

Oracle® Fusion Middleware
Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

11g Release 1 (10.3.6)

E16435-04

November 2011

This document explains the use of version 1.1 plug-ins
provided for proxying requests to third party administration
servers. This document is intended mainly for system
administrators who manage the WebLogic Server application
platform and its various subsystems.

Oracle Fusion Middleware Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server, 11g Release 1 (10.3.6)

E16435-04

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Srinivas Sudhindra

Contributors: Seema Alevoor, Kumar Dhanagopal, Jeff Trawick, Yulong Shi, Srikamakoti Vaidyanathan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Conventions .. vii

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to this Document ... 1-1
1.3 Related Documentation.. 1-1
1.4 New and Changed Features in This Release... 1-2

2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

2.1 What Are Plug-Ins?... 2-1
2.1.1 Connection Pooling and Keep-Alive .. 2-1
2.1.2 Proxying Requests ... 2-2
2.2 Version 1.1 Plug-Ins Available for Download.. 2-2
2.2.1 Version 1.0 Plug-Ins Are Deprecated.. 2-2
2.3 Upgrading From the Version 1.0 Plug-Ins .. 2-3
2.4 Features of the Version 1.1 Plug-Ins... 2-3
2.4.1 Standard Encryption Strength Allows Simplified Naming... 2-3
2.4.2 Version 1.1 Plug-Ins Use Oracle Security Framework ... 2-3
2.4.3 Version 1.1 Plug-Ins Support IPv6 .. 2-4
2.4.4 Version 1.1 Plug-Ins Support Two-Way SSL ... 2-4
2.5 Plug-In Supported Platforms .. 2-4
2.6 Downloading the Version 1.1 Plug-Ins.. 2-4

3 Installing and Configuring the Apache HTTP Server Plug-In

3.1 Install the Apache HTTP Server Plug-In ... 3-1
3.1.1 Installation Prerequisites .. 3-1
3.1.2 Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object.................. 3-2
3.2 Configure the Apache HTTP Server Plug-In .. 3-3
3.2.1 Editing the httpd.conf File.. 3-3
3.2.1.1 Placing WebLogic Properties Inside Location or VirtualHost Blocks 3-6
3.2.2 Including a weblogic.conf File in the httpd.conf File ... 3-6
3.2.2.1 Creating weblogic.conf Files ... 3-6
3.2.2.2 Sample weblogic.conf Configuration Files ... 3-7

iv

3.2.2.3 Template for the Apache HTTP Server httpd.conf File ... 3-9

4 Configuring the Plug-In for Oracle HTTP Server

4.1 Configuring the Plug-In for Oracle HTTP Server .. 4-1

5 Installing and Configuring the Microsoft IIS Plug-In

5.1 Installing and Configuring the Microsoft Internet Information Server Plug-In................ 5-1
5.2 Installing and Configuring the Microsoft Internet Information Server Plug-In for IIs 7.0

5-5
5.3 Using Wildcard Application Mappings to Proxy by Path... 5-10
5.3.1 Installing Wildcard Application Mappings (IIS 6.0).. 5-10
5.3.2 Adding a Wildcard Script Map for IIS 7.0... 5-10
5.4 Proxying Requests from Multiple Virtual Web Sites to WebLogic Server 5-11
5.4.1 Sample iisproxy.ini File.. 5-11
5.5 Creating ACLs Through IIS.. 5-12
5.6 Proxying Servlets from IIS to WebLogic Server .. 5-12
5.7 Testing the Installation.. 5-13

6 Installing and Configuring the Oracle iPlanet Web Server Plug-In

6.1 Overview of the Oracle iPlanet Web Server Plug-In ... 6-1
6.2 Installing and Configuring the Oracle iPlanet Web Server Plug-In 6-1
6.2.1 Installation Prerequisites .. 6-2
6.2.2 Installing Oracle iPlanet Web Server Plug-In .. 6-2
6.2.3 Configuring the Oracle iPlanet Web Server Plug-In .. 6-2
6.2.4 Guidelines for Modifying the obj.conf File .. 6-5
6.2.5 Sample obj.conf File (Not Using a WebLogic Cluster) ... 6-5
6.2.6 Sample obj.conf File (Using a WebLogic Cluster)... 6-6

7 Performing Common Tasks

7.1 Use SSL With Plug-Ins ... 7-1
7.1.1 Configure Libraries for SSL.. 7-2
7.1.1.1 Configure SSL Libraries for use with Apache HTTP Server 7-2
7.1.2 Configuring a Plug-In for One-Way SSL.. 7-2
7.1.3 Configure Two-Way SSL Between the Plug-In and WebLogic Server 7-4
7.2 Use IPv6 With Plug-Ins .. 7-5
7.3 Set Up Perimeter Authentication.. 7-5
7.4 Set the WebLogic Plug-in Enabled Control in WebLogic Server... 7-6
7.5 Understanding Connection Errors and Clustering Failover .. 7-6
7.5.1 Possible Causes of Connection Failures ... 7-6
7.5.2 Tips for reducing Connection_Refused Errors.. 7-7
7.5.3 Failover with a Single, Non-Clustered WebLogic Server .. 7-7
7.5.4 The Dynamic Server List .. 7-7
7.5.5 Failover, Cookies, and HTTP Sessions ... 7-8
7.5.6 Using SSL with the Oracle iPlanet Web Server Plug-in ... 7-9
7.5.7 Failover Behavior When Using Firewalls and Load Directors 7-10

v

8 Parameters for Web Server Plug-Ins

8.1 Entering Parameters in Web Server Plug-In Configuration Files.. 8-1
8.2 General Parameters for Web Server Plug-Ins ... 8-1
8.2.1 Location of POST Data Files.. 8-16
8.3 SSL Parameters for Web Server Plug-Ins ... 8-17

vi

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

This chapter describes the contents and organization of this guide—Using Web Server
1.1 Plug-Ins with Oracle WebLogic Server.

1.1 Document Scope and Audience
This document explains use of plug-ins provided for proxying requests to third party
administration servers. This document is intended mainly for system administrators
who manage the Oracle WebLogic Server application platform and its various
subsystems.

1.2 Guide to this Document
This chapter introduces the organization of this guide. The guide is organized as
follows:

■ Chapter 2, "Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server" describes
the plug-ins provided by Oracle for use with WebLogic Server.

■ Chapter 3, "Installing and Configuring the Apache HTTP Server Plug-In" describes
how to install and configure the Apache HTTP Server plug-in.

■ Chapter 4, "Configuring the Plug-In for Oracle HTTP Server" describes how to
install and configure the Oracle HTTP Server plug-in.

■ Chapter 5, "Installing and Configuring the Microsoft IIS Plug-In" describes how to
install and configure the Microsoft Internet Information Server plug-in.

■ Chapter 6, "Installing and Configuring the Oracle iPlanet Web Server Plug-In"
describes how to install and configure the Oracle iPlanet Web Server Plug-In.

■ Chapter 7, "Performing Common Tasks" describe common tasks that you perform
for the plug-ins provided by Oracle for use with WebLogic Server.

■ Chapter 8, "Parameters for Web Server Plug-Ins" describes the parameters that
you use to configure the Apache HTTP Server, Microsoft IIS, and Oracle iPlanet
Web server plug-ins.

1.3 Related Documentation
This document contains information on using Web server plug-ins.

For general information about the available Oracle WebLogic Server documentation,
see Information Roadmap for Oracle WebLogic Server .

New and Changed Features in This Release

1-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

1.4 New and Changed Features in This Release
For a comprehensive listing of the other new Oracle WebLogic Server features
introduced in this release, see What's New in Oracle WebLogic Server.

2

Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server 2-1

2Using Web Server 1.1 Plug-Ins with Oracle
WebLogic Server

The following sections describe the plug-ins provided by Oracle for use with
WebLogic Server:

■ Section 2.1, "What Are Plug-Ins?"

■ Section 2.2, "Version 1.1 Plug-Ins Available for Download"

■ Section 2.4, "Features of the Version 1.1 Plug-Ins"

■ Section 2.5, "Plug-In Supported Platforms"

■ Section 2.6, "Downloading the Version 1.1 Plug-Ins"

2.1 What Are Plug-Ins?
The plug-ins allow requests to be proxied from an Apache HTTP Server, Oracle HTTP
Server, or Microsoft Internet Information Server (IIS), or Oracle iPlanet Web Server to
WebLogic Server. In this way, plug-ins enable the HTTP server to communicate with
applications deployed on the WebLogic Server.

The plug-in enhances an HTTP server installation by allowing WebLogic Server to
handle those requests that require dynamic functionality. That is, you typically use a
plug-in where the HTTP server serves static pages such as HTML pages, while
dynamic pages such as HTTP Servlets or Java Server Pages (JSPs) are served by
WebLogic Server.

WebLogic Server may be operating in a different process, possibly on a different host.
To the end user—the browser—the HTTP requests delegated to WebLogic Server still
appear to be coming from the HTTP server.

In addition, the HTTP-tunneling facility of the WebLogic client-server protocol also
operates through the plug-in, providing access to all WebLogic Server services.

2.1.1 Connection Pooling and Keep-Alive
The plug-ins improve performance using a pool of connections from the plug-in to
WebLogic Server. The plug-in implements HTTP 1.1 keep-alive connections between
the plug-in and WebLogic Server by reusing the same connection for subsequent
requests from the same plug-ins. If the connection is inactive for more than 20 seconds,
(or a user-defined amount of time), the connection is closed. For more information, see
KeepAliveEnabled in Table 8–1.

Version 1.1 Plug-Ins Available for Download

2-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

2.1.2 Proxying Requests
The plug-in proxies requests to WebLogic Server based on a configuration that you
specify. You can proxy requests based on either the URL of the request or a portion of
the URL. This is called proxying by path.

You can also proxy a request based on the MIME type of the requested file, which is
called proxying by file extension.

You can also enable both methods. If you do enable both methods and a request
matches both criteria, the request is proxied by path.

You can also specify additional parameters for each of these types of requests that
define additional behavior of the plug-in.

2.2 Version 1.1 Plug-Ins Available for Download
The version 1.1 plug-ins are not bundled with WebLogic Server but are instead
available for download.

See Section 2.6, "Downloading the Version 1.1 Plug-Ins" for instructions on
downloading the plug-ins.

The following version 1.1 plug-ins are available for download for use with this release
of Oracle WebLogic Server:

■ Apache HTTP Server 2.2.x

■ Microsoft Internet Information Server (IIS 6.0 and IIS 7.0)

■ Oracle iPlanet Web Server (7.0.9 or higher)

Oracle HTTP Server uses the Apache HTTP Server plug-in, which is bundled with
Oracle HTTP Server.

2.2.1 Version 1.0 Plug-Ins Are Deprecated
The version 1.0 plug-ins are deprecated in this release of Oracle WebLogic Server. The
version 1.1 plug-ins are the recommended replacement.

The version 1.1 plug-ins are a superset of the version 1.0 plug-ins described in Using
Web Server Plug-Ins with Oracle WebLogic Server and support all of the existing features.
iPlanet Plug-In now supports 1.1 features.

As in previous releases, the version 1.0 plug-ins continue to be bundled with Oracle
WebLogic Server. However, the version 1.0 plug-ins are not guaranteed to be bundled
with future versions of Oracle Weblogic Server. Oracle recommends that you instead
download and use the version 1.1 plug-ins as described in Section 2.6, "Downloading
the Version 1.1 Plug-Ins".

Note: Client connections are managed by the web server.

Note: The iPlanet plug-in now supports 7.0.9 or higher versions of
iPlanet Web Server.

The version 1.1 plug-in supports Apache HTTP Server 2.2.x only. If
you need to use Apache HTTP Server 1.3.x or Apache HTTP Server
2.0.x, continue to use the version 1.0 plug-in.

Features of the Version 1.1 Plug-Ins

Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server 2-3

2.3 Upgrading From the Version 1.0 Plug-Ins
The version 1.1 plug-ins are a superset of the version 1.0 plug-ins described in Using
Web Server Plug-Ins with Oracle WebLogic Server and support the existing features.
However, keep the following considerations in mind when you upgrade:

■ The list of supported platforms has changed, as described in Section 2.5, "Plug-In
Supported Platforms".

■ The version 1.1 plug-ins support most of the existing version 1.0 plug-in features,
with the exception of the Oracle iPlanet Web Server. If you need to use Apache
1.3.x or Apache 2.0.x, continue to use the version 1.0 plug-in.

■ If you have been using 128-bit encryption, you need to change your configuration
file to reflect the new naming convention, as described in Section 2.4.1, "Standard
Encryption Strength Allows Simplified Naming". For example, you need to change
mod_wl128_22.so to mod_wl.so.

2.4 Features of the Version 1.1 Plug-Ins
This section describes the features of the version 1.1 plug-ins. The following topics are
described:

■ Section 2.4.1, "Standard Encryption Strength Allows Simplified Naming"

■ Section 2.4.2, "Version 1.1 Plug-Ins Use Oracle Security Framework"

■ Section 2.4.3, "Version 1.1 Plug-Ins Support IPv6"

■ Section 2.4.4, "Version 1.1 Plug-Ins Support Two-Way SSL"

2.4.1 Standard Encryption Strength Allows Simplified Naming
Because the version 1.0 plug-ins supported both 40- and 128-bit encryption standards,
the plug-in file names needed to identify which standard was supported. For example,
mod_wl_22.so indicated 40-bit encryption and mod_wl128_22.so indicated 128-bit
encryption.

However, the version 1.1 plug-ins support only 128-bit encryption, and the plug-in
names are now simplified. For example, mod_wl.so is the only file name required.

2.4.2 Version 1.1 Plug-Ins Use Oracle Security Framework
The version 1.1 plug-ins use the Oracle certified security framework, and can therefore
use Oracle wallets to store SSL configuration information.

For this reason, the version 1.1 plug-ins introduce an SSL configuration parameter
WLSSLWallet to use Oracle wallets.

You can configure the certificates in the Oracle wallet with a command line tool that is
provided with the plug-in binary files. See Section 7.1, "Use SSL With Plug-Ins" for
information about configuring SSL.

Note: If you upgrade from the 1.0 plug-ins and had been using
128-bit encryption, you need to change your configuration file to
reflect the new naming convention. For example, you need to change
mod_wl128_22.so to mod_wl.so.

Plug-In Supported Platforms

2-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

2.4.3 Version 1.1 Plug-Ins Support IPv6
The version 1.1 plug-ins support IPv6. The WebLogicHost and WebLogicCluster
configuration parameters (see Table 8–1) now support IPv6 addresses.

See Section 7.2, "Use IPv6 With Plug-Ins" for additional information.

2.4.4 Version 1.1 Plug-Ins Support Two-Way SSL
The version 1.1 plug-ins provide two-way SSL support for verifying client identity.
Two-way SSL is automatically enforced when WebLogic Server requests the client
certificate during the handshake process.

See Section 7.1, "Use SSL With Plug-Ins" for configuration information.

2.5 Plug-In Supported Platforms
The version 1.1 plug-ins are supported on the platforms described in
http://http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-c
ertification-100350.html

2.6 Downloading the Version 1.1 Plug-Ins
The WebLogic Server version 1.1 plug-ins are available for download via the
http://support.oracle.com and also from http://edelivery.oracle.com

The WebLogic Server 1.1 plug-ins are available in the form of a zip file containing the
necessary binary and helper files. You must download and unzip the appropriate file,
and then install the plug-in as described in each subsequent plug-in chapter.

For example, the following directories are included in the mod_wl_so plug-in
distribution. For the Windows version, DLL files are provided.

■ lib/mod_wl.so or lib\mod_wl.dll (Apache HTTP Server plug-in)

■ lib/*.so or lib*.dll (native libraries)

■ bin/orapki or bin\orapki.cmd (orapki tool)

■ jlib/*.jar (Java helper libraries for orapki)

3

Installing and Configuring the Apache HTTP Server Plug-In 3-1

3Installing and Configuring the Apache HTTP
Server Plug-In

The following sections describe how to install and configure the Apache HTTP Server
Plug-In:

■ Section 3.1, "Install the Apache HTTP Server Plug-In"

■ Section 3.2, "Configure the Apache HTTP Server Plug-In"

3.1 Install the Apache HTTP Server Plug-In
After you have downloaded the Apache HTTP Server Plug-In, as described in
Section 2.6, "Downloading the Version 1.1 Plug-Ins", you can install it as an Apache
HTTP Server module in your Apache HTTP Server installation and link it as a
Dynamic Shared Object (DSO).

A DSO is compiled as a library that is dynamically loaded by the server at runtime,
and can be installed without recompiling Apache HTTP Server.

3.1.1 Installation Prerequisites
Before you install the Apache HTTP Server plug-in, you must satisfy the following
prerequisites:

■ Download the Apache HTTP Server Plug-In, as described in Section 2.6,
"Downloading the Version 1.1 Plug-Ins".

■ You have extracted the plug-ins zip distribution to the location of your choice on
the target system. For example, /home/myhome/weblogic-plugins-1.1/.

■ Install JDK 6 if you want to use SSL. The JDK 6 installation is required to use the
orapki utility. The orapki utility manages public key infrastructure (PKI) elements,
such as wallets and certificate revocation lists, for use with SSL.

■ You have a supported Apache HTTP Server installation.

The version 1.1 plug-ins are supported on the Apache HTTP Server platforms
described in
http://www.oracle.com/technology/software/products/ias/files/fusion_
certification.html.

Note: In this release of Oracle WebLogic Server, a single plug-in
supports both Apache HTTP Server and Oracle HTTP Server.

Install the Apache HTTP Server Plug-In

3-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

■ A supported version of WebLogic Server is configured and running on a target
system. However, it does not need to be running on the system on which you
extracted the plug-in zip distribution. See
http://www.oracle.com/technology/software/products/ias/files/fusion_
certification.html for the supported WebLogic Server versions.

3.1.2 Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object
The Apache HTTP Server plug-in is distributed as a shared object (.so) for Unix
platforms and a DLL for Windows.

To install the Apache HTTP Server Plug-In as a dynamic shared object:

1. Make sure that the weblogic-plugins-1.1/lib folder is included in LD_LIBRARY_
PATH on Unix systems (and PATH on Windows systems). If you do not do this, you
see linkage errors when starting Apache HTTP Server.

2. In the location where you unzipped the downloaded plug-in file, locate lib/mod_
wl.so, or lib\mod_wl.dll for windows . For example,
/home/myhome/weblogic-plugins-1.1/lib/mod_wl.so.

3. Verify that the mod_so.c module is enabled.

The Apache HTTP Server Plug-In will be installed in your Apache HTTP Server
installation as a Dynamic Shared Object (DSO).

DSO support in Apache HTTP Server is based on module mod_so.c, which must
be enabled before mod_wl.so is loaded.

If you installed Apache HTTP Server using the script supplied by Apache, mod_
so.c is already enabled. Verify that mod_so.c is enabled by executing the
following command:

APACHE_HOME/bin/apachectl -l

This command is applicable for Unix/Linux operating systems.

(Where APACHE_HOME is the directory containing your Apache HTTP Server
installation.)

This command lists all enabled modules. If mod_so.c is not listed, you must
rebuild your Apache HTTP Server, making sure that the following configure
option is specified:

...
--enable-module=so
...

See Apache 2.2 Shared Object (DSO) Support at
http://httpd.apache.org/docs/2.2/dso.html.

On Windows operating system, run:

APACHE_HOME\bin\httpd -l

4. Make a copy of the ${APACHE_HOME}/bin/httpd.conf file for backup.

5. Open the httpd.conf file.

The file is located at APACHE_HOME/conf/httpd.conf (where APACHE_HOME is the
root directory of your Apache HTTP server installation). See a sample httpd.conf
file at Section 3.2, "Configure the Apache HTTP Server Plug-In".

Configure the Apache HTTP Server Plug-In

Installing and Configuring the Apache HTTP Server Plug-In 3-3

6. Install the Apache HTTP Server Plug-In module for Apache 2.2.x by adding the
following line to your APACHE_HOME/conf/httpd.conf file. For Windows, specify
the .DLL file.

LoadModule weblogic_module /home/myhome/weblogic-plugins-1.1/lib/mod_wl.so

7. Verify the syntax of the APACHE_HOME/conf/httpd.conf file with the following
command:

APACHE_HOME/bin/apachectl -t

This is applicable to Unix/Linix operating systems.

(Where APACHE_HOME is the directory containing your Apache HTTP Server
installation.)

The output of this command reports any errors in your httpd.conf file or returns:

Syntax OK

On the Windows operating system, run:

APACHE_HOME\bin\httpd -t

3.2 Configure the Apache HTTP Server Plug-In
After installing the plug-in in the Apache HTTP Server, configure the Oracle WebLogic
Server Apache Plug-In and configure the server to use the plug-in.

This section explains how to edit the httpd.conf file to proxy requests by path or by
MIME type, to enable HTTP tunneling, and to use other WebLogic Server plug-in
parameters.

3.2.1 Editing the httpd.conf File
Edit the httpd.conf file in your Apache HTTP Server installation to configure the
Apache HTTP Server Plug-In.

1. Make a copy of the ${APACHE_HOME}/bin/httpd.conf file for backup.

2. Open the httpd.conf file.

The file is located at APACHE_HOME/conf/httpd.conf (where APACHE_HOME is the
root directory of your Apache HTTP Server installation). See a sample httpd.conf
file at Section 3.2, "Configure the Apache HTTP Server Plug-In".

3. Ensure that the WebLogic Server modules are included for Apache 2.2.x. Add the
following line to the httpd.conf file if you have not already done so. For
Windows, specify the .DLL file.

LoadModule weblogic_module /home/myhome/weblogic-plugins-1.1/lib/mod_wl.so

4. To proxy requests by MIME type, add an IfModule block that defines one of the
following:

■ For a non-clustered WebLogic Server: the WebLogicHost and WebLogicPort
parameters.

■ For a cluster of WebLogic Servers: the WebLogicCluster parameter.

For example:

<IfModule mod_weblogic.c>
 WebLogicHost myweblogic.example.com

Configure the Apache HTTP Server Plug-In

3-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

 WebLogicPort 7001
 Debug ALL
 DebugConfigInfo ON
 WLLogFile /tmp/wl-proxy.log
</IfModule>

5. To proxy requests by MIME type, add a MatchExpression line to the IfModule
block. Note that if both MIME type and proxying by path are enabled, proxying by
path takes precedence over proxying by MIME type.

For example, the following IfModule block for a non-clustered WebLogic Server
specifies that all files with MIME type .jsp are proxied:

<IfModule mod_weblogic.c>
 WebLogicHost my-weblogic.server.com
 WebLogicPort 7001
 MatchExpression *.jsp
 Debug ALL
 DebugConfigInfo ON
 WLLogFile /tmp/wl-proxy.log
</IfModule>

You can also use multiple MatchExpressions, for example:

<IfModule mod_weblogic.c>
 WebLogicHost my-weblogic.server.com
 WebLogicPort 7001
 MatchExpression *.jsp
 MatchExpression *.xyz
 Debug ALL
 DebugConfigInfo ON
 WLLogFile /tmp/wl-proxy.log
</IfModule>

If you are proxying requests by MIME type to a cluster of WebLogic Servers, use
the WebLogicCluster parameter instead of the WebLogicHost and WebLogicPort
parameters. For example:

<IfModule mod_weblogic.c>
 WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
 MatchExpression *.jsp
 MatchExpression *.xyz
</IfModule>

6. To proxy requests by path, use the Location block and the SetHandler statement.
SetHandler specifies the handler for the Apache HTTP Server Plug-In module. For
example the following Location block proxies all requests containing /weblogic in
the URL:

<Location /weblogic>
 SetHandler weblogic-handler
PathTrim /weblogic
</Location>

The PathTrim parameter specifies a string trimmed from the beginning of the URL
before the request is passed to the WebLogic Server instance (see Section 8.2,
"General Parameters for Web Server Plug-Ins").

7. The PathTrim parameter (see Section 8.3, "SSL Parameters for Web Server
Plug-Ins") must be configured inside the <Location> tag. These known issues
arise when you configure the Apache plug-in to use SSL

Configure the Apache HTTP Server Plug-In

Installing and Configuring the Apache HTTP Server Plug-In 3-5

■ The following configuration is incorrect:

<Location /weblogic>
 SetHandler weblogic-handler
</Location>

<IfModule mod_weblogic.c>
 WebLogicHost localhost
 WebLogicPort 7001
 PathTrim /weblogic
</IfModule>

The following configuration is the correct setup:

<Location /weblogic>
 SetHandler weblogic-handler
 PathTrim /weblogic
</Location>

■ The current implementation of the WebLogic Server Apache Plug-In does not
support the use of multiple certificate files with Apache SSL.

8. Optionally, enable HTTP tunneling for t3 or IIOP.

a. To enable HTTP tunneling if you are using the t3 protocol and weblogic.jar,
add the following Location block to the httpd.conf file:

<Location /bea_wls_internal/HTTPClnt>
 SetHandler weblogic-handler
</Location>

b. To enable HTTP tunneling if you are using the IIOP, the only protocol used by
the WebLogic Server thin client, wlclient.jar, add the following Location
block to the httpd.conf file:

<Location /bea_wls_internal/iiop>
 SetHandler weblogic-handler
</Location>

9. Define any additional parameters for the Apache HTTP Server Plug-In.

The Apache HTTP Server Plug-In recognizes the parameters listed in Section 8.2,
"General Parameters for Web Server Plug-Ins". To modify the behavior of your
Apache HTTP Server Plug-In, define these parameters either:

■ In a Location block, for parameters that apply to proxying by path, or

■ At global or virtual host scope, for parameters that apply to proxying by
MIME type.

10. Verify the syntax of the APACHE_HOME/conf/httpd.conf file with the following
command:

APACHE_HOME/bin/apachectl -t
(Where APACHE_HOME is the directory containing your Apache HTTP Server
installation.)

The output of this command reports any errors in your httpd.conf file or returns:

Syntax OK

On the Windows operating system, run:

APACHE_HOME\bin\httpd -t

Configure the Apache HTTP Server Plug-In

3-6 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

11. Start the Apache HTTP Server.

${APACHE_HOME}/bin/apachectl start

(Where APACHE_HOME is the directory containing your Apache HTTP Server
installation.)

On the Windows operating system, run:

APACHE_HOME\bin\httpd -k start

12. Send a request to http://apache-host:apache-port/mywebapp/my.jsp from the
browser. Validate the response.

3.2.1.1 Placing WebLogic Properties Inside Location or VirtualHost Blocks
If you choose to not use the IfModule, you can instead directly place the WebLogic
properties inside Location or VirtualHost blocks. Consider the following examples
of the Location and VirtualHost blocks:

<Location /weblogic>
SetHandler weblogic-handler
WebLogicHost myweblogic.server.com
WebLogicPort 7001
</Location>

<Location /weblogic>
SetHandler weblogic-handler
WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
</Location>

<VirtualHost apachehost:80>
SetHandler weblogic-handler
WebLogicServer weblogic.server.com
WebLogicPort 7001
</VirtualHost>

3.2.2 Including a weblogic.conf File in the httpd.conf File
If you want to keep several separate configuration files, you can define parameters in a
separate configuration file called weblogic.conf file, by using the Apache HTTP
Server Include directive in an IfModule block in the httpd.conf file:

<IfModule mod_weblogic.c>
 # Config file for WebLogic Server that defines the parameters
 Include conf/weblogic.conf
</IfModule>

The syntax of weblogic.conf files is the same as that for the httpd.conf file.

This section describes how to create weblogic.conf files, and includes sample
weblogic.conf files.

3.2.2.1 Creating weblogic.conf Files
Be aware of the following when constructing a weblogic.conf file.

■ Enter each parameter on a new line. Do not put ‘=’ between a parameter and its
value. For example:

PARAM_1 value1
PARAM_2 value2
PARAM_3 value3

Configure the Apache HTTP Server Plug-In

Installing and Configuring the Apache HTTP Server Plug-In 3-7

■ If a request matches both a MIME type specified in a MatchExpression in an
IfModule block and a path specified in a Location block, the behavior specified by
the Location block takes precedence.

■ If you use an Apache HTTP Server <VirtualHost> block, you must include all
configuration parameters (MatchExpression, for example) for the virtual host
within the <VirtualHost> block (see Apache Virtual Host documentation at
http://httpd.apache.org/docs/vhosts/).

■ If you want to have only one log file for all the virtual hosts configured in your
environment, you can achieve it using global properties. Instead of specifying the
same Debug, WLLogFile and WLTempDir properties in each virtual host you can
specify them just once in the <IfModule> tag.

■ Sample httpd.conf file:

<IfModule mod_weblogic.c>
 WebLogicCluster johndoe02:8005,johndoe:8006
 Debug ON
 WLLogFile c:/tmp/global_proxy.log
 WLTempDir "c:/myTemp"
 DebugConfigInfo On
 KeepAliveEnabled ON
 KeepAliveSecs 15
</IfModule>

<Location /jurl>
 SetHandler weblogic-handler
 WebLogicCluster agarwalp01:7001
</Location>

<Location /web>
 SetHandler weblogic-handler
 PathTrim/web
 Debug OFF
 WLLogFile c:/tmp/web_log.log
</Location>

<Location /foo>
 SetHandler weblogic-handler
 PathTrim/foo
 Debug ERR
 WLLogFile c:/tmp/foo_proxy.log
</Location>

■ All the requests which match /jurl/* will have Debug Level set to ALL and log
messages will be logged to c:/tmp/global_proxy.log file. All the requests which
match /web/* will have Debug Level set to OFF and no log messages will be
logged. All the requests which match /foo/* will have Debug Level set to ERR
and log messages will be logged to c:/tmp/foo_proxy.log file.

■ Oracle recommends that you use the MatchExpression statement instead of the
<Files> block.

3.2.2.2 Sample weblogic.conf Configuration Files
The following examples of weblogic.conf files may be used as templates that you can
modify to suit your environment and server. Lines beginning with # are comments.

Configure the Apache HTTP Server Plug-In

3-8 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Example 3–1 Example Using WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks. (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
 WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
 ErrorPage http://myerrorpage.mydomain.com
 MatchExpression *.jsp
</IfModule>
##

In Example 3–2, the MatchExpression parameter syntax for expressing the filename
pattern, the WebLogic Server host to which HTTP requests should be forwarded, and
various other parameters is as follows:

MatchExpression [filename pattern] [WebLogicHost=host] | [paramName=value]

The first MatchExpression parameter below specifies the filename pattern *.jsp, and
then names the single WebLogicHost. The paramName=value combinations following
the pipe symbol specify the port at which WebLogic Server is listening for connection
requests, and also activate the Debug option. The second MatchExpression specifies
the filename pattern *.http and identifies the WebLogicCluster hosts and their ports.
The paramName=value combination following the pipe symbol specifies the error page
for the cluster.

Example 3–2 Example Using Multiple WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)

<IfModule mod_weblogic.c>
 MatchExpression *.jsp WebLogicHost=myHost|WebLogicPort=7001|Debug=ON
 MatchExpression *.html WebLogicCluster=myHost1:7282,myHost2:7283|ErrorPage=
 http://www.xyz.com/error.html
</IfModule>

Example 3–3 shows an example without WebLogic clusters.

Example 3–3 Example Without WebLogic Clusters

These parameters are common for all URLs which are
directed to the current module. If you want to override
these parameters for each URL, you can set them again in
the <Location> or <Files> blocks (Except WebLogicHost,
WebLogicPort, WebLogicCluster, and CookieName.)
<IfModule mod_weblogic.c>
 WebLogicHost myweblogic.server.com
 WebLogicPort 7001
 MatchExpression *.jsp
</IfModule>

Example 3–4 shows an example of configuring multiple name-based virtual hosts.

Configure the Apache HTTP Server Plug-In

Installing and Configuring the Apache HTTP Server Plug-In 3-9

Example 3–4 Example Configuring Multiple Name-Based Virtual Hosts

VirtualHost1 = localhost:80
<VirtualHost 127.0.0.1:80>
DocumentRoot "C:/test/VirtualHost1"
ServerName localhost:80
<IfModule mod_weblogic.c>
#... WLS parameter ...
WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2
</IfModule>
</VirtualHost>

VirtualHost2 = 127.0.0.2:80
<VirtualHost 127.0.0.2:80>
DocumentRoot "C:/test/VirtualHost1"
ServerName 127.0.0.2:80
<IfModule mod_weblogic.c>
#... WLS parameter ...
WebLogicCluster localhost:7101,localhost:7201
Example: MatchExpression *.jsp <some additional parameter>
MatchExpression *.jsp PathPrepend=/test2
#... WLS parameter ...
</IfModule>
</VirtualHost>

You must define a unique value for ServerName or some Plug-In parameters will not
work as expected.

3.2.2.3 Template for the Apache HTTP Server httpd.conf File
This section contains a sample httpd.conf file for Apache 2.2. You can use this sample
as a template and modify it to suit your environment and server. Lines beginning with
are comments.

Note that Apache HTTP Server is not case sensitive.

Example 3–5 Sample httpd.conf file for Apache 2.2

##
APACHE-HOME/conf/httpd.conf file
##
LoadModule weblogic_module lhome/myhome/weblogic-plugins-1.1/lib/mod_wl.so

<Location /weblogic>
 SetHandler weblogic-handler
 PathTrim /weblogic
 ErrorPage http://myerrorpage1.mydomain.com
</Location>

<Location /servletimages>
 SetHandler weblogic-handler
 PathTrim /something
 ErrorPage http://myerrorpage1.mydomain.com
</Location>

<IfModule mod_weblogic.c>
MatchExpression *.jsp
WebLogicCluster w1s1.com:7001,w1s2.com:7001,w1s3.com:7001
ErrorPage http://myerrorpage.mydomain.com

Configure the Apache HTTP Server Plug-In

3-10 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

</IfModule>

4

Configuring the Plug-In for Oracle HTTP Server 4-1

4Configuring the Plug-In for Oracle HTTP
Server

In this release of Oracle WebLogic Server, a single plug-in supports both Apache
HTTP Server and Oracle HTTP Server.

You do not have to download and set up the plug-in. Oracle HTTP Server comes
pre-bundled with the mod_wl_ohs.so/dll binary. This plug-in, although uniquely
named, is identical to the Apache plug-in.

The following section describes how to configure the plug-in for Oracle HTTP Server:

■ Section 4.1, "Configuring the Plug-In for Oracle HTTP Server"

4.1 Configuring the Plug-In for Oracle HTTP Server
To configure the mod_wl_ohs module using Fusion Middleware Control, do the
following:

1. Select Administration from the Oracle HTTP Server menu.

2. Select mod_wl_ohs Configuration from the Administration menu. The mod_wl_ohs
configuration page appears.

3. If you are using a WebLogic cluster, enter the WebLogic Servers that can be used
for load balancing in the WebLogic Cluster field. The server or cluster list is a list
of host:port entries. If a mixed set of clusters and single servers is specified, the
dynamic list returned for this parameter will return only the clustered servers.

The module does a simple round-robin between all available servers. The server
list specified in this property is a starting point for the dynamic server list that the
server and module maintain. WebLogic Server and the module work together to
update the server list automatically with new, failed, and recovered cluster
members.

You can disable the use of the dynamic cluster list by disabling the Dynamic
Server List ON field. The module directs HTTP requests containing a cookie,
URL-encoded session, or a session stored in the POST data to the server in the
cluster that originally created the cookie.

Note: The definitive source of information for configuring this
plug-in is Oracle Fusion Middleware Administrator's Guide for Oracle
HTTP Server, and specifically the section titled "Configure the mod_
wl_ohs Module on Oracle HTTP Server". The information is
summarized here for your convenience.

Configuring the Plug-In for Oracle HTTP Server

4-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

4. Use the WebLogic Host field to enter the WebLogic Server host (or virtual host
name as defined in WebLogic Server) to which HTTP requests should be
forwarded. If you are using a WebLogic cluster, use the WebLogic Cluster field
instead of WebLogic Host.

5. Use the WebLogic Port field to enter the port on which the WebLogic Server host
is listening for connection requests from the module (or from other servers). (If
you are using SSL between the module and WebLogic Server, set this parameter to
the SSL listen port.

6. If you want to use the dynamic cluster list for load balancing requests proxied
from the module, then select the Dynamic Server List ON check box. When set to
OFF, the module ignores the dynamic cluster list and only uses the static list
specified with the WebLogic Cluster parameter. Normally this parameter should
be set to ON.

7. You can use the Error Page field to create your own error page that is displayed
when your Web server is unable to forward requests to WebLogic Server.

8. Use the Debug field to specify the type of logging performed for debugging
operations. The debugging information is written to the /tmp/wlproxy.log file on
UNIX systems and c:\TEMP\wlproxy.log on Windows systems. Override this
location and filename by setting the Log File parameter to a different directory and
file. Ensure that the tmp or TEMP directory has write permission assigned to the
user who is logged in to the server.

The Debug parameter can be set any of the following logging options.
Additionally, the HFC, HTW, HFW, and HTC options can be set in combination
by entering them separated by commas; for example: HFC,HTW.

■ ON – The module logs informational and error messages.

■ OFF – No debugging information is logged.

■ HFC – The module logs headers from the client, informational, and error
messages.

■ HTW – The module logs headers sent to WebLogic Server, and informational
and error messages.

■ HFW – The module logs headers sent from WebLogic Server, and
informational and error messages.

■ HTC – The module logs headers sent to the client, informational messages,
and error messages.

■ ERR – Prints only the Error messages in the module.

■ ALL – The module logs headers sent to and from the client, headers sent to
and from WebLogic Server, information messages, and error messages.

9. Use the Log File field to specify the path and file name for the log file that is
generated when the Debug parameter is set to ON. You must create this directory
before setting this parameter.

10. Use the WebLogic Temp Directory field to specify the directory where a
wlproxy.log will be created. If the location fails, the module resorts to creating the
log file under c:/temp in Windows and /tmp in all UNIX platforms.

This also specifies the location of the _wl_proxy directory for post data files. When
both WebLogic Temp Directory and Log File are set, Log File will override as to
the location of wlproxy.log. WebLogic Temp Directory will still determine the
location of the _wl_proxy directory.

Configuring the Plug-In for Oracle HTTP Server

Configuring the Plug-In for Oracle HTTP Server 4-3

11. Use the Exclude Path or Mime Type field to exclude certain requests from
proxying. This parameter can be defined locally at the Location tag level as well as
globally. When the property is defined locally, it does not override the global
property but defines a union of the two parameters.

12. The Match Expression region is used to specify any Expression overrides.

Example when proxying by MIME type:

*.jsp WebLogicHost=myHost|paramName=value

It is possible to define a new parameter for Match Expression using the following
syntax:

*.jsp PathPrepend=/test PathTrim=/foo

13. The Location region is used to specify any Location overrides.

a. Click Add Row to create a new row.

b. Enter the base URI for which following directives become effective.

c. Complete the WebLogic Cluster, WebLogic Host, and WebLogic Port fields
using the definitions supplied earlier in this section.

d. For the Path Trim field, as per the RFC specification, generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_
STRING}...

Path Trim specifies the string trimmed by the module from the
{PATH}/{FILENAME} portion of the original URL, before the request is
forwarded to WebLogic Server. For example, if the URL:

http://myWeb.server.com/weblogic/foo
is passed to the module for parsing and if Path Trim has been set to strip off
/weblogic before handing the URL to WebLogic Server, the URL forwarded to
WebLogic Server is:

http://myWeb.server.com:7002/foo

Note that if you are newly converting an existing third-party server to proxy
requests to WebLogic Server using the module, you will need to change
application paths to /foo to include weblogic/foo. You can use Path Trim and
Path Prepend in combination to change this path.

e. For the Path Prepend field, as per the RFC specification, generic syntax for
URL is:

[PROTOCOL]://[HOSTNAME]:{PORT}/{PATH}/{FILENAME};{PATH_PARAMS}/{QUERY_
STRING}...

Path Prepend specifies the path that the module prepends to the {PATH}
portion of the original URL, after Path Trim is trimmed and before the request
is forwarded to WebLogic Server.

Note that if you need to append File Name, use the DefaultFileName module
parameter instead of Path Prepend.

f. Complete the Log File and Debug fields using the definitions supplied earlier
in this section.

g. Click Add Row again to save the new row.

Configuring the Plug-In for Oracle HTTP Server

4-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

14. Review the settings. If the settings are correct, click Apply to apply the changes. If
the settings are incorrect, or you decide to not apply the changes, click Revert to
return to the original settings.

15. Restart Oracle HTTP Server.

The mod_wl_ohs module configuration is saved and shown on the mod_wl_ohs
Configuration page.

Note: If you are manually editing the mod_wl_ohs configuration
settings instead of using Fusion Middleware Control, then all
directives should be defined within the defined within the <IfModule
weblogic_module> block of the mod_wl_ohs.conf file. mod_wl_ohs will
continue to work if directives are defined outside of this block, but
this could put the mod_wl_ohs Configuration page in Fusion
Middleware Control in an inconsistent state.

5

Installing and Configuring the Microsoft IIS Plug-In 5-1

5Installing and Configuring the Microsoft IIS
Plug-In

 The following sections describe how to install and configure the Microsoft Internet
Information Server Plug-In:

■ Section 5.1, "Installing and Configuring the Microsoft Internet Information Server
Plug-In"

■ Section 5.2, "Installing and Configuring the Microsoft Internet Information Server
Plug-In for IIs 7.0"

■ Section 5.3, "Using Wildcard Application Mappings to Proxy by Path"

■ Section 5.4, "Proxying Requests from Multiple Virtual Web Sites to WebLogic
Server"

■ Section 5.5, "Creating ACLs Through IIS"

■ Section 5.6, "Proxying Servlets from IIS to WebLogic Server"

■ Section 5.7, "Testing the Installation"

5.1 Installing and Configuring the Microsoft Internet Information Server
Plug-In

To install the Microsoft Internet Information Server Plug-In:

1. Download the Microsoft Internet Information Server Plug-In, as described in
Section 2.6, "Downloading the Version 1.1 Plug-Ins".

2. Copy the iisproxy.dll file into a convenient directory that is accessible to IIS). This
directory must also contain the iisproxy.ini file that you will create in step 6.

3. Set the user permissions for the iisproxy.dll file to include the name of the user
who will be running IIS. One way to do this is by right clicking on the
iisproxy.dll file and selecting Permissions, then adding the username of the
person who will be running IIS.

4. If you want to configure proxying by file extension (MIME type) complete this
step. (You can configure proxying by path in addition to or instead of configuring
by MIME type. See step 5.)

a. Start the Internet Information Service Manager by selecting it from the Start
menu.

b. In the left panel of the Service Manager, select your Web site (the default is
“Default Web Site”).

Installing and Configuring the Microsoft Internet Information Server Plug-In

5-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Figure 5–1 Selecting Web Site in Service Manager

c. Click the “Play” arrow in the toolbar to start.

d. Open the properties for the selected Web site by right-clicking the Web site
selection in the left panel and selecting Properties.

Figure 5–2 Selecting Properties for Selected Web Site

e. In the Properties panel, select the Home Directory tab, and click the
Configuration button in the Applications Settings section.

Installing and Configuring the Microsoft Internet Information Server Plug-In

Installing and Configuring the Microsoft IIS Plug-In 5-3

Figure 5–3 Home Directory Tab of the Properties Panel

f. On the Mappings tab, click the Add button to add file types and configure
them to be proxied to WebLogic Server.

Figure 5–4 Click the Add Button to Add File Types

g. In the Add dialog box, browse to find the iisproxy.dll file.

h. Set the Extension to the type of file that you want to proxy to WebLogic
Server.

i. If you are configuring for IIS 6.0 or later, be sure to deselect the “Check that
file exists” check box. The behavior of this check has changed from earlier
versions of IIS: it used to check that the iisproxy.dll file exists; now it checks
that files requested from the proxy exist in the root directory of the Web
server. If the check does not find the files there, the iisproxy.dll file will not be
allowed to proxy requests to the WebLogic Server.

Installing and Configuring the Microsoft Internet Information Server Plug-In

5-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

j. In the Directory Security tab, set the Method exclusions as needed to create a
secure installation.

k. When you finish, click the OK button to save the configuration. Repeat this
process for each file type you want to proxy to WebLogic.

l. When you finish configuring file types, click the OK button to close the
Properties panel.

5. If you want to configure proxying by path, see Section 5.3, "Using Wildcard
Application Mappings to Proxy by Path".

6. In WebLogic Server, create the iisproxy.ini file.

The iisproxy.ini file contains name=value pairs that define configuration
parameters for the plug-in. The parameters are listed in Section 8–1, " General
Parameters for Web Server Plug-Ins".

Use the example iisproxy.ini file in Section 5.4.1, "Sample iisproxy.ini File" as a
template for your iisproxy.ini file.

Oracle recommends that you locate the iisproxy.ini file in the same directory
that contains the iisproxy.dll file. You can also use other locations. If you place
the file elsewhere, note that WebLogic Server searches for iisproxy.ini in the
following directories, in the following order:

a. In the same directory where iisproxy.dll is located.

b. In the home directory of the most recent version of WebLogic Server that is
referenced in the Windows Registry. (If WebLogic Server does not find the
iisproxy.ini file in the home directory, it continues looking in the Windows
Registry for older versions of WebLogic Server and looks for the
iisproxy.ini file in the home directories of those installations.)

c. In the directory c:\weblogic, if it exists.

7. Define the WebLogic Server host and port number to which the Microsoft Internet
Information Server Plug-In proxies requests. Depending on your configuration,
there are two ways to define the host and port:

Note: In the URL, any path information you add after the server and
port is passed directly to WebLogic Server. For example, if you
request a file from IIS with the URL:

http://myiis.com/jspfiles/myfile.jsp

it is proxied to WebLogic Server with a URL such as
http://mywebLogic:7001/jspfiles/myfile.jsp

Note: To avoid out-of-process errors, do not deselect the "Cache
ISAPI Applications" check box.

Note: Changes in the parameters will not go into effect until you
restart the “IIS Admin Service” (under services, in the control panel).

Installing and Configuring the Microsoft Internet Information Server Plug-In for IIs 7.0

Installing and Configuring the Microsoft IIS Plug-In 5-5

■ If you are proxying requests to a single WebLogic Server, define the
WebLogicHost and WebLogicPort parameters in the iisproxy.ini file. For
example:

WebLogicHost=localhost
WebLogicPort=7001

■ If you are proxying requests to a cluster of WebLogic Servers, define the
WebLogicCluster parameter in the iisproxy.ini file. For example:

WebLogicCluster=myweblogic.com:7001,yourweblogic.com:7001

Where myweblogic.com and yourweblogic.com are instances of Weblogic
Server running in a cluster.

8. Optionally, enable HTTP tunneling by following the instructions for proxying by
path (see Section 5.3, "Using Wildcard Application Mappings to Proxy by Path")
substituting the WebLogic Server host name and the WebLogic Server port
number, or the name of a WebLogic Cluster that you wish to handle HTTP
tunneling requests.

9. Set any additional parameters in the iisproxy.ini file. A complete list of
parameters is available in the appendix Section 8.2, "General Parameters for Web
Server Plug-Ins".

10. If you are proxying servlets from IIS to WebLogic Server and you are not proxying
by path, read the section Section 5.6, "Proxying Servlets from IIS to WebLogic
Server".

11. The installed version of IIS with its initial settings does not allow the
iisproxy.dll. Use the IIS Manager console to enable the Plug-In:

a. Open the IIS Manager console.

b. Select Web Service Extensions.

c. Set “All Unknown ISAPI Extensions” to Allowed.

5.2 Installing and Configuring the Microsoft Internet Information Server
Plug-In for IIs 7.0

This section describes differences in how you set up the Microsoft Internet Information
Server Plug-In for IIs 7.0.

To set up the Microsoft Internet Information Server Plug-In for IIs 7.0, follow these
steps:

1. Create a web application in IIS Manager by right clicking on Web Sites -> Add
Web Site.

Fill in the Web Site Name with the name you want to give to your web
application; for example, MyApp. Select the physical path of your web application
Port (any valid port number not currently in use).

Click OK to create the web application.

If you can see the name of your application under Web Sites it means that your
application has been created and started running. Click on the MyApp node under
Web Sites to see all of the settings related to the MyApp application, which you
can change, as shown in Figure 5–5.

Installing and Configuring the Microsoft Internet Information Server Plug-In for IIs 7.0

5-6 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Figure 5–5 Application Home Page

2. Click on "Handler Mappings" to set the mappings to the handler for a particular
MIME type.

Figure 5–6 Setting the Handler Mappings

3. Click on the StaticFile and change the Request path from * to *.*. Click OK.

Installing and Configuring the Microsoft Internet Information Server Plug-In for IIs 7.0

Installing and Configuring the Microsoft IIS Plug-In 5-7

Figure 5–7 Editing the Request Path for Module

4. Click on MyApp and then click on "Add Script Map…" on the right-hand side
menu options. Enter * for the Request path.

Browse to the iisproxy.dll file and add it as the executable. Name it proxy.

Figure 5–8 Editing the Request Path for Script

5. Click on the "Request Restrictions…" button and uncheck the box "Invoke handler
only if the request is mapped to".

Installing and Configuring the Microsoft Internet Information Server Plug-In for IIs 7.0

5-8 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Figure 5–9 Editing the Request Restrictions

6. Click OK to add this Handler mapping. Click Yes on the Add Script Map dialog
box.

Figure 5–10 Adding the Script Map

7. If you want to configure proxying by path, see Section 5.3, "Using Wildcard
Application Mappings to Proxy by Path".

8. Click on the Root node of the IIS Manager tree and click on the ISAPI and CGI
Restrictions. Make sure to check the "Allow unspecified ISAPI modules" checkbox.

Installing and Configuring the Microsoft Internet Information Server Plug-In for IIs 7.0

Installing and Configuring the Microsoft IIS Plug-In 5-9

Figure 5–11 Editing ISAPI and CGI Restrictions

9. Create a file called iisproxy.ini with the following contents and place it in the
directory with the plug-in:

WebLogicHost= @hostname@
WebLogicPort= @port@
ConnectRetrySecs=5
ConnectTimeoutSecs=25
Debug=ALL
DebugConfigInfo=ON
KeepAliveEnabled=true

WLLogFile=@Log file name@
SecureProxy=OFF

10. Open the Internet Explorer browser and enter http://<hostname>:<port>. You
should be able to see the Medrec Sample Application from your Weblogic Server.

If you want to run the plug-in in SSL mode, change the value of WeblogicPort to
the SSL port of your application, and change the SecureProxy value to ON.

Figure 5–12 Medrec Sample Application

Using Wildcard Application Mappings to Proxy by Path

5-10 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

5.3 Using Wildcard Application Mappings to Proxy by Path
As described in "Installing Wildcard Application Mappings (IIS 6.0)"
(http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/II
S/5c5ae5e0-f4f9-44b0-a743-f4c3a5ff68ec.mspx?mfr=true), and "Add a Wildcard
Script Map" for IIS 7.0
(http://technet.microsoft.com/en-us/library/cc754606(WS.10).aspx), you can
configure a Web site or virtual directory to run an Internet Server API (ISAPI)
application at the beginning of every request to that Web site or virtual directory,
regardless of the extension of the requested file. You can use this feature to insert a
mapping to iisproxy.dll and thereby proxy requests by path to WebLogic Server.

5.3.1 Installing Wildcard Application Mappings (IIS 6.0)
The following steps summarize the instructions available at "Installing Wildcard
Application Mappings (IIS 6.0)"
(http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/II
S/5c5ae5e0-f4f9-44b0-a743-f4c3a5ff68ec.mspx?mfr=true) for adding a wildcard
application mapping to a Web server or Web site in IIS 6.0:

1. In IIS Manager, expand the local computer, expand the Web Sites folder,
right-click the Web site or virtual directory that you want, and then click
Properties.

2. Click the appropriate tab: Home Directory, Virtual Directory, or Directory.

3. In the Application settings area, click Configuration, and then click the Mappings
tab.

4. To install a wildcard application map, do the following:

a. On the Mappings tab, click Insert.

b. Type the path to the iisproxy.dll DLL in the Executable text box or click
Browse to navigate to.

c. Click OK.

5.3.2 Adding a Wildcard Script Map for IIS 7.0
The following steps summarize the instructions available at "Add a Wildcard Script
Map" for IIS 7.0
(http://technet.microsoft.com/en-us/library/cc754606(WS.10).aspx) to add a
wildcard script map to do proxy-by-path with ISAPI in IIS 7.0:

1. Open IIS Manager and navigate to the level you want to manage. For information
about opening IIS Manager, see "Open IIS Manager" at
http://technet.microsoft.com/en-us/library/cc770472(WS.10).aspx. For
information about navigating to locations in the UI, see "Navigation in IIS
Manager" at
http://technet.microsoft.com/en-us/library/cc732920(WS.10).aspx.

2. In Features View, on the server, site, or application Home page, double-click
Handler Mappings.

3. On the Handler Mappings page, in the Actions pane, click Add Wildcard Script
Map.

4. In the Executable box, type the full path or browse to the iisproxy.dll that
processes the request. For example, type
systemroot\system32\inetsrv\iisproxy.dll.

Proxying Requests from Multiple Virtual Web Sites to WebLogic Server

Installing and Configuring the Microsoft IIS Plug-In 5-11

5. In the Name box, type a friendly name for the handler mapping.

6. Click OK.

7. Optionally, on the Handler Mappings page, select a handler to lock or unlock it.
When you lock a handler mapping, it cannot be overridden at lower levels in the
configuration. Select a handler mapping in the list, and then in the Actions pane,
click Lock or Unlock.

8. After you add a wildcard script map, you must add the executable to the ISAPI
and CGI Restrictions list to enable it to run. For more information about ISAPI and
CGI restrictions, see "Configuring ISAPI and CGI Restrictions in IIS 7" at
http://technet.microsoft.com/en-us/library/cc730912(WS.10).aspx.

5.4 Proxying Requests from Multiple Virtual Web Sites to WebLogic
Server

To proxy requests from multiple Web sites (defined as virtual directories in IIS) to
WebLogic Server:

1. Create a new directory for the virtual directories. This directory will contain .dll
and .ini files used to define the proxy.

2. Extract the contents of the plug-in .zip file to a directory.

3. For each virtual directory you configured, copy the contents of the plug-in \lib
folder to the directory you created in step 1.

4. Create an iisproxy.ini file for the virtual Web sites, as described in Section 2.1.2,
"Proxying Requests". Copy this iispoxy.ini file to the directory you created in
step 1.

5. Copy iisproxy.dll to the directory you created in step 1.

6. Create a separate application pool for each virtual directory.

As described in "Creating Application Pools (IIS 6.)"
(http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library
/IIS/93275ef2-2f85-4eb1-8b92-a67545be11b4.mspx?mfr=true), you can isolate
different Web applications or Web sites in pools, which are called application
pools. In an application pool, process boundaries separate each worker process
from other worker processes so that when an application is routed to one
application pool, applications in other application pools do not affect that
application.

5.4.1 Sample iisproxy.ini File
Here is a sample iisproxy.ini file for use with a single, non-clustered WebLogic
Server. Comment lines are denoted with the “#” character.

This file contains initialization name/value pairs
for the IIS/WebLogic plug-in.
WebLogicHost=localhost
WebLogicPort=7001
ConnectTimeoutSecs=20
ConnectRetrySecs=2

Here is a sample iisproxy.ini file with clustered WebLogic Servers. Comment lines
are denoted with the “#” character.

This file contains initialization name/value pairs

Creating ACLs Through IIS

5-12 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

for the IIS/WebLogic plug-in.
WebLogicCluster=myweblogic.com:7001,yourweblogic.com:7001
ConnectTimeoutSecs=20
ConnectRetrySecs=2

5.5 Creating ACLs Through IIS
ACLs will not work through the Microsoft Internet Information Server Plug-In if the
Authorization header is not passed by IIS. Use the following information to ensure
that the Authorization header is passed by IIS.

When using Basic Authentication, the user is logged on with local log-on rights. To
enable the use of Basic Authentication, grant each user account the Log On Locally
user right on the IIS server. Two problems may result from Basic Authentication's use
of local logon:

■ If the user does not have local logon rights, Basic Authentication does not work
even if the FrontPage, IIS, and Windows NT configurations appear to be correct.

■ A user who has local log-on rights and who can obtain physical access to the host
computer running IIS will be permitted to start an interactive session at the
console.

To enable Basic Authentication, in the Directory Security tab of the console, ensure
that the Allow Anonymous option is “on” and all other options are “off”.

5.6 Proxying Servlets from IIS to WebLogic Server
You can proxy servlets by path if the iisforward.dll is registered as a filter. You
would then invoke your servlet with a URL similar to the following:

http://IISserver/weblogic/myServlet

To proxy servlets if iisforward.dll is not registered as a filter, you must configure
servlet proxying by file type.To proxy servlets by file type:

1. Register an arbitrary file type (extension) with IIS to proxy the request to the
WebLogic Server, as described in step 2 under Section 5.1, "Installing and
Configuring the Microsoft Internet Information Server Plug-In".

2. Register your servlet in the appropriate Web Application. For more information
on registering servlets, see Creating and Configuring Servlets.

3. Invoke your servlet with a URL formed according to this pattern:

http://www.myserver.com/virtualName/anyfile.ext

where virtualName is the URL pattern defined in the <servlet-mapping> element
of the Web Application deployment descriptor (web.xml) for this servlet and ext is
a file type (extension) registered with IIS for proxying to WebLogic Server. The
anyfile part of the URL is ignored in this context.

Note: If you are using SSL between the plug-in and WebLogic
Server, the port number should be defined as the SSL listen port.

Testing the Installation

Installing and Configuring the Microsoft IIS Plug-In 5-13

5.7 Testing the Installation
After you install and configure the Microsoft Internet Information Server Plug-In,
follow these steps for deployment and testing:

1. Make sure WebLogic Server and IIS are running.

2. Save a JSP file into the document root of the default Web Application.

3. Open a browser and set the URL to the IIS plus filename.jsp, as shown in this
example:

http://myii.server.com/filename.jsp

If filename.jsp is displayed in your browser, the plug-in is functioning.

Note: If the image links called from the servlet are part of the Web
Application, you must also proxy the requests for the images to
WebLogic Server by registering the appropriate file types (probably
.gif and .jpg) with IIS. You can, however, choose to serve these images
directly from IIS if desired.

If the servlet being proxied has links that call other servlets, then these
links must also be proxied to WebLogic Server, conforming to the
pattern described in step 3.

Testing the Installation

5-14 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

6

Installing and Configuring the Oracle iPlanet Web Server Plug-In 6-1

6Installing and Configuring the Oracle iPlanet
Web Server Plug-In

This release documents how to install and configure the Oracle iPlanet Web Server
Plug-In.

In previous releases of WebLogic Server, this plug-in was referred to as the Netscape
Enterprise Server plug-in.

The following sections describe how to install and configure the Oracle iPlanet Web
Server Plug-In:

■ Section 6.1, "Overview of the Oracle iPlanet Web Server Plug-In"

■ Section 6.2, "Installing and Configuring the Oracle iPlanet Web Server Plug-In"

6.1 Overview of the Oracle iPlanet Web Server Plug-In
The Oracle iPlanet Web Server Plug-In enables requests to be proxied from Oracle
iPlanet Web Server to WebLogic Server. The plug-in enhances a Oracle iPlanet Web
Server installation by allowing WebLogic Server to handle those requests that require
the dynamic functionality of WebLogic Server.

The Oracle iPlanet Web Server Plug-In is designed for an environment where Oracle
iPlanet Web Server serves static pages, and a Weblogic Server instance (operating in a
different process, possibly on a different machine) is delegated to serve dynamic
pages, such as JSPs or pages generated by HTTP Servlets. The connection between
WebLogic Server and the Oracle iPlanet Web Server Plug-In is made using clear text or
Secure Sockets Layer (SSL). To the end user—the browser—the HTTP requests
delegated to WebLogic Server appear to come from the same source as the static pages.
Additionally, the HTTP-tunneling facility of WebLogic Server can operate through the
Oracle iPlanet Web Server Plug-In, providing access to all WebLogic Server services
(not just dynamic pages).

The Oracle iPlanet Web Server Plug-In operates as a module within a Oracle iPlanet
Web Server. The module is loaded at startup and later based on the configuration,
certain HTTP requests are delegated to it.

For more information on Oracle iPlanet Web Server see,
http://download.oracle.com/docs/cd/E18958_01/doc.70/e18789/chapter.htm

6.2 Installing and Configuring the Oracle iPlanet Web Server Plug-In
The following sections provide information pertaining to the installation prerequisites
and configuring the Oracle iPlanet Web Server Plug-in.

Installing and Configuring the Oracle iPlanet Web Server Plug-In

6-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

6.2.1 Installation Prerequisites
Before you install the Oracle iPlanet Web Server plug-in, you must satisfy the
following prerequisites:

■ Download the Oracle iPlanet Web Server Plug-In, as described in Section 2.6,
"Downloading the Version 1.1 Plug-Ins".

■ Extract the plug-in zip distribution into the Web Server installation directory
install-dir. Before extracting the plug-in zip distribution, rename the existing
README.txt within install-dir.

■ Install JDK 6 if you want to use SSL. The JDK 6 installation is required for orapki
utility. The orapki utility manages public key infrastructure (PKI) elements, such
as wallets and certificate revocation lists, for use with SSL.

■ Have a supported Oracle iPlanet Web Server installation.

The version 1.1 plug-in is supported on the Oracle iPlanet Web Server platforms
described in,
http://www.oracle.com/technology/software/products/ias/files/fusion_
certification.html

■ A supported version of WebLogic Server is configured and running on a target
system. However, it does not need to be running on the system on which you
extracted the plug-in zip distribution. See

 http://www.oracle.com/technology/software/products/ias/files/fusion_
certification.html for the supported WebLogic Server versions.

6.2.2 Installing Oracle iPlanet Web Server Plug-In
The Oracle iPlanet Web Server plug-in is distributed as a shared object (.so) for Unix
platforms and a DLL for Windows.

■ Instruct Oracle iPlanet Web Server to load the native library (the mod_wl.so) file on
Unix or mod_wl.dll file on Windows) as a module.

Add the following line to the magnus.conf file.

Init fn="load-modules" shlib="mod_wl.so"

These lines instruct Oracle iPlanet Web Server to load the native library (the mod_
wl.so file on Unix or mod_wl.dll file on Windows) as a module. The magnus.conf file
is located in the INSTANCE-DIR/config directory. Where INSTANCE-DIR is the web
server instance directory. For more information, see

 http://download.oracle.com/docs/cd/E19146-01/821-1827/821-1827.pdf

6.2.3 Configuring the Oracle iPlanet Web Server Plug-In
This section provides information about configuring the Oracle iPlanet Web Server
Plug-In.

Locate and open the obj.conf file

The default obj.conf file is located in the INSTANCE-DIR/config directory. Where
INSTANCE-DIR is the web server instance directory.
For more information, see

 http://download.oracle.com/docs/cd/E19146-01/821-1827/821-1827.pdf

There are different ways to configure obj.conf file.

Installing and Configuring the Oracle iPlanet Web Server Plug-In

Installing and Configuring the Oracle iPlanet Web Server Plug-In 6-3

Read guidelines for Section 6.2.4, "Guidelines for Modifying the obj.conf File". The
obj.conf file defines which requests are proxied to WebLogic Server and other
configuration information.

■ If you want to proxy requests by URL, (also called proxying by path.) create a
separate <Object> tag for each URL that you want to proxy and define the
PathTrim parameter. The following is an example of an <Object> tag that proxies a
request containing the string */weblogic/*

<Object ppath="*/weblogic/*">>
Service fn=wl-proxy WebLogicHost=myserver.com WebLogicPort=7001
PathTrim="/weblogic"
</Object>

Here is an example of the object definitions for two separate ppaths that identify
requests to be sent to different instances of WebLogic Server:

<Object ppath="*/weblogic/*">>
Service fn=wl-proxy WebLogicHost=myserver.com WebLogicPort=7001
PathTrim="/weblogic"
</Object>
<Object name="si" ppath="*/servletimages/*">
Service fn=wl-proxy WebLogicHost=otherserver.com WebLogicPort=7008
</Object>

■ If you are proxying requests by MIME type, add any new MIME types referenced
in the obj.conf file to the mime.types file. You can add MIME types by using the
iPlanet server console or by editing the mime.types file directly.

To directly edit mime.types file, open the file for editing and type the following line:

type=text/jsp exts=jsp

To edit the mime.types file in the iPlanet Administration console, see

http://download.oracle.com/docs/cd/E19146-01/821-1828/gdabr/index.html

All requests with a designated MIME type extension (for example, .jsp) can be proxied
to the WebLogic Server, regardless of the URL.

For example, to proxy all JSPs to a WebLogic Server, the following Service directive
should be added:

Service method="(GET|HEAD|POST|PUT)" type=text/jsp fn=wl-proxy
WebLogicHost=myserver.com WebLogicPort=7001 PathPrepend=/jspfiles

Note: Parameters that are not required, such as PathTrim, can be
used to further configure the way the ppath is passed through the
Oracle iPlanet Web Server Plug-In. For a complete list of plug-in
parameters, see Section 8.2, Section 8.2, "General Parameters for Web
Server Plug-Ins"

Note: iPlanet Web Server 7.0.9 and above, already defines the MIME
type for JSPs. Change the existing MIME type from
magnus-internal/jsp to text/jsp.

Installing and Configuring the Oracle iPlanet Web Server Plug-In

6-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

This Service directive proxies all files with the .jsp extension to the designated
WebLogic Server, where they are served with a URL like this:

http://myserver.com:7001/jspfiles/myfile.jsp

The value of the PathPrepend parameter should correspond to the context root of a
Web Application that is deployed on the WebLogic Server or cluster to which requests
are proxied.

After adding entries for the Oracle iPlanet Web Server Plug-In, the default Object
definition will be similar to the following example:

<Object name="default">
AuthTrans fn="match-browser" browser="*MSIE*" ssl-unclean-shutdown="true"
NameTrans fn="pfx2dir" from="/mc-icons" dir="/export/home/ws/lib/icons"
name="es-internal"
PathCheck fn="uri-clean"
PathCheck fn="check-acl" acl="default"
PathCheck fn="find-pathinfo"
PathCheck fn="find-index" index-names="index.html,home.html
ObjectType fn="type-by-extension"
ObjectType fn="force-type" type="text/plain"
Service method="(GET|HEAD|POST|PUT)" type="text/jsp" fn="wl-proxy"
WebLogicHost="myweblogic.server.com" WebLogicPort="7100"
Service method="(GET|HEAD)" type="magnus-internal/directory" fn="index-common"
Service method="(GET|HEAD|POST)" type="*~magnus-internal/*" fn="send-file"
Service method="TRACE" fn="service-trace"
AddLog fn="flex-log"
</Object>

You can add a similar Service statement to the default object definition for all other
MIME types that you want to proxy to WebLogic Server.

For proxy-by-MIME to work properly you need to disable JAVA from the Oracle
iPlanet Web Server otherwise, SUN One will try to serve all requests that end in *.jsp
and will return a 404 error as it will fail to locate the resource under $doc_root.

To disable JAVA from the Oracle iPlanet Web Server, comment out the following in the
obj.conf file under the name= "default"
#NameTrans fn="ntrans-j2ee" name="j2ee" and restart the webserver.

■ Optionally, if you are proxying by path, enable HTTP-tunneling.

If you are using weblogic.jar and tunneling the t3 protocol, add the following object
definition to the obj.conf file, substituting the WebLogic Server host name and the
WebLogic Server port number, or the name of a WebLogic Cluster that you wish to
handle HTTP tunneling requests.

<Object name="tunnel" ppath="*/HTTPClnt*"
Service fn=wl-proxy WebLogicHost=myserver.com WebLogicPort=7001
</Object>

■ If you are tunneling IIOP, which is the only protocol used by the WebLogic Server
thin client, wlclient.jar, add the following object definition to the obj.conf file,
substituting the WebLogic Server host name and the WebLogic Server port
number, or the name of a WebLogic Cluster that you wish to handle HTTP
tunneling requests.

<Object name="tunnel" ppath="*/iiop*">
Service fn=wl-proxy WebLogicHost=myserver.com WebLogicPort=7001

Installing and Configuring the Oracle iPlanet Web Server Plug-In

Installing and Configuring the Oracle iPlanet Web Server Plug-In 6-5

</Object>

To test Oracle iPlanet Web Server Plug-In:

1. Start WebLogic Server.

2. Start Oracle iPlanet Web Server. If Oracle iPlanet Web Server is already running,
you must either restart or reconfigure the server.

3. You can test the Oracle iPlanet Plug-In using the following URL. It should bring
up the default WebLogic Server HTML page, welcome file, or default servlet, as
defined for the default Web Application as shown in this example

http://webserver_host:webserver_port/weblogic/

For information on how to create a default Web Application, see Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server

6.2.4 Guidelines for Modifying the obj.conf File
To use the Oracle iPlanet Web Server Plug-In, you must make several modifications to
the obj.conf file. For more information, see

http://download.oracle.com/docs/cd/E19146-01/821-1827/821-1827.pdf

6.2.5 Sample obj.conf File (Not Using a WebLogic Cluster)
Below is an example of lines that should be added to the obj.conf file if you are not
using a cluster. You can use this example as a template that you can modify to suit
your environment and server. Lines beginning with # are comments.

■ Proxy requests by URL

--------------BEGIN SAMPLE obj.conf CONFIGURATION---------
(no cluster)
Configure which types of HTTP requests should be handled by the
iPlanet NSAPI plug-In (and, in turn, by WebLogic). This is done
with one or more "<Object>" tags as shown below.
Here we configure the iPlanet plug-In module to pass requests for
"/weblogic" to a WebLogic Server listening at port 7001 on
the host myweblogic.server.com.
<Object ppath="*/weblogic/*">
Service fn=wl-proxy WebLogicHost=myweblogic.server.com WebLogicPort=7001
PathTrim="/weblogic"
</Object>
Here we configure the plug-in so that requests that
match "/servletimages/" is handled by the
plug-in/WebLogic.
<Object name="si" ppath="*/servletimages/*">
Service fn=wl-proxy WebLogicHost=myweblogic.server.com WebLogicPort=7001
</Object>
-------------END SAMPLE obj.conf CONFIGURATION-------------------

■ Proxy requests by MIME type

This Object directive works by file extension rather than
request path. To use this configuration, you must modify the existing line or
add the following line to mime.types file.

Installing and Configuring the Oracle iPlanet Web Server Plug-In

6-6 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

-----------BEGIN SAMPLE mime.types CONFIGURATION---------------------
#
type=text/jsp exts=jsp

------------END SAMPLE mime.types CONFIGURATION----------------------

-------------BEGIN SAMPLE obj.conf CONFIGURATION---------------------
This configuration means that any file with the extension
".jsp" are proxied to WebLogic. Then you must add the
Service line for this extension to the Object "default",
which should already exist in your obj.conf file:
<Object name=default>
NameTrans fn=pfx2dir from=/ns-icons dir="c:/Export/Home/ns-icons"
NameTrans fn=pfx2dir from=/mc-icons dir="c://Export/Home/ns-icons"
NameTrans fn="pfx2dir" from="/help" dir="c:/Export/Home/manual/https/ug"
NameTrans fn=document-root root="c:/Export/Home/docs"
Service method="(GET|HEAD|POST|PUT)" type=text/jsp fn=wl_proxy
WebLogicHost=myweblogic.server.com WebLogicPort=7001 PathPrepend=/jspfiles
PathCheck fn=nt-uri-clean
PathCheck fn="check-acl" acl="default"
PathCheck fn=find-pathinfo
PathCheck fn=find-index index-names="index.html,home.html"
ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method=(GET|HEAD) type=magnus-internal/imagemap fn=imagemap
Service method=(GET|HEAD) type=magnus-internal/directory fn=index-common
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>
The following directive enables HTTP-tunneling of the
WebLogic protocol through the iPlanet plug-in.
<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl-proxy WebLogicHost=myweblogic.server.com WebLogicPort=7001
</Object>
#
-------------END SAMPLE obj.conf CONFIGURATION---------------------

6.2.6 Sample obj.conf File (Using a WebLogic Cluster)
Below is an example of lines that should be added to obj.conf if you are using a
WebLogic Server cluster. You can use this example as a template that you can modify
to suit your environment and server. Lines beginning with # are comments.

■ Proxy requests by URL

-------------BEGIN SAMPLE obj.conf CONFIGURATION-------------------
(using a WebLogic Cluster)

Configure which types of HTTP requests should be handled by the
iPlanet module (and, in turn, by WebLogic). This is done
with one or more "<Object>" tags as shown below.
Here we configure the iPlanet module to pass requests for
"/weblogic" to a cluster of WebLogic Servers.
<Object ppath="*/weblogic/*">
Service fn=wl-proxy WebLogicCluster="myweblogic.com:7001,yourweblogic.com:7001,
theirweblogic.com:7001" PathTrim="/weblogic"
</Object>
Here we configure the plug-in so that requests that
match "/servletimages/" are handled by the
plug-in/WebLogic.

Installing and Configuring the Oracle iPlanet Web Server Plug-In

Installing and Configuring the Oracle iPlanet Web Server Plug-In 6-7

<Object name="si" ppath="*/servletimages/*">
Service fn=wl-proxy WebLogicCluster="myweblogic.com:7001,yourweblogic.com:7001,
theirweblogic.com:7001"
</Object>
----------------END OF SAMPLE obj.conf CONFIGURATION------------------

■ Proxy requests by MIME types

This Object directive works by file extension rather than
request path. To use this configuration, you must modify the existing line or
add the following line to mime.types file.:
-----------------BEGIN SAMPLE mime.types FILE -------------------------
type=text/jsp exts=jsp

--------------------END SAMPLE mime.types------------------------------

-------------BEGIN SAMPLE obj.conf CONFIGURATION-----------------------
This configuration means that any file with the extension
".jsp" is proxied to WebLogic. Then you must add the
Service line for this extension to the Object "default",
which should already exist in your obj.conf file:
<Object name=default>
NameTrans fn=pfx2dir from=/ns-icons dir="c:/Export/Home/ns-icons"
NameTrans fn=pfx2dir from=/mc-icons dir="c:/Export/Home/ns-icons"
NameTrans fn="pfx2dir" from="/help" dir="c://Export/Home/manual/https/ug"
NameTrans fn=document-root root="c://Export/Home/docs"
Service method="(GET|HEAD|POST|PUT)" type=text/jsp fn=wl_proxy
WebLogicCluster="myweblogic.com:7001, yourweblogic.com:7001,
theirweblogic.com:7001",PathPrepend=/jspfiles
PathCheck fn=nt-uri-clean
PathCheck fn="check-acl" acl="default"
PathCheck fn=find-pathinfo
PathCheck fn=find-index index-names="index.html,home.html"
ObjectType fn=type-by-extension
ObjectType fn=force-type type=text/plain
Service method=(GET|HEAD) type=magnus-internal/imagemap fn=imagemap
Service method=(GET|HEAD) type=magnus-internal/directory fn=index-common
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file
AddLog fn=flex-log name="access"
</Object>
The following directive enables HTTP-tunneling of the
WebLogic protocol through the NES plug-in.
<Object name="tunnel" ppath="*/HTTPClnt*">
Service fn=wl-proxy WebLogicCluster="myweblogic.com:7001, yourweblogic.com:7001,
theirweblogic.com:7001"
</Object>
#
-------------END SAMPLE obj.conf CONFIGURATION--------------------

Installing and Configuring the Oracle iPlanet Web Server Plug-In

6-8 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

7

Performing Common Tasks 7-1

7Performing Common Tasks

The following sections describe common tasks that you perform for the plug-ins
provided by Oracle for use with WebLogic Server:

■ Section 7.1, "Use SSL With Plug-Ins"

■ Section 7.2, "Use IPv6 With Plug-Ins"

■ Section 7.3, "Set Up Perimeter Authentication"

■ Section 7.4, "Set the WebLogic Plug-in Enabled Control in WebLogic Server"

■ Section 7.5, "Understanding Connection Errors and Clustering Failover"

7.1 Use SSL With Plug-Ins
You can use the Secure Sockets Layer (SSL) protocol to protect the connection between
the plug-in and WebLogic Server. The SSL protocol provides confidentiality and
integrity to the data passed between the plug-in and WebLogic Server.

The plug-in does not use the transport protocol (HTTP or HTTPS) specified in the
HTTP request (usually by the browser) to determine whether or not to use SSL to
protect the connection between the plug-in and WebLogic Server. That is, the plug-in
is in no way dependent on whether the HTTP request (again, usually from the
browser) uses HTTPS (SSL).

Instead, the plug-in uses SSL parameters that you configure for the plug-in, as
described in Section 8.3, "SSL Parameters for Web Server Plug-Ins", to determine when
to use SSL. There are two key SSL parameters:

■ WLSSLWallet -- The version 1.1 plug-ins use Oracle wallets to store SSL
configuration information. The plug-ins introduce a new SSL configuration
parameter WLSSLWallet to use Oracle wallets. The orapki utility is provided in the
plug-in distribution for this purpose.

The orapki utility manages public key infrastructure (PKI) elements, such as
wallets and certificate revocation lists, on the command line so the tasks it
performs can be incorporated into scripts. This enables you to automate many of
the routine tasks of maintaining a PKI.

See "Using the orapki Utility for Certificate Validation and CRL Management" for
information about this tool.

■ SecureProxy -- The SecureProxy parameter determines whether SSL is enabled or
not.

Use SSL With Plug-Ins

7-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

In the case of two-way SSL, the plug-in (the SSL client) automatically uses two-way
SSL when the WebLogic Server is configured for two-way SSL and requests a client
certificate.

If a client certificate is not requested, the plug-ins default to one-way SSL.

7.1.1 Configure Libraries for SSL
The plug-ins use Oracle libraries (NZ) to provide SSL support. Because the libraries
are large, they are loaded only when SSL is needed. You need to make sure that the
library files, located in lib/*.so*, are available in the proper locations so that they
can be dynamically loaded by the plug-in.

7.1.1.1 Configure SSL Libraries for use with Apache HTTP Server
To configure the libraries for the Apache plug-in (used for both the Apache HTTP
Server and the Oracle HTTP Server) you have a few options:

1. For Windows, the lib*.dll directory must be in the PATH variable, or add the
*.dll files to the Apache/bin directory.

2. For Unix, copy the binaries to the Apache lib folder, or configure LD_LIBRARY_
PATH to point the the folder containing the binaries.

If the libraries are copied to the Apache HTTP Server directory, instead of
updating PATH (Windows) or LD_LIBRARY_PATH (Unix), the libraries must be
re-copied each time a new level of the Oracle WebLogic Server plug-in is installed.

7.1.2 Configuring a Plug-In for One-Way SSL
After you have installed and configured a plug-in as described in the respective
plug-in-specific chapter, you can configure that plug-in to use one-way SSL.

Perform the following steps to configure one-way SSL.

In these steps, you run the keytool commands on the system on which WebLogic
Server is installed. You run the orapki commands on the system on which the version
1.1 plug-ins are installed.

1. Configure WebLogic Server for SSL. For more information, see "Configuring SSL"
in Securing Oracle WebLogic Server.

Note: If you have an Oracle Fusion Middleware 11g Release 11
(11.1.1) product installed on the same system as the Apache (including
Oracle HTTP) plug-in, the ORACLE_HOME variable must point to a valid
installation or the plug-in fails to initialize SSL.

For example, if ORACLE_HOME is invalid because the product was not
cleanly removed, the plug-in fails to initialize SSL.

Note: This section uses the WebLogic Server demo CA for the
purpose of example.

If you are using the plug-in in a production environment, make sure
that trusted CAs are properly configured for the plug-in as well as for
WebLogic Server.

Use SSL With Plug-Ins

Performing Common Tasks 7-3

2. Configure the WebLogic Server SSL listen port. For more information, see
"Configuring SSL" in Securing Oracle WebLogic Server.

3. Create an Oracle Wallet with the orapki utility.

See "Using the orapki Utility for Certificate Validation and CRL Management" in
Oracle Fusion Middleware Administrator's Guide for information about this tool.

orapki wallet create -wallet mywallet -auto_login_only

4. Import the WL_HOME\server\lib\CertGenCA.der CA into the Oracle Wallet.

orapki wallet add -wallet mywallet -trusted_cert -cert CertGenCA.der -auto_
login_only

5. For the Apache Plug-in, in the HTTP Server, edit the httpd.conf file as follows:

<IfModule mod_weblogic.c>
WebLogicHost my-weblogic.server.com
 WebLogicPort weblogic-server-secure-port
 SecureProxy ON
 WLSSLWallet /home/myhome/mywallet
</IfModule>

Where:

■ my-weblogic-server.com is your WebLogic Server system.

■ weblogic-server-secure-port is the port used for SSL, typically 7002.

■ The SecureProxy parameter determines whether SSL is enabled or not.

■ WLSSLWallet takes the path of an Oracle Wallet as an argument.

6. For the IIS plug-in, edit the Microsoft Internet Information Server iisproxy.ini
file as follows:

WebLogicHost=my-weblogic.server.com
 WebLogicPort=weblogic-server-secure-port
 SecureProxy=ON

Note: Only the user who creates the wallet (or for Windows the
account SYSTEM) has access to the wallet.

This is typically sufficient for the Apache plug-in because Apache
runs as the account SYSTEM on Windows, and as the user who creates
it on UNIX. However, for IIS the wallet will not work because the
default user is IUSR_<Machine_Name>(IIS6.0 and below) or IUSR
(IIS7.0).

If the user who runs the Apache plug-in or IIS plug-in is not the same
user who creates the wallet (or for Windows the account SYSTEM),
you need to grant the user access to the wallet by running the
command cacls (Windows) or chmod (UNIX) after you create the
wallet. For example:

IIS6.0 and below:

cacls <wallet_path>\cwallet.sso /e /g IUSR_<Machine_Name>:R

IIS7.0:

cacls <wallet_path>\cwallet.sso /e /g IUSR:R

Use SSL With Plug-Ins

7-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

 WLSSLWallet=c:\home\myhome\mywallet

Where:

■ my-weblogic-server.com is your WebLogic Server system.

■ weblogic-server-secure-port is the port used for SSL, typically 7002.

■ The SecureProxy parameter determines whether SSL is enabled or not.

■ WLSSLWallet takes the path of an Oracle Wallet as an argument.

7. For the Apache Plug-in, set any additional parameters in the httpd.conf file that
define information about the SSL connection. For a complete list of the SSL
parameters that you can configure for the plug-in, see Section 8.3, "SSL Parameters
for Web Server Plug-Ins".

8. For the IIS plug-in, set any additional parameters in the iisproxy.ini file that
define information about the SSL connection. For a complete list of the SSL
parameters that you can configure for the plug-in, see Section 8.3, "SSL Parameters
for Web Server Plug-Ins".

9. Send a request to http://apache-host:apache-port/mywebapp/my.jsp from the
browser. Validate the response.

7.1.3 Configure Two-Way SSL Between the Plug-In and WebLogic Server
After you have installed and configured a plug-in as described in the respective
plug-in-specific chapter, you can configure that plug-in to use two-way SSL.

You configure two-way SSL by importing a user certificate into the Wallet. When
WebLogic Server is configured for two-way SSL, the plug-in forwards the user
certificate to WebLogic Server. As long as WebLogic Server can validate the user
certificate, two-way SSL can be established.

In addition to the steps described in Section 7.1.2, "Configuring a Plug-In for One-Way
SSL" to configure SSL, perform the following additional steps to configure two-way
SSL between the plug-in and WebLogic Server.

Again, in these steps, you run the keytool commands on the system on which
WebLogic Server is installed. You run the orapki commands on the system on which
the version 1.1 plug-ins are installed.

1. From the Oracle wallet, generate a certificate request.

2. Use this certificate request to create a certificate via a CA or some other
mechanism.

3. Import the user certificate as a trusted certificate in the WebLogic truststore.
WebLogic Server needs to trust the certificate.

keytool -file user.crt -importcert -trustcacerts -keystore DemoTrust.jks
-storepass <passphrase>

4. Set the WebLogic Server SSL configuration options that require the presentation of
client certificates (for two-way SSL). See "Configure two-way SSL" in the Oracle
WebLogic Server Administration Console Help.

Set Up Perimeter Authentication

Performing Common Tasks 7-5

7.2 Use IPv6 With Plug-Ins
The version 1.1 plug-ins support IPv6. Specifically, the WebLogicHost and
WebLogicCluster configuration parameters (see Table 8–1) now support IPv6
addresses. For example:

<IfModule mod_weblogic.c>
 WebLogicHost [a:b:c:d:e:f]
 WebLogicPort 7002
 ...
</IfModule>
or

<IfModule mod_weblogic.c>
 WebLogicCluster [a:b:c:d:e:f]:<port>, [g:h:i:j:k:l]:<port>

</IfModule>

You can also use the IPv6 address mapped host name.

7.3 Set Up Perimeter Authentication
Use perimeter authentication to secure WebLogic Server applications that are accessed
via the plug-in.

A WebLogic Identity Assertion Provider authenticates tokens from outside systems
that access your WebLogic Server application, including users who access your
WebLogic Server application through the plug-in. Create an Identity Assertion
Provider that will safely secure your plug-in as follows:

1. Create a custom Identity Assertion Provider on your WebLogic Server application.
See "How to Develop a Custom Identity Assertion Provider" in Developing Security
Providers for Oracle WebLogic Server.

2. Configure the custom Identity Assertion Provider to support the Cert token type
and make Cert the active token type. See "How to Create New Token Types" in
Developing Security Providers for Oracle WebLogic Server.

3. Set clientCertProxy to True in the web.xml deployment descriptor file for the
Web application (or, if using a cluster, optionally set the Client Cert Proxy
Enabled attribute to true for the whole cluster on the Administration Console
Cluster-->Configuration-->General tab).

Note: As of Windows 2008, the DNS server returns the IPv6 address
in preference to the IPv4 address. If you are connecting to a Windows
2008 (or later) system using IPv4, the link-local IPv6 address format is
tried first, which may result in a noticeable delay and reduced
performance. To use the IPv4 address format, configure your system
to instead use IP addresses in the configuration files or add the IPv4
addresses to the etc/hosts file.

In addition, you may find that setting the DynamicServerList
property to OFF in the mod_wl_ohs.conf file also improves
performance with IPv6. When set to OFF, the plug-in ignores the
dynamic cluster list used for load balancing requests proxied from the
plug-in and uses the static list specified with the WebLogicCluster
parameter.

Set the WebLogic Plug-in Enabled Control in WebLogic Server

7-6 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

The clientCertProxy attribute can be used with a third party proxy server, such
as a load balancer or an SSL accelerator, to enable 2-way SSL authentication. For
more information about the clientCertProxy attribute, see context-param in
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

4. Once you have set clientCertProxy, be sure to use a connection filter to ensure
that WebLogic Server accepts connections only from the machine on which the
plug-in is running. See "Using Network Connection Filters" in Programming
Security for Oracle WebLogic Server.

5. Web server plug-ins require a trusted Certificate Authority file in order to use SSL
between the plug-in and WebLogic Server. See Section 7.1, "Use SSL With Plug-Ins"
for the steps you need to perform to configure SSL.

See Identity Assertion Providers in Developing Security Providers for Oracle WebLogic
Server.

7.4 Set the WebLogic Plug-in Enabled Control in WebLogic Server
Set the WebLogic Plug-in Enabled control in WebLogic Server.

The WebLogic Plug-in Enabled control specifies whether the WebLogic Server uses
the proprietary WL-Proxy-Client-IP header, which is recommended if the server
instance will receive requests from a proxy plug-in.

7.5 Understanding Connection Errors and Clustering Failover
When the plug-in attempts to connect to WebLogic Server, the plug-in uses several
configuration parameters to determine how long to wait for connections to the
WebLogic Server host and, after a connection is established, how long the plug-in
waits for a response. If the plug-in cannot connect or does not receive a response, the
plug-in attempts to connect and send the request to other WebLogic Server instances
in the cluster. If the connection fails or there is no response from any WebLogic Server
in the cluster, an error message is sent.

Figure 7–1 demonstrates how the plug-in handles failover.

7.5.1 Possible Causes of Connection Failures
Failure of the WebLogic Server host to respond to a connection request could indicate
the following problems:

■ Physical problems with the host machine

■ Network problems

■ Other server failures

Failure of all WebLogic Server instances to respond could indicate the following
problems:

■ WebLogic Server is not running or is unavailable

■ A hung server

■ A database problem

■ An application-specific failure

Understanding Connection Errors and Clustering Failover

Performing Common Tasks 7-7

7.5.2 Tips for reducing Connection_Refused Errors
Under load, a plug-in may receive CONNECTION_REFUSED errors from a back-end
WebLogic Server instance. Follow these tuning tips to reduce CONNECTION_
REFUSED errors:

■ Increase the AcceptBackLog setting in the configuration of your WebLogic Server
domain.

■ Decrease the time wait interval. This setting varies according to the operating
system you are using. For example:

– On Windows NT, set the TcpTimedWaitDelay on the proxy and WebLogic
Server servers to a lower value. Set the TIME_WAIT interval in Windows NT
by editing the registry key under HKEY_LOCAL_MACHINE:

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\TcpTimedWaitDelay

If this key does not exist you can create it as a DWORD value. The numeric
value is the number of seconds to wait and may be set to any value between
30 and 240. If not set, Windows NT defaults to 240 seconds for TIME_WAIT.

– On Windows 2000, lower the value of the TcpTimedWaitDelay by editing the
registry key under HKEY_LOCAL_MACHINE:

SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

– On Solaris, reduce the setting tcp_time_wait_interval to one second (for
both the WebLogic Server machine and the Apache machine, if possible):

$ndd /dev/tcp
 param name to set - tcp_time_wait_interval
 value=1000

■ Increase the open file descriptor limit on your machine. This limit varies by
operating system. Using the limit (.csh) or ulimit (.sh) directives, you can make a
script to increase the limit. For example:

#!/bin/sh
ulimit -S -n 100
exec httpd

■ On Solaris, increase the values of the following tunables on the WebLogic Server
machine:

tcp_conn_req_max_q
tcp_conn_req_max_q0

7.5.3 Failover with a Single, Non-Clustered WebLogic Server
If you are running only a single WebLogic Server instance the plug-in only attempts to
connect to the server defined with the WebLogicHost parameter. If the attempt fails, an
HTTP 503 error message is returned. The plug-in continues trying to connect to that
same WebLogic Server instance for the maximum number of retries as specified by the
ratio of ConnectTimeoutSecs and ConnectRetrySecs.

7.5.4 The Dynamic Server List
The WebLogicCluster parameter is required to proxy to a list of back-end servers that
are clustered, or to perform load balancing among non-clustered managed server
instances.

Understanding Connection Errors and Clustering Failover

7-8 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

In the case of proxying to clustered managed servers, when you use the
WebLogicCluster parameter in your httpd.conf or weblogic.conf file to specify a list
of WebLogic Servers, the plug-in uses that list as a starting point for load balancing
among the members of the cluster. After the first request is routed to one of these
servers, a dynamic server list is returned containing an updated list of servers in the
cluster. The updated list adds any new servers in the cluster and deletes any that are
no longer part of the cluster or that have failed to respond to requests. This list is
updated automatically with the HTTP response when a change in the cluster occurs.

7.5.5 Failover, Cookies, and HTTP Sessions
When a request contains session information stored in a cookie or in the POST data, or
encoded in a URL, the session ID contains a reference to the specific server instance in
which the session was originally established (called the primary server). A request
containing a cookie attempts to connect to the primary server. If that attempt fails, the
plug-in attempts to make a connection to the next available server in the list in a
round-robin fashion. That server retrieves the session from the original secondary
server and makes itself the new primary server for that same session. See Figure 7–1.

Note: If the POST data is larger than 64K, the plug-in will not parse
the POST data to obtain the session ID. Therefore, if you store the
session ID in the POST data, the plug-in cannot route the request to
the correct primary or secondary server, resulting in possible loss of
session data.

Understanding Connection Errors and Clustering Failover

Performing Common Tasks 7-9

Figure 7–1 Connection Failover

In this figure, the Maximum number of retries allowed in the red loop is equal to
ConnectTimeoutSecs/ConnectRetrySecs.

7.5.6 Using SSL with the Oracle iPlanet Web Server Plug-in
You can use the Secure Sockets Layer (SSL) protocol to protect the connection between
the Oracle iPlanet Web Server Plug-In, and WebLogic Server. The SSL protocol
provides confidentiality and integrity to the data passed between the Oracle iPlanet
Web Server Plug-In and WebLogic Server.

The Oracle iPlanet Web Server Plug-In does not use the transport protocol (http or
https) specified in the HTTP request (usually by the browser) to determine whether or
not the SSL protocol will be used to protect the connection between the Oracle iPlanet
Web Server Plug-In and WebLogic Server.

To use the SSL protocol between Oracle iPlanet Web Server Plug-In and WebLogic
Server:

1. Configure WebLogic Server for SSL. For more information, see Configuring SSL.

Understanding Connection Errors and Clustering Failover

7-10 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

2. Configure the WebLogic Server SSL listen port. For more information, see
Configuring SSL

3. Set the WebLogicPort parameter in the Service directive in the obj.conf file to the
listen port configured in step 2.

4. Set the SecureProxy parameter in the Service directive in the obj.conf file file to
ON.

5. Set additional parameters in the Service directive in the obj.conf file that define
information about the SSL connection. For a complete list of parameters, see “SSL
Parameters for Web Server Plug-Ins” on page 8-15.

7.5.7 Failover Behavior When Using Firewalls and Load Directors
In most configurations, the Oracle iPlanet Web Server Plug-In sends a request to the
primary instance of a cluster. When that instance is unavailable, the request fails over
to the secondary instance. However, in some configurations that use combinations of
firewalls and load-directors, any one of the servers (firewall or load-directors) can
accept the request and return a successful connection while the primary instance of
WebLogic Server is unavailable. After attempting to direct the request to the primary
instance of WebLogic Server (which is unavailable), the request is returned to the
plug-in as “connection reset.”

Requests running through combinations of firewalls (with or without load-directors)
are handled by WebLogic Server. In other words, responses of connection reset fail
over to a secondary instance of WebLogic Server. Because responses of connection
reset fail over in these configurations, servlets must be idempotent. Otherwise
duplicate processing of transactions may result.

8

Parameters for Web Server Plug-Ins 8-1

8Parameters for Web Server Plug-Ins

The following sections describe the parameters that you use to configure the Apache,
Microsoft IIS, and Oracle iPlanet Web server plug-ins:

■ Section 8.1, "Entering Parameters in Web Server Plug-In Configuration Files"

■ Section 8.2, "General Parameters for Web Server Plug-Ins"

■ Section 8.3, "SSL Parameters for Web Server Plug-Ins"

8.1 Entering Parameters in Web Server Plug-In Configuration Files
You enter the parameters for each Web server plug-in in special configuration files.
Each Web server has a different name for this configuration file and different rules for
formatting the file. For details, see the following sections on each plug-in:

■ Chapter 3, "Installing and Configuring the Apache HTTP Server Plug-In"

■ Chapter 5, "Installing and Configuring the Microsoft IIS Plug-In"

■ Chapter 6, "Installing and Configuring the Oracle iPlanet Web Server Plug-In"

8.2 General Parameters for Web Server Plug-Ins
The general parameters for Web server plug-ins are shown in Table 8–1. Parameters
are case sensitive. Please note that wherever Apache HTTP Server is applicable,
Oracle HTTP Server is also supported.

Table 8–1 General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

WebLogicHost (Required
when proxying to a single
WebLogic Server.)

none WebLogic Server host (or virtual
host name as defined in WebLogic
Server) to which HTTP requests
should be forwarded. If you are
using a WebLogic cluster, use the
WebLogicCluster parameter
instead of WebLogicHost.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

General Parameters for Web Server Plug-Ins

8-2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

WebLogicPort (Required
when proxying to a single
WebLogic Server.)

none Port at which the WebLogic Server
host is listening for connection
requests from the plug-in (or from
other servers). (If you are using
SSL between the plug-in and
WebLogic Server, set this
parameter to the SSL listen port
(see Configuring SSL) and set the
SecureProxy parameter to ON).

If you are using a WebLogic
Cluster, use the WebLogicCluster
parameter instead of
WebLogicPort.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

Parameters for Web Server Plug-Ins 8-3

WebLogicCluster

(Required when proxying
to a cluster of WebLogic
Servers, or to multiple
non-clustered servers.)

none The WebLogicCluster parameter
is required to proxy a list of
back-end servers that are
clustered, or to perform load
balancing among non-clustered
managed server instances.

List of WebLogic Servers that can
be used for load balancing. The
server or cluster list is a list of
host:port entries. If a mixed set of
clusters and single servers is
specified, the dynamic list
returned for this parameter will
return only the clustered servers.

The method of specifying the
parameter, and the required
format vary by plug-in. See the
examples in:

■ Chapter 5, "Installing and
Configuring the Microsoft IIS
Plug-In"

■ Chapter 3, "Installing and
Configuring the Apache
HTTP Server Plug-In"

If you are using SSL between the
plug-in and WebLogic Server, set
the port number to the SSL listen
port (see Configuring SSL) and
set the SecureProxy parameter to
ON.

The plug-in does a simple
round-robin between all available
servers. The server list specified in
this property is a starting point for
the dynamic server list that the
server and plug-in maintain.
WebLogic Server and the plug-in
work together to update the
server list automatically with new,
failed, and recovered cluster
members.

You can disable the use of the
dynamic cluster list by setting the
DynamicServerList parameter to
OFF.

The plug-in directs HTTP requests
containing a cookie, URL-encoded
session, or a session stored in the
POST data to the server in the
cluster that originally created the
cookie.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

8-4 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

PathTrim null As per the RFC specification,
generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT
}/{PATH}/{FILENAME};{PATH_
PARAMS}/{QUERY_STRING}...

PathTrim specifies the string
trimmed by the plug-in from the
{PATH}/{FILENAME} portion of the
original URL, before the request is
forwarded to WebLogic Server.
For example, if the URL

http://myWeb.server.com/weblo
gic/foo

is passed to the plug-in for
parsing and if PathTrim has been
set to strip off /weblogic before
handing the URL to WebLogic
Server, the URL forwarded to
WebLogic Server is:

http://myWeb.server.com:7001/f
oo

Note that if you are newly
converting an existing third-party
server to proxy requests to
WebLogic Server using the
plug-in, you will need to change
application paths to /foo to
include weblogic/foo. You can
use PathTrim and PathPrepend in
combination to change this path.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

PathPrepend null As per the RFC specification,
generic syntax for URL is:

[PROTOCOL]://[HOSTNAME]:{PORT
}/{PATH}/{FILENAME};{PATH_
PARAMS}/{QUERY_STRING}...

PathPrepend specifies the path
that the plug-in prepends to the
{PATH} portion of the original
URL, after PathTrim is trimmed
and before the request is
forwarded to WebLogic Server.

Note that if you need to append
File Name, use DefaultFileName
plug-in parameter instead of
PathPrepend.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

Parameters for Web Server Plug-Ins 8-5

ConnectTimeoutSecs 10 Maximum time in seconds that
the plug-in should attempt to
connect to the WebLogic Server
host. Make the value greater than
ConnectRetrySecs. If
ConnectTimeoutSecs expires
without a successful connection,
even after the appropriate retries
(see ConnectRetrySecs), an HTTP
503/Service Unavailable
response is sent to the client.

You can customize the error
response by using the ErrorPage
parameter.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

ConnectRetrySecs 2 Interval in seconds that the
plug-in should sleep between
attempts to connect to the
WebLogic Server host (or all of the
servers in a cluster). Make this
number less than the
ConnectTimeoutSecs. The number
of times the plug-in tries to
connect before returning an HTTP
503/Service Unavailable
response to the client is calculated
by dividing ConnectTimeoutSecs
by ConnectRetrySecs.

To specify no retries, set
ConnectRetrySecs equal to
ConnectTimeoutSecs. However,
the plug-in attempts to connect at
least twice.

You can customize the error
response by using the ErrorPage
parameter.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

8-6 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

Debug OFF Sets the type of logging performed
for debugging operations. The
debugging information is written
to the /tmp/wlproxy.log file on
UNIX systems and
c:\TEMP\wlproxy.log on
Windows NT/2000 systems.

Override this location and
filename by setting the WLLogFile
parameter to a different directory
and file. (See the WLTempDir
parameter for an additional way
to change this location.)

Ensure that the tmp or TEMP
directory has write permission
assigned to the user who is logged
in to the server. Set any of the
following logging options
(HFC,HTW,HFW, and HTC
options may be set in combination
by entering them separated by
commas, for example
“HFC,HTW”):

ON - The plug-in logs
informational and error messages.

OFF - No debugging information is
logged.

HFC - The plug-in logs headers
from the client, informational, and
error messages.

HTW - The plug-in logs headers
sent to WebLogic Server, and
informational and error messages.

HFW - The plug-in logs headers
sent from WebLogic Server, and
informational and error messages.

HTC - The plug-in logs headers
sent to the client, informational
messages, and error messages.

ERR - Prints only the Error
messages in the plug-in.

ALL - The plug-in logs headers
sent to and from the client,
headers sent to and from
WebLogic Server, information
messages, and error messages.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

WLLogFile See the Debug
parameter

Specifies path and file name for
the log file that is generated when
the Debug parameter is set to ON.
You must create this directory
before setting this parameter.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

Parameters for Web Server Plug-Ins 8-7

WLDNSRefreshInterval 0 (Lookup once,
during startup)

If defined in the proxy
configuration, specifies number of
seconds interval at which
WebLogic Server refreshes DNS
name to IP mapping for a server.
This can be used in the event that
a WebLogic Server instance is
migrated to a different IP address,
but the DNS name for that server's
IP remains the same. In this case,
at the specified refresh interval the
DNS<->IP mapping will be
updated.

Oracle iPlanet Web
Server and Apache HTTP
Server

WLTempDir See the Debug
parameter

Specifies the directory where a
wlproxy.log will be created. If the
location fails, the Plug-In resorts
to creating the log file under
C:/temp in Windows and /tmp in
all Unix platforms.

Also specifies the location of the _
wl_proxy directory for POST data
files.

When both WLTempDir and
WLLogFile are set, WLLogFile will
override as to the location of
wlproxy.log. WLTempDir will still
determine the location of _wl_
proxy directory.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

DebugConfigInfo OFF Enables the special query
parameter “__
WebLogicBridgeConfig”. Use it to
get details about configuration
parameters from the plug-in.

For example, if you enable “__
WebLogicBridgeConfig” by
setting DebugConfigInfo and then
send a request that includes the
query string ?__
WebLogicBridgeConfig, then the
plug-in gathers the configuration
information and run-time
statistics and returns the
information to the browser. The
plug-in does not connect to
WebLogic Server in this case.

This parameter is strictly for
debugging and the format of the
output message can change with
releases. For security purposes,
keep this parameter turned OFF in
production systems.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

8-8 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

ErrorPage none You can create your own error
page that is displayed when your
Web server is unable to forward
requests to WebLogic Server.

The plug-in redirects to an error
page when the back-end server
returns an HTTP 503/Service
Unavailable response and there
are no servers for failover.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

WLSocketTimeoutSecs 2 (must be
greater than 0)

Set the timeout for the socket
while connecting, in seconds.
Also, see ConnectTimeoutSecs and
ConnectRetrySecs for additional
details.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

WLIOTimeoutSecs (new
name for
HungServerRecoverSecs)

300 Defines the amount of time the
plug-in waits for a response to a
request from WebLogic Server.
The plug-in waits for
WLIOTimeoutSecs for the server to
respond and then declares that
server dead, and fails over to the
next server. The value should be
set to a very large value. If the
value is less than the time the
servlets take to process, then you
may see unexpected results.

Minimum value: 10

Maximum value: Unlimited

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

Idempotent ON When set to ON and if the servers
do not respond within
WLIOTimeoutSecs, the plug-ins
fail over if the method is
idempotent.

The plug-ins also fail over if
Idempotent is set to ON and the
servers respond with an error
such as READ_ERROR_FROM_SERVER.

If set to “OFF” the plug-ins do not
fail over. If you are using the
Apache HTTP Server you can set
this parameter differently for
different URLs or MIME types.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

WLCookieName

CookieName parameter is
deprecated

JSESSIONID If you change the name of the
WebLogic Server session cookie in
the WebLogic Server Web
application, you need to change
the WLCookieName parameter in
the plug-in to the same value. The
name of the WebLogic session
cookie is set in the
WebLogic-specific deployment
descriptor, in the
<session-descriptor> element.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

Parameters for Web Server Plug-Ins 8-9

DefaultFileName none If the URI is “/” then the plug-in
performs the following steps:

Trims the path specified with the
PathTrim parameter.

Appends the value of
DefaultFileName.

Prepends the value specified with
PathPrepend.

This procedure prevents redirects
from WebLogic Server.

Set the DefaultFileName to the
default welcome page of the Web
Application in WebLogic Server to
which requests are being proxied.
For example, If the
DefaultFileName is set to
welcome.html, an HTTP request
like “http://somehost/weblogic”
becomes
“http://somehost/weblogic/welc
ome.html”. For this parameter to
function, the same file must be
specified as a welcome file in all
the Web Applications to which
requests are directed. For more
information, see Configuring
Welcome Pages.

Note for Apache users: If you are
using Stronghold or Raven
versions, define this parameter
inside of a Location block, and
not in an IfModule block.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

MaxPostSize -1 Maximum allowable size of POST
data, in bytes. If the
content-length exceeds
MaxPostSize, the plug-in returns
an error message. If set to -1, the
size of POST data is not checked.
This is useful for preventing
denial-of-service attacks that
attempt to overload the server
with POST data.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

8-10 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

MatchExpression (Apache
HTTP Server only)

none When proxying by MIME type, set
the filename pattern inside of an
IfModule block using the
MatchExpression parameter.

Example when proxying by MIME
type:

<IfModule weblogic_module>
 MatchExpression *.jsp
WebLogicHost=myHost|paramName
=value
</IfModule>

Example when proxying by path:

<IfModule weblogic_module>
 MatchExpression /weblogic
WebLogicHost=myHost|paramName
=value
</IfModule>

It is possible to define a new
parameter for MatchExpression
using the following syntax:

MatchExpression *.jsp
PathPrepend=/test
PathTrim=/foo

Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

Parameters for Web Server Plug-Ins 8-11

FileCaching ON When set to ON, and the size of the
POST data in a request is greater
than 2048 bytes, the POST data is
first read into a temporary file on
disk and then forwarded to the
WebLogic Server in chunks of
8192 bytes. This preserves the
POST data during failover,
allowing all necessary data to be
repeated to the secondary if the
primary goes down.

Note that when FileCaching is ON,
any client that tracks the progress
of the POST will see that the
transfer has completed even
though the data is still being
transferred between the
WebServer and WebLogic. So, if
you want the progress bar
displayed by a browser during the
upload to reflect when the data is
actually available on the
WebLogic Server, you might not
want to have FileCaching ON.

When set to OFF and the size of the
POST data in a request is greater
than 2048 bytes, the reading of the
POST data is postponed until a
WebLogic Server cluster member
is identified to serve the request.
Then the plug-in reads and
immediately sends the POST data
to the WebLogic Server in chunks
of 8192 bytes.

Note that turning FileCaching
OFF limits failover. If the WebLogic
Server primary server goes down
while processing the request, the
POST data already sent to the
primary cannot be repeated to the
secondary.

Finally, regardless of how
FileCaching is set, if the size of
the POST data is 2048 bytes or less
the plug-in will read the data into
memory and use it if needed
during failover to repeat to the
secondary.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

WLExcludePathOrMimeT
ype

none This parameter allows you make
exclude certain requests from
proxying.

This parameter can be defined
locally at the Location tag level as
well as globally. When the
property is defined locally, it does
not override the global property
but defines a union of the two
parameters.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

8-12 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

KeepAliveSecs 20 The length of time after which an
inactive connection between the
plug-in and WebLogic Server is
closed. You must set
KeepAliveEnabled to true (ON
when using the Apache HTTP
Server) for this parameter to be
effective.

The value of this parameter must
be less than or equal to the value
of the Duration field set in the
Administration Console on the
Server/HTTP tab, or the value set
on the server Mbean with the
KeepAliveSecs attribute.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

KeepAliveEnabled true (Microsoft
IIS plug-in)

ON (Apache
HTTP Server)

ON (Oracle
iPlanet Web
Server)

Enables pooling of connections
between the plug-in and
WebLogic Server.

Valid values for the Microsoft IIS
plug-ins are true and false.

Valid values for the Apache HTTP
Server are ON and OFF.

While using Apache prefork
mpm, Apache web server might
crash. Turn KeepAliveEnabled to
OFF when using prefork mpm or
use worker mpm in Apache.

Valid values for Oracle iPlanet
Webserver are ON and OFF

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

QueryFromRequest

(Apache HTTP Server
only)

OFF When set to ON, specifies that the
Apache HTTP Server use

(request_rec *)r->the_
request

to pass the query string to
WebLogic Server. (For more
information, see your Apache
documentation.) This behavior is
desirable when a Netscape
version 4.x browser makes
requests that contain spaces in the
query string

When set to OFF, the Apache
HTTP Server uses (request_rec
*)r->args to pass the query string
to WebLogic Server.

Oracle iPlanet Web
Server and Apache HTTP
Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

Parameters for Web Server Plug-Ins 8-13

MaxSkipTime 10 If a WebLogic Server listed in
either the WebLogicCluster
parameter or a dynamic cluster
list returned from WebLogic
Server fails, the failed server is
marked as “bad” and the plug-in
attempts to connect to the next
server in the list.

MaxSkipTime sets the amount of
time after which the plug-in will
retry the server marked as “bad.”
The plug-in attempts to connect to
a new server in the list each time a
unique request is received (that is,
a request without a cookie).

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

DynamicServerList ON When set to OFF, the plug-in
ignores the dynamic cluster list
used for load balancing requests
proxied from the plug-in and only
uses the static list specified with
the WebLogicCluster parameter.
Normally this parameter should
remain set to ON.

There are some implications for
setting this parameter to OFF:

■ If one or more servers in the
static list fails, the plug-in
could waste time trying to
connect to a dead server,
resulting in decreased
performance.

■ If you add a new server to the
cluster, the plug-in cannot
proxy requests to the new
server unless you redefine
this parameter. WebLogic
Server automatically adds
new servers to the dynamic
server list when they become
part of the cluster.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

8-14 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

WLProxySSL OFF Set this parameter to ON to
maintain SSL communication
between the plug-in and
WebLogic Server when the
following conditions exist:

■ An HTTP client request
specifies the HTTPS protocol

■ The request is passed through
one or more proxy servers
(including the WebLogic
Server proxy plug-ins)

■ The connection between the
plug-in and WebLogic Server
uses the HTTP protocol

When WLProxySSL is set to ON,
the location header returned to the
client from WebLogic Server
specifies the HTTPS protocol.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

WLProxyPassThrough OFF If you have a chained proxy
setup, where a proxy plug-in
or HttpClusterServlet is
running behind some other
proxy or load balancer, you
must explicitly enable the
WLProxyPassThrough parameter.
This parameter allows the
header to be passed through
the chain of proxies.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

WLLocalIP none Defines the IP address (on the
plug-in’s system) to bind to when
the plug-in connects to a
WebLogic Server instance running
on a multihomed machine.

If WLLocalIP is not set, If
WLLocalIP is not set, the TCP/IP
stack will choose the source IP
address.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

WLSendHdrSeparately ON When this parameter is set to ON,
the header and body of the
response are sent in separate
packets.

Note: If you need to send the
header and body of the response
in two calls, for example, in cases
where you have other ISAPI filters
or programmatic clients that
expect headers before the body, set
this parameter to ON.

Microsoft IIS

WLFlushChunks False By default, IIS plug-in buffers
chunked transfer encoding
responses instead of streaming the
chunks as they are received. When
the flag WLFlushChunks is set to
true, the plug-in flushes chunks
immediately as they are received
from WebLogic Server.

Microsoft IIS

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

Parameters for Web Server Plug-Ins 8-15

WLProxySSLPassThrough OFF If a load balancer or other
software deployed in front of the
web server and plug-in is the SSL
termination point, and that
product sets the WL-Proxy-SSL
request header to true or false
based on whether or not the client
connected to it over SSL, set
WLProxySSLPassThrough to ON
so that the use of SSL is passed on
to the Oracle WebLogic Server.

If the SSL termination point is in
the web server where the plug-in
operates, or the load balancer does
not set WL-Proxy-SSL, set
WLProxySSLPassThrough to OFF
(default).

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

WLServerInitiatedFailover On This controls whether or not a 503
error response from Oracle
WebLogic Server triggers a
failover to another server.
Normally, the plug-in will attempt
to failover to another server when
a 503 error response is received.
When WLServerInitiatedFailover
is set to OFF, the 503 error
response will be returned to the
client immediately.

Microsoft IIS, Oracle
iPlanet Web Server, and
Apache HTTP Server

WLForwardUriUnparsed OFF When set to ON, the WLS plug-in
will forward the original URI from
the client to WebLogic Server.
When set to OFF (default), the
URI sent to WebLogic Server is
subject to modification by mod_
rewrite or other web server
plug-in modules.

Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

General Parameters for Web Server Plug-Ins

8-16 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

8.2.1 Location of POST Data Files
When the FileCaching parameter is set to ON, and the size of the POST data in a
request is greater than 2048 bytes, the POST data is first read into a temporary file on
disk and then forwarded to the WebLogic Server in chunks of 8192 bytes. This
preserves the POST data during failover.

The temporary POST file is located under /tmp/_wl_proxy for UNIX. For Windows it
is located as follows (if WLTempDir is not specified):

1. Environment variable TMP

2. Environment variable TEMP

3. C:\Temp

/tmp/_wl_proxy is a fixed directory and is owned by the HTTP Server user. When
there are multiple HTTP Servers installed by different users, some HTTP Servers
might not be able to write to this directory. This condition results in an error.

To correct this condition, use the WLTempDir parameter to specify a different location
for the _wl_proxy directory for POST data files.

WLSRequest OFF This is an alternative to the
SetHandler weblogic-handler
mechanism of identifying requests
to be forwarded to Oracle
WebLogic Server. For example,

<Location /weblogic>
 WLSRequest ON
 PathTrim /weblogic
</Location>

The use of WLSRequest ON
instead of SetHandler
weblogic-handler has the
following advantages:

■ Lower web server processing
overhead in general

■ Resolves substantial
performance degradation
when the web server
DocumentRoot is on a slow
filesystem

■ Resolves 403 errors for URIs
which cannot be mapped to
the filesystem due to the
filesystem length restrictions

Apache HTTP Server

Table 8–1 (Cont.) General Parameters for Web Server Plug-Ins

Parameter Name Default Description Applicable to

SSL Parameters for Web Server Plug-Ins

Parameters for Web Server Plug-Ins 8-17

8.3 SSL Parameters for Web Server Plug-Ins

The SSL parameters for Web Server plug-ins are shown in Table 8–2. Parameters are
case sensitive.

Note: SCG Certificates are not supported for use with WebLogic
Server Proxy Plug-Ins. Non-SCG certificates work appropriately and
allow SSL communication between WebLogic Server and the plug-in.

KeyStore-related initialization parameters are not supported for use
with WebLogic Server Proxy Plug-Ins

Table 8–2 SSL Parameters for Web Server Plug-Ins

Parameter Default Description Applicable to

SecureProxy OFF Set this parameter to ON to enable the use
of the SSL protocol for all communication
between the plug-in and WebLogic Server.
Remember to configure a port on the
corresponding WebLogic Server for the SSL
protocol before defining this parameter.

This parameter may be set at two levels: in
the configuration for the main server
and—if you have defined any virtual
hosts—in the configuration for the virtual
host. The configuration for the virtual host
inherits the SSL configuration from the
configuration of the main server if the
setting is not overridden in the
configuration for the virtual host.

Microsoft IIS,
Oracle iPlanet
Web Server, and
Apache HTTP
Server

WLSSLWallet none WLSSLWallet performs one-way or
two-way SSL based on how WebLogic
Server SSL is configured.

Requires the path of an Oracle Wallet
(containing an SSO wallet file) as
argument.

For example, WLSSLWallet "ORACLE_
INSTANCE}/config/COMPONENT_
TYPE/COMPONENT_NAME/default"

Microsoft IIS,
Oracle iPlanet
Web Server, and
Apache HTTP
Server

SSL Parameters for Web Server Plug-Ins

8-18 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Using Web Server 1.1 Plug-Ins with Oracle WebLogic Server
	2.1 What Are Plug-Ins?
	2.1.1 Connection Pooling and Keep-Alive
	2.1.2 Proxying Requests

	2.2 Version 1.1 Plug-Ins Available for Download
	2.2.1 Version 1.0 Plug-Ins Are Deprecated

	2.3 Upgrading From the Version 1.0 Plug-Ins
	2.4 Features of the Version 1.1 Plug-Ins
	2.4.1 Standard Encryption Strength Allows Simplified Naming
	2.4.2 Version 1.1 Plug-Ins Use Oracle Security Framework
	2.4.3 Version 1.1 Plug-Ins Support IPv6
	2.4.4 Version 1.1 Plug-Ins Support Two-Way SSL

	2.5 Plug-In Supported Platforms
	2.6 Downloading the Version 1.1 Plug-Ins

	3 Installing and Configuring the Apache HTTP Server Plug-In
	3.1 Install the Apache HTTP Server Plug-In
	3.1.1 Installation Prerequisites
	3.1.2 Installing the Apache HTTP Server Plug-In as a Dynamic Shared Object

	3.2 Configure the Apache HTTP Server Plug-In
	3.2.1 Editing the httpd.conf File
	3.2.1.1 Placing WebLogic Properties Inside Location or VirtualHost Blocks

	3.2.2 Including a weblogic.conf File in the httpd.conf File
	3.2.2.1 Creating weblogic.conf Files
	3.2.2.2 Sample weblogic.conf Configuration Files
	3.2.2.3 Template for the Apache HTTP Server httpd.conf File

	4 Configuring the Plug-In for Oracle HTTP Server
	4.1 Configuring the Plug-In for Oracle HTTP Server

	5 Installing and Configuring the Microsoft IIS Plug-In
	5.1 Installing and Configuring the Microsoft Internet Information Server Plug-In
	5.2 Installing and Configuring the Microsoft Internet Information Server Plug-In for IIs 7.0
	5.3 Using Wildcard Application Mappings to Proxy by Path
	5.3.1 Installing Wildcard Application Mappings (IIS 6.0)
	5.3.2 Adding a Wildcard Script Map for IIS 7.0

	5.4 Proxying Requests from Multiple Virtual Web Sites to WebLogic Server
	5.4.1 Sample iisproxy.ini File

	5.5 Creating ACLs Through IIS
	5.6 Proxying Servlets from IIS to WebLogic Server
	5.7 Testing the Installation

	6 Installing and Configuring the Oracle iPlanet Web Server Plug-In
	6.1 Overview of the Oracle iPlanet Web Server Plug-In
	6.2 Installing and Configuring the Oracle iPlanet Web Server Plug-In
	6.2.1 Installation Prerequisites
	6.2.2 Installing Oracle iPlanet Web Server Plug-In
	6.2.3 Configuring the Oracle iPlanet Web Server Plug-In
	6.2.4 Guidelines for Modifying the obj.conf File
	6.2.5 Sample obj.conf File (Not Using a WebLogic Cluster)
	6.2.6 Sample obj.conf File (Using a WebLogic Cluster)

	7 Performing Common Tasks
	7.1 Use SSL With Plug-Ins
	7.1.1 Configure Libraries for SSL
	7.1.1.1 Configure SSL Libraries for use with Apache HTTP Server

	7.1.2 Configuring a Plug-In for One-Way SSL
	7.1.3 Configure Two-Way SSL Between the Plug-In and WebLogic Server

	7.2 Use IPv6 With Plug-Ins
	7.3 Set Up Perimeter Authentication
	7.4 Set the WebLogic Plug-in Enabled Control in WebLogic Server
	7.5 Understanding Connection Errors and Clustering Failover
	7.5.1 Possible Causes of Connection Failures
	7.5.2 Tips for reducing Connection_Refused Errors
	7.5.3 Failover with a Single, Non-Clustered WebLogic Server
	7.5.4 The Dynamic Server List
	7.5.5 Failover, Cookies, and HTTP Sessions
	7.5.6 Using SSL with the Oracle iPlanet Web Server Plug-in
	7.5.7 Failover Behavior When Using Firewalls and Load Directors

	8 Parameters for Web Server Plug-Ins
	8.1 Entering Parameters in Web Server Plug-In Configuration Files
	8.2 General Parameters for Web Server Plug-Ins
	8.2.1 Location of POST Data Files

	8.3 SSL Parameters for Web Server Plug-Ins

