

Oracle® Fusion Middleware
Programming Deployment for Oracle WebLogic Server

11g Release 1 (10.3.6)

E13703-05

November 2011

This document describes the WebLogic Deployment API and
performing deployment operations programmatically for
WebLogic Server applications.

Oracle Fusion Middleware Programming Deployment for Oracle WebLogic Server, 11g Release 1 (10.3.6)

E13703-05

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Conventions .. vii

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to This Document.. 1-2
1.3 Related Documentation.. 1-2
1.4 New and Changed Features in This Release... 1-2

2 Understanding the WebLogic Deployment API

2.1 The WebLogic Deployment API... 2-1
2.1.1 WebLogic Deployment API Deployment Phases ... 2-1
2.1.1.1 Configure an Application for Deployment... 2-2
2.1.1.2 Deploy an Application... 2-2
2.1.2 weblogic.Deployer Implementation of the WebLogic Deployment API 2-2
2.1.3 When to Use the WebLogic Deployment API ... 2-2
2.2 Java EE Deployment API Compliance... 2-3
2.3 WebLogic Server Value-Added Deployment Features ... 2-3
2.4 The Service Provider Interface Package .. 2-4
2.4.1 weblogic.deploy.api.spi .. 2-4
2.4.2 weblogic.deploy.api.spi.factories .. 2-5
2.4.3 Module Targeting .. 2-5
2.4.4 Support for Querying WebLogic Target Types... 2-5
2.4.5 Server Staging Modes.. 2-5
2.4.6 DConfigBean Validation... 2-5
2.5 The Model Package... 2-6
2.5.1 weblogic.deploy.api.model .. 2-6
2.5.2 Accessing Deployment Descriptors .. 2-6
2.6 The Shared Package.. 2-7
2.6.1 weblogic.deploy.api.shared ... 2-7
2.6.2 Command Types for Deploy and Update.. 2-7
2.6.3 Support for Module Types ... 2-8
2.6.4 Support for all WebLogic Server Target Types ... 2-8
2.7 The Tools Package... 2-8

iv

2.7.1 weblogic.deploy.api.tools... 2-8
2.7.2 SessionHelper... 2-8
2.7.3 Deployment Plan Creation ... 2-9

3 Configuring Applications for Deployment

3.1 Overview of the Configuration Process... 3-1
3.2 Types of Configuration Information.. 3-2
3.2.1 Java EE Configuration... 3-2
3.2.2 WebLogic Server Configuration .. 3-3
3.2.3 Representing Java EE and WebLogic Server Configuration Information 3-4
3.2.3.1 DDBeans .. 3-4
3.2.4 The Relationship Between Java EE and WebLogic Server Descriptors 3-4
3.2.4.1 DConfigBeans.. 3-5
3.3 Application Evaluation .. 3-5
3.3.1 Obtain a Deployment Manager ... 3-6
3.3.1.1 Types of Deployment Managers .. 3-6
3.3.1.2 Connected and Disconnected Deployment Manager URIs.................................... 3-6
3.3.1.3 Using SessionHelper to Obtain a Deployment Manager.. 3-7
3.3.2 Create a Deployable Object .. 3-8
3.3.2.1 Using the WebLogicDeployableObject class .. 3-8
3.3.2.2 Using SessionHelper to obtain a Deployable Object ... 3-8
3.4 Perform Front-end Configuration .. 3-9
3.4.1 What is Front-end Configuration .. 3-9
3.4.2 Deployment Configuration .. 3-9
3.4.2.1 Example Code .. 3-10
3.4.2.2 Reading In Information with SessionHelper... 3-11
3.4.3 Validating a Configuration.. 3-12
3.5 Customizing Deployment Configuration... 3-12
3.5.1 Modifying Configuration Values ... 3-12
3.5.2 Targets .. 3-15
3.5.3 Application Naming... 3-15
3.6 Deployment Preparation... 3-16
3.7 Session Cleanup ... 3-16

4 Performing Deployment Operations

4.1 Register Deployment Factory Objects.. 4-1
4.2 Allocate a DeploymentManager ... 4-2
4.2.1 Getting a DeploymentManager Object .. 4-2
4.2.2 Understanding DeploymentManager URI Implementations 4-2
4.2.3 Server Connectivity ... 4-3
4.3 Deployment Processing ... 4-3
4.3.1 DeploymentOptions .. 4-4
4.3.2 Distribution... 4-4
4.3.3 Application Start .. 4-4
4.3.4 Application Deploy ... 4-5
4.3.5 Application Stop .. 4-5
4.3.6 Undeployment ... 4-5

v

4.4 Production Redeployment... 4-6
4.4.1 In-Place Redeployment ... 4-6
4.4.2 Module Level Targeting ... 4-6
4.4.3 Retirement Policy... 4-6
4.4.4 Version Support ... 4-7
4.4.5 Administration (Test) Mode... 4-7
4.5 Progress Reporting ... 4-7
4.6 Target Objects .. 4-8
4.6.1 Module Types... 4-9
4.6.2 Extended Module Support ... 4-9
4.6.2.1 Web Services.. 4-9
4.6.2.2 CMP .. 4-9
4.6.2.3 JDBC ... 4-9
4.6.2.4 JMS.. 4-9
4.6.2.5 INTERCEPT.. 4-10
4.6.3 Recognition of Target Types ... 4-10
4.6.4 TargetModuleID Objects ... 4-10
4.6.5 WebLogic Server TargetModuleID Extensions .. 4-10
4.6.6 Example Module Deployment.. 4-11

vi

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Programming Deployment for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

The following sections describe the contents and organization of this guide—
Programming Deployment for Oracle WebLogic Server:

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to This Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "New and Changed Features in This Release"

1.1 Document Scope and Audience
This document is a resource for:

■ Software developers who want to understand the WebLogic Deployment API.
This API adheres to the specifications described in the Java EE Deployment API
standard (JSR-88, see
http://java.sun.com/j2ee/tools/deployment/index.jsp) and extends
the interfaces provided by that standard.

■ Developers and Independent Software Vendors (ISVs) who want to perform
deployment operations programmatically for WebLogic Server applications.

■ System architects who are evaluating WebLogic Server or considering the use of
the WebLogic Deployment API.

■ Design, development, test, and pre-production phases of a software project. It does
not directly address production phase administration, monitoring, or tuning
application performance with the WebLogic Deployment API. The deployment
API includes utilities to make software updates during production but it mirrors
the functionality of the deployment tools already available.

This guide emphasizes:

■ Value-added features of the WebLogic Deployment API.

■ How to manage application deployment using the WebLogic Deployment API.

It is assumed that the reader is familiar with Java EE concepts, the Java EE
Deployment API standard (JSR-88) at
http://www.jcp.org/en/jsr/detail?id=088, the Java programming
language, Enterprise Java Beans (EJBs), and Web technologies.

Guide to This Document

1-2 Programming Deployment for Oracle WebLogic Server

1.2 Guide to This Document
■ This chapter, Chapter 1, "Introduction and Roadmap," describes the organization

and scope of this guide.

■ Chapter 2, "Understanding the WebLogic Deployment API," describes the
packages, interfaces, and classes of the API. This section also includes information
on extensions to the Java EE Deployment API standard (JSR-88, see
http://java.sun.com/j2ee/tools/deployment/index.jsp), utilities,
helper classes, and new concepts for WebLogic Server deployment.

■ Chapter 3, "Configuring Applications for Deployment," describes the process of
preparing an application or deployable resource for deployment to WebLogic
Server.

■ Chapter 4, "Performing Deployment Operations," provides information on the
deployment life cycle and controls for a deployed application.

1.3 Related Documentation
For additional information about deploying applications and modules to WebLogic
Server, see these documents:

■ Developing Applications for Oracle WebLogic Server describes how to deploy
applications during development using the wldeploy Ant task, and provides
information about the WebLogic Server deployment descriptor for enterprise
applications.

■ The WebLogic Server Java EE programming guides describe the Java EE and
WebLogic Server deployment descriptors used with each Java EE application and
module:

■ Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

■ Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server

■ Programming Resource Adapters for Oracle WebLogic Server

■ Getting Started With JAX-WS Web Services for Oracle WebLogic Server

■ Deploying Applications to Oracle WebLogic Server

■ Programming JDBC for Oracle WebLogic Server describes the XML deployment
descriptors for JDBC application modules.

■ Programming JMS for Oracle WebLogic Server describes the XML deployment
descriptors for JMS application modules.

1.4 New and Changed Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

2

Understanding the WebLogic Deployment API 2-1

2Understanding the WebLogic Deployment
API

The WebLogic Deployment API implements and extends the Java EE Deployment API
standard (JSR-88, see
http://java.sun.com/j2ee/tools/deployment/index.jsp) interfaces to
provide specific deployment functionality for WebLogic Server applications. The
following sections describe the structure and functionality of the WebLogic
Deployment API:

■ Section 2.1, "The WebLogic Deployment API"

■ Section 2.2, "Java EE Deployment API Compliance"

■ Section 2.3, "WebLogic Server Value-Added Deployment Features"

■ Section 2.4, "The Service Provider Interface Package"

■ Section 2.5, "The Model Package"

■ Section 2.6, "The Shared Package"

■ Section 2.7, "The Tools Package"

2.1 The WebLogic Deployment API

The following sections provide an overview of the WebLogic Server Deployment API:

■ Section 2.1.1, "WebLogic Deployment API Deployment Phases"

■ Section 2.1.2, "weblogic.Deployer Implementation of the WebLogic Deployment
API"

■ Section 2.1.3, "When to Use the WebLogic Deployment API"

2.1.1 WebLogic Deployment API Deployment Phases
The Java EE Deployment API standard (JSR-88, see
http://java.sun.com/j2ee/tools/deployment/index.jsp) differentiates
between a configuration session and deployment. They are distinguished as follows:

■ Application configuration which involves the generation of descriptors for a
deployment plan

Note: WebLogic Server 9.0 deprecates the use of the
weblogic.management.deploy API used in earlier releases.

The WebLogic Deployment API

2-2 Programming Deployment for Oracle WebLogic Server

■ Deployment tasks such as distributing, starting, stopping, redeploying,
undeploying

In order to effectively manage the deployment process in your environment, you must
use the WebLogic Deployment API to:

■ Section 2.1.1.1, "Configure an Application for Deployment"

■ Section 2.1.1.2, "Deploy an Application"

2.1.1.1 Configure an Application for Deployment
In this document, the term configuration refers to the process of preparing an
application or deployable resource for deployment to a WebLogic Server instance.
Configuring an application consists of the following phases:

■ Application Evaluation—Inspection and evaluation of application files to
determine the structure of the application and content of the embedded
descriptors. See Section 3.3, "Application Evaluation".

■ Front-end Configuration—Creation of configuration information based on
content embedded within the application. This content may be in the form of
WebLogic Server descriptors, defaults, and user provided deployment plans. See
Section 3.4, "Perform Front-end Configuration".

■ Deployment Configuration—Modification of individual WebLogic Server
configuration values based on user inputs and the selected WebLogic Server
targets. See Section 3.5, "Customizing Deployment Configuration".

■ Deployment preparation—Generation of the final deployment plan and
preliminary client-side validation of the application. See Section 3.6, "Deployment
Preparation".

2.1.1.2 Deploy an Application
Application deployment is the process of distributing an application and plan to the
Administration Server for server-side processing and application startup. See
Chapter 4, "Performing Deployment Operations".

2.1.2 weblogic.Deployer Implementation of the WebLogic Deployment API
WebLogic Server provides a packaged deployment tool, weblogic.Deployer, to
provide deployment services for WebLogic Server. Any deployment operation that can
be implemented using the WebLogic Deployment API is implemented, either in part
or in full, by weblogic.Deployer.

2.1.3 When to Use the WebLogic Deployment API

You may need to implement the WebLogic Deployment API in the following cases:

■ You need to model your own implementation and interface with the WebLogic
Service Provider Interface (SPI). In this case, the WebLogic Deployment API
deployment factory is used to obtain a WebLogicDeploymentManager, which

Note: weblogic.Deployer is the recommended deployment tool for the
WebLogic Server environment. See Deploying Applications to Oracle WebLogic
Server for information on how to use weblogic.Deployer and the WebLogic
Server Administration Console.

WebLogic Server Value-Added Deployment Features

Understanding the WebLogic Deployment API 2-3

extends javax.enterprise.deploy.spi.DeploymentManager (see
http://download.oracle.com/javaee/5/api/javax/enterprise/depl
oy/spi/DeploymentManager.html) for use with the
weblogic.deploy.api.spi. See Section 3.3, "Application Evaluation" and the
Java EE Deployment API standard at
http://java.sun.com/j2ee/tools/deployment/index.jsp.

■ You need to create your own deployment interface instead using the WebLogic
Server Administration Console and/or weblogic.Deployer. In this case, you
may implement some or all Section 2.1.1, "WebLogic Deployment API Deployment
Phases" using the WebLogic Deployment API classes and interfaces.

2.2 Java EE Deployment API Compliance
The WebLogic Deployment API classes and interfaces extend and implement the Java
EE Deployment API standard (JSR-88) interfaces, which are described in the
javax.enterprise.deploy sub-packages (see
http://download.oracle.com/javaee/5/api/overview-summary.html).
The WebLogic Deployment API provides the following packages:

■ Section 2.4.1, "weblogic.deploy.api.spi"

■ Section 2.4.2, "weblogic.deploy.api.spi.factories"

■ Section 2.5.1, "weblogic.deploy.api.model"

■ Section 2.6.1, "weblogic.deploy.api.shared"

■ Section 2.7.1, "weblogic.deploy.api.tools"

2.3 WebLogic Server Value-Added Deployment Features
WebLogic supports the "Product Provider" role described in the Java EE Deployment
API standard (JSR-88) at
http://java.sun.com/j2ee/tools/deployment/index.jsp and provides
utilities specific to the WebLogic Server environment in addition to extensible
components for any Java EE network client. These extended features include:

■ Support for WebLogic features, such as starting in admin mode or redeploying
with versioning.

■ Fine grain control, such as:

– Module level targeting

– Partial Redeployment, the redeployment or removal of parts of an application

– Dynamic configuration changes

■ Support of WebLogic module extensions such as JMS, JDBC, Interception, and
Application Specific Configuration (Custom/Configuration) modules.

■ Additional operations, such as the Deploy verb which combines distribute
and start.

Note: The WebLogic Deployment API does not support an automated
fallback procedure for a failed application update. The policy and procedures
for this behavior must be defined and configured by the developers and
administrators for each deployment environment.

The Service Provider Interface Package

2-4 Programming Deployment for Oracle WebLogic Server

2.4 The Service Provider Interface Package
As a Java EE product provider, Oracle extends the javax Service Provider Interface
(SPI) package to provide specific configuration and deployment control for WebLogic
Server. The core interface for this package is the DeploymentManager, from which all
other deployment activities are initiated, monitored, and controlled.

The WebLogicDeploymentManager interface provides WebLogic Server extensions
to the javax.enterprise.deploy.spi.DeploymentManager interface. A
WebLogicDeploymentManager object is a stateless interface for the WebLogic
Server deployment framework. It provides basic deployment features as well as
extended WebLogic Server deployment features such as production redeployment and
partial deployment for modules in an enterprise application. You generally acquire a
WebLogicDeploymentManager object using
SessionHelper.getDeploymentManager method from the SessionHelper
helper class from the Tools package. See Section 3.3, "Application Evaluation".

The following sections provide basic information on the functionality of the WebLogic
Server SPI:

■ Section 2.4.1, "weblogic.deploy.api.spi"

■ Section 2.4.2, "weblogic.deploy.api.spi.factories"

■ Section 2.4.3, "Module Targeting"

■ Section 2.4.4, "Support for Querying WebLogic Target Types"

■ Section 2.4.5, "Server Staging Modes"

■ Section 2.4.6, "DConfigBean Validation"

2.4.1 weblogic.deploy.api.spi
The weblogic.deploy.api.spi package provides the interfaces required to
configure and deploy applications to a target (see Section 2.4.4, "Support for Querying
WebLogic Target Types" for valid target types). This package enables you to create
deployment tools that can implement a WebLogic Server-specific deployment
configuration for an enterprise application or stand-alone module.

weblogic.deploy.api.spi includes the WebLogicDeploymentManager
interface. Use this deployment manager to perform all deployment-related operations
such as distributing, starting, and stopping applications in WebLogic Server. The
WebLogicDeploymentManager also provides important extensions to the Java EE
DeploymentManager interface for features such as module-level targeting for
enterprise application modules, production redeployment, application versioning,
application staging modes, and constraints on Administrative access to deployed
applications.

The WebLogicDeploymentConfiguration and WebLogicDConfigBean classes
in the weblogic.deploy.api.spi package represent the deployment and
configuration descriptors (WebLogic Server deployment descriptors) for an
application.

■ A WebLogicDeploymentConfiguration object is a wrapper for a deployment
plan.

■ A WebLogicDConfigBean encapsulates the properties in WebLogic deployment
descriptors.

The Service Provider Interface Package

Understanding the WebLogic Deployment API 2-5

2.4.2 weblogic.deploy.api.spi.factories
This package contains only one interface, the WebLogicDeploymentFactory. This is
a WebLogic extension to
javax.enterprise.deploy.spi.factories.DeploymentFactory. Use this
factory interface to select and allocate DeploymentManager objects that have
different characteristics. The WebLogicDeploymentManager characteristics are
defined by public fields in the WebLogicDeploymentFactory.

2.4.3 Module Targeting
Module targeting is deploying specific modules in an application to different targets as
opposed to deploying all modules to the same set of targets as specified by JSR-88.
Module targeting is supported by the
WebLogicDeploymentManager.createTargetModuleID methods.

The WebLogicTargetModuleID class contains the WebLogic Server extensions to
the javax.enterprise.deploy.spi.TargetModuleID interface. This class is
closely related to the configured TargetInfoMBeans (AppDeploymentMBean and
SubDeploymentMBean). The WebLogicTargetModuleID class provides more
detailed descriptions of the application modules and their relationship to targets than
those in TargetInfoMBeans. See Section 4.6.1, "Module Types".

2.4.4 Support for Querying WebLogic Target Types
For WebLogic Server, the WebLogicTarget class provides a direct interface for
maintaining the target types available to WebLogic Server. Target accessor methods are
described in Table 2–1.

2.4.5 Server Staging Modes
The staging mode of an application affects its deployment behavior. The application's
staging behavior is set using DeploymentOptions.setStageMode(stage mode)
where the value of stage mode is one of the following:

■ STAGE—Force copying of files to target servers.

■ NO_STAGE—Files are not copied to target servers.

■ EXTERNAL_STAGE—Files are staged manually.

2.4.6 DConfigBean Validation
The property setters in a DConfigBean reject attempts to set invalid values. This
includes property type validation such as attempting to set an integer property to a
non-numeric value. Some properties perform semantic validations, such as ensuring a
maximum value is not smaller than its associated minimum value.

Table 2–1 Target Accessor Methods

Method Description

boolean isCluster() Indicates whether this target represents a cluster target.

boolean isJMSServer() Indicates whether this target represents a JMS server target.

boolean isSAFAgent() Indicates whether this target represents a SAF agent target.

boolean isServer() Indicates whether this target represents a server target.

boolean isVirtualHost() Indicates whether this target represents a virtual host target.

The Model Package

2-6 Programming Deployment for Oracle WebLogic Server

2.5 The Model Package
These classes are the WebLogic Server extensions to and implementations of the
javax.enterprise.deploy.model interfaces (see
http://download.oracle.com/javaee/5/api/javax/enterprise/deploy/
model/package-summary.html). The model interfaces describes the standard
elements, such as deployment descriptors, of a Java EE application.

■ Section 2.5.1, "weblogic.deploy.api.model"

■ Section 2.5.2, "Accessing Deployment Descriptors"

2.5.1 weblogic.deploy.api.model
This package contains the interfaces used to represent the Java EE configuration of a
deployable object. A deployable object is a deployment container for an enterprise
application or stand-alone module.

The WebLogic Server implementation of the javax.enterprise.deploy.model
interfaces enable you to work with applications that are stored in a WebLogic Server
application installation directory, a formal directory structure used for managing
application deployment files, deployments, and external WebLogic deployment
descriptors generated during the configuration process. See "Preparing Applications
and Modules for Deployment" for more information about the layout of an application
installation directory. It supports any Java EE application, with extensions to support
applications residing in an application installation directory.

The WebLogicDeployableObject class and WebLogicDDBean interface in the
weblogic.deploy.api.model package represent the standard deployment
descriptors in an application.

2.5.2 Accessing Deployment Descriptors
Java EE Deployment API dictates that Java EE deployment descriptors be accessed
through a DeployableObject (see
http://download.oracle.com/javaee/5/api/javax/enterprise/deploy/
model/DeployableObject.html). A DeployableObject represents a module in
an application. Elements in the descriptors are represented by DDBeans, one for each
element in a deployment descriptor. The root element of a descriptor is represented by
a DDBeanRoot object. All of these interfaces are implemented in corresponding
interfaces and classes in this package.

The WebLogicDeployableObject class, which is the WebLogic Server
implementation of DeployableObject, provides the createDeployableObject
methods, which create the WebLogicDeployableObject and WebLogicDDBean for
the application's deployment descriptors. Basic configuration tasks are accomplished
by associating the WebLogicDDBean with a WebLogicDConfigBean, which
represent the server configuration properties required for deploying the application on
a WebLogic Server. See Section 3.3, "Application Evaluation".

Note: weblogic.deploy.api.model does not support dynamic changes
to Java EE deployment descriptor elements during configuration and therefore
does not support registration and removal of XPath listeners.
DDBean.addXPathListener and removeXPathListener are not
supported.

The Shared Package

Understanding the WebLogic Deployment API 2-7

Unlike a DConfigBean, which contain configuration information specifically for a
server environment (in this case WebLogic Server instance), a DDBean object takes in
the general deployment descriptor elements for the application. For example, if you
were deploying a Web application, the deployment descriptors in WebLogicDDBeans
come from WEB-INF/web.xml file in the .war archive. The information for the
WebLogicDConfigBeans would come from WEB-INF/weblogic.xml in the .war
archive based on the WebLogicDDBeans. Though they serve the same fundamental
purpose of holding configuration information, they are logically separate as a DDBean
describes the application while a DConfigBeans configures the application for a
specific environment.

Both of these objects are generated during the initiation of a configuration session. The
WebLogicDeployableObject, WebLogicDDBeans, and WebLogicDConfigBeans
are all instantiated and manipulated in a configuration session. See Section 3.1,
"Overview of the Configuration Process".

2.6 The Shared Package
The following sections provide information on classes that represent WebLogic
Server-specific deployment commands, module types, and target types as classes:

■ Section 2.6.1, "weblogic.deploy.api.shared"

■ Section 2.6.2, "Command Types for Deploy and Update"

■ Section 2.6.3, "Support for Module Types"

■ Section 2.6.4, "Support for all WebLogic Server Target Types"

2.6.1 weblogic.deploy.api.shared
The weblogic.deploy.api.shared package provides classes that represent the
WebLogic Server-specific deployment commands, module types, and target types as
classes. These objects can be shared by Section 2.5.1, "weblogic.deploy.api.model" and
Section 2.4.1, "weblogic.deploy.api.spi" packages.

The definitions of the standard javax.enterprise.deploy.shared classes
ModuleType and CommandType are extended to provide support for:

■ The module type, see Section 2.6.3, "Support for Module Types"

■ Commands, see Section 2.6.2, "Command Types for Deploy and Update"

The WebLogicTargetType class, which is not required by the Java EE Deployment
API standard (JSR-88, see
http://java.sun.com/j2ee/tools/deployment/index.jsp), enumerates the
different types of deployment targets supported by WebLogic Server. This class does
not extend a javax deployment class. See Section 2.6.4, "Support for all WebLogic
Server Target Types".

2.6.2 Command Types for Deploy and Update
The deploy and update command types are added to the required command types
defined in the javax.enterprise.spi.shared package and are available to a
WebLogicDeploymentManager.

The Tools Package

2-8 Programming Deployment for Oracle WebLogic Server

2.6.3 Support for Module Types
Supported module types include JMS, JDBC, Interception, WSEE, Config, and WLDF.
These are defined in the weblogic.deploy.api.shared.WebLogicModuleType
class as fields.

2.6.4 Support for all WebLogic Server Target Types
Targets, which were not implemented in the Java EE Deployment API specification,
are implemented in the WebLogic Deployment API. The valid target values are:

■ Cluster

■ JMS Server

■ SAF (Store-and-Forward) Agent

■ Server

■ Virtual Host

These are enumerated field values in the
weblogic.deploy.api.shared.WebLogicTargetType class.

2.7 The Tools Package
The following sections provide information on API tools you can use to perform
common deployment tool tasks with a minimum number of controls and explicit
object manipulations:

■ Section 2.7.1, "weblogic.deploy.api.tools"

■ Section 2.7.2, "SessionHelper"

■ Section 2.7.3, "Deployment Plan Creation"

2.7.1 weblogic.deploy.api.tools
The weblogic.deploy.api.tools package provides convenience classes that can
help you:

■ Obtain a WebLogicDeploymentManager

■ Populate a configuration for an application

■ Create a new or updated deployment plan

The classes in the tools package are not extensions of the Java EE Deployment API
standard (JSR-88, see
http://java.sun.com/j2ee/tools/deployment/index.jsp) interfaces. They
provide easy access to deployment operations provided by the WebLogic Deployment
API.

2.7.2 SessionHelper
Although configuration sessions can be controlled from a
WebLogicDeploymentManager directly, SessionHelper provides simplified
methods. If your tools code directly to the WebLogic Server Java EE Deployment API
implementation, you should always use SessionHelper.

Use SessionHelper to obtain a WebLogicDeploymentManager with one method
call. To do this effectively, it must be able to locate the application. The

The Tools Package

Understanding the WebLogic Deployment API 2-9

SessionHelper views an application and deployment plan artifacts using an "install
root" abstraction, which ideally is the actual organization of the application. The install
root appears as follows:

install-root (eg myapp)
-- app
----- archive (eg myapp.ear)
-- plan
----- deployment plan (eg plan.xml)
----- external descriptors (eg META-INF/weblogic-application.xml...)

There is no requirement to mandate that this structure be used for applications. It is a
preferred approach because it serves to keep the application and its configuration
artifacts under a common root and provides SessionHelper with a format it can
interpret.

SessionHelper.getModuleInfo() returns an object that is useful for
understanding the structure of an application without having to work directly with
DDBeans and DeployableObjects. It provides such information as:

■ Names and types of modules and submodules in the application

■ Names of Web services provided by the application

■ Context roots for Web applications

■ Names of enterprise beans in an EJB

Internally, the deployment descriptors are represented as descriptor bean trees and
trees of typed Java Bean objects that represent the individual descriptor elements.
These bean trees are easier to work with than the more generic DDBean and
DConfigBean objects. The descriptor bean trees for each module are directly
accessible from the associated WebLogicDDBeanRoot and
WebLogicDConfigBeanRoot objects for each module using their
getDescriptorBean methods. Modifying the bean trees obtained from a
WebLogicDConfigBean has the same effect as modifying the associated
DConfigBean, and therefore the application's deployment plan.

2.7.3 Deployment Plan Creation
weblogic.PlanGenerator creates a deployment plan template based on the Java
EE and WebLogic Server descriptors included in an application. The resulting plan
describes the application structure, identifies all deployment descriptors, and exports a
subset of the application's configurable properties. Export properties to expose them to
tools like the WebLogic Server console which then uses the plan to assist the
administrator in providing appropriate values for those properties. By default, the
weblogic.PlanGenerator tool only exports application dependencies; those
properties required for a successful deployment. This behavior can be overridden
using of the following options:

■ Dependencies: Export resources referenced by the application (default)

■ Declarations: Export resources defined by the application

■ Configurables: Export non-resource oriented configurable properties

■ Dynamics: Export properties that may be changed in a running application

■ All: Export all changeable properties

■ None: Export no properties

The Tools Package

2-10 Programming Deployment for Oracle WebLogic Server

3

Configuring Applications for Deployment 3-1

3Configuring Applications for Deployment

In the context of this document, configuration is the process of preparing an
application or deployable resource for deployment to a WebLogic Server instance.
Most configuration information for an application is provided in its deployment
descriptors. Certain elements in these descriptors refer to external objects and may
require special handling depending on the server vendor. WebLogic Server uses
descriptor extensions—WebLogic Server specific deployment descriptors. The
mapping between standard descriptors and WebLogic Server descriptors is managed
using DDBeans and DConfigBeans.

The following sections describe how to configure an application for deployment using
the WebLogic Deployment API:

■ Section 3.1, "Overview of the Configuration Process"

■ Section 3.2, "Types of Configuration Information"

■ Section 3.3, "Application Evaluation"

■ Section 3.4, "Perform Front-end Configuration"

■ Section 3.5, "Customizing Deployment Configuration"

■ Section 3.6, "Deployment Preparation"

■ Section 3.7, "Session Cleanup"

3.1 Overview of the Configuration Process
This section provides information on the basic steps a deployment tool must
implement to configure an application for deployment:

1. Application Evaluation—Inspection and evaluation of application files to
determine the structure of the application and content of the embedded
descriptors.

■ Initialize a deployment session by obtaining a
WebLogicDeploymentManager. See Section 3.3, "Application Evaluation".

■ Create a WebLogicJ2eeApplicationObject or
WebLogicDeployableObject to represent the Java EE configuration of an
enterprise application (EAR) or stand-alone module (WAR, EAR, RAR, or
CAR). If the object is an EAR, child objects are generated. See Java EE
Deployment API standard (JSR-88) at
http://java.sun.com/j2ee/tools/deployment/index.jsp and
Section 3.3.2, "Create a Deployable Object".

Types of Configuration Information

3-2 Programming Deployment for Oracle WebLogic Server

2. Front-end Configuration—Creation of configuration information based on
content embedded within the application. This content may be in the form of
WebLogic Server descriptors, defaults, and user provided deployment plans.

■ Create a WebLogicDeploymentConfiguration object to represent the
WebLogic Server configuration of an application. This is the first step in
creating a deployment plan for this object. See Section 3.4.2, "Deployment
Configuration".

■ Restore existing WebLogic Server configuration values from an existing
deployment plan, if available. See Section 3.4, "Perform Front-end
Configuration".

3. Deployment Configuration—Modification of individual WebLogic Server
configuration values based on user inputs and the selected WebLogic Server
targets.

A deployment tool must provide the ability to modify individual WebLogic Server
configuration values based on user inputs and selected WebLogic Server targets.
See Section 3.5, "Customizing Deployment Configuration".

4. Deployment Preparation—Generation of the final deployment plan and
preliminary client-side validation of the application.

A deployment tool must have the ability to save the modified WebLogic Server
configuration information to a new deployment plan or to variable definitions in
an existing Deployment Plan.

3.2 Types of Configuration Information
The following sections provide background information on the types of configuration
information, how it is represented, and the relationship between Java EE and
WebLogic Server descriptors:

■ Section 3.2.1, "Java EE Configuration"

■ Section 3.2.2, "WebLogic Server Configuration"

■ Section 3.2.3, "Representing Java EE and WebLogic Server Configuration
Information"

■ Section 3.2.4, "The Relationship Between Java EE and WebLogic Server
Descriptors"

3.2.1 Java EE Configuration
The Java EE configuration for an application defines the basic semantics and run-time
behavior of the application, as well as the external resources that are required for the
application to function. This configuration information is stored in the standard Java
EE deployment descriptor files associated with the application, as listed in Table 3–1.

Table 3–1 Standard Java EE Deployment Descriptors

Application or Standalone Module Java EE Descriptor

Enterprise Application META-INF/application.xml

Web Application WEB-INF/web.xml

Enterprise JavaBean META-INF/ejb.xml

Resource Adapter META-INF/ra.xml

Types of Configuration Information

Configuring Applications for Deployment 3-3

Complete and valid Java EE deployment descriptors are a required input to any
application configuration session.

Because the Java EE configuration controls the fundamental behavior of an
application, the Java EE descriptors are typically defined only during the application
development phase, and are not modified when the application is later deployed to a
different environment. For example, when you deploy an application to a testing or
production domain, the application's behavior (and therefore its Java EE
configuration) should remain the same as when application was deployed in the
development domain. See Section 3.4, "Perform Front-end Configuration" for more
information.

3.2.2 WebLogic Server Configuration
The WebLogic Server descriptors provide for enhanced features, resolution of external
resources, and tuning associated with application semantics. Applications may or may
not have these descriptors embedded in the application. The WebLogic Server
configuration for an application:

■ Binds external resource names to resource definitions in the Java EE deployment
descriptor so that the application can function in a given WebLogic Server domain

■ Defines tuning parameters for the application containers

■ Provides enhanced features for Java EE applications and stand-alone modules

The attributes and values of a WebLogic Server configuration are stored in the
WebLogic Server deployment descriptor files, as shown in Table 3–2.

Because different WebLogic Server domains provide different types of external
resources and different levels of service for the application, the WebLogic Server
configuration for an application typically changes when the application is deployed to
a new environment. For example, a production staging domain might use a different
database vendor and provide more usable memory than a development domain.
Therefore, when moving the application from development to the staging domain, the
application's WebLogic Server descriptor values need to be updated in order to make
use of the new database connection and available memory.

The primary job of a deployment configuration tool is to ensure that an application's
WebLogic Server configuration is valid for the selected WebLogic targets.

Client Application Archive META-INF/application-client.xml

Table 3–2 WebLogic Server Deployment Descriptors

Application or Standalone Module WebLogic Server Descriptor

Enterprise Application META-INF/weblogic-application.xml

Web Application WEB-INF/weblogic.xml

Enterprise JavaBean META-INF/weblogic-ejb-jar.xml

Resource Adapter META-INF/weblogic-ra.xml

Client Archive META-INF/weblogic-appclient.xml

Table 3–1 (Cont.) Standard Java EE Deployment Descriptors

Application or Standalone Module Java EE Descriptor

Types of Configuration Information

3-4 Programming Deployment for Oracle WebLogic Server

3.2.3 Representing Java EE and WebLogic Server Configuration Information
Both the Java EE deployment descriptors and any available WebLogic Server
descriptors are used as inputs to the application configuration process. You use the
deployment API to represent both the Java EE configuration and WebLogic Server
configuration as Java objects.

The Java EE configuration for an application is obtained by creating either a
WebLogicJ2eeApplicationObject for an EAR, or a
WeblogicDeployableObject for a stand-alone module. (A
WebLogicJ2eeApplicationObject contains multiple DeployableObject
instances to represent individual modules included in the EAR.)

Each WebLogicJ2eeApplicationObject or WeblogicDeployableObject
contains a DDBeanRoot to represent a corresponding Java EE deployment descriptor
file. Java EE descriptor properties for EARs and modules are represented by one or
more DDBean objects that reside beneath the DDBeanRoot. DDBean components
provide standard getter methods to access individual deployment descriptor
properties, values, and nested descriptor elements.

3.2.3.1 DDBeans
DDBeans are described by the javax.enterprise.deploy.model package. These
objects provide a generic interface to elements in standard deployment descriptors,
but can also be used as an XPath based mechanism to access arbitrary XML files that
follow the basic form of the standard descriptors. Examples of such files would be
WebLogic Server descriptors and Web services descriptors.

The DDBean representation of a descriptor is a tree of DDBeans, with a specialized
DDBean, a DDBeanRoot, at the root of the tree. DDBeans provide accessors for the
element name, ID attribute, root, and text of the descriptor element they represent.

The DDBeans for an application are populated by the model plug-in, the tool provider
implementation of javax.enterprise.deploy.model. An application is
represented by the DeployableObject interface. The WebLogic Server
implementation of this interface is a public class,
weblogic.deploy.api.model.WebLogicDeployableObject. A WebLogic Server based
deployment tool acquires an instance of WebLogicDeployableObject object for an
application using the createDeployableObject factory methods. This results in
the DDBean tree for the application being created and populated by the elements in the
Java EE descriptors embedded in the application. If the application is an EAR, multiple
WebLogicDeployableObject objects are created. The root
WebLogicDeployableObject, extended as WebLogicJ2eeApplicationObject,
would represent the EAR module, with its child WebLogicDeployableObject
instances being the modules contained within the application, such as WARs, EJBs,
RARs and CARs.

3.2.4 The Relationship Between Java EE and WebLogic Server Descriptors
Java EE descriptors and WebLogic Server descriptors are directly related in the
configuration of external resources. A Java EE descriptor defines the types of resources
that the application requires to function, but it does not identify the actual resource
names to use. The WebLogic Server descriptor binds the resource definition in the Java
EE descriptor name to the name of an actual resource in the target domain.

The process of binding external resources is a required part of the configuration
process. Binding resources to the target domain ensures that the application can locate
resources and successfully deploy.

Application Evaluation

Configuring Applications for Deployment 3-5

Java EE descriptors and WebLogic Server descriptors are also indirectly related in the
configuration of tuning parameters for WebLogic Server. Although no elements in the
standard Java EE descriptors require tuning parameters to be set in WebLogic Server,
the presence of individual descriptor files indicates which tuning parameters are of
interest during the configuration of an application. For example, although the
ejb.xml descriptor does not contain elements related to tuning the WebLogic Server
EJB container, the presence of an ejb.xml file in the Java EE configuration indicates
that tuning properties can be configured before deployment.

3.2.4.1 DConfigBeans
DConfigBeans (config beans) are the objects used to convey server configuration
requirements to a deployment tool, and are also the primary source of information
used to create deployment plans. Config beans are Java Beans and can be introspected
for their properties. They also provide basic property editing capabilities.

DConfigBeans are created from information in embedded WebLogic Server
descriptors, deployment plans, and input from an IDE deployment tool.

A DConfigBean is potentially created for every weblogic Descriptor element that is
associated with a dependency of the application. Descriptors are entities that describe
resources that are available to the application, represented by a JNDI name provided
by the server.

Descriptors are parsed into memory as a typed bean tree while setting up a
configuration session. The DConfigBean implementation classes delegate to the
WebLogic Server descriptor beans. Only beans with dependency properties, such as
resource references, have a DConfigBean. The root of descriptor always has a
DConfigBeanRoot.

Bean Property accessors return a child DConfigBean for elements that require
configuration or a descriptor bean for those that do not. Property accessors return data
from the descriptor beans.

Modifications to bean properties result in plan overrides. Plan overrides for existing
descriptors are handled using variable assignments. If the application does not come
with the relevant WebLogic Server descriptors, they are automatically created and
placed in an external plan directory. For external deployment descriptors, the change
is made directly to the descriptor. Embedded descriptors are never modified on disk.

3.3 Application Evaluation
Application evaluation consists of obtaining a deployment manager and a deployable
object container for your application. Use the following steps:

1. Obtain a deployment factory class by specifying its name,
weblogic.deployer.spi.factories.internal.DeploymentFactoryImp
l.

2. Register the factory class with a
javax.enterprise.deploy.spi.DeploymentFactoryManager instance.

For instance:

Class WlsFactoryClass =
Class.forname("weblogic.deployer.spi.factories.internal.DeploymentFactoryImpl")
;
DeploymentFactory myDeploymentFactory =
 (DeploymentFactory) WlsFactoryClass.newInstance();
DeploymentFactoryManager.getInstance().registerDeploymentFactory(myDeploymentFa

Application Evaluation

3-6 Programming Deployment for Oracle WebLogic Server

ctory);

3. Section 3.3.1, "Obtain a Deployment Manager"

4. Section 3.3.2, "Create a Deployable Object"

3.3.1 Obtain a Deployment Manager
The following sections provide information on how to obtain a deployment manager:

■ Section 3.3.1.1, "Types of Deployment Managers"

■ Section 3.3.1.2, "Connected and Disconnected Deployment Manager URIs"

■ Section 3.3.1.3, "Using SessionHelper to Obtain a Deployment Manager"

3.3.1.1 Types of Deployment Managers
WebLogic Server provides a single implementation for
javax.enterprise.deploy.spi.DeploymentManager that behaves differently
depending on the URI specified when instantiating the class from a factory. WebLogic
Server provides two basic types of deployment manager:

■ A disconnected deployment manager has no connection to a WebLogic Server
instance. Use a disconnected deployment manager to configure an application on
a remote client machine. It cannot be used it to perform deployment operations.
(For example, a deployment tool cannot use a disconnected deployment manager
to distribute an application.)

■ A connected deployment manager has a connection to the Administration Server for
the WebLogic Server domain, and by a deployment tool to both to configure and
deploy applications.

A connected deployment manager is further classified as being either local to the
Administration Server, or running on a remote machine that is connected to the
Administration Server. The local or remote classification determines whether file
references are treated as being local or remote to the Administration Server.

Table 3–3 summarizes deployment manager types.

3.3.1.2 Connected and Disconnected Deployment Manager URIs
Each DeploymentManager obtained from the WebLogicDeploymentFactory
supports WebLogic Server extensions. When creating deployment tools, obtain a
specific type of deployment manager by calling the correct method on the deployment
factory instance and supplying a string constant defined in
weblogic.deployer.spi.factories.WebLogicDeploymentFactory that
describes the type of deployment manager required. Connected deployment managers

Table 3–3 WebLogic Server Deployment Manager Usage

Deployment
Manager
Connectivity Type Usage Notes

Disconnected n/a Configuration tools only Cannot perform deployment operations

Connected Local Configuration and deployment tools
local to the Administration Server

All files are local to the Administration
Server machine

Remote Configuration and Deployment for
Tools on a remote machine (not on the
Administration Server)

Distribution and Deployment
operations cause local files to be
uploaded to the Administration Server

Application Evaluation

Configuring Applications for Deployment 3-7

require a valid server URI and credentials to the method in order to obtain a
connection to the Administration Server.

Table 3–4 summarizes the method signatures and constants used to obtain the different
types of deployment managers.

The sample code in Example 3–1 shows how to obtain a disconnected deployment
manager.

Example 3–1 Obtaining a Disconnected Deployment Manager

Class WlsFactoryClass =
Class.forname("weblogic.deployer.spi.factories.internal.DeploymentFactoryImpl");
DeploymentFactory myDeploymentFactory = (DeploymentFactory) WlsFactoryClass.newInstance();
DeploymentFactoryManager.getInstance().registerDeploymentFactory(myDeploymentFactory);
WebLogicDeploymentManager myDisconnectedManager =
(WebLogicDeploymentManager)myDeploymentFactory.getDisconnectedDeploymentManager(WebLogicDeploymentF
actory.LOCAL_DM_URI);

The deployment factory contains a helper method, createUri() to help you form
the URI argument for creating connected deployment managers. For example, to
create a disconnected remote deployment manager, replace the final line of code with:

(WebLogicDeploymentManager)myDeploymentFactory.getDeploymentManager(myDeploymentFactory.createUri(W
ebLogicDeploymentFactory.REMOTE_DM_URI, "localhost", "7001", "weblogic", "weblogic"));

3.3.1.3 Using SessionHelper to Obtain a Deployment Manager
The SessionHelper helper class provides several convenience methods to help you
easily obtain a deployment manager without manually creating and registering the
deployment factories as shown in Example 3–1. The SessionHelper code required
to obtain a disconnected deployment manager consists of a single line:

Table 3–4 URIs for Obtaining a WebLogic Server Deployment Manager

Type of
Deployment
Manager Method Argument

disconnected getDisconnectedDeployment
Manager()

String value of
WebLogicDeploymentFactory.LOCAL_DM_URI

connected, local getDeploymentManager() URI consisting of:

■ WebLogicDeploymentFactory.LOCAL_DM_
URI

■ Administration Server host name

■ Administration Server port

■ Administrator username

■ Administrator password

connected, remote getDeploymentManager() URI consisting of:

■ WebLogicDeploymentFactory.REMOTE_DM_
URI

■ Administration Server host name

■ Administration Server port

■ Administrator username

■ Administrator password

Application Evaluation

3-8 Programming Deployment for Oracle WebLogic Server

 DeploymentManager myDisconnectedManager =
SessionHelper.getDisconnectedDeploymentManager();

You can use the SessionHelper to obtain a connected deployment manager, as
shown below:

 DeploymentManager myConnectedManager =
SessionHelper.getDeploymentManager("adminhost", "7001", "weblogic", "weblogic"));

This method assumes a remote connection to an Administration Server (adminhost).
See the Javadocs for more information about SessionHelper.

3.3.2 Create a Deployable Object
The following sections provide information on how to create a deployable object,
which is the container your deployment tool uses to deploy applications. Once you
have initialized a configuration session by Section 3.3.1, "Obtain a Deployment
Manager", create a deployable object for your deployment tool in one of the following
ways:

■ Section 3.3.2.1, "Using the WebLogicDeployableObject class"

■ Section 3.3.2.2, "Using SessionHelper to obtain a Deployable Object"

3.3.2.1 Using the WebLogicDeployableObject class
The direct approach uses the WebLogicDeployableObject class of the model
package as shown below:

 WebLogicDeployableObject myDeployableObject =
WebLogicDeployableObject.createWebLogicDeployableObject("myAppFileName");

Once the deployable object is created, a configuration can be created for the
applications deployment.

3.3.2.2 Using SessionHelper to obtain a Deployable Object
The SessionHelper helper class provides a convenient method to obtain a
deployable object. The SessionHelper code required to obtain a deployable object is
shown below:

 SessionHelper.setApplicationRoot(root);
 WebLogicDeployableObject myDeployableObject =
SessionHelper.getDeployableObject();

There is no application specified in the getDeployableObject() call.
SessionHelper uses the application in the root directory set by
setApplicationRoot(). Once the application root directory is set,
SessionHelper can be used to perform other operations, such as explicitly naming
the dispatch file location or the deployment plan location.

You can also set the application file name using the setApplication method as
shown below:

SessionHelper.setApplication(AppFileName);

This method allows you to continue using SessionHelper independent of the
directory structure. The getDeployableObject method returns the application
specified.

Perform Front-end Configuration

Configuring Applications for Deployment 3-9

3.4 Perform Front-end Configuration
Front-end configuration involves creating a WebLogicDeploymentPlan and
populating it and its associated bean trees with configuration information:

■ Section 3.4.1, "What is Front-end Configuration"

■ Section 3.4.2, "Deployment Configuration"

■ Section 3.4.3, "Validating a Configuration"

3.4.1 What is Front-end Configuration
Front-end configuration phase consists of two logical operations:

■ Loading information from a deployment plan to a deployment configuration. If a
deployment configuration does not yet exist, this includes creating a
WebLogicDeploymentConfiguration object to represent the WebLogic Server
configuration of an application. This is the first step in the process of process of
creating a deployment plan for this object.

■ Restoring any existing WebLogic Server configuration values from an existing
deployment plan.

A deployment tool must be able to:

■ Extract information from a deployment configuration. The deployment
configuration is the active Java object that is used by the Deployment Manager to
obtain configuration information. The deployment plan exists outside of the
application so that it can be changed without manipulating the application.

A deployment plan is an XML document that contains the environmental
configuration for an application and is sometimes referred to as an application's
front-end configuration. A deployment plan:

■ Separates the environment specific details of an application from the logic of the
application.

■ Is not required for every application. However, a deployment plan typically exists
for each environment an application is deployed to.

■ Describes the application structure, such as what modules are in the application.

■ Allows developers and administrators to update the configuration of an
application without modifying the application archive.

■ Contains environment-specific descriptor override information (tunables). By
modifying a deployment plan, you can provide environment specific values for
tunable variables in an application.

3.4.2 Deployment Configuration
The server configuration for an application is encapsulated in the
javax.enterprise.deploy.spi.DeploymentConfiguration interface. A
DeploymentConfiguration provides an object representation of a deployment
plan. A DeploymentConfiguration is associated with a DeployableObject
using the DeploymentManager.createConfiguration method. Once a
DeploymentConfiguration object is created, a DConfigBean tree representing the
configurable and tunable elements contained in any and all WebLogic Server
descriptors is available. If there are no WebLogic Server descriptors for an application,
then a DConfigBean tree is created using available default values. Binding properties
that have no defaults are left unset.

Perform Front-end Configuration

3-10 Programming Deployment for Oracle WebLogic Server

When creating a deployment tool, you must ensure that the DConfigBean tree is fully
populated before the tool distributes an application.

3.4.2.1 Example Code
The following code provides an example on how to populate DConfigBeans:

Example 3–2 Example Code to Populate DConfigBeans

public class DeploymentSession {
 DeploymentManager dm;
 DeployableObject dObject = null;
 DeploymentConfiguration dConfig = null;
 Map beanMap = new HashMap();
.
.
.
 // Assumes app is a Web app.
 public void initializeConfig(File app) throws Throwable {
 /**
 * Init the wrapper for the DDBeans for this module. This example assumes
 * it is using the WLS implementation of the model api.
 */
 dObject= WebLogicDeployableObject.createDeployableObject(app);
 //Get basic configuration for the module
 dConfig = dm.createConfiguration(dObject);
 /**
 * At this point the DeployableObject is populated. Populate the
 * DeploymentConfigurationbased on its content.
 * We first ask the DeployableObject for its root.
 */
 DDBeanRoot root = dObject.getDDBeanRoot();
 /**
 * The root DDBean is used to start the process of identifying the
 * necessary DConfigBeans for configuring this module.
 */
 System.out.println("Looking up DCB for "+root.getXpath());
 DConfigBeanRoot rootConfig = dConfig.getDConfigBeanRoot(root);
 collectConfigBeans(root, rootConfig);
 /**
 * The DeploymentConfiguration is now initialized, although not necessarily
 * completely setup.
 */
 FileOutputStream fos = new FileOutputStream("test.xml");
 dConfig.save(fos);

 }

 // bean and dcb are a related DDBean and DConfigBean.
 private void collectConfigBeans(DDBean bean, DConfigBean dcb) throws Throwable{
 DConfigBean configBean;
 DDBean[] beans;
 if (dcb == null) return;
 /**
 * Maintain some sort of mapping between DDBeans and DConfigBeans
 * for later processing.
 */
 beanMap.put(bean,dcb);
 /**
 * The config bean advertises xpaths into the web.xml descriptor it

Perform Front-end Configuration

Configuring Applications for Deployment 3-11

 * needs to know about.
 */
 String[] xpaths = dcb.getXpaths();
 if (xpaths == null) return;
 /**
 * For each xpath get the associated DDBean and collect its associated
 * DConfigBeans. Continue this recursively until we have all DDBeans and
 * DConfigBeans collected.
 */
 for (int i=0; i<xpaths.length; i++) {
 beans = bean.getChildBean(xpaths[i]);
 for (int j=0; j<beans.length; j++) {
 /**
 * Init the DConfigBean associated with each DDBean
 */
 System.out.println("Looking up DCB for "+beans[j].getXpath());
 configBean = dcb.getDConfigBean(beans[j]);
 collectConfigBeans(beans[j], configBean);
 }
 }

This example merely iterates through the DDBean tree, requesting the DConfigBean
for each DDBean to be instantiated.

DeploymentConfiguration objects may be persisted as deployment plans using
DeploymentConfiguration.save(). A deployment tool may allow the user to
import a saved deployment plan into the DeploymentConfiguration object
instead of populating it from scratch. DeploymentConfiguration.restore()
provides this capability. This supports the idea of having a repository of deployment
plans for an application, with different plans being applicable to different
environments.

Similarly the DeploymentConfiguration may be pieced together using partial
plans, which were presumably saved in a repository from a previous configuration
session. A partial plan maps to a module-root of a DConfigBean tree.
DeploymentConfiguration.saveDConfigBean() and
DeploymentConfiguration.restoreDConfigBean() provide this capability.

Parsing of the WebLogic Server descriptors in an application occurs automatically
when a DeploymentConfiguration is created. The descriptors ideally conform to
the most current schema. For older applications that include descriptors based on
WebLogic Server 8.1 and earlier DTDs, a transformation is performed. Old descriptors
are supported but they cannot be modified using a deployment plan. Therefore, any
DOCTYPE declarations must be converted to name space references and element
specific transformations must be performed.

3.4.2.2 Reading In Information with SessionHelper
SessionHelper.initializeConfiguration processes all standard and
WebLogic Server descriptors in the application.

Prior to invoking initializeConfiguration, you can specify an existing
deployment plan to associate with the application using the
SessionHelper.setPlan() method. With a plan set, you can read in a deployment
plan using the DeploymentConfiguration.restore() method. In addition, the
DeploymentConfiguration.initializeConfiguration() method
automatically restores configuration information once a plan is set.

Customizing Deployment Configuration

3-12 Programming Deployment for Oracle WebLogic Server

When initiating a configuration session with the SessionHelper class, you can easily
initiate and fill a deploymentConfiguration object with deployment plan
information as illustrated below:

 DeploymentManager dm = SessionHelper.getDisconnectedDeploymentManager();
 SessionHelper helper = SessionHelper.getInstance(dm);
 // specify location of archive
 helper.setApplication(app);
 // specify location of existing deployment plan
 helper.setPlan(plan);
 // initialize the configuration session
 helper.initializeConfiguration();
 DeploymentConfiguration dc = helper.getConfiguration();

The above code produces the deployment configuration and its associated
WebLogicDDBeanTree.

3.4.3 Validating a Configuration
Validation of the configuration occurs mostly during the parsing of the descriptors
which occurs when an application's descriptors are processed. Validation consists of
ensuring the descriptors are valid XML documents and that the descriptors conform to
their respective schemas.

3.5 Customizing Deployment Configuration
The Customizing Deployment Configuration phase involves modifying individual
WebLogic Server configuration values based on user inputs and the selected WebLogic
Server targets.

■ Section 3.5.1, "Modifying Configuration Values"

■ Section 3.5.2, "Targets"

■ Section 3.5.3, "Application Naming"

3.5.1 Modifying Configuration Values
In this phase, a configuration is only as good as the descriptors or pre-existing plan
associated with the application. The DConfigBeans are designed as Java Beans and
can be introspected, allowing a tool to present their content in some meaningful way.
The properties of a DConfigBean are, for the most part, those that are configurable.
Key properties (those that provide uniqueness) are also exposed. Setters are only
exposed on those properties that can be safely modified. In general, properties that
describe application behavior are not modifiable. All properties are typed as defined
by the descriptor schemas.

The property getters return subordinate DConfigBeans, arrays of DConfigBeans,
descriptor beans, arrays of descriptor beans, simple values (primitives and
java.lang objects), or arrays of simple values. Descriptor beans represent descriptor
elements that, while modifiable, do not require DConfigBean features, meaning there
are no standard descriptor elements they are directly related to. Editing a
configuration is accomplished by invoking the property setters.

The Java JSR-88 DConfigBean class allows a tool to access beans using the
getDConfigBean(DDBean) method or introspection. The former approach is
convenient for a tool that presents the standard descriptor based on the DDBeans in
the application's DeployableObject and provides direct access to each DDBean's
configuration (its DConfigBean). This provides configuration of the essential resource

Customizing Deployment Configuration

Configuring Applications for Deployment 3-13

requirements an application may have. Introspection allows a tool to present the
application's entire configuration, while highlighting the required resource
requirements.

Introspection is required in both approaches in order to present or modify descriptor
properties. The difference is in how a tool presents the information:

■ Driven by standard descriptor content or

■ WebLogic Server descriptor content.

A system of modifying configuration information must include a user interface to ask
for configuration changes. See Example 3–3.

Example 3–3 Code Example to Modify Configuration Information

.

.

.
// Introspect the DConfigBean tree and ask for input on properties with setters
 private void processBean(DConfigBean dcb) throws Exception {
 if (dcb instanceof DConfigBeanRoot) {
 System.out.println("Processing configuration for descriptor:
"+dcb.getDDBean().getRoot().getFilename());
 }
 // get property descriptor for the bean
 BeanInfo info =
 Introspector.getBeanInfo(dcb.getClass(),Introspector.USE_ALL_BEANINFO);
 PropertyDescriptor[] props = info.getPropertyDescriptors();
 String bean = info.getBeanDescriptor().getDisplayName();
 PropertyDescriptor prop;
 for (int i=0;i<props.length;i++) {
 prop = props[i];
 // only allow primitives to be updated
 Method getter = prop.getReadMethod();
 if (isPrimitive(getter.getReturnType())) // see isPrimitive method below
 {
 writeProperty(dcb,prop,bean); //see writeProperty method below
 }
 // recurse on child properties
 Object child = getter.invoke(dcb,new Object[]{});
 if (child == null) continue;
 // traversable if child is a DConfigBean.
 Class cc = child.getClass();
 if (!isPrimitive(cc)) {
 if (cc.isArray()) {
 Object[] cl = (Object[])child;
 for (int j=0;j<cl.length;j++) {
 if (cl[j] instanceof DConfigBean) processBean((DConfigBean) cl[j]);
 }
 } else {
 if (child instanceof DConfigBean) processBean((DConfigBean) child);
 }
 }
 }
 }

 // if the property has a setter then invoke it with user input
 private void writeProperty(DConfigBean dcb, PropertyDescriptor prop, String bean)
 throws Exception {
 Method getter = prop.getReadMethod();

Customizing Deployment Configuration

3-14 Programming Deployment for Oracle WebLogic Server

 Method setter = prop.getWriteMethod();
 if (setter != null) {
 PropertyEditor pe =
 PropertyEditorManager.findEditor(prop.getPropertyType());
 if (pe == null &&
String[].class.isAssignableFrom(getter.getReturnType())) pe =
new StringArrayEditor(); // see StringArrayEditor class below
 if (pe != null) {
 Object oldValue = getter.invoke(dcb,new Object[0]);
 pe.setValue(oldValue);
 String val =
 getUserInput(bean,prop.getDisplayName(),pe.getAsText());
 // see getUserInput method below
 if (val == null || val.length() == 0) return;
 pe.setAsText(val);
 Object newValue = pe.getValue();
 prop.getWriteMethod().invoke(dcb,new Object[]{newValue});
 }
 }
 }

 private String getUserInput(String element, String property, String curr) {
 try {
 System.out.println("Enter value for "+element+"."+property+". Current value is: "+curr);
 return br.readLine();
 } catch (IOException ioe) {
 return null;
 }
 }
 // Primitive means a java primitive or String object here
 private boolean isPrimitive(Class cc) {
 boolean prim = false;
 if (cc.isPrimitive() || String.class.isAssignableFrom(cc)) prim = true;
 if (!prim) {
 // array of primitives?
 if (cc.isArray()) {
 Class ccc = cc.getComponentType();
 if (ccc.isPrimitive() || String.class.isAssignableFrom(ccc)) prim = true;
 }
 }
 return prim;
 }

 /**
 * Custom editor for string arrays. Input text is converted into tokens using
 * commas as delimiters
 */
 private class StringArrayEditor extends PropertyEditorSupport {
 String[] curr = null;

 public StringArrayEditor() {super();}

 // comma separated string
 public String getAsText() {
 if (curr == null) return null;
 StringBuffer sb = new StringBuffer();
 for (int i=0;i<curr.length;i++) {
 sb.append(curr[i]);
 sb.append(',');
 }

Customizing Deployment Configuration

Configuring Applications for Deployment 3-15

 if (curr.length > 0) sb.deleteCharAt(sb.length()-1);
 return sb.toString();
 }

 public Object getValue() { return curr; }

 public boolean isPaintable() { return false; }

 public void setAsText(String text) {
 if (text == null) curr = null;
 StringTokenizer st = new StringTokenizer(text,",");
 curr = new String[st.countTokens()];
 for (int i=0;i<curr.length;i++) curr[i] = new String(st.nextToken());
 }

 public void setValue(Object value) {
 if (value == null) {
 curr = null;
 } else {
 String[] v = (String[])value; // let caller handle class cast issues
 curr = new String[v.length];
 for (int i=0;i<v.length;i++) curr[i] = new String(v[i]);
 }
 }
 }
.
.
.

Beyond the mechanics of the rudimentary user interface, any interface that enables
changes to the configuration by an administrator or user can use the property setters
shown in Example 3–3.

3.5.2 Targets
Targets are associated with WebLogic Servers, clusters, Web servers, virtual hosts and
JMS servers. See weblogic.deploy.api.spi.WebLogicTarget and Section 2.4.4,
"Support for Querying WebLogic Target Types".

3.5.3 Application Naming
In WebLogic Server, application names are provided by a deployment tool. Names of
modules contained within an application are based on the associated archive or root
directory name of the modules. These names are persisted in the configuration
MBeans constructed for the application.

In Java EE deployment there is no mention of the configured name of an application or
its constituent modules, other than in the TargetModuleID object. Yet
TargetModuleIDs exist only for applications that have been distributed to a
WebLogic Server domain. Hence there is a need to represent application and module
names in a deployment tool prior to distribution. This representation should be
consistent with the names assigned by the server when the application is finally
distributed.

Your deployment tool plug-in must construct a view of an application using the
DeployableObject and J2eeApplicationObject classes. These classes represent
stand-alone modules and EARs, respectively. Each of these classes is directly related to
a DDBeanRoot object. When presented with a distribution where the name is not
configured, the deployment tool must create a name for the distribution. If the

Deployment Preparation

3-16 Programming Deployment for Oracle WebLogic Server

distribution is a File object, use the filename of the distribution. If an archive is
offered as an input stream, a random name is used for the root module.

3.6 Deployment Preparation
The deployment preparation phase involves saving the resulting plan from a
configuration session. Use the DeploymentConfiguration.save() method (a
standard Java EE Deployment API method). You can also use the
SessionHelper.savePlan() method to save a new copy of deployment plan along
with any external documents in the plan directory.

The DeploymentConfiguration.save methods creates an XML file based on the
deployment plan schema that consists of a serialization of the current collection of
DConfigBeans, along with any variable assignments and definitions. DConfigBean
trees are always saved as external descriptors. These descriptors are only be saved if
they do not already exist in the application archive or the external configuration area,
meaning a save operation does not overwrite existing descriptors. The
DeploymentConfiguration.saveDConfigBean method does overwrite files.
This is does not mean that any changes made to a configuration are lost, it means that
they are handled using variable assignments.

As noted before, the DeploymentConfiguration.restore methods are used to
create configuration beans based on a previously saved deployment plan (see
Section 3.4, "Perform Front-end Configuration"). You can restore an entire collection of
configuration beans or you can restore a subset of the configuration beans. It is also
possible to save or restore the configuration beans for a specific module in an
application.

3.7 Session Cleanup
Temporary files are created during a configuration session. Archives are exploded into
the temp area and can only be removed after session configuration is complete. There
is no standard API defined to close out a session. Use the close() methods to
WebLogicDeployableObject and WebLogicDeploymentConfiguration.
SessionHelper.close() to clean up after a session. If you do not clean up after
closing sessions, the disk containing your temp directories may fill up over time.

4

Performing Deployment Operations 4-1

4Performing Deployment Operations

Application deployment distributes the information created in Chapter 3,
"Configuring Applications for Deployment" to the Administration Server for
server-side processing and application startup. Your deployment tool must be able to
successfully complete the following deployment operations:

■ Section 4.1, "Register Deployment Factory Objects"

■ Section 4.2, "Allocate a DeploymentManager"

■ Section 4.3, "Deployment Processing"

■ Section 4.4, "Production Redeployment"

■ Section 4.5, "Progress Reporting"

■ Section 4.6, "Target Objects"

4.1 Register Deployment Factory Objects
Your deployment tool must instantiate and register the DeploymentFactory objects
it uses. You can implement your own mechanism for managing DeploymentFactory
objects. WebLogic Server DeploymentFactory objects are advertised in a manifest
file stored in the wldeploy.jar file. The manifest contains entries of the fully
qualified class names of the factories, separated by whitespace. For example, if you
assume that the DeploymentFactory- objects reside in a fixed location and are
included in the deployment tool classpath, the deployment tool registers any
DeploymentFactory objects it recognizes at startup. See Example 4–1.

Example 4–1 Registered Deployment Factory in the Manifest File

 MANIFEST.MF:
 Manifest-version: 1.0
 Implementation-Vendor: BEA Systems
 Implementation-Title: WebLogic Server 9.0 Mon May 29 08:16:47 PST 2006 221755
 Implementation-Version: 9.0.0.0
 J2EE-DeploymentFactory-Implementation-Class:
 weblogic.deploy.spi.factories.DeploymentFactoryImpl
 .
 .
 .

The standard DeploymentFactory interface is extended by
weblogic.deploy.api.WebLogicDeploymentFactory. The additional methods
provided in the extension are:

Allocate a DeploymentManager

4-2 Programming Deployment for Oracle WebLogic Server

■ String[] getUris(): Returns an array of URI's that are recognized by
getDeploymentManager. The first URI in the array is guaranteed to be the
default DeploymentManager URI, deployer:WebLogic. Only published URI's
are returned in this array.

■ String createUri(String protocol, String host, String port):
Returns a usable URI based on the arguments.

4.2 Allocate a DeploymentManager
Your deployment tool must allocate a DeploymentManager from a
DeploymentFactory, which is registered with the DeploymentFactoryManager
class, in order to perform deployment operations. In addition to configuring an
application for deployment, the DeploymentManager is responsible for establishing
a connection to a Java EE server. The DeploymentManager implementation is
accessed using a DeploymentFactory.

The following sections provide information on how a DeploymentManager connects
to a server instance:

■ Section 4.2.1, "Getting a DeploymentManager Object"

■ Section 4.2.2, "Understanding DeploymentManager URI Implementations"

■ Section 4.2.3, "Server Connectivity"

4.2.1 Getting a DeploymentManager Object
Use the DeploymentFactory.getDeploymentManager method to get a
DeploymentManager object. This method takes a URI, user ID and password as
arguments. The URI has the following patterns:

■ deployer:WebLogic<:host:port>

■ deployer:WebLogic.remote<:host:port>

■ deployer:WebLogic.authenticated<:host:port>

When connecting to an Administration Server, the URI must also include the host and
port, such as deployer:WebLogic:localhost:7001. See Section 4.2.2,
"Understanding DeploymentManager URI Implementations".

The following provides additional information on DeploymentManager arguments:

■ When obtaining a disconnected DeploymentManager, you do not need to
include the host:port because there is no connection to an Administration
Server. For example, the URI can be deployer:WebLogic.

■ The user ID and password arguments are ignored if the deployment tool uses a
pre-authenticated DeploymentManager.

■ You can access the URI of any DeploymentManager implementation using the
DeploymentFactory.getUris() method. getUris is an extension of
DeploymenFactory.

4.2.2 Understanding DeploymentManager URI Implementations
Depending on the URI specified during allocation, the DeploymentManager object
will have one of the following characteristics:

Deployment Processing

Performing Deployment Operations 4-3

■ deployer:WebLogic: The DeploymentManager is running locally on an
Administration Server and any files referenced during the deployment session are
treated as if they are local to the Administration Server.

■ deployer:WebLogic.remote: The DeploymentManager is running remotely
to the WebLogic Server Administration Server and any files referenced during the
deployment session are treated as being remote to the Administration Server and
may require uploading. For example, a distribute operation includes uploading
the application files to the Administration Server.

■ deployer:WebLogic.authenticated: This is an internal, unpublished URI,
usable by applications such as a console servlet that is already authenticated and
has access to the domain management information. The DeploymentManager is
running locally on a WebLogic Administration Server and any files referenced
during the deployment session are treated as if they are local to the
Administration Server.

You can explicitly force the uploading of application files by using the
WebLogicDeploymentManager method enableFileUploads() method.

4.2.3 Server Connectivity
DeploymentManagers are either connected or disconnected. Connected
DeploymentManagers imply a connection to a WebLogic Server Administration
Server. This connection is maintained until it is explicitly disconnected or the
connection is lost. If the connection is lost, the DeploymentManager reverts to a
disconnected state.

Explicitly disconnecting a DeploymentManager is accomplished using the
DeploymentManager.release method. There is no corresponding method for
reconnecting the DeploymentManager. Instead the deployment tool must allocate a
new DeploymentManager.

4.3 Deployment Processing
Most of the functional components of a DeploymentManager are defined in the Java
EE Deployment API specification. However, Oracle has extended the
DeploymentManager interface with the capabilities required by existing WebLogic
Server-based deployment tools. Oracle WebLogic Server deployment extensions are
documented at weblogic.deploy.api.spi.WebLogicDeploymentManager.

The JSR-88 programming model revolves around employing TargetModuleID
objects (TargetModuleIDs) and ProgressObject objects. In general, target
modules are specified by a list of TargetModuleIDs which are roughly equivalent to
deployable root modules and sub-module level MBeans. The DeploymentManager
applies the TargetModuleIDs to deployment operations and tracks their progress. A
deployment tool needs to query progress using a ProgressObject returned for each
operation. When the ProgressObject indicates the operation is completed or failed,
the operation is done.

The following sections provide an overview of WebLogic DeploymentManager
features:

■ Section 4.3.1, "DeploymentOptions"

Note: Allocating a new DeploymentManager does not affect any
configuration information being maintained within the tool through a
DeploymentConfiguration object.

Deployment Processing

4-4 Programming Deployment for Oracle WebLogic Server

■ Section 4.3.2, "Distribution"

■ Section 4.3.3, "Application Start"

■ Section 4.3.4, "Application Deploy"

■ Section 4.3.5, "Application Stop"

■ Section 4.3.6, "Undeployment"

4.3.1 DeploymentOptions
WebLogic Server allows for a DeploymentOptions argument
(weblogic.deploy.api.spi.DeploymentOptions) which supports the
overriding of certain deployment behaviors. The argument may be null, which
provides standard behavior. Some of the options supported in this release are:

■ admin (test) mode

■ Retirement Policy

■ Staging

See DeploymentOptions Javadoc.

4.3.2 Distribution
Distribution of new applications results in:

■ the application archive and plan is staged on all targets.

■ the application being configured into the domain.

The standard distribute operations does not support version naming. WebLogic Server
provides WebLogicDeploymentManager to extend the standard with a distribute
operation that allows you to associate a version name with an application.

The ProgressObject returned from a distribute provides a list of
TargetModuleIDs representing the application as it exists on the target servers. The
targets used in the distribute are any of the supported targets. The TargetModuleID
represents the application's module availability on each target.

For new applications, TargetModuleIDs represent the top level
AppDeploymentMBean objects. TargetModuleIDs do not have child
TargetModuleIDs based on the modules and sub-modules in the application since
the underlying MBeans would only represent the root module. For pre-existing
applications, the TargetModuleIDs are based on DeployableMBeans and any
AppDeploymentMBean and SubAppDeploymentMBean in the configuration.

If you use the distribute(Target[],InputStream,InputStream) method to
distribute an application, the archive and plan represented by the input streams are
copied from the streams into a temporary area prior to deployment which impacts
performance.

4.3.3 Application Start
The standard start operation only supports root modules; implying only entire
applications can be started. Consider the following configuration.

Note: Redistribution honors the staging mode already configured for an
application.

Deployment Processing

Performing Deployment Operations 4-5

<AppDeployment Name="myapp">
 <SubDeployment Name="webapp1", Targets="serverx"/>
 <SubDeployment Name="webapp2", Targets="serverx"/>
</AppDeployment>

The TargetModuleID returned from getAvailableModules(ModuleType.EAR)
looks like:

myapp on serverx (implied)
 webapp1 on serverx
 webapp2 on serverx

and start(tmid) would start webapp1 and webapp2 on serverx.

To start webapp1, module level control is required. Configure module level control by
manually creating a TargetModuleID hierarchy.

 WebLogicTargetModuleID root =
dm.createTargetModuleID("myapp",ModuleType.EAR,getTarget(serverx));
 WebLogicTargetModuleID web =
dm.createTargetModuleID(root,"webapp1",ModuleType.WAR);
 dm.start(new TargetModuleID[]{web});

This approach uses the TargetModuleID creation extension to manually create an
explicit TargetModuleID hierarchy. In this case the created TargetModuleID
would look like

myapp on serverx (implied)
 webapp1 on serverx

The start operation does not modify the application configuration. Version support
is built into the TargetModuleIDs, allowing the user to start a specific version of an
application. Applications may be started in normal or administration (test) mode.

4.3.4 Application Deploy
The deploy operation combines a distribute and start operation. Web
applications may be deployed in normal or administration (test) mode. You can
specify application staging using the DeploymentOptions argument. deploy
operations use TargetModuleIDs instead of Targets for targeting, allowing for
module level configuration.

The deploy operation may change the application configuration based on the
TargetModuleIDs provided.

4.3.5 Application Stop
The standard stop operation only supports root modules; implying only entire
applications can be stopped. See the Section 4.3.3, "Application Start".

Oracle provides versioning support, allowing you to stop a specific version of an
application. The stop operation does not modify the application configuration. See
Section 4.4.4, "Version Support".

4.3.6 Undeployment
The standard undeploy operation removes an application from the configuration, as
specified by the TargetModuleIDs. Individual modules can be undeployed. The
result is that the application remains on the target, but certain modules are not actually

Production Redeployment

4-6 Programming Deployment for Oracle WebLogic Server

configured to run on it. See the Section 4.3.3, "Application Start" section for more detail
on module level control.

The WebLogicDeploymentManager extends undeploy in support of removing files
from a distribution. This is a form of in-place redeployment that is only supported in
Web applications, and is intended to allow you to remove static pages. See
Section 4.4.4, "Version Support".

4.4 Production Redeployment
Standard redeployment support only applies to entire applications and employs
side-by-side versioning to ensure uninterrupted session management. The
WebLogicDeploymentManager extends the redeploy() method and provides the
following additional support:

■ Section 4.4.1, "In-Place Redeployment":

■ Section 4.4.2, "Module Level Targeting"

■ Section 4.4.3, "Retirement Policy"

■ Section 4.4.4, "Version Support"

■ Section 4.4.5, "Administration (Test) Mode"

4.4.1 In-Place Redeployment
The in-place redeployment strategy works by immediately replacing a running
application's deployment files with updated deployment files, such as:

■ Partial redeployment which involves adding or replacing specific files in an
existing deployment.

■ Updating a configuration using a redeployment of a deployment plan

4.4.2 Module Level Targeting
A DeploymentManager implements the JSR-88 specification and restricts operations
to root modules. Module level control is provided by manually constructing a module
specific TargetModuleID hierarchy using
WebLogicDeploymentManager.createTargetModuleID

4.4.3 Retirement Policy
When a new version of an application is redeployed, the old version should eventually
be retired and undeployed. There are 2 policies for retiring old versions of
applications:

1. (Default) The old version is retired when new version is active and old version
finishes its in-flight operations.

2. The old version is retired when new version is active, retiring the old after some
specified time limit of the new version being active.

Note: The old version is not retired if the new version is in administration
(test) mode.

Progress Reporting

Performing Deployment Operations 4-7

4.4.4 Version Support
Side-by-side versioning is used to provide retirement extensions, as suggested in the
JSR-88 redeployment specification. This ensures that an application can be redeployed
without interruption in service to its current clients. Details on deploying side-by-side
versions can be found in "Redeploying Applications in a Production Environment" in
Deploying Applications to Oracle WebLogic Server.

4.4.5 Administration (Test) Mode
A Web application may be started in normal or administration (test) mode. Normal
mode indicates the Web application is fully accessible to clients. Administration (test)
mode indicates the application only listens for requests using the admin channel.
Administration (test) mode is specified by the DeploymentOptions argument on the
WebLogic Server extensions for start, deploy and redeploy. See
DeploymentOptions Javadoc.

4.5 Progress Reporting
Use ProgressObjects to determine deployment state of your applications. These
objects are associated with DeploymentTaskRuntimeMBeans.ProgressObjects
support the cancel operation but not the stop operation.

ProgessObjects are associated with one or more TargetModuleIDs, each of
which represents an application and its association with a particular target. For any
ProgressObject, its associated TargetModuleIDs represent the application that is
being monitored.

The ProgressObject maintains a connection with the deployment framework,
allowing it to provide a deployment tool with up-to-date deployment status. The
deployment state transitions from running to completed or failed only after all
TargetModuleIDs involved have completed their individual deployments. The
resulting state is completed only if all TargetModuleIDs are successfully deployed.

The released state means that the DeploymentManager was disconnected during
the deployment. This may be due to a manual release, a network outage, or similar
communication failures.

Example 4–2 shows how a ProgressObject can be used to wait for a deployment to
complete:

Example 4–2 Example Code to Wait for Completion of a Deployment

package weblogic.deployer.tools;

import javax.enterprise.deploy.shared.*;
import javax.enterprise.deploy.spi.*;
import javax.enterprise.deploy.spi.status.*;

/**
 * Example of class that waits for the completion of a deployment
 * using ProgressEvent's.
 */
public class ProgressExample implements ProgressListener {

 private boolean failed = false;
 private DeploymentManager dm;
 private TargetModuleID[] tmids;

Target Objects

4-8 Programming Deployment for Oracle WebLogic Server

 public void main(String[] args) {
 // set up DeploymentManager, TargetModuleIDs, etc
 try {
 wait(dm.start(tmids));
} catch (IllegalStateException ise) {
 //... dm not connected
}
 if (failed) System.out.println("oh no!");
}

 void wait(ProgressObject po) {
 ProgressHandler ph = new ProgressHandler();
 if (!po.getDeploymentStatus().isRunning()) {
 failed = po.getDeploymentStatus().isFailed();
 return;
}
 po.addProgressListener(ph);
 ph.start();
 while (ph.getCompletionState() == null) {
 try {
 ph.join();
} catch (InterruptedException ie) {
 if (!ph.isAlive()) break;
}
}
 StateType s = ph.getCompletionState();
 failed = (s == null ||
 s.getValue() == StateType.FAILED.getValue());
 po.removeProgressListener(ph);
}

 class ProgressHandler extends Thread implements ProgressListener {
 boolean progressDone = false;
 StateType finalState = null;
 public void run(){
 while(!progressDone){
 Thread.currentThread().yield();
}
}
 public void handleProgressEvent(ProgressEvent event){
 DeploymentStatus ds = event.getDeploymentStatus();
 if (ds.getState().getValue() != StateType.RUNNING.getValue()) {
 progressDone = true;
 finalState = ds.getState();
}
}
 public StateType getCompletionState(){
 return finalState;
}
}
}

4.6 Target Objects
The following sections provide information on how to target objects:

■ Section 4.6.1, "Module Types"

■ Section 4.6.2, "Extended Module Support"

■ Section 4.6.3, "Recognition of Target Types"

Target Objects

Performing Deployment Operations 4-9

■ Section 4.6.4, "TargetModuleID Objects"

■ Section 4.6.5, "WebLogic Server TargetModuleID Extensions"

■ Section 4.6.6, "Example Module Deployment"

4.6.1 Module Types
The standard modules types are defined by
javax.enterprise.deploy.shared.ModuleType. This is extended to support
WebLogic Server-specific module types: JMS, JDBC, INTERCEPT and CONFIG.

4.6.2 Extended Module Support
JSR-88 defines a secondary descriptor as additional descriptors that a module can refer
to or make use of. These descriptors are linked to the root DConfigBean of a module
such that they are visible to a Java Beans based tool as they are child properties of a
DConfigBeanRoot object. Secondary descriptors are automatically included in the
configuration process for a module.

4.6.2.1 Web Services
An EJB or Web application may include a webservers.xml descriptor. If present, the
module is automatically configured with the WebLogic Server equivalent descriptor
for configuring Web services as secondary descriptors. The deployment plan includes
these descriptors as part of the module, not as a separate module.

4.6.2.2 CMP
CMP support in EJBs is configured using RDBMS descriptors that are identified for
CMP beans in the weblogic-ejb-jar.xml descriptor. The RDBMS descriptors
support CMP11 and CMP20. Any number of RDBMS descriptors may be included
with an EJB module. Provide these descriptors in the application archive or
configuration area (approot/plan). Although they are not created by the
configuration process, they may be modified like any other descriptor. RDBMS
descriptors are treated as secondary descriptors in the deployment plan.

4.6.2.3 JDBC
JDBC modules are described by a single deployment descriptor with no archive. If the
module is part of an EAR, the JDBC descriptors are specified in
weblogic-application.xml as configurable properties. You can deploy JDBC
modules to WebLogic servers and clusters. Configuration changes to JDBC descriptors
are handled as overrides to the descriptor.

If a JDBC module is part of an EAR, its configuration overrides are incorporated in the
deployment plan as part of the EAR, not as separate modules.

4.6.2.4 JMS
JMS modules are described by a single deployment descriptor with no archive. If the
module is part of an EAR, the JMS descriptors are specified in
weblogic-application.xml as configurable properties. JMS modules are
deployed to JMS servers. Configuration changes to JMS descriptors are handled as
overrides to the descriptor. JMS descriptors may identify "targetable groups". These
groups are treated as sub-modules during deployment.

If the JMS module is part of an EAR, its configuration overrides are incorporated in the
deployment plan as part of the EAR, not as separate modules.

Target Objects

4-10 Programming Deployment for Oracle WebLogic Server

4.6.2.5 INTERCEPT
Intercept modules are described by a single deployment descriptor with no archive. If
the module is part of an EAR, the Intercept descriptors are specified in
weblogic-application.xml as configurable properties. Intercept modules are
deployed to WebLogic Server servers and clusters. Configuration changes to Intercept
descriptors are handled as overrides to the descriptor.

If the Intercept module is part of an EAR, its configuration overrides are incorporated
in the deployment plan as part of the EAR, not as separate modules.

4.6.3 Recognition of Target Types
The Java EE Deployment API specification's definition of a target does not include any
notion of its type. WebLogic Server supports standard modules and Oracle-specific
module types as valid deployment targets. Target support is provided by the
weblogic.deploy.api.spi.WebLogicTarget and
weblogic.deploy.api.spi.WebLogicTargetType classes. See Section 4.6.1,
"Module Types".

4.6.4 TargetModuleID Objects
The TargetModuleID objects uniquely identify a module and a target it is associated
with. TargetModuleIDs are the objects that specify where modules are to be started
and stopped. The object name used to identify the TargetModuleID is of the form:

Application=parent-name,Name=configured-name,Target=target-name,TWebLogicTargetTyp
e=target-type

where

■ parent-name is the name of the ear this module is part of.

■ configured-name is the name used in the WebLogic Server configuration for
this application or module

■ target-name is the server, cluster or virtual host where there module is targeted

■ target-type is the description of the target derived from
Target.getDescription.

TargetModuleID.toString() will return this object name.

4.6.5 WebLogic Server TargetModuleID Extensions
TargetModuleID is extended by
weblogic.deploy.api.spi.WebLogicTargetModuleID. This class provides the
following additional functionality:

■ getServers—servers associated with the TargetModuleID's target

■ isOnCluster—whether target is a cluster

■ isOnServer—whether target is a server

■ isOnHost—whether target is a virtual host

■ isOnJMSServer—whether target is a JMS server

■ getVersion—the version name

■ createTargetModuleID—factory for creating module specific targeting

WebLogicTargetModuleID is defined in more detail in the Javadocs.

Target Objects

Performing Deployment Operations 4-11

The WebLogicDeploymentManager is also extended with convenience methods that
simplify working with TargetModuleIDs. They are:

■ filter—returns a list of TargetModuleIDs that match on application, module,
and version

■ getModules—creates TargetModuleIDs based on an AppDeploymentMBean

TargetModuleIDs have a hierarchical relationship based on the application upon
which they are based. The root TargetModuleID of an application represents an EAR
module or a stand-alone module. Child TargetModuleIDs are modules that are
defined by the root module's descriptor. For EARs, these are the modules identified in
the application.xml descriptor for the EAR. JMS modules may have child
TargetModuleIDs (sub-modules) as dictated by the JMS deployment descriptor.
These may be children of an embedded module or the root module. Therefore, JMS
modules can have three levels of TargetModuleIDs for an application.

Typically, you get TargetModuleIDs in a deployment operation or one of the
DeploymentManager.get*Modules() methods. These operations provide
TargetModuleIDs based on the existing configuration. In certain scenarios where
more specific targeting is desired than is currently defined in the configuration, you
may use the createTargetModuleID method. This method creates a root
TargetModuleID that is specific to a module or sub-module within the application.
This TargetModuleID can then be used in any deployment operation. For operations
that include the application archive, such as deploy(), using one of these
TargetModuleIDs may result in the application being reconfigured. For example:

<AppDeployment Name="myapp", Targets="s1,s2"/>

The application is currently configured for all modules to run on s1 and s2. To
provide more specific targeting, a deployment tool can do the following:

Target s1 = find("s1",dm.getTargets());
// find() is not part of this api
WebLogicTargetModuleID root =
 dm.createTargetModuleID("myapp",ModuleType.EAR,s1);
WebLogicTargetModuleID web =
 dm.createTargetModuleID(root,"webapp1",ModuleType.WAR);
dm.deploy(new TargetModuleID[]{web},myapp,myplan,null);

myapp is reconfigured and webapp is specifically targeted to only run on s1. The new
configuration is:

<AppDeployment Name="myapp", Targets="s1,s2">
 <SubDeployment Name="webapp", Targets="s1"/>
</AppDeployment>

4.6.6 Example Module Deployment
Consider the deployment of a stand-alone JMS module, one that employs
sub-modules. The module is defined by the file, simple-jms.xml, which defines
sub-modules, sub1 and sub2. The descriptor is fully configured for the environment
hence no deployment plan is required, although the scenario described here would be
the same if there was a deployment plan.

The tool to deploy this module performs the following steps:

// init the jsr88 session. This uses a WLS specific helper class,
// which does not employ any WLS extensions
DeploymentManager dm = SessionHelper.getDeploymentManager(host,port,user,pword);

Target Objects

4-12 Programming Deployment for Oracle WebLogic Server

// get list of all configured targets
// The filter method is a location where you could ask the user
// to select from the list of all configured targets

Target[] targets = filter(dm.getTargets());

// the module is distributed to the selected targets
ProgressObject po = dm.distribute(targets,new File("jms.xml"),plan);

// when the wait comes back the task is done
waitForCompletion(po);

// It is assumed here that it worked (there is no exception handling)
// the TargetModuleIDs (tmids) returned from the PO correspond to all the
// configured app/module mbeans for each target the app was distributed to.
// This should include 3 tmids per target: the root module tmid and the
// submodules' tmids.
TargetModuleID[] tmids = po.getResultTargetModuleIDs();

// then to deploy the whole thing everywhere you would do this
po = dm.start(tmids);
// the result is that all sub-modules would be deployed on all the selected
// targets, since they are implicitly targeted wherever the their parent is
// targeted

// To get sub-module level deployment you need to use WebLogic Server
// extensions to create TargetModuleIDs that support module level targeting.
// The following deploys the topic "xyz" on a JMS server
WebLogicTargetModuleID root =
 dm.createTargetModuleID(tmids[i].getModuleID(),tmids[i],jmsServer);
WebLogicTargetModuleID topic =
 dm.createTargetModuleID(root,"xyz",WebLogicModuleType.JMS);

// now we can take the original list of tmids and let the user select
// specific tmids to deploy
po = dm.start(topic);

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Understanding the WebLogic Deployment API
	2.1 The WebLogic Deployment API
	2.1.1 WebLogic Deployment API Deployment Phases
	2.1.1.1 Configure an Application for Deployment
	2.1.1.2 Deploy an Application

	2.1.2 weblogic.Deployer Implementation of the WebLogic Deployment API
	2.1.3 When to Use the WebLogic Deployment API

	2.2 Java EE Deployment API Compliance
	2.3 WebLogic Server Value-Added Deployment Features
	2.4 The Service Provider Interface Package
	2.4.1 weblogic.deploy.api.spi
	2.4.2 weblogic.deploy.api.spi.factories
	2.4.3 Module Targeting
	2.4.4 Support for Querying WebLogic Target Types
	2.4.5 Server Staging Modes
	2.4.6 DConfigBean Validation

	2.5 The Model Package
	2.5.1 weblogic.deploy.api.model
	2.5.2 Accessing Deployment Descriptors

	2.6 The Shared Package
	2.6.1 weblogic.deploy.api.shared
	2.6.2 Command Types for Deploy and Update
	2.6.3 Support for Module Types
	2.6.4 Support for all WebLogic Server Target Types

	2.7 The Tools Package
	2.7.1 weblogic.deploy.api.tools
	2.7.2 SessionHelper
	2.7.3 Deployment Plan Creation

	3 Configuring Applications for Deployment
	3.1 Overview of the Configuration Process
	3.2 Types of Configuration Information
	3.2.1 Java EE Configuration
	3.2.2 WebLogic Server Configuration
	3.2.3 Representing Java EE and WebLogic Server Configuration Information
	3.2.3.1 DDBeans

	3.2.4 The Relationship Between Java EE and WebLogic Server Descriptors
	3.2.4.1 DConfigBeans

	3.3 Application Evaluation
	3.3.1 Obtain a Deployment Manager
	3.3.1.1 Types of Deployment Managers
	3.3.1.2 Connected and Disconnected Deployment Manager URIs
	3.3.1.3 Using SessionHelper to Obtain a Deployment Manager

	3.3.2 Create a Deployable Object
	3.3.2.1 Using the WebLogicDeployableObject class
	3.3.2.2 Using SessionHelper to obtain a Deployable Object

	3.4 Perform Front-end Configuration
	3.4.1 What is Front-end Configuration
	3.4.2 Deployment Configuration
	3.4.2.1 Example Code
	3.4.2.2 Reading In Information with SessionHelper

	3.4.3 Validating a Configuration

	3.5 Customizing Deployment Configuration
	3.5.1 Modifying Configuration Values
	3.5.2 Targets
	3.5.3 Application Naming

	3.6 Deployment Preparation
	3.7 Session Cleanup

	4 Performing Deployment Operations
	4.1 Register Deployment Factory Objects
	4.2 Allocate a DeploymentManager
	4.2.1 Getting a DeploymentManager Object
	4.2.2 Understanding DeploymentManager URI Implementations
	4.2.3 Server Connectivity

	4.3 Deployment Processing
	4.3.1 DeploymentOptions
	4.3.2 Distribution
	4.3.3 Application Start
	4.3.4 Application Deploy
	4.3.5 Application Stop
	4.3.6 Undeployment

	4.4 Production Redeployment
	4.4.1 In-Place Redeployment
	4.4.2 Module Level Targeting
	4.4.3 Retirement Policy
	4.4.4 Version Support
	4.4.5 Administration (Test) Mode

	4.5 Progress Reporting
	4.6 Target Objects
	4.6.1 Module Types
	4.6.2 Extended Module Support
	4.6.2.1 Web Services
	4.6.2.2 CMP
	4.6.2.3 JDBC
	4.6.2.4 JMS
	4.6.2.5 INTERCEPT

	4.6.3 Recognition of Target Types
	4.6.4 TargetModuleID Objects
	4.6.5 WebLogic Server TargetModuleID Extensions
	4.6.6 Example Module Deployment

