 8.1 Thread Pool Model" in Performance and Tuning for Oracle WebLogic
Server.

When enabled, Work Managers are converted to Execute Queues based on the
following rules:

■ If the Work Manager implements a minimum or maximum threads constraint,
then an Execute Queue is created with the same name as the Work Manager. The
thread count of the Execute Queue is based on the value defined in the constraint.

■ If the Work Manager does not implement any constraints, the global default
Execute Queue is used.

2.6.2 Migrating from Execute Queues to Work Managers
When an application is migrated from WebLogic Server 8.1, any Execute Queues
defined in the server configuration before migration will still be present. WebLogic
Server does not automatically convert the Execute Queues to Work Managers.

When an 8.1 application implementing Execute Queues is deployed on WebLogic
Server 9.x, the Execute Queues are created to handle thread management for requests.
However, only those requests whose dispatch-policy maps to an Execute Queue will
take advantage of this feature.

2.7 Accessing Work Managers Using MBeans
Work Managers can be accessed using the WorkManagerMBean configuration MBean.
For more information, see WorkManagerMBean.

WorkManagerMBean is accessed in the runtime tree or configuration tree depending
on how the Work Manager is accessed by an application.

■ If the Work Manager is defined at the module level, the WorkManagerRuntime
MBean is available through the corresponding ComponentRuntimeMBean.

■ If a Work Manager is defined at the application level, then WorkManagerRuntime
is available through ApplicationRuntime.

Using CommonJ With WebLogic Server

Using Work Managers to Optimize Scheduled Work 2-13

■ If a Work Manager is defined globally in config.xml, each application creates its
own instance of the Work Manager. Each application has its own corresponding
WorkManagerRuntime available at the application level.

2.8 Using CommonJ With WebLogic Server
WebLogic Server Work Managers provide server-level configuration that allows
administrators a way to set dispatch-policies to their servlets and EJBs.

WebLogic Server also provides a programmatic way of handling work from within an
application. This is provided via the CommonJ API. Weblogic Server implements the
commonj.work and commonj.timers packages of the CommonJ specification.

For specific information on the WebLogic Server implementation of CommonJ, see the
CommonJ Javadocs.

The WebLogic Server implementation of CommonJ enables an application to break a
single request task into multiple work items, and assign those work items to execute
concurrently using multiple Work Managers configured in WebLogic Server.
Applications that do not need to execute concurrent work items can also use
configured Work Managers by referencing or creating Work Managers in their
deployment descriptors or, for Java EE Connectors, using the JCA API.

The following are some differences between the WebLogic Server implementation and
the CommonJ specification:

■ The RemoteWorkItem interface is an optional interface provided by the CommonJ
specification and is not supported in WebLogic Server. WebLogic Server
implements its own cluster load balancing and failover policies. Workload
management is based on these policies.

■ WebLogic CommonJ timers behave differently than java.util.Timer. When
the execution is greater that twice the period, the WebLogic CommonJ timer will
skip some periods to avoid falling further behind. The java.util.Timer does
not do this.

■ In a WebLogic Server environment, the WorkListener.WorkRejected method
is called when a thread becomes stuck.

2.8.1 Accessing CommonJ Work Managers
Unlike WebLogic Server Work Managers, which can only be accessed from an
application via dispatch policies, you can access CommonJ Work Managers directly
from an application. The following code example demonstrates how to lookup a
CommonJ Work Manager using JNDI:

InitialContext ic = new InitialContext();
commonj.work.WorkManager wm =
(commonj.work.WorkManager)ic.lookup("java:comp/env/wm/myWM");

For more information on using CommonJ Work Managers, see the CommonJ Javadocs.

2.8.2 Mapping CommonJ to WebLogic Server Work Managers
You can map an externally defined CommonJ Work Manager to a WebLogic Server
Work Manager. For example, if you have a CommonJ Work Manager defined in a
descriptor, ejb-jar.xml, for example, as:

<resource-ref>
 <res-ref-name>minthreads_workmanager</res-ref-name>

Using CommonJ With WebLogic Server

2-14 Configuring Server Environments for Oracle WebLogic Server

 <res-type>commonj.work.WorkManager</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

You can link this to a WebLogic Server Work Manager by ensuring that the name
element is identical in the WebLogic Server descriptor such as
weblogic-ejb-jar.xml:

<work-manager>
 <name>minthreads_workmanager</name>
 <min-threads-constraint>
 <count>5</count>
 </min-threads-constraint>
</work-manager>

This procedure is similar for a resource-ref defined in web.xml. The WebLogic Server
Work Manager can be defined in either a module descriptor
(weblogic-ejb-jar.xml or weblogic.xml, for example) or in the application
descriptor (weblogic-application.xml).

3

Avoiding and Managing Overload 3-1

3Avoiding and Managing Overload

This chapter explains how WebLogic Server detects, avoids, and recovers from
overload conditions. WebLogic Server's overload protection features help prevent the
negative consequences—degraded application performance and stability—that can
result from continuing to accept requests when the system capacity is reached.

■ Section 3.1, "Configuring WebLogic Server to Avoid Overload Conditions"

■ Section 3.2, "WebLogic Server Self-Monitoring"

■ Section 3.3, "WebLogic Server Exit Codes"

3.1 Configuring WebLogic Server to Avoid Overload Conditions
When system capacity is reached, if an application server continues to accept requests,
application performance and stability can deteriorate. The following sections
demonstrate how you can configure WebLogic Server to minimize the negative results
of system overload.

3.1.1 Limiting Requests in the Thread Pool
In WebLogic Server, all requests, whether related to system administration or
application activity—are processed by a single thread pool. An administrator can
throttle the thread pool by defining a maximum queue length. Beyond the configured
value, WebLogic Server will refuse requests, except for requests on administration
channels.

When the maximum number of enqueued requests is reached, WebLogic Server
immediately starts rejecting:

■ Web application requests.

■ Non-transactional RMI requests with a low fair share, beginning with those with
the lowest fair share.

Note: Administration channels allow access only to administrators.
The limit you set on the execute length does not effect administration
channel requests, to ensure that reaching the maximum thread pool
length does not prevent administrator access to the system. To limit
the number of administration requests allowed in the thread pool, you
can configure an administration channel, and set the
MaxConnectedClients attribute for the channel.

Configuring WebLogic Server to Avoid Overload Conditions

3-2 Configuring Server Environments for Oracle WebLogic Server

If the overload condition continues to persist, higher priority requests will start
getting rejected, with the exception of JMS and transaction-related requests, for
which overload management is provided by the JMS and the transaction manager.

Throttle the thread pool by setting the Shared Capacity For Work Managers
field in the Administration Console (see Environments > Servers > server_name >
Configuration > Overload). The default value of this field is 65536.

3.1.1.1 Work Managers and Thread Pool Throttling
An administrator can configure Work Managers to manage the thread pool at a more
granular level, for sets of requests that have similar performance, availability, or
reliability requirements. A Work Manager can specify the maximum requests of a
particular request class that can be queued. The maximum requests defined in a Work
Manager works with the global thread pool value. The limit that is reached first is
honored.

See Chapter 2, "Using Work Managers to Optimize Scheduled Work."

3.1.2 Limiting HTTP Sessions
An administrator can limit the number of active HTTP sessions based on detection of a
low memory condition. This is useful in avoiding out of memory exceptions.

WebLogic Server refuses requests that create new HTTP sessions after the configured
threshold has been reached. In a WebLogic Server cluster, the proxy plug-in redirects a
refused request to another Managed Server in the cluster. A non-clustered server
instance can redirect requests to alternative server instance.

The Servlet container takes one of the following actions when maximum number of
sessions is reached:

■ If the server instance is in a cluster, the servlet container throws a
SessionCreationException. Your application code should handle this
run-time exception and send a relevant response.

To implement overload protection, you should handle this exception and send a
503 response explicitly. This response can then be handled by the proxy or load
balancer.

You set a limit for the number of simultaneous HTTP sessions in the deployment
descriptor for the Web application. For example, the following element sets a limit of
12 sessions:

<session-descriptor>
 <max-in-memory-sessions>12</max-in-memory-sessions>
</session-descriptor>

3.1.3 Exit on Out of Memory Exceptions
Administrators can configure WebLogic Server to exit upon an out of memory
exception. This feature allows you to minimize the impact of the out of memory
condition—automatic shutdown helps avoid application instability, and you can
configure Node Manager or another high availability (HA) tool to automatically
restart WebLogic Server, minimizing down-time.

You can configure this using the Administration Console, or by editing the following
elements in config.xml:

<overload-protection>

WebLogic Server Exit Codes

Avoiding and Managing Overload 3-3

 <panic-action>system-exit</panic-action>
</overload-protection>

For more information, see the attributes of the OverloadProtectionMBean.

3.1.4 Stuck Thread Handling
WebLogic Server checks for stuck threads periodically. If all application threads are
stuck, a server instance marks itself failed, if configured to do so, exits. You can
configure Node Manager or a third-party high-availability solution to restart the
server instance for automatic failure recovery.

You can configure these actions to occur when not all threads are stuck, but the
number of stuck threads have exceeded a configured threshold:

■ Shut down the Work Manager if it has stuck threads. A Work Manager that is shut
down will refuse new work and reject existing work in the queue by sending a
rejection message. In a cluster, clustered clients will fail over to another cluster
member.

■ Shut down the application if there are stuck threads in the application. The
application is shutdown by bringing it into admin mode. All Work Managers
belonging to the application are shut down, and behave as described above.

■ Mark the server instance as failed and shut it down it down if there are stuck
threads in the server. In a cluster, clustered clients that are connected or attempting
to connect will fail over to another cluster member.

For more information, see the attributes of the OverloadProtectionMBean

3.2 WebLogic Server Self-Monitoring
The following sections describe WebLogic Server features that aid in determining and
reporting overload conditions.

3.2.1 Overloaded Health State
WebLogic Server has a health state—OVERLOADED—which is returned by the
ServerRuntimeMBean.getHealthState() when a server instance whose life
cycle state is RUNNING becomes overloaded. This condition occurs as a result of low
memory.

Upon entering the OVERLOADED state, server instances start rejecting requests from the
Work Manager queue (if a Work Manager is configured), HTTP requests return a 503
Error (Service Unavailable), and RMI requests fail over to another server if clustered,
otherwise, a remote exception is returned to the client.

The server instances health state returns to OK after the overload condition passes. An
administrator can suspend or shut down an OVERLOADED server instance.

3.3 WebLogic Server Exit Codes
When WebLogic Server exits it returns an exit code. The exit codes can be used by shell
scripts or HA agents to decide whether a server restart is necessary. See "WebLogic
Server Exit Codes and Restarting After Failure" in Managing Server Startup and
Shutdown for Oracle WebLogic Server.

WebLogic Server Exit Codes

3-4 Configuring Server Environments for Oracle WebLogic Server

4

Configuring Network Resources 4-1

4Configuring Network Resources

This chapter describes how configurable WebLogic Server resources, including
network channels and domain-wide administration ports, help you effectively use the
network features of the machines that host your applications and manage quality of
service.

The following sections describe configurable WebLogic Server network resources,
examples of their use, and the configuration process:

■ Section 4.1, "Overview of Network Configuration"

■ Section 4.2, "Understanding Network Channels"

■ Section 4.3, "Configuring a Channel"

■ Section 4.4, "Assigning a Custom Channel to an EJB"

4.1 Overview of Network Configuration
For many development environments, configuring WebLogic Server network
resources is simply a matter of identifying a Managed Server listen address and listen
port. However, in most production environments, administrators must balance finite
network resources against the demands placed upon the network. The task of keeping
applications available and responsive can be complicated by specific application
requirements, security considerations, and maintenance tasks, both planned and
unplanned.

WebLogic Server lets you control the network traffic associated with your applications
in a variety of ways, and configure your environment to meet the varied requirements
of your applications and end users. You can:

■ Designate the Network Interface Cards (NICs) and ports used by Managed
Servers for different types of network traffic.

■ Support multiple protocols and security requirements.

■ Specify connection and message time-out periods.

■ Impose message size limits.

You specify these and other connection characteristics by defining a network
channel—the primary configurable WebLogic Server resource for managing network
connections. You configure a network channel in the Administration Console (Servers
> Protocols > Channels) or by using the NetworkAccessPointMBean.

Understanding Network Channels

4-2 Configuring Server Environments for Oracle WebLogic Server

4.2 Understanding Network Channels
The sections that follow describe network channels and the standard channels that
WebLogic Server pre-configures, and discusses common applications for channels.

4.2.1 What Is a Channel?
A network channel is a configurable resource that defines the attributes of a network
connection to WebLogic Server. For instance, a network channel can define:

■ The protocol the connection supports.

■ The listen address.

■ The listen ports for secure and non-secure communication.

■ Connection properties such as the login time-out value and maximum message
sizes.

■ Whether or not the connection supports tunneling.

■ Whether the connection can be used to communicate with other WebLogic Server
instances in the domain, or used only for communication with clients.

4.2.1.1 Rules for Configuring Channels
Follow these guidelines when configuring a channel.

■ You can assign a particular channel to only one server instance.

■ You can assign multiple channels to a server instance.

■ Each channel assigned to a particular server instance must have a unique
combination of listen address, listen port, and protocol.

■ If you assign non-SSL and SSL channels to the same server instance, make sure
that they do not use the same port number.

4.2.1.2 Custom Channels Can Inherit Default Channel Attributes
If you do not assign a channel to a server instance, it uses the WebLogic Server default
channel, which is automatically configured by WebLogic Server, based on the
attributes in ServerMBean or SSLMBean; the operating system determines the
network interface. The default channel is described in Section 4.2.3.1, "The Default
Network Channel".

ServerMBean and SSLMBean represent a server instance and its SSL configuration.
When you configure a server instance listen address, listen port, and SSL listen port,
using the Server > Configuration > General page, those values are stored in the
ServerMBean and SSLMBean for the server instance.

If you do not specify a particular connection attribute in a custom channel definition,
the channel inherits the value specified for the attribute in ServerMBean. For
example, if you create a channel, and do not define its listen address, the channel uses
the listen address defined in ServerMBean. Similarly, if a Managed Server cannot
bind to the listen address or listen port configured in a channel, the Managed Server
uses the defaults from ServerMBean or SSLMBean.

Understanding Network Channels

Configuring Network Resources 4-3

4.2.2 Why Use Network Channels?
You use network channels to manage quality of service, meet varying connection
requirements, and improve utilization of your systems and network resources. For
example, network channels allow you to:

■ Segregate different types of network traffic—You can configure whether or not a
channel supports outgoing connections. By assigning two channels to a server
instance—one that supports outgoing connections and one that does not—you can
independently configure network traffic for client connections and server
connections, and physically separate client and server network traffic on different
listen addresses or listen ports.

You cannot create an outbound only network channel; there always has to be a
corresponding inbound interface, port, and protocol associated with the channel.
However, you can avoid directing your traffic to it or use a firewall to block it.
Also remember that a custom channel is protocol specific, so you will need a
network channel defined per protocol (HTTP, HTTPS, t3, t3s, and such). See, also
NetworkAccessPointMBean.OutboundEnabled.

You can also segregate instance administration and application traffic by
configuring a domain-wide administration port or administration channel. For
more information, see Section 4.2.3.2, "Administration Port and Administrative
Channel".

■ Support varied application or user requirements on the same Managed
Server—You can configure multiple channels on a Managed Server to support
different protocols, or to tailor properties for secure versus non-secure traffic.

■ Segregate internal application network traffic—You can assign a specific channel
to a an EJB.

If you use a network channel with a server instance on a multihomed machine, you
must enter a valid listen address either in ServerMBean or in the channel. If the
channel and ServerMBean listen address are blank or specify the localhost address
(IP address 0.0.0.0 or 127.*.*.*), the server binds the network channel listen port and
SSL listen ports to all available IP addresses on the multihomed machine. See
Section 4.2.3.1, "The Default Network Channel" for information on setting the listen
address in ServerMBean.

4.2.2.1 Handling Channel Failures
When initiating a connection to a remote server, and multiple channels with the same
required destination, protocol and quality of service exist, WebLogic Server will try
each in turn until it successfully establishes a connection or runs out of channels to try.

4.2.2.2 Upgrading Quality of Service Levels for RMI
For RMI lookups only, WebLogic Server may upgrade the service level of an outgoing
connection. For example, if a T3 connection is required to perform an RMI lookup, but
an existing channel supports only T3S, the lookup is performed using the T3S channel.

This upgrade behavior does not apply to server requests that use URLs, since URLs
embed the protocol itself. For example, the server cannot send a URL request
beginning with http:// over a channel that supports only https://.

Understanding Network Channels

4-4 Configuring Server Environments for Oracle WebLogic Server

4.2.3 Standard WebLogic Server Channels
WebLogic Server provides pre-configured channels that you do not have to explicitly
define.

■ Default channel—Every Managed Server has a default channel.

■ Administrative channel—If you configure a domain-wide administration port,
WebLogic Server configures an administrative channel for each Managed Server in
the domain.

4.2.3.1 The Default Network Channel
Every WebLogic Server domain has a default channel that is generated automatically
by WebLogic Server. The default channel is based on the listen address and listen port
defined in the ServerMBean and SSLMBean. It provides a single listen address, one
port for HTTP (non-secure) communication (7001 by default), and one port for HTTPS
(secure) communication (7002 by default). You can configure the listen address and
listen port using the Configuration > General page in the Administration Console; the
values you assign are stored in attributes of the ServerMBean and SSLMBean.

The default configuration may meet your needs if:

■ You are installing in a test environment that has simple network requirements.

■ Your server uses a single NIC, and the default port numbers provide enough
flexibility for segmenting network traffic in your domain.

Using the default configuration ensures that third-party administration tools remain
compatible with the new installation, because network configuration attributes remain
stored in ServerMBean and SSLMBean.

Even if you define and use custom network channels for your domain, the default
channel settings remain stored in ServerMBean and SSLMBean, and are used if
necessary to provide connections to a server instance.

4.2.3.2 Administration Port and Administrative Channel
You can define an optional administration port for your domain. When configured, the
administration port is used by each Managed Server in the domain exclusively for
communication with the domain Administration Server.

4.2.3.2.1 Administration Port Capabilities An administration port enables you to:

■ Start a server in standby state. This allows you to administer a Managed Server,
while its other network connections are unavailable to accept client connections.

Note: Unless specified, WebLogic Server uses the non-secure default
channel for cluster communication to send session information among
cluster members. If you disable the non-secure channel, there is no
other channel available by default for the non-secure communication of
cluster session information. To address this, you can:

■ Enable the secureReplicationEnabled attribute of the
ClusterMBean so that the cluster uses a secure channel for
communication. See Section 4.3.2.3, "Configuring a Replication
Channel."

■ Create a custom channel for non-secure communication. See
Section 4.2.1.2, "Custom Channels Can Inherit Default Channel
Attributes."

Understanding Network Channels

Configuring Network Resources 4-5

For more information on the standby state, see "STANDBY State" in Managing
Server Startup and Shutdown for Oracle WebLogic Server.

■ Separate administration traffic from application traffic in your domain. In
production environments, separating traffic ensures that critical administration
operations (starting and stopping servers, changing a server's configuration, and
deploying applications) do not compete with high-volume application traffic on
the same network connection.

■ Administer a deadlocked server instance using WLST. If you do not configure an
administration port, administrative commands such as threadDump and
shutdown will not work on deadlocked server instances.

If a administration port is enabled, WebLogic Server automatically generates an
administration channel based on the port settings upon server instance startup.

4.2.3.2.2 Administration Port Restrictions The administration port accepts only secure,
SSL traffic, and all connections via the port require authentication. Enabling the
administration port imposes the following restrictions on your domain:

■ The Administration Server and all Managed Servers in your domain must be
configured with support for the SSL protocol. Managed Servers that do not
support SSL cannot connect with the Administration Server during startup—you
will have to disable the administration port in order to configure them.

■ Because all server instances in the domain must enable or disable the
administration port at the same time, you configure the administration port at the
domain level. You can change an individual Managed Server administration port
number, but you cannot enable or disable the administration port for an individual
Managed Server. The ability to change the port number is useful if you have
multiple server instances with the same listen address.

■ After you enable the administration port, you must establish an SSL connection to
the Administration Server in order to start any Managed Server in the domain.
This applies whether you start Managed Servers manually, at the command line,
or using Node Manager. For instructions to establish the SSL connection, see
Section 4.2.3.2.3, "Administration Port Requires SSL".

■ After enabling the administration port, all Administration Console traffic must
connect via the administration port.

■ If multiple server instances run on the same computer in a domain that uses a
domain-wide administration port, you must either:

– Host the server instances on a multihomed machine and assign each server
instance a unique listen address, or

– Override the domain-wide port on all but one of the servers instances on the
machine. Override the port using the Local Administration Port Override
option in the Advanced Attributes section of the Server > Connections > SSL
Ports page in the Administration Console.

4.2.3.2.3 Administration Port Requires SSL The administration port requires SSL, which is
enabled by default when you install WebLogic Server. If SSL has been disabled for any
server instance in your domain, including the Administration Server and all Managed
Servers, re-enable it using the Server > Configuration > General page in the
Administration Console.

Ensure that each server instance in the domain has a configured default listen port or
default SSL listen port. The default ports are those you assign on the Server >
Configuration > General page in the Administration Console. A default port is

Understanding Network Channels

4-6 Configuring Server Environments for Oracle WebLogic Server

required in the event that the server cannot bind to its configured administration port.
If an additional default port is available, the server will continue to boot and you can
change the administration port to an acceptable value.

By default WebLogic Server is configured to use demonstration certificate files. To
configure production security components, follow the steps in "Configuring SSL" in
Securing Oracle WebLogic Server.

4.2.3.2.4 Configure Administration Port Enable the administration port as described in
"Enabling the Domain-Wide Administration Port" in Oracle WebLogic Server
Administration Console Help.

After configuring the administration port, you must restart the Administration Server
and all Managed Servers to use the new administration port.

4.2.3.2.5 Booting Managed Servers to Use Administration Port If you reboot Managed
Servers at the command line or using a start script, specify the administration port in
the port portion of the URL. The URL must specify the https:// prefix, rather than
http://, as shown below.

-Dweblogic.management.server=https://host:admin_port

If the hostname in the URL is not identical to the hostname in the Administration
Server's certificate, disable hostname verification in the command line or start script,
as shown below:

-Dweblogic.security.SSL.ignoreHostnameVerification=true

4.2.3.2.6 Booting Managed Servers to Use Administrative Channels To allow a Managed
Server to bind to an administrative channel during reboot, use the following
command-line option:

-Dweblogic.admin.ListenAddress=<addr>

This allows the Managed Server to startup using an administrative channel. After the
initial bootstrap connection, a standard administrative channel is used.

4.2.3.2.7 Custom Administrative Channels If the standard WebLogic Server
administrative channel does not satisfy your requirements, you can configure a custom
channel for administrative traffic. For example, a custom administrative channel
allows you to segregate administrative traffic on a separate NIC.

To configure a custom channel for administrative traffic, configure the channel as
described in Section 4.3, "Configuring a Channel", and select "admin" as the channel
protocol. Note the configuration and usage guidelines described in:

■ Section 4.2.3.2.3, "Administration Port Requires SSL"

Note: If you use Node Manager for restarting the Managed Servers,
it is not necessary to modify startup settings or arguments for the
Managed Servers. Node Manager automatically obtains and uses the
correct URL to start a Managed Server.

Note: This option is useful to ensure that the appropriate NIC
semantics are used before config.xml is downloaded.

Configuring a Channel

Configuring Network Resources 4-7

■ Section 4.2.3.2.5, "Booting Managed Servers to Use Administration Port"

4.2.4 Using Internal Channels
Previous version of WebLogic Server allowed you to configure multiple channels for
external traffic, but required you to use the default channel for internal traffic between
server instances. WebLogic Server now allows you to create network channels to
handle administration traffic or communications between clusters. This can be useful
in the following situations:

■ Internal administration traffic needs to occur over a secure connection, separate
from other network traffic.

■ Other types of network traffic, for example replication data, need to occur over a
separate network connection.

■ Certain types of network traffic need to be monitored.

4.2.4.1 Channel Selection
All internal traffic is handled via a network channel. If you have not created a custom
network channel to handle administrative or clustered traffic, WebLogic Server
automatically selects a default channel based on the protocol required for the
connection. For more information on default channels, see Section 4.2.3.1, "The Default
Network Channel".

4.2.4.2 Internal Channels Within a Cluster
Within a cluster, internal channels can be created to handle to the following types of
server-to-server connections:

■ Multicast traffic

■ Replication traffic

■ Administration traffic

For more information on configuring channels within a cluster, see Section 4.3.2,
"Configuring Network Channels For a Cluster".

4.3 Configuring a Channel
You can configure a network channel using Servers > Protocols > Channels page in
the Administration Console or using the NetworkAccessPointMBean.

To configure a channel for clustered Managed Servers see, Section 4.3.2, "Configuring
Network Channels For a Cluster".

For a summary of key facts about network channels, and guidelines related to their
configuration, see Section 4.3.1, "Guidelines for Configuring Channels".

4.3.1 Guidelines for Configuring Channels
Follow these guidelines when configuring a channel.

4.3.1.1 Channels and Server Instances
■ Each channel you configure for a particular server instance must have a unique

combination of listen address, listen port, and protocol.

■ A channel can be assigned to a single server instance.

Configuring a Channel

4-8 Configuring Server Environments for Oracle WebLogic Server

■ You can assign multiple channels to a server instance.

■ If you assign non-SSL and SSL channels to the same server instance, make sure
that they do not use the same combination of address and port number.

4.3.1.2 Dynamic Channel Configuration
■ In WebLogic Server, you can configure a network channel without restarting the

server. Additionally, you can start and stop dynamically configured channels
while the server is running. However, when you shutdown a channel while the
server is running, the server does not attempt to gracefully terminate any work in
progress.

4.3.1.3 Channels and Protocols
■ Some protocols do not support particular features of channels. In particular the

COM protocol does not support SSL or tunneling.

■ You must define a separate channel for each protocol you wish the server instance
to support, with the exception of HTTP.

HTTP is enabled by default when you create a channel, because RMI protocols
typically require HTTP support for downloading stubs and classes. You can
disable HTTP support on the Advanced Options portion of the Servers >
Protocols > Channels page in the Administration Console.

4.3.1.4 Reserved Names
■ WebLogic Server uses the internal channel names .WLDefaultChannel and

.WLDefaultAdminChannel and reserves the .WL prefix for channel names. Do
not begin the name of a custom channel with the string .WL.

4.3.1.5 Channels, Proxy Servers, and Firewalls
If your configuration includes a a firewall between a proxy Web server and a cluster
(as described in "Firewall Between Proxy Layer and Cluster" in Using Clusters for
Oracle WebLogic Server), and the clustered servers are configured with two custom
channels for segregating HTTPS and HTTP traffic, those channels must share the same
listen address. Furthermore, if both HTTP and HTTPS traffic needs to be supported,
there must be a custom channel for each—it is not possible to use the default
configuration for one or the other.

If either of those channels has a PublicAddress defined, as is likely given the
existence of the firewall, both channels must define PublicAddress, and they both
must define the same PublicAddress.

4.3.2 Configuring Network Channels For a Cluster
To configure a channel for clustered Managed Servers, note the information in
Section 4.3.1, "Guidelines for Configuring Channels", and follow the guidelines
described in the following sections.

4.3.2.1 Create the Cluster
If you have not already configured a cluster you can:

■ Use the Configuration Wizard to create a new, clustered domain, following the
instructions in "Create a Clustered Domain" in Using Clusters for Oracle WebLogic
Server, or

Configuring a Channel

Configuring Network Resources 4-9

■ Use the Administration Console to create a cluster in an existing domain,
following the instructions "Create and configure clusters" in Oracle WebLogic Server
Administration Console Help.

For information and guidelines about configuring a WebLogic Server cluster, see
"Before You Start" in Using Clusters for Oracle WebLogic Server.

4.3.2.2 Create and Assign the Network Channel
Use the instructions in "Configuring a Network Channel" in Oracle WebLogic Server
Administration Console Help to create a new network channel for each Managed Server
in the cluster. When creating the new channels:

■ For each channel you want to use in the cluster, configure the channel identically,
including its name, on each Managed Server in the cluster.

■ Make sure that the listen port and SSL listen port you define for each Managed
Server's channel are different than the Managed Server's default listen ports. If the
custom channel specifies the same port as a Managed Server's default port, the
custom channel and the Managed Server's default channel will each try to bind to
the same port, and you will be unable to start the Managed Server.

■ If a cluster address has been explicitly configured for the cluster, it will be appear
in the Cluster Address field on the Server > Protocols > Channels >
Configuration page.

If you are using dynamic cluster addressing, the Cluster Address field will be
empty, and you do not need to supply a cluster address. For information about the
cluster address, and how WebLogic Server can dynamically generate the cluster
address, see "Cluster Address" in Using Clusters for Oracle WebLogic Server.

4.3.2.3 Configuring a Replication Channel
A replication channel is a network channel that is designated to transfer replication
information between clusters. If a replication channel is not explicitly defined,
WebLogic Server uses a default network channel to communicate replication
information.

When WebLogic Server uses a default network channel as the replication channel, it
does not use SSL encryption by default. You must enable SSL encryption using the
secureReplicationEnabled attribute of the ClusterMBean. You can also update
this setting from the Administration Console.

Enabling SSL encryption can have a direct impact on clustered application throughput
as session replication is blocking by design. in other words, no response is sent to the
client until replication is completed. You should consider this when deciding to enable
SSL on the replication channel.

If a replication channel is explicitly defined, the channel's protocol is used to transmit
replication traffic.

4.3.2.4 Increase Packet Size When Using Many Channels
Use of more than about twenty channels in a cluster can result in the formation of
multicast header transmissions that exceed the default maximum packet size. The

Note: If you want to use dynamic cluster addressing, do not supply a cluster
address on the Server > Protocols > Channels > Configuration page. If you
supply a cluster address explicitly, that value will take precedence and
WebLogic Server will not generate the cluster address dynamically.

Assigning a Custom Channel to an EJB

4-10 Configuring Server Environments for Oracle WebLogic Server

MTUSize attribute in the Server element of config.xml sets the maximum size for
packets sent using the associated network card to 1500. Sending packets that exceed
the value of MTUSize can result in a java.lang.NegativeArraySizeException.
You can avoid exceptions that result from packet sizes in excess of MTUSize by
increasing the value of MTUSize from its default value of 1500.

4.4 Assigning a Custom Channel to an EJB
You can assign a custom channel to an EJB. After you configure a custom channel,
assign it to an EJB using the network-access-point element in
weblogic-ejb-jar.xml. For more information, see "network-access-point" in
Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

5

Configuring Web Server Functionality 5-1

5Configuring Web Server Functionality

The following sections describe how to configure a Java EE Web application hosted on
WebLogic Server to function as a standard HTTP Web server hosting static content.
Web applications also can host dynamic content such as JSPs and Servlets. See
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

■ Section 5.1, "Overview of Configuring Web Server Components"

■ Section 5.2, "Configuring the Server"

■ Section 5.3, "Web Applications"

■ Section 5.4, "Configuring Virtual Hosting"

■ Section 5.5, "How WebLogic Server Resolves HTTP Requests"

■ Section 5.6, "Setting Up HTTP Access Logs"

■ Section 5.7, "Preventing POST Denial-of-Service Attacks"

■ Section 5.8, "Setting Up WebLogic Server for HTTP Tunneling"

■ Section 5.9, "Using Native I/O for Serving Static Files (Windows Only)"

5.1 Overview of Configuring Web Server Components
In addition to hosting dynamic Java-based distributed applications, WebLogic Server
functions as a Web server that handles high-volume Web sites, serving static files such
as HTML files and image files, as well as servlets and JavaServer Pages (JSP).
WebLogic Server supports the HTTP 1.1 standard.

5.2 Configuring the Server
You can specify the port that each WebLogic Server listens on for HTTP requests.
Although you can specify any valid port number, if you specify port 80, you can omit
the port number from the HTTP request used to access resources over HTTP. For
example, if you define port 80 as the listen port, you can use the form
http://hostname/myfile.html instead of
http://hostname:portnumber/myfile.html.

On UNIX systems, binding a process to a port lower than 1025 must be done from the
account of a privileged user, usually root. Consequently, if you want WebLogic Server
to listen on port 80, you must start WebLogic Server as a privileged user; yet it is
undesirable from a security standpoint to allow long-running processes like WebLogic
Server to run with more privileges than necessary. WebLogic Server needs root
privileges only until the port is bound.

Web Applications

5-2 Configuring Server Environments for Oracle WebLogic Server

By setting the weblogic.system.enableSetUID property (and, if desired, the
weblogic.system.enableSetGID property) to true, you enable an internal process
by which WebLogic Server switches its UNIX user ID (UID) after it binds to port 80.
The companion properties, weblogic.system.nonPrivUser and
weblogic.system.nonPrivGroup, identify a non-privileged UNIX user account
(and optionally a groupname) under which WebLogic Server will run after startup.

You can switch to the UNIX account "nobody," which is the least privileged user on
most UNIX systems. If desired, you may create a UNIX user account expressly for
running WebLogic Server. Make sure that files needed by WebLogic Server, such as log
files and the WebLogic classes, are accessible by the non-privileged user. Once
ownership of the WebLogic process has switched to the non-privileged user, WebLogic
will have the same read, write, and execute permissions as the non-privileged user.

You define a separate listen port for non-SSL and secure (using SSL) requests. For
additional information on configuring listen ports, see Section 4.2, "Understanding
Network Channels"

5.2.1 Configuring the Listen Port
1. Use the Administration Console to set the listen port to port 80. See "Configure

Listen Ports".

2. If the machine hosting WebLogic Server is running Windows, skip to step 8.

3. Use the Administration Console to create a new Unix Machine. See "Configure
Machines".

4. Select the Enable Post-Bind UID field.

5. Enter the user name you want WebLogic Server to run as in the Post-Bind UID
field.

6. Select the Enable Post-Bind GID fields.

7. Enter the group name you want WebLogic Server to run as in the Post-Bind
GID field.

8. Click Save.

9. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes.

5.3 Web Applications
HTTP and Web applications are deployed according to the Servlet 2.4 and JSP 2.0
specifications which describe Web Applications as a standard for grouping the
components of a Web-based application. These components include JSP pages, HTTP
servlets, and static resources such as HTML pages or image files. In addition, a Web
application can access external resources such as EJBs and JSP tag libraries. Each server

Note: You can set these options by using the following Java system
properties when starting the Administration Server with Node Manager
running on the UNIX machine:
-Dweblogic.system.enableSetUID=true,
-Dweblogic.system.nonPrivUser=weblogic,
-Dweblogic.system.enableSetGID=true,
-Dweblogic.system.nonPrivGroup=group.

Configuring Virtual Hosting

Configuring Web Server Functionality 5-3

can host any number of Web applications. You typically use the name of the Web
application as part of the URI you use to request resources from the Web application.

For more information, see Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

5.3.1 Web Applications and Clustering
Web applications can be deployed to a WebLogic Server cluster. When a user requests
a resource from a Web application, the request is routed to one of the servers in the
cluster that host the Web application. If an application uses a session object, then
sessions must be replicated across the nodes of the cluster. Several methods of
replicating sessions are provided.

For more information, see Using Clusters for Oracle WebLogic Server.

5.4 Configuring Virtual Hosting
Virtual hosting allows you to define host names that servers or clusters respond to.
When you use virtual hosting you use DNS to specify one or more host names that
map to the IP address of a WebLogic Server instance or cluster, and you specify which
Web applications are served by the virtual host. When used in a cluster, load balancing
allows the most efficient use of your hardware, even if one of the DNS host names
processes more requests than the others.

For example, you can specify that a Web application called books responds to
requests for the virtual host name www.books.com, and that these requests are
targeted to WebLogic Servers A,B, and C, while a Web application called cars
responds to the virtual host name www.autos.com and these requests are targeted to
WebLogic Servers D and E. You can configure a variety of combinations of virtual host,
WebLogic Server instances, clusters, and Web applications, depending on your
application and Web server requirements.

For each virtual host that you define you can also separately define HTTP parameters
and HTTP access logs. The HTTP parameters and access logs set for a virtual host
override those set for a server. You may specify any number of virtual hosts.

You activate virtual hosting by targeting the virtual host to a server or cluster of
servers. Virtual hosting targeted to a cluster will be applied to all servers in the cluster.

5.4.1 Virtual Hosting and the Default Web Application
You can also designate a default Web Application for each virtual host. The default Web
application for a virtual host responds to all requests that cannot be resolved to other
Web applications deployed on the same server or cluster as the virtual host.

Unlike other Web applications, a default Web application does not use the Web
application name (also called the context path) as part of the URI used to access
resources in the default Web application.

For example, if you defined virtual host name www.mystore.com and targeted it to a
server on which you deployed a Web application called shopping, you would access
a JSP called cart.jsp from the shopping Web application with the following URI:

http://www.mystore.com/shopping/cart.jsp

If, however, you declared shopping as the default Web application for the virtual host
www.mystore.com, you would access cart.jsp with the following URI:

http://www.mystore.com/cart.jsp

How WebLogic Server Resolves HTTP Requests

5-4 Configuring Server Environments for Oracle WebLogic Server

For more information, see Section 5.5, "How WebLogic Server Resolves HTTP
Requests".

When using multiple Virtual Hosts with different default Web applications, you can
not use single sign-on, as each Web application will overwrite the JSESSIONID cookies
set by the previous Web application. This will occur even if the CookieName,
CookiePath, and CookieDomain are identical in each of the default Web applications.

5.4.2 Setting Up a Virtual Host
1. Use the Administration Console to define a virtual host. See "Virtual Host".

2. Add a line naming the virtual host to the etc/hosts file on your server to ensure
that the virtual host name can be resolved.

5.5 How WebLogic Server Resolves HTTP Requests
When WebLogic Server receives an HTTP request, it resolves the request by parsing
the various parts of the URL and using that information to determine which Web
application and/or server should handle the request. Table 5–1 demonstrates various
combinations of requests for Web applications, virtual hosts, servlets, JSPs, and static
files and the resulting response.

Table 5–1 provides some sample URLs and the file that is served by WebLogic Server.
The Index Directories Checked column refers to the Index Directories attribute that
controls whether or not a directory listing is served if no file is specifically requested.

Note: If you package your Web application as part of an Enterprise
application, you can provide an alternate name for a Web application that is
used to resolve requests to the Web application. For more information, see
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

Table 5–1 Examples of How WebLogic Server Resolves URLs

URL

Index
Directories
Checked? This file is served in response

http://host:port/apples No Welcome file* defined in the apples Web
application.

http://host:port/apples Yes Directory listing of the top-level directory of the
apples Web application.

http://host:port/oranges/naval Does not
matter

Servlet mapped with <url-pattern> of /naval in
the oranges Web application.

There are additional considerations for servlet
mappings. For more information, see "Configuring
Servlets" in Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server.

http://host:port/naval Does not
matter

Servlet mapped with <url-pattern> of /naval in
the oranges Web application and oranges is
defined as the default Web application.

For more information, see "Configuring Servlets" in
Developing Web Applications, Servlets, and JSPs for
Oracle WebLogic Server.

Setting Up HTTP Access Logs

Configuring Web Server Functionality 5-5

5.6 Setting Up HTTP Access Logs
WebLogic Server can keep a log of all HTTP transactions in a text file, in either common
log format or extended log format. Common log format is the default. Extended log
format allows you to customize the information that is recorded. You can set the
attributes that define the behavior of HTTP access logs for each server instance or for
each virtual host that you define.

To set up HTTP logging for a server or a virtual host, refer to the following topics in
the Oracle WebLogic Server Administration Console Help:

■ "Enabling and Configuring HTTP Access Logs"

■ "Specifying HTTP Log File Settings for a Virtual Host"

5.6.1 Log Rotation
You can rotate the log file based on either the size of the file or after a specified amount
of time has passed. When either criterion is met, the current access log file is closed
and a new access log file is started. If you do not configure log rotation, the HTTP
access log file grows indefinitely. You can configure the name of the access log file to
include a time and date stamp that indicates when the file was rotated. If you do not
configure a time stamp, each rotated file name includes a numeric portion that is
incremented upon each rotation. Separate HTTP access logs are kept for each Virtual
Host you have defined.

http://host:port/apples/pie.jsp Does not
matter

pie.jsp, from the top-level directory of the apples
Web application.

http://host:port Yes Directory listing of the top-level directory of the
default Web application

http://host:port No Welcome file* from the default Web application.

http://host:port/apples/myfile.html Does not
matter

myfile.html, from the top-level directory of the
apples Web application.

http://host:port/myfile.html Does not
matter

myfile.html, from the top-level directory of the
default Web application.

http://host:port/apples/images/red.gif Does not
matter

red.gif, from the images subdirectory of the
top-level directory of the apples Web application.

http://host:port/myFile.html

Where myfile.html does not exist in the
apples Web application and a default servlet
has not been defined.

Does not
matter

Error 404

http://www.fruit.com/ No Welcome file from the default Web application for a
virtual host with a host name of www.fruit.com.

http://www.fruit.com/ Yes Directory listing of the top-level directory of the
default Web application for a virtual host with a
host name of www.fruit.com.

http://www.fruit.com/oranges/myfile.html Does not
matter

myfile.html, from the oranges Web application
that is targeted to a virtual host with host name
www.fruit.com.

Table 5–1 (Cont.) Examples of How WebLogic Server Resolves URLs

URL

Index
Directories
Checked? This file is served in response

Setting Up HTTP Access Logs

5-6 Configuring Server Environments for Oracle WebLogic Server

5.6.2 Common Log Format
The default format for logged HTTP information is the common log format (see
http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile
-format). This standard format follows the pattern:

host RFC931 auth_user [day/month/year:hour:minute:second
 UTC_offset] "request" status bytes

where:

host
Either the DNS name or the IP number of the remote client

RFC931
Any information returned by IDENTD for the remote client; WebLogic Server does not
support user identification

auth_user
If the remote client user sent a userid for authentication, the user name; otherwise "-"

day/month/year:hour:minute:second UTC_offset
Day, calendar month, year and time of day (24-hour format) with the hours difference
between local time and GMT, enclosed in square brackets

"request"
First line of the HTTP request submitted by the remote client enclosed in double
quotes

status
HTTP status code returned by the server, if available; otherwise "-"

bytes
Number of bytes listed as the content-length in the HTTP header, not including the
HTTP header, if known; otherwise "-"

5.6.3 Setting Up HTTP Access Logs by Using Extended Log Format
WebLogic Server also supports extended log file format, version 1.0, an emerging
standard defined by the draft specification from the W3C at
http://www.w3.org/TR/WD-logfile.html. The current definitive reference is on
the W3C Technical Reports and Publications page at http://www.w3.org/TR/.

The extended log format allows you to specify the type and order of information
recorded about each HTTP communication. To enable this format, set the Format
attribute on the HTTP tab in the Administration Console to Extended. (See
Section 5.6.3.3, "Creating Custom Field Identifiers").

You specify what information should be recorded in the log file with directives,
included in the actual log file itself. A directive begins on a new line and starts with a #
sign. If the log file does not exist, a new log file is created with default directives.
However, if the log file already exists when the server starts, it must contain legal
directives at the head of the file.

5.6.3.1 Creating the Fields Directive
The first line of your log file must contain a directive stating the version number of the
log file format. You must also include a Fields directive near the beginning of the
file:

Setting Up HTTP Access Logs

Configuring Web Server Functionality 5-7

#Version: 1.0
#Fields: xxxx xxxx xxxx ...

Where each xxxx describes the data fields to be recorded. Field types are specified as
either simple identifiers, or may take a prefix-identifier format, as defined in the W3C
specification. Here is an example:

#Fields: date time cs-method cs-uri

This identifier instructs the server to record the date and time of the transaction, the
request method that the client used, and the URI of the request for each HTTP access.
Each field is separated by white space, and each record is written to a new line,
appended to the log file.

5.6.3.2 Supported Field identifiers
The following identifiers are supported, and do not require a prefix.

date
Date at which transaction completed, field has type <date>, as defined in the W3C
specification.

time
Time at which transaction completed, field has type <time>, as defined in the W3C
specification.

time-taken
Time taken for transaction to complete in seconds, field has type <fixed>, as defined in
the W3C specification.

bytes
Number of bytes transferred, field has type <integer>.

Note that the cached field defined in the W3C specification is not supported in
WebLogic Server.

The following identifiers require prefixes, and cannot be used alone. The supported
prefix combinations are explained individually.

5.6.3.2.1 IP address related fields: These fields these fields give the IP address and port
of either the requesting client, or the responding server. These fields have type
<address>, as defined in the W3C specification. The supported prefixes are:

c-ip
The IP address of the client.

s-ip
The IP address of the server.

5.6.3.2.2 DNS related fields These fields give the domain names of the client or the
server and have type <name>, as defined in the W3C specification. The supported
prefixes are:

c-dns
The domain name of the requesting client.

Note: The #Fields directive must be followed by a new line in the
log file, so that the first log message is not appended to the same line.

Setting Up HTTP Access Logs

5-8 Configuring Server Environments for Oracle WebLogic Server

s-dns
The domain name of the requested server.

sc-status
Status code of the response, for example (404) indicating a ""File not found" status.
This field has type <integer>, as defined in the W3C specification.

sc-comment
The comment returned with status code, for instance "File not found". This field has
type <text>.

cs-method
The request method, for example GET or POST. This field has type <name>, as defined
in the W3C specification.

cs-uri
The full requested URI. This field has type <uri>, as defined in the W3C specification.

cs-uri-stem
Only the stem portion of URI (omitting query). This field has type <uri>, as defined in
the W3C specification.

cs-uri-query
Only the query portion of the URI. This field has type <uri>, as defined in the W3C
specification.

5.6.3.3 Creating Custom Field Identifiers
You can also create user-defined fields for inclusion in an HTTP access log file that
uses the extended log format (ELF). To create a custom field you identify the field in
the ELF log file using the Fields directive and then you create a matching Java class
that generates the desired output. You can create a separate Java class for each field, or
the Java class can output multiple fields. For a sample of the Java source for such a
class, see Section 5–1, "Java Class for Creating a Custom ELF Field".

To create a custom field:

1. Include the field name in the Fields directive, using the form:

x-myCustomField.

Where myCustomField is a fully-qualified class name.

For more information on the Fields directive, see Section 5.6.3.1, "Creating the
Fields Directive".

2. Create a Java class with the same fully-qualified class name as the custom field
you defined with the Fields directive (for example myCustomField). This class
defines the information you want logged in your custom field. The Java class must
implement the following interface:

weblogic.servlet.logging.CustomELFLogger

In your Java class, you must implement the logField() method, which takes a
HttpAccountingInfo object and FormatStringBuffer object as its
arguments:

■ Use the HttpAccountingInfo object to access HTTP request and response
data that you can output in your custom field. Getter methods are provided to

Setting Up HTTP Access Logs

Configuring Web Server Functionality 5-9

access this information. For a complete listing of these get methods, see
Section 5.6.3.3.1, "Get Methods of the HttpAccountingInfo Object".

■ Use the FormatStringBuffer class to create the contents of your custom
field. Methods are provided to create suitable output.

3. Compile the Java class and add the class to the CLASSPATH statement used to start
WebLogic Server. You will probably need to modify the CLASSPATH statements in
the scripts that you use to start WebLogic Server.

4. Configure WebLogic Server to use the extended log format. For more information,
see Section 5.6.3, "Setting Up HTTP Access Logs by Using Extended Log Format".

5.6.3.3.1 Get Methods of the HttpAccountingInfo Object The following methods return
various data regarding the HTTP request. These methods are similar to various
methods of javax.servlet.ServletRequest,
javax.servlet.http.Http.ServletRequest, and
javax.servlet.http.HttpServletResponse.

The Javadoc for these interfaces is at the following URLs:

■ http://download.oracle.com/javaee/5/api/javax/servlet/ServletRe
quest.html

■ http://download.oracle.com/javaee/5/api/javax/servlet/ServletRe
sponse.html

■ http://download.oracle.com/javaee/5/api/javax/servlet/http/Http
ServletRequest.html

For details on these methods see the corresponding methods in the Java interfaces
listed in the following table, or refer to the specific information contained in the table.

Note: Do not place this class inside of a Web application or Enterprise
application in exploded or jar format.

Notes: When writing the Java class that defines your custom field, do not
execute any code that is likely to slow down the system (For instance,
accessing a DBMS or executing significant I/O or networking calls.)
Remember, an HTTP access log file entry is created for every HTTP request.

Note: If you want to output more than one field, delimit the fields
with a tab character. For more information on delimiting fields and
other ELF formatting issues, see "Extended Log Format" at
http://www.w3.org/TR/WD-logfile-960221.html.

Table 5–2 Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Method Information

Object getAttribute(String name); javax.servlet.ServletRequest

Enumeration getAttributeNames(); javax.servlet.ServletRequest

String getCharacterEncoding(); javax.servlet.ServletRequest

Setting Up HTTP Access Logs

5-10 Configuring Server Environments for Oracle WebLogic Server

int getResponseContentLength(); javax.servlet.ServletResponse.setContentLength()

This method gets the content length of the response, as set
with the setContentLength() method.

String getContentType(); javax.servlet.ServletRequest

Locale getLocale(); javax.servlet.ServletRequest

Enumeration getLocales(); javax.servlet.ServletRequest

String getParameter(String name); javax.servlet.ServletRequest

Enumeration getParameterNames(); javax.servlet.ServletRequest

String[] getParameterValues(String name); javax.servlet.ServletRequest

String getProtocol(); javax.servlet.ServletRequest

String getRemoteAddr(); javax.servlet.ServletRequest

String getRemoteHost(); javax.servlet.ServletRequest

String getScheme(); javax.servlet.ServletRequest

String getServerName(); javax.servlet.ServletRequest

int getServerPort(); javax.servlet.ServletRequest

boolean isSecure(); javax.servlet.ServletRequest

String getAuthType(); javax.servlet.http.HttpServletRequest

String getContextPath(); javax.servlet.http.HttpServletRequest

Cookie[] getCookies(); javax.servlet.http.HttpServletRequest

long getDateHeader(String name); javax.servlet.http.HttpServletRequest

String getHeader(String name); javax.servlet.http.HttpServletRequest

Enumeration getHeaderNames(); javax.servlet.http.HttpServletRequest

Enumeration getHeaders(String name); javax.servlet.http.HttpServletRequest

int getIntHeader(String name); javax.servlet.http.HttpServletRequest

String getMethod(); javax.servlet.http.HttpServletRequest

String getPathInfo(); javax.servlet.http.HttpServletRequest

String getPathTranslated(); javax.servlet.http.HttpServletRequest

String getQueryString(); javax.servlet.http.HttpServletRequest

String getRemoteUser(); javax.servlet.http.HttpServletRequest

String getRequestURI(); javax.servlet.http.HttpServletRequest

String getRequestedSessionId(); javax.servlet.http.HttpServletRequest

String getServletPath(); javax.servlet.http.HttpServletRequest

Principal getUserPrincipal(); javax.servlet.http.HttpServletRequest

boolean isRequestedSessionIdFromCookie(); javax.servlet.http.HttpServletRequest

boolean isRequestedSessionIdFromURL(); javax.servlet.http.HttpServletRequest

boolean isRequestedSessionIdFromUrl(); javax.servlet.http.HttpServletRequest

boolean isRequestedSessionIdValid(); javax.servlet.http.HttpServletRequest

Table 5–2 (Cont.) Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Method Information

Preventing POST Denial-of-Service Attacks

Configuring Web Server Functionality 5-11

Example 5–1 Java Class for Creating a Custom ELF Field

import weblogic.servlet.logging.CustomELFLogger;
import weblogic.servlet.logging.FormatStringBuffer;
import weblogic.servlet.logging.HttpAccountingInfo;
/* This example outputs the User-Agent field into a
 custom field called MyCustomField
*/
public class MyCustomField implements CustomELFLogger{
public void logField(HttpAccountingInfo metrics,
 FormatStringBuffer buff) {
 buff.appendValueOrDash(metrics.getHeader("User-Agent"));
 }
}

5.7 Preventing POST Denial-of-Service Attacks
A Denial-of-Service attack is a malicious attempt to overload a server with phony
requests. One common type of attack is to send huge amounts of data in an HTTP
POST method. You can set three attributes in WebLogic Server that help prevent this
type of attack. These attributes are set in the Console, under Servers or Virtual Hosts. If
you define these attributes for a virtual host, the values set for the virtual host override
those set under Servers.

PostTimeoutSecs
Amount of time that WebLogic Server waits between receiving chunks of data in an
HTTP POST.

The default value for PostTimeoutSecs is 30.

MaxPostTimeSecs
Maximum time that WebLogic Server spends receiving post data. If this limit is
triggered, a PostTimeoutException is thrown and the following message is sent to
the server log:

Post time exceeded MaxPostTimeSecs.

The default value for MaxPostTimeSecs is 30.

MaxPostSize
Maximum number of bytes of data received in a POST from a single request. If this
limit is triggered, a MaxPostSizeExceeded exception is thrown and the following
message is sent to the server log:

POST size exceeded the parameter MaxPostSize.

byte[] getURIAsBytes(); Returns the URI of the HTTP request as byte array, for
example: If GET /index.html HTTP/1.0 is the first line of
an HTTP Request, /index.html is returned as an array of
bytes.

long getInvokeTime(); Returns the length of time it took for the service method of
a servlet to write data back to the client.

int getResponseStatusCode(); javax.servlet.http.HttpServletResponse

String getResponseHeader(String name); javax.servlet.http.HttpServletResponse

Table 5–2 (Cont.) Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Method Information

Setting Up WebLogic Server for HTTP Tunneling

5-12 Configuring Server Environments for Oracle WebLogic Server

An HTTP error code 413 (Request Entity Too Large) is sent back to the client.

If the client is in listening mode, it gets these messages. If the client is not in listening
mode, the connection is broken.

The default value for MaxPostSize is -1.

5.8 Setting Up WebLogic Server for HTTP Tunneling
HTTP tunneling provides a way to simulate a stateful socket connection between
WebLogic Server and a Java client when your only option is to use the HTTP protocol.
It is generally used to tunnel through an HTTP port in a security firewall. HTTP is a
stateless protocol, but WebLogic Server provides tunneling functionality to make the
connection appear to be a regular T3Connection. However, you can expect some
performance loss in comparison to a normal socket connection.

5.8.1 Configuring the HTTP Tunneling Connection
Under the HTTP protocol, a client may only make a request, and then accept a reply
from a server. The server may not voluntarily communicate with the client, and the
protocol is stateless, meaning that a continuous two-way connection is not possible.

WebLogic HTTP tunneling simulates a T3Connection via the HTTP protocol,
overcoming these limitations. There are attributes that you can configure in the
Administration Console to tune a tunneled connection for performance. It is advised
that you leave them at their default settings unless you experience connection
problems. These properties are used by the server to determine whether the client
connection is still valid, or whether the client is still alive.

Enable Tunneling
Enables or disables HTTP tunneling. HTTP tunneling is disabled by default.

Note that the server must also support both the HTTP and T3 protocols in order to use
HTTP tunneling.

Tunneling Client Ping
When an HTTP tunnel connection is set up, the client automatically sends a request to
the server, so that the server may volunteer a response to the client. The client may
also include instructions in a request, but this behavior happens regardless of whether
the client application needs to communicate with the server. If the server does not
respond (as part of the application code) to the client request within the number of
seconds set in this attribute, it does so anyway. The client accepts the response and
automatically sends another request immediately.

Default is 45 seconds; valid range is 20 to 900 seconds.

Tunneling Client Timeout
If the number of seconds set in this attribute have elapsed since the client last sent a
request to the server (in response to a reply), then the server regards the client as dead,
and terminates the HTTP tunnel connection. The server checks the elapsed time at the
interval specified by this attribute, when it would otherwise respond to the client's
request.

Default is 40 seconds; valid range is 10 to 900 seconds.

Using Native I/O for Serving Static Files (Windows Only)

Configuring Web Server Functionality 5-13

5.8.2 Connecting to WebLogic Server from the Client
When your client requests a connection with WebLogic Server, all you need to do in
order to use HTTP tunneling is specify the HTTP protocol in the URL. For example:

Hashtable env = new Hashtable();
env.put(Context.PROVIDER_URL, "http://wlhost:80");
Context ctx = new InitialContext(env);

On the client side, a special tag is appended to the http protocol, so that WebLogic
Server knows this is a tunneling connection, instead of a regular HTTP request. Your
application code does not need to do any extra work to make this happen.

The client must specify the port in the URL, even if the port is 80. You can set up your
WebLogic Server instance to listen for HTTP requests on any port, although the most
common choice is port 80 since requests to port 80 are customarily allowed through a
firewall.

You specify the listen port for WebLogic Server in the Administration Console under
the "Servers" node, under the "Network" tab.

5.9 Using Native I/O for Serving Static Files (Windows Only)
When running WebLogic Server on Windows NT/2000/XP you can specify that
WebLogic Server use the native operating system call TransmitFile instead of using
Java methods to serve static files such as HTML files, text files, and image files. Using
native I/O can provide performance improvements when serving larger static files.

To use native I/O, add two parameters to the web.xml deployment descriptor of a
Web application containing the files to be served using native I/O. The first parameter,
weblogic.http.nativeIOEnabled should be set to TRUE to enable native I/O file
serving. The second parameter, weblogic.http.minimumNativeFileSize sets
the minimum file size for using native I/O. If the file being served is larger than this
value, native I/O is used. If you do not specify this parameter, a value of 4K is used.

Generally, native I/O provides greater performance gains when serving larger files;
however, as the load on the machine running WebLogic Server increases, these gains
diminish. You may need to experiment to find the correct value for
weblogic.http.minimumNativeFileSize.

The following example shows the complete entries that should be added to the
web.xml deployment descriptor. These entries must be placed in the web.xml file after
the <distributable> element and before <servlet> element.

<context-param>
 <param-name>weblogic.http.nativeIOEnabled</param-name>
 <param-value>TRUE</param-value>
</context-param>
<context-param>
 <param-name>weblogic.http.minimumNativeFileSize</param-name>
 <param-value>500</param-value>
</context-param>

weblogic.http.nativeIOEnabled can also be set as a context parameter in the
FileServlet.

Using Native I/O for Serving Static Files (Windows Only)

5-14 Configuring Server Environments for Oracle WebLogic Server

6

Using the WebLogic Persistent Store 6-1

6Using the WebLogic Persistent Store

This chapter explains how to configure and monitor the WebLogic Server persistent
store, which provides a built-in, high-performance storage solution for WebLogic
Server subsystems and services that require persistence.

■ Section 6.1, "Overview of the Persistent Store"

■ Section 6.2, "Using the Default Persistent Store"

■ Section 6.3, "Using Custom File Stores and JDBC Stores"

■ Section 6.4, "Creating a Custom (User-Defined) File Store"

■ Section 6.5, "Creating JDBC-accessible Stores"

■ Section 6.6, "Monitoring a Persistent Store"

■ Section 6.8, "Security Considerations"

■ Section 6.9, "Limitations of the Persistent Store"

6.1 Overview of the Persistent Store
The persistent store provides a built-in, high-performance storage solution for
WebLogic Server subsystems and services that require persistence. For example, it can
store persistent JMS messages or temporarily store messages sent using the
Store-and-Forward feature. The persistent store supports persistence to a file-based
store or to a JDBC-accessible store in a database.

Table 6–1 defines many of the WebLogic services and subsystems that can create
connections to the persistent store. Each subsystem that uses the persistent store
specifies a unique connection ID that identifies that subsystem.

Table 6–1 Persistent Store Users

Subsystem/Service What It Stores More Information

Diagnostic Service Log records, data events, and
harvested metrics.

"Understanding WLDF Configuration"
in Configuring and Using the Diagnostics
Framework for Oracle WebLogic Server

JMS Messages Persistent messages and
durable subscribers.

"Understanding the Messaging
Models" in Programming JMS for Oracle
WebLogic Server

JMS Paging Store One per JMS server. Paged
persistent and non-persistent
messages.

"Main Steps for Configuring Basic JMS
System Resources" in Configuring and
Managing JMS for Oracle WebLogic
Server.

Overview of the Persistent Store

6-2 Configuring Server Environments for Oracle WebLogic Server

For more information about the store connection IDs, see Section 6.6.2, "Monitoring
Store Connections".

6.1.1 Features of the Persistent Store
The key features of the persistent store include:

■ Default file store for each server instance that requires no configuration.

■ The Default and custom stores are shareable by multiple subsystems, as long as
they are all targeted to the same server instance or migratable target.

■ When configured, a JDBC TLOG store which contains information about
committed transactions coordinated by the server that may not have been
completed. You can select to persist TLOG information either in the default store
or the JDBC TLOG store, depending on your application needs. See Section 6.5.1,
"Using a JDBC TLog Store."

■ High-performance throughput and transactional support.

■ Modifiable parameters that let you create customized file stores and JDBC stores.

■ Monitoring capabilities for persistent store statistics and open store connections.

■ In a clustered environment, the JDBC TLOG store and customized stores can be
migrated from an unhealthy server to a backup server, either on the whole-server
level or on the service level.

6.1.2 High-Performance Throughput and Transactional Support
Throughput is the main performance goal of the persistent store. Multiple subsystems
can share the same default or custom store, as long as they are all targeted to the same
server instance or migratable target.

JTA Transaction Log
(TLOG)

Information about committed
transactions coordinated by the
server that may not have been
completed. TLOGs can be
stored in the default persistent
store or a JDBC TLOG store.

■ "Managing Transactions" in
Programming JTA for Oracle
WebLogic Server.

■ Section 6.5.1, "Using a JDBC TLog
Store"

Path Service The mapping of a group of
messages to a messaging
resource.

"Using the WebLogic Path Service" in
Configuring and Managing JMS for
Oracle WebLogic Server

Store-and-Forward
(SAF) Service
Agents

Messages for a sending SAF
agent for retransmission to a
receiving SAF agent

"Understanding the Store-and-Forward
Service" in Configuring and Managing
Store-and-Forward for Oracle WebLogic
Server.

Web Services Request and response SOAP
messages from an invocation of
a reliable WebLogic Web
Service.

"Using Reliable SOAP Messaging" in
Programming Advanced Features of
JAX-RPC Web Services for Oracle
WebLogic Server

EJB Timer Services EJB Timer objects. "Understanding Enterprise JavaBeans"
in Programming WebLogic Enterprise
JavaBeans for Oracle WebLogic Server

Table 6–1 (Cont.) Persistent Store Users

Subsystem/Service What It Stores More Information

Overview of the Persistent Store

Using the WebLogic Persistent Store 6-3

This is a performance advantage because the persistent store is treated as a single
resource by the transaction manager for a particular transaction, even if the transaction
involves multiple services that use the same store. For example, if the TLOG, JMS and
EJB timers share a file store, and a JMS message and an EJB timer are created in a
single transaction, the transaction will be one-phase and incur a single resource write,
rather than two-phase, which incurs four resource writes (two on each resource), plus
a transaction entry write (on the transaction log).

Both a file store and a JDBC store can survive a process crash or hardware power
failure without losing any committed updates. Uncommitted updates may be retained
or lost, but in no case will a transaction be left partially complete after a crash.

6.1.3 Comparing File Stores and JDBC-accessible Stores
The following are some similarities and differences between file stores and
JDBC-accessible stores:

■ The default persistent store can only be a file store. Therefore, a JDBC store cannot
be used as a default persistent store.

■ Both have the same transaction semantics and guarantees. As with JDBC store
writes, file store writes are guaranteed to be persisted to disk and are not simply
left in an intermediate (that is, unsafe) cache.

■ Both have the same application interface (no difference in application code).

■ All things being equal, file stores generally offer better throughput than a JDBC
store.

■ File stores are generally easier to configure and administer, and do not require that
WebLogic subsystems depend on any external component.

■ File stores generate no network traffic; whereas, JDBC stores generate network
traffic if the database is on a different machine from WebLogic Server.

■ JDBC stores may make it easier to handle failure recovery since the JDBC interface
can access the database from any machine on the same network. With the file
store, the disk must be shared or migrated.

6.1.4 High Availability For Persistent Stores
For high availability, a persistent file-based store (default, or custom) can be migrated
along with its parent server as part of the "whole server-level" migration feature,
which provides both automatic and manual migration at the server level, rather than
on the service level. For more information, see "Whole Server Migration" in Using
Clusters for Oracle WebLogic Server. However, file-based stores must be configured on a
shared disk that is available to the migratable target servers in the cluster.

Note: The JDBC TLOG store is only used to persist information
about committed transactions coordinated by the server that may not
have been completed. It can not be shared by other subsystems.

Note: If a database is running on high-end hardware with very fast
disks, and WebLogic Server is running on slower hardware or with
slower disks, then you may get better performance from the JDBC
store.

Overview of the Persistent Store

6-4 Configuring Server Environments for Oracle WebLogic Server

6.1.4.1 Persistent Store Migration
File-based stores and JDBC-accessible stores can also be migrated as part of a
"service-level" migration for JMS-related services, such JMS servers, SAF agents, and
the path service, which rely on stores to maintain data. Service-level migration is
controlled by a migratable target, which serves as a grouping of JMS-related services,
and which is hosted on only one physical server in a cluster. Such hosted services can
be automatically migrated from the current unhealthy hosting server to a healthy
active server with the help of the Health Monitoring subsystem. JMS services hosted
by a migratable target can also be manually migrated, either in response to a server
failure or as part of regularly scheduled server maintenance. When the migratable
target is migrated, all pinned services hosted by that target are also migrated. For more
information on service-level migration, see "Service Migration" in Using Clusters for
Oracle WebLogic Server.

Migratable JMS-related services cannot use the default file store, so you must
configure a custom file store or JDBC store and target it to the same migratable target
as the JMS server, SAF agent, or path service associated with the store.

Migratable file stores must also either be configured on a shared disk that is available
to the migratable targets in the cluster or you can use pre/post-migration scripts to
migrate a file store's data to a backup server. See "Custom Store Availability for JMS
Services" in Using Clusters for Oracle WebLogic Server.

6.1.4.2 High Availability Storage Solutions
If you have applications that need access to persistent stores that reside on remote
machines after the migration of a JMS server or JTA transaction log, then you should
implement one of the following highly-available storage solutions:

■ File-based stores (default or custom)—Implement a hardware solution, such as a
dual-ported SCSI disk or Storage Area Network (SAN) to make a file store
available from shareable disks or remote machines.

■ JDBC-accessible stores—Configure a JDBC store or JDBC TLOG store and use
JDBC to access this store, which can be on yet another server. Applications can
then take advantage of any high-availability or failover solutions offered by your
database vendor. In addition, JDBC stores support GridLink data sources and
multi data sources, which provide failover between nodes of a highly available
database system, such as Oracle Real Application Clusters (Oracle RAC). For more
information, see:

– "Configuring JDBC Multi Data Sources" in Configuring and Managing JDBC for
Oracle WebLogic Server

Note: As a best practice, a path service should use its own custom
store and migratable target.

Note: If a file store is disconnected and re-connected again, its host
server instance must be rebooted to successfully continue
sending/receiving persistent JMS messages. For example, if for some
reason the file system containing a file store is unmounted and then
remounted, attempts to send persistent JMS messages will generate
JMS exceptions until the host server is rebooted.

Using the Default Persistent Store

Using the WebLogic Persistent Store 6-5

– "Using GridLink Data Sources" in Configuring and Managing JDBC for Oracle
WebLogic Server

■ Any persistent store—Use high-availability clustering software which provides an
integrated, out-of-the-box solution for WebLogic Server-based applications.

6.2 Using the Default Persistent Store
Each server instance, including the Administration Server, has a default persistent
store that requires no configuration. The default store is a file-based store that
maintains its data in a group of files in a server instance data\store\default
directory. A directory for the default store is automatically created if one does not
already exist. This default store is available to subsystems that do not require explicit
selection of a particular store and function best by using the system's default storage
mechanism. For example, a JMS Server with no persistent store configured will use the
default store for its Managed Server and will support persistent messaging.

The default store can be configured by directly manipulating DefaultFileStoreMBean
parameters. If this MBean is not defined in the domain configuration file, then the
configuration subsystem ensures that the DefaultFileStoreMBean always exists
with the default values.

Also, the Administration Console enables you to change the default store parameters,
such as its default directory location and Synchronous Write Policy, as described in
"Modify the Default Store Settings" in the Oracle WebLogic Server Administration Console
Help.

6.2.1 Default Store Location
The default store maintains its data in a data\store\default directory inside the
servername subdirectory of a domain's root directory

For example, if no directory name is specified for the default file store, it defaults to:

MW_HOME\user_projects\domains\domain-name\servers\server-name\data\store\default

where domainname is the root directory of your domain, typically
c:\oracle\user_projects\domains\domainname, which is parallel to the
directory in which WebLogic Server program files are stored, typically
c:\oracle\wlserver_10.3.

You can, however, specify another location for the default store by directly
manipulating the DefaultFileStoreMBean parameters or by using the Administration
Console, as described in "Modify the Default Store Settings" in the Oracle WebLogic
Server Administration Console Help.

6.2.2 Example of a Default File Store
Here's an example of how a default file store may look in a domain's configuration file,
with the default directory location and Synchronous Write Policy settings overridden:

<server
 <name>myserver</name>
 <default-file-store>
 <directory>C:/store</directory>
 <synchronous-write-policy>Disabled</synchronous-write-policy>
 </default-file-store>
</server>

Using Custom File Stores and JDBC Stores

6-6 Configuring Server Environments for Oracle WebLogic Server

6.3 Using Custom File Stores and JDBC Stores
In addition to using the default file store, you can also configure a file store or JDBC
store to suit your specific needs. A custom file store, like the default file store,
maintains its data in a group of files in a directory. However, you may want to create a
custom file store so that the file store's data is persisted to a particular storage device
or when you want a JMS service that accesses a file store to be able to migrate with the
store to another server member in a cluster. When configuring a file store directory, the
directory must be accessible to the server instance on which the file store is located.

A JDBC store can be configured when a relational database is used for storage. A JDBC
store enables you to store persistent messages in a standard JDBC-accessible database,
which is accessed through a designated JDBC data source. The data is stored in the
JDBC store's database table, which has a logical name of WLStore. It is up to the
database administrator to configure the database for high availability and
performance. JDBC stores also support migratable targets for automatic or manual
JMS service migration.

For more information about configuring a persistent store, see Section 6.3.1, "When to
Use a Custom Persistent Store".

6.3.1 When to Use a Custom Persistent Store
WebLogic Server provides configuration options for creating a custom file store or
JDBC-accessible store. For example, you may want to:

■ Place a file store's files on a particular device.

■ Use a JDBC store rather than a file store for a particular server instance. If you
want to persist transaction logs, use a JDBC TLOG store. See Section 6.5.1, "Using a
JDBC TLog Store."

■ Allow all physical stores in a cluster to share the same logical name.

■ Logically separate different services to use different files or tables. (This may
simplify administration and maintenance at the expense of reduced performance.)

■ Migratable JMS-related services cannot use the default persistent store, so you
must configure a custom store and target it to the same migratable target as the
migratable JMS service. For more information, see "Service Migration" in Using
Clusters for Oracle WebLogic Server.

6.3.2 Methods of Creating a Custom Persistent Store
A user-defined persistent store can be configured in the following ways:

■ Use the Administration Console. To configure a custom file store or JDBC store,
see "Configure Persistent Stores" in the Oracle WebLogic Server Administration
Console Help. To configure a JDBC TLOG store, see "Configure the Transaction Log
Store" in the Oracle WebLogic Server Administration Console Help.

■ Directly edit the configuration file (config.xml) of the server instance that is
hosting a persistent store.

■ Use the WebLogic Java Management Extensions (JMX) to create persistent stores.
JMX is the Java EE solution for monitoring and managing resources on a network.
For more information see, Developing Custom Management Utilities With JMX for
Oracle WebLogic Server.

Creating a Custom (User-Defined) File Store

Using the WebLogic Persistent Store 6-7

■ Use the WebLogic Scripting Tool (WLST) to create persistent stores. WLST is a
command-line scripting interface that you use to interact with and configure
WebLogic Server instances and domains. For more information, see Oracle
WebLogic Scripting Tool.

■ Use the WebLogic Configuration Wizard to change the options of the default
persistent store. For detailed information on how to use the Configuration Wizard
to configure a persistent store, see "Creating a WebLogic Domain" in Creating
Domains Using the Configuration Wizard.

6.3.3 Modifying Custom Persistent Store Parameters
Modifying certain custom store configuration options, such as a JDBC store's prefix or
a file store's directory, do not necessarily require a server restart if you do the
following:

1. Set the targets of any dependent services to null (such as a JMS server that uses the
custom store), and then setting the custom store target to null. (Setting a service's
target to null implicitly shuts down the service.)

2. Reverse the process by setting the custom store target back to its original value
and then setting the dependent resource targets back to their original values.

In cases where the custom store and JMS servers share a migratable target, you can
administratively restart the migratable target.

6.4 Creating a Custom (User-Defined) File Store
The following sections provide an example of a custom file store and configuration
guidelines for choosing a synchronous write policy.

To create a custom file store, you can directly modify the default FileStoreMBean
parameters. For instructions on using the Administration Console to create a custom
file store, see "Create File Stores" in the Oracle WebLogic Server Administration Console
Help.

6.4.1 Main Steps for Configuring a Custom File Store
The main steps for creating a custom file store are as follows:

1. Create a directory where the file store's data will be persisted.

2. Create a custom file store and specify the directory location that you created.

3. Associate the custom file store with the subsystem(s) or migratable target that will
be accessing it, such as:

■ For JMS servers, select the custom file store on the General Configuration
page.

■ For Store-and-Forward agents, select the custom file store on the General
Configuration page.

■ For a Path Service, select the custom file store on the General Configuration
page.

6.4.2 Example of a Custom File Store
Here's an example of how a custom file store may look in a domain's configuration file
with its files kept in a /disk1/jmslog directory.

Creating a Custom (User-Defined) File Store

6-8 Configuring Server Environments for Oracle WebLogic Server

<file-store>
 <name>SampleFileStore</name>
 <target>myserver</target>
 <directory>/disk1/jmslog</directory>
</file-store>

Table 6–2 briefly describes the file store configuration parameters that can be modified.

For instructions on configuring a custom file store using the Administration Console,
see "Create File Stores" in the Oracle WebLogic Server Administration Console Help.

6.4.3 Guidelines for Configuring a Synchronous Write Policy
There are several Synchronous Write Policies available for file stores. The Synchronous
Write Policy determines the behavior of the write operation of the file store. You

Table 6–2 Custom File Store Configuration Options

Option Required What It Does

Name Yes The name of the file store, which must be unique across all
stores in the domain.

Targets Yes The server instance or migratable target where a file store is
targeted. Multiple subsystems can share the same file store,
as long as they are all targeted to the same server instance or
migratable target.

Note: When using migratable targets for JMS services, you
must target the file store to the same migratable target used
by the JMS service. See "Service Migration" in Using Clusters
for Oracle WebLogic Server.

Directory Yes The path name to the directory on the file system where the
file store is kept.

Note: When targeting a file store to a migratable target, the
store directory must be accessible from all candidate server
members in the migratable target. For highest availability,
use either a SAN (Storage Area Network) or a dual-ported
SCSI disk. See "Service Migration" in Using Clusters for Oracle
WebLogic Server.

Modifying an existing file store's directory does not
necessarily require a server restart, as described in
Section 6.3.3, "Modifying Custom Persistent Store
Parameters".

CacheDirectory No This setting only applies for the
Direct-Write-With-Cache file store synchronous write
policy. See Section 6.4.3, "Guidelines for Configuring a
Synchronous Write Policy.".

Logical Name No Optionally used with subsystems, like EJBs, when deploying
a module to an entire cluster, but also require a different
physical store on each server instance in the cluster. In such
a configuration, each physical store would have its own
name, but all the persistent stores would share the same
logical name.

Synchronous Write
Policy

No Defines the IO behavior of a file store including immediate
durability of individual write operations. Values are:
Direct-Write (default), Direct-Write-With-Cache,
Cache-Flush, and Disabled.

For more information, see Section 6.4.3, "Guidelines for
Configuring a Synchronous Write Policy".

Creating a Custom (User-Defined) File Store

Using the WebLogic Persistent Store 6-9

should select a policy that best suits your environment and meets your needs for
runtime performance and data integrity after a possible crash. See "Tuning the
WebLogic Persistent Store" in Performance and Tuning for Oracle WebLogic Server for
more details about tuning and performance specifics of Synchronous Write Policy and
other file store options.

6.4.3.1 Direct-Write-With-Cache Policy
For most scenarios, Oracle recommends using the Direct-Write-With-Cache
policy. When this policy is selected, WebLogic Server writes synchronously to a
primary set of files in the location defined by the Directory attribute of the file store
configuration using a native I/O wlfileio driver. WebLogic Server also
asynchronously writes to a corresponding cache file in the location defined by the
CacheDirectory attribute of the file store configuration, which is done implicitly by
using OS memory caching the cache file blocks as output buffers for the primary data
file. The cache files are used for performance optimizations at runtime and boot time
and for recovery. This combination of direct writing with a native file driver and the
use of corresponding cache files typically provides the best overall performance with
the most safe disk writes.

This option uses approximately twice as much disk space as other policies and stores
files in two locations. You may need to consider disk space allocations in these
locations and you may need to secure both of these locations.

When configuring file locations with the Direct-Write-With-Cache policy, the
location of the CacheDirectory attribute should be a local directory, even when
configuring for high availability (Whole Server Migration or Automatic Service
Migration). The cache files are used for performance optimizations only. The true
persistent storage for messages is defined by the Directory attribute of the file store
configuration. Only that directory needs to be available to the migrated WebLogic
Server instance or JMS service after migration. The same applies to disaster recovery
scenarios: only the files defined in the Directory location need to replicated to the
backup site.

Note: To view a running custom or default file store's synchronous
write policy and driver, check the WL-280008 and WL-280009
messages in the server log.

Creating a Custom (User-Defined) File Store

6-10 Configuring Server Environments for Oracle WebLogic Server

6.4.3.2 Direct-Write Policy
When the Direct-Write policy is selected, WebLogic Server writes synchronously to
a primary set of files in the location defined by the Directory attribute of the file
store configuration using a native I/O wlfileio driver. This policy typically performs
slower than the Direct-Write-With-Cache policy, but it uses less disk space and
may have fewer environmental considerations to manage. The Direct-Write policy
is typically faster than the Cache-Flush policy.

6.4.3.3 Cache-Flush Policy
When the Cache-Flush policy is selected, WebLogic Server enables the default file
write behavior of the operating system and storage device, which typically includes
caching and scheduling file writes, but forces a flush of the cache to disk before
completing a transaction. Transactions cannot complete until all of their writes have
been flushed down to disk. This policy is reliable and scales well as the number of

Notes: If the file store native wlfileio driver cannot be loaded, the
store automatically runs in an alternate specialized Direct-Write
policy mode. To view a running custom or default file store's
configured and actual synchronous write policy and driver, examine
the server log for WL-280008 and WL-280009 messages.

Certain older versions of Microsoft Windows may incorrectly report
storage device synchronous write completion if the Windows default
Write Cache Enabled setting is used. This violates the
transactional semantics of transactional products (not specific to
Oracle), including file stores configured with a Direct-Write
(default) or Direct-Write-With-Cache policy, as a system crash
or power failure can lead to a loss or a duplication of
records/messages. One of the visible symptoms is that this problem
may manifest itself in high persistent message/transaction
throughput exceeding the physical capabilities of your storage device.
You can address the problem by applying a Microsoft supplied patch,
disabling the Windows Write Cache Enabled setting, or by using
a power-protected storage device. See
http://support.microsoft.com/kb/281672 and
http://support.microsoft.com/kb/332023.

Note: Certain older versions of Microsoft Windows may incorrectly
report storage device synchronous write completion if the Windows
default Write Cache Enabled setting is used. This violates the
transactional semantics of transactional products (not specific to
Oracle), including file stores configured with a Direct-Write
(default) or Direct-Write-With-Cache policy, as a system crash
or power failure can lead to a loss or a duplication of
records/messages. One of the visible symptoms is that this problem
may manifest itself in high persistent message/transaction
throughput exceeding the physical capabilities of your storage device.
You can address the problem by applying a Microsoft supplied patch,
disabling the Windows Write Cache Enabled setting, or by using
a power-protected storage device. See
http://support.microsoft.com/kb/281672 and
http://support.microsoft.com/kb/332023.

Creating JDBC-accessible Stores

Using the WebLogic Persistent Store 6-11

simultaneous users increases. It is transactionally safe, but tends to provide lower
runtime performance than the direct-write policies in typical use cases, except in those
cases with large numbers of simultaneous producers or consumers.

6.4.3.4 Disabled Policy
When the Disabled policy is selected, WebLogic Server relies on the default file write
behavior of the operating system and storage device. In most cases, file writes are
cached in memory and are scheduled for writing instead of being directly written to
disk. The Disabled policy generally improves file store performance, often quite
dramatically, but at the expense of possibly losing sent messages or generating
duplicate received messages (even if messages are transactional) in the event of an
operating system crash or a hardware failure. This is because transactions are complete
as soon as their writes are cached in memory, instead of waiting for the writes to
successfully reach the disk. Simply shutting down an operating system or killing a
WebLogic Server process does not generate these failures, as an OS flushes all
outstanding writes under these circumstances during a normal shutdown. Instead,
these failures can be emulated by abruptly shutting the power off to a busy server.

6.5 Creating JDBC-accessible Stores
The following sections provide information on how to configure and use
JDBC-accessible stores:

■ JDBC TLog Stores: to persist transaction logs (TLOGs) in a database. See
Section 6.5.1, "Using a JDBC TLog Store."

■ JDBC Stores: to persist WebLogic Server instance services and subsystem
information, excluding TLOGs, in a database. See Section 6.5.2, "Using a JDBC
Store."

6.5.1 Using a JDBC TLog Store
You can configure a JDBC TLOG store to persist transaction logs to a database, which
provides the following benefits:

■ Leverages replication and HA characteristics of the underlying database.

■ Simplifies disaster recovery by allowing the easy synchronization of the state of
the database and TLOGs.

■ Improved Transaction Recovery service migration as the transaction logs to do not
need to be migrated (copied) to a new location.

6.5.1.1 Main Steps for Configuring a JDBC TLOG Store
The main steps for creating a JDBC TLOG store are as follows:

1. Create a JDBC data source, GridLink data source, or multi data source to interface
with the JDBC store. See Section 6.5.1.1.1, "Choosing a Data Source."

2. Create a JDBC TLOG store and associate it with the JDBC data source, GridLink
data source, or multi data source created in Step 1. See "Configure the Transaction
Log Store" in the Oracle WebLogic Server Administration Console Help.

3. Optional. It is highly recommended that you configure the Prefix option to a
unique value for each configured JDBC TLOG store.

4. For high availability, make your data source available to backup servers. See
Chapter 6.5.1.5, "Server Migration when using a JDBC TLOG Store."

Creating JDBC-accessible Stores

6-12 Configuring Server Environments for Oracle WebLogic Server

6.5.1.1.1 Choosing a Data Source You can choose one of the following data source types,
depending on your WebLogic Server license and application needs:

■ Generic Data Sources—See "Creating a JDBC Data Source" and "Using
Connect-Time Failover with Oracle RAC" in Configuring and Managing JDBC for
Oracle WebLogic Server.

■ GridLink Data Sources—See "Using GridLink Data Sources" in Configuring and
Managing JDBC for Oracle WebLogic Server.

■ Multi data sources—Backed by a fully replicated, zero-latency database, such as
Oracle RAC. See "Configuring JDBC Multi Data Sources" and "Using Multi Data
Sources with Oracle RAC" in Configuring and Managing JDBC for Oracle WebLogic
Server.

6.5.1.2 Example of a JDBC TLOG Store
Here's an example of how a JDBC TLOG store may look in the configuration file, using
the JDBC data source MyDataSource, and with a logical name specified:

<server>
 <transaction-log-jdbc-store>
 <data-source>MyDataSource</data-source>
 <prefix-name>TLOG_MS1</prefix-name>
 <create-table-ddl-file>myDDL/myCreateTable.sql</create-table-ddl-file>
 <max-retry-seconds-before-tlog-fail>120</max-retry-seconds-before-tlog-fail>
 </transaction-log-jdbc-store>
</server>

Table 6–4 describes the JDBC store configuration parameters that can be modified.

Table 6–3 JDBC TLOG Store Configuration Options

Option Required What It Does

Data Source Yes The JDBC data source or multi data source used by this
JDBC store to access the store's database table (WLStore).
This data source or multi data source must be targeted to
the same server instance as the JDBC store.

Note: You cannot specify a JDBC data source that is
configured to support global (XA) transactions. Therefore,
the specified JDBC data source must use a non-XA JDBC
driver. In addition, you cannot enable Logging Last
Resource or Emulate Two-Phase Commit in the data
source. This limitation does not remove the XA capabilities
of layered subsystems that use JDBC stores. For example,
WebLogic JMS is fully XA-capable regardless of whether it
uses a file store or any JDBC store.

Prefix Name No The prefix for the JDBC store's table is generally entered in
the following format: [[[catalog.]schema.]prefix]

When using multiple JDBC stores, it is required to set this
option to a unique value for each configured JDBC store.
When no prefix is specified, the JDBC store table name is
simply WLStore and the database implicitly determines
the schema according the current user of the JDBC
connection. Also, two JDBC stores cannot share the same
database table. For more information, see Section 6.5.2.6.1,
"Using Prefixes with a JDBC Store".

Modifying an existing JDBC store's prefix does not
necessarily require a server restart, as described in
Section 6.3.3, "Modifying Custom Persistent Store
Parameters".

Creating JDBC-accessible Stores

Using the WebLogic Persistent Store 6-13

For instructions on configuring a JDBC TLOG store using the Administration Console,
see "Configure the Transaction Log Store" in the Oracle WebLogic Server Administration
Console Help.]

6.5.1.3 Configuration Guidelines
The following section provides guidelines for configuring JDBC TLOG stores.

■ Only globally-scoped (not application-scoped) data sources can be targeted to a
JDBC TLOG store.

■ Only one JDBC TLOG store can be configured per WebLogic Server. Conversely,
multiple WebLogic Servers can not share a JDBC TLOG store.

■ You must configure a JDBC TLOG store. The default is to persist TLOG
information to the server’s default persistent store.

■ You cannot use a data source that is configured to use an XA JDBC driver or is
configured to support global transactions. Use a non-XA data source.

■ For general rules on JDBC-accessible stores, see Section 6.5.2.6, "Guidelines for
Configuring a JDBC Store."

Create Table from
DDL File

No Optionally used with supported DDL (data definition
language) files to create the JDBC store's database table
(WLStore). This option is ignored when the JDBC store's
database table already exists. For more information, see
Section 6.5.2.4, "Creating a JDBC Store Table Using Default
and Custom DDL Files".

Deletes Per Batch
Maximum

Default is
20.

The maximum number of table rows that are deleted per
database call.

Inserts Per Batch
Maximum

Default is
20.

The maximum number of table rows that are inserted per
database call.

Deletes Per
Statement Maximum

Default is
20

The maximum number of table rows that are deleted per
database call.

MaxRetrySecondsBe
foreTLogFail

Default is
300.

The maximum amount of time, in seconds, WebLogic
Server tries to recover from a JDBC TLog store failure. If
store remains unusable after this period, WebLogic Server
set the health state to HEALTH_FAILED. A value of 0
indicates WebLogic Server does not conduct a retry and
and immediately sets the health state as HEALTH_
FAILED.

MaxRetrySecondsBe
foreTXRollback

Default is
60.

The maximum amount of time, in seconds, WebLogic
Server waits before trying to recover from a JDBC TLog
store failure while processing a transaction. If store
remains unusable after this amount of time, WebLogic
Server rolls back the affected transaction. A value of 0
indicates WebLogic Server does not conduct a retry and
rolls back the transaction immediately. The practical
maximum value is a value less than the current value of
MaxRetrySecondsBeforeTLogFail.

RetryIntervalSecond
s

Default is 5. The amount of time, in seconds, WebLogic Server waits
before attempting to verify the health of the TLOG store
after a store failure has occurred.

Table 6–3 (Cont.) JDBC TLOG Store Configuration Options

Option Required What It Does

Creating JDBC-accessible Stores

6-14 Configuring Server Environments for Oracle WebLogic Server

6.5.1.4 Additional Considerations
The following section provides additional information on JDBC TLOG store behavior
and limitations:

■ The database used to store the TLOG information must be available at server
startup. If the database is not available, the WebLogic Server instance will fail to
boot.

■ Only the JTA sub-system can use the JDBC TLOG store to persist information
about committed transactions coordinated by the server that may not have been
completed. No other systems can access the JDBC TLOG store.

■ Using a JDBC TLOG store does not change LLR behavior. A JDBC TLOG store can
be used with or without LLR. When used in tandem with LLR transactions, the
transaction committing information is stored in a LLR table but the checkpoint
records and heuristic logs are stored in the JDBC TLOG store.

■ If the TLOG store is changed from one store type to another or from one location
to another, the change takes effect only after reboot and all pending transactions in
the old store are not be copied to the new store. You must ensure there are no
pending transactions before changing the TLOG store type or location.

■ If the JDBC TLOG store becomes unavailable, the JTA health state transitions to
FAILED and any global transactions will fail. In turn, the server life-cycle changes
to FAILED. The JTA Transaction Recovery System then attempts to recover from
transient runtime errors if possible and resolves any in-doubt transactions. See
Section 6.5.1.5, "Server Migration when using a JDBC TLOG Store."

■ If the database used to store TLOG is corrupted and can not be restored, than all
pending transaction information is lost.

■ If database tables or rows used by the JDBC TLOG store are locked for some
reason in the database, the database administrator must resolve these locks
manually. Otherwise, the JTA subsystem is blocked and will be suspended until
the lock(s) are released, or encounters an exception due to lock. The JTA subsystem
will remain unable to operate correctly until the lock(s) are released or the value of
MaxRetrySecondsBeforeTLOGFail is exceeded.

6.5.1.5 Server Migration when using a JDBC TLOG Store
WebLogic Server supports both manual and automatic migration of the Transaction
Recovery Service when using a JDBC TLOG store. The data source used by the JDBC
TLOG store must be targeted on both the primary server instance and a backup server
instance. Oracle recommends targeting the data source to all the server instances of a
cluster. For more information, see "Transaction Recovery After a Server Fails" in
Programming JTA for Oracle WebLogic Server.

6.5.1.6 Monitoring a JDBC TLOG Store
You can monitor statistics for Transaction Log Store statistics and for each open store
connection. For general information on how to monitor persistent stores, see
Section 6.6, "Monitoring a Persistent Store."

Note: Different databases have different features for locked local
transactions. Some databases may have trouble resolving database
locks in a timely manner. You may need to contact your database
administrator for more information on basic row locking issues that
may occur in your application environment.

Creating JDBC-accessible Stores

Using the WebLogic Persistent Store 6-15

6.5.1.6.1 How to Monitor the JDBC TLOG Store Health State When you configure WebLogic
Server to use a JDBC TLOG store, the store is registered with the Health system as a
non-critical subsystem using a name with the following pattern:

PersistentStore.TLOG_servername

where servername is the name of the WebLogic Server instance hosting the primary
TLOG store.

You can monitor the JDBC TLOG store health state in the Administration Console, see
"Monitor server health" in Oracle WebLogic Server Administration Console Help.

6.5.1.6.2 How to Monitor Transaction Log Store Statistics You can monitor Transaction Log
Store statistics in the Administration Console, see "View transaction log statistics for a
server" in Oracle WebLogic Server Administration Console Help.

6.5.1.6.3 How to Monitor Transaction Log Store Connections You can monitor Transaction
Log Store connection statistics in the Administration Console, see "View statistics for
TLOG store connections" in Oracle WebLogic Server Administration Console Help.

6.5.1.7 Security Considerations
Properly secure your application environment, including the JDBC TLOG store table.
Failure to do so may allow a process to:

■ Delete information, maliciously or unintentionally. Such a deletion can cause
transaction information to be lost and cause affected global transactions to be
completed heuristically.

■ Modify information, maliciously or unintentionally. Such modification can cause
unexpected behavior.

■ Read confidential transaction information, such as when transaction starts and
what resources are involved.

■ Access the database instance or database machine.

■ Access the network between JTA and the database, potentially intercepting,
viewing, or modifying data.

See Chapter 6.8, "Security Considerations."

6.5.2 Using a JDBC Store
The following sections provide an example of a JDBC store, and information about
creating a database table for a JDBC store, either using an existing DDL, a custom
DDL, and using Oracle blob record columns in a DDL file.

To create a JDBC store, you can directly modify the default JDBCStoreMBean
parameters. For instructions on using the Administration Console to create a JDBC
store, see "Create JDBC Stores" in the Oracle WebLogic Server Administration Console
Help.

For configuration guidelines on using prefixes with JDBC stores and recommended
JDBC data source settings, see Section 6.5.2.6, "Guidelines for Configuring a JDBC
Store".

6.5.2.1 Main Steps for Configuring a JDBC Store
The main steps for creating a JDBC store are as follows:

1. Create a JDBC data source or multi data source to interface with the JDBC store.

Creating JDBC-accessible Stores

6-16 Configuring Server Environments for Oracle WebLogic Server

2. Create a JDBC store and associate it with the JDBC data source or multi data
source.

3. It is highly recommended that you configure the Prefix option to a unique value
for each configured JDBC store table.

4. Associate the JDBC store with the subsystem(s) that will be using it, such as:

■ For JMS servers, select the JDBC store on the General Configuration page.

■ For Store-and-Forward agents, select the JDBC store on the General
Configuration page.

■ For a Path Service, select the custom file store on the General Configuration
page.

6.5.2.2 Example of a JDBC Store
Here's an example of how a JDBC store may look in the configuration file, using the
JDBC data source MyDataSource, and with a logical name specified:

<jdbc-store>
 <name>SampleJDBCStore</name>
 <target>yourserver</target>
 <data-source>MyDataSource</data-source>
 <logical-name>Baz</logical-name>
</jdbc-store>

Table 6–4 describes the JDBC store configuration parameters that can be modified.

Table 6–4 JDBC Store Configuration Options

Option Required What It Does

Name Yes The name of the JDBC store, which must be unique across
all stores in the domain.

Targets Yes The server instance or migratable target where a JDBC
store is targeted. Multiple subsystems can share the same
JDBC store, as long as they are all targeted to the same
server instance or migratable target.

Note: When using migratable targets for JMS services, you
must target the JDBC store to the same migratable target
used by the JMS service. See "Service Migration" in Using
Clusters for Oracle WebLogic Server.

Data Source Yes The JDBC data source or multi data source used by this
JDBC store to access the store's database table (WLStore).
This data source or multi data source must be targeted to
the same server instance as the JDBC store.

Note: You cannot specify a JDBC data source that is
configured to support global (XA) transactions. Therefore,
the specified JDBC data source must use a non-XA JDBC
driver. In addition, you cannot enable Logging Last
Resource or Emulate Two-Phase Commit in the data
source. This limitation does not remove the XA capabilities
of layered subsystems that use JDBC stores. For example,
WebLogic JMS is fully XA-capable regardless of whether it
uses a file store or any JDBC store.

Creating JDBC-accessible Stores

Using the WebLogic Persistent Store 6-17

For instructions on configuring a JDBC store using the Administration Console, see
"Create JDBC Stores" in the Oracle WebLogic Server Administration Console Help.]

6.5.2.3 Supported JDBC Drivers
When using a JDBC store, the backing database can be any database that is accessible
through a JDBC driver. WebLogic Server detects some drivers for supported databases.

For each of these databases, there are corresponding DDL (data definition language)
files within the MW_HOME\modules\com.bea.core.store.jdbc_1.0.0.0.jar
file, in the weblogic/store/io/jdbc/ddl directory, where MW_HOME is the
top-level installation directory of your WebLogic Server installation.

Prefix Name No The prefix for the JDBC store's table is generally entered in
the following format: [[[catalog.]schema.]prefix]

When using multiple JDBC stores, it is required to set this
option to a unique value for each configured JDBC store.
When no prefix is specified, the JDBC store table name is
simply WLStore and the database implicitly determines
the schema according the current user of the JDBC
connection. Also, two JDBC stores cannot share the same
database table. For more information, see Section 6.5.2.6.1,
"Using Prefixes with a JDBC Store".

Modifying an existing JDBC store's prefix does not
necessarily require a server restart, as described in
Section 6.3.3, "Modifying Custom Persistent Store
Parameters".

Logical Name No Optionally used with WebLogic Server subsystems, like
EJBs, when deploying a module to an entire cluster, but
also require a different physical store on each server
instance in the cluster. In such a configuration, each
physical store would have its own name, but all the
persistent stores would share the same logical name.

Create Table from
DDL File

No Optionally used with supported DDL (data definition
language) files to create the JDBC store's database table
(WLStore). This option is ignored when the JDBC store's
database table already exists. For more information, see
Section 6.5.2.4, "Creating a JDBC Store Table Using Default
and Custom DDL Files".

Table 6–5 Supported JDBC Drivers and Corresponding DDL Files

Database DDL Files

IBM DB2 db2.ddl
db2v6.ddl

Informix informix.ddl

Microsoft SQL (MSSQL) Server mssql.ddl

MySQL mysql.ddl

Oracle oracle.ddl
oracle_blob.ddl
oracle_blob_securefile.ddl

Sybase sysbase.ddl

Table 6–4 (Cont.) JDBC Store Configuration Options

Option Required What It Does

Creating JDBC-accessible Stores

6-18 Configuring Server Environments for Oracle WebLogic Server

The DDL files are actually text files containing the SQL commands (terminated by
semicolons) that create the JDBC store's database table (WLStore). Therefore, if you
are using a database that is not included in this list, you can copy and edit any one of
the existing DDL files to suit your specific database, as described in Section 6.5.2.4.1,
"Creating a JDBC Store Table Using a Custom DDL File".

6.5.2.4 Creating a JDBC Store Table Using Default and Custom DDL Files
The JDBC Store Configuration page provides an optional Create Table from DDL File
option, through which you can access a pre-configured DDL file that is used to create
the JDBC store's backing table (WLStore). This option is ignored when the JDBC
store's backing table already exists. It is mainly used to specify a custom DDL file
created for an unsupported database, or when upgrading JMS JDBC store tables from
a prior release to a current JDBC Store table.

If a DDL file name is not specified in the Create Table from DDL File field, and the
JDBC store detects that its backing table does not already exist, the JDBC store
automatically creates the table by executing a pre-configured DDL file that is specific
to the database vendor (see Section 6.5.2.3, "Supported JDBC Drivers").

If a DDL file name is specified in the Create Table from DDL File field, and the JDBC
store detects that its backing table does not already exist, the JDBC store searches for
the specified DDL file in the file path first, and then, if not found, searches for the DDL
file in the CLASSPATH. Once found, the SQL within the DDL file is executed to create
the JDBC store's backing table. If the configured file is not found and the table doesn't
already exist, the JDBC store will fail to boot.

6.5.2.4.1 Creating a JDBC Store Table Using a Custom DDL File To use a different database
from those listed in Section 6.5.2.3, "Supported JDBC Drivers", you can copy and edit
any one of the existing DDL template files to suit your specific database.

1. Use the JAR utility supplied with the JDK to extract the DDL files to the
/weblogic/store/io/jdbc/ddl directory using the following command:

jar xf com.bea.core.store.jdbc_1.0.0.0.jar /weblogic/store/io/jdbc/ddl

2. Edit the DDL file for your database. An SQL command can span several lines and
is terminated with a semicolon (;). Lines beginning with pound signs (#) are
comments.

3. Save your changes and rename the new DDL appropriately (for example,
mydatabase.ddl)

4. Create a JDBC store, as explained in "Create JDBC Stores" in the Oracle WebLogic
Server Administration Console Help.

5. Use the Create Table from DDL File option on the General Configuration page to
specify your custom DDL file (for example, /mydatabase.ddl).

6.5.2.4.2 Enabling Oracle BLOB Record Columns For Oracle databases, you can use the
oracle_blob.ddl or oracle_blob_securefile.ddl file to create a JDBC store

Note: If you omit the weblogic/store/io/jdbc/ddl parameter,
the entire jar file is extracted.

Note: On Windows systems, for full path names always include the
drive letter.

Creating JDBC-accessible Stores

Using the WebLogic Persistent Store 6-19

table with a BLOB record column type rather than the default LONG RAW record
column type. The oracle_blob.ddl is used to create Oracle basic file BLOBs and the
oracle_blob_securefile.ddl file is used to create Oracle secure file BLOBs. Both
files types are pre-configured and supplied in the WebLogic CLASSPATH, as described
in Section 6.5.2.3, "Supported JDBC Drivers".

Oracle Database 11g Release 2 includes a zero copy I/O performance enhancement for
Secure Files and and a logical cache for BLOBs. Use of these enhancements can
improve throughput with a JDBC store when message sizes are large and when
network connections to the database are slow. The Oracle LONG RAW datatype is
typically better performing than BLOBS when using a fast connection to the database.

To use the Oracle BLOB DDL with a JDBC store:

1. Shut down the server instance that uses the JDBC store.

2. Delete the current JDBC table, as explained in Section 6.5.2.5, "Managing JDBC
Store Tables".

3. Reboot the server instance.

4. Create a new JDBC store, as explained in "Create JDBC Stores" in the Oracle
WebLogic Server Administration Console Help.

5. In the Create Table from DDL File field on the General Configuration page,
enter the location of:

■ the oracle_blob.ddl file as: /oracle_blob.ddl

■ the oracle_blob_securefile.ddl file as: /oracle_blob_
securefile.ddl

6. Click Finish to create the JDBC store's backing table.

When using Oracle BLOBS, you may be able to improve performance by tuning the
ThreeStepThreshold value.

When the JDBC store schema contains an Oracle BLOB column (basic file or secure
file), the JDBC store populates the BLOB data using one of the following
implementations based on the size of the BLOB data:

■ The JDBC store inserts a row with BLOB data directly into the store table in a
single step. Because only a single step is involved, JDBC batch insert is also
adopted and performs best when the data size is small. This implementation is
used when the BLOB data to be inserted is less than or equal to the value of the
ThreeStepThreshold.

■ The JDBC store inserts a row with BLOB data into the store table in three steps
using the Oracle LOB API. This implementation provides better performance
when the data size is large. This implementation is used when the BLOB data to be
inserted is greater than the value of the ThreeStepThreshold.

The default value of ThreeStepThreshold is 200K.

Note: If you need to preserve data already in a Oracle LONG RAW
column, but still want to switch the column to BLOB, do not use this
method. Instead, consult the Oracle documentation for the SQL
ALTER TABLE command.

Creating JDBC-accessible Stores

6-20 Configuring Server Environments for Oracle WebLogic Server

6.5.2.5 Managing JDBC Store Tables
The JDBC utils.Schema utility allows you to regenerate a new JDBC store database
table (WLStore) by deleting the existing version. Running this utility is usually not
necessary, since WebLogic Server automatically creates this table for you. However, if
your existing JDBC store database table somehow becomes corrupted, you can delete
it using the utils.Schema utility.

The utils.Schema utility is a Java program that takes command-line arguments to
specify the following:

■ JDBC driver

■ Database connection information

■ Name of a file containing the SQL Data Definition Language (DDL) commands
that create the database table

6.5.2.5.1 Using the utils.Schema Utility to Delete a JDBC Store Table Enter the
utils.Schema command, as follows:

$ java utils.Schema url JDBC_driver [options] DDL_file

Table 6–6 lists the utils.Schema command-line arguments.

For example, the following command deletes a JDBC table named MYWLStore in an
Oracle server named DEMO, with the user name user1 and password foobar:

$ echo "drop MYWLStore;" > drop.ddl

$ java utils.Schema
jdbc:weblogic:oracle:DEMO \
weblogic.jdbc.oci.Driver -u user1 -p foobar -verbose \
drop.ddl

Note: To execute utils.Schema, your CLASSPATH must contain
the weblogic.jar file.

Table 6–6 Command-line arguments for utils.Schema

Argument Description

url Database connection URL. This value must be a colon-separated
URL as defined by the JDBC specification.

JDBC_driver Full package name of the JDBC Driver class.

options Optional command options.

If required by the database, you can specify:

■ The user name and password as follows:

-u <username> -p <password>

■ The Domain Name Server (DNS) name of the JDBC database
server as follows:

-s <dbserver>

You can also specify the -verbose option, which causes
utils.Schema to echo SQL commands as they are executed.

DDL_file The full pathname of the DDL text file containing the SQL
commands that you want to execute. For more information, see
Section 6.5.2.3, "Supported JDBC Drivers".

Creating JDBC-accessible Stores

Using the WebLogic Persistent Store 6-21

6.5.2.6 Guidelines for Configuring a JDBC Store
The following sections provide guidelines for using JDBC store prefixes,
recommended WebLogic JDBC data source settings for JDBC stores, and handling JMS
transactions with JDBC stores.

6.5.2.6.1 Using Prefixes with a JDBC Store The JDBC store database contains a database
table, named WLStore, that is generated automatically and is used internally by
WebLogic Server. The JDBC store provides an optional Prefix Name parameter, which
can be used to provide more precise access to the database table.

It is always a best practice to configure a prefix for the JDBC WLStore table name,
especially when:

■ The database requires fully-qualified names. (You should verify this with your
database administrator.)

■ There is more than one JDBC store instance sharing a database, since no two JDBC
stores can share the same table.

■ There are many tables in the database. Setting the prefix reduces the number of
tables the JDBC store must search through to find its table during boot.

6.5.2.6.2 JDBC Store Table Rules To avoid potential data loss, follow these rules:

■ Each JDBC store table name must be unique.

■ If multiple JDBC stores share a table, the behavior is undefined and data loss is
likely.

■ There is no procedure for combining two database tables into a single table.

6.5.2.6.3 Prefix Name Format Guidelines For most databases, the Prefix Name option for
the JDBC store's backing database table should be set in the following format for each
configured JDBC store, which will result in a valid table name when prepended to the
JDBC store table name:

[[[catalog.]schema.]prefix]

Note that each period in the [[[catalog.]schema.]prefix] format is significant.
Generally, catalog identifies the set of system tables being referenced by the DBMS,
and schema generally corresponds to ID of the table owner (username). When no
prefix is specified, the JDBC store table name is simply WLStore and the database
implicitly determines the schema according the current user of the JDBC connection.

For example, in a production database, the database administrator could maintain a
unique table for the Sales department, as follows:

[[[Production.]JMSAdmin.]Sales]

The resulting table will be created in the Production catalog, under the JMSAdmin
schema, and will be named SalesWLStore.

For some DBMS vendors, such as Oracle, there is no catalog to set or choose, so the
format simplifies to [[schema.]prefix]. For more information, refer to your DBMS
documentation for instructions on fully-qualified table names, but note that the syntax
specified by the DBMS may differ from the format required for this option.

Creating JDBC-accessible Stores

6-22 Configuring Server Environments for Oracle WebLogic Server

6.5.2.6.4 Recommended JDBC Data Source Settings for JDBC Stores The following settings
are recommended when you use a JDBC data source or multi data source for JDBC
stores.

6.5.2.6.5 Automatic Reconnection to Failed Databases WebLogic Server provides robust
JDBC data sources that can automatically reconnect to failed databases after they come
back online, without requiring you to restart WebLogic Server. To take advantage of
this capability, and make your use of JDBC stores more robust, configure the following
options on the JDBC data source associated with the JDBC store:

TestConnectionsOnReserve="true"
TestTableName="SYSTABLES"
ConnectionCreationRetryFrequencySeconds="600"

For more information about JDBC default Test Table Names, see "Connection Testing
Options for a Data Source" in the Configuring and Managing JDBC for Oracle WebLogic
Server. For more information about setting the number of database reconnection
attempts, see the "Enabling Connection Creation Retries" section in Configuring and
Managing JDBC for Oracle WebLogic Server.

6.5.2.6.6 Required Setting for Oracle DB2 Type 4 JDBC Drivers For data sources used as a
JDBC store that use the Oracle Type 4 JDBC driver for DB2, the
BatchPerformanceWorkaround property must be set to "true" due to internal JMS
batching requirements.

For more information, see the "Performance Considerations" in Type 4 JDBC Drivers for
Oracle WebLogic Server.

6.5.2.6.7 Handling JMS Transactions with JDBC Stores You cannot configure a JDBC store
to use a JDBC data source that is configured to support global (XA) transactions. The
JDBC store must use a JDBC data source that uses a non-XA JDBC driver. In addition,
you cannot enable Logging Last Resource or Emulate Two-Phase Commit in the data
source. This limitation does not remove the XA capabilities of layered subsystems that
use JDBC stores. For example, WebLogic JMS is fully XA-capable regardless of
whether it uses a file store or any JDBC store.

Because the JDBC store implements the XAResource interface, it acts as it's own
resource manager and handles the transactions above the JDBC driver level. That is,
the store itself implements the XAResource and handles the transactions without
depending on the database (even when the messages are stored in the database).

This means that whenever you are using a JDBC store and a database (even if it is the
same database where the JMS messages are stored), then it is two-phase commit
transaction.

For more information about using JMS transactions with a JDBC store, see "Using
Transactions with WebLogic JMS" in Programming JMS for Oracle WebLogic Server.

From a performance perspective, you may also boost your performance as follows:

Caution: If the Prefix Name setting is changed, but the WLStore
database table already exists in the database, take care to preserve
existing table data. In this case, the existing database table must be
renamed by a database administrator to match the new configured
table name.

Creating JDBC-accessible Stores

Using the WebLogic Persistent Store 6-23

■ Ensure that the JDBC data source used for the database work exists on the same
server instance as the JMS destination—the transaction will still be two-phase, but
it will be handled with less network overhead.

■ Use file stores rather than JDBC stores.

■ Configure multiple services to share the same store if they will commonly be
invoked within the same transaction.

■ If an application directly performs database operations in addition to invoking
store services (such as JMS) within the same transaction, consider using a JDBC
data source with Logging Last Resource (LLR) enabled for the database
operations.

With the LLR optimization, the transaction will follow the two-phase commit
protocol, but the database operations will be handled in a single local transaction,
which may improve overall transaction performance. For more information on
using the LLR optimization, see "Understanding the Logging Last Resource
Transaction Option" in Configuring and Managing JDBC for Oracle WebLogic Server.

6.5.2.7 Enabling I/O Multithreading for JDBC Stores
Under heavy JDBC store I/O loads, you can improve performance by configuring a
JDBC store to use multiple JDBC connections to concurrently process I/O operations.

To enable I/O multithreading, set the Worker Count attribute to an integer value
greater than 1. The default value of this configuration property is 1 and disables this
option. The Worker Count attribute specifies the number of worker threads the JDBC
store uses to process store I/O. Each worker thread acquires one JDBC connection
from the configured data source pool when the store is opened. In many cases, benefits
of multithreading tends to decrease after 4 concurrent threads. When using a slow
connection to the database, multithreading may not improve performance.

You can tune the workload for each worker thread by changing the value of the
Worker Preferred Batch Size attribute. Increasing the value of this attribute
incrementally increases the workload assigned to each worker thread. The workload
consists of store I/O requests, which are grouped and pushed to each JDBC worker
thread for processing. If the size of individual I/O requests is commonly very large
(for example, requests to store 1 MB JMS messages), then tune the value of Worker
Preferred Batch Size to a smaller value for better performance.

6.5.2.7.1 Rebuilding the Store Table Index for an Oracle Database When I/O multithreading
is enabled, multiple JDBC connections are used to concurrently process store I/O
operations which can result in database resource contention. To reduce contention on
Oracle databases, Oracle recommends rebuilding the primary key index into a reverse
key index when I/O multithreading is used. If you use and then disable I/O
multithreading, Oracle recommends rebuilding the primary key index as a

Note: Enabling I/O multithreading under light loads may actually
reduce performance. Oracle recommends that you tune your
applications appropriately.

Note: If you set the Worker Count to a value where there are not
enough connections available in the connection pool, the JDBC store
will fail to open.

Creating JDBC-accessible Stores

6-24 Configuring Server Environments for Oracle WebLogic Server

non-reverse index. For more information on reverse key indexes, see "Indexes and
Index-Organized Tables" in Oracle Database Concepts.

Use the following basic steps to rebuild the Store table index for Oracle database:

1. Login to the Oracle database under the Store schema name. The Store schema
name may or may not be the same as the data source user name.

2. Use the PL/SQL script found in Section 6.5.2.7.2, "Build a Reverse Index for an
Oracle Database" or Section 6.5.2.7.3, "Build a Non-Reverse Index for an Oracle
Database" to rebuild the Store table index as needed. Replace <Store Table Name> in
each script with the Store table name as described in Section 6.5.2.6.1, "Using
Prefixes with a JDBC Store." For more information on PL/SQL, see "Execution of
PL/SQL Subprograms" in Oracle Database Concepts.

6.5.2.7.2 Build a Reverse Index for an Oracle Database To rebuild the Store table index as a
reverse index for an Oracle database, run the following PL/SQL block as the store
database user:

declare
 idx user_ind_columns.index_name%TYPE;
 alter_stmt VARCHAR2(200);
begin
 select index_name into idx from user_ind_columns where table_name =
 <Store Table Name> and column_name = 'ID';
 alter_stmt := 'alter index ' || idx || ' rebuild reverse';
 dbms_output.put_line(alter_stmt);
 execute immediate alter_stmt;
end;
/

6.5.2.7.3 Build a Non-Reverse Index for an Oracle Database To rebuild a reverse Store table
index as a non-reverse index for Oracle database, run the following PL/SQL block as
the store database user:

declare
 idx user_ind_columns.index_name%TYPE;
 alter_stmt VARCHAR2(200);
begin
 select index_name into idx from user_ind_columns where table_name =
 <Store Table Name> and column_name = 'ID';
 alter_stmt := 'alter index ' || idx || ' rebuild noreverse';
 dbms_output.put_line(alter_stmt);
 execute immediate alter_stmt;
end;
/

6.5.2.7.4 Reducing Contention in a Non-Oracle Database For non-Oracle databases, refer to
the database provider's documentation on how to reduce the contention.

Note: Oracle recommends reverse indexes for I/O multithreading
and non-reverse indexes for single threaded I/O.

Monitoring a Persistent Store

Using the WebLogic Persistent Store 6-25

6.6 Monitoring a Persistent Store
You can monitor statistics for each existing persistent store and for each open store
connection.

6.6.1 Monitoring Stores
Each persistent store is represented at run time by an instance of the
PersistentStoreRuntimeMBean, which provides the following options.

6.6.2 Monitoring Store Connections
For each open persistent store connection, the persistent store also registers a
PersistentStoreConnectionRuntimemMBean, which provides the following options.

Table 6–9 defines most of the run-time prefix names of the WebLogic services and
subsystems that can create a connection to the persistent store.

Table 6–7 Persistent Store Run-time Options

Option What It Does

CreateCount Number of create requests issued to this persistent store.

ReadCount Number of read requests issued to this persistent store.

UpdateCount Number of update requests issued by this persistent store.

DeleteCount Number of delete requests issued by this persistent store.

ObjectCount Number of objects contained in the persistent store.

Connections Number of active connections in the persistent store.

PhysicalWriteCount Number of times the persistent store flushes its data to durable storage.

Table 6–8 Persistent Store Connection Runtime Options

Option What It Does

CreateCount Number of create requests issued to this connection.

ReadCount Number of read requests issued to this connection.

UpdateCount Number of update requests issued by this connection.

DeleteCount Number of delete requests issued by this connection.

ObjectCount Number of objects contained in the connection.

Table 6–9 Persistent Store Run-Time Prefix Names

Subsystem/Service Run-Time Prefix Name

Deployment weblogic.deploy.internal

where internal is the name of the deployment connection

Diagnostic Service weblogic.diagnostics.internal

where internal is the logical name of the diagnostic archive
connection

EJB Timer Services weblogic.ejb.timer.internal

where internal uniquely identifies EJB deployments in a server
instance

Administering a Persistent Store

6-26 Configuring Server Environments for Oracle WebLogic Server

6.7 Administering a Persistent Store
The WebLogic Store administration utility enables administrators to troubleshoot a
WebLogic persistent store. The store utility operates only on a store that is not
currently opened by a running server instance. This utility can be run from a Java
command line or from WebLogic Scripting Tool (WLST), as described in Section 6.7.1,
"Store Administration Using a Java Command Line" and Section 6.7.2, "Store
Administration Using WLST".

The most common uses-cases for store administration are for compacting a file store to
reduce its size and for dumping the contents of a file store of JDBC store to an XML file
for troubleshooting purposes. Examples of these use cases are provided later in this
section.

Table 6–10 defines the available store administration commands for Java and WLST.

JMS Service JMS server:

weblogic.messaging.jmsServer.internal

where internal is the name of the JMS server connection

JMS durable subscriber:

weblogic.messaging.jmsServer.durablesubs.internal

where internal is the name of the durable subscriber connection

JTA Transaction Log
(TLOG)

weblogic.transaction.internal

where internal is the name of the TLOG connection

Path Service weblogic.messaging.PathService.internal

where internal is the name of the path service connection

SAF Service SAF agent

weblogic.messaging.SAFAgent@server1.internal

where internal is the name of the SAF agent's connection

SAF durable subscriber:

weblogic.messaging.SAFAgent@server1.durablesubs.internal

where internal is the name of the durable subscriber connection

Web Services weblogic.wsee.server.store.internal

where internal is the name of the Web Service's connection

Table 6–10 Persistent Store Administration Options

Java Command WLST Method What It Does

help helpstore Displays available commands, usage, and examples.

compact compactstore Compacts and defragments the space occupied by a
file store. This command only works offline and does
not work for JDBC stores.

Note: Compacting a file store is usually not necessary
if you know that file store will likely grow to the
current size again. File stores automatically re-use
space freed by deleted records and expand only when
there is insufficient internal space for new records.
Also, file stores do not normally become fragmented
as most persistent records are short-lived.

Table 6–9 (Cont.) Persistent Store Run-Time Prefix Names

Subsystem/Service Run-Time Prefix Name

Administering a Persistent Store

Using the WebLogic Persistent Store 6-27

A persistent store can be backed by the file system (file store) or by a JDBC-capable
database (JDBC store). Except for the openfile/openfilestore() and
openjdbc/openjdbcstore() options, there is no difference in the options to
operate on these two different types of stores.

Most commands and methods work in terms of store names, while others also work in
terms of connection names. Store connections are logical groups of records within
persistent stores. For example, the JMS and JTA subsystems persist their respective
records in different connections in the same file store.

6.7.1 Store Administration Using a Java Command Line
To open the persistent store administration utility from a Java command line, type the
following:

> java weblogic.store.Admin
> storeadmin->

6.7.1.1 Accessing Store Administration Help
Type help for detailed descriptions on available store administration commands, as
well as examples of typical command usage. For example, the following
comprehensive help is provided for the list command, which lists store names, open
stores, or connections in a store.

storeadmin->help list
 Command:
 list
 Description:
 lists store names, open stores, or connections in a store
 Usage:

openfile openfilestore Opens an existing file store for further operations. If a
file store does not exist, a new one is created in an
open state using the -create parameter.

openjdbc openjdbcstore Opens an existing JDBC store for further operations. If
a JDBC store does not exist, a new one is created in an
open state

dump dumpstore Dumps store or connection contents in a
human-readable format to user-specified XML file.
The XML file format is the same format used by the
diagnostic image of the persistent store.

list liststore Lists store names, open stores, or connections in a
store.

n/a getstoreconns Returns a list of connections in the specified store (for
script access)

n/a getopenstores Returns a list of opened stores (for script access).

opts n/a Lists invocation options for the store administration
tool.

verbose n/a Controls display of additional information, such as
stack traces.

close closestore Closes a previously opened store.

quit exit Ends the store administration session.

Table 6–10 (Cont.) Persistent Store Administration Options

Java Command WLST Method What It Does

Administering a Persistent Store

6-28 Configuring Server Environments for Oracle WebLogic Server

 list [-store storename|-dir dir]
 Examples:
 list #lists all opened stores by storename
 list -store store1 #lists all connections in store1
 list -dir dir1 #lists all storenames found in dir1

6.7.1.2 Dumping the Contents of a File Store
Here's an example of using a series of store administration commands to ultimately
export the contents of a file store named myfilestore into a human-readable XML
file format in a temporary directory. This does not include store connection names or
the actual record contents, which require the optional -conn and -deep parameters.

> storeadmin-> list -dir .
> storeadmin-> openfile -store myfilestore -dir .
> storeadmin-> dump -store myfilestore -out d:\tmp\filestore1-out
> storeadmin-> close -store myfilestore

The list command shows all the store names in the current directory. The openfile
and openjdbc commands must be used to open and/or create a file or JDBC store
first before calling certain administration functions, like dump and list (only when
listing open stores). After administering an open store, you must close it using the
close command.

6.7.1.3 Compacting a File Store
Here is an example of using the compact command to compact the space occupied by
a file store in the mystores directory.

> storeadmin->compact -dir c:\mystores -tempdir c:\tmp

Since the compact command can only be used on an unopened file store, none of the
stores that have files in the source -dir directory should be open. Also, the temporary
-tempdir directory should have at least enough extra space as the source directory
and should also not be under the source directory. When compact successfully
completes, the newly compacted store files will be in the mystores directory. In
addition, a new, uniquely-named directory will be created under tmp containing the
original uncompacted store files.

6.7.2 Store Administration Using WLST
The WLST interface has a couple of additional methods (compared to the Java
command line) such as getopenstores and getstoreconns, that return relevant
Java objects and can be used for scripting in WLST.

6.7.2.1 Accessing Store Administration Help
To access the persistent store administration utility from WLST, type the following
command:

> java weblogic.WLST

Type helpstore() for detailed descriptions on available store administration
commands, as well as examples of typical command usage. For example, the following

Note: In this release, ThreeStepThreshold, Worker Count, and
Worker Preferred Batch Size are not supported when using
the WebLogic Scripting Tool (WLST) offline.

Administering a Persistent Store

Using the WebLogic Persistent Store 6-29

help is provided for the list command, which lists store names, open stores, or
connections in a store.

> wls:/offline> helpstore(liststore)
 lists storenames, opened stores, or connections (for interactive access)
 Parameters store and dir cannot both be specified concurrently.

 Usage: liststore(store='null',dir='null')

 @param store [optional] a previously opened JDBC or File store's name.
 If store is specified, all connections in the store are listed.
 @param dir [optional] directory for which to list available store names
 If dir is specified, all store names in the directory are listed.

 If neither store nor dir are specified, all open store names are listed.
 @return 1 on success, 0 on failure

Note that the parameters with an equal sign "=" are optional. For example, the
compactstore method can be invoked as either
compactstore(dir='storename', tempdir='/tmp') or
compactstore(store='storename'), where tempdir takes the default value.
Default values for optional parameters are listed in the command-specific help.

6.7.2.2 Dumping the Contents of a JDBC Store Using WLST
Here is an example of using the dumpstore method (store, outfile,
conn='null', deep='false') to export the contents of a JDBC store named
myJDBCStore in a human-readable XML file format out to a file named
mystoredump-out.xml. This does not include store connection names or the actual
record contents, which require the optional conn and deep parameters.

> wls:/offline>
 (openjdbcstore('myJDBCStore', 'oracle.jdbc.OracleDriver',
 'jdbc:oracle:thin:@test2k31:1521:test120a', './wlstoreadmin-dump.props',
 'jmstest', 'jmstest', '', 'jdbcstoreprefix')
 dumpstore('myJDBCStore', 'mystoredump-out')
 closestore('myJDBCStore')

The openjdbcstore and openfilestore methods must be used to open and/or
create a store first before calling certain administration functions, like dumpstore and
liststore (only when listing open stores). After administering an open store, you
must close it using the closestore method.

6.7.2.3 Compacting a File Store Using WLST
Here is an example of a WLST script that uses the compactstore method
(dir,tempdir='null') to compact the space occupied by a file store files in the
mystores directory.

> wls:/offline> compactstore('c:\mystores','c:\tmpmystore.dir')

Since the compactstore() method can only be used on unopened file stores, none of
the stores that have files in the source 'dir' directory should be open. Also, the
temporary 'tempdir' directory should have at least enough extra space as the source
directory and should also not be under the source directory. When compact
successfully completes, the newly compacted store files will be in the mystores
directory. In addition, a new, uniquely-named directory will be created under
tmpmystore containing the original uncompacted store files.

Security Considerations

6-30 Configuring Server Environments for Oracle WebLogic Server

6.8 Security Considerations
In order to properly secure file store data, you must set appropriate directory
permissions on all your file store directories. If you require data encryption, you must
use appropriate third-party encryption software.

6.9 Limitations of the Persistent Store
The following limitations apply to the persistent store:

■ A persistent file store should not be opened simultaneously by two server
instances; otherwise, there is no guarantee that the data in the file will not be
corrupted. If possible, the persistent store will attempt to return an error in this
case, but it will not be possible to detect this condition in every case. It is the
responsibility of the administrator to ensure that the persistent store is being used
in an environment in which multiple servers will not try to access the same store at
the same time. (Two file stores are considered the "same store" if they have the
same name and the same directory.)

■ Two JDBC stores must not share the same database table, because this will result in
data corruption.

■ A persistent store may not survive arbitrary corruption. If the disk file is
overwritten with arbitrary data, then the results are undefined. The store may
return inconsistent data in this case, or even fail to recover at all.

■ A file store may return exceptions when its disk is full. However, it will resume
normal operation by no longer throwing an exception when disk space has been
made available. Also, the data in the persistent store must remain intact as
described in the previous points.

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Using Work Managers to Optimize Scheduled Work
	2.1 Understanding How WebLogic Server Uses Thread Pools
	2.2 Understanding Work Managers
	2.2.1 Request Classes
	2.2.2 Constraints
	2.2.3 Stuck Thread Handling

	2.3 Work Manager Scope
	2.3.1 The Default Work Manager
	2.3.1.1 Overriding the Default Work Manager
	2.3.1.2 When to Use Work Managers

	2.3.2 Global Work Managers
	2.3.3 Application-scoped Work Managers

	2.4 Using Work Managers, Request Classes, and Constraints
	2.4.1 Dispatch Policy for EJB
	2.4.2 Dispatch Policy for Web Applications

	2.5 Deployment Descriptor Examples
	2.6 Work Managers and Execute Queues
	2.6.1 Enabling Execute Queues
	2.6.2 Migrating from Execute Queues to Work Managers

	2.7 Accessing Work Managers Using MBeans
	2.8 Using CommonJ With WebLogic Server
	2.8.1 Accessing CommonJ Work Managers
	2.8.2 Mapping CommonJ to WebLogic Server Work Managers

	3 Avoiding and Managing Overload
	3.1 Configuring WebLogic Server to Avoid Overload Conditions
	3.1.1 Limiting Requests in the Thread Pool
	3.1.1.1 Work Managers and Thread Pool Throttling

	3.1.2 Limiting HTTP Sessions
	3.1.3 Exit on Out of Memory Exceptions
	3.1.4 Stuck Thread Handling

	3.2 WebLogic Server Self-Monitoring
	3.2.1 Overloaded Health State

	3.3 WebLogic Server Exit Codes

	4 Configuring Network Resources
	4.1 Overview of Network Configuration
	4.2 Understanding Network Channels
	4.2.1 What Is a Channel?
	4.2.1.1 Rules for Configuring Channels
	4.2.1.2 Custom Channels Can Inherit Default Channel Attributes

	4.2.2 Why Use Network Channels?
	4.2.2.1 Handling Channel Failures
	4.2.2.2 Upgrading Quality of Service Levels for RMI

	4.2.3 Standard WebLogic Server Channels
	4.2.3.1 The Default Network Channel
	4.2.3.2 Administration Port and Administrative Channel
	4.2.3.2.1 Administration Port Capabilities
	4.2.3.2.2 Administration Port Restrictions
	4.2.3.2.3 Administration Port Requires SSL
	4.2.3.2.4 Configure Administration Port
	4.2.3.2.5 Booting Managed Servers to Use Administration Port
	4.2.3.2.6 Booting Managed Servers to Use Administrative Channels
	4.2.3.2.7 Custom Administrative Channels

	4.2.4 Using Internal Channels
	4.2.4.1 Channel Selection
	4.2.4.2 Internal Channels Within a Cluster

	4.3 Configuring a Channel
	4.3.1 Guidelines for Configuring Channels
	4.3.1.1 Channels and Server Instances
	4.3.1.2 Dynamic Channel Configuration
	4.3.1.3 Channels and Protocols
	4.3.1.4 Reserved Names
	4.3.1.5 Channels, Proxy Servers, and Firewalls

	4.3.2 Configuring Network Channels For a Cluster
	4.3.2.1 Create the Cluster
	4.3.2.2 Create and Assign the Network Channel
	4.3.2.3 Configuring a Replication Channel
	4.3.2.4 Increase Packet Size When Using Many Channels

	4.4 Assigning a Custom Channel to an EJB

	5 Configuring Web Server Functionality
	5.1 Overview of Configuring Web Server Components
	5.2 Configuring the Server
	5.2.1 Configuring the Listen Port

	5.3 Web Applications
	5.3.1 Web Applications and Clustering

	5.4 Configuring Virtual Hosting
	5.4.1 Virtual Hosting and the Default Web Application
	5.4.2 Setting Up a Virtual Host

	5.5 How WebLogic Server Resolves HTTP Requests
	5.6 Setting Up HTTP Access Logs
	5.6.1 Log Rotation
	5.6.2 Common Log Format
	5.6.3 Setting Up HTTP Access Logs by Using Extended Log Format
	5.6.3.1 Creating the Fields Directive
	5.6.3.2 Supported Field identifiers
	5.6.3.2.1 IP address related fields:
	5.6.3.2.2 DNS related fields

	5.6.3.3 Creating Custom Field Identifiers
	5.6.3.3.1 Get Methods of the HttpAccountingInfo Object

	5.7 Preventing POST Denial-of-Service Attacks
	5.8 Setting Up WebLogic Server for HTTP Tunneling
	5.8.1 Configuring the HTTP Tunneling Connection
	5.8.2 Connecting to WebLogic Server from the Client

	5.9 Using Native I/O for Serving Static Files (Windows Only)

	6 Using the WebLogic Persistent Store
	6.1 Overview of the Persistent Store
	6.1.1 Features of the Persistent Store
	6.1.2 High-Performance Throughput and Transactional Support
	6.1.3 Comparing File Stores and JDBC-accessible Stores
	6.1.4 High Availability For Persistent Stores
	6.1.4.1 Persistent Store Migration
	6.1.4.2 High Availability Storage Solutions

	6.2 Using the Default Persistent Store
	6.2.1 Default Store Location
	6.2.2 Example of a Default File Store

	6.3 Using Custom File Stores and JDBC Stores
	6.3.1 When to Use a Custom Persistent Store
	6.3.2 Methods of Creating a Custom Persistent Store
	6.3.3 Modifying Custom Persistent Store Parameters

	6.4 Creating a Custom (User-Defined) File Store
	6.4.1 Main Steps for Configuring a Custom File Store
	6.4.2 Example of a Custom File Store
	6.4.3 Guidelines for Configuring a Synchronous Write Policy
	6.4.3.1 Direct-Write-With-Cache Policy
	6.4.3.2 Direct-Write Policy
	6.4.3.3 Cache-Flush Policy
	6.4.3.4 Disabled Policy

	6.5 Creating JDBC-accessible Stores
	6.5.1 Using a JDBC TLog Store
	6.5.1.1 Main Steps for Configuring a JDBC TLOG Store
	6.5.1.1.1 Choosing a Data Source

	6.5.1.2 Example of a JDBC TLOG Store
	6.5.1.3 Configuration Guidelines
	6.5.1.4 Additional Considerations
	6.5.1.5 Server Migration when using a JDBC TLOG Store
	6.5.1.6 Monitoring a JDBC TLOG Store
	6.5.1.6.1 How to Monitor the JDBC TLOG Store Health State
	6.5.1.6.2 How to Monitor Transaction Log Store Statistics
	6.5.1.6.3 How to Monitor Transaction Log Store Connections

	6.5.1.7 Security Considerations

	6.5.2 Using a JDBC Store
	6.5.2.1 Main Steps for Configuring a JDBC Store
	6.5.2.2 Example of a JDBC Store
	6.5.2.3 Supported JDBC Drivers
	6.5.2.4 Creating a JDBC Store Table Using Default and Custom DDL Files
	6.5.2.4.1 Creating a JDBC Store Table Using a Custom DDL File
	6.5.2.4.2 Enabling Oracle BLOB Record Columns

	6.5.2.5 Managing JDBC Store Tables
	6.5.2.5.1 Using the utils.Schema Utility to Delete a JDBC Store Table

	6.5.2.6 Guidelines for Configuring a JDBC Store
	6.5.2.6.1 Using Prefixes with a JDBC Store
	6.5.2.6.2 JDBC Store Table Rules
	6.5.2.6.3 Prefix Name Format Guidelines
	6.5.2.6.4 Recommended JDBC Data Source Settings for JDBC Stores
	6.5.2.6.5 Automatic Reconnection to Failed Databases
	6.5.2.6.6 Required Setting for Oracle DB2 Type 4 JDBC Drivers
	6.5.2.6.7 Handling JMS Transactions with JDBC Stores

	6.5.2.7 Enabling I/O Multithreading for JDBC Stores
	6.5.2.7.1 Rebuilding the Store Table Index for an Oracle Database
	6.5.2.7.2 Build a Reverse Index for an Oracle Database
	6.5.2.7.3 Build a Non-Reverse Index for an Oracle Database
	6.5.2.7.4 Reducing Contention in a Non-Oracle Database

	6.6 Monitoring a Persistent Store
	6.6.1 Monitoring Stores
	6.6.2 Monitoring Store Connections

	6.7 Administering a Persistent Store
	6.7.1 Store Administration Using a Java Command Line
	6.7.1.1 Accessing Store Administration Help
	6.7.1.2 Dumping the Contents of a File Store
	6.7.1.3 Compacting a File Store

	6.7.2 Store Administration Using WLST
	6.7.2.1 Accessing Store Administration Help
	6.7.2.2 Dumping the Contents of a JDBC Store Using WLST
	6.7.2.3 Compacting a File Store Using WLST

	6.8 Security Considerations
	6.9 Limitations of the Persistent Store

