

Oracle® Fusion Middleware
Developer’s Guide for Oracle SOA Suite

11g Release 1 (11.1.1)

E10224-01

May 2009

Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite, 11g Release 1 (11.1.1)

E10224-01

Copyright © 2005, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Virginia Beecher, Deanna Bradshaw, Tulika Das, Mark Kennedy, Alex Prazma, and Peter
Purich

Contributor: Oracle SOA Suite development, product management, and quality assurance teams

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. xli

Audience.. xli
Documentation Accessibility .. xli
Related Documents ... xlii
Conventions ... xlii

Part I Introduction to Oracle SOA Suite

1 Introduction to SOA Composite Applications

1.1 Introduction to Oracle SOA Suite .. 1-1
1.2 Introduction to SOA Composite Applications ... 1-3
1.3 Introduction to SCA Technologies ... 1-4
1.3.1 Binding Components .. 1-6
1.3.2 Service Infrastructure .. 1-7
1.3.3 Service Engines and Service Components ... 1-7
1.3.4 Deployed Service Archives .. 1-8
1.3.5 Wires.. 1-8
1.4 Learning Oracle SOA Suite.. 1-8

2 Overview of SOA Component Editors

2.1 Introduction to the SOA Composite Editor .. 2-1
2.1.1 Application Navigator .. 2-2
2.1.2 Designer .. 2-3
2.1.3 Left Swim Lane (Exposed Services) .. 2-3
2.1.4 Right Swim Lane (External References) ... 2-3
2.1.5 Component Palette .. 2-3
2.1.6 Resource Palette ... 2-3
2.1.7 Log Window... 2-4
2.1.8 Property Inspector ... 2-4
2.2 Introduction to the Oracle BPEL Designer.. 2-4
2.2.1 Application Navigator .. 2-5
2.2.2 Design Window ... 2-6
2.2.3 Source Window.. 2-7
2.2.4 History Window .. 2-8
2.2.5 Component Palette .. 2-9

iv

2.2.6 Property Inspector .. 2-10
2.2.7 Structure Window .. 2-10
2.2.8 Log Window.. 2-11
2.3 Introduction to the Oracle Mediator Editor ... 2-11
2.3.1 Application Navigator ... 2-12
2.3.2 Mediator Editor... 2-13
2.3.3 Source View ... 2-13
2.3.4 History Window ... 2-13
2.3.5 Property Inspector .. 2-14
2.3.6 Structure Window .. 2-14
2.3.7 Log Window.. 2-14
2.4 Introduction to the Human Task Editor ... 2-14
2.4.1 Task Title .. 2-15
2.4.2 Parameters ... 2-15
2.4.3 Assignment and Routing Policy ... 2-15
2.4.4 Expiration and Escalation Policy.. 2-16
2.4.5 Notification Settings ... 2-16
2.4.6 Advanced Settings .. 2-17
2.4.7 Annotations ... 2-17
2.5 Introduction to the Business Rules Designer ... 2-18
2.5.1 Application Navigator ... 2-18
2.5.2 Rules Designer Window .. 2-18
2.5.3 Structure Window .. 2-19
2.5.4 Business Rule Validation Log Window... 2-20
2.6 Introduction to Oracle Enterprise Manager... 2-20

3 Introduction to the SOA Sample Application

3.1 Introduction to the WebLogic Fusion Order Demo Application... 3-1
3.1.1 The Store Front Module .. 3-1
3.1.2 The WebLogic Fusion Order Demo Module ... 3-2
3.2 Setting Up the WebLogic Fusion Order Demo Application... 3-2
3.3 Taking a Look at the WebLogic Fusion Order Demo Application...................................... 3-3
3.3.1 Project Applications of the WebLogic Fusion Order Demo Application 3-3
3.3.2 The composite.xml File ... 3-4

4 Introduction to the Functionality of the SOA Composite Editor

4.1 Introduction to the SOA Composite Editor .. 4-1
4.2 Designing an SOA Composite Application in Oracle JDeveloper....................................... 4-1
4.2.1 How to Create an Application and a Project ... 4-2
4.2.2 How to Add a Service Component ... 4-5
4.2.3 What You May Need to Know About Adding and Deleting a Service Component . 4-7
4.2.4 How to Edit a Service Component.. 4-8
4.2.5 How to Add a Service ... 4-9
4.2.6 What You May Need to Know About Adding and Deleting Services 4-14
4.2.7 What You May Need to Know About WSDL References... 4-14
4.2.8 What You May Need to Know About Invoking the Default Revision of a

 Composite ... 4-15

v

4.2.9 How to Wire a Service and a Service Component ... 4-15
4.2.10 What You May Need to Know About Adding and Deleting Wires 4-16
4.2.11 How to Add a Reference.. 4-17
4.2.12 What You May Need to Know About Adding and Deleting References................. 4-19
4.2.13 How to Wire a Service Component and a Reference .. 4-19
4.2.14 How to Update Message Schemas of Components (Optional).................................. 4-21
4.2.15 What You May Need to Know About Updating Message Schemas of

 Components.. 4-22
4.2.16 How to Invoke Other Composites ... 4-23
4.2.17 How to Deploy the SOA Composite Application.. 4-24
4.2.18 How to Manage Deployed Composites .. 4-24
4.2.19 How to Test the SOA Composite Application ... 4-27

Part II Using the BPEL Process Service Component

5 Getting Started with Oracle BPEL Process Manager

5.1 Introduction to the BPEL Process Service Component ... 5-1
5.1.1 How to Add a BPEL Process Service Component .. 5-1
5.2 Introduction to Activities... 5-4
5.3 Introduction to Partner Links.. 5-5
5.4 Creating a Partner Link ... 5-6
5.4.1 How to Create a Partner Link .. 5-7
5.4.1.1 Partner Links for an Outbound Adapter .. 5-7
5.4.1.2 Partner Links for an Inbound Adapter.. 5-8
5.4.1.3 Partner Links from an Abstract WSDL to Call a Service .. 5-8
5.4.1.4 Partner Links from an Abstract WSDL to Implement a Service............................ 5-8
5.4.1.5 Partner Links and Human Tasks or Business Rules.. 5-9
5.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle

 Mediator.. 5-9
5.5 Introduction to Technology Adapters .. 5-10

6 Introduction to Interaction Patterns in a BPEL Process

6.1 Introduction to One-Way Messages... 6-1
6.2 Introduction to Synchronous Interactions... 6-2
6.3 Introduction to Asynchronous Interactions.. 6-3
6.4 Introduction to Asynchronous Interactions with a Timeout.. 6-4
6.5 Introduction to Asynchronous Interactions with a Notification Timer.............................. 6-5
6.6 Introduction to One Request, Multiple Responses .. 6-6
6.7 Introduction to One Request, One of Two Possible Responses ... 6-7
6.8 Introduction to One Request, a Mandatory Response, and an Optional Response.......... 6-8
6.9 Introduction to Partial Processing .. 6-9
6.10 Introduction to Multiple Application Interactions ... 6-10

7 Manipulating XML Data in a BPEL Process

7.1 Introduction to Manipulating XML Data in BPEL Processes ... 7-2
7.1.1 XML Data in BPEL... 7-2

vi

7.1.2 Data Manipulation and XPath Standards .. 7-2
7.2 Delegating XML Data Operations to Data Provider Services .. 7-4
7.2.1 How to Create an Entity Variable ... 7-6
7.2.1.1 Understanding How SDO Works in the Inbound Direction.................................. 7-7
7.2.1.2 Understanding How SDO Works in the Outbound Direction 7-7
7.2.1.3 Creating an Entity Variable and Choosing a Partner Link..................................... 7-8
7.2.1.4 Creating a Binding Key.. 7-9
7.3 Using Standalone SDO-based Variables... 7-11
7.3.1 How to Declare SDO-based Variables ... 7-11
7.3.2 How to Convert from XML to SDO ... 7-12
7.4 Initializing a Variable with Expression Constants or Literal XML................................... 7-13
7.4.1 How To Assign a Literal XML Element .. 7-13
7.5 Copying Between Variables ... 7-14
7.5.1 How to Copy Between Variables.. 7-14
7.6 Accessing Fields Within Element-Based and Message Type-Based Variables 7-15
7.6.1 How to Access Fields Within Element-Based and Message Type-Based Variables 7-15
7.7 Assigning Numeric Values... 7-16
7.7.1 How to Assign Numeric Values ... 7-16
7.8 Using Mathematical Calculations with XPath Standards.. 7-16
7.8.1 How To Use Mathematical Calculations with XPath Standards 7-16
7.9 Assigning String Literals... 7-17
7.9.1 How to Assign String Literals... 7-17
7.10 Concatenating Strings ... 7-17
7.10.1 How to Concatenate Strings.. 7-17
7.11 Assigning Boolean Values .. 7-18
7.11.1 How to Assign Boolean Values .. 7-18
7.12 Assigning a Date or Time ... 7-18
7.12.1 How to Assign a Date or Time.. 7-18
7.13 Manipulating Attributes ... 7-19
7.13.1 How to Manipulate Attributes ... 7-19
7.14 Manipulating XML Data with bpelx Extensions... 7-20
7.14.1 How to Use bpelx:append... 7-20
7.14.2 How to Use bpelx:insertBefore ... 7-21
7.14.3 How to Use bpelx:insertAfter ... 7-22
7.14.4 How to Use bpelx:remove ... 7-23
7.14.5 How to Use bpelx:rename and XSD Type Casting .. 7-24
7.14.6 How to Use bpelx:copyList ... 7-26
7.15 Validating XML Data with bpelx:validate ... 7-27
7.15.1 How to Validate XML Data with bpelx:validate.. 7-28
7.16 Manipulating XML Data Sequences That Resemble Arrays ... 7-28
7.16.1 How to Statically Index into an XML Data Sequence That Uses Arrays.................. 7-28
7.16.2 How to Determine Sequence Size .. 7-29
7.16.3 How to Dynamically Index by Applying a Trailing XPath to an Expression.......... 7-29
7.16.3.1 Applying a Trailing XPath to the Result of getVariableData 7-29
7.16.3.2 Using the bpelx:append Extension to Append New Items to a Sequence........ 7-30
7.16.3.3 Merging Data Sequences .. 7-31
7.16.3.4 Generating Functionality Equivalent to an Array of an Empty Element.......... 7-31

vii

7.16.4 What You May Need to Know About SOAP-Encoded Arrays 7-32
7.16.5 What You May Need to Know About Using the Array Identifier 7-32
7.17 Converting from a String to an XML Element... 7-33
7.17.1 How To Convert from a String to an XML Element.. 7-33
7.18 Understanding the Differences Between Document-Style and RPC-Style WSDL Files 7-33
7.18.1 How To Use RPC-Style Files ... 7-34
7.19 Manipulating SOAP Headers in BPEL ... 7-34
7.19.1 How to Receive SOAP Headers in BPEL .. 7-35
7.19.2 How to Send SOAP Headers in BPEL ... 7-36
7.20 Using MIME/DIME SOAP Attachments ... 7-36

8 Invoking a Synchronous Web Service from a BPEL Process

8.1 Introduction to Invoking a Synchronous Web Service.. 8-1
8.2 Invoking a Synchronous Web Service ... 8-2
8.2.1 How to Invoke a Synchronous Web Service.. 8-2
8.2.2 What Happens When You Invoke a Synchronous Web Service 8-3
8.2.2.1 Partner Link in the BPEL Code... 8-4
8.2.2.2 Partner Link Type and Port Type in the BPEL Code .. 8-4
8.2.2.3 Invoke Activity for Performing a Request .. 8-5
8.2.2.4 Synchronous Invocation in BPEL Code .. 8-5
8.3 Calling a One-Way Mediator with a Synchronous BPEL Process 8-6

9 Invoking an Asynchronous Web Service from a BPEL Process

9.1 Introduction to Invoking an Asynchronous Web Service... 9-1
9.2 Invoking an Asynchronous Web Service .. 9-2
9.2.1 How to Invoke an Asynchronous Web Service... 9-2
9.2.1.1 Adding a Partner Link for an Asynchronous Service ... 9-2
9.2.1.2 Adding an Invoke Activity ... 9-3
9.2.1.3 Adding a Receive Activity .. 9-4
9.2.1.4 Performing Additional Activities... 9-5
9.2.2 What Happens When You Invoke an Asynchronous Web Service 9-5
9.2.2.1 portType Section of the WSDL File.. 9-6
9.2.2.2 partnerLinkType Section of the WSDL File.. 9-6
9.2.2.3 Partner Links Section in the BPEL File .. 9-7
9.2.2.4 Composite Application File .. 9-7
9.2.2.5 Invoke and Receive Activities... 9-7
9.2.2.6 createInstance Attribute for Starting a New Instance ... 9-8
9.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous Processes.. 9-9
9.2.2.8 Multiple Runtime Endpoint Locations.. 9-9
9.3 Using WS-Addressing in an Asynchronous Service.. 9-9
9.3.1 How to Use WS-Addressing in an Asynchronous Service... 9-11
9.3.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs 9-11
9.4 Using Correlation Sets in an Asynchronous Service .. 9-13
9.4.1 How to Use Correlation Sets in an Asynchronous Service... 9-13
9.4.1.1 Step 1: Creating a Project .. 9-13
9.4.1.2 Step 2: Configuring Partner Links and File Adapter Services 9-14

viii

9.4.1.3 Step 3: Creating Three Receive Activities .. 9-18
9.4.1.4 Step 4: Creating Correlation Sets... 9-20
9.4.1.5 Step 5: Associating Correlation Sets with Receive Activities.............................. 9-20
9.4.1.6 Step 6: Creating Property Aliases.. 9-21
9.4.1.7 Step 7: Reviewing WSDL File Content ... 9-23

10 Using Parallel Flow in a BPEL Process

10.1 Introduction to Parallel Flows in BPEL Processes... 10-1
10.2 Creating a Parallel Flow.. 10-2
10.2.1 How to Create a Parallel Flow .. 10-2
10.2.2 What Happens When You Create a Parallel Flow... 10-3
10.3 Customizing the Number of Flow Activities with the flowN Activity 10-5
10.3.1 How to Create a flowN Activity... 10-6
10.3.2 What Happens When You Create a FlowN Activity... 10-8

11 Using Conditional Branching in a BPEL Process

11.1 Introduction to Conditional Branching .. 11-1
11.2 Creating a Switch Activity to Define Conditional Branching ... 11-2
11.2.1 How to Create a Switch Activity .. 11-2
11.2.2 What Happens When You Create a Switch Activity... 11-3
11.3 Creating a While Activity to Define Conditional Branching... 11-4
11.3.1 How To Create a While Activity .. 11-4
11.3.2 What Happens When You Create a While Activity .. 11-5

12 Using Fault Handling in a BPEL Process

12.1 Introduction to a Fault Handler... 12-1
12.2 Introduction to BPEL Standard Faults .. 12-3
12.3 Introduction to Categories of BPEL Faults... 12-3
12.3.1 Business Faults .. 12-3
12.3.2 Runtime Faults .. 12-3
12.3.2.1 bindingFault ... 12-4
12.3.2.2 remoteFault... 12-4
12.3.2.3 replayFault.. 12-4
12.4 Using the Fault Management Framework ... 12-4
12.4.1 How to Design a Fault Policy ... 12-5
12.4.1.1 Understanding How Fault Policy Binding Resolution Works............................ 12-6
12.4.1.2 Creating a Fault Policy File for Automated Fault Recovery 12-6
12.4.1.3 Associating a Fault Policy with Fault Policy Binding .. 12-10
12.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples....................... 12-11
12.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers............................. 12-14
12.4.2 How to Execute a Fault Policy .. 12-15
12.4.3 How to Use a Java Action Fault Policy.. 12-15
12.4.4 What You May Need to Know About Fault Management Behavior When the

 Number of Instance Retries is Exceeded .. 12-19
12.4.5 What You May Need to Know About Binding Level Retry Execution Within

 Fault Policy Retries .. 12-20

ix

12.5 Catching BPEL Runtime Faults ... 12-21
12.5.1 How to Catch BPEL Runtime Faults.. 12-21
12.6 Getting Fault Details with the getFaultAsString XPath Extension Function 12-21
12.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function.. 12-21
12.7 Throwing Internal Faults .. 12-22
12.7.1 How to Create a Throw Activity .. 12-22
12.7.2 What Happens When You Create a Throw Activity ... 12-23
12.8 Returning External Faults ... 12-23
12.8.1 How to Return a Fault in a Synchronous Interaction.. 12-23
12.8.2 How to Return a Fault in an Asynchronous Interaction... 12-24
12.9 Using a Scope Activity to Manage a Group of Activities... 12-24
12.9.1 How to Create a Scope Activity.. 12-24
12.9.2 What Happens After You Create a Scope Activity.. 12-25
12.9.3 What You May Need to Know About Scopes .. 12-27
12.9.4 How to Use a Fault Handler within a Scope .. 12-27
12.9.5 How to Create a Catch Activity.. 12-28
12.9.6 What Happens When You Create a Catch Branch .. 12-29
12.9.7 How to Create an Empty Activity to Insert No-Op Instructions into a Business

 Process ... 12-30
12.9.8 What Happens When You Create an Empty Activity... 12-31
12.10 Using Compensation After Undoing a Series of Operations .. 12-31
12.10.1 How to Use Compensation After Undoing a Series of Operations......................... 12-31
12.10.2 How to Create a Compensate Activity .. 12-32
12.10.3 What Happens When You Create a Compensate Activity....................................... 12-33
12.11 Using the Terminate Activity to Stop a Business Process Instance 12-33
12.11.1 How to Create a Terminate Activity.. 12-33
12.11.2 What Happens When You Create a Terminate Activity... 12-34

13 Incorporating Java and Java EE Code in a BPEL Process

13.1 Introduction to Java and Java EE Code in BPEL Processes ... 13-1
13.2 Incorporating Java and Java EE Code in BPEL Processes.. 13-1
13.2.1 How to Wrap Java Code as a SOAP Service... 13-1
13.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service 13-2
13.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag 13-2
13.2.4 How to Use an XML Facade to Simplify DOM Manipulation................................... 13-3
13.2.5 How to Use bpelx:exec Built-in Methods.. 13-3
13.2.6 How to Use Java Code Wrapped in a Service Interface.. 13-4
13.3 Adding Custom Classes and JAR Files... 13-5
13.3.1 How to Add Custom Classes and JAR Files ... 13-5
13.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper 13-6
13.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper 13-6
13.5 Embedding Service Data Objects with bpelx:exec .. 13-7

14 Using Events and Timeouts in BPEL Processes

14.1 Introduction to Event and Timeout Concepts ... 14-1
14.2 Creating a Pick Activity to Select Between Continuing a Process or Waiting................ 14-1

x

14.2.1 How To Create a Pick Activity ... 14-3
14.2.2 What Happens When You Create a Pick Activity ... 14-4
14.3 Creating a Wait Activity to Set an Expiration Time.. 14-5
14.3.1 How To Create a Wait Activity .. 14-6
14.3.2 What Happens When You Create a Wait Activity .. 14-6
14.4 Setting Timeouts for Synchronous Processes .. 14-6
14.4.1 How To Set Timeouts for Synchronous Processes... 14-6

15 Coordinating Master and Detail Processes

15.1 Introduction to Master and Detail Process Coordinations .. 15-1
15.1.1 BPEL File Definition for the Master Process... 15-3
15.1.1.1 Correlating a Master Process with Multiple Detail Processes 15-5
15.1.2 BPEL File Definition for Detail Processes ... 15-6
15.2 Defining Master and Detail Process Coordination in Oracle JDeveloper 15-6
15.2.1 How to Create a Master Process... 15-6
15.2.2 How to Create a Detail Process .. 15-8
15.2.3 How to Create an Invoke Activity ... 15-10

16 Using the Notification Service

16.1 Introduction to the Notification Service ... 16-1
16.2 Introduction to Notification Channel Setup .. 16-3
16.3 Selecting Notification Channels During BPEL Process Design... 16-3
16.3.1 How To Configure the Email Notification Channel.. 16-5
16.3.1.1 Setting Email Attachments... 16-7
16.3.1.2 Formatting the Body of an Email Message as HTML .. 16-8
16.3.2 How to Configure the IM Notification Channel .. 16-8
16.3.3 How to Configure the SMS Notification Channel ... 16-9
16.3.4 How to Configure the Voice Notification Channel ... 16-11
16.3.5 How to Select Email Addresses and Telephone Numbers Dynamically 16-11
16.3.6 How to Select Notification Recipients by Browsing the User Directory 16-12
16.4 Allowing the End User to Select Notification Channels .. 16-13
16.4.1 How to Allow the End User to Select Notification Channels 16-13
16.4.1.1 How to Create and Send Headers for Notifications... 16-14

17 Using Oracle BPEL Process Manager Sensors

17.1 Introduction to Sensors ... 17-1
17.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper 17-3
17.2.1 How to Configure Sensors .. 17-3
17.2.2 How to Configure Sensor Actions.. 17-6
17.2.3 How to Publish to Remote Topics and Queues.. 17-9
17.2.4 How to Create a Custom Data Publisher .. 17-9
17.2.5 How to Register the Sensors and Sensor Actions in composite.xml....................... 17-11
17.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager

 Fusion Middleware Control Console... 17-12

Part III Using the Oracle Mediator Service Component

xi

18 Getting Started with Oracle Mediator

18.1 Introduction to Oracle Mediator.. 18-1
18.2 Overview of Mediator Editor Environment... 18-3
18.3 Creating a Mediator... 18-6
18.3.1 Creating a Mediator Without Interface Definition .. 18-8
18.3.1.1 How to Create a Mediator with No Interface Definition..................................... 18-8
18.3.1.2 How to Define an Interface for a Mediator with no Interface Definition.......... 18-9
18.3.2 Creating a Mediator Based on a WSDL File ... 18-12
18.3.2.1 How to Create a Mediator Based on a WSDL File.. 18-12
18.3.3 Creating a Mediator with One-Way Interface Definition ... 18-13
18.3.3.1 How to Create a Mediator with One-Way Interface Definition 18-13
18.3.3.2 What Happens When You Create a Mediator Component with One-Way

 Interface Definition... 18-14
18.3.4 Creating a Mediator with Synchronous Interface Definition................................... 18-14
18.3.4.1 How to Create a Mediator with Synchronous Interface Definition 18-14
18.3.4.2 What Happens When You Create a Mediator Component with

 Synchronous Interface Definition .. 18-15
18.3.5 Creating a Mediator with Asynchronous Interface Definition 18-16
18.3.5.1 How to Create a Mediator with Asynchronous Interface Definition 18-16
18.3.5.2 What Happens When You Create a Mediator Component with

 Asynchronous Interface Definition.. 18-17
18.3.6 Creating a Mediator Component for Event Subscription... 18-17
18.3.6.1 How to Create a Mediator for Event Subscription ... 18-17
18.3.6.2 What Happens When You Create a Mediator Component for Event

 Subscription... 18-20
18.3.7 What You May Need to Know About the Information Available in Mediator

 User Interface ... 18-21
18.3.7.1 Mediator Definition... 18-21
18.3.7.2 Routing Rule... 18-21
18.4 Generating a WSDL File.. 18-23
18.5 Specifying Operation or Event Subscription Properties .. 18-25
18.6 Modifying a Mediator Component ... 18-25
18.6.1 Modifying Operations.. 18-25
18.6.2 Modifying Event Subscriptions .. 18-27

19 Creating Mediator Routing Rules

19.1 Introduction to Routing Rules ... 19-1
19.2 Defining Routing Rules... 19-1
19.2.1 Using the Routing Rules Panel ... 19-2
19.2.2 Creating Static Routing Rules ... 19-3
19.2.2.1 Specifying Mediator Services or Events ... 19-4
19.2.2.2 Specifying Sequential or Parallel Execution .. 19-9
19.2.2.3 Handling Response Messages ... 19-11
19.2.2.4 Handling Multiple Callbacks... 19-12
19.2.2.5 Handling Faults ... 19-12
19.2.2.6 Specifying Expression for Filtering Messages... 19-15

xii

19.2.2.7 Creating Transformations .. 19-21
19.2.2.8 Assigning Values ... 19-22
19.2.2.9 Access Headers for Filters and Assignments .. 19-25
19.2.2.10 Using Semantic Validation... 19-27
19.2.2.11 Support for Java Callouts ... 19-29
19.2.3 Creating Dynamic Routing Rules... 19-36
19.3 Creating a Mediator for Routing Messages ... 19-39
19.3.1 Step-By-Step Instructions for Creating the CustomerRouter Use Case.................. 19-39
19.3.1.1 Task 1: Creating an Oracle JDeveloper Application and Project...................... 19-40
19.3.1.2 Creating CustomerRouter Mediator Component... 19-40
19.3.1.3 Creating a File Adapter Service... 19-40
19.3.1.4 Creating a File adapter reference .. 19-43
19.3.1.5 Specifying Routing Rules ... 19-44
19.3.1.6 Creating Oracle Application Server Connection .. 19-51
19.3.1.7 Deploying CustomerRouterProject... 19-51
19.3.2 Running and Monitoring the CustomerRouterProject Application........................ 19-51
19.4 Creating Asynchronous Request Response Using Mediator .. 19-52
19.4.1 Step-By-Step Instructions for Creating the AsyncMediator Use Case.................... 19-52
19.4.1.1 Task 1: Creating an Oracle JDeveloper Application and Project...................... 19-53
19.4.1.2 Task 2: Creating a Server BPEL Process ... 19-53
19.4.1.3 Task 3: Create a Mediator Component... 19-53
19.4.1.4 Task 4: Creating a Client BPEL Process.. 19-56
19.4.1.5 Task 5: Creating the Invoke, Receive, and Assignment Activities 19-57
19.4.1.6 Task 6: Configuring Oracle Application Server Connection............................. 19-61
19.4.1.7 Task 7: Deploying the Composite Application ... 19-61

20 Using Mediator Error Handling

20.1 Introduction to Oracle Mediator Error Handling ... 20-1
20.1.1 Fault Policies.. 20-1
20.1.1.1 Conditions .. 20-2
20.1.1.2 Actions... 20-4
20.1.2 Fault Bindings ... 20-6
20.1.3 Error groups in Mediator... 20-6
20.2 Using Error Handling with Mediator ... 20-7
20.2.1 How to Use Error Handling for a Mediator Component ... 20-7
20.2.2 What Happens at Runtime.. 20-8
20.3 Fault Recovery Using Enterprise Manager .. 20-8
20.4 Error Handling XML Schema Definition Files .. 20-8
20.4.1 Schema Definition File for Fault-policies.xml ... 20-8
20.4.2 Schema Definition File for Fault-bindings.xml ... 20-12

21 Working with Multiple Part Messages in Mediator

21.1 Introduction to Mediator Multipart Message Support Feature .. 21-1
21.1.1 Working with Multipart Request Messages ... 21-2
21.1.1.1 Specifying Filter Expressions... 21-2
21.1.1.2 Adding Validations ... 21-2
21.1.1.3 Creating Transformations .. 21-3

xiii

21.1.1.4 Assigning Values ... 21-4
21.1.2 Working with Multipart Reply, Fault, and Callback Source Messages.................... 21-5
21.1.3 Working with Multipart Target Messages.. 21-6

22 Understanding Message Exchange Patterns of a Mediator

22.1 Understanding One-way Message Exchange Pattern .. 22-2
22.2 Understanding Request-Reply Message Exchange Pattern... 22-3
22.3 Understanding Request-Reply-Fault Message Exchange Pattern 22-4
22.4 Understanding Request-Callback Message Exchange Pattern.. 22-5
22.5 Understanding Request-Reply-Callback Message Exchange Pattern.............................. 22-6
22.6 Understanding Request-Reply-Fault-Callback Message Exchange Pattern 22-8

Part IV Using the Business Rules Service Component

23 Using the Business Rule Service Component

23.1 Introduction to the Business Rule Service Component.. 23-1
23.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks 23-2
23.2 Introduction to Creating and Editing Business Rules .. 23-2
23.2.1 How to Create Business Rules Components .. 23-2
23.2.2 Introduction to Working with Business Rules in Rules Designer 23-4
23.3 Adding Business Rules to a BPEL Process ... 23-4
23.3.1 How to Add Business Rules to a BPEL Process ... 23-4
23.3.2 What Happens When You Add Business Rules to a BPEL Process 23-10
23.3.3 What Happens When You Create a Business Rules Dictionary 23-11
23.3.4 What You Need to Know About Invoking Business Rules in a BPEL Process...... 23-11
23.3.5 What You Need to Know About Decision Component Stateful Operation 23-11
23.4 Adding Business Rules to an SOA Composite Application .. 23-12
23.4.1 How to Add Business Rules to an SOA Composite Application 23-12
23.4.2 How to Select and Modify a Decision Function in a Business Rule Component.. 23-17
23.5 Running Business Rules in a Composite Application .. 23-19

Part V Using the Human Workflow Service Component

24 Getting Started with Human Workflow

24.1 Introduction to Human Workflow .. 24-1
24.2 Introduction to Human Workflow Concepts... 24-3
24.2.1 Introduction to Design and Runtime Concepts ... 24-3
24.2.1.1 Task Assignment and Routing .. 24-3
24.2.1.2 Static, Dynamic, and Rule-Based Task Assignment... 24-6
24.2.1.3 Task Stakeholders.. 24-7
24.2.1.4 Task Deadlines ... 24-8
24.2.1.5 Notifications ... 24-8
24.2.1.6 Task Forms ... 24-9
24.2.1.7 Advanced Concepts .. 24-9
24.2.1.8 Reports and Audit Trails .. 24-10

xiv

24.2.2 Introduction to the Stages of Human Workflow Design .. 24-10
24.3 Introduction to Human Workflow Features .. 24-11
24.3.1 Human Workflow Use Cases.. 24-11
24.3.1.1 Task Assignment to a User or Role ... 24-11
24.3.1.2 Use of the Various Participant Types ... 24-11
24.3.1.3 Escalation, Expiration, and Delegation .. 24-12
24.3.1.4 Automatic Assignment and Delegation... 24-12
24.3.1.5 Dynamic Assignment of Users Based on Task Content..................................... 24-13
24.3.2 Designing a Human Task from Start to Finish... 24-13
24.3.2.1 Prerequisites ... 24-13
24.3.2.2 How to Create the Vacation Request Process.. 24-14
24.3.3 Additional Tutorials ... 24-27
24.4 Introduction to Human Workflow Architecture... 24-27
24.4.1 Human Workflow Services ... 24-28
24.4.2 Use of Human Task .. 24-30
24.4.3 Service Engines ... 24-31

25 Designing Human Tasks

25.1 Introduction to Human Task Design Concepts... 25-1
25.2 Introduction to the Modeling Process... 25-1
25.2.1 Create a Human Task Definition.. 25-2
25.2.2 Associate the Human Task Definition with a BPEL Process...................................... 25-2
25.2.3 Generate the Task Display Form .. 25-3
25.3 Creating the Human Task Definition with the Human Task Editor................................ 25-3
25.3.1 How to Create a Human Task Service Component... 25-3
25.3.2 What Happens When You Create a Human Task Service Component 25-5
25.3.3 How to Access the Sections of the Human Task Editor.. 25-6
25.3.4 How to Specify the Title, Description, Outcome, Priority, Category, and Owner.. 25-7
25.3.4.1 Specifying a Task Title .. 25-8
25.3.4.2 Specifying a Task Description ... 25-8
25.3.4.3 Specifying a Task Outcome.. 25-8
25.3.4.4 Specifying a Task Category.. 25-10
25.3.4.5 Specifying a Task Priority .. 25-10
25.3.4.6 Specifying a Task Owner.. 25-10
25.3.5 How to Specify the Task Payload Data Structure.. 25-16
25.3.6 How to Assign Task Participants ... 25-18
25.3.6.1 Configuring the Single Participant Type ... 25-22
25.3.6.2 Configuring the Parallel Participant Type... 25-30
25.3.6.3 Configuring the Serial Participant Type .. 25-34
25.3.6.4 Configuring the FYI Participant Type .. 25-37
25.3.7 How to Select a Routing Policy... 25-38
25.3.7.1 Routing Tasks to All Participants in the Specified Order.................................. 25-40
25.3.7.2 Specifying Advanced Task Routing Using Business Rules............................... 25-43
25.3.7.3 Using External Routing .. 25-49
25.3.7.4 Configuring the Error Assignee .. 25-50
25.3.8 How to Escalate, Renew, or End the Task... 25-52
25.3.8.1 Introduction to Escalation and Expiration Policy... 25-52

xv

25.3.8.2 Specifying a Policy to Never Expire ... 25-53
25.3.8.3 Specifying a Policy to Expire ... 25-54
25.3.8.4 Extending an Expiration Policy Period .. 25-54
25.3.8.5 Escalating a Task Policy.. 25-55
25.3.8.6 Specifying a Due Date... 25-55
25.3.9 How to Specify Participant Notification Preferences .. 25-56
25.3.9.1 Notifying Recipients of Changes to Task Status ... 25-57
25.3.9.2 Editing the Notification Message .. 25-59
25.3.9.3 Setting Up Reminders ... 25-60
25.3.9.4 Changing the Character Set Encoding.. 25-60
25.3.9.5 Securing Notifications to Exclude Details.. 25-60
25.3.9.6 Making Email Messages Actionable ... 25-61
25.3.9.7 Sending Task Attachments with Email Notifications .. 25-61
25.3.10 How To Specify Advanced Settings... 25-61
25.3.10.1 Specifying Escalation Rules.. 25-62
25.3.10.2 Specifying WordML Style Sheets for Attachments .. 25-63
25.3.10.3 Specifying Style Sheets for Attachments.. 25-63
25.3.10.4 Specifying Multilingual Settings ... 25-63
25.3.10.5 Specifying Callback Classes on Task Status .. 25-65
25.3.10.6 Specifying a Workflow Signature Policy ... 25-68
25.3.10.7 Specifying a Certificate Authority... 25-69
25.3.10.8 Specifying Access Policies on Task Content.. 25-70
25.3.10.9 Specifying Restrictions on Task Assignments... 25-75
25.3.10.10 Allowing Task and Routing Customization in BPEL Callbacks....................... 25-76
25.3.10.11 Showing the Complete Graphical History... 25-76
25.3.11 How to Specify Annotations ... 25-76
25.3.12 How to Exit the Human Task Editor and Save Your Changes 25-76
25.4 Associating the Human Task Service Component with a BPEL Process 25-77
25.4.1 How to Associate a Human Task with a BPEL Process .. 25-77
25.4.2 What You May Need to Know About Deleting a Wire Between a Human Task

 Service Component and a BPEL Process.. 25-78
25.4.3 How to Define the Human Task Activity Title, Initiator, Priority, and

 Parameter Variables .. 25-79
25.4.3.1 Specifying the Task Title... 25-79
25.4.3.2 Specifying the Task Initiator and Task Priority .. 25-80
25.4.3.3 Specifying Task Parameters ... 25-80
25.4.4 How to Define the Human Task Activity Advanced Features 25-82
25.4.4.1 Specifying a Scope Name and a Global Task Variable Name........................... 25-83
25.4.4.2 Specifying a Task Owner.. 25-83
25.4.4.3 Specifying an Identification Key ... 25-83
25.4.4.4 Specifying an Identity Context .. 25-84
25.4.4.5 Specifying an Application Context ... 25-84
25.4.4.6 Including the Task History of Other Human Tasks ... 25-84
25.4.5 How to View the Generated Human Task Activity .. 25-85
25.4.5.1 Invoking BPEL Callbacks ... 25-87
25.4.6 What You May Need to Know About Changing the Generated Human

 Task Activity... 25-90

xvi

25.4.7 What You May Need to Know About Deleting a Partner Link Generated by a
 Human Task ... 25-90

25.4.8 How to Define Outcome-Based Modeling.. 25-91
25.4.8.1 Specifying Payload Updates .. 25-91
25.4.8.2 Using Case Statements for Other Task Conclusions .. 25-91

26 Designing Task Display Forms for Human Tasks

26.1 Introduction to the Task Display Form .. 26-1
26.2 Associating the Task Flow with the Task Service ... 26-2
26.3 Creating an ADF Task Flow Based on a Human Task ... 26-3
26.3.1 How To Autogenerate an ADF Task Flow for a Human Task 26-3
26.3.2 How To Create an ADF Task Flow Based on a Human Task 26-4
26.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task 26-5
26.4 Creating a Task Display Form ... 26-6
26.4.1 How To Create a Task Display Form Using the Complete Task with Payload

 Drop Handler ... 26-11
26.4.2 How To Create Task Display Form Regions Using Individual Drop Handlers ... 26-13
26.4.3 How To Add the Payload to the Task Display Form .. 26-15
26.4.4 What Happens When You Create a Task Display Form... 26-17
26.5 Refreshing Data Controls When the Task XSD Changes ... 26-17
26.6 Securing the Task Flow Application ... 26-18
26.7 Creating an Email Notification ... 26-18
26.7.1 How To Create an Email Notification ... 26-18
26.7.1.1 Creating a Task Flow with a Router ... 26-19
26.7.1.2 Creating an Email Notification Page .. 26-22
26.7.2 What Happens When You Create an Email Notification Page................................ 26-25
26.7.3 What You May Need to Know About Creating an Email Notification Page......... 26-25
26.8 Deploying a Composite Application with a Task Flow ... 26-25
26.8.1 Before Deploying the Task Display Form: Port Changes ... 26-25
26.8.2 How To Deploy a Composite Application with a Task Flow 26-27
26.8.3 How To Redeploy the Task Display Form.. 26-27
26.8.4 How To Deploy a Task Flow as a Separate Application... 26-27
26.8.5 How To Deploy a Task Display Form to a non-SOA Oracle WebLogic Server 26-28
26.8.5.1 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server .. 26-28
26.8.5.2 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic

 Server.. 26-30
26.8.5.3 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic

 Server.. 26-32
26.8.5.4 Including a Grant for bpm-services.jar... 26-34
26.8.5.5 Deploying the Application... 26-35
26.8.6 What Happens When You Deploy the Task Display Form...................................... 26-35
26.9 Displaying a Task Display Form in the Worklist .. 26-35
26.9.1 How To Display the Task Display Form in the Worklist ... 26-36
26.10 Displaying a Task in an Email Notification ... 26-36

27 Using Oracle BPM Worklist

27.1 Introduction to Oracle BPM Worklist ... 27-1

xvii

27.1.1 What You May Need To Know About Oracle BPM Worklist.................................... 27-3
27.2 Logging In to Oracle BPM Worklist ... 27-3
27.2.1 How To Log In to the Worklist ... 27-3
27.2.1.1 Enabling the weblogic User for Logging in to the Worklist................................ 27-4
27.2.2 What Happens When You Log In to the Worklist... 27-4
27.3 Customizing the Task List Page .. 27-7
27.3.1 How To Filter Tasks ... 27-7
27.3.2 How To Create and Customize Worklist Views .. 27-14
27.3.3 How To Customize the Task Status Chart .. 27-18
27.3.4 How To Create a ToDo Task... 27-19
27.3.5 How To Create a Subtask .. 27-20
27.4 Acting on Tasks: The Task Details Page ... 27-21
27.4.1 System Actions.. 27-24
27.4.2 Task History .. 27-24
27.4.3 How To Act on Tasks ... 27-27
27.4.4 How To Act on Tasks That Require a Digital Signature... 27-34
27.5 Approving Tasks.. 27-37
27.6 Setting a Vacation Period.. 27-38
27.7 Setting Rules ... 27-39
27.7.1 How To Create User Rules .. 27-40
27.7.2 How To Create Group Rules... 27-41
27.7.3 Assignment Rules for Tasks with Multiple Assignees.. 27-43
27.8 Using the Worklist Administration Functions .. 27-43
27.8.1 How To Manage Other Users’ or Groups’ Rules (as an Administrator) 27-43
27.8.2 How To Set the Worklist Display (Application Preferences)................................... 27-44
27.9 Specifying Notification Settings... 27-46
27.9.1 Messaging Filter Rules ... 27-46
27.9.1.1 Data Types .. 27-46
27.9.1.2 Attributes .. 27-46
27.9.2 Rule Actions... 27-47
27.9.3 Managing Messaging Channels.. 27-47
27.9.3.1 Viewing Your Messaging Channels.. 27-48
27.9.3.2 Creating, Editing, and Deleting a Messaging Channel...................................... 27-49
27.9.4 Managing Messaging Filters ... 27-49
27.9.4.1 Viewing Messaging Filters ... 27-50
27.9.4.2 Creating Messaging Filters... 27-50
27.9.4.3 Editing a Messaging Filter.. 27-52
27.9.4.4 Deleting a Messaging Filter.. 27-52
27.10 Using Flex Fields .. 27-52
27.10.1 How To Map Flex Fields.. 27-53
27.11 Creating Worklist Reports .. 27-56
27.11.1 How To Create Reports ... 27-57
27.11.2 What Happens When You Create Reports ... 27-58
27.11.2.1 Unattended Tasks Report... 27-59
27.11.2.2 Tasks Priority Report .. 27-60
27.11.2.3 Tasks Cycle Time Report .. 27-60
27.11.2.4 Tasks Productivity Report.. 27-61

xviii

27.12 Accessing Oracle BPM Worklist in Local Languages ... 27-62
27.12.1 How To Change the Language Used in the Worklist.. 27-62
27.12.2 How To Change the Time Zone Used in the Worklist .. 27-63

28 Building a Custom Worklist Client

28.1 Introduction to Building Clients for Workflow Services ... 28-1
28.2 Packages and Classes for Building Clients... 28-2
28.3 Workflow Service Clients ... 28-3
28.3.1 The IWorkflowServiceClient Interface .. 28-5
28.4 Class Paths for Clients Using SOAP.. 28-6
28.5 Class Paths for Clients Using Remote EJBs.. 28-6
28.6 Class Paths for Clients Using Local EJBs.. 28-7
28.7 Enterprise JavaBeans References in Web Applications.. 28-7
28.8 Initiating a Task.. 28-7
28.8.1 Creating a Task.. 28-8
28.8.2 Creating a Payload Element in a Task ... 28-8
28.8.3 Initiating a Task Programmatically.. 28-9
28.9 Changing Workflow Standard View Definitions.. 28-10
28.10 Writing a Worklist Application Using the HelpDeskUI Sample 28-10

29 Introduction to Human Workflow Services

29.1 Introduction to Human Workflow Services... 29-1
29.1.1 Enterprise JavaBeans, SOAP, and Java Support for the Human Workflow

 Services.. 29-1
29.1.2 Security Model for Services... 29-3
29.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP

 Web Services.. 29-4
29.1.2.2 Creating Human Workflow Context on Behalf of a User.................................... 29-4
29.1.3 Task Service ... 29-4
29.1.4 Task Query Service ... 29-7
29.1.5 Identity Service.. 29-9
29.1.5.1 Identity Service Providers .. 29-10
29.1.6 Task Metadata Service ... 29-11
29.1.7 User Metadata Service.. 29-12
29.1.8 Task Report Service .. 29-14
29.1.9 Runtime Config Service ... 29-14
29.1.9.1 Internationalization of Attribute Labels... 29-16
29.1.10 Evidence Store Service and Digital Signatures... 29-17
29.1.10.1 Prerequisites ... 29-19
29.1.10.2 Interfaces and Methods .. 29-19
29.1.11 Task Instance Attributes .. 29-21
29.2 Notifications from Human Workflow .. 29-25
29.2.1 Contents of Notification... 29-26
29.2.2 Error Message Support .. 29-27
29.2.3 Reliability Support.. 29-27
29.2.4 Management of Oracle Human Workflow Notification Service 29-28
29.2.5 How to Configure the Notification Channel Preferences ... 29-28

xix

29.2.6 How to Configure Notification Messages in Different Languages 29-29
29.2.7 How to Send Actionable Messages .. 29-30
29.2.7.1 How to Send Actionable Emails for Human Tasks .. 29-30
29.2.8 How to Send Inbound and Outbound Attachments ... 29-31
29.2.9 How to Send Inbound Comments.. 29-32
29.2.10 How to Send Secure Notifications.. 29-32
29.2.11 How to Set Channels Used for Notifications.. 29-32
29.2.12 How to Send Reminders.. 29-32
29.2.13 How to Set Automatic Replies to Unprocessed Messages 29-33
29.2.14 How to Create Custom Notification Headers .. 29-34
29.3 Assignment Service Configuration ... 29-34
29.3.1 Dynamic Assignment and Task Escalation Functions .. 29-34
29.3.1.1 How to Implement a Dynamic Assignment Function 29-35
29.3.1.2 How to Configure Dynamic Assignment Functions.. 29-36
29.3.1.3 How to Configure Display Names for Dynamic Assignment Functions........ 29-37
29.3.1.4 How to Implement a Task Escalation Function .. 29-37
29.3.2 Dynamically Assigning Task Participants with the Assignment Service 29-37
29.3.2.1 How to Implement an Assignment Service ... 29-38
29.3.2.2 Example of Assignment Service Implementation... 29-39
29.3.2.3 How to Deploy a Custom Assignment Service... 29-41
29.3.3 Custom Escalation Function.. 29-41
29.4 Class Loading for Callbacks and Resource Bundles... 29-41
29.5 Resource Bundles in Workflow Services .. 29-42
29.5.1 Task Resource Bundles .. 29-42
29.5.2 Global Resource Bundle – WorkflowLabels.properties .. 29-42
29.5.3 Worklist Client Resource Bundles.. 29-44
29.5.4 Task Detail ADF Task Flow Resource Bundles .. 29-44
29.5.5 Case Sensitivity ... 29-45
29.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server

 Services .. 29-45
29.6.1 Human Workflow Services Clients.. 29-45
29.6.1.1 Task Query Service Client Code.. 29-46
29.6.1.2 Configuration Option ... 29-49
29.6.1.3 Client Logging.. 29-51
29.6.1.4 Configuration Migration Utility.. 29-51
29.6.2 Identity Propagation .. 29-52
29.6.2.1 Enterprise JavaBeans Identity Propagation.. 29-52
29.6.2.2 SAML Token Identity Propagation for SOAP Client ... 29-52
29.6.3 Client JAR Files ... 29-54
29.7 Database Views for Oracle Workflow... 29-54
29.7.1 Unattended Tasks Report View.. 29-54
29.7.2 Task Cycle Time Report View... 29-55
29.7.3 Task Productivity Report View .. 29-56
29.7.4 Task Priority Report View... 29-56

30 Integrating Microsoft Excel with a Human Task

30.1 Configuring Your Environment for Invoking a BPEL Process from an Excel

xx

 Workbook... 30-1
30.1.1 How to Create an JDeveloper Project of the Type Web Service Data Control 30-1
30.1.2 How to Create a Dummy JSF Page .. 30-2
30.1.3 How to Add Desktop Integration to Your Oracle JDeveloper Project...................... 30-2
30.1.4 What Happens When You Add Desktop Integration to Your JDeveloper Project . 30-2
30.1.5 How to Deploy the Web Application You Created in Step 1..................................... 30-4
30.1.6 How to Install Microsoft Excel.. 30-4
30.1.7 How to Install the Oracle Oracle ADF-Desktop Integration Plug-in........................ 30-4
30.1.8 How to Specify the User Interface Controls and Create the Excel Workbook 30-4
30.2 Attaching Excel Workbooks to Human Task Workflow Email Notifications 30-4
30.2.1 Enabling Attachment of Excel Workbooks to Human Task Workflow Email

 Notifications ... 30-4
30.2.2 What Happens During Runtime When You Enable Attachment of Excel

 Workbooks to Human Task Workflow Email Notifications 30-5
30.2.3 Example: Attaching an Excel Workbook to Email Notifications 30-5
30.2.3.1 Task 1: Enable the ADF Task Flow Project with Oracle ADF-DI Capabilities . 30-5
30.2.3.2 Task 2: Set up Authentication.. 30-10
30.2.3.3 Task 3: Create a Valid Page Definition File to Be Used in the Excel

 Workbook .. 30-12
30.2.3.4 Task 4: Prepare the Excel Workbook .. 30-17
30.2.3.5 Task 5: Deploy the ADF Task Flow .. 30-21
30.2.3.6 Task 6: Test the Deployed Application .. 30-23

Part VI Using Oracle Business Activity Monitoring

31 Creating Oracle BAM Data Objects

31.1 Introduction to Creating Data Objects .. 31-1
31.2 Defining Data Objects.. 31-2
31.2.1 How to Define a Data Object .. 31-2
31.2.2 How to Add Columns to a Data Object... 31-2
31.2.3 How to Add Lookup Columns to a Data Object.. 31-3
31.2.4 How to Add Calculated Columns to a Data Object... 31-4
31.2.5 How to Add Time Stamp Columns to a Data Object .. 31-5
31.2.6 What You May Need to Know About System Data Objects 31-5
31.2.7 What You May Need to Know About Oracle Data Integrator Data Objects 31-6
31.3 Creating Permissions on Data Objects.. 31-6
31.3.1 How to Create Permissions on a Data Object... 31-6
31.3.2 How to Add a Group of Users.. 31-7
31.3.3 How to Copy Permissions from Other Data Objects... 31-7
31.4 Viewing Existing Data Objects... 31-7
31.4.1 How to View Data Object General Information... 31-8
31.4.2 How to View Data Object Layouts... 31-8
31.4.3 How to View Data Object Contents ... 31-9
31.5 Using Data Object Folders .. 31-9
31.5.1 How to Create Folders ... 31-9
31.5.2 How to Open Folders ... 31-10
31.5.3 How to Set Folder Permissions... 31-10

xxi

31.5.4 How to Move Folders... 31-11
31.5.5 How to Rename Folders .. 31-11
31.5.6 How to Delete Folders ... 31-12
31.6 Creating Security Filters.. 31-12
31.6.1 How to Create a Security Filter... 31-12
31.6.2 How to Copy Security Filters from Other Data Objects ... 31-13
31.7 Creating Dimensions ... 31-14
31.7.1 How to Create a Dimension .. 31-14
31.7.2 How to Create a Time Dimension.. 31-15
31.8 Renaming and Moving Data Objects .. 31-16
31.8.1 How to Rename a Data Object .. 31-16
31.8.2 How to Move a Data Object .. 31-16
31.9 Creating Indexes .. 31-16
31.9.1 How to Create an Index ... 31-16
31.10 Clearing Data Objects.. 31-17
31.10.1 How to Clear a Data Object... 31-17
31.11 Deleting Data Objects .. 31-17
31.11.1 How to Delete a Data Object ... 31-17

32 Integrating Oracle BAM with SOA Composite Applications

32.1 Introduction to Integrating Oracle BAM with SOA Composite Applications................ 32-1
32.2 Configuring Oracle BAM Adapter .. 32-2
32.3 Creating a Design Time Connection to an Oracle BAM Server .. 32-2
32.3.1 How to Create a Connection to an Oracle BAM Server .. 32-2
32.4 Using Oracle BAM Adapter in an SOA Composite Application...................................... 32-3
32.4.1 How to Use Oracle BAM Adapter in an SOA Composite Application 32-3
32.5 Using Oracle BAM Adapter in a BPEL Process... 32-4
32.5.1 How to Use Oracle BAM Adapter in a BPEL Process ... 32-4
32.6 Integrating BPEL Sensors with Oracle BAM ... 32-6
32.6.1 How to Create a Sensor.. 32-6
32.6.2 How to Create an Oracle BAM Sensor Action ... 32-7
32.6.3 How to Disable an Oracle BAM Sensor Action.. 32-9

33 Creating Oracle BAM Enterprise Message Sources

33.1 Introduction to Enterprise Message Sources ... 33-1
33.2 Creating Enterprise Message Sources... 33-2
33.2.1 How to Create an Enterprise Message Source.. 33-2
33.2.2 How to Configure DateTime Specification ... 33-6
33.2.3 How to Use Advanced XML Formatting .. 33-8
33.3 Using Foreign JMS Providers... 33-9
33.4 Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider........................ 33-10
33.4.1 Creating a JMS Topic in AQ-JMS ... 33-10
33.4.2 Creating a Data Source in Oracle WebLogic Server .. 33-12
33.4.3 Creating a Foreign JMS Server.. 33-12
33.4.4 Defining an EMS in Oracle BAM Architect .. 33-13
33.4.5 Inserting and Updating Records in the SQL Table.. 33-14

xxii

34 Using Oracle Data Integrator With Oracle BAM

34.1 Introduction to Using the Oracle Data Integrator With Oracle Business Activity
 Monitoring ... 34-1

34.2 Installing the Oracle Data Integrator Integration Files... 34-2
34.2.1 How to Install Integration Files Using the Script... 34-2
34.2.2 How to Manually Install Integration Files .. 34-4
34.3 Creating the Oracle BAM Target ... 34-6
34.3.1 How to Create the Oracle BAM Target ... 34-6
34.4 Using Oracle BAM Knowledge Modules ... 34-7
34.5 Updating the Oracle Data Integrator External Data Source Definition 34-13
34.5.1 How to Update the Oracle Data Integrator External Data Source Definitions...... 34-13
34.6 Launching Oracle Data Integrator Scenarios From Oracle BAM Alerts........................ 34-14

35 Creating External Data Sources

35.1 Introduction to External Data Sources.. 35-1
35.2 Creating External Data Sources ... 35-1
35.2.1 How to Create an External Data Source.. 35-2
35.2.2 What You May Need to Know About Oracle Data Integrator External

 Data Sources ... 35-2
35.2.3 How to Edit an External Data Source .. 35-2
35.2.4 How to Delete an External Data Source .. 35-2

36 Using Oracle BAM Web Services

36.1 Introduction to Oracle BAM Web Services .. 36-1
36.2 Using the DataObjectOperations Web Services .. 36-2
36.2.1 How to Use the DataObjectOperations Web Services... 36-2
36.3 Using the DataObjectDefinition Web Service.. 36-3
36.3.1 How to Use the DataObjectDefinition Web Service .. 36-3
36.4 Using the ManualRuleFire Web Service... 36-4
36.4.1 How to Use the ManualRuleFire Web Service ... 36-4
36.5 Using the ICommand Web Service ... 36-4
36.5.1 How to Use the ICommand Web Service.. 36-5

37 Creating Oracle BAM Alerts

37.1 Introduction to Creating Alerts.. 37-1
37.2 Creating Alert Rules .. 37-2
37.2.1 How to Create an Alert Rule... 37-2
37.2.2 How to Activate Alerts .. 37-3
37.2.3 How to Modify Alert Rules... 37-4
37.2.4 How to Delete an Alert .. 37-4
37.3 Creating Alert Rules From Templates .. 37-4
37.3.1 How to Create Alert Rules From Templates... 37-4
37.4 Creating Alert Rules With Messages .. 37-5
37.4.1 How to Create an Alert Rule With a Message.. 37-5
37.5 Creating Complex Alerts .. 37-6
37.5.1 How to Create a Dependent Rule... 37-6

xxiii

37.6 Using Alert History ... 37-6
37.6.1 How to View Alert History ... 37-6
37.6.2 How to Clear Alert History... 37-6
37.7 Launching Alerts by Invoking Web Services... 37-7

38 Using ICommand

38.1 Introduction to ICommand .. 38-1
38.2 Executing ICommand.. 38-1
38.3 Specifying the Command and Option Syntax ... 38-2
38.3.1 How to Specify the Security Credentials... 38-2
38.3.2 How to Specify the Command.. 38-3
38.3.3 How to Specify Object Names .. 38-3
38.3.4 How to Specify Multiple Parameter Targets .. 38-4
38.4 Using Command-line-only Parameters .. 38-5
38.5 Running ICommand Remotely.. 38-6

Part VII Using Oracle User Messaging Service

39 Oracle User Messaging Service

39.1 User Messaging Service Overview.. 39-1
39.1.1 Components... 39-2
39.1.2 Architecture ... 39-2

40 Sending and Receiving Messages using the User Messaging Service Java
API

40.1 Overview of UMS Java API.. 40-1
40.1.1 Creating a Java EE Application Module.. 40-1
40.2 Creating a UMS Client Instance... 40-2
40.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative

Approach 40-2
40.2.2 API Reference for Class MessagingClientFactory.. 40-2
40.3 Sending a Message... 40-2
40.3.1 Creating a Message... 40-3
40.3.1.1 Creating a Plaintext Message... 40-3
40.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML

 Parts)... 40-3
40.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for

 Recipients with Different Delivery Types... 40-3
40.3.2 API Reference for Class MessageFactory .. 40-4
40.3.3 API Reference for Interface Message ... 40-4
40.3.4 API Reference for Enum DeliveryType... 40-4
40.3.5 Addressing a Message ... 40-4
40.3.5.1 Types of Addresses ... 40-5
40.3.5.2 Creating Address Objects... 40-5
40.3.5.3 Creating a Recipient with a Failover Address... 40-5
40.3.5.4 API Reference for Class AddressFactory ... 40-5

xxiv

40.3.5.5 API Reference for Interface Address .. 40-5
40.3.6 Retrieving Message Status... 40-6
40.3.6.1 Synchronous Retrieval of Message Status ... 40-6
40.3.6.2 Asynchronous Notification of Message Status ... 40-6
40.4 Receiving a Message.. 40-6
40.4.1 Registering an Access Point .. 40-6
40.4.2 Synchronous Receiving.. 40-7
40.4.3 Asynchronous Receiving ... 40-7
40.4.4 Message Filtering .. 40-7
40.5 Using the UMS Enterprise JavaBeans Client API to Build a Client Application............ 40-7
40.5.1 Overview of Development .. 40-8
40.5.2 Configuring the Email Driver ... 40-8
40.5.3 Using JDeveloper 11g to Build the Application ... 40-9
40.5.3.1 Opening the Project ... 40-9
40.5.4 Deploying the Application .. 40-11
40.5.5 Testing the Application.. 40-12
40.6 Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application 40-15
40.6.1 Overview of Development .. 40-15
40.6.2 Configuring the Email Driver ... 40-16
40.6.3 Using JDeveloper 11g to Build the Application ... 40-16
40.6.3.1 Opening the Project ... 40-16
40.6.4 Deploying the Application .. 40-20
40.6.5 Testing the Application.. 40-20
40.7 Creating a New Application Server Connection... 40-22

41 Parlay X Web Services Multimedia Messaging API

41.1 Overview of Parlay X Messaging Operations.. 41-1
41.2 Send Message Interface ... 41-2
41.2.1 sendMessage Operation... 41-2
41.2.2 getMessageDeliveryStatus Operation ... 41-3
41.3 Receive Message Interface .. 41-3
41.3.1 getReceivedMessages Operation.. 41-4
41.3.2 getMessage Operation.. 41-5
41.3.3 getMessageURIs Operation... 41-5
41.4 Oracle Extension to Parlay X Messaging.. 41-6
41.4.1 ReceiveMessageManager Interface .. 41-6
41.4.1.1 startReceiveMessage Operation .. 41-6
41.4.1.2 stopReceiveMessage Operation... 41-7
41.5 Parlay X Messaging Client API and Client Proxy Packages.. 41-7
41.6 Sample Chat Application with Parlay X APIs .. 41-8
41.6.1 Overview.. 41-8
41.6.1.1 Provided Files .. 41-9
41.6.2 Running the Pre-Built Sample .. 41-9
41.6.3 Testing the Sample.. 41-12
41.6.4 Creating a New Application Server Connection.. 41-16

xxv

42 User Messaging Preferences

42.1 Introduction .. 42-1
42.1.1 Terminology .. 42-1
42.1.2 Configuration of Notification Delivery Preferences.. 42-2
42.1.3 Delivery Preference Rules ... 42-2
42.1.3.1 Data Types .. 42-3
42.1.3.2 System Terms ... 42-3
42.1.3.3 Business Terms... 42-3
42.1.4 Rule Actions... 42-4
42.2 How to Manage Messaging Channels .. 42-5
42.2.1 Creating a Channel ... 42-5
42.2.2 Editing a Channel ... 42-6
42.2.3 Deleting a Channel ... 42-7
42.2.4 Setting a Default Channel.. 42-7
42.3 Creating Contact Rules using Filters... 42-7
42.3.1 Creating Filters.. 42-9
42.3.2 Editing a Filter... 42-11
42.3.3 Deleting a Filter... 42-11
42.4 Configuring Settings.. 42-11

Part VIII Sharing Functionality Across Oracle SOA Suite Components

43 Deploying SOA Composite Applications

43.1 Creating an Application Server Connection .. 43-1
43.2 Deploying a Single SOA Composite in Oracle JDeveloper ... 43-2
43.2.1 How to Deploy a Single SOA Composite ... 43-2
43.2.1.1 Optionally Creating a Project Deployment Profile .. 43-2
43.2.1.2 Deploying the Profile .. 43-3
43.2.2 What You May Need to Know About Oracle JDeveloper Deployment to a

 Managed Oracle WebLogic Server.. 43-7
43.2.3 What You May Need to Know About Invoking References in One-Way

 SSL Environments in Oracle JDeveloper.. 43-7
43.3 Deploying Multiple SOA Composite Applications in Oracle JDeveloper 43-8
43.3.1 How to Deploy Multiple SOA Composite Applications .. 43-8
43.4 Deploying and Using Shared Metadata Across SOA Composite Applications 43-10
43.4.1 How to Deploy Shared Metadata... 43-11
43.4.1.1 Create a JAR Profile and Include the Artifacts to Share 43-11
43.4.1.2 Create a SOA Bundle that Includes the JAR Profile ... 43-16
43.4.1.3 Deploy the SOA Bundle ... 43-18
43.4.2 How to Use Shared Metadata ... 43-18
43.4.2.1 Create a SOA-MDS Connection .. 43-18
43.4.2.2 Create a BPEL Process .. 43-19
43.5 Deploying an Existing SOA Archive in Oracle JDeveloper... 43-21
43.5.1 How to Deploy an Existing SOA Archive from Oracle JDeveloper........................ 43-21
43.6 Managing SOA Composite Applications with Scripts ... 43-22
43.6.1 How to Manage SOA Composite Applications with the WLST Utility 43-22

xxvi

43.6.2 How to Manage SOA Composite Applications with ant Scripts............................. 43-22
43.6.2.1 Testing a SOA Composite Application .. 43-23
43.6.2.2 Compiling a SOA Composite Application .. 43-24
43.6.2.3 Packaging a SOA Composite Application into a Composite SAR file 43-25
43.6.2.4 Deploying SOA Composite Application.. 43-25
43.6.2.5 Undeploying a SOA Composite Application .. 43-26
43.6.2.6 Managing a SOA Composite Application ... 43-27
43.6.2.7 Upgrading a SOA Composite Application .. 43-29
43.6.2.8 How to Manage SOA Composite Applications with ant Scripts 43-29
43.7 Moving SOA Composite Applications to and from Development, Test, and

 Production Environments.. 43-30
43.7.1 Introduction to Configuration Plans.. 43-30
43.7.2 Introduction to a Configuration Plan File ... 43-31
43.7.3 Introduction to Use Cases for a Configuration Plan.. 43-32
43.7.4 How to Create a Configuration Plan in Oracle JDeveloper...................................... 43-33
43.7.5 How to Create a Configuration Plan with the WLST Utility 43-36

44 Using Business Events and the Event Delivery Network

44.1 Introduction to Business Events .. 44-1
44.1.1 Local and Remote Events Boundaries ... 44-3
44.2 Creating Business Events in Oracle JDeveloper .. 44-3
44.2.1 How to Create a Business Event... 44-4
44.2.2 How to Subscribe to a Business Event... 44-6
44.2.3 What Happens When You Create and Subscribe to a Business Event 44-8
44.2.4 What You May Need to Know About Subscribing to a Business Event 44-8
44.2.5 How to Publish a Business Event ... 44-9
44.2.6 What Happens When You Publish a Business Event.. 44-9
44.2.7 How to Integrate Oracle ADF Business Component Business Events with Oracle

 Mediator.. 44-10

45 Creating Transformations with the XSLT Mapper

45.1 Introduction to the XSLT Mapper ... 45-1
45.1.1 Overview of XSLT Creation .. 45-3
45.1.2 Guidelines for Using the XSLT Mapper .. 45-6
45.2 Creating an XSL Map File ... 45-6
45.2.1 How to Create an XSL Map File in Oracle BPEL Process Manager 45-6
45.2.2 How to Create an XSL Map File from Imported Source and Target Schema Files

 in Oracle BPEL Process Manager .. 45-8
45.2.3 How to Create an XSL Map File in Oracle Mediator... 45-10
45.2.4 What You May Need to Know About Creating an XSL Map File........................... 45-13
45.2.5 What Happens at Runtime If You Pass a Payload Through Oracle Mediator

 Without Creating an XSL Map File ... 45-14
45.3 Designing Transformation Maps with the XSLT Mapper ... 45-14
45.3.1 How to Add Additional Sources .. 45-14
45.3.2 How to Perform a Simple Copy by Linking Nodes... 45-16
45.3.3 How to Set Constant Values.. 45-16
45.3.4 How to Add Functions... 45-17

xxvii

45.3.4.1 Editing Function Parameters ... 45-18
45.3.4.2 Chaining Functions ... 45-19
45.3.4.3 Using Named Templates .. 45-19
45.3.4.4 Importing User-Defined Functions... 45-20
45.3.5 How to Edit XPath Expressions.. 45-22
45.3.6 How to Add XSLT Constructs .. 45-24
45.3.6.1 Using Conditional Processing with xsl:if ... 45-25
45.3.6.2 Using Conditional Processing with xsl:choose ... 45-26
45.3.6.3 Creating Loops with xsl:for-each .. 45-27
45.3.6.4 Cloning xsl:for-each .. 45-28
45.3.6.5 Applying xsl:sort to xsl:for-each ... 45-28
45.3.6.6 Copying Nodes with xsl:copy-of... 45-29
45.3.6.7 Including External Templates with xsl:include .. 45-30
45.3.7 How to Automatically Map Nodes.. 45-30
45.3.7.1 Using Auto Mapping with Confirmation .. 45-32
45.3.8 What You May Need to Know About Automatic Mapping 45-33
45.3.9 How to View Unmapped Target Nodes ... 45-34
45.3.10 How to Generate Dictionaries... 45-35
45.3.11 How to Create Map Parameters and Variables.. 45-36
45.3.11.1 Creating a Map Parameter ... 45-36
45.3.11.2 Creating a Map Variable... 45-37
45.3.12 How to Search Source and Target Nodes ... 45-38
45.3.13 How to Control the Generation of Unmapped Target Elements............................. 45-39
45.3.14 How to Ignore Elements in the XSLT Document... 45-39
45.3.15 How to Replace a Schema in the XSLT Mapper... 45-39
45.3.16 How to Substitute Elements and Types in the Source and Target Trees................ 45-40
45.4 Testing the Map.. 45-43
45.4.1 How to Test the Transformation Mapping Logic .. 45-44
45.4.2 How to Generate Reports .. 45-46
45.4.2.1 Correcting Memory Errors When Generating Reports...................................... 45-47
45.4.3 How to Customize Sample XML Generation ... 45-48
45.5 Demonstrating the New Features of the XSLT Mapper... 45-48
45.5.1 Opening the Application ... 45-49
45.5.2 Creating a New XSLT Map in the BPEL Process ... 45-49
45.5.3 Using Type Substitution to Map the Purchase Order Items 45-50
45.5.4 Referencing Additional Source Elements.. 45-51
45.5.5 Using Element Substitution to Map the Shipping Address 45-53
45.5.6 Mapping the Remaining Fields .. 45-54
45.5.7 Testing the Map .. 45-55

46 Working with Domain Value Maps

46.1 Introduction to Domain Value Maps .. 46-1
46.1.1 Domain Value Map Features .. 46-2
46.1.1.1 Qualifier Support... 46-2
46.1.1.2 Qualifier Order Support ... 46-3
46.1.1.3 One-to-Many Mapping Support ... 46-4
46.2 Creating Domain Value Maps.. 46-4

xxviii

46.2.1 How to Create Domain Value Maps.. 46-4
46.2.2 What Happens When You Create a Domain Value Map ... 46-5
46.3 Editing a Domain Value Map... 46-7
46.3.1 Adding Columns to a Domain Value Map ... 46-7
46.3.2 Adding Rows to a Domain Value Map ... 46-8
46.4 Using Domain Value Map Functions.. 46-8
46.4.1 Understanding Domain Value Map Functions .. 46-8
46.4.1.1 dvm:lookupValue.. 46-8
46.4.1.2 dvm:lookupValue1M .. 46-9
46.4.2 Using Domain Value Map Functions in Transformation ... 46-9
46.4.3 Using Domain Value Map Functions in XPath Expressions 46-11
46.4.4 What Happens at Runtime.. 46-12
46.5 Creating a Domain Value Map Use Case for Hierarchical Lookup 46-12
46.5.1 Creating the HierarchicalValue Use Case ... 46-13
46.5.1.1 Task 1: Creating an Oracle JDeveloper Application and Project...................... 46-13
46.5.1.2 Task 2: Creating a Domain Value Map .. 46-14
46.5.1.3 Task 3: Creating a File Adapter Service ... 46-15
46.5.1.4 Task 4: Creating ProcessOrders Mediator Component 46-16
46.5.1.5 Task 5: Creating a File Adapter Reference... 46-17
46.5.1.6 Task 6: Specifying Routing Rules .. 46-18
46.5.1.7 Task 7: Configuring Oracle Application Server Connection............................. 46-21
46.5.1.8 Task 8: Deploying the Composite Application ... 46-21
46.5.2 Running and Monitoring the HierarchicalValue Application 46-21
46.6 Creating a Domain Value Map Use Case For Multiple Values....................................... 46-22
46.6.1 Creating the Multivalue Use Case.. 46-22
46.6.1.1 Task 1: Creating an Oracle JDeveloper Application and Project...................... 46-22
46.6.1.2 Task 2: Creating a Domain Value Map .. 46-23
46.6.1.3 Task 3: Creating a File Adapter Service ... 46-24
46.6.1.4 Task 4: Creating LookupMultiplevaluesMediator Mediator Component 46-25
46.6.1.5 Task 5: Creating a File Adapter Reference... 46-26
46.6.1.6 Task 6: Specifying Routing Rules .. 46-27
46.6.1.7 Task 7: Configuring Oracle Application Server Connection............................. 46-30
46.6.1.8 Task 8: Deploying the Composite Application ... 46-30
46.6.2 Running and Monitoring the Multivalue Application.. 46-30

47 Working with Cross References

47.1 Introduction to Cross References... 47-1
47.2 Creating and Modifying Cross Reference Tables.. 47-3
47.2.1 Creating a Cross Reference Table... 47-4
47.2.1.1 What Happens When You Create a Cross Reference... 47-5
47.2.2 Adding an End System to a Cross Reference Table... 47-6
47.3 Populating Cross Reference Tables ... 47-6
47.3.1 About xref:populateXRefRow Function.. 47-7
47.3.2 About xref:populateXRefRow1M Function .. 47-9
47.3.3 How to Populate a Column of a Cross Reference Table ... 47-10
47.4 Looking Up Cross Reference Tables ... 47-12
47.4.1 About xref:lookupXRef Function ... 47-12

xxix

47.4.2 About xref:lookupXRef1M Function ... 47-13
47.4.3 About xref:lookupPopulatedColumns Function ... 47-14
47.4.4 How to Look Up a Cross Reference Table for a Value.. 47-14
47.5 Deleting a Cross Reference Table Value... 47-16
47.5.1 How to Delete a Cross Reference Table Value ... 47-17
47.6 Creating and Running Cross Reference Use Case .. 47-18
47.6.1 Step-By-Step Instructions for Creating the Use Case .. 47-19
47.6.1.1 Task 1: Configuring Oracle Database and Database Adapter 47-19
47.6.1.2 Task 2: Creating an Oracle JDeveloper Application and Project...................... 47-20
47.6.1.3 Task 3: Creating a Cross Reference ... 47-21
47.6.1.4 Task 4: Creating a Database Adapter Service.. 47-22
47.6.1.5 Task 5: Creating EBS and SBL External References.. 47-24
47.6.1.6 Task 6: Creating Logger External Reference.. 47-26
47.6.1.7 Task 7: Creating Mediator Components .. 47-28
47.6.1.8 Task 8: Specifying Routing Rules for Mediator Component 47-28
47.6.1.9 Task 9: Specifying Routing Rules for Common Mediator................................. 47-38
47.6.1.10 Task 10: Configuring Oracle Application Server Connection........................... 47-49
47.6.1.11 Task 11: Deploying the Composite Application ... 47-49
47.6.2 Running and Monitoring the XrefCustApp Application.. 47-49
47.7 Creating and Running Cross Reference for 1M Functions .. 47-50
47.7.1 Step-By-Step Instructions for Creating the Use Case .. 47-50
47.7.1.1 Task 1: Configuring Oracle Database and Database Adapter 47-51
47.7.1.2 Task 2: Creating an Oracle JDeveloper Application and Project...................... 47-52
47.7.1.3 Task 3: Creating a Cross Reference ... 47-52
47.7.1.4 Task 4: Creating a Database Adapter Service.. 47-53
47.7.1.5 Task 5: Creating EBS External Reference ... 47-55
47.7.1.6 Task 6: Creating Logger External Reference.. 47-57
47.7.1.7 Task 7: Creating Mediator Components .. 47-58
47.7.1.8 Task 8: Specifying Routing Rules for Mediator Component 47-59
47.7.1.9 Task 9: Specifying Routing Rules for Common Mediator................................. 47-63
47.7.1.10 Task 10: Configuring Oracle Application Server Connection........................... 47-68
47.7.1.11 Task 11: Deploying the Composite Application ... 47-68

48 Using Two-Layer Business Process Management (BPM)

48.1 Introduction to Two-Layer Business Process Management .. 48-1
48.2 Phase Activities .. 48-3
48.2.1 Creating a Phase Activity .. 48-3
48.2.2 How to Create a Phase Activity.. 48-3
48.2.3 What Happens When You Create a Phase Activity... 48-4
48.2.4 What Happens at Runtime When You Create a Phase Activity................................ 48-5
48.2.5 What You May Need to Know About Creating a Phase Activity 48-5
48.3 The Dynamic Routing Decision Table .. 48-5
48.3.1 How to Create the Routing Decision Table .. 48-6
48.3.2 What Happens When You Create the Routing Decision Table 48-7
48.4 Use Case: Two-Layer BPM ... 48-7
48.4.1 Designing the SOA Composite ... 48-7
48.4.2 Creating a Phase Activity .. 48-9

xxx

48.4.3 Creating and Editing the Dynamic Routing Decision Table 48-10
48.4.4 Adding Assign Activities to the BPEL Process Model .. 48-11
48.4.5 Deploying the Sample with JDeveloper .. 48-12
48.4.5.1 Creating an Application Deployment Profile.. 48-12
48.4.5.2 Creating an Application Server Connection.. 48-13
48.4.5.3 Deploying the Application.. 48-13

49 Testing SOA Composite Applications

49.1 Introduction to the Composite Test Framework... 49-1
49.1.1 Test Cases Overview .. 49-1
49.1.2 Test Suites Overview.. 49-1
49.1.3 Emulations Overview .. 49-2
49.1.4 Assertions Overview .. 49-2
49.2 Introduction to the Components of a Test Suite.. 49-2
49.2.1 Process Initiation... 49-3
49.2.2 Emulations ... 49-3
49.2.3 Assertions... 49-4
49.2.4 Message Files... 49-5
49.3 Creating Test Suites and Test Cases.. 49-5
49.3.1 How to Create Test Suites and Test Cases .. 49-5
49.4 Creating the Contents of Test Cases.. 49-8
49.4.1 How to Initiate Inbound Messages .. 49-8
49.4.2 How to Emulate Outbound Messages... 49-10
49.4.3 How to Emulate Callback Messages.. 49-13
49.4.4 How to Emulate Fault Messages .. 49-15
49.4.5 How to Create Assertions.. 49-16
49.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML

 Document .. 49-17
49.4.5.2 Creating Assertions on a Leaf Element .. 49-20
49.4.6 What You May Need to Know About Assertions.. 49-22
49.5 Deploying and Running a Test Suite .. 49-23

50 Managing Policies

50.1 Introduction to Policies ... 50-1
50.2 Attaching Policies to Binding Components and Service Components 50-2
50.2.1 How to Attach Policies to Binding Components and Service Components 50-2

51 Defining Composite Sensors

51.1 Introduction to Composite Sensors ... 51-1
51.1.1 Restrictions on Use of Composite Sensors .. 51-1
51.2 Adding Composite Sensors .. 51-2
51.2.1 How to Add Composite Sensors .. 51-2
51.2.2 Adding a Variable... 51-5
51.2.3 Adding an Expression.. 51-5
51.2.4 Adding a Property .. 51-6
51.3 Monitoring Composite Sensor Data During Runtime.. 51-6

xxxi

52 Using Service Data Objects and Enterprise JavaBeans

52.1 Introduction to SDO and Enterprise JavaBeans Binding ... 52-1
52.2 Designing an Enterprise JavaBeans Application... 52-2
52.2.1 How to Create SDO Objects Using the SDO Compiler... 52-2
52.2.2 How to Create a Session Bean and Import the SDO Objects...................................... 52-3
52.2.3 How to Create a Profile and an EAR File.. 52-3
52.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean 52-3
52.2.5 How to Use Web Service Annotations .. 52-5
52.2.6 How to Deploy the Enterprise JavaBeans EAR File .. 52-6
52.3 Creating an Enterprise JavaBeans Adapter Service in Oracle JDeveloper 52-6
52.3.1 Invoking SDO-based Enterprise JavaBeans from SOA Composite Applications ... 52-6
52.3.1.1 How to Invoke SDO-based Enterprise JavaBeans from SOA Composite

 Applications ... 52-6
52.3.2 Invoking SOA Composite Applications from Enterprise JavaBeans using SDO

 Parameters .. 52-8
52.3.2.1 How to Invoke SOA Composite Applications from Enterprise JavaBeans

using SDO Parameters .. 52-8
52.4 Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite 52-9
52.5 Specifying Enterprise JavaBeans Roles... 52-10
52.6 Configuring JNDI Access.. 52-10
52.6.1 How to Create a Foreign JNDI.. 52-10
52.6.2 How to Create a Custom CSF Map for JNDI Lookup ... 52-11

53 Processing Large Documents

53.1 Introduction to Processing Large Documents ... 53-1
53.2 Best Practices for Handling Large Documents .. 53-1
53.2.1 Setting Audit Levels from Oracle Enterprise Manager for Large Payload

 Processing ... 53-2
53.2.2 Using the Assign Activity in BPEL/Mediator.. 53-2
53.2.3 Using XSLT Transformations for Repeating Structures.. 53-2
53.2.4 Using Adapter Support for Streaming Large Payloads .. 53-2
53.2.5 Using Correct Settings for Large Payload Scenarios ... 53-3
53.2.6 Processing Large Documents in Oracle B2B... 53-3
53.2.6.1 MDSInstance Cache Size .. 53-3
53.2.6.2 Protocol Message Size... 53-3
53.2.6.3 Number of Threads ... 53-4
53.2.6.4 StuckThread Max Time... 53-4
53.2.6.5 Tablespace... 53-4
53.2.7 Setting the Default JTA Timeout in for Large Documents ... 53-5
53.2.8 Using Large Number of Activities in BPEL Processes (Without FlowN)................. 53-5
53.2.9 Using Large Number of Activities in BPEL Processes (With FlowN) 53-5
53.2.10 Using a Flow With Multiple Sequences .. 53-5
53.2.11 Using a Flow with One Sequence... 53-5
53.2.12 Using Flow with No Sequence.. 53-6
53.2.13 Large Numbers of Mediators in Composites ... 53-6
53.2.14 Using XSLT Transformations on Large Payloads (For BPEL and Mediator) 53-6

xxxii

53.3 Limitations on Concurrent Processing of Large Documents... 53-6
53.3.1 Opaque Schema for Processing Large Payloads .. 53-6
53.3.2 Streaming MTOM Attachments ... 53-6
53.3.3 Importing Large Data Sets in Oracle B2B.. 53-6

Part IX Appendices

A BPEL Process Activities and Services

A.1 Introduction to Activities and Components .. A-1
A.2 Introduction to BPEL Activities ... A-2
A.2.1 Tabs Common to Many Activities.. A-2
A.2.2 Assign Activity.. A-3
A.2.3 Bind Entity Activity.. A-4
A.2.4 Compensate Activity.. A-5
A.2.5 Create Entity .. A-6
A.2.6 Email Activity.. A-6
A.2.7 Empty Activity .. A-7
A.2.8 Flow Activity ... A-8
A.2.9 FlowN Activity.. A-9
A.2.10 IM Activity... A-10
A.2.11 Invoke Activity.. A-11
A.2.12 Java Embedding Activity... A-12
A.2.13 Phase Activity.. A-12
A.2.14 Pick Activity .. A-13
A.2.15 Receive Activity .. A-14
A.2.16 Receive Signal Activity .. A-15
A.2.17 Remove Entity Activity.. A-16
A.2.18 Reply Activity.. A-16
A.2.19 Scope Activity.. A-17
A.2.20 Sequence Activity ... A-18
A.2.21 Signal Activity ... A-19
A.2.22 SMS Activity .. A-19
A.2.23 Switch Activity .. A-20
A.2.24 Terminate Activity.. A-21
A.2.25 Throw Activity .. A-21
A.2.26 Transform Activity ... A-22
A.2.27 User Notification... A-23
A.2.28 Voice Activity .. A-24
A.2.29 Wait Activity ... A-24
A.2.30 While Activity ... A-25
A.3 Introduction to BPEL Services ... A-26
A.3.1 AQ Adapter ... A-27
A.3.2 Oracle B2B.. A-27
A.3.3 Oracle BAM Adapter.. A-27
A.3.4 Database Adapter ... A-27
A.3.5 File Adapter ... A-27
A.3.6 FTP Adapter .. A-27

xxxiii

A.3.7 JMS Adapter .. A-27
A.3.8 MQ Adapter... A-28
A.3.9 Oracle Applications .. A-28
A.3.10 Partner Link (Web Service/Adapter) .. A-28
A.3.11 Socket Adapter .. A-29
A.4 Publishing and Browsing the Oracle Service Registry ... A-29
A.4.1 How to Publish a Business Service .. A-29
A.4.2 How to Add a Binding Template ... A-30
A.4.3 How to Create a Connection to the Registry .. A-30
A.4.4 How to Configure a SOA project to Invoke a Service from the Registry A-30
A.4.5 How To Configure the Inquiry URL for Runtime ... A-31
A.5 Validating When Loading a Process Diagram... A-32

B XPath Extension Functions

B.1 SOA XPath Extension Functions.. B-1
B.1.1 Database Functions... B-1
B.1.1.1 lookup-table.. B-1
B.1.1.2 query-database... B-2
B.1.1.3 sequence-next-val .. B-2
B.1.2 Date Functions... B-3
B.1.2.1 add-dayTimeDuration-to-dateTime ... B-3
B.1.2.2 current-date .. B-3
B.1.2.3 current-dateTime ... B-4
B.1.2.4 current-time.. B-4
B.1.2.5 day-from-dateTime ... B-4
B.1.2.6 format-dateTime .. B-5
B.1.2.7 hours-from-dateTime.. B-5
B.1.2.8 implicit-timezone... B-5
B.1.2.9 minutes-from-dateTime.. B-6
B.1.2.10 month-from-dateTime .. B-6
B.1.2.11 seconds-from-dateTime .. B-6
B.1.2.12 subtract-dayTimeDuration-from-dateTime... B-6
B.1.2.13 timezone-from-dateTime.. B-7
B.1.2.14 year-from-dateTime .. B-7
B.1.3 Mathematical Functions... B-7
B.1.3.1 abs .. B-8
B.1.4 String Functions .. B-8
B.1.4.1 compare... B-8
B.1.4.2 compare-ignore-case ... B-9
B.1.4.3 create-delimited-string.. B-9
B.1.4.4 ends-with .. B-9
B.1.4.5 format-string .. B-10
B.1.4.6 get-content-as-string ... B-10
B.1.4.7 get-content-from-file-function ... B-10
B.1.4.8 get-localized-string.. B-11
B.1.4.9 index-within-string.. B-11
B.1.4.10 last-index-within-string .. B-12

xxxiv

B.1.4.11 left-trim ... B-12
B.1.4.12 lower-case ... B-13
B.1.4.13 matches.. B-13
B.1.4.14 right-trim... B-13
B.1.4.15 upper-case... B-14
B.2 BPEL XPath Extension Functions .. B-14
B.2.1 addQuotes.. B-14
B.2.2 appendToList... B-14
B.2.3 copyList .. B-15
B.2.4 countNodes.. B-16
B.2.5 doc... B-16
B.2.6 doStreamingTranslate .. B-16
B.2.7 doTranslateFromNative... B-17
B.2.8 doTranslateToNative.. B-17
B.2.9 doXSLTransform... B-18
B.2.10 doXSLTransformForDoc.. B-18
B.2.11 formatDate ... B-18
B.2.12 generateGUID ... B-19
B.2.13 getApplicationName .. B-19
B.2.14 getAttachmentContent... B-19
B.2.15 getComponentName .. B-20
B.2.16 getComponentInstanceID.. B-20
B.2.17 getCompositeName.. B-20
B.2.18 getCompositeInstanceID ... B-20
B.2.19 getCompositeURL .. B-21
B.2.20 getContentAsString .. B-21
B.2.21 getConversationId .. B-21
B.2.22 getCreator .. B-21
B.2.23 getCurrentDate.. B-22
B.2.24 getCurrentDateTime .. B-22
B.2.25 getCurrentTime... B-22
B.2.26 getDomainId.. B-22
B.2.27 getECID .. B-23
B.2.28 getElement ... B-23
B.2.29 getFaultAsString ... B-23
B.2.30 getFaultName.. B-24
B.2.31 getGroupIdsFromGroupAlias .. B-24
B.2.32 getInstanceId ... B-24
B.2.33 getNodeValue.. B-24
B.2.34 getNodes .. B-25
B.2.35 getOwnerDocument ... B-25
B.2.36 getParentComponentInstanceID .. B-25
B.2.37 getPreference ... B-25
B.2.38 getProcessId... B-26
B.2.39 getProcessOwnerId .. B-26
B.2.40 getProcessURL .. B-26
B.2.41 getProcessVersion... B-26

xxxv

B.2.42 getUserAliasId... B-27
B.2.43 getUserIdsFromGroupAlias.. B-27
B.2.44 setCompositeInstanceTitle .. B-27
B.2.45 instanceOf .. B-28
B.2.46 integer... B-28
B.2.47 parseEscapedXML .. B-28
B.2.48 parseXML... B-28
B.2.49 processXQuery .. B-29
B.2.50 processXSLT .. B-29
B.2.51 processXSLTAttachment ... B-29
B.2.52 processXSQL.. B-30
B.2.53 readBinaryFromFile.. B-30
B.2.54 readFile... B-30
B.2.55 writeBinaryToFile ... B-31
B.2.56 BPEL Extension Functions... B-31
B.2.56.1 getLinkStatus.. B-31
B.2.56.2 getVariableData ... B-32
B.2.56.3 getVariableProperty .. B-32
B.2.57 Utility Functions ... B-33
B.2.57.1 batchProcessActive.. B-33
B.2.57.2 batchProcessCompleted ... B-33
B.2.57.3 format .. B-33
B.2.57.4 genEmptyElem... B-34
B.2.57.5 getChildElement .. B-34
B.2.57.6 getMessage ... B-34
B.2.57.7 max-value-among-nodeset... B-35
B.2.57.8 min-value-among-nodeset ... B-35
B.2.57.9 square-root.. B-36
B.2.57.10 translateFromNative ... B-36
B.2.57.11 translateToNative .. B-36
B.2.57.12 translateFromNativeAttachment .. B-36
B.2.57.13 translateToNativeAttachment ... B-37
B.3 Mediator XPath Extension Functions.. B-37
B.3.1 getComponentInstanceID.. B-37
B.3.2 getComponentName .. B-37
B.3.3 getCompositeInstanceID ... B-38
B.3.4 getCompositeName.. B-38
B.3.5 getHeader... B-38
B.3.6 getECID .. B-39
B.3.7 getParentComponentInstanceID .. B-39
B.3.8 setCompositeInstanceTitle .. B-39
B.4 Advanced Functions.. B-40
B.4.1 create-nodeset-from-delimited-string.. B-40
B.4.2 generate-guid... B-40
B.4.3 lookupPopulatedColumns .. B-40
B.4.4 lookupValue .. B-41
B.4.5 lookupValue1M... B-41

xxxvi

B.4.6 lookupXRef .. B-42
B.4.7 lookupXRef1M .. B-42
B.4.8 lookup-xml... B-43
B.4.9 markForDelete... B-43
B.4.10 populateXRefRow... B-44
B.4.11 populateXRefRow1M... B-44
B.5 Workflow Service Functions .. B-44
B.5.1 clearTaskAssignees... B-45
B.5.2 createWordMLDocument.. B-45
B.5.3 getNotificationProperty ... B-45
B.5.4 getNumberOfTaskApprovals ... B-46
B.5.5 getPreviousTaskApprover .. B-46
B.5.6 getTaskAttachmentByIndex.. B-46
B.5.7 getTaskAttachmentByName ... B-47
B.5.8 getTaskAttachmentContents... B-47
B.5.9 getTaskAttachmentsCount.. B-47
B.5.10 getTaskResourceBundleString.. B-47
B.5.11 wfDynamicGroupAssign... B-48
B.5.12 wfDynamicUserAssign .. B-49
B.5.13 Identity Service Functions ... B-49
B.5.13.1 getDefaultRealmName ... B-49
B.5.13.2 getGroupProperty ... B-50
B.5.13.3 getManager... B-50
B.5.13.4 getReportees ... B-50
B.5.13.5 getSupportedRealmNames .. B-51
B.5.13.6 getUserProperty... B-51
B.5.13.7 getUserRoles... B-52
B.5.13.8 getUsersInGroup ... B-52
B.5.13.9 isUserInRole ... B-53
B.5.13.10 lookupGroup.. B-53
B.5.13.11 lookupUser ... B-53
B.6 Using the XPath Building Assistant .. B-54
B.6.1 XPath Building Assistant Description ... B-54
B.6.2 Starting the XPath Building Assistant ... B-54
B.6.3 Using the XPath Building Assistant in Oracle JDeveloper: Step-By-Step Example B-55
B.6.4 Using the XPath Building Assistant in the XSLT Mapper .. B-56
B.6.5 Function Parameter Tool Tips... B-58
B.6.6 Syntactic and Semantic Validation... B-58
B.6.7 Creating Expressions with Free Form Text and XPath Expressions B-58
B.7 Creating User-Defined XPath Extension Functions.. B-59
B.7.1 How to Implement User-Defined XPath Extension Functions B-62
B.7.1.1 How to Implement Functions for the XSLT Mapper ... B-62
B.7.1.2 How to Implement Functions for All Other Components B-62
B.7.2 How to Configure User-Defined XPath Extension Functions.................................... B-63
B.7.3 How to Deploy User-Defined Functions to Runtime.. B-65

xxxvii

C Deployment Descriptor Properties

C.1 Introduction to Deployment Descriptor Properties.. C-1
C.1.1 How to Define Deployment Descriptor Properties ... C-1
C.1.2 How to Get the Value of a Preference within a BPEL Process..................................... C-3
C.2 Deprecated 10.1.3 Properties .. C-3

D Understanding Sensor Public Views and the Sensor Actions XSD

D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File............................. D-1
D.2 Sensor Public Views... D-1
D.2.1 BPM Schema.. D-1
D.2.1.1 BPEL_PROCESS_INSTANCES.. D-1
D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES ... D-2
D.2.1.3 BPEL_FAULT_SENSOR_VALUES ... D-3
D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES.. D-4
D.3 Sensor Actions XSD File.. D-5

E Oracle BAM Web Services Operations

E.1 DataObjectOperations10131 ... E-1
E.1.1 Batch ... E-1
E.1.1.1 Request Message.. E-1
E.1.2 Delete .. E-2
E.1.2.1 Request Message.. E-2
E.1.3 Insert ... E-2
E.1.3.1 Request Message.. E-2
E.1.4 Update .. E-3
E.1.4.1 Request Message.. E-3
E.1.5 Upsert ... E-3
E.1.5.1 Request Message.. E-3
E.2 DataObjectOperationsByName.. E-4
E.2.1 Delete .. E-4
E.2.1.1 Request Message.. E-4
E.2.2 Get ... E-4
E.2.2.1 Request Message.. E-5
E.2.3 Insert ... E-5
E.2.3.1 Request Message.. E-5
E.2.4 Update .. E-5
E.2.4.1 Request Message.. E-5
E.2.5 Upsert ... E-6
E.2.5.1 Request Message.. E-6
E.3 DataObjectOperationsByID.. E-6
E.3.1 Batch ... E-7
E.3.1.1 Request Message.. E-7
E.3.2 Delete .. E-7
E.3.2.1 Request Message.. E-7
E.3.3 Insert ... E-8
E.3.3.1 Request Message.. E-8

xxxviii

E.3.4 Update .. E-8
E.3.4.1 Request Message.. E-8
E.3.5 Upsert ... E-9
E.3.5.1 Request Message.. E-9
E.4 DataObjectDefinition Operations .. E-9
E.4.1 Create.. E-9
E.4.1.1 Request Message.. E-9
E.4.1.2 Response Message ... E-12
E.4.2 Delete .. E-12
E.4.2.1 Request Message.. E-12
E.4.2.2 Response Message ... E-12
E.4.3 Get ... E-12
E.4.3.1 Request Message.. E-12
E.4.3.2 Response Message ... E-12
E.4.4 Update .. E-13
E.4.4.1 Request Message.. E-13
E.4.4.2 Response Message ... E-13
E.5 ManualRuleFire Operations ... E-13
E.5.1 FireRuleByName... E-13
E.5.1.1 Request Message.. E-14
E.5.1.2 Response Message ... E-14

F Oracle BAM Alert Rule Options

F.1 Events... F-1
F.1.1 In a specific amount of time .. F-1
F.1.2 At a specific time today.. F-1
F.1.3 On a certain day at a specific time.. F-1
F.1.4 Every interval between two times.. F-2
F.1.5 Every date interval starting on certain date at a specific time F-2
F.1.6 When a report changes .. F-2
F.1.7 When a data field changes in data object .. F-2
F.1.8 When a data field in a report meets specified conditions... F-3
F.1.9 When a data field in a data object meets specified conditions..................................... F-4
F.1.10 When this rule is launched.. F-5
F.2 Conditions... F-5
F.2.1 If it is between two times... F-5
F.2.2 If It is between two days .. F-5
F.2.3 If it is a particular day of the week... F-5
F.3 Actions... F-5
F.3.1 Send a report via email .. F-5
F.3.2 Send a message via email .. F-6
F.3.3 Send a report via email and escalate to another user after a specific amount of

 time .. F-6
F.3.4 Send a parameterized message... F-6
F.3.5 Launch a rule... F-10
F.3.6 Launch rule if an action fails ... F-10
F.3.7 Delete rows from a Data Object.. F-10

xxxix

F.3.8 Call a Web Service .. F-11
F.3.9 Run an Oracle Data Integrator Scenario.. F-11
F.4 Frequency Constraint .. F-12

G Oracle BAM ICommand Operations and File Formats

G.1 Summary of Individual Operations .. G-1
G.2 Detailed Operation Descriptions ... G-3
G.2.1 Clear.. G-3
G.2.2 Delete .. G-3
G.2.3 Export ... G-4
G.2.4 Import ... G-10
G.2.5 Rename... G-14
G.3 Format of Command File.. G-15
G.3.1 Inline Content.. G-15
G.3.2 Command IDs ... G-16
G.3.3 Continue On Error .. G-17
G.4 Format of Log File.. G-17
G.5 Sample Export File ... G-18
G.6 Regular Expressions .. G-18

H Normalized Message Properties

H.1 Oracle BPEL Process Manager Properties .. H-1
H.2 Oracle Web Services Addressing Properties.. H-2

I Oracle User Messaging Service Applications

I.1 Send Message to User Specified Channel ... I-1
I.1.1 Overview.. I-1
I.1.1.1 Provided Files .. I-2
I.1.2 Installing and Configuring SOA and User Messaging Service...................................... I-2
I.1.2.1 Updating Addresses in Your LDAP User Profile ... I-2
I.1.3 Building the Sample ... I-3
I.1.4 Creating a New Application Server Connection.. I-11
I.1.5 Deploying the Project ... I-13
I.1.6 Configuring User Messaging Preferences... I-14
I.1.7 Testing the Sample.. I-15
I.1.7.1 Verifying the Execution of Sending the Email .. I-16
I.2 Send Email with Attachments... I-16
I.2.1 Overview.. I-16
I.2.1.1 Provided Files .. I-17
I.2.2 Installing and Configuring SOA and User Messaging Service.................................... I-17
I.2.2.1 Updating Addresses in Your LDAP User Profile ... I-17
I.2.3 Running the Pre-Built Sample .. I-18
I.2.4 Testing the Sample.. I-20
I.2.4.1 Verifying the Execution .. I-20
I.2.5 Building the Sample ... I-20

xl

I.2.6 Creating a New Application Server Connection.. I-34

Index

Part
Preface

This manual describes how to use Oracle SOA Suite.

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This manual is intended for anyone who is interested in developing applications with
Oracle SOA Suite.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see the following Oracle resources:

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

To download Oracle BPEL Process Manager documentation, technical notes, or other
collateral, visit the Oracle BPEL Process Manager site at Oracle Technology Network
(OTN):

http://www.oracle.com/technology/bpel/

If you have a username and password for OTN, then you can go directly to the
documentation section of the OTN web site at

http://www.oracle.com/technology/documentation/

See the Business Process Execution Language for Web Services Specification, available at the
following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnbizspec/html/bpel1-1.asp

See the XML Path Language (XPath) Specification, available at the following URL:

http://www.w3.org/TR/1999/REC-xpath-19991116

See the Web Services Description Language (WSDL) 1.1 Specification, available at the
following URL:

http://www.w3.org/TR/wsdl

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

Part I
Introduction to Oracle SOA Suite

This part provides an introduction to Oracle SOA Suite and developing SOA
composite applications.

This part contains the following chapters:

■ Chapter 1, "Introduction to SOA Composite Applications"

■ Chapter 2, "Overview of SOA Component Editors"

■ Chapter 3, "Introduction to the SOA Sample Application"

■ Chapter 4, "Introduction to the Functionality of the SOA Composite Editor"

1

Introduction to SOA Composite Applications 1-1

1Introduction to SOA Composite Applications

An SOA composite application is an assembly of services, service components,
references, and wires designed and deployed together to meet a business need. This
chapter provides a high-level introduction to the various components that together
form an SOA composite application.

This chapter includes the following sections:

■ Section 1.1, "Introduction to Oracle SOA Suite"

■ Section 1.2, "Introduction to SOA Composite Applications"

■ Section 1.3, "Introduction to SCA Technologies"

■ Section 1.4, "Learning Oracle SOA Suite"

1.1 Introduction to Oracle SOA Suite

Changing markets, increasing competitive pressures and evolving customer needs are
placing greater pressure on IT to deliver greater flexibility and speed. Today every
organization is faced with the must predict change in a global business environment,
to rapidly respond to competitors, and to best exploit organizational assets for growth.
In response to these challenges, leading companies are adopting SOA to deliver on
these requirements by overcoming the complexity of their application and IT
environments.

SOA provides an enterprise architecture that supports building connected enterprise
applications. SOA facilitates the development of enterprise applications as modular
business web services that can be easily integrated and reused, creating a truly flexible,
adaptable IT infrastructure.

Oracle SOA Suite provides a complete set of service infrastructure components for
designing, deploying, and managing composite applications. Oracle SOA Suite
enables services to be created, managed, and orchestrated into composite applications
and business processes. Composites enable you to easily assemble multiple technology
components into one SOA composite application. Oracle SOA Suite plugs into
heterogeneous IT infrastructures and enables enterprises to incrementally adopt SOA.

The components of the suite benefit from common capabilities including a single
deployment and management model and tooling, end-to-end security, and unified
metadata management. Oracle SOA Suite is unique in that it provides the following
set of integrated capabilities:

■ Messaging

■ Service discovery

■ Orchestration

Introduction to Oracle SOA Suite

1-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Activity monitoring

■ Web services management and security

■ Business rules

■ Events framework

Oracle SOA Suite puts a strong emphasis on standards and interoperability. Among
the standards it leverages are:

■ Service Component Architecture (SCA) assembly model

Provides the service details and their interdependencies to form composite
applications. SCA enables you to represent business logic as reusable service
components that can be easily integrated into any SCA-compliant application. The
resulting application is known as an SOA composite application. The specification
for the SCA standard is maintained by the Organization for the Advancement of
Structured Information Standards (OASIS) through the Open Composite Services
Architecture (CSA) Member Section:

http://www.oasis-opencsa.org

■ Service Data Objects (SDO)

Specifies a standard data method and can modify business data regardless of how
it is physically accessed. Knowledge is not required about how to access a
particular back-end data source to use SDO in an SOA composite application.
Consequently, you can use static or dynamic programming styles and obtain
connected and disconnected access.

■ Business Process Execution Language (BPEL)

Provides enterprises with an industry standard for business process orchestration
and execution. Using BPEL, you design a business process that integrates a series
of discrete services into an end-to-end process flow. This integration reduces
process cost and complexity.

■ XSL Transformations (XSLT)

Processes XML documents and transforms document data from one XML schema
to another.

■ Java Connector Architecture (JCA)

Provides a Java technology solution to the problem of connectivity between the
many application servers in Enterprise Information Systems (EIS).

■ Java Messaging Service (JMS)

Provides a messaging standard that allows application components based on the
Java 2 Platform, Enterprise Edition (Java EE) to access business logic distributed
among heterogeneous systems.

■ Web Services Description Language (WSDL) file

Provides the entry points into an SOA composite application. The WSDL file
provides a standard contract language and is central for understanding the
capabilities of a service.

■ Simple Object Access Protocol (SOAP)

Provides the default network protocol for message delivery.

For more information about standards, see the following:

■ Section 1.3, "Introduction to SCA Technologies"

Introduction to SOA Composite Applications

Introduction to SOA Composite Applications 1-3

■ Section 2.1, "Introduction to the SOA Composite Editor" for additional details
about these key building blocks

■ The following URL for SCA and SDO specifications and related material:

http://www.osoa.org

1.2 Introduction to SOA Composite Applications
A composite is an assembly of services, service components, wires, and references
designed and deployed together in a single application. The composite processes the
information described in the messages.

Figure 1–1 describes the operability of an SOA composite application using SCA
technology. In this example, an external application (.NET payment calculator)
initiates contact with the SOA composite application.

For more information about descriptions of the tasks that services, references, service
components, and wires perform in an application, see Section 1.3, "Introduction to
SCA Technologies."

Figure 1–1 Introduction to an SOA Composite Application

The .NET payment calculator is an external application that sends a SOAP message to
the SOA application to initiate contact. The Service Infrastructure picks up the SOAP
message from the binding component and determines the intended component target.
The BPEL service engine receives the message from the Service Infrastructure for
processing by the BPEL Loan Process application and posts the message back to the
Service Infrastructure after completing the processing.

Table 1–1 describes the operability of the SOA composite application shown in
Figure 1–1.

BPEL
Process
Manager

Business
Rules

Oracle
Mediator

Human
Task

BAM B2B JCA
Adapters

Loan
Process

APR
Rule

Manager
Review

Task

EBS
Customer

View

Service Archive: Composite (deployment unit)

ADF BCHTTP
SOAP

.NET
Payment

Calculator

UDDI

MDS

Sends a SOAP message
to the SOA application

Service Engines
(Containers that host the
component business logic)

Service Infrastructure
(Picks up SOAP message
from binding component
and determines the
intended component
target)

Binding Components
(Connect SOA applications
to the outside world)

Introduction to SCA Technologies

1-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1.3 Introduction to SCA Technologies
SCA is the executable model for the assembly of service components into composite
applications. SCA provides a programming model for the following:

■ Creating service components written with a wide range of technologies, including
programming languages such as Java, BPEL, C++, and declarative languages such
as XSLT. The use of specific programming languages and technologies (including
web services) is not required with SCA.

■ Assembling the service components into an SOA composite application. In the
SCA environment, service components are the building blocks of applications.

SCA lets you describe the details of a service and how services and service
components interact by providing a model for assembling distributed groups of
service components into an application. Composites are used to group service
components and wires are used to connect service components. SCA aims to remove
middleware concerns from the programming code by applying infrastructure concerns
declaratively to compositions, including security and transactions.

The key benefits of SCA include the following:

■ Loose coupling

Service components integrate with other service components without needing to
know how other service components are implemented.

■ Flexibility

Service components can easily be replaced by other service components.

■ Services invocation

Services can be invoked either synchronously or asynchronously.

■ Productivity

Service components are easily integrated to form an SOA composite application.

■ Easy Maintenance and Debugging

Service components can be easily maintained and debugged when encountered an
issue.

Figure 1–2 provides an example of a composite that includes an inbound service
binding component, a BPEL process service component (named Account), a business
rules service component (named AccountRule), and two outbound reference binding
components. The details of this composite are stored in the composite.xml file.

Introduction to SCA Technologies

Introduction to SOA Composite Applications 1-5

Figure 1–2 Composite

Table 1–1 describes the operability of the SOA composite application shown in
Figure 1–1. References are made to sections that provide additional details.

Service Component
AccountRule

Business
Rules

Service
Component

Service Component
Account

BPEL
binding.rmibinding.ws

binding.ws

Reference

Service

WebApp

Wire

Wire

Service
Component

Composite

Composite BigBank

Introduction to SCA Technologies

1-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1.3.1 Binding Components
Binding components establish the connection between a SOA composite and the
external world. There are two types of binding components:

■ Services

Provide the outside world with an entry point to the SOA composite application.
The WSDL file of the service advertises its capabilities to external applications.
These capabilities are used for contacting the SOA composite application
components. The binding connectivity of the service describes the protocols that
can communicate with the service, for example, SOAP/HTTP or a JCA adapter.

■ References

Table 1–1 Introduction to an SOA Composite Application Using SCA Technologies

Part Description Example of Use in Figure 1–1 See Section

Binding
Components

Establishes the connectivity
between a SOA composite
and the external world. There
are two types:

■ Service binding
components provide an
entry point to the SOA
composite application.

■ Reference binding
components enable
messages to be sent from
the SOA composite
application to external
services.

The SOAP binding component service:

■ Advertises its capabilities in the WSDL
file.

■ Receives the SOAP message from the
.NET application.

■ Sends the message through the policy
infrastructure for security checking.

■ Translates the message to a normalized
message (an internal representation of the
service’s WSDL contract in XML format).

■ Posts the message to the Service
Infrastructure.

An example of a binding component reference
in Figure 1–1 is the Loan Process application.

Section 1.3.1,
"Binding
Components"

Service
Infrastructure

Provides internal message
transport

The Service Infrastructure:

■ Receives the message from the SOAP
binding component service.

■ Posts the message for processing to the
BPEL process service engine first and the
human task service engine second.

Section 1.3.2,
"Service
Infrastructure"

Service Engines
(containers
hosting service
components)

Host the business logic or
processing rules of the
service components. Each
service component has its
own service engine.

The BPEL service engine:

■ Receives the message from the Service
Infrastructure for processing by the BPEL
Loan Process application.

■ Posts the message to the Service
Infrastructure after completing the
processing.

Section 1.3.3,
"Service Engines
and Service
Components"

UDDI and MDS The MDS (Metadata Service)
repository stores descriptions
of available services. The
UDDI advertises these
services, and enables
discovery as well as dynamic
binding at runtime.

The SOAP service used in this composite
application is stored in the MDS and can also
be published to UDDI.

Oracle Fusion
Middleware
Getting Started for
Oracle SOA Suite

SOA Archive:
Composite

(deployment
unit)

The deployment unit that
describes the composite
application.

The SOA archive (SAR) of the composite
application is deployed to the Service
Infrastructure.

Section 1.3.4,
"Deployed
Service
Archives"

Introduction to SCA Technologies

Introduction to SOA Composite Applications 1-7

Enable messages to be sent from the SOA composite application to external
services in the outside world.

Table 1–2 lists and describes the web services provided by Oracle SOA Suite.

1.3.2 Service Infrastructure
The Service Infrastructure provides the internal message routing infrastructure
capabilities for connecting components and enabling data flow:

■ Receives messages from the service providers or external partners through SOAP
services or adapters

■ Sends the message to the appropriate service engine

■ Receives the message back from the service engine and sends it to any additional
service engines in the composite or to a reference binding component based on the
wiring

1.3.3 Service Engines and Service Components
Service components are the building blocks that you use to construct an SOA
composite application. Service engines are containers that host the business logic or
processing rules of these service components. Service engines process the message
information received from the Service Infrastructure.

The following service components are available. There is a corresponding service
engine of the same name for each service component. All service engines can interact
together in a single composite.

Table 1–2 Web Services Provided by Oracle SOA Suite

Web Services Description

SOAP over HTTP For connecting to standards-based services using SOAP over
HTTP.

JCA Adapters For integrating services and references with technologies (for
example, databases, file systems, FTP servers, messaging: JMS,
IBM WebSphere MQ, and so on) and applications (Oracle
E-Business Suite, PeopleSoft, and so on). This includes AQ
Adapter, Database Adapter, File Adapter, FTP Adapter, JMS
Adapter, MQ Adapter, and Socket Adapter.

B2B binding component For browsing B2B metadata in the MDS repository and selecting
document definitions.

ADF-BC Service For connecting Oracle Application Development Framework
(ADF) applications using SDO with the SOA platform.

Oracle Applications For integrating Oracle Application Adapter with Oracle
Applications.

BAM Adapter For integrating Java EE applications with Oracle BAM Server to
send data and also used as a reference binding component in an
SOA composite application.

EJB Service For integrating SDO parameters with Enterprise JavaBeans.

Note: Business events provide an alternative to using the direct
service invocation of the WSDL file contract. Business events are
messages sent as the result of an occurrence or situation. When a
business event is published, other applications can subscribe to it.

Learning Oracle SOA Suite

1-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ BPEL process

For process orchestration and storage of synchronous or asynchronous process.
You design a business process that integrates a series of business activities and
services into an end-to-end process flow.

■ Business rules

For designing a business decision based on rules.

■ Human task

For modeling a workflow that describes the tasks for users or groups to perform as
part of an end-to-end business process flow.

■ Mediator

For routing events (messages) between different components.

1.3.4 Deployed Service Archives
The SAR is a SOA archive deployment unit. The SAR file is deployed to the Service
Infrastructure. The SAR packages service components such as BPEL processes,
business rules, human tasks, and mediator routing services into a single application.
The SAR file is analogous to the BPEL suitcase archive of previous releases, but at the
higher composite level and with any additional service components that your
application includes (for example, human tasks, business rules, and mediator routing
services).

1.3.5 Wires
Wires enable you to graphically connect the following components in a single SOA
composite application for message communication:

■ Services to service components

■ Service components to other service components

■ Service components to references

1.4 Learning Oracle SOA Suite
In addition to this developers guide, Oracle also offers the following resources to help
you learn how you can best use Oracle SOA Suite in your applications:

■ Getting Started and Tutorials: The Oracle Fusion Middleware Getting Started with
Oracle SOA Suite guide introduces you to Oracle SOA Suite, its components, and
provides you with a high-level understanding of what you can accomplish with
the suite. The Oracle Fusion Middleware Tutorial for Running and Building an
Application with Oracle SOA Suite tutorial describe the step-by-step instructions
for running an application developed with Oracle SOA Suite and how to build the
SOA elements of the Fusion Order Demo application respectively. Also, you could
refer to the Oracle SOA Suite section of the Oracle Fusion Middleware 11g Release
1 documentation library for additional documentation.

■ Cue Cards in Oracle JDeveloper: Oracle JDeveloper cue cards provide step-by-step
support for the application development process using Oracle SOA Suite. They are
designed to be used either with the included examples and a sample schema, or
with your own data. Cue cards also include topics that provide more detailed
background information, viewlets that demonstrate how to complete the steps in
the card. Cue cards provide a fast, easy way to become familiar with the basic

Learning Oracle SOA Suite

Introduction to SOA Composite Applications 1-9

features of Oracle SOA Suite, and to work through a simple end-to-end task. In
Oracle JDeveloper, click Help, Cue Cards to access the cue cards.

■ http://www.oracle.com/technology/sample_code/products/soa: The
SOA OTN provides access to various use case samples for Oracle SOA Suite and
its components.

Learning Oracle SOA Suite

1-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2

Overview of SOA Component Editors 2-1

2Overview of SOA Component Editors

This chapter provides an overview of all the component editors and designers, which
are used to develop an SOA composite application.

This chapter includes the following sections:

■ Section 2.1, "Introduction to the SOA Composite Editor"

■ Section 2.2, "Introduction to the Oracle BPEL Designer"

■ Section 2.3, "Introduction to the Oracle Mediator Editor"

■ Section 2.4, "Introduction to the Human Task Editor"

■ Section 2.5, "Introduction to the Business Rules Designer"

■ Section 2.6, "Introduction to Oracle Enterprise Manager"

2.1 Introduction to the SOA Composite Editor
The SOA Composite Editor enables you to create, edit, and deploy services, and also to
assemble them in a composite application, all from a single location. These
components are integrated together into one application and communicate with the
outside world through binding components such as web services and JCA adapters.

The SOA Composite Editor enables you to use either of two approaches for designing
SOA composite applications:

■ The top-down approach of building a composite application puts interfaces first
and implementation next. For example, you first add BPEL processes, human
tasks, business rules, and mediator routing services components to an application,
and later define the specific content of these service components.

■ The bottom-up approach takes existing implementations of service components
and wraps them with web service interfaces for assembly into a composite
application. For example, you first create and define the specific content of BPEL
processes, human tasks, business rules, and mediator routing services
components, and later create an SOA composite application to which you add
these service components.

The SOA Composite Editor appears as shown in Figure 2–1.

Introduction to the SOA Composite Editor

2-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 2–1 SOA Composite Editor

The main sections of the SOA Composite Editor are described in the following list:

2.1.1 Application Navigator
Displays the key files for the specific service components included in your SOA
project:

■ A composite.xml file that is automatically created when you create a SOA
project. This file describes the entire composite assembly of services, service
components, references, and wires.

■ The business rules service component file (rules_name.decs). Additional
business rules files display under the Oracle > rules subfolder (rules_
name.rules).

■ The mediator service component file (mediator_name.mplan).

■ The BPEL process service component files (process_name.bpel and process_
name.wsdl).

■ The human task service component files (task_name.task).

■ The componentType file that describes the services and references for each
service component. This file ensures that the wiring you create between
components works.

■ Additional subfolders for class files, XSDs (schemas), and XSLs (transformations).

You can drag and drop components and service adapters from the Components Palette
window to the Designer window. When you drop a service component into the
Designer window, it starts a property editor for configuring that service component.
For example, when you drop a Mediator component into the Designer window, this
also opens the Mediator editor window that enables configure the Mediator.

Introduction to the SOA Composite Editor

Overview of SOA Component Editors 2-3

To edit the configuration of an existing component in the Designer window,
double-click the component to re-open the editor.

2.1.2 Designer
You drag service components, services, and references into the composite in the
designer. When you drag and drop a service component into the Designer window, a
corresponding property editor is invoked for performing configuration tasks related to
that service component. For example, when you drag and drop the Mediator
component into Designer, then the Mediator Editor window is displayed that enables
you to configure the Mediator component.

For all subsequent editing sessions, you double-click these service components to
invoke their editors.

2.1.3 Left Swim Lane (Exposed Services)
The left swim lane is for services providing an entry point to the SOA composite
application, such as a web service or JCA adapters.

2.1.4 Right Swim Lane (External References)
The right swim lane is for references that send messages to external services in the
outside world, such as web services and JCA adapters.

2.1.5 Component Palette
Contains the various resources that you can use in a SOA composite. It contains the
following service components and adapters:

■ Service components

Displays the BPEL Process, business rule, human task, and mediator service that
can be dragged and dropped into the designer.

■ Service adapters

Displays the JCA adapter (AQ, file, FTP, Database, JMS, MQ, Oracle Applications,
Oracle BAM, and EJB Service), B2B binding component, SDO binding component,
and web service binding component that can be dragged into the left or right
swim lanes.

If the Resource Catalog does not display, select Component Palette from the View
main menu.

2.1.6 Resource Palette
Provides a single dialog from which you can browse both local and remote resources.
For example, you can access.

■ Shared local application metadata such as schemas, WSDLs, event definitions,
business rules, and so on.

■ WSIL browser functionality that uses remote resources that can be accessed
through an HTTP connection, file URL or Application Server connection.

■ Remote resources that are registered in a UDDI (Universal Description, Discover
and Integration) registry.

Introduction to the Oracle BPEL Designer

2-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

If the Resource Catalog does not display, then select Resource Palette from the View
main menu.

You select these resources for the SOA composite application through the SOA
Resource Browser dialog. This dialog is accessible through a variety of methods. For
example, when you select the WSDL file to use with a service binding component or a
mediator service component or select the schema file to use in a BPEL process, the
SOA Resource Browser dialog appears. Click Resource Palette at the top of this dialog
to access available resources.

2.1.7 Log Window
Displays messages about application compilation, validation, and deployment.

2.1.8 Property Inspector
Displays properties for the selected service component, service, or reference.

If the Property Inspector does not display, select Property Inspector from the View
main menu.

For more information about the SOA Composite Editor, see Chapter 4, "Introduction to
the Functionality of the SOA Composite Editor" and Oracle Fusion Middleware Getting
Started with Oracle SOA Suite.

2.2 Introduction to the Oracle BPEL Designer
You can create a BPEL process service component in the SOA composite application of
Oracle JDeveloper and then design it by using the BPEL Designer, which is displayed,
when you double-click a BPEL process in the SOA Composite Editor. Figure 2–2 shows
the BPEL Designer along with Application Navigator, Structure, Component Palette,
and Messages windows.

Introduction to the Oracle BPEL Designer

Overview of SOA Component Editors 2-5

Figure 2–2 Oracle BPEL Designer

Each section of this view enables you to perform specific design and deployment
tasks. The main sections of the BPEL Designer are described in the following list:

2.2.1 Application Navigator
The Application Navigator displays the process files. Figure 2–3 shows the files that
appear under the SOA Content folder when you first create a SOA project in Oracle
JDeveloper (in this example, named MySOAProject inside an application named
MySOAApplication, SayHello is the name of the BPEL process). An application can
contain one or more projects. Each project can only contain one composite. But each
composite can have multiple components of either the same type or different types
(BPEL process, Oracle Mediator, human workflow, and business rules).

Figure 2–3 Application Navigator

Table 2–1 describes these initial process files.

Introduction to the Oracle BPEL Designer

2-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

As you design the BPEL process service component, additional files, folders, and
elements can appear in the Application Navigator.

2.2.2 Design Window
The Design window provides a visual view of the BPEL process service component
that you design. This view displays when you perform one of the following actions:

■ Double-click the .bpel file name in the Application Navigator.

■ Double-click the BPEL process component in the SOA Composite Editor.

■ Click the Design tab at the bottom of the window with the .bpel file selected.

Figure 2–4 shows the activities automatically created with an asynchronous BPEL
process service component. You add to the BPEL process service component by
dragging and dropping activities, creating variables, creating partner links, and so on.

Table 2–1 Initial Process Files

File Description

composite.xml The file that describes the entire SOA composite.

For more information about this file, see Section 2.1, "Introduction to
the SOA Composite Editor"

SayHello.bpel The source file, which, depending upon the process type you selected,
initially contains a minimal set of activities (if you selected to create an
asynchronous process, then receive and invoke activities appear). You
add syntax to this file when you drag activities, create variables, create
partner links, and so on.

SayHello.component
Type

The file that describes the services and references for each service
component.

SayHello.wsdl The Web Services Description Language (WSDL) client interface, which
defines the input and output messages for this BPEL process flow, the
supported client interface and operations, and other features. This
functionality enables the BPEL process flow to be called as a service.

Note: If you want to learn more about the Application Navigator,
place the cursor in this section and press F1 to display online Help.

Introduction to the Oracle BPEL Designer

Overview of SOA Component Editors 2-7

Figure 2–4 Design (After Creation of an Asynchronous BPEL Process Service
Component)

2.2.3 Source Window
Click Source at the bottom to view the syntax inside the BPEL process service
component files. As you drag activities and partner links, and perform other tasks, the
Source view and Design view stay synchronized. Changes in one are reflected in the
other immediately.

For example, Figure 2–5 shows the property sheet as it is being edited.

Figure 2–5 WriteFile Partner Link Icon and Property Sheet

Click Source at the bottom of the window. Figure 2–6 shows part of the Source of a
.bpel file. Details about the WriteFile partner link you created appear in the file.

Introduction to the Oracle BPEL Designer

2-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 2–6 Source View of a .bpel File

For more information about the types of syntax that appear in BPEL process service
component files, see Section II, "Using the BPEL Process Service Component."

2.2.4 History Window
Click History at the bottom to perform such tasks as viewing the revision history of a
file and viewing read-only and editable versions of a file side-by-side. Figure 2–7
shows the History view for a BPEL file.

Figure 2–7 History View

Introduction to the Oracle BPEL Designer

Overview of SOA Component Editors 2-9

2.2.5 Component Palette
Activities are the building blocks of the BPEL process service component. The BPEL
Activities selection of the Component Palette displays a set of activities that you drag
into the Design window of the BPEL process service component. The Component
Palette is context-aware and only displays those pages relevant to the state of the
Design window. BPEL Activities or BPEL Services are nearly always visible.
However, if you are designing a transformation in a transform activity, the
Component Palette only displays selections relevant to that activity, such as String
Functions, Mathematical Functions, and Node-set Functions.

Figure 2–8 shows the BPEL Activities selection of the Component Palette. This list
enables you to select activities to drag into your BPEL process service component.

Figure 2–8 Component Palette - BPEL Activities

Figure 2–9 shows the BPEL Services selection of the Component Palette. This list
enables you to drag adapters, partner links, or decision services into your BPEL
process service component.

Note: If you want to learn more about the History view, place the
cursor in this section and press F1 to display online Help.

Introduction to the Oracle BPEL Designer

2-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 2–9 Component Palette - Services

2.2.6 Property Inspector
The Property Inspector enables you to view details about an activity. Single-click an
activity in the Design window. For example, single-clicking the replyOutput receive
activity displays the information shown in Figure 2–10.

Figure 2–10 Property Inspector

2.2.7 Structure Window
The Structure window offers a structural view of the data in the BPEL process service
component currently selected in the Design window. You can perform a variety of
tasks from this section, including:

■ Importing schemas

■ Defining message types

■ Managing (creating, editing, and deleting) elements such as variables, aliases,
correlation sets, partner links, and sensors

■ Creating activities in the BPEL process flow sequence using the Structure window

Figure 2–11 shows the Structure window.

Note: If you want to learn more about the Component Palette, place
the cursor in this section and press F1 to display online Help.

Introduction to the Oracle Mediator Editor

Overview of SOA Component Editors 2-11

Figure 2–11 Structure Window (Expanded)

2.2.8 Log Window
The Log window displays messages about the status of validation and compilation. If
deployment is unsuccessful, messages appear that describe the type and location of
the error.

For more information about BPEL, refer to Part II, "Using the BPEL Process Service
Component".

2.3 Introduction to the Oracle Mediator Editor
You can create a Mediator in the SOA composite application of Oracle JDeveloper and
then design it by using the Mediator Editor, which is displayed when you double-click
a Mediator in SOA Composite Editor.

Figure 2–12 shows the Mediator Editor along with Application Navigator, Structure,
and Messages windows.

Notes:

■ If you want to learn more about the Structure window, place the
cursor in this section and press F1 to display online Help.

■ Do not import two schema files with the same name into a BPEL
process service component. Ensure that the files have unique
names.

Note: If you want to learn more about the Log window, place the
cursor in this section and press F1 to display online Help.

Introduction to the Oracle Mediator Editor

2-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 2–12 Mediator Editor Window

Each section in the Mediator Editor window enables you to perform specific design
and deployment tasks. The main sections of the Mediator Editor are described in the
following list:

2.3.1 Application Navigator
The Application Navigator shown in the upper left part of Figure 2–12 displays the
Mediator files. Figure 2–13 shows the files that appear under the SOA Content folder
when you create a Mediator in a SOA Composite application.

Figure 2–13 Mediator Files in Application Navigator

Introduction to the Oracle Mediator Editor

Overview of SOA Component Editors 2-13

As shown in Figure 2–13, a SOA Composite application consists of the following
Mediator files:

■ Composite.xml: The file that describes the entire SOA composite application.

■ .componentType: The.componentType file describes the services and
references for a service component.

■ .mplan: The.mplan file contains Mediator metadata.

■ .wsdl: A Web Service Description File (WSDL) file specifies how other services call
a Mediator. A WSDL file defines the input and output messages and operations of
a Mediator.

2.3.2 Mediator Editor
The Mediator Editor provides a visual view of the Mediator that you have created.
This view is displayed when you perform one of the following actions:

■ Double-click a Mediator in the SOA Composite Editor.

■ Double-click the.mplan file name in the Application Navigator.

2.3.3 Source View
The Source View enables you to view the source code of a Mediator. Click Source at
the bottom of the Design window, to view to source code. The code in the source view
is immediately updated to reflect the changes in a Mediator.

The following example shows a sample Mediator source code:

<?xml version = '1.0' encoding = 'UTF-8'?>
<!--Generated by Oracle SCA Modeler version 1.0 at [4/16/07 10:05 PM].-->
<Mediator name="CustomerDataRouter"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/sca/1.0/mediator"/>

2.3.4 History Window
The History window enables you to perform tasks as viewing the revision history of a
file and viewing read-only and editable versions of a file side-by-side. Click History at
the bottom of the Design window, to open the History window. Figure 2–14 shows the
History view for a Mediator file.

Introduction to the Human Task Editor

2-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 2–14 History Window

2.3.5 Property Inspector
The Property Inspector enables you to view details about Mediator properties.

2.3.6 Structure Window
The Structure Window provides a structural view of the data of a Mediator.

2.3.7 Log Window
The Log Window displays messages about the status of validation and compilation.

For more information about Mediator, refer to Part III, "Using the Oracle Mediator
Service Component".

2.4 Introduction to the Human Task Editor
You can create a human task service component in the SOA composite application of
Oracle JDeveloper and then design it by using the Human Task Editor, which is
displayed when you double-click a human task in the SOA Composite Editor.

The Human Task Editor consists of the following main sections shown in Figure 2–15.
These sections enable you to design the metadata of a human task.

Introduction to the Human Task Editor

Overview of SOA Component Editors 2-15

Figure 2–15 Human Task Editor

The main sections of the Human Task Editor are described in the following list:

2.4.1 Task Title
This section enables you to specify details such as the task title, description, task
outcomes, task category, task priority, and task owner.

2.4.2 Parameters
This section enables you to define the structure (message elements) of the task payload
(the data in the task) defined in the XSD file. Figure 2–16 describes the Parameters
section of the Human Task Editor.

Figure 2–16 Human Task Editor — Parameters Section

2.4.3 Assignment and Routing Policy
This section enables you to assign participants to the task and create a policy for
routing the task through the workflow.

Figure 2–17 shows the Assignment and Routing Policy section of the Human Task
Editor.

Introduction to the Human Task Editor

2-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 2–17 Human Task Editor — Assignment and Routing Policy Section

2.4.4 Expiration and Escalation Policy
This section enables you to specify the expiration duration of a task.

Figure 2–18 shows the Expiration and Escalation Policy section of the Human Task
Editor.

Figure 2–18 Human Task Editor — Expiration and Escalation Policy Section

2.4.5 Notification Settings
This section enables you to create and send notifications when a user is assigned a task
or informed that the status of the task has changed.

Figure 2–19 shows the Notification Settings section of the Human Task Editor (when
fully expanded).

Introduction to the Human Task Editor

Overview of SOA Component Editors 2-17

Figure 2–19 Human Task Editor — Notification Settings Section

2.4.6 Advanced Settings
This section enables you to specify advanced design features for the Human Task
Editor.

Figure 2–20 shows the advanced settings section of the Human Task Editor.

Figure 2–20 Human Task Editor — Advanced Settings Section

2.4.7 Annotations
This section enables you to label different attributes of the task definition. Annotations
are used with Oracle Business Process Analysis. Annotations are used to label different
attributes of the task definition.

For more information on using the main sections of the Human Task Editor to create
workflow tasks, see Chapter 25, "Designing Human Tasks."

Introduction to the Business Rules Designer

2-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2.5 Introduction to the Business Rules Designer
You can create a business rules service component in the SOA composite application of
Oracle JDeveloper and then design it by using the Business Rules Designer, which is
displayed when you double-click a business rule in the SOA Composite Editor.

The Business Rules Designer consists of the following main sections shown in
Figure 2–21. These sections enable you to work with business rules in Oracle
JDeveloper.

Figure 2–21 Rules Designer in Oracle JDeveloper

The main sections of the Business Rules Designer are described in the following list:

2.5.1 Application Navigator
 The Application Navigator displays the files in the project. Each project can only
contain one composite. But each composite can have multiple components of either the
same type or different types (Business Rules, BPEL process, Oracle Mediator, and
human workflow).

As you design business rules, additional files, folders, and elements can appear in the
Application Navigator.

2.5.2 Rules Designer Window
The Rules Designer window provides a visual view of the selected dictionary
component. You use the Rules Designer navigation tabs to select different parts of the
dictionary that you want to work with. The rules designer window displays when you
perform one of the following actions:

■ In a composite, double-click a Business Rule component.

■ Double-click the Business Rule component in the SOA Composite Editor.

■ In a BPEL process, double click a business rule.

Introduction to the Business Rules Designer

Overview of SOA Component Editors 2-19

■ In the application navigator, double-click a business rules dictionary file (a file
with the .rules extension)

■ Click the Design tab with a .rules file selected.

Table 2–2 describes where you can find information about working with a dictionary
with Rules Designer.

For more information about the Rules Designer navigation areas and its descriptions,
see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

2.5.3 Structure Window
The Structure window offers a structural view of the data in the Business Rule
dictionary currently selected in the Rules Designer window. You can perform a
variety of tasks from this section, by selecting an element and right-clicking on the
element, including:

■ Managing (creating, editing, refreshing, and deleting) elements such as facts,
functions, globals, bucketsets, dictionary links, and decision functions

■ Accessing rulesets, rules, and Decision Tables

Figure 2–22 shows the Structure window.

Figure 2–22 Structure Window with Rules Designer Dictionary

Table 2–2 Rules Designer Navigation Areas Descriptions

Rules Designer
Navigation Tab Description

Facts Facts are the objects that rules reason on.

Functions A function, in Oracle Business Rules, refers to the standard
mathematical functions.

Globals A global, in Oracle Business Rules, is similar to a public static
variable in Java.

Bucketsets Bucketsets define the data types of fact properties.

Links Links are used to link to a dictionary in the same application or in
another application.

Decision Functions A Decision Function is a function that is configured declaratively,
without using RL Language programming.

Rulesets with Rules and
Decision Tables

A ruleset provides a unit of execution for rules and for Decision
Tables. A Decision Table provides a mechanism for describing data
processing tasks.

Introduction to Oracle Enterprise Manager

2-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2.5.4 Business Rule Validation Log Window
Rules Designer displays the status of dictionary validation in the business rule
validation log, as shown in Figure 2–23.

When a dictionary is invalid, Rules Designer produces a list of warning messages and
lists the associated dictionary objects that you can use to locate the dictionary object
and to correct the problem. You can safely ignore the validation warnings that you see
when you create rules using Rules Designer. The validation warnings are removed as
you create the rules, but are shown during the intermediate steps. To test or deploy
rules, the associated dictionary must not display warnings.

For more information on business rules validation, see Oracle Fusion Middleware User's
Guide for Oracle Business Rules.

Figure 2–23 Rules Designer Business Rule Validation Log

2.6 Introduction to Oracle Enterprise Manager
You can configure, monitor, and manage your SOA composite application during
runtime from Oracle Enterprise Manager Fusion Middleware Control Console.

Figure 2–24 shows the Oracle Enterprise Manager Fusion Middleware Control Console
with the Deployed Composites tab displayed.

Figure 2–24 Oracle Enterprise Manager Fusion Middleware Control Console

Introduction to Oracle Enterprise Manager

Overview of SOA Component Editors 2-21

For more information about Oracle Enterprise Manager, see Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite.

Introduction to Oracle Enterprise Manager

2-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3

Introduction to the SOA Sample Application 3-1

3Introduction to the SOA Sample Application

The WebLogic Fusion Order Demo module of the Fusion Order Demo application
demonstrates various capabilities of Oracle SOA Suite and is used as an example
throughout this guide.

The role of this module is to process the orders of a hypothetical web shopping
storefront.

This chapter includes the following sections:

■ Section 3.1, "Introduction to the WebLogic Fusion Order Demo Application"

■ Section 3.2, "Setting Up the WebLogic Fusion Order Demo Application"

■ Section 3.3, "Taking a Look at the WebLogic Fusion Order Demo Application"

3.1 Introduction to the WebLogic Fusion Order Demo Application
The WebLogic Fusion Order Demo application is part of a larger sample application
called the Fusion Order Demo application. In this larger sample application, Global
Company sells electronic devices through many channels, including a web-based
client application. Electronic devices are sold through a storefront-type web
application. Customers can visit the web site, register, and place orders for the
products.

There are two parts to the Fusion Order Demo: the Store Front module and the
WebLogic Fusion Order Demo module.

3.1.1 The Store Front Module
The Store Front module provides a rich UI built with Oracle Application Development
Framework to show how to combine an easily built AJAX user interface with a
sophisticated SOA composite application. It is based on Oracle ADF business
components, ADF model data bindings, and ADF faces.

The Store Front module uses a scenario in which customers can visit a web site to
register and place orders for products.

Figure 3–1 shows the Home page of the Store Front module user interface. It shows the
featured products that the site wishes to promote and gives access to the full catalog of
items. Products are presented as images along with the name of the product. Page
regions divide the product catalog area from other features that the site offers.

Setting Up the WebLogic Fusion Order Demo Application

3-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 3–1 Home Page of the Store Front Module User Interface

For more information about the Store Front module, see Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

3.1.2 The WebLogic Fusion Order Demo Module
This sample application shows how to use the SOA paradigm and Oracle SOA Suite to
integrate a number of applications into one cohesive ordering system. The integrated
applications can be both internal and external to an enterprise.

Oracle SOA Suite components used by the WebLogic Fusion Order Demo are:

■ Oracle Mediator

■ Oracle BPEL Process

■ Human Task

■ Oracle Business Rules

■ Oracle User Messaging Service

Samples demonstrating the use of these components can be found at:
http://www.oracle.com/technology/sample_code/products/soa

Once an order has been placed by using the Store Front module, the WebLogic Fusion
Order Demo application processes the order. When processing an order, it uses various
internal and external applications, including a customer service application, a credit
validation system, and both an internal vendor and external vendor. For example, the
internal vendor (Warehouse) and external vendor (PartnerSupplier), are sent
information for every order. As part of the order process, they each return a price for
which they would supply the items in the order. A condition in the process determines
which supplier will be assigned the order.

As it is being processed by the WebLogic Fusion Order Demo module, the order can be
monitored by using the Fusion Middleware Control Console.

For information about SOA composite applications, see Chapter 1, "Introduction to
SOA Composite Applications".

3.2 Setting Up the WebLogic Fusion Order Demo Application
To set up the WebLogic Fusion Order Demo, you need to download the application
resources, then install and run the WebLogic Fusion Order Demo module. For specific
instructions on setting up your development environment and running the WebLogic

Taking a Look at the WebLogic Fusion Order Demo Application

Introduction to the SOA Sample Application 3-3

Fusion Order Demo application, see Oracle Fusion Middleware Tutorial for Running and
Building an Application with Oracle SOA Suite.

3.3 Taking a Look at the WebLogic Fusion Order Demo Application
After you have set up the WebLogic Fusion Order Demo application, spend time
viewing its artifacts in JDeveloper.

To open the WebLogic Fusion Order Demo in JDeveloper:
1. From the JDeveloper main menu, choose File > Open.

2. In the Open dialog, browse to DEMO_DOWNLOAD_HOME/CompositeServices
and select WebLogic Fusion Order Demo.jws. Click Open.

Figure 3–2 shows the Application Navigator after you open the file for the
application workspace. It displays the project applications of the WebLogic Fusion
Order Demo.

Figure 3–2 Projects of WebLogic Fusion Order Demo Application

3.3.1 Project Applications of the WebLogic Fusion Order Demo Application
Table 3–1 lists and describes the projects in the WebLogicFusionOrderDemo
application workspace.

Note: You download the application resources to a directory that is
referred to in this document as DEMO_DOWNLOAD_HOME. When you
create the WebLogicFusionOrderDemo application, you will create the
application in a working application directory, such as C:\fod. You
will copy needed files from the DEMO_DOWNLOAD_HOME directory to
the working application directory.

Table 3–1 Projects in the WebLogic Fusion Order Demo Application

Application Description

BamOrderBookingComposite Contains the OrderBookingComposite composite with
Oracle BAM additions. Specifically, it uses the Oracle BAM
adapter and Oracle BAM sensors to send active data into
Oracle BAM dashboard.

bin Contains a build script for deploying all the SOA projects.

CreditCardAuthorization Provides the service needed by
OrderBookingComposite project to verify the credit
card information of a customer.

OrderApprovalHumanTask Provides a task form for approving orders.

Taking a Look at the WebLogic Fusion Order Demo Application

3-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3.3.2 The composite.xml File
To understand how a composite is put together, take a look at the main project,
namely, OrderBookingComposite, in Oracle JDeveloper. To do this, in Application
Navigator, expand OrderBookingComposite > SOA Content and select
composite.xml. The composite then appears in the SOA Composite Editor in Oracle
JDeveloper, as shown in Figure 3–3.

Figure 3–3 SOA Composite Editor

For details about building and running the WebLogic Fusion Order Demo, see Oracle
Fusion Middleware Tutorial for Running and Building an Application with Oracle SOA Suite.

OrderBookingComposite The main project of the WebLogic Fusion Order Demo
application described in this guide. It processes an order
submitted in the StoreFront service UI of Fusion Order
Demo.

OrderSDOComposite Simulates the StoreFrontService service of the StoreFront
application for testing purposes.

PartnerSupplierComposite Contains a composite containing a BPEL process for
obtaining a quote from a partner warehouse. It is
referenced as a service from the composite for the
OrderBookingComposite project.

Table 3–1 (Cont.) Projects in the WebLogic Fusion Order Demo Application

Application Description

4

Introduction to the Functionality of the SOA Composite Editor 4-1

4 Introduction to the Functionality of the SOA
Composite Editor

This chapter describes the functionality of the SOA Composite Editor by guiding you
through the creation of service components, binding components, and wires in an SOA
composite application. This chapter also describes key issues to be aware of when
designing your application.

This chapter includes the following sections:

■ Section 4.1, "Introduction to the SOA Composite Editor"

■ Section 4.2, "Designing an SOA Composite Application in Oracle JDeveloper"

4.1 Introduction to the SOA Composite Editor
SOA composite applications consist of the following parts:

■ Service binding components

■ Composites

■ Service components

■ Reference binding components

■ Wires

For more information about these parts, see Chapter 1, "Introduction to SOA
Composite Applications."

4.2 Designing an SOA Composite Application in Oracle JDeveloper
This section provides an overview of how to create and design an SOA composite
application in Oracle JDeveloper. This overview is intended to guide you through the
basic steps of component creation, along with describing key issues to be aware of
when designing a composite application.

The SOA Composite Editor enables you to use either of two approaches for designing
SOA composite applications.

■ The top-down approach

■ The bottom-up approach

For more information about both approaches, see Section 1.1, "Introduction to Oracle
SOA Suite." The example is this section describes the top-down approach.

Designing an SOA Composite Application in Oracle JDeveloper

4-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For information about designing an end-to-end SOA composite application, see Oracle
Fusion Middleware Tutorial for Running and Building an Application with Oracle SOA Suite.

4.2.1 How to Create an Application and a Project
You first create an application for the SOA project.

To create an application:
1. Start Oracle JDeveloper Studio Edition Version 11.1.1.0.0.

2. If Oracle JDeveloper is running for the first time, specify the location for the Java
JDK.

Figure 4–1 shows how Oracle JDeveloper appears the first time you access it.

WARNING: Always save your changes by selecting Save All from
the tool bar menu.

Note: Oracle SOA Suite is not automatically installed with Oracle
JDeveloper. Before you can create an SOA application and project, you
must download the SOA Suite extension for Oracle JDeveloper (file
name soa-jdev-extension.zip) from the Oracle Technology
Network and import it into Oracle JDeveloper. For instructions on
downloading and installing the SOA Suite extension for Oracle
JDeveloper, see Oracle Fusion Middleware Installation Guide for Oracle
JDeveloper.

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-3

Figure 4–1 Oracle JDeveloper

3. Create a new SOA composite application, as described in Table 4–1.

This starts the Create SOA Application wizard.

4. Enter the values shown in Table 4–2:

Table 4–1 SOA Composite Application Creation

If Oracle JDeveloper... Then...

Has no applications

For example, you are
opening Oracle JDeveloper
for the first time.

In the Application Navigator in the upper left, click New
Application > SOA Application.

Has existing applications From the File main menu:

1. Select New > Applications > SOA Application.

2. Click OK.

From the Application menu:

1. Select New > Applications > SOA Application.

2. Click OK.

Table 4–2 SOA Composite Application Creation Values

Field Value

Application Name Enter an application name (for this example,
MySOAApplication is entered).

Directory Name Accept the default value or enter a different directory path.

Designing an SOA Composite Application in Oracle JDeveloper

4-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Accept the default values for all remaining settings, and click Next.

The Project Name page of the Create SOA Application wizard appears.

6. Enter a name for the project (for this example, MySOAProject), and click Next.
Note that SOA is automatically selected as the project technology to use.

A project deployed to the same infrastructure must have a unique name across
SOA composite applications. This is because the uniqueness of a composite is
determined by its project name. For example, do not perform the actions described
in Table 4–3. During deployment, the second deployed project (composite)
overwrites the first deployed project (composite).

The Project SOA Settings page of the Create SOA Application wizard appears.

7. Select Empty Composite, and click Finish.

The SOA Composite Editor shown in Figure 4–2 appears. The composite.xml file
displays in the Application Navigator. This file is automatically created when you
create a project. This file describes the entire composite assembly of services,
service components, and references. There is one composite.xml file per SOA
project.

Notes:

■ On a UNIX operating system, it is highly recommended that you
enable Unicode support by setting the LANG and LC_All
environment variables to a locale with the UTF-8 character set.
This action enables the operating system to process any character
in Unicode. SOA technologies are based on Unicode. If the
operating system is configured to use non-UTF-8 encoding, SOA
components may function in an unexpected way. For example, a
non-ASCII file name can make the file inaccessible and cause an
error. Oracle does not support problems caused by operating
system constraints.

In a design-time environment, if you are using Oracle JDeveloper,
select Tools > Preferences > Environment > Encoding > UTF-8 to
enable Unicode support. This is also applicable for runtime
environments.

■ Do not create applications and projects in directory paths that
have spaces (for example, c:\Program Files).

Note: Composite and component names cannot exceed 500
characters.

Table 4–3 Restrictions on Naming an SOA Project

Create an Application Named... With an SOA Project Named...

Application1 Project1

Application2 Project1

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-5

Figure 4–2 SOA Composite Editor

For more information about the sections of the SOA Composite Editor, see
Section 2.1, "Introduction to the SOA Composite Editor."

8. Select Save All from the File main menu.

4.2.2 How to Add a Service Component
You create service components that implement the business logic or processing rules of
your application.

You drag service components into the designer to invoke the initial property editor.
This action enables you to define the service interface (and, for asynchronous BPEL
processes, an optional callback interface).

Table 4–4 describes the available service components.

Table 4–4 Starting Service Component Editors

Dragging This Service
Component... Invokes The...

BPEL Process Create BPEL Process dialog: Enables you to create a BPEL process
that integrates a series of business activities and services into an
end-to-end process flow.

Business Rule Create Business Rules dialog: Enables you to create a business
decision based on rules.

Human Task Create Human Task dialog: Enables you to create a workflow that
describes the tasks for users or groups to perform as part of an
end-to-end business process flow.

Mediator Create Mediator dialog: Enables you to define services that
perform message and event routing, filtering, and
transformations.

Designing an SOA Composite Application in Oracle JDeveloper

4-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The following example describes the procedures to perform when a BPEL process is
dragged into the designer.

To add a service component:
1. From the Component Palette, select SOA.

2. From the Service Components list, drag a BPEL Process into the designer.

The Create BPEL Process dialog appears.

3. Enter the details shown in Table 4–5.

When complete, the Create BPEL Process dialog appears as shown in Figure 4–3.

Figure 4–3 Create BPEL Process Dialog

4. Note that the Input and Output fields also appear in the Create BPEL Process
dialog. These fields enable you to select or import specific input and output
schemas from the Type Chooser dialog or SOA Resource Browser dialog,
respectively. For this example, the default schemas are used, which consist of
string input and output values. This schema defines the structure of the message
to submit.

Table 4–5 Create BPEL Process Dialog Fields and Values

Field Value

Name Enter a name (for this example, SayHello is entered).

Namespace Accept the default value.

Template Select Synchronous BPEL Process.

For more information about available templates, see the online
help.

Expose as a SOAP Service Deselect this checkbox. This creates a standalone BPEL process.
If you select this checkbox, a BPEL process and inbound web
service binding component are each created and connected.

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-7

The SOA Resource Browser dialog also provides access to the Resource Palette,
which provides a single dialog from which to share and access schemas in
multiple applications.

5. Accept the default values for all remaining settings.

6. Click OK.

The BPEL process displays in the designer shown in Figure 4–4. The single arrow
in a circle indicates that this is a synchronous, one-way BPEL process service
component. An asynchronous process is indicated by two arrows in a circle, with
each pointing in the opposite direction. The two arrows represent an interface and
callback interface.

Figure 4–4 BPEL Process

You can more fully define the content of your BPEL process now or at a later time.
For this top-down example, the content is defined now.

7. Select Save All from the File main menu.

4.2.3 What You May Need to Know About Adding and Deleting a Service Component
Note the following details about adding service components:

■ A service component can be created from either the SOA Composite Editor or the
designer of another component. For example, you can create a human task
component from the SOA Composite Editor or the Oracle BPEL Designer.

■ The Resource Palette can be used to browse for service components defined in the
SOA Composite Editor, and those deployed. A reference and wire are created
when a service component from the SOA Composite Editor or from the deployed
list is used.

Note the following details about deleting service components:

■ You can delete a service component by right-clicking it and selecting Delete from
the context menu.

Designing an SOA Composite Application in Oracle JDeveloper

4-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ When a service component is deleted, all references pointing to it are invalidated
and all wires are removed. The service component is also removed from the
Application Navigator.

■ A service component created from within another service component can be
deleted. For example, a human task created within the BPEL process service
component of Oracle JDeveloper can be deleted from the SOA Composite Editor.
In addition, the partner link to the task can be deleted. Deleting the partner link
removes the reference interface from its .componentType file and removes the
wire to the task.

4.2.4 How to Edit a Service Component
To define specific details about the service component, you double-click the service
component to display the appropriate editor, as described in Table 4–6.

To edit a service component:
1. Double-click the SayHello BPEL process.

This opens the BPEL process in editing.

To return to the SOA Composite Editor from within any service component, click
Go to Composite Editor on the tool bar. You can also double-click composite.xml
in the Application Navigator or single-click composite.xml above the designer.

2. Go to the Component Palette in the upper right, as shown in Figure 4–5.

Figure 4–5 Component Palette

3. Drag an Assign activity into the designer beneath the receiveInput receive
activity.

4. Double-click the Assign activity.

5. Click the Copy Operation tab.

6. From the dropdown list shown in Figure 4–6, select Copy Operation.

Table 4–6 Starting SOA Service Component Wizards and Dialogs

Double-Clicking This
Service Component... Displays The...

BPEL Process Oracle BPEL Designer for further designing.

Business Rule Business Rules Designer for further designing.

Human Task Human Task Editor for further designing.

Mediator Oracle Mediator Editor for further designing.

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-9

Figure 4–6 Copy Operation Selection

7. Enter appropriate details. For this example, the details shown in Table 4–7 are
entered.

8. Click OK to close the Create Copy Operation dialog and the Assign dialog.

9. In the Application Navigator, double-click composite.xml in or single-click
composite.xml above the designer.

This returns you to the SOA Composite Editor.

10. Select Save All from the File main menu.

4.2.5 How to Add a Service
You add a service binding component to act as the entry point to the SOA composite
application from the outside world.

You drag services into the left swim lane to invoke an initial property editor. This
action enables you to define the service interface.

Table 4–8 describes the available services.

Table 4–7 Copy Operation Dialog Fields and Values

Field Value

From

■ Type Expression

■ Variables concat('Hello
',bpws:getVariableData('inputVariable','payload','/client:SayHe
lloProcessRequest/client:input'))

Note: Press Ctrl+Space to access the XPath Expression Builder.
Scroll through the list of values that appears and double-click
the value you want. As you enter information, a red underscore
can appear. This indicates that you are being prompted for
additional information. Either enter additional information, or
press the Esc key and delete the trailing slash to complete the
input of information.

To

■ Type Variable

■ Variables Expand and select Variables > Process > Variables >
outputVariable > payload > client:SayHelloProcessResponse >
client:result

Designing an SOA Composite Application in Oracle JDeveloper

4-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The following example describes the procedures to perform when a web service is
dragged into the designer.

To add a service:
1. In the Component Palette, select SOA.

2. Drag a Web Service to the left swim lane.

This invokes the Create Web Service dialog shown in Figure 4–7.

Table 4–8 Service Editors

Dragging This Service... Invokes The...

Web service Create Web Service dialog: Creates a web invocation service.

Adapters Adapter Configuration Wizard: Guides you through integration of
the service with database tables, database queues, file systems, FTP
servers, Java Message Services (JMS), IBM WebSphere MQ, BAM
servers, sockets, or Oracle E-Business Suite applications.

ADF-BC Service Create ADF-BC Service dialog: Creates a service data object (SDO)
invocation service.

B2B B2B Wizard: Guides you through selection of a document
definition.

EJB Service Create EJB Service: Creates an Enterprise JavaBeans service for
using SDO parameters with Enterprise JavaBeans.

Notes:

■ This section describes how to manually create a service binding
component. You can also automatically create a service binding
component by selecting Expose as a SOAP Service when you
create a service component. This selection creates an inbound web
service binding component that is automatically connected to
your BPEL process, human task service, or Oracle Mediator
component.

■ You cannot invoke a representational state transfer (REST) service
from the SOA Composite Editor.

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-11

Figure 4–7 Create Web Service Dialog

3. Enter the details shown in Table 4–9:

4. Select the WSDL file for the service. There are three methods for selection:

a. To the right of the WSDL URL field, click the first icon and select an existing
WSDL file from the local file system (for this example, SayHello.wsdl is
selected). Note that File System in the list at the top of the dialog is
automatically selected. Figure 4–8 provides details.

Table 4–9 Create Web Service Dialog Fields and Values

Field Value

Name Enter a name for the service (for this example, Service1 is
entered).

Type Select the type (message direction) for the web service. Since you
dragged the web service to the left swim lane, the Service type is
the correct selection, and displays by default:

■ Service (default)

Creates a web service to provide an entry point to the SOA
composite application

■ Reference

Creates a web service to provide access to an external
service in the outside world

Since this example describes how to create an entry point to the
SOA composite application, Service is selected.

Designing an SOA Composite Application in Oracle JDeveloper

4-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 4–8 WSDL File Selection

b. To the right of the WSDL URL field, click the first icon and select Resource
Palette from the list at the top of the dialog, as shown in Figure 4–9. This
action enables you to use existing WSDL files from other applications.

Figure 4–9 Use of Existing WSDL files from Other Applications

c. To the right of the WSDL URL field, click the second icon to automatically
generate a WSDL file from a schema. Figure 4–10 shows the Create WSDL
dialog.

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-13

Figure 4–10 Automatic Generation of WSDL File

5. Click OK to return to the Create Web Service dialog.

6. Note the additional details described in Table 4–10:

7. Click OK.

The SOA composite application now looks as shown in Figure 4–11. The service
deploys in the left swimlane.

Figure 4–11 SOA Composite Application

Table 4–10 Create Web Service Dialog Fields and Values

Field Value

Port Type Displays the port type.

Callback Port Type Disabled, since this WSDL file is for a synchronous service. This
field is enabled for asynchronous services.

Designing an SOA Composite Application in Oracle JDeveloper

4-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8. From the File main menu, select Save All.

After initially creating a service, you can edit its contents at a later time.
Double-click the component icon to display its appropriate editor or wizard.
Table 4–11 provides an overview.

4.2.6 What You May Need to Know About Adding and Deleting Services
Note the following detail about adding services:

■ When a new service is added for a service component, the service component is
notified so that it can make appropriate metadata changes. For example, when a
new service is added to a BPEL service component, the BPEL service component is
notified to create a partner link that can be connected to a receive or an
on-message activity.

Note the following detail about deleting services:

■ When a service provided by a service component is deleted, all references to that
service component are invalidated and the wires removed.

4.2.7 What You May Need to Know About WSDL References
A WSDL file is added to the SOA composite application whenever you create a new
component that has a WSDL (for example, a service binding component, service
component (for example, Oracle Mediator, BPEL process, and so on), or reference
binding component. When you delete a component, any WSDL imports used by that
component are removed only if not used by another component. The WSDL import is
always removed when the last component that uses it is deleted.

When a service or reference binding component is updated to use a new WSDL, it is
handled as if the interface was deleted and a new one was added. Therefore, the old
WSDL import is only removed if it is not used by another component.

If a service or reference binding component is updated to use the same WSDL
(porttype qname), but from a new location, the WSDL import and any other WSDL
reference (for example, the BPEL process WSDL that imports an external reference
WSDL) are automatically updated to reference the new location.

Simply changing the WSDL location on the source view of the composite.xml file’s
import is not sufficient. Other WSDL references in the metadata are required by the
user interface (see the ui:wsdlLocation attribute on composite and componentType
services and references). There can also be other WSDL references required by runtime
(for example, a WSDL that imports another WSDL, such as the BPEL process WSDL).

Note: WSDL namespaces must be unique. Do not just copy and
rename a WSDL. Ensure that you also change the namespaces.

Table 4–11

Double-Click This Service... To...

Web service Display the Update Service dialog.

Adapters Reenter the Adapter Configuration Wizard.

ADF-BC Service Display the Update Service dialog.

B2B Reenter the B2B wizard.

EJB Service Display the Update Service dialog.

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-15

Always modify the WSDL location though the dialogs of the SOA Composite Editor in
which a WSDL location is specified (for example, a web service, BPEL partner link,
and so on). Changing the URL’s host address is the exact case in which the SOA
Composite Editor automatically updates all WSDL references.

4.2.8 What You May Need to Know About Invoking the Default Revision of a Composite
A WSDL URL that does not contain a revision number is processed by the default
composite application. This action enables you to always call the default revision of
the called service without having to make other changes in the calling composite.

If you want your WSDL to be processed by the default composite application, but the
WSDL URL includes a revision number, you can manually remove it.

Not doing so results in the hard-coded references of the revision number of the service
being called in the calling composite. This binds it to always call that particular
revision even if the default revision of the called service changes after deployment.

1. In the SOA Composite Editor, double-click the reference binding component that
contains the WSDL revision number to remove.

The Update Reference dialog appears.

2. Click the icon to the right of the WSDL URL field.

The SOA Resource Browser dialog appears.

3. Select Resource Palette from the list at the top of the dialog.

4. Expand the nodes under the appropriate application server connection to list all
deployed composites and revisions.

5. Select the appropriate endpoint and click OK.

Your selection displays in the WSDL URL field.

6. Remove everything between the ! and / symbols. For example, assume the
revision number is 3.0. Change:

http://pdent12.us.oracle.com:8001/soa-infra/services/default/
VersionedComposite!3.0*e295c89a-b198-4835-ab16-a3a250d3b46c/
Mediator1_ep?WSDL

to:

http://pdent12.us.oracle.com:8001/soainfra/services/default/
VersionedComposite/Mediator1_ep?WSDL

The WSDL reloads.

7. Select port types appropriate to your environment.

8. Click OK.

This action enables your WSDL file to be processed by the default composite
application.

4.2.9 How to Wire a Service and a Service Component
You wire (connect) the web service and BPEL process service component. Note the
following:

Designing an SOA Composite Application in Oracle JDeveloper

4-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Since the web service is an inbound service, a reference handle displays on the
right side. Web services that are outbound references do not have a reference
handle on the right side.

■ You can drag a defined interface to an undefined interface in either direction
(reference to service or service to reference). The undefined interface then inherits
the defined interface. There are several exceptions to this rule:

– A component has the right to reject a new interface. For example, a mediator
can only have one inbound service. Therefore, it rejects attempts to create a
second service.

– You cannot drag an outbound service (external reference) to a business rule
because business rules do not support references. When dragging a wire, the
user interface highlights the interfaces that are valid targets.

■ You cannot wire services and composites that have different interfaces. For
example, you cannot connect a web service configured with a synchronous WSDL
file to an asynchronous BPEL process. Figure 4–12 provides details.

Figure 4–12 Limitations on Wiring Services and Composites with Different Interfaces

The service and reference must match, meaning the interface and the callback
must be the same. If you have two services that have different interfaces, you can
place a mediator between the two services and perform a transformation between
the interfaces.

To wire a service and a service component:
1. From the Service1 reference handle, drag a wire to the SayHello BPEL process

interface, as shown in Figure 4–13.

Figure 4–13 Wire Connection

2. Create additional service components and wire them, as needed.

For more information about composite.xml file contents, see Section 4.2.11,
"How to Add a Reference."

3. Select Save All from the File main menu.

4.2.10 What You May Need to Know About Adding and Deleting Wires
Note the following details about adding wires:

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-17

■ A service component can be wired to another service component if its reference
matches the service of the target service component. Note that the match implies
the same interface and callback interface.

■ Adding the following wiring between two mediator service components causes an
infinite loop:

– Create a business event.

– Create a mediator service component and subscribe to the event.

– Create a second mediator service component to publish the same event.

– Wire the first mediator to the second mediator component service.

If you remove the wire between the two mediators, then for every message, the
second mediator can publish the event once and the first mediator can subscribe to
it.

Note the following details about deleting wires:

■ When a wire is deleted, the component's outbound reference is automatically
deleted and the component is notified so that it can clean up (delete the partner
link, clear routing rules, and so on). However, the component's interface is never
deleted. All Oracle SOA Suite services are defined by their WSDL interface. When
a component's interface is defined, there is no automatic deletion of the service
interface in the SOA Composite Editor.

If you want to change the service WSDL interface, there are several workarounds:

– In most cases, you just want to change the schema instead of the inbound
service definition. In the SOA Composite Editor, click any interface icon that
uses the WSDL. For example, you can click the web service interface icon or
the Oracle Mediator service icon. This invokes the Update Interface dialog,
which enables you to change the schema for any WSDL message.

– If you are using an Oracle Mediator service component, the Refresh
operations from WSDL icon of the Oracle Mediator Editor enables you to
refresh (after adding new operations) or replace the Oracle Mediator WSDL.
However, you are warned if the current operations are to be deleted. If you
change the WSDL to the new inbound service WSDL using this icon, the wire
typically breaks because the interface has changed. You can then wire Oracle
Mediator to the new service.

– In many cases, a new service requires a completely new Oracle Mediator.
Delete the old Oracle Mediator, create a new one, and wire it to the new
service.

– If you are using a BPEL process service component, select a new WSDL
through the Edit Partner Link dialog.

See Section 4.2.14, "How to Update Message Schemas of Components (Optional)"
for details about the Update Interface dialog.

4.2.11 How to Add a Reference
You can add reference binding components that enable the SOA composite application
to send messages to external services in the outside world.

You drag references into the right swim lane to invoke the initial property editor. This
action enables you to define the service interface.

Table 4–12 describes the available references.

Designing an SOA Composite Application in Oracle JDeveloper

4-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The following example describes the procedures to perform when a file adapter is
dragged into the designer.

To add a reference:
1. In the Component Palette, select SOA.

2. Drag a File Adapter to the right swim lane.

This launches the Adapter Configuration wizard.

3. Provide appropriate responses to the dialogs that appear. For example, to
configure the file adapter to write to a file in a directory, you are prompted to:

■ Select to write to a file.

■ Specify the directory in which to write the outgoing file.

■ Specify the schema file location.

When complete, the designer looks as shown in Figure 4–14:

Figure 4–14 Design Completion of SOA Composite Application

Table 4–12 Reference Editors

Dragging This Service... Invokes The...

Web Service Create Web Service dialog: Creates a web invocation service.

Adapters Adapter Configuration Wizard: Guides you through integration
of the service with database tables, database queues, file
systems, FTP servers, Java Message Services (JMS), IBM
WebSphere MQ, BAM servers, sockets, or Oracle E-Business
Suite applications.

ADF-BC Service Create ADF-BC Service dialog: Creates a service data object
(SDO) invocation service.

B2B B2B Wizard: Guides you through selection of a document
definition.

EJB Service Create EJB Service dialog: Creates an Enterprise JavaBeans
service for using SDO parameters with Enterprise JavaBeans.

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-19

For more information about how creating partner links within a BPEL process
service component impacts how partner links display in the SOA Composite
Editor, see Section 5.4, "Creating a Partner Link."

4. Double-click the SayHello BPEL process.

5. Complete the remaining portions of the BPEL process design:

■ Create an invoke activity to invoke the partner link

■ Create a variable

■ Assign a return value to the variable

6. Select Save All from the File main menu.

After initially creating a reference, you can edit its contents at a later time.
Double-click the component icon to display its appropriate editor or wizard. See
Table 4–11 for an overview.

4.2.12 What You May Need to Know About Adding and Deleting References
Note the following detail about adding references:

■ The only way to add a new reference in the SOA Composite Editor is by wiring
the service component to the necessary target service component. When a new
reference is added, the service component is notified so it can make appropriate
changes to its metadata. For example, when a reference is added to a BPEL service
component, the BPEL service component is notified to add a partner link that can
then be used in an invoke activity.

Note the following details about deleting references:

■ When a reference for a service component is deleted, the associated wire is also
deleted and the service component is notified so it can update its metadata. For
example, when a reference is deleted from a BPEL service component, the service
component is notified to delete the partner link in its BPEL metadata.

■ Deleting a reference connected to a wire clears the reference and the wire.

4.2.13 How to Wire a Service Component and a Reference
You now wire (connect) the BPEL process and the file adapter reference.

To wire a service component and a reference:
1. In the Application Navigator, double-click composite.xml or single-click

composite.xml above the designer.

2. From the SayHello BPEL process, drag a wire to the WriteFile reference, as shown
in Figure 4–15.

Designing an SOA Composite Application in Oracle JDeveloper

4-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 4–15 Wiring of a Service Component and Reference

3. Double-click the SayHello BPEL process and note that the WriteFile reference
displays as a partner link in the right swim lane, as shown in Figure 4–16.

Figure 4–16 Display of the Reference as a Partner Link in the BPEL Process

4. Select Save All from the File main menu.

5. In the Application Navigator, select the composite.xml file.

6. Click the Source tab to review what you have created.

The Service1 service shown in Example 4–1 provides the entry point to the
composite.

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-21

Example 4–1 Service

<composite name="MySOAProject">
. . .
. . .
<service name="Service1" ui:wsdlLocation="SayHello.wsdl">
 <interface.wsdl interface="http://xmlns.oracle.com/MySOAApplication/
 MySOAProject/ SayHello#wsdl.interface(SayHello)"/>
 <binding.ws port="http://xmlns.oracle.com/MySOAApplication/MySOAProject/
 SayHello#wsdl.endpoint
(sayhello_client_ep/SayHello_pt)"/>
 </service>

The SayHello BPEL process service component is shown in Example 4–2:

Example 4–2 Service Component

<component name="SayHello">
 <implementation.bpel src="SayHello.bpel"/>
</component>

A reference binding component named WriteFile is shown in Example 4–3. This
reference type is a JCA file adapter. The reference provides access to the external
service in the outside world.

Example 4–3 Reference

 <reference name="WriteFile" ui:wsdlLocation="WriteFile.wsdl">
 <interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/
 file/MySOAApplication/MySOAProject/WriteFile%2F#wsdl.interface(Write_ptt)"/>
 <binding.jca config="WriteFile_file.jca"/>
 </reference>

In Example 4–4, the communication (or wiring) between service components is
described:

■ The source Service1 web service is wired to the target SayHello BPEL
process service component. Wiring enables web service message
communication with this specific BPEL process.

■ The source SayHello BPEL process is wired to the target WriteFile
reference binding component. This is the reference to the external service in
the outside world.

Example 4–4 Wires

 <wire>
 <source.uri>Service1</source.uri>
 <target.uri>SayHello/sayhello_client</target.uri>
 </wire>

 <wire>
 <source.uri>SayHello/WriteFile</source.uri>
 <target.uri>WriteFile</target.uri>
 </wire>

4.2.14 How to Update Message Schemas of Components (Optional)
You can update the message schemas used by service components or binding
components.

Designing an SOA Composite Application in Oracle JDeveloper

4-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To update message schemas of components:
1. Double-click an interface handle of a component, as shown in Figure 4–17. For this

example, the inbound interface handle of the SayHello BPEL process service
component is selected.

Figure 4–17 Selection of Inbound Interface Handle

The Update Interface dialog shown in Figure 4–18 appears. This dialog shows all
schemas used by the interface’s WSDL and enables you to choose a new schema
for a selected message part.

Figure 4–18 Update Interface Dialog

2. Use one of the following methods to select the message schema to update:

■ Double-click the message schema row.

■ Select a row and click the Update icon in the upper right corner above the
table.

The Type Chooser dialog appears.

3. Select a new schema element, and click OK.

4. In the Update Interface dialog, click OK. This updates the interface WSDL to use
the new schemas.

4.2.15 What You May Need to Know About Updating Message Schemas of Components
Note the following details about updating message schemas of components:

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-23

■ It is possible that several operations (or an input and an output) can use the same
WSDL message. In this case, the same message is seen in multiple rows of the
table. If you update the schema in one row, the change appears in the other rows.

■ When the schema used by an interface is changed, it may invalidate previously
configured features within a component that depend on the schema. For example,
a transformation step in a BPEL process or mediator service component may be
invalid because it is using a transformation map created for the old schema.

■ If the interface does not have a callback (as is the case for the BPEL process in this
example), the Update Interface dialog does show a Callback Port Type table.

■ Since multiple interfaces can be defined by the same WSDL, the modification to
one interaction (WSDL) also modifies the other interfaces.

■ When you select Show Details, the table shows fully qualified names and
complete file paths.

■ When the interface belongs to a service component (and not a service binding
component or reference), the Create Composite Service with SOAP bindings
checkbox appears. This checkbox provides the same functionality as the Expose as
a SOAP Service checkbox on the BPEL process and human task creation dialogs. If
you check this box and click OK, a service and wire are automatically generated. If
it is checked (service exists) and you deselect it and click OK, the service and wire
are deleted.

4.2.16 How to Invoke Other Composites
You can invoke other SOA composite applications from your SOA composite
application. The other applications must be deployed.

To invoke other composites:
1. Create a web service or partner link through one of the following methods.

a. In the SOA Composite Editor, drag a Web Service from the Component
Palette to the External References swim lane.

b. In Oracle BPEL Designer, drag a Partner Link from the Component Palette to
the right swim lane.

2. Access the SOA Resource Browser dialog based on the type of service you created.

a. For the Create Web Service dialog, click the Find existing WSDLs icon.

b. For the Edit Partner Link dialog, click the SOA Resource Browser icon.

3. From the list at the top, select Resource Palette.

4. Expand the tree to display the application server connection to the Oracle
WebLogic Administration Server on which the SOA composite application is
deployed. For this example, MyConnection).

5. Expand the application server connection.

6. Expand the SOA composite applications. Figure 4–19 provides details.

Designing an SOA Composite Application in Oracle JDeveloper

4-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 4–19 Browse for an SOA Composite Application

7. Select the composite service, as shown in Figure 4–20.

Figure 4–20 Selection of Client

8. Click OK.

4.2.17 How to Deploy the SOA Composite Application
Deploying the SOA composite application involves creating and deploying an archive
of the SOA composite application. For more information, see Chapter 43, "Deploying
SOA Composite Applications."

4.2.18 How to Manage Deployed Composites
You can manage deployed SOA composite applications from the Application Server
Navigator in Oracle JDeveloper. Management tasks consist of deploying, undeploying,
activating, retiring, turning on, and turning off SOA composite application revisions.

Note: These instructions assume you have created an application
server connection to an Oracle WebLogic Administration Server on
which the SOA Infrastructure is deployed. Creating a connection to an
Oracle WebLogic Administration Server enables you to browse for
managed Oracle WebLogic Servers or clustered Oracle WebLogic
Servers in the same domain. From the File main menu, select New >
Connections > Application Server Connection to create a connection.

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-25

1. From the View main menu, select Application Server Navigator.

2. Expand your connection name (for this example, named myConnection).

The deployments and SOA folders appear, as shown in Figure 4–21. The SOA
folder displays all deployed SOA composite application revisions and services.
You can browse all applications deployed on all Oracle WebLogic Administration
Servers, managed Oracle WebLogic Servers, and clustered Oracle WebLogic
Servers in the same domain. Figure 4–21 provides details.

Figure 4–21 Application Server Navigator

3. Expand the SOA folder.

Deployed SOA composite applications and services appear, as shown in
Figure 4–22.

Figure 4–22 Deployed SOA Composite Applications

4. Right-click a deployed SOA composite application.

5. Select an option to perform. The options that display for selection are based upon
the current state of the application. Table 4–13 provides details.

Table 4–13 SOA Composite Application Options

Option Description

Turned Off Shuts down a running SOA composite application revision. Any request
(initiating or a callback) to the composite is rejected if the composite is shut
down.

Note: The behavior differs based on which binding component is used. For
example, if it is a web service request, it is rejected back to the caller. A JCA
adapter binding component may do something else in this case (for example, put
the request in a rejected table).

This option displays when the composite application has been started.

Turned On Restarts a composite application revision that was shut down. This action enables
new requests to be processed (and not be rejected). No recovery of messages
occurs.

This option displays when the composite application has been stopped.

Designing an SOA Composite Application in Oracle JDeveloper

4-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. If you want to deploy a prebuilt SOA composite application archive that includes a
deployment profile, right-click the SOA folder and select Deploy SOA Archive.
The archive consists of a JAR file of a single application or an SOA bundle ZIP file
containing multiple applications.

You are prompted to select the following:

■ The target SOA servers to which you want to deploy the SOA composite
application archive.

■ The archive to deploy.

■ The configuration plan to attach to the application. As you move projects from
one environment to another (for example, from testing to production), you
typically must modify several environment-specific values, such as JDBC
connection strings, hostnames of various servers, and so on. Configuration
plans enable you to modify these values using a single text (XML) file called a
configuration plan. The configuration plan is created in either Oracle
JDeveloper or from the command line. During process deployment, the
configuration plan is used to search the SOA project for values that must be
replaced to adapt the project to the next target environment. This is an
optional selection.

Retire Retires the selected composite revision. If the process life cycle is retired, you
cannot create a new instance. Existing instances are allowed to complete
normally.

An initiating request to the composite application is rejected back to the client.
The behavior of different binding components during rejection is equal to that
described above for the shut down option.

A callback to an initiated composite application instance is delivered properly.

This option displays when the composite application is active.

Activate Activates the retired composite application revision. Note the following behavior
with this option:

■ All composite applications are automatically active when deployed.

■ Other revisions of a newly deployed composite application remain active
(that is, they are not automatically retired). If you want, you must explicitly
retire them.

This option displays when the application is retired.

Undeploy Undeploys the selected composite application revision. The consequences of this
action are as follows:

■ You can no longer configure and monitor this revision of the composite
application.

■ You can no longer process instances of this revision of the composite
application.

■ You cannot view previously completed processes.

■ The state of currently running instances is changed to stale and no new
messages sent to this composite are processed.

■ If you undeploy the default revision of the composite application (for
example, 2.0), the next available revision of the composite application
becomes the default (for example, 1.0).

Set Default
Revision

Sets the selected composite application revision to be the default.

Table 4–13 (Cont.) SOA Composite Application Options

Option Description

Designing an SOA Composite Application in Oracle JDeveloper

Introduction to the Functionality of the SOA Composite Editor 4-27

■ Whether you want to overwrite an existing composite of the same revision ID.
This action enables you to redeploy an application revision.

For more information, see the following documentation:

■ Chapter 43, "Deploying SOA Composite Applications" for details about creating a
deployment profile and a configuration plan and deploying an existing SOA
archive

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite for details
about managing deployed SOA composite applications from Oracle Enterprise
Manager Fusion Middleware Control Console

4.2.19 How to Test the SOA Composite Application
You can run and test instances of deployed SOA composite applications from Oracle
Enterprise Manager Grid Control Console. For more information about testing an SOA
composite application, see Oracle Fusion Middleware Administrator's Guide for Oracle
SOA Suite.

Designing an SOA Composite Application in Oracle JDeveloper

4-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Part II
Part II Using the BPEL Process Service

Component

This part describes the BPEL process service component.

This part contains the following chapters:

■ Chapter 5, "Getting Started with Oracle BPEL Process Manager"

■ Chapter 6, "Introduction to Interaction Patterns in a BPEL Process"

■ Chapter 7, "Manipulating XML Data in a BPEL Process"

■ Chapter 8, "Invoking a Synchronous Web Service from a BPEL Process"

■ Chapter 9, "Invoking an Asynchronous Web Service from a BPEL Process"

■ Chapter 10, "Using Parallel Flow in a BPEL Process"

■ Chapter 11, "Using Conditional Branching in a BPEL Process"

■ Chapter 12, "Using Fault Handling in a BPEL Process"

■ Chapter 13, "Incorporating Java and Java EE Code in a BPEL Process"

■ Chapter 14, "Using Events and Timeouts in BPEL Processes"

■ Chapter 15, "Coordinating Master and Detail Processes"

■ Chapter 16, "Using the Notification Service"

■ Chapter 17, "Using Oracle BPEL Process Manager Sensors"

5

Getting Started with Oracle BPEL Process Manager 5-1

5 Getting Started with Oracle BPEL Process
Manager

This chapter describes how to get started with Oracle BPEL Process Manager. Key
BPEL design features such as activities, partner links, and adapters are also described.

This chapter includes the following sections:

■ Section 5.1, "Introduction to the BPEL Process Service Component"

■ Section 5.2, "Introduction to Activities"

■ Section 5.3, "Introduction to Partner Links"

■ Section 5.4, "Creating a Partner Link"

■ Section 5.5, "Introduction to Technology Adapters"

5.1 Introduction to the BPEL Process Service Component
This section provides an introduction to the BPEL process service component in the
design environment.

5.1.1 How to Add a BPEL Process Service Component
You add BPEL process service components in the SOA Composite Editor.

To create a BPEL process service component:
1. Follow the instructions in Table 5–1 to start Oracle JDeveloper.

2. Add a BPEL process service component through one of the following methods:

As a service component in an existing SOA composite application:

a. From the Component Palette, drag a BPEL Process service component into the
SOA Composite Editor.

In a new application:

Table 5–1 Starting Oracle JDeveloper

To Start... On Windows... On UNIX...

Oracle JDeveloper Click JDev_Oracle_
Home\jdeveloper\JDev\bin\jdev.
exe or create a shortcut

$ORACLE_HOME/jdev/bin/jdev

Introduction to the BPEL Process Service Component

5-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

a. From the Application Navigator, select File > New > Applications > SOA
Application.

This starts the Create SOA Application wizard.

b. In the Application Name dialog, enter an application name in the Application
Name field.

c. In the Directory field, enter a directory path in which to create the SOA
composite application and project.

d. Click Next.

e. In the Project Name dialog, enter a name in the Project Name field.

f. Click Next.

g. In the Project SOA Settings dialog, select Composite with BPEL.

h. Click Finish.

Each method causes the Create BPEL Process dialog shown in Figure 5–1 to
appear.

Figure 5–1 Create BPEL Process Dialog

3. Provide the required details (including BPEL process name). Click Help for details
about the types of BPEL processes you can create.

Always use completely unique names when creating BPEL processes. Do not
create:

■ A process name that begins with a number (for example, 1SayHello)

■ A process name that includes a dash (for example, Say-Hello)

■ Two processes with the same name, but with different capitalization (for
example, SayHello and sayhello)

■ A process name that exceeds 500 characters.

■ A non-ASCII process name such as that shown in Figure 5–2. The BPEL
process name is used in directory and file names of the SOA project, which can
cause problems.

Introduction to the BPEL Process Service Component

Getting Started with Oracle BPEL Process Manager 5-3

Figure 5–2 Non-ASCII BPEL Process Name

4. Click OK.

Oracle BPEL Designer displays the sections shown in Figure 5–3.

Figure 5–3 Oracle JDeveloper Sections

Each section of Oracle BPEL Designer enables you to perform specific design and
deployment tasks.

■ Application Navigator

■ Design window

■ Source window

■ History window

■ Component Palette

■ Property Inspector

■ Structure window

■ Log window

For a descriptions of these sections, see Section 2.1, "Introduction to the SOA
Composite Editor."

Note: To learn more about these sections, you can also place the
cursor in the appropriate section and press F1 to display online Help.

Introduction to Activities

5-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5.2 Introduction to Activities
Activities are the building blocks of a BPEL process service component. Oracle BPEL
Designer includes a set of activities that you drag into a BPEL process service
component. You then double-click an activity to define its attributes (property values).
Activities enable you to perform specific tasks within a BPEL process service
component. For example, here are several key activities:

■ An assign activity enables you to manipulate data, such as copying the contents of
one variable to another. Figure 5–4 shows an assign activity.

Figure 5–4 Assign Activity

■ An invoke activity enables you to invoke a service (identified by its partner link)
and specify an operation for this service to perform. Figure 5–5 shows an invoke
activity.

Figure 5–5 Invoke Activity

■ A receive activity waits for an asynchronous callback response message from a
service. Figure 5–6 shows a receive activity.

Figure 5–6 Receive Activity

Figure 5–7 shows an example of a property window (for this example, an invoke
activity). In this example, you invoke a partner link named StoreFrontService and
define its attributes.

Introduction to Partner Links

Getting Started with Oracle BPEL Process Manager 5-5

Figure 5–7 Invoke Activity Example

The invoke activity enables you to specify an operation you want to invoke for the
service (identified by its partner link). The operation can be one-way or
request-response on a port provided by the service. You can also automatically create
variables in an invoke activity. An invoke activity invokes a synchronous service or
initiates an asynchronous web service.

The invoke activity opens a port in the process to send and receive data. It uses this
port to submit required data and receive a response. For synchronous callbacks, only
one port is needed for both the send and the receive functions.

For more information about activities, see Chapter A, "BPEL Process Activities and
Services" and Oracle Fusion Middleware Tutorial for Running and Building an Application
with Oracle SOA Suite.

5.3 Introduction to Partner Links
A partner link enables you to define the external services with which the BPEL process
service component is to interact. You can define partner links as services or references
(for example, through a JCA adapter) in the SOA Composite Editor or within a BPEL
process service component in Oracle BPEL Designer. Figure 5–8 shows the partner link
icon (in this example, named WriteRecord).

Figure 5–8 PartnerLink Icon

A partner link type characterizes the conversational relationship between two services
by defining the roles played by each service in the conversation and specifying the
port type provided by each service to receive messages within the conversation.

Figure 5–9 shows an example of the attributes of a partner link for a service.

Creating a Partner Link

5-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 5–9 Partner Link Dialog

Table 5–2 describes the fields of this dialog.

5.4 Creating a Partner Link
The method by which you create partner links within the BPEL process in Oracle BPEL
Designer impacts how the partner link displays above in the SOA Composite Editor.
This section describes this impact. The WSDL file can be on the local operating system
or hosted remotely (in which case you need a URL for the WSDL).

Likewise, creating and wiring a service or reference binding component to a BPEL
process service component in the SOA Composite Editor causes a partner link to
display in Oracle BPEL Designer.

Table 5–2 Create Partner Link Dialog Fields

Field Description

Name A unique and recognizable name you provide for the partner link.

Process Displays the BPEL process service component name.

WSDL URL The name and location of the Web Services Description Language
(WSDL) file that you select for the partner link. Click the SOA Service
Explorer icon (second icon from the left above the WSDL URL field) to
access a window for selecting the WSDL file to use.

Partner Link Type The partner link defined in the WSDL file.

Partner Role The role performed by the partner link.

My Role The role performed by the BPEL process service component. In this
case, the BPEL process service component does not have a role because
it is a synchronous process.

Note: The Partner Link Type, Partner Role, and My Role fields in
the Create Partner Link dialog are defined and required by the BPEL
standard.

Creating a Partner Link

Getting Started with Oracle BPEL Process Manager 5-7

5.4.1 How to Create a Partner Link

To create a partner link:
1. In the SOA Composite Editor, double-click the BPEL process service component.

Oracle BPEL Designer is displayed.

2. In the Component Palette, expand BPEL Services.

3. Drag a Partner Link into the appropriate Partner Links swim lane, as shown in
Figure 5–10.

Figure 5–10 Partner Link Creation in Oracle BPEL Designer

The Create Partner Link dialog appears.

4. Complete the fields for this dialog, as described in Table 5–2.

For more information about creating a partner link in the SOA Composite Editor, see
Chapter 4, "Introduction to the Functionality of the SOA Composite Editor."

The following sections describe the impact of partner link creation on the SOA
Composite Editor.

5.4.1.1 Partner Links for an Outbound Adapter
Table 5–3 describes the impact on the SOA Composite Editor.

Table 5–3 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link for an outbound adapter ■ A reference handle for the BPEL service component

■ A reference representing the outbound adapter in the
composite

■ A wire connecting the BPEL service component to the
adapter reference

Creating a Partner Link

5-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 5–11 shows how this method of creation appears in the SOA Composite Editor.

Figure 5–11 SOA Composite Editor Impact

5.4.1.2 Partner Links for an Inbound Adapter
Table 5–4 describes the impact on the SOA Composite Editor.

Figure 5–12 shows how this method of creation appears in the SOA Composite Editor.

Figure 5–12 SOA Composite Editor Impact

5.4.1.3 Partner Links from an Abstract WSDL to Call a Service
Table 5–5 describes the impact on the SOA Composite Editor.

5.4.1.4 Partner Links from an Abstract WSDL to Implement a Service
Table 5–6 describes the impact on the SOA Composite Editor.

Table 5–4 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link for an inbound adapter ■ A service for the BPEL service component

■ A service representing the inbound adapter in the
composite

■ A wire connecting the inbound adapter service to the
BPEL service component

Table 5–5 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link from an abstract WSDL to call a
service

A reference handle with an interface and callback interface
defined for the BPEL service component

Creating a Partner Link

Getting Started with Oracle BPEL Process Manager 5-9

Figure 5–13 shows how this method of creation appears in the SOA Composite Editor.

Figure 5–13 SOA Composite Editor Impact

5.4.1.5 Partner Links and Human Tasks or Business Rules
Table 5–7 describes the impact on the SOA Composite Editor.

Figure 5–14 shows how this method of creation appears in the SOA Composite Editor.

Figure 5–14 SOA Composite Editor Impact

5.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle
Mediator
Table 5–8 describes the impact on the SOA Composite Editor.

Table 5–6 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link is created from an abstract WSDL to
implement a service

A service with an interface and callback interface for the
BPEL service component is created.

Note: If an external Simple Object Access Protocol (SOAP)
reference with the specified interface and callback interface
exists in the SOA Composite Editor, you can either create a
new external SOAP reference and wire to it or wire to the
existing external SOAP reference.

Table 5–7 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A human task or business rule is created ■ A human task or business rule in the composite

■ A reference for the BPEL service component

■ A wire connecting the BPEL service component to the
new human task or decision service

Introduction to Technology Adapters

5-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 5–15 shows how this method of creation appears in the SOA Composite Editor.

Figure 5–15 SOA Composite Editor Impact

5.5 Introduction to Technology Adapters
The Partner Link dialog shown in Figure 5–9 also enables you to take advantage of
another key feature that Oracle BPEL Process Manager and Oracle JDeveloper provide.
Click the Define Service icon shown in Figure 5–16 to access the Adapter
Configuration wizard.

Figure 5–16 Defining an Adapter

Adapters enable you to integrate the BPEL process service component (and, therefore,
the SOA composite application as a whole) with access to file systems, FTP servers,
database tables, database queues, sockets, Java Message Services (JMS), MQ, and
Oracle E-Business Suite. This wizard enables you to configure the types of adapters
shown in Figure 5–17 for use with the BPEL process service component:

Figure 5–17 Adapter Types

The following adapter types are available:

Table 5–8 Impact of Partner Link Creation on the SOA Composite Editor

Creating the Following for a BPEL Process in
Oracle BPEL Designer... Displays the Following in the SOA Composite Editor...

A partner link by dragging an existing human task,
business rule, or mediator service component from
the Resource Palette to the BPEL process

■ A reference for the BPEL service component

■ A wire connecting the BPEL service component to the
existing human task, business rule, or mediator

Introduction to Technology Adapters

Getting Started with Oracle BPEL Process Manager 5-11

■ Advanced Queuing (AQ)

For interaction with a queue. AQ provides a flexible mechanism for bidirectional,
asynchronous communication between participating applications.

■ Oracle Business Activity Monitoring (BAM)

For publishing data to data objects in an Oracle BAM Server.

■ Database

For interaction with Oracle and non-Oracle databases through JDBC and Oracle
Business Intelligence (which is a special data source type).

■ FTP and File

For file exchange (read and write) on local file systems and remote file systems
(through use of the file transfer protocol (FTP)).

■ Java Messaging Service (JMS)

For interaction with JMS. The JMS architecture uses a one client interface to many
messaging servers architecture.

■ Message Queue (MQ)

For message exchange with WebSphere MQ queuing systems.

■ Oracle Applications

For interaction with Oracle Application’s set of integrated business applications.

■ Oracle B2B

■ For browsing B2B metadata in the metadata service (MDS) repository and
selecting document definitions.

■ Sockets

For modeling standard or nonstandard protocols for communication over TCP/IP
sockets.

When you select an adapter type, the Service Name window shown in Figure 5–18
prompts you to enter a name. For this example, File Adapter was selected in
Figure 5–17. When the wizard completes, a WSDL file by this service name appears in
the Application Navigator for the BPEL process service component (for this example,
named ReadFile.wsdl). The service name must be unique within the project. This file
includes the adapter configuration settings you specify with this wizard. Other
configuration files (such as header files and files specific to the adapter) are also
created and display in the Application Navigator.

Note: When calling the file adapter, Oracle BPEL Process Manager
may process the same file twice when run against Oracle Real
Application Clusters planned outages. This is because a file adapter is
a non-XA compliant adapter. Therefore, when it participates in a
global transaction, it may not follow the XA interface specification of
processing each file once and only once.

Introduction to Technology Adapters

5-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 5–18 Adapter Service Name

The Adapter Configuration wizard windows that appear after the Service Name
window are based on the adapter type you selected.

You can also add adapters to your SOA composite application as services or references
in the SOA Composite Editor.

For more information about adding adapters to SOA composite applications, see
Chapter 4, "Introduction to the Functionality of the SOA Composite Editor."

For more information about technology adapters, see Oracle Fusion Middleware User's
Guide for Technology Adapters.

6

Introduction to Interaction Patterns in a BPEL Process 6-1

6 Introduction to Interaction Patterns in a
BPEL Process

This chapter describes common interaction patterns between a BPEL process service
component and an external service, and shows the best use practices for each.

This chapter includes the following sections:

■ Section 6.1, "Introduction to One-Way Messages"

■ Section 6.2, "Introduction to Synchronous Interactions"

■ Section 6.3, "Introduction to Asynchronous Interactions"

■ Section 6.4, "Introduction to Asynchronous Interactions with a Timeout"

■ Section 6.5, "Introduction to Asynchronous Interactions with a Notification Timer"

■ Section 6.6, "Introduction to One Request, Multiple Responses"

■ Section 6.7, "Introduction to One Request, One of Two Possible Responses"

■ Section 6.8, "Introduction to One Request, a Mandatory Response, and an Optional
Response"

■ Section 6.9, "Introduction to Partial Processing"

■ Section 6.10, "Introduction to Multiple Application Interactions"

6.1 Introduction to One-Way Messages
In a one-way message, or fire and forget, the client sends a message to the service (d1
in Figure 6–1), and the service does not need to reply. The client sending the message
does not wait for a response, but continues executing immediately. Example 6–1 shows
the portType and operation part of the BPEL process WSDL file for this
environment.

Example 6–1 One-Way WSDL File

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage" />
 </wsdl:operation>
</wsdl:portType>
. . .

Figure 6–1 provides an overview.

Introduction to Synchronous Interactions

6-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 6–1 One-Way Message

BPEL Process Service Component as the Client
As the client, the BPEL process service component needs a valid partner link and an
invoke activity with the target service and the message. As with all partner activities,
the Web Services Description Language (WSDL) file defines the interaction.

BPEL Process Service Component as the Service
To accept a message from the client, the BPEL process service component needs a
receive activity.

6.2 Introduction to Synchronous Interactions
In a synchronous interaction, a client sends a request to a service (d1 in Figure 6–2),
and receives an immediate reply (d2 in Figure 6–2). A BPEL process service
component can be at either end of this interaction, and must be coded based on its role
as either the client or the service. For example, a user requests a subscription to an
online newspaper and immediately receives email confirmation that their request has
been accepted. Example 6–2 shows the portType and operation part of the BPEL
process WSDL file for this environment.

Example 6–2 Synchronous WSDL File

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage" />
 <wsdl:output message="client:BPELProcess1ResponseMessage"/>
 </wsdl:operation>
</wsdl:portType>

Figure 6–2 provides an overview.

Client BPEL Process
WSDL

PartnerLink

Service BPEL Process

<receive>d1<invoke>

Introduction to Asynchronous Interactions

Introduction to Interaction Patterns in a BPEL Process 6-3

Figure 6–2 Synchronous Interaction

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of a synchronous
transaction, it needs an invoke activity. The port on the client side both sends the
request and receives the reply. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process Service Component as the Service
When the BPEL process service component is on the service side of a synchronous
transaction, it needs a receive activity to accept the incoming request, and a reply
activity to return either the requested information or an error message (a fault; f1 in
Figure 6–2) defined in the WSDL.

For more information about synchronous interactions, see Chapter 8, "Invoking a
Synchronous Web Service from a BPEL Process."

6.3 Introduction to Asynchronous Interactions
In an asynchronous interaction, a client sends a request to a service and waits until the
service replies. Example 6–3 shows the portType and operation part of the BPEL
process WSDL file for this environment.

Example 6–3 Asynchronous WSDL File

. . .
<wsdl:portType name="BPELProcess1">
 <wsdl:operation name="process">
 <wsdl:input message="client:BPELProcess1RequestMessage"/>
 </wsdl:operation>
</wsdl:portType>

. . .
<wsdl:portType name="BPELProcess1Callback">
 <wsdl:operation name="processResponse">
 <wsdl:input message="client:BPELProcess1ResponseMessage"/>
 </wsdl:operation>
</wsdl:portType>

BPEL Process
WSDL
Client

PartnerLink
d1

d2

f1

Call
service

<invoke>

BPEL Process

<receive>

<reply>
OR

Introduction to Asynchronous Interactions with a Timeout

6-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 6–3 provides an overview.

Figure 6–3 Asynchronous Interaction

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous
transaction, it needs an invoke activity to send the request and a receive activity to
receive the reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service
As with a synchronous transaction, when the BPEL process service component is on
the service side of an asynchronous transaction, it needs a receive activity to accept the
incoming request and an invoke activity to return either the requested information or a
fault. Note the difference between this and responding from a synchronous BPEL
process: a synchronous BPEL process uses a reply activity to respond to the client and
an asynchronous service uses an invoke activity.

For more information about asynchronous interactions, see Chapter 9, "Invoking an
Asynchronous Web Service from a BPEL Process."

6.4 Introduction to Asynchronous Interactions with a Timeout
In an asynchronous interaction with a timeout (which you perform in BPEL with a
pick activity), a client sends a request to a service and waits until it receives a reply, or
until a certain time limit is reached, whichever comes first. For example, a client
requests a loan offer. If the client does not receive a loan offer reply within a specified
amount of time, the request is canceled. Figure 6–4 provides an overview.

Client BPEL Process
WSDL

PartnerLink

d2

Service BPEL Process

<invoke>
Get

response
<receive>

<receive>d1
Call

service
<invoke>

Introduction to Asynchronous Interactions with a Notification Timer

Introduction to Interaction Patterns in a BPEL Process 6-5

Figure 6–4 Asynchronous Interaction with Timeout

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous
transaction with a timeout, it needs an invoke activity to send the request and a pick
activity with two branches: an onMessage branch and an onAlarm branch. If the reply
comes after the time limit has expired, the message goes to the dead letter queue. As
with all partner activities, the WSDL file defines the interaction.

For more information about asynchronous interactions with a timeout, see
Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or
Waiting."

BPEL Process Service Component as the Service
The behavior of the BPEL process service component as a service is equal to the
behavior with the asynchronous interaction with the BPEL process service component
as the service.

6.5 Introduction to Asynchronous Interactions with a Notification Timer
In an asynchronous interaction with a notification time, a client sends a request to a
service and waits for a reply, although a notification is sent after a timer expires. The
client continues to wait for the reply from the service even after the timer has expired.
Figure 6–5 provides an overview.

Wait for
callback

<onMessage>

Logic
Post

Callback

Logic
Post

Timeout

Time out
in 1M

<onAlarm>

<pick>

Client BPEL Process

WSDL
PartnerLink

d1

d2

Call
service

<invoke>

Service BPEL Process

<receive>

<invoke>

Introduction to One Request, Multiple Responses

6-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 6–5 Asynchronous Interaction with a Notification Time

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs a scope activity containing an invoke activity to send the request, and a receive
activity to accept the reply. The onAlarm handler of the scope activity has a time limit
and instructions on what to do when the timer expires. For example, wait 30 minutes,
then send a warning indicating that the process is taking longer than expected. As
with all partner activities, the WSDL file defines the interaction.

BPEL Process Service Component as the Service
The behavior for the BPEL process service component as the service is equal to the
behavior with the asynchronous interaction with the BPEL process service component
as the service.

6.6 Introduction to One Request, Multiple Responses
In this interaction type, the client sends a single request to a service and receives
multiple responses in return. For example, the request can be to order a product
online, and the first response can be the estimated delivery time, the second response a
payment confirmation, and the third response a notification that the product has
shipped. In this example, the number and types of responses are expected. Figure 6–6
provides an overview.

BPEL Process

WSDL
PartnerLink

d1

d2

Service BPEL Process

<receive>

<invoke>

<scope>

Call
service

<invoke>

<onAlarm>

Notify
Someone

Wait for
Callback
<receive>

Introduction to One Request, One of Two Possible Responses

Introduction to Interaction Patterns in a BPEL Process 6-7

Figure 6–6 One Request, Multiple Responses

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs an invoke activity to send the request, and a sequence activity with three receive
activities, one for each reply. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a
sequence attribute with three invoke activities, one for each reply.

6.7 Introduction to One Request, One of Two Possible Responses
In an interaction using one request and one of two possible responses, the client sends
a single request to a service and receives one of two possible responses. For example,
the request can be to order a product online, and the first response can be either an
in-stock message, or an out-of-stock message. Figure 6–7 provides an overview.

Client BPEL Process

Call
service

<invoke>

<sequence>

<receive>

<receive>

d1

d3

d2

d4

<receive>

Service BPEL Process

<receive>

<sequence>

</sequence> </sequence>

<invoke>

<invoke>

<invoke>

WSDL
Client

PartnerLink

Introduction to One Request, a Mandatory Response, and an Optional Response

6-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 6–7 One Request, One of Two Possible Responses

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs the following:

■ An invoke activity to send the request

■ A pick activity with two branches: one onMessage for the in-stock response and
instructions on what to do if an in-stock message is received

■ A second onMessage for the out-of-stock response and instructions on what to do
if an out-of-stock message is received

As with all partner activities, the WSDL file defines the interaction.

For more information about interactions using one request and one of two possible
responses, see Section 14.2, "Creating a Pick Activity to Select Between Continuing a
Process or Waiting."

BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a
switch activity with two branches, one with an invoke activity sending the in-stock
message if the item is available, and a second branch with an invoke activity sending
the out-of-stock message if the item is not available.

6.8 Introduction to One Request, a Mandatory Response, and an Optional
Response

In this type of interaction, the client sends a single request to a service and receives one
or two responses. Here, the request is to order a product online. If the product is
delayed, the service sends a message letting the customer know. In any case, the
service always sends a notification when the item ships. Figure 6–8 provides an
overview.

<onMessage A>

Logic A Logic B

<onMessage B>

<pick>

Client BPEL Process

WSDL
PartnerLink

d1
Call

service
<invoke>

Service BPEL Process

Item in stock?

<invoke>
Msg A

<invoke>
Msg B

<otherwise>

<switch>

<receive>

Msg A
or

Msg B

Introduction to Partial Processing

Introduction to Interaction Patterns in a BPEL Process 6-9

Figure 6–8 One Request, a Mandatory Response, and an Optional Response

BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it
needs a scope activity containing the invoke activity to send the request, and a receive
activity to accept the mandatory reply. The onMessage handler of the scope activity is
set to accept the optional message and instructions on what to do if the optional
message is received (for example, notify you that the product has been delayed). The
client BPEL process service component waits to receive the mandatory reply. If the
mandatory reply is received first, the BPEL process service component continues
without waiting for the optional reply. As with all partner activities, the WSDL file
defines the interaction.

BPEL Process Service Component as the Service
The BPEL service needs a scope activity containing the receive activity and an invoke
activity to send the mandatory shipping message, and the scope’s onAlarm handler to
send the optional delayed message if a timer expires (for example, send the delayed
message if the item is not shipped in 24 hours).

6.9 Introduction to Partial Processing
In partial processing, the client sends a request to a service and receives an immediate
response, but processing continues on the service side. For example, the client sends a
request to purchase a vacation package, and the service sends an immediate reply
confirming the purchase, then continues on to book the hotel, the flight, the rental car,

Client BPEL Process

WSDL
PartnerLink

d1

<scope>

Call
service

<invoke>

<onMessage A>

Notify User
of Delay

Wait for
Callback

<receive Msg B>

Msg B

Msg A
(maybe)

Service BPEL Process

<receive>

When
product
ships...

<invokes>
Msg B

Delay?

<invoke>
Msg A

<otherwise>

<switch>

Introduction to Multiple Application Interactions

6-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

and so on. This pattern can also include multiple shot callbacks, followed by
longer-term processing. Figure 6–9 provides an overview.

Figure 6–9 Partial Processing

BPEL Process Service Component as the Client
In this case, the BPEL client is simple; it needs an invoke activity for each request and a
receive activity for each reply for asynchronous transactions, or just an invoke activity
for each synchronous transaction. Once those transactions are complete, the remaining
work is handled by the service. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process Service Component as the Service
The BPEL service needs a receive activity for each request from the client, and an
invoke activity for each response. Once the responses are finished, the BPEL process
service component as the service can continue with its processing, using the
information gathered in the interaction to perform the necessary tasks without any
further input from the client.

6.10 Introduction to Multiple Application Interactions
In some cases, there are more than two applications involved in a transaction, for
example, a buyer, seller, and shipper. In this case, the buyer sends a request to the
seller, the seller sends a request to the shipper, and the shipper sends a notification to
the buyer. This A-to-B-to-C-to-A transaction pattern can handle many transactions at
the same time. Therefore, a mechanism is required for keeping track of which message
goes where. Figure 6–10 provides an overview.

As with all partner activities, the WSDL file defines the interaction.

<receive>
<receive>

<receive>
<receive>

Client BPEL Process
WSDL

PartnerLink

d2

d4

Service BPEL Process

<receive>

<receive>d1
Call

service
<invoke>

<receive>

d3<invoke>

<receive>

<receive>

<invoke>

<receive>

Introduction to Multiple Application Interactions

Introduction to Interaction Patterns in a BPEL Process 6-11

Figure 6–10 Multiple Party Interactions

This kind of coordination can be managed using WS-Addressing or correlation sets.
For more information about both, see Chapter 9, "Invoking an Asynchronous Web
Service from a BPEL Process."

BPEL Process A
Buyer WSDL

PartnerLink

WSDL
PartnerLink

WSDL
PartnerLink

BPEL Process B
Seller

<receive>
C

d1<invoke>
B

<invoke>
C

<receive>
A

BPEL Process C
Shipper

<invoke>
A

<receive>
BC

d3 d2

Introduction to Multiple Application Interactions

6-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7

Manipulating XML Data in a BPEL Process 7-1

7 Manipulating XML Data in a BPEL Process

This chapter describes how to manipulate XML data in a BPEL process service
component. This chapter provides a variety of examples. Topics include how to work
with variables, sequences, and arrays, how to use XPath expressions, and how to
perform tasks such as mathematical calculations. The explanations are largely by
example, and provide an introduction to the supported specifications.

This chapter includes the following sections:

■ Section 7.1, "Introduction to Manipulating XML Data in BPEL Processes"

■ Section 7.2, "Delegating XML Data Operations to Data Provider Services"

■ Section 7.3, "Using Standalone SDO-based Variables"

■ Section 7.4, "Initializing a Variable with Expression Constants or Literal XML"

■ Section 7.5, "Copying Between Variables"

■ Section 7.6, "Accessing Fields Within Element-Based and Message Type-Based
Variables"

■ Section 7.7, "Assigning Numeric Values"

■ Section 7.8, "Using Mathematical Calculations with XPath Standards"

■ Section 7.9, "Assigning String Literals"

■ Section 7.10, "Concatenating Strings"

■ Section 7.11, "Assigning Boolean Values"

■ Section 7.12, "Assigning a Date or Time"

■ Section 7.13, "Manipulating Attributes"

■ Section 7.14, "Manipulating XML Data with bpelx Extensions"

■ Section 7.15, "Validating XML Data with bpelx:validate"

■ Section 7.16, "Manipulating XML Data Sequences That Resemble Arrays"

■ Section 7.17, "Converting from a String to an XML Element"

■ Section 7.18, "Understanding the Differences Between Document-Style and
RPC-Style WSDL Files"

■ Section 7.19, "Manipulating SOAP Headers in BPEL"

■ Section 7.20, "Using MIME/DIME SOAP Attachments"

Introduction to Manipulating XML Data in BPEL Processes

7-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7.1 Introduction to Manipulating XML Data in BPEL Processes
This section provides an introduction to using XML data in BPEL processes.

7.1.1 XML Data in BPEL
In a BPEL process service component, most pieces of data are in XML format. This
includes the messages passed to and from the BPEL process service component, the
messages exchanged with external services, and local variables used by the process.
You define the types for these messages and variables with the XML schema, usually
in the Web Services Description Language (WSDL) file for the flow, the WSDL files for
the services it invokes, or the XSD file referenced by those WSDL files. Therefore, most
variables in BPEL are XML data, and any BPEL process service component uses much
of its code to manipulate these XML variables. This typically includes performing data
transformation between representations required for different services, and local
manipulation of data (for example, to combine the results from several service
invocations).

BPEL also supports service data object (SDO) variables, which are not in an XML
format, but rather in a memory structure format.

7.1.2 Data Manipulation and XPath Standards
The starting point for data manipulation in BPEL is the assign activity, which builds on
the XPath standard. XPath queries, expressions, and functions play a large part in this
type of manipulation. In addition, more advanced methods are available that involve
using XQuery, XSLT, or Java, usually to do more complex data transformation or
manipulation.

This section provides a general overview of how to manipulate XML data in BPEL. It
summarizes the key building blocks used in various combinations and provides
examples. The remaining sections in this chapter discuss and illustrate how to apply
these building blocks to perform specific tasks.

You use the assign activity to copy data from one XML variable to another, or to
calculate the value of an expression and store it in a variable. A copy element within
the activity specifies the source and target of the assignment (what to copy from and
to), which must be of compatible types. Example 7–1 shows the formal syntax, as
described in the Business Process Execution Language for Web Services Specification:

Example 7–1 Assign Activity

<assign standard-attributes>
 standard-elements
 <copy>
 from-spec
 to-spec
 </copy>

Note: Most of the examples in this chapter assume that the WSDL
file defining the associated message types is document-literal style
rather than the RPC style. There is a difference in how XPath query
strings are formed for RPC-style WSDL definitions. If you are working
with a type defined in an RPC WSDL file, see Section 7.18,
"Understanding the Differences Between Document-Style and
RPC-Style WSDL Files."

Introduction to Manipulating XML Data in BPEL Processes

Manipulating XML Data in a BPEL Process 7-3

</assign>

This syntax is described in detail in that specification. The from-spec and to-spec
typically specify a variable or variable part, as shown in Example 7–2:

Example 7–2 from-spec and to-spec Attributes

<assign>
 <copy>
 <from variable="c1" part="address"/>
 <to variable="c3"/>
 </copy>
</assign>

When you use Oracle JDeveloper, you supply assign activity details in a Copy
Operation dialog that includes a From section and a To section. This reflects the
preceding BPEL source code syntax.

XPath standards play a key role in the assign activity. Brief examples are shown here
as an introduction; examples with more context and explanation are provided in the
sections that follow.

■ XPath queries

An XPath query selects a field within a source or target variable part. The from or
to clause can include a query attribute whose value is an XPath query string.
Example 7–3 provides an example:

Example 7–3 query Attribute

<from variable="input" part="payload"
 query="/p:CreditFlowRequest/p:ssn"/>

The value of the query attribute must be a location path that selects exactly one
node. You can find further details about the query attribute and XPath standards
syntax in the Business Process Execution Language for Web Services Specification
(section 14.3) and the XML Path Language (XPath) Specification, respectively.

■ XPath expressions

You use an XPath expression (specified in an expression attribute in the from
clause) to indicate a value to be stored in a variable. For example:

<from expression="100"/>

The expression can be any general expression (that is, an XPath expression that
evaluates to any XPath value type). Similarly, the value of an expression attribute
must return exactly one node or one object only when it is used in the from clause
within a copy operation. For more information about XPath expressions, see
section 9.1.4 of the XML Path Language (XPath) Specification.

Within XPath expressions, you can call the following types of functions:

■ Core XPath functions

XPath supports a large number of built-in functions, including functions for string
manipulation (such as concat), numeric functions (like sum), and others.

<from expression="concat('string one', 'string two')"/>

For a complete list of the functions built into XPath standards, see section 4 of the
XML Path Language (XPath) Specification.

Delegating XML Data Operations to Data Provider Services

7-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ BPEL XPath extension functions

BPEL adds several extension functions to the core XPath core functions, enabling
XPath expressions to access information from a process. The extensions are
defined in the standard BPEL namespace
http://schemas.xmlsoap.org/ws/2003/03/business-process/ and
indicated by the prefix bpws:

<from expression= "bpws:getVariableData('input', 'payload', '/p:value') + 1"/>

For more information, see sections 9.1 and 14.1 of the Business Process Execution
Language for Web Services Specification.

■ Oracle BPEL XPath extension functions

Oracle provides some additional XPath functions that use the capabilities built
into BPEL and XPath standards for adding new functions.

These functions are defined in the namespace
http://schemas.oracle.com/xpath/extension and indicated by the
prefix ora:.

■ Custom functions

Oracle BPEL Process Manager functions are defined in the
bpel-xpath-functions-config.xml and placed inside the orabpel.jar
file. For more information, see Section B.7, "Creating User-Defined XPath
Extension Functions" and Oracle Fusion Middleware Administrator's Guide for Oracle
SOA Suite.

Sophisticated data manipulation can be difficult to perform with the BPEL assign
activity and the core XPath functions. However, you can perform complex data
manipulation and transformation by using XSLT, Java, or a bpelx operation under an
assign activity (See Section 7.14, "Manipulating XML Data with bpelx Extensions"), or
as a web service. For XSLT, Oracle BPEL Process Manager includes XPath functions
that execute these transformations.

For more information about XPath and XQuery transformation code examples, see
Chapter 45, "Creating Transformations with the XSLT Mapper."

7.2 Delegating XML Data Operations to Data Provider Services
You can specify BPEL data operations to be performed by an underlying data provider
service through use of the entity variable. The data provider service performs the data
operations in a data store behind the scenes and without use of other data store-related
features provided by Oracle SOA Suite (for example, the database adapter). This action
enhances Oracle SOA Suite runtime performance and incorporates native features of
the underlying data provider service during compilation and runtime.

For this release, the entity variable can be used with an Oracle Application
Development Framework (ADF) Business Component data provider service using
SDO-based data.

Note: Passing large schemas through an assign activity can cause
Oracle JDeveloper to freeze up and run low on memory if you
right-click the payload in the From or To section of the Copy
Operation dialog and select Expand All. As a workaround, manually
expand the payload elements.

Delegating XML Data Operations to Data Provider Services

Manipulating XML Data in a BPEL Process 7-5

In previous releases, variables and messages exchanged within a BPEL business
process were disconnected payload (a snapshot of data returned by a web service)
placed into an XML structure. In some cases, the user required this type of fit. In other
cases, this fit presented challenges.

The entity variable addresses the following challenges of previous releases:

■ Extensive data conversion

If the underlying data was not in XML form, data conversion (for example,
translating delimited text to XML) was required. If the underlying size of the data
was large, the processing potentially impacted performance.

■ Stale snapshot data

Variables (including WSDL messages) in BPEL processes were disconnected
payload. In some cases, this was required. In other cases, you wanted a variable to
represent the most recent data being modified by other applications outside Oracle
BPEL Process Manager. This meant the disconnected data model provided a stale
data set that did not fit all needs. The snapshot also duplicated data, which
impacted performance when the data size was large.

■ Loss of native data behavior

Some data conversion implementation required data structure enforcement or
business data logic beyond the XML schema. For example, the start date needed to
be smaller than the end date. When the variable was a disconnected payload,
validation occurred only during related web service invocation. The need to
optionally perform the extra business data logic after certain operations, but before
web service invocation, was sometimes preferred.

To address these challenges with this release, you create an entity variable during
variable declaration. An entity variable acts as a data handle to access and plug in
different data provider service technologies behind the scenes. During compilation
and runtime, Oracle BPEL Process Manager delegates data operations to the
underlying data provider service.

Table 7–1 provides an example of how data conversion was performed in previous
releases (using the database adapter as an example) and in release 11g with the entity
variable.

Table 7–1 Data Manipulation Capabilities in Previous and Current Releases

10.1.x Releases 11g Release When Using the Entity Variable

Data operations such as explicitly loading and
saving data were performed by the database
adapter in Oracle BPEL Process Manager. All
data (for example, of a purchase order) was
saved in the database dehydration store.

Data operations such as loading and saving
data are performed automatically by the data
provider service (the Oracle ADF Business
Component application), without asking you
to code any service invocation.

Oracle BPEL Process Manager stores a key (for
example, purchase order ID (POID)) that
points to this data. Oracle BPEL Process
Manager fetches the key when access to data
is requested (the bind entity activity does this).
You must explicitly request the data to be
bound using the key. Any data changes are
persisted by the data provider service in a
database that can be different from the
dehydration store database. This prevents data
duplication.

Delegating XML Data Operations to Data Provider Services

7-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The following documentation describes use of the entity variable:

■ bpel-203-EntityVariableToADFBC:

This sample uses an entity variable bound to an Oracle ADF BC service using an
SDO interface. This provides the BPEL process with a variable that behaves like a
standard BPEL variable. However, the data is maintained outside the BPEL
process (in this case, in an Oracle ADF BC component). Rather than passing
around a large payload of data, it resides in one place. A reference key is passed
around to read and update the data.

■ bpel-204-EntityVariableToBPELBackedSDO:

This sample shows how you can use the Oracle ADF BC SDO interface, but with a
back-end implementation other than an Oracle ADF BC application. In this case,
the back end is implemented using a BPEL process.

Visit the following URL for details about these samples:

http://www.oracle.com/technology/sample_code/products/bpel

■ Oracle Fusion Middleware Tutorial for Running and Building an Application with Oracle
SOA Suite describes how to create an entity variable

7.2.1 How to Create an Entity Variable
This section describes how to create an entity variable and a binding key in Oracle
JDeveloper.

In previous releases of Oracle BPEL Process Manager, all variable data was in DOM
form. With release 11g, variable data in SDO form is also supported. DOM and SDO
variables in BPEL process service components are implicitly converted to the required
forms. For example, an Oracle BPEL process service component using DOM-based
variables can automatically convert these variables as required to SDO-based variables
in an assign activity, and vice versa. Both form types are defined in the XSD schema
file. No user intervention is required.

Entity variables also support SDO-formed data. However, unlike the DOM and SDO
variables, the entity variable with SDO-based data enables you to bind a unique key
value to data (for example, a purchase order). Only the key is stored in the
dehydration store; the data requiring conversion is stored with the service of the
Oracle ADF Business Component application. The key points to the data stored in the
service. When the data is required, it is fetched from the data provider service and

Data in variables was in document object
model (DOM) form

Data in variables is in SDO form, which
provides for a simpler conversion process than
DOM, especially when the data provider
service understands SDO forms.

Note: Only BPEL process service components currently allow the
use of SDO-formed variables. If your composite application has an
Oracle Mediator service component wired with an SDO-based Java
binding component reference, the data form of the variable defaults to
DOM. In addition, the features described for 10.1.x releases in
Table 7–1 are still supported in release 11g.

Table 7–1 (Cont.) Data Manipulation Capabilities in Previous and Current Releases

10.1.x Releases 11g Release When Using the Entity Variable

Delegating XML Data Operations to Data Provider Services

Manipulating XML Data in a BPEL Process 7-7

placed into memory. The process occurs in two places: the bind entity activity and the
dehydration store. For example, when Oracle BPEL Process Manager rehydrates, it
stores only the key for the entity variable; when it wakes up, it does an implicit bind to
get the current data.

7.2.1.1 Understanding How SDO Works in the Inbound Direction
The SDO binding component service provides the outside world with an entry point
to the composite application, as shown in Figure 7–1.

Figure 7–1 Inbound Direction

You use the SOA Composite Editor and Oracle BPEL Designer to perform the
following tasks:

■ Define an SDO binding component service and a BPEL process service component
in the composite application.

■ Connect (wire) the SDO service and BPEL process service component.

■ Define the details of the BPEL process service component.

For more information about using the SOA Composite Editor, see Chapter 4,
"Introduction to the Functionality of the SOA Composite Editor."

7.2.1.2 Understanding How SDO Works in the Outbound Direction
The SDO binding component reference enables messages to be sent from the
composite application to Oracle ADF Business Component application external
partners in the outside world, as shown in Figure 7–2.

SOA Composite Application

BPEL
Process Service

Component

SDO
Binding

Component
Service

Wire
ADF BC Application

Using
SDO-Formed

Data

Delegating XML Data Operations to Data Provider Services

7-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 7–2 Outbound Direction

When the Oracle ADF Business Component application is the external partner link to
the outside world, there is no SDO binding component reference in the SOA
Composite Editor that you drag into the composite application to create outbound
communication. Instead, communication between the composite application and the
Oracle ADF Business Component application occurs as follows:

■ The Oracle ADF Business Component application is deployed and automatically
registered as an SDO service in the Service Infrastructure

■ Oracle JDeveloper is used to browse for and discover this application as an
ADF-BC service and create a partner link connection.

■ The composite.xml file is automatically updated with reference details (the
binding.adf property) when the Oracle ADF Business Component application
service is discovered.

7.2.1.3 Creating an Entity Variable and Choosing a Partner Link
You now create an entity variable and select a partner link for the Oracle ADF Business
Component application. The following example describes how the OrderProcessor
BPEL process service component receives an ID for an order by using a bind entity
activity to point to order data in an Oracle ADF Business Component data provider
service in the WebLogic Fusion Order Demo application.

For more information, see Oracle Fusion Middleware Tutorial for Running and Building an
Application with Oracle SOA Suite.

To create an entity variable and choose a partner link:
1. Go to the Structure window of the BPEL process service component in Oracle

JDeveloper.

2. Right-click the Variables folder and select Expand All Child Nodes.

3. In the second Variables folder, right-click and select Create Variable.

The Create Variable dialog appears.

4. In the Name field, enter a name.

5. Click the Entity Variable checkbox and select the Search icon to the right of the
Partner Link field.

The Partner Link Chooser dialog appears with a list of available services,
including the SDO service called ADF-BC Service.

SOA Composite Application

ADF BC Application
Using

SDO-Formed
Data

SDO Binding
Component
Reference

BPEL
Process Service

Component
(using entity

variable)

Wire

Pass key to
fetch data

Delegating XML Data Operations to Data Provider Services

Manipulating XML Data in a BPEL Process 7-9

6. Browse for and select the service for the Oracle ADF Business Component
application.

7. Click OK to close the Partner Link Chooser and Create Variable dialogs.

The Create Variable dialog looks as shown in Figure 7–3.

Figure 7–3 Create Variable Dialog

7.2.1.4 Creating a Binding Key
You now create a key to point to the order data in the Oracle ADF Business
Component data provider service.

To create a binding key:
1. Drag a Bind Entity activity into your BPEL process service component.

The Bind Entity dialog appears.

2. In the Name field, enter a name.

3. To the right of the Entity Variable field, click the Search icon.

The Variable Chooser dialog appears.

4. Select the entity variable created in Section 7.2.1.3, "Creating an Entity Variable
and Choosing a Partner Link" and click OK.

5. In the Unique Keys section, click the Add icon.

The Specify Key dialog appears. You use this dialog to create a key for retrieving
the order ID from the Oracle ADF Business Component data provider service.

6. Enter the details described in Table 7–2 to define the binding key:

Table 7–2 Specify Key Dialog Fields and Values

Field Value

Key Local Part Enter the local part of the key.

Key Namespace URI Enter the namespace URI for the key.

Delegating XML Data Operations to Data Provider Services

7-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 7–4 shows the Specify Key dialog after completion.

Figure 7–4 Specify Key Dialog

7. Click OK to close the Specify Key dialog.

A name-pair value appears in the Unique Keys table, as shown in Figure 7–5.
Design is now complete.

Figure 7–5 Bind Entity Dialog

8. Click OK to close the Bind Entity dialog.

Key Value Enter the key value expression. This expression must match the
type of a key. The following examples show expression value
keys for a POID key:

■ $inputMsg.payload/tns:poid

■ bpws:getVariableData(’inputmsg’,’payload’,’tns:
poid’)

The POID key for an entity variable typically comes from
another message. If the type of POID key is an integer and the
expression result is a string of ABC, the string-to-integer fails and
the bind entity activity also fails at runtime.

Table 7–2 (Cont.) Specify Key Dialog Fields and Values

Field Value

Using Standalone SDO-based Variables

Manipulating XML Data in a BPEL Process 7-11

After the Bind Entity activity is executed at runtime, the entity variable is ready to
be used.

For more information about using SDOs, see Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework. This guide describes
how to expose application modules as web services and publish rows of view data
objects as SDOs. The application module is the ADF framework component that
encapsulates business logic as a set of related business functions.

7.3 Using Standalone SDO-based Variables
Standalone SDO-based variables are similar to ordinary BPEL XML-DOM-based
variables. The major difference is that the underlying data form is SDO-based, instead
of DOM-based. Therefore, SDO-based variables can use some SDO features such as
Java API access, an easier-to-use update API, and the change summary. However, SDO
usage is also subject to some restrictions that do not exist with XML-DOM-based
variables. The most noticeable restriction is that SDO only supports a small subset of
XPath expressions.

7.3.1 How to Declare SDO-based Variables
The syntax for declaring an SDO-based variable is similar to that for declaring BPEL
variables. Example 7–4 provides details.

Example 7–4 SDO-based Variable Declaration

<variable name="deptVar_s" element="hrtypes:dept" />
<variable name="deptVar_v" element="hrtypes:dept" bpelx:sdoCapable="false" />

If you want to override the automatic detection, use the
bpelx:sdoCapable="true|false" switch. For example, variable deptVar_v
described in Example 7–4 is a regular DOM-based variable. Example 7–4 provides an
example of the schema.

Example 7–5 XSD Sample

<xsd:element name="dept" type="Dept"/>
 <xsd:complexType name="Dept"
 sdoJava:instanceClass="sdo.sample.service.types.Dept">
 <xsd:annotation>
 <xsd:appinfo source="Key"
 xmlns="http://xmlns.oracle.com/bc4j/service/metadata/">
 <key>
 <attribute>Deptno</attribute>
 </key>
 <fetchMode>minimal</fetchMode>
 </xsd:appinfo>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="Deptno" type="xsd:integer" minOccurs="0"/>
 <xsd:element name="Dname" type="xsd:string" minOccurs="0"
 nillable="true"/>
 <xsd:element name="Loc" type="xsd:string" minOccurs="0" nillable="true"/>
 <xsd:element name="Emp" type="Emp" minOccurs="0" maxOccurs="unbounded"
 nillable="true"/>
 </xsd:sequence>
 </xsd:complexType>

Using Standalone SDO-based Variables

7-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7.3.2 How to Convert from XML to SDO
Oracle BPEL Process Manager supports dual data forms: DOM and SDO. You can
interchange the usage of DOM-based and SDO-based variables within the same
business process, even within the same expression. The Oracle BPEL Process Manager
data framework automatically converts back and forth between DOM and SDO forms.

By using the entity variable XPath rewrite capabilities, Oracle BPEL Process Manager
enables some XPath features (for example, variable reference and function calls) that
the basic SDO specification does not support. However, there are other limitations on
the XPath used with SDO-based variables (for example, there is no support for and,
or, and not).

Example 7–6 provides a simple example of converting from XML to SDO.

Example 7–6 XML-to-SDO Conversion

<assign>
 <copy>
 <from>
 <ns0:dept xmlns:ns0="http://sdo.sample.service/types/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <ns0:Deptno>10</ns0:Deptno>
 <ns0:Dname>ACCOUNTING</ns0:Dname>
 <ns0:Loc>NEW YORK</ns0:Loc>
 <ns0:Emp>
 <ns0:Empno>7782</ns0:Empno>
 <ns0:Ename>CLARK</ns0:Ename>
 <ns0:Job>MANAGER</ns0:Job>
 <ns0:Mgr>7839</ns0:Mgr>
 <ns0:Hiredate>1981-06-09</ns0:Hiredate>
 <ns0:Sal>2450</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 <ns0:Emp>
 <ns0:Empno>7839</ns0:Empno>
 <ns0:Ename>KING</ns0:Ename>
 <ns0:Job>PRESIDENT</ns0:Job>
 <ns0:Hiredate>1981-11-17</ns0:Hiredate>
 <ns0:Sal>5000</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 <ns0:Emp>
 <ns0:Empno>7934</ns0:Empno>
 <ns0:Ename>MILLER</ns0:Ename>
 <ns0:Job>CLERK</ns0:Job>
 <ns0:Mgr>7782</ns0:Mgr>
 <ns0:Hiredate>1982-01-23</ns0:Hiredate>
 <ns0:Sal>1300</ns0:Sal>
 <ns0:Deptno>10</ns0:Deptno>
 </ns0:Emp>
 </ns0:dept>
 </from>
 <to variable="deptVar_s" />
 </copy>
</assign>

Example 7–7 provides an example of copying from an XPath expression of an SDO
variable to a DOM variable.

Initializing a Variable with Expression Constants or Literal XML

Manipulating XML Data in a BPEL Process 7-13

Example 7–7 Copy from an XPath Expression of an SDO Variable to a DOM Variable

<assign>
 <!-- copy from an XPath expression of an SDO variable to DOM variable -->
 <copy>
 <from expression="$deptVar_s/hrtypes:Emp[2]" />
 <to variable="empVar_v" />
 </copy>
 <!-- copy from an XPath expression of an DOM variable to SDO variable -->
 <copy>
 <from expression="$deptVar_v/hrtypes:Emp[2]" />
 <to variable="empVar_s" />
 </copy>
 <!-- insert a DOM based data into an SDO variable -->
 <bpelx:insertAfter>
 <bpelx:from variable="empVar_v" />
 <bpelx:to variable="deptVar_s" query="hrtypes:Emp" />
 </bpelx:insertAfter>
 <!-- insert a SDO based data into an SDO variable at particular location,
 no XML conversion is needed -->
 <bpelx:insertBefore>
 <bpelx:from expression="$deptVar_s/hrtypes:Emp[hrtypes:Sal = 1300]" />
 <bpelx:to variable="deptVar_s" query="hrtypes:Emp[6]" />
 </bpelx:insertBefore>
</assign>

Example 7–8 provides an example of removing a portion of SDO data.

Example 7–8

<assign>
 <bpelx:remove>
 <bpelx:target variable="deptVar_s" query="hrtypes:Emp[2]" />
 </bpelx:remove>
</assign>

7.4 Initializing a Variable with Expression Constants or Literal XML
It is often useful to assign literal XML to a variable in BPEL, for example, to initialize a
variable before copying dynamic data into a specific field within the XML data content
for the variable. This is also useful for testing purposes when you want to hard code
XML data values into the process.

7.4.1 How To Assign a Literal XML Element
Example 7–9 assigns a literal result element to the payload part of the output
variable:

Note: The bpelx:append operation is not supported for
SDO-based variables for the following reasons:

■ The <copy> operation on an SDO-based variable has smart
update capabilities (for example, you do not need to perform a
<bpelx:append> before the <copy> operation).

■ The SDO data object is metadata driven and does not generally
support adding a new property arbitrarily.

Copying Between Variables

7-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 7–9 Literal Element Assignment

<assign>
 <!-- copy from literal xml to the variable -->
 <copy>
 <from>
 <result xmlns="http://samples.otn.com">
 <name/>
 <symbol/>
 <price>12.3</price>
 <quantity>0</quantity>
 <approved/>
 <message/>
 </result>
 </from>
 <to variable="output" part="payload"/>
 </copy>
</assign>

7.5 Copying Between Variables
When you copy between variables, you copy directly from one variable (or part) to
another variable of a compatible type, without needing to specify a particular field
within either variable. In other words, there is no need to specify an XPath query.

7.5.1 How to Copy Between Variables
Example 7–10 shows two assignments being performed, first copying between two
variables of the same type and then copying a variable part to another variable with
the same type as that part.

Example 7–10 Copying Between Variables

<assign>
 <copy>
 <from variable="c1"/>
 <to variable="c2"/>
 </copy>
 <copy>
 <from variable="c1" part = "address"/>
 <to variable="c3"/>
 </copy>
</assign>

The BPEL file defines the variables shown in Example 7–11:

Example 7–11 Variable Definition

<variable name="c1" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="y:address"/>

The WSDL file defines the person message type shown in Example 7–12:

Example 7–12 Message Type Definition

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
 <part name="full-name" type="xsd:string"/>
 <part name="address" element="x:address"/>
</message>

Accessing Fields Within Element-Based and Message Type-Based Variables

Manipulating XML Data in a BPEL Process 7-15

For more information about this code example, see Section 9.3.2 of the Business Process
Execution Language for Web Services Specification.

7.6 Accessing Fields Within Element-Based and Message Type-Based
Variables

Given the types of definitions present in most WSDL and XSD files, you must go down
to the level of copying from or to a field within part of a variable based on the element
and message type. This in turn uses XML schema complex types. To perform this
action, you specify an XPath query in the from or to clause of the assign activity.

7.6.1 How to Access Fields Within Element-Based and Message Type-Based Variables
In Example 7–13, the ssn field is copied from the CreditFlow process’s input
message into the ssn field of the credit rating service’s input message.

Example 7–13 Field Copying Levels

<assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:CreditFlowRequest/tns:ssn"/>
 <to variable="crInput" part="payload" query="/tns:ssn"/>
 </copy>
</assign>

Example 7–14 shows how the BPEL file defines message type-based variables involved
in this assignment:

Example 7–14 BPEL File Definition - Message Type-Based Variables

<variable name="input" messageType="tns:CreditFlowRequestMessage"/>
<variable name="crInput"
 messageType="services:CreditRatingServiceRequestMessage"/>

The crInput variable is used as an input message to a credit rating service. Its
message type, CreditFlowRequestMessage, is defined in the
CreditFlowService.wsdl file, as shown in Example 7–15:

Example 7–15 CreditFlowRequestMessage Definition

<message name="CreditFlowRequestMessage">
<part name="payload" element="tns:CreditFlowRequest"/>
</message>

CreditFlowRequest is defined with a field named ssn. The message type
CreditRatingServiceRequestMessage is defined in the
CreditRatingService.wsdl file, as shown in Example 7–16:

Example 7–16 CreditRatingServiceRequestMessage Definition

<message name="CreditRatingServiceRequestMessage">
 <part name="payload" element="tns:ssn"/>
</message>

Assigning Numeric Values

7-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A BPEL process can also use element-based variables. In Example 7–17, the autoloan
field is copied from the loan application process’s input message into the customer
field of a web service’s input message.

Example 7–17 Field Copying Levels

 <assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:
 application/autoloan:customer"/>
 <to variable="customer"/>
 </copy>
</assign>

Example 7–18 shows how the BPEL file defines element-based variables involved in an
assignment:

Example 7–18 BPEL File Definition - Element-Based Variables

 <variable name="customer" element="tns:customerProfile"/>

7.7 Assigning Numeric Values
You can assign numeric values in XPath expressions.

7.7.1 How to Assign Numeric Values
Example 7–19 shows how to assign an XPath expression with the integer value of 100.

Example 7–19 XPath Expression Assignment

<assign>
 <!-- copy from integer expression to the variable -->
 <copy>
 <from expression="100"/>
 <to variable="output" part="payload" query="/p:result/p:quantity"/>
 </copy>
</assign>

7.8 Using Mathematical Calculations with XPath Standards
You can use simple mathematical expressions like the one in Section 7.8.1, "How To
Use Mathematical Calculations with XPath Standards," which increment a numeric
value.

7.8.1 How To Use Mathematical Calculations with XPath Standards
In Example 7–20, the BPEL XPath function getVariableData retrieves the value
being incremented. The arguments to getVariableData are equivalent to the
variable, part, and query attributes of the from clause (including the last two
arguments, which are optional).

Example 7–20 XPath Function getVariableData Retrieval of a Value

<assign>
 <copy>
 <from expression="bpws:getVariableData('input', 'payload',

Concatenating Strings

Manipulating XML Data in a BPEL Process 7-17

 '/p:value') + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

You can also use $variable syntax, as shown in Example 7–21:

Example 7–21 $variable Syntax Use

<assign>
 <copy>
 <from expression="$input.payload + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

7.9 Assigning String Literals
You can assign string literals to a variable in BPEL.

7.9.1 How to Assign String Literals
The code in Example 7–22 copies an expression evaluating from the string literal 'GE'
to the symbol field within the indicated variable part. (Note the use of the double and
single quotes.)

Example 7–22 Expression Copy

<assign>
 <!-- copy from string expression to the variable -->
 <copy>
 <from expression="'GE'"/>
 <to variable="output" part="payload" query="/p:result/p:symbol"/>
 </copy>
</assign>

7.10 Concatenating Strings
Rather than copying the value of one string variable (or variable part or field) to
another, you can first perform string manipulation, such as concatenating several
strings.

7.10.1 How to Concatenate Strings
The concatenation is accomplished with the core XPath function named concat; in
addition, the variable value involved in the concatenation is retrieved with the BPEL
XPath function getVariableData. In Example 7–23, getVariableData fetches the
value of the name field from the input variable’s payload part. The string literal
'Hello ' is then concatenated to the beginning of this value.

Example 7–23 XPath Function getVariableData Fetch of Data

<assign>
 <!-- copy from XPath expression to the variable -->
 <copy>
 <from expression="concat('Hello ',
 bpws:getVariableData('input', 'payload', '/p:name'))"/>
 <to variable="output" part="payload" query="/p:result/p:message"/>

Assigning Boolean Values

7-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 </copy>
</assign>

Other string manipulation functions available in XPath are listed in section 4.2 of the
XML Path Language (XPath) Specification.

7.11 Assigning Boolean Values
You can assign boolean values with the XPath boolean function.

7.11.1 How to Assign Boolean Values
Example 7–24 provides an example of assigning boolean values. The XPath expression
in the from clause is a call to XPath’s boolean function true, and the specified
approved field is set to true. The function false is also available.

Example 7–24 Boolean Value Assignment

<assign>
 <!-- copy from boolean expression function to the variable -->
 <copy>
 <from expression="true()"/>
 <to variable="output" part="payload" query="/result/approved"/>
 </copy>
</assign>

The XPath specification recommends that you use the "true()" and "false()"
functions as a method for returning boolean constant values.

If you instead use "boolean(true)" or "boolean(false)", the true or false
inside the boolean function is interpreted as a relative element step, and not as any
true or false constant. It attempts to select a child node named true under the
current XPath context node. In most cases, the true node does not exist. Therefore, an
empty result node set is returned and the boolean() function in XPath 1.0 converts
an empty node set into a false result. This result can be potentially confusing.

7.12 Assigning a Date or Time
You can assign the current value of a date or time field by using the Oracle BPEL
XPath function getCurrentDate, getCurrentTime, or getCurrentDateTime,
respectively. In addition, if you have a date-time value in the standard XSD format,
you can convert it to characters more suitable for output by calling the Oracle BPEL
XPath function formatDate.

For related information, see section 9.1.2 of the Business Process Execution Language for
Web Services Specification.

7.12.1 How to Assign a Date or Time
Example 7–25 shows an example that uses the function getCurrentDate.

Example 7–25 Date or Time Assignment

<!-- execute the XPath extension function getCurrentDate() -->
<assign>
 <copy>
 <from expression="xpath20:getCurrentDate()"/>
 <to variable="output" part="payload"

Manipulating Attributes

Manipulating XML Data in a BPEL Process 7-19

 query="/invoice/invoiceDate"/>
 </copy>
</assign>

In Example 7–26, the formatDate function converts the date-time value provided in
XSD format to the string 'Jun 10, 2005' (and assigns it to the string field
formattedDate).

Example 7–26 formatDate Function

<!-- execute the XPath extension function formatDate() -->
<assign>
 <copy>
 <from expression="ora:formatDate('2005-06-10T15:56:00',
 'MMM dd, yyyy')"/>
 <to variable="output" part="payload"
 query="/invoice/formattedDate"/>
 </copy>
</assign>

7.13 Manipulating Attributes
You can copy to or from something defined as an XML attribute. An at sign (@) in
XPath query syntax refers to an attribute instead of a child element.

7.13.1 How to Manipulate Attributes
The code in Example 7–27 fetches and copies the custId attribute from this XML
data:

Example 7–27 custId Attribute Fetch and Copy Operations

 <invalidLoanApplication xmlns="http://samples.otn.com">
 <application xmlns = "http://samples.otn.com/XPath/autoloan">
 <customer custId = "111" >
 <name>
 Mike Olive
 </name>
 ...
 </customer>
 ...
 </application>
 </invalidLoanApplication>

The code in Example 7–28 selects the custId attribute of the customer field and
assigns it to the variable custId:

Example 7–28 custId Attribute Select and Assign Operations

<assign>
 <!-- get the custId attribute and assign to variable custId -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/@custId"/>
 <to variable="custId"/>
 </copy>
</assign>

Manipulating XML Data with bpelx Extensions

7-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The namespace prefixes in this example are not integral to the example.

The WSDL file defines a customer to have a type in which custId is defined as an
attribute, as shown in Example 7–29:

Example 7–29 custId Attribute Definition

<complexType name="CustomerProfileType">
 <sequence>
 <element name="name" type="string"/>
 ...
 </sequence>
 <attribute name="custId" type="string"/>
</complexType>

7.14 Manipulating XML Data with bpelx Extensions
You can perform various operations on XML data in assign activities. The bpelx
extension types described in this section provide this functionality.

7.14.1 How to Use bpelx:append

The bpelx:append extension in an assign activity enables a BPEL process service
component to append the contents of one variable, expression, or XML fragment to
another variable’s contents. Example 7–30 provides an example.

Example 7–30 bpelx:append Extension

<bpel:assign>
 <bpelx:append>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:append>
</bpel:assign>

The from-spec query within bpelx:append yields zero or more nodes. The node
list is appended as child nodes to the target node specified by the to-spec query.

The to-spec query must yield one single L-Value element node. Otherwise, a
bpel:selectionFailure fault is generated. The to-spec query cannot refer to a
partner link.

Example 7–31 consolidates multiple bills of material into one single bill of material
(BOM) by appending multiple b:parts for one BOM to b:parts of the consolidated
BOM.

Example 7–31 Consolidation of Multiple Bills of Material

<bpel:assign>
 <bpelx:append>
 <from variable="billOfMaterialVar"
 query="/b:bom/b:parts/b:part" />
 <to variable="consolidatedBillOfMaterialVar"
 query="/b:bom/b:parts" />

Note: The bpelx:append extension is not supported with SDO
variables and causes an error.

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 7-21

 </bpelx:append>
</bpel:assign>

7.14.2 How to Use bpelx:insertBefore

The bpelx:insertBefore extension in an assign activity enables a BPEL process
service component to insert the contents of one variable, expression, or XML fragment
before another variable’s contents. Example 7–32 provides an example.

Example 7–32 bpelx:insertBefore Extension

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:insertBefore>
</bpel:assign>

The from-spec query within bpelx:insertBefore yields zero or more nodes. The
node list is appended as child nodes to the target node specified by the to-spec
query.

The to-spec query of the insertBefore operation points to one or more single
L-Value nodes. If multiple nodes are returned, the first node is used as the reference
node. The reference node must be an element node. The parent of the reference node
must also be an element node. Otherwise, a bpel:selectionFailure fault is
generated. The node list generated by the from-spec query selection is inserted
before the reference node. The to-spec query cannot refer to a partner link.

Example 7–33 shows the syntax before the execution of <insertBefore>. The value
of addrVar is:

Example 7–33 Presyntax Execution

<a:usAddress>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

Example 7–34 shows the syntax after the execution:

Example 7–34 Postsyntax Execution

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from>
 <a:city>Redwood Shore></a:city>
 </bpelx:from>
 <bpelx:to "addrVar" query="/a:usAddress/a:state" />
 </bpelx:insertBefore>
</bpel:assign>

Example 7–35 shows the value of addrVar:

Note: The bpelx:insertBefore extension works with SDO
variables, but the target must be the variable attribute into which the
copied data must go.

Manipulating XML Data with bpelx Extensions

7-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 7–35 addrVar Value

<a:usAddress>
 <a:city>Redwood Shore</a:city>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

7.14.3 How to Use bpelx:insertAfter

The bpelx:insertAfter extension in an assign activity enables a BPEL process
service component to insert the contents of one variable, expression, or XML fragment
after another variable’s contents. Example 7–36 provides an example.

Example 7–36 bpelx:insertAfter Extension

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:insertAfter>
</bpel:assign>

This operation is similar to the functionality described for Section 7.14.2, "How to Use
bpelx:insertBefore," except for the following:

■ If multiple L-Value nodes are returned by the to-spec query, the last node is
used as the reference node.

■ Instead of inserting nodes before the reference node, the source nodes are inserted
after the reference node.

This operation can also be considered a macro of conditional-switch + (append
or insertBefore).

Example 7–37 shows the syntax before the execution of <insertAfter>. The value of
addrVar is:

Example 7–37 Presyntax Execution

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

Example 7–38 shows the syntax after the execution:

Example 7–38 Postsyntax Execution

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 </bpelx:from>

Note: The bpelx:insertAfter extension works with SDO
variables, but the target must be the variable attribute into which the
copied data must go.

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 7-23

 <bpelx:to "addrVar" query="/a:usAddress/a:addressLine[1]" />
 </bpelx:insertAfter>
</bpel:assign>

Example 7–39 shows the value of addrVar:

Example 7–39 addrVar Value

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The from-spec query within bpelx:insertAfter yields zero or more nodes. The
node list is appended as child nodes to the target node specified by the to-spec
query.

7.14.4 How to Use bpelx:remove
The bpelx:remove extension in an assign activity enables a BPEL process service
component to remove a variable. Example 7–40 provides an example.

Example 7–40 bpelx:remove Extension

<bpel:assign>
 <bpelx:remove>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:append>
</bpel:assign>

Node removal specified by the XPath expression is supported. Nodes specified by the
XPath expression can be multiple, but must be L-Values. Nodes being removed from
this parent can be text nodes, attribute nodes, and element nodes.

The XPath expression can return one or more nodes. If the XPath expression returns
zero nodes, then a bpel:selectionFailure fault is generated.

The syntax of bpelx:target is similar to and a subset of to-spec for the copy
operation.

Example 7–41 shows addrVar with the following value:

Example 7–41 addrVar

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

After executing the syntax shown in Example 7–42 in the BPEL process service
component file, the second address line of Mailstop is removed:

Example 7–42 Removal of Second Address Line

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"

Manipulating XML Data with bpelx Extensions

7-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 query="/a:usAddress/a:addressLine[2]" />
 </bpelx:remove>
</bpel:assign>

After executing the syntax shown in Example 7–43 in the BPEL process service
component file, both address lines are removed:

Example 7–43 Removal of Both Address Lines

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"
 query="/a:usAddress/a:addressLine" />
 </bpelx:remove>
</bpel:assign>

7.14.5 How to Use bpelx:rename and XSD Type Casting
The bpelx:rename extension in an assign activity enables a BPEL process service
component to rename an element through use of XSD type casting. Example 7–44
provides an example.

Example 7–44 bpelx:rename Extension

<bpel:assign>
 <bpelx:rename elementTo="QName1"? typeCastTo="QName2"?>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:rename>
</bpel:assign>

The syntax of bpelx:target is similar to and a subset of to-spec for the copy
operation. The target must return a list of one more element nodes. Otherwise, a
bpel:selectionFailure fault is generated. The element nodes specified in the
from-spec are renamed to the QName specified by the elementTo attribute. The
xsi:type attribute is added to those element nodes to cast those elements to the
QName type specified by the typeCastTo attribute.

Assume you have the employee list shown in Example 7–45:

Example 7–45 xsi:type Attribute

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp>
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

Promotion changes are now applied to Peter Smith in the employee list in
Example 7–46:

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in a BPEL Process 7-25

Example 7–46 Application of Promotion Changes

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
</bpel:assign>

After executing the above casting (renaming), the data looks as shown in
Example 7–47 with xsi:type info added to Peter Smith:

Example 7–47 Data Output

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

The employee data of Peter Smith is now invalid, because <approvalLimit> and
<managing> are missing. Therefore, <append> is used to add that information.
Example 7–48 provides an example.

Example 7–48 Use of append Extension to Add Information

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
 <bpelx:append>
 <bpelx:from>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
 </bpelx:from>
 <bpelx:to variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:append>
</bpel:assign>

With the execution of both rename and append, the corresponding data looks as
shown in Example 7–49:

Example 7–49 rename and append Execution

<e:emp xsi:type="e:ManagerType">

Manipulating XML Data with bpelx Extensions

7-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
<e:emp>

7.14.6 How to Use bpelx:copyList
The bpelx:copyList extension in an assign activity enables a BPEL process service
component to perform a copyList operation of the contents of one variable,
expression, or XML fragment to another variable. Example 7–50 provides an example.

Example 7–50 bpelx:copyList Extension

<bpel:assign>
 <bpelx:copyList>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:copyList>
</bpel:assign>

The from-spec query can yield a list of either all attribute nodes or all element nodes.
The to-spec query can yield a list of L-value nodes: either all attribute nodes or all
element nodes.

All the element nodes returned by the to-spec query must have the same parent
element. If the to-spec query returns a list of element nodes, all element nodes must
be contiguous.

If the from-spec query returns attribute nodes, then the to-spec query must return
attribute nodes. Likewise, if the from-spec query returns element nodes, then the
to-spec query must return element nodes. Otherwise, a
bpws:mismatchedAssignmentFailure fault is thrown.

The from-spec query can return zero nodes, while the to-spec query must return
at least one node. If the from-spec query returns zero nodes, the effect of the
copyList operation is similar to the remove operation.

The copylist operation provides the following features:

■ Removes all the nodes pointed to by the to-spec query.

■ If the to-spec query returns a list of element nodes and there are leftover child
nodes after removal of those nodes, the nodes returned by the from-spec query
are inserted before the next sibling of the last element specified by the to-spec
query. If there are no leftover child nodes, an append operation is performed.

■ If the to-spec query returns a list of attribute nodes, those attributes are removed
from the parent element. The attributes returned by the from-spec query are
then appended to the parent element.

For example, assume a schema is defined as shown in Example 7–51.

Example 7–51 Schema

<schema attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/Event_jws/Event/EventTest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="process">
 <complexType>
 <sequence>
 <element name="payload" type="string"

Validating XML Data with bpelx:validate

Manipulating XML Data in a BPEL Process 7-27

 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
 <element name="processResponse">
 <complexType>
 <sequence>
 <element name="payload" type="string"
 maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 </element>
</schema>

The from variable contains the content shown in Example 7–52.

Example 7–52 Variable Content

<ns1:process xmlns:ns1="http://xmlns.oracle.com/Event_jws/Event/EventTest">
 <ns1: payload >a</ns1: payload >
 <ns1: payload >b</ns1: payload >
</ns1:process>

The to variable contains the content shown in Example 7–53.

Example 7–53 Variable Content

<ns1:processResponse xmlns:ns1="http://xmlns.oracle.com/Event_
 jws/Event/EventTest">
 <ns1: payload >c</ns1: payload >
</ns1:process>

The bpelx:copyList operation looks as shown in Example 7–54.

Example 7–54 bpelx:copyList

<assign>
 <bpelx:copyList>
 <bpelx:from variable="inputVariable" part="payload"
 query="/client:process/client:payload"/>
 <bpelx:to variable="outputVariable" part="payload"
 query="/client:processResponse/client:payload"/>
 </bpelx:copyList>
</assign>

This makes the to variable as shown in Example 7–55.

Example 7–55 Variable Content

<ns1:processResponse xmlns:ns1="http://xmlns.oracle.com/Event_
 jws/Event/EventTest">
 <ns1: payload >a</ns1: payload >
 <ns1: payload >b</ns1: payload >
</ns1:process>

7.15 Validating XML Data with bpelx:validate
The bpelx:validate function enables you to verify code and identify invalid XML
data.

Manipulating XML Data Sequences That Resemble Arrays

7-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7.15.1 How to Validate XML Data with bpelx:validate
Use this extension as follows:

■ With the validate attribute in an assign activity:

<assign bpelx:validate="yes|no">
...
</assign>

■ In <bpelx:validate> as a standalone, extended activity that can be used
without an assign activity:

<bpelx:validate variables="NCNAMES" />

For example:

<bpelx:validate variables="myMsgVariable myPOElemVar" />

7.16 Manipulating XML Data Sequences That Resemble Arrays
Data sequences are one of the most basic data models used in XML. However,
manipulating them can be nontrivial. One of the most common data sequence patterns
used in BPEL process service components are arrays. Based on the XML schema, the
way you can identify a data sequence definition is by its attribute maxOccurs being
set to a value greater than one or marked as unbounded. See the XML Schema
Specification at http://www.w3.org/TR for more information.

The examples in this section illustrate several basic ways of manipulating data
sequences in BPEL. However, there are other associated requirements, such as
performing looping or dynamic referencing of endpoints. For additional code samples
and further information regarding real-world use cases for data sequence
manipulation in BPEL, see http://www.oracle.com/technology/sample_
code/products/bpel.

The following sections describe a particular requirement for data sequence
manipulation.

7.16.1 How to Statically Index into an XML Data Sequence That Uses Arrays
The following two examples illustrate how to use XPath functionality to select a data
sequence element when the index of the element you want is known at design time. In
these cases, it is the first element.

In Example 7–56, addresses[1] selects the first element of the addresses data
sequence:

Example 7–56 Data Sequence Element Selection

<assign>
 <!-- get the first address and assign to variable address -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[1]"/>
 <to variable="address"/>
 </copy>
</assign>

In this query, addresses[1] is equivalent to addresses[position()=1], where
position is one of the core XPath functions (see sections 2.4 and 4.1 of the XML Path

Manipulating XML Data Sequences That Resemble Arrays

Manipulating XML Data in a BPEL Process 7-29

Language (XPath) Specification). The query in Example 7–57 calls the position
function explicitly to select the first element of the addresses data sequence. It then
selects that address’s street element (which the activity assigns to the variable
street1).

Example 7–57 position Function Use

<assign>
 <!-- get the first address's street and assign to street1 -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[position()=1]
 /autoloan:street"/>
 <to variable="street1"/>
 </copy>
</assign>

If you review the definition of the input variable and its payload part in the WSDL file,
you go several levels down before coming to the definition of the addresses field.
There you see the maxOccurs="unbounded" attribute. The two XPath indexing
methods are functionally identical; you can use whichever method you prefer.

7.16.2 How to Determine Sequence Size
If you must know the runtime size of a data sequence (that is, the number of nodes or
data items in the sequence), you can get it by using the combination of the XPath
built-in count() function and the BPEL built-in getVariableData() function.

The code in Example 7–58 calculates the number of elements in the item sequence and
assigns it to the integer variable lineItemSize.

Example 7–58 Sequence Size Determination

<assign>
 <copy>
 <from expression="count(bpws:getVariableData(’outpoint’, ’payload’,
 '/p:invoice/p:lineItems/p:item')"/>
 <to variable="lineItemSize"/>
 </copy>
</assign>

7.16.3 How to Dynamically Index by Applying a Trailing XPath to an Expression
Often a dynamic value is needed to index into a data sequence; that is, you must get
the nth node out of a sequence, where the value of n is defined at runtime. This
section covers the methods for dynamically indexing by applying a trailing XPath into
expressions.

7.16.3.1 Applying a Trailing XPath to the Result of getVariableData
The dynamic indexing method shown in Example 7–59 applies a trailing XPath to the
result of bwps:getVariableData(), instead of using an XPath as the last argument
of bpws:getVariableData(). The trailing XPath references to an integer-based
index variable within the position predicate (that is, [...]).

Example 7–59 Dynamic Indexing

<variable name="idx" type="xsd:integer"/>

Manipulating XML Data Sequences That Resemble Arrays

7-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

...
<assign>
 <copy>
 <from expression="bpws:getVariableData('input','payload'
)/p:line-item[bpws:getVariableData('idx')]/p:line-total" />
 <to variable="lineTotalVar" />
 </copy>
</assign>

Assume at runtime that the idx integer variable holds 2 as its value. The preceding
expression within the from is equivalent to:

<from expression="bpws:getVariableData('input','payload'
)/p:line-item[2]/p:line-total" />

There are some subtle XPath usage differences, when an XPath used trailing behind
the bwps:getVariableData() function is compared with the one used inside the
function.

Using the same example (where payload is the message part of element
"p:invoice"), if the XPath is used within the getVariableData() function, the
root element name ("/p:invoice") must be specified at the beginning of the XPath.

For example:

bpws:getVariableData('input', 'payload',
'/p:invoice/p:line-item[2]/p:line-total')

If the XPath is used trailing behind the bwps:getVariableData()function, the root
element name does not need to be specified in the XPath.

For example:

bpws:getVariableData('input', 'payload')/p:line-item[2]/p:line-total

This is because the node returned by the getVariableData() function is the root
element. Specifying the root element name again in the XPath is redundant and is
incorrect according to standard XPath semantics.

7.16.3.2 Using the bpelx:append Extension to Append New Items to a Sequence
The bpelx:append extension in an assign activity enables BPEL process service
components to append new elements to an existing parent element. Example 7–60
provides an example.

Example 7–60 bpelx:append Extension

 <assign name="assign-3">
 <copy>
 <from expression="bpws:getVariableData('idx')+1" />
 <to variable="idx"/>
 </copy>
 <bpelx:append>
 <bpelx:from variable="partInfoResultVar" part="payload" />
 <bpelx:to variable="output" part="payload" />
 </bpelx:append>
 ...
 </assign>

The bpelx:append logic in this example appends the payload element of the
partInfoResultVar variable as a child to the payload element of the output

Manipulating XML Data Sequences That Resemble Arrays

Manipulating XML Data in a BPEL Process 7-31

variable. In other words, the payload element of output variable is used as the parent
element.

7.16.3.3 Merging Data Sequences
You can merge two sequences into a single data sequence. This pattern is common
when the data sequences are in an array (that is, the sequence of data items of
compatible types).

The two append operations shown in Example 7–61 under assign demonstrate how
to merge data sequences:

Example 7–61 Data Sequences Merges with append Operations

<assign>
 <!-- initialize "mergedLineItems" variable
 to an empty element -->
 <copy>
 <from> <p:lineItems /> </from>
 <to variable="mergedLineItems" />
 </copy>
 <bpelx:append>
 <bpelx:from variable="input" part="payload"
 query="/p:invoice/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
 <bpelx:append>
 <bpelx:from variable="literalLineItems"
 query="/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
</assign>

7.16.3.4 Generating Functionality Equivalent to an Array of an Empty Element
The genEmptyElem function generates functionality equivalent to an array of an
empty element to an XML structure. This function takes the following arguments:

genEmptyElem('ElemQName',int?, 'TypeQName'?, boolean?)

Note the following issues:

■ The first argument specifies the QName of the empty elements.

■ The optional second integer argument specifies the number of empty elements. If
missing, the default size is 1.

■ The third optional argument specifies the QName, which is the xsi:type of the
generated empty name. This xsi:type pattern matches the SOAPENC:Array. If
it is missing or is an empty string, the xsi:type attribute is not generated.

■ The fourth optional boolean argument specifies whether the generated empty
elements are XSI - nil, provided the element is XSD-nillable. The default value
is false. If missing or false, xsi:nil is not generated.

Example 7–62 shows an append statement initializing a purchase order (PO)
document with 10 empty <lineItem> elements under po:

Example 7–62 append Statement

<bpelx:assign>
 <bpelx:append>

Manipulating XML Data Sequences That Resemble Arrays

7-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <bpelx:from expression="ora:genEmptyElem('p:lineItem',10)" />
 <bpelx:to variable="poVar" query="/p:po" />
 </bpelx:append>
</bpelx:assign>

The genEmptyElem function in this example can be replaced with an embedded
XQuery expression:

ora:genEmptyElem('p:lineItem',10)
== for $i in (1 to 10) return <p:lineItem />

The empty elements generated by this function are typically invalid XML data. You
perform further data initialization after the empty elements are created. Using the
same example above, you can perform the following:

■ Add attribute and child elements to those empty lineItem elements.

■ Perform copy operations to replace the empty elements. For example, copy from a
web service result to an individual entry in this equivalent array under a flowN
activity.

7.16.4 What You May Need to Know About SOAP-Encoded Arrays
Oracle BPEL Process Manager provides limited support for Simple Object Access
Protocol (SOAP)-encoded arrays (soapenc:arrayType).

Consider one of the following methodologies to deal with SOAP arrays:

■ Place a wrapper around the service so that the BPEL process service component
talks to the document literal wrapper service, which in turn calls the underlying
service with soapenc:arrayType.

■ Call a service with soapenc:arrayType from BPEL, but construct the XML
message more manually in the BPEL code. This action enables you to avoid
changing or wrapping the service. However, each time you want to call that
service from BPEL, you must take extra steps.

7.16.5 What You May Need to Know About Using the Array Identifier
For processing in Native Format Builder array identifier environments, information is
required about the parent node of a node. Because the reportSAXEvents API is
used, this information is typically not available for outbound message scenarios.
Setting nxsd:useArrayIdentifiers to true in the native schema enables
DOM-parsing to be used for outbound message scenarios. Use this setting cautiously,
as it can lead to slower performance for very large payloads.

<?xml version="1.0" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:nxsd="http://xmlns.oracle.com/pcbpel/nxsd"
 targetNamespace="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
 xmlns:tns="http://xmlns.oracle.com/pcbpel/demoSchema/csv"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified" nxsd:encoding="US-ASCII"
nxsd:stream="chars" nxsd:version="NXSD" nxsd:useArrayIdentifiers="true">
 <xsd:element name="Root-Element">

 </xsd:element>
</xsd:schema>

Understanding the Differences Between Document-Style and RPC-Style WSDL Files

Manipulating XML Data in a BPEL Process 7-33

7.17 Converting from a String to an XML Element
Sometimes a service is defined to return a string, but the content of the string is
actually XML data. The problem is that, although BPEL provides support for
manipulating XML data (using XPath queries, expressions, and so on), this
functionality is not available if the variable or field is of type string. With Java, you use
DOM functions to convert the string to a structured XML object type. You can use the
BPEL XPath function parseEscapedXML to do the same thing.

7.17.1 How To Convert from a String to an XML Element
The parseEscapedXML function takes XML data, parses it through DOM, and
returns structured XML data that can be assigned to a typed BPEL variable.
Example 7–63 provides an example:

Example 7–63 String to XML Element Conversion

<!-- execute the XPath extension function
parseEscapedXML('<item>') and assign to a variable
-->
<assign>
 <copy>
 <from expression="ora:parseEscapedXML(
 '<item xmlns="http://samples.otn.com"
 sku="006">
 <description>sun ultra sparc VI server
 </description>
 <price>1000
 </price>
 <quantity>2
 </quantity>
 <lineTotal>2000
 </lineTotal>
 </item>')"/>
 <to variable="escapedLineItem"/>
 </copy>
</assign>

7.18 Understanding the Differences Between Document-Style and
RPC-Style WSDL Files

The examples shown up to this point have been for document-style WSDL files in
which a message is defined with an XML schema element, as shown in
Example 7–64:

Example 7–64 XML Schema element Definition

<message name="LoanFlowRequestMessage">
<part name="payload" element="s1:loanApplication"/>
</message>

This is in contrast to RPC-style WSDL files, in which the message is defined with an
XML schema type, as shown in Example 7–65:

Example 7–65 RPC-Style type Definition

<message name="LoanFlowRequestMessage">
<part name="payload" type="s1:LoanApplicationType"/>

Manipulating SOAP Headers in BPEL

7-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

</message>

7.18.1 How To Use RPC-Style Files
This impacts the material in this chapter because there is a difference in how XPath
queries are constructed for the two WSDL message styles. For an RPC-style message,
the top-level element (and therefore the first node in an XPath query string) is the part
name (payload in Example 7–65). In document-style, the top-level node is the
element name (for example, loanApplication).

Example 7–66 and Example 7–67 show what an XPath query string looks like if an
application named LoanServices were in RPC style.

Example 7–66 RPC-Style WSDL File

<message name="LoanServiceResultMessage">
 <part name="payload" type="s1:LoanOfferType"/>
</message>

<complexType name="LoanOfferType">
 <sequence>
 <element name="providerName" type="string"/>
 <element name="selected" type="boolean"/>
 <element name="approved" type="boolean"/>
 <element name="APR" type="double"/>
 </sequence>
</complexType>

Example 7–67 RPC-Style BPEL File

<variable name="output"
 messageType="tns:LoanServiceResultMessage"/>
...
<assign>
 <copy>
 <from expression="9.9"/>
 <to variable="output" part="payload" query="/payload/APR"/>
 </copy>
</assign>

7.19 Manipulating SOAP Headers in BPEL
BPEL's communication activities (invoke, receive, reply, and onMessage) receive and
send messages through specified message variables. These default activities permit
one variable to operate in each direction. For example, the invoke activity has
inputVariable and outputVariable attributes. You can specify one variable for
each of the two attributes. This is enough if the particular operation involved uses only
one payload message in each direction.

However, WSDL supports multiple messages in an operation. In the case of SOAP,
multiple messages can be sent along the main payload message as SOAP headers.
However, BPEL's default communication activities cannot accommodate the
additional header messages.

Oracle BPEL Process Manager solves this problem by extending the default BPEL
communication activities with the bpelx:headerVariable extension. The extension
syntax is as shown in Example 7–68:

Manipulating SOAP Headers in BPEL

Manipulating XML Data in a BPEL Process 7-35

Example 7–68 bpelx:headerVariable Extension

<invoke bpelx:inputHeaderVariable="inHeader1 inHeader2 ..."
 bpelx:outputHeaderVariable="outHeader1 outHeader2 ..."
 .../>

<receive bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<onMessage bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<reply bpelx:headerVariable="inHeader1 inHeader2 ..." .../>

7.19.1 How to Receive SOAP Headers in BPEL
This section provides an example of how to create BPEL and WSDL files to receive
SOAP headers.

To receive SOAP headers in BPEL:
1. Create a WSDL file that declares header messages and the SOAP binding that

binds them to the SOAP request. Example 7–69 provides an example.

Example 7–69 WSDL File Contents

 <!-- custom header -->
 <message name="CustomHeaderMessage">
 <part name="header1" element="tns:header1"/>
 <part name="header2" element="tns:header2"/>
 </message>

 <binding name="HeaderServiceBinding" type="tns:HeaderService">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="initiate">
 <soap:operation style="document" soapAction="initiate"/>
 <input>
 <soap:header message="tns:CustomHeaderMessage"
 part="header1" use="literal"/>
 <soap:header message="tns:CustomHeaderMessage"
 part="header2" use="literal"/>
 <soap:body use="literal"/>
 </input>
 </operation>
 </binding>

2. Create a BPEL source file that declares the header message variables and uses
bpelx:headerVariable to receive the headers, as shown in Example 7–70.

Example 7–70 bpelx:headerVariable Use

<variables> <variable name="input"
 messageType="tns:HeaderServiceRequestMessage"/>
 <variable name="event"
 messageType="tns:HeaderServiceEventMessage"/>
 <variable name="output"
 messageType="tns:HeaderServiceResultMessage"/>
 <variable name="customHeader"
 messageType="tns:CustomHeaderMessage"/>
</variables>

<sequence>
 <!-- receive input from requestor -->
 <receive name="receiveInput" partnerLink="client"

Using MIME/DIME SOAP Attachments

7-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 portType="tns:HeaderService" operation="initiate"
 variable="input"
 bpelx:headerVariable="customHeader"
 createInstance="yes"/>

7.19.2 How to Send SOAP Headers in BPEL
This section provides an example of how to send SOAP headers.

To send SOAP headers in BPEL:
1. Define an SCA reference in the composite.xml to refer to the HeaderService.

2. Define the custom header variable, manipulate it, and send it using
bpelx:inputHeaderVariable, as shown in Example 7–71.

Example 7–71 bpelx:inputHeaderVariable Use

<variables>
 <variable name="input" messageType="tns:HeaderTestRequestMessage"/>
 <variable name="output" messageType="tns:HeaderTestResultMessage"/>
 <variable name="request" messageType="services:HeaderServiceRequestMessage"/>
 <variable name="response" messageType="services:HeaderServiceResultMessage"/>
 <variable name="customHeader"messageType="services:CustomHeaderMessage"/>
 </variables>
...
<!-- initiate the remote process -->
 <invoke name="invokeAsyncService"
 partnerLink="HeaderService"
 portType="services:HeaderService"
 bpelx:inputHeaderVariable="customHeader"
 operation="initiate"
 inputVariable="request"/>

7.20 Using MIME/DIME SOAP Attachments
A BPEL process service component can receive SOAP attachments in an optimized
Message Transmission Optimization Mechanism (MTOM) format. However, the BPEL
process cannot internally process the attachments. Instead, the attachments are added
to the DOM as part of the XML file. Oracle recommends that you avoid using MTOM
attachments and instead use Multipurpose Internet Mail Extensions (MIME) and
Direct Internet Message Encapsulation (DIME) SOAP attachments.

8

Invoking a Synchronous Web Service from a BPEL Process 8-1

8 Invoking a Synchronous Web Service from a
BPEL Process

This chapter describes how to invoke a synchronous web service from a BPEL process.
This chapter demonstrates how to set up the components necessary to perform a
synchronous invocation. This chapter also examines how these components are coded.

This chapter includes the following sections:

■ Section 8.1, "Introduction to Invoking a Synchronous Web Service"

■ Section 8.2, "Invoking a Synchronous Web Service"

■ Section 8.3, "Calling a One-Way Mediator with a Synchronous BPEL Process"

For a simple Hello World sample (bpel-101-HelloWorld) that takes an input
string, adds a prefix of "Hello " to the string, and returns it, visit the following URL:

http://www.oracle.com/technology/sample_code/products/bpel

8.1 Introduction to Invoking a Synchronous Web Service
Synchronous web services provide an immediate response to an invocation. BPEL can
connect to synchronous web services through a partner link, send data, and then
receive the reply in the same synchronous invocation.

A synchronous invocation requires the following components:

■ Partner link

Defines the location and the role of the web services with which the BPEL process
service component connects to perform tasks, and the variables used to carry
information between the web service and the BPEL process service component. A
partner link is required for each web service that the BPEL process service
component calls. You can create partner links in either of two ways:

– In the SOA Composite Editor, when you drag a Web Service from the
Component Palette into the Exposed Services or External References
swimlane.

– In the Oracle BPEL Designer, when you drag a Partner Link (Web
Service/Adapter) from the Component Palette into the Partner Links
swimlane. This method is described in this chapter.

■ Invoke activity

Opens a port in the BPEL process service component to send and receive data. It
uses this port to retrieve information verifying that the customer has acceptable

Invoking a Synchronous Web Service

8-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

credit using the CreditCardAuthorizationService. For synchronous callbacks,
only one port is needed for both the send and receive functions

8.2 Invoking a Synchronous Web Service
This section examines a synchronous invocation operation using the
OrderProcessor.bpel file in the WebLogic Fusion Order Demo application as an
example. For a more step-by-step approach, see Oracle Fusion Middleware Tutorial for
Running and Building an Application with Oracle SOA Suite.

8.2.1 How to Invoke a Synchronous Web Service

To invoke a synchronous web service:
1. In the Component Palette in Oracle BPEL Designer, drag the necessary partner

link, invoke activity, and assign activities into the designer.

2. Edit their dialogs. Procedures are described in Oracle Fusion Middleware Tutorial for
Running and Building an Application with Oracle SOA Suite.

Figure 8–1 shows the diagram for the Scope_AuthorizeCreditCard scope activity of
the OrderProcessor.bpel file, which defines a simple set of actions.

Figure 8–1 Diagram of OrderProcessor.bpel

The following actions take place:

1. The Assign_CreditCheckInput assign activity packages the data from the client.
The assign activity provides a method for copying the contents of one variable to
another. In this case, it takes the credit card type, credit card number, and purchase
amount and assigns them to the input variable for the
CreditAuthorizationService service.

Note: You can specify timeout values with the attribute
syncMaxWaitTime in the Middleware_Home/domains/domain_
name/config/soa-infra/configuration/bpel-config.xml
file or with the System MBean Browser setting of
oracle.as.soainfra.config:type=BPELConfig,name=bpel
in Oracle Enterprise Manager Fusion Middleware Control Console. If
the BPEL process service component does not receive a reply within
the specified time, then the activity fails.

Invoking a Synchronous Web Service

Invoking a Synchronous Web Service from a BPEL Process 8-3

2. The InvokeCheckCreditCard activity calls the CreditCardAuthorization service.
Figure 8–2 shows the CreditCardAuthorizationService web service, which is
defined as a partner link.

Figure 8–2 CreditCardAuthorizationService Partner Link

Figure 8–3 shows the InvokeCheckCreditCard invoke activity.

Figure 8–3 InvokeCheckCreditCard Invoke Activity

3. The Switch_EvaluateCCResult switch activity checks the results of the credit card
validation. For information about switch activities, see Section 11.2, "Creating a
Switch Activity to Define Conditional Branching."

8.2.2 What Happens When You Invoke a Synchronous Web Service
When you create a partner link and invoke activity, the necessary BPEL code for
invoking a synchronous web service is added to the appropriate BPEL and Web
Services Description Language (WSDL) files.

Invoking a Synchronous Web Service

8-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8.2.2.1 Partner Link in the BPEL Code
In the OrderProcessor.bpel code, the partner link defines the link name and type,
and the role of the BPEL process service component in interacting with the partner
service.

From the BPEL source code, the CreditCardAuthorizationService partner link
definition is shown in Example 8–1:

Example 8–1 Partner Link Definition

<partnerLink name="CreditCardAuthorizationService"
 partnerRole="CreditAuthorizationPort"
 partnerLinkType="ns2:CreditCardAuthorizationService"/>

Variable definitions that are accessible locally in the Scope_AuthorizeCreditCard
scope are shown in Example 8–2. The types for these variables are defined in the
WSDL for the process itself.

Example 8–2 Variable Definition

<variable name="lCreditCardInput"
 messageType="ns2:CreditAuthorizationRequestMessage"/>
<variable name="lCreditCardOutput"
 messageType="ns2:CreditAuthorizationResponseMessage"/>

The WSDL file defines the interface to your BPEL process service component: the
messages that it accepts and returns, the operations that are supported, and other
parameters.

8.2.2.2 Partner Link Type and Port Type in the BPEL Code
The web service’s CreditCardAuthorizationService.wsdl file contains two
sections that enable the web service to work with BPEL process service components:

■ partnerLinkType:

Defines the following characteristics of the conversion between a BPEL process
service component and the credit card authorization web service:

– The role (operation) played by each

– The portType provided by each for receiving messages within the
conversation

■ portType:

A collection of related operations implemented by a participant in a conversation.
A port type defines which information is passed back and forth, the form of that
information, and so on. A synchronous invocation requires only one port type that
both initiates the synchronous process and calls back the client with the response.
An asynchronous callback (one in which the reply is not immediate) requires two
port types, one to send the request, and another to receive the reply when it
arrives.

In this example, the portType CreditAuthorizationPort receives the credit
card type, credit card number, and purchase amount, and returns the status
results.

Example 8–3 provides an example of partnerLinkType and portType.

Invoking a Synchronous Web Service

Invoking a Synchronous Web Service from a BPEL Process 8-5

Example 8–3 partnerLinkType and portType Definitions

<plnk:partnerLinkType name="CreditCardAuthorizationService">
 <plnk:role name="CreditAuthorizationPort">
 <plnk:portType name="tns:CreditAuthorizationPort"/>
 </plnk:role>
</plnk:partnerLinkType>

8.2.2.3 Invoke Activity for Performing a Request
The invoke activity includes the lCreditCardInput local input variable. The credit
card authorization web service uses the lCreditCardInput input variable. This
variable contains the customer’s credit card type, credit card number, and purchase
amount. The lCreditCardOutput variable returns status results from the
CreditAuthorizationService service. Example 8–4 provides an example.

Example 8–4 Invoke Activity

<invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>

8.2.2.4 Synchronous Invocation in BPEL Code
The BPEL code shown in Example 8–5 performs the synchronous invocation:

Example 8–5 Synchronous Invocation

<assign name="Assign_CreditCheckInput">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:OrderTotal"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:CardTypeCode"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCType"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:AccountNumber"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCNumber"/>
 </copy>
</assign>
<invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>

Calling a One-Way Mediator with a Synchronous BPEL Process

8-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8.3 Calling a One-Way Mediator with a Synchronous BPEL Process
You can expose a synchronous interface in the front end while using an asynchronous
callback in the back end to simulate a synchronous reply. This is the default behavior
in BPEL processes with the automatic setting of the configuration.transaction
property to requiresNew in the composite.xml file. Example 8–6 provides details.

Example 8–6 configuration.transaction Property

<component name="BPELProcess1">
@ <implementation.bpel src="BPELProcess1.bpel"/>
@ <property name="configuration.transaction" type="xs:string"
@ many="false">requiresNew</property>
@ </component>

RequiresNew is the recommended value. If you want to participate in the client's
transaction, you must set the configuration.transaction property to
Required.

9

Invoking an Asynchronous Web Service from a BPEL Process 9-1

9 Invoking an Asynchronous Web Service
from a BPEL Process

This chapter describes how to call an asynchronous web service. Asynchronous
messaging styles are useful for environments in which a service, such as a loan
processor, can take a long time to process a client request. Asynchronous services also
provide a more reliable fault-tolerant and scalable architecture than synchronous
services.

This chapter includes the following sections:

■ Section 9.1, "Introduction to Invoking an Asynchronous Web Service"

■ Section 9.2, "Invoking an Asynchronous Web Service"

■ Section 9.3, "Using WS-Addressing in an Asynchronous Service"

■ Section 9.4, "Using Correlation Sets in an Asynchronous Service"

9.1 Introduction to Invoking an Asynchronous Web Service
This section introduces asynchronous web service invocation with a company called
United Loan. United Loan publishes an asynchronous web service that processes a
client’s loan application request and then returns a loan offer. This use case discusses
how to integrate a BPEL process service component with this asynchronous loan
application approver web service.

This use case illustrates the key design concepts for requesting information from an
asynchronous service, and then receiving the response. The asynchronous United Loan
service in this example is another BPEL process service component. However, the
same BPEL call can interact with any properly designed web service. The target web
service WSDL file contains the information necessary to request and receive the
necessary information.

For the asynchronous web service, the following actions take place (in order of
priority):

1. An assign activity prepares the loan application.

2. An invoke activity initiates the loan request. The contents of this request are put
into a request variable. This request variable is sent to the asynchronous loan
processor web service.

When the loan request is initiated, a correlation ID unique to the client and partner
link initiating the request is also sent to the loan processor web service. The
correlation ID ensures that the correct loan offer response is returned to the
corresponding loan application requester.

Invoking an Asynchronous Web Service

9-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. The loan processor web service then sends the correct response to the receive
activity, which has been tracked by the correlation ID.

4. An assign activity reads the loan application offer.

The remaining sections in this chapter provide specific details about the asynchronous
functionality.

9.2 Invoking an Asynchronous Web Service
This section provides an overview of the tasks for adding asynchronous functionality
to a BPEL process service component.

9.2.1 How to Invoke an Asynchronous Web Service
You perform the following steps to asynchronously invoke a web service:

■ Add a partner link

■ Add an invoke activity

■ Add a receive activity

■ Create assign activities

9.2.1.1 Adding a Partner Link for an Asynchronous Service
These instructions describe how to create a partner link in a BPEL process (for this
example, named LoanService) for the loan application approver web service.

To add a partner link for an asynchronous service:
1. In the SOA Composite Editor, drag a BPEL process from the Service Components

section of the Component Palette into the designer.

The Create BPEL Process dialog appears.

2. Follow the instructions in the dialog to create a BPEL process service component.

3. Click OK when complete.

4. In the SOA composite application in the SOA Composite Editor, double-click the
BPEL process service component (for this example, the component is named
LoanBroker).

The Oracle BPEL Designer appears.

5. In the Component Palette, expand BPEL Services.

6. Drag a Partner Link (Web Service/Adapter) into the right Partner Links swim
lane.

The Create Partner Link dialog appears.

7. Enter the following details to create a partner link and select the loan application
approver web service:

■ Name

Enter a name for the partner link (for this example, LoanService is entered).

■ Process

Displays the BPEL process service component name (for this example,
LoanBroker appears).

Invoking an Asynchronous Web Service

Invoking an Asynchronous Web Service from a BPEL Process 9-3

■ WSDL URL

Enter the name of the Web Services Description Language (WSDL) file to use.
Click the SOA Resource Lookup icon above this field to locate the correct
WSDL.

■ Partner Link Type

Refers to the external service with which the BPEL process service component
is to interface. Select from the list (for this example, LoanService is selected).

■ Partner Role

Refers to the role of the external source, for example, provider. Select from the
list (for this example, LoanServiceProvider is selected).

■ My Role

Refers to the role of the BPEL process service component in this interaction.
Select from the list (for this example, LoanServiceRequester is selected).

8. Click OK.

A new partner link for the loan application approver web service (United Loan)
appears in the swim lane of the designer.

9.2.1.2 Adding an Invoke Activity
Follow these instructions to create an invoke activity and a global input variable
named request. This activity initiates the asynchronous BPEL process service
component activity with the loan application approver web service (United Loan). The
loan application approver web service uses the request input variable to receive the
loan request from the client.

To add an invoke activity:
1. In the Component Palette, expand BPEL Activities and Components.

2. From the Component Palette, drag an invoke activity to beneath the receive
activity.

3. Go to the Structure window. Note that while this example describes variable
creation from the Structure window, you can also create variables by clicking the
Add icons to the right of the Input and Output fields of the Invoke dialog.

4. Right-click Variables and select Expand All Child Nodes.

5. In the second Variables folder in the tree, right-click and select Create Variable.

The Create Variable dialog box appears.

6. Enter the variable name and select Message Type from the options provided:

■ Simple Type

This option lets you select an XML schema simple type (for example, string,
boolean, and so on).

■ Message Type

This option enables you to select a WSDL message file definition of a partner
link or of the project WSDL file of the current BPEL process service component
(for example, a response message or a request message). You can specify
variables associated with message types as input or output variables for
invoke, receive, or reply activities.

Invoking an Asynchronous Web Service

9-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To display the message type, select the Message Type option, and then select
its Browse icon to display the Type Chooser dialog. From here, expand the
Message Types tree to make your selection. For this example, Message Types
> Partner Links > Loan Service > LoanService.wsdl > Message Types >
LoanServiceRequestMessage is selected.

■ Element

This option lets you select an XML schema element of the project schema file
or project WSDL file of the current BPEL process service component, or of a
partner link.

Figure 9–1 shows the Create Variable dialog.

Figure 9–1 Create Variable Dialog

7. Click OK.

8. Double-click the invoke activity to display the Invoke dialog.

9. In the Invoke dialog, select the partner link from the Partner Link list (for this
example, LoanService is selected) and initiate from the Operation list.

10. To the right of the Input Variable field, click the second icon and select the input
variable you created in Step 6.

The Variable Chooser dialog appears, where you can select the variable.

There is no output variable specified because the output variable is returned in the
receive operation. The invoke activity is created.

For more information about the invoke activity, see Section 9.2.2.5, "Invoke and
Receive Activities."

11. Click OK.

9.2.1.3 Adding a Receive Activity
Follow these steps to create a receive activity and a global output variable named
response. This activity waits for the loan application approver web service’s callback
operation. The loan application approver web service uses this output variable to send
the loan offer result to the client.

Invoking an Asynchronous Web Service

Invoking an Asynchronous Web Service from a BPEL Process 9-5

To add a receive activity:
1. From the Component Palette, drag a receive activity to the location right after the

invoke activity you created in Section 9.2.1.2, "Adding an Invoke Activity."

2. Create a variable to hold the receive information by invoking the Create Variable
dialog, as you did in Step 3 through Step 7, starting on page 9-3.

Figure 9–2 shows the Create Variable dialog.

Figure 9–2 Create Variable Dialog

3. Double-click the receive activity and change its name to receive_invoke.

4. From the Partner Link list, select the partner link (for this example, LoanService is
selected).

5. From the Operation list, select onResult. Do not select the Create Instance
checkbox.

6. Select the variable you created in Step 3 through Step 7, starting on page 9-3.

7. Click OK.

The receive activity and the output variable are created. Because the initial receive
activity in the BPEL file (for this example, LoanBroker.bpel) created the initial
BPEL process service component instance, a second instance does not need to be
created.

9.2.1.4 Performing Additional Activities
In addition to the asynchronous-specific tasks, you must perform the following tasks.

■ Create an initial assign activity for data manipulation in front of the invoke
activity that copies the client’s input variable loan application request document
payload into the loan application approver web service’s request variable
payload.

■ Create a second assign activity for data manipulation after the receive activity that
copies the loan application approver web service’s response variable loan
application results payload into the output variable for the client to receive.

9.2.2 What Happens When You Invoke an Asynchronous Web Service
This section describes what happens when you invoke an asynchronous web service.

Invoking an Asynchronous Web Service

9-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

9.2.2.1 portType Section of the WSDL File
The portType section of the WSDL file (in this example, for LoanService) defines
the ports to be used for the asynchronous service.

Asynchronous services have two port types. Each port type performs a one-way
operation. In this example, one port type responds to the asynchronous process and
the other calls back the client with the asynchronous response. In the example shown
in Example 9–1, the portType LoanServiceCallback receives the client’s loan
application request and the portType LoanService asynchronously calls back the
client with the loan offer response.

Example 9–1 portType Definition

<!-- portType implemented by the LoanService BPEL process -->
 <portType name="LoanService">
 <operation name="initiate">
 <input message="tns:LoanServiceRequestMessage"/>
 </operation>
 </portType>
<!-- portType implemented by the requester of LoanService BPEL process
for asynchronous callback purposes
-->
 <portType name="LoanServiceCallback">
 <operation name="onResult">
 <input message="tns:LoanServiceResultMessage"/>
 </operation>
 </portType>

9.2.2.2 partnerLinkType Section of the WSDL File
The partnerLinkType section of the WSDL file (in this example, for LoanService)
defines the following characteristics of the BPEL process service component:

■ The role (operation) played

■ The portType provided for receiving messages within the conversation

Partner link types in asynchronous services have two roles: one for the web service
provider and one for the client requester.

In the conversation shown in Example 9–2, the LoanServiceProvider role and
LoanService portType are used for client request messages and the
LoanServiceRequester role and LoanServiceCallback portType are used for
asynchronously returning (calling back) response messages to the client.

Example 9–2 partnerLinkType Definition

<plnk:partnerLinkType name="LoanService">
 <plnk:role name="LoanServiceProvider">
 <plnk:portType name="client:LoanService"/>
 </plnk:role>
 <plnk:role name="LoanServiceRequester">
 <plnk:portType name="client:LoanServiceCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>

Two port types are combined into this single asynchronous BPEL process service
component: portType="services:LoanService" of the invoke activity and
portType="services:LoanServiceCallback" of the receive activity. Port
types are essentially a collection of operations to be performed. For this BPEL process

Invoking an Asynchronous Web Service

Invoking an Asynchronous Web Service from a BPEL Process 9-7

service component, there are two operations to perform: initiate in the invoke
activity and onResult in the receive activity.

9.2.2.3 Partner Links Section in the BPEL File
To call the service from BPEL, you use the BPEL file to define how the process
interfaces with the web service. View the partnerLinks section. The services with
which a process interacts are designed as partner links. Each partner link is
characterized by a partnerLinkType.

Each partner link is named. This name is used for all service interactions through that
partner link. This is critical in correlating responses to different partner links for
simultaneous requests of the same type.

Asynchronous processes use a second partner link for the callback to the client. In this
example, the second partner link, LoanService, is used by the loan application
approver web service. Example 9–3 provides an example.

Example 9–3 partnerLink Definition

 <!-- This process invokes the asynchronous LoanService. -->

 <partnerLink name="LoanService"
 partnerLinkType="services:LoanService"
 myRole="LoanServiceRequester"
 partnerRole="LoanServiceProvider"/>
 </partnerLinks>

The attribute myRole indicates the role of the client. The attribute partnerRole role
indicates the role of the partner in this conversation. Each partnerLinkType has a
myRole and partnerRole attribute in asynchronous processes.

9.2.2.4 Composite Application File
In the composite.xml file, the loan application approver web service appears, as
shown in Example 9–4.

Example 9–4 Loan Application Approver Web Service

<component name="LoanBroker">
 <implementation.bpel process="LoanBroker.bpel"/>
</component>

For more information, see Section 9.2.1.1, "Adding a Partner Link for an Asynchronous
Service" for instructions on creating a partner link.

9.2.2.5 Invoke and Receive Activities
View the variables and sequence sections. Two areas of particular interest concern
the invoke and receive activities:

■ An invoke activity invokes a synchronous web service (as discussed in Chapter 8,
"Invoking a Synchronous Web Service from a BPEL Process") or initiates an
asynchronous service.

The invoke activity includes the request global input variable defined in the
variables section. The request global input variable is used by the loan
application approver web service. This variable contains the contents of the initial
loan application request document.

Invoking an Asynchronous Web Service

9-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ A receive activity that waits for the asynchronous callback from the loan
application approver web service. The receive activity includes the response
global output variable defined in the variables section. This variable contains
the loan offer response. The receive activity asynchronously waits for a callback
message from a service. While the BPEL process service component is waiting, it is
dehydrated, or compressed and stored, until the callback message arrives.

Example 9–5 provides an example.

Example 9–5 Invoke and Receive Activities

 <variables>

 <variable name="request"
 messageType="services:LoanServiceRequestMessage"/>
 <variable name="response"
 messageType="services:LoanServiceResultMessage"/>
 </variables>

<sequence>

 <!-- initialize the input of LoanService -->
 <assign>
 <!-- initiate the remote process -->
 <invoke name="invoke" partnerLink="LoanService"
 portType="services:LoanService"
 operation="initiate" inputVariable="request"/>

 <!-- receive the result of the remote process -->
 <receive name="receive_invoke" partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="response"/>

When an asynchronous service is initiated with the invoke activity, a correlation ID
unique to the client request is also sent, using Web Services Addressing
(WS-Addressing) (described in Section 9.3, "Using WS-Addressing in an
Asynchronous Service"). Because multiple processes may be waiting for service
callbacks, the server must know which BPEL process service component instance is
waiting for a callback message from the loan application approver web service. The
correlation ID enables the server to correlate the response with the appropriate
requesting instance.

9.2.2.6 createInstance Attribute for Starting a New Instance
You may notice a createInstance attribute in the initial receive activity. In this
initial receive activity, the createInstance element is set to yes. This starts a new
instance of the BPEL process service component. At least one instance startup is
required for a conversation. For this reason, you set the createInstance variable to
no in the second receive activity.

Example 9–6 shows the source code for the createInstance attribute:

Example 9–6 createInstance Attribute

 <!-- receive input from requestor -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:LoanBroker"
 operation="initiate" variable="input"
 createInstance="yes"/>

Using WS-Addressing in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 9-9

9.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous
Processes
To automatically maintain long-running asynchronous processes and their current
state information in a database while they wait for asynchronous callbacks, you use a
database as a dehydration store. Storing the process in a database preserves the
process and prevents any loss of state or reliability if a system shuts down or a
network problem occurs. This feature increases both BPEL process service component
reliability and scalability. You can also use it to support clustering and failover.

You insert this point between the invoke activity and receive activity.

9.2.2.8 Multiple Runtime Endpoint Locations
Oracle SOA Suite provides support for specifying multiple partner link endpoint
locations. This capability is useful for failover purposes if the first endpoint is down.
To provide an alternate partner link endpoint location, add the location attribute to
the composite.xml file. Example 9–7 provides an example.

Example 9–7 Alternate Runtime Endpoint Location

<reference name="HeaderService ...>
<binding.ws port="http://services.otn.com/HelloWorldApp#wsdl.endpoint(client/
 HelloWorldService_pt)"
location="http://server:port/soa-infra/services/default/
 HelloWorldService!1.0/client?WSDL">
<property name="endpointURI">http://jsmith.us.oracle.com:80/a.jsp
@http://myhost.us.oracle.com:8888/soa-infra/services/HelloWorldApp/HelloWorld!
1.0*2007-10-22_14-33-04_195/client
 </property>
</binding.ws>
</reference>

9.3 Using WS-Addressing in an Asynchronous Service
Because there can be many active instances at any time, the server must be able to
direct web service responses to the correct BPEL process service component instance.
You can use WS-Addressing to identify asynchronous messages to ensure that
asynchronous callbacks locate the appropriate client.

Figure 9–3 provides an overview of WS-Addressing. WS-Addressing uses Simple
Object Access Protocol (SOAP) headers for asynchronous message correlation.
Messages are independent of the transport or application used.

Using WS-Addressing in an Asynchronous Service

9-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 9–3 Callback with WS-Addressing Headers

Figure 9–3 shows how messages are passed along with WS headers so that the
response can be sent to the correct destination.

The example in this chapter uses WS-Addressing for correlation. To view the
messages, you can use TCP tunneling, which is described in Section 9.3.1.1, "Using
TCP Tunneling to See Messages Exchanged Between Programs."

WS-Addressing defines the following information typically provided by transport
protocols and messaging systems. This information is processed independently of the
transport or application:

■ Endpoint location (reply-to address)

The reply-to address specifies the location at which a BPEL client is listening for a
callback message.

■ Conversation ID

Use TCP tunneling to view SOAP messages exchanged between the BPEL process
service component flow and the web service (including those containing the
correlation ID). You can see the exact SOAP messages that are sent to, or received
from, services with which a BPEL process service component flow communicates.

You insert a software listener between your BPEL process service component flow
and the web service. Your BPEL process service component flow communicates
with the listener (called a TCP tunnel). The listener forwards your messages to the
web service, and also displays them. Responses from the web service are returned
to the tunnel, which displays and forwards them back to the BPEL process service
component.

Initiate
service

<invoke>

Wait for
callback

<receive>

Async
Loan

Processor
Service

BPEL Process
HelloWorld.bpel

WSDL
LoanService
PartnerLink

d3

loanApp
<variable>

d3

loanOffer
<variable>

WS-Addressing Header:
· callback location
· correlation id (relatesTo)

d4

WS-Addressing Header:
· correlation id (relatesTo)

Note 1: the correlation id allows
the BPEL server to know which
instance of the process is
waiting for this callback
messages.

Note 2: The alternative
approach is to use
content-based correlation
using <correlationSet>

d3

[2.05] receive
[2.06] process
[2.22] callback

Initiate Port

Callback Port

Using WS-Addressing in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 9-11

9.3.1 How to Use WS-Addressing in an Asynchronous Service
WS-Addressing is a public specification and is the default correlation method
supported by Oracle BPEL Process Manager. You do not need to edit the .bpel and
.wsdl files to use WS-Addressing.

9.3.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs
The messages that are exchanged between programs and services can be seen through
TCP tunneling. This is particularly useful when you want to see the exact SOAP
messages exchanged between the BPEL process service component flow and web
services.

To monitor the SOAP messages, insert a software listener between your flow and the
service. Your flow communicates with the listener (called a TCP tunnel) and the
listener forwards your messages to the service, and displays them. Likewise, responses
from the service are returned to the tunnel, which displays them and then forwards
them back to the flow.

To see all the messages exchanged between the server and a web service, you need
only a single TCP tunnel for synchronous services because all the pertinent messages
are communicated in a single request and reply interaction with the service. For
asynchronous services, you must set up two tunnels, one for the invocation of the
service and another for the callback port of the flow.

9.3.1.1.1 Setting up a TCP Listener for Synchronous Services Follow these steps to set up a
TCP listener for synchronous services initiated by an Oracle BPEL Process Manager
process:

1. Visit the following URL for instructions on how to download and install Axis TCP
Monitor (tcpmon)

http://ws.apache.org/commons/tcpmon/

2. Visit the following URL for instructions on how to use tcpmon:

http://ws.apache.org/axis/java/user-guide.html

3. Place axis.jar in your class path.

4. Start tcpmon:

C:\...\> java org.apache.axis.utils.tcpmon localport remoteHost
port_on_which_remote_server_is_running

5. In the composite.xml file, add the endpointURI property under binding.ws
for your flow to override the endpoint of the service.

6. From the operating system command prompt, compile and deploy the process
with ant.

Note that the same technique can be used to see the SOAP messages passed to
invoke a BPEL process service component as a web service from another tool kit
such as Axis or .NET.

9.3.1.1.2 Setting up a TCP Listener for Asynchronous Services Follow these steps to set up a
TCP listener to display the SOAP messages for callbacks from asynchronous services:

1. Start a TCP listener to listen on a port and to send on the Oracle BPEL Process
Manager port.

a. Open Oracle Enterprise Manager Fusion Middleware Control Console.

Using WS-Addressing in an Asynchronous Service

9-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

b. From the SOA Infrastructure menu, select SOA Administration > Common
Properties.

c. Specify the value for Callback Server URL. This URL is sent by the server as
part of the asynchronous callback address to the invoker.

2. From the SOA Infrastructure menu, select Administration > System MBean
Browser.

3. Expand Application Defined MBeans > oracle.soa.config > Server : soa_server >
SCAComposite.

where soa_server is the specific server instance name (for example, AdminServer).

All the SOA composite applications deployed on the server appear.

4. Follow these steps to set this property on a composite application. This action
enables it to apply to all bindings in the composite application.

a. Click your composite.

b. Ensure the Attributes tab is selected.

c. In the Name column, click Properties.

d. Click the Add icon.

e. Expand the newly added Element_number (appears at the end of the list).

where number is the next sequential number beyond the last property. For
example, if the property list contains twelve elements, adding a new property
causes Element_13 to be displayed.

f. In the name field, enter oracle.webservices.local.optimization.

g. In the value field, enter false.

h. In the many field, enter false.

i. Click Apply, and then click Return.

j. In the Name column on the Operations tab, click save.

k. Click Invoke to execute the operation.

l. Click Return or click a node in the System MBean Browser pane.

5. Follow these steps to set this property on a specific binding.

a. Expand your composite application. and drill down to the specific
SCAComposite.SCAReference.SCABinding folder.

b. Click WSBinding.

c. Perform steps 4b through 4l.

6. Initiate any flow that invokes asynchronous web services. You can combine this
with the synchronous TCP tunneling configuration to send a service initiation
request through your first TCP tunnel.

The callbacks from the asynchronous services are shown in the TCP listener.

Note: After adding, deleting, or updating a property, you can click
the Refresh cached tree data icon in the upper right corner of the
System MBean Browser page to see the new data.

Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 9-13

If you are an Oracle JDeveloper user, you can also use the built-in Packet Monitor to
see SOAP messages for both synchronous and asynchronous services.

9.4 Using Correlation Sets in an Asynchronous Service
Correlation sets provide another method for directing web service responses to the
correct BPEL process service component instance. You can use correlation sets to
identify asynchronous messages to ensure that asynchronous callbacks locate the
appropriate client.

Correlation sets are a BPEL mechanism that provides for the correlation of
asynchronous messages based on message body contents. To use this method, define
the correlation sets in your .bpel file. This method is designed for services that do not
support WS-Addressing or for certain sophisticated conversation patterns, for
example, when the conversation is in the form A > B > C > A instead of A > B >
A.

This section describes how to use correlation sets in an asynchronous service with
Oracle JDeveloper. Correlation sets enable you to correlate asynchronous messages
based on message body contents. You define correlation sets when interactions are not
simple invoke-receive activities. This example illustrates how to use correlation sets
for a process having three receive activities with no associated invoke activities.

For a sample (bpel-202-CorrelatedEvents) that shows how a BPEL process can
use correlations for two-way communication using events, visit the following URL:

http://www.oracle.com/technology/sample_code/products/bpel

9.4.1 How to Use Correlation Sets in an Asynchronous Service
This section describes the steps to perform to use correlation sets in an asynchronous
service.

9.4.1.1 Step 1: Creating a Project

To create a project:
1. Start Oracle JDeveloper.

2. From the File main menu, select New > Applications.

3. Select SOA Application, and click OK.

The Create SOA Application Wizard appears.

4. In the Application Name field, enter MyCorrelationSetApp.

5. Accept the default values for all remaining settings, and click Next.

6. In the Project Name field, enter MyCorrelationSetComposite.

7. Accept the default values for all remaining settings, and click Next.

8. In the Composite Template section, select Composite With BPEL, and click
Finish.

The Create BPEL Process dialog appears.

9. Enter the following values:

Using Correlation Sets in an Asynchronous Service

9-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

10. Accept the default values for all remaining settings, and click Finish.

9.4.1.2 Step 2: Configuring Partner Links and File Adapter Services
You now create three partner links that use the SOAP service.

This section contains these topics:

■ You create an initial partner link with an adapter service for reading a loan
application.

■ You create a second partner link with an adapter service for reading an application
response.

■ You create a third partner link with an adapter service for reading a customer
response.

9.4.1.2.1 Creating an Initial Partner Link and File Adapter Service

To create an initial partner link and file adapter service:
1. Double-click the MyCorrelationSet BPEL process.

2. In the Component Palette, expand BPEL Services.

3. Drag an initial Partner Link activity into the right swim lane of the designer.

4. Click the third icon at the top (the Define Service icon). This starts the Adapter
Configuration Wizard, as shown in Figure 9–4.

Figure 9–4 Adapter Configuration Wizard Startup

5. In the Configure Service or Adapter dialog, select File Adapter and click Next.

6. In the Welcome dialog, click Next.

7. In the Service Name field of the Service Name dialog, enter FirstReceive and
click Next.

8. In the Operation dialog, select Read File as the Operation Type and click Next.
The Operation Name field is automatically filled in with Read.

9. Select Directory Names are Specified as Physical Path.

10. Above the Directory for Incoming Files (physical path) field, click Browse.

11. Select a directory from which to read files (for this example,
C:\files\receiveprocess\FirstInputDir is selected).

Table 9–1 Create BPEL Process Dialog Fields and Values

Field Value

Name Enter MyCorrelationSet.

Template Select Asynchronous BPEL Process.

Expose as a SOAP Service Select the checkbox. After process creation, note the SOAP
service that appears in the Exposed Services swimlane. This
service provides the entry point to the composite application
from the outside world.

Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 9-15

12. Click Select.

13. Click Next.

14. In the File Filtering dialog, enter appropriate file filtering parameters.

15. Click Next.

16. In the File Polling dialog, enter appropriate file polling parameters.

17. Click Next.

18. In the Messages dialog, click Browse next to the Schema Location field to display
the Type Chooser dialog.

19. Select an appropriate XSD schema file. For this example, Book1_4.xsd is the
schema and LoanAppl is the schema element selected.

20. Click OK.

The Schema Location field (Book1_4.xsd for this example) and the Schema
Element field (LoanAppl for this example) are filled in.

21. Click Next.

22. Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically
completed. The dialog looks as shown in Table 9–2:

23. Click OK.

9.4.1.2.2 Creating a Second Partner Link and File Adapter Service

To create a second partner link and file adapter service:
1. Drag a second PartnerLink activity beneath the FirstReceivePL partner link

activity.

2. At the top, click the third icon (the Define Service icon).

3. In the Welcome dialog, click Next.

4. In the Adapter Type dialog, select File Adapter and click Next.

5. In the Service Name field of the Service Name dialog, enter SecondFileRead
and click Next. This name must be unique from the one you entered in Step 7 on
page 9-14.

6. In the Operation dialog, select Read File as the Operation Type.

Table 9–2 Partner Link Dialog Fields and Values

Field Value

Name FirstReceive

WSDL URL file:/C:/JDeveloper/mywork/Application_Name/SOA_Project_
Name/FirstReceive.wsdl

where C:/JDeveloper represents the Oracle JDeveloper home
directory for this example.

Partner Link Type Read_plt

Partner Role Leave unspecified.

My Role Read_role

Using Correlation Sets in an Asynchronous Service

9-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. In the Operation Name field, change the name to Read1.

8. Click Next.

9. Select Directory Names are Specified as Physical Path.

10. Above the Directory for Incoming Files (physical path) field, click Browse.

11. Select a directory from which to read files (for this example,
C:\files\receiveprocess\SecondInputDir is entered).

12. Click Select.

13. Click Next.

14. Enter appropriate file filtering parameters in the File Filtering dialog.

15. Click Next.

16. Enter appropriate file polling parameters in the File Polling dialog.

17. Click Next.

18. Next to the Schema Location field in the Messages dialog, click Browse to display
the Type Chooser dialog.

19. Select an appropriate XSD schema file. For this example, Book1_5.xsd is the
schema and LoanAppResponse is the schema element selected.

20. Click OK.

The Schema Location field (Book1_5.xsd for this example) and the Schema
Element field (LoanAppResponse for this example) are filled in.

21. Click Next.

22. Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically
completed. The dialog looks as shown in Table 9–3:

23. Click OK.

9.4.1.2.3 Creating a Third Partner Link and File Adapter Service

To create a third partner link and file adapter service:
1. Drag a third PartnerLink activity beneath the SecondReceivePL partner link

activity.

2. At the top, click the third icon (the Define Service icon).

Table 9–3 Partner Link Dialog Fields and Values

Field Value

Name SecondReceive

WSDL URL file:/C:/JDeveloper/mywork/Application_Name/SOA_Project_
Name/SecondFileRead.wsdl

where C:/JDeveloper represents the Oracle JDeveloper home
directory for this example.

Partner Link Type Read1_plt

Partner Role Leave unspecified.

My Role Read1_role

Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 9-17

3. In the Welcome dialog, click Next.

4. In the Adapter Type dialog, select File Adapter and click Next.

5. In the Service Name field of the Service Name dialog, enter ThirdFileRead and
click Next. This name must be unique from the one you entered in Step 7 on
page 9-14 and Step 5 on page 9-15.

6. In the Operation dialog, select Read File as the Operation Type.

7. In the Operation Name field, change the name to Read2. This name must be
unique.

8. Click Next.

9. Select Directory Names are Specified as Physical Path.

10. Above the Directory for Incoming Files (physical path) field, click Browse.

11. Select a directory from which to read files (for this example,
C:\files\receiveprocess\ThirdInputDir is entered).

12. Click Select.

13. Click Next.

14. Enter appropriate file filtering parameters in the File Filtering dialog.

15. Click Next.

16. Enter appropriate file polling parameters in the File Polling dialog.

17. Click Next.

18. Next to the Schema Location field in the Messages dialog, click Browse to display
the Type Chooser dialog.

19. Select an appropriate XSD schema file. For this example, Book1_6.xsd is the
schema and CustResponse is the schema element selected.

20. Click OK.

The Schema Location field (Book1_6.xsd for this example) and the Schema
Element field (CustResponse for this example) are filled in.

21. Click Next.

22. Click Finish.

You are returned to the Partner Link dialog. All other fields are automatically
completed. The dialog looks as shown in Table 9–4:

Table 9–4 Partner Link Dialog Fields and Values

Field Value

Name ThirdReceive

WSDL URL file:/C:/JDeveloper/mywork/Application_Name/SOA_Project_
Name/ThirdFileRead.wsdl

where C:/JDeveloper represents the Oracle JDeveloper home
directory for this example.

Partner Link Type Read2_plt

Partner Role Leave unspecified.

My Role Read2_role

Using Correlation Sets in an Asynchronous Service

9-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

23. Click OK.

When complete, the designer looks as shown in Figure 9–5:

Figure 9–5 BPEL Process Design

9.4.1.3 Step 3: Creating Three Receive Activities
You now create three receive activities; one for each partner link. The receive activities
specify the partner link from which to receive information.

9.4.1.3.1 Creating an Initial Receive Activity

To create an initial receive activity:
1. Expand BPEL Activities in the Component Palette.

2. From the BPEL Activities and Components list of the Component Palette section,
drag a Receive activity beneath the receiveInput receive activity in the designer.

3. Double-click the receive icon to display the Receive dialog.

4. Enter the details described in Table 9–5 to associate the first partner link
(FirstReceive) with the first receive activity:

The Operation (Read) field is automatically filled in.

5. To the right of the Variable field, click the first icon. This is the automatic variable
creation icon.

6. In the Create Variable dialog, click OK.

A variable named receiveFirst_Read_InputVariable is automatically created in
the Variable field.

7. Ensure that you selected the Create Instance checkbox, as mentioned in Step 4.

8. Click OK.

Table 9–5 Receive Dialog Fields and Values

Field Value

Name receiveFirst

Partner Link FirstReceive

Create Instance Select this checkbox.

Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 9-19

9.4.1.3.2 Creating a Second Receive Activity

To create a second receive activity:
1. From the Component Palette, drag a second Receive activity beneath the

receiveFirst receive activity.

2. Double-click the receive icon to display the Receive dialog.

3. Enter the details described in Table 9–6 to associate the second partner link
(SecondReceivePL) with the second receive activity:

The Operation (Read1) field is automatically filled in.

4. To the right of the Variable field, click the first icon.

5. In the Create Variable dialog, click OK.

A variable named receiveSecond_Read1_InputVariable is automatically created
in the Variable field.

6. Click OK.

9.4.1.3.3 Creating a Third Receive Activity

To create a third receive activity:
1. From the Component Palette, drag a third Receive activity beneath the

receiveSecond receive activity.

2. Double-click the receive icon to display the Receive dialog.

3. Enter the details described in Table 9–7 to associate the third partner link
(ThirdReceivePL) with the third receive activity:

The Operation (Read2) field is automatically filled in.

4. To the right of the Variable field, click the first icon.

5. In the Create Variable dialog, click OK.

A variable named receiveThird_Read2_InputVariable is automatically created in
the Variable field.

6. Click OK.

Each receive activity is now associated with a specific partner link.

Table 9–6 Receive Dialog Fields and Values

Field Value

Name receiveSecond

Partner Link SecondFileRead

Create Instance Do not select this checkbox.

Table 9–7 Receive Dialog Fields and Values

Field Value

Name receiveThird

Partner Link ThirdFileRead

Create Instance Do not select this checkbox.

Using Correlation Sets in an Asynchronous Service

9-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

9.4.1.4 Step 4: Creating Correlation Sets
You now create correlation sets. A set of correlation tokens is a set of properties shared
by all messages in the correlated group.

9.4.1.4.1 Creating an Initial Correlation Set

To create an initial correlation set:
1. In the Structure window of Oracle JDeveloper, right-click Correlation Sets and

select Expand All Child Nodes.

2. In the second Correlation Sets folder, right-click and select Create Correlation Set.

3. In the Name field of the Create Correlation Set dialog, enter CorrelationSet1.

4. In the Properties section, click the Add icon to display the Property Chooser
dialog.

5. Select Properties, then click the Add icon (first icon at the top) to display the
Create Correlation Set Property dialog.

6. In the Name field, enter NameCorr.

7. To the right of the Type field, click the Browse icon.

8. In the Type Chooser dialog, select string and click OK.

9. Click OK to close the Create Correlation Set Property dialog, the Property Chooser
dialog, and the Create Correlation Set dialog.

9.4.1.4.2 Creating a Second Correlation Set

To create a second correlation set:
1. Return to the Correlation Sets section in the Structure window of Oracle

JDeveloper.

2. Right-click the Correlation Sets folder and select Create Correlation Set.

3. In the Name field of the Create Correlation Set dialog, enter CorrelationSet2.

4. In the Properties section, click the Add icon to display the Property Chooser
dialog.

5. Select Properties, then click the Add icon to display the Create Correlation Set
Property dialog.

6. In the Name field, enter IDCorr.

7. To the right of the Type field, click the Browse icon.

8. In the Type Chooser dialog, select double and click OK.

9. Click OK to close the Create Correlation Set Property dialog, the Property Chooser
dialog, and the Create Correlation Set dialog.

9.4.1.5 Step 5: Associating Correlation Sets with Receive Activities
You now associate the correlation sets with the receive activities. You perform the
following correlation set tasks:

■ For the first correlated group, the first and second receive activities are correlated
with the CorrelationSet1 correlation set.

■ For the second correlated group, the second and third receive activities are
correlated with the CorrelationSet2 correlation set.

Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 9-21

9.4.1.5.1 Associating the First Correlation Set with a Receive Activity

To associate the first correlation set with a receive activity:
1. Double-click the receiveFirst receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the second Add icon to display the Correlation Set Chooser dialog.

4. Select CorrelationSet1, then click OK.

5. Set the Initiate column to yes. When set to yes, the set is initiated with the values
of the properties occurring in the message being exchanged.

6. Click OK.

9.4.1.5.2 Associating the Second Correlation Set with a Receive Activity

To associate the second correlation set with a receive activity:
1. Double-click the receiveSecond receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the second Add icon to display the Correlation Set Chooser dialog.

4. Select CorrelationSet2, then click OK.

5. Set the Initiate column to yes.

6. Click Add and select CorrelationSet1.

7. Click OK.

8. Set the Initiate column to no for CorrelationSet1.

9. Click OK.

This groups the first and second receive activities into a correlated group.

9.4.1.5.3 Associating the Third Correlation Set with a Receive Activity

To associate the third correlation set with a receive activity:
1. Double-click the receiveThird receive activity to display the Receive dialog.

2. Click the Correlations tab.

3. Click the second Add icon to display the Correlation Set Chooser dialog.

4. Select CorrelationSet2, then click OK.

5. Set the Initiate column to no for CorrelationSet2.

6. Click OK.

This groups the second and third receive activities into a second correlated group.

9.4.1.6 Step 6: Creating Property Aliases
Property aliases enable you to map a global property to a field in a specific message
part. This action enables the property name to become an alias for the message part
and location. The alias can be used in XPath expressions.

9.4.1.6.1 Creating Property Aliases for NameCorr You create the following two property
aliases for the NameCorr correlation set:

Using Correlation Sets in an Asynchronous Service

9-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Map NameCorr to the LoanAppl message type part of the receiveFirst receive
activity. This receive activity is associated with the FirstReceivePL partner link
(defined by the FirstReceive.wsdl file).

■ Map NameCorr to the incoming LoanAppResponse message type part of the
receiveSecond receive activity. This receive activity is associated with the
SecondReceivePL partner link (defined by the SecondFileRead.wsdl file).

To create property aliases for NameCorr:
1. In the Structure window of Oracle JDeveloper, right-click Property Aliases.

2. Select Create Property Alias.

3. From the Property list, select NameCorr.

4. Expand and select Message Types > Web Services > FirstReceivePL >
FirstReceive.wsdl > Message Types > LoanAppl_msg > Part - LoanAppl.

5. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns2:LoanAppl/ns2:Name

6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for NameCorr.

8. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl
> Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

9. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4:LoanAppResponse/ns4:APR

9.4.1.6.2 Creating Property Aliases for IDCorr

You create the following two property aliases for the IDCorr correlation set:

■ Map IDCorr to the LoanAppResponse message type part of the receiveSecond
receive activity. This receive activity is associated with the SecondReceivePL
partner link (defined by the SecondFileRead.wsdl file).

■ Map IDCorr to the CustResponse message type part of the receiveThird receive
activity. This receive activity is associated with the ThirdReceivePL partner link
(defined by the ThirdFileRead.wsdl file).

To create property aliases for IDCorr:
1. In the Structure window, right-click Property Aliases.

2. Select Create Property Alias.

3. In the Property list, select IDCorr.

4. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl
> Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

5. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns4:LoanAppResponse/ns4:APR

6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for IDCorr.

8. Expand and select Message Types > Project WSDL Files > ThirdFileRead.wsdl >
Message Types > CustResponse_msg > Part - CustResponse.

Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service from a BPEL Process 9-23

9. In the Query field, press Ctrl+Space to define the following XPath expression:

/ns6:CustResponse/ns6:APR

Design is now complete.

9.4.1.7 Step 7: Reviewing WSDL File Content

To review WSDL file content:
1. Refresh the Application Navigator.

The NameCorr and IDCorr correlation set properties are defined in the
MyCorrelationSet_Properties.wsdl file in the Application Navigator of
Oracle JDeveloper. Example 9–8 provides an example.

Example 9–8 Correlation Set Properties

<definitions
 name="properties"
 targetNamespace="http://xmlns.oracle.com/MyCorrelationSet/correlationset"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <bpws:property name="NameCorr" type="xsd:string"/>
 <bpws:property name="IDCorr" type="xsd:double"/>
</definitions>

The property aliases are defined in the MyCorrelationSet.wsdl file, as shown
in Example 9–9:

Example 9–9 Property Aliases

<bpws:propertyAlias propertyName="ns1:NameCorr"
 messageType="ns3:LoanAppl_msg"
 part="LoanAppl" query="/ns2:LoanAppl/ns2:Name"/>

<bpws:propertyAlias propertyName="ns1:NameCorr"
 messageType="ns5:LoanAppResponse_msg"
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr"
 messageType="ns5:LoanAppResponse_msg"
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr"
 messageType="ns7:CustResponse_msg"
 part="CustResponse" query="/ns6:CustResponse/ns6:APR"/>

Because the BPEL process service component is not created as a web services
provider in this example, the MyCorrelationSet.wsdl file is not referenced in
the BPEL process service component. Therefore, you must import the
MyCorrelationSet.wsdl file inside the FirstReceive.wsdl file to reference
the correlation sets defined in the former WSDL. Example 9–10 provides an
example.

Example 9–10 WSDL File Import

<import namespace="http://xmlns.oracle.com/MyCorrelationSet"

Using Correlation Sets in an Asynchronous Service

9-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 location="MyCorrelationSet.wsdl"/>

10

Using Parallel Flow in a BPEL Process 10-1

10 Using Parallel Flow in a BPEL Process

This chapter describes how to use parallel flow in a BPEL process service component.
Parallel flows enable a BPEL process service component to perform multiple tasks at
the same time. Parallel flow is especially useful when you must perform several
time-consuming and independent tasks.

This chapter includes the following sections:

■ Section 10.1, "Introduction to Parallel Flows in BPEL Processes"

■ Section 10.2, "Creating a Parallel Flow"

■ Section 10.3, "Customizing the Number of Flow Activities with the flowN
Activity"

For additional information on creating parallel flows in a SOA composite application,
see Oracle Fusion Middleware Tutorial for Running and Building an Application with Oracle
SOA Suite.

10.1 Introduction to Parallel Flows in BPEL Processes
A BPEL process service component must sometimes gather information from multiple
asynchronous sources. Because each callback can take an undefined amount of time
(hours or days), it may take too long to call each service one at a time. By breaking the
calls into a parallel flow, a BPEL process service component can invoke multiple web
services at the same time, and receive the responses as they come in. This method is
much more time efficient.

Figure 10–1 shows the Retrieve_QuotesFromSuppliers flow activity of the WebLogic
Fusion Order Demo application. The Retrieve_QuotesFromSuppliers flow activity
sends order information to two suppliers in parallel: an internal warehouse
(InternalWarehouseService) and an external partner warehouse
(PartnerSupplierMediator). The two warehouses return their bids for the order to the
flow activity. Here, two asynchronous callbacks execute in parallel. One callback does
not have to wait for the other to complete first. Each response is stored in a different
global variable.

Creating a Parallel Flow

10-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 10–1 Parallel Flow Invocation

10.2 Creating a Parallel Flow
You can create a parallel flow in a BPEL process service component with the flow
activity. The flow activity enables you to specify one or more activities to be performed
concurrently. The flow activity also provides synchronization. The flow activity
completes when all activities in the flow have finished processing. Completion of this
activity includes the possibility that it can be skipped if its enabling condition is false.

10.2.1 How to Create a Parallel Flow

To create a parallel flow:
1. From the Component Palette, drag a Flow activity into the designer.

2. Click the + sign to expand the flow activity, as shown in Figure 10–2.

Figure 10–2 Flow Activity

The flow activity includes two branches, each with a box for functional elements.
Populate these boxes as you do a scope activity, either by building a function or
dragging activities into the boxes.

3. Drag and define additional activities onto each side of the flow to invoke multiple
services at the same time.

InternalWarehouseServicePartnerSupplierMediator

Initiate
service

<invoke>

Wait for
callback

<receive>

Wait for
callback

<receive>

<flow>

<sequence> <sequence>

BPEL
Process

WSDLWSDL

Initiate
service

<invoke>

Creating a Parallel Flow

Using Parallel Flow in a BPEL Process 10-3

Figure 10–3 Expanded Flow Activity

When complete, flow activity design can look as shown in Figure 10–4. This
example shows the Retrieve_QuotesFromSuppliers flow activity of the
WebLogicFusionOrderDemo application. Two branches are defined for receiving
bids, one for InternalWarehouseService and the other for
PartnerSupplierMediator.

Figure 10–4 Flow Activity After Design Completion

10.2.2 What Happens When You Create a Parallel Flow
A flow activity typically contains many sequence activities. Each sequence is
performed in parallel. Example 10–1 shows the syntax for two sequences of the
Retrieve_QuotesFromSuppliers flow activity in the OrderProcessor.bpel
file after design completion. However, a flow activity can have many sequences. A
flow activity can also contain other activities. In Example 10–1, each sequence in the
flow contains assign, invoke, and receive activities.

Creating a Parallel Flow

10-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 10–1 Flow Activity

<flow name="Retrieve_QuotesFromSuppliers">
 <sequence name="Sequence_4">
 <assign name="Assign_InternalWarehouseRequest">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:OrderId"/>
 <to variable="lInternalWarehouseInputVariable"
 part="payload"
 query="/ns1:WarehouseRequest/ns1:orderId"/>
 </copy>
 </assign>
 <invoke name="Invoke_InternalWarehouse"
 inputVariable="lInternalWarehouseInputVariable"
 partnerLink="InternalWarehouseService"
 portType="ns1:InternalWarehouseService"
 operation="process"/>
 <receive name="Receive_InternalWarehouse"
 createInstance="no"
 variable="lInternalWarehouseResponseVariable"
 partnerLink="InternalWarehouseService"
 portType="ns1:InternalWarehouseServiceCallback"
 operation="processResponse"/>
 <assign name="Assign_InterWHResponse">
 <bpelx:append>
 <bpelx:from variable="lInternalWarehouseResponseVariable"
 part="payload"
 query="/ns1:WarehouseResponse"/>
 <bpelx:to variable="gWarehouseQuotes"
 query="/ns1:WarehouseList"/>
 </bpelx:append>
 </assign>
 </sequence>
 <sequence name="Sequence_4">
 <assign name="Assign_PartnerRequest">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO"/>
 <to variable="lPartnerSupplierInputVariable"
 part="request" query="/ns4:orderInfoVOSDO"/>
 </copy>
 </assign>
 <invoke name="Invoke_PartnerSupplier"
 partnerLink="PartnerSupplierMediator"
 portType="ns15:execute_ptt" operation="execute"
 inputVariable="lPartnerSupplierInputVariable"/>
 <receive name="Receive_PartnerResponse"
 createInstance="no"
 variable="lPartnerResponseVariable"
 partnerLink="PartnerSupplierMediator"
 portType="ns15:callback_ptt" operation="callback"/>
 <assign name="Assign_PartnerWHResponse">
 <bpelx:append>
 <bpelx:from variable="lPartnerResponseVariable"
 part="callback"
 query="/ns1:WarehouseResponse"/>
 <bpelx:to variable="gWarehouseQuotes"
 query="/ns1:WarehouseList"/>
 </bpelx:append>
 </assign>

Customizing the Number of Flow Activities with the flowN Activity

Using Parallel Flow in a BPEL Process 10-5

 </sequence>
</flow>

10.3 Customizing the Number of Flow Activities with the flowN Activity
In the flow activity, the BPEL code determines the number of parallel branches.
However, often the number of branches required is different depending on the
available information. The flowN activity creates multiple flows equal to the value of
N, which is defined at runtime based on the data available and logic within the
process. An index variable increments each time a new branch is created, until the
index variable reaches the value of N.

The flowN activity performs activities on an arbitrary number of data elements. As the
number of elements changes, the BPEL process service component adjusts accordingly.

The branches created by flowN perform the same activities, but use different data.
Each branch uses the index variable to look up input variables. The index variable can
be used in the XPath expression to acquire the data specific for that branch.

For example, suppose there is an array of data. The BPEL process service component
uses a count function to determine the number of elements in the array. Then the
process sets N to be the number of elements. The index variable starts at a preset value
(zero is the default), and flowN creates branches to retrieve each element of the array
and perform activities using data contained in that element. These branches are
generated and performed in parallel, using all the values between the initial index
value and N. flowN terminates when the index variable reaches the value of N. For
example, if the array contains 3 elements, N is set to 3. Assuming the index variable
begins at 1, the flowN activity creates three parallel branches with indexes 1, 2, and 3.

The flowN activity can use data from other sources as well, including data obtained
from web services.

Figure 10–5 shows the runtime flow of a flowN activity in Oracle Enterprise Manager
Fusion Middleware Control Console that looks up three hotels. This is different from
the view because instead of showing the BPEL process service component, it shows
how the process has actually executed. In this case, there are three hotels, but the
number of branches changes to match the number of hotels available.

Customizing the Number of Flow Activities with the flowN Activity

10-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 10–5 Oracle Enterprise Manager Fusion Middleware Control Console View of the
Execution of a flowN activity

10.3.1 How to Create a flowN Activity

To create a flowN activity:
1. From the Component Palette, drag a FlowN activity into the designer.

2. Click the + sign to expand the FlowN activity.

3. Double-click the FlowN activity.

Figure 10–6 shows the flowN dialog.

Customizing the Number of Flow Activities with the flowN Activity

Using Parallel Flow in a BPEL Process 10-7

Figure 10–6 FlowN Dialog

The flowN dialog enables you to:

■ Name the activity

■ Enter a value or an expression for calculating the value of N (the number of
branches to create)

■ Define the index variable (the time to wait in each branch)

4. Drag and define additional activities in the flowN activity.

Figure 10–7 shows how a FlowN activity appears with additional activities.

Figure 10–7 FlowN Activity with Additional Activities

Customizing the Number of Flow Activities with the flowN Activity

10-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

10.3.2 What Happens When You Create a FlowN Activity
The following code shows the .bpel file that uses the flowN activity to look up
information on an arbitrary number of hotels. The following actions take place.

Example 10–2 shows the sequence name.

Example 10–2 Sequence Name

 <sequence name="main">
 <!-- Received input from requestor.
 Note: This maps to operation defined in NflowHotels.wsdl
 The requestor send a set of hotels names wrapped into the "inputVariable"
 -->

A receive activity calls the client partner link to get the information that the flowN
activity must define N times and look up hotel information. Example 10–3 provides an
example.

Example 10–3 Receive Activity

 <receive name="receiveInput" partnerLink="client"
 portType="client:NflowHotels" operation="initiate" variable="inputVariable"
 createInstance="yes"/>
 <!--
 The 'count()' Xpath function is used to get the number of hotelName
 noded passed in.
 An intermediate variable called "NbParallelFlow" is
 used to store the number of N flows being executed
 -->
 <assign name="getHotelsN">
 <copy>
 <from
expression="count(bpws:getVariableData('inputVariable','payload','/client:Nflow
HotelsProcessRequest/client:ListOfHotels/client:HotelName'));"/>
 <to variable="NbParallelFlow"/>
 </copy>
 </assign>
 <!-- Initiating the FlowN activity
 The N value is initialized with the value stored in the
 "NbParallelFlow" variable
 The variable call "Index" is defined as the index variable
 NOTE: Both "NbParallelFlow" and "Index" variables have to be declared
 -->

The flowN activity begins next. After defining a name for the activity of flowN, N is
defined as a value from the inputVariable, which is the number of hotel entries.
The activity also assigns index as the index variable. Example 10–4 provides an
example.

Example 10–4 FlowN Activity

<bpelx:flowN name="FlowN" N="bpws:getVariableData('NbParallelFlow')
indexVariable="Index’>
 <sequence name="Sequence_1">
 <!-- Fetching each hotelName by indexing the "inputVariable" with the
 "Index" variable.
 Note the usage of the "concat()" Xpath function to create the
 expression accessing the array element.
 -->

Customizing the Number of Flow Activities with the flowN Activity

Using Parallel Flow in a BPEL Process 10-9

The copy rule shown in Example 10–5 then uses the index variable to concatenate the
hotel entries into a list:

Example 10–5 Assign Activity

<assign name="setHotelId">
 <copy>
 <from expression=
"bpws:getVariableData('inputVariable','payload',concat('/client:Nflo
wHotelsProcessRequest/client:ListOfHotels/client:HotelName[',
bpws:getVariableData('Index'),']'))"/>
 <to variable="InvokeHotelDetailInputVariable" part="payload"
 query="/ns2:hotelInfoRequest/ns2:id"/>
 </copy>
 </assign>

Using the hotel information, an invoke activity looks up detailed information for
each hotel through a web service. Example 10–6 provides an example.

Example 10–6 Invoke Activity

 <!-- For each hotel, invoke the web service giving detailed information
 on the hotel -->
 <invoke name="InvokeHotelDetail" partnerLink="getHotelDetail"
 portType="ns2:getHotelDetail" operation="process"
 inputVariable="InvokeHotelDetailInputVariable"
 outputVariable="InvokeHotelDetailOutputVariable"/>
 <!-- This procees does not do anything with the retrieved information.
 In real life, it could then be used to continue the process.
 Note: Meanwhile an indexing variable is used. Unlike a while loop, the
 activities are executed in parallel, not sequentially.
 -->
 </sequence>
 </bpelx:flowN>

Finally, the BPEL process sends detailed information on each hotel to the client partner
link. Example 10–7 provides an example.

Example 10–7 Invoke Activity

 <invoke name="callbackClient" partnerLink="client"
 portType="client:NflowHotelsCallback" operation="onResult"
 inputVariable="outputVariable"/>
 </sequence>
 </sequence>

Customizing the Number of Flow Activities with the flowN Activity

10-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

11

Using Conditional Branching in a BPEL Process 11-1

11 Using Conditional Branching in a BPEL
Process

This chapter describes how to use conditional branching in a BPEL process service
component. Conditional branching introduces decision points to control the flow of
execution of a BPEL process service component.

This chapter includes the following sections:

■ Section 11.1, "Introduction to Conditional Branching"

■ Section 11.2, "Creating a Switch Activity to Define Conditional Branching"

■ Section 11.3, "Creating a While Activity to Define Conditional Branching"

For additional information on creating conditional branching in a SOA composite
application, see Oracle Fusion Middleware Tutorial for Running and Building an
Application with Oracle SOA Suite.

11.1 Introduction to Conditional Branching
BPEL applies logic to make choices through conditional branching. You can use either
of the following activities to design your code to select different actions based on
conditional branching:

■ Switch activity

Enables you to set up two or more branches, with each branch in the form of an
XPath expression. If the expression is true, then the branch is executed. If the
expression is false, then the BPEL process service component moves to the next
branch condition, until it either finds a valid branch condition, encounters an
otherwise branch, or runs out of branches. If multiple branch conditions are true,
then BPEL executes the first true branch. Section 11.2, "Creating a Switch Activity
to Define Conditional Branching" explains how to create switch activities.

■ While activity

Enables you to create a while loop to select between two actions. Section 11.3,
"Creating a While Activity to Define Conditional Branching" describes while
activities.

Many branches are set up, and each branch has a condition in the form of an XPath
expression.

You can program a conditional branch to have a timeout. That is, if a response cannot
be generated in a specified period, the BPEL flow can stop waiting and resume its
activities. Chapter 14, "Using Events and Timeouts in BPEL Processes" explains this
feature in detail.

Creating a Switch Activity to Define Conditional Branching

11-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

11.2 Creating a Switch Activity to Define Conditional Branching
Assume you designed a flow activity in the BPEL process service component that
gathered loan offers from two companies at the same time, but did not compare either
of the offers. Each offer was stored in its own global variable. To compare the two bids
and make decisions based on that comparison, you can use a switch activity.

Figure 11–1 provides an overview of a BPEL conditional branching process that has
been defined in a switch activity.

Figure 11–1 Conditional Branching

11.2.1 How to Create a Switch Activity

To create a switch activity:
1. From the Component Palette, drag a Switch activity into the designer.

2. Click the + sign to expand the switch activity, as shown in Figure 11–2.

The Switch activity has two switch case branches by default, each with a box for
functional elements. If you want to add more branches, select the entire switch
activity, right-click, and select Add Switch Case from the menu.

Note: You can also define conditional branching logic with business
rules. See Oracle Fusion Middleware User's Guide for Oracle Business
Rules and Oracle Fusion Middleware Tutorial for Running and Building an
Application with Oracle SOA Suite for details.

Select
starLoan
<assign>

<switch>

<case
conditon 1>

<otherwise>

BPEL
Process

condition 1 Boolean XPATH Expression

Select
unitedLoan
<assign>

?

Creating a Switch Activity to Define Conditional Branching

Using Conditional Branching in a BPEL Process 11-3

Figure 11–2 Switch Activity

3. In the first branch, right-click and select Edit from the menu.

The Switch Case dialog appears.

4. In the Expression field, enter an XPath boolean expression by pressing Ctrl+Space
to start the XPath Building Assistant. Example 11–1 provides details.

Example 11–1 XPath Expression

bpws:getVariableDate(’loanOffer1’,’payload’,’/loanOffer/APR’) >
bpws:getVariableData(’loanOffer2’,’payload’,’/loanOffer/APR’)

5. Enter this expression on one line. To use the XPath Expression Builder, click the
XPath Expression Builder icon above the Expression field.

In this example, two loan offers from completing loan companies are stored in the
global variables loanOffer1 and loanOffer2. Each loan offer variable contains
the loan offer’s APR. The BPEL flow must choose the loan with the lower APR.
One of the following switch activities takes place:

■ If loanOffer1 has the higher APR, then the first branch selects loanOffer2
by assigning the loanOffer2 payload to the selectedLoanOffer payload.

■ If loanOffer1 does not have the lower APR than loanOffer2, the
otherwise case assigns the loanOffer1 payload to the
selectedLoanOffer payload.

11.2.2 What Happens When You Create a Switch Activity
A switch activity, like a flow activity, has multiple branches. In Example 11–2, there are
only two branches shown in the .bpel file after design completion. The first branch,
which selects a loan offer from a company named United Loan, is executed if a case
condition containing an XPath boolean expression is met. Otherwise, the second
branch, which selects the offer from a company named Star Loan, is executed. By
default, the switch activity provides two switch cases, but you can add more if you
want.

Example 11–2 Switch Activity

<switch name="switch-1">
 <case condition="bpws:getVariableData('loanOffer1','payload',
 '/autoloan:loanOffer/autoloan:APR') <
 bpws:getVariableData('loanOffer2','payload','/autoloan:loanOffer/autoloan:APR
 ')">
 <assign name="selectUnitedLoan">

Creating a While Activity to Define Conditional Branching

11-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <copy>
 <from variable="loanOffer1" part="payload">
 </from>
 <to variable="selectedLoanOffer" part="payload"/>
 </copy>
 </assign>
 </case>
 <otherwise>
 <assign name="selectStarLoan">
 <copy>
 <from variable="loanOffer2" part="payload">
 </from>
 <to variable="selectedLoanOffer" part="payload"/>
 </copy>
 </assign>
 </otherwise>
</switch>

11.3 Creating a While Activity to Define Conditional Branching
Another way to design your BPEL code to select between multiple actions is to use a
while activity to create a while loop. The while loop repeats an activity until a
specified success criteria is met. For example, if a critical web service is returning a
service busy message in response to requests, you can use the while activity to keep
polling the service until it becomes available. The condition for the while activity is
that the latest message received from the service is busy, and the operation within the
while activity is to check the service again. Once the web service returns a message
other than service busy, the while activity terminates and the BPEL process service
component continues, ideally with a valid response from the web service.

11.3.1 How To Create a While Activity

To create a while activity:
1. From the Component Palette, drag a While activity into the designer.

2. Click the + sign to expand the while activity.

The while activity has icons to allow you to build condition expressions and to
validate the while definition. It also provides an area for you to drag an activity to
define the while loop. Figure 11–3 provides an example.

Figure 11–3 While Activity

3. Drag and define additional activities for using the while condition into the Drop
Activity Here area of the While activity (for example, a Scope activity).

The activities can be existing or new activities.

Creating a While Activity to Define Conditional Branching

Using Conditional Branching in a BPEL Process 11-5

4. Press Ctrl+Space to invoke the XPath Building Assistant or click the XPath
Expression Builder icon to open the Expression Builder dialog.

5. Enter an expression to perform repeatedly, as shown in Figure 11–4. This action is
performed until the given boolean while condition is no longer true. In this
example, this activity is set to loop while less than 5.

Figure 11–4 While Activity with an Expression

6. Click OK when complete.

11.3.2 What Happens When You Create a While Activity
Example 11–3 provides an example of the .bpel file after design completion. The
while activity includes a scope activity. The scope activity includes invoke, assign, and
wait activities. Database exception handling tasks are performed by creating a local
variable and placing the invoke activity inside the scope activity. The local variable is
set to false (represented by 0). You attempt to call the external partner service in the
while loop activity until the local variable is satisfied (set to 1). The while activity is set
to loop a maximum of five times. In the case of an exception, you reset the flag to false
(0).

Example 11–3 While Activity

<while name="While_1" condition="bpws:getVariableData('dbStatus') > 5">
 <scope name="Scope_1">
<faultHandlers>
 <catchAll>
 <sequence name="Sequence_2">
 <assign name="assign_DB_retry">
 <copy>
 <from expression="bpws:getVariableData('dbStatus') + 1"/>
 <to variable="dbStatus"/>
 </copy>
 </assign>
 <wait name="Wait_30_sec" for="'PT31S'"/>
 </sequence>
 </catchAll>
 </faultHandlers>

Creating a While Activity to Define Conditional Branching

11-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <sequence name="Sequence_1">
 <invoke name="Write_DBWrite" partnerLink="WriteDBRecord"
 portType="ns2:WriteDBRecord_ptt" operation="insert"
 inputVariable="Invoke_DBWrite_merge_InputVariable"/>
 <assign name="Assign_dbComplete">
 <copy>
 <from expression="'10'"/>
 <to variable="dbStatus"/>
 </copy>
 </assign>
 </sequence>
 </scope>
 </while>

12

Using Fault Handling in a BPEL Process 12-1

12 Using Fault Handling in a BPEL Process

This chapter describes how to use fault handling in a BPEL process. Fault handling
allows a BPEL process service component to handle error messages or other exceptions
returned by outside web services, and to generate error messages in response to
business or runtime faults. You can also define a fault management framework to
catch faults and perform user-specified actions defined in a fault policy file.

This chapter includes the following sections:

■ Section 12.1, "Introduction to a Fault Handler"

■ Section 12.2, "Introduction to BPEL Standard Faults"

■ Section 12.3, "Introduction to Categories of BPEL Faults"

■ Section 12.4, "Using the Fault Management Framework"

■ Section 12.5, "Catching BPEL Runtime Faults"

■ Section 12.6, "Getting Fault Details with the getFaultAsString XPath Extension
Function"

■ Section 12.7, "Throwing Internal Faults"

■ Section 12.8, "Returning External Faults"

■ Section 12.9, "Using a Scope Activity to Manage a Group of Activities"

■ Section 12.10, "Using Compensation After Undoing a Series of Operations"

■ Section 12.11, "Using the Terminate Activity to Stop a Business Process Instance"

For additional information on creating fault handling in a SOA composite application,
see Oracle Fusion Middleware Tutorial for Running and Building an Application with Oracle
SOA Suite.

12.1 Introduction to a Fault Handler
Fault handlers define how the BPEL process service component responds when the
web services return data other than what is normally expected (for example, returning
an error message instead of a number). An example of a fault handler is where the web
service normally returns a credit rating number, but instead returns a negative credit
message.

Figure 12–1 provides an example of how a fault handler sets a credit rating variable to
-1000.

Introduction to a Fault Handler

12-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 12–1 Fault Handling

The code segment in Example 12–1 defines the fault handler for this operation in the
BPEL file:

Example 12–1 Fault Handler Definition

<faultHandlers>
 <catch faultName="services:NegativeCredit" faultVariable="crError">
 <assign name="crin">
 <copy>
 <from expression="-1000">
 </from>
 <to variable="input" part="payload"
 query="/autoloan:loanApplication/autoloan:creditRating"/>
 </copy>
 </assign>
 </catch>
</faultHandlers>

The faultHandlers tag contains the fault handling code. Within the fault handler is
a catch activity, which defines the fault name and variable, and the copy instruction
that sets the creditRating variable to -1000.

When you select web services for the BPEL process service component, determine the
possible faults that may be returned and set up a fault handler for each one.

BPEL
Process

<receive>

Credit
Rating
Service

Negative
Credit

<scope>

WSDL

prepare
crin

<assign>

<scope>

credit to
-1000

<assign>

Read
crOut

<assign>

WSDL

d1

d3

f1

<reply>d2

call
service

<invoke>

Introduction to Categories of BPEL Faults

Using Fault Handling in a BPEL Process 12-3

12.2 Introduction to BPEL Standard Faults
The Business Process Execution Language for Web Services Specification defines the
following standard faults in the namespace of
http://schemas.xmlsoap.org/ws/2003/03/business-process/:

■ bindingFault

■ conflictingReceive

■ conflictingRequest

■ correlationViolation

■ forcedTermination

■ invalidReply

■ joinFailure

■ mismatchedAssignmentFailure

■ remoteFault

■ repeatedCompensation

■ selectionFailure

■ uninitializedVariable

Standard faults are defined as follows:

■ Typeless, meaning they do not have associated messageTypes

■ Not associated with any Web Services Description Language (WSDL) message

■ Caught without a fault variable:

<catch faultName="bpws:selectionFailure">

12.3 Introduction to Categories of BPEL Faults
A BPEL fault has a fault name called a Qname (name qualified with a namespace) and
a possible messageType. There are two categories of BPEL faults:

■ Business faults

■ Runtime faults

12.3.1 Business Faults
Business faults are application-specific faults that are generated when there is a
problem with the information being processed (for example, when a social security
number is not found in the database). A business fault occurs when an application
executes a throw activity or when an invoke activity receives a fault as a response. The
fault name of a business fault is specified by the BPEL process service component. The
messageType, if applicable, is defined in the WSDL. A business fault can be caught
with a faultHandler using the faultName and a faultVariable.

<catch faultName="ns1:faultName" faultVariable="varName">

12.3.2 Runtime Faults
Runtime faults are the result of problems within the running of the BPEL process
service component or web service (for example, data cannot be copied properly

Using the Fault Management Framework

12-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

because the variable name is incorrect). These faults are not user-defined, and are
thrown by the system. They are generated if the process tries to use a value incorrectly,
a logic error occurs (such as an endless loop), a Simple Object Access Protocol (SOAP)
fault occurs in a SOAP call, an exception is thrown by the server, and so on.

Several runtime faults are automatically provided. These faults are included in the
http://schemas.oracle.com/bpel/extension namespace. These faults are
associated with the messageType RuntimeFaultMessage. The WSDL file shown in
Example 12–2 defines the messageType:

Example 12–2 messageType Definition

<?xml version="1.0" encoding="UTF-8" ?>
<definitions name="RuntimeFault"
 targetNamespace="http://schemas.oracle.com/bpel/extension"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="RuntimeFaultMessage">
 <part name="code" type="xsd:string" />
 <part name="summary" type="xsd:string" />
 <part name="detail" type="xsd:string" />
 </message>
</definitions>

If a faultVariable (of messageType RuntimeFaultMessage) is used when
catching the fault, the fault code can be queried from the faultVariable, along with
the fault summary and detail.

12.3.2.1 bindingFault
A bindingFault is thrown inside an activity if the preparation of the invocation
fails. For example, the WSDL of the process fails to load. A bindingFault is not
retryable. This type of fault usually must be fixed by human intervention.

12.3.2.2 remoteFault
A remoteFault is also thrown inside an activity. It is thrown because the invocation
fails. For example, a SOAP fault is returned by the remote service.

12.3.2.3 replayFault
A replayFault replays the activity inside a scope. At any point inside a scope, this
fault is migrated up to the scope. The server then re-executes the scope from the
beginning.

12.4 Using the Fault Management Framework
Oracle SOA Suite provides a generic fault management framework for handling faults
in BPEL processes. If a fault occurs during runtime in an invoke activity in a process,
the framework catches the fault and performs a user-specified action defined in a fault
policy file associated with the activity. If a fault results in a condition in which human
intervention is the prescribed action, you perform recovery actions from Oracle
Enterprise Manager Fusion Middleware Control Console. The fault management
framework provides an alternative to designing a BPEL process with catch activities in
scope activities.

This section provides an overview of the components that comprise the fault
management framework.

Using the Fault Management Framework

Using Fault Handling in a BPEL Process 12-5

■ The fault management framework catches all faults (business and runtime) for an
invoke activity.

■ A fault policy file defines fault conditions and their corresponding fault recovery
actions. Each fault condition specifies a particular fault or group of faults, which it
attempts to handle, and the corresponding action for it. A set of actions is
identified by an ID in the fault policy file.

■ A set of conditions invokes an action (known as fault policy).

■ A fault policy bindings file associates the policies defined in the fault policy file
with the following:

– SOA composite applications

– BPEL process and Oracle Mediator service components

– Reference binding components for BPEL process and Oracle Mediator service
components

The framework looks for fault policy bindings in the same directory as the
composite.xml file of the SOA composite application or in a remote location
identified by two properties that you set.

■ The fault policy file (fault-policies.xml) and fault policy bindings file
(fault-bindings.xml) are placed in either of the following locations:

– In the same directory as the composite.xml file of the SOA composite
application.

– In a different location that is specified with two properties that you add to the
composite.xml file. This option is useful if a fault policy must be used by
multiple SOA composite applications. This option overrides any fault policy
files that are included in the same directory as the composite.xml file.
Example 12–3 provides details about these two properties. In this example, the
fault policy files are placed into the SOA Metadata Service (MDS) shared area.

Example 12–3 Fault Policies used by Multiple SOA Composite Applications

<property
 name="oracle.composite.faultPolicyFile">oramds://apps/faultpolicyfiles/
 fault-policies.xml
</property>
<property
 name="oracle.composite.faultBindingFile">oramds://apps/faultpolicyfiles/
 fault-bindings.xml
</property>

See Chapter 20, "Using Mediator Error Handling" for details about Oracle Mediator
fault handling capabilities.

12.4.1 How to Design a Fault Policy
This section describes how to design a fault policy.

Note: A fault policy configured with the fault management
framework overrides any fault handling defined in catch activities of
scope activities in the BPEL process. The fault management
framework can be configured to rethrow the fault handling back to the
catch activities.

Using the Fault Management Framework

12-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

12.4.1.1 Understanding How Fault Policy Binding Resolution Works
A fault policy bindings file associates the policies defined in a fault policy file with the
SOA composite application or the component (service component or reference binding
component). The framework attempts to identify a fault policy binding in the
following order:

■ Reference binding component defined in the composite.xml file.

■ BPEL process or Oracle Mediator service component defined in the
composite.xml file.

■ SOA composite application defined in the composite.xml file.

During the resolution process, if no action is found that matches the condition, the
framework assumes that resolution failed and moves to the next resolution level.

For example, assume an invoke activity faults with faultname="abc". There is a
policy binding specified in the fault-binding.xml file:

■ SOA composite application binds to policy-id-1

■ BPEL process or Oracle Mediator service component or reference binding
component binds to policy-id-2

In the fault-bindings.xml file, the following bindings are also specified:

■ SOA composite application binds to policy-id-3

■ Reference binding component or service component binds to policy-id-4

The fault management framework behaves as follows:

■ First match the resolve binding (in this case, policy-id-2).

■ If the fault resolution fails, go to the next possible match (policy-id-4).

■ If the fault resolution fails, go to the next possible match (policy-id-3).

■ If the fault resolution fails, go to the next possible match (in this case,
policy-id-1).

■ If the fault resolution still fails, the fault is sent to the BPEL fault catch activity.

12.4.1.2 Creating a Fault Policy File for Automated Fault Recovery
1. Create a fault policy file (for example, named fault-policies.xml). This file

includes condition and action sections for performing specific tasks.

2. Place the file in the same directory as the composite.xml file or place it in a
different location and define the oracle.composite.faultPolicyFile
property. Example 12–4 provides details.

Example 12–4 Defining Properties

<property
 name="oracle.composite.faultPolicyFile">oramds://apps/faultpolicyfiles/
 fault-policies.xml
</property>
<property

Note: The Facades API enables you to programmatically perform the
abort, retry (with a success action), continue, rethrow, and replay
recovery options.

Using the Fault Management Framework

Using Fault Handling in a BPEL Process 12-7

 name="oracle.composite.faultBindingFile">oramds://apps/faultpolicyfiles/
 fault-bindings.xml
</property>

3. Define the condition section of the fault policy file.

■ Note the following details about the condition section:

– This section provides a condition based on faultName.

– Multiple conditions may be configured for a faultName.

– Each condition has one test section (an XPath expression) and one
action section.

– The test section (XPath expression) is evaluated for the fault variable
available in the fault.

– The action section has a reference to the action defined in the same file.

– You can only query the fault variable available in the fault.

– The order of condition evaluation is determined by the sequential order in
the document.

Table 12–1 provides examples of condition section use in the fault policy
file. All actions defined in the condition section must be associated with an
action in the action section.

4. Define the action section of the fault policy file. Note that validation of fault
policy files is done during deployment. If you change the fault policy, you must
redeploy the SOA composite application that includes the fault policy.

Table 12–2 provides several examples of action section use in the fault policy file.
You can provide automated recovery actions for some faults. In all recovery
actions except retry and human intervention, the framework performs the actions
synchronously.

Table 12–1 Use of the condition Section in the Fault Policy File

Condition Example Fault Policy File Syntax

This condition is checking a fault
variable for code =
"WSDLFailure"

An action of ora-terminate is
specified.

<condition>
 <test>$fault.code="WSDLReading Error"
 </test>
 <action ref="ora-terminate"/>
</condition>

No test condition is provided. This
is a catch all condition for a given
faultName.

<condition>
 <action ref="ora-rethrow"/>
</condition>

If the faultName name attribute is
missing, this indicates a catch all
activity for faults that have any
QName.

<faultName > . . . </faultName>

Using the Fault Management Framework

12-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 12–2 Use of action Section in the Fault Policy File

Recovery Actions Fault Policy File Syntax

Retry: Provides the following actions
for retrying the activity.

■ Retry a specified number of
times.

■ Provide a delay between retries
(in seconds).

■ Increase the interval with an
exponential back off.

■ Chain to a retry failure action if
retry N times fails.

■ Chain to a retry success action if
a retry is successful.

Note: Exponential back off indicates
the next retry attempt is scheduled at
2 x the delay, where delay is the
current retry interval. For example, if
the current retry interval is 2
seconds, the next retry attempt is
scheduled at 4, the next at 8, and the
next at 16 seconds until the
retryCount value is reached.

<Action id="ora-retry">
 <Retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </Retry>
</Action>

Note the following details:

■ The framework chains to the retry success action if the retry attempt is
successful.

■ If all retry attempts fail, the framework chains to the retry failure
action.

Human Intervention: Causes the
current activity to stop processing.
You can now go to Oracle Enterprise
Manager Fusion Middleware Control
Console and perform manual
recovery actions on this instance.

<Action id="ora-human-intervention">
 <humanIntervention/></Action>

Terminate Process: Terminates the
process

<Action id="ora-terminate"><abort/></Action>

Java Code: Enables you to execute an
external Java class.

returnValue: The implemented
Java class must implement a method
that returns a string. The policy can
chain to a new action based on the
returned string.

For additional information, see
Section 12.4.3, "How to Use a Java
Action Fault Policy"

<Action id="ora-java">
<!-- this is user provided custom java
 class-->
<javaAction className="mypackage.myClass"
 defaultAction="ora-terminate">
 <returnValue value="REPLAY"
 ref="ora-terminate"/>
 <returnValue value="RETRHOW"
 ref="ora-rethrow-fault"/>
 <returnValue value="ABORT"
 ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL"
 ref="ora-human-intervention"/>
</javaAction>
</Action>

Rethrow Fault: The framework sends
the fault to the BPEL fault handlers
(catch activities in scope activities). If
none are available, the fault is sent
up.

<Action id="ora-rethrow-fault"><rethrowFault/></Action>

Replay Scope: Raises a replay fault. <Action id="ora-replay-scope"><replayScope/></Action>

Using the Fault Management Framework

Using Fault Handling in a BPEL Process 12-9

Example 12–5 shows a fault policy file with fully-defined condition and action
sections.

Example 12–5 Fault Policy File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <faultPolicy version="0.0.1" id="FusionMidFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
 name="medns:mediatorFault">
 <condition>
 <action ref="MediatorJavaAction"/>
 </condition>
 </faultName>
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">
 <condition>
 <action ref="BPELJavaAction"/>
 </condition>
 </faultName>
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:bindingFault">
 <condition>
 <action ref="BPELJavaAction"/>
 </condition>
 </faultName>
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:runtimeFault">
 <condition>
 <action ref="BPELJavaAction"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <!-- Generics -->

Note: The preseeded recovery action tag names (ora-retry,
ora-human-intervention, ora-terminate, and so on) are only
samples. You can substitute these names with ones appropriate to
your environment.

Notes:

■ Fault policy file names are not restricted to one specific name.
However, they must conform to the fault-policy.xsd schema
file.

■ Example 12–5 provides an example of catching faults based on
fault names. You can also catch faults based on message types, or
on both:

<fault name="myfault" type="fault:faultType">

Using the Fault Management Framework

12-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <Action id="default-terminate">
 <abort/>
 </Action>
 <Action id="default-replay-scope">
 <replayScope/>
 </Action>
 <Action id="default-rethrow-fault">
 <rethrowFault/>
 </Action>
 <Action id="default-human-intervention">
 <humanIntervention/>
 </Action>
 <Action id="MediatorJavaAction">
 <!-- this is user provided class-->
 <javaAction className="MediatorJavaAction.myClass"
 defaultAction="default-terminate">
 <returnValue value="MANUAL" ref="default-human-intervention"/>
 </javaAction>
 </Action>
 <Action id="BPELJavaAction">
 <!-- this is user provided class-->
 <javaAction className="BPELJavaAction.myAnotherClass"
 defaultAction="default-terminate">
 <returnValue value="MANUAL" ref="default-human-intervention"/>
 </javaAction>
 </Action>
 </Actions>
 </faultPolicy>
</faultPolicies>

12.4.1.3 Associating a Fault Policy with Fault Policy Binding

1. Create a fault policy binding file (fault-bindings.xml) that associates the
policies defined in the fault policy file with the level of fault policy binding you
are using (either a SOA composite application or a component (reference binding
component or BPEL process or Oracle Mediator service component).

2. Place the file in the same directory as the composite.xml file or place it in a
remote location and define the oracle.composite.faultBindingFile
property as shown in Step 2 on page 12-6.

Example 12–6 shows a fault policy bindings file that associates the fault policies
defined in the fault-policies.xml file with the FusionMidFaults SOA
composite application.

Example 12–6 fault-buildings.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<faultPolicyBindings version="0.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="FusionMidFaults"/>
 <!--<composite faultPolicy="ServiceExceptionFaults"/>-->
 <!--<composite faultPolicy="GenericSystemFaults"/>-->

Note: The fault policy file binding file must be named
fault-bindings.xml. This conforms to the
fault-bindings.xsd schema file.

Using the Fault Management Framework

Using Fault Handling in a BPEL Process 12-11

</faultPolicyBindings>

12.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples
This section provides additional samples of fault policy and fault policy binding files.
Example 12–7 shows the fault-policies.xml file contents.

Example 12–7 fault-policies.xml File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies xmlns="http://schemas.oracle.com/bpel/faultpolicy">
<faultPolicy version="2.0.1"
 id="CRM_ServiceFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Conditions>
 <!-- Fault if wsdlRuntimeLocation is not reachable -->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:remoteFault">
 <condition>
 <test>$fault.code="WSDLReadingError"</test>
 <action ref="ora-terminate"/>
 </condition>
 <condition>
 <action ref="ora-java"/>
 </condition>
 </faultName>
 <!-- Fault if location port is not reachable-->
 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"
 name="bpelx:bindingFault">
 <!--ORA-00001: unique constraint violated on insert-->
 <condition>
 <test>$fault.code="1"</test>
 <action ref="ora-java"/>
 </condition>
 <!--ORA-01400: cannot insert NULL -->
 <condition>
 <test xmlns:test="http://test">$fault.code="1400"</test>
 <action ref="ora-terminate"/>
 </condition>
 <!--ORA-03220: required parameter is NULL or missing -->
 <condition>
 <test>$fault.code="3220"</test>
 <action ref="ora-terminate"/>
 </condition>
 <condition>
 <action ref="ora-retry-crm-endpoint"/>
 </condition>
 </faultName>
 <!-- Business faults -->
 <!-- Fault comes with a payload of error, make sure the name space is
 provided here or at root level -->
 <faultName xmlns:credit="http://services.otn.com"
 name="credit:NegativeCredit">
 <!-- we get this fault when SSN starts with 0-->
 <condition>
 <test>$fault.payload="Bankruptcy Report"</test>

Using the Fault Management Framework

12-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <action ref="ora-human-intervention"/>
 <!--action ref="ora-retry"/-->
 </condition>
 <!-- we get this fault when SSN starts with 1-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-abort"</test>
 <action ref="ora-terminate"/>
 </condition>
 <!-- we get this fault when SSN starts with 2-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-rethrow"</test>
 <action ref="ora-rethrow-fault"/>
 </condition>
 <!-- we get this fault when SSN starts with 3-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-replay"</test>
 <action ref="ora-replay-scope"/>
 </condition>
 <!-- we get this fault when SSN starts with 4-->
 <condition>
 <test
 xmlns:myError="http://services.otn.com">$fault.payload="Bankruptcy
 Report-human"</test>
 <action ref="ora-human-intervention"/>
 </condition>
 <!-- we get this fault when SSN starts with 5-->
 <condition>
 <test>$fault.payload="Bankruptcy Report-java"</test>
 <action ref="ora-java"/>
 </condition>
 </faultName>

 </Conditions>
 <Actions>
 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>
 <Action id="ora-retry-crm-endpoint">
 <retry>
 <retryCount>5</retryCount>
 <retryFailureAction ref="ora-java"/>
 <retryInterval>5</retryInterval>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>
 <Action id="ora-replay-scope">
 <replayScope/>
 </Action>
 <Action id="ora-rethrow-fault">
 <rethrowFault/>
 </Action>
 <Action id="ora-human-intervention">
 <humanIntervention/>
 </Action>

Using the Fault Management Framework

Using Fault Handling in a BPEL Process 12-13

 <Action id="ora-terminate">
 <abort/>
 </Action>
 <Action id="ora-java">
 <!-- this is user provided class-->
 <javaAction
 className="com.oracle.bpel.client.config.faultpolicy.TestJavaAction"
 defaultAction="ora-terminate" propertySet="prop-for-billing">
 <returnValue value="REPLAY" ref="ora-terminate"/>
 <returnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
 </Action>

 </Actions>
 <Properties>
 <propertySet name="prop-for-billing">
 <property name="user_email_recipient">bpeladmin</property>
 <property name="email_recipient">joe@abc.com</property>
 <property name="email_recipient">mike@xyz.com</property>
 <property name="email_threshold">10</property>
 <property name="sms_recipient">+429876547</property>
 <property name="sms_recipient">+4212345</property>
 <property name="sms_threshold">20</property>
 <property name="user_email_recipient">john</property>
 </propertySet>
 <propertySet name="prop-for-order">
 <property name="email_recipient">john@abc.com</property>
 <property name="email_recipient">jill@xyz.com</property>
 <property name="email_threshold">10</property>
 <property name="sms_recipient">+42222</property>
 <property name="sms_recipient">+423335</property>
 <property name="sms_threshold">20</property>
 </propertySet>

 </Properties>
</faultPolicy>
<faultPolicy version="2.0.1"
 id="Billing_ServiceFaults"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Conditions>
 <faultName>
 <condition>
 <action ref="ora-manual"/>
 </condition>
 </faultName>
</Conditions>
<Actions>
 <Action id="ora-manual">
 <humanIntervention/>
 </Action>
</Actions>
</faultPolicy>
</faultPolicies>

Using the Fault Management Framework

12-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 12–8 shows the fault-buildings.xml file that associates the fault policies
defined in fault-policies.xml.

Example 12–8 Fault Policy Bindings File

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="ConnectionFaults"/>
 <component faultPolicy="ServiceFaults">
 <name>Component1</name>
 <name>Component2</name>
 </component>
 <!-- Below listed component names use polic CRM_SeriveFaults -->
 <component faultPolicy="CRM_ServiceFaults">
 <name>HelloWorld</name>
 <name>ShippingComponent</name>
 <name>AnotherComponent"</name>
 </component>
 <!-- Below listed reference names and port types use polic CRM_ServiceFaults
 -->
 <reference faultPolicy="CRM_ServiceFaults">
 <name>creditRatingService</name>
 <name>anotherReference</name>
 <portType
 xmlns:credit="http://services.otn.com">credit:CreditRatingService</portType>
 <portType
 xmlns:db="http://xmlns.oracle.com/pcbpel/adapter/db/insert/">db:insert_
plt</portType>
 </reference>
 <reference faultPolicy="test1">
 <name>CreditRating3</name>
 </reference>
</faultPolicyBindings>

12.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers
If you design a fault policy that uses the action handler for rejected messages, note that
only one write action can be performed. Multiple write actions cannot be performed,
even if you define multiple rejection handlers, as shown in Example 12–9. In this case,
only the first rejection handler defined (for this example, ora-queue) is executed.

Example 12–9 Fault Policy with Multiple Rejection Handlers

<faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
 <condition>
 <action ref="ora-queue"/>

 </condition>
 </faultName>
 <faultName xmlns:rjm="http://schemas.oracle.com/sca/rejectedmessages"
name="rjm:FileIn">
 <condition>
 <action ref="ora-file"/>

 </condition>
 </faultName>

Using the Fault Management Framework

Using Fault Handling in a BPEL Process 12-15

12.4.2 How to Execute a Fault Policy
You deploy a fault policy as part of a SOA composite application. After deployment,
you can perform the following fault recovery actions from Oracle Enterprise Manager
Fusion Middleware Control Console:

■ Retry the activity

■ Modify a variable (available to the faulted activity)

■ Continue the instance (mark the activity as a success)

■ Rethrow the exception

■ Abort the instance

■ Throw a replay scope exception

For additional information, see Oracle Fusion Middleware Administrator's Guide for
Oracle SOA Suite for the following:

■ Instructions on executing a fault policy in Oracle Enterprise Manager Fusion
Middleware Control Console

■ Use cases in which you define a fault policy that uses human intervention

12.4.3 How to Use a Java Action Fault Policy
Note the following details when using the Java action fault policy:

■ The Java class provided follows a specific interface. This interface returns a string.
Multiple values can be provided for output and fault policy to take after execution.

■ Additional fault policy can be executed by providing a mapping from the output
value (return value) of implemented methods to a fault policy.

■ If no ReturnValue is specified, the default fault policy is executed, as shown in
Example 12–10.

Example 12–10 Java Action Fault Policy

<Action id="ora-java">
 <JavaAction ClassName="mypackage.myclass"
 defaultAction="ora-human-intervention" propertySet="prop-for-billing">
 <!--defaultAction is a required attribute, but propertySet is optional-->
 <!-- attribute-->
 <ReturnValue value="RETRY" ref="ora-retry"/>
 <!--value is not nilable attribute & cannot be empty-->
 <ReturnValue value="RETRHOW" ref="ora-rethrow-fault"/>
 </JavaAction>
</Action>

Table 12–3 provides an example of ReturnValue use.

Table 12–3 System Interpretation of Java Action Fault Policy

Code Description

<ReturnValue value="RETRY"
 ref="ora-retry"/>

Execute the ora-retry action if the method
returns a string of RETRY.

<ReturnValue value="”
 ref=”ora-rethrow”/>

Fails in validation.

Using the Fault Management Framework

12-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To invoke a Java class, you can provide a class that implements the
IFaultRecoveryJavaClass interface. This interface has two methods, as shown in
Example 12–11.

Example 12–11 implementation of IFaultRecoveryJavaClass

public interface IFaultRecoveryJavaClass
{
public void handleRetrySuccess(IFaultRecoveryContext ctx);
public String handleFault(IFaultRecoveryContext ctx);
}

Note the following details:

■ handleRetrySuccess is invoked upon a successful retry attempt. The retry
policy chains to a Java action on retrySuccessAction.

■ handleFault is invoked to execute a policy of type javaAction.

Example 12–12 shows the data available with IFaultRecoveryContext:

Example 12–12 Data Available with IFaultRecoveryContext

public interface IFaultRecoveryContext {

/**
 * Gets implementation type of the fault.
 * @return
 */
public String getType();

/**
 * @return Get property set of the fault policy action being executed.
 */
public Map getProperties();

/**
 * @return Get fault policy id of the fault policy being executed.
 */
public String getPolicyId();

/**

<JavaAction
 ClassName="mypackage.myclass"

defaultAction="ora-human-intervention
">

Execute ora-human-intervention after Java
code execution. This attribute is used if the return
from the method does not match any provided
ReturnValue.

<ReturnValue value="RETRY"
 ref="ora-retry"/>
<ReturnValue value="” ref=””/>

Fails in validation.

<JavaAction
 ClassName="mypackage.myclass"
 defaultAction="
ora-human-intervention">
<ReturnValue></ReturnValue>

Fails in validation.

Table 12–3 (Cont.) System Interpretation of Java Action Fault Policy

Code Description

Using the Fault Management Framework

Using Fault Handling in a BPEL Process 12-17

 * @return Name of the faulted partner link.
 */
public String getReferenceName();

/**
 * @return Port type of the faulted reference .
 */
public QName getPortType();
}

The service engine implementation of this interface provides more information (for
example, Oracle BPEL Process Manager). Example 12–13 provides details.

Example 12–13 Service Engine Implementation of IFaultRecoveryContext

public class BPELFaultRecoveryContextImpl extends BPELXExecLetUtil implements
IBPELFaultRecoveryContext, IFaultRecoveryContext{
...
}

Oracle BPEL Process Manager-specific data is available with
IBPELFaultRecoveryContext, as shown in Example 12–14.

Example 12–14 Oracle BPEL Process Manager-Specific Data

public interface IBPELFaultRecoveryContext {
public void addAuditTrailEntry(String message);

public void addAuditTrailEntry(String message, Object detail);

public void addAuditTrailEntry(Throwable t);
/**
 * @return Get action id of the fault policy action being executed.
 */
public String getActionId();

/**
 * @return Type of the faulted activity.
 */
public String getActivityId();

/**
 * @return Name of the faulted activity.
 */
public String getActivityName();

/**
 * @return Type of the faulted activity.
 */
public String getActivityType();

/**
 * @return Correleation id of the faulted activity.
 */
public String getCorrelationId();

/**
 * @return BPEL fault that caused the invoke to fault.
 */
public BPELFault getFault();

Using the Fault Management Framework

12-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

/**
 * @return Get index value of the instance
 */
public String getIndex(int i);

/**
 * @return get Instance Id of the current process instance of the faulted
 * activity.
 */
public long getInstanceId();

/**
 * @return Get priority of the current process instance of the faulted
 * activity.
 */
public int getPriority();

/**
 * @return Process DN.
 */
public ComponentDN getProcessDN();

/**
 * @return Get status of the current process instance of the faulted
 * activity.
 */
public String getStatus();

/**
 * @return Get title of the current process instance of the faulted
 * activity.
 */
public String getTitle();

public Object getVariableData(String name) throws BPELFault;

public Object getVariableData(String name, String partOrQuery)
throws BPELFault;

public Object getVariableData(String name, String part, String query)
throws BPELFault;

/**
 * @param priority
 * Set priority of the current process instance of the faulted
 * activity.
 * @return
 */
public void setPriority(int priority);

/**
 * @param status
 * Set status of the current process instance of the faulted
 * activity.
 */
public void setStatus(String status);

/**
 * @param title

Using the Fault Management Framework

Using Fault Handling in a BPEL Process 12-19

 * Set title of the current process instance of the faulted
 * activity.
 * @return
 */
public String setTitle(String title);

public void setVariableData(String name, Object value) throws BPELFault;

public void setVariableData(String name, String partOrQuery, Object value)
throws BPELFault;

public void setVariableData(String name, String part, String query,
Object value) throws BPELFault;
}

Example 12–15 provides an example of javaAction implementation.

Example 12–15 Implementation of a javaAction

public class TestJavaAction implements IFaultRecoveryJavaClass {
public void handleRetrySuccess(IFaultRecoveryContext ctx) {
System.out.println("This is for retry success");
handleFault(ctx);
}
public String handleFault(IFaultRecoveryContext ctx) {
System.out.println("-----Inside handleFault-----\n" + ctx.toString());

 dumpProperties(ctx.getProperties());
/* Get BPEL specific context here */
BPELFaultRecoveryContextImpl bpelCtx = (BPELFaultRecoveryContextImpl) ctx;
bpelCtx.addAuditTrailEntry("hi there");
System.out.println("Policy Id" + ctx.getPolicyId());
 ...
 }

12.4.4 What You May Need to Know About Fault Management Behavior When the
Number of Instance Retries is Exceeded

When you configure a fault policy to recover instances with the ora-retry action
and the number of specified instance retries is exceeded, the instance is marked as
open.faulted (in-flight state). The instance remains active.

Marking instances as open.faulted ensures that no instances are lost. You can then
configure another fault handling action following the ora-retry action in the fault
policy file, such as the following:

■ Configure an ora-human-intervention action to manually perform instance
recovery from Oracle Enterprise Manager Fusion Middleware Control Console.

■ Configure an ora-terminate action to close the instance (mark it as
closed.faulted) and never retry again.

However, if you do not set an action to be performed after an ora-retry action in the
fault policy file and the number of instance retries is exceeded, the instance remains
marked as open.faulted, and recovery attempts to handle the instance.

For example, if no action is defined in the following fault policy file after ora-retry:

<Action id="ora-retry">
 <retry>
 <retryCount>2</retryCount>

Using the Fault Management Framework

12-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 </retry>
 </Action>

The following actions are performed:

■ The invoke activity is attempted (using the above-mentioned fault policy code to
handle the fault).

■ Two retries are attempted at increasing intervals (after two seconds, then after four
seconds).

■ If all retry attempts fail, the following actions are performed:

– A detailed fault error message is logged in the audit trail

– The instance is marked as open.faulted (in-flight state)

– The instance is picked up and the invoke activity is re-attempted

■ Recovery may also fail. In that case, the invoke activity is re-executed. Additional
audit messages are logged.

12.4.5 What You May Need to Know About Binding Level Retry Execution Within Fault
Policy Retries

If you are testing retry actions on adapters with both JCA-level retries for the
outbound direction and a retry action in the fault policy file for outbound failures, the
JCA-level (or binding level) retries are executed within the fault policy retries. For
example, assume you have designed the application shown in Figure 12–2:

Figure 12–2 SOA Composite Application

You specify the following retry parameters in the composite.xml file:

<property name="jca.retry.count" type="xs:int" many="false"
 override="may">2</property>
<property name="jca.retry.interval" type="xs:int" many="false"
 override="may">2</property>
<property name="jca.retry.backoff" type="xs:int" many="false"
 override="may">2</property>

In the fault policy file for the EQ reference binding component for the outbound
direction, you specify the following actions:

<retryCount>3</retryCount>
<retryInterval>3</retryInterval>

If an outbound failure occurs, the expected behavior is for the JCA retries to occur
within the fault policy retries. When the first retry of the fault policy is executed, the

Getting Fault Details with the getFaultAsString XPath Extension Function

Using Fault Handling in a BPEL Process 12-21

JCA retry is called. In this example, a JCA retry of 2 with an interval of 2 seconds and
exponential back off of 2 is executed for every retry of the fault policy:

■ Fault policy retry 1:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

■ Fault policy retry 2:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

■ Fault policy retry 3:

– JCA retry 1 (with 2 seconds interval)

– JCA retry 2 (with 4 seconds interval)

12.5 Catching BPEL Runtime Faults
BPEL runtime faults can be caught as a named BPEL fault. The bindingFault and
remoteFault can be associated with a message. This action enables the
faultHandler to get details about the faults.

12.5.1 How to Catch BPEL Runtime Faults
The following procedure shows how to use the provided examples to generate a fault
and define a fault handler to catch it. In this case, you modify a WSDL file to generate
a fault, and create a catch attribute to catch it.

To catch BPEL runtime faults:
1. Import RuntimeFault.wsdl into your process WSDL. RuntimeFault.wsdl is

seeded into the MDS from soa.mar inside soa-infra-wls.ear during its
deployment.

1. You may see a copy of soa.mar in the deployed SOA Infrastructure in the Oracle
WebLogic Server domain, which is a JAR/ZIP file containing
RuntimeFault.wsdl.

2. Declare a variable with messageType bpelx:RuntimeFaultMessage.

3. Catch it using the following syntax:

 <catch faultName="bpelx:remoteFault" | "bpelx:bindingFault"
faultName="varName">

12.6 Getting Fault Details with the getFaultAsString XPath Extension
Function

The catchAll activity is provided to catch possible faults. However, BPEL does not
provide a method for obtaining additional information about the captured fault. Use
the getFaultAsString() XPath extension function to obtain additional
information.

12.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function
Example 12–16 shows how to use this function.

Throwing Internal Faults

12-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 12–16 getFaultAsString() XPath Extension Function

<catchAll>
 <sequence>
 <assign>
 <from expression="bpelx:getFaultAsString()"/>
 <to variable="faultVar" part="message"/>
 </assign>
 <reply faultName="ns1:myFault" variable="faultVar" .../>
 </sequence>
</catchAll>

12.7 Throwing Internal Faults
A BPEL application can generate and receive fault messages. The throw activity has
three elements: its name, the name of the fault, and the fault variable. If you add a
throw activity to your BPEL process service component, it automatically includes a
copy rule that copies the fault name and type into the output payload. The fault
thrown by a throw activity is internal to BPEL. You cannot use a throw activity on an
asynchronous process to communicate with a client.

12.7.1 How to Create a Throw Activity

To create a throw activity:
1. From the Component Palette, drag a Throw activity into the designer.

2. Double-click and define the Throw activity.

3. Optionally enter a name or accept the default value.

4. To the right of the Namespace URI field, click the Search icon to select the fault to
monitor.

5. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field.
Your fault selection also automatically displays in the Local Part field.

Figure 12–3 provides an example of a completed Throw dialog. This example
shows the Throw_Fault_CC_Denied throw activity of the Scope_
AuthorizeCreditCard scope activity in the WebLogic Fusion Order Demo
application. This activity throws a fault for orders that are not approved.

Returning External Faults

Using Fault Handling in a BPEL Process 12-23

Figure 12–3 Throw Dialog

6. Click OK.

12.7.2 What Happens When You Create a Throw Activity
Example 12–17 shows the throw activity in the .bpel file after design completion. The
OrderProcessor process terminates after executing this throw activity.

Example 12–17 Throw Activity

<throw name="Throw_Fault_CC_Denied"
 faultName="client:OrderProcessorFault"/>

12.8 Returning External Faults
A BPEL process service component can send a fault to another application to indicate a
problem, as opposed to throwing an internal fault. In a synchronous operation, the
reply activity can return the fault. In an asynchronous operation, the invoke activity
performs this function.

12.8.1 How to Return a Fault in a Synchronous Interaction
The syntax of a reply activity that returns a fault in a synchronous interaction is shown
in Example 12–18:

Example 12–18 Reply Activity

<reply partnerlinke="partner-link-name"
 portType="port-type-name"
 operation="operation-name"
 variable="variable-name" (optional)
 faultName="fault-name">
</reply>

Always returning a fault in response to a synchronous request is not very useful. It is
better to make the activity part of a conditional branch, in which the first branch is
executed if the data requested is available. If the requested data is not available, then
the BPEL process service component returns a fault with this information.

Using a Scope Activity to Manage a Group of Activities

12-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information, see the following chapters:

■ Chapter 11, "Using Conditional Branching in a BPEL Process" for setting up the
conditional structure

■ Chapter 8, "Invoking a Synchronous Web Service from a BPEL Process" for
synchronous interactions

12.8.2 How to Return a Fault in an Asynchronous Interaction
In an asynchronous interaction, the client does not wait for a reply. The reply activity is
not used to return a fault. Instead, the BPEL process service component returns a fault
using a callback operation on the same port type that normally receives the requested
information, with an invoke activity.

For more information about asynchronous interactions, see Chapter 9, "Invoking an
Asynchronous Web Service from a BPEL Process."

12.9 Using a Scope Activity to Manage a Group of Activities
A scope activity provides a container and a context for other activities. A scope
provides handlers for faults, events, compensation, data variables, and correlation sets.
Using a scope activity simplifies a BPEL flow by grouping functional structures. This
grouping allows you to collapse them into what appears to be a single element in
Oracle BPEL Designer.

Example 12–19 shows a scope named Scope_FulfillOrder from the WebLogic
Fusion Order Demo application. This scope invokes the FulfillOrder mediator
component, which determines the shipping method for the order.

Example 12–19 Scope Activity

<scope name="Scope_FulfillOrder">
 <variables>
 <variable name="lFulfillOrder_InputVariable"
 messageType="ns17:requestMessage"/>
 </variables>
 <sequence>
 <assign name="Assign_OrderData">
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO"/>
 <to variable="lFulfillOrder_InputVariable"
 part="request" query="/ns4:orderInfoVOSDO"/>
 </copy>
 </assign>
 <invoke name="Invoke_FulfillOrder"
 inputVariable="lFulfillOrder_InputVariable"
 partnerLink="FulfillOrder.FulfillOrder"
 portType="ns17:execute_ptt" operation="execute"/>
 </sequence>
</scope>

12.9.1 How to Create a Scope Activity

To create a scope activity:
1. From the Component Palette, drag a Scope activity into the designer.

Using a Scope Activity to Manage a Group of Activities

Using Fault Handling in a BPEL Process 12-25

2. Open the scope activity by double-clicking it or by single-clicking the Expand
icon.

3. From the Component Palette, drag and define activities to build the functionality
within the scope.

Figure 12–4 Expanded Scope Activity

4. Click OK.

When complete, scope activity design can look as shown in Figure 12–5. This
example shows the Scope_AuthorizeCreditCard scope activity of the WebLogic
Fusion Order Demo application.

Figure 12–5 Scope Activity After Design Completion

12.9.2 What Happens After You Create a Scope Activity
Example 12–20 shows the throw activity in the .bpel file after design completion. The
Scope_AuthorizeCreditCard scope activity consists of activities that perform the
following actions:

■ A catch activity for catching faulted orders in which the credit card number is not
provided or the credit type is not valid.

Using a Scope Activity to Manage a Group of Activities

12-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ A throw activity that throws a fault for orders that are not approved.

■ An assign activity that takes the credit card type, credit card number, and purchase
amount, and assigns it to the input variable for the
CreditCardAuthorizationService service.

■ An invoke activity that calls a CreditCardAuthorizationService service to
retrieve customer information.

■ A switch activity that checks the results of the credit card validation.

Example 12–20 Scope Activity

<scope name="Scope_AuthorizeCreditCard">
 <variables>
 <variable name="lCreditCardInput"
 messageType="ns2:CreditAuthorizationRequestMessage"/>
 <variable name="lCreditCardOutput"
 messageType="ns2:CreditAuthorizationResponseMessage"/>
 </variables>
 <faultHandlers>
 <catch faultName="bpws:selectionFailure">
 <sequence>
 <assign name="Assign_noCCNumber">
 <copy>
 <from expression="string('CreditCardCheck - NO
 CreditCard')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name ="Throw_NoCreditCard"
 faultVariable="gOrderProcessorFaultVariable"
 faultName="ns9:OrderProcessingFault"/>
 </sequence>
 </catch>
 <catch faultName="ns2:InvalidCredit">
 <sequence>
 <assign name="Assign_InvalidCreditFault">
 <copy>
 <from expression="concat(bpws:getVariableData
 ('gOrderInfoVariable','/ns4:orderInfoVOSDO/
 ns4:CardTypeCode'), ' is not a valid
 creditcard type')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="summary"/>
 </copy>
 <copy>
 <from expression="string('CreditCardCheck - NOT VALID')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name="Throw_OrderProcessingFault"
 faultName="ns9:OrderProcessingFault"
 faultVariable="gOrderProcessorFaultVariable"/>
 </sequence>
 </catch>
 </faultHandlers>
 <sequence>
 <assign name="Assign_CreditCheckInput">

Using a Scope Activity to Manage a Group of Activities

Using Fault Handling in a BPEL Process 12-27

 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:OrderTotal"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:PurchaseAmount"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:CardTypeCode"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCType"/>
 </copy>
 <copy>
 <from variable="gOrderInfoVariable"
 query="/ns4:orderInfoVOSDO/ns4:AccountNumber"/>
 <to variable="lCreditCardInput" part="Authorization"
 query="/ns8:AuthInformation/ns8:CCNumber"/>
 </copy>
 </assign>
 <invoke name="InvokeCheckCreditCard"
 inputVariable="lCreditCardInput"
 outputVariable="lCreditCardOutput"
 partnerLink="CreditCardAuthorizationService"
 portType="ns2:CreditAuthorizationPort"
 operation="AuthorizeCredit"/>
 <switch name="Switch_EvaluateCCResult">
 <case condition="bpws:getVariableData('lCreditCardOutput','status','
 /ns8:status') != 'APPROVED'">
 <bpelx:annotation>
 <bpelx:pattern>status <> approved</bpelx:pattern>
 </bpelx:annotation>
 <throw name="Throw_Fault_CC_Denied"
 faultName="client:OrderProcessorFault"/>
 </case>
 /switch>
 </sequence>
</scope>

12.9.3 What You May Need to Know About Scopes
Scopes can use a significant amount of CPU and memory and should not be overused.
Sequence activities use less CPU and memory and can be used to make large BPEL
flows more readable.

12.9.4 How to Use a Fault Handler within a Scope
If a fault is not handled, it creates a faulted state that migrates up through the
application and can throw the entire process into a faulted state. To prevent this,
contain the parts of the process that have the potential to receive faults within a scope.
The scope activity includes the following fault handling capabilities:

■ The catch activity works within a scope to catch faults and exceptions before they
can throw the entire process into a faulted state. You can use specific fault names
in the catch activity to respond in a specific way to an individual fault.

■ The catchAll activity catches any faults that are not handled by name-specific
catch activities.

Example 12–21 shows the syntax for catch and catch all activities. Assume that a fault
named x:foo is thrown. The first catch is selected if the fault carries no fault data. If

Using a Scope Activity to Manage a Group of Activities

12-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

there is fault data associated with the fault, the third catch is selected if the type of
the fault's data matches the type of variable bar. Otherwise, the default catchAll
handler is selected. Finally, a fault with a fault variable whose type matches the type of
bar and whose name is not x:foo is processed by the second catch. All other faults
are processed by the default catchAll handler.

Example 12–21 Catch and Catch All Activities

<faulthandlers>
 <catch faultName="x:foo">
 <empty/>
 </catch>
 <catch faultVariable="bar">
 <empty/>
 </catch>
 <catch faultName="x:foo" faultVariable="bar">
 <empty/>
 </catch>
 <catchAll>
 <empty/>
 </catchAll>
</faulthandlers>

12.9.5 How to Create a Catch Activity

To create a catch activity:
1. In the expanded Scope activity, click Add Catch Branch.

Figure 12–6 Add Catch Branch

This creates a catch activity in the right side of the scope activity.

2. Double-click the Catch activity.

3. Optionally enter a name.

4. To the right of the Namespace URI field, click the Search icon to select the fault.

5. Select the fault in the Fault Chooser dialog, and click OK.

The namespace URI for the selected fault displays in the Namespace URI field.
Your fault selection also automatically displays in the Local Part field.

Figure 12–7 provides an example of a Catch dialog. This example shows the
selectionFailure catch activity of the Scope_AuthorizeCreditCard scope activity
in the WebLogic Fusion Order Demo application. This catch activity catches orders
in which the credit card number is not provided.

Using a Scope Activity to Manage a Group of Activities

Using Fault Handling in a BPEL Process 12-29

Figure 12–7 Catch Dialog

6. Design additional fault handling functionality.

7. Click OK.

Figure 12–8 provides an example of two catch activities for the Scope_
AuthorizeCreditCard scope activity. The second catch activity catches credit types
that are not valid.

Figure 12–8 Catch Activities in the Designer

12.9.6 What Happens When You Create a Catch Branch
Figure 12–22 shows the catch activity in the .bpel file after design completion. The
selectionFailure catch activity catches orders in which the credit card number is
not provided and the InvalidCredit catch activity catches credit types that are not
valid.

Example 12–22 Catch Branch

<faultHandlers>
 <catch faultName="bpws:selectionFailure">
 <sequence>

Using a Scope Activity to Manage a Group of Activities

12-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <assign name="Assign_noCCNumber">
 <copy>
 <from expression="string('CreditCardCheck - NO CreditCard')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name ="Throw_NoCreditCard"
 faultVariable="gOrderProcessorFaultVariable"
 faultName="ns9:OrderProcessingFault"/>
 </sequence>
 </catch>
 <catch faultName="ns2:InvalidCredit">
 <sequence>
 <assign name="Assign_InvalidCreditFault">
 <copy>
 <from expression="concat(bpws:getVariableData
 ('gOrderInfoVariable','/ns4:orderInfoVOSDO/ns4:CardTypeCode'), '
 is not a valid creditcard type')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="summary"/>
 </copy>
 <copy>
 <from expression="string('CreditCardCheck - NOT VALID')"/>
 <to variable="gOrderProcessorFaultVariable"
 part="code"/>
 </copy>
 </assign>
 <throw name="Throw_OrderProcessingFault"
 faultName="ns9:OrderProcessingFault"
 faultVariable="gOrderProcessorFaultVariable"/>
 </sequence>
 </catch>
</faultHandlers>

12.9.7 How to Create an Empty Activity to Insert No-Op Instructions into a Business
Process

There is often a need to use an activity that does nothing. An example is when a fault
must be caught and suppressed. In this case, you can use the empty activity to insert a
no-op instruction into a business process.

To create an empty activity:
1. From the Component Palette, drag an Empty activity into the designer.

2. Double-click the Empty activity.

The Empty dialog appears, as shown in Figure 12–9.

Using Compensation After Undoing a Series of Operations

Using Fault Handling in a BPEL Process 12-31

Figure 12–9 Empty Activity

3. Optionally enter a name.

4. Click OK.

12.9.8 What Happens When You Create an Empty Activity
The syntax for an empty activity is shown in Example 12–23.

Example 12–23 Empty Activity

 <empty standard-attributes>
 standard-elements
 </empty>

If no catch or catchAll is selected, the fault is not caught by the current scope and
is rethrown to the immediately enclosing scope. If the fault occurs in (or is rethrown
to) the global process scope, and there is no matching fault handler for the fault at the
global level, the process terminates abnormally. This is as though a terminate activity
(described in Section 12.11, "Using the Terminate Activity to Stop a Business Process
Instance") had been performed.

12.10 Using Compensation After Undoing a Series of Operations
Compensation occurs when the BPEL process service component cannot complete a
series of operations after some have completed, and the BPEL process service
component must backtrack and undo the previously completed transactions. For
example, if a BPEL process service component is designed to book a rental car, a hotel,
and a flight, it may book the car and the hotel and then be unable to book a flight for
the right day. In this case, the BPEL flow performs compensation by going back and
unbooking the car and the hotel.

12.10.1 How to Use Compensation After Undoing a Series of Operations
You can invoke a compensation handler by using the compensate activity, which
names the scope for which the compensation is to be performed (that is, the scope
whose compensation handler is to be invoked). A compensation handler for a scope is
available for invocation only when the scope completes normally. Invoking a

Using Compensation After Undoing a Series of Operations

12-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

compensation handler that has not been installed is equivalent to using the empty
activity (it is a no-op). This ensures that fault handlers do not have to rely on state to
determine which nested scopes have completed successfully. The semantics of a
process in which an installed compensation handler is invoked multiple times are
undefined.

The ability to explicitly invoke the compensate activity is the underpinning of the
application-controlled error-handling framework of Business Process Execution
Language for Web Services Specification. You can use this activity only in the following
parts of a business process:

■ In a fault handler of the scope that immediately encloses the scope for which
compensation is to be performed.

■ In the compensation handler of the scope that immediately encloses the scope for
which compensation is to be performed.

For example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the BPEL process service
component invokes the instances of the compensation handlers in the successive
iterations in reverse order.

If the compensation handler for a scope is absent, the default compensation handler
invokes the compensation handlers for the immediately enclosed scopes in the reverse
order of the completion of those scopes.

The compensate form, in which the scope name is omitted in a compensate activity,
explicitly invokes this default behavior. This is useful when an enclosing fault or
compensation handler must perform additional work, such as updating variables or
sending external notifications, in addition to performing default compensation for
inner scopes. The compensate activity in a fault or compensation handler attached to
the outer scope invokes the default order of compensation handlers for completed
scopes directly nested within the outer scope. You can mix this activity with any other
user-specified behavior except for the explicit invocation of the nested scope within
the outer scope. Explicitly invoking a compensation for such a scope nested within the
outer scope disables the availability of default-order compensation.

12.10.2 How to Create a Compensate Activity

To create a compensate activity:
1. From the Component Palette, drag an Compensate activity into the designer.

2. Double-click the Compensate activity.

3. Select a scope activity in which to invoke the compensation handler.

Using the Terminate Activity to Stop a Business Process Instance

Using Fault Handling in a BPEL Process 12-33

Figure 12–10 Compensate Activity

4. Click OK.

12.10.3 What Happens When You Create a Compensate Activity
If an invoke activity has a compensation handler defined inline, then the name of the
activity is the name of the scope to be used in the compensate activity. The syntax is
shown in Example 12–24:

Example 12–24 Compensation Handler

<compensate scope="ncname"? standard-attributes>
 standard-elements
 </compensate>

12.11 Using the Terminate Activity to Stop a Business Process Instance
The terminate activity immediately terminates the behavior of a business process
instance within which the terminate activity is performed. All currently running
activities must be terminated as soon as possible without any fault handling or
compensation behavior. The terminate activity does not send any notifications of the
status of a BPEL process service component. If you are going to use the terminate
activity, first program notifications to the interested parties.

12.11.1 How to Create a Terminate Activity

To create a terminate activity:
1. From the Component Palette in Oracle JDeveloper, drag a Terminate activity into

the designer. Figure 12–11 provides an example.

Using the Terminate Activity to Stop a Business Process Instance

12-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 12–11 Terminate Activity

2. Double-click the terminate activity.

3. Optionally enter a name.

4. Click OK.

12.11.2 What Happens When You Create a Terminate Activity
The syntax for the terminate activity is shown in Example 12–25. This stops the
business process instance.

Example 12–25 Terminate Activity

<terminate standard-attributes>
 standard-elements
</terminate>

13

Incorporating Java and Java EE Code in a BPEL Process 13-1

13 Incorporating Java and Java EE Code in a
BPEL Process

This chapter describes how to incorporate sections of Java code into BPEL process
service components in SOA composite applications.

This chapter includes the following sections:

■ Section 13.1, "Introduction to Java and Java EE Code in BPEL Processes"

■ Section 13.2, "Incorporating Java and Java EE Code in BPEL Processes"

■ Section 13.3, "Adding Custom Classes and JAR Files"

■ Section 13.4, "Using Java Embedding in a BPEL Process in Oracle JDeveloper"

■ Section 13.5, "Embedding Service Data Objects with bpelx:exec"

13.1 Introduction to Java and Java EE Code in BPEL Processes
This chapter explains how to incorporate sections of Java code into a BPEL process.
This is particularly useful when there is Enterprise JavaBeans Java code that can
perform the necessary function, and you want to use the existing code rather than start
over with BPEL.

13.2 Incorporating Java and Java EE Code in BPEL Processes
There are several methods for incorporating Java and Java EE code in BPEL processes:

■ Wrap as a Simple Object Access Protocol (SOAP) service

■ Embed Java code snippets into a BPEL process with the bpelx:exec tag

■ Use an XML facade to simplify DOM manipulation

■ Use bpelx:exec built-in methods

■ Use Java code wrapped in a service interface

13.2.1 How to Wrap Java Code as a SOAP Service
You can wrap the Java code as a Simple Object Access Protocol (SOAP) service. This
method requires that the Java application have a BPEL-compatible interface. A Java
application wrapped as a SOAP service appears as any other web service, which can
be used by many different kinds of applications. There are also tools available for
writing SOAP wrappers.

Incorporating Java and Java EE Code in BPEL Processes

13-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

13.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service
A Java application wrapped as a SOAP service has the following drawbacks:

■ There may be reduced performance due to the nature of converting between Java
and SOAP, and back and forth.

■ Since SOAP inherently has no support for transactions, this method loses atomic
transactionality, that is, the ability to perform several operations in an all-or-none
mode (such as debiting one bank account while crediting another, where either
both transactions must be completed, or neither of them).

13.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag
You can embed Java code snippets directly into the BPEL process using the Java BPEL
exec extension bpelx:exec. The benefits of this approach are speed and
transactionality. It is recommended that you incorporate only small segments of code.
BPEL is about separation of business logic from implementation. If you remove a lot of
Java code in your process, you lose that separation. Java embedding is recommended
for short utility-like operations, rather than business code. Place the business logic
elsewhere and call it from BPEL.

The server executes any snippet of Java code contained within a bpelx:exec activity,
within its Java Transaction API (JTA) transaction context.

The BPEL tag bpelx:exec converts Java exceptions into BPEL faults and then adds
them into the BPEL process.

The Java snippet can propagate its JTA transaction to session and entity beans that it
calls.

For example, a SessionBeanSample.bpel file uses the bpelx:exec tag shown in
Example 13–1 to embed the invokeSessionBean Java bean:

Example 13–1 bpelx:exec Tag

 <bpelx:exec name="invokeSessionBean" language="java" version="1.5">
 <![CDATA[
 try {
 Object homeObj = lookup("ejb/session/CreditRating");
 Class cls = Class.forName(
 "com.otn.samples.sessionbean.CreditRatingServiceHome");
 CreditRatingServiceHome ratingHome = (CreditRatingServiceHome)
 PortableRemoteObject.narrow(homeObj,cls);
 if (ratingHome == null) {
 addAuditTrailEntry("Failed to lookup 'ejb.session.CreditRating'"
 + ". Ensure that the bean has been"
 + " successfully deployed");
 return;
 }
 CreditRatingService ratingService = ratingHome.create();

 // Retrieve ssn from scope
 Element ssn =
 (Element)getVariableData("input","payload","/ssn");

 int rating = ratingService.getRating(ssn.getNodeValue());
 addAuditTrailEntry("Rating is: " + rating);

 setVariableData("output", "payload",
 "/tns:rating", new Integer(rating));

Incorporating Java and Java EE Code in BPEL Processes

Incorporating Java and Java EE Code in a BPEL Process 13-3

 } catch (NamingException ne) {
 addAuditTrailEntry(ne);
 } catch (ClassNotFoundException cnfe) {
 addAuditTrailEntry(cnfe);
 } catch (CreateException ce) {
 addAuditTrailEntry(ce);
 } catch (RemoteException re) {
 addAuditTrailEntry(re);
 }
]]>
 </bpelx:exec>

13.2.4 How to Use an XML Facade to Simplify DOM Manipulation
You can use an XML facade to simplify DOM manipulation. Oracle BPEL Process
Manager provides a lightweight Java Architecture for XML Binding (JAXB)-like Java
object model on top of XML (called a facade). An XML facade provides a Java
bean-like front end for an XML document or element that has a schema. Facade classes
can provide easy manipulation of the XML document and element in Java programs.

You add the XML facade by using a createFacade method within the bpelx:exec
statement in the .bpel file. Example 13–2 provides an example:

Example 13–2 Addition of XML facade

 <bpelx:exec name= ...
 <![CDATA
 ...
 Element element = ...
 (Element)getVariableData("input","payload","/loanApplication/"):
 //Create an XMLFacade for the Loan Application Document
 LoanApplication xmlLoanApp=
 LoanApplicationFactory.createFacade(element);
 ...

13.2.5 How to Use bpelx:exec Built-in Methods
Table 13–1 lists a set of bpelx:exec built-in methods that you can use to read and
update scope variables, instance metadata, and audit trails.

Table 13–1 Built in Methods for bpelx:exec

Method Name Description

Object lookup(String name) JNDI access

Locator getLocator() Oracle BPEL Process Manager locator

long getInstanceId() Unique ID associated with each instance

String setTitle(String title) /
String getTitle()

Title of this instance

String setStatus(String status) /
String getStatus()

Status of this instance

void
setCompositeInstanceTitle(String
title)

Set the composite instance title

void setIndex(int i, String value)
/ String getIndex(int i)

Six indexes can be used for search

Incorporating Java and Java EE Code in BPEL Processes

13-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

13.2.6 How to Use Java Code Wrapped in a Service Interface
Not all applications expose a service interface. You may have a scenario in which a
business process must use custom Java code. For this scenario, you can:

■ Write custom Java code.

■ Create a service interface in which to embed the code.

■ Invoke the Java code as a web service over SOAP.

For example, assume you create a BPEL process service component in a SOA
composite application that invokes a service interface through a SOAP reference
binding component. For this example, the service interface used is an Oracle
Application Development Framework (ADF) Business Component.

The high-level instructions for this scenario are as follows.

To use Java code wrapped in a service interface:
1. Create an Oracle ADF Business Component service in Oracle JDeveloper.

This action generates a WSDL file and XSD file for the service.

2. Create a SOA application that includes a BPEL process service component. Ensure
that the BPEL process service component is exposed as a composite service. This

void setPriority(int priority) /
int getPriority()

Priority

void setCreator(String creator) /
String getCreator()

Who initiated this instance

void setCustomKey(String customKey
) / String getCustomKey()

Second primary key

void setMetadata(String metadata)
/ String getMetadata ()

Metadata for generating lists

String getPreference(String key) Access preference

void addAuditTrailEntry(String
message, Object detail)

Add an entry to the audit trail

void addAuditTrailEntry(Throwable t) Access file stored in the suitcase

Object getVariableData(String name)
throws BPELFault

Access and update variables stored in the
scope

Object getVariableData(String name,
String partOrQuery) throws BPELFault

Access and update variables.

Object getVariableData(String name,
String part, String query)

Access and update variables.

void setVariableData(String name,
Object value)

Set variable data.

void setVariableData(String name,
String part, Object value)

Set variable data.

void setVariableData(String name,
String part, String query, Object
value)

Set variable data.

Table 13–1 (Cont.) Built in Methods for bpelx:exec

Method Name Description

Adding Custom Classes and JAR Files

Incorporating Java and Java EE Code in a BPEL Process 13-5

automatically connects the BPEL process to an inbound SOAP service binding
component.

3. Import the Oracle ADF Business Component service WSDL into the SOA
composite application.

4. Create a web service binding to the Oracle ADF Business Component service
interface.

5. Design a BPEL process in which you perform the following tasks:

a. Create a partner link for the Oracle ADF Business Component service
portType.

b. Create an assign activity. For this example, this step copies data (for example, a
static XML fragment) into a variable that is passed to the Oracle ADF Business
Component service.

c. Create an invoke activity and connect to the partner link you created in Step
5a.

6. Connect (wire) the partner link reference to the composite reference binding
component. This reference uses a web service binding to enable the Oracle ADF
Business Component service to be remotely deployed.

7. Deploy the SOA application.

8. Invoke the SOA application from the Test Web Service page in Oracle Enterprise
Manager Fusion Middleware Control Console.

For more information on creating Oracle ADF Business Components, see Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework.

For more information on invoking a SOA composite application, see Oracle Fusion
Middleware Administrator's Guide for Oracle SOA Suite.

13.3 Adding Custom Classes and JAR Files
You can add custom classes and JAR files to an SOA composite application. A SOA
extension library for adding extension classes and JARs to an SOA composite
application is available in the $ORACLE_HOME/soa/modules/oracle.soa.ext_
11.1.1 directory. For Oracle JDeveloper, custom classes and JARs are added to the
application_name/project/sca-inf/lib directory.

13.3.1 How to Add Custom Classes and JAR Files
If the classes are used in bpelx:exec, you must also add the JARs in
bpelcClasspath in bpel-config.xml. In addition, ensure that the JARs are
loaded by SOA composite application.

To add custom classes:
1. Copy the classes to the classes directory.

2. Restart Oracle WebLogic Server.

To add custom JARs:
1. Copy the JAR files to this directory or its subdirectory.

2. Run ant.

3. Restart Oracle WebLogic Server.

Using Java Embedding in a BPEL Process in Oracle JDeveloper

13-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

13.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper
In Oracle JDeveloper, you can add the bpelx:exec activity and copy the code
snippet into a dialog box.

13.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper

To use Java embedding in a BPEL process in Oracle JDeveloper:
1. From the Component Palette, drag the Java Embedding activity into the designer.

2. Double-click the Java Embedding activity to display the Java Embedding dialog.

3. In the Name field, enter a name.

4. In the Code Snippet field, enter (or cut and paste) the Java code.

Figure 13–1 bpel:exec Code Example

Note: For custom classes, you must include any JAR files required
for embedded Java code in the bpelcClasspath variable in the
ORACLE_HOME/domains/user_domain_
name/config/soa-infra/configuration/bpel-config.xml
file. The JAR files are then added to the class path of the BPEL loader.
If multiple JAR files are included, they must be separated by a colon
(:) on UNIX and a semicolon (;) on Windows.

Note: As an alternative to writing Java code in the Java Embedding
activity, you can place your Java code in a JAR file, put it in the class
path, and call your methods from within the Java Embedding activity.

Embedding Service Data Objects with bpelx:exec

Incorporating Java and Java EE Code in a BPEL Process 13-7

13.5 Embedding Service Data Objects with bpelx:exec
You can embed service data object (SDO) code in the .bpel file with the bpelx:exec
tag. In the syntax provided in Example 13–3, mytest.apps.SDOHelper is a Java
class that modifies SDOs.

Example 13–3 Embedding SDO Objects with the bpelx:exec tag

</bpelx:exec>
<bpelx:exec name="ModifyInternalSDO" version="1.5" language="java">
 <![CDATA[try{
 Object o = getVariableData("VarSDO");
 Object out = getVariableData("ExtSDO");
 System.out.println("BPEL:Modify VarSDO... " + o + " ExtSDO: " + out);
 mytest.apps.SDOHelper.print(o);
 mytest.apps.SDOHelper.print(out);
 mytest.apps.SDOHelper.modifySDO(o);
 System.out.println("BPEL:After Modify VarSDO... " + o + " ExtSDO: " + out);
 mytest.apps.SDOHelper.print(o);
 mytest.apps.SDOHelper.print(out);
 }catch(Exception e)
 {
 e.printStackTrace();
}]]>
 </bpelx:exec>

Example 13–4 provides an example of the Java classes modifySDO(o) and print(o)
that are embedded in the BPEL file.

Example 13–4 Java Classes

public static void modifySDO(Object o){
 if(o instanceof commonj.sdo.DataObject)
 {
 ((DataObject)o).getChangeSummary().beginLogging();
 SDOType type = (SDOType)((DataObject)o).getType();
 HelperContext hCtx = type.getHelperContext();
 List<DataObject> lines =
 (List<DataObject>)((DataObject)o).get("line");
 for (DataObject line: lines) {
 line.set("eligibilityStatus", "Y");
 }
 } else {
 System.out.println("SDOHelper.modifySDO(): " + o + " is not a
 DataObject!");
 }
 }
. . .
. . .
 public static void print(Object o) {
 try{
 if(o instanceof commonj.sdo.DataObject)
 {
 DataObject sdo = (commonj.sdo.DataObject)o;
 SDOType type = (SDOType) sdo.getType();
 HelperContext hCtx = type.getHelperContext();
 System.out.println(hCtx.getXMLHelper().save(sdo, type.getURI(),
 type.getName()));
 } else {
 System.out.println("SDOHelper.print(): Not a sdo " + o);

Embedding Service Data Objects with bpelx:exec

13-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 }
 }catch(Exception e)
 {
 e.printStackTrace();
 } }

14

Using Events and Timeouts in BPEL Processes 14-1

14 Using Events and Timeouts in BPEL
Processes

This chapter describes how to use events and timeouts. Because web services can take
a long time to return a response, a BPEL process service component must be able to
time out and continue with the rest of the flow after a period of time.

This chapter includes the following sections:

■ Section 14.1, "Introduction to Event and Timeout Concepts"

■ Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or
Waiting"

■ Section 14.3, "Creating a Wait Activity to Set an Expiration Time"

■ Section 14.4, "Setting Timeouts for Synchronous Processes"

14.1 Introduction to Event and Timeout Concepts
This chapter provides an example of how to program a BPEL process service
component to wait one minute for a response from a web service named Star Loan that
provides loan offers. If Star Loan does not respond in one minute, then the BPEL
process service component automatically selects an offer from another web service
named United Loan. In the real world, the time limit is more like 48 hours. However,
for this example, you do not want to wait that long to see if your BPEL process service
component is working properly.

Because asynchronous web services can take a long time to return a response, a BPEL
process service component must be able to time out, or give up waiting, and continue
with the rest of the flow after a certain amount of time. You can use the pick activity to
configure a BPEL flow to either wait a specified amount of time or to continue
performing its duties. To set an expiration period for the time, you can use the wait
activity.

14.2 Creating a Pick Activity to Select Between Continuing a Process or
Waiting

The pick activity provides two branches, each one with a condition. The branch that
has its condition satisfied first is executed. In the following example, one branch’s
condition is to receive a loan offer, and the other branch’s condition is to wait a
specified amount of time.

Figure 14–1 provides an overview. The following activities take place (in order of
priority):

Creating a Pick Activity to Select Between Continuing a Process or Waiting

14-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1. An invoke activity initiates a service, in this case, a request for a loan offer from
Star Loan.

2. The pick activity begins next. It has the following conditions:

■ onMessage

This condition has code for receiving a reply in the form of a loan offer from
the Star Loan web service. The onMessage code is equal to the code for
receiving a response from the Star Loan web service before a timeout was
added.

■ onAlarm

This condition has code for a timeout of one minute. This time is defined as
PT1M, which means to wait one minute before timing out. In this timeout
setting:

– S stands for seconds

– M for one minute

– H for hour

– D for day

– Y for year

In the unlikely event that you want a time limit of 1 year, 3 days, and 15
seconds, you enter it as PT1Y3D15S. The remainder of the code sets the loan
variables selected and approved to false, sets the annual percentage rate
(APR) at 0.0, and copies this information into the loanOffer variable.

The time duration format is specified by the BPEL standard. For more detailed
information on the time duration format, see the duration section of the most
current XML Schema Part 2: Datatypes document at:

http://www.w3.org/TR/xmlschema-2/#duration

3. The pick activity condition that completes first is the one that the BPEL process
service component executes. The other branch then is not executed.

Creating a Pick Activity to Select Between Continuing a Process or Waiting

Using Events and Timeouts in BPEL Processes 14-3

Figure 14–1 Overview of the Pick Activity

14.2.1 How To Create a Pick Activity

To create a pick activity:
1. In the SOA Composite Editor, double-click the BPEL process service component.

2. From the Component Palette, drag a Pick activity into the designer.

3. Expand the Pick activity.

The Pick activity includes the onMessage (envelope icon) and onAlarm (alarm
clock icon) branches. Figure 14–2 provides an example.

Figure 14–2 Pick Activity

4. Double-click the OnAlarm branch of the pick activity and set its time limit to 1
minute instead of 1 hour. Figure 14–3 provides an example.

Initiate
service

<invoke>

Wait for
callback

<onMessage>

Logic
Post

Callback

Star
Loan

Logic
Post

Timeout

Time out
in 1M

<onAlarm>

<pick>

BPEL
Process

WSDL

Creating a Pick Activity to Select Between Continuing a Process or Waiting

14-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 14–3 OnAlarm Branch

5. Click OK.

6. Double-click the onMessage branch. Figure 14–4 provides an example.

Figure 14–4 onMessage Branch

7. Edit its attributes to receive the response from the loan service.

14.2.2 What Happens When You Create a Pick Activity
The code segment in Example 14–1 defines the pick activity for this operation after
design completion:

Example 14–1 Pick Activity

 <pick>
 <!-- receive the result of the remote process -->

Creating a Wait Activity to Set an Expiration Time

Using Events and Timeouts in BPEL Processes 14-5

 <onMessage partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="loanOffer">

 <assign>
 <copy>
 <from variable="loanOffer" part="payload"/>
 <to variable="output" part="payload"/>
 </copy>
 </assign>

 </onMessage>
 <!-- wait for one minute, then timesout -->
 <onAlarm for="PT1M">
 <assign>
 <copy>
 <from>
 <loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
 <providerName>Expired</providerName>
 <selected type="boolean">false</selected>
 <approved type="boolean">false</approved>
 <APR type="double">0.0</APR>
 </loanOffer>
 </from>
 <to variable="loanOffer" part="payload"/>
 </copy>
 </assign>
 </onAlarm>
</pick>

14.3 Creating a Wait Activity to Set an Expiration Time
The wait activity allows a process to wait for a given time period or until a time limit
has been reached. Exactly one of the expiration criteria must be specified. A typical use
of this activity is to invoke an operation at a certain time. You typically enter an
expression that is dependent on the state of a process.

When specifying a time period for waiting, note the following:

■ Wait times cannot be guaranteed if they are scheduled with other events that
require processing. Due to this additional processing, the actual wait time can be
greater than the wait time specified in the BPEL process.

■ Wait times of less than two seconds are ignored by the server. Wait times above
two seconds, but less than one minute, may not get executed in the exact, specified
time. However, wait times in minutes do execute in the specified time.

■ The default value of 2 seconds for wait times is specified with the minBPELWait
property in the bpel-config.xml file. You can set this property to any value
and the wait delay is bypassed for any waits less then minBPELWait.

Note: Quartz version 1.6 is supported for scheduling expiration
events on wait activities.

Setting Timeouts for Synchronous Processes

14-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

14.3.1 How To Create a Wait Activity

To create a wait activity:
1. From the Component Palette, drag a Wait activity into the designer.

2. Double-click the Wait activity to display the Wait dialog.

3. In the For section, enter the amount of time for which to wait.

4. In the Until section, select the deadline for which to wait, as shown in Figure 14–5.

Figure 14–5 Wait Dialog

14.3.2 What Happens When You Create a Wait Activity
Exactly one of the expiration criteria must be specified, as shown in Example 14–2.

Example 14–2 Wait Activity

<wait (for="duration-expr" | until="deadline-expr") standard-attributes>
 standard-elements
 </wait>

14.4 Setting Timeouts for Synchronous Processes
For synchronous processes that connect to a remote database, you must increase the
syncMaxWaitTime timeout property.

14.4.1 How To Set Timeouts for Synchronous Processes

To set timeouts for synchronous processes:
1. Open the ORACLE_HOME/domains/user_domain_

name/config/soa-infra/configuration/bpel-config.xml file.

Setting Timeouts for Synchronous Processes

Using Events and Timeouts in BPEL Processes 14-7

2. Edit the value for the syncMaxWaitTime property. Example 14–3 provides an
example.

Example 14–3 syncMaxWaitTime timeout property

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bpel-config xmlns="http://xmlns.oracle.com/soa/config/bpel" version="11.1.0">
 <!--bpelcClasspath>custom_bpelc_classpath</bpelcClasspath-->
 <dspSystemThreads>2</dspSystemThreads>
 <dspInvokeThreads>20</dspInvokeThreads>
 <dspEngineThreads>30</dspEngineThreads>
 <dspMaxRequestDepth>600</dspMaxRequestDepth>
 <auditLevel>inherit</auditLevel>
 <oneWayDeliveryPolicy>on</oneWayDeliveryPolicy>
 <statsLastN>-1</statsLastN>
 <auditDetailThreshold>50000</auditDetailThreshold>
 <largeDocumentThreshold>100000</largeDocumentThreshold>
 <validateXML>false</validateXML>
 <expirationMaxRetry>5</expirationMaxRetry>
 <expirationRetryDelay>120</expirationRetryDelay>
 <qualityOfService>DirectWrite</qualityOfService>
 <syncMaxWaitTime>45</syncMaxWaitTime>
 <instanceKeyBlockSize>10000</instanceKeyBlockSize>
 <maximumNumberOfInvokeMessagesInCache>100000
 </maximumNumberOfInvokeMessagesInCache>
</bpel-config>

Setting Timeouts for Synchronous Processes

14-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

15

Coordinating Master and Detail Processes 15-1

15 Coordinating Master and Detail Processes

This chapter describes how to coordinate master and detail processes in a BPEL
process. This coordination enables you to specify the tasks performed by a master
BPEL process and its related detail BPEL processes. This is sometimes referred to as a
parent and child relationship.

This chapter includes the following sections:

■ Section 15.1, "Introduction to Master and Detail Process Coordinations"

■ Section 15.2, "Defining Master and Detail Process Coordination in Oracle
JDeveloper"

15.1 Introduction to Master and Detail Process Coordinations
Master and detail coordinations consist of a one-to-many relationship between a single
master process and multiple detail processes.

For example, assume a business process imports sales orders into an application. Each
sales order consists of a header (customer information, ship-to address, and so on) and
multiple lines (item name, item number, item quantity, price, and so on).

The following tasks are performed to execute the order:

■ Validate the header. If the header is invalid, processing stops.

■ Validate each line. If any lines are invalid, they are marked as invalid and
processing stops.

■ Perform inventory checks for each item. If an item is not available, a work order is
created to assemble it.

■ Stage items at the shipping dock after items for each line are available.

■ Ship the order to the customer.

To perform these tasks, create a master process to check and validate each header and
multiple BPEL processes to check and validate each line item.

Potential coordination points are as follows:

■ The master process must signal the detail processes that header validation is
successful and to continue processing.

■ Each detail process must signal the master process after line item validation is
complete.

■ Each detail process must signal the master process after the line item is available in
inventory.

Introduction to Master and Detail Process Coordinations

15-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ After all line items are available, the master must signal each detail process to
move its line item to the shipping dock (the dock may become too crowded if
items are simply moved as soon as they are available).

■ After all lines have been moved, the master process must execute logic to ship the
fulfilled order to the customer.

Figure 15–1 provides an overview of the header and line item validation coordination
points between one master process and two detail processes.

Figure 15–1 Master and Detail Coordination Overview (One BPEL Process to Two Detail Processes)

The following BPEL process activities coordinate actions between the master and
detail processes:

■ signal: notifies the other processes (master or detail) to continue processing

■ receive signal: waits until it receives the proper notification signal from the other
process (master or detail) before continuing its processing

Both activities are coordinated with label attributes defined in the BPEL process files.
Labels are declared per master process definition.

Figure 15–2 provides an overview of the BPEL process flow coordination.

Validates Header Validates Header
Header
· Customer Information
· Ship-To Address

Line Items
· Item Names
· Item Number
· Price
· Quantity

Sales Order 1
Header
· Customer Information
· Ship-To Address

Line Items
· Item Names
· Item Number
· Price
· Quantity

Sales Order 2
Master BPEL

Process

Completes Header
Validation and
Signals Detail
Process to
Continue Completes

LineValidation
and Signals
Master
Process

Completes
Line Validation
and Signals
Master
Process

Detail BPEL
Process 1

Detail BPEL
Process 2

Completes
Header
Validation and
Signals Detail
Process to
Continue

Validates Line Items

Introduction to Master and Detail Process Coordinations

Coordinating Master and Detail Processes 15-3

Figure 15–2 Master and Detail Syntax Overview (One BPEL Process to One Detail Process)

As shown in Figure 15–2, each master and detail process includes a signal and receive
signal activity. Table 15–1 describes activity responsibilities based on the type of
process in which they are defined.

If the signal activity executes before the receive signal activity, the state set by the
signal activity is persisted and still effective for a later receive signal activity to read.

15.1.1 BPEL File Definition for the Master Process
The BPEL file for the master process defines coordination with the detail processes.
The BPEL file shows that the master process interacts with the partner links of several
detail processes. Example 15–1 provides an example.

Example 15–1 BPEL File Definition for the Master Process

<process name="MasterProcess"
. . .
. . .
 <partnerLinks>
 <partnerLink name="client"
 partnerLinkType="tns:MasterProcess"

Table 15–1 Master and Detail Process Coordination Responsibilities

If A... Contains A... Then...

Master process Signal activity The master process signals all of its associated
detail processes at runtime.

Detail process Receive signal activity The detail process waits until it receives the signal
executed by its master process.

Detail process Signal activity The detail process signals its associated master
process at runtime that processing is complete.

Master process Receive signal activity The master process waits until it receives the
signal executed by all of its detail processes.

Signal Activity
label="startDetailProcess"
to="details"

Invoke Activity
partnerlink="DetailProcess"
. . .
. . .
bpelx:invokeAsDetail="true"

Receive Signal Activity
label="CompleteDetailProcess"
from="details"

Receive Signal Activity
label="StartDetailProcess"
from="master"

Signal Activity
label="CompleteDetailProcess"
to="master"

Master Process Detail Process

Introduction to Master and Detail Process Coordinations

15-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 myRole="MasterProcessProvider"
 partnerRole="MasterProcessRequester"/>
 <partnerLink name="DetailProcess"
 partnerLinkType="dp:DetailProcess"
 myRole="DetailProcessRequester"
 partnerRole="DetailProcessProvider"/>
 <partnerLink name="DetailProcess1"
 partnerLinkType="dp1:DetailProcess1"
 myRole="DetailProcess1Requester"
 partnerRole="DetailProcess1Provider"/>
 <partnerLink name="DetailProcess2"
 partnerLinkType="dp2:DetailProcess2"
 myRole="DetailProcess2Requester"
 partnerRole="DetailProcess2Provider"/>
 </partnerLinks>

A signal activity shows the label value and the detail process coordinated with this
master process. The label value (startDetailProcess) matches with the label value
in the receive signal activity of all detail processes. This ensures that the signal is
delivered to the correct process. There is one signal process per receive signal process.
The master process signals all detail processes at runtime.

<bpelx:signal name="notifyDetailProcess" label="startDetailProcess" to="details"/>

Assign, invoke, and receive activities describe the interaction between the master and
detail processes. This example shows interaction between the master process and one
of the detail processes (DetailProcess). Similar interaction is defined in this BPEL
file for all detail processes.

Within the invoke activity, the bpelx:invokeAsDetail attribute is set to true. This
attribute creates the partner process instance (DetailProcess) as a detail instance.
You must manually add this attribute and set the value to true in the master process
file for each detail process with which to interact. Example 15–2 provides an example.

Example 15–2 bpelx:invokeAsDetail Attribute

<assign>
 <copy>
 <from variable="input" part="payload" query="/tns:processInfo/tns:value"/>
 <to variable="detail_input" part="payload" query="/dp:input/dp:number"/>
 </copy>
</assign

<invoke name="receiveInput" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:invokeAsDetail="true"/>

<!-- receive the result of the remote process -->
<receive name="receive_DetailProcess" partnerLink="DetailProcess"
 portType="dp:DetailProcessCallback"
 operation="onResult" variable="detail_output"/>

The master BPEL process includes a receive signal activity. This activity indicates that
the master process waits until it receives a signal from all of its detail processes. The
label value (detailProcessComplete) matches with the label value in the signal
activity of each detail process. This ensures that the signal is delivered to the correct
process. Example 15–3 provides an example.

Introduction to Master and Detail Process Coordinations

Coordinating Master and Detail Processes 15-5

Example 15–3 Receive Signal Activity

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess"
 label="detailProcessComplete"
 from="details"/>

15.1.1.1 Correlating a Master Process with Multiple Detail Processes
For environments in which you have one master and multiple detail processes, use the
bpelx:detailLabel attribute for signal correlation. The following example shows
how to use this attribute.

The first invoke activity invokes the DetailsProcess detail process and associates it
with a label of detailProcessComplete0. Example 15–4 provides an example.

Example 15–4 First Invoke Activity

<invoke name="invokeDetailProcess" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:detailLabel="detailProcessComplete0"
 bpelx:invokeAsDetail="true"/>

The second invoke activity invokes the DetailsProcess1 detail process and
associates it with a label of detailProcessComplete1. Example 15–5 provides an
example.

Example 15–5 Second Invoke Activity

<invoke name="invokeDetailProcess1" partnerLink="DetailProcess1"
 portType="dp1:DetailProcess1"
 operation="initiate"
 inputVariable="detail_input1"
 bpelx:detailLabel="detailProcessComplete1-2"
 bpelx:invokeAsDetail="true"/>

The third invoke activity invokes the DetailsProcess2 detail process again through
a different port and with a different input variable. It associates the
DetailsProcess2 detail process with a label of detailProcessComplete1-2:

Example 15–6 Third Invoke Activity

<invoke name="invokeDetailProcess2" partnerLink="DetailProcess2"
 portType="dp2:DetailProcess2"
 operation="initiate"
 inputVariable="detail_input2"
 bpelx:detailLabel="detailProcessComplete1-2"
 bpelx:invokeAsDetail="true"/>

The receive signal activity of the master process shown in Example 15–7 waits for a
return signal from detail process DetailProcess0.

Example 15–7 Receive Signal Activity

<!-- This is a receiveSignal waiting for 1 child to signal back -->
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0"
label="detailProcessComplete0" from="details"/>

The second receive signal activity of the master process shown in Example 15–8 also
waits for a return signal from DetailProcess1 and DetailProcess2.

Defining Master and Detail Process Coordination in Oracle JDeveloper

15-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 15–8 Second Receive Signal Activity

<!-- This is a receiveSignal waiting for 2 child (detail) processes to signal back
-->
<bpelx:receiveSignal name="waitForNotifyFromDetailProcess1-2"
 label="detailProcessComplete1-2" from="details"/>

15.1.2 BPEL File Definition for Detail Processes
The BPEL process file of each detail process defines coordination with the master
process.

A receive signal activity indicates that the detail process shown in Example 15–9 waits
until it receives a signal executed by its master process. The label value
(startDetailProcess) matches with the label value in the signal activity of the
master process.

Example 15–9 startDetailProcess Label Value

<bpelx:receiveSignal name="waitForNotifyFromMasterProcess"
 label="startDetailProcess" from="master"/>

A signal activity indicates that the detail process shown in Example 15–10 signals its
associated master process at runtime that processing is complete. The label value
(detailProcessComplete) matches with the label value in the receive signal
activity of each master process.

Example 15–10 Signal Activity

<bpelx:signal name="notifyMAsterProcess" label="detailProcessComplete"
 to="master"/>

15.2 Defining Master and Detail Process Coordination in Oracle
JDeveloper

This section provides an overview of how to define master and detail process
coordination in Oracle BPEL Designer. In this example, one master process and one
detail process are defined.

15.2.1 How to Create a Master Process

To create a master process:
1. In the SOA Composite Editor, create a BPEL process service component. For this

example, the process is named MasterProcess.

Note: If there is only one receive signal activity in the BPEL process,
do not specify the bpelx:detailLabel attribute in the invoke
activity. In these situations, a default bpelx:detailLabel attribute
is assumed and does not need to be specified.

Note: This section only describes the tasks specific to master and
detail process coordination. It does not describe the standard activities
that you define in a BPEL process, such as creating variables, creating
assign activities, and so on.

Defining Master and Detail Process Coordination in Oracle JDeveloper

Coordinating Master and Detail Processes 15-7

2. Double-click the MasterProcess BPEL process.

3. In the Component Palette, expand BPEL Activities.

4. Drag a Signal activity into the designer.

5. Double-click the Signal activity.

This activity signals the detail process to perform processing at runtime.

6. Enter the details described in Table 15–2:

Figure 15–3 shows the Signal dialog.

Figure 15–3 Signal Dialog

7. Click OK.

8. Drag a Receive Signal activity into the designer.

9. Double-click the Receive Signal activity.

This activity enables the master process to wait until it receives the signal executed
by all of its detail processes.

10. Enter the details shown in Table 15–3:

Table 15–2 Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, contactDetailProcess).

Label Enter a label name (for this example, beginDetailProcess).
This label must match the receive signal activity label you set in
the detail process in Step 5 on page 15-8.

To Select details as the type of process to receive this signal.

Table 15–3 Receive Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, waitForDetailProcess).

Defining Master and Detail Process Coordination in Oracle JDeveloper

15-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 15–4 shows the Receive Signal dialog.

Figure 15–4 Receive Signal Dialog

11. Click OK.

The master process has now been designed to:

■ Signal the detail process to perform processing at runtime.

■ Wait until it receives the signal executed by the detail process.

15.2.2 How to Create a Detail Process

To create a detail process:
1. In the SOA Composite Editor, create a second BPEL process service component.

For this example, the process is named DetailProcess.

2. Double-click the DetailProcess BPEL process.

3. Drag a Receive Signal activity into your BPEL process service component.

4. Double-click the Receive Signal activity.

This activity enables the detail process to wait until it receives the signal executed
by its master process.

5. Enter the details shown in Table 15–4:

Label Enter a label name (for this example,
completeDetailProcess). This label must match the signal
activity label you set in the detail process in Step 9 on page 15-9.

To Select details as the type of process from which to receive the
signal.

Table 15–3 (Cont.) Receive Signal Dialog Fields and Values

Field Value

Defining Master and Detail Process Coordination in Oracle JDeveloper

Coordinating Master and Detail Processes 15-9

Figure 15–5 shows the Receive Signal dialog.

Figure 15–5 Receive Signal Dialog

6. Click OK.

7. Drag a Signal activity into the designer.

8. Double-click the Signal activity.

This activity enables the detail process to signal its associated master process at
runtime that processing is complete.

9. Enter the details described in Table 15–5:

Figure 15–6 shows the Signal dialog.

Table 15–4 Receive Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example,
WaitForContactFromMasterProcess).

Label Enter a label name (for this example, beginDetailProcess).
This label must match the signal activity label you set in the
master process in Step 6 on page 15-7.

To Select master as the type of process from which to receive the
signal.

Table 15–5 Signal Dialog Fields and Values

Field Value

Name Enter a name (for this example, contactMasterProcess).

Label Enter a label name (for this example,
completeDetailProcess). This label must match the receive
signal activity label you set in the master process in Step 10 on
page 15-7.

To Select master as the destination.

Defining Master and Detail Process Coordination in Oracle JDeveloper

15-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 15–6 Signal Dialog

10. Click OK.

The detail process has now been designed to:

■ Wait until it receives the signal executed by its master process.

■ Signal the master process at runtime that processing is complete.

15.2.3 How to Create an Invoke Activity

To create an invoke activity:
1. Return to the MasterProcess master process.

2. Drag an Invoke activity into your BPEL process service component.

3. Double-click the Invoke activity.

4. Select the DetailProcess BPEL process you created in Step 1 on page 15-8 as the
partner link.

5. Complete all remaining fields in the Invoke dialog, and click OK.

6. In the designer, click Source.

7. Add bpelx:invokeAsdetail to the invoke activity and set it to true, as shown
in Example 15–11.

Example 15–11 bpelx:invokeAsdetail Attribute

<invoke name="MyInvoke" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"
 bpelx:invokeAsDetail name="true"/>

This attribute creates the partner process (DetailProcess) as a detail instance.

8. If this is an environment in which one master process is interacting with multiple
detail processes, perform the following tasks:

Defining Master and Detail Process Coordination in Oracle JDeveloper

Coordinating Master and Detail Processes 15-11

a. Specify the bpelx:detailLabel attribute for correlating with the receive
signal activity, as shown in Example 15–12.

Example 15–12 bpelx:detailLabel Attribute

<invoke name="MyInvoke" partnerLink="DetailProcess"
 portType="dp:DetailProcess"
 operation="initiate"
 inputVariable="detail_input"/>
 bpelx:detailLabel="detailProcessComplete0"
 <bpelx:invokeAsdetail name="true"/>

b. Specify the same label value of detailProcessComplete0 in the receive
signal activity of the master process, as shown in Example 15–13.

Example 15–13 detailProcessComplete0 Label Value

<bpelx:receiveSignal name="waitForNotifyFromDetailProcess0-1"
label="detailProcessComplete0" from="details"/>

c. Repeat these steps as necessary for additional detail processes, ensuring that
you specify a different label value.

9. From the File main menu, select Save All.

Master and detail coordination design is now complete.

Defining Master and Detail Process Coordination in Oracle JDeveloper

15-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

16

Using the Notification Service 16-1

16 Using the Notification Service

This chapter describes how to send notifications from a BPEL process using a variety
of channels. A BPEL process can be designed to send email, voice message, instant
messaging (IM), or short message service (SMS) notifications. A BPEL process can also
be designed to consider an end user's channel preference at runtime for selecting the
notification channel.

This chapter includes the following sections:

■ Section 16.1, "Introduction to the Notification Service"

■ Section 16.2, "Introduction to Notification Channel Setup"

■ Section 16.3, "Selecting Notification Channels During BPEL Process Design"

■ Section 16.4, "Allowing the End User to Select Notification Channels"

16.1 Introduction to the Notification Service
Various scenarios may require sending email messages or other types of notifications
to users as part of the process flow. For example, certain types of exceptions that
cannot be handled automatically may require manual intervention. In this case, a
BPEL process can use the notification service to alert users by voice, IM, SMS, or email.

The contact information (email address, phone number, and so on) of the recipient is
either static (such as admin@yourcompany.com) or obtained dynamically during
runtime. To obtain the contact information dynamically, XPath expressions can be used
to retrieve it from the identity store (LDAP) or extract it from the BPEL payload.

This chapter uses the following terms:

■ Notification

An asynchronous message sent to a user by a specific channel. The message can be
sent as an email, voice, IM, or SMS message.

■ Actionable notification

A notification to which the user can respond. For example, workflow sends an
email to a manager to approve or reject a purchase order. The manager approves
or rejects the request by replying to the email with appropriate content.

■ Human task email notification layer

Note: The fax and pager notification channels are not supported in
11g Release 1 (11.1.1).

Introduction to the Notification Service

16-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Sends email notifications directly from a BPEL process or implicitly from the
human task part of a BPEL process. Implicit notifications are modeled from the
Human Task Editor.

For sending email notifications directly from a BPEL process, you must explicitly
specify the user information in the BPEL process and can be inside or outside of a
human task scope.

For sending email notifications implicitly from the human task part of a BPEL
process, you only specify the recipient based on the relationship of the user with
regards to the task (that is, the creator, assignee, and so on).

■ Oracle User Messaging Service

Oracle User Messaging Service is a new feature for release 11g. The BPEL
notification service uses the underlying infrastructure provided by Oracle User
Messaging Service to send notifications.

Oracle User Messaging Service also provides the user preference infrastructure for
getting the end user's preferred channel during runtime.

For more information on the Oracle User Messaging Service, see Appendix 39,
"Oracle User Messaging Service."

Figure 16–1 shows the Oracle User Messaging Service interfaces and supported
service types.

Figure 16–1 Service Interfaces and Supported Service Types

For more information about notifications, see the following section:

■ Section 29.2, "Notifications from Human Workflow"

■ Section 25.3.9, "How to Specify Participant Notification Preferences" for
instructions on specifying email notifications in the Human Task Editor

■ Part VII, "Using Oracle User Messaging Service"

Note: Implicit notifications are processed through more layers of
code than explicit notifications. If explicit notifications are functioning
correctly, it does not mean that implicit notifications also function
correctly.

Oracle User
Messaging
Service

Java
Interface

Web Services
Interface
(WSIF binding)

Java
Call

BPEL
Process

Human
Workflow

Task

Email Server

SMS Server

Voice Gateway

IM Server

Selecting Notification Channels During BPEL Process Design

Using the Notification Service 16-3

16.2 Introduction to Notification Channel Setup
Notification setup is a multiple-step process that involves three user interface tools.
Table 16–1 provides an overview of this process, including the task to perform, the tool
to use, and the documentation to which to refer for more specific details.

16.3 Selecting Notification Channels During BPEL Process Design
Oracle JDeveloper includes the notification channels in the Component Palette, as
shown in Figure 16–2. You can set the exact notification channels to use during design
time. For example, a BPEL process can be designed to use the following notification
channels:

■ If an expense report amount is less than $1000, an email notification channel is
used.

Table 16–1 Notification Tasks

Task Description User Interface Described In...

Select a channel for
sending notifications in
a SOA composite
application.

Select a method for sending
notifications:

■ Explicitly select and configure
an email, IM, SMS, or voice
channel.

or

■ Do not explicitly select a
notification channel, but simply
select that a notification must be
sent. Channel selection occurs
later in the User Messaging
Preferences user interface.

Selected and
configured by the
BPEL process designer
in Oracle BPEL
Designer

Section 16.3, "Selecting
Notification Channels
During BPEL Process
Design"

or

Section 16.4, "Allowing
the End User to Select
Notification Channels"

Configure the driver for
the notification channel

You configure drivers on the same
Oracle WebLogic Server on which
you deploy the SOA composite
application. This action enables
participants to receive and forward
notifications. Driver support is
provided for email, IM, SMS, and
voice channels.

Configured by the
administrator in
Oracle Enterprise
Manager Fusion
Middleware Control
Console

Oracle Fusion Middleware
Administrator's Guide for
Oracle SOA Suite

Configure the
notification mode and
actionable accounts for
human workflows

If you are using notifications with
human workflow, you configure the
notification mode and actionable
account for email.

Configured by the
administrator in
Oracle Enterprise
Manager Fusion
Middleware Control
Console

Oracle Fusion Middleware
Administrator's Guide for
Oracle SOA Suite

Register the devices
used to access messages
by specifying user
preferences

This action enables workflow
participants to receive notification
messages. For example, the end user
registers email clients and specifies
the message content to receive and
the channel to use for receiving
messages.

If no channel is specified, email is
used by default. Note that the
preferences set in this application
are applicable only to that specific
end user, and not to other users.

Registered by the end
user in the User
Messaging Preferences
user interface

Part VII, "Using Oracle
User Messaging Service"

Selecting Notification Channels During BPEL Process Design

16-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ If an expense report amount is between $1000 and $2000, an SMS notification
channel is used.

■ If an expense report amount is more than $2000, a voice notification channel is
used.

Figure 16–2 Oracle JDeveloper—Notification Channels

To select the notification channel during BPEL process design:
1. From the Component Palette list, select BPEL.

2. Expand BPEL Activities and Components.

3. From the Component Palette, drag a notification channel into the designer:

■ Email

■ IM

■ SMS

■ Voice

4. See the section in Table 16–2 based on the notification channel you selected.

Table 16–2 Notification Channels

If You
Selected... See...

Email Section 16.3.1, "How To Configure the Email Notification Channel" to configure
email notification

IM Section 16.3.2, "How to Configure the IM Notification Channel" to configure IM
notification

SMS Section 16.3.3, "How to Configure the SMS Notification Channel" to configure
SMS notification

Selecting Notification Channels During BPEL Process Design

Using the Notification Service 16-5

16.3.1 How To Configure the Email Notification Channel
When you select Email from the Component Palette, the Email dialog appears.
Figure 16–3 shows the required email notification parameters.

Figure 16–3 Email Dialog

To configure the email notification channel:
1. Enter information for each field as described in Table 16–3.

Voice Section 16.3.4, "How to Configure the Voice Notification Channel" to configure
voice message notification

Note: If you delete an email, voice, SMS, or IM activity, any partner
link with which it is integrated is not automatically deleted.

Note: For the To, CC, and Bcc fields, separate multiple addresses
with a semicolon (;).

Table 16–3 Email Notification Parameters

Name Description

From Account The name of the account used to send this message. The default
account is named Default and is editable from the Workflow
Notification Properties page in Oracle Enterprise Manager
Fusion Middleware Control Console. To add additional
accounts, you must use the System MBean Browser in Oracle
Enterprise Manager Fusion Middleware Control Console.

For information on editing this property in Oracle Enterprise
Manager Fusion Middleware Control Console, see Oracle Fusion
Middleware Administrator's Guide for Oracle SOA Suite.

Table 16–2 (Cont.) Notification Channels

If You
Selected... See...

Selecting Notification Channels During BPEL Process Design

16-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Click OK.

The BPEL fragment that invokes the notification service to send the email message
is created.

3. See Table 16–1 on page 16-3 for additional configuration procedures to perform.

The WebLogic Fusion Order Demo application uses an email activity in the Scope_
NotifyCustomerofCompletion scope. The Oracle User Messaging Service sends the
email to a customer when an order is fulfilled. The following details are specified in
the Email dialog:

■ An XPath expression specifies the customer’s email address.

bpws:getVariableData('gCustomerInfoVariable','parameters','/ns3:findCustome
rInfoVO1CustomerInfoVOCriteriaResponse/ns3:result/ns2:ConfirmedEmail')

■ A combination of manually-entered text and an XPath expression specifies the ID
of the order:

Order with id
<%bpws:getVariableData('gOrderInfoVariable','/ns2:orderInfoVOSDO/ns2:OrderI
d')%> shipped!

■ A combination of manually-entered text and an XPath expression specifies the
body of the email message:

Dear
<%bpws:getVariableData('gCustomerInfoVariable','parameters','/ns6:findCusto

To The email address to which the message is to be delivered. This
can be one of the following:

■ A static email address entered at the time the message is
created

■ An email address retrieved using the identity service

■ A dynamic address from the payload

The XPath Expression Builder can be used to get the dynamic
email address from the input. See Section 16.3.5, "How to Select
Email Addresses and Telephone Numbers Dynamically."

CC and Bcc The email addresses to which the message is copied and blind
copied. This can be a static or dynamic address, as described for
the To address.

Reply To The email address to use for replies. This can be a static or
dynamic address, as described for the To address.

Subject The subject of the email message. This can be plain text or
dynamic text. The XPath Expression Builder can be used to set
dynamic text based on data from process variables that you
specify.

Body The message body of the email message. This can be plain text,
HTML, or dynamic text, as described for the Subject parameter.

Multipart message with n
attachments

Select to specify email attachments. See Section 16.3.1.1, "Setting
Email Attachments."

The number of attachments if Multipart message is selected.
The number does not include the body. For example, if you have
a body and one attachment, specify 1.

Table 16–3 (Cont.) Email Notification Parameters

Name Description

Selecting Notification Channels During BPEL Process Design

Using the Notification Service 16-7

merInfoVO1CustomerInfoVOCriteriaResponse/ns6:result/ns4:FirstName')%>,
your order has been shipped.

Figure 16–4 provides details.

Figure 16–4 Email Dialog

16.3.1.1 Setting Email Attachments
When you send email attachments, you mark the email as a multipart message and set
the number of attachments to send. The number of attachments does not need to
include the body plus the attachments. For example, to send an email message with
one file as an attachment, set the number to 1. When sending attachments, set the
content body to have a MultiPart element that contains as many BodyPart
elements as the number of attachments. Each BodyPart has three elements:
ContentBody, MimeType, and BodyPartName. All three elements must be set for
each attachment.

To add an attachment to an email message:
1. From the Component Palette, select Email as the notification channel.

2. Specify values for To, Subject, and Body.

3. Select Multipart message and enter 1 for the number of attachments. (Note that
the number of attachments does not need to include the body part.)

The BPEL fragment with an assign activity with multiple copy rules is
generated. One of the copy rules copies the attachment.

4. Click OK.

5. Expand the email activity.

Note that an assign activity named EmailParamsAssign appears.

Each body part has three attributes: ContentBody, MimeType, and
BodyPartName. Default names, MIME types, and contents are generated for each
attachment in this assign activity.

6. Double-click EmailParamsAssign.

Note the default settings in EmailParamsAssign.

Selecting Notification Channels During BPEL Process Design

16-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 16–5 EmailParamsAssign Assign Activity

7. Change the default values for ContentBody, MimeType, and BodyPartName to
values specific to your environment.

8. Save your changes.

For more information about sending attachments using email, see the following
documentation:

■ Appendix I, "Oracle User Messaging Service Applications"

■ The notification-101 sample, which is available at the following URL:

http://www.oracle.com/technology/sample_code/products/hwf

16.3.1.2 Formatting the Body of an Email Message as HTML
You can format the body of an email message as HTML rather than as straight text. To
perform this action, apply an XSLT transform to generate the email body. Add in the
XSLT tag you want to use. Tools such as XMLSpy can provide assistance in writing
and testing the XSLT. The MIME type should be
string(’text/html;charset=UTF-8’).

The email notification assignment looks as shown in Example 16–1:

Example 16–1 Email Notification Assignment

<copy>
 <from
expression="ora:processXSLT('TransformPositionSummary7.xslt',bpws:
getVariableData('ClientPositionSummary'))"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns9:Content/ns9:ContentBody"/>
</copy>

16.3.2 How to Configure the IM Notification Channel
When you drag IM from the Component Palette, the IM dialog appears. Figure 16–6
shows the required IM notification parameters.

Selecting Notification Channels During BPEL Process Design

Using the Notification Service 16-9

Figure 16–6 IM Dialog

To configure the IM notification channel:
1. Enter information for each field as described in Table 16–4.

2. Click OK.

The BPEL fragment that invokes the notification service for IM notification is
created.

3. See Table 16–1 on page 16-3 for additional configuration procedures to perform.

16.3.3 How to Configure the SMS Notification Channel
When you select SMS from the Component Palette, the SMS dialog appears.
Figure 16–7 shows the required SMS notification parameters.

Table 16–4 IM Notification Parameters

Name Description

To The IM address to which the message is to be delivered. Enter
the address manually or click the XPath Expression Builder icon
to display the Expression Builder dialog to dynamically enter an
account.

Body The IM message body. This can be plain text or dynamic text.
The XPath Expression Builder can be used to set dynamic text
based on data from process variables that you specify.

Selecting Notification Channels During BPEL Process Design

16-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 16–7 SMS Dialog

To configure the SMS notification channel:
1. Enter information for each field as described in Table 16–5.

2. Click OK.

The BPEL fragment that invokes the notification service for SMS notification is
created.

3. See Table 16–1 on page 16-3 for additional configuration procedures to perform.

Table 16–5 SMS Notification Parameters

Name Description

From Number The telephone number from which to send the SMS notification.
This can be a static telephone number entered at the time the
message is created or a dynamic telephone number from the
payload. The XPath Expression Builder can be used to get the
dynamic telephone number from the input. See Section 16.3.5,
"How to Select Email Addresses and Telephone Numbers
Dynamically."

Telephone Number Select a method for specifying the telephone number to which to
deliver the message:

■ A static telephone number entered at the time the message
is created.

■ A telephone number retrieved using the identity service.

■ A dynamic telephone number from the payload. The XPath
Expression Builder can be used to get the dynamic
telephone number from the input.

Subject The subject of the SMS message. This can be plain text or
dynamic text. The XPath Expression Builder can be used to set
dynamic text based on data from process variables that you
specify.

Body The SMS message body. This must be plain text. This can be
plain text or dynamic text as described for the Subject
parameter.

Selecting Notification Channels During BPEL Process Design

Using the Notification Service 16-11

16.3.4 How to Configure the Voice Notification Channel
When you select Voice from the Component Palette, the Voice dialog appears.
Figure 16–8 shows the required voice notification parameters.

Figure 16–8 Voice Dialog

To configure the voice notification channel:
1. Enter information for each field as described in Table 16–6.

2. Click OK.

The BPEL fragment that invokes the notification service for voice notification is
created.

3. See Table 16–1 on page 16-3 for additional configuration procedures to perform.

16.3.5 How to Select Email Addresses and Telephone Numbers Dynamically
You may need to set email addresses or telephone numbers dynamically based on
certain process variables. You can also look up contact information for a specific user
using the built-in XPath functions for the identity service:

Table 16–6 Voice Notification Parameters

Name Description

Telephone Number The telephone number to which the message is to be delivered.
Specify the number through one of the following methods:

■ A static telephone number entered at the time the message
is created

■ A telephone number retrieved using the identity service

■ A dynamic telephone number from the payload

The XPath Expression Builder can be used to retrieve the
dynamic telephone number from the input.

Body The message body. This can be plain text, XML, or dynamic text.
The XPath Expression Builder can be used to set dynamic text
based on data from process variables that you specify.

Selecting Notification Channels During BPEL Process Design

16-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ To get the email address or telephone number directly from the payload, use the
following XPath expression:

bpws:getVariableData('<variable name>', '<part>','input_xpath_to_get_an_
address')

For example, to get the email address from variable inputVariable and part
payload based on XPath /client/BPELProcessRequest/client/mail:

<%bpws:getVariableData('inputVariable','payload','/client:BPELProcessRequest/
client:email')%>

You can use the XPath Expression Builder to select the function and enter the
XPath expression to get an address from the input variable.

■ To get the email address or telephone number dynamically from the underlying
identity store (LDAP) use the following XPath expression:

ids:getUserProperty(userName, attributeName[, realmName])

The first argument evaluates to the user ID. The second argument is the property
name. The third argument is the realm name. Table 16–7 lists the property names
that can be used in this XPath function.

The following example gets the email address of the user identified by the variable
inputVariable, part payload, and queries
/client:BPELProcessRequest/client:userID:

ids:getUserProperty(bpws:getVariableData(‘inputVariable’,
‘payload’,‘/client:BPELProcessRequest/client:userid’), ‘mail’)

If realmName is not specified, then the default realm name is used. For example, if
the default realm name is jazn.com, the following XPath expression searches for
the user in the jazn.com realm:

ids:getUserProperty('jcooper', 'mail');

The following XPath expression provides the same functionality as the one above.
In this case, however, the realm name of jazn.com is explicitly specified:

ids:getUserProperty('jcooper', 'mail', 'jazn.com');

16.3.6 How to Select Notification Recipients by Browsing the User Directory
You can select users or groups in Oracle JDeveloper to whom you want to send
notifications by browsing the user directory (for example, Oracle Internet Directory)
that is configured for use with Oracle BPEL Process Manager. Click the Search icon to
the right of the following fields to open the Identity Lookup dialog:

■ To field on the Email and IM dialogs

Table 16–7 Properties for the Dynamic User XPath Function

Property Name Description

mail Look up a user’s email address.

telephoneNumber Look up a user’s telephone number.

mobile Look up a user’s mobile telephone number.

homephone Look up a user’s home telephone number.

Allowing the End User to Select Notification Channels

Using the Notification Service 16-13

■ Telephone Number field on the SMS and Voice dialogs

For more information about using the Identity Lookup dialog, see Chapter 29,
"Introduction to Human Workflow Services"

16.4 Allowing the End User to Select Notification Channels
You can design a BPEL process in which you do not explicitly select a notification
channel during design time, but simply indicate that a notification must be sent. The
channel to use for sending notifications is resolved at runtime based on preferences
defined by the end user in the User Messaging Preferences user interface of the Oracle
User Messaging Service. This moves the responsibility of notification channel selection
from the BPEL process designer in Oracle BPEL Designer to the end user. If the end
user does not select a preferred channel or rule, email is used by default for sending
notifications to that user. Regardless of who selects the channel to use, channel use is
still based on the driver installation and configuration performed in the Oracle User
Messaging Service section of Oracle Enterprise Manager Fusion Middleware Control
Console by the administrator.

For example, an end user may set their preferences as follows:

■ If an expense report amount is less than $153, they receive an email notification.

■ If an expense report amount is between $153 and $3678, they receive an SMS
notification.

■ If an expense report amount is more than $3678, they receive a voice notification.

For more information about the User Messaging Preferences user interface, see
Chapter 42, "User Messaging Preferences."

16.4.1 How to Allow the End User to Select Notification Channels

To allow the end user to select notification channels:
1. From the Component Palette list, select BPEL.

2. Expand BPEL Activities and Components.

3. From the Component Palette, drag the User Notification activity into the designer.
Figure 16–9 shows the required user notification parameters.

Note: You can also set user preferences for sending notifications in
human workflows in the Human Task Editor. Set these preferences in
the Notification Filters part of the Notification Settings section.
These preferences are used to evaluate rules in the task. For more
information, see Section 25.3.9.7, "Sending Task Attachments with
Email Notifications."

Allowing the End User to Select Notification Channels

16-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 16–9 User Notification Dialog

4. Enter information for each field as described in Table 16–8.

5. Click Apply.

16.4.1.1 How to Create and Send Headers for Notifications
The Advanced tab of the User Notification dialog enables you to create and send
header and name information that may be useful to an end user in creating their own
preference rules for receiving notifications. For example:

■ The BPEL designer creates specifies the users named jcooper and jstein in the
General tab.

Table 16–8 User Notification Parameters

Name Description

To Enter a valid user for the recipient of this notification message
through one of the following methods:

■ Enter the user manually

■ Click the Search icon to display a dialog for selecting a user
configured through the identity service. The identity service
enables the lookup of user properties, roles, and group
memberships.

■ Click the XPath Expression Builder icon to display the
Expression Builder dialog to dynamically enter a user.

Note: You must specify a user name (for example, jcooper)
instead of an address.

Subject Enter a message name or click the XPath Expression Builder
icon to display the Expression Builder dialog to dynamically
enter a subject. If notification is sent through email, this field is
used during runtime. This field is ignored if notifications are
sent through the voice, SMS, or IM channels.

Notification Message Enter the notification message or click the XPath Expression
Builder icon to display the Expression Builder dialog to
dynamically enter a message to send.

Allowing the End User to Select Notification Channels

Using the Notification Service 16-15

■ The BPEL designer creates the following header and name information in the
Advanced tab:

– Amount = payload->salary

– Application = HR-Application

■ The administrator deploys the process and configures various channel drivers in
Oracle Enterprise Manager Fusion Middleware Control Console.

■ The end user jcooper creates the following preference rules in the User
Messaging Preferences user interface:

’Email if Amount < 30000" and "SMS if Amount is between 30000 and 100000’ and
"Voice if Amount > 100000"

■ The end user jstein creates the following preference rule in the User Messaging
Preferences user interface:

If "Application == HR-Application" and Amount > 2000000" send Voice

1. If you want to create and send header and name information to an end user for
creating their own preference rules, click Advanced.

Figure 16–10 shows the Advanced tab of the User Notification dialog.

Figure 16–10 User Notification Advanced Parameters

2. Click the Add icon to add a row to the Header and Name columns.

3. In the Header column, click the field to display a list for selecting a value.
Otherwise, manually enter a value.

4. In the Name column, enter a value.

5. Click OK.

Allowing the End User to Select Notification Channels

16-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

17

Using Oracle BPEL Process Manager Sensors 17-1

17 Using Oracle BPEL Process Manager
Sensors

This chapter describes how to use sensors to select BPEL activities, variables, and
faults to monitor during runtime. This chapter describes how to use and set up sensors
for a BPEL process.

This chapter includes the following sections:

■ Section 17.1, "Introduction to Sensors"

■ Section 17.2, "Configuring Sensors and Sensor Actions in Oracle JDeveloper"

■ Section 17.3, "Viewing Sensors and Sensor Action Definitions in Oracle Enterprise
Manager Fusion Middleware Control Console"

For more information about sensors, see the following sections:

■ Appendix D, "Understanding Sensor Public Views and the Sensor Actions XSD"

■ Section 32.6, "Integrating BPEL Sensors with Oracle BAM" for how to create sensor
actions in Oracle BPEL Process Manager to publish sensor data as data objects in
an Oracle BAM Server

17.1 Introduction to Sensors
Sensors are used to declare interest in specific events throughout the life cycle of a
BPEL process instance. In a business process, that can be the activation and completion
of a specific activity or the modification of a variable value in the business process.

When a sensor is triggered, a specific sensor value is created. For example, if a sensor
declares interest in the completion of a BPEL scope, the sensor value consists of the
name of the BPEL scope and a time stamp value of when the activity was completed. If
a sensor value declares interest in a BPEL process variable, then the sensor value
consists of the value of the variable at the moment it was modified, a time stamp when
the variable was modified, and the activity name and type that modified the BPEL
variable.

The data format for sensor values is normalized and well-defined using XML schema.

A sensor action is an instruction on how to process sensor values. When a sensor is
triggered by Oracle BPEL Process Manager, a new sensor value for that sensor is
created. After that, all the sensor actions associated with that sensor are performed. A
sensor action typically persists the sensor value in a database or sends the normalized
sensor value data to a JMS queue or topic. For integration with Oracle Business
Activity Monitoring, the sensor value can sent to the BAM adapter.

Introduction to Sensors

17-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

You can define the following types of sensors, either through Oracle JDeveloper or
manually by providing sensor configuration files.

■ Activity sensors

Activity sensors are used to monitor the execution of activities within a BPEL
process. For example, they can be used to monitor the execution time of an invoke
activity or how long it takes to complete a scope. Along with the activity sensor,
you can also monitor variables of the activity.

■ Variable sensors

Variable sensors are used to monitor variables (or parts of a variable) of a BPEL
process. For example, variable sensors can be used to monitor the input and
output data of a BPEL process.

■ Fault sensors

Fault sensors are used to monitor BPEL faults.

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and
variables.

When you model sensors in Oracle JDeveloper, two new files are created as part of the
BPEL process archive:

■ bpel_process_name_sensor.xml

Contains the sensor definitions of a BPEL process

■ bpel_process_name_sensorAction.xml

Contains the sensor action definitions of a BPEL process

See Section 17.2.1, "How to Configure Sensors" and Section 17.2.2, "How to Configure
Sensor Actions" for how these files are created.

After you define sensors for a BPEL process, you must configure sensor actions to
publish the sensor data to an endpoint. You can publish sensor data to the BPEL
dehydration store schema, to a JMS queue or topic, or to a custom Java class.

The following information is required for a sensor action:

■ Name

■ Publish type

The publish type specifies the destination in which the sensor data must be
presented. You can configure the following publish types:

– Database

Publishes the sensor data to the reports schema in the database. The sensor
data can then be queried using SQL.

– JMS queue

Publishes the sensor data to a JMS queue. The XML data is posted in
accordance with the Sensor.xsd file. This file is included with Oracle
JDeveloper in the JDEV_
HOME\jdeveloper\integration\seed\soa\shared\bpel directory.

– JMS topic

Publishes the sensor data to a JMS topic. The XML data is posted in
accordance with the same Sensor.xsd file used with JMS queues.

– Custom

Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors 17-3

Publishes the data to a custom Java class.

– JMS Adapter

Uses the JMS adapter to publish to remote queues or topics and a variety of
different JMS providers. The JMS queue and JMS topic publish types only
publish to local JMS destinations.

■ List of sensors

The sensors for a sensor action.

Oracle BAM sensors publish information and events from Oracle BPEL Process
Manager to Oracle BAM. Oracle BAM can display the data in rich real-time
dashboards for end-to-end monitoring of an application. For more information, see
Section 32.6, "Integrating BPEL Sensors with Oracle BAM."

17.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper
In Oracle JDeveloper, sensor actions and sensors are displayed as part of the process
tree structure, as shown in Figure 17–1.

Figure 17–1 Sensors and Sensor Actions Displayed in Oracle JDeveloper

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and
variables. You can add sensor actions by right-clicking the Sensor Actions folders and
selecting Create > Sensor Action. To add activity sensors, variable sensors, or fault
sensors, expand the Sensors folder, right-click the appropriate Activity, Variable, or
Fault subfolder, and click Create.

The following sections describe how to configure sensors and sensor actions.

17.2.1 How to Configure Sensors
Assume you are monitoring a LoanFlow application, and want to know the following:

■ When a scope named getCreditRating is initiated

■ When it is completed

■ At completion, what is the credit rating for the customer

The solution is to create an activity sensor for the getCreditRating scope in Oracle
BPEL Designer, as shown in Figure 17–2. Activities that have sensors associated with
them are identified with a magnifying glass in Oracle BPEL Designer.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

17-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 17–2 Creating an Activity Sensor

The Evaluation Time list shown in Figure 17–2 controls the point at which the sensor
is fired. You can select from the following:

■ All:

The sensor monitors during the activation, completion, fault, compensation, and
retry phases.

■ Activation

The sensor is fired just before the activity is executed.

■ Completion

The sensor is fired just after the activity is executed.

■ Fault

The sensor is fired if a fault occurs during the execution of the activity. Select this
value only for sensors that monitor simple activities.

■ Compensation

The sensor is fired when the associated scope activity is compensated. Select this
value only for sensors that monitor scopes.

■ Retry

The sensor is fired when the associated invoke activity is retried.

A new entry is created in the bpel_process_name_sensor.xml file, as shown in
Example 17–1:

Example 17–1 bpel_process_name_sensor.xml file

<sensor sensorName="CreditRatingSensor"

Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors 17-5

classname="oracle.tip.pc.services.reports.dca.agents.BpelActivitySensorAgent"
 kind="activity"
 target="callbackClient">

 <activityConfig evalTime="all">
 <variable outputNamespace="http://www.w3.org/2001/XMLSchema"
 outputDataType="int"
 target="$crOutput/payload//services:rating"/>
 </activityConfig>
</sensor>

If you want to record all the incoming loan requests, create a variable sensor for the
variable input, as shown in Figure 17–3.

Figure 17–3 Creating a Variable Sensor

A new entry is created in the bpel_process_name_sensor.xml file, as shown in
Example 17–2:

Example 17–2 bpel_process_name_sensor.xml file

<sensor sensorName="LoanApplicationSensor"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelVariableSensorAgent"
 kind="variable"
 target="$input/payload">
 <variableConfig outputNamespace="http://www.autoloan.com/ns/autoloan"
 outputDataType="loanApplication"/>
</sensor>

If you want to monitor faults from the identity service, create a fault sensor, as shown
in Figure 17–4.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

17-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 17–4 Creating a Fault Sensor

A new entry is created in the bpel_process_name_sensor.xml file, as shown in
Example 17–3:

Example 17–3 bpel_process_name_sensor.xml file

<sensor sensorName="IdentityServiceFault"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelFaultSensorAgent"
 kind="fault"
 target="is:identityServiceFault">
 <faultConfig/>
</sensor>

17.2.2 How to Configure Sensor Actions
When you create sensors, you identify the activities, variables, and faults you want to
monitor during runtime. If you want to publish the values of the sensors to an
endpoint (for example, you want to publish the data of LoanApplicationSensor to
a JMS queue), then create a sensor action, as shown in Figure 17–5, and associate it
with the LoanApplicationSensor.

Figure 17–5 Creating a Sensor Action

A new entry is created in the bpel_process_name_sensorAction.xml file, as
shown in Example 17–4:

Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors 17-7

Example 17–4 bpel_process_name_sensorAction.xml file

<action name="BAMFeed"
 enabled="true"
 publishType="JMSQueue"
 publishTarget="jms/bamTopic">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 weblogic.jms.ConnectionFactory
 </property>
</action>

If you want to publish the values of LoanApplicationSensor and
CreditRatingSensor to the reports schema in the database, create an additional
sensor action, as shown in Figure 17–6, and associate it with both
CreditRatingSensor and LoanApplicationSensor.

Figure 17–6 Creating an Additional Sensor Action

A new entry is created in the bpel_process_name_sensorAction.xml file, as
shown in Example 17–5:

Example 17–5 bpel_process_name_sensorAction.xml file

<action name="PersistingAction"
 enabled="true"
 publishType="BPELReportsSchema">
 <sensorName>LoanApplicationSensor</sensorName>
 <sensorName>CreditRatingSensor</sensorName>
</action

The data of one sensor can be published to multiple endpoints. In the two preceding
code samples, the data of LoanApplicationSensor is published to a JMS queue
and to the reports schema in the database.

If you want to monitor loan requests for which the loan amount is greater than
$100,000, you can create a sensor action with a filter, as shown in Figure 17–7.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

17-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 17–7 Creating a Sensor Action with a Filter

A new entry is created in the bpel_process_name_sensorAction.xml file, as
shown in Example 17–6:

Example 17–6 bpel_process_name_sensorAction.xml file

<action name="BigMoneyBAMAction"
 enabled='true'
 filter="boolean(/s:actionData/s:payload
 /s:variableData/s:data
 /autoloan:loanAmount > 100000)"
 publishType="JMSQueue"
 publishTarget="jms/bigMoneyQueue">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 weblogic.jms.ConnectionFactory
 </property>
</action>

If you have special requirements for a sensor action that cannot be accomplished by
using the built-in publish types (database, JMS queue, JMS topic, and JMS Adapter),
then you can create a sensor action with the custom publish type, as shown in
Figure 17–8. The name in the Publish Target field denotes a fully qualified Java class
name that must be implemented.

Notes:

■ You must specify all the namespaces that are required to configure
an action filter in the sensor action configuration file.

■ You must specify the filter as a boolean XPath expression.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors 17-9

Figure 17–8 Using the Custom Publish Type

17.2.3 How to Publish to Remote Topics and Queues
The JMS queue and JMS topic publish types only publish to local JMS destinations. If
you want to publish sensor data to remote topics and queues, use the JMS adapter
publish type, as shown in Figure 17–9.

Figure 17–9 Using the JMS Adapter Publish Type

In addition to enabling you to publish sensor data to remote topics and queues, the
JMS adapter supports a variety of different JMS providers, including:

■ Third-party JMS providers such as Tibco JMS, IBM WebSphere MQ JMS, and
SonicMQ

■ Oracle Enterprise Messaging Service (OEMS) providers such as memory/file and
database

If you select the JMS Adapter publish type, you must create an entry in the
weblogic-ra.xml file, which is updated through the Oracle WebLogic Server
Administration Console. Each JMS connection factory (pool) entry created in this
console corresponds to one JNDI entry in weblogic-ra.xml. Update the Sensor
Actions dialog with the chosen JNDI name selected during the creation of the JMS
connection factory (pool).

For more information about the JMS adapter, see Oracle Fusion Middleware User's Guide
for Technology Adapters.

17.2.4 How to Create a Custom Data Publisher
To create a custom data publisher, perform the following steps:

Configuring Sensors and Sensor Actions in Oracle JDeveloper

17-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To create a custom data publisher:
1. In the Application Navigator, double-click the BPEL project.

The Project Properties dialog appears.

2. Click Libraries and Classpath.

3. Browse and select the following:

SOA_ORACLE_HOME\lib\java\shared\oracle.soainfra.common\11.1.1\orabpel.jar

Figure 17–10 Project Properties Dialog

4. Create a new Java class.

The package and class name must match the publish target name of the sensor
action.

5. Implement the com.oracle.bpel.sensor.DataPublisher interface.

This updates the source file and fills in the methods and import statements of the
DataPublisher interface.

6. Using the Oracle JDeveloper editor, implement the publish method of the
DataPublisher interface, as shown in the sample custom data publisher class in
Figure 17–11.

Configuring Sensors and Sensor Actions in Oracle JDeveloper

Using Oracle BPEL Process Manager Sensors 17-11

Figure 17–11 Custom Data Publisher Class

7. Ensure that the class compiles successfully.

The next time that you deploy the BPEL process, the Java class is added to the
SOA archive (SAR) and deployed.

17.2.5 How to Register the Sensors and Sensor Actions in composite.xml
Oracle JDeveloper automatically updates the composite.xml file to include
appropriate properties for sensors and sensor actions, as shown in Example 17–7:

Note: Ensure that additional Java libraries needed to implement the
data publisher are in the CLASSPATH.

Oracle BPEL Process Manager can execute multiple process instances
simultaneously, so ensure that the code in your data publisher is
thread safe, or add appropriate synchronization blocks. To guarantee
high throughput, do not use shared data objects that require
synchronization.

Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control Console

17-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 17–7 composite.xml File

<composite name="JMSQFComposite" applicationName="JMSQueueFilterApp"
 revision="1.0" label="2007-04-02_14-41-31_553" mode="active" state="on">
 <import namespace="http://xmlns.oracle.com/JMSQueueFilter"
 location="JMSQueueFilter.wsdl" importType="wsdl"/>
 <service name="client">
 <interface.wsdl interface="http://xmlns.oracle.com/
 JMSQueueFilter#wsdl.interface(JMSQueueFilter)"/>
 <binding.ws
 port="http://xmlns.oracle.com/JMSQueueFilter#wsdl.endpoint(client/
 JMSQueueFilter_pt)"/>
 </service>
 <component name="JMSQueueFilter">
 <implementation.bpel src="JMSQueueFilter.bpel"/>
 <property name="configuration.sensorLocation" type="xs:string"
 many="false">JMSQueueFilter_sensor.xml</property>
 <property name="configuration.sensorActionLocation" type="xs:string"
 many="false">JMSQueueFilter_sensorAction.xml</property>
</component>
<wire>
 <source.uri>client</source.uri>
 <target.uri>JMSQueueFilter/client</target.uri>
</wire>
</composite>

You can specify additional properties with <property name= ...>, as shown in
Example 17–7.

17.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise
Manager Fusion Middleware Control Console

The Oracle Enterprise Manager Fusion Middleware Control Console provides support
for viewing the metadata of sensors, sensor actions, and the sensor data created as part
of the process execution.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle
SOA Suite.

Notes:

■ For this release, BAM sensor actions are not shown in Oracle
Enterprise Manager Fusion Middleware Control Console.

■ Only sensors with an associated database sensor action are
displayed in Oracle Enterprise Manager Fusion Middleware
Control Console. Sensors associated with a JMS queue, JMS topic,
remote JMS, or custom sensor action are not displayed

Part III
Part III Using the Oracle Mediator Service

Component

This part describes the components that comprise the Oracle Mediator service
component.

This part contains the following chapters:

■ Chapter 18, "Getting Started with Oracle Mediator"

■ Chapter 19, "Creating Mediator Routing Rules"

■ Chapter 20, "Using Mediator Error Handling"

■ Chapter 21, "Working with Multiple Part Messages in Mediator"

■ Chapter 22, "Understanding Message Exchange Patterns of a Mediator"

18

Getting Started with Oracle Mediator 18-1

18Getting Started with Oracle Mediator

This chapter provides you an overview of Oracle Mediator (Mediator) and also
describes how to create an Oracle Mediator service component.

This chapter includes the following sections:

■ Section 18.1, "Introduction to Oracle Mediator"

■ Section 18.2, "Overview of Mediator Editor Environment"

■ Section 18.3, "Creating a Mediator"

■ Section 18.4, "Generating a WSDL File"

■ Section 18.5, "Specifying Operation or Event Subscription Properties"

■ Section 18.6, "Modifying a Mediator Component"

18.1 Introduction to Oracle Mediator
Oracle Mediator provides a lightweight framework to mediate between various
components within a composite application. Mediator converts data to facilitate
communication between different interfaces exposed by different components, which
are wired together to build a SOA composite application. For example, a Mediator can
accept data contained in a text file from an application or service, transform it to a
format appropriate for updating a database that serves as a customer repository, and
then route and deliver the data to that database.

Oracle Mediator facilitates integration between events and services, where service
invocations and events can be mixed and matched. You can use a Mediator component
to consume a business event or to receive a service invocation. A Mediator component
can evaluate routing rules, perform transformations, validate, and either invoke
another service or raise another business event. You can use a Mediator component to
handle returned responses, callbacks, faults, and timeouts.

This section provides an overview of Oracle Mediator features:

■ Content-Based and Header-Based Routing

Oracle Mediator provides support for setting rules based on message payload or
message headers. You can select elements or attributes from the message payload
or the message header and based on the values, you can specify an action. For
example, Mediator receives a file from an application or service containing data
about new customers. Based on the country mentioned in the customer’s address,
you can route and deliver data to the database storing data for that particular
country. Similarly, you can route a message based on the message header.

Introduction to Oracle Mediator

18-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information about access header-based routing, see Section 19.2.2.9,
"Access Headers for Filters and Assignments".

■ Synchronous and Asynchronous Interactions

Oracle Mediator provides support for synchronous as well as asynchronous
request response interaction. In a synchronous interaction, the client requests for a
service and then waits for a response to the request. In an asynchronous
interaction, the client invokes the service but does not wait for the response. You
can specify a timeout period for an asynchronous interaction, which can be used to
perform some action, such as raise an event or start a process.

For more information about synchronous and asynchronous interactions, see
Section 19.2.2.3, "Handling Response Messages" and Chapter 22, "Understanding
Message Exchange Patterns of a Mediator".

■ Sequential and Parallel Routing of Messages

A routing rule execution type can be either parallel or sequential. You can
configure the execution type from Routing Rules panel.

For more information about sequential and parallel routing of messages, see
Section 19.2.2.2, "Specifying Sequential or Parallel Execution".

■ Transformations

Oracle Mediator supports data transformation from one XML schema to another.
This feature enables data interchange among applications using different schemas.
For example, you can transform a comma-delimited file to the database table
structure.

For more information about transformations, see Section 19.2.2.7, "Creating
Transformations".

■ Validations

Oracle Mediator provides support for validating the incoming message payload
by using a Schematron or an XSD file. You can specify Schematron files for each
inbound message part and Oracle Mediator can execute Schematron file
validations for those parts.

For more information about validations, see Section 19.2.2.10, "Using Semantic
Validation" and http://www.schematron.com/.

■ Java Callout

Oracle Mediator provides support for Java callout. Java callouts enable the use of
Java code, together with regular expressions.

For more information about Java callout, see Section 19.2.2.11, "Support for Java
Callouts".

■ Event Handling

An event is a message data sent as a result of occurrence of an activity in a
business environment. Oracle Mediator provides support for subscribing to
business events or raising business events. You can subscribe to a business event
that is raised when a situation of interest occurs. For example, you can subscribe to
an event that is raised when a new customer is created and then use this event to
start a business process such as sending confirmation email. Similarly, you can
raise business events when a situation of interest occurs. For example, raise a
customer created event after completing the customer creation process.

Overview of Mediator Editor Environment

Getting Started with Oracle Mediator 18-3

For more information about event handling, see Chapter 44, "Using Business
Events and the Event Delivery Network".

■ Dynamic Routing

Dynamic Routing separates the control logic, which determines the path taken by
the process, from the execution of the process. You can create a dynamic routing
rule from the Mediator Editor.

For more information about dynamic routing, see Section 19.2.3, "Creating
Dynamic Routing Rules".

■ Error Handling

Oracle Mediator supports both fault policy-based and manual error handling. A
fault policy consists of conditions and actions. Conditions specify the action to be
carried out for a particular error condition.

For more information about error handling, see Chapter 20, "Using Mediator Error
Handling".

■ Mediator Echo Support

Oracle Mediator supports echoing source messages back to the initial caller after
any transforms, validations, assignments, or sequencing are performed.

For more information about Mediator echo support, see "To echo a service:" on
page 19-8.

■ Multiple Part Message Support

Oracle Mediator supports messages consisting of multiple parts. Some Remote
Procedure Call (RPC) Web services contain multiple parts in the SOAP message.

For more information about multiple part message support, see Chapter 21,
"Working with Multiple Part Messages in Mediator".

18.2 Overview of Mediator Editor Environment
You can create a Mediator component in the SOA Composite Application of Oracle
JDeveloper and then configure it by using the Mediator Editor. To display the
Mediator Editor, double-click the Mediator component in the SOA Composite Editor.
For information about the SOA Composite Editor, see Chapter 4, "Introduction to the
Functionality of the SOA Composite Editor".

Figure 18–1 shows the Mediator Editor along with Application Navigator, Structure,
and Messages windows.

Overview of Mediator Editor Environment

18-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 18–1 Mediator Editor Window

Each section of the view shown in Figure 18–1 enables you to perform specific design
and deployment tasks. The following list describes these sections and their
functionality:

■ Application Navigator

The Application Navigator shown in the upper left part of Figure 18–1 displays
the Mediator files. Figure 18–2 shows the files that appear under the SOA Content
folder when you create a Mediator in a SOA Composite application.

Figure 18–2 Mediator Files in Application Navigator

As shown in Figure 18–2, a SOA Composite application consists of the following
Mediator files:

Overview of Mediator Editor Environment

Getting Started with Oracle Mediator 18-5

– Composite.xml: The file that describes the entire SOA composite
application. For information about the composite.xml file, see Chapter 4,
"Introduction to the Functionality of the SOA Composite Editor".

– .componentType: The.componentType file describes the services and
references for a service component.

– .mplan: The.mplan file contains Mediator metadata.

– .wsdl: A Web Service Description File (WSDL) file specifies how other
services call a Mediator. A WSDL file defines the input and output messages
and operations of a Mediator.

■ Mediator Editor

The Mediator Editor, shown in the middle of Figure 18–1, provides a visual view
of the Mediator that you have created. This view is displayed when you perform
one of the following actions:

– Double-click a Mediator in the SOA Composite Editor.

– Double-click the.mplan file name in the Application Navigator.

■ Source View

The Source View enables you to view the source code of a Mediator. Click Source
at the bottom of the Design window shown in Figure 18–1 to view to source code.
The code in the source view is immediately updated to reflect the changes in a
Mediator.

The following example shows a sample Mediator source code:

<?xml version = '1.0' encoding = 'UTF-8'?>
<!--Generated by Oracle SCA Modeler version 1.0 at [4/16/07 10:05 PM].-->
<Mediator name="CustomerDataRouter"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/sca/1.0/mediator"/>

■ History Window

The History window enables you to perform tasks as viewing the revision history
of a file and viewing read-only and editable versions of a file side-by-side. Click
History at the bottom of the Design window shown in Figure 18–1 to open the
History window. Figure 18–3 shows the History view for a Mediator file.

Creating a Mediator

18-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 18–3 History Window

■ Property Inspector

The Property Inspector shown at the bottom of Figure 18–1 enables you to view
details about Mediator properties.

■ Structure Window

The Structure Window shown in the lower left part of Figure 18–1 provides a
structural view of the data of a Mediator.

■ Log Window

The Log Window displays messages about the status of validation and
compilation.

18.3 Creating a Mediator
You can create a Mediator in a SOA Composite application of Oracle JDeveloper by
using one of the following methods:

■ By dragging and dropping a Mediator from the Component Palette (shown in
Figure 18–4) to SOA Composite Editor.

Creating a Mediator

Getting Started with Oracle Mediator 18-7

Figure 18–4 Component Palette with Mediator Service Component

■ By selecting Composite with Mediator in the Create SOA Composite dialog or
Create SOA Project dialog as shown in Figure 18–5.

Figure 18–5 Composite with Mediator Selection in Create SOA Project Dialog

■ By selecting Service Components from the Categories list and Mediator from the
Items list in the New Gallery dialog (as shown in Figure 18–6).

Creating a Mediator

18-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 18–6 New Gallery Dialog with Mediator Service Component

Each method opens the Create Mediator dialog where you specify the name of the
Mediator and select a template. A template provides a basic set of default files with
which you can begin designing your Mediator.

18.3.1 Creating a Mediator Without Interface Definition
You can create an empty Mediator with no interface definition. This provides you the
flexibility to create the SOA components in the order you want. For example, you can
create a Mediator first and then create a service or an event that starts the Mediator.

18.3.1.1 How to Create a Mediator with No Interface Definition
You can create a Mediator with no interface definition by using the Define Interface
Later template in the Create Mediator dialog.

To create a Mediator with no interface definition:
1. Drag a Mediator component from the SOA list of the Component Palette and drop

it in the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

2. In the Name field, enter a name for the Mediator component.

3. In the Template list, select Define Interface Later as shown in Figure 18–7 and
click OK.

Creating a Mediator

Getting Started with Oracle Mediator 18-9

Figure 18–7 Define Interface Later Template Selection in Create Mediator Dialog

18.3.1.2 How to Define an Interface for a Mediator with no Interface Definition
You can define the interface of a Mediator with no interface definition by subscribing
to events or by defining services.

How to Subscribe to Events
You can subscribe to events by selecting the events defined in a.edl file.

1. Double-click the Mediator in SOA Composite Editor.

The Mediator Editor is displayed.

2. Click Add Event Subscription in the Routing Rules section.

The Subscribed Events dialog is displayed.

3. Click Add.

The Event Chooser dialog is displayed.

4. Click Search to the right of the Event definition field and select an .edl file.

The Event field is populated with the events defined in the .edl file.

5. Select one or more events and click OK.

6. In the Consistency list, select a level of delivery consistency for the event.

7. In the Run as Roles field, you will see $publisher as the default security role.
You can either retain this value or you can leave this field blank.

8. Double-click the Filter field to specify an expression for filtering the event.

9. Click OK.

For more information about Consistency, Run as Roles, and Filter fields of an
event, see Section 18.3.6, "Creating a Mediator Component for Event Subscription".

How to Define Services
You can define service for a Mediator with no interface definition in following two
ways:

■ By connecting the Mediator to a service through a wire in SOA Composite Editor.

■ By using the Define Service option in Mediator Editor.

Creating a Mediator

18-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To define services for a Mediator through wire:
■ In SOA Composite Editor, drag a wire from a Mediator to a service.

For more information about wires and how to wire a service component to a
service, see Section 4.2.9, "How to Wire a Service and a Service Component".

The service for a Mediator is automatically defined by using the WSDL file from
the wire source. For example, if you connect the ReadFile service shown in
Figure 18–8 to the CustomerDataRouter Mediator, then the
CustomerDataRouter Mediator automatically inherits the service definition of
the ReadFile service.

Figure 18–8 Connecting Mediator to a Service

When you double-click the Mediator, the Mediator Editor shown in Figure 18–9 is
displayed.

Note: You can also connect a Mediator with defined interface and
defined reference to a service through wire. However, to connect
Mediator to a service, the interface of the Mediator and the service
must match.

Creating a Mediator

Getting Started with Oracle Mediator 18-11

Figure 18–9 Mediator Editor

To define services for a Mediator in Mediator Editor:
1. Double-click the Mediator in SOA Composite Editor.

The Mediator Editor is displayed.

2. Click Add to the right of WSDL File.

The Define Service dialog is displayed, as shown in Figure 18–10.

Figure 18–10 Define Service Dialog

3. Click Find Existing WSDLs to use an existing WSDL file or Generate WSDL
From Schema(s) to create a new WSDL file.

For information about how to generate a WSDL file, see Section 18.4, "Generating
a WSDL File".

Creating a Mediator

18-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. In the Port type list, select a port.

5. In the Callback Port Type list, select a port for the response message in
asynchronous interaction.

6. Click OK.

18.3.2 Creating a Mediator Based on a WSDL File
You can create a Mediator based on an existing WSDL file. A WSDL file describes the
interface of a Mediator such as schemas and operations.

18.3.2.1 How to Create a Mediator Based on a WSDL File
You can create a Mediator based on a WSDL file by using the Interface Definition from
the WSDL template in the Create Mediator dialog.

To create a Mediator based on a WSDL File Interface:
1. Drag a Mediator component from the SOA list of the Component Palette and drop

it in the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

2. In the Name field, enter a name for the Mediator component.

3. In the Template list, select Interface Definition From WSDL as shown in
Figure 18–11.

Figure 18–11 Interface Definition from WSDL Template Selection in Create Mediator
Dialog

4. Deselect the Create Composite Service with SOAP Bindings option if you do not
want to create an exposed service with SOAP bindings that are automatically
connected to your Mediator.

5. In the WSDL File field, enter the name of the WSDL file.

You can either use an existing WSDL file or create a new WSDL file. Click Find
Existing WSDL files to use an existing WSDL file or Generate WSDL From
Schema(s) to create a new WSDL file.

For more information about these options, refer to Section 18.4, "Generating a
WSDL File".

Creating a Mediator

Getting Started with Oracle Mediator 18-13

6. In the Port Type list, select a port. This parses the WSDL file that you specify in the
WSDL File field to display the list of port types.

7. In the Callback Port Type list, select a callback port. A callback port is the one to
which the response message is sent in asynchronous communication.

8. Click OK.

18.3.3 Creating a Mediator with One-Way Interface Definition
A Mediator supports one-way interaction. In a one-way interaction, the client sends a
message to the service, and the service does not need to reply.

18.3.3.1 How to Create a Mediator with One-Way Interface Definition
You can create a Mediator for a one-way interaction by using the One-Way Interface
template in the Create Mediator dialog.

To create a Mediator with one-way interface definition:
1. Drag a Mediator component from the SOA list of the Component Palette and drop

it in the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

2. In the Name field, enter a name for the Mediator component.

3. In the Template list, select One-Way Interface as shown in Figure 18–12.

Figure 18–12 One-Way Interface Template Selection in Create Mediator Dialog

4. Deselect the Create Composite Service with SOAP Bindings option if you do not
want to create an exposed service with SOAP bindings that are automatically
connected to your Mediator component.

5. Click Search to the right of the Input field to select a schema element for the input
message. By default, singleString schema element is selected for the input
message.

Creating a Mediator

18-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. Click OK.

18.3.3.2 What Happens When You Create a Mediator Component with One-Way
Interface Definition
A Mediator for one-way interaction with port type defined for the input message is
created. Figure 18–13 shows how a Mediator created with one-way interface looks like
in Mediator Editor. The arrows to the left of the execute operation in Figure 18–15
represent a one-way operation.

Figure 18–13 One-Way Interface Mediator in Mediator Editor

18.3.4 Creating a Mediator with Synchronous Interface Definition
A Mediator supports synchronous request-response interaction. In a synchronous
interaction, a client sends a request to a service and receives an immediate response.
The client does not proceed further until the response arrives.

18.3.4.1 How to Create a Mediator with Synchronous Interface Definition
You can create a Mediator for synchronous interaction by using the Synchronous
Interface template in the Create Mediator dialog.

To create a Mediator with synchronous interface definition:
1. Drag a Mediator component from the SOA list of the Component Palette and drop

it in the Components section of the SOA Composite Editor.

Note: You can use any XSD schema to specify the format of the input
document that Mediator will process. For example, you can use the
following schema:

<xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://samples.otn.com/helloworld"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://samples.otn.com/helloworld">
 <include namespace="http://samples.otn.com/helloworld"
 schemaLocation="helloworld.xsd" />
 <xsd:element name="name1" type="xsd:string" />
 <xsd:element name="result1" type="xsd:string"/>
</xsd:schema>

Creating a Mediator

Getting Started with Oracle Mediator 18-15

The Create Mediator dialog is displayed.

2. In the Name field, enter a name for the Mediator.

3. In the Template list, select Synchronous Interface as shown in Figure 18–14.

Figure 18–14 Synchronous Interface Template Selection in Create Mediator Dialog

4. Deselect the Create Composite Service with SOAP Bindings option if you do not
want to create an exposed service with SOAP bindings that are automatically
connected to your Mediator.

5. Click Search to the right of the Input field to select a schema element for the input
message. By default, singleString schema element is selected for the input
message.

6. Click Search to the right of the Output field to select a schema element for the
output message. By default, the singleString schema element is selected for
the output message.

7. Click OK.

18.3.4.2 What Happens When You Create a Mediator Component with Synchronous
Interface Definition
A Mediator with port type defined for the request message is created. In a
synchronous interaction, because the response is sent to the same port as request, only
one port is defined. Figure 18–15 shows how a Mediator created with synchronous
interface appears in Mediator Editor. The arrows to the left of the execute operation in
Figure 18–15 represent a synchronous operation.

Creating a Mediator

18-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 18–15 Synchronous Mediator Component in Mediator Editor

18.3.5 Creating a Mediator with Asynchronous Interface Definition
A Mediator supports asynchronous request-response interaction. In an asynchronous
interaction, a client sends a request to a service but does not block and wait for a reply.

18.3.5.1 How to Create a Mediator with Asynchronous Interface Definition
You can create a Mediator for asynchronous interaction by using the Asynchronous
Interface template in the Create Mediator dialog.

To create a Mediator with asynchronous interface definition:
1. Drag a Mediator component from the SOA list of the Component Palette and drop

it in the Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

2. In the Name field, enter a name for the Mediator.

3. In the Template list, select Asynchronous Interface as shown in Figure 18–16.

Figure 18–16 Asynchronous Interface Template Selection in Create Mediator Dialog

4. Deselect the Create Composite Service with SOAP Bindings option if you do not
want to create an exposed service with SOAP bindings that are automatically
connected to your Mediator component.

Creating a Mediator

Getting Started with Oracle Mediator 18-17

5. Click Search to the right of the Input field to select a schema element for the input
message. By default, singleString schema element is selected for the input
message.

6. Click Search to the right of the Output field to select a schema element for the
output message. By default, singleString schema element is selected for the
output message.

7. Click OK.

18.3.5.2 What Happens When You Create a Mediator Component with
Asynchronous Interface Definition
A Mediator for asynchronous interaction, with port types defined for request and
response messages, is created. Figure 18–17 shows how a Mediator created with
asynchronous interface looks like in Mediator Editor. The Port Type field displays the
port on which the request message is sent. The Callback Port Type displays the port to
which the response is sent. The arrows to the left of the execute operation in
Figure 18–17 represent an asynchronous operation.

Figure 18–17 Asynchronous Mediator in Mediator Editor

18.3.6 Creating a Mediator Component for Event Subscription
You can create a Mediator for subscribing to a business event that is raised when a
situation of interest occurs. A business event consists of message data sent as the result
of an occurrence in a business environment. For information about business events, see
Chapter 44, "Using Business Events and the Event Delivery Network".

18.3.6.1 How to Create a Mediator for Event Subscription
You can create a Mediator for subscribing to events by using the Subscribe to Events
template in the Create Mediator dialog.

To create a Mediator for subscribing to events:
1. Drag a Mediator from the SOA list of the Component Palette and drop it in the

Components section of the SOA Composite Editor.

The Create Mediator dialog is displayed.

2. In the Name field, enter a name for the Mediator component.

3. In the Template list, select Subscribe to Events as shown in Figure 18–18.

Creating a Mediator

18-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 18–18 Subscribe to Events Template Selection in Create Mediator Dialog

4. Click Add.

The Event Chooser dialog is displayed.

5. Click Search to the right of the Event Definition field.

The SCA Resource Browser dialog is displayed.

6. Select an event definition file (.edl) and click OK.

The Event field is populated with the events described in the.edl file that you
selected. For more information about creating.edl files, see Chapter 44, "Using
Business Events and the Event Delivery Network".

7. Select one or more events in the Event field, as shown in Figure 18–19, and click
OK.

Figure 18–19 Event Chooser Dialog

8. Select a level of delivery consistency for the event.

■ one and only one: A global (JTA) transaction is used for event delivery. If the
event call fails, the transaction is rolled back and the call is retried a
configurable number of times.

■ guaranteed: A local transaction is used to guarantee delivery. There are no
retries upon failure.

Creating a Mediator

Getting Started with Oracle Mediator 18-19

■ immediate: Events are delivered on the same thread and on the same
transaction as the caller.

9. In the Run as Roles field, enter a security role under which an event subscription
is run. By default, event subscription runs under the security of the event
publisher $publisher. You can either retain this value or leave this field blank.

10. To filter the event, perform any of the following:

■ Double-click the Filter column of the selected event.

■ Select the event and then click the filter icon (first icon).

The Expression Builder dialog is displayed.

11. In the Expression field, enter an XPath expression and click OK.

Figure 18–20 shows a sample Expression Builder dialog.

Figure 18–20 Business Event Filter

The Filter column of the Create Mediator dialog is populated as shown in
Figure 18–21.

Creating a Mediator

18-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 18–21 Create Mediator Dialog with Filter Expression

12. Click OK.

18.3.6.2 What Happens When You Create a Mediator Component for Event
Subscription
A Mediator similar to the one shown in Figure 18–22 is created. The icon on the left
side of the Mediator indicates that this Mediator is configured for an event
subscription.

Figure 18–22 Mediator Component Created with Subscribe to Events Template

When you double-click the Mediator, the Mediator Editor shown in Figure 18–23 is
displayed.

Creating a Mediator

Getting Started with Oracle Mediator 18-21

Figure 18–23 Mediator Component with Event Subscriptions in Mediator Editor

18.3.7 What You May Need to Know About the Information Available in Mediator User
Interface

This section describes the concepts you should know for creating a Mediator
component.

18.3.7.1 Mediator Definition
Mediator is a component of Oracle SOA offering that provides mediation capabilities
like selective routing, transformation and validation capabilities, along with various
message exchange patterns, like synchronous, asynchronous and event publishing or
subscription.

For more information about creating a Mediator, see Section 18.3, "Creating a
Mediator".

18.3.7.2 Routing Rule
Routing Rules are mediation logic or execution logic that you define to achieve the
requisite mediation. For more information about defining routing rules, see
Section 19.2, "Defining Routing Rules".

You must specify the following for creating a routing rule:

■ Operation or Event

A Mediator routing rule can be triggered either by a service operation or an event
subscription. The service operation can be synchronous, asynchronous or one-way.

■ Java Callout

Java Callouts are used to perform an external Java logic at various points in the
execution of the Mediator.

■ Static Routing Rule

A Mediator routing rule that is statically defined and is not expected to change
depending on the invocation context. In this case, the routing can be echo, routing
to another service, or publishing an event.

Static routing rules involve specifying the following:

– Request Handler

This defines how Mediator should handle incoming requests.

– Reply Handler

This defines how the synchronous response from the called service should be
handled by Mediator.

Creating a Mediator

18-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– Fault Handler

This defines how the named or declared faults from the called service should
be handled by Mediator.

– Callback Handler

This defines how the asynchronous response/callback from the called service
should be handled by Mediator.

– Timeout Handler in Callback

This defines for how much time Mediator should wait for the asynchronous
response/callback, before performing timeout handling for the particular
asynchronous request.

– Event Publishing and Service Invocation

Event publishing and service invocation call other services or publish an event
depending on the configuration of the Handlers.

– Sequential and Parallel Execution

Each routing rule execution can be configured to be either sequential, that is,
running in the same thread, or parallel, that is, running in different threads.

– Filter Expression

This defines whether a particular routing rule will execute or not. This feature
uses XPath Standards and enables selective execution of Mediator routing
rule.

– Semantic Validation

This feature enables semantic validation of incoming requests, and also
verifies the correctness of data. This feature uses Schematron validation
standard.

– Transformation

This feature enables transformation of incoming data to a format that is
compliant with called services or published events. This feature is based on
XSL transformation standards.

– Assign

This feature enables manipulation of headers and properties for a message to
suite the called service.

■ Dynamic Routing Rule

A Mediator routing rule that enables you to externalize the routing logic to a
Oracle Rules Dictionary, which in turn enables dynamic modification of the
routing logic in a routing rule. This feature depends on Decision service and
Oracle Rules to obtain the routing logic at runtime.

Note: For synchronous service invocations, the routing rule should
always be sequential.

Note: Oracle recommends using Unicode database with AL32UTF8
as the database character set, for full globalization support in
Mediator.

Generating a WSDL File

Getting Started with Oracle Mediator 18-23

18.4 Generating a WSDL File
You can generate a WSDL file by using either of the following methods:

■ By using the Generate WSDL from Schema(s) option that is displayed when you
select Interface Definition from WSDL template in the Create Mediator dialog.

■ By using the Generate WSDL from Schema(s) option in the Define Service dialog
that is displayed while defining services for a Mediator with no interface
definition.

Each of these methods opens the Create WSDL dialog shown in Figure 18–24.

Figure 18–24 Create WSDL Dialog

The Create WSDL dialog consists of request, reply, fault, and callback tabs, which you
can use to define the schema files for request, reply, fault, and callback messages. You
can specify the same or different schema files for the request, response, fault, and
callback messages. Minimally, you must specify the schema file for the request
message. By default, the singleString.xsd file is selected for the request message.

You can generate the WSDL file for a message by using an XML schema definition
(XSD) file or by using a sample file.

To generate a WSDL file from an XSD file:
1. In the Request tab of the Create WSDL dialog, click Search to access the schema

location.

The Type Chooser dialog is displayed, containing a list of the schema files (XSD
files).

Generating a WSDL File

18-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 18–25 Type Chooser Dialog

2. Expand the Project Schema Files and Project WSDL Files nodes to locate the
schema that you want to use.

You can also import a schema XSD file or WSDL file into a project by using the
Import Schema File or Import WSDL icons, respectively.

After you specify a file, Oracle JDeveloper parses it to determine the defined
schema elements and displays them in a list, from which you can make a selection.

3. Select the root element of the XSD file and click OK.

4. In the Operation Name field, enter the operation name. For example:
executeQuery

Oracle JDeveloper converts the specified operation into an operation element in
the WSDL file.

5. In the Port Type Name field, enter the port name.

6. In the Namespace field, enter a namespace or accept the current value.

For example: http://oracle.com/esb/namespaces/Mediator

 The namespace that you specify is defined as the tns namespace in the WSDL
file.

7. In the Reply tab, if entering any information, click Search to access a schema and
then select a schema element.

Note: If you want to use a schema XSD file that resides on your local
file system, then ensure that the XSD file, and any XSD files that it
imports, all reside in the Oracle JDeveloper project directory.

Note: Spaces are not allowed in an Operation name.

Modifying a Mediator Component

Getting Started with Oracle Mediator 18-25

The Reply tab enables you to specify the schema for a response message in
synchronous communication.

8. In the Fault tab, if entering any information, click Search to access a schema
location and then select a schema element. You cannot specify a fault message
schema, unless you also specify a response.

9. In the Callback tab, if entering any information, click Search to access a schema
and then select a schema element.

The Callback tab enables you to specify the schema for a response message in
asynchronous communication.

10. In the Operation Name field, enter the operation name.

For example: returnQuery

11. In the Port Type Name field, enter the port name to which the response will be
sent.

12. Click OK.

Generating the WSDL File Based on a Sample File
You can generate a WSDL file from a file in a native file format such as a
comma-separated value (CSV) file, a fixed-length file, a document type definition
(DTD) file, or a COBOL copybook file. You can use the Native Format Builder wizard
to generate a WSDL file based on a sample file. The Native Format Builder wizard is
displayed when you click Define Schema for Native Format in the request, response,
fault, and callback tabs of the Create WSDL dialog. A WSDL file is generated after you
complete the wizard.

For information about the Native Format Builder wizard, see Oracle Fusion Middleware
User's Guide for Technology Adapters.

18.5 Specifying Operation or Event Subscription Properties
After creating a Mediator, you can use the Mediator Editor to specify the Validate
Syntax (XSD) property of an operation or event subscription. You can select this option
to validate the schemas of the inbound messages. By default, validate schema is set to
false.

18.6 Modifying a Mediator Component
You can modify the operations or event subscriptions of a Mediator by using the
Mediator Editor.

18.6.1 Modifying Operations
You can modify a Mediator WSDL file by adding or deleting operations. After
modifying the WSDL file, you can use the Refresh WSDL dialog to synchronize the
changes.

To modify the operations of a Mediator:
1. In Mediator Editor, click the Refresh Operations From WSDL icon (shown

highlighted in Figure 18–26) to the right of the WSDL File field.

Modifying a Mediator Component

18-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 18–26 The Refresh Operations From WSDL Icon

The Refresh WSDL dialog is displayed. If you have made any modifications to the
WSDL file, then the Refresh WSDL dialog lists all the operations that will be
deleted or added. The Refresh will delete Mediator operation field lists all the
operation that have been removed from the WSDL file. The Refresh will add
Mediator operation field lists all the new operation that have been added in the
WSDL file. Figure 18–27 displays a Refresh WSDL dialog.

Figure 18–27 Refresh WSDL Dialog

2. To specify a different WSDL file, click Find Existing WSDLs to use an existing
WSDL file or Generate WSDL From Schema(s) to create a new WSDL file.

The Refresh WSDL dialog is updated based on the operations defined in the
specified WSDL file as shown in Figure 18–28.

Modifying a Mediator Component

Getting Started with Oracle Mediator 18-27

Figure 18–28 Refresh WSDL Dialog with Updated Operations

3. Click OK.

4. From the File menu, select Save All.

18.6.2 Modifying Event Subscriptions
You can subscribe to new events, modify the existing event subscriptions, and
unsubscribe from subscribed events by using the Manage Event Subscriptions option
in Mediator Editor.

To modify events subscription of a Mediator:
1. In Mediator Editor, click the Manage Event Subscriptions icon to the right of the

Event Subscriptions.

The Subscribed Events dialog is displayed as shown in Figure 18–29.

Figure 18–29 The Subscribed Events Dialog

2. You can perform any of the following functions:

■ Subscribe to a new event.

■ Unsubscribe from an event.

■ Modify or specify the filter criteria for an event.

Modifying a Mediator Component

18-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Modify the Consistency or Run as Roles properties of an event subscription.

For more information about Consistency, Run as Roles, and Filter fields of an
event, see Section 18.3.6, "Creating a Mediator Component for Event
Subscription".

3. Click OK.

4. From the File menu, select Save All.

19

Creating Mediator Routing Rules 19-1

19Creating Mediator Routing Rules

This chapter provides an overview of routing rules and describes how to specify
routing rules for an Oracle Mediator (Mediator) service component.

This chapter includes the following sections:

■ Section 19.1, "Introduction to Routing Rules"

■ Section 19.2, "Defining Routing Rules"

■ Section 19.3, "Creating a Mediator for Routing Messages"

■ Section 19.4, "Creating Asynchronous Request Response Using Mediator"

19.1 Introduction to Routing Rules
Oracle Mediator enables you to route data between service consumers and service
providers. As the data flows from service to service, it must be transformed. These two
tasks, routing and transformations, are the core responsibilities of the Mediator. You
can use the routing rules to specify how a message processed by a Mediator reaches its
next destination. Routing rules specify where a Mediator sends the message, how it
sends it, and what changes should be made to the message structure before sending it
to the target service.

Routing rules can be of the following two types:

■ Static Routing Rules

A Mediator routing rule that is statically defined and is not expected to change
depending on the invocation context.

■ Dynamic Routing Rules

A Mediator routing rule that enables you to externalize the routing logic to a
Oracle Rules Dictionary, which in turn enables dynamic modification of the
routing logic in a routing rule.

For more information on these routing rules, refer to Section 19.2.2, "Creating Static
Routing Rules" and Section 19.2.3, "Creating Dynamic Routing Rules".

19.2 Defining Routing Rules
Routing rules can be defined only for a Mediator with defined interface. For more
information on how to define an interface, refer to Section 18.3.1.2, "How to Define an
Interface for a Mediator with no Interface Definition".

This section includes the following sections:

Defining Routing Rules

19-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Section 19.2.1, "Using the Routing Rules Panel"

■ Section 19.2.2, "Creating Static Routing Rules"

■ Section 19.2.3, "Creating Dynamic Routing Rules"

19.2.1 Using the Routing Rules Panel
You can define the routing rules by using the Routing Rules panel of the Mediator
Editor. You can access the Mediator Editor by using any one of the following methods:

■ From the SOA Composite Editor:

a. Double-click the icon that represents the Mediator for which you want to
specify the routing rules.

b. Click the Plus (+) icon next to the Routing Rules panel.

■ From the Applications Navigator:

a. In the Applications Navigator, expand the SOA project, followed by the SOA
Content folder.

b. In the SOA Content folder, double-click the name of the Mediator for which
you want to specify the routing rules. The Mediator file has mplan extension.

c. Click the Plus (+) icon next to the Routing Rules panel.

Figure 19–1 shows the Mediator Editor with Routing Rules panel.

Figure 19–1 Mediator Editor- Routing Rules Panel

The icons in the Routing Rules panel are summarized in Figure 19–2.

Defining Routing Rules

Creating Mediator Routing Rules 19-3

Figure 19–2 Routing Rule Panel Icons

19.2.2 Creating Static Routing Rules
When you configure static routing rules, you can specify the following details:

■ Target service

Specifies the service to which the message should be sent. See Section 19.2.2.1,
"Specifying Mediator Services or Events" for more information about how to
invoke a target service.

■ Execution type

Specifies the way in which routing rules are executed. You can specify either of the
following execution types: sequential or parallel.

See Section 19.2.2.2, "Specifying Sequential or Parallel Execution" for information
about how to specify an execution type.

■ Reply, callback, and fault handlers

Specify how to handle synchronous reply, callback, and fault messages. See
Section 19.2.2.3, "Handling Response Messages" and Section 19.2.2.5, "Handling
Faults" for information about synchronous reply, callback, and fault messages
handling.

■ Filter expression

Specifies the filter expression to be applied. A filter expression specifies that the
contents (payload or headers) of a message be analyzed before any service is
invoked. For example, you might apply a filter expression that specifies that a
service be invoked only if the message includes a customer ID, or if the value for
that customer ID matches a certain pattern. See Section 19.2.2.6, "Specifying
Expression for Filtering Messages" for information about how to specify filter
expressions.

■ Transformations

Specify the transformation to be applied. You can use transformation to set a value
on the target payload. You can perform transformation by using mappings or by
assigning values.

The XSLT mapper enables you to define transformations that apply to the whole
message body, to convert messages from one XML schema to another. The Assign

Defining Routing Rules

19-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

dialog, on the other hand, works on individual fields. Using this dialog, you can
assign values from the message (payload, headers), from constant, or from various
system properties, such as the properties of an adapter present in the data path.
See Section 19.2.2.7, "Creating Transformations" and Section 19.2.2.8, "Assigning
Values" for information about how to create transformations.

■ Accessing Header Variables from Expressions

Detects any SOAP headers that are used in building the expression for the current
routing rule operation. See Section 19.2.2.9, "Access Headers for Filters and
Assignments" and Section 19.2.2.9.2, "Manual Expression Building for Accessing
Properties for Filters and Assignments" for information about how to access
headers for filters and transformations.

■ Schematron based validations

Specify the Schematron files for validating different parts of an inbound message.

See Section 19.2.2.10, "Using Semantic Validation" for information about how to
perform Schematron based validations.

■ Java callout

Invokes custom Java class callouts. It enables the use of regular expressions
together with Java code, when regular expressions do not suffice. See
Section 19.2.2.11, "Support for Java Callouts" for information about how to use
Java callouts.

■ User-defined extension functions

These are your own set of functions that can be used by the XSL Mapper. See
Section 19.2.2.6.1, "Using User-Defined Extension Functions" for information about
how to use user-defined extension functions.

The various types of static routing rules that can be defined for a service or event
subscription are the following:

■ Section 19.2.2.1, "Specifying Mediator Services or Events"

■ Section 19.2.2.2, "Specifying Sequential or Parallel Execution"

■ Section 19.2.2.3, "Handling Response Messages"

■ Section 19.2.2.4, "Handling Multiple Callbacks"

■ Section 19.2.2.5, "Handling Faults"

■ Section 19.2.2.6, "Specifying Expression for Filtering Messages"

■ Section 19.2.2.7, "Creating Transformations"

■ Section 19.2.2.8, "Assigning Values"

■ Section 19.2.2.9, "Access Headers for Filters and Assignments"

■ Section 19.2.2.10, "Using Semantic Validation"

■ Section 19.2.2.11, "Support for Java Callouts"

19.2.2.1 Specifying Mediator Services or Events
After creating the Mediator, you associate it to inbound service operations or event
subscriptions and specify the targets of the Mediator. Targets are outbound service
operations or event publishing. A target specifies the next service or event to which a
Mediator should send the message and what service operation is to be invoked. You
can specify a service or an event as target type.

Defining Routing Rules

Creating Mediator Routing Rules 19-5

You can also echo source messages back to the initial caller after any transformations,
validations, assignments, or sequencing are performed. Whether the echo will be
synchronous or asynchronous, depends on the WSDL file of the caller. The echo option
is only available for inbound service operations and is not available for event
subscriptions.

The purpose of the echo option is to expose all the Mediator functionality as a callable
service, without having to route to any other service. For example, you can call a
Mediator to perform a transformation, a validation, or an assignment, and then echo
the Mediator back to your application, without routing anywhere else.

You can specify multiple routings for an inbound operation or event. Each routing is
mapped to one target service invocation or event. Therefore, to specify multiple
service invocations or raise multiple events, you must specify one routing rule for each
target. For example, a message payload, you want to invoke an operation from the
following operations defined in a service:

■ insert

■ update

■ updateid

■ delete

You must create four routings, one for each operation. Later, when you specify a filter
expression, you can specify which target and operation is applied to each message
instance, on the basis of the message payload as shown in Figure 19–3.

Defining Routing Rules

19-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–3 Multiple Routings for an Inbound Operation

To invoke a service:
1. In the Routing Rules panel, click Add.

The Target Type dialog is displayed as shown in Figure 19–4.

Figure 19–4 Target Type Dialog

2. Click Service.

3. In the Target Services dialog, navigate to, and then select an operation provided by
a service, as shown in Figure 19–5.

Defining Routing Rules

Creating Mediator Routing Rules 19-7

Figure 19–5 Target Services Dialog

4. Click OK.

To raise an event:
1. In the Routing Rules panel, click Add.

The Target Type dialog is displayed as shown in Figure 19–6.

2. Click Event.

 The Event Chooser dialog is displayed.

3. Click Search to the right of Event Definition field.

 The SCA Resource Browser dialog is displayed.

4. Select an event file and click OK.

The Event field is populated with the events defined in the selected file as shown
in Figure 19–6.

Note: A service can consist of multiple operations as shown in
Figure 19–5.

Defining Routing Rules

19-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–6 Event Chooser Dialog

5. Select an event.

6. Click OK.

To echo a service:
1. In the Routing Rules panel, click Add.

The Target Type dialog is displayed as shown in the following figure:

Figure 19–7 Target Type Dialog

2. Click Echo.

The following figure shows a routing rule with a synchronous echo:

Note: An asynchronous echo has an icon with a dotted line on the
return.

Defining Routing Rules

Creating Mediator Routing Rules 19-9

Figure 19–8 Sample Mediator Supporting Echo Operation

Restrictions on Using Echo Option
The echo option has the following limitations:

■ The echo option is supported only with the Mediator interfaces having the
following types of WSDL files:

– Request/Reply

– Request/Reply/Fault

– Request/Callback

■ The echo option is available for synchronous operations like Request/Reply and
Request/Reply/Fault.

■ For synchronous operations, having a conditional filter set, the echo option does
not return any response to the caller, when the filter condition is set to false.
Instead, a null response is returned to the caller.

■ The echo option is available for asynchronous operations only if the Mediator
interface has a callback operation. In this case, the echo is run on a separate thread.

19.2.2.2 Specifying Sequential or Parallel Execution
You can specify execution type for a routing rule. A routing rule execution type can be
parallel or sequential. To specify an execution type for a routing rule, select Sequential
or Parallel execution type from the Routing Rules panel.

Note: The echo option is not available for Mediator interfaces having
Request/Reply/Fault/Callback WSDL Files.

Note: The echo option is available for the synchronous operations
only when the routing rule is sequential because parallel routing rules
are not supported for Mediators with synchronous operations.

Note: The asynchronous echo option is available only when the
routing rule is parallel. To use the echo option, then sequential routing
rules are not supported for Mediators with asynchronous operations.

Defining Routing Rules

19-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

This section describes the following sections:

■ Basic Principles of Sequential Routing Rules

■ Basic Principles of Parallel Routing Rules

Basic Principles of Sequential Routing Rules
■ In sequential execution, routings are evaluated and actions are performed

sequentially. Sequential routings are evaluated in the same thread and transaction
as the caller.

■ Mediator always enlists itself into the global transaction propagated through the
thread that is processing the incoming message. For example, if an inbound JCA
adapter invokes a Mediator, then the Mediator enlists itself to the transaction that
the JCA adapter has initiated.

■ Mediator propagates the transaction through the same thread as the target
components, while executing the sequential routing rules.

■ Mediator never commits or rolls back transactions propagated by external entities.

■ Mediator manages the transaction only if the thread-invoking Mediator does not
have an active transaction already. For example, if Mediator is invoked from
inbound SOAP services, then Mediator starts a transaction, and commits or rolls
back the transaction depending on success and failure.

Basic Principles of Parallel Routing Rules
■ In parallel execution, routings are queued and evaluated in parallel in different

threads.

■ A new transaction is initiated by the Mediator for processing each parallel rule.
The initiated transaction ends with an enqueue to the Mediator parallel message
dehydration store.

For example, if a Mediator component has one parallel routing rule, then one
message is enqueued on the Mediator parallel message dehydration store. Then,
the parallel message dispatcher to the store initiates a transaction, reads the
message from the Database store and invokes the target component or service of
this routing rule. This transaction initiated by the listener thread is a completely
new transaction and is propagated to the target components.

■ In parallel execution, Mediator commits or rolls back transactions because it is the
initiator of these transactions.

If an operation or event has both sequential and parallel routing rules, first sequential
routing rules are evaluated and actions are performed, and then parallel routings are
queued for parallel execution.

Note: Dehydrating of messages means storing the incoming
messages in database for parallel routing rules, so that they can be
processed later by worker threads.

Note: Mediator does not support parallel execution of routing rules
for Mediators with synchronous interface.

Defining Routing Rules

Creating Mediator Routing Rules 19-11

19.2.2.3 Handling Response Messages
You can specify how to handle the response messages in synchronous and
asynchronous interactions. In case of synchronous interactions, you can specify the
transformations and assignments for the response and the fault message. You can
forward the response and the fault message to another service or event. Otherwise,
you can send them back to the initial caller, if the initial caller is expecting responses
and faults.

In case of asynchronous interaction, you can specify a timeout period for receiving the
response. The timeout period can be specified in seconds, hours, days, months, or
years. By default, the timeout period is infinite. If a callback response does not come
within the specified timeout period, then a timeout response can be forwarded to
another service, event, or back to the initial caller.

You cannot route a Mediator response to a two-way service. If you want to route a
response to a two-way service, then you should use a one-way Mediator in between
the first Mediator and the two-way service. The response should first be forwarded to
the one-way Mediator, which in turn should call the two-way service.

Specifying a Timeout Period
Perform the following steps to specify a timeout period:

1. Click the Browse for target service operation icon next to the <<Target
Operation>> field in the Callback section.

The Target Type dialog is displayed.

2. Select Service or Event.

The Target Service or the Event Chooser dialog is displayed depending upon the
selection you made.

3. Select an event or service.

4. Click OK.

The timeout response will be forwarded to the specified service or event.

Note:

■ Zero is an unsupported value to be specified as a timeout period.

■ If the callback is received, but processing of callback fails, then by
default, the timeout handler is invoked for processing the action
specified in the timeout handler.

■ Typically, the caller receives the callback after waiting for 100
milliseconds. But, if you have a bridge Mediator with a sequential
routing rule and a connection to a synchronous interface service,
then due to the complex flow of the program with all sequential
routing rules, the caller may take longer time to be ready to
receive the callback. You can work around this issue by changing
the routing rule of the bridge Mediator to parallel.

Note: If the number of routing rules is larger, and the time taken to
execute the routing rules exceeds the transaction timeout, then you
must set the transaction timeout to a value that is greater than the time
taken to execute all the routing rules.

Defining Routing Rules

19-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

19.2.2.4 Handling Multiple Callbacks
A single Mediator cannot handle multiple callbacks. If you have a composite
application with a Mediator that receives multiple callbacks, then the behavior of the
composite application is undetermined. For example, consider the scenario shown in
Figure 19–9, where, AsyncMediator forwards the callback response from
AsyncEchoMediator1 and AsyncEchoMediator2 to FileInMediator. In such a
flow, the AsyncMediator may return the callback from both the
AsyncEchoMediator1 and AsyncEchoMediator2, or from either one of them. The
exact behavior is stochastic and cannot be predicted.

Figure 19–9 Sample Mediator Handling Multiple Callback

19.2.2.5 Handling Faults
If you create a new routing rule, where the target service WSDL operation has one or
more faults, then you will still see a single Fault routing section in the Mediator Editor
window. If the source Mediator service supports one or more faults, then the fault is
routed back to the caller by default. You can choose the source and target fault names
to be routed. You may also use the service browser to route the fault to another target.

To route another fault, click Add another fault routing button shown in the following
figure:

Defining Routing Rules

Creating Mediator Routing Rules 19-13

Figure 19–10 Adding a Second fault

This will add another fault section to the routing rule. In the following figure, a second
fault is being routed to a File adapter service:

Figure 19–11 Adding a Second Fault

Defining Routing Rules

19-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

While choosing the target for a fault routing, if you want to remove a fault routing
section, then you must click Delete the selected fault routing as shown in
Figure 19–12.

Figure 19–12 Deleting a Fault Routing

Otherwise, you can also click Clear Target on the Target Type dialog as shown in the
following figure:

Figure 19–13 Target Type Dialog

Note: It is possible to route the same fault to many different targets
using different transformations.

Defining Routing Rules

Creating Mediator Routing Rules 19-15

19.2.2.6 Specifying Expression for Filtering Messages
The filter expression routing rule enables you to filter messages based on their
payload. If the filter expression for a given message instance evaluates to true, then the
message is delivered to the target service or event specified within the routing rule.

For example, suppose you want to route your data to customers in two different
countries: US and Canada. However, you only want notices regarding the product line
of type MOBILE to be sent to the customers in US and the product line of type
LANDLINE to the customers in Canada. To implement this routing, you must define a
routing rule for each component/operation pair that sends messages to the target
customers. In addition, you specify filter expressions for the routing rules that send
messages to the customers in US or Canada.

You can also define filter expressions message properties or message headers.

Filter Expression Message Properties
Following two are examples of filter expressions message properties:

$in.property.custom.Priority = '1'

$in.property.tracking.ecid = '2'

Filter Expression Message Headers
Following two are examples of filter expressions message headers:

$in.header.wsse_Security/wsse:Security/Priority = '234'

$in.header.wsse_Security/wsse:Security/Priority = '234'

For the preceding filter expressions message headers to work, you must add the
following attribute to the root element of the .mplan file:

wsse =
"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
"

You can specify a filter expression by using the Expression Builder dialog as shown in
Figure 19–14. The Expression Builder dialog is displayed when you click the icon to
the right of the filter expression field in the Routing Rules panel.

Defining Routing Rules

19-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–14 Expression Builder Dialog

The Expression Builder dialog contains the components and controls that assist you in
designing a filter expression. Briefly, you double-click a value in the Variables field or
the Functions palette, to add the value to the Expression field. Using a combination of
Variable elements, functions, and manually entered text, you can build an expression
by which you want message payloads to be filtered for a given routing rule.

The following list describes each of the fields in the Expression Builder dialog:

■ Expression field

You can enter the filter expression – either manually, or by using the Variable field
and the Functions palette in this field.

The icons on the upper right side of this field enable you to undo the last edit
made, redo the last edit made, or clear the entire Expression field, respectively.

■ Variables field

This field contains the message defined for a Mediator. Oracle JDeveloper parses
the Mediator WSDL file and presents the message definition in the Variables field.
The input message is stored in the $in variable. You can use $in.properties to
access properties of an input message.

If the input message consists of multiple parts, then you can use
$in.<partname> to access a part of an input message as shown in Figure 19–15.

Defining Routing Rules

Creating Mediator Routing Rules 19-17

Figure 19–15 Multiple Part Message in Expression Builder

■ Functions Palette

This list enables you to select different functions to include in an expression. When
you select a function, a preview of how that function will appear when added to
the Expression field is presented in the Content Preview field, and a description
of the function is presented in the Description field.

■ Content Preview

This field indicates how a value selected from the Variables field or Functions
palette will appear when it is inserted into the Expression field.

■ Description

This field describes the value selected from the Variables field or Functions
palette.

To specify a filter expression on a message payload, follow these steps:

1. In the Routing Rules panel, click the Add Filter Expression icon, shown in
Figure 19–2.

The Expression Builder dialog is displayed.

2. In the Variables field, expand the message definition and select the message
element on which you want to base the expression. For example, CustomerID
element is shown selected in Figure 19–16.

Defining Routing Rules

19-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–16 Expression Builder Dialog – Variables Element Selected

3. Click Insert Into Expression.

The expression is added in the Expression field, as shown in Figure 19–17.

Defining Routing Rules

Creating Mediator Routing Rules 19-19

Figure 19–17 Expression Builder Dialog – Variables Element Inserted

4. From the Function list, select the function to apply to the message payload. For
example, equals.

Functions are grouped in categories that are listed when you click the down arrow
in the Functions list. For example, if you click the down arrow and select Logical
Functions, the list appears as shown in Figure 19–17. When you select a function
within the Logical Functions list, a description of that function is presented in the
Description box.

5. Click Insert Into Expression.

The XPath expression for the selected function is inserted in to the Expression
field.

6. Complete the expression. In this example, a value of 1001 is entered, as shown in
Figure 19–18.

Defining Routing Rules

19-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–18 Sample Expression Builder Dialog – Value Entered

7. You can edit the expression manually, or use the expression editing icons, which
are summarized in Figure 19–19.

Figure 19–19 Expression Editing Icons

8. Click OK.

The expression is added to the Routing Rule panel.

To modify or delete a filter expression, double-click the Add Filter Expression icon,
and then modify or delete the expression in the Expression field of the Expression
Builder.

19.2.2.6.1 Using User-Defined Extension Functions You can use the Expression Builder to
use the user-defined extension functions. Perform the following steps to use the
user-defined extension functions:

1. Create an XPath function.

2. Register the Jaxen XPath function with a Mediator component in the
xpath-function.xml file on the server side.

3. Open JDeveloper.

4. Use the Builder Expression to customize the expression.

5. Deploy the JDeveloper project to WLS.

Defining Routing Rules

Creating Mediator Routing Rules 19-21

6. Copy the JAR file containing the user-defined extension functions to the
beahome/user_
projects/domains/soainfra/autodeploy/soa-infra/APP-INF/lib
directory.

7. Modify the .mplan file of the project in the following way:

■ Add the function namespace you have defined for the extension functions
under Mediator element

■ Add the function names under Expression element

This has been illustrated in Figure 19–20.

Figure 19–20 Project .mplan file – Modified to Use User-Defined Extension Functions

8. Invoke the test page with a suitable payload.

19.2.2.7 Creating Transformations
Oracle JDeveloper provides an XSLT Data Mapper tool that enables you to specify a
mapper file (XSL file) to transform data from one XML schema (expressed as an XSD
file) to another. This tool enables data interchange among applications using different
schemas. For example, you can map incoming source purchase order schema to an
outgoing invoice schema. After you define an XSL file, you can reuse it in multiple
routing rule specifications.

When you click the transformation map icon to the right of the Transform Using field
in the Routing Rules panel, the Request Transformation Map dialog is displayed. You
can select an existing XSL file or create a new XSL file with the Data Mapper tool to
perform the required transformation.

You can also specify transformations for a synchronous reply, callback response
message, or a fault message. In case of synchronous reply or fault message, the Reply
Transformation Map dialog or the Fault Transformation Map dialog contains the
Include Request in the Reply Payload option. Figure 19–21 shows a Reply
Transformation Map dialog with this option.

Defining Routing Rules

19-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–21 Reply Transformation Map Dialog

When you select this option, an $initial variable is created which contains the
original message of a synchronous interaction as shown in Figure 19–22.

Figure 19–22 Initial Variable in XSL File

An initial message can also consist of multiple parts. You can use
$initial.<partname> to access a part of the initial message.

For information about the Data Mapper tool, see Chapter 45, "Creating
Transformations with the XSLT Mapper".

19.2.2.8 Assigning Values
You can use the Assign Values field to specify the properties of a target message.
Figure 19–23 shows the Assign Values dialog that is displayed when you click the
Assign Values icon in the routing rules panel.

Note: If the parts of the inbound and outbound messages are
identical, then no transformation is required for data interchange.

Defining Routing Rules

Creating Mediator Routing Rules 19-23

Figure 19–23 Assign Values Dialog

To set the properties of the target message:
1. Click Add in the Assign Values dialog.

The Assign Value dialog is displayed as shown in Figure 19–24.

Figure 19–24 Assign Value Dialog

2. In the From section, select any of the following options from Type box:

■ Property: Select this option to assign value of a property to the target message.
The property list contains a list of predefined message properties. You can also
enter any user-defined property name.

■ Expression: Select this option to assign value of an expression to the target
message. When you click the Invoke Expression Builder icon to the right of

Defining Routing Rules

19-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Expression field, the Expression Builder dialog similar to the one shown in
Figure 19–14 is displayed.

For more information about the Expression Builder dialog, see Section 19.2.2.6,
"Specifying Expression for Filtering Messages".

■ Constant: Select this option to assign a constant value to the target message.

3. In the To section, select any of the following options:

■ Property: Select this option to copy the value to a message property. The
Variable field of the Expression Builder dialog contains an $out variable that
contains the output message. You can use $out.properties to access
properties of an output message.

■ Expression: Select this option to copy the value to an expression. When you
click the Invoke Expression Builder icon to the right of Expression field, the
Expression Builder dialog is displayed. The Variable field of the Expression
Builder dialog contains an $out variable that contains the output message.
You can use $out.<partname> to access a complete output message or part
of an output message. Note that you cannot assign any value after the
<partname>. For example, in Figure 19–25, the expression is $out.request
and you cannot modify it to add any value after request.

Figure 19–25 shows a sample Assign Value dialog in which a constant value is
specified as an expression.

Figure 19–25 Populated Assign Value Dialog

4. Click OK in the Assign Value dialog.

5. Click OK. The expression is added to Assign Values field of the Routing Rules
panel.

Defining Routing Rules

Creating Mediator Routing Rules 19-25

19.2.2.9 Access Headers for Filters and Assignments
When the Expression Builder is invoked from a Mediator, either for defining a filter or
for defining an assignment source or target, the WSDL file is parsed. This
automatically detects any SOAP headers for the current routing rule operation and
makes them visible as Variables under the in or out folder as header./ns_
elementName/, as shown in Figure 19–26. Here, ns is the namespace prefix and
elementName is the root element name for the header schema.

For example:

Example 1
Suppose, the namespace prefixes wsse and ns1 are already defined in the WSDL file
or the .mplan file, then you can write an XPath expression as the following:

$in.header.wsse_Security/wsse:Security/ns1:Foo/Priority

Example 2
Suppose, you want to use a schema that does not have a namespace predefined in the
WSDL file, then the Expression Builder is enhanced to allow you to enter {full_
namespace} instead of a prefix. The Expression Builder then generates a unique
prefix and the prefix definition is added to the .mplan file.

For example, enter the following expression in the Expression Builder:

$in.header.{http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd}_Security/
{"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xs
d"}:
Security/{"http://www.globalcompany.com/ns/OrderBooking"}:Foo/Priority

The .mplan file will contain the following:

xmlns:ns1="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sece

Note:

■ When you assign values to a particular Mediator property during
an event publishing, the assigned value does not get propagated
to the subscribing event.

You can workaround this issue by using transformations to have the
property as part of the event body.

■ You cannot assign values to the jca.db.userName and
jca.db.password properties on WebLogic Server because their
data sources do not support setting user name or password
dynamically to the getConnection method.

■ By default, SOAP headers are not passed through by Mediator.
You must add the passThroughHeader endpoint property to
the corresponding Mediator routing service. For adding this
property, modify the Composite.xml file in the following way:

<component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="passThroughHeader">true</property>
</component>

Defining Routing Rules

19-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

xt-1.0.xsd"
xmlns:ns2="http://www.globalcompany.com/ns/OrderBooking"
...
expression="$in.header.ns1_Security/ns1:Security/ns2:Foo/Priority"

Figure 19–26 Expression Builder Dialog - Automatic Header Detection

By default, SOAP headers are not passed through by Mediator. You must add the
following endpoint property to the corresponding Mediator routing service:

<property name="passThroughHeader">true</property>

For example, to add this property, you can modify the Composite.xml file in the
following way:

<component name="Mediator1">
 <implementation.mediator src="Mediator1.mplan"/>
 <property name="passThroughHeader">true</property>
</component>

19.2.2.9.1 Manual Expression Building for accessing Headers for Filters and Assignments
There are use cases, where the header schemas cannot be determined from the WSDL
files. For example, security headers that are appended to message, or the headers for a
Mediator that was created using an abstract WSDL file. To access these headers, you
must manually type in the XPath into the Expression Builder.

Note:

■ The UI supports both SOAP 1.1 and SOAP 1.2.

■ For automatic header detection, a concrete WSDL file must be
used, when creating the Mediator component.

■ Assignments execute after filters. So, if you are assigning a value
in a custom header, then the particular assignment will not be
visible to the filter.

Defining Routing Rules

Creating Mediator Routing Rules 19-27

The syntax for header expressions is:

$in.header.<header root element namespace prefix>_<header root element
name>/<xpath>

So, for the following header:

<wsse:Security
xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-sec
ext-1.0.xsd">
<Priority>234</Priority>
</wsse:Security>

The filter expression will be:

$in.header.wsse_Security/wsse:Security/Priority = '234'

The assignment expression will be:

<copy target="$out.property.jca.jms.priority"
 expression="$in.header.wsse_Security/wsse:Security/Priority"/>

For the preceding expressions to work, you must add the following attribute to the
root element of the .mplan file:

wsse =
"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
"

19.2.2.9.2 Manual Expression Building for Accessing Properties for Filters and Assignments
Example of a filter expression is

$in.property.tracking.ecid = '2'

Example of an assignment expression is

<copy target="$out.property.tracking.ecid" value="$in.property.tracking.ecid"/>

19.2.2.10 Using Semantic Validation
You can specify Schematron files for validating an inbound message and its various
parts. Schematron version 1.5 is the supported version.

Perform the following steps for specifying a Schematron schema to validate an
inbound message and its various parts:

1. Click the Select Validation File icon to the right of Validate Semantic field.

The Validations dialog is displayed.

2. Click Add.

The Add Validation dialog is displayed.

3. From the Part list, select a message part.

4. Click Search to the right of the File field.

The SCA Resource Browser dialog is displayed.

5. Select a Schematron file and click OK.

Defining Routing Rules

19-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Add Validation dialog is updated, as shown in Figure 19–27.

Figure 19–27 Add Validation Dialog

6. Click OK.

The Validation dialog is updated, as shown in Figure 19–28.

Figure 19–28 Validation Dialog

7. Click Add to specify a Schematron file for another message part or click OK.

For more information about building a Schematron schema, refer to the resources
available at

http://www.schematron.com

Note:

■ Schematron files usually have a .sch extension.

■ No error message or warning is displayed if the selected
Schematron file is empty.

Note: In semantic validation, if you check for the length of each
element name, then the element name may change for different set of
input. This happens when there are white spaces between nodes
because the parser treats the white spaces as test nodes.

Defining Routing Rules

Creating Mediator Routing Rules 19-29

19.2.2.11 Support for Java Callouts
Java callouts enable you to use external Java classes to manipulate messages flowing
through the Mediator. Only one Java callout is supported per WSDL operation or
event subscription. The callout class must implement the
oracle.tip.mediator.common.api.IjavaCallout interface. Callouts are
available for both static and dynamic routings. Figure 19–29 shows a sample Mediator
with two operations, where both the operations have one routing rule each and the
first operation has a callout class.

Figure 19–29 Sample Mediator Supporting Java Callout

You must ensure that the Java callout class is available on the server. You can use any
of the following methods for this:

■ Copy the Java class to the SCA-INF/classes folder

■ Copy the JAR containing the Java class to the SCA-INF/lib folder

■ Copy the JAR containing the Java class to the $DOMAIN_HOME/lib folder

If you want to make the Java callout class to be available to multiple Mediators, then
you must copy the JAR containing the Java class to the $DOMAIN_HOME/lib folder.

You can manually enter the name of the Java callout class in the Callout To field as
shown in Figure 19–30. In this case, JDeveloper’s auto-completion information feature
will complete the address, the classes in the current project.

Defining Routing Rules

19-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–30 Callout To Field

You can also click Select java callout class button to invoke the standard JDeveloper
Class Browser as shown in Figure 19–31.

Figure 19–31 JDeveloper Class Browser

The Class Browser is filtered so that it only displays classes that implement the
oracle.tip.mediator.common.api.IjavaCallout interface.

If you have a Java callout in Mediator and use a filter expression in the same Mediator,
then you must set the root element for the payload as follows:

changexmldoc = XmlUtils.getXmlDocument(ChangedDoc);
String mykey = "request";
message.addPayload(mykey,changexmldoc.getDocumentElement());

Table 19–1 discusses the methods in the
oracle.tip.mediator.common.api.IjavaCallout interface.

Table 19–1 Description of Methods in the IjavaCallout Interface

Method Description

initialize This method is invoked when the callout implementation class is
instantiated for the first time.

preRouting This method is called before Mediator starts executing the cases.
You can customize this method to include validations and
enhancements.

preRoutingRule This method is called before Mediator starts executing any
particular case. You can customize this method to include
case-specific validations and enhancements.

Defining Routing Rules

Creating Mediator Routing Rules 19-31

Table 19–2 discusses the methods in the CalloutMediatorMessage interface.

preCallbackRouting This method is called before Mediator finishes executing
callback handling. You can customize this method to perform
callback auditing and custom fault tracking.

postRouting This method is called after Mediator finishes executing the cases.
You can customize this method to perform response auditing
and custom fault tracking.

postRoutingRule This method is called after Mediator starts executing the cases.
You can customize this method to perform response auditing
and custom fault tracking.

postCallbackRouting This method is called after Mediator finishes executing callback
handling. You can customize this method to perform callback
auditing and custom fault tracking.

Note: If you change the message properties of a Mediator by using
Java callout in the preRoutingRule method or the preRouting
method, then you must explicitly copy the changed property to the
outbound message by using Mediator assignment functionality. For
example, if you are changing the jca.file.FileName property in
Java callout, then you must update the Mediator assignment
statement in the following way:

<assign>
<copy target="$out.property.jca.file.FileName"
expression="$in.property.jca.file.FileName"/>
</assign>

Table 19–2 Description of Methods in the CalloutMediatorMessage Interface

Method Description

addPayload This method sets payload of the Mediator messages.

addProperty This method adds property to the Mediator messages.

addHeader This method adds header to the Mediator messages.

getProperty This method retrieves Mediator message properties by
providing the property name.

getProperties This method retrieves Mediator message properties.

getId This method retrieves instance ID of the Mediator messages.
This instance ID is the Mediator instance ID created for that
particular message.

getPayload This method retrieves payload of the Mediator messages.

getHeaders This method retrieves header of the Mediator messages.

getComponentDN This method retrieves componentDN for the Mediator
component.

Table 19–1 (Cont.) Description of Methods in the IjavaCallout Interface

Method Description

Defining Routing Rules

19-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Sample Java Callout Class
The following example shows a sample Java callout class:

package qa.as11tests.javacallout;

import com.collaxa.cube.persistence.dto.XmlDocument;

import com.oracle.bpel.client.NormalizedMessage;

import java.util.logging.Logger;
import java.util.Map;
import java.util.Iterator;

import oracle.tip.mediator.common.api.CalloutMediatorMessage;
import oracle.tip.mediator.common.api.ExternalMediatorMessage;
import oracle.tip.mediator.common.api.IJavaCallout;
import oracle.tip.mediator.common.api.MediatorCalloutException;
import oracle.tip.mediator.metadata.CaseType;
import oracle.tip.mediator.utils.XmlUtils;

import oracle.tip.pc.services.functions.ExtFunc;

import oracle.xml.parser.v2.XMLDocument;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

public class JavaCalloutSanity implements IJavaCallout {
 Logger logger = Logger.getLogger("Callout");
 public JavaCalloutSanity() { }

 public void initialize(Logger logger) throws MediatorCalloutException {
 this.logger = logger;
 this.logger.info("Initializing...");
 }
 public boolean preRouting(CalloutMediatorMessage calloutMediatorMessage) {
 System.out.println("Pre routing...");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt =
calloutMediatorMessage.getPayload().entrySet().iterator();

Note:

■ The
oracle.tip.mediator.common.api.AbstractJavaCallou
tImpl class is a dummy implementation1 of the IJavaCallout
interface. This class defines all the methods present in the
IJavaCallout interface. So, you can extend this class to override
only a few specific methods of the IJavaCallout interface.

■ Details of the processing happening within the Java callout, are
not displayed in the Mediator Audit Trail screen.

1 Dummy implementation of an interface means that the implementation class will
provide definition for all the methods declared in the particular interface, but one or
more defined methods may have an empty method body. Extending a dummy
implementation class is much easier because you can choose to override only a subset
of the methods, unlike implementing an interface and defining all the methods.

Defining Routing Rules

Creating Mediator Routing Rules 19-33

 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if (msgKey.equals("request"))
 sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 sPayload_org = sPayload;
 String tobeReplaced = "CHANGE_THIS";
 String replaceWith = "JAVA_CALLOUT_||_PRE_ROUTING";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 String uid;
 try {
 uid = ExtFunc.generateGuid();
 } catch (Exception e) {
 }
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,changedoc);
 //calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 System.out.println("Changed from : \n"+sPayload_
org+"\nTo\n"+changedPayload);
 System.out.println("End Pre routing...\n\n");
 return false;
 }
 public boolean postRouting(CalloutMediatorMessage calloutMediatorMessage,
 CalloutMediatorMessage calloutMediatorMessage1,
 Throwable throwable) throws
MediatorCalloutException {
 System.out.println("Start Post routing...");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt =
calloutMediatorMessage1.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("reply"))
 sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }

 sPayload_org = sPayload;
 String tobeReplaced = "POST_ROUTING_RULE_REQUEST_REPLY";
 String replaceWith = "POST_ROUTING_RULE_REQUEST_REPLY_||_POSTROUTING_||_
JAVA_CALLOUT_WORKING";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));

Defining Routing Rules

19-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "reply";

calloutMediatorMessage1.addPayload(mykey,changedoc.getDocumentElement());
 // calloutMediatorMessage1.getPayload().put(mykey,
changedoc.getDocumentElement());
 } catch (Exception f) {
 }
 System.out.println("Changed from : \n"+sPayload_org+"\nTo\n"+
 changedPayload);
 System.out.println("End Post routing...\n\n");
 return false;
 }
 public boolean preRoutingRule(CaseType caseType,
 CalloutMediatorMessage calloutMediatorMessage) {
 System.out.println("\nStart PreRoutingRule.\n");
 String sPayload = "null";
 String sPayload_org = "null";
 for (Iterator msgIt =
 calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {

 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("request"))
 sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 sPayload_org = sPayload;
 String tobeReplaced = "PRE_ROUTING";
 String replaceWith = "PRE_ROUTING_||_PRE_ROUTING_RULE";
 int start = sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,changedoc);
 // calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 System.out.println("Changed from : \n"+sPayload_
org+"\nTo\n"+changedPayload);
 System.out.println("End PreRoutingRule.\n\n");
 return true;
 }
 public boolean postRoutingRule(CaseType caseType,
 CalloutMediatorMessage calloutMediatorMessage,
 CalloutMediatorMessage calloutMediatorMessage1,
 Throwable throwable) {
 System.out.println("Start PostRoutingRule.");
 String req_sPayload = "null";
 String req_sPayload_org = "null";

Defining Routing Rules

Creating Mediator Routing Rules 19-35

 String rep_sPayload = "null";
 String rep_sPayload_org = "null";
 for (Iterator msgIt =
 calloutMediatorMessage.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("request"))
 req_sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 req_sPayload_org = req_sPayload;
 String tobeReplaced = "PRE_ROUTING_RULE";
 String replaceWith = "PRE_ROUTING_RULE_||_POST_ROUTING_RULE_REQUEST";
 int start = req_sPayload.indexOf(tobeReplaced);
 StringBuffer sb = new StringBuffer();
 sb.append(req_sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(req_sPayload.substring(start + tobeReplaced.length()));
 String changedPayload = sb.toString();
 XMLDocument changedoc;
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "request";
 calloutMediatorMessage.addPayload(mykey,changedoc);
 // calloutMediatorMessage.getPayload().put(mykey, changedoc);
 } catch (Exception e) {
 }
 for (Iterator msgIt =
 calloutMediatorMessage1.getPayload().entrySet().iterator();
 msgIt.hasNext();) {
 Map.Entry msgEntry = (Map.Entry)msgIt.next();
 Object msgKey = msgEntry.getKey();
 Object msgValue = msgEntry.getValue();
 if(msgKey.equals("reply"))
 rep_sPayload = XmlUtils.convertDomNodeToString((Node)msgValue);
 }
 rep_sPayload_org = rep_sPayload;
 tobeReplaced = "PRE_ROUTING_RULE";
 replaceWith = "PRE_ROUTING_RULE_||_POST_ROUTING_RULE_REQUEST_REPLY";
 start = rep_sPayload.indexOf(tobeReplaced);
 sb = new StringBuffer();
 sb.append(rep_sPayload.substring(0, start));
 sb.append(replaceWith);
 sb.append(rep_sPayload.substring(start + tobeReplaced.length()));
 changedPayload = sb.toString();
 try {
 changedoc = XmlUtils.getXmlDocument(changedPayload);
 String mykey = "reply";

calloutMediatorMessage1.addPayload(mykey,changedoc.getDocumentElement());
 // calloutMediatorMessage1.getPayload().put(mykey,
changedoc.getDocumentElement());
 } catch (Exception e) {
 }
 System.out.println("Changed from : \n"+req_sPayload_
org+"\nTo\n"+changedPayload);
 System.out.println("End postRoutingRule\n\n");
 return true;
 }

Defining Routing Rules

19-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

}

19.2.3 Creating Dynamic Routing Rules
The basic idea behind dynamic routing is to separate the control logic, which
determines the path taken by the process, from the execution of the process. In the
dynamic routing scenario, a decision matrix is used to determine the type of Level-2
service to be chosen for each routing. The factors that affect the decision on the type of
Level-2 service are channel, customer type, and so on. The solution allows this
decision matrix to be modified externally by business analysts without changing the
routing. The decision matrix must be evaluated to determine the outbound service.

Dynamic routing rules can be created by using the Dynamic Routing Rule option of
Mediator Editor window, as shown in Figure 19–32:

Figure 19–32 Mediator Editor Window Displaying Dynamic Routing Rule Option

This creates a new Business Rules component and the Business Rule component is
wired to the Mediator component within the SCA composite of the Mediator
component. The wire links between the Business Rule component and the Mediator
component are considered implementation details and are shown as dotted lines in the
SCA editor, as shown in Figure 19–33:

Figure 19–33 SCA Editor with Wire Links Between the Business Rule Component and
the Mediator Component

The Business Rule component comprises of a rule dictionary. The rule dictionary is a
metadata container for the rule engine artifacts, such as fact types, rulesets, rules,

Defining Routing Rules

Creating Mediator Routing Rules 19-37

decision tables and so on. As part of creating the Business Rules component, the rule
dictionary is pre-initialized with the following data:

■ Fact Type Model

The fact type model is the data model that can be used for modeling rules. The
rule dictionary is populated with a fact type model that corresponds to the input
of the phase activity, and some fixed data model that is required as part of the
contract between the Mediator component and the Business Rules component.

■ Ruleset

A ruleset is a container of rules and used as a kind of grouping mechanism for
rules. A ruleset can be exposed as a service. As part of creating the Business Rules
component, one ruleset is created within the rule dictionary.

■ Decision Table (or Matrix)

From a rule engine perspective, a decision table is a collection of rules with the
same fact type model elements in the condition and action part of the rules. The
decision table enables to visualize rules in a tabular format. As part of creating the
Business Rules component, a new decision table is created within the ruleset.

■ Decision Service

As part of creating the Business Rules component, a decision service is created to
expose the ruleset as a service of the Business Rules SCA component. The service
interface is used by the Mediator component to evaluate the decision table.

After all the required artifacts of the phase activity are created, the wizard starts
modeling the phase decision matrix (PDM). The wizard launches the Rule Designer
window of JDeveloper and enables you to edit the phase decision matrix. Figure 19–34
shows a sample decision table within the Rule Designer:

Figure 19–34 Sample Decision Table Within the Rule Designer

Once the dynamic routing is created, you can modify the associated decision matrix by
clicking Edit Dynamic Rules. This launches the Rule Designer and enables
modification of the associated decision table of the Business Rules component. After
you create dynamic routing for the Mediator component, you cannot go back to static
routing without deleting the dynamic routing. Currently, there is no option for mixing
these two types of routing.

Defining Routing Rules

19-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Mediator mplan file looks like the following after dynamic routing option is
chosen:

Figure 19–35 Mediator mplan File for a Mediator with Dynamic Routing Rule

You see the following changes in the source view:

<Mediator name="Shipment" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/sca/1.0/mediator">
 <operation name="execute" deliveryPolicy="AllOrNothing" priority="0">
 <switch decisionServiceRef="Phase1DecisionService"
 decisionServiceOperation="executeFunction"></switch>
 </operation>
</Mediator>

The switch element contains the decision service reference and operation details to
enable the Mediator component to invoke the decision service in runtime for getting
the dynamic routing decisions. Dynamic decisions are returned by rule engine user
configuration in Runtime.

External service invocation contains an extra attribute called bindingInfo, which
contains binding information to make the invocation dynamic.

Limitations on Mediators Using Dynamic Routing Rules
Following are some limitations on Mediators using dynamic routing rules:

■ As of now, only SOAP bindings are supported. There will be a dummy SOAP
binding in the composite.xml file. This endpoint will be overridden by
Mediator in runtime through NM property. So, outbound services can be called
only over SOAP.

■ Payload manipulation is limited for dynamic routing rules. No assignment,
transformation, or validation can be performed.

■ The reference WSDL file (Layer 2 or Called References) should have the same
abstract WSDL file as the Phase Reference that gets auto created.

■ Dynamic Routing is not possible for Mediators with synchronous or one-way
interface.

Creating a Mediator for Routing Messages

Creating Mediator Routing Rules 19-39

19.3 Creating a Mediator for Routing Messages
The CustomerRouter use case provides an overview of how to use a Mediator in a
SOA composite sample application to route messages the payload. For downloading
the sample files mentioned in this section, visit the following URL:

http://www.oracle.com/technology/sample_code/products/mediator

The CustomerRouter use case consists of the following steps:

1. Legacy customer files are picked up from a directory by an adapter service named
ReadCust.

2. The ReadCust adapter service sends the file data to the CustomerRouter
Mediator.

3. The CustomerRouter Mediator applies a filter to the XML message payload to
determine whether the message should be routed to the USCustomer reference or
CanadaCustomer reference.

4. The CustomerRouter Mediator then transforms the message to the structure
required by the adapter reference.

5. The external reference delivers the message to its associated external application.

Figure 19–36 provides an overview of the CustomerRouter use case.

Figure 19–36 Overview of CustomerRouter Use Case

19.3.1 Step-By-Step Instructions for Creating the CustomerRouter Use Case
This section provides the design-time tasks for creating, building, and deploying the
use case. These tasks should be performed in the order in which they are presented.

■ Section 19.3.1.1, "Task 1: Creating an Oracle JDeveloper Application and Project"

Creating a Mediator for Routing Messages

19-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Section 19.3.1.2, "Creating CustomerRouter Mediator Component"

■ Section 19.3.1.3, "Creating a File Adapter Service"

■ Section 19.3.1.4, "Creating a File adapter reference"

■ Section 19.3.1.5, "Specifying Routing Rules"

■ Section 19.3.1.6, "Creating Oracle Application Server Connection"

■ Section 19.3.1.7, "Deploying CustomerRouterProject"

19.3.1.1 Task 1: Creating an Oracle JDeveloper Application and Project

To create an application and a project for the use case:
1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application Wizard appears.

4. In the Application Name field, enter CustomerRouter and then click Next.

The Name your project screen appears.

5. In the Project Name field, enter CustomerRouterProject and click Next.

The Configure SOA settings screen appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Applications Navigator of Oracle JDeveloper is populated with the new
application and the project, and the Design tab contains a blank palette.

7. From the File menu, click Save All.

19.3.1.2 Creating CustomerRouter Mediator Component

To create a Mediator named CustomerRouter:
1. From the Component Palette, select SOA.

2. Drag and drop a Mediator to the Components design area.

The Create Mediator dialog is displayed.

3. Enter CustomerRouter in the Name field.

4. Select Define Interface Later from Templates.

5. Click OK.

A Mediator with name CustomerRouter is created.

19.3.1.3 Creating a File Adapter Service
You must create a File adapter service named ReadCust to read the XML files from a
directory.

Creating a Mediator for Routing Messages

Creating Mediator Routing Rules 19-41

To create a File adapter service:
1. From the Components Palette, select SOA.

2. Select File Adapter and drag it to the Exposed Services design area.

The Adapter Configuration Wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter ReadCust.

5. Click Next.

The Adapter Interface page is displayed.

6. Select Define from operation and schema (specified later) and click Next.

The Operation page is displayed.

7. In the Operation Type field, select Read File.

8. In the Operation Name field, replace Read with ReadFile.

9. Click Next.

The File Directories page is displayed.

10. In the Directory for Incoming Files (physical path) field, enter the directory from
which you want to read the files. For example, C:\Customer\In.

11. Click Next.

The File Filtering page is displayed.

12. In the Include Files with Name Pattern field, enter *.xml, and then click Next.

The File Polling page is displayed.

13. Change the Polling Frequency field value to 10 seconds, and then click Next.

The Messages page is displayed.

14. Click Search to the right of the URL field.

The Type Chooser dialog is displayed.

15. Click Import Schema File.

The Import Schema File dialog is displayed.

16. Click Search to the right of the URL field and select the LegacyCustomer.xsd
file present in the Samples folder.

17. Click OK.

18. Expand the navigation tree to Type Explorer\Imported
Schemas\LegacyCustomer.xsd and select CustomerData, as shown in
Figure 19–37.

Note: Mediator may process the same file twice when run against
Oracle RAC planned outages. This is because a File adapter is a
non-XA compliant adapter. So, when it participates in a global
transaction, it may not follow the XA interface specification of
processing each file once and only once.

Creating a Mediator for Routing Messages

19-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–37 Type Chooser - CustomerData

19. Click OK.

The Adapter Configuration wizard appears as shown in Figure 19–38.

Figure 19–38 Adapter Configuration Wizard – Messages page

20. Click Next.

Creating a Mediator for Routing Messages

Creating Mediator Routing Rules 19-43

The Finish page is displayed.

21. Click Finish.

22. From the File menu, click Save All.

19.3.1.4 Creating a File adapter reference
You must create a File adapter reference USCustomer.

To create a File adapter reference:
1. From the Component Palette, select SOA.

2. Select File Adapter and drag it to the External References design area.

The Adapter Configuration Wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter USCustomer.

5. Click Next.

The Adapter Interface page is displayed.

6. Select Define from operation and schema (specified later) and click Next.

The Operation page is displayed.

7. Click Next.

The Operation page is displayed.

8. In the Operation Type field, select Write File.

9. In the Operation Name field, enter WriteFile.

10. Click Next.

The File Configuration page is displayed.

11. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory where you want to write the files.

For example, C:\Customer\out.

12. In the File Naming Convention field, enter customer_%SEQ%.xml and click
Next.

The Messages page is displayed.

13. Click Search to the right of the URL field.

The Type Chooser dialog is displayed.

14. Click Import Schema File.

The Import Schema File dialog is displayed.

15. Click Search to the right of the URL field and select the USCustomer.xsd file
present in the Samples folder.

16. Click OK.

17. Expand the navigation tree to Type Explorer\Imported
Schemas\USCustomer.xsd and then select Customer.

18. Click OK.

Creating a Mediator for Routing Messages

19-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

19. Click Next.

The Finish page is displayed.

20. Click Finish.

21. From the File menu, click Save All.

Create another File adapter reference CanadaCustomer in similar way by using the
CanCustomer.xsd file.

Figure 19–39 shows how the SOA composite editor appears after performing this task.

Figure 19–39 Mediator Component with Adapter Services and References

19.3.1.5 Specifying Routing Rules
You must specify the path that messages take from the ReadCust adapter service to
external references.

To specify routing rules:
1. Connect the ReadCust service to the CustomerRouter Mediator as shown in

Figure 19–40.

This specifies the File adapter service to invoke the CustomerRouter Mediator
while reading a file from the input directory.

Creating a Mediator for Routing Messages

Creating Mediator Routing Rules 19-45

Figure 19–40 Connecting ReadCust Service to the CustomerRouter Mediator

2. Double-click CustomerRouter Mediator to open the CustomerRouter.mplan
editor shown in Figure 19–41.

Figure 19–41 CustomerRouter Mediator in Mediator Editor

3. In the Routing Rules section, click Add to the extreme right side of ReadFile and
then click static routing rule.

The Target Type dialog is displayed.

4. Click Service.

The Target Services dialog is displayed.

Creating a Mediator for Routing Messages

19-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Navigate to CustomerRouterProject, References, USCustomer and select
WriteFile as shown in Figure 19–42.

Figure 19–42 Target Services Dialog

6. Click OK.

The Routing Rules panel is displayed, as shown in Figure 19–43.

Figure 19–43 The Routing Rules Panel - MapCustomerData Added

Creating a Mediator for Routing Messages

Creating Mediator Routing Rules 19-47

7. Click the filter icon next to the <<Filter Expression>> field to create a filter
expression for this routing rule.

The Expression Builder dialog is displayed.

8. In the Variables field, navigate to Variables, in, body, imp1:CustomerData, and
then select Country.

9. Double-click Country.

The Country node is added in the Expression field as shown in Figure 19–44.

Figure 19–44 Expression Builder Dialog

10. Modify the expression to the following:

$in.CustomerData/imp1:CustomerData/Country=’US’

11. Click OK.

The <<Filter Expression>> field of the Routing Rules panel is populated with the
expression as shown in Figure 19–45.

Creating a Mediator for Routing Messages

19-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–45 Populated Filter Field of Routing Rules Panel

12. Click the icon to the right of the Transform Using field.

The Request Transformation Map dialog is displayed, as shown in Figure 19–46.

Figure 19–46 Request Transformation Map

13. Select Create New Mapper File and click OK.

A CustomerData_To_Customer.xsl tab is added, as shown in Figure 19–47.

Creating a Mediator for Routing Messages

Creating Mediator Routing Rules 19-49

Figure 19–47 CustomerData_To_Customer.xsl Tab – Initially

14. Drag and drop the imp1:CustomerData source element to imp1:Customer target
element.

The Auto Map Preferences dialog is displayed.

15. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names.

The Auto Map Preferences dialog is shown in Figure 19–48.

Figure 19–48 Auto Map Preferences Dialog

16. Click OK.

The CustomerData_To_Customer.xsl tab appears as shown in Figure 19–49.

Creating a Mediator for Routing Messages

19-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–49 CustomerData_To_Customer.xsl Tab – Auto Mapped Connections

17. From the File menu, click Save All.

18. Repeat the steps mentioned in Step 3 through 17 to specify CanadaCustomer
reference as the target service. In the Expression builder dialog, specify the
following expression:

$in.CustomerData/imp1:CustomerData/Country=’CA’

Figure 19–50 shows how the Mediator editor would appear after you have
specified CanadaCustomer reference as target service.

Note: For repeating the steps, you must reenter the Mediator Editor
by closing the Mapper Editor or by clicking the
CustomerRouter.mplan tab.

Creating a Mediator for Routing Messages

Creating Mediator Routing Rules 19-51

Figure 19–50 Routing Rules Panel with Target Services Defined

After performing all the steps mentioned in this section, the SOA composite editor
would appear as shown in Figure 19–36.

19.3.1.6 Creating Oracle Application Server Connection
An Oracle Application Server connection is required for deploying your SOA
composite application. For information on creating Oracle Application Server
connection, refer to Oracle Fusion Middleware User's Guide for Technology Adapters.

19.3.1.7 Deploying CustomerRouterProject
Deploying the CustomerRouterProject composite application to Oracle
Application Server consists of following steps:

■ Creating an Application Deployment Profile

■ Deploying the Application Deployment Profile to Oracle Application Server

For detailed information about these steps, see Section 43.2, "Deploying a Single SOA
Composite in Oracle JDeveloper".

19.3.2 Running and Monitoring the CustomerRouterProject Application
After deploying the CustomerRouterProject application, you can run it by
copying the input xml files to the input folder. The payload, the files will be written to
the specified output directories.

For monitoring the running instance, you can use the Oracle Enterprise Manager
Console at the following URL:

http://hostname:portnumber/em

Creating Asynchronous Request Response Using Mediator

19-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

where hostname is the host on which you installed the Oracle SOA Suite
infrastructure and portnumber is the port of the server, where Enterprise Manager is
installed.

For detailed information about these steps, see Section 43.2, "Deploying a Single SOA
Composite in Oracle JDeveloper".

19.4 Creating Asynchronous Request Response Using Mediator
This sample demonstrates asynchronous request response scenario using Mediator.
This composite has a client BPEL process invoking a Mediator, which invokes a server
BPEL process. All the invocations are done as asynchronous request response.

Figure 19–51 provides an overview of the AsyncMediator use case.

Figure 19–51 Overview of AsyncMediator Use Case

For downloading the sample files mentioned in this section, visit the following URL:

http://www.oracle.com/technology/sample_code/products/mediator

19.4.1 Step-By-Step Instructions for Creating the AsyncMediator Use Case
This section provides the design-time tasks for creating, building, and deploying the
use case. These tasks should be performed in the order in which they are presented.

■ Section 19.4.1.1, "Task 1: Creating an Oracle JDeveloper Application and Project"

■ Section 19.4.1.2, "Task 2: Creating a Server BPEL Process"

■ Section 19.4.1.3, "Task 3: Create a Mediator Component"

■ Section 19.4.1.4, "Task 4: Creating a Client BPEL Process"

■ Section 19.4.1.5, "Task 5: Creating the Invoke, Receive, and Assignment Activities"

■ Section 19.4.1.6, "Task 6: Configuring Oracle Application Server Connection"

■ Section 19.4.1.7, "Task 7: Deploying the Composite Application"

Creating Asynchronous Request Response Using Mediator

Creating Mediator Routing Rules 19-53

19.4.1.1 Task 1: Creating an Oracle JDeveloper Application and Project

To create an application and a project for the use case:
1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application Wizard appears.

4. In the Application Name field, enter AsyncMediator and then click Next.

The Name your project screen appears.

5. In the Project Name field, enter AsyncMediatorSample and click Next.

The Configure SOA settings screen appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Applications Navigator of Oracle JDeveloper is populated with the new
application and the project, and the Design tab contains a blank palette.

7. From the File menu, click Save All.

19.4.1.2 Task 2: Creating a Server BPEL Process

To create a server BPEL process:
1. In the Application Navigator, double-click composite.xml. The composite.xml

window is displayed.

2. From the Component Palette, select SOA.

3. Drag and drop a BPEL process to the Components design area.

The Create BPEL Process dialog is displayed.

4. In the Name field, enter ServerBPELProcess.

5. In the Template field, select Asynchronous BPEL Process.

6. Uncheck Expose as a SOAP service and click OK. The ServerBPELProcess is
created in the composite.xml window.

19.4.1.3 Task 3: Create a Mediator Component

To create a Mediator named Mediator:
1. From the Component Palette, select SOA.

2. Drag and drop a Mediator to the Components design area.

The Create Mediator dialog is displayed.

3. Enter Mediator in the Name field and select Asynchronous Interface from
Template.

4. Uncheck Create Composite Service with SOAP Bindings.

5. Click OK.

A Mediator with name Mediator is created, as shown in Figure 19–52.

Creating Asynchronous Request Response Using Mediator

19-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–52 Mediator and ServerBPELProcess in the Composite Window

6. Double-click the Mediator Mediator.

The Mediator.mplan window is displayed.

7. In the Routing Rules section, click Add to the extreme right side of execute and
then static routing rules.

The Target Type dialog is displayed.

8. Select Service.

The Target Services dialog is displayed.

9. Navigate to AsyncMediatorSample, BPEL Processes, ServerBPELProcess,
Services, serverbpelprocess_client, and process, as shown in Figure 19–53.

Figure 19–53 Target Services Dialog

10. Click OK.

The Routing Rules panel is displayed, as shown in Figure 19–54.

Creating Asynchronous Request Response Using Mediator

Creating Mediator Routing Rules 19-55

Figure 19–54 The Routing Rules Panel - initiate Added

11. Click the icon to the right of the Transform Using field, below <<Filter Expression
field>>.

The Request Transformation Map dialog is displayed.

12. Select Create New Mapper File and click OK.

A singleString_To_process.xsl tab is added.

13. Drag and drop the cb1:input source element to client:input target element.

The Auto Map Preferences dialog is displayed.

14. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names and click OK. The singleString_To_process.xsl window is
displayed, as shown in Figure 19–55.

Creating Asynchronous Request Response Using Mediator

19-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–55 singleString_To_process.xsl Window

15. In the Routing Rules panel, under Callback, click the icon to the right of the
Transform Using field.

The Request Transformation Map dialog is displayed.

16. Select Create New Mapper File and click OK.

A processResponse_To_singleString.xsl tab is added.

17. Drag and drop the client:processResponse source element to cb1:singleString
target element.

The Auto Map Preferences dialog is displayed.

18. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names and click OK.

19.4.1.4 Task 4: Creating a Client BPEL Process

To create a client BPEL Process:
1. In the Application Navigator, double-click composite.xml. The composite.xml

window is displayed.

2. From the Component Palette, select SOA.

3. Drag and drop a BPEL process to the Components design area.

The Create BPEL Process dialog is displayed.

4. In the Name field, enter ClientBPELProcess.

5. In the Template field, select Asynchronous BPEL Process.

6. Click OK. The ClientBPELProcess is created in the composite.xml window.

7. Drag and drop the ClientBPELProcess BPEL process to the Mediator Mediator.
The composite.xml appears as shown in Figure 19–51.

Creating Asynchronous Request Response Using Mediator

Creating Mediator Routing Rules 19-57

19.4.1.5 Task 5: Creating the Invoke, Receive, and Assignment Activities

To create the invoke activity:
1. Double-click ClientBPELProcess. The ClientBPELProcess.bpel page is displayed.

2. Drag and drop an Invoke activity from the Component Palette to the design area.

3. Double-click the Invoke activity. The Invoke dialog is displayed.

4. Enter InvokeMediator in the Name field.

5. Click Browse Partner Links next to the Partner Link field. The Partner Link
Chooser dialog is displayed.

6. Select Operation - execute, and click OK.

7. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog. The Create Variable dialog is displayed.

8. Enter InvokeMediator_execute_InputVariable_1 in the Variable field and
click OK. The Invoke dialog is displayed.

9. Click OK. The Oracle JDeveloper ClientBPELProcess.bpel page appears.

To create the receive activity:
1. Drag and drop a Receive activity from the Component Palette to the design area.

2. Double-click the Receive activity. The Receive dialog is displayed.

3. Enter ReceiveFromMediator in the Name field.

4. Click Browse Partner Links next to the Partner Link field. The Partner Link
Chooser dialog is displayed.

5. Select Operation - callback, and click OK.

6. Click the Auto-Create Variable icon to the right of the Variable field in the Receive
dialog. The Create Variable dialog is displayed.

7. Select the default variable name and click OK. The Variable field is populated
with the default variable name.

8. Check Create Instance, and click OK. The Oracle JDeveloper
ClientBPELProcess.bpel page appears.

To create the assignment activity:
1. Drag and drop an Assign activity from the Component Palette between the

ReceiveFromMediator and InvokeMediator activities in the design area.

2. Double-click the Assign activity. The Assign dialog is displayed.

3. Enter AssignRequest in the Name field.

4. Click the Copy Operation tab. The Assign dialog is displayed.

5. Select Copy Operation. The Create Copy Operation dialog is displayed.

6. Create the copy operation between the triggers file name and the file variable, as
shown in Figure 19–56.

Creating Asynchronous Request Response Using Mediator

19-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–56 The Create Copy Operation Dialog

7. Click OK in the Create Copy Operation dialog.

8. Click OK to return to the Oracle JDeveloper ClientBPELProcess.bpel page, as
shown in Figure 19–57.

Creating Asynchronous Request Response Using Mediator

Creating Mediator Routing Rules 19-59

Figure 19–57 The Oracle JDeveloper - ClientBPELProcess.bpel

9. Click File, Save All.

To create an assign activity in the ServerBPELProcess.bpel Window
1. Double-click the ServerBPELProcess.bpel BPEL process. The

ServerBPELProcess.bpel window is displayed.

2. Drag and drop an Assign activity from the Component Palette between the
receiveInput and callbackClient activities in the design area.

3. Double-click the Assign activity. The Assign dialog is displayed.

4. Click the Copy Operation tab. The Assign dialog is displayed.

5. Select Copy Operation. The Create Copy Operation dialog is displayed.

6. Create the copy operation between the triggers file name and the file variable, as
shown in Figure 19–58.

Creating Asynchronous Request Response Using Mediator

19-60 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 19–58 The Create Copy Operation Dialog

7. Click OK in the Create Copy Operation dialog.

8. Click OK to return to the Oracle JDeveloper ServerBPELProcess.bpel page, as
shown in Figure 19–59.

Figure 19–59 The Oracle JDeveloper - ServerBPELProcess.bpel

9. Click File, Save All.

Creating Asynchronous Request Response Using Mediator

Creating Mediator Routing Rules 19-61

19.4.1.6 Task 6: Configuring Oracle Application Server Connection
An Oracle Application Server connection is required for deploying your SOA
composite application. For information on creating Oracle Application Server
connection, refer to Section 19.3.1.6, "Creating Oracle Application Server Connection".

19.4.1.7 Task 7: Deploying the Composite Application
Deploying the EventMediatorApp composite application to Oracle Application
Server consists of following steps:

■ Creating an Application Deployment Profile

■ Deploying the Application to Oracle Application Server

For detailed information about these steps, see Section 43.2, "Deploying a Single SOA
Composite in Oracle JDeveloper".

Creating Asynchronous Request Response Using Mediator

19-62 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

20

Using Mediator Error Handling 20-1

20Using Mediator Error Handling

This chapter describes how to handle errors with Oracle Mediator (Mediator).

This chapter includes the following sections:

■ Section 20.1, "Introduction to Oracle Mediator Error Handling"

■ Section 20.2, "Using Error Handling with Mediator"

■ Section 20.3, "Fault Recovery Using Enterprise Manager"

■ Section 20.4, "Error Handling XML Schema Definition Files"

20.1 Introduction to Oracle Mediator Error Handling
Oracle Mediator provides sophisticated error handling capabilities that enable you to
configure a Mediator service component for error occurrences and corresponding
corrective actions. Error handling enables a Mediator to handle errors that occur
during the processing of messages and also the exceptions returned by outside Web
services. You can handle both business faults and system faults with Mediator.

Business faults are application-specific and are explicitly defined in the service WSDL
file. You can handle business faults by defining the fault handlers in Oracle JDeveloper
at design time. System faults occur because of some problem in the underlying system
such as network not being available. Mediator provides fault policy-based error
handling for system faults.

Fault policies enable you to handle errors automatically or through human
intervention. Mediator fault policy-based error handling consists of the following three
components:

■ Section 20.1.1, "Fault Policies"

■ Section 20.1.2, "Fault Bindings"

■ Section 20.1.3, "Error groups in Mediator"

20.1.1 Fault Policies
A fault policy defines error conditions and corresponding actions. Fault policies are
defined in the fault-policies.xml file. The fault-policies.xml file should be
created based on the XML schema defined in Section 20.4.1, "Schema Definition File
for Fault-policies.xml".

Introduction to Oracle Mediator Error Handling

20-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A sample fault policy file is shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicies>
 <faultPolicy version="2.0.1" id="CRM_ServiceFaults">
 <Conditions>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
 name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")</test>
 <action ref="ora-retry"/>
 </condition>
 </faultName>
 </Conditions>
 <Actions>
 <Action id="ora-retry">
 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-terminate"/>
 </retry>
 </Action>
 </Actions>
 </faultPolicy>
</faultPolicies>

The two components of the fault policy are described in the following sections:

■ Section 20.1.1.1, "Conditions"

■ Section 20.1.1.2, "Actions"

20.1.1.1 Conditions
Conditions identify error or fault conditions along with reference to the actions to be
taken. You can use conditions to identify the action to be taken when a particular error
or fault condition occurs. For example, for a particular error occurring because of a
service not being available, you can perform an action such as retry. Similarly, for
another error occurring because of failure of Schematron validation, you can perform
the action human intervention. This fault can be recovered manually by editing the
payload and then resubmitting through Oracle Enterprise Manager.

Conditions are defined in the fault-policies.xml file, as shown in the following
example:

<Conditions>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
 name="medns:mediatorFault">
 <condition>

Note: Fault policies are applicable to parallel routing rules only. For
sequential routing rules, the fault goes back to the caller and it is the
responsibility of the caller to handle the fault. If the caller is an
adapter, then you can define rejection handlers on the inbound
adapter to take care of the errored out messages, that is, the rejected
messages. For more information about Rejection Handlers, refer to
Oracle Fusion Middleware User's Guide for Technology Adapters.

Introduction to Oracle Mediator Error Handling

Using Mediator Error Handling 20-3

 <test>contains($fault.mediatorErrorCode,"TYPE_DATA_
TRANSFORMATION")</test>
 <action ref="ora-java"/>
 </condition>
 </faultName>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")</test>
 <action ref="ora-retry"/>
 </condition>
 </faultName>
 <faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
 <condition>
 <test>contains($fault.mediatorErrorCode,"TYPE_DATA_ASSIGN")</test>
 <action ref="ora-retry-crm-endpoint"/>
 </condition>
 </faultName>
</Conditions>

Identifying Fault Types Using Conditions
You can categorize the faults that can be captured using conditions in the following
types:

■ Mediator-specific faults

For all Mediator-specific faults, Mediator engine throws only one fault, namely
{http://schemas.oracle.com/mediator/faults}mediatorFault.
Every Mediator fault is wrapped into this fault. The errors or faults generated by a
Mediator composite can be captured by using the following format:

<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
<!-- mediatorFault is a bucket for all the mediator faults -->
 <condition>
 <test>
 contains($fault.mediatorErrorCode, "TYPE_FATAL_MESH")
 </test>
<!-- Captures TYPE_FATAL_MESH errors -->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

■ Business faults and SOAP faults

The errors or faults that can be captured by defining an XPath condition, which is
based on the fault payload. For example:

<faultName xmlns:ns1="http://xmlns.oracle.com/Customer"
 name="ns1:InvalidCustomer"> <!-- Qname of Business/SOAP fault -->
 <condition>
 <test>
contains($fault.<PART_NAME>/custid, 1011)
 </test>
<!-- xpath condition based on fault payload -->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

Introduction to Oracle Mediator Error Handling

20-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

When a reference service returns a business fault, the fault can be handled in the
Mediator component. The returned fault can be forwarded to another component,
redirected to an adapter service like File adapter, or an event can be raised. But, if
both fault policy and fault handler are defined for a business fault, then fault
policy takes precedence over fault handler. In such a case, the fault handlers in the
Mediator component are ignored, if the fault policy is successfully executed.

■ Adapter-specific fault

The errors or faults generated by an Adapter can be captured by using the
following format:

<faultName xmlns:medns="http://schemas.oracle.com/mediator/faults"
name="medns:mediatorFault">
 <condition>
 <test>$fault.faultCode = "1"</test> <!-- unique constraint violation in DB
adapter-->
 <action ref="ora-retry"/>
 </condition>
 </faultName>

20.1.1.2 Actions
Actions specify the tasks that should be performed when an error occurs. Mediator
provides a list of actions that you can use in a fault policy. These predefined actions are
described in the following list:

■ Retry: Retry actions like enqueueing a message to a JMS queue that is stopped, or
inserting a record with unique key constraint error and so on, enable you to retry a
task that caused the error. A new thread is started with every retry action. So, with
every retry action, a new transaction starts. The options available with retry action
are:

The following code snippet shows how to specify the Retry action:

 <Action id="ora-retry">

Option Description

Retry Count Retry N times

Retry Interval Delay in seconds for
retry

Exponential Backoff Retry interval
increase with
exponential backoff

Retry Failure Action Chain to this action if
retry N times fails

Retry Success Action Chain to this action if
retry succeeds

Note: Exponential backoff indicates that the next retry attempt is
scheduled at 2 x the delay, where delay is the current retry interval. For
example, if the current retry interval is 2 seconds, the next retry
attempt is scheduled at 4, the next at 8, and the next at 16 seconds
until the retryCount value is reached.

Introduction to Oracle Mediator Error Handling

Using Mediator Error Handling 20-5

 <retry>
 <retryCount>3</retryCount>
 <retryInterval>2</retryInterval>
 <exponentialBackoff/>
 <retryFailureAction ref="ora-java"/>
 <retrySuccessAction ref="ora-java"/>
 </retry>
 </Action>

If you set the Retry Interval in the fault policy to a duration less than 30 seconds,
then the retry may not happen within the specified intervals. This is because the
default value of the org.quartz.scheduler.idleWaitTime property is 30
seconds, and the scheduler waits for 30 seconds before retrying for available
triggers, when the scheduler is otherwise idle. If the Retry Interval is set to a value
less than 30 seconds, then latency is expected.

If you want the system to use a retry interval that is less than 30 seconds, then add
the following property under the section <property
name="quartzProperties"> in the fabric-config-core.xml file:

org.quartz.scheduler.idleWaitTime=<value>

■ Human intervention: You can specify this action in the following way:

<Action id="ora-human-intervention"><humanIntervention/></Action>

■ Abort: This action enables you to abort the flow. You can specify this action in the
following way:

<Action id="ora-terminate"><abort/></Action>

■ Java code: This action enables you to call a customized Java class that implements
the
oracle.integration.platform.faultpolicy.IFaultRecoveryJavaCla
ss interface. You can specify this action in the following way:

 <Action id="ora-java">
 <javaAction className="mypackage.myClass"
defaultAction="ora-terminate">
 <returnValue value="ABORT" ref="ora-terminate"/>
 <returnValue value="RETRY" ref="ora-retry"/>
 <returnValue value="MANUAL" ref="ora-human-intervention"/>
 </javaAction>
 </Action>

For more information about
oracle.integration.platform.faultpolicy.IFaultRecoveryJavaCla
ss interface and
oracle.integration.platform.faultpolicy.IFaultRecoveryContext
interface, see the SOA Javadoc.

Note: The implemented Java class must implement a method that
returns a String. The policy can be chained to a new action based on
the returned String.

Introduction to Oracle Mediator Error Handling

20-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

20.1.2 Fault Bindings
Fault bindings associate fault policies with composites or components, and are defined
in the fault-bindings.xml file. The fault-bindings.xml file should be created
based on the XML schema defined in Section 20.4.2, "Schema Definition File for
Fault-bindings.xml".

Fault policies can be created at the following levels:

■ Composite: You can define one fault policy for all Mediator components in a
composite. You can specify this level in the following way:

<composite faultPolicy="ConnectionFaults"/>

■ Component: You can define a fault policy for a Mediator component exclusively. A
component-level fault policy overrides the composite-level fault policy. You can
specify this level in the following way:

<component faultPolicy="ConnectionFaults">
 <name>Component1</name>
 <name>Component2</name>
</component>

■ Reference: You can define a fault policy for the references of a Mediator
component. You can specify this level in the following way:

<reference faultPolicy="policy1">
 <name>DBAdapter3</name>
 </reference>

A sample fault binding file is shown in the following example:

<?xml version="1.0" encoding="UTF-8"?>
<faultPolicyBindings version="2.0.1"
 xmlns="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <composite faultPolicy="ConnectionFaults"/>
</faultPolicyBindings>

20.1.3 Error groups in Mediator
You can specify an action for an error type or error group while defining the
conditions in a fault policy. In the previous examples, medns:mediatorFault refers
that the error is a Mediator error, whereas medns:TYPE_FATAL_MESH refers to an
error group. An error group consists of one or more child error types. TYPE_ALL is an
error group that contains all Mediator errors.

The following list describes various error groups contained in the TYPE_ALL error
group:

■ TYPE_DATA: Contains errors related to data handling.

– TYPE_DATA_ASSIGN: Contains errors related to data assignment.

– TYPE_DATA_FILTERING: Contains errors related to data filtering.

Note: Human intervention is the default action for errors that do not
have a fault policy defined.

Using Error Handling with Mediator

Using Mediator Error Handling 20-7

– TYPE_DATA_TRANSFORMATION: Contains errors that occur during
transformation.

– TYPE_DATA_VALIDATION: Contains errors that occur during payload
validation.

■ TYPE_METADATA: Contains errors related to Mediator metadata.

– TYPE_METADATA_FILTERING: Contains errors that occur while processing
the filtering conditions.

– TYPE_METADATA_TRANSFORMATION: Contains errors that occur during
getting the metadata for transformation.

– TYPE_METADATA_VALIDATION: Contains errors that occur during validation
of metadata for Mediator (.mplan file).

– TYPE_METADATA_COMMON: Contains other errors that occur during the
handling of metadata.

■ TYPE_FATAL: Contains fatal errors that are not easily recoverable.

– TYPE_FATAL_DB: Contains database related fatal errors, such as Datasource
not found error.

– TYPE_FATAL_CACHE: Contains Mediator cache-related fatal errors.

– TYPE_FATAL_ERRORHANDLING: Contains fatal errors that occur during error
handling such as Resubmission queues not available.

– TYPE_FATAL_MESH: Contains fatal errors from the Service Infrastructure such
as Invoke service not available.

– TYPE_FATAL_MESSAGING: Contains fatal messaging errors arising from the
Service Infrastructure.

– TYPE_FATAL_TRANSACTION: Contains fatal errors related to transactions
such as Commit can't be called on a transaction which is
marked for rollback.

– TYPE_FATAL_TRANSFORMATION: Contains fatal transformation errors such
as error occurring because of the XPath functions used in a transformation.

■ TYPE_TRANSIENT: Contains transient errors that can be recovered on retrying.

– TYPE_TRANSIENT_MESH: Contains errors related to the Service
Infrastructure.

– TYPE_TRANSIENT_MESSAGING: Contains errors related to JMS such as
enqueue, dequeue.

■ TYPE_INTERNAL: Contains internal errors.

20.2 Using Error Handling with Mediator
You can enable error handling for a Mediator by using the fault-policies.xml
and fault-bindings.xml files.

20.2.1 How to Use Error Handling for a Mediator Component

To enable error handling for a Mediator component:
1. Create a fault-policies.xml file based on the schema defined in the

Section 20.4.1, "Schema Definition File for Fault-policies.xml".

Fault Recovery Using Enterprise Manager

20-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Create a fault-bindings.xml file based on the schema defined in the
Section 20.4.2, "Schema Definition File for Fault-bindings.xml".

3. Copy the fault-policies.xml and the fault-bindings.xml file to your
SOA Composite project directory.

4. Deploy the SOA Composite project.

20.2.2 What Happens at Runtime
All the fault policies for a composite are loaded when the first error occurs. At
runtime, Mediator checks whether there is any policy defined for the current error. If a
fault policy is defined, then Mediator performs the action according to the
configuration done in the fault policies file. If there is no fault policy defined, then the
default action of human intervention is performed.

20.3 Fault Recovery Using Enterprise Manager
Apart from policy-based recovery using the fault policy file, you can also perform fault
recovery actions on Mediator faults identified as recoverable in Oracle Enterprise
Manager Fusion Middleware Control Console. This can be performed in the following
ways:

■ Manual recovery by modifying the payload using Enterprise Manager

■ Bulk recovery without modifying the payload using Enterprise Manager

■ Aborting a faulted instance using Enterprise Manager, if the user does not want to
do any more processing on the instance.

For more information about fault recovery using Enterprise Manager, see Oracle
Fusion Middleware Administrator's Guide for Oracle SOA Suite.

20.4 Error Handling XML Schema Definition Files
This section describes the schema files for the fault-policies.xml and
fault-bindings.xml files and consists of the following sections:

■ Section 20.4.1, "Schema Definition File for Fault-policies.xml"

■ Section 20.4.2, "Schema Definition File for Fault-bindings.xml"

20.4.1 Schema Definition File for Fault-policies.xml
The fault-policies.xml file should be based on the following XSD file:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:tns="http://schemas.oracle.com/bpel/faultpolicy"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <!-- Conditions contain a list of fault names -->
 <xs:element name="Conditions">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="faultName" type="tns:faultNameType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <!-- action Ref must exist in the same file -->

Error Handling XML Schema Definition Files

Using Mediator Error Handling 20-9

 <xs:complexType name="actionRefType">
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <!-- one condition has a test and action, if test is missing, this is the
 catch all condition -->
 <xs:complexType name="conditionType">
 <xs:all>
 <xs:element name="test" type="tns:idType" minOccurs="0"/>
 <xs:element name="action" type="tns:actionRefType"/>
 </xs:all>
 </xs:complexType>
 <!-- One fault name match contains several conditions -->
 <xs:complexType name="faultNameType">
 <xs:sequence>
 <xs:element name="condition" type="tns:conditionType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:QName"/>
 </xs:complexType>
 <xs:complexType name="ActionType">
 <xs:choice>
 <xs:element name="retry" type="tns:RetryType"/>
 <xs:element ref="tns:rethrowFault"/>
 <xs:element ref="tns:humanIntervention"/>
 <xs:element ref="tns:abort"/>
 <xs:element ref="tns:replayScope"/>
 <xs:element name="javaAction" type="tns:JavaActionType">
 <xs:key name="UniqueReturnValue">
 <xs:selector xpath="tns:returnValue"/>
 <xs:field xpath="@value"/>
 </xs:key>
 </xs:element>
 </xs:choice>
 <xs:attribute name="id" type="tns:idType" use="required"/>
 </xs:complexType>
 <xs:element name="Actions">
 <xs:annotation>
 <xs:documentation>Fault Recovery Actions</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Action" type="tns:ActionType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="JavaActionType">
 <xs:annotation>
 <xs:documentation>This action invokes java code
 provided</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="returnValue" type="tns:ReturnValueType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="className" type="tns:idType" use="required"/>
 <xs:attribute name="defaultAction" type="tns:idType" use="required"/>
 <xs:attribute name="propertySet" type="tns:idType"/>
 </xs:complexType>
 <xs:complexType name="RetryType">

Error Handling XML Schema Definition Files

20-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <xs:annotation>
 <xs:documentation>This action attempts retry of activity
 execution</xs:documentation>
 </xs:annotation>
 <xs:all>
 <xs:element ref="tns:retryCount"/>
 <xs:element ref="tns:retryInterval"/>
 <xs:element ref="tns:exponentialBackoff" minOccurs="0"/>
 <xs:element name="retryFailureAction"
 type="tns:retryFailureActionType" minOccurs="0"/>
 <xs:element name="retrySuccessAction"
 type="tns:retrySuccessActionType" minOccurs="0"/>
 </xs:all>
 </xs:complexType>
 <xs:simpleType name="idType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="ReturnValueType">
 <xs:annotation>
 <xs:documentation>Return value from java code can chain another action
 using
 return values</xs:documentation>
 </xs:annotation>
 <xs:attribute name="value" type="tns:idType" use="required"/>
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:element name="exponentialBackoff">
 <xs:annotation>
 <xs:documentation>Setting this will cause retry attempts to use
 exponentialBackoff algorithm</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="humanIntervention">
 <xs:annotation>
 <xs:documentation>This action causes the activity to
 freeze</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="replayScope">
 <xs:annotation>
 <xs:documentation>This action replays the immediate enclosing
 scope</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="rethrowFault">
 <xs:annotation>
 <xs:documentation>This action will rethrow the
 fault</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="retryCount" type="xs:positiveInteger">
 <xs:annotation>
 <xs:documentation>This value is used to identify number of
 retries</xs:documentation>

Error Handling XML Schema Definition Files

Using Mediator Error Handling 20-11

 </xs:annotation>
 </xs:element>
 <xs:complexType name="retryFailureActionType">
 <xs:annotation>
 <xs:documentation>This is the action to be chained if retry attempts
 fail</xs:documentation>
 </xs:annotation>
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:complexType name="retrySuccessActionType">
 <xs:annotation>
 <xs:documentation>This is the action to be chained if retry attempts
 is successful</xs:documentation>
 </xs:annotation>
 <xs:attribute name="ref" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:element name="retryInterval" type="xs:unsignedLong">
 <xs:annotation>
 <xs:documentation>This is the delay in milliseconds of retry
 attempts</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="abort">
 <xs:annotation>
 <xs:documentation>This action terminates the
 process</xs:documentation>
 </xs:annotation>
 <xs:complexType/>
 </xs:element>
 <xs:element name="Properties">
 <xs:annotation>
 <xs:documentation>Properties that can be passes to a custom java
 class</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="propertySet" type="tns:PropertySetType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="PropertySetType">
 <xs:sequence>
 <xs:element name="property" type="tns:PropertyValueType"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="name" type="tns:idType" use="required"/>
 </xs:complexType>
 <xs:complexType name="PropertyValueType">
 <xs:simpleContent>
 <xs:extension base="tns:idType">
 <xs:attribute name="name" type="tns:idType" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 <xs:element name="faultPolicy">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:Conditions"/>
 <xs:element ref="tns:Actions"/>

Error Handling XML Schema Definition Files

20-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <xs:element ref="tns:Properties" minOccurs="0"/>
 <!--Every policy has on Conditions and and one Actions, however,
 Properties is optional -->
 </xs:sequence>
 <xs:attribute name="id" type="tns:idType" use="required"/>
 <xs:attribute name="version" type="xs:string" default="2.0.1"/>
 </xs:complexType>
 <xs:key name="UniqueActionId">
 <xs:selector xpath="tns:Actions/tns:Action"/>
 <xs:field xpath="@id"/>
 </xs:key>
 <xs:key name="UniquePropertySetId">
 <xs:selector xpath="tns:Properties/tns:property_set"/>
 <xs:field xpath="@id"/>
 </xs:key>
 <xs:keyref name="RetryActionRef" refer="tns:UniqueActionId">
 <xs:selector
xpath="tns:Actions/tns:Action/tns:retry/tns:retryFailureAction"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="RetrySuccessActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Actions/tns:Action/tns:retry/tns:retrySuccessAction"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="JavaActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Actions/tns:Action/tns:javaAction/tns:returnValue"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="ConditionActionRef" refer="tns:UniqueActionId">
 <xs:selector
 xpath="tns:Conditions/tns:faultName/tns:condition/tns:action"/>
 <xs:field xpath="@ref"/>
 </xs:keyref>
 <xs:keyref name="JavaDefaultActionRef" refer="tns:UniqueActionId">
 <xs:selector xpath="tns:Actions/tns:Action/tns:javaAction"/>
 <xs:field xpath="@defaultAction"/>
 </xs:keyref>
 <xs:keyref name="JavaPropertySetRef" refer="tns:UniquePropertySetId">
 <xs:selector xpath="tns:Actions/tns:Action/tns:javaAction"/>
 <xs:field xpath="@property_set"/>
 </xs:keyref>
 </xs:element>
 <xs:element name="faultPolicies">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:faultPolicy" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

20.4.2 Schema Definition File for Fault-bindings.xml
The fault-bindings.xml file should be based on the following XSD file:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://schemas.oracle.com/bpel/faultpolicy"
 xmlns:tns="http://schemas.oracle.com/bpel/faultpolicy"

Error Handling XML Schema Definition Files

Using Mediator Error Handling 20-13

 xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
 <xs:element name="faultPolicyBindings">
 <xs:annotation>
 <xs:documentation>Bindings to a specific fault policy
 </xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="composite" type="tns:compositeType"
 minOccurs="0" maxOccurs="1"/>
 <xs:element name="component" type="tns:componentType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="reference" type="tns:referenceType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" default="2.0.1"/>
 </xs:complexType>
 <xs:key name="UniquePartnerLinkName">
 <xs:selector xpath="tns:reference/tns:name"/>
 <xs:field xpath="."/>
 </xs:key>
 <xs:key name="UniquePortType">
 <xs:selector xpath="tns:reference/tns:portType"/>
 <xs:field xpath="."/>
 </xs:key>
 <xs:key name="UniquePolicyName">
 <xs:selector xpath="tns:reference"/>
 <xs:field xpath="@faultPolicy"/>
 </xs:key>
 </xs:element>
 <xs:simpleType name="nameType">
 <xs:restriction base="xs:string">
 <xs:minLength value="1"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:complexType name="propertyType">
 <xs:simpleContent>
 <xs:extension base="tns:nameType">
 <xs:attribute name="name" type="xs:string" use="required"
 fixed="faultPolicy"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="referenceType">
 <xs:annotation>
 <xs:documentation>Bindings for a partner link. Overrides composite
 level binding.</xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:annotation>
 <xs:documentation>Specification at partner link name overrides
 specification for a port type</xs:documentation>
 </xs:annotation>
 <xs:element name="name" type="tns:nameType" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element name="portType" type="xs:QName" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>

Error Handling XML Schema Definition Files

20-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 </xs:complexType>

 <xs:complexType name="componentType">
 <xs:annotation>
 <xs:documentation>Binding for a component </xs:documentation>
 </xs:annotation>
 <xs:sequence>
 <xs:element name="name" type="tns:nameType" minOccurs="0"
 maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>
 <xs:complexType name="compositeType">
 <xs:annotation>
 <xs:documentation>Binding for the entire composite</xs:documentation>
 </xs:annotation>
 <xs:attribute name="faultPolicy" type="tns:nameType" use="required"/>
 </xs:complexType>
</xs:schema>

21

Working with Multiple Part Messages in Mediator 21-1

21Working with Multiple Part Messages in
Mediator

This chapter describes how to use multiple part (multipart) messages with Oracle
Mediator (Mediator) service component.

This chapter includes the following section:

■ Section 21.1, "Introduction to Mediator Multipart Message Support Feature"

21.1 Introduction to Mediator Multipart Message Support Feature
Oracle Application Server 11g release includes support for importing multipart WSDL
files in the JDeveloper Mediator Editor.

Oracle Mediator supports working with multipart source and target messages, which
include multipart filter expression building, multipart schema validation, and
transformations between multipart source and target messages for requests, replies,
faults, and callbacks.

The Mediator Editor for a multipart source looks like Figure 21–1.

Figure 21–1 Mediator Editor for a Multipart Source

This section covers the following sections:

Introduction to Mediator Multipart Message Support Feature

21-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Section 21.1.1, "Working with Multipart Request Messages"

■ Section 21.1.2, "Working with Multipart Reply, Fault, and Callback Source
Messages"

■ Section 21.1.3, "Working with Multipart Target Messages"

21.1.1 Working with Multipart Request Messages
This section deals with multipart request messages. It contains the following sections:

■ Section 21.1.1.1, "Specifying Filter Expressions"

■ Section 21.1.1.2, "Adding Validations"

■ Section 21.1.1.3, "Creating Transformations"

■ Section 21.1.1.4, "Assigning Values"

21.1.1.1 Specifying Filter Expressions
If you specify a filter expression for a multipart message, then the expression builder
displays all message parts under the in variable, as shown in Figure 21–2:

Figure 21–2 Expression Builder for a Multipart Request Source

21.1.1.2 Adding Validations
If you add a validation for a multipart message, then the Add Validation dialog
displays a list of parts, from where you can choose one part. You specify a Schematron
file for each request message part and then Mediator processes the Schematron files
for the parts. This is shown in Figure 21–3, Figure 21–4, and Figure 21–5:

Introduction to Mediator Multipart Message Support Feature

Working with Multiple Part Messages in Mediator 21-3

Figure 21–3 Add Validation Dialog for a Multipart Request Source

Figure 21–4 Add Validation Dialog for a Multipart Request Source

Figure 21–5 Validations Dialog for a Multipart Request Source

21.1.1.3 Creating Transformations
If you create a new mapper file for a multipart message, then the generated mapper
file shows multiple source parts in the XSLT Mapper transformation tool as shown in
Figure 21–6:

Introduction to Mediator Multipart Message Support Feature

21-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 21–6 XSLT Mapper transformation tool for a Multipart Request Source

21.1.1.4 Assigning Values
If you assign values using a source expression, then the expression builder shows an
in variable for each message part. This is the same as specifying filter expressions.
Figure 21–7, Figure 21–8, and Figure 21–9 illustrate how you can assign values to a
multipart message.

Figure 21–7 Assign Values Dialog for a Multipart Request Source

Introduction to Mediator Multipart Message Support Feature

Working with Multiple Part Messages in Mediator 21-5

Figure 21–8 Assign Value Dialog for a Multipart Request Source

Figure 21–9 Expression Builder for a Multipart Request Source

21.1.2 Working with Multipart Reply, Fault, and Callback Source Messages
The method to create transformations and assigning values to multipart Reply, Fault,
and Callback source messages, is the same as working with request source message.

Introduction to Mediator Multipart Message Support Feature

21-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

21.1.3 Working with Multipart Target Messages
If a routing target, that is, a request, reply, fault, or callback has a multipart message,
then the transformation is handled in a slightly different way. This is because the XSLT
Mapper transformation tool does not support multipart targets. So, in such a case, the
Mediator creates and coordinates a separate mapper file for each target part as shown
in Figure 21–10:

Figure 21–10 Request Transformation Map for a Multipart Routing Target

Note: You cannot specify filter expressions or add validations for
Reply, Fault, and Callback messages.

22

Understanding Message Exchange Patterns of a Mediator 22-1

22Understanding Message Exchange Patterns
of a Mediator

This chapter describes common message exchange patterns between an Oracle
Mediator (Mediator) component and other applications.

This chapter includes the following sections:

■ Section 22.1, "Understanding One-way Message Exchange Pattern"

■ Section 22.2, "Understanding Request-Reply Message Exchange Pattern"

■ Section 22.3, "Understanding Request-Reply-Fault Message Exchange Pattern"

■ Section 22.4, "Understanding Request-Callback Message Exchange Pattern"

■ Section 22.5, "Understanding Request-Reply-Callback Message Exchange Pattern"

■ Section 22.6, "Understanding Request-Reply-Fault-Callback Message Exchange
Pattern"

Note: The following exchange patterns show the default handling of
responses, faults, and callbacks by JDeveloper, when a routing rule is
created. Keep in mind the following points for all the cases:

■ When a response, fault, or callback is sent back to the caller, it is
also possible to route the same to a different target service or
event by clicking the button next to the target and selecting a
different target.

■ When the caller of the Mediator expects a response, one or more
routing rules may route the request to a target that does not return
a response, but there should be at least one sequential routing rule
that returns a response.

■ If you have multiple routing rules having request-response
interaction, then the routing rules that send the response back to
the initial caller, should precede other routing rules, if any, that
forward the response.

■ The asynchronous request-reply pattern in Mediator is supported
only for Web Services. This exchange pattern is not supported for
Adapters and other services.

Understanding One-way Message Exchange Pattern

22-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

22.1 Understanding One-way Message Exchange Pattern
In a one-way interaction, the Mediator is invoked, but it does not send a response back
to the caller. Depending on the type of routing rule target, the responses, faults, and
callbacks are handled as shown in Table 22–1:

Figure 22–1 illustrates one-way message exchange pattern.

Figure 22–1 One-way Message Exchange Pattern

Table 22–1 Response When Mediator’s WSDL Is One-way

Routing Rule Target Type Response

Request No response.

Request Response Response is forwarded to another target or event.

Request Response Fault Response and fault are forwarded to another target or event.

Request Callback Callback is forwarded to another target or event.

Request Response Callback Response and callback are forwarded to another target or event.

Request Response Fault
Callback

Response, fault, and callback are forwarded to another target or
event.

Client

One-Way Target
Reference or
Component

Request-Response-
Fault Target Reference

or Component

Request-Response
Target Reference

or Component

Asynchronous
Request-Callback
Target reference
or Component

Invoke

Invoke
Reply
Fwd

Invoke
Callback

Fwd

Invoke
Response/

Fault
Fwd

One-Way
Mediator

Understanding Request-Reply Message Exchange Pattern

Understanding Message Exchange Patterns of a Mediator 22-3

22.2 Understanding Request-Reply Message Exchange Pattern
In a request-reply interaction, the Mediator is invoked, and the Mediator sends a reply
to the caller. Depending on the type of routing rule target, the responses, faults, and
callbacks are handled as shown in Table 22–2:

Figure 22–2 illustrates request-reply message exchange pattern.

Table 22–2 Response When Mediator’s WSDL Is Request Reply

Routing Rule Target Type Response

Request No Response from the target, but there should be at least one
sequential routing rule with request-response service.

Request Response Response is sent back to the caller. Response can be forwarded to
another target or event, but there should be at least one
sequential routing rule that returns a response back to the caller.

Request Response Fault Response is sent back to the caller. Fault is forwarded to another
target or event.

Request Callback No Response from the target, but there should be at least one
sequential routing rule with request-response service. Callback
is forwarded to another target or event.

Request Response Callback Response is sent back to the caller. Callback is forwarded to
another target or event.

Request Response Fault
Callback

Response is sent back to the caller. Callback and fault are
forwarded to another target or event.

Understanding Request-Reply-Fault Message Exchange Pattern

22-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 22–2 Request-Reply Message Exchange Pattern

22.3 Understanding Request-Reply-Fault Message Exchange Pattern
In a request-reply-fault interaction, the Mediator is invoked and the Mediator sends a
reply and one or more faults back to the caller. Depending on the type of routing rule
target, the responses, faults, and callbacks are handled as shown in Table 22–3:

Table 22–3 Response When Mediator’s WSDL Is Request Reply Fault

Routing Rule Target Type Response

Request There should be at least one sequential routing rule with
request-response-fault service. Mediator returns null when
there is no response to be sent.

Request Response Response is sent back to the caller. Any exception in Mediator
message processing may result in a fault.

Request Response Fault Response and fault are sent back to the caller. Any exception in
Mediator message processing may result in a fault.

Request Callback No Response from the target, but there should be at least one
sequential routing rule with request-response service. Mediator
returns null when there is no response to be sent. Callback is
forwarded to another target or event.

Request Response Callback Response is sent back to the caller. Any exception in Mediator
message processing may result in a fault.

Client

One-Way Target
Reference or
Component

Request-Response-
Fault Target Reference

or Component

Request-Response
Target Reference

or Component

Asynchronous
Request-Callback
Target reference
or Component

Invoke

Null
Response

Invoke
Reply to

Client

Invoke
Callback

Fwd

Null
Response

Invoke
Response/

Fault
Fwd

Request-
Response
Mediator

Understanding Request-Callback Message Exchange Pattern

Understanding Message Exchange Patterns of a Mediator 22-5

Figure 22–3 illustrates request-reply-fault message exchange pattern.

Figure 22–3 Request-Reply-Fault Message Exchange Pattern

22.4 Understanding Request-Callback Message Exchange Pattern
In a request-callback interaction, the Mediator is invoked and the Mediator may send
an asynchronous reply to the caller. Depending on the type of routing rule target, the
responses, faults, and callbacks are handled as shown in Table 22–4:

Request Response Fault
Callback

Response and fault are sent back to the caller. Any exception in
Mediator message processing may result in a fault.

Table 22–4 Response When Mediator’s WSDL Is Request Callback

WSDL of the Routing Rule
Target Response

Request There should be at least one sequential routing rule with
request-callback service. No callback is sent to the caller if there
is no routing rule with a defined callback.

Table 22–3 (Cont.) Response When Mediator’s WSDL Is Request Reply Fault

Routing Rule Target Type Response

Client

One-Way Target
Reference or
Component

Request-Response-
Fault Target Reference

or Component

Request-Response
Target Reference

or Component

Asynchronous
Request-Callback
Target reference
or Component

Invoke

Null
Response

Exception as
Fault

Invoke
Reply to

Client

Exception as
Fault

Invoke
Callback

Fwd

Null
Response

Exception as
Fault

Invoke
Response/

Fault to
Client

Request-
Response

Fault
Mediator

Understanding Request-Reply-Callback Message Exchange Pattern

22-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 22–4 illustrates request-callback message exchange pattern.

Figure 22–4 Request-Callback Message Exchange Pattern

22.5 Understanding Request-Reply-Callback Message Exchange Pattern
In a request-reply-callback interaction, the Mediator is invoked and the Mediator
sends a response and an asynchronous reply to the initial caller. Depending on the

Request Response Response is sent back to the caller, as callback, in a separate
thread.

Request Response Fault Response is sent back to the caller, as callback, in a separate
thread. Fault is forwarded to another target or event.

Request Callback Callback is sent back to the caller.

Request Response Callback Callback is sent back to the caller, and response is forwarded to
another target or event.

Request Response Fault
Callback

Callback is sent back to the caller. Response and fault are
forwarded to another target or event.

Table 22–4 (Cont.) Response When Mediator’s WSDL Is Request Callback

WSDL of the Routing Rule
Target Response

Client

One-Way Target
Reference or
Component

Request-Response-
Fault Target Reference

or Component

Request-Response
Target Reference

or Component

Asynchronous
Request-Callback
Target reference
or Component

Invoke

No
Callback

Invoke
Response to

Client as
Callback

Invoke
Callback

to
Client

Invoke
Response to

Client
as Callback

Fault
Fwd

Request-
Callback
Mediator

Understanding Request-Reply-Callback Message Exchange Pattern

Understanding Message Exchange Patterns of a Mediator 22-7

type of routing rule target, the responses, faults, and callbacks are handled as shown in
Table 22–5:

Figure 22–5 illustrates request-reply-callback message exchange pattern.

Table 22–5 Response When Mediator’s WSDL Is Request Response Callback

Routing Rule Target Type Response

Request There should be at least one sequential routing rule that returns
a response. No callback is sent to the caller if there is no routing
rule with a defined callback.

Request Response There should be at least one sequential routing rule that returns
a response. No callback is sent, if there is no routing rule with a
defined callback.

Request Response Fault There should be at least one sequential routing rule that returns
a response. No callback is sent to the caller if there is no routing
rule with a defined callback.

Request Callback There should be at least one sequential routing rule that returns
a response. Mediator returns null when there is no response to
be sent.

Request Response Callback Response and callback are sent back to the caller.

Request Response Fault
Callback

Response and callback are sent back to the caller. Fault is
forwarded to another target or event.

Understanding Request-Reply-Fault-Callback Message Exchange Pattern

22-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 22–5 Request-Reply-Callback Message Exchange Pattern

22.6 Understanding Request-Reply-Fault-Callback Message Exchange
Pattern

In a request-reply-fault-callback interaction, the Mediator is invoked and the Mediator
sends a response, an asynchronous reply, and one or more fault types to the initial
caller. Depending on the type of routing rule target, the responses, faults, and callbacks
are handled as shown in Table 22–6:

Table 22–6 Response to a Request Response Fault Callback Mediator

WSDL of the Routing Rule
Target Response

Request There should be at least one sequential routing rule with
request-callback service. No callback is sent to the caller if there
is no routing rule with a defined callback.

Request Response There should be at least one sequential routing rule with
request-callback service. No callback is sent to the caller if there
is no routing rule with a defined callback.

Request Response Fault There should be at least one sequential routing rule with
request-callback service. No callback is sent to the caller if there
is no routing rule with a defined callback.

Client

One-Way Target
Reference or
Component

Request-Response-
Fault Target Reference

or Component

Request-Response
Target Reference

or Component

Asynchronous
Request-Callback
Target reference
or Component

Invoke

Null
Response

No
Callback

Invoke
Reply to

Client

No
Callback

Invoke

Null

Reply
Callback
to Client

Invoke

Reply and
Callback
to Client

Fault Fwd

Request-
Reply-

Callback
Mediator

Understanding Request-Reply-Fault-Callback Message Exchange Pattern

Understanding Message Exchange Patterns of a Mediator 22-9

Figure 22–6 illustrates request-reply-fault-callback message exchange pattern.

Figure 22–6 Request-Reply-Fault-Callback Message Exchange Pattern

Request Callback There should be at least one sequential routing rule that returns
a response. Mediator returns null when there is no response to
be sent.

Request Response Callback Response and callback are sent back to the caller. Any exception
in Mediator message processing may result in a fault.

Request Response Fault
Callback

Response, fault, and callback are sent back to the caller.

Table 22–6 (Cont.) Response to a Request Response Fault Callback Mediator

WSDL of the Routing Rule
Target Response

Client

One-Way Target
Reference or
Component

Request-Response-
Fault Target Reference

or Component

Request-Response
Target Reference

or Component

Asynchronous
Request-Callback
Target reference
or Component

Invoke

Null Reply

No Callback

Exception as
Fault

Invoke
Reply to Client

Exception as
Fault

No Callback

Invoke

Reply, Fault
Callback
to Client

Request-
Reply-
Fault

Callback
Mediator Invoke

Null Reply

Callback to
Client

Exception as
Fault

Understanding Request-Reply-Fault-Callback Message Exchange Pattern

22-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Part IV
Part IV Using the Business Rules Service

Component

This part describes how to use the business rules service component.

This part contains the following chapter:

■ Chapter 23, "Using the Business Rule Service Component"

23

Using the Business Rule Service Component 23-1

23 Using the Business Rule Service
Component

This chapter describes how to use a business rule service component to integrate an
SOA composite application with Oracle Business Rules. A business rule service
component is also called a Decision component. You can add business rules as part of
an SCA application or as part of a BPEL process.

This chapter includes the following sections:

■ Section 23.1, "Introduction to the Business Rule Service Component"

■ Section 23.2, "Introduction to Creating and Editing Business Rules"

■ Section 23.3, "Adding Business Rules to a BPEL Process"

■ Section 23.4, "Adding Business Rules to an SOA Composite Application"

■ Section 23.5, "Running Business Rules in a Composite Application"

For more examples of using Oracle Business Rules, see:

■ Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Oracle Fusion Middleware Tutorial for Running and Building an Application with Oracle
SOA Suite

23.1 Introduction to the Business Rule Service Component
A Decision component, also called a business rule service component, supports use of
Oracle Business Rules in an SOA composite application. Decision components support
the following SOA composite usage:

■ A Decision component can be used within an SOA composite and wired to a BPEL
component.

■ A Decision component can be used within an SOA composite and used directly to
run business rules.

■ A Decision component can be used with the dynamic routing capability of
Mediator.

For more information, see Chapter 19, "Creating Mediator Routing Rules".

■ A Decision component can be used with the Advanced Routing Rules in Human
Workflow.

For more information, see Section 25.4, "Associating the Human Task Service
Component with a BPEL Process".

Introduction to Creating and Editing Business Rules

23-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

23.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks
You can create an SOA composite application that includes BPEL process, business
rule, and human task service components. These components are complementary
technologies. BPEL processes focus on the orchestration of systems, services, and
people. Business rules focus on decision making and policies. Human tasks enable you
to model a workflow that describes the tasks for users or groups to perform as part of
an end-to-end business process flow.

Some examples of where business rules can be used include:

■ Dynamic processing

Rules can perform intelligent routing within the business process based on service
level agreements or other guidelines. For example, if the customer requires a
response within one day, send a loan application to the QuickLoan loan agency
only. If the customer can wait longer, then route the request to three different loan
agencies.

■ Externalize business rules in the process

There are typically many conditions that must be evaluated as part of a business
process. However, the parameters to these conditions can be changed
independently of the process. For example, you provide loans only to customers
with a credit score of at least 650. This value may be changed dynamically based
on new guidelines set by business analysts.

■ Data validation and constraint checks

Rules can validate input documents or apply additional constraints on requests.
For example, a new customer request must always be accompanied with an
employment verification letter and bank account details.

■ Human task routing

Rules are frequently used in the context of human tasks in the business process:

– Policy-based task assignments dispatch tasks to specific roles or users. For
example, a process that handles incoming requests from a portal can route
loan requests and insurance quotes to a different set of roles.

– Load balancing of tasks among users. When a task is assigned to a set of users
or a role, each user in that role acquires a set of tasks and acts on them in a
specified time. For new incoming tasks, policies may be applied to set
priorities on the task and put them in specific user queues. For example, a
specific loan agent is assigned a maximum of 10 loans at any time.

For more information about creating business rules in the Human Task editor of a
human task component, see Section 25.3.7.2, "Specifying Advanced Task Routing
Using Business Rules."

23.2 Introduction to Creating and Editing Business Rules
This section describes how to get started with business rules and provides a brief
introduction to the main sections of Oracle JDeveloper that you use to design business
rules.

23.2.1 How to Create Business Rules Components
You can add Business Rule components using the SOA Composite Editor.

Introduction to Creating and Editing Business Rules

Using the Business Rule Service Component 23-3

To create a Business Rule component:
1. Follow the instructions in Table 23–1 to start Oracle JDeveloper.

2. Create a Business Rule service component through one of the following methods:

As a service component in an existing SOA composite application:

a. From the Component Palette, drag a Business Rule service component into
the SOA Composite Editor.

In a new application:

a. From the Application Navigator, select File > New > Applications > SOA
Application.

This starts the Create SOA Application wizard.

b. In the Name your application page, enter an application name in the Name
field.

c. In the Directory field, enter a directory path in which to create the SOA
composite application and project.

d. Click Next.

e. In the Name your project page, enter a unique project name in the Project
Name field. The project name must be unique across SOA composite
applications. This is because the uniqueness of a composite is determined by
its project name. For example, do not perform the actions described in
Table 23–2.

During deployment, the second deployed project (composite) overwrites the
first deployed project (composite).

f. Click Next.

g. In the Configure SOA settings page, select Composite with Business Rule.

h. Click Finish.

Each method causes the Create Business Rules dialog shown in Figure 23–1 to
appear.

Table 23–1 Starting Oracle JDeveloper

To Start... On Windows... On UNIX...

Oracle JDeveloper Click JDev_Oracle_
Home\JDev\bin\jdev.exe or create a
shortcut

$ORACLE_HOME/jdev/bin/jdev

Table 23–2 Restrictions on Naming an SOA Project

Create an Application Named... With an SOA Project Named...

Application1 Project1

Application2 Project1

Adding Business Rules to a BPEL Process

23-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 23–1 Create Business Rules Dialog

3. Provide the required details. For more information on providing Inputs and
Outputs and on using the Import Dictionary option with this dialog, see Oracle
Fusion Middleware User's Guide for Oracle Business Rules.

4. Click OK.

23.2.2 Introduction to Working with Business Rules in Rules Designer
When you are working with business rules Oracle JDeveloper displays Rules
Designer. For more information on the windows shown with Rules Designer, see
Section 2.5, "Introduction to the Business Rules Designer".

23.3 Adding Business Rules to a BPEL Process
You can use a Decision component, also called a business rule service component, to
execute business rules in a BPEL process.

23.3.1 How to Add Business Rules to a BPEL Process
You add business rules to a BPEL process using a Business Rule component. When
you add a business rule component to a BPEL process you need to include input and
output variables to provide input to the rules and obtain results back from the
business rules.

A business rule component enables you to execute business rules and make business
decisions based on the rules. To create a business rule component, also called a
Decision component, you drag-and-drop a Business Rule from the component palette
into the BPEL process.

To add a business rule to a BPEL process:
1. Create a BPEL process service component. For more information, see Section 5.1,

"Introduction to the BPEL Process Service Component".

Adding Business Rules to a BPEL Process

Using the Business Rule Service Component 23-5

2. Expand the BPEL process. For example, expand the BPEL process to view
receiveInput and callbackClient as shown in Figure 23–2.

Figure 23–2 Adding A Business Rule to a BPEL Process

3. Select Business Rule from the BPEL Activities and Components section of the
Component Palette and drag-and-drop a Business Rule into the position where
the business rules are needed. For example, drag-and-drop a Business Rule
between receiveInput and callbackClient, as shown in Figure 23–3.

Figure 23–3 Drag-and-drop a Business Rule into a BPEL Process

Adding Business Rules to a BPEL Process

23-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. Oracle JDeveloper displays the business rule in the diagram. In the business rule
area you can select an existing Oracle Business Rules dictionary or enter the name
of a new dictionary to create. The Business Rule area includes a field to enter the
business rule name. In the Name field enter a name. For example, enter
GetCreditRating, as shown in Figure 23–4. If you previously created a
dictionary, in the Dictionary field, select an existing dictionary.

Figure 23–4 Business Rule Added to Auto Loan BPEL Process

5. In the Business Rule area for the Business Rule Dictionary, click the Create
Dictionary icon to display the Create Business Rules dialog.

6. In the Create Business Rules dialog you do the following:

■ Specify a name for the Oracle Business Rules dictionary and a package name.

■ Specify the input and output data elements for the business rule. For example,
for a sample Decision component named GetCreditRating, the input is a
rating request document. The output is generated when you run the business
rules, and for this example is a rating document. For example, in BPEL you
can create two new variables, RatingRequest and Rating that carry the
input and output data for the GetCreditRating rules.

Enter a name for the Oracle Business Rules dictionary. For example, enter
GetCreditRating, as shown in Figure 23–5.

Adding Business Rules to a BPEL Process

Using the Business Rule Service Component 23-7

Figure 23–5 Adding GetCreditRating Business Rule Dictionary

Add inputs for business rule:
1. In the Create Business Rules dialog, from the dropdown menu next to the Add

icon select Add Input Variable... to create the input variable.

This displays the Add Input Variable dialog.

2. In the Add Input Variable dialog expand the Process folder and select the
Variables folder immediately inside the Process.

3. Right-click the Variables folder and from the dropdown list select Create
Variable... as shown in Figure 23–6.

Adding Business Rules to a BPEL Process

23-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 23–6 Add Input Variable

This displays the Create Variable dialog.

4. In the Create Variable dialog, in the Name field enter a value. For example, enter
RatingRequest as shown in Figure 23–7.

Figure 23–7 Create Variable Dialog

5. In the Create Variable Type area click the Browse Elements icon. Use the
navigator to locate the schema element type for the input variable. For example,
select the ratingrequest type. Add any needed types using the Type Chooser.

6. Click the Import Schema File icon to import the schema. For example, import
CreditRatingTypes.xsd. Also import any other required schema for your
application.

7. In the Type Chooser dialog, select ratingrequest and click OK.

Adding Business Rules to a BPEL Process

Using the Business Rule Service Component 23-9

8. In the Create Variable dialog, click OK.

9. In the Add Input Variable dialog, click OK.

Add outputs for business rule:
1. In the Create Business Rules dialog, from the dropdown menu next to the Add

icon, select Add Output Variable.... This displays the Add Output Variable dialog.
Use this dialog to create an output variable. For example, create an output variable
for GetCreditRating in the same way you created the input variable.

2. In the Add Output Variable dialog select the scope by selecting the Variables
folder under Process.

3. Right-click and from the dropdown list select Create Variable.... This displays the
Create Variable dialog.

4. In the Create Variable dialog, in the Name field enter the output variable name.
For example enter Rating.

5. In the Create Variable dialog, in the Type area select the Browse elements icon and
use the Type Chooser dialog to enter the type for the output variable. For example,
expand the CreditRatingTypes.xsd and select the element type rating.

6. In the Type Chooser dialog, click OK.

7. In the Create Variable dialog, click OK.

8. In the Add Output Variable dialog, click OK.

This displays the Create Business Rules dialog, as shown in Figure 23–8.

Figure 23–8 Create Business Rules Dialog with Input and Output Variables

Set options and create decision service and business rules dictionary:
1. If you do not want to use the default service name, then select the Advanced tab

and in the Service Name field enter the service name. For example enter the
service name CreditRatingService.

Adding Business Rules to a BPEL Process

23-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Determine if the Decision Component is stateful or stateless with Reset Session.
For more information, see Section 23.3.5, "What You Need to Know About
Decision Component Stateful Operation".

3. In the Create Business Rules dialog, click OK. Oracle JDeveloper creates the
Decision component and the dictionary and displays Rules Designer, as shown in
Figure 23–9.

Figure 23–9 Rules Designer Canvas Where You Work with Business Rules

For information on Rules Designer, see Oracle Fusion Middleware User's Guide for Oracle
Business Rules.

23.3.2 What Happens When You Add Business Rules to a BPEL Process
When you add business rules to a BPEL process, Oracle JDeveloper creates a Decision
component to control and run the business rules using the Business Rule Service
Engine.

A Decision component consists of the following:

■ Rules or Decision Tables that are evaluated using the Rules Engine. These are
defined using Rules Designer and stored in a business rules dictionary.

■ A description of the facts required for specific rules to be evaluated and the
decision function to call. Each ruleset that contains rules or Decision Tables is
exposed as a service with facts that are input and output, and the name of an
Oracle Business Rules decision function. The facts are exposed through XSD
definitions when you define the inputs and outputs for the business rule. A
Decision function is stored in an Oracle Business Rules dictionary. For more
information, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

■ A web service wraps the input, output, and the call to the underlying Business
Rule service engine.

This web service lets business processes assert and retract facts as part of the
process. In some cases, all facts can be asserted from the business process as one

Adding Business Rules to a BPEL Process

Using the Business Rule Service Component 23-11

unit. In other cases, the business process can incrementally assert facts and
eventually consult the rule engine for inferences. Therefore, the service supports
both stateless and stateful interactions.

You can create a variety of such Decision components.

For more information, see Oracle Fusion Middleware User's Guide for Oracle Business
Rules.

23.3.3 What Happens When You Create a Business Rules Dictionary
After you create an application, a project, and a rules dictionary, the rules dictionary
appears in the structure pane in Oracle JDeveloper and Rules Designer opens in the
main canvas.

As part of the create Business Rule dialog you either select an existing dictionary or a
new rule dictionary is created with the following pre-loaded data:

■ XML fact type model based on the input and output information of the Business
Rule.

■ A Ruleset that needs to be completed by adding rules or Decision Tables. With an
existing dictionary, you use the import option to specify a dictionary that may
already contain the rules or Decision Tables.

■ A service component with the input and output contract of the Decision
component.

■ A Decision component for the rule dictionary and wires to the BPEL process.

23.3.4 What You Need to Know About Invoking Business Rules in a BPEL Process
When you add business rules to a BPEL process Oracle JDeveloper creates a Decision
Service that supports calling Oracle Business Rules with the inputs you supply, and
returning the outputs with results. The Decision Service provides access to Oracle
Business Rules Engine at runtime as a web service. For more information, see Oracle
Fusion Middleware User's Guide for Oracle Business Rules.

23.3.5 What You Need to Know About Decision Component Stateful Operation
A Decision Component running in a business rules service engine supports either
stateful or stateless operation. The Reset Session checkbox in the Create Business
Rules dialog provides support for these two modes of operation.

By default the Reset Session checkbox is selected which indicates stateless operation.
Stateless operation means that, at runtime, the rule session is released after the
Decision Component invocation.

When Reset Session is unselected, the underlying Oracle Business Rules object is kept
in the memory of the business rules service engine at a separate location (so that it is
not given back to the Rule Session Pool when the operation is finished). A subsequent
use of the Decision component re-uses the cached RuleSession object, with all its state
information from the callFunctionStateful invocation, and then releases it back
to the Rule Session pool once the callFunctionStateless operation is finished.
Thus, when Reset Session is unselected the rule session is saved for a subsequent
request and a sequence of Decision Service invocations from the same BPEL process
should always end with a stateless invocation.

Adding Business Rules to an SOA Composite Application

23-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

23.4 Adding Business Rules to an SOA Composite Application
To work with Oracle Business Rules in an SOA composite application, you create an
application and add business rules.

The business rule service component enables you to integrate your SOA composite
application with business rules. This creates a business rule dictionary and enables
you to execute business rules and make business decisions based on the rules.

After creating a project in Oracle JDeveloper, you need to create a Business Rule
Service component within the project. When you add a business rule you can create
input and output variables to provide input to the service component and to obtain
results from the service component.

To use business rules with Oracle JDeveloper, you do the following:

■ Add a business rules service component

■ Create input and output variables for the service component

■ Create an Oracle Business Rules dictionary

23.4.1 How to Add Business Rules to an SOA Composite Application
To work with Oracle Business Rules in an SOA composite application you use Oracle
JDeveloper to create an application, a project, and then add a business rule component.

To create an SOA application with business rules:
1. Create an SOA application and project. For more information, see Section 4.2.1,

"How to Create an Application and a Project". For an SOA composite using
business rules, pick the required technologies for your application. For example,
you may need the following for an SOA application with business rules: ADF
Business Components, Java, and XML. You move these items to the Selected area
on the Project Technologies tab.

2. In the Application Navigator, if the SOA composite editor is not showing, then in
your project expand SOA Content folder and double-click composite.xml to
launch the SOA composite editor.

3. From the Component Palette, drag-and-drop a Business Rule from the Service
Components area of the SOA menu to the Components lane of the SOA composite
editor, as shown in Figure 23–10.

Adding Business Rules to an SOA Composite Application

Using the Business Rule Service Component 23-13

Figure 23–10 Adding Business Rules to an SOA Composite Application

4. When you drag-and-drop a Business Rule, Oracle JDeveloper displays the Create
Business Rules dialog as shown in Figure 23–11.

Figure 23–11 Adding Business Rules to an SOA Composite and Creating a Dictionary

Add inputs for business rules:
1. In the Create Business Rules dialog, from the dropdown menu next to the Add

icon select Input... to add input for the business rule. This displays the Type
Chooser dialog.

2. In the Type Chooser dialog, add inputs. If the schema is available in the Project
Schema Files, skip to step 9 to select the appropriate schema.

3. Click the Import Schema File... icon. This brings up the Import Schema File
dialog.

4. In the Import Schema File dialog click Browse Resources to choose the XML
schema elements for the input. This displays the SOA Resource Browser dialog.

Adding Business Rules to an SOA Composite Application

23-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. In the SOA Resource Browser dialog, navigate to find the schema for your
business rules input. For example, select the order.xsd schema file, and click
OK.

6. In the Import Schema File dialog select Copy to Project, as shown in Figure 23–12.

Figure 23–12 Importing Schema for Input to Business Rules

7. In the Import Schema File dialog, click OK.

8. In the Localize Files dialog, click OK.

9. Use the Type Chooser dialog navigator to locate and select the input from the
schema and click OK. For example, select the CustomerOrder element as the
input.

Add outputs for business rules:
1. In the Create Business Rules dialog, from the dropdown menu next to the Add

icon select Output....

2. In the Type Chooser dialog, in a manner similar to adding an input add the
output. For example, add OrderApproval from the order.xsd and click OK.

3. This displays the Create Business Rules dialog, as shown in Figure 23–13.

Adding Business Rules to an SOA Composite Application

Using the Business Rule Service Component 23-15

Figure 23–13 Create Business Rules Dialog with Input and Output

Set options and create decision service and business rules dictionary:
1. In the Create Business Rules dialog, select Expose as Composite Service.

2. If you do not want to use the default service name, then select the Advanced tab
and in the Service Name field enter the service name.

3. In the Create Business Rules dialog, click OK. This creates the Business Rule
component, also called a Decision component, and Oracle JDeveloper shows the
Business Rule component in the canvas workspace as shown in Figure 23–14.

Adding Business Rules to an SOA Composite Application

23-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 23–14 Business Rule Component in SOA Composite

4. Double-click the Decision component (for example the OracleRules1 business
rule). This opens Rules Designer, as shown in Figure 23–15. The validation log
shows validation warnings for the input and output facts. By working with Rules
Designer to define rules or decision tables, you remove these warning messages.

Adding Business Rules to an SOA Composite Application

Using the Business Rule Service Component 23-17

Figure 23–15 Rules Designer Showing New Dictionary for SOA Composite Application

For information on Rules Designer, see Oracle Fusion Middleware User's Guide for Oracle
Business Rules.

23.4.2 How to Select and Modify a Decision Function in a Business Rule Component
You can specify one or more decision functions as inputs for calling Oracle Business
Rules as a component in a composite application. For example, you can specify a
particular decision function as the input when multiple decision functions are
available in an Oracle Business Rules dictionary.

To specify a decision function in a composite application:
1. Add a decision function to the Oracle Business Rules dictionary. For more

information, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.

2. Add a Business Rule component to the composite application. For more
information, see Section 23.4.1, "How to Add Business Rules to an SOA Composite
Application".

3. Select a business rule component, as shown in Figure 23–16.

Adding Business Rules to an SOA Composite Application

23-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 23–16 Selecting a Business Rule Component in a Composite Application

4. Select the decision function port of interest. For example, select the port for DF_2
as shown in Figure 23–17.

Figure 23–17 Selecting a Decision Function Port in a Business Rule Component

5. When you select the port, Oracle JDeveloper shows the port information in the
Property Inspector.

6. When you double-click the port, Oracle JDeveloper displays the Update Interface
dialog for the port as shown in Figure 23–18.

Running Business Rules in a Composite Application

Using the Business Rule Service Component 23-19

Figure 23–18 Update Interface Dialog for a Decision Function in a Business Rule Decision Port

23.5 Running Business Rules in a Composite Application
You run business rules as part of a Decision component within an SOA composite
application. The business rules are executed by the Business Rule Service Engine. You
can use Oracle Enterprise Manager Fusion Middleware Control Console to monitor the
Business Rule Service Engine and to test an SOA composite application that includes a
Decision component. For more information, see Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite.

Running Business Rules in a Composite Application

23-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Part V
Part V Using the Human Workflow Service

Component

This part describes how to use the human workflow service component.

This part contains the following chapters:

■ Chapter 24, "Getting Started with Human Workflow"

■ Chapter 25, "Designing Human Tasks"

■ Chapter 26, "Designing Task Display Forms for Human Tasks"

■ Chapter 27, "Using Oracle BPM Worklist"

■ Chapter 28, "Building a Custom Worklist Client"

■ Chapter 29, "Introduction to Human Workflow Services"

■ Chapter 30, "Integrating Microsoft Excel with a Human Task"

24

Getting Started with Human Workflow 24-1

24Getting Started with Human Workflow

This chapter introduces human workflow concepts, features, and architecture. Use
cases for human workflow are provided. Instructions for designing your first
workflow from start to finish are also provided.

This chapter includes the following sections:

■ Section 24.1, "Introduction to Human Workflow"

■ Section 24.2, "Introduction to Human Workflow Concepts"

■ Section 24.3, "Introduction to Human Workflow Features"

■ Section 24.4, "Introduction to Human Workflow Architecture"

For information about composite sensors, see Chapter 51, "Defining Composite
Sensors."

24.1 Introduction to Human Workflow
Many end-to-end business processes require human interactions with the process. For
example, humans may be needed for approvals, exception management, or
performing activities required to advance the business process. The human workflow
component provides the following features:

■ Human interactions with processes, including assignment and routing of tasks to
the correct users or groups

■ Deadlines, escalations, notifications, and other features required for ensuring the
timely performance of a task (human activity)

■ Presentation of tasks to end users through a variety of mechanisms, including a
worklist application (Oracle BPM Worklist)

■ Organization, filtering, prioritization, and other features required for end users to
productively perform their tasks

■ Reports, reassignments, load balancing, and other features required by supervisors
and business owners to manage the performance of tasks

Figure 24–1 provides an overview of human workflow:

Introduction to Human Workflow

24-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 24–1 Human Workflow

In Figure 24–1, the following actions occur:

■ A BPEL process invokes a special activity of the human task type when it needs a
human to perform a task.

■ This creates a task in the human task service component. The process waits for the
task to complete. It is also possible for the process to watch for other callbacks
from the task and react to them.

■ There is metadata associated with the task that is used by the human task service
component to manage the lifecycle of the task. This includes specification of the
following:

– Who performs the task. If multiple people are required to perform the task,
what is the order?

– Who are the other stakeholders?

– When must the task be completed?

– How do users perform the task, what information is presented to them, what
are they expected to provide, and what actions can they take?

■ The human task service component uses an identity directory, such as LDAP, to
determine people’s roles and privileges.

■ The human task service component presents tasks to users through a variety of
channels, including the following:

BPEL Process
Manager

Client
Applications

Human Task Service
Component

Portals

Oracle
BPM
Worklist

Email &
RSS
Clients

Identity Directory
(LDAP, for example)

Phone and
Other
Notification
Channels

Service
Interface

Task Definition

Client
Interface

Human
Task

Invoke

Receive

Invoke Invoke

Deadlines
and
Escalations

Roles
and
Assignments

Presentation

Create
Task

Task
Complete

Introduction to Human Workflow Concepts

Getting Started with Human Workflow 24-3

– Oracle BPM Worklist, a role-based application that supports the concept of
supervisors and process owners, and provides functionality for finding,
organizing, managing, and performing tasks.

– Worklist functionality is also available as portlets that can be exposed in an
enterprise portal.

– Notifications can be sent to email, phone, SMS, and other channels. Email
notifications can be actionable, enabling users to perform actions on the task
from within the email client without connecting to Oracle BPM Worklist or
Oracle WebLogic Server.

24.2 Introduction to Human Workflow Concepts
This section introduces you to key human workflow design time and runtime
concepts. This section also provides an overview of the three main stages of human
workflow design.

24.2.1 Introduction to Design and Runtime Concepts
Before designing a human task, it is important to understand the design and runtime
concepts. A typical task consists of a subject, priority, task participants, task
parameters or data, deadlines, notifications or reminders, and task forms. This section
provides an overview of key concepts.

24.2.1.1 Task Assignment and Routing
Human workflow supports declarative assignment and routing of tasks. In the
simplest case, a task is assigned to a single participant (user or group). However, there
are many situations in which more detailed task assignment and routing is necessary
(for example, when a task must be approved by a management chain or worked and
voted on by a set of people in parallel, as shown in Figure 24–2). Human workflow
provides declarative pattern-based support for such scenarios.

Note: Human workflow design-time tasks are performed in a
graphical editor known as the Human Task Editor. The tutorial in
Section 24.3.2, "Designing a Human Task from Start to Finish"
describes how to use this editor.

Introduction to Human Workflow Concepts

24-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 24–2 Participants in a Task

24.2.1.1.1 Participant A participant is a user or set of users in the assignment and
routing policy definition. In Figure 24–2, each block with an icon representing people
is a participant.

24.2.1.1.2 Participant Type In simple cases, a participant maps to a user, group, or role.
However, as discussed in Section 24.2.1.1, "Task Assignment and Routing," workflow
supports declarative patterns for common routing scenarios such as management
chain and group vote.The following participant types are available:

■ Single approver

This is the simple case where a participant maps to a user, group, or role.

For example, a vacation request is assigned to a manager. The manager must act
on the request task three days before the vacation starts. If the manager formally
approves or rejects the request, the employee is notified with the decision. If the
manager does not act on the task, the request is treated as rejected. Notification
actions similar to the formal rejection are taken.

■ Parallel

This participant indicates that a set of people must work in parallel. This pattern is
commonly used for voting.

For example, multiple users in a hiring situation must vote to hire or reject an
applicant. You specify the voting percentage that is needed for the outcome to take
effect, such as a majority vote or a unanimous vote.

For more information, see Section 25.3.6.2.3, "Sharing Attachments and Comments
with Task Participants."

■ Serial

This participant indicates that a set of users must work in sequence. While
working in sequence can be specified in the routing policy by using multiple
participants in sequence, this pattern is useful when the set of people is dynamic.

Introduction to Human Workflow Concepts

Getting Started with Human Workflow 24-5

The most common scenario for this is management chain escalation, which is done
by specifying that the list is based on a management chain within the specification
of this pattern.

■ FYI (For Your Information)

This participant also maps to a single user, group, or role, just as in single
approver. However, this pattern indicates that the participant just receives a
notification task and the business process does not wait for the participant’s
response. FYI participants cannot directly impact the outcome of a task, but in
some cases can provide comments or add attachments.

For example, a regional sales office is notified that a candidate for employment has
been approved for hire by the regional manager and their candidacy is being
passed onto the state wide manager for approval or rejection. FYIs cannot directly
impact the outcome of a task, but in some cases can provide comments or add
attachments.

For more information, see Section 25.3.6, "How to Assign Task Participants."

24.2.1.1.3 Participant Assignment A task is work that must be done by a user. When you
create a task, you assign humans to participate in and act upon the task. Participants
can perform actions upon tasks during runtime from Oracle BPM Worklist, such as
approving a vacation request, rejecting a purchase order, providing feedback on a help
desk request, or some other action. There are three types of participants:

■ Users

You can assign individual users to act upon tasks. For example, you may assign
users jlondon or jstein to a particular task. Users are defined in an identity
store configured with the SOA Infrastructure. These users can be in the embedded
LDAP of Oracle WebLogic Server, Oracle Internet Directory, or a third party LDAP
directory.

■ Groups

You can assign groups to act upon tasks. Groups contain individual users who can
claim and act upon a task. For example, users jcooper and fkafka may be
members of the group LoanAgentGroup that you assign to act upon the task.

As with users, groups are defined in the identity store of the SOA Infrastructure.

■ Application roles

You can assign users who are members of application roles to claim and act upon
tasks.

Application roles consist of users or other roles grouped logically for
application-level authorizations. These roles are application-specific and are
defined in the application Java policy store rather than the identity store. These
roles are used by the application directly and are not necessarily known to a Java
EE container.

Application roles define policy. Java permission can be granted to application
roles. Therefore, application roles define a set of permissions granted to them
directly or indirectly through other roles (if a role is granted to a role). The policy
can contain grants of application roles to enterprise groups or users. In the
jazn-data.xml file of the file-based policy store, these roles are defined in
<app-role> elements under <policy-store> and written to
system-jazn-data.xml at the farm level during deployment. You can also
define these roles after deployment using Oracle Enterprise Manager Fusion

Introduction to Human Workflow Concepts

24-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Middleware Control Console. You can set a task owner or approver to an
application role at design time if the role has been previously deployed.

For more information about Oracle BPM Worklist, see Section 24.2.1.6, "Task Forms."

24.2.1.1.4 Ad Hoc Routing In processes dealing with significant variance, you cannot
always determine all participants. Human workflow enables you to specify that a
participant can invite other participants as part of performing the task.

For more information, see Section 25.3.7.1.1, "Allowing All Participants to Invite Other
Participants."

24.2.1.1.5 Outcome-based Completion of Routing Flow By default, a task goes from starting
to final participant as per the flow defined in the routing policy (as shown in
Figure 24–2). However, sometimes a certain outcome at a particular step within a
task’s routing flow makes it unnecessary or undesirable to continue presenting the
task to the next participants. For example, if an approval is rejected by the first
manager, it does not need to be routed to the second manager. Human workflow
supports specifying that a task or subtask be completed when a certain outcome
occurs.

For more information, see Section 25.3.7.1.2, "Stopping Routing of a Task to Further
Participants."

24.2.1.2 Static, Dynamic, and Rule-Based Task Assignment
There are different methods for assigning users, groups, and application roles to tasks.

■ Assign tasks statically

You can assign users, groups, and application roles statically (or by browsing the
identity service). The values can be either of the following:

– A single user, group, or application role (for example, jstein,
CentralLoanRegion, or ApproverRole).

– A delimited string of users, groups, or application roles (for example, jstein,
wfaulk, cdickens).

■ Assign tasks dynamically

You can assign users, groups, and application roles dynamically using XPath
expressions. These expressions enable you to dynamically determine the task
participants at runtime. For example, you may have a business requirement to
create a dynamic list of task approvers specified in a payload variable. The XPath
expression can resolve to zero or more XML nodes. Each node value can be either
of the following:

– A single user, group, or application role

– A delimited string of users, groups, or application roles. The default delimiter
for the assignee delimited string is a comma (,).

For example, if the task has a payload message attribute named po within which
the task approvers are stored, you can use the following XPath expression:

– /task:task/task:payload/po:purchaseOrder/po:approvers

– ids:getManager('jstein', 'jazn.com')

This returns the manager of jstein.

– ids:getReportees('jstein', 2, 'jazn.com')

Introduction to Human Workflow Concepts

Getting Started with Human Workflow 24-7

This returns all reportees of jstein up to two levels.

– ids:getUsersInGroup('LoanAgentGroup', false, 'jazn.com')

This returns all direct and indirect users in the group LoanAgentGroup.

■ Assign tasks with business rules

You can create the list of task participants with complex expressions. The result of
using business rules is equal to using XPath expressions.

24.2.1.3 Task Stakeholders
A task has multiple stakeholders. Participants are the users defined in the assignment
and routing section of the task definition. These users are the primary stakeholders
that perform actions on the task.

In addition to the participants specified in the assignment and routing policy, human
workflow supports additional stakeholders:

■ Owner

This participant has business administration privileges on the task. This
participant can be specified as part of the task definition or from the invoking
process (and for a particular instance). The task owner can act upon tasks they
own and also on behalf of any other participant. The task owner can change both
the outcome of the task and the assignments.

For more information, see Section 25.3.4.6, "Specifying a Task Owner" to specify an
owner in the Human Task Editor or Section 25.4.4.2, "Specifying a Task Owner" to
specify an owner in the Advanced tab of the Create Human Task dialog.

■ Initiator

The person who initiates the process (for example, the initiator files an expense
report for approval). This person can review the status of the task using initiated
task filters. Also, a useful concept is for including the initiator as a potential
candidate for request-for-information from other participants.

For more information, see Section 25.4.3.2, "Specifying the Task Initiator and Task
Priority."

■ Reviewer

This participant can review the status of the task and add comments and
attachments.

■ Admin

This participant can view all tasks and take certain actions such as reassigning a
test, suspending a task to handle errors, and so on. The task admin cannot change
the outcome of a task.

While the task admin cannot perform the types of actions that a task participant
can, such as approve, reject, and so on, this participant type is the most powerful
because it can perform actions such as reassign, withdraw, and so on.

■ Error Assignee

When an error occurs, the task is assigned to this participant (for example, the task
is assigned to a nonexistent user). The error assignee can perform task recovery
actions from Oracle BPM Worklist, the task display form in which you perform
task actions during runtime.

For more information, see Section 25.3.7.4, "Configuring the Error Assignee."

Introduction to Human Workflow Concepts

24-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

24.2.1.4 Task Deadlines
Human workflow supports the specification of deadlines associated with a task. You
can associate the following actions with deadlines:

■ Reminders:

The task can be reminded multiple times based on the time after the assignment or
the time before the expiration.

■ Escalation:

The task is escalated up the management hierarchy.

■ Expiration:

The task has expired.

■ Renewal:

The task is automatically renewed.

For more information, see Section 25.3.8, "How to Escalate, Renew, or End the Task."

24.2.1.5 Notifications
You can configure your human task to use notifications. Notifications enable you to
alert interested users to changes in the state of a task during the task life cycle. For
example, a notification is sent to an assignee when a task has been approved or
withdrawn.

You can specify for notifications to be sent to different types of participants for
different actions. For example, you can specify the following:

■ For the owner of a task to receive a notification message when a task is in error (for
example, been sent to a nonexistent user).

■ For a task assignee to receive a notification message when a task has been
escalated.

You can specify the contents of the notification message and the notification channel to
use for sending the message.

■ Email

You can configure email notification messages to be actionable, meaning that a
task assignee can act upon a task from within the email.

■ Voice message

■ Instant messaging (IM)

■ Short message service (SMS)

For example, you may send the following message by email when a task assignee
requests additional information before they can act upon a task:

In order for me to approve this task, I need more information to justify the need
 for this business trip

During runtime, you can mark a message sender's address as spam and also display a
list of bad or invalid addresses. These addresses are automatically removed from the
bad address list.

For more information about notifications, see the following:

■ Section 25.3.9, "How to Specify Participant Notification Preferences"

Introduction to Human Workflow Concepts

Getting Started with Human Workflow 24-9

■ Chapter 16, "Using the Notification Service"

■ Part VII, "Using Oracle User Messaging Service"

24.2.1.6 Task Forms
Task display forms provide you with a way to interact with a task. Oracle BPM
Worklist displays all worklist tasks that are assigned to task assignees in the task
display form. When you drill down into a specific task, the task display form displays
the contents of the task to the user's worklist. For example, an expense approval task
may show a form with line items for various expenses, and a help desk task form may
show details such as severity, problem location, and so on.

The integrated development environment of Oracle SOA Suite includes Oracle
Application Development Framework (Oracle ADF) for this purpose. With Oracle
ADF, you can design a task display form that depicts the human task in the SOA
composite.

ADF-based task display forms can be automatically generated. Advanced users can
design their own task display forms by using ADF data controls to lay out the content
on the page and connect to the workflow service engine at execution time to retrieve
task content and act on tasks.

You can create task forms in JSF, .NET, or any other client technologies using the APIs.

Integration with Microsoft Excel for initiating and acting on tasks is also provided.

For more information, see the following:

■ Chapter 26, "Designing Task Display Forms for Human Tasks."

■ Chapter 27, "Using Oracle BPM Worklist"

24.2.1.7 Advanced Concepts
This section describes advanced human workflow concepts.

24.2.1.7.1 Rule-based Routing You can use Oracle Business Rules to dynamically alter
the routing flow. If used, each time a participant completes their step, the associated
rules are invoked and the routing flow can be overridden from the rules.

For more information, see Section 25.3.7.2, "Specifying Advanced Task Routing Using
Business Rules."

24.2.1.7.2 Rule-based Participant Assignment You can use Oracle Business Rules to
dynamically build a list of users, groups, and roles to be associated with a participant.

For more information, see Section 25.3.6, "How to Assign Task Participants."

24.2.1.7.3 Stages A stage is a way of organizing the approval process for blocks of
participant types. You can have one or more stages in sequence or in parallel. Within
each stage, you can have one or more participant type blocks in sequence or in
parallel.

For more information, see Section 25.3.6, "How to Assign Task Participants."

24.2.1.7.4 Access Rules You can specify access rules that determine the parts of a task
that assignees can view and update. For example, you can configure the task payload
data to be read by assignees. This action enables only assignees (and nobody else) to
have read permissions. No one, including assignees, has write permissions.

Introduction to Human Workflow Concepts

24-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information, see Section 25.3.10.8, "Specifying Access Policies on Task
Content."

24.2.1.7.5 Callbacks While human workflow supports detailed behavior that can be
declaratively specified, in some advanced situations, more extensible behavior may be
required. Task callbacks enable such extensibility; these callbacks can either be
handled in the invoking BPEL process or a Java class.

For more information, see Section 25.3.10.5, "Specifying Callback Classes on Task
Status."

24.2.1.8 Reports and Audit Trails
Oracle BPM Worklist provides several out-of-the-box reports for task analysis:

■ Unattended tasks

Analysis of tasks assigned to users' groups or reportees' groups that have not yet
been acquired.

■ Tasks priority

Analysis of tasks assigned to a user, reportees, or their groups, based on priority.

■ Tasks cycle time

Analysis of the time taken to complete tasks from assignment to completion based
on users' groups or reportees' groups.

■ Tasks productivity

Analysis of assigned tasks and completed tasks in a given time period for a user,
reportees, or their groups.

■ Tasks time distribution

The time an assignee takes to perform a task.

You can view an audit trail of actions performed by the participants in the task and a
snapshot of the task payload and attachments at various points in the workflow. The
short history for a task lists all versions created by the following tasks:

■ Initiate task

■ Reinitiate task

■ Update outcome of task

■ Completion of task

■ Erring of task

■ Expiration of task

■ Withdrawal of task

■ Alerting of task to the error assignee

For more information, see Chapter 27, "Using Oracle BPM Worklist."

24.2.2 Introduction to the Stages of Human Workflow Design
Human workflow modeling consists of three stages of modeling, as described in
Table 24–1.

Introduction to Human Workflow Features

Getting Started with Human Workflow 24-11

24.3 Introduction to Human Workflow Features
This section provides an introduction to use cases for human workflow. After that, a
tutorial is provided that guides you through the design of a human task from start to
finish.

24.3.1 Human Workflow Use Cases
The following sections describe multiple use cases for workflow services.

24.3.1.1 Task Assignment to a User or Role
A vacation request process may start with getting the vacation details from a user and
then routing the request to their manager for approval. User details and the
organizational hierarchy can be looked up from a user directory or identity store. This
scenario is shown in Figure 24–3.

Figure 24–3 Assigning Tasks to a User or Role from a Directory

24.3.1.2 Use of the Various Participant Types
A task can be routed through multiple users with a group vote, management chain, or
sequential list of approvers participant type. For example, consider a loan request that
is part of the loan approval flow. The loan request may first be assigned to a loan agent
role. After a specific loan agent acquires and accepts the loan, the loan may be routed
further through multiple levels of management if the loan amount is greater that
$100,000. This scenario is shown in Figure 24–4.

Table 24–1 Stages of Human Workflow Modeling

Step Description For More Information...

1 You create and define contents of the human task
in the Human Task Editor, including defining a
participant type, routing policy, escalation and
expiration policy, notification, and so on.

Section 25.2.1, "Create a Human
Task Definition."

2 You associate the human task definition with a
BPEL process. The BPEL process integrates a series
of activities (including the human task activity)
and services into an end-to-end process flow.

Section 25.2.2, "Associate the
Human Task Definition with a
BPEL Process."

3 You create a task display form. This form is used
for displaying the task details on which you act at
runtime in Oracle BPM Worklist.

Section 25.2.3, "Generate the Task
Display Form."

Assign Task

Task Complete

Workflow
ServicesBPEL

Process

OID

LDAP

Introduction to Human Workflow Features

24-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 24–4 Flow Patterns and Routing Policies

You can use these types as building blocks to create complex workflows.

24.3.1.3 Escalation, Expiration, and Delegation
A high-priority task can be assigned to a certain user or role based on the task type
through use of custom escalation functions. However, if the user does not act on it in a
certain time, the task may expire and in turn be escalated to the manager for further
action. As part of the escalation, you may also notify the users by email, telephone
voice message, or SMS. Similarly, a manager may delegate tasks from one reportee to
another to balance the load between various task assignees. All tasks defined in BPEL
have an associated expiration date. Additionally, you may specify escalation or
renewal policies, as shown in Figure 24–5. For example, consider a support call, which
is part of a help desk service request process. A high-priority task may be assigned to a
certain user and if the user does not respond in two days, the task is routed to the
manager for further action.

Figure 24–5 Escalation and Notification

24.3.1.4 Automatic Assignment and Delegation
A user may decide to have another user perform tasks on their behalf. Tasks can be
explicitly delegated from the Oracle BPM Worklist or can be automatically delegated.
For example, a manager sets up a vacation rule saying that all their high priority tasks
are automatically routed to one of their direct reports while the manager is on
vacation. In some cases, tasks can be routed to different individuals based on the
content of the task. Another example of automatic routing is to allocate tasks among
multiple individuals belonging to a group. For example, a help desk supervisor
decides to allocate all tasks for the western region based on a round robin basis or

Change Routing

Get Approvals

All Approvals
Complete

BPEL
Process

Various
Routing
Patterns

Workflow Service

Notify Manager

Escalate Task
Workflow Services

1 2 3 4 5 6

87 9 10 11 12 13

1514 16 17 18 19 20

2221 23 24 25 26 27

2928 30 CalendarTask Resolved

BPEL
Process

Notification

Introduction to Human Workflow Features

Getting Started with Human Workflow 24-13

assign tasks to the individual with the lowest number of outstanding tasks (the least
busy).

24.3.1.5 Dynamic Assignment of Users Based on Task Content
An employee named James in the human resources department requests new
hardware that costs $5000. The company may have a policy that all hardware expenses
greater than $3000 must go through manager and vice president approval, and then
review by the director of IT. In this scenario, the workflow can be configured to
automatically determine the manager of James, the vice president of the human
resources department, and the director of IT. The purchase order is routed through
these three individuals for approval before the hardware is purchased.

24.3.2 Designing a Human Task from Start to Finish
This section guides you through design of your first human task.

This sample describes how an employee submits a vacation request that is
automatically routed to their manager for approval. Once the manager responds
(approved or rejected), a notification is sent to the employee.

This sample illustrates creation of a SOA composite application with two components:

■ A BPEL process

■ A human task, for approving a vacation request submitted by an employee

This example highlights the use of the following:

■ Using the SOA Composite Editor

■ Modeling a single approval workflow using Oracle BPEL Designer

■ Creating an Oracle ADF-based Oracle BPM Worklist

■ Using Oracle BPM Worklist to view and respond to the task

24.3.2.1 Prerequisites
This tutorial makes the following assumptions:

■ Oracle SOA Suite is installed on a host on which the SOA Infrastructure is
configured.

■ You are familiar with basic BPEL constructs, including BPEL activities and partner
links, and basic XPath functions. Familiarity with the SOA Composite Editor and
Oracle BPEL Designer, the environment for designing and deploying BPEL
processes, is also assumed.

1. Create a file named VacationRequest.xsd with the following syntax. This file
includes the schema for the vacation request and subsequent response.

<schema attributeFormDefault="qualified" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/VacationRequest"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="VacationRequestProcessRequest">
 <complexType>
 <sequence>
 <element name="creator" type="string"/>
 <element name="fromDate" type="date"/>
 <element name="toDate" type="date"/>
 <element name="reason" type="string"/>
 </sequence>
 </complexType>

Introduction to Human Workflow Features

24-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 </element>
 <element name="VacationRequestProcessResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 </sequence>
 </complexType>
 </element>
</schema>

24.3.2.2 How to Create the Vacation Request Process
In this tutorial, you create a new application and SOA project and design the human
task to send a vacation request to a manager for approval or rejection. You also create a
second application and project in which you create an Oracle ADF-based task display
form from which to act upon the vacation request.

24.3.2.2.1 Creating an Application and a Project with a BPEL Process

To create an application and a project with a BPEL process:
1. Start Oracle JDeveloper.

2. From the File main menu, select New > Applications > SOA Application.

3. Click OK.

4. In the Application Name field, enter VacationRequest, and click Next.

5. In the Project Name field, enter VacationRequest, and click Next.

6. In the Composite Template list, select Composite with BPEL, and click Finish.

7. The Create BPEL Process dialog appears.

8. In the Name field, enter VacationRequestProcess.

9. Go to the bottom of the Create BPEL Process dialog.

10. To the right of the Input field, click the Search icon.

The Type Chooser dialog appears.

11. In the upper right corner, click the Import Schema File icon.

The Import Schema dialog appears.

12. Browse for and select the VacationRequest.xsd file you created in Section 24.3.2.1,
"Prerequisites."

13. Click OK until you are returned to the Type Chooser dialog, as shown in
Figure 24–6.

Note: The VacationRequest.xsd file is also available for
download as part of tutorial workflow-100-VacationRequest.
See Section 24.3.3, "Additional Tutorials" for information on
downloading this and other tutorials.

Introduction to Human Workflow Features

Getting Started with Human Workflow 24-15

Figure 24–6 Type Chooser Dialog with the Request and Response Elements

14. Select the input element VacationRequestProcessRequest, and click OK.

You are returned to the Create BPEL Process dialog.

15. To the right of the Output field, click the Search icon.

16. Select the output element VacationRequestProcessResponse, and click OK.

You are returned to the Create BPEL Process dialog, as shown in Figure 24–7.

Figure 24–7 BPEL Process Dialog

17. Accept the default values for all other settings, and click OK.

A BPEL process service component is created in the SOA Composite Editor.
Because Expose as a SOAP service was selected in the Create BPEL Process
dialog, the BPEL process is automatically connected with a service binding
component. The service exposes the SOA composite application to external
customers.

Introduction to Human Workflow Features

24-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 24–8 BPEL Process in SOA Composite Editor

For more information about service components and the SOA Composite Editor,
see Chapter 4, "Introduction to the Functionality of the SOA Composite Editor."

24.3.2.2.2 Create the Human Task Service Component

You are now ready to create the human task service component in which you design
your human task.

To create the human task service component:
1. From the SOA list of the Component Palette, drag a Human Task into the SOA

Composite Editor.

The Create Human Task dialog appears.

2. Enter the details described in Table 24–2.

3. Click OK.

The Human Task icon appears in the SOA Composite Editor above the BPEL
process, as shown in Figure 24–9.

Table 24–2 Create Human Task Dialog Fields and Values

Field Value

Name Enter VacationRequestTask.

Namespace Accept the default value.

Create Composite Service
with SOAP Bindings

Do not select the checkbox. Instead, you create a human task that
you later associate with the BPEL process you created in
Section 24.3.2.2.1, "Creating an Application and a Project with a
BPEL Process." The BPEL process was created with an
automatically-bound web service.

Introduction to Human Workflow Features

Getting Started with Human Workflow 24-17

Figure 24–9 Human Task Icon in SOA Composite Editor

4. Double-click the Human Task icon.

The Human Task Editor appears. You are now ready to begin design of your
human task.

24.3.2.2.3 Designing the Human Task

To design the human task:
1. In the Title field, enter Request for Vacation.

2. Accept the default values for outcomes (APPROVE and REJECT). For this task,
these outcomes represent the two choices the manager has for acting on the
vacation request.

3. On the right side of the Parameters section, click the Add icon to specify the task
payload.

The Add Task Parameter dialog is displayed. You now create parameters to
represent the elements in your XSD file. This makes the payload data available to
the workflow task.

4. Select Element.

5. To the right of the Element field, click the Search icon.

The Type Chooser dialog appears.

6. Expand and select Project Schema Files > VacationRequest.xsd >
VacationRequestProcessRequest, and click OK. Figure 24–10 provides details.

Introduction to Human Workflow Features

24-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 24–10 Type Chooser Dialog

7. Ensure that the Editable via worklist checkbox is selected. This provides you with
the option to modify this parameter during runtime from Oracle BPM Worklist.

8. Click OK on the Add Task Parameter dialog.

9. In the Assignment and Routing Policy section, highlight the <no participants>
box below Stage1, as shown in Figure 24–11.

Figure 24–11 Assignment and Routing Policy

10. On the right side of the Assignment and Routing Policy section, click the Edit
icon.

The Edit Participant Type dialog appears. You now add participants to this task.
As described in Section 24.2.1.1.2, "Participant Type," Oracle SOA Suite provides

Introduction to Human Workflow Features

Getting Started with Human Workflow 24-19

several out-of-the-box patterns known as participant types for addressing specific
business needs.

11. Accept the default participant type of Single that displays in the Type list. You
select this type because a single assignee, the manager, acts on the vacation request
task.

12. In the Participant Name table, click the Add icon, and select Add User.

This participant type acts alone on the task.

13. Click the Data Type column, and select By Expression from the list that is
displayed. Figure 24–12 provides details.

This action enables the task to be assigned dynamically by the contents of the task.
The employee filing the vacation request comes from the parameter passed to the
task (the creator element in the XSD file you imported in Section 24.3.2.2.1,
"Creating an Application and a Project with a BPEL Process"). The task is
automatically routed to the employee’s manager.

Figure 24–12 Selection of By Expression from the Data Type Column

14. In the Value column, click the Browse icon (the dots) to invoke the Expression
Builder dialog.

15. In the dropdown list in the Functions section, select Identity Service Functions.

16. Select getManager. This function gets the manager of the user who created the
vacation request task.

17. Above the Functions section, click Insert into Expression.

18. Place the cursor between the parentheses of the function.

19. In the Schema section, expand task:task > task:payload >
ns1:VacationRequestProcessRequest > ns1:creator.

where ns1 is the namespace for this example; your namespace may be different.

20. Click Insert into Expression.

The Expression Builder dialog displays the XPath expression in the Expression
section. Figure 24–13 provides details.

Introduction to Human Workflow Features

24-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 24–13 XPath Expression

21. Click OK to exit the Expression Builder dialog.

22. From the File menu, select Save All.

23. Click OK to exit the Add Participant Type dialog.

24.3.2.2.4 Associating the Human Task and BPEL Process Service Components

You are now ready to associate your human task with the BPEL process you created in
Section 24.3.2.2.1, "Creating an Application and a Project with a BPEL Process."

To associate the human task and BPEL process service component:
1. In the Application Navigator, double-click composite.xml.

2. Double-click the VacationRequestProcess BPEL process service component in the
SOA Composite Editor.

The BPEL process displays in Oracle BPEL Designer.

3. From the list at the top of the Component Palette, select BPEL.

4. Expand BPEL Activities and Components.

5. Drag a Human Task beneath the receiveInput receive activity.

The Create Human Task dialog appears, as shown in Figure 24–14.

Introduction to Human Workflow Features

Getting Started with Human Workflow 24-21

Figure 24–14 Human Task Creation

6. From the Task Definition list, select the VacationRequestTask task you created (if
it is not currently displaying).

The dialog refreshes as shown in Figure 24–15 to display additional fields.

Figure 24–15 Create Human Task Dialog

Introduction to Human Workflow Features

24-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. In the BPEL Variable column, click the Browse icon (dots) shown in Figure 24–16
for the requester parameter.

Figure 24–16 BPEL Variable Entry

The Task Parameters dialog appears.

8. From the Type list, select Variable.

9. Expand Process > Variables > inputVariable > payload >
ns1:VacationRequestProcessRequest. Figure 24–17 provides details.

Introduction to Human Workflow Features

Getting Started with Human Workflow 24-23

Figure 24–17 Variable Selection

10. Click OK.

 When complete, the dialog looks as shown in Figure 24–18:

Figure 24–18 BPEL Variable

Introduction to Human Workflow Features

24-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

11. Click OK to close the Create Human Task dialog.

The human task activity and request and response partner links now appear.

Figure 24–19 Human Task and Partner Links in Oracle BPEL Designer

12. Return to the SOA Composite Editor and note that the BPEL process and human
task service components have been automatically connected.

Figure 24–20 SOA Composite Editor

13. From the File menu, select Save All.

Introduction to Human Workflow Features

Getting Started with Human Workflow 24-25

24.3.2.2.5 Creating an Application Server Connection

You are now ready to create a connection to the application server on which Oracle
SOA Suite is installed and configured with the SOA Infrastructure.

To create an application server connection
1. From the File main menu, select New > Connections > Application Server

Connection.

2. Click OK.

3. In the Connection Name field, enter a connection name.

4. From the Connection Type list, select WebLogic 10.3.

5. Click Next.

6. In the Username field, enter weblogic.

7. In the Password field, enter the password for connecting to the application server.

8. Click Next.

9. Enter the hostname for the application server that is configured with the SOA
Infrastructure.

10. In the WLS Domain field, enter the Oracle WebLogic Server domain.

11. Click Next.

12. Click Test Connection.

If successful, the message shown in Figure 24–21 is displayed.

Figure 24–21 Connection Success

13. Click Finish.

14. From the File menu, select Save All.

24.3.2.2.6 Deploying the SOA Composite Application

You are now ready to deploy to the application server on which you created the
connection.

Introduction to Human Workflow Features

24-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To deploy the SOA composite application
1. In the Application Navigator, right-click the VacationRequest project and select

Deploy > VacationRequest > application_server_connection_name.

The SOA Deployment Configuration dialog appears.

2. Select the target server, and click OK.

The project is deployed.

24.3.2.2.7 Initiating the Process Instance

To initiate the process instance:
1. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite for

instructions on accessing the Test Web Service page for initiating the process
instance.

24.3.2.2.8 Creating a Task Display Form Project

You are now ready to create a project for the task display form. This is a separate
project from the one in which you created the human task.

To create a task display form project:
1. Double-click the VacationRequestProcess BPEL process.

2. Right click the VacationRequestTask_1 human task activity in Oracle BPEL
Designer.

3. Select Auto-Generate Task Form.

The Create Project dialog appears.

4. In the Project Name field, enter VacationRequestTaskFlow, and click OK.

5. From the File main menu, select Save All.

24.3.2.2.9 Acting on the Task in Oracle BPM Worklist

To resolve the task in Oracle BPM Worklist:
1. Go to Oracle BPM Worklist:

http://hostname:7001/integration/worklistapp

2. Log in to Oracle BPM Worklist.

3. Resolve the task.

24.3.2.2.10 Deploying the Task Display Form

To deploy the task display form:
1. In the Application Navigator, right-click the VacationRequestTaskFlow project

and select Deploy > to > VacationRequestTaskFlow > application_server_
connection_name.

The SOA Deployment Configuration dialog appears.

2. Select the target server, and click OK.

The task form is deployed.

3. Return to Oracle BPM Worklist.

Introduction to Human Workflow Architecture

Getting Started with Human Workflow 24-27

4. Note that the task display form now appears at the bottom of Oracle BPM
Worklist.

24.3.3 Additional Tutorials
In addition to the vacation request use case, other tutorials are available at the
following URL:

http://www.oracle.com/technology/sample_code/products/hwf

Table 24–3 provides an overview of some samples. All samples show the use of
worklist applications and workflow notifications. For the complete list of samples,
visit the URL.

24.4 Introduction to Human Workflow Architecture
This section provides an overview of human workflow architecture. The following
topics are discussed:

Table 24–3 End-to-End Examples

Sample Description Name

Vacation Request Provides a sample in which a user
submits a vacation request that gets
assigned to their manager for approval
or rejection. This sample also describes
how to create Oracle ADF task forms
for the vacation request to act on the
task.

workflow-100-VacationR
equest

Help Desk Request Provides a simple workflow sample
using Oracle ADF task forms for task
approval.

workflow-101-HelpDeskR
equest

Sales Quote Request Provides a complex workflow sample
with chaining of multiple tasks.

workflow-102-SalesQuot
e

Expense Application Provides a sample that integrates
workflow with Oracle ADF Business
Components. Events are raised to the
BPEL process and the human workflow
is invoked for task approval.

workflow-103-ExpenseAp
p

Contract Approval Provides a sample of approving a
contract. This sample uses digital
signatures for tasks.

workflow-104-ContractA
pproval

Document Workflow Provides a sample in which a document
is reviewed by a group of participants
in parallel. In the end, voting
determines if the document is approved
or rejected.

workflow-105-documentw
orkflow

Iterative Design Provides a sample in which a workflow
task can be passed multiple times
between assignees during the design
process. Advanced routing rules
implement the routing behavior.

workflow-106-Iterative
Design

Office Integration Provides a sample in which Microsoft
Excel attachments are enabled with
workflow notifications.

Introduction to Human Workflow Architecture

24-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ The services that perform a variety of operations in the life cycle of a task, such as
querying tasks for a user, retrieving metadata information related to a task, and so
on.

■ The two ways to use a human task:

– Associated with a BPEL process service component

– Used in standalone mode

■ The role of the service engine in the life of a human task

24.4.1 Human Workflow Services
Starting with release 11g, all human task metadata is stored and managed in the
Metadata Service (MDS) repository. The workflow service consists of many services
that handle various aspects of human interaction with a business process.

Figure 24–22 shows the following workflow service components:

■ Task Service:

The task service provides task state management and persistence of tasks. In
addition to these services, the task service exposes operations to update a task,
complete a task, escalate and reassign tasks, and so on. The task service is used by
the Oracle BPM Worklist to retrieve tasks assigned to users. This service also
determines if notifications are to be sent to users and groups when the state of the
task changes. The task service consists of the following services.

– Task Routing Service

The task routing service offers services to route, escalate, and reassign the task.
The service makes these decisions by interpreting a declarative specification in
the form of the routing slip.

– Task Query Service

The task query service queries tasks for a user based on a variety of search
criterion such as keyword, category, status, business process, attribute values,
history information of a task, and so on.

– Task Metadata Service

The task metadata service exposes operations to retrieve metadata information
related to a task.

■ Identity Service

The identity service is a thin web service layer on top of the Oracle Application
Server 11g security infrastructure or any custom user repository. It enables
authentication and authorization of users and the lookup of user properties, roles,
group memberships, and privileges.

■ Notification Service

The notification service delivers notifications with the specified content to the
specified user to any of the following channels: email, telephone voice message,
IM, and SMS. See Section 29.2, "Notifications from Human Workflow" for more
information.

■ User Metadata Service

The user metadata service manages metadata related to workflow users, such as
user work queues, preferences, vacations, and delegation rules.

Introduction to Human Workflow Architecture

Getting Started with Human Workflow 24-29

■ Runtime Config Service

The runtime config service provides methods for managing metadata used in the
task service runtime environment. It principally supports management of task
payload flex field mappings.

■ Evidence service

The evidence service supports storage and nonrepudiation of digitally-signed
workflow tasks.

Figure 24–22 Workflow Services Components

Figure 24–23 shows the interactions between the services and the business process.

Identity
Management

Portal

Oracle BPM
Worklist

E-mail Client

User
Metadata
Service

Task
Service

Task
Assignment

Service

Identity
Service

Task
Metadata
Service

Evidence
Store

Service

Task
Query
Service

Notification
Service

Database
· OID
· LDAP
· JAZN
· other user
 directories

MDS
.task
.bpel
.wsdl

Notification
Channels
· E-mail
· Voice
· SMS
· IM

Workflow Services

UsersBPEL
Process
Service

Component

Workflow
Services

Metadata

Metadata

Introduction to Human Workflow Architecture

24-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 24–23 Workflow Services and Business Process Interactions

24.4.2 Use of Human Task
There are two ways in which to use a human task:

■ Human task associated with a BPEL process

In most cases, you associate your human task with a BPEL process. The BPEL
process integrates a series of activities (including the human task activity) and
services into an end-to-end process flow.

■ Standalone human task

You can also create the human task as a standalone component only in the SOA
Composite Editor and not associate it with a BPEL process. Standalone human
task service components are useful for environments in which there is no need for

User Metadata Service
Manages metadata related
to workflow (user work
queues, preferences,
vacation, and delegation
rules)

Oracle
Internet

Directory

User Directory
(one of)

JAZN
XML

LDAP,
Custom

Policy Store
Contains
Information
about
application
roles and
permissions

BPEL Process
Service Component

Runtime Config Services
Provides methods for
managing metadata used
in the task service runtime
environment

Identity Service
· user / group / role lookup
· user authentication
· authorization
· organization hierarchy

Task Assignment Service
Offers services to route,
escalate, and reassign
tasks

Notification Service
Sends notifications to users
by e-mail, voice message,
instance messaging, or
short message service

Evidence Store Service
Captures digital signatures
and checkpoints for
digitally signed tasks

Task Metadata Service
Exposes operations to
retrieve metadata
information related to
a task

Task Query Service
Queries tasks for a user
based on keyword,
category, status,
business process,
attribute values,
task history information,
and so on

Worklist application
Web application to search
for tasks, view tasks, and
act on tasks

Task Service
Provides task persistence
and exposes operations
to update a task, complete
a task, escalate and
reassign tasks,
and so on

Introduction to Human Workflow Architecture

Getting Started with Human Workflow 24-31

any automated activity in an application. In the standalone case, the client can
create the task themselves.

24.4.3 Service Engines
During runtime, the business logic and processing rules of the human task service
component are executed by the human workflow service engine. Each service
component (BPEL process, human workflow, decision service (business rules), and
Oracle mediator) has its own service engine container for performing these tasks. All
human task service components, regardless of the SOA composite application of
which they are a part, are executed in this single human task service engine.

For more information about configuring, monitoring, and managing the human
workflow service engine, see Oracle Fusion Middleware Administrator's Guide for Oracle
SOA Suite.

Introduction to Human Workflow Architecture

24-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

25

Designing Human Tasks 25-1

25 Designing Human Tasks

This chapter describes how to design human tasks. It introduces the Human Task
Editor to use for modeling task metadata, routing and assignment policies, escalation
policies, expiration policies, and notification settings.

This chapter includes the following sections:

■ Section 25.1, "Introduction to Human Task Design Concepts"

■ Section 25.2, "Introduction to the Modeling Process"

■ Section 25.3, "Creating the Human Task Definition with the Human Task Editor"

■ Section 25.4, "Associating the Human Task Service Component with a BPEL
Process"

25.1 Introduction to Human Task Design Concepts
To use the Human Task Editor, you must understand human task design concepts,
including the following:

■ The types of users to which to assign tasks

■ The methods by which to assign users to tasks (statically, dynamically, or
rule-based)

■ The task participant types available for modeling a task to which you assign users

■ The options for creating lists of task participants

■ The participants involved in the entire life cycle of a task

For information about human task concepts, see Chapter 24, "Getting Started with
Human Workflow."

25.2 Introduction to the Modeling Process
Oracle SOA Suite provides a graphical tool, known as the Human Task Editor, for
modeling your task metadata. The modeling process consists of the following:

■ Creating and modeling a human task service component in the SOA Composite
Editor

■ Associating it with a BPEL process

■ Generating the task form for displaying the human task during runtime in Oracle
BPM Worklist.

Introduction to the Modeling Process

25-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

This section provides a brief overview of these modeling tasks and provides references
to specific modeling instructions.

For more information about using the SOA Composite Editor, see Chapter 4,
"Introduction to the Functionality of the SOA Composite Editor."

For information about available samples, see Section 24.3.2, "Designing a Human Task
from Start to Finish."

25.2.1 Create a Human Task Definition
You define the metadata for the human task in either of two ways:

■ By dragging a human task from the Component Palette into a BPEL process and
clicking the Add icon in the Create Human Task dialog that automatically is
displayed. This displays a dialog for creating the human task service component.
When creation is complete, the Human Task Editor is displayed.

■ By dragging a human task service component from the Component Palette into
the SOA Composite Editor. This displays a dialog for creating the human task
component. When creation is complete, the Human Task Editor is displayed.

The Human Task Editor enables you to specify human task metadata, such as task
outcome, payload structure, assignment and routing policy, expiration and escalation
policy, notification settings, and so on. This information is saved to a metadata task
configuration file with a .task extension. In addition, some workflow patterns may
also need to use the Oracle Business Rules Designer to define task routing policies or
the list of approvers.

For more information, see Section 25.3, "Creating the Human Task Definition with the
Human Task Editor."

25.2.2 Associate the Human Task Definition with a BPEL Process
You can associate the .task file that consists of the human task settings with a BPEL
process in Oracle BPEL Designer. Association is made with a human task that you
drag into your BPEL process flow for configuring, as shown in Figure 25–1.

Figure 25–1 Dragging a Human Task into a BPEL Process

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-3

You also specify the task definition, task initiator, task priority, and task parameter
mappings that carry the input data to a BPEL variable. You can also define advanced
features, such as the scope and global task variables names (instead of accepting the
default names), task owner, identification key, BPEL callback customizations, and
whether to extend the human task to include other workflow tasks.

When association is complete, a task service partner link is created. The task service
exposes the operations required to act on the task.

You can also create the human task as a standalone component only in the SOA
Composite Editor and not associate it with a BPEL process. Standalone human task
service components are useful for environments in which there is no need for any
automated activity in an application. In the standalone case, the client can create the
task themselves.

For more information, see Section 25.4, "Associating the Human Task Service
Component with a BPEL Process."

25.2.3 Generate the Task Display Form
You can generate a task display form using the Oracle Application Development
Framework (ADF). This form is used for displaying the task details on which you act
at runtime in Oracle BPM Worklist.

For information on generating the task display form, see Chapter 26, "Designing Task
Display Forms for Human Tasks."

25.3 Creating the Human Task Definition with the Human Task Editor
The Human Task Editor enables you to define the metadata for the task. The editor
enables you to specify human task settings, such as task outcome, payload structure,
assignment and routing policy, expiration and escalation policy, notification settings,
and so on.

25.3.1 How to Create a Human Task Service Component
You create a human task service component in the SOA Composite Editor or in Oracle
BPEL Designer. After creation, you design the component in the Human Task Editor.
The method by which you create the human task service component determines
whether the component can be associated later with a BPEL process service
component or is a standalone component in the SOA Composite Editor.

To create a human task service component in the SOA Composite Editor:
1. Go to the SOA project in which to create a human task service component in the

SOA Composite Editor.

2. From the Component Palette, select SOA.

3. From the list, drag a Human Task into the designer.

The Create Human Task dialog appears.

4. In the Name field, enter a name.

The name you enter is added as the .task file name.

5. Note the Create Composite Service with SOAP Bindings checkbox. The selection
of this checkbox determines how the human task service component is created.

Creating the Human Task Definition with the Human Task Editor

25-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

a. If you want to create a human task service component that you later associate
with a BPEL process service component, do not select the Create Composite
Service with SOAP Bindings checkbox. The human task service component is
created as a component that you explicitly associate with a BPEL process
service component. Figure 25–2 provides details.

Figure 25–2 Human Task Component

b. If you want to create the human task service component as a standalone
component in the SOA Composite Editor, select the Create Composite Service
with SOAP Bindings checkbox. This creates a human task service component
that is automatically wired to a Simple Object Access Protocol (SOAP) web
service. Figure 25–3 provides details.

Figure 25–3 Standalone Human Task Component

This web service provides external customers with an entry point into the
human task service component of the SOA composite application.

6. Click Finish.

To create a human task in Oracle BPEL Designer:
1. From the Component Palette, select BPEL.

2. From the list, drag a Human Task into the designer.

The Create Human Task dialog appears.

3. Click the Add icon to create a human task.

4. In the Name field, enter a name.

The name you enter is added as the .task file name.

5. In the Title field, enter a task.

6. Click OK.

The Human Task Editor appears.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-5

For more information about creating a human task service component in the SOA
Composite Editor, see Chapter 4, "Introduction to the Functionality of the SOA
Composite Editor."

25.3.2 What Happens When You Create a Human Task Service Component
When a human task is created, the following folders and files appear:

■ The human task settings specified in the Human Task Editor are saved to a
metadata task configuration file in the metadata service (MDS) repository with a
.task extension. This file appears in the Application Navigator under SOA_
Project_Name > SOA Content. You can re-edit the settings in this file by
double-clicking the following:

– The .task file in the Application Navigator in either the SOA Composite
Editor or Oracle BPEL Designer

– The human task icon in the SOA Composite Editor or in your BPEL process in
Oracle BPEL Designer.

This reopens the .task file in the Human Task Editor.

■ A Human Tasks folder containing the human task you created appears in the
Structure window of the SOA Composite Editor.

Figure 25–4 shows these folders and files.

Figure 25–4 Human Task Folders and Files

Note: You can also create a human task that you later associate with a
BPEL process by selecting New from the File main menu, then
selecting SOA Tier > Service Components > Human Task.

Creating the Human Task Definition with the Human Task Editor

25-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For information about available samples, see Section 24.3.2, "Designing a Human Task
from Start to Finish."

25.3.3 How to Access the Sections of the Human Task Editor

To access the sections of the Human Task Editor:
1. Double-click the Human Task icon in the SOA Composite Editor or double-click

the Human Task icon in Oracle BPEL Designer and click the Edit icon in the upper
right corner.

The Human Task Editor consists of the following main sections shown in
Figure 25–5. These sections enable you to design the metadata of a human task.

Figure 25–5 Human Task Editor

Instructions for using these main sections of the Human Task Editor to create a
workflow task are listed in Table 25–1.

Table 25–1 Human Task Editor

Section Description See...

Task Title

(title, description,
outcomes, category,
priority, and owner)

Enables you to define task details
such as title, task outcomes,
owner, and other attributes.

Section 25.3.4, "How to Specify
the Title, Description, Outcome,
Priority, Category, and Owner"

Parameters Enables you to define the
structure (message elements) of
the task payload (the data in the
task).

Section 25.3.5, "How to Specify
the Task Payload Data
Structure"

Assignment and
Routing Policy

Enables you to assign participants
to the task and create a policy for
routing the task through the
workflow.

Section 25.3.6, "How to Assign
Task Participants"

Section 25.3.7, "How to Select a
Routing Policy"

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-7

25.3.4 How to Specify the Title, Description, Outcome, Priority, Category, and Owner
Figure 25–6 shows the Task Title section of the Human Task Editor.

This section enables you to specify details such as the task title, description, task
outcomes, task category, task priority, and task owner.

Figure 25–6 Human Task Editor — Task Title Section

Instructions for configuring the following subsections of the Task Title section are
listed in Table 25–2:

Expiration and
Escalation Policy

Enables you to specify the
expiration duration of a task

Section 25.3.8, "How to Escalate,
Renew, or End the Task"

Notification Settings Enables you to create and send
notifications when a user is
assigned a task or informed that
the status of the task has changed.

Section 25.3.9, "How to Specify
Participant Notification
Preferences"

Advanced Settings

For specifying:

Enables you to specify advanced
settings, such as:

■ Custom escalation rules

■ WordML and custom style
sheets for attachments

■ Multilingual settings

■ Callback classes

■ Workflow signature policies

■ Access rules to task content

■ Restrictions on assignments

■ Task and routing assignments
in BPEL callbacks

■ Graphical history of tasks

Section 25.3.10, "How To Specify
Advanced Settings"

Annotations Enables you to label different
attributes of the task definition.
Annotations are used with Oracle
Business Process Analysis.

Section 25.3.11, "How to Specify
Annotations"

Table 25–2 Human Task Editor — Task Title Section

For This Subsection... See...

Title Section 25.3.4.1, "Specifying a Task Title"

Description Section 25.3.4.2, "Specifying a Task Description"

Table 25–1 (Cont.) Human Task Editor

Section Description See...

Creating the Human Task Definition with the Human Task Editor

25-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

25.3.4.1 Specifying a Task Title

To specify a task title:
Enter an optional task title. The title defaults to this value only if the initiated task does
not have a title set in it. The title provides a visual identifier for the task. The task title
displays in Oracle BPM Worklist. You can also search on titles in Oracle BPM Worklist.

1. Select a method for specifying a task title:

■ Plain Text: Manually enter a name (for example, Vacation Request
Approved).

■ Text and XPath: Enter a combination of manual text and a dynamic
expression. After manually entering a portion of the title (for example,
Approval Required for Order Id:), place the cursor one blank space
to the right of the text and click the icon to the right of this field. This displays
the Expression Builder for dynamically creating the remaining portion of the
title. After completing the dynamic portion of the name, click OK to return to
this field. The complete name is displayed. For example:

Approval Required for Order Id: <%/task:task/task:payload/task:orderId%>

The expression is resolved during runtime with the exact order ID value from
the task payload.

If you enter a title in the Task Title field of the General tab of the Create Human
Task dialog described in Section 25.4.3.1, "Specifying the Task Title," the title you
enter here is overridden.

25.3.4.2 Specifying a Task Description
You can optionally specify a description of the task in the Description field. The
description enables you to provide additional details about a task. For example, if the
task title is Computer Upgrade Request, you can provide additional details in this
field, such as the model of the computer, amount of CPU, amount of RAM, and so on.
The description does not display in Oracle BPM Worklist.

25.3.4.3 Specifying a Task Outcome
Task outcomes capture the possible outcomes of a task. Oracle BPM Worklist displays
the outcomes you specify here as the possible task actions to perform during runtime.
Figure 25–7 provides details.

Outcomes Section 25.3.4.3, "Specifying a Task Outcome"

Category Section 25.3.4.4, "Specifying a Task Category"

Priority Section 25.3.4.5, "Specifying a Task Priority"

Owner Section 25.3.4.6, "Specifying a Task Owner"

Table 25–2 (Cont.) Human Task Editor — Task Title Section

For This Subsection... See...

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-9

Figure 25–7 Outcomes in Oracle BPM Worklist

You can specify the following types of task outcomes:

■ Select a seeded outcome

■ Enter a custom outcome

The task outcomes can also have runtime display values that are different from the
actual outcome value specified here. This permits outcomes to be displayed in a
different language in Oracle BPM Worklist. For more information about
internationalization, see Section 25.3.10.4, "Specifying Multilingual Settings."

To specify a task outcome:
1. To the right of the Outcomes field in the Task Title section, click the Search icon.

The Outcomes dialog shown in Figure 25–8 displays the possible outcomes for
tasks. APPROVE and REJECT are selected by default.

Figure 25–8 Outcomes Dialog

2. Select additional task outcomes or unselect the default outcomes.

3. To add custom outcomes, click the Add icon.

4. In the Name field, enter a custom name, and click OK.

Creating the Human Task Definition with the Human Task Editor

25-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Click OK to return to the Human Task Editor.

Your selections display in the Outcomes field.

The seeded and custom outcomes selected here display for selection in the
Majority Voted Outcome section of the parallel participant type.

For more information, see Section 25.3.6.2.1, "Specifying the Voting Outcome."

25.3.4.4 Specifying a Task Category
You can optionally specify a task category in the Category field. This categorizes tasks
created in a system. For example, in a help desk environment, you may categorize
customer requests as either software-related or hardware-related. The category
displays in Oracle BPM Worklist. You can filter tasks based on category and create
views on categories in Oracle BPM Worklist.

To specify a task category:
1. Select a method for specifying a task category:

■ By Name: Manually enter a name.

■ By Expression: Click the icon to the right of this field to display the Expression
Builder for dynamically creating a category.

25.3.4.5 Specifying a Task Priority
Specify the priority of the tasks. Priority can be 1 through 5, with 1 being the highest.
By default, the priority of a task is 3. This priority value is overridden by any priority
value you select in the General tab of the Create Human Task dialog. You can filter
tasks based on priority and create views on priorities in Oracle BPM Worklist.

To specify a task priority:
1. From the Priority list, select a priority for the task.

For more information about specifying a priority value in the Create Human Task
dialog, see Section 25.4.3.2, "Specifying the Task Initiator and Task Priority."

25.3.4.6 Specifying a Task Owner
The task owner can view the tasks belonging to business processes they own and
perform operations on behalf of any of the assigned task participant types.
Additionally, the owner can also reassign, withdraw, or escalate tasks. The task owner
can be considered the business administrator for a task. The task owner can also be
specified in the Advanced tab of the Create Human Task dialog described in
Section 25.4.4.2, "Specifying a Task Owner." The task owner specified in the Advanced
tab overrides any task owner you enter here.

For more information about the task owner, see Section 24.2.1.3, "Task Stakeholders."

Note: Ensure that you do not specify a custom name that matches a
name listed in the Task Actions tab of the Configure Task Content
Access dialog (for example, do not specify Delete). The Configure
Task Content Access dialog is accessible by clicking Configure
Visibility in the Advanced Settings section of the Human Task Editor.
Specifying the same name can cause problems at runtime.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-11

To specify a task owner:
1. Select a method for specifying the task owner:

■ Statically through the identity service user directory or the list of application
roles

■ Dynamically through an XPath expression

For example:

– If the task has a payload message attribute named po within which the
owner is stored, you can specify an XPath expression such as:
/task:task/task:payload/po:purchaseOrder/po:owner

– ids:getManager('jstein', 'jazn.com')

The manager of jstein is the task owner.

For more information about users, groups, and application roles, see Section 24.2.1.1.3,
"Participant Assignment."

25.3.4.6.1 Specifying a Task Owner Statically Through the User Directory or Application Roles

Task owners can be selected by browsing the user directory (Oracle Internet Directory,
Java AuthoriZatioN (JAZN)/XML, LDAP, and so on) or a list of application roles
configured for use with Oracle SOA Suite.

To specify a task owner statically through the user directory or a list of
application roles:
1. In the first list to the right of the Owner field in the Task Title section, select User,

Group, or Application Role as the type of task owner. Figure 25–9 provides
details.

Figure 25–9 Specify a Task Owner By Browsing the User Directory or Application Roles

2. In the second list to the right of the Owner field in the Task Title section, select
Static.

3. See the step in Table 25–3 based on the type of owner you selected.

4. If you selected User or Group, the Identity Lookup dialog shown in Figure 25–10
appears.

Table 25–3 Type of Owner

If You Selected... See Step...

User or Group 4

Application Role 5

Creating the Human Task Definition with the Human Task Editor

25-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–10 Identity Lookup Dialog

To select a user or group, you must first create an application server connection by
clicking the Add icon. Note the following restrictions:

■ Do not create an application server connection to an Oracle WebLogic
Administration Server from which to retrieve the list of identity service
realms. This is because there is no identity service running on the
Administration Server. Therefore, no realm information displays and no users
display when performing a search with a search pattern in the Identity
Lookup dialog. Instead, create an application server connection to a managed
Oracle WebLogic Server.

■ You must select an application server connection configured with the complete
domain name (for example, myhost.us.oracle.com). If you select a
connection configured only with the hostname (for example, myhost), the
Realm list may not display the available realms. If the existing connection
does not include the domain name, perform the following steps:

– In the Resource Palette, right-click the application server connection.

– Select Properties.

– In the Configuration tab, add the appropriate domain to the hostname.

– Return to the Identity Lookup dialog and reselect the connection.

a. Select or create an application server connection to display the realms for
selection. A realm provides access to a policy store of users and roles (groups).

b. Search for the owner by entering a search string such as jcooper, j*, *,
and so on. Clicking the Lookup icon to the right of the User Name field
fetches all the users that match the search criteria. Figure 25–11 provides
details. One or more users or groups can be highlighted and selected by
clicking Select.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-13

Figure 25–11 Identity Lookup with Realm Selected

c. View the hierarchy of a user by highlighting the user and clicking Hierarchy.
Similarly, clicking Reportees displays the reportees of a selected user or group.
Figure 25–12 provides details.

Creating the Human Task Definition with the Human Task Editor

25-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–12 User Hierarchy in Identity Lookup Dialog

d. View the details of a user or group by highlighting the user or group and
clicking Detail. Figure 25–13 provides details.

Figure 25–13 User or Group Details

e. Click OK to return to the Identity Lookup dialog.

f. Click Select to add the user to the Selected User section.

g. Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

5. If you selected Application Role, the Select an Application Role dialog appears.

a. In the Application Server list, select the type of application server that
contains the application role or click the Add icon to launch the Create
Application Server Connection wizard to create a connection.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-15

b. In the Application list, select the application that contains the application roles
(for example, a custom application or soa-infra for the SOA Infrastructure
application).

c. In the Available section, select appropriate application roles and click the >
button. To select all, click the >> button. Figure 25–14 provides details.

Figure 25–14 Application Role

d. Click OK.

25.3.4.6.2 Specifying a Task Owner Dynamically Through an XPath Expression

Task owners can be selected dynamically in the Expression Builder dialog.

To specify a task owner dynamically:
1. In the first list to the right of the Owner field in the Task Title section, select User,

Group, or Application Role as the type of task owner. Figure 25–15 provides
details.

Figure 25–15 Specify a Task Owner Dynamically

Creating the Human Task Definition with the Human Task Editor

25-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. In the second list to the right of the Owner field in the Task Title section, select
XPath.

This displays the Expression Builder dialog shown in Figure 25–16:

Figure 25–16 Expression Builder

3. Browse the available variable schemas and functions to create a task owner.

4. Click OK to return to the Human Task Editor.

Your selection displays in the Owner field.

For more information, see the following:

■ Click Help for instructions on using the Expression Builder dialog and XPath
Building Assistant

■ Appendix B, "XPath Extension Functions" for information about workflow
service dynamic assignment functions and identity service functions

25.3.5 How to Specify the Task Payload Data Structure
Figure 25–17 shows the Parameters section of the Human Task Editor.

This section enables you to specify the structure (message elements) of the task
payload (the data in the task) defined in the XSD file. You create parameters to
represent the elements in the XSD file. This makes the payload data available to the
workflow task. For example:

■ You create a parameter for an order ID element for placing an order from a store
front application

■ You create parameters for the location, type, problem description, severity, status,
and resolution elements for creating a help desk request

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-17

 Task payload data consists of one or more elements or types. Based on your selections,
an XML schema definition is created for the task payload.

Figure 25–17 Human Task Editor — Parameters Section

To specify the task payload data structure:
1. In the Parameters section, click the Add icon to display the Add Task Parameter

dialog shown in Figure 25–18.

Figure 25–18 Add Task Parameter Dialog

2. Enter the details described in Table 25–4:

Table 25–4 Add Task Parameter Dialog Fields and Values

Field Description

Parameter Type Select Type or Element and click the Search icon to display the
Type Chooser dialog for selecting the task parameter.

Parameter Name Accept the default name or enter a custom name. This field only
displays if Type is the selected parameter type.

Editable via worklist Select this checkbox to enable users to edit this part of the task
payload in Oracle BPM Worklist. For example, for a loan
approval task, the APR attribute may need to be updated by the
user reviewing the task, but the SSN field may not be editable.

You can also specify access rules that determine the parts of a
task that participants can view and update. For more
information, see Section 25.3.10.8, "Specifying Access Policies on
Task Content."

Creating the Human Task Definition with the Human Task Editor

25-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. Select the type, as shown in Figure 25–19.

Figure 25–19 Parameter Type

4. Click OK to return to the Human Task Editor.

Your selection displays in the Parameters section.

5. If you want to edit your selection, select it and click the Edit icon in the upper
right part of the Parameters section.

25.3.6 How to Assign Task Participants
Figure 25–20 shows the Assignment and Routing Policy section of the Human Task
Editor. This section enables you to select a participant type that meets your business
requirement. While configuring the participant type, you build lists of users, groups,
and application roles to act upon tasks.

Note: You can only define payload flex field mappings in Oracle
BPM Worklist for payload parameters that are simple XML types
(string, integer, and so on) or complex types (for example, a purchase
order, and so on). If you must search tasks using keywords or define
views or delegation rules based on task content, then you must use
payload parameters based on simple XML types. These simple types
can be mapped to flex columns in Oracle BPM Worklist.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-19

Figure 25–20 Human Task Editor — Assignment and Routing Policy Section

You can easily mix and match participant types to create simple or complex workflow
routing policies. You can also extend the functionality of a previously configured
human task to model more complex workflows.

A participant type is grouped in a block under a stage (for example, named
default.Participant1 in Figure 25–20). A stage is a way of organizing the approval
process for blocks of participant types. You can have one or more stages in sequence or
in parallel. Within each stage, you can have one or more participant type blocks in
sequence or in parallel. The up and down keys enable you to rearrange the order of
your participant type blocks.

For example:

■ You can create all participant type blocks in a single stage (for example, a purchase
order request in which the entire contents of the order are approved or rejected as
a whole).

■ You can create more complex approval tasks that may include one or more stages.
For example, you can place one group of participant type blocks in one stage and
another block in a second stage. The list of approvers in the first stage handles line
entry approvals and the list of approvers in the second stage handles header entry
approvals.

Each of the participant types has an associated editor that you use for configuration
tasks. The sequence in which the assignees are added indicates the execution
sequence.

If you want to specify a different stage name or have a business requirement that
requires you to create additional stages, perform the following steps. Note that
creating additional stages is an advanced requirement that may not be necessary for
your environment.

For more information about participant types, see Section 24.2.1.1, "Task Assignment
and Routing."

To specify a stage name and add parallel and sequential blocks:
The stage is named default by default. If you want, you can change the name.

1. Double-click the name.

The Edit dialog shown in Figure 25–21 appears.

Creating the Human Task Definition with the Human Task Editor

25-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–21 Edit Dialog

2. Enter a name, and click OK.

3. Highlight the stage and its participant type block, and click the Add icon.
Figure 25–23 shows the list that is displayed.

Figure 25–22 Add a Second Stage

4. Select an option from the list (for example, Parallel stage).

A second stage is added in parallel to the first stage, as shown in Figure 25–23.

Figure 25–23 Parallel Stage

5. Highlight the second block on the right, and select the Add icon.

6. Select Sequential stage.

A sequential stage is added below the selected block.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-21

Figure 25–24 Sequential Stage

You create participant types within these blocks.

To assign task participants:
1. In the Assignment and Routing Policy section, perform one of the following

tasks:

a. Highlight the block below the stage box and click the Edit icon in the upper
right corner. The first time you create a task participant, the box is labeled <no
participants>.

or

b. Double-click the participant box below the stage box.

The Edit Participant Type dialog appears. This dialog enables you to select a
specific participant type.

2. From the Type list, select a participant type shown in Figure 25–25.

Figure 25–25 Type List

3. See the section shown in Table 25–5 based on your selection.

Table 25–5 Participant Types

Participant
Type

For a Description of this
Participant Type, See...

For Instructions on Configuring this Participant Type,
See...

■ Single

■ Parallel

■ Serial

■ FYI

Section 24.2.1.1.2, "Participant Type" Section 25.3.6.1, "Configuring the Single Participant Type"

Section 25.3.6.2, "Configuring the Parallel Participant Type"

Section 25.3.6.3, "Configuring the Serial Participant Type"

Section 25.3.6.4, "Configuring the FYI Participant Type"

Creating the Human Task Definition with the Human Task Editor

25-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

25.3.6.1 Configuring the Single Participant Type
Figure 25–26 displays the Edit Participant Type dialog for the single participant type.

Figure 25–26 Edit Participant Type — Single Type

To configure the single participant type:
1. In the Label field, enter a recognizable label for this participant. This label must be

unique among all the participants in the task definition (for example, Approval
Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type
dialog for the single participant type are listed in Table 25–6:

Table 25–6 Edit Participant Type — Single Type

For This Subsection... See...

Participant List Section 25.3.6.1.1, "Creating a Single Task Participant
List"

Limit allocated duration to (under
the Advanced section)

Section 25.3.6.1.2, "Specifying a Time Limit for Acting on
a Task"

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-23

25.3.6.1.1 Creating a Single Task Participant List

Users assigned to the list of participants can act upon tasks. In this type of assignment
list, only one user is required to act on the task. You can provide either a single user or
a list of users, groups, or application roles for this pattern. If a list is specified, then all
users are assigned the task; one of them must acquire and act upon the task. When one
user acts on it, the task is withdrawn from the task list of other assignees.

You can create several types of lists for the single user participant (and also for the
parallel, serial, and FYI user participants):

■ Value-based name and expression lists

These lists enable you to statically or dynamically select users, groups, or
application roles as task assignees.

■ Value-based management chain lists

Management chains are typically used for serial approvals through multiple users
in a management chain hierarchy. Therefore, this list is most likely useful with the
serial participant type. This is typically the case if you want all users in the
hierarchy to act upon the task. Management chains can also be used with the
single participant type. In this case, however, all users in the hierarchy get the task
assigned at the same time. As soon as one user acts on the task, it is withdrawn
from the other users.

For example, a purchase order is assigned to a manager. If the manager approves
the order, it is assigned to their manager. If that manager approves it, it is assigned
to their manager, and so on until three managers approve the order. If any
managers reject the request or the request expires, the order is rejected if you
specify an abrupt termination condition. Otherwise, the task flow continues to be
routed.

■ Rule-based names and expression lists and management chain lists

Business rules enable you to create the list of task participants with complex
expressions. For example, you create a business rule in which a purchase order
request below $5000 is sent to a manager for approval. However, if the purchase
order request exceeds $5000, the request is sent to the manager of the manager for
approval. Two key features of business rules are facts and action types, which are
described in Section 25.3.7.2, "Specifying Advanced Task Routing Using Business
Rules."

When you select a participant type, the dialog that displays enables you to choose an
option for building your list of task participant assignees (users, groups, or application
roles), as shown in Figure 25–27. The three selections described above are available:
Names and expressions, Management Chain, and Rule-based.

Allow this participant to invite
other participants (under the
Advanced section)

Section 25.3.6.1.3, "Inviting Additional Participants to a
Task"

Specify skip rule (under the
Advanced section)

Section 25.3.6.1.4, "Bypassing a Task Participant"

Table 25–6 (Cont.) Edit Participant Type — Single Type

For This Subsection... See...

Creating the Human Task Definition with the Human Task Editor

25-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–27 Build a List of Participants

After selecting an option, you dynamically assign task participant assignees (users,
groups, or application roles) and a data type, as shown in Figure 25–28.

Figure 25–28 Assignment of Task Assignees

This section describes how to create these lists of participants.

Creating Participant Lists Consisting of Value-Based Names and Expressions
Select a method for statically or dynamically assigning a user, group, or application
role as a task participant.

For information about the following:

■ Users, groups, or application roles, see Section 24.2.1.1.3, "Participant
Assignment."

■ Statically and dynamically assigning task participants, see Section 24.2.1.2, "Static,
Dynamic, and Rule-Based Task Assignment."

To create participant lists consisting of value-based names and expressions:
1. From the Build a list of participants using list, select Names and expressions.

2. From the Specify attributes using list, select Value-based.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-25

The dialog refreshes to display the fields shown in Figure 25–29.

Figure 25–29 Value-Based Names and Expressions

3. Click the Add icon and select a user, group, or application role as a task
participant.

The Identification Type column of the Participant Names table displays your
selection of user, group, or application role.

4. If you want to change your selection in the Identification Type column, click it to
invoke a dropdown list.

5. In the Data Type column, click your selection to invoke a dropdown list to assign
a value:

■ By Name: If your identification type is a user or group, click the Browse icon
(the dots) on the right to display a dialog for selecting a user or group
configured through the identity service. The identity service enables the
lookup of user properties, roles, and group memberships. User information is
obtained from an LDAP server such as Oracle Internet Directory. You can use
wild cards (*) to search for IDs.

If your selection is an application role, click the Browse icon to display the
Select an Application Role dialog for selecting an application role. To search
for application roles, you must first create a connection to the application
server. When searching, you must specify the application name to find the
name of the role. Note that the task definition can refer to only one application
name. You cannot use application roles from different applications as
assignees or task owners.

■ By Expression: For a user, group, or application role, click the Browse icon to
dynamically select a task assignee in the Expression Builder dialog. Use the
bpws:getVariableData(...) expression or the ids:getManager()
XPath function.

The Value column displays the value you specified.

6. If you want to manually enter a value, click the field in the Value column and
specify a value.

Creating the Human Task Definition with the Human Task Editor

25-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Creating Participant Lists Consisting of Value-Based Management Chains
Select a method for statically or dynamically assigning management chain parameters
as task participants.

For information about the following:

■ Users, groups, or application roles, see Section 24.2.1.1.3, "Participant
Assignment."

■ Statically and dynamically assigning task participants, see Section 24.2.1.2, "Static,
Dynamic, and Rule-Based Task Assignment."

■ Management chains, see Section 25.3.6.1.1, "Creating a Single Task Participant
List."

To specify participant lists based on value-based management chains:
1. From the Build a list of participants using list, select Management Chain.

2. From the Specify attributes using list, select Value-based.

The dialog refreshes to display the fields shown in Figure 25–30.

Figure 25–30 Value-Based Management Chains

3. See Step 3 through Step 6 on page 25-25 for instructions on assigning a user, group,
or application role to a list in the Starting Participant table.

4. In the Top Participant list, select a method for assigning the number of task
participant levels:

■ By Title: Select the title of the last (highest) approver in the management
chain.

■ XPath: Select to dynamically enter a top participant through the Expression
Builder dialog.

5. In the Number of Levels list, select a method for assigning a top participant:

■ By Number: Enter a value for the number of levels in the management chain
to include in this task. For example, if you enter 2 and the task is initially

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-27

assigned to user jcooper, both the user jstein (manager of jcooper) and
the user wfaulk (manager of jstein) are included in the list (apart from
jcooper, the initial assignee).

■ XPath: Select to dynamically enter a value through the Expression Builder
dialog.

Creating Participant Lists Consisting of Rulesets
A ruleset provides a unit of execution for rules and for decision tables. In addition,
rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets
can be executed in order. This is called rule flow. The ruleset stack determines the
order. The order can be manipulated by rule actions that push and pop rulesets on the
stack. In rulesets, the priority of rules applies to specify the order of firing of rules in
the ruleset. Rulesets also provide an effective date specification that identifies that the
ruleset is always active, or that the ruleset is restricted based on a time and date range,
or a starting or ending time and date.

The method by which you create a ruleset is based on how you access it. This is
described in the following section.

To specify participant lists based on rulesets:
Business rules can define the participant list. There are two options for using business
rules:

■ Rules define parameters of a specific list builder (such as Names and Expressions
or Management Chain). In this case, the task routing pattern is modeled to use a
specific list builder. In the list builder, the parameters are listed as coming from
rules. Rules return the list builder of the same type as the one modeled in Oracle
JDeveloper.

1. From the Build a list of participants using list, select Names and expressions
or Management Chain.

2. From the Specify attributes using list, select Rule-based.

3. In the List Ruleset field, enter a ruleset name.

Figure 25–31 provides details.

Figure 25–31 Rulesets

4. Click OK.

■ Rules define the list builder and the list builder parameters. In this case, the list
itself is built using rules. The rules define the list builder and the parameters.

Creating the Human Task Definition with the Human Task Editor

25-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1. From the Build a list of participants using list, select Rule-based.

2. In the List Ruleset field, enter a ruleset name.

Figure 25–32 provides details.

Figure 25–32 Rulesets

3. Click OK.

Both options create a rule dictionary if one is not created and several rule functions
and facts are preseeded for easy specifications of the participant list. In the rule
dictionary, the following rule functions are seeded to create participant lists:

■ CreateResourceList

■ CreateManagementChainList

The Task fact is asserted by the task service for basing rule conditions.

After the rule dictionary is created, the Oracle Business Rules Designer is displayed.

1. Model your rule conditions. In the action part, call one of the above functions to
complete building your lists. Figure 25–33 provides details.

Figure 25–33 Business Rules

The parameters for the rule functions are similar to the ones in Oracle JDeveloper
modeling. In addition to the configurations in Oracle JDeveloper, some additional
options are available in the Oracle Business Rules Designer for the following
attributes:

■ responseType: If the response type is REQUIRED, the assignee must act on
the task. Otherwise, the assignment is converted to an FYI assignment.

■ ruleName: The rule name can be used to create reasons for assignments.

■ lists: This object is a holder for the lists that are built. Clicking this option
shows a pre-asserted fact Lists object to use as the parameter.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-29

An example of rules specifying management chain-based participants is shown in
Figure 25–34.

Figure 25–34 Business Rules

If multiple rules are fired, the list builder created by the rule with the highest
priority is selected.

25.3.6.1.2 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on
a task. If the user, group, or role does not act in the time specified, the global escalation
and renewal policies that you set in the Expiration and Escalation Policy section
(known as the routing slip level) of the Human Task Editor are applied. For example, if
the global policy is set to escalate the task and this participant does not act in the
duration provided, the task is escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:
1. Expand the Advanced section of the Edit Participant Type dialog for the single

type, as shown in Figure 25–35.

Figure 25–35 Advanced Section of Edit Participant Type — Single Type

2. Select Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in
the Expiration and Escalation Policy section of the Human Task Editor, see
Section 25.3.8, "How to Escalate, Renew, or End the Task."

25.3.6.1.3 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before
routing it to the next assignee in this workflow. For example, assume the approval

Creating the Human Task Definition with the Human Task Editor

25-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

workflow goes from James Cooper to John Steinbeck. If this option is checked, James
Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

This is also known as ad hoc routing. If this option is selected, Adhoc Route is added
to the Actions list in Oracle BPM Worklist at runtime.

To invite additional participants to a task:
1. Expand the Advanced section of the Edit Participant Type dialog for the single

type, as shown in Figure 25–35.

2. Select Allow this participant to invite other participants.

25.3.6.1.4 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific
condition is satisfied. For example, if a user submits a business trip expense report that
is under a specific amount, no approval is required by their manager.

To bypass a task:
1. Expand the Advanced section of the Edit Participant Type dialog for the single

type, as shown in Figure 25–35.

2. Select Specify skip rule.

This action displays an icon for accessing the Expression Builder dialog for
building a condition.

The expression to bypass a task participant must evaluate to a boolean value. For
example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath
expression for skipping a participant.

For more information about creating dynamic rule conditions, see Section 25.3.7.2,
"Specifying Advanced Task Routing Using Business Rules."

25.3.6.2 Configuring the Parallel Participant Type
Figure 25–36 and Figure 25–37 display the upper and lower sections of the Parallel
dialog.

This participant type is used when multiple users, working in parallel, must act
simultaneously, such as in a hiring situation when multiple users vote to hire or reject
an applicant. You specify the voting percentage that is needed for the outcome to take
effect, such as a majority vote or a unanimous vote.

For example, a business process collects the feedback from all interviewers in the
hiring process, consolidates it, and assigns a hire or reject request to each of the
interviewers. At the end, the candidate is hired if the majority of interviewers vote for
hiring instead of rejecting.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-31

Figure 25–36 Edit Participant Type — Parallel Type (Upper Section of Dialog)

Figure 25–37 Edit Participant Type — Parallel Type (Lower Section of Dialog)

To assign participants to the parallel participant type:
1. In the Label field, enter a recognizable label for this participant. This label must be

unique among all the participants in the task definition (for example, Approval
Manager, Primary Reviewers, and so on).

Creating the Human Task Definition with the Human Task Editor

25-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Instructions for configuring the following subsections of the Edit Participant Type
dialog for the parallel participant type are listed in Table 25–7:

25.3.6.2.1 Specifying the Voting Outcome

To specify group voting details:
1. Go to the Vote Outcome section of the Edit Participant Type dialog for the parallel

type.

2. In the Default Outcome list, select the default outcome or enter an XPath
expression for this task to take effect if the consensus percentage value is not
satisfied. This happens if there is a tie or if all participants do not respond before
the task expires. Seeded and custom outcomes that you entered in the Outcomes
dialog in Section 25.3.4.3, "Specifying a Task Outcome" display in this list.

3. In the Consensus Percentage list, select a method for determining the outcome of
the final task.

■ By Number: Select a percentage value or enter an XPath expression required
for the outcome of this task to take effect (for example, a majority vote (51) or a
unanimous vote (100)). For example, assume there are two possible outcomes
(ACCEPT and REJECT) and five subtasks. If two subtasks are accepted and
three are rejected, and the required acceptance percentage is 50%, the outcome
of the task is rejected.

Note that this functionality is nondeterministic. For example, selecting a
percentage of 30% when there are two subtasks does not make sense.

■ By Expression: Dynamically specify the details by clicking the icon to the right
of the field to display the Expression Builder dialog.

4. Specify additional group voting details:

■ Immediately trigger voted outcome when minimum percentage is met

Table 25–7 Edit Participant Type — Parallel Type

For This Subsection... See...

Default Outcome

Consensus Percentage

Immediately trigger voted outcome
when minimum percentage is met

Wait until all votes are in before
triggering outcome

Section 25.3.6.2.1, "Specifying the Voting Outcome"

Participant List Section 25.3.6.2.2, "Creating a Parallel Task Participant
List"

Share attachments and comments Section 25.3.6.2.3, "Sharing Attachments and Comments
with Task Participants"

Limit allocated duration to (under
the Advanced section)

Section 25.3.6.2.4, "Specifying a Time Limit for Acting on
a Task"

Allow this participant to invite
other participants (under the
Advanced section)

Section 25.3.6.2.5, "Inviting Additional Participants to a
Task"

Specify skip rule (under the
Advanced section)

Section 25.3.6.2.6, "Bypassing a Task Participant"

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-33

If selected, the outcome of the task can be computed early with the outcomes
of the completed subtasks, enabling the pending subtasks to be withdrawn.
For example, assume four users are assigned to act on a task, the default
outcome is APPROVE, and the consensus percentage is set at 50. If the first
two users approve the task, the third and fourth users do not need to act on
the task, since the consensus percentage value has been satisfied.

■ Wait until all votes are in before triggering outcome

If selected, the workflow waits for all responses before an outcome is initiated.

25.3.6.2.2 Creating a Parallel Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several
types of lists:

■ Value-based name and expression lists

■ Value-based management chain lists

■ Rule-based names and expression lists

■ Rule-based management chain lists

For information about creating these lists of participants, see section Section 25.3.6.1.1,
"Creating a Single Task Participant List."

25.3.6.2.3 Sharing Attachments and Comments with Task Participants

You can share comments and attachments with all group collaborators or workflow
participants for a task. This information typically displays in the footer region of
Oracle BPM Worklist.

1. Select Share attachments and comments.

25.3.6.2.4 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on
a task. If the user, group, or role does not act in the time specified, the global escalation
and renewal policies that you set in the Expiration and Escalation Policy section
(known as the routing slip level) of the Human Task Editor are applied. For example, if
the global policy is set to escalate the task and this participant does not act in the
duration provided, the task is escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:
1. In the Advanced section of the Edit Participant Type dialog for the parallel type,

click the Open icon to expand the section shown in Figure 25–37 on page 25-31.

2. Select Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in the
Expiration and Escalation Policy section of the Human Task Editor, see Section 25.3.8,
"How to Escalate, Renew, or End the Task."

25.3.6.2.5 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before
routing it to the next assignee in this workflow. For example, assume the approval
workflow goes from James Cooper to John Steinbeck. If this option is checked, James
Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

Creating the Human Task Definition with the Human Task Editor

25-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To invite additional participants to a task:
1. In the Advanced section of the Edit Participant Type dialog for the parallel type,

click the Open icon to expand the section (if not expanded).

2. Select the Allow this participant to invite other participants.

25.3.6.2.6 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific
condition is satisfied. For example, if a user submits a business trip expense report that
is under a specific amount, no approval is required by their manager.

To bypass a task participant:
1. In the Edit Participant Type dialog for the parallel type, select the Specify skip

rule checkbox.

This action displays an icon for accessing the Expression Builder dialog for
building a condition. The expression must evaluate to a boolean value.

For information about a valid XPath expression for skipping a participant, see
Section 25.3.6.1.4, "Bypassing a Task Participant."

25.3.6.3 Configuring the Serial Participant Type
Figure 25–38 displays the Serial dialog.

This participant type enables you to create a list of sequential participants for a
workflow. For example, if you want a document to be reviewed by John, Mary, and
Scott in sequence, use this participant type. For the serial participant type, they can be
any list of users or groups.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-35

Figure 25–38 Edit Participant Type — Serial Type

To configure the serial participant type:
1. In the Label field, enter a recognizable label for this participant. This label must be

unique among all the participants in the task definition (for example, Approval
Manager, Primary Reviewers, and so on).

Instructions for configuring the following subsections of the Edit Participant Type
dialog for the serial participant type are listed in Table 25–8.

Table 25–8 Edit Participant Type — Serial Type

For This Subsection... See...

Participant List Section 25.3.6.3.1, "Creating a Serial Task Participant
List"

Limit allocated duration to (under
the Advanced section)

Section 25.3.6.3.2, "Specifying a Time Limit for Acting on
a Task"

Allow this participant to invite
other participants (under the
Advanced section)

Section 25.3.6.3.3, "Inviting Additional Participants to a
Task"

Specify skip rule (under the
Advanced section)

Section 25.3.6.3.4, "Bypassing a Task Participant"

Creating the Human Task Definition with the Human Task Editor

25-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

25.3.6.3.1 Creating a Serial Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several
types of lists:

■ Value-based name and expression lists

■ Value-based management chain lists

■ Rule-based names and expression lists

■ Rule-based management chain lists

See section Section 25.3.6.1.1, "Creating a Single Task Participant List" for instructions
on creating these lists of participants.

25.3.6.3.2 Specifying a Time Limit for Acting on a Task

You can specify the amount of time a user, group, or application role receives to act on
a task. If the user, group, or role does not act in the time specified, the global escalation
and renewal policies that you set in the Expiration and Escalation Policy section
(known as the routing slip level) of the Human Task Editor are applied. For example, if
the global policy is set to escalate the task and this participant does not act in the
duration provided, the task is escalated to the manager or another user, as appropriate.

To specify a time limit for acting on a task:
1. In the Advanced section of the Edit Participant Type dialog for the Serial type,

click the Open icon to expand the section shown in Figure 25–38.

2. Click Limit allocated duration to.

3. Specify the amount of time.

For more information about setting the global escalation and renewal policies in
the Expiration and Escalation Policy section of the Human Task Editor, see
Section 25.3.8, "How to Escalate, Renew, or End the Task."

25.3.6.3.3 Inviting Additional Participants to a Task

You can allow a task assignee to invite other participants into the workflow before
routing it to the next assignee in this workflow. For example, assume the approval
workflow goes from James Cooper to John Steinbeck. If this option is checked, James
Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.

To invite additional participants to a task:
1. In the Advanced section of the Edit Participant Type dialog for the serial type,

click the Open icon to expand the section (if not expanded).

2. Select Allow this participant to invite other participants.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-37

25.3.6.3.4 Bypassing a Task Participant

You can bypass a task participant (user, group, or application role) if a specific
condition is satisfied. For example, if a user submits a business trip expense report that
is under a specific amount, no approval is required by their manager.

To bypass a task participant:
1. In the Advanced section of the Edit Participant Type dialog for the serial type,

select the Specify skip rule checkbox.

This action displays an icon for accessing the Expression Builder dialog for
building a condition. The expression must evaluate to a boolean value.

For more information about a valid XPath expression for skipping a participant,
see Section 25.3.6.1.4, "Bypassing a Task Participant."

25.3.6.4 Configuring the FYI Participant Type
Figure 25–39 displays the Edit Participant Type dialog for the FYI type.

This participant type is used when a task is sent to a user, but the business process
does not wait for a user response; it just continues. FYIs cannot directly impact the
outcome of a task, but in some cases can provide comments or add attachments.

For example, a magazine subscription is due for renewal. If the user does not cancel
the current subscription before the expiration date, the subscription is renewed. This
user is reminded weekly until the request expires or the user acts on it.

Note: For the serial participant type, additional participants can be
invited as follows:

■ Globally specifying that the ad hoc participants can be invited at
anytime. In this case, even in a sequential workflow, approvers
can invite other participants at any level in the sequential
workflow.

■ Specifying that an ad hoc invitation of other participants can be
done only in specific points in the workflow. In this case, other ad
hoc participants are invited only when a serial in complete.

Creating the Human Task Definition with the Human Task Editor

25-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–39 Edit Participant Type — FYI Type

To configure the FYI participant type:
1. In the Label field, enter a recognizable label for this participant. This label must be

unique among all the participants in the task definition (for example, Approval
Manager, Primary Reviewers, and so on).

25.3.6.4.1 Creating an FYI Task Participant List

Users assigned to the list of participants can act upon tasks. You can create several
types of lists:

■ Value-based name and expression lists

■ Value-based management chain lists

■ Rule-based names and expression lists

■ Rule-based management chain lists

See section Section 25.3.6.1.1, "Creating a Single Task Participant List" for instructions
on creating these lists of participants.

25.3.7 How to Select a Routing Policy
After you configure a participant type and are returned to the Human Task Editor, the
Task will go from starting to final participant icon is enabled, as shown in
Figure 25–40.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-39

Figure 25–40 Human Task Editor — Assignment and Routing Policy Section

Click this icon to display the Configure Assignment dialog shown in Figure 25–41.
This dialog enables you to specify a method for routing your task through the
workflow.

Figure 25–41 Configure Assignment

Table 25–9 describes the routing policy methods provided.

Creating the Human Task Definition with the Human Task Editor

25-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

25.3.7.1 Routing Tasks to All Participants in the Specified Order
You can select to have a task reviewed by all selected participants. This is known as
default routing because the task is routed to each of the participants in the order in
which they appear. This type of routing differs from state machine-based routing.

Table 25–9 Routing Policy Method

Routing Policy Selection Use This Policy In Environments Where... Section

Route task to all
participants, in order
specified

This selection enables you
to specify the following
suboptions:

A task must be routed to each of the
participants in the order in which they
appear. This is predetermined, default
routing. For example, in a hiring process, if
three users interview and provide review
feedback, then the task is sent to the human
resources department.

Section 25.3.7.1, "Routing Tasks to All
Participants in the Specified Order"

■ Allow all participants
to invite other
participants

A participant can select users or groups as
the next assignee (ad hoc) when approving
the task.

Section 25.3.7.1.1, "Allowing All
Participants to Invite Other
Participants"

■ Complete task when
a participant chooses
<outcome>

A participant in a task can accept or reject it,
thus ending the workflow without the task
being sent to any other participant. For
example, a manager rejects a purchase order,
meaning that purchase order is not sent to
their manager for review.

Section 25.3.7.1.2, "Stopping Routing of
a Task to Further Participants"

■ Enabling Early
Completion in
Parallel Subtasks

Note: This option is for environments in
which you have multiple stages and
participants working in parallel.

Participants perform subtasks in parallel,
and one group’s rejection or approval of a
subtask does not cause the other group’s
subtask to also be rejected or approved.

Section 25.3.7.1.3, "Enabling Early
Completion in Parallel Subtasks"

■ Completing Parent
Subtasks of Early
Completing Subtasks

Note: This option is for environments in
which you have multiple stages and
participants working in parallel.

Participants perform subtasks in parallel,
and one group’s rejection or approval of a
subtask causes the other group’s subtask to
also be rejected or approved.

Section 25.3.7.1.4, "Completing Parent
Subtasks of Early Completing Subtasks"

Use Advanced Rules The participants to whom the task is routed
are determined by the business rule logic
that you model. For example, a loan
application task is designed to go through a
loan agent, their manager, and then the
senior manager. If the loan agent approves
the loan, but their manager rejects it, the
task is returned to the loan agent.

Section 25.3.7.2, "Specifying Advanced
Task Routing Using Business Rules"

Use External Routing The participants in a task are dynamically
determined. For example, a company’s rules
may require the task participants to be
determined and then retrieved from a
back-end database during runtime.

Section 25.3.7.3, "Using External
Routing"

Assignment tab A participant is assigned a failed task for the
purposes of recovery.

Section 25.3.7.4, "Configuring the Error
Assignee"

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-41

To route tasks to all participants in the specified order:
1. In the Assignment and Routing Policy section, click the icon to the right of Task

will go from starting to final participant.

2. Select Route task to all participants, in order specified from the list shown in
Figure 25–42.

Figure 25–42 Route a Task to All Participants

See the following sections for instructions on defining a routing policy:

■ Allowing all participants to invite other participants

■ Completing a task when a participant chooses

■ Enabling early completion in parallel subtasks

■ Completing parent subtasks of early completing subtasks

25.3.7.1.1 Allowing All Participants to Invite Other Participants This checkbox is the
equivalent of the ad hoc workflow pattern of pre-10.1.3 Oracle BPEL Process Manager
releases. This applies when there is at least one participant. In this case, each user
selects users or groups as the next assignee when approving the task.

To allow all participants to invite other participants:
1. In the Assignment and Routing Policy section, click the icon to the right of Task

will go from starting to final participant.

2. Select Route task to all participants, in order specified.

3. Select the Allow all participants to invite other participants checkbox for this task
assignee to invite other participants into the workflow before routing it to the next
assignee in this workflow.

25.3.7.1.2 Stopping Routing of a Task to Further Participants You can specify conditions
under which to complete a task early, regardless of the other participants in the
workflow.

For example, assume an expense report goes to the manager, and then the director. If
the first participant (manager) rejects it, you can end the workflow without sending it
to the next participant (director).

Creating the Human Task Definition with the Human Task Editor

25-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To abruptly complete a condition:
1. In the Assignment and Routing Policy section, click the icon to the right of Task

will go from starting to final participant.

2. Select Route task to all participants, in order specified from the list.

3. Select the Complete task when a participant chooses <outcome> checkbox.

The Abrupt Completion Details dialog appears.

There are two methods for specifying the abrupt completion of a task:

■ Outcomes

■ XPath expression routing condition

If outcomes are specified, any time the selected task outcome occurs, the task
completes. If both outcome and routing condition are specified, the workflow
service performs a logical OR on the two.

4. Select appropriate outcomes and click the > button, as shown in Figure 25–43. To
select all, click the >> button.

Figure 25–43 Abrupt Completion Details

5. To the right of the Routing Condition field, click the icon to display the
Expression Builder dialog for dynamically creating a condition under which to
complete this task early. For example, if a user submits a business trip expense
report that is under a specific amount, no approval is required by their manager.

6. If you want to enable early completion, click Enable early completion in parallel
with subtasks. For more information, see Section 25.3.7.1.3, "Enabling Early
Completion in Parallel Subtasks."

7. If you want to enable early completion of parent tasks, click Complete parent
tasks of early completing subtasks. For more information, see Section 25.3.7.1.4,
"Completing Parent Subtasks of Early Completing Subtasks."

8. Click OK to return to the Human Task Editor.

You can click the icon to the right of the Complete task when a participant
chooses <outcome> checkbox to edit this information.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-43

25.3.7.1.3 Enabling Early Completion in Parallel Subtasks You can use this option in the
following environments:

■ Multiple stages and groups of participants perform subtasks in parallel.

■ A participant in one group approves or rejects a subtask, which causes the other
participants in that same group to stop acting upon the task. However, this does
not cause the other parallel group to stop acting upon subtasks. That group
continues taking actions on tasks.

For example, assume there are two parallel subgroups, each in separate stages. One
group acts upon lines of a purchase order. The other group acts upon headers of the
same purchase order. If participant ApproveLines.Participant2 of the first group
rejects a line, all other task participants in the first group stop acting upon tasks.
However, the second parallel group continues to act upon headers in the purchase
order. In this scenario, the entire task does not complete early. Figure 25–44 provides
details.

Figure 25–44 Early Completion of Parallel Subtasks

25.3.7.1.4 Completing Parent Subtasks of Early Completing Subtasks You can use this
option in the following environments:

■ Multiple stages and groups of participants perform subtasks in parallel.

■ A participant in one group approves or rejects a subtask, which causes the other
participants in that same group to stop acting upon the task. This also causes the
other parallel group to stop acting upon subtasks.

For example, assume there are two parallel subgroups, each in separate stages, as
shown in Figure 25–44. One group acts upon lines of a purchase order. The other
group acts upon headers of the same purchase order. If participant
ApproveLines.Participant2 of the first group rejects a line, all other task participants
in the first group stop acting upon tasks. In addition, the second parallel group stops
acting upon headers in the purchase order. In this scenario, the entire task completes
early.

25.3.7.2 Specifying Advanced Task Routing Using Business Rules
Use advanced routing rules to create complex workflow routing scenarios. The
participant types (single, parallel, serial, and FYI) are used to create a linear flow from

Creating the Human Task Definition with the Human Task Editor

25-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

one set of users to another with basic conditions such as abrupt termination, skipping
assignees, and so on. However, there is often a need to perform more complex back
and forth routing between multiple individuals in a workflow. One option is to use the
BPEL process as the orchestrator of these tasks. Another option is to specify it
declaratively using business rules. This section describes how you can model such
complex interactions by using business rules with the Human Task Editor.

25.3.7.2.1 Introduction to Advanced Task Routing Using Business Rules You can define state
machine routing rules using Oracle Business Rules. This action enables you to create
Oracle Business Rules that are evaluated:

■ After a routing slip task participant sets the outcome of the task

■ Before the task is assigned to the next routing slip participant

This action enables you to override the standard task routing slip method described in
Section 25.3.7.1, "Routing Tasks to All Participants in the Specified Order" and build
complex routing behavior into tasks.

Using Oracle Business Rules, you define a set of rules (called a ruleset) that rely on
business objects, called facts, to determine which action to take.

25.3.7.2.2 Facts A fact is an object with certain business data. Each time a routing slip
assignee sets the outcome of a task, instead of automatically routing the task to the
next assignee, the task service performs the following steps:

■ Asserts facts into the decision service

■ Executes the advanced routing rule set

Rules can test values in the asserted facts and specify the routing behavior by setting
values in a TaskAction fact type.

Table 25–10 describes the fact types asserted by the task service.

Table 25–10 Fact Types Asserted By the Task Service

Fact Type Description

Task This fact contains the current state of the workflow task instance. All task
attributes can be tested against it. The task fact also contains the current
task payload. This fact enables you to construct tests against payload
values and task attribute values.

PreviousOutco
me

This fact describes the previous task outcome and the assignee who set the
outcome. The previous outcome fact contains the following attributes:

■ actualParticipant: The name of the participant who set the task
outcome (for example, jstein)

■ logicalParticipant: The logical name (or label) for the routing
slip participant responsible for setting the task outcome (for example,
assignee1)

■ outcome: The outcome that was set (for example, approve or reject)

■ level: If the previous participant was part of a management chain,
then this attribute records their level in the chain, where 1 is the first
level in the chain. For other participant types, the value is -1.

■ totalNumberOfApprovals: The total number of users that have
now set the outcome of the task.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-45

Some fact types can only be used in workflow routing rules, while others can only be
used in workflow participant rules. Table 25–11 describes where you can use each
type.

25.3.7.2.3 Action Types To instruct the task service on how to route the task, rules can
specify one of many task actions. This is done by updating the TaskAction fact
asserted into the rule session. However, rules should not directly update the
TaskAction fact. Instead, rules should call one of the action RL functions, passing the
TaskAction fact as a parameter. These functions handle the actual updates to the
fact. For example, to specify an action of go forward, you must add a call GO_
FORWARD(TaskAction) to the action part of the rule.

Each time a state machine routing rule is evaluated, the rule takes one of the actions
shown in Table 25–12:

TaskAction This fact is not intended for writing rule tests against it. Instead, it is
updated by the ruleset, and returned to the task service to indicate how
the task should be routed. Rules should not directly update the
TaskAction fact. Instead, they should call one of the RL functions
described in Section 25.3.7.2.3, "Action Types." These functions handle
updating the TaskAction fact with the appropriate values.

Table 25–11 Use of Fact Types

Fact Type Can Use in Routing Rules? Can Use in Participant Rules?

Task Yes Yes

PreviousOutcome Yes No

TaskAction Yes No

Lists No Yes

RoutingSlipObjectFact
ory

No Yes

ResourceListType No Yes

ManagementChainListTy
pe

No Yes

ResourceType No Yes

ParameterType No Yes

AutoActionType No Yes

ResponseType No Yes

Table 25–12 Business Rule Actions

Action Description Parameters

GO_FORWARD Goes to the next participant in the routing
slip (default behavior).

None

PUSHBACK Goes back to the previous participant in
the routing slip (the participant before the
one that just set the task outcome).

None

Table 25–10 (Cont.) Fact Types Asserted By the Task Service

Fact Type Description

Creating the Human Task Definition with the Human Task Editor

25-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

25.3.7.2.4 Sample Rule Set This section describes how to use rules to implement custom
routing behavior with a simple example. A human workflow task is created for
managing approvals of expense requests. The outcomes for the task are approve and
reject. The task definition includes an ExpenseRequest payload element. One of the
fields of ExpenseRequest is the total amount of the expense request. The routing slip
for the task consists of three single participants (assignee1, assignee2, and
assignee3).

By default, the task gets routed to each of the assignees, with each assignee choosing to
approve or reject the task.

Instead of this behavior, the necessary routing behavior is as follows:

■ If the total amount of the expense request is less than $100, approval is only
required from one of the participants. Otherwise, it must be approved by all three.

■ If an expense request is rejected by any of the participants, it must be returned to
the previous participant for re-evaluation. If it is rejected by the first participant,
the expense request is rejected and marked as completed.

This behavior is implemented using the following rules. Note that when a rule
dictionary is generated for advanced routing rules, it is created with a template rule
that implements the default GO_FORWARD behavior. You can edit this rule, and make
copies of the template rule by right-clicking and selecting Copy Rule in the Oracle
Business Rules Designer.

If the amount is greater than $100 and the previous assignee approved the task, it is
not necessary to provide a rule for routing a task to each of the assignees in turn. This
is the default behavior that is reverted to if none of the rules in the rule set are
triggered:

■ Early approval rule (Figure 25–45):

GOTO Goes to a specific participant in the routing
slip.

participant'

A string that identifies the
label of the participant (for
example, Approver1) to
which to route the task.

COMPLETE Finishes routing and completes the task.
The task is marked as completed, and no
further routing is required.

None

ESCALATE Escalates and reassigns the task according
to the task escalation policy (usually to the
manager of the current assignee).

None

Table 25–12 (Cont.) Business Rule Actions

Action Description Parameters

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-47

Figure 25–45 Early Approval Rule

■ Push back on the rejected rule (Figure 25–46):

Figure 25–46 Push Back On The Rejected Rule

■ Complete the Assignee1 rejected rule (Figure 25–47):

Figure 25–47 Completion of the Assignee1 Rejected Rule

For information about iterative design, see the workflow-106-IterativeDesign
sample available at the Oracle Technology Network:

http://www.oracle.com/technology/sample_code/products/hwf

25.3.7.2.5 Creating Advanced Routing Rules

To create advanced routing rules:
1. In the Assignment and Routing Policy, click the icon to the right of Task will go

from starting to final participant.

2. Select Use Advanced Rules from the list.

3. To the right of Rules Dictionary, click the Edit icon, as shown in Figure 25–48.

Creating the Human Task Definition with the Human Task Editor

25-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–48 Creating a Rules Dictionary

This starts the Oracle Business Rules Designer with a preseeded repository
containing all necessary fact definitions, as shown in Figure 25–49. A decision
service component is created for the dictionary, and is associated with the task
service component.

Figure 25–49 Human Task Rule Dictionary

4. Define state machine routing rules for your task using Oracle Business Rules.

This automatically creates a fully-wired decision service in the human task and the
associated rule repository and data model.

For more information on business rules:

■ An example human task ruleset, see Section 25.3.7.2.4, "Sample Rule Set"

■ Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Oracle Fusion Middleware Language Reference Guide for Oracle Business Rules

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-49

25.3.7.3 Using External Routing
You configure an external routing service that dynamically determines the participants
in the workflow. If this routing policy is specified, all other participant types are
ignored. It is assumed that the external routing service provides a list of participant
types (single approver, serial approver, parallel approver, and so on) at runtime to
determine the routing of the task.

Use this option if you do not want to use any of the routing rules to determine task
assignees. In this case, all the logic of task assignment is delegated to the external
routing service.

To use external routing
1. In the Assignment and Routing Policy, click the icon to the right of Task will go

from starting to final participant.

2. Select Use External Routing from the list.

3. Click the Edit icon, as shown in Figure 25–50.

Figure 25–50 Selection of Use External Routing

The External Routing dialog appears, as shown in Figure 25–51.

Note: If you select Use External Routing in the Configure
Assignment dialog, specify a Java class, and click OK to exit, the next
time you open this dialog, the other two selections (Route task to all
participants, in order specified and Use Advanced Rules) no longer
appear in the dropdown list. To access all three selections again, you
must delete the entire assignment.

Creating the Human Task Definition with the Human Task Editor

25-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–51 Use External Routing Dialog

4. In the Class Name field, enter the fully qualified class file name (for example, the
org.mycompany.tasks.RoutingService class name). This class must
implement the
oracle.bpel.services.workflow.task.IAssignmentService interface.

5. Add name and pair value parameters by name or XPath expression that can be
passed to the external service, as shown in Table 25–13.

6. Click the Add icon to add additional name and pair value parameters.

25.3.7.4 Configuring the Error Assignee
Tasks can error for reasons such as incorrect assignments. When such errors occur, the
task is assigned to the error assignee, who can perform corrective actions. Recoverable
errors are as follows:

■ Invalid user and group for all participants

■ Invalid XPath expressions that are related to assignees and expiration duration

■ Escalation on expiration errors

■ Evaluating escalation policy

■ Evaluating renewal policy

■ Computing management chain

■ Evaluating dynamic assignment rules. The task is not currently in error, but is still
left as assigned to the current user and is therefore recoverable.

Table 25–13 External Routing

Field Description

By Name Enter a name in the Name field and a value in the Value field.

By Expression Enter a name and dynamically enter a value by clicking the icon
to the right of the field to display the Expression Builder dialog.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-51

■ Dynamic assignment cyclic assignment (for example, user A > user B > user A).
The task is not currently in error, but is still left as assigned to the last user in the
chain and is therefore recoverable.

The following errors are not recoverable. In these cases, the task is moved to the
terminating state ERRORED.

■ Invalid task metadata

■ Unable to read task metadata

■ Invalid GOTO participant from state machine rules

■ Assignment service not found

■ Any errors from assignment service

■ Evaluating custom escalate functions

■ Invalid XPath and values for parallel default outcome and percentage values

During modeling of workflow tasks, you can specify error assignees for the workflow.
If error assignees are specified, they are evaluated and the task is assigned to them. If
no error assignee is specified at runtime, an administration user is discovered and is
assigned the alerted task. The error assignee can perform one of the following actions:

■ Ad hoc route

Route the task to the actual users assigned to the task. Ad hoc routing allows the
task to be routed to users in sequence, parallel, and so on.

■ Reassign

Reassign the task to the actual users assigned to this task

■ Error task

Indicate that this task cannot be rectified.

If there are any errors in evaluating the error assignees, the task is marked as being in
error.

This dialog enables you to specify the users or groups to whom the task is assigned if
an error in assignment has occurred.

To configure the error assignee:
1. In the Assignment and Routing Policy section, click the icon to the right of Task

will go from starting to final participant.

2. Click the Assignment tab.

3. Click the Add icon to assign reviewers or error assignees, as shown in
Figure 25–52.

Creating the Human Task Definition with the Human Task Editor

25-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–52 Error Assignment Details

4. Click the Add icon and select a user, group, or application role to participate in
this task.

The Identification Type column of the Starting Participant table displays your
selection of user, group, or application role.

5. See Step 4 through 6 of Section 25.3.6.1.1, "Creating a Single Task Participant List"
for instructions on selecting a user, group, or application role.

For more information about users, groups, or application roles, see
Section 24.2.1.1.3, "Participant Assignment."

25.3.8 How to Escalate, Renew, or End the Task
Figure 25–53 shows the Expiration and Escalation Policy section of the Human Task
Editor.

You can specify expiration duration of a task in this global policy section (also known
as the routing slip level). If expiration duration is specified at the routing slip level
instead of at the participant type level, then this duration is the expiration duration of
the task across all the participants. However, if you specify expiration duration at the
participant type level (through the Limit allocated duration to field), then those
settings take precedence over settings specified in the Expiration and Escalation
Policy section (routing slip level).

Figure 25–53 Human Task Editor — Expiration and Escalation Policy Section

25.3.8.1 Introduction to Escalation and Expiration Policy
This section provides an overview of how specifying the expiration duration at this
level makes this setting the expiration duration of the task across all the participants.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-53

For example, participant LoanAgentGroup and participant Supervisor have three
days to act on the task between them, as shown in Figure 25–54:

Figure 25–54 Expire After Policy

If there is no expiration specified at either the participant level or this routing slip
level, then that task has no expiration duration.

If expiration duration is specified at any of the participant’s level, then for that
participant, the participant expiration duration is used. However, the global expiration
duration is still used for the participants that do not have participant level expiration
duration. The global expiration duration is always decremented by the time elapsed in
the task.

The policy for interpreting the participant level expiration for the participants is
described as follows:

■ Serial

Each assignment in the management chain gets the same expiration duration as
the one specified in the serial. Note that the duration is not for all the assignments
resulting from this assignment. If the task expires at any of the assignments in the
management chain, the escalation and renewal policy is applied.

■ Parallel:

– In a parallel workflow, if the parallel participants are specified as a resource, a
routing slip is created for each of the resources. The expiration duration of
each created routing slip follows these rules:

* The expiration duration equals the expiration duration of the parallel
participant if it has an expiration duration specified.

* The expiration duration that is left on the task if it was specified at the
routing slip level.

* Otherwise, there is no expiration duration.

– If parallel participants are specified as routing slips, then the expiration
duration for the parallel participants are determined by the routing slip.

25.3.8.2 Specifying a Policy to Never Expire
You can specify for a task to never expire.

Note: When the parent task expires in a parallel task, the subtasks
are withdrawn if those tasks have not expired or completed.

Creating the Human Task Definition with the Human Task Editor

25-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To specify a policy to never expire:
1. In the dropdown list in the Expiration and Escalation Policy section, select Never

Expire, as shown in Figure 25–53.

25.3.8.3 Specifying a Policy to Expire
You can specify for a task to expire. When the task expires, either the escalation policy
or the renewal policy at the routing slip level is applied. If neither is specified, the task
expires. The expiration policy at the routing slip level is common to all the
participants.

To specify for a task to expire:
1. In the dropdown list in the Expiration and Escalation Policy section, select Expire

after, as shown in Figure 25–53.

2. Specify the maximum time period for the task to remain open.

The expiration policy for parallel participants is interpreted as follows:

■ If parallel participants are specified as resources in parallel elements, there is
no expiration policy for each of those participants.

■ If parallel participants are specified as routing slips, then the expiration policy
for the routing slip applies to the parallel participants.

Figure 25–55 indicates that the task expires in three days.

Figure 25–55 Expire After Policy

25.3.8.4 Extending an Expiration Policy Period
You can extend the expiration period when the user does not respond within the
allotted time. You do this by specifying the number of times the task can be renewed
upon expiration (for example, renew it an additional three times) and the duration of
each renewal (for example, three days for each renewal period).

To extend an expiration policy period:
1. In the dropdown list in the Expiration and Escalation Policy section, select Renew

after, as shown in Figure 25–53 on page 25-52.

2. Specify the maximum number of times to continue renewing this task.

In Figure 25–56, when the task expires, it is renewed at most three times. It does
not matter if the task expired at the LoanAgentGroup participant or the
Supervisor participant.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-55

Figure 25–56 Renew After Policy

25.3.8.5 Escalating a Task Policy
You can escalate a task if a user does not respond within the allotted time. For
example, if you are using the escalation hierarchy configured in your user directory,
the task can be escalated to the user’s manager. If you are using escalation callbacks,
the task is escalated to whoever you have defined. When a task has been escalated the
maximum number of times, it stops escalating. An escalated task can remain in a user
inbox even after the task has expired.

To escalate a task policy:
1. In the dropdown list in the Expiration and Escalation Policy section, select

Escalate after, as shown in Figure 25–53 on page 25-52.

2. Specify the following additional values. When both are set, the escalation policy is
more restrictive.

■ Maximum Escalation Levels

Number of management levels to which to escalate the task. This field is
required.

■ Highest Approver Title

The title of the highest approver (for example, self, manager, director, or CEO).
These titles are compared against the title of the task assignee in the
corresponding user repository. This field is optional.

The escalation policy specifies the number of times the task can be escalated on
expiration and the renewal duration. In Figure 25–57, when the task expires, it is
escalated at most three times. It does not matter if the task expired at the
LoanAgentGroup participant or the Supervisor participant.

Figure 25–57 Escalate After Policy

25.3.8.6 Specifying a Due Date
A due date is used to indicate the date by which the task should be completed. Note
that the due date is different from the expiration date. When a task expires it is either
marked expired or automatically escalated or renewed based on the escalation policy.

Creating the Human Task Definition with the Human Task Editor

25-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The due date is generally a date earlier than the expiration date and an indication to
the user that the task is about to expire.

You can enter a due date for a task, as shown in Figure 25–53. A task is considered
overdue after it is past the specified due date. This date is in addition to the expiration
policy. A due date can be specified irrespective of whether an expiration policy has
been specified. The due date enables Oracle BPM Worklist to display a due date, list
overdue tasks, highlight overdue tasks in the inbox, and so on. Overdue tasks can be
queried using a predicate on the TaskQueryService.queryTask(...) API.

To specify a due date:
1. In the Expiration and Escalation Policy section, select the Use Due Date

checkbox.

2. Select By Date to enter a specific due date or select By Expression to dynamically
enter a value as an XPath expression.

Note the following details:

■ The due date can be set on both the task (using the Create ToDo Task dialog in
Oracle BPM Worklist) and in the .task file (using the Human Task Editor).
This is to allow to-do tasks without task definitions to set a due date during
initiation of the task. A due date that is set in the task (a runtime object)
overrides a due date that is set in the .task file.

■ In the task definition, the due date can only be specified at the global level,
and not for each participant.

■ If the due date is set on the task, the due date in the .task file is ignored.

■ If the due date is not set on the task, the due date in the .task file is
evaluated and set on the task.

■ If there is no due date on either the task or in the .task file, there is no due
date on the task.

For more information, see Section 27.3.4, "How To Create a ToDo Task."

25.3.9 How to Specify Participant Notification Preferences
Figure 25–58 shows the Notification Settings section of the Human Task Editor (when
fully expanded).

Notifications indicate when a user is assigned a task or informed that the status of the
task has changed. Notifications can be sent through email, voice message, instant
message, or SMS. Notifications are sent to different types of participants for different
actions. Notifications are configured by default with default messages. For example, a
notification message is sent to indicate that a task has completed and closed. You can
create your own or modify existing configurations.

Note: You cannot specify business rules for to-do tasks.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-57

Figure 25–58 Human Task Editor — Notification Settings Section

To specify participant notification preferences:
1. In the Notification Settings section, click the Open icon to expand the section

(displays as shown in Figure 25–58).

Instructions for configuring the following subsections of the Notification Settings
section are listed in Table 25–14.

For information about the notification service, see Section 29.2, "Notifications from
Human Workflow."

25.3.9.1 Notifying Recipients of Changes to Task Status
Three default status types display in the Task Status column: Assign, Complete, and
Error. You can select other status types for which to receive notification messages.

To notify recipients of changes to task status:
1. In the Task Status column of the Notification Settings section, click a type to

display the complete list of task types:

■ Alerted

Table 25–14 Human Task Editor — Notification Settings Section

For This Subsection... See...

Task Status

Recipient

Section 25.3.9.1, "Notifying Recipients of Changes to
Task Status"

Notification Header Section 25.3.9.2, "Editing the Notification Message"

Reminders Section 25.3.9.3, "Setting Up Reminders"

Encoding Section 25.3.9.4, "Changing the Character Set Encoding"

Make notifications secure (exclude
details)

Section 25.3.9.5, "Securing Notifications to Exclude
Details"

Make notifications actionable Section 25.3.9.5, "Securing Notifications to Exclude
Details"

Send task attachments with email
notifications

Section 25.3.9.6, "Making Email Messages Actionable"

Creating the Human Task Definition with the Human Task Editor

25-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

When a task is in an alerted state, you can notify recipients. However, none of
the notification recipients (assignees, approvers, owner, initiator, or reviewer)
can move the task from an alerted state to an error state; they only receive an
FYI notification of the alerted state. The owner can reassign, withdraw, delete,
or purge the task, or ask the error assignee to move the task to an error state if
the error cannot be resolved. Only the error assignee can move a task from an
alerted state to an error state.

You configure the error assignee on the Assignment tab of the Configure
Assignment dialog under the Task will go from starting to final participant
icon in the Assignment and Routing Policy section. For more information, see
Section 25.3.7.4, "Configuring the Error Assignee."

■ Assign

When the task is assigned to users or a group. This captures the following
actions:

– Task is assigned to a user

– Task is assigned to a new user in a serial workflow

– Task is renewed

– Task is delegated

– Task is reassigned

– Task is escalated

– Information for a task is submitted

■ Complete

■ Error

■ Expire

■ Request Info

■ Resume

■ Suspend

■ Update

– Task payload is updated

– Task is updated

– Comments are added

– Attachments are added and updated

■ Update Outcome

■ Withdraw

■ All Other Actions

– Any action not covered in the above task types. This includes acquiring a
task.

2. Select a task status type.

Notifications can be sent to users involved in the task in various capacities. This
includes when the task is assigned to a group, each user in the group is sent a
notification if there is no notification endpoint available for the group.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-59

3. In the Recipient column, click an entry to display a list of possible recipients for
the notification message:

■ Assignees

The users or groups to whom the task is currently assigned.

■ Initiator

The user who created the task.

■ Approvers

The users who have acted on the task up to this point. This applies in a serial
participant type in which multiple users have approved the task and a
notification must be sent to all of them.

■ Owner

The task owner

■ Reviewer

The user who can add comments and attachments to a task.

For more information, see Section 29.2.5, "How to Configure the Notification
Channel Preferences."

25.3.9.2 Editing the Notification Message
A default notification message is available for delivery to the selected recipient. If you
want, you can modify the default message text.

To edit the notification message:
1. In the Notification Header column of the Notification Settings section, click the

Edit icon to modify the default notification message.

The Edit Notification Message dialog shown in Figure 25–59 appears.

Figure 25–59 Edit Notification Message Dialog

This message applies to all the supported notification channels: email, voice,
instant messaging, and SMS. Email messages can also include the worklist task
detail defined in this message. The channel by which the message is delivered is
based upon the notification preferences you specify.

2. Modify the message wording as necessary.

Creating the Human Task Definition with the Human Task Editor

25-60 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. Click OK to return to the Human Task Editor.

For more information about notification preference details, see Section 29.2,
"Notifications from Human Workflow."

25.3.9.3 Setting Up Reminders
You can send task reminders, which can be based on the time the task was assigned to
a user or the expiration time of a task. The number of reminders and the interval
between the reminders can also be configured.

To set up reminders:
1. From the Remind list in the Notification Settings section, select the number of

reminders to send.

2. If you selected to remind the assignee one, two, or three times, select the interval
between reminders, and whether to send the reminder before or after the
assignment. Figure 25–60 provides details.

Figure 25–60 Notification Settings

If you select Use Due Date in the Expiration and Routing Policy section, the
dropdown list at the far right displays an option for selection called Before Due Date.

For more information, see Section 29.2.12, "How to Send Reminders."

25.3.9.4 Changing the Character Set Encoding
Unicode is a universally encoded character set that enables information from any
language to be stored using a single character set. Unicode provides a unique code
value for every character, regardless of the platform, program, or language. You can
use the default setting of UTF-8 or you can specify a character set with a Java class.

To change the character set encoding
1. From the Encoding list, select Specify by Java Class.

2. Enter the Java class to use.

25.3.9.5 Securing Notifications to Exclude Details

To secure notifications, make messages actionable, and send attachments:
1. Select Make notifications secure (exclude details) in the Notification

Settings section.

If selected, a default notification message is used. There are no HTML worklist
task details, attachments, or actionable links in the email. Only the task
number is in the message.

For more information, see Section 29.2.10, "How to Send Secure Notifications."

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-61

25.3.9.6 Making Email Messages Actionable
1. Select Make notification actionable in the Notification Settings section. This

action enables you to perform task actions through email.

For more information about additional configuration details, see Section 29.2.7,
"How to Send Actionable Messages".

For more information about configuring outbound and inbound emails, see Oracle
Fusion Middleware Administrator's Guide for Oracle SOA Suite.

25.3.9.7 Sending Task Attachments with Email Notifications
1. Select Send task attachments with email notifications in the Notification

Settings section.

2. If you also want to customize the notification headers, select Custom Notification
Headers.

Custom notification headers are used to specify name and value pairs to identify
key fields within the notification. These entries can be used by users to define
delivery preferences for their notifications. For example:

You can set Name to ApprovalType and value to Expense or Name to Priority
and value to High.

Users can then specify delivery preferences in Oracle BPM Worklist. These
preferences can be based on the contents of the notification.

Note that the rule-based notification service is only used to identify the preferred
notification channel to use. The address for the preferred channel is still obtained
from the identity service.

3. Add name and pair value parameters by name or XPath expression.

For more information about preferences, see Section 29.2.8, "How to Send Inbound
and Outbound Attachments," Section 29.2.14, "How to Create Custom Notification
Headers," and Part VII, "Using Oracle User Messaging Service".

25.3.10 How To Specify Advanced Settings
This section enables you to specify advanced human task features, such as specifying
custom escalation rules, custom style sheets for attachments, multilingual settings,
callback classes, digital signature policies, access to task content and actions, restricted
assignments, task and routing customization in BPEL callbacks, and graphical
histories.

Figure 25–61 shows the advanced settings section of the Human Task Editor.

Creating the Human Task Definition with the Human Task Editor

25-62 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–61 Human Task Editor — Advanced Settings Section

Table 25–15 describes the sections available.

25.3.10.1 Specifying Escalation Rules
This option allows a custom escalation rule to be plugged in for a particular workflow.
For example, to assign the task to a current user’s department manager on task
expiration, you can write a custom task escalation function, register it with the
workflow service, and use that function in task definitions.

Table 25–15 Advanced Settings Sections

Section See...

Specify Escalation Rule Section 25.3.10.1, "Specifying Escalation Rules"

Specify WordML Stylesheet
for attachments

Section 25.3.10.2, "Specifying WordML Style Sheets for
Attachments"

Specify stylesheet for
attachments

Section 25.3.10.3, "Specifying Style Sheets for Attachments"

Specify multilingual settings Section 25.3.10.4, "Specifying Multilingual Settings"

Specify callback class on task
status

Section 25.3.10.5, "Specifying Callback Classes on Task
Status"

Specify workflow signature
policy

Section 25.3.10.6, "Specifying a Workflow Signature Policy"

Section 25.3.10.7, "Specifying a Certificate Authority"

Override default access to task
content

Section 25.3.10.8, "Specifying Access Policies on Task
Content"

Specify Restricted Assignment Section 25.3.10.9, "Specifying Restrictions on Task
Assignments"

Allow task and routing
customization in BPEL
callbacks

Section 25.3.10.10, "Allowing Task and Routing
Customization in BPEL Callbacks"

Show Complete Graphical
History

Section 25.3.10.11, "Showing the Complete Graphical
History"

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-63

The default escalation rule is to assign a task to the manager of the current user. To add
a new escalation rule, follow these steps.

To specify escalation rules:
1. Implement interface

oracle.bpel.services.workflow.assignment.dynamic.IDynamicTask
EscalationFunction. This implementation has to be available in the class path
for the server.

2. Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

3. Expand the SOA folder in the navigator.

4. Right-click soa-infra, and select SOA Administration > Workflow Task Service
Properties.

The Workflow Task Service Properties page appears.

5. Add a new function. For example:

■ Function name: Department_supervisor

■ Classpath:
oracle.bpel.services.workflow.assignment.dynamic.patterns.
DepartmentSupervisor

■ Function parameter name

■ Function parameter value

6. In the Specify Escalation Rule field of the Advanced Settings section, enter the
function name as defined in the Workflow Task Service Properties page for the
escalation rule.

For more information, see Section 29.3.3, "Custom Escalation Function."

25.3.10.2 Specifying WordML Style Sheets for Attachments
This option allows for the dynamic creation of Microsoft Word documents for sending
them as email attachments using a WordML XSLT style sheet. The XSLT style sheet is
applied on the task document.

To specify WordML style sheets for attachments:
1. In the Specify WordML stylesheet for attachments field of the Advanced Settings

section, click the Search icon to select a WordML style sheet as an attachment.

25.3.10.3 Specifying Style Sheets for Attachments
This option allows creation of email attachments using an XSLT style sheet. The XSLT
style sheet is applied on the task document.

To specify style sheets for attachments:
1. In the Specify stylesheet for attachments field of the Advanced Settings section,

click the Search icon to select a style sheet as an attachment.

25.3.10.4 Specifying Multilingual Settings
You can specify resource bundles for displaying task details in different languages in
Oracle BPM Worklist. Resource bundles are supported for the following task details:

■ Displaying the value for task outcomes in plain text or with the message(key)
format

Creating the Human Task Definition with the Human Task Editor

25-64 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Displaying the XML element and attributes names in the payload display of
Oracle BPM Worklist. The key name in the resource bundle must be the same as
the name of the XML element and attributes for internationalization of XML
element names in Oracle BPM Worklist.

■ Making email notification messages available in different languages. At runtime,
specify the XPath extension function
hwf:getTaskResourceBundleString(taskId, key, locale?) to obtain
the internationalized string from the specified resource bundle. The locale of the
notification recipient can be retrieved with the function
hwf:getNotificationProperty(propertyName).

Resource bundles can also simply be property files. For example, a resource bundle
that configures a display name for task outcomes can look as follows:

■ APPROVE=Approve

■ REJECT=Reject

To specify multilingual settings:
1. In the Specify multilingual settings field of the Advanced Settings section, click

Configure Resource.

The Resource Details dialog shown in Figure 25–62 appears.

Figure 25–62 Resource Details Dialog

2. In the Resource Name field, enter the name of the resource used in the resource
bundle. This should be a .properties based resource bundle file.

3. In the Resource Location field, click the Search icon to select the JAR or ZIP
resource bundle file to use. The resource bundle is part of your system archive
(SAR) file.

If the resource bundle is outside of the composite project, you are prompted to
place a local copy in SCA-INF/lib.

If the resource bundle file is not in the composite class loader (directly under
SCA-INF/classes or in a JAR file in SCA-INF/lib), you must specify its
location. For example, if the resource bundle is accessible from a location outside
of the composite class loader (such as an HTTP location such as

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-65

http://host:port/bundleApp/taskBundles.jar), then this location must
be specified in this field.

4. Click OK to return to the Human Task Editor.

For more information, see Section 29.2.6, "How to Configure Notification Messages
in Different Languages."

25.3.10.5 Specifying Callback Classes on Task Status
You can register callbacks for the workflow service to call when a particular stage is
reached during the lifecycle of a task. Two types of callbacks are supported:

■ Java callbacks: The callback class must implement the interface
oracle.bpel.services.workflow.task.IRoutingSlipCallback. Make
the callback class available in the class path of the server.

■ Business event callbacks: You can have business events raised when the state of a
human task changes. You do not need to develop and register a Java class. The
caller implements the callback using a mediator service component to subscribe to
the applicable business event to be informed of the current state of an approval
transaction.

To specify callback classes on task status:
1. In the Specify callback class on task status field of the Advanced Settings section,

click Configure Callbacks.

2. Click the Add icon to add a callback to the table. A callback named OnAssigned is
automatically added to the Callback column.

3. Click OnAssigned to display a list of additional callback values to select for this
column.

The following callbacks are available:

■ OnCompleted

Select if the callback class must finally be called when the task is completed
and control is about to be passed to the initiator (such as the BPEL process
initiating the task).

■ OnAssigned

Select if the callback class must be called on any assignment change, including
standard routing, reassignment, delegation, escalation, and so on. If a callback
is required when a task has an outcome update (that is, one of the approvers
in a chain approves or rejects the task), this option must be selected.

■ OnUpdated

Select if the callback class must be called on any update (including payload,
comments, attachment, priority, and so on).

■ OnSubtaskUpdated

Select if the callback class must be called on any update (including payload,
comments, attachment, priority, and so on) on a subtask (one of the tasks in a
parallel and parallel scenario).

■ OnStageCompleted

Select if the callback class must be called to enable business event callbacks in
a human workflow task. When the event is raised, it contains the name of the

Creating the Human Task Definition with the Human Task Editor

25-66 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

completed stage, the outcome for the completed stage, and a snapshot of the
task when the callback is invoked.

4. See the following section based on the type callback to perform.

■ Section 25.3.10.5.1, "Specifying Java Callbacks"

■ Section 25.3.10.5.2, "Specifying Business Event Callbacks"

25.3.10.5.1 Specifying Java Callbacks

To specify Java callbacks:
1. In the Type column, click Java.

2. In the Value column, click the empty field to enter a value. This value is the
complete class name of the Java class that implements
oracle.bpel.services.workflow.task.IRoutingSlipCallback.
Figure 25–63 provides details.

Figure 25–63 CallBack Details Dialog with Java Selected

3. Click OK.

25.3.10.5.2 Specifying Business Event Callbacks

To specify business event callbacks:
1. In the Type column, click Events. This action disables the Value column, as shown

in Figure 25–64. Each callback, such as OnAssigned, corresponds to a business
event point. When a business event is fired, the event details contain the task
object and a set of properties that are populated based on the context of the event
being fired.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-67

Figure 25–64 CallBack Details Dialog with Business Events Selected

A preseeded, static event definition language (EDL) file (JDev_
Home\jdeveloper\integration\seed\soa\shared\workflow\HumanTas
kEvent.edl) provides the list of available business events to which to subscribe.
These business events correspond to the callbacks you select in the Callback
Details dialog. You must now create a mediator service component in which you
reference the EDL file and subscribe to the appropriate business event.

2. Create an Oracle Mediator service component in the same or a different SOA
composite application that can subscribe to the event.

3. In the Template list during Oracle Mediator creation, select Subscribe to Events.

4. Click the Add icon to subscribe to a new event.

5. To the right of the Event Definition field, click the Browse icon to select the EDL
file.

The SOA Resource Browser dialog appears.

6. Select the previously created file-based MDS connection.

7. From the list at the top, select Resource Palette.

8. Select SOA > Shared > Workflow > HumanTaskEvent.edl.

9. Click OK.

The Event Chooser is now populated with EDL file business events available for
selection.

10. In the Event field, select the event to which to subscribe. Figure 25–65 provides
details.

Note: A file-based MDS connection is required so that the EDL file
can be located. The location for the file-based MDS is JDev_
Home\jdeveloper\integration\seed.

Creating the Human Task Definition with the Human Task Editor

25-68 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–65 Event Callbacks

You can have multiple human tasks available for subscribing to the event. For
example, assume you have the following:

■ Configured a human task named TaskA to subscribe to the event (for example,
OnAssigned)

■ Configured a human task named TaskB to subscribe to the same event

To distinguish between events for TaskA and TaskB and ensure that an event is
processed only by the intended Oracle Mediator, you can add a static routing
filter:

xpath20:compare(med:getComponentName(), 'TaskA')

This only invokes this routing when the sending component is TaskA.

11. If the EDL file was not selected from the file-based MDS connection, accept to
import the dependent XSD files when prompted, and click OK. If the EDL file was
selected from the file-based MDS connection, you are not prompted.

The Oracle Mediator service component is now populated with the business event
to which to subscribe. You can also subscribe to other business events defined in
the same EDL file now or at a later time.

See the following documentation for additional details about business events and
callbacks:

■ Chapter 44, "Using Business Events and the Event Delivery Network" for specific
details about business events

■ Sample workflow-116-WorkflowEventCallback, which is available from the Oracle
Technology Network:

http://www.oracle.com/technology/sample_code/products/hwf

25.3.10.6 Specifying a Workflow Signature Policy
Digital signatures provide a mechanism for the nonrepudiation of digitally-signed
human tasks. This ability to mandate that a participant acting on a task signs the
details and their action before the task is updated ensures that they cannot repudiate it
later.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-69

To specify a workflow signature policy:
1. In the Specify workflow signature policy field of the Advanced Settings section,

click Configure Policy.

2. Specify the signature policy for task participants to use:

■ No signature required

Participants can send and act upon tasks without providing a signature. This
is the default policy.

■ Password required

Participants specify a signature before sending tasks to the next participant.
Participants must reenter their password while acting on a task. The password
is used to generate the digital signature. A digital signature authenticates the
identity of the message sender or document signer. This ensures that the
original content of the sent message is unchanged.

■ Digital certificate required

Participants must possess a digital certificate for the nonrepudiation of
digitally-signed human tasks. A digital certificate establishes the participant's
credentials. It is issued by a certification authority (CA). It contains the
following:

– Your name

– A serial number

– Expiration dates

– A copy of the certificate holder's public key (used for encrypting messages
and digital signatures)

– Digital signature of the certificate-issuing authority so that message
authenticity can be established

The CA names and CA CRL and URLs of the issuing authorities must be
configured separately.

3. Click OK.

For more information, see Section 29.1.10, "Evidence Store Service and Digital
Signatures."

25.3.10.7 Specifying a Certificate Authority
To use digital signatures, you must specify CAs you consider trustworthy in the
workflow-config.xml file. Only certificates issued from such CAs are considered
valid by human workflow.

To specify a certificate authority:
1. Edit the workflow-config.xml file to include trustworthy CAs.

<trustedCAList>
 <trustedCA CAName="CN=VeriSign Class 1 Individual Subscriber CA
-G2,OU=Persona Not Validated,OU=Terms of use at

Note: If digital signatures are enabled for a task, actionable emails
are not sent during runtime. This is the case even if actionable emails
are enabled during design-time.

Creating the Human Task Definition with the Human Task Editor

25-70 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

https://www.verisign.com/rpa(c)05,OU=VeriSign Trust Network,O=VeriSign\,
Inc.,C=US"
CAURL="http://IndC1DigitalID-crl.verisign.com/IndC1DigitalID.crl"/>
 <trustedCA CAName="CN=Thawte Personal Freemail Issuing CA,O=Thawte
Consulting (Pty) Ltd.,C=ZA"
CAURL="http://crl.thawte.com/ThawtePersonalFreemailIssuingCA.crl"/>
</trustedCAList>

Note that these CAs are used for indicative purposes only. You must validate these
values before using them.

25.3.10.8 Specifying Access Policies on Task Content
You can specify access rules that determine the parts of a task that participants can
view and update. Access rules are enforced by the workflow service by applying rules
on the task object during the retrieval and update of the task.

25.3.10.8.1 Introduction to Access Rules Access rules are computed based on the
following details:

■ Any attribute configured with access rules declines any permissions for roles not
configured against it. For example, assume you configure the payload to be read
by assignees. This action enables only assignees and nobody else to have read
permissions. No one, including assignees, has write permissions.

■ Any attribute not configured with access rules has all permissions.

■ If any payload message attribute is configured with access rules, any
configurations for the payload itself are ignored due to potential conflicts. In this
case, the returned map by the API does not contain any entry for the payload.
Write permissions automatically provide read permissions.

■ If only a subset of message attributes is configured with access rules, all message
attributes not involved have all permissions.

■ Only comments and attachments have add permissions.

■ Write permissions on certain attributes are meaningless. For example, write
permissions on history do not grant or decline any privileges on history.

■ The following date attributes are configured as one in the Human Task Editor. The
map returned by TaskMetadataService.getVisibilityRules() contains
one key for each. Similarly, if the participant does not have read permissions on
DATES, the task does not contain any of the following task attributes:

– START_DATE

– END_DATE

– ASSIGNED_DATE

– SYSTEM_END_DATE

– CREATED_DATE

– EXPIRATION_DATE

– ALL_UPDATED_DATE

Note: Task content access rules and task actions access rules exist
independently of one another.

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-71

■ The following assignee attributes are configured as one in the Human Task Editor.
The map returned by TaskMetadataService.getVisibilityRules()
contains one key for each of the following. Similarly, if the participant does not
have read permissions on ASSIGNEES, the task does not contain any of the
following task attributes:

– ASSIGNEES

– ASSIGNEE_USERS

– ASSIGNEE_GROUPS

– ACQUIRED_BY

■ Flex fields do not have individual representation in the map returned by
TaskMetadataService.getVisibilityRules().

■ All message attributes in the map returned by
TaskMetadataService.getVisibilityRules() are prefixed by
ITaskMetadataService.TASK_VISIBILITY_ATTRIBUTE_PAYLOAD_
MESSAGE_ATTR_PREFIX (PAYLOAD).

An application can also create pages to display or not display task attributes based on
the access rules. This can be achieved by retrieving a participant’s access rules by
calling the API on
oracle.bpel.services.workflow.metadata.ITaskMetadataService.
Example 25–1 provides details.

Example 25–1 API Call

public Map<String, IPrivilege> getTaskVisibilityRules(IWorkflowContext context,
 String taskId)
 throws TaskMetadataServiceException;

For more information about this method, see Oracle Fusion Middleware Workflow
Services Java API Reference for Oracle BPEL Process Manager.

25.3.10.8.2 Specifying User Privileges for Acting on Task Content You can specify the
privileges that specific users (such as the task creator or owner) have for acting on
specific task content (such as a payload).

To specify user privileges for acting on task content:
1. In the Override default access to task content and actions field of the Advanced

Settings section, click Configure Visibility.

The Configure Task Content Access dialog appears.

2. Select the task content for which to specify access privileges (for this example,
PAYLOAD).

3. Click the Edit icon, as shown in Figure 25–66.

Creating the Human Task Definition with the Human Task Editor

25-72 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–66 Configure Task Content Access

The Configure Task Content Access dialog appears.

4. Assign privileges (read, write, or no access) to users to act upon task content. Note
that a user cannot be assigned a privilege above their highest level. For example,
an ADMIN user cannot be assigned write access on the PAYLOAD task content. If
you attempt this assignment, you receive an error. Table 25–16 shows the
maximum privilege each user has on task content.

Table 25–16 Highest Privilege Levels for Users of Task Content

Task Content Individual with Read Access Individual with Write Access

PAYLOAD ADMIN, APPROVERS,
REVIEWERS

ASSIGNEES, CREATOR, OWNER

ASSIGNEES ASSIGNEES, CREATOR, OWNER,
ADMIN, APPROVERS,
REVIEWERS

ATTACHMENTS ADMIN, APPROVERS ASSIGNEES, CREATOR, OWNER,
REVIEWERS

COMMENTS ADMIN, APPROVERS ASSIGNEES, CREATOR, OWNER,
REVIEWERS

DATES ASSIGNEES, CREATOR, OWNER,
ADMIN, APPROVERS,
REVIEWERS

FLEXFIELDS ADMIN, APPROVERS,
REVIEWERS

ASSIGNEES, CREATOR, OWNER

HISTORY ASSIGNEES, CREATOR, OWNER,
ADMIN, APPROVERS,
REVIEWERS

--

REVIEWERS ASSIGNEES, CREATOR, OWNER,
ADMIN, APPROVERS,
REVIEWERS

--

Payload elements Inherited from payload Inherited from payload

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-73

For example, if you accept the default setting of ASSIGNEES, CREATOR, and
OWNER with write access, ADMIN, APPROVERS, and REVIEWERS with read
access, and PUBLIC with no access to the PAYLOAD task content, the dialog
appears as shown in Figure 25–67:

Figure 25–67 Configure Task Content Access

5. Click OK.

You are returned to the Configure Task Content Access dialog.

The Higher access levels override lower ones and Lower access levels override
higher ones radio buttons at the bottom of the dialog address scenarios in which:

■ A user plays more then one role in a task, such as owner, creator, and assignee.

■ A user belongs to several groups.

■ A user is granted several application roles, and different access levels are
defined for each of them.

6. Select an option appropriate to your environment. Table 25–17 provides details.

Table 25–17 Access Rule Modes

Option Select...

Higher access
levels override
lower ones

To permit a user to perform an action on a task or make changes to an
attribute of a task if one of the following is true:

■ They perform at least one role where it is permitted.

■ They are a member of any participant type where it is permitted.

■ They are a member of any one group where it is permitted.

■ They are granted any one application role where it is permitted.

Creating the Human Task Definition with the Human Task Editor

25-74 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

25.3.10.8.3 Specifying Actions for Acting Upon Tasks You can specify the actions (either
access or no access) that specific users (such as the task creator or owner) have for
acting on the task content (such as a payload) that you specified in the Configure Task
Content Access dialog shown in Figure 25–67.

To specify actions for acting upon tasks:
1. In the Override default access to task content and actions field of the Advanced

Settings section, click Configure Visibility.

The Configure Task Content Access dialog appears.

2. Click the Task Actions tab.

3. Select the task action for which to specify users.

4. Click the Edit icon shown in Figure 25–68.

Figure 25–68 Selection of Add Action Access Rule

The Configure Task Content Access dialog appears.

Lower access
levels override
higher ones

To prevent a user from performing an action on a task or making changes to
an attribute of a task if one of the following is true:

■ They perform any role where it is not permitted.

■ They are a member of any participant type where it is not permitted.

■ They are a member of any one group where it is not permitted.

■ They are granted any one application role where it is not permitted.

Note: Access rules are always applied on top of what the system
permits, depending on who is performing the action and the current
state of the task.

Table 25–17 (Cont.) Access Rule Modes

Option Select...

Creating the Human Task Definition with the Human Task Editor

Designing Human Tasks 25-75

5. Select if participants can or cannot perform the selected actions, as shown in
Figure 25–69.

Figure 25–69 Configure Task Content Access Dialog

6. Click OK.

You are returned to the Configure Task Content Access dialog.

The Higher access levels override lower ones and Lower access levels override
higher ones radio buttons display at the bottom of the dialog.

7. See Step 6 on page 25-73 for descriptions of how to use these radio buttons.

25.3.10.9 Specifying Restrictions on Task Assignments
You can restrict the users to which a task can be reassigned or routed through a
callback class.

To specify restrictions on task assignments:
1. In the Specify Restricted Assignment field of the Advanced Settings section, click

Configure Restricted Assignments.

The Configure Restricted Assignment dialog appears.

2. Enter the class name. The class must implement the
oracle.bpel.services.workflow.task.IRestrictedAssignmentCallb
ack interface.

3. Click the Add icon to add name and value pairs for the property map passed to
invoke the callback.

4. Click OK.

Creating the Human Task Definition with the Human Task Editor

25-76 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

25.3.10.10 Allowing Task and Routing Customization in BPEL Callbacks
In general, the BPEL process calls into the workflow component to assign tasks to
users. When the workflow is complete, the human workflow service calls back into the
BPEL process. However, if you want fine-grained callbacks (for example,
onTaskUpdate or onTaskEscalated) to be sent to the BPEL process, you must use
this option.

Make sure to manually refresh the BPEL diagram for this callback setting.

To allow task and routing customization in BPEL callbacks:
1. Select the Allow Task and Routing Customization in BPEL Callbacks checkbox.

2. Return to Oracle BPEL Designer.

3. Open the task activity dialog.

4. Click OK.

This creates the while, pick, and onMessage branch of a pick activity for BPEL callback
customization inside the task scope activity.

25.3.10.11 Showing the Complete Graphical History
You can view either the complete workflow history (across routing participants) or
only the task history in Oracle BPM Worklist.

1. In the Advanced Settings section, click Show Complete Graphical History.

25.3.11 How to Specify Annotations
Annotations are used to label different attributes of the task definition. This
functionality is used with Oracle Business Process Analysis in which a model designed
by a business user is transformed to a complete Oracle BPEL Process Manager human
task definition. During translation, any comments the business user has included for
the developer or IT user are stored as annotations. These annotations are then used by
the developer or IT user to complete the modeling process.

25.3.12 How to Exit the Human Task Editor and Save Your Changes
You can save your human task changes at any time. The task can be re-edited at a later
time by clicking the metadata task configuration .task file in the Application
Navigator.

To exit the Human Task Editor and save your changes:
1. From the File main menu, select Save or click the X sign shown in Figure 25–70 to

close the .task metadata task configuration file.

Figure 25–70 File Closure

2. If you click the X sign, select Yes when prompted to save your changes.

Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 25-77

25.4 Associating the Human Task Service Component with a BPEL
Process

If you want to associate the human task service component created in the SOA
Composite Editor with a BPEL process, follow these instructions. When association is
complete, a task service partner link is created in Oracle BPEL Designer. The task
service exposes the operations required to act on a task.

For more information about creating a human task, see Section 25.3, "Creating the
Human Task Definition with the Human Task Editor."

25.4.1 How to Associate a Human Task with a BPEL Process
There are two ways to associate a human task component with a BPEL process:

■ If you have created a human task component in the SOA composite application,
drag a human task activity into the BPEL process in Oracle BPEL Designer. Then,
select the existing human task component from the Task Definition list of the
Create Human Task dialog. You can then specify the task title, initiator, parameter
values, and other values.

■ If you have not created a human task component, drag the human task activity
into the BPEL process in Oracle BPEL Designer Then, click the Add icon to the
right of the Task Definition list in the Create Human Task dialog. This action
enables you to specify the name of the new human task component, the
parameters, and the outcomes. The Human Task Editor then opens for you to
design the remaining task metadata. After design completion, close the Human
Task Editor.

To associate a human task with a BPEL process:
1. Go to the SOA Composite Editor.

2. Double-click the BPEL process service component with which to associate the
.task file of the human task service component.

3. From the Component Palette, select BPEL.

4. Expand BPEL Activities.

5. Drag a new Human Task activity into the BPEL process.

The Create Human Task dialog appears.

6. From the Task Definition list of the General tab, select the human task, as shown
in Figure 25–71.

Note: When you first drag this activity into Oracle JDeveloper, the
dialog is named Create Human Task. After you finish specifying details
on this dialog and click OK, the name of this dialog changes to simply
Human Task.

Associating the Human Task Service Component with a BPEL Process

25-78 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–71 Task Definition List Selection

The .task file of the human task service component is associated with the BPEL
process.

25.4.2 What You May Need to Know About Deleting a Wire Between a Human Task
Service Component and a BPEL Process

If you delete the wire between a BPEL process and the human task service component
that it invokes, the invoke activity of the human workflow is deleted from the BPEL
process. However, the taskSwitch switch activity for taking action (contains the
approve, reject, and otherwise task outcomes) is still there. This is by design for the
following reasons:

■ The switch activity contains user-entered BPEL code.

■ The switch can be reused if the intention for deleting the wire is only to point to
another human task.

■ Deleting the switch is a single-step action.

If you then drag and drop a human task service component into the BPEL process to
use the same taskSwitch switch activity, a new taskSwitch switch activity is created.
You then have two switch activities in the BPEL process with the same name. To
determine which one to delete, you must go into the approve, reject, and otherwise
task outcomes of the taskSwitch switch activities to determine which is the older,
modified switch and which is the newer switch.

Note: After you complete association of your human task activity
with a BPEL process and close the Create Human Task dialog, you can
always re-access this dialog by double-clicking the human task
activity in Oracle BPEL Designer.

Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 25-79

25.4.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter
Variables

Figure 25–72 shows the General tab that displays after you select the human task.

Figure 25–72 Human Task — General Tab (After Selection)

The General tab of the Human Task activity enables you to perform the tasks shown in
Table 25–18:

25.4.3.1 Specifying the Task Title
The title displays the task in Oracle BPM Worklist during runtime. This is a mandatory
field. Your entry in this field overrides the task title you entered in the Title field of the
Human Task Editor described in Section 25.3.4.1, "Specifying a Task Title."

To specify the task title:
1. In the Task Title field of the General tab, enter the task title through one of the

following methods:

■ Enter the title manually.

■ Click the icon to the right of the field to display the Expression Builder dialog
to dynamically create the title.

Table 25–18 Human Task - General Tab

For this Field... See...

Task Title Section 25.4.3.1, "Specifying the Task Title"

Initiator

Priority

Section 25.4.3.2, "Specifying the Task Initiator and Task Priority"

Task Parameters Section 25.4.3.3, "Specifying Task Parameters"

Associating the Human Task Service Component with a BPEL Process

25-80 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

You can also combine static text and dynamic expressions in the same title. To
include dynamic text, place your cursor at the appropriate point in the text and
click the icon on the right to invoke the Expression Builder dialog.

25.4.3.2 Specifying the Task Initiator and Task Priority
You can specify a task initiator. The initiator is the user who initiates a task. The
initiator can view their created tasks from Oracle BPM Worklist and perform specific
tasks, such as withdrawing or suspending a task.

To specify the task initiator and task priority:
1. To the right of the Initiator field of the General tab, enter the initiator (for

example, jcooper) or click the icon to display the Expression Builder dialog for
dynamically specifying an initiator. This field is optional. If not specified, the
initiator defaults to the task owner specified on the Advanced tab of the Human
Task dialog. The initiator defaults to bpeladmin if a task owner is also not
specified.

2. From the Priority list, select a priority value between 1 (the highest) and 5. This
field is provided for user reference and does not make this task a higher priority
during runtime. The priority can be used to sort tasks in Oracle BPM Worklist.
This priority value overrides the priority value you select in the Priority list of the
Human Task Editor.

For more information about specifying the priority in the Human Task Editor, see
Section 25.3.4.1, "Specifying a Task Title."

25.4.3.3 Specifying Task Parameters
The task parameter table shown in Figure 25–73 displays a list of task parameters after
you complete the Task Title and Initiator fields.

Figure 25–73 Task Parameter Table

Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 25-81

To specify task parameters:
1. In the BPEL Variable column, double-click the dots to map the task parameter to

the BPEL variable. You must map only the task parameters that carry input data.
For output data that is filled in from Oracle BPM Worklist, you do not need to map
the corresponding variables.

The Task Parameters dialog appears.

2. Expand the Variables tree shown in Figure 25–74 and select the appropriate task
variable.

Figure 25–74 Variables Tree

3. Click OK.

The Human Task dialog shown in Figure 25–75 appears as follows.

Associating the Human Task Service Component with a BPEL Process

25-82 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–75 Human Task Dialog

4. Click OK.

5. If you want to define advanced features for the human task activity, click the
Advanced tab and go to Section 25.4.4, "How to Define the Human Task Activity
Advanced Features." Otherwise, click OK to close the Human Task dialog.

25.4.4 How to Define the Human Task Activity Advanced Features
Figure 25–76 shows the Advanced tab.

Figure 25–76 Create Human Task — Advanced Tab

Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 25-83

The Advanced tab of the Human Task activity enables you to perform the tasks shown
in Table 25–19:

25.4.4.1 Specifying a Scope Name and a Global Task Variable Name
You are automatically provided with default scope and global task variable names
during human task activity creation. However, you can specify custom names that are
used to name the scope and global variable during human task activity creation.

To specify a scope name and a global task variable name:
1. In the Scope Name field of the Advanced tab, enter the name for the BPEL scope

to be generated.

This BPEL scope encapsulates the entire interaction with the workflow service and
BPEL variable manipulation.

2. In the Global Task Variable Name field of the Advanced tab, enter the global task
variable name.

This is the name of the BPEL task variable used for the workflow interaction.

25.4.4.2 Specifying a Task Owner
The task owner can view tasks belonging to business processes they own and perform
operations on behalf of any of the task assignees. Additionally, the owner can also
reassign, withdraw, or escalate tasks.

If you do not specify a task initiator on the General tab of the Human Task dialog, it
defaults to the owner specified here.

To specify a task owner:
1. In the Owner field of the Advanced tab, enter the task owner name or click the

icon to the right to use the Expression Builder to dynamically specify the owner of
this task.

25.4.4.3 Specifying an Identification Key
The identification key can be used as a user-defined ID for the task. For example, if the
task is meant for approving a purchase order, the purchase order ID can be set as the
identification key of the task. Tasks can be searched from Oracle BPM Worklist using
the identification key. This attribute has no default value.

Table 25–19 Human Task - Advanced Tab

For this Field... See...

Scope Name

Global Task Variable Name

Section 25.4.4.1, "Specifying a Scope Name and a Global
Task Variable Name"

Owner Section 25.4.4.2, "Specifying a Task Owner"

Identification Key Section 25.4.4.3, "Specifying an Identification Key"

Identity Context Section 25.4.4.4, "Specifying an Identity Context"

Application Context Section 25.4.4.5, "Specifying an Application Context"

Include task history from Section 25.4.4.6, "Including the Task History of Other
Human Tasks"

Associating the Human Task Service Component with a BPEL Process

25-84 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To specify an identification key:
1. In the Identification Key field of the Advanced tab, enter an optional

identification key value.

25.4.4.4 Specifying an Identity Context
The identity realm name is used for the task when multiple realms are configured. You
cannot have assignees from multiple realms working on the same task. This field is
required if you are using multiple realms.

To specify an identity context
1. In the Identity Context field of the Advanced tab, enter a value.

25.4.4.5 Specifying an Application Context
The stripe name of the application contains the application roles used in the task.

To specify an application context
1. In the Application Context field of the Advanced tab, enter a value.

25.4.4.6 Including the Task History of Other Human Tasks
This feature enables one human task to be continued with another human task. There
are many scenarios in which you have related tasks in a single BPEL process. For
example, assume you have a procurement process to obtain a manager’s approval for
a computer, then several BPEL activities in between, and then another task for the IT
department to buy the computer. The participant of the second task may want to see
the approval history, comments, and attachments created when the manager approved
the purchase. You can link these different tasks in the BPEL process by chaining the
second task to the first task with this option.

For chained tasks, the title of the new task cannot be set from the task metadata
(.task file). For example, assume existing TaskA is chained with new task TaskB, and
TaskB has a new title set in the Human Task Editor; this title is not recognized.
Therefore, if the chained task requires a different title, it must be set in the task
instance before calling the task service reinitiate operation. If a BPEL process is
initiating the tasks, set the task title before the workflow service APIs are called. If a
Java program is calling the workflow APIs programatically, then it must set the title.

To include the task history of other tasks:
1. Select the Include task history from checkbox of the Advanced tab to extend a

previous workflow task in the BPEL process. Selecting this checkbox includes the
task history, comments, and attachments from the previous task. This provides
you with a complete end-to-end audit trail.

When a human task is continued with another human task, the following
information is carried over to the new workflow:

■ Task payload and the changes made to the payload in the previous workflow

■ Task history

■ Comments added to the task in the previous workflow

■ Attachments added to the task in the previous workflow

In the Include task history from list, all existing workflows are listed.

2. Select a particular human task to extend (continue) the selected human task.

Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 25-85

For example, a hiring process is used to hire new employees. Each interviewer
votes to hire or not hire a candidate. If 75% of the votes are to hire, then the
candidate is hired; otherwise, the candidate is rejected. If the candidate is to be
hired, an entry in the HR database is created and the human resources contact
completes the hiring process. The HR contact also must see the interviewers and
the comments they made about the candidate. This process can be modeled using
a parallel participant type for the hiring. If the candidate is hired, a database
adapter is used to create the entry in the HR database. After this action, a simple
workflow can include the task history from the parallel participant type so that the
hiring request, history, and interviewer comments are carried over. This simple
workflow is assigned to the HR contact.

3. Select a payload to use:

■ Clear old payload and recreate

This option is applicable when the payload attributes in the XML files of the
human tasks involved in this extended workflow are different. For example,
the payload attribute for the human task whose history you are including has
three extra attributes than the payload of the other human task.

■ Use existing payload

This option is applicable when the payload attributes in the XML files of the
human tasks involved in this extended workflow are exactly the same.

25.4.5 How to View the Generated Human Task Activity
When you have completed modeling the human task activity, the human task is
generated in the designer.

Figure 25–77 shows how a workflow interaction is modeled in Oracle BPEL Process
Manager. Figure 25–77 also illustrates the interaction when no BPEL callbacks are
modeled. In this case, after a task is complete, the BPEL process is called back with the
completed task. No intermediary events are propagated to the BPEL process instance.
It is recommended that any user customizations be done in the first assign,
AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.

Associating the Human Task Service Component with a BPEL Process

25-86 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–77 Workflow Interaction Modeling

Click the Expand icon next to the human task activity in Oracle BPEL Designer to
display its contents, as shown in Figure 25–78.

Figure 25–78 Expanding the Human Task Activity

Figure 25–79 shows the workflow interaction in Oracle BPEL Designer.

AssignTaskAttributes
Captures the user-defined attributes of the task
such as title, payload, creator, priority, and so on

InitiateTask
Initiates the task by invoking the task service

ReceiveCompletedTask
Receives the completed task from the task service

AssignSystemTaskAttributes
Captures the system task attributes such as
process id, process version, and so on

Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 25-87

Figure 25–79 Workflow Interaction Modeling in Oracle JDeveloper

25.4.5.1 Invoking BPEL Callbacks
If intermediary events must be propagated to the BPEL process instance, select the
Allow task and routing customization in BPEL callbacks checkbox in the Advanced
Settings section of the Human Task Editor. When these options are selected, the
workflow service invokes callbacks in the BPEL instance during each update of the
task. The callbacks are listed in the TaskService.wsdl file and described as follows:

■ onTaskCompleted

This callback is invoked when the task is completed, expired, withdrawn, or
errored.

■ onTaskAssigned

This callback is invoked when the task is assigned to a new set of assignees due to
the following actions:

– Outcome update

– Skip current assignment

– Override routing slip

■ onTaskUpdated

Associating the Human Task Service Component with a BPEL Process

25-88 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

This callback is invoked for any other update to the task that does not fall in the
onTaskComplete or onTaskAssigned callback. This includes updates on tasks
due to a request for information, a submittal of information, an escalation, a
reassign, and so on.

■ onSubTaskUpdated

This callback is invoked for any update to a subtask.

Figure 25–80 shows how a workflow interaction with callbacks is modeled in Oracle
BPEL Process Manager. After this task is initiated, a while loop is used to receive
messages until the task is complete. The while loop contains a pick with four
onMessage branches — one for each of the above-mentioned callback operations. The
workflow interaction works fine even if nothing is changed in the onMessage
branches, meaning that customizations in the onMessage branches are not required.

In this scenario, a workflow context is captured in the BPEL instance. This context can
be used for all interaction with the workflow services. For example, if you want to
reassign a task if it is assigned to a group, then you need the workflow context for the
reassignTask operation on the task service.

It is recommended that any user customizations be done in the first assign,
AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.

Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 25-89

Figure 25–80 Workflow Interaction Modeling (with Callbacks)

Figure 25–81 shows a workflow interaction in Oracle JDeveloper.

AssignTaskAttributes
Captures the user-defined attributes of the task
such as title, payload, creator, priority, and so on

InitiateTask
Initiates the task by invoking the task service

AssignWorkflowContext
Assigns the workflow context to use for
interactions with the workflow service

AssignSystemTaskAttributes
Captures the system task attributes such as
process id, process version, and so on

Pick
activity

Receive
onTaskCompleted
message

Receive
onTaskAssigned
message

Receive
onTaskUpdated
message

Receive
onSubTaskUpdate
message

User
customizations

User
customizations

User
customizations

User
customizations

While the task is not
completed/expired/errored

Associating the Human Task Service Component with a BPEL Process

25-90 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 25–81 Workflow Interaction Modeling (with Callbacks) in Oracle JDeveloper

25.4.6 What You May Need to Know About Changing the Generated Human Task
Activity

If you must change a generated human task activity, note the following details:

■ Do not modify the assign tasks that are automatically created in a switch activity
when you add a human task to a BPEL process flow. Instead, add a new assign
activity outside the switch activity.

■ If the parameter passed into a human task is modified (for example, you change
the parameter type in the Edit Task Parameter dialog), you must open the human
task activity in the BPEL process flow and click OK to correct the references to the
payload variable. Not doing so causes the parameter name to change and become
uneditable.

If the task outcomes in the Human Task Editor are modified, you must edit the
human task activity and click OK. The switch case is then updated based on the
changes to the outcomes.

25.4.7 What You May Need to Know About Deleting a Partner Link Generated by a
Human Task

Deleting a partner link that was generated by a human task (for example, human_
task_name.TaskService in the Partner Links swimlane) causes the human task to
become unusable. If you delete the partner link, you must delete the human task
activity in Oracle BPEL Designer and start over again.

Associating the Human Task Service Component with a BPEL Process

Designing Human Tasks 25-91

25.4.8 How to Define Outcome-Based Modeling
In many cases, the outcome of a task determines the flow of the business process. To
facilitate modeling of the business logic, when a user task is generated, a BPEL switch
activity is also generated with prebuilt BPEL case activities. By default, one case
branch is created for each outcome selected during creation of the task. An otherwise
branch is also generated in the switch to represent cases when the task is withdrawn,
expired, or errored.

25.4.8.1 Specifying Payload Updates
The task carries a payload in it. If the payload is set from a business process variable,
then an assign activity with the name copyPayloadFromTask is created in each of
the case and otherwise branches to copy the payload from the task back to its source. If
the payload is expressed as other XPath expressions (such as ora:getNodes(...)),
then this assign is not created because of the lack of a process variable to copy the
payload back. If the payload does not require modification, then this assign can be
removed.

25.4.8.2 Using Case Statements for Other Task Conclusions
By default, the switch activity contains case statements for the outcomes only. The
other task conclusions are captured in the otherwise branch. These conclusions are as
follows:

■ The task is withdrawn

■ The task is errored

■ The task is expired

If business logic must be added for each of these other conclusions, then case
statements can be added for each of the preceding conditions. The case statements can
be created as shown in the following BPEL segment. The XPath conditions for the
other conclusions in the case activities for each of the preceding cases are shown in
bold in Example 25–2.

Example 25–2 XPath Conditions for Other Conclusions in the Case Activities

<switch name="taskSwitch">
 <case condition="bpws:getVariableData('SequentialWorkflowVar1',
'/task:task/task:state') = 'COMPLETED' and
bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:conclusion') =
'ACCEPT'">
 <bpelx:annotation>
 <bpelx:pattern>Task outcome is ACCEPT
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'WITHDRAWN'">
 <bpelx:annotation>
 <bpelx:pattern>Task is withdrawn
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =

Associating the Human Task Service Component with a BPEL Process

25-92 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 'EXPIRED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is expired
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
 'ERRORED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is errored
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <otherwise>
 <bpelx:annotation>
 <bpelx:pattern>Task is EXPIRED, WITHDRAWN or ERRORED
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </otherwise>
</switch>

26

Designing Task Display Forms for Human Tasks 26-1

26 Designing Task Display Forms for Human
Tasks

The human workflow service creates tasks for users to interact with the business
process. Each task has two parts—the task metadata and the task form. The task form
is used to display the contents of the task to the user’s worklist.

Oracle BPM Worklist displays all worklist tasks that are assigned to a user or a group.
When a worklist user drills down into a specific task, the task display form renders the
details of that task. For example, an expense approval task may show a form with line
items for various expenses, and a help desk task form may show details such as
severity, problem location, and so on.

This chapter describes how to design and customize task display forms using ADF
task flows in Oracle JDeveloper.

This chapter contains the following sections:

■ Section 26.1, "Introduction to the Task Display Form"

■ Section 26.2, "Associating the Task Flow with the Task Service"

■ Section 26.3, "Creating an ADF Task Flow Based on a Human Task"

■ Section 26.4, "Creating a Task Display Form"

■ Section 26.5, "Refreshing Data Controls When the Task XSD Changes"

■ Section 26.6, "Securing the Task Flow Application"

■ Section 26.7, "Creating an Email Notification"

■ Section 26.8, "Deploying a Composite Application with a Task Flow"

■ Section 26.9, "Displaying a Task Display Form in the Worklist"

■ Section 26.10, "Displaying a Task in an Email Notification."

26.1 Introduction to the Task Display Form
If your SOA composite includes a human task, then you need a way for users to
interact with the task. The integrated development environment of Oracle SOA Suite
includes Oracle Application Development Framework (Oracle ADF) for this purpose.
With Oracle ADF, you can design a task display form that depicts the human task in
the SOA composite.

The task display form is a Java Server Page XML (.jspx) file that you create in the
Oracle JDeveloper designer where you created the SOA composite containing the
human task. Note that you must set the page encoding to UTF-8 in Oracle JDeveloper

Associating the Task Flow with the Task Service

26-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

before creating the Java Server Page XML file. You can do this in Oracle JDeveloper by
choosing Tools > Preferences > Environment, and selecting UTF-8 using the
Encoding dropdown list.

Figure 26–1 shows the Oracle JDeveloper ADF Task Flow Based on Human Task
option where you start creating a task display form.

Figure 26–1 ADF Task Flow Based on a Human Task, in Oracle JDeveloper

26.2 Associating the Task Flow with the Task Service
When you create an ADF task flow based on a human task, you must select a task
metadata file to generate the data control. This data control is used to lay out the
content on the page and connect to the workflow service engine at execution time to
retrieve task content and act on tasks. See Chapter 14, "Getting Started with ADF Task
Flows," in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework for more information.

The hwtaskflow.xml file is used to capture the details on connecting with the
service engine. By default, it uses remote EJBs to connect to the workflow server. The
SOA server URL and port are automatically determined by using WebLogic Server
runtime MBeans. However, you can override these by explicitly specifying the URL
and port information here.

Seed a user that has ORMI privileges so that the task details application can connect to
the workflow service. You can seed this user by using Oracle Enterprise Manager
Fusion Middleware Control.

Creating an ADF Task Flow Based on a Human Task

Designing Task Display Forms for Human Tasks 26-3

26.3 Creating an ADF Task Flow Based on a Human Task
ADF task flows are used to model the user interface for the task details page. You can
create the task flow in the same application that contains the human task or in a
separate application.

You must have previously created a human task (.task file) as part of a SOA
composite before you can create a task flow. See Chapter 25, "Designing Human Tasks"
for how to create the.task file.

If the task flow is in the same application as the human task, create a different project
for the task flow. If the SOA composite contains multiple human tasks, create a
separate project for each ADF task flow associated with each human task. By using an
ADF task flow, you create data controls based on the task parameters and outcomes.

To autogenerate an ADF task form, access the human task in the SOA composite
application (form and task are in the same application). See Section 26.3.1, "How To
Autogenerate an ADF Task Flow for a Human Task," for more information.

To create an ADF task form in a separate application, create the new application and
project and browse for the .task file for the human task. See Section 26.3.2, "How To
Create an ADF Task Flow Based on a Human Task," for more information.

26.3.1 How To Autogenerate an ADF Task Flow for a Human Task
The.task file that specifies the human task is easily associated with the task flow
when the two are located in the same application.

To autogenerate an ADF task flow for a human task:
1. Open the BPEL process within the SOA composite application.

2. Right-click the human task activity and select Auto-Generate Task Form, as
shown in Figure 26–2.

Figure 26–2 Autogenerating a Task Display Form

Creating an ADF Task Flow Based on a Human Task

26-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. Provide a project name and a directory path (or use the default), and click OK.

The form is displayed in the designer, in the taskDetails1.jspx tab.

The task flow and task display form are complete and ready to be deployed.

26.3.2 How To Create an ADF Task Flow Based on a Human Task
The ADF Task Flow Based on Human Task option (shown in Figure 26–1) creates an
ADF task flow and additional artifacts to make deployment easier. When you select
the .task file to associate with the ADF task flow, human task data controls are
created based on the task parameters and outcomes. These are then available to use in
the JSPX page. You must have access to the SOA composite project while creating the
task flow project.

To create an ADF task flow based on a human task:
1. From the File main menu, select New > Applications > SOA Application.

2. Click OK.

3. Provide an application name and directory information (or accept the default), and
click Finish.

4. Right-click the project name and select New.

5. Under Web Tier, select JSF.

6. Select ADF Task Flow Based on Human Task and click OK.

7. In the SOA Resource Browser, find and select the .task file where you defined
the human task and click OK.

a. If the human task is in the same application as the task definition, then click
File to use the file browser to navigate to the .task file, which is typically in
the composite directory.

b. If the human task is in a different application, then click Resource Palette to
use the MDS resource catalog and find the .task file in the composite
application.

c. If the .task file is located within the current application, then click
Application.

This displays the Create Task Flow dialog and creates the data controls.

8. In the Create Task Flow dialog, accept the defaults and click OK.

The taskDetails1_jspx icon appears in the designer, as shown in Figure 26–3.

Creating an ADF Task Flow Based on a Human Task

Designing Task Display Forms for Human Tasks 26-5

Figure 26–3 The taskDetails1_jspx Icon

The task flow has a view, a control flow, and a task return.

To continue creating the task display form, see the following:

■ Section 26.4.1, "How To Create a Task Display Form Using the Complete Task with
Payload Drop Handler."

or

■ Section 26.4.2, "How To Create Task Display Form Regions Using Individual Drop
Handlers."

26.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task
With an ADF task flow based on a human task, the task flow application has task data
controls that wire the task form with the workflow services. The data controls provide
the following:

■ Various parameters and operations to access task data and act on it

■ Drop handlers with which you can create interface regions to display the contents
of the task

The human task-aware data controls appear in the Data Controls panel of the Oracle
JDeveloper Application Navigator, as shown in Figure 26–4.

Creating a Task Display Form

26-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–4 The Task Collection in the Data Controls Panel

The data controls for the task (represented by the Task node in the figure) have drop
handlers to render the task display form. See Section 26.4, "Creating a Task Display
Form," for more information.

26.4 Creating a Task Display Form
Use the human task drop handler to create a task display form. The human task drop
handler is designed to autogenerate the following:

■ Complete task with payload

■ Complete task without payload

■ Task details for email

■ Task header

■ Task action

■ Task history

■ Task comment and attachment

The human task drop handler appears in the context menu of the designer, as shown
in Figure 26–5.

Creating a Task Display Form

Designing Task Display Forms for Human Tasks 26-7

Figure 26–5 Human Task Drop Handler for Creating the Task Display Form

Other ADF drop handlers—for forms, tables, trees, and so on (shown in
Figure 26–5)—can also be used to create task display forms. See Oracle Fusion
Middleware Fusion Developer's Guide for Oracle Application Development Framework for
more information about standard ADF drop handlers.

Complete Task with Payload
This option creates the combination of all the preceding task display form components
(the task header, task history, task actions, and task comments and attachments), plus
the interface for the payload. The payload interface is created as follows:

■ All text nodes are created as text input fields.

■ If an element has maxOccurs="unbounded", then it appears as a table.

■ Nested tables are not rendered; that is, if an element has
maxOccurs="unbounded" and it has a child with maxOccurs="unbounded",
then the child element is not rendered.

■ If there are multiple levels of nesting, then drag and drop the individual sections
and use a standard ADF drop handler.

Complete Task without Payload
This option creates the combination of all of the preceding task display form
components (the task header, task history, task actions, and task comments and
attachments).

Task Details for Email
This option creates an ADF region that renders well when sent by email. It generates
the form shown in Figure 26–6.

Creating a Task Display Form

26-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–6 Task Display Form for Email Notification

See Section 26.7, "Creating an Email Notification," for more information.

Task Header
All the standard header fields are added to the task display form. This includes the
task number and title; the state, outcome, and priority of the BPEL process, and
information about who created, updated, claimed, or is assigned to the task. The
header also displays dates related to task creation, last modification, and expiration.
You can add or remove header fields as required for your task display.

Figure 26–7 shows an example of header information.

Figure 26–7 Header Information

Buttons for task actions are also created in the header, as shown in Figure 26–8.

Creating a Task Display Form

Designing Task Display Forms for Human Tasks 26-9

Figure 26–8 Task Header: Task Action Buttons

Task Actions
The following task actions appear from the Actions dropdown list or as buttons. The
tasks that appear depend on the state of the task (assigned, completed, and so on) and
the privileges that are granted to the user viewing the task. For example, when a task
is assigned to a group, only the Claim button appears. After the task is claimed, other
actions such as Reject and Approve appear.

The first three custom actions appear on the task form as buttons: Claim, Dismiss, and
Resume. Only those buttons applicable to the task appear. Other actions are displayed
under the Actions list, starting with Request for Information, Reassign, and Route.
Systems actions—Withdraw, Pushback, Escalate, Release, Suspend, and
Renew—follow the custom actions, followed by the Save button. These actions require
no further dialog to complete.

■ Claim—A task that is assigned to a group or multiple users must be claimed first.
Claim is the only action available in the Task Action list for group or multiuser
assignments. After a task is claimed, all applicable actions are listed.

■ Dismiss—This action is used for a task that requires the person acting on the task
to acknowledge receipt, but not take any action (like an FYI).

■ Resume—A task that was halted by a Suspend action can be worked on again. See
Suspend.

■ Request for Information—You can request more information from the task creator
or any of the previous assignees. If reapproval is not required, then the task is
assigned to the next approver or the next step in the business process.

■ Reassign—Managers can reassign a task to reportees. A user with
BPMWorkflowReassign privileges can reassign a task to anyone. The Reassign
option also provides a Delegate function. A task can be delegated to another user
or group. The delegated task appears in both the original user’s and the delegated
user’s worklists. The delegated user can act on behalf of the original assignee, and
has the same privileges for that task as the original assignee.

■ Route—If there is no predetermined sequence of approvers or if the workflow was
designed to permit ad hoc routing, then the task can be routed in an ad hoc
fashion. For such tasks, a Route button appears on the task details page. From the
Routing page, you can look up one or more users for routing. When you specify
multiple assignees, you can choose whether the list of assignees is for simple
(group assignment to all users), sequential, or parallel assignment. In the case of
parallel assignment, you provide the percentage of votes required for approval.

■ Withdraw—Only the task creator can withdraw (cancel) the task. The Comments
area is available for an optional comment. The business process determines what
happens next.

■ Pushback—This action sends a task up one level in the workflow to the previous
assignee.

■ Escalate—An escalated task is assigned to the user’s manager. The Comments
area is available for an optional comment.

Creating a Task Display Form

26-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Release—Releasing a task makes it available to other assignees. A task assigned to
a group or multiple users can then be claimed by the other assignees.

■ Suspend—This action suspends the expiration date indefinitely, until the task is
resumed. Suspending and resuming tasks are available only to users who have
been granted the BPMWorkflowSuspend role. Other users can access the task by
selecting Previous in the task filter or by looking up tasks in the Suspended status.
Buttons that update a task are disabled after suspension.

■ Renew—Renewing a task extends the task expiration date seven days (P7D is the
default). The renewal duration is controlled from Oracle Enterprise Manager Grid
Control Console. A renewal appears in the task history. The Comments area is
available for an optional comment.

■ Save—Changes to the task are saved.

While you are creating a task display form, all possible system action buttons appear,
although only those actions that are appropriate for the task state and fit the user’s
privileges appear in the worklist.

Task History
The history of task actions appears on the task details page, and is displayed in the
worklist as a history table. The history includes the following fields:

■ Version number

■ Participant name—the person who acted on the task

■ Action—for example, if the task was approved or assigned

■ Updated By—name of the person who last updated the task

■ Action date

See Figure 27–19, "History: Graphical View" and Figure 27–20, "History: Full Task
Actions" for how task history is displayed in Oracle BPM Worklist, including the
options to take a history snapshot, list future participants, and list full task actions.

Task Comments and Attachments
A trail of comments with the comment date and comment writer’s user name is
maintained throughout the life cycle of a task.

Files or reference URLs associated with a task can be added by any of the human task
participants.

Figure 26–9 shows an example of the comments and attachments region.

Figure 26–9 Comments and Attachment Region

Creating a Task Display Form

Designing Task Display Forms for Human Tasks 26-11

26.4.1 How To Create a Task Display Form Using the Complete Task with Payload Drop
Handler

The following steps describe how to use a drop handler that creates the task display
form, including the payload, without building each region individually. To build each
region individually, see Section 26.4.2, "How To Create Task Display Form Regions
Using Individual Drop Handlers."

To create a task display form using the Complete Task with Payload drop
handler:
1. In the designer, double-click taskDetails1_jspx.

2. In the Create JSF Page dialog, provide a file name and directory information (or
accept the defaults) and click OK.

3. In the Data Controls panel of the Application Navigator, expand the human task
node, then the getTaskDetails node, and then the Return node.

4. Drag the Task icon into the taskDetails.jspx window.

5. Select Human Task, and then Complete Task with Payload.

6. In the Edit Action Binding dialog, shown in Figure 26–10, click OK.

Figure 26–10 Edit the Action Binding

Creating a Task Display Form

26-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. In the next Edit Action Binding dialog, the data collection is selected, as shown in
Figure 26–11; click OK.

Figure 26–11 Select the Data Collection and Action

The task display form is displayed, as shown in Figure 26–12.

Creating a Task Display Form

Designing Task Display Forms for Human Tasks 26-13

Figure 26–12 Task Display Form

26.4.2 How To Create Task Display Form Regions Using Individual Drop Handlers
You can create a display form with multiple regions using the individual Task Header,
Task Action, Task History, and Task Comment and Attachment drop handlers shown
in Figure 26–13.

Creating a Task Display Form

26-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–13 Using Human Task Drop Handlers

Task Header provides both header and task actions, so you do not need the Task
Action drop handler when you use Task Header. Use Task Action when you want the
actions dropdown menu and buttons, but not header details.

To create the task display form without building each region individually, see
Section 26.4.1, "How To Create a Task Display Form Using the Complete Task with
Payload Drop Handler."

Before you create this task display form, you must have created the following:

■ A new application and SOA project, and a human task service.

■ An ADF task flow based on the human task. See Section 24.3.2.2, "How to Create
the Vacation Request Process," for more information.

To create task display form regions using individual drop handlers:
1. In the designer, double-click taskDetails1.jspx.

2. In the Create JSF Page dialog, provide a file name and directory information (or
accept the defaults) and click OK.

3. In the Data Controls panel of the Application Navigator, expand the human task
node, then the getTaskDetails node, and then the Return node.

4. Drag the Task icon into the taskDetails.jspx window.

5. Select Human Task, and then Task Header.

This creates the Actions dropdown list and buttons for task actions, as shown in
Figure 26–14, and header details, as shown in Figure 26–15.

Figure 26–14 Designing the Task Display Form: Buttons for Task Actions

Creating a Task Display Form

Designing Task Display Forms for Human Tasks 26-15

Figure 26–15 Designing the Task Display Form: Task Headers

6. Drag additional Task icons into the JSPX designer, selecting these options with
each iteration:

■ Human Task, then Task History

■ Human Task, then Task Comment and Attachment

The task display form now has multiple regions for task action dropdown lists and
buttons, task header details, task history, and comments and attachments.

To continue creating the task display form, see Step 1 in Section 26.4.3, "How To Add
the Payload to the Task Display Form."

26.4.3 How To Add the Payload to the Task Display Form
In addition to adding the payload, you can create task display form regions. See Step 1
in Section 26.4.2, "How To Create Task Display Form Regions Using Individual Drop
Handlers."

To add the payload to the task display form:
1. From the Component Palette, select ADF Faces.

2. Expand Layout.

3. Drag Panel Group Layout between the Header and Comment sections.

4. In the Data Controls panel, expand Task, and then Payload.

5. Drag the payload data collection to the left of the Panel Group Layout area.

An alternative to dropping the payload node onto the form is to expand the
payload node and drop the necessary child elements onto the form. For example,
to create a read-only form for the VacationRequest payload, expand the payload
node, drag the Vacation Request Process Request node onto the form, and select
Forms > ADF Read-only Form.

6. From the context menu, select Forms, then ADF Read-only Form, as shown in
Figure 26–16.

Creating a Task Display Form

26-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–16 Adding ADF Read-Only Fields to the Task Display Form Payload Region

7. In the Edit Form Fields dialog, accept the defaults and click OK.

This creates read-only fields in the payload region, between the Details and
History sections.

The payload regions appear, as shown in Figure 26–17.

Figure 26–17 The Payload Region of the Task Display Form

The task display form, shown in Figure 26–18, is complete and ready to be deployed.

Figure 26–18 The Task Display Form (taskDetails.jspx)

Refreshing Data Controls When the Task XSD Changes

Designing Task Display Forms for Human Tasks 26-17

26.4.4 What Happens When You Create a Task Display Form
The form you designed is saved in the taskDetails.jspx file at

JDev_Oracle_Home\mywork\task_form_application_name\project_name\public_html

The task display form is ready to be deployed. See Section 26.8, "Deploying a
Composite Application with a Task Flow."

26.5 Refreshing Data Controls When the Task XSD Changes
When task metadata changes, refresh the Data Controls view (XSD changes are not
refreshed) that is based on that task metadata. The refresh functionality re-creates the
data control. Figure 26–19 shows the Refresh option.

Figure 26–19 Refreshing Data Controls

To refresh the data control:
1. Right-click the data control.

2. Select the Edit Definition option to display the Refresh Data Control dialog, as
shown in Figure 26–20.

Securing the Task Flow Application

26-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–20 The Refresh Data Control Button

26.6 Securing the Task Flow Application
You can use any container-based security for securing the task flow. See
Section 29.6.2.1.2, "Requirements for Client Applications For Identity Propagation," for
more information. Form-based authentication and SSO-based authentication are
available for web security.

If you are sending a notification as email, do not secure the URL
with"/notification/secure" to use container-based security because this is accessed by
SOA APIs using an internal context that cannot be created outside of SOA. The URL
pattern inside security cannot contain "/" (all URLs) and "//notification".

No additional steps are required for identity propagation. Identity is automatically
propagated to the server EJBs.

26.7 Creating an Email Notification
A task display form is used to provide an email notification, if email notification is
defined as part of the human task. Options for email notification include:

■ Default email notification—Use the first page of the task display form that you
create for the human task. The content is sent as an HTML-based email. Images in
the task flow are included as attachments so that the notification can be viewed in
disconnected mode. However, if you use the Complete Task with Payload or
Complete Task without Payload drop handlers, then the generated JSPX file is not
suitable for e-mails. In this case, using the custom email notification is
recommended.

■ Custom email notification—Use the Task display for email drop handler to create
an email notification task page.

Section 29.2, "Notifications from Human Workflow" to review notification settings as
part of a human task definition (.task file).

26.7.1 How To Create an Email Notification
To send a custom email notification whose content and layout you have specified
(instead of sending the default page), create another JSPX file in which you design an
email notification page. Create the notification page by using the custom and standard
drop handlers, or use the email notification drop handler. In addition, do the
following:

Creating an Email Notification

Designing Task Display Forms for Human Tasks 26-19

■ Add a router to the task flow. The router directs the task flow to send either the
email notification page or the default page, depending on the control flow based
on the bpmClientType page flow scope value.

■ Edit the generated inline CSS to customize the page. No additional CSS is included
at runtime and the ADF CSS is not available at runtime. See the samples
notification-101 and notification-102 at

http://www.oracle.com/technology/sample_code/products/hwf

■ Reference images directly from the HTML or JSF page. (Indirect references, for
example, an included JSF that in turn includes the image, are not allowed.)

26.7.1.1 Creating a Task Flow with a Router
The control flow case with a router enables you direct the request to a specific page
based on certain parameters. For an ADF task flow based on a human task, you need a
special page for email notifications. This section describes how to create a special page
for email notifications.

To create a task flow with a router:
1. In the Application Navigator, expand the task flow project and double-click

project_name _TaskFlow.xml.

The XML file opens in the designer. In the diagram view, you see the
taskDetails1.jspx icon.

2. From the Component Palette, select ADF Task Flow, and drag the View icon into
the designer.

3. Click view1 below the icon and enter a name for the email notification page.

Figure 26–21 shows an example using the name EmailPage.

Figure 26–21 Creating the Email Page

4. From the Component Palette, drag Router into the designer.

Creating an Email Notification

26-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Click router1 below the icon and enter a router name.

Figure 26–23 shows an example using the name PageRouter.

6. To ensure that the router is called, right-click the router icon and click Mark
Activity > Default Activity, as shown in Figure 26–22.

Figure 26–22 Marking the Router as the Default Activity

7. Click the router - router_name - Property Inspector tab.

8. In the default-outcome field, enter default.

9. Click Add, and in the Outcome field, enter the name of the email notification
page.

10. Use the Expression Builder to enter the following in the expression field:
#{pageFlowScope.bpmClientType=="notificationClient"}

11. In the Component Palette, click Control Flow Case.

12. In the designer, drag from the router page icon to taskDetails1.jspx.

The control flow is automatically labeled default, as shown in Figure 26–23.

Creating an Email Notification

Designing Task Display Forms for Human Tasks 26-21

Figure 26–23 Connecting the Control Flow

13. In the Component Palette, click Control Flow Case.

14. In the designer, drag from the router page icon to the email notification page icon.

15. Click the control-flow-case - email_page_name - Property Inspector tab.

16. From the from-outcome list, select the name of the email notification page.

Figure 26–24 shows the completed control flow.

Creating an Email Notification

26-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–24 Completed Control Flow for an Email Notification

To continue creating the email notification page, see Step 1 in Section 26.7.1.2,
"Creating an Email Notification Page."

26.7.1.2 Creating an Email Notification Page
Creating an email notification page is similar to creating a task display form, with the
addition of defining layout and inline styles. See Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework for design
information.

To create an email notification page:
1. In the designer, double-click EmailPage.

2. In the Create JSF Page dialog, provide a file name and directory information (or
accept the defaults) and click OK.

The EmailPage.jspx tab opens in the designer.

3. From the Component Palette, drag any of the Common Components (for an
image, for example) or Layout components into the designer.

4. For the layout component you selected, provide alignment and other details in the
Property Inspector tab.

Figure 26–25 shows the layout fields available when Panel Group Layout is
selected.

Creating an Email Notification

Designing Task Display Forms for Human Tasks 26-23

Figure 26–25 Specifying a Layout

See Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle
Application Development Framework for more information about panel group layout.

5. Expand Appearance, Style and Theme, Behavior, Advanced, Customization, and
Annotations to specify other details, as shown in Figure 26–26.

Creating an Email Notification

26-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–26 Specifying a Layout: More Details

See Section 2.4.6, "How to Set Component Attributes," in Oracle Fusion Middleware
Web User Interface Developer's Guide for Oracle Application Development Framework

6. From the Data Controls panel, expand the human task node, then the
getTaskDetails node, and then the Return node.

7. Drag Task into the panel group layout area.

8. Select Human Task, and then Task details for email, as shown in Figure 26–27.

Deploying a Composite Application with a Task Flow

Designing Task Display Forms for Human Tasks 26-25

Figure 26–27 Human Task Drop Handlers

This drop handler includes a header with inline style, a payload using ADF, and a
comment using inline style. Because the payload is dynamically generated, it does
not include an inline style.

In general, you can find the inline styles for the Header section for each
component and use the same style for the Content section for the respective
components.

9. In the Edit Action Bindings dialog, select the data collection and click OK.

The email task form is complete and ready to be deployed.

26.7.2 What Happens When You Create an Email Notification Page
The email notification page is sent as HTML content in the email message body.
Images on the page are inlined as attachments. Relative URLs are converted to
absolute URLs.

26.7.3 What You May Need to Know About Creating an Email Notification Page
A notification may not display correctly in email if the styles used in the fields of the
form are not valid for email. Editing the generated inline CSS to customize the page
may be required. See Section 26.7.1, "How To Create an Email Notification," for more
information.

Security issues can also prevent the form from being rendered correctly. See
Section 26.6, "Securing the Task Flow Application," for more information.

26.8 Deploying a Composite Application with a Task Flow
The composite application containing the task flow must be deployed before you can
use the task display form in the Worklist Application. The process for deploying an
application with a task flow is basically the same as deploying any SOA composite
application, as described in Section 26.8.2, "How To Deploy a Composite Application
with a Task Flow." See Chapter 43, "Deploying SOA Composite Applications" for more
information.

26.8.1 Before Deploying the Task Display Form: Port Changes
If you are not using the default values for RMI or HTTP ports, open the
hwtaskflow.xml file in Oracle JDeveloper to change values. Figure 26–28 shows the
file in the Application Navigator.

Deploying a Composite Application with a Task Flow

26-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–28 The hwtaskflow.xml File

Example 26–1 shows a sample hwtaskflow.xml file with comments on which values
can and cannot be changed.

Example 26–1 Sample hwtaskflow.xml File

<!--Sample hwtaskflow.xml file. This is required for successful deployment of an
ADF Task Flow Based on Human Task application. -->

<?xml version = '1.0' encoding = 'UTF-8'?>
<hwTaskFlows xmlns="http://xmlns.oracle.com/bpel/workflow/hwTaskFlowProperties">

 <!-- Name of the client application used to view the tasks, defaults to
 'worklist' -->

 <ApplicationName>worklist</ApplicationName>

 <!-- Type of ejb lookup used. If not specified, remote lookup is used. Values
 - LOCAL, REMOTE, SOAP -->
 <LookupType>LOCAL</LookupType>

 <!-- Do not modify this element. Value must be 'false' for deployment to
 complete successfully -->

 <TaskFlowDeploy>false</TaskFlowDeploy>

 <!-- Connection details for soa server for remote ejb lookup.
If not specified, default values for ejbProviderUrl is http://localhost/soa-infra
 , aliasKeyName is BPM_SERVICES, keyName is BPM_SERVICES -->

Deploying a Composite Application with a Task Flow

Designing Task Display Forms for Human Tasks 26-27

 <SoaServer>
 <ejbProviderUrl/>
 <aliasKeyName/>
 <keyName/>
 <connectionName/>
 </SoaServer>

 <!-- Connection details for server on which task flow is deployed.
If not specified, default values for hostname is localhost,
 httpPort is 8888 and httpsPort is 443 --> -->

 <TaskFlowServer>
 <hostName/>
 <httpPort/>
 <httpsPort/>
 </TaskFlowServer>

 <!-- Task Flow specific properties -->

<hwTaskFlow>
 <WorkflowName></WorkflowName>
 <TaskDefinitionNamespace></TaskDefinitionNamespace>
 <TaskFlowId></TaskFlowId>
 <TaskFlowFileName></TaskFlowFileName>
 </hwTaskFlow>
</hwTaskFlows>

26.8.2 How To Deploy a Composite Application with a Task Flow
An application server connection is required to do the following.

To deploy a composite application with a task flow:
1. Right-click the composite application name, select Deploy, and then application_

name > to > application_server_connection.

If you do not have a connection, select New Connection and use the Application
Server Connection wizard.

2. In the Select Deployment Targets dialog, select a server instance.

3. Click OK.

26.8.3 How To Redeploy the Task Display Form
If you change the task display form and want to redeploy it, repeat the deployment
step. (Right-click the task form application name, select Deploy, and then application_
name > to > application_server_connection.) A message asking you if you want to
undeploy the form is displayed. Click OK and deploy the task form again.

26.8.4 How To Deploy a Task Flow as a Separate Application
If you want to deploy the task flow as a separate application, outside of the SOA
composite application, then create a new application and project as a container for the
task flow. After you deploy the SOA composite application, deploy the task flow
application.

Deploying a Composite Application with a Task Flow

26-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

26.8.5 How To Deploy a Task Display Form to a non-SOA Oracle WebLogic Server
Follow the steps in these sections to deploy a task display form to a non-SOA Oracle
WebLogic Server:

■ Section 26.8.5.1, "Deploying oracle.soa.workflow.jar to a non-SOA Oracle
WebLogic Server"

■ Section 26.8.5.2, "Defining the Foreign JNDI Provider on a non-SOA Oracle
WebLogic Server"

■ Section 26.8.5.3, "Defining the Foreign JNDI Provider Links on a non-SOA Oracle
WebLogic Server"

■ Section 26.8.5.4, "Including a Grant for bpm-services.jar"

■ Section 26.8.5.5, "Deploying the Application"

26.8.5.1 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server
The oracle.soa.workflow.jar shared library is needed on the non-SOA Oracle WebLogic
Server. It is available from

ORACLE_JDEV_HOME\jdeveloper\soa\modules\oracle.soa.workflow_11.1.1

Use Oracle WebLogic Server Administration Console to deploy the JAR file.

To deploy oracle.soa.workflow.jar:
1. Go to Oracle WebLogic Server Administration Console at

http://remote_hostname:remote_portnumber/console

2. In the Domain Structure area, click Deployments.

3. Click Install, as shown in Figure 26–29.

Deploying a Composite Application with a Task Flow

Designing Task Display Forms for Human Tasks 26-29

Figure 26–29 Oracle WebLogic Server Administration Console: List of Deployments

4. In the Path field, provide the following path and click Next.

ORACLE_JDEV_HOME/jdeveloper/soa/modules/oracle.soa.workflow_
11.1.1/oracle.soa.workflow.jar

5. Keep the same name for the deployment and click Next, as shown in Figure 26–30.

Deploying a Composite Application with a Task Flow

26-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–30 Oracle WebLogic Server Administration Console: Install Applications Assistant

6. Select the Deploy as Library option and click Finish.

7. Confirm that the oracle.soa.workflow(11.1.1,11.1.1) library is in the Active state, as
shown in Figure 26–31.

Figure 26–31 Oracle WebLogic Server Administration Console: The oracle.soa.workflow Active State

See Section 26.8.5.2, "Defining the Foreign JNDI Provider on a non-SOA Oracle
WebLogic Server," to continue.

26.8.5.2 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server
Use Oracle WebLogic Server Administration Console to complete this portion of the
task.

Deploying a Composite Application with a Task Flow

Designing Task Display Forms for Human Tasks 26-31

To define the foreign JNDI provider:
1. In the Domain Structure area, expand Services and click Foreign JNDI Providers.

2. Click New.

3. In the Name field, enter ForeignJNDIProvider-SOA, as shown in Figure 26–32,
and click OK.

Figure 26–32 Creating a Foreign JNDI Provider

4. Click the ForeignJNDIProvider-SOA link.

5. Do the following and click Save.

■ For Initial Context Factory, enter
weblogic.jndi.WLInitialContextFactory.

■ For Provider URL, enter t3://soa_hostname:soa_
portnumber/soa-infra.

■ For User, enter weblogic.

■ For Password, enter weblogic.

Figure 26–33 shows the page where you enter this information.

Deploying a Composite Application with a Task Flow

26-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–33 Defining the Foreign JNDI Provider

See Section 26.8.5.3, "Defining the Foreign JNDI Provider Links on a non-SOA Oracle
WebLogic Server," to continue.

26.8.5.3 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic
Server
Use Oracle WebLogic Server Administration Console to complete this portion of the
task.

To define the foreign JNDI provider links:
1. In the Domain Structure area, expand Services and click Foreign JNDI Providers.

2. Click the ForeignJNDIProvider-SOA link.

3. Click the Links tab.

4. Click New.

Figure 26–34 shows the Links tab.

Deploying a Composite Application with a Task Flow

Designing Task Display Forms for Human Tasks 26-33

Figure 26–34 Defining the Foreign JNDI Provider Links: The Links Tab

5. Do the following and click OK.

■ For Name, enter RuntimeConfigService.

■ For Local JNDI Name, enter RuntimeConfigService.

■ For Remote JNDI Name, enter RuntimeConfigService.

Figure 26–35 shows where you do this.

Figure 26–35 Defining the Foreign JNDI Provider Links: Link Properties

6. Do the following and click OK.

Deploying a Composite Application with a Task Flow

26-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ For Name, Local JNDI Name, Remote JNDI Name, enter
ejb/bpel/services/workflow/TaskServiceBean.

■ For Name, Local JNDI Name, Remote JNDI Name, enter
ejb/bpel/services/workflow/TaskMetadataServiceBean.

■ For Name, Local JNDI Name, Remote JNDI Name, enter
TaskReportServiceBean.

■ For Name, Local JNDI Name, Remote JNDI Name, enter
TaskEvidenceServiceBean.

■ For Name, Local JNDI Name, Remote JNDI Name, enter
TaskQueryService.

■ For Name, Local JNDI Name, Remote JNDI Name, enter
UserMetadataService.

See Section 26.8.5.4, "Including a Grant for bpm-services.jar," to continue.

26.8.5.4 Including a Grant for bpm-services.jar
To include a grant for bpm-services.jar, edit the system-jazn-data.xml file and
then restart the non-SOA Oracle WebLogic Server.

To include a grant for bpm-services.jar:
1. Locate the system-jazn-data.xml file by navigating to the domain directory,

soa-infra, and then to

ORACLE_WEBLOGIC_INSTALL/user_projects/domains/your_domain_name/config/fmwconfig

2. In system-jazn-data.xml, add the following grant. (If all or some portion of
the grant exists, then add only what is missing.)

<grant>
 <grantee>
 <codesource>
 <url>file: ORACLE_JDEV_HOME/jdeveloper/soa/modules/oracle.soa.workflow_
11.1.1/bpm-services.jar</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>VerificationService.createInternalWorkflowContext</name>
 </permission>
 <permission>
 <class>oracle.security.jps.service.credstore.CredentialAccessPermission
 </class>
 <name>credstoressp.credstore.BPM-CRYPTO.BPM-CRYPTO</name>
 <actions>read,write</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 <actions>*</actions>
 </permission>
 </permissions>
</grant>

3. Restart the non-SOA Oracle WebLogic Server.

Displaying a Task Display Form in the Worklist

Designing Task Display Forms for Human Tasks 26-35

See Section 26.8.5.5, "Deploying the Application," to continue.

26.8.5.5 Deploying the Application
Deploy the application that contains the task display form to a non-SOA Oracle
WebLogic Server the same way other applications are deployed. When you set up the
application server connection, specify the domain on the non-SOA server (the domain
you specified in Step 1 of Section 26.8.5.4, "Including a Grant for bpm-services.jar.". See
Chapter 43, "Deploying SOA Composite Applications" for information on deploying
applications.

26.8.6 What Happens When You Deploy the Task Display Form
When the task form is deployed, an automatic association is created between the task
metadata and the task flow application URL. Use Oracle Enterprise Manager 11g
Fusion Middleware Control to update this mapping. Access the task flow component
in the Component Metrics table for a specific SOA composite application. The
Administration tab shows the URI for the task form. See Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite for more information. If the task flow is
configured for HTTPS access, you may need to do additional settings in Enterprise
Manager.

See Chapter 27, "Using Oracle BPM Worklist" for information on how to act on tasks.

26.9 Displaying a Task Display Form in the Worklist
The task display form is displayed in Oracle BPM Worklist, a web-based interface for
users to act on their assigned human tasks. Specific actions are available or unavailable
depending on a user’s privileges.

Figure 26–36 shows how the task display form for the help desk request example is
displayed in the Worklist Application task details page.

Note: If you want to access the task display form from a different
URL that has a different port number than the hostname and port
number previously set in Oracle WebLogic Server Administration
Console, then you must change the port number for the front-end in
Oracle WebLogic Server Administration Console and redeploy the
task display form so that the task details appear correctly in the
worklist.

Displaying a Task in an Email Notification

26-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 26–36 Worklist Task Details Page

26.9.1 How To Display the Task Display Form in the Worklist
The task display form is available in Oracle BPM Worklist after you log in. See
Section 27.2.1, "How To Log In to the Worklist" for instructions.

26.10 Displaying a Task in an Email Notification
Figure 26–37 shows how an email task notification appears in email.

Displaying a Task in an Email Notification

Designing Task Display Forms for Human Tasks 26-37

Figure 26–37 Email Task Notification

You can click an available action, RESOLVED or UNRESOLVED, or click the Worklist
Application link to log in to the worklist. Clicking an action displays an email
composer window in which you can add a comment and send the email.

Displaying a Task in an Email Notification

26-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

27

Using Oracle BPM Worklist 27-1

27 Using Oracle BPM Worklist

This chapter describes how worklist users and administrators interact with Oracle
BPM Worklist, and how to customize the worklist display to reflect local business
needs, languages, and time zones.

This chapter contains the following topics:

■ Section 27.1, "Introduction to Oracle BPM Worklist"

■ Section 27.2, "Logging In to Oracle BPM Worklist"

■ Section 27.3, "Customizing the Task List Page"

■ Section 27.4, "Acting on Tasks: The Task Details Page"

■ Section 27.5, "Approving Tasks"

■ Section 27.6, "Setting a Vacation Period"

■ Section 27.7, "Setting Rules"

■ Section 27.8, "Using the Worklist Administration Functions"

■ Section 27.9, "Specifying Notification Settings"

■ Section 27.10, "Using Flex Fields"

■ Section 27.11, "Creating Worklist Reports"

■ Section 27.12, "Accessing Oracle BPM Worklist in Local Languages"

See Chapter 28, "Building a Custom Worklist Client" for how to use the APIs exposed
by the workflow service.

27.1 Introduction to Oracle BPM Worklist
Oracle BPM Worklist enables business users to access and act on tasks assigned to
them. For example, from a worklist, a loan agent can review loan applications or a
manager can approve employee vacation requests. These processes are defined in
human tasks.

Oracle BPM Worklist provides different functionality based on the user profile.
Standard user profiles include task assignee, supervisor, process owner, and
administrator. For example, worklist users can update payloads, attach documents or
comments, and route tasks to other users, in addition to completing tasks by providing
conclusions such as approvals or rejections. Supervisors or group administrators can
use the worklist to analyze tasks assigned to a group and route them appropriately.

Introduction to Oracle BPM Worklist

27-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Users can customize their task lists, as required, by adding worklist views, for
example, selecting the columns to display, or displaying a subset of the tasks based on
filter criteria.

Using Oracle BPM Worklist, task assignees can do the following:

■ Perform authorized actions on tasks in the worklist, acquire and check out shared
tasks, define personal to-do tasks, and define subtasks.

■ Filter tasks in a worklist view based on various criteria.

■ Work with standard work queues, such as high priority tasks, tasks due soon, and
so on. Work queues allow users to create a custom view to group a subset of tasks
in the worklist, for example, high priority tasks, tasks due in 24 hours, expense
approval tasks, and more.

■ Define custom work queues.

■ Gain proxy access to part of another user’s worklist.

■ Define custom vacation rules and delegation rules.

■ Enable group owners to define task dispatching rules for shared tasks.

■ Collect a complete workflow history and audit trail.

■ Use digital signatures for tasks.

Figure 27–1 shows an illustration of Oracle BPM Worklist.

Figure 27–1 Oracle BPM Worklist—Access Tasks, Forms, Attachments, and Reports

The worklist is rendered in a browser by a task display form that you create using
ADF task flows in Oracle JDeveloper. See Chapter 26, "Designing Task Display Forms
for Human Tasks" for more information.

Users can also act on tasks through portals such as Oracle WebCenter. Portals enable
users to present information from multiple, unrelated data sources in a single
organized view. This view, a portal page, can contain one or more components called
portlets that can each collect content from different data sources.

You can build clients for workflow services using the APIs exposed by the workflow
service. The APIs enable clients to communicate with the workflow service using local
and remote EJBs, SOAP, and HTTP.

Complete Task

List Work Items

Workflow ServicesOracle BPM Worklist

Get Weekly
Productivity

Report

Task Details
and History

Logging In to Oracle BPM Worklist

Using Oracle BPM Worklist 27-3

27.1.1 What You May Need To Know About Oracle BPM Worklist
Note the following:

■ Only one identity provider is supported. Java policy store does not support
multiple providers in a sequence. Therefore, fall-through from one directory server
to another is not supported for worklists.

27.2 Logging In to Oracle BPM Worklist
Table 27–1 lists the different types of users recognized by Oracle BPM Worklist, based
on the privileges assigned to the user.

27.2.1 How To Log In to the Worklist
To log in, you must have installed Oracle SOA Suite and the SOA server must be
running. See Oracle Fusion Middleware Installation Guide for Oracle SOA Suite for more
information.

 Use a supported web browser:

■ Microsoft Internet Explorer 7.x

■ Mozilla Firefox 2.x

■ Mozilla Firefox 3.x

To log in:
1. Go to

http://host_name:port_number/integration/worklistapp

■ host_name is the name of the host computer on which Oracle SOA Suite is
installed

■ The port_number used at installation

2. Enter the user name and password.

Table 27–1 Worklist User Types

Type of User Access

End user (user) Acts on tasks assigned to him or his group and has access to system and custom
actions, routing rules, and custom views

Supervisor (manager) Acts on the tasks, reports, and custom views of his reportees, in addition to his own
end-user access

Process owner Acts on tasks belonging to the process but assigned to other users, in addition to his
own end-user access

Group administrator Manages group rules and dynamic assignments, in addition to his own end-user
access

Workflow administrator Administers tasks that are in an errored state, for example, tasks that must be
reassigned or suspended. The workflow administrator can also change application
preferences and map flex fields, and manage rules for any user or group, in addition
to his own end-user access.

Note: Multiple authentication providers (for example, SSO and
forms) are not supported.

Logging In to Oracle BPM Worklist

27-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

You can use the preseeded user to log in as an administrator. If you have loaded
the demo user community in the identity store, then you can use other users such
as jstein or jcooper.

The user name and password must exist in the user community provided to
JAZN. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite for
the organizational hierarchy of the demo user community used in examples
throughout this chapter.

3. Click Login.

27.2.1.1 Enabling the weblogic User for Logging in to the Worklist
For the weblogic user in OID to log in to Oracle BPM Worklist, the OID
Authenticator must have an Administrators group, and the weblogic user must be a
member of that group.

To enable the weblogic user:
1. Create a weblogic user in OID using the LDAP browser. The users.ldif file is

imported to OID as follows:

dn: cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com
objectclass: inetorgperson
objectclass: organizationalPerson
objectclass: person
objectclass: orcluser
objectclass: orcluserV2
objectclass: top
sn: weblogic
userpassword: welcome1
uid: weblogic

2. Create an Administrators group in OID and assign the weblogic user to it. The
groups.ldif file is imported to OID as follows:

dn: cn=Administrators,cn=Groups,dc=us,dc=oracle,dc=com
objectclass: groupOfUniqueNames
objectclass: orclGroup
objectclass: top
owner: cn=orcladmin,cn=Users,dc=us,dc=oracle,dc=com
uniquemember: cn=weblogic,cn=Users,dc=us,dc=oracle,dc=com

27.2.2 What Happens When You Log In to the Worklist
Identity service workflow APIs authenticate and authorize logins using a user name,
password, and optionally a realm set, if multiple realms were defined for an
organization. See Section 27.8.2, "How To Set the Worklist Display (Application
Preferences)," for information on how administrators can set a preference to change
the realm label displayed in the interface, or specify an alternative location for the
source of the login page image.

After a user logs in, the Home (task list) page displays tasks for the user based on the
user’s permissions and assigned groups and roles. The My Tasks tab and the Inbox
are displayed by default. The actions allowed from the Actions list also depend on the
logged-in user’s privileges.

Figure 27–2 shows an example of the Home page.

Logging In to Oracle BPM Worklist

Using Oracle BPM Worklist 27-5

Figure 27–2 Oracle BPM Worklist—The Home (Task List) Page

Table 27–2 describes the components of the Home (task list) page.

Logging In to Oracle BPM Worklist

27-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 27–2 Components of the Home (Task List) Page

Component Description

Tabs The tabs displayed depend on the role granted to the logged-in user.

■ Everyone (the user role) sees My Tasks and Initiated Tasks.

■ Users who are also managers see the My Tasks, Initiated Tasks, and My Staff Tasks tabs.

■ Users who are also owners (of a process) see the My Tasks, Initiated Tasks, and
Administration Tasks tabs.

■ Users who are also administrators (the BPMWorkflowAdmin), but not managers, see the My
Tasks, Initiated Tasks, Administration Tasks, Administration, Evidence Search, and
Approval Groups tabs.

■ Users who are managers and administrators see all the tabs— My Tasks, Initiated Tasks, My
Staff Tasks, Administration Tasks, Administration, Evidence Search, and Approval Groups.

■ Users with the workflow.admin.evidenceStore permission also see the Evidence Search tab.

See the following for more information:

■ Section 27.4.4, "How To Act on Tasks That Require a Digital Signature," for information about
evidence search

■ Section 27.8.1, "How To Manage Other Users’ or Groups’ Rules (as an Administrator)"

Worklist
Views

Inbox, My Work Queues, Proxy Work Queues—See Section 27.3.2, "How To Create and
Customize Worklist Views," for more information.

Task Status A bar chart shows the status of tasks in the current view. See Section 27.3.3, "How To Customize
the Task Status Chart," for more information.

Display Filters Specify search criteria from the View, Assignee or Status fields. The category filters that are
available depend on which tab is selected.

■ The View filters are Inbox, Due Soon, High Priority, and New Tasks.

■ From the My Tasks tab, the Assignee filters are My, Group, My & Group, Previous (tasks
worked on in the past), and Reviewer. From the Initiated Tasks tab, the only assignee filter is
Creator. From the My Staff Tasks tab, the only assignee filter is Reportees. From the
Administration Tasks tab, the only assignee filter is Admin.

■ The Status filters include Any, Assigned, Completed, Suspended, Withdrawn, Expired,
Errored, Alerted, Information Requested.

Use Search to enter a keyword, or use Advanced Search. See Section 27.3.1, "How To Filter Tasks,"
for more information.

Actions List Select a group action (Claim) or a custom action (for example, Approve or Reject) that was
defined for the human task. Claim appears for tasks assigned to a group or multiple users; one
user must claim the task before it can be worked. Other possible actions for a task, such as system
actions, are displayed on the task details page for a specific task. You can also create ToDo tasks
and subtasks here.

Default
Columns

Title—The title specified when the human task was created. Tasks associated with a purged or
archived process instance do not appear.

Number—The task number generated when the BPEL process was created.

Priority—The priority specified when the human task was created. The highest priority is 1; the
lowest is 5.

Assignees—The user or group or application roles.

State—Select from Assigned, Completed, Errored, Expired, Information Requested, Stale,
Suspended, or Withdrawn.

Created—Date and time the human task was created

Expires—Date and time the tasks expires, specified when the human task was created

Task Details The lower section of the worklist displays the inline view of the task details page. Buttons indicate
available actions. See Section 27.4, "Acting on Tasks: The Task Details Page," for more information.

Customizing the Task List Page

Using Oracle BPM Worklist 27-7

Figure 27–2 also shows the Administration, Reports, and Preferences links
(upper-right corner). Table 27–3 summarizes the Home, Administration, Reports, and
Preferences pages.

27.3 Customizing the Task List Page
You can customize your task list in several ways, including adding worklist views,
selecting which columns to display, and displaying a subset of the tasks based on filter
criteria. Resize the task list display area to increase the number of tasks fetched.

27.3.1 How To Filter Tasks
Figure 27–3 shows the filter fields.

Figure 27–3 Filters—Assignee, Status, Search, and Advanced Search

Filters are used to display a subset of tasks, based on the following filter criteria:

■ Assignee—Select from the following:

■ My—Retrieves tasks directly assigned to the logged-in user

■ Group—Retrieves the following:

* Tasks that are assigned to groups that the logged-in user belongs to

* Tasks that are assigned to an application role that the logged-in user is
assigned

Table 27–3 Worklist Main Pages Summary

Page Description

Home As described in Table 27–2, the logged-in user’s list of tasks, details for a selected task,
and all the functions needed to start acting on a task are provided.

Administration The following administrative functions are available:

■ Setting application preferences

■ Mapping flex fields

■ Searching the evidence store

■ Specifying approval group

■ Configuring tasks

Reports The following reports are available: Unattended Tasks Report, Tasks Priority Report,
Tasks Cycle Time Report, Tasks Productivity Report, and Tasks Time Distribution
Report. See Section 27.11.1, "How To Create Reports," for more information.

Preferences Preference settings include:

■ Setting rules for users or groups, including vacation rules, and setting vacation
periods

■ Uploading certificates

■ Specifying user notification channels and message filters

Customizing the Task List Page

27-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

* Tasks that are assigned to multiple users, one of which is the logged-in
user

■ My & Group—Retrieves all tasks assigned to the user, whether through direct
assignment, or by way of a group, application role, or list of users

■ Previous—Retrieves tasks that the logged-in user has updated

■ Reviewer—Retrieves task for which the logged-in user is a reviewer

■ Status—Select from the following: Any, Assigned, Completed, Suspended (can
be resumed later), Withdrawn, Expired, Errored (while processing), Alerted, or
Information Requested.

■ Search—Enter a keyword to search task titles, comments, identification keys, and
the flex string fields of tasks that qualify for the specified filter criterion.

■ Advanced—Provides additional search filters.

To filter tasks based on priority, assignee, or status:
1. Select any combination of options from the Priority, Assignee, or Status lists.

2. Click Refresh.

To filter tasks based on keyword search:
1. Enter a keyword to search task titles, comments, identification keys, and the flex

string fields of tasks that qualify for the specified filter criterion.

2. Click Refresh.

To filter tasks based on an advanced search:
Flex field attribute labels can be used in an advanced search if you select task types for
which flex field mappings have been defined.

1. Click Advanced.

2. (Optional) Check Save As View, provide a view name, and use the Display tab to
provide other information, as shown in Figure 27–4 and Figure 27–5.

Customizing the Task List Page

Using Oracle BPM Worklist 27-9

Figure 27–4 Worklist Advanced Search—Definition Tab

Figure 27–5 Worklist Advanced Search—Display Tab

Table 27–4 describes the advanced search view columns available in the Display
tab.

Customizing the Task List Page

27-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 27–4 Advanced Search—View Columns

Column Description

Start Date The start date of the task (used with ToDo tasks).

Task Definition Name The name of the task component that defines the task instance.

Owner Role The application role (if any) that owns the task instance. Task
owners can be application roles, users, or groups. If the owner of
the task is an application role, this field is set.

Updated Date The date the task instance was last updated.

Composite Version The version of the composite that contains the task component
that defines the task instance.

Creator The name of the creator of the task.

From User The from user for the task.

Percentage Complete The percentage of the task completed (used with ToDo tasks).

Owner Group The group (if any) that owns the task instance. Task owners can
be application roles, users, or groups. If the owner of the task is a
group, this field is set.

End Date The end date of the task (used with ToDo tasks).

Composite The name of the composite that contains the task component
that defines the task instance.

Due Date The due date of the task (used with ToDo tasks).

Composite Distinguished
Name

The unique name for the particular deployment of the composite
that contains the task component that defines the task instance.

Task Display URL The URL to display the details for the task.

Updated By The user who last updated the task.

Outcome The outcome of the task, for example Approved or Rejected.
This is only set on completed task instances.

Task Namespace A namespace that uniquely defines all versions of the task
component that defines this task instance. Different versions of
the same task component can have the same namespace, but no
two task components can have the same namespace.

Approvers The approvers of the task.

Application Context The application to which any application roles associated with
the tasks (such as assignees, owners, and so on) belong.

Owner User The user (if any) that owns the task instance. Task owners can be
application roles, users, or groups. If the owner of the task is a
user, this field is set.

Identifier The (optional) custom unique identifier for the task. This is an
additional unique identifier to the standard task number.

Category The category of the task.

Acquired By The name of the user who claimed the task in the case when the
task is assigned to a group, application role, or to multiple users,
and then claimed by the user.

Component The name of the task component that defines the task instance.

Original Assignee User The name of the user who delegated the task in the case when
the user delegates a task to another user.

Assigned The date that this task was assigned.

Customizing the Task List Page

Using Oracle BPM Worklist 27-11

The saved view appears in the Inbox under My Views.

3. Select an assignee, as shown in Figure 27–6.

Figure 27–6 Worklist Advanced Search

4. Add conditions (filters), as shown in Figure 27–7.

Domain The domain to which the composite that contains the task
component that defines the task instance belongs.

Title The title of the task.

Number An integer that uniquely identifies the task instance.

Priority An integer that defines the priority of the task. A lower number
indicates a higher priority—typically numbers 1 to 5 are used.

Assignees The current task assignees (users, groups or application roles).

State The state of the task instance.

Created The date that the task instance was created.

Expires The date on which the task instance expires.

Table 27–4 (Cont.) Advanced Search—View Columns

Column Description

Customizing the Task List Page

27-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–7 Adding Filters for an Advanced Search on Tasks

Table 27–5 describes the available conditions.

Table 27–5 Advanced Search—Conditions

Condition Description

Start Date The start date of the task (used with ToDo tasks).

Assignees The current task assignees (users, groups or application roles).

Task Definition Name The name of the task component that defines the task instance.

Owner Role The application role (if any) that owns the task instance. Task
owners can be application roles, users, or groups. If the owner of
the task is an application role, this field is set.

Updated Date The date that the task instance was last updated.

Created The date that the task instance was created.

Composite Version The version of the composite that contains the task component
that defines the task instance.

Creator The name of the creator of the task.

Customizing the Task List Page

Using Oracle BPM Worklist 27-13

5. Add parameter values, shown in Figure 27–8.

From User The from user for the task.

Percentage Complete The percentage of the task completed (used with ToDo tasks).

Title The title of the task.

Owner Group The group (if any) that owns the task instance. Task owners can
be application roles, users, or groups. If the owner of the task is a
group, this field is set.

End Date The end date of the task (used with ToDo tasks).

Priority An integer that defines the priority of the task. A lower number
indicates a higher priority—typically numbers 1 to 5 are used.

Number An integer that uniquely identifies the task instance.

Composite The name of the composite that contains the task component
that defines the task instance.

Due Date The due date of the task (used with ToDo tasks).

State The state of the task instance.

Composite Distinguished
Name

The unique name for the particular deployment of the composite
that contains the task component that defines the task instance.

Task Display URL The URL to display the details for the task.

Updated By The user who last updated the task.

Outcome The outcome of the task, for example Approved or Rejected.
This is only set on completed task instances.

Task Namespace The namespace of the task.

Approvers The approvers of the task.

Application Context The application to which any application roles associated with
the tasks (such as assignees, owners, and so on) belong.

Owner User The user (if any) that owns the task instance. Task owners can be
application roles, users, or groups. If the owner of the task is a
user, this field is set.

Identifier The (optional) custom unique identifier for the task. This is an
additional unique identifier to the standard task number.

Expires The date on which the task instance expires.

Category The category of the task.

Acquired By The name of the user who claimed the task in the case when the
task is assigned to a group, application role, or to multiple users,
and then claimed by the user.

Component The name of the task component that defines the task instance.

Original Assignee User The name of the user who delegated the task in the case when
the user delegates a task to another user.

Assigned The date that this task was assigned.

Domain The domain to which the composite that contains the task
component that defines the task instance belongs.

Table 27–5 (Cont.) Advanced Search—Conditions

Condition Description

Customizing the Task List Page

27-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–8 Advanced Search

6. Select Any or All for matching multiple filters.

7. (Optional) Search on a task type.

8. Click Search.

The task list page with the tasks filtered according to your criteria appears.

27.3.2 How To Create and Customize Worklist Views
The Worklist Views area, shown in Figure 27–9, displays the following:

■ Inbox—Shows all tasks that result from any filters you may have used. The
default shows all tasks.

■ My Work Queues—Shows standard views and views that you defined.

■ Proxy Work Queues—Shows shared views.

Customizing the Task List Page

Using Oracle BPM Worklist 27-15

Figure 27–9 Worklist Views

Use Worklist Views to create, share, and customize views.

To create a worklist view:
1. In the Worklist Views section, click Add.

2. Use the Definition tab of the Create User View dialog, shown in Figure 27–10.

Figure 27–10 Creating a Worklist View

Customizing the Task List Page

27-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Create View or Use Public View—Create your own view or browse for a
public view to copy.

■ Name—Specify a name for your view.

■ Add to Standard Views—This option applies to Administrators only.
Administrators select this option to create the view as a standard view, which
then appears in the Standard Views list for all worklist users.

■ Assignee—Select My, Group, My&Group, Previous, or Reviewer.

■ Add Condition—Select a filter from the list and click Add. For example, if you
select startDate, and click Add, then a calendar and a list including on, equals,
not equals, greater than, less than, and so on appears.

■ Task Type—Browse for a task type or leave the field blank for all types. Flex
field attribute labels can be selected in the query and display columns dialogs
if the selected task types have flex field mappings defined.

■ Match—Select All or Any to match the conditions you added.

■ Share View—You can grant access to another user to either the definition of
this view, in which case the view conditions are applied to the grantee’s data,
or to the data itself, in which case the grantee can see the grantor’s worklist
view, including the data. Sharing a view with another user is similar to
delegating all tasks that correspond to that view to the other user; that is, the
other user can act on your behalf. Shared views are displayed under Proxy
Work Queues.

■ Assignees—Specify the users (grantees) who can share your view.

3. Use the Display tab of the Create User View dialog, shown in Figure 27–11, to
customize the fields that appear in the view.

Figure 27–11 Displaying Fields in a Worklist View

Customizing the Task List Page

Using Oracle BPM Worklist 27-17

■ Select View Columns—Specify which columns you want to display in your
task list. They can be standard task attributes or flex fields that have been
mapped for the specific task type. The default columns are the same as the
columns in your inbox.

■ Sort by Column—Select a column to sort on.

■ Sort Order—Select ascending or descending order.

4. Click OK.

To customize a worklist view:
1. In the Worklist Views section, click the view name that you want to edit.

2. Click the Edit icon.

3. Use the Definition and Display tabs of the Edit User View dialog to customize the
view, as shown in Figure 27–12 and Figure 27–13, and click OK.

Figure 27–12 Customizing a Worklist View

Customizing the Task List Page

27-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–13 Customizing Fields in a Worklist View

When you select and move items from the Available Columns list to the Selected
Columns list (or vice-versa), the items remain checked. Therefore, if you select
items to move back, the previously selected items are also moved. Be sure to
uncheck items after moving them between the lists if you intend to move
additional columns.

27.3.3 How To Customize the Task Status Chart
The bar chart shows tasks broken down by status, with a count of how many tasks in
each status category. The chart applies to the filtered set of tasks within the current
view.

To customize the task status chart:
1. Click the Edit icon.

2. Add or remove status states for display, as shown in Figure 27–14, and click OK.

Customizing the Task List Page

Using Oracle BPM Worklist 27-19

Figure 27–14 Customizing the Task Status Chart

27.3.4 How To Create a ToDo Task
Use the Create ToDo Task dialog, shown in Figure 27–15, to create a top-level ToDo
task for yourself or others. This task is not associated with a business task.

Figure 27–15 The Create ToDo Task Dialog

ToDo tasks appear in the assignee’s Inbox.

You can create ToDo tasks that are children of other ToDo tasks or business tasks.
When all child ToDo tasks are 100% complete, the parent ToDo task is also marked as
completed. If the parent ToDo task is completed, then child ToDo tasks are at 100%
within the workflow system. If the parent is a business task, the child ToDo is not
marked as completed. You must set the outcome and complete it. If you explicitly set a
ToDo task to 100%, there is no aggregation on the parent task.

ToDo tasks can be reassigned, escalated, and so on, and deleted (logical delete) and
purged (physical delete). Reassignment, escalation, and so on of the parent task does
not affect the assignment of any child ToDo tasks. The completion percentage of a
ToDo task can be reset to less than 100% after it is completed.

Assignment rules (such as vacation rules) are not applied to ToDo tasks. You cannot
specify business rules for ToDo tasks.

Customizing the Task List Page

27-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To create a ToDo task:
1. From the Actions list, select Create TODO Task, as shown in Figure 27–16.

Figure 27–16 Creating a ToDo Task

2. Provide details in the Create ToDo Task dialog, shown in Figure 27–16, and click
OK.

■ Task Title: Enter anything that is meaningful to you.

■ Category: Enter anything that is meaningful to you.

■ Priority: Select from 1 (highest) to 5 (lowest)

■ Percentage Complete: This attribute indicates how much of the task is
completed. 100% sets the attribute as completed.

■ Due Date: The due date does not trigger an expiration. You can also see
overdue tasks. The start date need not be the current date.

■ StartDate: The task start date.

■ Assignee: You can assign yourself or someone else.

27.3.5 How To Create a Subtask
Use the Create Sub Task dialog, shown in Figure 27–17, to create a subtask, which is a
ToDo task for a business task. You must select a business task before selecting the
Create Sub Task option (shown in Figure 27–16).

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 27-21

Figure 27–17 Creating a Subtask

Subtasks can be used to break down a business task into measurable subtasks, and can
be created for ToDo tasks also. Multiple levels of subtasks are not supported (that is,
you cannot have subtasks inside of subtasks). If you create multiple levels of subtasks,
and attempt to act on the main task (for example, to approve or reject), you receive an
error.

27.4 Acting on Tasks: The Task Details Page
Task details can be viewed inline (see the lower section in Figure 27–2, "Oracle BPM
Worklist—The Home (Task List) Page") or in a pop-up browser window. (Double-click
the task.)

Figure 27–18 shows the task details page.

Acting on Tasks: The Task Details Page

27-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–18 Task Details Page

Any kind of change to the task details page, such as changing a priority or adding a
comment or attachment, requires you to save the change before you go on to make any
other changes.

The task details page has the following components:

■ Task Actions—Lists the system actions that are possible for the task, such as
Request Information, Reassign, Renew, Suspend, Escalate, and Save.

■ Action buttons—Displays buttons for custom actions that are defined in the
human task, such as setting task outcomes (for example, Resolved and
Unresolved for a help desk request or Approve and Reject for a loan request). For
the task initiator or a manager, Withdraw may also appear.

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 27-23

■ Details—Displays task attributes, including the assignee, task creator, task
number, state, priority, who acquired the task, and other flex fields. It also displays
dates related to task creation, last update, and expiration date.

■ Contents—Displays the payload. The fields displayed are specific to how the
human task was created.

■ Requester—Displays details (full name, contact information, and so on) about the
task requester.

■ Resolution—Displays any comments or resolution status.

■ History—Displays the approval sequence and the update history for the task. See
Section 27.4.2, "Task History," for more information.

■ Comments—Displays comments entered by various users who have participated
in the workflow. A newly added comment and the commenter’s user name are
appended to the existing comments. A trail of comments is maintained throughout
the life cycle of the task. To add or delete a comment, you must have permission to
update the task.

■ Attachments—Displays documents or reference URLs that are associated with a
task. These are typically associated with the workflow as defined in the human
task or attached and modified by any of the participants using the worklist. To add
or delete an attachment, you must have permission to update the task. When
adding file attachments, you can use an absolute path name or browse for a file.

Comments and attachments are shared between tasks and subtasks. Therefore, when
you create a ToDo task and add comments and attachments, subtasks of this ToDo task
include the same comments and attachments.

A user can view a task when associated with the task as the current assignee (directly
or by group membership), the current assignee’s manager, the creator, the owner, or a
previous actor.

A user’s profile determines his group memberships and roles. The roles determine a
user’s privileges. Apart from the privileges, the exact set of actions a user can perform
is also determined by the state of the task, the custom actions, and restricted actions
defined for the task flow at design time.

The following algorithm is used to determine the actions a user can perform on a task:

1. Get the list of actions a user can perform based on the privileges granted to him.

2. Get the list of actions that can be performed in the current state of the task.

3. Create a combined list of actions that appear on the preceding lists.

4. Remove any action on the combined list that is specified as a restricted action on
the task.

The resulting list of actions is displayed in the task list page and the task details page
for the user. When a user requests a specific action, such as claim, suspend, or reassign,
the workflow service ensures that the requested action is contained in the list
determined by the preceding algorithm.

Step 2 in the preceding algorithm deals with many cases. If a task is in a final,
completed state (after all approvals in a sequential flow), an expired state, a
withdrawn state, or an errored state, then no further update actions are permitted. In
any of the these states, the task, task history, and subtasks (parent task in parallel flow)
can be viewed. If a task is suspended, then it can only be resumed or withdrawn. A
task that is assigned to a group must be claimed before any actions can be performed
on it.

Acting on Tasks: The Task Details Page

27-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

27.4.1 System Actions
The action bar displays system actions, which are available on all tasks based on the
user’s privileges. Table 27–6 lists system actions.

27.4.2 Task History
The task history maintains an audit trail of the actions performed by the participants
in the workflow and a snapshot of the task payload and attachments at various points
in the workflow. The short history for a task lists all versions created by the following
tasks:

■ Initiate task

■ Reinitiate task

■ Update outcome of task

Note: If you act on a task from the task details page, for example, if
you approve a task, then any unchanged task details data is saved
along with the saved changes to the task. However if you act on a task
from the Actions menu, then unchanged task details are not saved.

Table 27–6 System Task Actions

Action Description

Claim If a task is assigned to a group or multiple users, then the task must be claimed first.
Claim is the only action available in the Task Action list for group or multiuser
assignments. After a task is claimed, all applicable actions are listed.

Escalate If you are not able to complete a task, you can escalate it and add an optional
comment in the Comments area. The task is reassigned to your manager (up one level
in a hierarchy).

Pushback Use this action to send a task down one level in the workflow to the previous
assignee.

Reassign If you are a manager, you can delegate a task to reportees. A user with
BPMWorkflowReassign privileges can delegate a task to anyone.

Release If a task is assigned to a group or multiple users, it can be released if the user who
claimed the task cannot complete the task. Any of the other assignees can claim and
complete the task.

Renew If a task is about to expire, you can renew it and add an optional comment in the
Comments area. The task expiration date is extended one week. A renewal appears in
the task history. The renewal duration for a task can be controlled by an optional
parameter. The default value is P7D (seven days).

Submit Information and
Request Information

Use these actions if another user requests that you supply more information or to
request more information from the task creator or any of the previous assignees. If
reapproval is not required, then the task is assigned to the next approver or the next
step in the business process.

Suspend and Resume If a task is not relevant, you can suspend it. These options are available only to users
who have been granted the BPMWorkflowSuspend role. Other users can access the
task by selecting Previous in the task filter or by looking up tasks in the Suspended
status. A suspension is indefinite. It does not expire until Resume is used to resume
working on the task.

Withdraw If you are the creator of a task and do not want to continue with it, for example, you
want to cancel a vacation request, you can withdraw it and add an optional comment
in the Comments area. The business process determines what happens next. You can
use the Withdraw action on the home page by using the Creator task filter.

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 27-25

■ Completion of task

■ Erroring of task

■ Expiration of task

■ Withdrawal of task

■ Alerting of task to the error assignee

You can include the following actions in the short history list by modifying the
shortHistoryActions element.

■ Acquire

■ Ad hoc route

■ Auto release of task

■ Delegate

■ Escalate

■ Information request on task

■ Information submit for task

■ Override routing slip

■ Update outcome and route

■ Push back

■ Reassign

■ Release

■ Renew

■ Resume

■ Skip current assignment

■ Suspend

■ Update

The history provides a graphical view of a task flow, as shown in Figure 27–19.

Acting on Tasks: The Task Details Page

27-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–19 History: Graphical View

Check Full task actions to see all actions performed, including those that do not make
changes to the task, such as adding comments, as shown in Figure 27–20.

Figure 27–20 History: Full Task Actions

Available ways to view the task history include:

■ Take a task snapshot

■ See future approvers

■ See complete task actions

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 27-27

27.4.3 How To Act on Tasks
If the human task was designed to permit ad hoc routing, or if no predetermined
sequence of approvers was defined, then the task can be routed in an ad hoc fashion in
the worklist. For such tasks, a Route button appears on the task details page. From the
Route page, you can look up one or more users for routing. When you specify multiple
assignees, you can select whether the list of assignees is for simple (group assignment
to all users), sequential, or parallel assignment.

Parallel tasks are created when a parallel flow pattern is specified for scenarios such as
voting. In this pattern, the parallel tasks have a common parent. The parent task is
visible to a user only if the user is an assignee or an owner or creator of the task. The
parallel tasks themselves (referred to as subtasks) are visible to whomever the task is
assigned, just like any other task. It is possible to view the subtasks from a parent task.
In such a scenario, the task details page of the parent task contains a View SubTasks
button. The SubTasks page lists the corresponding parallel tasks. In a voting scenario,
if any of the assignees updates the payload or comments or attachments, the changes
are visible only to the assignee of that task. A user who can view the parent task (such
as the final reviewer of a parallel flow pattern), can drill down to the subtasks and
view the updates made to the subtasks by the participants in the parallel flow. In the
worklist, you provide the percentage of votes required for approval.

If a human task was set up to require a password, then when you act on it, you must
provide the password, as shown in Figure 27–21.

Figure 27–21 Acting on a Task That Requires a Password

Acting on Tasks: The Task Details Page

27-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To reassign or delegate a task:
1. From the Task Actions list, select Reassign, as shown in Figure 27–22.

Figure 27–22 Reassigning a Task

2. Select Reassign or Delegate.

Delegate differs from Reassign in that the privileges of the delegatee are based on
the delegator’s privileges. This function can be used by managers’ assistants, for
example.

3. Provide or browse for a user or group name, as shown in Figure 27–23.

Note: Any kind of change to the task details page, such as changing
a priority or adding a comment or attachment, requires you to save
the change.

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 27-29

Figure 27–23 Reassigning a Task

A supervisor can always reassign tasks to any of his reportees. Users with the
BPMWorkflowReassign role can assign tasks to any users in the organization.

4. Move names to the Selected area and click OK.

You can reassign to multiple users or groups. One of the assignees must claim the
task, as shown in Figure 27–24.

Figure 27–24 Claiming a Task

Acting on Tasks: The Task Details Page

27-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To request information:
1. From the Task Actions list, select Request Information, as shown in Figure 27–25.

Figure 27–25 Requesting Information

2. Request information from a past approver or search for a user name, or push the
task back to the previous assignee, as shown in Figure 27–26.

Figure 27–26 Requesting Information from Past Approvers or Another User, or Pushing
the Task Back

If you use the Search icon to find a user name, the Identity Browser appears, as
shown in Figure 27–27.

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 27-31

Figure 27–27 Identity Browser

3. Click OK.

To route a task:
1. From the Task Actions list, select Adhoc Route, as shown in Figure 27–28.

Figure 27–28 Ad Hoc Routing

2. Select an action and a routing option, as shown in Figure 27–29.

Acting on Tasks: The Task Details Page

27-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–29 Routing a Task

■ Single Approver: Use this option for a single user to act on a task. If the task is
assigned to a role or group with multiple users, one of the members must
claim the task and act on it.

■ Group Vote: Use this option when multiple users, working in parallel, must
act, such as in a hiring situation when multiple users vote to hire or reject an
applicant. You specify the voting percentage that is needed for the outcome to
take effect, such as a majority vote or a unanimous vote, as shown in
Figure 27–30.

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 27-33

Figure 27–30 Providing Consensus Information

■ Chain of Single Approvers: Use this option for a sequential list of approvers.
The list can comprise any users or groups. (Users are not required to be part of
an organization hierarchy.)

3. Add optional comments for the next participant on the route.

4. Provide or search for user or group names; then move the names to the Selected
area.

5. Click OK.

To add comments or attachments:

1. In the Comments or Attachments area, click Add.

Figure 27–31 Worklist Comments and Attachments

2. Enter comment text and click OK.

The date and timestamp and your user name are included with the comment.

3. For attachments, provide a file or URL attachment, as shown in Figure 27–32, and
click OK.

Note: Click Save before you browse for or upload attachments, to
ensure that any previous changes to the task details page are saved.

Acting on Tasks: The Task Details Page

27-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–32 Adding a Worklist Attachment

4. From the Task Actions list, click Save.

27.4.4 How To Act on Tasks That Require a Digital Signature
The worklist supports the signature policy created in the human task:

■ No signature required — Participants can send and act on tasks without
providing a signature.

■ Password required — Participants must specify their login passwords.

■ Digital certificate (signature) required —Participants must possess a digital
certificate before being able to send and act on tasks. A digital certificate contains
the digital signature of the certificate-issuing authority so that anyone can verify
that the certificate is real. A digital certificate establishes the participant’s
credentials. It is issued by a certification authority (CA). It contains your name, a
serial number, expiration dates, a copy of the certificate holder's public key (used
for encrypting messages and digital signatures), and the digital signature of the
certificate-issuing authority so that a recipient can verify that the certificate is real.

When you act on a task that has a signature policy, the Sign button appears, as shown
in Figure 27–33.

Note: Attachment file names that use a multibyte character set
(MBCS) are not supported.

Attachments of up to 2 MB can be uploaded. You can modify this
setting by setting the context parameter in web.xml as follows:

<context-param>
 <param-name>oracle.adf.view.faces.UPLOAD_MAX_DISK_
SPACE</param-name>
 <param-value>1024000</param-value>
</context-param>

Acting on Tasks: The Task Details Page

Using Oracle BPM Worklist 27-35

Figure 27–33 Digital Signature Task Details

The evidence store service is used for digital signature storage and nonrepudiation of
digitally signed human tasks. You can search the evidence store, as shown in
Figure 27–34.

Figure 27–34 The Evidence Store

Acting on Tasks: The Task Details Page

27-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

See Section 29.1.10, "Evidence Store Service and Digital Signatures" for more
information.

To provide a digital signature:
1. In the upper right corner of Oracle BPM Worklist, click Preferences.

2. In the navigation bar on the left, click Certificates.

3. Upload the certificate to use to sign your decision, as shown in Figure 27–35.

Figure 27–35 Uploading a Certificate

Note the following important points when providing your certificate to the
system. Otherwise, you cannot use your certificate to sign your decisions on tasks.

■ The PKCS7 file format is a binary certificate format. Select this option if you
have a standalone certificate file stored on your disk.

■ The PKCS12 file format is a keystore format. Select this option if you have
your certificate stored inside a keystore.

■ If you want to copy and paste the contents of the certificate, select Type or
Paste Certificate Contents and paste the BASE64-encoded text into the field.
Do not paste a certificate in any other format into this field. Likewise, if you
choose to upload a certificate, do not try to upload a BASE64-encoded
certificate. Only PKCS12 and PKCS7 formatted files are supported for
uploads.

4. Return to the task list by clicking the Home link in the upper-right corner of
Oracle BPM Worklist.

5. Click a task that you want to either approve or reject.

The task details are displayed.

6. Click either Approve or Reject.

Details about the digital signature are displayed.

7. For a task that has a signature policy, click Sign.

Approving Tasks

Using Oracle BPM Worklist 27-37

The Text Signing Report dialog appears.

8. Select the certificate from the dropdown list to use to sign your decision.

9. Enter the master password of the web browser that you are using.

10. Click OK.

The web browser signs the string displayed in the upper half of the Text Signing
Request with the certificate you selected and invokes the action (approval or
rejection) that you selected. The task status is appropriately updated in the human
workflow service.

For more information about how certificates are uploaded and used, see
Section 29.1.10, "Evidence Store Service and Digital Signatures."

27.5 Approving Tasks
Table 27–7 describes the type of actions that can be performed on tasks by the various
task approvers.

Table 27–7 Task Actions and Approvers

Task
Action Admin

Owner (+
Owner
Group)

Assignee (+ Assignee Manager +
Assignee Group + Proxy Assignee) Creator Reviewer Approver

Acquire
(Claim)

No Yes Yes No No No

Custom No Yes1 Yes1 No No No

Delegate No No Yes No No No

Delete Yes2 Yes2 Yes2 Yes2 No No

Error No No Yes3 No No No

Escalate Yes4 Yes4 Yes No No No

Info
Request

No No Yes No No No

Info Submit No No Yes No No No

Override
Routing
Slip

Yes Yes No No No No

Push Back No No Yes No No No

Purge Yes2 No No No No No

Reassign Yes5 Yes5 Yes (No for proxy assignee) No No No

Release Yes Yes Yes No No No

Renew No Yes Yes No No No

Resume Yes Yes Yes No No No

Route No Yes Yes No No No

Skip
Current
Assignment

Yes Yes No No No No

Suspend Yes Yes Yes No No No

Setting a Vacation Period

27-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

27.6 Setting a Vacation Period
You can set a vacation period so that you are removed from automatic task assignment
during the dates you specify, as shown in Figure 27–36.

Figure 27–36 Setting a Vacation Period

Vacation rules are not executed for ToDo tasks. See Section 27.7, "Setting Rules," for
how to set a vacation rule that is synchronized with the vacation period.

Update No Yes Yes Yes No No

Update
Attachment

No Yes Yes Yes Yes No

Update
Comment

No Yes Yes Yes Yes No

View
Process
History

Yes Yes Yes Yes No No

View Sub
Tasks

Yes Yes Yes No No No

View Task
History

Yes Yes Yes Yes Yes Yes

Withdraw No Yes No Yes No No
1 Not valid for ToDo tasks
2 Valid only for ToDo tasks
3 Applicable for tasks in alerted states
4 Without claim and escalate to current assignee’s manager
5 Without claim

Table 27–7 (Cont.) Task Actions and Approvers

Task
Action Admin

Owner (+
Owner
Group)

Assignee (+ Assignee Manager +
Assignee Group + Proxy Assignee) Creator Reviewer Approver

Setting Rules

Using Oracle BPM Worklist 27-39

To create a vacation period:
1. Click the Preferences link.

The My Rules tab is displayed.

2. Click Enable vacation period.

3. Provide start and end dates.

4. Click Save.

The vacation period is enabled, as shown in Figure 27–37.

Figure 27–37 Enabling a Vacation Period

27.7 Setting Rules
Rules act on tasks, either a specific task type or all the tasks assigned to a user or
group. Figure 27–38 shows where you set rules, including vacation rules (different
from the vacation period settings described in Section 27.6, "Setting a Vacation
Period").

Setting Rules

27-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–38 Creating a Rule

A rule cannot always apply in all circumstances in which it is used. For example, if a
rule applies to multiple task types, it may not be possible to set the outcome for all
tasks, since different tasks can have different outcomes.

Rules are executed in the order in which they are listed. Rules can be reordered by
using the up and down buttons in the header, as shown in Figure 27–38.

If a rule meets its filter conditions, then it is executed and no other rules are evaluated.
For your rule to execute, you must be the only user assigned to that task. If the task is
assigned to multiple users (including you), the rule does not execute.

You cannot specify business rules for ToDo tasks

27.7.1 How To Create User Rules
Specify the following when creating a user rule:

■ Rule name

■ If the rule is a vacation rule. See Section 27.6, "Setting a Vacation Period," for how
to set the vacation period that is synchronized with the vacation rule.

■ Which task or task type the rule applies to—If unspecified, then the rule applies to
all tasks. If a task type is specified, then any flex field attributes mapped for that
task type can be used in the rule condition.

■ When the rule applies

■ Conditions on the rule—These are filters that further define the rule, such as
specifying that a rule acts on priority 1 tasks only, or that a rule acts on tasks
created by a specific user. The conditions can be based on standard task attributes

Setting Rules

Using Oracle BPM Worklist 27-41

and any flex fields that have been mapped for the specific tasks. See
Section 27.10.1, "How To Map Flex Fields," for more information.

User rules do the following actions:

■ Reassign to—You can reassign tasks to subordinates or groups you manage. If you
have been granted the BPMWorkflowReassign role, then you can reassign tasks to
any user or group.

■ Delegate to—You can delegate to any user or group. Any access rights or
privileges for completing the task are determined according to the original user
who delegated the task. (Any subsequent delegations or re-assignments do not
change this from the original delegating user.)

■ Set outcome to—You can specify an automatic outcome if the workflow task was
designed for those outcomes, for example, accepting or rejecting the task. The rule
must be for a specific task type. If a rule is for all task types, then this option is not
displayed.

■ Take no action—Use this action to prevent other more general rules from
applying. For example, to reassign all your tasks to another user while you are on
vacation, with the exception of loan requests, for which you want no action taken,
then create two rules. The first rule specifies that no action is taken for loan
requests; the second rule specifies that all tasks are reassigned to another user. The
first rule prevents reassignment for loan requests.

To create a user rule:
1. Click the Preferences link

The My Rules tab is displayed.

2. In the Rules area, click My Rules and click Add.

3. In the My Rule area, do the following and click Save:

■ Provide a name for the rule.

■ Select Use as a vacation rule if you are creating a vacation rule. The start and
end dates of the rule are automatically synchronized with the vacation period.

■ Browse for task types to which the rule applies.

■ Select Execute rule only between these dates and provide rule execution
dates.

■ In the IF area, add rule conditions.

■ In the THEN area, select actions to be taken: Reassign to, Delegate to, Set
outcome to, or Take no action), as shown in Figure 27–38.

The new rule appears under the My Rules node.

27.7.2 How To Create Group Rules
Creating a group rule is similar to creating a user rule, with the addition of a list of the
groups that you (as the logged-in user) manage. Examples of group rules include:

■ Assigning tasks from a particular customer to a member of the group

■ Ensuring an even distribution of task assignments to members of a group by using
round-robin assignment

■ Ensuring that high-priority tasks are routed to the least busy member of a group

Setting Rules

27-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Group rules do the following actions:

■ Assign to member via—You can specify a criterion to determine which member of
the group gets the assignment. This dynamic assignment criterion can include
round-robin assignment, assignment to the least busy group member, or
assignment to the most productive group member. You can also add your custom
functions for allocating tasks to users in a group.

■ Assign to—As with user rules, you can assign tasks to subordinates or groups you
directly manage. If you have been granted the BPMWorkflowReassign role, then
you can reassign tasks to any user or group (outside your management hierarchy).

■ Take no action—As with user rules, you can create a rule with a condition that
prevents a more generic rule from being executed.

To create a group rule:
1. Click the Preferences link

2. Click the Other Rules tab.

3. Select Group from the list.

4. Enter a group name and click the Search icon, or enter a group name.

The Identity Browser opens for you to find and select a group.

5. Select the group name under the Group Rules node and click Add, as shown in
Figure 27–39.

Figure 27–39 Creating a Group Rule

Using the Worklist Administration Functions

Using Oracle BPM Worklist 27-43

6. Provide group rule information and click Save.

■ Provide a name for the rule.

■ Browse for task types to which the rule applies.

■ Provide rule execution dates.

■ In the IF area, add rule conditions.

■ In the THEN area, select the actions to be taken (or none) (Assign to member
via, Assign to, or Take no action), as shown in Figure 27–39.

The new rule appears under the Group Rules node.

27.7.3 Assignment Rules for Tasks with Multiple Assignees
If a task has more than one assignee, then assignment rules are not evaluated for the
task, and the task is not automatically routed. This is because each of the task's
assignees can define assignment rules, which can potentially provide conflicting
actions to take on the task. Only tasks that are assigned exclusively to a single user are
routed by the assignment rules.

For example, consider the following sequence:

1. A rule is created for user cdickens to reassign all assigned requests to user jstein.

2. User jcooper reassigns the allocated tasks to cdickens and cdoyle.

3. Cdickens claims the task, and the task appears in their inbox.

The task is not automatically reassigned to jstein. The task is routed to jstein, following
the assignment rule set for cdickens, if user jcooper explicitly re-assigns the task only
to cdickens instead of reassigning the task to multiple users (cdickens and cdoyle).

27.8 Using the Worklist Administration Functions
Administrators are users who have been granted the BPMWorkflowAdmin role.
Administration functions include the following:

■ Managing other users’ or groups’ rules

■ Setting the worklist display (application preferences)

■ Mapping flex fields

An administrator can view and update all tasks assigned to all users. An
administrator’s Assignee filter displays Admin when the Admin tab is selected.

27.8.1 How To Manage Other Users’ or Groups’ Rules (as an Administrator)
This function is useful for fixing a problem with a rule. Also, for a user who no longer
works for the company, administrators can set up a rule for that user so that all tasks
assigned to the user are automatically assigned to another user or group.

To create a rule for another user or group:
1. From the task list page, click the Rules link.

2. Click the Other Rules tab.

3. Search for the user or group for whom rules are to be created, as shown in
Figure 27–40.

Using the Worklist Administration Functions

27-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–40 Creating Rules for Another User or Group

4. Click a user rules node, or click a group name (for a group rule).

5. Click the Add icon to create a rule.

6. Provide rule information, as shown in Figure 27–41, and click Save.

Figure 27–41 Defining Rules for Another User or Group

27.8.2 How To Set the Worklist Display (Application Preferences)
Application preferences customize the appearance of the worklist. Administrators can
specify the following:

■ Login page realm label—If the identity service is configured with multiple realms,
then the Oracle BPM Worklist login page displays a list of realm names. LABEL_
LOGIN_REALM specifies the resource bundle key used to look up the label to

Using the Worklist Administration Functions

Using Oracle BPM Worklist 27-45

display these realms. The term realm can be changed to fit the user
community—terms such as country, company, division, or department may be more
appropriate. Administrators can customize the resource bundle, specify a resource
key for this string, and then set this parameter to point to the resource key.

■ Global branding icon—This is the image displayed in the top left corner of every
page of the worklist. (The Oracle logo is the default.) Administrators can provide a
.gif, .png, or .jgp file for the logo. This file must be in the public_html
directory.

■ Resource bundle—An application resource bundle provides the strings displayed
in the worklist. By default, this is the class at:

oracle.bpel.worklistapp.resource.WorklistResourceBundle

Administrators can change the strings shown in the application by copying
WorkflowResourceBundle and creating their own. This parameter allows
administrators to specify the classpath to this custom resource bundle.

Administrators must extend WorklistResourceBundle.java by adding their
resource strings. Administrators can change the strings shown in the application
by copying WorkflowResourceBundle and creating their own. This parameter
allows administrators to specify the classpath to this custom resource bundle.
Then administrators create a JAR file from the compiled resource bundle and copy
it under

SOA_Oracle_Home\j2ee\home\applications\worklist\worklist\WEB-INF\lib

■ Use language settings of—Select the browser or the identity provider.

The Identity Provider that stores information on worklist users can store the user's
locale, which can be used to determine the worklist display language.
Alternatively, the user's browser can supply the locale information. This parameter
determines which is used as the source for determining the worklist application
display language.

To specify application preferences:
1. Click the Administration tab.

2. Click Application Preferences.

3. Browse for the locations of the application preferences (login page realm label,
branding icon, or resource bundle).

4. Click Save.

Specifying Notification Settings

27-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

27.9 Specifying Notification Settings
You can configure the notification settings to control how, when, and where you
receive messages in cases when you have access to multiple communication channels
(delivery types). Specifically, you can define messaging filters (delivery preferences)
that specify the channel to which a message should be delivered, and under what
circumstances.

For example, you might want to create filters for messages received from customers
with different Service Level Agreements (SLA), specifying to be notified through
business phone and SMS channels for customers with a premium SLA and by EMAIL
for customers with a nonpremium SLA.

27.9.1 Messaging Filter Rules
A messaging filter rule consists of rule conditions and rule actions. A rule condition
consists of a rule attribute, an operator, and an associated value. A rule action is the
action to be taken if the specified conditions in a rule are true.

27.9.1.1 Data Types
Table 27–8 lists data types supported by messaging filters. Each attribute has an
associated data type, and each data type has a set of predefined comparison operators.

27.9.1.2 Attributes
Table 27–9 lists the predefined attributes for messaging filters.

Table 27–8 Data Types Supported by Messaging Filters

Data Type Comparison Operators

Date isEqual, isNotEqual, isGreaterThan, isGreaterThanOrEqual,
isLessThan, isLessThanOrEqual, Between, isWeekday, isWeekend

Time isEqual, isNotEqual, Between

Number isEqual, isNotEqual, Between, isGreaterThan, isGreaterThanOrEqual,
isLessThan, isLessThanOrEqual

String isEqual, isNotEqual, Contains, NotContains

Note: The String data type does not support regular expressions.

Table 27–9 Predefined Attributes for Messaging Filters

Attribute Data Type

Total Cost Number

From String

Expense Type String

To String

Application Type String

Duration Number

Application String

Process Type String

Specifying Notification Settings

Using Oracle BPM Worklist 27-47

27.9.2 Rule Actions
For a given rule, a messaging filter can define the following actions:

■ Send No Messages: Do not send a message to any channel.

■ Send Messages to All Selected Channels: Send a message to all specified
channels in the address list.

■ Send to the First Available Channel: Send a message serially to channels in the
address list until one successful message is sent. This entails performing a send to
the next channel when the current channel returns a failure status. This filter
action is not supported for messages sent from the human workflow layer.

27.9.3 Managing Messaging Channels
In Oracle BPM Worklist, messaging channels represent both physical channels, such as
business mobile phones, and also email client applications running on desktops.
Specifically, Oracle BPM Worklist supports the following messaging channels:

■ EMAIL

■ IM

■ MOBILE

■ SMS

■ VOICE

Status String

Subject String

Customer Type String

Time Time

Group Name String

Processing Time Number

Date Date

Due Date Date

User String

Source String

Amount Number

Role String

Priority String

Customer Name String

Expiration Date Date

Order Type String

Organization String

Classification String

Service Request Type String

Table 27–9 (Cont.) Predefined Attributes for Messaging Filters

Attribute Data Type

Specifying Notification Settings

27-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ WORKLIST

Note the following about message channels:

■ Addresses for messaging channels are fetched from the configured identity store.

■ SMS and MOBILE notifications are sent to the mobile phone number.

■ VOICE notifications are sent to the business phone number.

■ No special notification is sent when the messaging channel preference is
WORKLIST. Instead, log in to Oracle BPM Worklist to view tasks.

■ EMAIL is the default messaging channel preference when a preferred channel has
not been selected.

You can use the Messaging Channels tab to view, create, edit, and delete messaging
channels.

27.9.3.1 Viewing Your Messaging Channels
You can display your existing messaging channels.

To view messaging channels:
1. Click the Preferences link.

2. Click the Notification tab.

3. Click the Messaging Channels tab.

The My Messaging Channels list appears (Figure 27–42) and displays the
following information:

■ Name: The name of the messaging channel.

■ Type: The type of messaging channel, such as EMAIL or SMS.

■ Address: The address for the channel, such as a phone number or email
address.

■ Default: Specifies whether this channel is the default messaging channel.

Specifying Notification Settings

Using Oracle BPM Worklist 27-49

Figure 27–42 Messaging Channels

4. Click View > Columns and select the columns to display or hide.

You can also click View > Reorder Columns to display a dialog box to reorder the
displayed columns.

Messaging channel names and addresses are retrieved from the underlying
identity store, such as Oracle Internet Directory.

27.9.3.2 Creating, Editing, and Deleting a Messaging Channel
Oracle BPM Worklist uses an underlying identity store, such as Oracle Internet
Directory, to manage messaging channels and addresses. Therefore, you cannot
directly create, modify, or delete messaging channels using Oracle BPM Worklist.

To perform these actions, contact the system administrator responsible for managing
your organization’s identity store.

27.9.4 Managing Messaging Filters
You can use the Messaging Filters tab to define filters that specify the types of
notifications you want to receive along with the channels through which to receive
these notifications. You can do this through a combination of comparison operators
(such as is equal to, is not equal to), attributes that describe the notification type, content,
or source, and notification actions, which send the notifications to the first available
messaging channels, all messaging channels, or to no channels (effectively blocking the
notification).

For example, you can create a messaging filter called Messages from Lise, that retrieves
all messages addressed to you from your boss, Lise. Notifications that match all of the
filter conditions might first be directed to your business mobile phone, for instance,
and then to your business email if the first messaging channel is unavailable.

Specifying Notification Settings

27-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

27.9.4.1 Viewing Messaging Filters
You can display your existing messaging filters.

To view your messaging filters:
1. Click the Notification tab.

2. Click the Messaging Filters tab.

The My Messaging Filters list appears (Figure 27–43) and displays the following
information:

■ Filter Name: The name of the messaging filter

■ Description: An optional description of the messaging filter

Figure 27–43 Messaging Filters

3. Click View > Columns and select the columns to display or hide.

You can also click View > Reorder Columns to display a dialog box to reorder the
displayed columns.

27.9.4.2 Creating Messaging Filters

To create a messaging filter:
1. Click Create.

The Messaging Filters page appears, as shown in Figure 27–44.

Specifying Notification Settings

Using Oracle BPM Worklist 27-51

Figure 27–44 Adding a Messaging Filter

2. Specify the following information:

■ Filter Name: The name of the messaging filter.

■ Description: An optional description for the messaging filter.

3. Define the filter conditions using the lists and fields in the Condition section, as
follows:

a. Select whether notifications must meet all of the conditions or any of the
conditions by selecting either the All of the following conditions or the Any
of the following conditions options.

b. Select the attribute from the list.

c. Select the operator, such as isEqual, from the list.

d. Type the value of the condition in the text box.

e. Click Add to add the condition to the list.

f. Repeat these steps to add more filter conditions. To remove a filter condition,
click Delete.

4. Select from the following messaging options in the Action section:

■ Send No Messages: Do not send a message to any channel.

■ Send Messages to All Selected Channels: Send a message to all specified
channels in the address list.

Using Flex Fields

27-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Send to the First Available Channel: Send a message serially to channels in
the address list until one successful message is sent. This entails performing a
send to the next channel when the current channel returns a failure status.

5. To set the delivery channel, select a channel from the Add Notification Channel
list and click Add. To remove a channel, click Delete.

6. Use the up and down arrows to prioritize channels. If available, the top-most
channel receives messages meeting the filter criteria if you select Send to the First
Available Channel.

7. Click OK.

The messaging filter appears on the My Messaging Filters page. The My
Messaging Filters page enables you to edit or delete the channel. Click Cancel to
dismiss the dialog box without creating the filter.

27.9.4.3 Editing a Messaging Filter
To edit a messaging filter:

1. Select the channel on the My Messaging Filters page.

2. Click Edit.

3. Click OK to update the messaging filter. Click Cancel to dismiss the dialog box
without modifying the filter.

27.9.4.4 Deleting a Messaging Filter
To delete a messaging filter:

1. Select the filter on the My Messaging Filters page.

2. Click Delete. A confirmation dialog appears.

3. Click OK to delete the messaging filter. Click Cancel to dismiss the dialog box
without deleting the filter.

27.10 Using Flex Fields
Human workflow flex fields store and query use case-specific custom attributes. These
custom attributes typically come from the task payload values. Storing custom
attributes in flex fields provides the following benefits:

■ They can be displayed as a column in the task listing

■ They can filter tasks in custom views and advanced searches

■ They can be used for a keyword-based search

For example the Requestor, PurchaseOrderID, and Amount fields in a purchase
order request payload of a task can be stored in the flex fields. An approver logging
into Oracle BPM Worklist can see these fields as column values in the task list and
decide which task to access. The user can define views that filter tasks based on the
flex fields. For example, a user can create views for purchase order approvals based on
different amount ranges. If the user must also retrieve tasks at some point related to a
specific requestor or a purchase order ID, they can specify this in the keyword field
and perform a search to retrieve the relevant tasks.

For the flex fields to be populated, an administrator must create flex field mappings, as
follows:

1. Specify a label for the flex field to be populated.

Using Flex Fields

Using Oracle BPM Worklist 27-53

2. Map the payload attribute containing the data to the label.

These mappings are valid for a certain task type. Therefore, each task type can have
different flex field mappings. After the mapping is complete and any new task is
initiated, the value of the payload is promoted to the mapped flex field. Tasks initiated
before the mapping do not contain the value in the flex field. Only top-level simple
type attributes in the payload can be promoted to a flex field. Complex attributes or
simple types nested inside a complex attribute cannot be promoted. It is important to
define the payload for a task in the Human Task Editor, keeping in mind which
attributes from the payload may need to be promoted to a flex field. All text and
number flex fields are automatically included in the keyword-based search.

Essentially, the Human Task Editor is used only when defining the payload for a task.
All other operations are performed at runtime.

Directory naming is not available concomitant with the flex file naming convention.

27.10.1 How To Map Flex Fields
An administrator, or users with special privileges, can use flex field mapping, shown
in Figure 27–45, to promote data from the payload to inline attribute flex fields. By
promoting data to flex fields, the data becomes searchable and can be displayed as
columns on the task list page.

Administrators can map public flex fields. Users who have been granted the
workflow.mapping.publicFlexField privilege can map public flex fields, and
see a Public Flex Fields node on the Administration tab.

Figure 27–45 Flex Field Mapping

Note: Flex fields must be defined before instances of the business
process are generated. Only instances generated after flex fields are
created will reflect the correct flex fields. Older instances of the
business process do not reflect subsequent flex field changes.

Using Flex Fields

27-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To create labels:
To create a flex field mapping, an administrator first defines a semantic label, which
provides a more meaningful display name for the flex field attribute. Click Add to use
the Create Label dialog, shown in Figure 27–46.

Figure 27–46 Creating a Label

As the figure shows, labelName is mapped to the task attribute TextAttribute3. The
payload attribute is also mapped to the label. In this example, the Text attribute type is
associated with labelName. The result is that the value of the Text attribute is stored in
the TextAttribute3 column, and labelName is the column label displayed in the user’s
task list. Labels can be reused for different task types. You can delete a label only if it is
not used in any mappings.

A mapped payload attribute can also be displayed as a column in a custom view, and
used as a filter condition in both custom views and workflow rules. The display name
of the payload attribute is the attribute label that is selected when doing the mapping.

Note the following restrictions:

■ Only simple type payload attributes can be mapped.

■ A flex field (and thus a label) can be used only once per task type.

■ Data type conversion is not supported for the number or date data types. For
example, you may not map a payload attribute of type string to a label of type
number.

To browse all mappings:
1. Click Browse all mappings.

2. Select a row in the label table to display all the payload attributes mapped to a
particular label.

Using Flex Fields

Using Oracle BPM Worklist 27-55

Figure 27–47 Browsing Mappings

To edit mappings by task type:
1. Click Edit mappings by task type, optionally provide a task type, and click

Search.

2. Select a task type and click OK.

3. With the task type displayed in the Edit mappings by task type field, click Go.

All current mappings for the task type are displayed, as shown in Figure 27–48.

Creating Worklist Reports

27-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–48 Selecting a Label

4. Select a mapping label and click Select.

Figure 27–49 shows a completed mapping.

Figure 27–49 Flex Field Mapping Created

See Section 29.1.9.1, "Internationalization of Attribute Labels" for more information.

27.11 Creating Worklist Reports
Table 27–10 lists the worklist reports available for task analysis.

Creating Worklist Reports

Using Oracle BPM Worklist 27-57

27.11.1 How To Create Reports
Reports are available from the Reports link. Report results cannot be saved.

To create a report:
1. Click the Reports link.

2. Click the type of report you want to create.

Figure 27–50 shows the report types available.

Table 27–10 Worklist Report Types

Report Name Description Input Parameters

Unattended Tasks Provides an analysis of
tasks assigned to users'
groups or reportees' groups
that have not yet been
acquired (the "unattended"
tasks).

■ Assignee—This option (required) selects tasks assigned to the user's
group (My Group), tasks assigned to the reportee's groups (Reportees),
tasks where the user is a creator (Creator), or tasks where the user is an
owner (Owner).

■ Creation Date—An optional date range

■ Expiration Date—An optional date range

■ Task State—The state (optional) can by Any, Assigned, Expired, or
Information Requested.

■ Priority—The priority (optional) can be Any, Highest, High, Normal,
Low, or Lowest.

Tasks Priority Provides an analysis of the
number of tasks assigned to
a user, reportees, or their
groups, broken down by
priority.

■ Assignee—Depending on the assignee that you select, this required
option includes tasks assigned to the logged-in user (My), tasks assigned
to the user and groups that the user belongs to (My & Group), or tasks
assigned to groups to which the user’s reportees belong (Reportees).

■ Creation Date—An optional date range

■ Ended Date—An optional date range for the end dates of the tasks to be
included in the report

■ Priority—The priority (optional) can by Any, Highest, High, Normal,
Low, or Lowest.

Tasks Cycle Time Provides an analysis of the
time taken to complete
tasks from assignment to
completion based on users'
groups or reportees' groups.

■ Assignee—Depending on the assignee that you select, this required
option includes your tasks (My) or tasks assigned to groups to which
your reportees belong (Reportees).

■ Creation Date—An optional date range

■ Ended Date—An optional date range for the end dates of the tasks to be
included in the report

■ Priority—The priority (optional) can by Any, Highest, High, Normal,
Low, or Lowest.

Tasks Productivity Provides an analysis of
assigned tasks and
completed tasks in a given
time period for a user,
reportees, or their groups.

■ Assignee—Depending on the assignee that the user selects, this required
option includes the user’s tasks (My & Group) or tasks assigned to
groups to which the user’s reportees belong (Reportees).

■ Creation Date (range)—An optional creation date range. The default is
one week.

■ Task Type—Use the Search (flashlight) icon to select from a list of task
titles. All versions of a task are listed on the Select Workflow Task Type
page (optional).

Tasks Time
Distribution

Provides the time an
assignee takes to perform a
task.

■ Assignee—Depending on the assignee that the user selects, this required
option includes the user’s tasks (My & Group) or tasks assigned to
groups to which the user’s reportees belong (Reportees).

■ From...to (date range)—An optional creation date range. The default is
one week.

■ Task Type—Use the Search (flashlight) icon to select from a list of task
titles. All versions of a task are listed on the Select Workflow Task Type
page (optional).

Creating Worklist Reports

27-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 27–50 Oracle BPM Worklist Reports

3. Provide inputs to define the search parameters of the report.

Figure 27–51 shows an example of the Unattended Tasks Report input page. The
other reports are similar. See Table 27–10 for information about input parameters
for all the report types.

Figure 27–51 Unattended Tasks Report—Input Page for Task Analysis

4. Click Run.

27.11.2 What Happens When You Create Reports
As shown in Figure 27–52, report results (for all report types) are displayed in both a
table format and a bar chart format. The input parameters used to run the report are
displayed under Report Inputs, in the lower-left corner (may require scrolling to
view).

Creating Worklist Reports

Using Oracle BPM Worklist 27-59

Figure 27–52 Report Display—Table Format, Bar Chart Format, and Report Inputs

27.11.2.1 Unattended Tasks Report
Figure 27–53 shows an example of an Unattended Tasks report.

Figure 27–53 Unattended Tasks Report

Creating Worklist Reports

27-60 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The report shows that the California group has 15 unattended tasks, the Supervisor
group has 7 unattended tasks, and the LoanAgentGroup has 11 unattended tasks. The
unattended (unclaimed) tasks in this report are all DocumentReview tasks. If multiple
types of unattended task exists when a report is run, all task types are included in the
report, and the various task types are differentiated by color.

27.11.2.2 Tasks Priority Report
Figure 27–54 shows an example of a Tasks Priority report.

Figure 27–54 Tasks Priority Report

The report shows that the California group, the Supervisor group, and the
LoanAgentGroup each have 16 tasks of normal priority. The users rsteven and jcooper
have 5 and 22 tasks, respectively, all normal priority. Priorities (highest, high, normal,
low, lowest) are distinguished by different colors in the bar chart.

27.11.2.3 Tasks Cycle Time Report
Figure 27–55 shows an example of a Tasks Cycle Time Report.

Creating Worklist Reports

Using Oracle BPM Worklist 27-61

Figure 27–55 Tasks Cycle Time Report

The report shows that it takes 1 hour and 6 minutes on average to complete
DocumentReview tasks, and 1 hour and 28 minutes on average to complete
VacationApproval tasks. The bar chart shows the average cycle time in milliseconds.

27.11.2.4 Tasks Productivity Report
Figure 27–56 shows an example of a Tasks Productivity Report.

Figure 27–56 Tasks Productivity Report

The report shows the number of tasks assigned to the California, LoanAgentGroup,
and Supervisor groups. For individual users, the report shows that jcooper has 22
assigned tasks. In addition to his assigned tasks, jcooper has completed 2 tasks. The

Accessing Oracle BPM Worklist in Local Languages

27-62 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

report shows that mtwain and rsteven have completed 6 and 11 tasks respectively. In
the bar chart, the two task states—assigned and completed—are differentiated by
color.

27.12 Accessing Oracle BPM Worklist in Local Languages
The identity service determines a user’s preferred language and time zone. This
information is extracted from either the JAZN file-based community or from an
external directory service such as Oracle Internet Directory. If no preference
information is available, then the user’s preferred language and time zone are set to
the system defaults, en-US and America/Los_Angeles. If an LDAP-based provider
such as OID is used, then language settings are changed in the OID community.

When a user logs in, the worklist pages are rendered in the browser’s locale and time
zone. Most strings in the worklist come from the Worklist Application bundle. By
default, this is the class

oracle.bpel.services.workflow.resource.WorkflowResourceBundle

However, this can be changed to a custom resource bundle by setting the appropriate
application preference (see Section 27.8.2, "How To Set the Worklist Display
(Application Preferences),") or by providing an updated version of the default bundle
class. See the Workflow Customizations sample for details.

For task attribute names, flex field attribute labels, and dynamic assignment function
names, the strings come from configuring the resource property file
WorkflowLabels.properties. This file exists in the wfresource subdirectory of
the services config directory. See Chapter 29, "Introduction to Human Workflow
Services" for information on adding entries to this file for dynamic assignment
functions and attribute labels.

For custom actions and task titles, the display names come from the message bundle
specified in the task configuration file. If no message bundle is specified, then the
values specified at design time are used. See Chapter 29, "Introduction to Human
Workflow Services" for information on how to specify message bundles so that custom
actions and task titles are displayed in the preferred language.

27.12.1 How To Change the Language Used in the Worklist
The following is based on extracting a user’s preferred language from a JAZN XML
file.

To change the language:
Change the portion in bold to set the user's preferred language.

<preferredLanguage>en-US</preferredLanguage>

Oracle BPM Worklist supports the languages shown in Table 27–11.

Table 27–11 Languages Supported in Oracle BPM Worklist

Language Format

English (en)

English (United States) (en-US)

German (de)

Spanish (International) (es)

Accessing Oracle BPM Worklist in Local Languages

Using Oracle BPM Worklist 27-63

27.12.2 How To Change the Time Zone Used in the Worklist
The following is based on extracting a user’s time zone from a JAZN XML file.

To change the time zone:
Change the string in bold to set the user's preferred time zone.

<timeZone>America/Los_Angeles</timeZone>

The format of the time zone string is Continent/Region. You can find the time zone
values in the $JAVA_HOME/jre/lib/zi directory. The directories specify the
continent names, for example Africa, Asia, America, and so on, while the files within
the directories specify the regions. Note that some regions include sub-regions, for
example America/Indiana/Indianapolis.

French (fr)

Italian (it)

Japanese (ja)

Korean (ko)

Portuguese (Brazil) (pt-BR)

Chinese (Simplified) (zh-CN)

Chinese (Traditional) (zh-TW)

Table 27–11 (Cont.) Languages Supported in Oracle BPM Worklist

Language Format

Accessing Oracle BPM Worklist in Local Languages

27-64 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28

Building a Custom Worklist Client 28-1

28 Building a Custom Worklist Client

Starting with the sample Worklist Application, you can build clients for workflow
services using the APIs exposed by the workflow service. The APIs enable clients to
communicate with the workflow service using local and remote EJBs, SOAP, and
HTTP.

This chapter contains the following topics:

■ Section 28.1, "Introduction to Building Clients for Workflow Services"

■ Section 28.2, "Packages and Classes for Building Clients"

■ Section 28.3, "Workflow Service Clients"

■ Section 28.4, "Class Paths for Clients Using SOAP"

■ Section 28.5, "Class Paths for Clients Using Remote EJBs"

■ Section 28.6, "Class Paths for Clients Using Local EJBs"

■ Section 28.7, "Enterprise JavaBeans References in Web Applications"

■ Section 28.8, "Initiating a Task"

■ Section 28.9, "Changing Workflow Standard View Definitions"

■ Section 28.10, "Writing a Worklist Application Using the HelpDeskUI Sample"

28.1 Introduction to Building Clients for Workflow Services
The typical sequence of calls when building a simple worklist application is as follows.

To build a simple worklist application:
1. Get a handle to IWorklistServiceClient from

WorkflowServiceClientFactory.

2. Get a handle to ITaskQueryService from IWorklistServiceClient.

3. Authenticate a user by passing a username and password to the authenticate
method on ITaskQueryService. Get a handle to IWorkflowContext.

4. Query the list of tasks using ITaskQueryService.

5. Get a handle to ITaskService from IWorklistServiceClient.

6. Iterate over the list of tasks returned, performing actions on the tasks using
ITaskService.

Example 28–1 demonstrates how to build a client for workflow services. A list of all
tasks assigned to jstein is queried. A task whose outcome has not been set is approved.

Packages and Classes for Building Clients

28-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 28–1 Building a Client for Workflow Services—Setting the Outcome to Approved

try
{
 //Create JAVA WorflowServiceClient
 IWorkflowServiceClient wfSvcClient = WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT);
 //Get the task query service
 ITaskQueryService querySvc = wfSvcClient.getTaskQueryService();

 //Login as jstein
 IWorkflowContext ctx = querySvc.authenticate("jstein","welcome1".toCharArry(),null);
 //Set up list of columns to query
 List queryColumns = new ArrayList();
 queryColumns.add("TASKID");
 queryColumns.add("TASKNUMBER");
 queryColumns.add("TITLE");
 queryColumns.add("OUTCOME");

 //Query a list of tasks assigned to jstein
 List tasks = querySvc.queryTasks(ctx,
 queryColumns,
 null, //Do not query additional info
 ITaskQueryService.AssignmentFilter.MY,
 null, //No keywords
 null, //No custom predicate
 null, //No special ordering
 0, //Do not page the query result
 0);
 //Get the task service
 ITaskService taskSvc = wfSvcClient.getTaskService();
 //Loop over the tasks, outputting task information, and approving any
 //tasks whose outcome has not been set...
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
 Task task = (Task)tasks.get(i);
 int taskNumber = task.getSystemAttributes().getTaskNumber();
 String title = task.getTitle();
 String taskId = task.getSystemAttributes().getTaskId();
 String outcome = task.getSystemAttributes().getOutcome();
 if(outcome == null)
 {
 outcome = "APPROVED";
 taskSvc.updateTaskOutcome(ctx,taskId,outcome);
 }
 System.out.println("Task #"+taskNumber+" ("+title+") is "+outcome);
 }

}
catch (Exception e)
{
 //Handle any exceptions raised here...
 System.out.println("Caught workflow exception: "+e.getMessage());
}

28.2 Packages and Classes for Building Clients
Use the following packages and classes for building clients:

■ oracle.bpel.services.workflow.metadata.config.model

Workflow Service Clients

Building a Custom Worklist Client 28-3

The classes in this package contain the object model for the workflow
configuration in the task definition file. The ObjectFactory class can be used to
create objects.

■ oracle.bpel.services.workflow.metadata.routingslip.model

The classes in this package contain the object model for the routing slip. The
ObjectFactory class can be used to create objects.

■ oracle.bpel.services.workflow.metadata.taskdisplay.model

The classes in this package contain the object model for the task display. The
ObjectFactory class can be used to create objects.

■ oracle.bpel.services.workflow.metadata.taskdefinition.model

The classes in this package contain the object model for the task definition file. The
ObjectFactory class can be used to create objects.

■ oracle.bpel.services.workflow.client.IWorkflowServiceClient

The interface for the workflow service client.

■ oracle.bpel.services.workflow.client.WorkflowServiceClientFacto
ry

The factory for creating the workflow service client.

■ oracle.bpel.services.workflow.metadata.ITaskMetadataService

The interface for the task metadata service.

■ oracle.bpel.services.workflow.task.ITaskService

The interface for the task service.

■ oracle.bpel.services.workflow.task.IRoutingSlipCallback

The interface for the callback class to receive callbacks during task processing.

■ oracle.bpel.services.workflow.task.IAssignmentService

The interface for the assignment service.

28.3 Workflow Service Clients
Any worklist application accesses the various workflow services through the
workflow service client. The workflow service client code encapsulates all the logic
required for communicating with the workflow services using different local and
remote protocols. After the worklist application has an instance of the workflow
service client, it does not need to consider how the client communicates with the
workflow services.

The advantages of using the client are as follows:

■ Hides the complexity of the underlying connection mechanisms such as
SOAP/HTTP and Enterprise JavaBeans

■ Facilitates changing from using one particular invocation mechanism to another,
for example from SOAP/HTTP to remote Enterprise JavaBeans

The following class is used to create instances of the IWorkflowServiceClient
interface:

oracle.bpel.services.workflow.client.WorkflowServiceClientFactory

Workflow Service Clients

28-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

WorkflowServiceClientFactory has several methods that create workflow
clients. The simplest method, getWorkflowServiceClient, takes a single
parameter, the client type. The client type can be one of the following:

■ WorkflowServiceClientFactory.LOCAL_CLIENT—The client uses a local
Enterprise JavaBeans interface to invoke the workflow services.

■ WorkflowServiceClientFactory.REMOTE_CLIENT—The client uses a
remote Enterprise JavaBeans interface to invoke workflow services located
remotely from the client.

■ WorkflowServiceClientFactory.SOAP_CLIENT—The client uses SOAP to
invoke web service interfaces to the workflow services, located remotely from the
client.

The other factory methods enable you to specify the connection properties directly
(rather than having the factory load them from the wf_client_config.xml file),
and enable you to specify a logger to log client activity.

The following enhancements to the workflow service clients are included in this
release:

■ You can specify the workflow client configuration using either a JAXB object or a
map, as shown in Example 28–2 and Example 28–3.

Example 28–2 Workflow Client Configuration Using a JAXB Object

WorkflowServicesClientConfigurationType wscct = new WorkflowServicesClientConfigurationType();
 List<ServerType> servers = wscct.getServer();
 ServerType server = new ServerType();
 server.setDefault(true);
 server.setName(serverName);
 servers.add(server);

 RemoteClientType rct = new RemoteClientType();
 rct.setServerURL("t3://stapj73:7001");
 rct.setUserName("weblogic");
 rct.setPassword("weblogic"));
 rct.setInitialContextFactory("weblogic.jndi.WLInitialContextFactory");
 rct.setParticipateInClientTransaction(false);
 server.setRemoteClient(rct);
 IWorkflowServiceClient wfSvcClient = WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT, wscct, logger);

Example 28–3 Workflow Client Configuration Using a Map

Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,java.lang.String> properties = new
 HashMap<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,java.lang.String>();

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.MODE,
 IWorkflowServiceClientConstants.MODE_DYNAMIC);

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://localhost:8888");

IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

■ Clients can optionally pass in a java.util.logging.Logger where the client
logs messages. If no logger is specified, then the workflow service client code does

Workflow Service Clients

Building a Custom Worklist Client 28-5

not log anything. Example 28–4 shows how a logger can be passed to the
workflow service clients.

Example 28–4 Passing a Logger to the Workflow Service Clients

java.util.logging.Logger logger =;

IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.REMOTE_CLIENT,
 properties, logger);

Through the factory, it is possible to get the client libraries for all the workflow
services. See Table 29–1, " Enterprise JavaBeans, SOAP, and Java Support" for the
clients available for each of the services.

Note that you can obtain instances of BPMIdentityService and
BPMIdentityConfigService by calling the getSOAPIdentityServiceClient
and getSOAPIdentityConfigServiceClient methods on
WorkflowServiceClientFactory. You can obtain all other services through an
instance of IWorkflowServiceClient.

The client classes use the configuration file wf_client_config.xml for the service
end points. In the client class path, this file is in the class path directly, meaning the
containing directory is in the class path. The wf_client_config.xml file contains:

■ A section for remote clients:

<remoteClient>
 <serverURL>t3://host_name.domain_name:7001</serverURL>
 <userName>weblogic</userName>
 <password>weblogic</password>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory
 </initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
</remoteClient>

■ A section for SOAP end points for each of the services:

<soapClient>
 <rootEndPointURL>http://host_name.domain_name:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
</soapClient>

The workflow client configuration XML schema definition is in the wf_client_
config.xsd file.

28.3.1 The IWorkflowServiceClient Interface
The IWorkflowServiceClient interface provides methods, summarized in
Table 28–1, for obtaining handles to the various workflow services interfaces.

Class Paths for Clients Using SOAP

28-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.4 Class Paths for Clients Using SOAP
SOAP clients must have the following JAR files in their class path:

■ ${bea.home}/wlserver_10.3/server/lib/wlfullclient.jar

■ ${bea.home}/AS11gR1SOA/webservices/wsclient_extended.jar

■ ${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.fabric_
11.1.1/bpm-infra.jar

■ ${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.workflow_
11.1.1/bpm-services.jar

You can generate the wlfullclient.jar file using the following commands:

cd ${bea.home}/wlserver_10.3/server/lib
java -jar ../../../modules/com.bea.core.jarbuilder_1.3.0.0.jar

28.5 Class Paths for Clients Using Remote EJBs
Clients using remote EJBs must have the following JAR files in their class path:

■ xmlparserv2.jar

■ xml.jar

■ bpm-infra.jar

■ bpm-services.jar

■ bpm-services-client.jar (only if you are using the ADF data controls for
workflow)

Table 28–1 IWorkflowServiceClient Methods

Method Interface

getTaskService oracle.bpel.services.workflow.task.ITaskService

getTaskQueryService oracle.bpel.services.workflow.query.ITaskQueryService

getTaskReportService oracle.bpel.services.workflow.report.ITaskReportService

getTaskMetadataService oracle.bpel.services.workflow.metadata.ITaskMetadataService

getUserMetadataService oracle.bpel.services.workflow.user.IUserMetadataService

getRuntimeConfigService oracle.bpel.services.workflow.runtimeconfig.IRuntimeConfigService

getTaskEvidenceService oracle.bpel.services.workflow.metadata.ITaskMetadataService

Note: Client applications no longer use the
system\services\config or system\services\schema
directories in the class path.

Note: Client applications no longer use the
system\services\config or system\services\schema
directories in the class path.

Initiating a Task

Building a Custom Worklist Client 28-7

28.6 Class Paths for Clients Using Local EJBs
Only applications running as part of the soa-infra application or those that are a child
application of the soa-infra application can use local EJBs. In either case, the child
application has all the necessary classes in its class path, either because they are part of
soa-infra or because they inherit the class path as the child of soa-infra.

28.7 Enterprise JavaBeans References in Web Applications
If a web application uses the workflow service local EJBs, then the client application
must do the following:

■ The application must be a child application of the hw_services application.

■ The application must define the Enterprise JavaBeans local references in its
web.xml file. The local references for each of the services are shown in
Example 28–5 and Example 28–6.

Example 28–5 Task Service

<ejb-local-ref id="EjbRef_TaskServiceBean_Message">
 <ejb-ref-name>ejb/local/TaskServiceBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>oracle.bpel.services.workflow.task.ejb.TaskServiceLocalHome</local-home>
 <local>oracle.bpel.services.workflow.task.ejb.TaskServiceLocal</local>
 <ejb-link>TaskServiceBean</ejb-link>
</ejb-local-ref>

Example 28–6 Task Metadata Service

<ejb-local-ref id="EjbRef_TaskMetadataServiceBean_Message">
 <ejb-ref-name>ejb/local/TaskMetadataServiceBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>oracle.bpel.services.workflow.metadata.ejb.TaskMetadataServiceLocalHome</local-home>
 <local>oracle.bpel.services.workflow.metadata.ejb.TaskMetadataServiceLocal</local>
 <ejb-link>TaskMetadataServiceBean</ejb-link>
</ejb-local-ref>

See Chapter 29, "Introduction to Human Workflow Services," for more information on
TaskQueryService, TaskReportService, UserMetadataService, and
RuntimeConfigService.

28.8 Initiating a Task
Tasks can be initiated programmatically, in which case the following task attributes
must be set:

■ taskDefinitionId

■ title

Note: Client applications no longer use the
system\services\config or system\services\schema
directories in the class path.

Note: Only child applications can use local EJBs. This restricts
standalone Java clients to using either remote EJBs or SOAP clients.

Initiating a Task

28-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ payload

■ priority

The following task attributes are optional, but are typically set by clients:

■ creator

■ ownerUser—Defaults to bpeladmin if empty

■ processInfo

■ identificationKey—Tasks can be queried based on the identification key from
the TaskQueryService.

28.8.1 Creating a Task
The task object model is available in the package

oracle.bpel.services.workflow.task.model

To create objects in this model, use the ObjectFactory class.

28.8.2 Creating a Payload Element in a Task
The task payload can contain multiple payload message attributes. Since the payload
is not well defined until the task definition, the Java object model for the task does not
contain strong type objects for the client payload. The task payload is represented by
the AnyType Java object. The AnyType Java object is created with an XML element
whose root is payload in the namespace

http://xmlns.oracle.com/bpel/workflow/task

The payload XML element contains all the other XML elements in it. Each XML
element defines a message attribute.

Example 28–7 shows how to set a task payload.

Example 28–7 Setting a Task Payload

import oracle.bpel.services.workflow.task.model.AnyType;
import oracle.bpel.services.workflow.task.model.ObjectFactory;
import oracle.bpel.services.workflow.task.model.Task;
..........

Document document = //createXMLDocument
Element payloadElem = document.createElementNS("http://xmlns.oracle.com/bpel/workflow/
 task", "payload");
Element orderElem = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "order");
Element child = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "id");
 child.appendChild(document.createTextNode("1234567"));
 orderElem.appendChild(child);
 payloadElem.appendChild(orderElem);
 document.appendChild(payloadElem);

 task.setPayloadAsElement(payloadElem);

Note: The AnyType.getContent() element returns an
unmodifiable list of XML elements. You cannot add other message
attributes to the list.

Initiating a Task

Building a Custom Worklist Client 28-9

28.8.3 Initiating a Task Programmatically
Example 28–8 shows how to initiate a vacation request task programmatically.

Example 28–8 Initiating a Vacation Request Task Programmatically

 // create task object
 ObjectFactory objectFactory = new ObjectFactory();
 Task task = objectFactory.createTask();

 // set title
 task.setTitle("Vacation request for jcooper");

 // set creator
 task.setCreator("jcooper");

 // set taskDefinitionId
 task.setTaskDefinitionId("/VacationRequestApp/VacationRequest!1.0*2007-04-26-10-49-50/
 VacationRequest"); (Your task definition ID will be different.)

 // create and set payload
 Document document = XMLUtil.createDocument();
 Element payloadElem = document.createElementNS(TASK_NS, "payload");
 Element vacationRequestElem = document.createElementNS(VACATION_REQUEST_NS,
 "VacationRequestProcessRequest");

 Element creatorChild = document.createElementNS(VACATION_REQUEST_NS, "creator");
 creatorChild.appendChild(document.createTextNode("jcooper"));
 vacationRequestElem.appendChild(creatorChild);

 Element fromDateChild = document.createElementNS(VACATION_REQUEST_NS, "fromDate");
 fromDateChild.appendChild(document.createTextNode("2006-08-05T12:00:00"));
 vacationRequestElem.appendChild(fromDateChild);

 Element toDateChild = document.createElementNS(VACATION_REQUEST_NS, "toDate");
 toDateChild.appendChild(document.createTextNode("2006-08-08T12:00:00"));
 vacationRequestElem.appendChild(toDateChild);

 Element reasonChild = document.createElementNS(VACATION_REQUEST_NS, "reason");
 reasonChild.appendChild(document.createTextNode("Hunting"));
 vacationRequestElem.appendChild(reasonChild);

 payloadElem.appendChild(vacationRequestElem);
 document.appendChild(payloadElem);

 task.setPayloadAsElement(payloadElem);

 IWorkflowServiceClient workflowServiceClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.SOAP_CLIENT);
 ITaskService taskService = workflowServiceClient.getTaskService();
 IInitiateTaskResponse iInitiateTaskResponse = taskService.initiateTask(task);
 Task retTask = iInitiateTaskResponse.getTask();
 System.out.println("Initiated: " + retTask.getSystemAttributes().getTaskNumber() + " - " +
 retTask.getSystemAttributes().getTaskId());
 return retTask;

Changing Workflow Standard View Definitions

28-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

28.9 Changing Workflow Standard View Definitions
The worklist application and the UserMetadataService API provide methods that
you can use to create, update, and delete standard views. See Section 29.1.7, "User
Metadata Service" for more information.

28.10 Writing a Worklist Application Using the HelpDeskUI Sample
The following example shows how to modify the help desk interface that is part of the
HelpDeskRequest demo.

To write a worklist application
1. Create the workflow context by authenticating the user.

// get workflow service client
 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.REMOTE_CLIENT);

//get the workflow context
IWorkflowContext wfCtx =
wfSvcClient.getTaskQueryService().authenticate(userId, pwd, null);

This is Step 3 in Section 28.1, "Introduction to Building Clients for Workflow
Services."

The login.jsp file of HelpDeskRequest uses the preceding API to authenticate
the user and create a workflow context. After the user is authenticated, the
statusPage.jsp file displays the tasks assigned to the logged-in user.
Example 28–9 shows sample code from the login.jsp file.

Example 28–9 Login.jsp

<%@ page import="javax.servlet.http.HttpSession"
 import="oracle.bpel.services.workflow.client.IWorkflowServiceClient"
 import="oracle.bpel.services.workflow.client.WorkflowServiceClientFactory"
 import="java.util.Set"
 import="java.util.Iterator"
 import="oracle.bpel.services.workflow.verification.IWorkflowContext"
 import="oracle.tip.pc.services.identity.config.ISConfiguration"%>
<%@ page contentType="text/html;charset=windows-1252"%>

<html>
<head>
<title>Help desk request login page</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body bgcolor="#F0F0F0" text="#000000" style="font: 12px verdana; line-height:18px">
<center>
<div style="width:640px;padding:15px;border-width: 10px; border-color: #87b4d9; border-style:
 solid;
background-color:white; text-align:left">

 <!-- Page Header, Application banner, logo + user status -->
 <jsp:include page="banner.jsp"/>

 <!-- Initiate Meta Information -->

Writing a Worklist Application Using the HelpDeskUI Sample

Building a Custom Worklist Client 28-11

 <div style="background-color:#F0F0F0; border-top:10px solid white;border-bottom:
 10px solid white;padding:10px;text-align:center" >
 Welcome to the HelpDesk application
 </div>

 <%
 String redirectPrefix = "/HelpDeskUI/";
 // Ask the browser not to cache the page
 response.setHeader("Pragma", "no-cache");
 response.setHeader("Cache-Control", "no-cache");

 HttpSession httpSession = request.getSession(false);
 if (httpSession != null) {

 IWorkflowContext ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
 if (ctx != null) {
 response.sendRedirect(redirectPrefix + "statusPage.jsp");
 }
 else
 {
 String authFailedStr = request.getParameter("authFailed");
 boolean authFailed = false;
 if ("true".equals(authFailedStr))
 {
 authFailed = true;
 }
 else
 {
 authFailed = false;
 }

 if (!authFailed)
 {
 //Get page parameters:
 String userId="";
 if(request.getParameter("userId") != null)
 {
 userId = request.getParameter("userId");
 }
 String pwd="";
 if(request.getParameter("pwd") != null)
 {
 pwd = request.getParameter("pwd");
 }

 if(userId != null && (!("".equals(userId.trim())))
 && pwd != null && (!("".equals(pwd.trim()))))
 {
 try {
 HttpSession userSession = request.getSession(true);

 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.REMOTE_CLIENT);
 IWorkflowContext wfCtx =
 wfSvcClient.getTaskQueryService().authenticate(userId, pwd, null);
 httpSession.setAttribute("workflowContext", wfCtx);
 response.sendRedirect(redirectPrefix + "statusPage.jsp");
 }
 catch (Exception e)

Writing a Worklist Application Using the HelpDeskUI Sample

28-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 {
 String worklistServiceError = e.getMessage();
 response.sendRedirect(redirectPrefix + "login.jsp?authFailed=true");
 out.println("error is " + worklistServiceError);
 }
 }
 } else
 {
 out.println("Authentication failed");
 }
 }
 }
 %>

 <form action='<%= request.getRequestURI() %>' method="post">
 <div style="width:100%">
 <table cellspacing="2" cellpadding="3" border="0" width="30%" align="center">
 <tr>
 <td>Username
 </td>
 <td>
 <input type="text" name="userId"/>
 </td>
 </tr>
 <tr>
 <td>Password
 </td>
 <td>
 <input type="password" name="pwd"/>
 </td>
 </tr>
 <tr>
 <td>
 <input type="submit" value="Submit"/>
 </td>
 </tr>
 </table>
 </form>
 </div>
</div>
</center>
 </body>
</html>

2. Query tasks using the queryTask API from TaskQueryService.

//add list of attributes to be queried from the task
List displayColumns = new ArrayList();
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("PRIORITY");
 displayColumns.add("STATE");
 displayColumns.add("UPDATEDDATE");
 displayColumns.add("UPDATEDBY");
 displayColumns.add("CREATOR");
 displayColumns.add("OUTCOME");
 displayColumns.add("CREATEDDATE");
 displayColumns.add("ASSIGNEEUSERS");
 displayColumns.add("ASSIGNEEGROUPS");
 // get the list of tasks
 List tasks = wfSvcClient.getTaskQueryService().queryTasks

Writing a Worklist Application Using the HelpDeskUI Sample

Building a Custom Worklist Client 28-13

 (wfCtx,
 displayColumns,
 null,
 ITaskQueryService.AssignmentFilter.MY_AND_GROUP,
 null,
 null,
 null,
 0,
 0);
 // create listing page by using above tasks
 //add href links to title to display details of the task by passing taskId
 as input parameter
 Use getTaskDetailsById(IWorkflowContext wftx, String taskId);

This is Step 4 in Section 28.1, "Introduction to Building Clients for Workflow
Services."

The statusPage.jsp file of HelpDeskRequest is used to display the status of
help desk requests. Example 28–10 shows the statusPage.jsp example code.

Example 28–10 statusPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page import="oracle.tip.pc.services.identity.BPMAuthorizationService,
 oracle.bpel.services.workflow.verification.IWorkflowContext,
 oracle.tip.pc.services.common.ServiceFactory,
 oracle.bpel.services.workflow.client.IWorkflowServiceClient,
 oracle.bpel.services.workflow.client.WorkflowServiceClientFactory,
 oracle.bpel.services.workflow.query.ITaskQueryService,
 oracle.bpel.services.workflow.task.model.Task,
 oracle.bpel.services.workflow.task.model.IdentityType,
 oracle.tip.pc.services.identity.BPMUser,
 java.util.List,
 java.util.Calendar,
 java.text.SimpleDateFormat,
 java.util.ArrayList"%>
<%@ page contentType="text/html;charset=UTF-8"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>RequestPage</title>
 <style TYPE="text/css">
 Body, Form, Table, Textarea, Select, Input, Option
 {
 font-family : tahoma, verdana, arial, helvetica, sans-serif;
 font-size : 9pt;
 }
 table.banner
 {
 background-color: #eaeff5;
 }
 tr.userInfo
 {
 background-color: #eaeff5;
 }
 tr.problemInfo
 {
 background-color: #87b4d9;
 }
 </style>

Writing a Worklist Application Using the HelpDeskUI Sample

28-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 </head>
 <body bgcolor="White">
 <%
 HttpSession httpSession = request.getSession(false);
 httpSession.setAttribute("pageType","STATUSPAGE");
 %>
 <table bordercolor="#eaeff5" border="4" width="100%">
 <tr><td> <jsp:include page="banner.jsp"/> </td></tr>
 </table>
 <%
 BPMUser bpmUser = null;
 String redirectPrefix = request.getContextPath() + "/";
 IWorkflowContext ctx = null;
 if (httpSession != null) {

 ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
 if (ctx != null) {
 bpmUser = getAuthorizationService(ctx.getIdentityContext()).
 lookupUser(ctx.getUser());
 }
 else
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 }
 else
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 if(bpmUser == null)
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 String status = (String)httpSession.getAttribute("requeststatus");
 if(status != null && !status.equals(""))
 {
 %>
 <p></p>
 <div style="text-align:left;color:red" >
 <%= status %>
 </div>
 <%
 }
 httpSession.setAttribute("requeststatus",null);
 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT);
 List displayColumns = new ArrayList();
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("PRIORITY");
 displayColumns.add("STATE");
 displayColumns.add("UPDATEDDATE");
 displayColumns.add("UPDATEDBY");
 displayColumns.add("CREATOR");
 displayColumns.add("OUTCOME");
 displayColumns.add("CREATEDDATE");

Writing a Worklist Application Using the HelpDeskUI Sample

Building a Custom Worklist Client 28-15

 displayColumns.add("ASSIGNEEUSERS");
 displayColumns.add("ASSIGNEEGROUPS");
 List tasks = wfSvcClient.getTaskQueryService().queryTasks
 (ctx,
 displayColumns,
 null,
 ITaskQueryService.ASSIGNMENT_FILTER_CREATOR,
 null,
 null,
 null,
 0,
 0);
 %>
 <p></p>
 <div style="text-align:left;color:green" >

 Previous help desk request

 </div>
 <p></p>
 <div style="text-align:center" >
 <table cellspacing="2" cellpadding="2" border="3" width="100%">
 <TR class="problemInfo">
 <TH>TaskNumber</TH>
 <TH>Title</TH>
 <TH>Priority</TH>
 <TH>CreatedDate</TH>
 <TH>Assignee(s)</TH>
 <TH>UpdatedDate</TH>
 <TH>UpdatedBy</TH>
 <TH>State</TH>
 <TH>Status</TH>
 </TR>
 <%
 SimpleDateFormat dflong = new SimpleDateFormat("MM/dd/yy hh:mm a");
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
 Task task = (Task)tasks.get(i);
 int taskNumber = task.getSystemAttributes().getTaskNumber();
 String title = task.getTitle();
 int priority = task.getPriority();
 String assignee = getAssigneeString(task);
 Calendar createdDate = task.getSystemAttributes().getCreatedDate();
 Calendar updateDate = task.getSystemAttributes().getUpdatedDate();
 String updatedBy = task.getSystemAttributes().getUpdatedBy().getId();
 String state = task.getSystemAttributes().getState();
 String outcome = task.getSystemAttributes().getOutcome();
 if(outcome == null) outcome = "";
 String titleLink = "http://" + request.getServerName() +
 ":" + request.getServerPort() +
 "/integration/worklistapp/TaskDetails?taskId=" +
 task.getSystemAttributes().getTaskId();
 %>
 <tr class="userInfo">
 <td><%=taskNumber%></td>
 <td><a href="<%=titleLink%>" target="_blank"><%=title%></td>
 <td><%=priority%></td>
 <td><%=dflong.format(createdDate.getTime())%></td>
 <td><%=assignee%></td>
 <td><%=dflong.format(updateDate.getTime())%></td>

Writing a Worklist Application Using the HelpDeskUI Sample

28-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <td><%=updatedBy%></td>
 <td><%=state%></td>
 <td><%=outcome%></td>
 <tr>
 <%
 }
 %>
 </table>
 </div>
 <%!
 private BPMAuthorizationService getAuthorizationService(String identityContext)
 {
 BPMAuthorizationService authorizationService =
 ServiceFactory.getAuthorizationServiceInstance();
 if (identityContext != null)
 authorizationService = ServiceFactory.getAuthorizationServiceInstance(identityContext);

 return authorizationService;
 }
 private String getAssigneeString(Task task) throws Exception
 {
 List assignees = task.getSystemAttributes().getAssigneeUsers();
 StringBuffer buffer = null;
 for(int i = 0 ; i < assignees.size() ; i++)
 {
 IdentityType type = (IdentityType)assignees.get(i);
 String name = type.getId();
 if(buffer == null)
 {
 buffer = new StringBuffer();
 }
 else
 {
 buffer.append(",");
 }
 buffer.append(name).append("(U)");
 }
 assignees = task.getSystemAttributes().getAssigneeGroups();
 for(int i = 0 ; i < assignees.size() ; i++)
 {
 IdentityType type = (IdentityType)assignees.get(i);
 String name = type.getId();
 if(buffer == null)
 {
 buffer = new StringBuffer();
 }
 else
 {
 buffer.append(",");
 }
 buffer.append(name).append("(G)");
 }
 if(buffer == null)
 {
 return "";
 }
 else
 {
 return buffer.toString();
 }

Writing a Worklist Application Using the HelpDeskUI Sample

Building a Custom Worklist Client 28-17

 }
 %>
 </body>
</html>

Writing a Worklist Application Using the HelpDeskUI Sample

28-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

29

Introduction to Human Workflow Services 29-1

29Introduction to Human Workflow Services

This chapter describes how the human workflow services are used. These services
perform a variety of operations in the life cycle of a task.

This appendix includes the following sections:

■ Section 29.1, "Introduction to Human Workflow Services"

■ Section 29.2, "Notifications from Human Workflow"

■ Section 29.3, "Assignment Service Configuration"

■ Section 29.4, "Class Loading for Callbacks and Resource Bundles"

■ Section 29.5, "Resource Bundles in Workflow Services"

■ Section 29.6, "Introduction to Human Workflow Client Integration with Oracle
WebLogic Server Services"

■ Section 29.7, "Database Views for Oracle Workflow"

29.1 Introduction to Human Workflow Services
This section describes the responsibilities of the following human workflow services.

■ Task service

■ Task query service

■ Identity service

■ Task metadata service

■ User metadata service

■ Task report service

■ Runtime config service

■ Evidence store service

29.1.1 Enterprise JavaBeans, SOAP, and Java Support for the Human Workflow
Services

Table 29–1 lists the type of Simple Object Access Protocol (SOAP), Enterprise
JavaBeans, and Java support provided for the task services. Most human workflow
services are accessible through SOAP and local and remote Enterprise JavaBeans APIs.
You can use these services directly by using appropriate client proxies. Additionally,
the client libraries are provided to abstract out the protocol details and provide a
common interface for all transports.

Introduction to Human Workflow Services

29-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 29–2 lists the location for the SOAP Web Services Description Language (WSDL)
file for each task service.

Table 29–1 Enterprise JavaBeans, SOAP, and Java Support

Service Name
Supports SOAP
Web Services

Supports
Remote
Enterprise
JavaBeans

Supports
Local
Enterprise
JavaBeans

Task Service: Provides task state management
and persistence of tasks. In addition to these
services, the task service exposes operations
to update a task, complete a task, escalate and
reassign tasks, and so on.

Yes Yes Yes

Task Query Service: Queries tasks for a user
based on a variety of search criterion such as
keyword, category, status, business process,
attribute values, history information of a task,
and so on.

Yes Yes Yes

Task Metadata Service: Exposes operations to
retrieve metadata information related to a
task.

Yes Yes Yes

Task Reports Service: Provides workflow
report details.

Yes Yes Yes

User Metadata Service: Manages metadata
related to workflow users, such as user work
queues, preferences, vacation, and delegation
rules.

Yes Yes Yes

Runtime Config Service: Provides methods
for managing metadata used in the task
service runtime environment.

Yes Yes Yes

Evidence Store Service: Supports storage and
nonrepudiation of digitally-signed workflow
tasks.

Yes Yes Yes

Identity Service: Enables authentication of
users and the lookup of user properties, roles,
group memberships, and privileges.

Yes No No

Table 29–2 SOAP WSDL Location for the Task Services

Service name SOAP WSDL location

Task Service http://host:port/integration/services/TaskServi
ce/TaskServicePort?WSDL

Task Query Service http://host:port/integration/services/TaskQuery
Service/TaskQueryService?WSDL

Identity Service http://host:port/integration/services/IdentityS
ervice/configuration?WSDL

http://host:port/integration/services/IdentityS
ervice/identity?WSDL

Task Metadata Service http://host:port/integration/services/TaskMetad
ataService/TaskMetadataServicePort?WSDL

User Metadata Service http://host:port/integration/services/UserMetad
ataService/UserMetadataService?WSDL

Introduction to Human Workflow Services

Introduction to Human Workflow Services 29-3

Table 29–3 lists the JDNI names for the different Enterprise JavaBeans.

For more information about the client library for worklist services, see Chapter 28,
"Building a Custom Worklist Client"

29.1.2 Security Model for Services
With the exception of the identity service, all services that use the above-mentioned
APIs (SOAP, remote Enterprise JavaBeans, local Enterprise JavaBeans, and Java WSIF)
require authentication to be invoked. All the above channels support passing the user
identity using the human workflow context. The human workflow context contains
either of the following:

■ Login and password

■ Token

The task query service exposes the authenticate operation that takes the login and
password and returns the human workflow context used for all services. Optionally,
with each request, you can pass the human workflow context with the login and
password.

The authenticate operation also supports the concept of creating the context on
behalf of a user with the admin ID and admin password. This operation enables you to
create the context for a logged-in user to the Oracle BPM Worklist if the password for
that user is not available.

Oracle recommends that you get the workflow context one time and use it
everywhere. There are performance implications for getting the workflow context for
every request.

Task Report Service http://host:port/integration/services/TaskRepor
tService/TaskReportServicePort?WSDL

Runtime Config Service http://host:port/integration/services/RuntimeCo
nfigService/RuntimeConfigService?WSDL

Evidence Store Service http://host:port/integration/services/EvidenceS
ervice/EvidenceService?WSDL

Table 29–3 JNDI Names for the Different Enterprise JavaBeans

Service name JNDI Names for the Different Enterprise JavaBeans

Task Service ejb/bpel/services/workflow/TaskServiceBean

Task Service Enterprise
JavaBeans participating
in client transaction

ejb/bpel/services/workflow/TaskServiceGlobalTransa
ctionBean

Task Metadata Service ejb/bpel/services/workflow/TaskMetadataServiceBean

Task Query Service ejb/bpel/services/workflow/TaskQueryService

User Metadata Service ejb/bpel/services/workflow/UserMetadataService

Runtime Config Service ejb/bpel/services/workflow/RuntimeConfigService

Task Report Service ejb/bpel/services/workflow/TaskReportServiceBean

Task Evidence Service ejb/bpel/services/workflow/TaskEvidenceServiceBean

Table 29–2 (Cont.) SOAP WSDL Location for the Task Services

Service name SOAP WSDL location

Introduction to Human Workflow Services

29-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A realm is an identity service context from the identity configuration. The realm name
can be null if the default configuration is used.

29.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP
Web Services
Identity propagation is the replication of authenticated identities across multiple
SOAP web services used to complete a single transaction. SOAP web services also
support web service security. When web service security is used, the human workflow
context does not need to be present in the SOAP input. The web service security can be
configured from the Oracle Enterprise Manager Fusion Middleware Control Console.

29.1.2.2 Creating Human Workflow Context on Behalf of a User
The authenticateOnBehalfOf API method on the task query service can create the
human workflow context on behalf of a user by passing the user ID and password of
an admin user in the request. An admin user is a user with the workflow.admin
privilege. This created context is as if it was created using the password on behalf of
the user.

This is useful for environments in which a back-end system acts on workflow tasks
while users act in their own system. There is no direct interaction with workflow
services; the system can use the on-behalf-of-user login to get a context for the user.

In Example 29–1, the human workflow context is created for user jcooper.

Example 29–1 Human Workflow Context Creation

String adminUser = "...."
String adminPassword = "...."
String realm = "...."

IWorkflowContext adminCtx =
taskQueryService.authenticate(user,password.toCharArray(),realm);

IWorkflowContext behalfOfCtx =
 taskQueryService.authenticateOnBehalfOf(adminCtx,"jcooper");

29.1.3 Task Service
The task service exposes operations to act on tasks. Table 29–4 describes the operations
of the task service. Package oracle.bpel.services.workflow.task corresponds
to the task service.

Note: Human workflow SOAP clients have been enhanced to work
with Security Assertion Markup Language (SAML) token-based
identity propagation when the web service is secured.

Table 29–4 Task Service Methods

Method Description

acquireTask Acquire a task.

acquireTasks Acquire a set of tasks.

addAttachment Add an attachment to a task.

addComment Add a comment to a task.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 29-5

createToDoTask Create a to-do task.

delegateTask Delegate a task to a different user. Both the current assignee and
the user to whom the task is delegated can view and act on the
task.

delegateTasks Delegate a list of tasks to a different user. Both the current
assignee and the user to whom the list of tasks is delegated can
view and act on the tasks.

deleteTask Perform a logical deletion of a task. The task still exists in the
database.

deleteTasks Perform a logical deletion of a list of tasks. The tasks still exist
in the database.

errorTask Cause the task to error. This operation is typically used by the
error assignee.

escalateTask Escalate a task. The default escalation is to the manager of the
current user. This can be overridden using escalation functions.

escalateTasks Escalate tasks in bulk. The default escalation is to the manager
of the current user. This can be overridden using escalation
functions.

getApprovers Get the previous approvers of a task.

getFutureParticipants Get the future participants of a task. The future participants are
returned in the form of a routing slip that contains simple
participants (participant node and parallel nodes that contain
routing slips in them).

getUsersToRequestInfo
ForTask

Get the users from whom a request for information can be
requested.

initiateTask Initiate a task.

mergeAndUpdateTask Merge and update a task. Use this operation when a partial task
should be updated. A partial task is one in which not all the
task attributes are present. In this partial task, only the
following task attributes are interpreted:

■ Task payload

■ Comments

■ Task state

■ Task outcome

overrideRoutingSlip Override the routing slip of a task instance with a new routing
slip. The current task assignment is nullified and the new
routing slip is interpreted as its task is initiated.

purgeTask Remove a task from the persistent store.

purgeTasks Remove a list of tasks from the persistent store.

pushBackTask Push back a task to the previous approver or original assignees.
The original assignees do not need to be the approver as they
may have reassigned the task, escalated the task, and so on. The
property pushbackAssignee in workflow-config.xml
controls whether the task is pushed back to the original
assignees or the approvers.

reassignTask Reassign a task.

reassignTasks Reassign tasks in bulk.

Table 29–4 (Cont.) Task Service Methods

Method Description

Introduction to Human Workflow Services

29-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

reinitiateTask Reinitiate a task. Reinitiating a task causes a previously
completed task to be carried forward so that the history,
comments, and attachments are carried forward in a new task.

releaseTask Release a previously acquired task.

releaseTasks Release a set of previously acquired tasks.

removeAttachment Remove a task attachment.

renewTask Renew a task to extend the time it takes to expire.

requestInfoForTask Request information for a task.

requestInfoForTaskWit
hReapproval

Request information for a task with reapproval. For example,
assume jcooper created a task and jstein and wfaulk
approved the task in the same order. When the next approver,
cdickens, requests information with reapproval from
jcooper, and jcooper submits the information, jstein and
wfaulk approve the task before it comes to cdickens. If
cdickens requests information with reapproval from jstein,
and jstein submits the information, wfaulk approves the
task before it comes to cdickens.

resumeTask Resume a task. Operations can only be performed by the task
owners (or users with the BPMWorkflowSuspend privilege) to
remove the hold on a workflow. After a human workflow is
resumed, actions can be performed on the task.

resumeTasks Resume a set of tasks.

routeTask Allow a user to route the task in an ad hoc fashion to the next
user(s) who must review the task. The user can specify to route
the tasks in sequential, parallel, or simple assignment. Routing
a task is permitted only when the human workflow permits ad
hoc routing of the task.

skipCurrentAssignment Skip the current assignment and move to the next assignment
or pick the outcome as set by the previous approver if there are
no more assignees.

submitInfoForTask Submit information for a task. This action is typically
performed after the user has made the necessary updates to the
task or has added comments or attachments containing
additional information.

suspendTask Allow task owners (or users with the BPMWorkflowSuspend
privilege) to put a human workflow on hold temporarily. In this
case, task expiration and escalation do not apply until the
workflow is resumed. No actions are permitted on a task that
has been suspended (except resume and withdraw).

suspendTasks Suspend a set of tasks.

updateOutcomeOfTasks Update the outcome of a set of tasks.

updateTask Update the task.

updateTaskOutcome Update the task outcome.

updateTaskOutcomeAndR
oute

Update the task outcome and route the task. Routing a task
allows a user to route the task in an ad hoc fashion to the next
user(s) who must review the task. The user can specify to route
the tasks in serial, parallel, or single assignment. Routing a task
is permitted only when the human workflow permits ad hoc
routing of the task.

Table 29–4 (Cont.) Task Service Methods

Method Description

Introduction to Human Workflow Services

Introduction to Human Workflow Services 29-7

For more information, see the following:

■ Section 29.1.11, "Task Instance Attributes"

■ Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL
Process Manager

■ Sample workflow-118-JavaSamples, which demonstrates some APIs

29.1.4 Task Query Service
The task query service queries tasks based on a variety of search criterion such as
keyword, category, status, business process, attribute values, history information of a
task, and so on. Table 29–5 describes the operations of the task query service, including
how to use the service over SOAP. Package
oracle.bpel.services.workflow.query corresponds to the task query service.

withdrawTask The creator of the task can withdraw any pending task if they
are no longer interested in sending it further through the
human workflow. A task owner can also withdraw a task on
behalf of the creator. When a task is withdrawn, the business
process is called back with the state attribute of the task set to
Withdrawn.

withdrawTasks Withdraw a set of tasks.

Table 29–5 Task Query Service Methods

Method Description

authenticate Authenticates a user with the identity authentication service
and passes back a valid IWorkflowContext object.

authenticateOnBehalfOf Optionally make authentication on behalf of another user.

countTasks Counts the number of tasks that match the specified query
criteria.

countViewTasks Counts the number of tasks that match the query criteria of the
specified view.

createContext Creates a valid IWorkflowContext object from a
preauthenticated HTTP request.

doesTaskExist Checks to see if any tasks exist that match the specified query
criteria.

doesViewTaskExist Checks to see if any tasks exist match the query criteria of the
specified view.

getWorkflowContext Gets a human workflow context with the specified context
token.

destroyWorkflowContext Cleans up a human workflow context that is no longer needed.
This method is typically used when a user logs out.

getTaskDetailsById Gets the details of a specific task from the task's taskId
property.

getTaskDetailsByNumber Gets the details of a specific task from the task's task number
property.

getTaskHistory Gets a list of the task versions for the specified task ID.

Table 29–4 (Cont.) Task Service Methods

Method Description

Introduction to Human Workflow Services

29-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

getTaskSequence Gets the task sequence tree of a task whose ID is a task ID, for
those type of sequence.

getTaskVersionDetails Gets the specific task version details for the specified task ID
and version number.

queryAggregatedTasks Executes the specified query, and aggregates a count of the
tasks returned by the query, grouped by the specified column.

queryTaskErrors Returns a list of task error objects matching the specified
predicate.

queryTasks Returns a list of tasks that match the specified filter conditions.
Tasks are listed according to the ordering condition specified (if
any). The entire list of tasks matching the criteria can be
returned or clients can execute paging queries, in which only a
specified number of tasks in the list are retrieved. The filter
conditions are as follows:

■ assignmentFilter: Filters tasks according to whom the
task is assigned, or who created the task. Possible values
for the assignment filter are as follows:

ADMIN: No filtering; returns all tasks regardless of
assignment or creator.

ALL: No filtering; returns all tasks regardless of
assignment or creator.

CREATOR: Returns tasks in which the context user is the
creator.

GROUP: Returns tasks that are assigned to a group,
application role, or list of users of which the context user is
a member.

MY: Returns tasks that are assigned exclusively to the
context user.

MY_AND_GROUP: Returns tasks that are assigned
exclusively to the context user, or to a group, application
role, or list of users of which the context user is a member.

OWNER: Returns tasks in which the context user is the task
owner.

PREVIOUS: Returns tasks the context user previously
updated.

REPORTEES: Returns tasks that are assigned to reportees
of the context user.

REVIEWER: Returns tasks for which the context user is a
reviewer.

■ keywords: An optional search string. This only returns
tasks in which the string is contained in the task title, task
identification key, or one of the task text flex fields.

■ predicate: An optional
oracle.bpel.services.workflow.repos.Predica
te object that allows clients to specify complex, SQL-like
query predicates.

queryViewAggregatedTas
ks

Executes the query as defined in the specified view, and
aggregates the selected tasks according to the chart property
defined in the view.

Table 29–5 (Cont.) Task Query Service Methods

Method Description

Introduction to Human Workflow Services

Introduction to Human Workflow Services 29-9

For more information, see the following:

■ Section 29.1.11, "Task Instance Attributes"

■ Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL
Process Manager in the documentation library

■ Sample workflow-118-JavaSamples, which demonstrates some APIs

29.1.5 Identity Service
The identity service is a thin web service layer on top of the Oracle Application Server
11g security infrastructure, namely Oracle Identity Management and Oracle Platform
Security Services (OPSS), or any custom user repository. The identity service enables
authentication of users and the lookup of user properties, roles, group memberships,
and privileges. Oracle Identity Management is the sole identity service provider for
Oracle Application Server 11g. Oracle Identity Management handles all storage and
retrieval of users and roles for various repositories, including XML, LDAP, and so on.
More specifically, Oracle Identity Management provides the following features:

■ All providers are supported through Oracle Identity Management. The OracleAS
JAAS Provider (JAZN) and LDAP providers are no longer supported. The custom
provider is deprecated and supported only for backward compatibility. All
customization of providers is performed through the custom provider to Oracle
Identity Management, through configuring Oracle Virtual Directory (OVD) as an
LDAP provider to Oracle Identity Management, or through both. OVD aggregates
data across various repositories.

■ The OPSS layer is used, which includes the following:

– Identity store

– Policy store

– Credential store

– Framework

For more information, see Oracle Fusion Middleware Security Guide. All security
configuration is done through the jps-config.xml file.

■ All privileges are validated against permissions, as compared to actions in
previous releases.

■ The following set of application roles are defined. These roles are automatically
defined in the soa-infra application of the OPSS policy store.

– SOAAdmin: Grant this role to users who must perform administrative actions
on any SOA module. This role is also granted the BPMWorkflowAdmin and
B2BAdmin roles.

– BPMWorkflowAdmin: Grant this role to users who must perform any
workflow administrative action. This includes actions such as searching and
acting on any task in the system, creating and modifying user and group rules,

queryViewTasks Returns a list of tasks according to the criteria in the specified
view. The entire list or paged list of tasks can be returned.
Clients can specify additional filter and ordering criteria to
those in the view.

Table 29–5 (Cont.) Task Query Service Methods

Method Description

Introduction to Human Workflow Services

29-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

performing application customization, and so on. This role is granted the
BPMWorkflowCustomize role and the following permissions:

* workflow.mapping.protectedFlexField

* workflow.admin.evidenceStore

* workflow.admin

– BPMWorkflowCustomize: Grant this role to business users who must
perform flex field mapping to public flex fields. This role is also granted the
workflow.mapping.publicFlexField permission.

■ The following workflow permissions are defined:

– workflow.admin: Controls who can perform administrative actions related
to tasks, user and group rules, and customizations

– workflow.admin.evidenceStore: Controls who can view and search
evidence records related to digitally-signed tasks (tasks that require a
signature with the use of digital certificates).

– workflow.mapping.publicFlexField: Controls who can perform
mapping of task payload attributes to public flex fields.

– workflow.mapping.protectedFlexField: Controls who can perform
mapping of task payload attributes to protected flex fields.

For more information, see the following:

■ Oracle Fusion Middleware Security Guide for details about OPSS

■ Oracle Fusion Middleware Application Developer's Guide for Oracle Identity
Management for details about Oracle Identity Management

■ Oracle Fusion Middleware Administrator's Guide for Oracle Virtual Directory for details
about OVD

29.1.5.1 Identity Service Providers
Oracle Identity Management is the only supported provider for release 11g, as shown
in Figure 29–1.

Note: You cannot specify multiple authentication providers for
Oracle SOA Suite. This is because OPSS does not support multiple
providers. The provider to use for human workflow authentication
must be the first one listed in the order of authentication providers for
Oracle SOA Suite.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 29-11

Figure 29–1 Identity Service Providers

29.1.5.1.1 Custom User Repository Plug-ins This mode enables you to plug in a
non-LDAP-based user repository by registering a custom identity service provider.
This mode is provided only for backward compatibility. The custom identity service
plug-in must implement the BPMIdentityService interface (see the Javadoc). This
identityservice class name must be registered in
workflow-identity-config.xml.

29.1.6 Task Metadata Service
The task metadata service exposes operations to retrieve metadata information related
to a task. Table 29–6 describes these methods. Package
oracle.bpel.services.workflow.metadata corresponds to the task metadata
service.

Table 29–6 Task Metadata Service Methods

Method Description

getTaskMetadataByName
space

Get the TaskMetadata object that describes the human task
service component with the specified task definition namespace
and composite version.

getOutcomes Get the permitted outcomes of a task. The outcomes are returned
with their display values.

Oracle BPEL
Process Manager

Identity Service

11g IDM

Provider Plug-ins

XML

XML

Database

Repository

Third Party
LDAP

Oracle
Internet

Directory
Database

LDAP
Oracle
Internet

Directory

DatabaseDatabase

Introduction to Human Workflow Services

29-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information, see Oracle Fusion Middleware Workflow Services Java API Reference
for Oracle BPEL Process Manager.

29.1.7 User Metadata Service
The user metadata service provides methods for managing metadata specific to
individual users and groups. It is used for getting and setting user worklist
preferences, managing user custom views, and managing human workflow rules for
users and groups.

For most methods in the user metadata service, the authenticated user can query and
update their own user metadata. However, they cannot update metadata belonging to
other users.

In the case of group metadata (for example, human workflow rules for groups), only a
user designated as an owner of a group (or a user with the workflow.admin
privilege) can query and update the metadata for that group. However, a user with the
workflow.admin privilege can query and update metadata for any user or group.

Table 29–7 describes the methods in the user metadata service. Package
oracle.bpel.services.workflow.user corresponds to the user metadata
service.

getResourceBundleInfo Get the resource bundle information of the task. The resource
bundle information contains the location and the name of the
bundle.

getRestrictedActions Get the actions that are restricted for a particular task.

getTaskAttributesForT
askDefinitions

Get a list of TaskAttribute objects that describe standard task
attributes and mapped flex-field columns that are common for
the specified task definitions.

getTaskAttributesForT
askNamespaces

Get a list of TaskAttribute objects that describe standard task
attributes and mapped flex field columns that are common for
task definitions identified by the specified namespaces.

getTaskAttributes Get the task message attributes.

getTaskAttributesForT
askDefinition

Get the message attributes for a particular task definition.

getTaskDefinition Get the task definition associated with the task.

getTaskDefinitionById Get the task definition by the task definition ID.

getTaskDefinitionOutc
ome

Get the outcomes given the task definition ID.

getTaskDisplay Get the task display for a task.

getTaskVisibilityRule
s

Get the task visibility rules.

getTaskDisplayRegion Get the task display region for a task.

getVersionTrackedAttr
s

Get the task attributes that when changed cause a task version
creation.

listTaskMetadata List the task definitions in the system.

Table 29–6 (Cont.) Task Metadata Service Methods

Method Description

Introduction to Human Workflow Services

Introduction to Human Workflow Services 29-13

Table 29–7 User Metadata Service Methods

Method Description

createRule Creates a new rule.

decreaseRulePriorit
y

Decreases the priority of a rule by one. This method does nothing if
this rule has the lowest priority.

deleteRule Deletes a rule.

getVacationInfo Retrieves the date range (if any) during which a user is unavailable
for the assignment of tasks.

getRuleDetail Gets the details for a particular human workflow rule.

getRuleList Retrieves a list of rules for a particular user or group.

updateRule Updates an existing rule.

increaseRulePriorit
y

Increases the priority of a rule by one. Rules for a user or group are
maintained in an ordered list of priority. Higher priority rules
(those closer to the head of the list) are executed before rules with
lower priority. This method does nothing if this rule has the highest
priority.

getUserTaskViewList Gets a list of the user task views that the user owns.

getGrantedTaskViewL
ist

Gets a list of user task views that have been granted to the user by
other users. Users can use granted views for querying lists of tasks,
but they cannot update the view definition.

getStandardTaskView
List

Gets a list of standard task views that ship with the human
workflow service, and are available to all users.

getUserTaskViewDeta
ils

Gets the details for a single view.

createUserTaskView Creates a new user task view.

updateUserTaskView Updates an existing user task view.

deleteUserTaskView Deletes a user task view.

updateGrantedTaskVi
ew

Updates details of a view grant made to this user by another user.
Updates are limited to hiding or unhiding the view grant (hiding a
view means that the view is not listed in the main inbox page of
Oracle BPM Worklist), and changing the name and description that
the granted user sees for the view.

getUserPreferences Gets a list of user preferences for the user. User preferences are
simple name-value pairs of strings. User preferences are private to
each user (but can still be queried and updated by a user with the
workflow.admin privilege).

setUserPreferences Sets the user preference values for the user. Any preferences that
were previously stored and are not in the new list of user
preferences are deleted.

getPublicPreference
s

Gets a list of public preferences for the user. Public preferences are
similar to user preferences, except any user can query them.
However, only the user that owns the preferences, or a user with
the workflow.admin privilege, can update them. Public
preferences are useful for storing application-wide preferences
(preferences can be stored under a dummy user name, such as
MyAppPrefs).

setPublicPreference
s

Sets the public preferences for the user.

Introduction to Human Workflow Services

29-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information, see the following:

■ Chapter 27, "Using Oracle BPM Worklist" for details about the rule configuration
and user preference pages

■ Sample workflow-118-JavaSamples, which demonstrates some APIs

■ Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL
Process Manager

29.1.8 Task Report Service
The task report service executes a report and receives the results. Table 29–8 describes
the method. Package oracle.bpel.services.workflow.report corresponds to
the task report service. The standard reports shown in Table 29–8 are available as part
of installation.

29.1.9 Runtime Config Service
The runtime config service provides methods for managing metadata used in the task
service runtime environment. It principally supports the management of task payload
flex field mappings and the URIs used for displaying task details.

The task object used by the task service contains many flex field attributes, which can
be populated with information from the task payload. This allows the task payload
information to be queried, displayed in task listings, and used in human workflow
rules.

The runtime config service provides methods for querying and updating the URI used
for displaying the task details of instances of a particular task definition in a client
application. For any given task definition, multiple display URIs can be supported,

setVacationInfo Sets a date range over which the user is unavailable for the
assignment of tasks. (Dynamic assignment functions do not assign
tasks to a user that is on vacation.)

getStandardTaskView
Details

Gets the full details for a particular standard view, identified by its
viewId.

Table 29–8 Task Report Service

Report Description

Unattended tasks report Provides an analysis of tasks assigned to users' groups or
reportees' groups that require attention because they have not
yet been acquired.

Tasks priority report Provides an analysis of the number of tasks by priorities
assigned to a user, reportees, or their groups.

Tasks cycle time report Provides an analysis of time taken to complete tasks from
assignment to completion based on users' groups or reportees'
groups.

Tasks productivity report Provides an analysis of tasks assigned and tasks completed in a
given time period for a user, reportees, or their groups.

Tasks time distribution
report

Provides an analysis of time taken to complete their part of the
tasks for a given user, user's groups, or reportees in the given
time period.

Table 29–7 (Cont.) User Metadata Service Methods

Method Description

Introduction to Human Workflow Services

Introduction to Human Workflow Services 29-15

with different URIs being used for different applications. The method
getTaskDisplayInfo can query the URIs for a particular task definition. The
method setTaskDisplayInfo can define new URIs or update existing ones. Only
users with the workflow.admin privilege can call setTaskDisplayInfo, but any
authenticated user can call getTaskDisplayInfo.

The runtime config service allows administrators to create mappings between simple
task payload attributes and these flex field attributes.

Only a user with the workflow.mapping.publicFlexField or
workflow.mapping.protectedFlexField privilege can make updates to payload
mappings for public flex fields. Only a user with the
workflow.mapping.protectedFlexField privilege can make updates to payload
mappings for protected flex fields. Any authenticated user can use the query methods
in this service.

An administrator can create attribute labels for the various flex field attributes. These
attribute labels provide a meaningful label for the attribute (for example, a label
Location may be created for the flex field attribute TextAttribute1). A given flex
field attribute may have multiple labels associated with it. This attribute label is what
is displayed to users when displaying lists of attributes for a specific task in Oracle
BPM Worklist. The attribute labels for a specific task type can be determined by calling
the getTaskAttributesForTaskDefinition method on the task metadata
service.

When defining attribute labels, the following fields are automatically populated by the
service. You do not need to specify values for these attributes when creating or
updating attribute labels:

■ Id

■ CreatedDate

■ WorkflowType

■ Active

Valid values for the task attribute field for public flex fields are as follows:

■ TextAttribute1 through TextAttribute20

■ FormAttribute1 through FormAttribute10

■ UrlAttribute1 through UrlAttribute10

■ DateAttribute1 through DateAttribute10

■ NumberAttribute1 through NumberAttribute10

Mappings can then be created between task payload fields and the attribute labels. For
example, the payload field customerLocation can be mapped to the attribute label
Location. Different task types can share the same attribute label. This allows payload
attributes from different task types that have the same semantic meaning to be
mapped to the same attribute label.

The runtime config service also provides the following:

■ Methods for querying the dynamic assignment functions supported by the server

Note: Only payload fields that are simple XML types can be
mapped.

Introduction to Human Workflow Services

29-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Methods for maintaining the task display URLs used for displaying the task
details in the Oracle BPM Worklist and other applications

■ Methods for getting the server HTTP and JNDI URLs

Table 29–9 describes the methods in the runtime config service. Package
oracle.bpel.services.workflow.runtimeconfig corresponds to the runtime
config service.

For more information, see the following:

■ Section 29.3.1, "Dynamic Assignment and Task Escalation Functions" for
additional details

■ Chapter 27, "Using Oracle BPM Worklist" for details about flex field mapping

■ Sample workflow-118-JavaSamples, which demonstrates some APIs.

■ Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL
Process Manager

29.1.9.1 Internationalization of Attribute Labels
Attribute labels provide a method of attaching a meaningful label to a task flex field
attribute. It can be desirable to present attribute labels that are translated into the
appropriate language for the locale of the user.

To use a custom resource bundle, place it at the location identified by the workflow
configuration parameter workflowCustomClasspathURL (which can be a file or
HTTP path).

Table 29–9 Runtime Config Service

Method Description

CreateAttributeLabel Creates a new attribute label for a particular task flex field
attribute.

createPayloadMapping Creates a new mapping between an attribute label and a task
payload field.

DeleteAttributeLabel Deletes an existing attribute label.

deletePayloadMapping Deletes an existing payload mapping.

getAttributeLabelUsag
es

Gets a list of attribute labels (either all attribute labels or labels
for a specific type of attribute) for which mapping (if any) the
labels are currently used.

getGroupDynamicAssign
mentFunctions

Returns a list of the dynamic assignment functions that can
select a group that are implemented on this server.

getTaskDisplayInfo Retrieves information relating to the URIs used for displaying
task instances of a specific task definition.

getTaskStatus Gets the status of a task instance corresponding to a particular
task definition and composite instance.

getUserDynamicAssignm
entFunctions

Returns a list of the dynamic assignment functions that can
select a user that are implemented on this server.

GetWorkflowPayloadMap
pings

Gets a list of all the flex field mappings for a particular human
workflow definition.

setTaskDisplayInfo Sets information relating to the URIs to be used for displaying
task instances of a specific task definition.

updateAttributeLabel Updates an existing attribute label.

Introduction to Human Workflow Services

Introduction to Human Workflow Services 29-17

This can be set in either of two places in Oracle Enterprise Manager Fusion
Middleware Control Console:

■ System MBean Browser page

■ Workflow Task Service Properties page

For more information, see the workflow-110-workflowCustomizations sample, which
describes how to use this parameter. Visit the following URL for details:

http://www.oracle.com/technology/sample_code/products/hwf

Entries for flex field attribute labels must be of the form:

FLEX_LABEL.[label name]=Label Display Name

For instance, the entry for a label named Location is:

FLEX_LABEL.Location=Location

Note that adding entries to these files for attribute labels is optional. If no entry is
present in the file, the name of the attribute label as specified using the API is used
instead.

29.1.10 Evidence Store Service and Digital Signatures
The evidence store service is used for digital signature storage and nonrepudiation of
digitally-signed human workflows. A digital signature is an electronic signature that
authenticates the identity of a message sender or document signer. This ensures that
the original content of the message or document sent is unchanged. Digital signatures
are transportable, cannot be imitated by others, and are automatically time-stamped.
The ability to ensure that the original signed message arrived means that the sender
cannot repudiate it later. Digital signatures ensure that a human workflow document
is authentic, has not been forged by another entity, has not been altered, and cannot be
repudiated by the sender. A cryptographically-based digital signature is created when
a public key algorithm signs a sender's message with a sender's private key.

During design time, signatures are enabled for the task. During runtime in the Oracle
BPM Worklist, when a user approves or rejects the task, the web browser:

■ Asks the user to choose the private key to use for signing.

■ Generates a digital signature using the private key and task content provided by
the Oracle BPM Worklist.

Figure 29–2 provides an example.

Introduction to Human Workflow Services

29-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 29–2 Digital Signature and Certificate

Notes:

■ The certificate refers to a Personal Information Exchange Syntax
Standard (PFX) file that includes a certificate and a private key,
and is protected by a simple text password. PFX specifies a
portable format for storing or transporting a user's private keys,
certificates, miscellaneous secrets, and so on.

■ The possession of a private key that corresponds to the public key
of a certificate is sufficient to sign the data, because the signature
is verifiable through the public key in the certificate. However, no
attempt is made to correlate the name of a user of a certificate
with the person updating it. For example, user jstein can sign
using the private key of user cdickens if jstein has that
private key.

Browser

Private Key

Certificate

Signature=

Task
Content+

upload

2
Create Evidence: User creates evidence
by using their private key to digitally sign
a task update

Worklist Application Admin Screen

Stored
Certificate

Task Content=

Stored
Signature+

4
Nonrepudiation: Prove that the user
generated the signature by creating
the content from the user certificate
and signature

1
Upload Certificate: One time uploading
of each user's certificate and private key
(user action)

CA, CRL

3
Validate: Human workflow validates the
certificate used for evidence creation with
the Certificate Revocation List (CRL)
issued by the Certifying Authorities (CAs)

Human
Workflow

Introduction to Human Workflow Services

Introduction to Human Workflow Services 29-19

The following digital signature features are supported:

■ PKCS7 signatures based on X.509 certificates

■ Browser-based, digitally-signed content without attachments

29.1.10.1 Prerequisites
Prerequisites for using digital signatures and certificates are as follows:

■ Users of the Oracle BPM Worklist must have certificates

■ The administrator must specify the CAs and corresponding CRL URL whose
certificates must be trusted. Users are expected to upload only certificates issued
by these CAs. This is done by editing the System MBean Browser in Oracle
Enterprise Manager Fusion Middleware Control Console.

1. Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select Administration > System Mbean Browser.

The System Mbean Browser displays on the right side of the page.

4. Expand Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowConfig > human-workflow.

5. Click the Operations tab on the right side of the page.

6. Click addTrustedCA.

7. Provide values for caName and caURL. For example, values provided for each
invocation may look as shown in Table 29–10.

8. Click Invoke.

29.1.10.2 Interfaces and Methods
Table 29–11 through Table 29–14 describe the methods in the evidence store service.
Package oracle.bpel.services.security.evidence corresponds to the
evidence service.

Table 29–10 caName and caURL Values

caName caURL

CN = Intg, OU
=AppServ, O =Oracle,
C = US

http://www.oracle.com/Integration%20CRL%20Data.
crl

CN = Intg1, OU
=AppServ, O =Oracle,
C = US

http://www.oracleindia.in.com/Integration%20In.
crl

CN = Intg2, OU
=AppServ, O =Oracle,
C = US

http://www.oracle.us.com/integration.crl

Table 29–11 ITaskEvidenceService Interface

Method Description

createEvidence Creates evidence and stores it in the repository for
nonrepudiation.

Introduction to Human Workflow Services

29-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

getEvidence Gets a list of evidence matching the given criteria. The result
also depends on the privileges associated with the user querying
the service. If the user has been granted the
workflow.admin.evidenceStore permission (points to a
location detailing how to grant the permission), all matching
evidence is visible. Otherwise, only that evidence created by the
user is visible.

uploadCertificate Uploads certificates to be used later for signature verification.
This is a prerequisite for creating evidence using a given
certificate. A user can only upload their certificates.

updateEvidence Updates the CRL verification part of the status. This includes
verified time, status, and error messages, if any.

validateEvidenceSigna
ture

Validates the evidence signature. This essentially performs a
nonrepudiation check on the evidence. A value of true is
returned if the signature is verified. Otherwise, false is
returned.

Table 29–12 Evidence Interface

Method Description

getCertificate Gets the certificate used to sign this evidence.

getCreateDate Gets the creation date of the evidence.

getErrorMessage Gets the error message associated with the CRL validation.

getEvidenceId Gets the unique identifier associated with the evidence.

getPlainText Gets the content that was signed as part of this evidence.

getPolicy Gets the signature policy of the evidence. This is either
PASSWORD or CERTIFICATE.

getSignature Gets the signature of this evidence.

getSignedDate Gets the date on which the signature was created.

getStatus Gets the CRL validation status. This can be one of the following:

■ AVAILABLE: The evidence is available for CRL validation.

■ FAILURE: CRL validation failed.

■ SUCCESS: CRL validation succeeded.

■ UNAVAILABLE: The CRL data could not be fetched.

■ WAIT: CRL validation is in progress.

getTaskId Gets the unique identifier of the task with which this evidence is
associated.

getTaskNumber Gets the task number of the task with which this evidence is
associated.

getTaskPriority Gets the task priority of the task with which this evidence is
associated.

getTaskStatus Gets the task status of the task with which this evidence is
associated.

getTaskSubStatus Gets the task substatus of the task with which this evidence is
associated.

getTaskTitle Gets the title of the task with which this evidence is associated.

Table 29–11 (Cont.) ITaskEvidenceService Interface

Method Description

Introduction to Human Workflow Services

Introduction to Human Workflow Services 29-21

For more information, see the following:

■ Section 25.3.10.6, "Specifying a Workflow Signature Policy" for details about
specifying digital signatures and digital certificates in the Human Task Editor

■ Chapter 26, "Designing Task Display Forms for Human Tasks" for details about
digitally signing a task action in the Oracle BPM Worklist

29.1.11 Task Instance Attributes
A task is work that must be done by a user. When you create a task, you assign
humans to participate in and act upon the task. Table 29–15 describes the task
attributes that are commonly used and interpreted by applications.

getTaskVersion Gets the version of the task with which this evidence is
associated.

getVerifiedDate Gets the date on which the CRL validation of the certificate used
was performed.

getWorkflowType Gets the workflow type of the task with which this evidence is
associated. This is typically BPELWF.

Table 29–13 Certificate Interface

Method Description

getCA Gets the certificate issuer’s distinguished name (DN).

getCertificate Gets the certificate object that is abstracted by the interface.

getID Gets the certificate’s serial number.

getIdentityContext Gets the identity context with which the uploader of this
certificate is associated.

getUserName Gets the user name with whom this certificate is associated.

isValid Returns true if the certificate is still valid.

Table 29–14 Policy Type and Workflow Type Interface

Method Description

fromValue Constructs an object from the string representation.

value Returns the string representation of this object.

Table 29–15 Task Attributes

Task Attribute Name Description

task/applicationContext The application with which any application roles associated
with this task (assignees, owners, and so on) belong.

task/category An optional category of the task.

task/creator The name of the creator of this task.

task/dueDate The due date for the task. This is used on to-do tasks.

Table 29–12 (Cont.) Evidence Interface

Method Description

Introduction to Human Workflow Services

29-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 29–16 lists the attributes that capture process metadata information.

task/identificationKey An optional, custom, unique identifier for the task. This can
be set as an additional unique identifier to the standard task
ID and task number. This key can retrieve a task based on
business object identifiers for which the task is created.

task/identityContext The identity realm under which the users and groups are
seeded. In a single realm environment, this defaults to the
default realm.

task/ownerGroup The group (if any) that owns this task instance. Task owners
can be application roles, users, or groups. If the owner of the
task is a group, this field is set.

task/ownerRole The application role (if any) that owns this task instance. Task
owners can be application roles, users, or groups. If the owner
of the task is an application role, this field is set.

task/ownerUser The user (if any) that owns this task instance. Task owners can
be application roles, users, or groups. If the owner of the task
is a user, this field is set.

task/payload The task payload that is captured as XML.

task/percentageComplete The percentage of the task completed. This is used on to-do
tasks.

task/priority An integer number that defines the priority of this task. A
lower number indicates a higher priority. The numbers 1 to 5
are typically used.

task/startDate The start date for the task. This is used on to-do tasks.

task/subCategory An optional subcategory of the task.

task/taskDefinitionId The task definition ID that binds the task to the task
metadata. At task initiation time, this can be either the
compositeDN/componentName string or the
targetNamespace in the .task file. If the later is used, the
active version matching the targetNamespace is used.

task/taskDisplayUrl The URL to use to display the details for this task.

task/title The title of the task.

Table 29–16 Attributes Capturing Process Metadata Information

Attribute Description

task/processInfo/domain The domain to which the composite that contains the task
component that defines this task instance belongs.

task/sca/applicationName The application that is deployed.

task/sca/componentName The name of the task component that defines this task
instance.

task/sca/compositeDN A unique name for the particular deployment of the
composite that contains the task component that defines
this task instance.

task/sca/compositeInstanc
eId

The composite instance ID.

task/sca/compositeName The name of the composite that contains the task
component that defines this task instance.

Table 29–15 (Cont.) Task Attributes

Task Attribute Name Description

Introduction to Human Workflow Services

Introduction to Human Workflow Services 29-23

Table 29–17 lists the attachment-related attributes.

Table 29–18 lists the comment-related attributes.

Table 29–19 lists the attributes manipulated by the workflow services system.

task/sca/compositeVersion The version of the composite that contains the task
component that defines this task instance.

Table 29–17 Attachment-related attributes

Attribute Description

task/attachment/conte
nt

The attachment content.

task/attachment/mimeT
ype

The Multipurpose Internet Mail Extension (MIME) type of the
attachment.

task/attachment/name The name of the attachment.

task/attachment/updat
edBy

The user who updated the attachment.

task/attachment/updat
edDate

The date on which the attachment was updated.

task/attachment/URI The URI if the attachment is URI-based.

Table 29–18 Comment-related Attributes

Attribute Description

task/userComment/comment The user comment.

task/userComment/updatedBy The user who added the comment.

task/userComment/updatedDate The date on which the comment was added.

Table 29–19 Attributes Manipulated by the Workflow Services System

Attribute Description

task/systemAttributes
/acquiredBy

If a task is assigned to a group, application role, or to multiple
users, and then claimed by a user, this field is set to the name of
the user who claimed the task.

task/systemAttributes
/approvers

The IDs of users who performed custom actions on the task.

task/systemAttributes
/assignedDate

The date that this task was assigned.

task/systemAttributes
/assignees

The current task assignees (maybe users, groups, or application
roles).

task/systemAttributes
/createdDate

The date the task instance was created.

task/systemAttributes
/customActions

The custom actions that can be performed on the task.

task/systemAttributes
/endDate

The end date for the task. This is used on to-do tasks.

Table 29–16 (Cont.) Attributes Capturing Process Metadata Information

Attribute Description

Introduction to Human Workflow Services

29-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

task/systemAttributes
/expirationDate

The date on which the task instance expires.

task/systemAttributes
/fromUser

The user who previously acted on the task.

task/systemAttributes
/hasSubTasks

If true, there are subtasks.

task/systemAttributes
/isGroup

If true, the task is assigned to a group.

task/systemAttributes
/originalAssigneeUser

If a user delegates a task to another user, this field is populated
with the name of the user who delegated the task.

task/systemAttributes
/outcome

The outcome of the task (for example, approved or rejected).
This is only set on completed task instances.

task/systemAttributes
/parentTaskId

This is only set on reinitiated tasks (the task ID of the previous
task that is being reinitiated).

task/systemAttributes
/parentTaskVersion

This only set on a subtask. This refers to the version of the parent
task.

task/systemAttributes
/participantName

The logical name of the participant as modeled from Oracle
JDeveloper.

task/systemAttributes
/reviewers

The reviewers of the task. This can be a user, group, or
application role.

task/systemAttributes
/rootTaskId

The ID of the root task. This is equal to the task ID for the root
task.

task/systemAttributes
/stage

The stage name that is being executed.

task/systemAttributes
/state

The current state of the task instance.

task/systemAttributes
/substate

The current substate of the task.

task/systemAttributes
/subTaskGroupInstance
Id

A unique ID that is set on a subtask. This same ID is set on the
parent task's taskGroupInstanceId. This is required to
identify which subtasks were created at which time.

task/systemAttributes
/systemActions

The system actions (such as reassign, escalate, and so on) that
can be performed on a task.

task/systemAttributes
/taskDefinitionName

The name of the task component that defines this task instance.

task/systemAttributes
/taskGroupId

This only sets a subtask. This is the ID of the immediate parent
task.

task/systemAttributes
/taskGroupInstanceId

A unique ID that is set on the parent task. This same ID is set on
the subtask's subTaskGroupInstanceId. This is required to
identify which subtasks were created at which time.

task/systemAttributes
/taskId

The unique ID of the task.

task/systemAttributes
/taskNamespace

A namespace that uniquely defines all versions of the task
component that defines this task instance. Different versions of
the same task component can have the same namespace, but no
two task components can have the same namespace.

task/systemAttributes
/taskNumber

An integer number that uniquely identifies this task instance.

Table 29–19 (Cont.) Attributes Manipulated by the Workflow Services System

Attribute Description

Notifications from Human Workflow

Introduction to Human Workflow Services 29-25

Table 29–20 lists the flex field attributes.

29.2 Notifications from Human Workflow
Notifications are sent to alert users of changes to the state of a task. Notifications can
be sent through any of the following channels: email, telephone voice message, instant
messaging (IM), or short message service (SMS). Notifications can be sent from a
human task in a BPEL process or from a BPEL process directly.

In releases before 11g, email notifications were sent through the human workflow
email notification layer. Voice and SMS notifications were sent through Oracle’s hosted
notification service. IM notifications were not supported.

Starting with release 11g, the human workflow email notification layer works with
Oracle User Messaging Service to alert users to changes in the state of a task. The
Oracle User Messaging Service exposes operations that can be invoked from the BPEL
business process or human task to send notifications through email, voice, IM, or SMS
channels.

The Oracle User Messaging Service supports features such as:

■ Sending and receiving messages and statuses

■ Sending notifications to a specific address on a particular channel

■ Sending notifications to a set of failover addresses

On application servers other than Oracle Fusion Middleware, the human workflow
email notification layer can be used for email notifications.

For more information about configuring the Oracle User Messaging Service, see the
following:

■ Chapter 16, "Using the Notification Service"

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite for instructions
on configuring notification service delivery channels in Oracle Enterprise Manager
Fusion Middleware Control Console

task/systemAttributes
/updatedBy

The user who last updated the task.

task/systemAttributes
/updatedDate

The date this instance was last updated.

task/systemAttributes
/version

The version of the task.

task/systemAttributes
/versionReason

The reason the version was created.

task/systemAttributes
/workflowPattern

The pattern that is being executed (for example, parallel, serial,
FYI, or single).

Table 29–20 Flex Field Attributes

Attribute Description

task/systemMessageAtt
ributes/*

The flex fields.

Table 29–19 (Cont.) Attributes Manipulated by the Workflow Services System

Attribute Description

Notifications from Human Workflow

29-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

29.2.1 Contents of Notification
Each email notification can contain the following parts:

■ The notification message

■ The HTML content from Oracle BPM Worklist:

This is a read-only view of Oracle BPM Worklist on the task. For information on
how you can configure email notifications to include the content from Oracle BPM
Worklist, see Section 26.7, "Creating an Email Notification."

■ Task attachments:

For notifications that include task attachments.

■ Actionable links

Notifications through SMS, IM, and voice contain only the notification message.

The notification message is an XPath expression that can contain static text and
dynamic values. In creating the messages, only the task BPEL variable is available for
dynamic values. This restriction is because the messages are evaluated outside the
context of the BPEL process. The payload in the task variable is also strongly typed to
contain the type of the payload for XPath tree browsing. The XPath extension function
hwf:getNotificationProperty(propertyName) is available to get properties
for a particular notification. The function evaluates to corresponding values for each
notification. The propertyName can be one of the following values:

■ recipient

The recipient of the notification

■ recipientDisplay

The display name of the recipient

■ taskAssignees

The task assignees

■ taskAssigneesDisplay

The display names of the task assignees

■ locale

The locale of the recipient

■ taskId

The ID of the task for which the notification is meant

■ taskNumber

The number of the task for which the notification is meant

■ appLink

The HTML link to the Oracle BPM Worklist task details page

Example 29–2 demonstrates the use of hwf:getNotificationProperty and
hwf:getTaskResourceBundle together:

Example 29–2 Use of hwf:getNotificationProperty and hwf:getTaskResourceBundle

concat('Dear ', hwf:getNotificationProperty('recipientDisplay'), ' Task ',
/task:task/task:systemAttributes/task:taskNumber, ' is assigned to you. ',
hwf:getTaskResourceBundleString(/task:task/task:systemAttributes/task:taskId,

Notifications from Human Workflow

Introduction to Human Workflow Services 29-27

'CONGRATULATIONS', hwf:getNotificationProperty('locale')))

This results in a message similar to the following:

Dear Cooper, James Task 1111 is assigned to you. Congratulations

29.2.2 Error Message Support
The human workflow email notification layer is automatically configured to warn an
administrator about error occurrences in which intervention is required. Error
notifications and error response messages are persisted.

You can view messages in Oracle Enterprise Manager Fusion Middleware Control
Console.

For more information about viewing messages, see Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite.

29.2.3 Reliability Support
The human workflow email notification layer works with the Oracle User Messaging
Service to provide the following reliability support:

■ Messages are not lost:

– If the human workflow email notification layer fails after acknowledging
receipt of a message from the human workflow.

– If the human workflow email notification layer and Oracle User Messaging
Service both fail before the Oracle User Messaging Service acknowledges
receipt of a message from the human workflow.

– If the Oracle User Messaging Service is down. Message delivery is retried until
successful.

– If a notification channel is down.

■ Notifications that cannot be delivered are retried three times and the address is
marked as invalid. The address is also added to the bad address list. If needed,
you can manually remove these addresses from the bad address list in Oracle
Enterprise Manager Fusion Middleware Control Console. Outgoing notifications
are not resent until the address is corrected. To guard against any incorrect
identification, the address is marked as invalid only for about an hour. No new
notifications are sent in this time.

■ Incoming notification responses from an address that has been identified as a
spam source are ignored.

■ Incoming notification messages are persisted.

■ Incoming notification responses that indicate notification delivery failure (for
example, an unknown host mail) are not ignored; instead corrective actions are
automatically taken (for example, the bad address list is updated).

■ Incoming notification responses can be configured to send acknowledgements
indicating notification status to the sender.

■ Validation of incoming notification responses is performed by correlating the
incoming notification message with the outgoing notification message.

For more information about notifications, see the following:

■ Chapter 16, "Using the Notification Service"

Notifications from Human Workflow

29-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite

29.2.4 Management of Oracle Human Workflow Notification Service
An administrator can perform the following management tasks from Oracle Enterprise
Manager Fusion Middleware Control Console:

■ View failed notifications and erroneous incoming notification responses and take
corrective actions.

■ Perform corrective actions such as delete, resend, and edit on outgoing
notifications and addresses.

■ View bad emails and block email addresses for incoming notification responses.

■ Manage the bad email address list.

■ Access runtime data of failed notifications. You can purge this data when it is no
longer needed.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle
SOA Suite.

29.2.5 How to Configure the Notification Channel Preferences

To configure the notification channel preferences:
1. In Oracle JDeveloper, configure the notification service for email and other

channels. See Chapter 16, "Using the Notification Service" for details.

2. Open the Human Task Editor in Oracle JDeveloper.

The notifications for a task can be configured during the creation of a task in the
Human Task Editor. Notifications can be sent to different types of participants for
different actions.

The actions for which a task notification can be sent are described in
Section 25.3.9.1, "Notifying Recipients of Changes to Task Status."

Notifications can be sent to users involved in the task in various capacities. These
users are described in Section 25.3.9.1, "Notifying Recipients of Changes to Task
Status."

When the task is assigned to a group, each user in the group is sent a notification if
no notification endpoint is available for the group.

For more information, see the following:

■ Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite for details
about configuring the notification channel

■ Section 25.3.9, "How to Specify Participant Notification Preferences" to
configure task notifications in the Human Task Editor

■ Chapter 16, "Using the Notification Service"

3. From the messaging server pages of Oracle Enterprise Manager Fusion
Middleware Control Console, configure the appropriate channel (for example,
email). See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite for
details.

4. From the Workflow Notification Properties pages of Oracle Enterprise Manager
Fusion Middleware Control Console, configure the notification mode parameter
for the notification service to either all channels or email.

Notifications from Human Workflow

Introduction to Human Workflow Services 29-29

By default, this value is set to NONE, meaning that no notifications are sent. The
possible values are:

■ ALL

The email, IM, SMS, and voice channels are configured and notification is sent
through any channel.

■ EMAIL

Only the email channel is configured for sending notification messages.

■ NONE

No channel is configured for sending notification messages. This is the default
setting.

29.2.6 How to Configure Notification Messages in Different Languages
A notification consists of four types of data generated from multiples sources and
internationalized differently. However, for all internationalized notifications, the locale
is obtained from the BPMUser object of the identity service.

■ Prepackaged strings (action links, comments, Oracle BPM Worklist, and so on)

These strings are internationalized in the product as part of the following package:

oracle.bpel.services.workflow.resource

The user's locale is used to get the appropriate message.

■ Task details attachment

 The user's locale is used to retrieve the task details HTML content.

■ Task outcome strings (approve, reject, and so on)

The resource bundle for outcomes is specified when the task definition is modeled
in the Advanced Settings section of the Human Task Editor. The key to each of the
outcomes in the resource bundle is the outcome name itself.

■ Notification message

To configure notification messages in different languages:
1. Use one of the following methods to internationalize messages in the notification

content:

a. If you want to use values from the resource bundle specified during the task
definition, then use the following XPath extension function:

hwf:getTaskResourceBundleString(taskId, key, locale?)

This function returns the internationalized string from the resource bundle
specified in the task definition.

The locale of the notification recipient can be retrieved with the following
function:

hwf:getNotificationProperty('locale')

The task ID corresponding to a notification can be retrieved with the following
function:

hwf:getNotificationProperty('taskId')

Notifications from Human Workflow

29-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

b. If a different resource bundle is used, then use the following XPath extension
to retrieve localized messages:

orcl:get-localized-string()

For more information, see Section 25.3.10.4, "Specifying Multilingual Settings."

29.2.7 How to Send Actionable Messages
There are several methods for sending actionable messages. This section provides an
overview of procedures.

29.2.7.1 How to Send Actionable Emails for Human Tasks
Task actions can be performed through email if the task is set up to enable actionable
email (the same actions can also be performed from Oracle BPM Worklist). An
actionable email account is the account in which task action-related emails are received
and processed.

To send actionable emails for human tasks:
1. In the Notification Settings section of the Human Task Editor, select Make

notifications actionable to make email notifications actionable. This action
enables you to perform task actions through email.

If a notification is actionable, the email contains links for each of the custom
outcomes.

2. If you want to send task attachments with the notification message, select Send
task attachments with email notifications.

When an actionable email arrives, perform the following tasks.

3. Click the Approve link to invoke a new email window with approval data.
Figure 29–3 provides details.

Note: If digital signatures are enabled for a task, actionable emails
are not sent during runtime. This is the case even if actionable emails
are enabled during design-time.

Notifications from Human Workflow

Introduction to Human Workflow Services 29-31

Figure 29–3 Actionable Notifications

4. Add comments in the comments section of the approval mail. For example:

This contract has been approved based on the attached information.

5. Add attachments as needed, as shown in Figure 29–4.

Figure 29–4 Attachment to an Actionable Email

6. Do not change anything in the subject or the body in this email. If you change the
content with the NID substrings, the email is not processed.

7. Click Send.

8. Set properties such as incoming server, outgoing mail server, outgoing username
and password, and others from the Oracle User Messaging Service section of
Oracle Enterprise Manager Fusion Middleware Control Console.

9. In the Workflow Notification Properties page of Oracle Enterprise Manager Fusion
Middleware Control Console, set the notification mode to ALL or EMAIL.

10. In the Workflow Task Service Properties page of Oracle Enterprise Manager Fusion
Middleware Control Console, set the actionable email account name.

29.2.8 How to Send Inbound and Outbound Attachments
If the include attachments flag is checked; only email is sent. The emails include all the
task attachments as email attachments.

Notifications from Human Workflow

29-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To send inbound and outbound attachments:
1. Select Send task attachments with email notifications in the Notification

Settings section of the Human Task Editor.

In the actionable email reply, the user can add attachments in the email. These
attachments are added as task attachments.

For more information, see Section 25.3.9.6, "Making Email Messages Actionable."

29.2.9 How to Send Inbound Comments

To send inbound comments:
1. Add comments in the actionable email reply between Comments[[‘ and ‘]].

Those contents are added as task comments. For example, Comments[[looks
good]].

29.2.10 How to Send Secure Notifications

To send secure notifications:
1. Mark a notification as secure in the Notification Settings section of the Human

Task Editor. This action enables a default notification message to be used. In this
case, the notification message does not include the content of the task. Also, this
notification is not actionable. The default notification message includes a link to
the task in Oracle BPM Worklist. You must log in to see task details.

For more information, see Section 25.3.9.5, "Securing Notifications to Exclude
Details."

29.2.11 How to Set Channels Used for Notifications

To set channels used for notifications:
1. Set up preferred notification channels by using the preferences user interface in

Oracle BPM Worklist. The channel is dynamically determined by querying the
user preference store before sending the notification. If the user preference is not
specified, then the email channel is used.

For more information about the Oracle Delegated Administration Service, see
Oracle Fusion Middleware Guide to Delegated Administration for Oracle Identity
Management.

29.2.12 How to Send Reminders
Tasks can be configured to send reminders, which can be based on the time the task
was assigned to a user or the expiration time of a task. The number of reminders and
the interval between the reminders can also be configured. The message used for
reminders is the message that is meant for ASSIGNEES when the task is marked as
ASSIGNED.

To send reminders:
1. Set reminders in the Notification Settings section of the Human Task Editor.

Reminder configuration involves the following parameters:

■ Recurrence:

Notifications from Human Workflow

Introduction to Human Workflow Services 29-33

The recurrence specifies the number of times reminders are sent. The possible
values for recurrence are EVERY, NEVER, 0, 1, 2 …, 10.

■ RelativeDate:

The RelativeDate specifies if the reminder duration is computed relative to
the assigned date or to the expiration date of the task. The possible values for
the relativeDate are ASSIGNED, EXPIRATION, and BEFORE DUE DATE.
The final value appears in Oracle JDeveloper if you modify the escalation and
expiration policy of the task to use the option DUE DATE.

■ Duration:

The duration from the relativeDate and the first reminder and each
reminder since then. The data type of duration is xsd:duration, whose
format is defined by ISO 8601 under the form PnYnMnDTnHnMnS. The capital
letters are delimiters and can be omitted when the corresponding member is
not used. Examples include PT1004199059S, PT130S, PT2M10S, P1DT2S,
-P1Y, or P1Y2M3DT5H20M30.123S.

The following examples illustrate when reminders are sent:

■ If the relativeDate is ASSIGNED, the recurrence is EVERY, the reminder
duration is PT1D. and the task is assigned at 3/24/2005 10:00 AM, then
reminders are sent at 3/25/2005 10:00 AM, 3/26/2005 10:00 AM,
3/27/2005 10:00 AM, and so on until the user acts on the task.

■ If the relativeDate is EXPIRATION, the recurrence is 2, the reminder
duration is PT1D, and the task expires at 3/26/2005 10:00 AM, then
reminders are sent at 3/24/2005 10:00 AM and 3/25/2005 10:00 AM if
the task was assigned before 3/24/2005 10:00 AM.

■ If the relativeDate is EXPIRATION, the recurrence is 2, the reminder
duration is PT1D, the task expires at 3/26/2005 10:00 AM, and the task
was assigned at 3/24/2005 3:00 PM, then only one reminder is sent at
3/25/2005 10:00 AM.

For more information, see Section 25.3.9.3, "Setting Up Reminders."

29.2.13 How to Set Automatic Replies to Unprocessed Messages
The human workflow notification service sends you an automatic reply message when
it cannot process an incoming message (due to system error, exception error, user error,
and so on). You can modify the text for these messages in the global resource bundle.
For more information see Section 29.5.2, "Global Resource Bundle –
WorkflowLabels.properties."

Example 29–3 WorkflowLabels.properties

String to be prefixed to all auto reply messages
AUTO_REPLY_PREFIX_MESSAGE=Oracle Human Workflow Service
String to be sufixed to all auto reply mesages
AUTO_REPLY_SUFFIX_MESSAGE=This message was automatically generated by Human \
 Workflow Mailer. Do not reply to this mail.

Message indicating closed status of a notified task
TaskClosed=You earlier received the notification shown below. That notification \
 is now closed, and no longer requires your response. You may \
 simply delete it along with this message.

Message indicating that notification was "replied" to instead of "responded" by

Assignment Service Configuration

29-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

using the response link.
EMailRepliedNotification=The message you sent appeared to be a reply to a \
 notification. To respond to a notification, use the \
 response link that was included with your notification.

#
EMailUnSolicited= The message you sent did not appear to be in response to a \
 notification. If you are responding to a notification \
 Use the response link that was included with your notification.

EMailUnknownContent= The message you sent did not appear to be in response to a \
 notification. If you are responding to a notification, \
 Use the response link that was included with your notification.

ResponseNotProcessed=Your response to notification could not be processed. \
 Log in to worklist application for more details.

ResponseProcessed=Your response to notification was successfully processed.

29.2.14 How to Create Custom Notification Headers
Some task participants may have access to multiple notification channels. You can use
custom notification headers to enable this type of participant to specify a single
channel as the preferred channel on which to receive notifications.

To create custom notification headers:
1. In the Custom Notification Headers field of the Notification Settings section of

the Human Task Editor, create custom notification headers that specify the
preferred notification channel to use (such as voice, SMS, and so on). The human
workflow email notification layer provides these header values to the rule-based
notification service of the Oracle User Messaging Service for use.

For example, set the Name field to deliveryType and the Value field to SMS.

Note that the rule-based notification service is only used to identify the preferred
notification channel to use. The address for the preferred channel is obtained from
Oracle Identity Management. The notification message is created from the
information provided by both services.

For more information, see the following:

■ Section 25.3.9.7, "Sending Task Attachments with Email Notifications"

■ Chapter 42, "User Messaging Preferences"

29.3 Assignment Service Configuration
This section describes how to configure the assignment service with dynamic
assignment functions.

29.3.1 Dynamic Assignment and Task Escalation Functions
When tasks are assigned to a group, users in the group must typically claim a task to
act on it. However, you can also automatically send work to users in the group by
using various dispatching mechanisms. Automatic task dispatching is done through
dynamic assignment functions. Dynamic assignment functions select a particular user
or group from either a group, or from a list of users or groups. Several functions are
automatically provided. However, you can also create your own functions and register

Assignment Service Configuration

Introduction to Human Workflow Services 29-35

them with the workflow service. Table 29–21 describes the three dynamic assignment
functions.

These functions all check a user’s vacation status. A user that is currently unavailable
is not automatically assigned tasks.

These dynamic assignment functions can be called using the custom XPath functions
in a BPEL process or task definition:

■ wfDynamicUserAssign

■ wfDynamicGroupAssign

These XPath functions must be called with at least two, and optionally more
parameters:

■ The name of the dynamic assignment function being called.

■ The name of the group on which to execute the function (or a list of users or
groups).

■ (Optional) The identity realm to which the user or group belongs (the default
value is the default identity realm).

■ Additional optional parameters specific to the dynamic assignment function. In
the case of the MOST_PRODUCTIVE assignment function, this is the length of time
(in days) to calculate a user’s productivity. The two other functions do not use
additional parameters.

In addition, human workflow rules created for a group can use dynamic assignment
functions to select a member of that group for reassignment of a task.

In addition to these functions, a dynamic assignment framework is provided that
enables you to implement and configure your own dynamic assignment functions.

29.3.1.1 How to Implement a Dynamic Assignment Function
Follow these procedures to implement your own dynamic assignment function.

To implement dynamic assignment functions:
1. Write a Java class that implements one or both of the following interfaces:

oracle.bpel.services.workflow.assignment.dynamic.
IDynamicUserAssignmentFunction
oracle.bpel.services.workflow.assignment.dynamic.
IDynamicGroupAssignmentFunction

Table 29–21 Dynamic Assignment Functions

Function Type Description

LEAST_BUSY Dynamic
assignment

Picks the user or group with the least number of
tasks currently assigned to it.

MANAGERS_MANAGER Task escalation Picks the manager’s manager.

MOST_PRODUCTIVE Dynamic
assignment

Picks the user or group that has completed the
most tasks over a certain time period (by
default, the last seven days).

ROUND_ROBIN Dynamic
assignment

Picks each user or group in turn.

Assignment Service Configuration

29-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. If your dynamic assignment function selects users, implement the first interface. If
it selects groups, implement the second interface. If it allows the selection of both
users and groups, implement both interfaces.

The two interfaces above both extend the interface
oracle.bpel.services.workflow.assignment.dynamic.IDynamicAssi
gnmentFunction.

Your Java class should also implement the methods in that interface. These
interfaces as shown in the Javadoc.

The dynamic assignment framework also provides the utility class
oracle.bpel.services.workflow.assignment.dynamic.DynamicAssig
nmentUtils.

This class provides many methods that are useful when implementing dynamic
assignment functions.

For information about the Javadoc for dynamic assignment interfaces and utilities,
see SOA_ORACLE_HOME\javadoc\soa-infra.

29.3.1.2 How to Configure Dynamic Assignment Functions
Dynamic assignment functions are configured along with other human workflow
configuration parameters in Oracle Enterprise Manager Fusion Middleware Control
Console.

Each dynamic assignment has two mandatory parameters in this file, in the form of a
<function> tag.

The function tag must contain two attributes:

■ name: The name of the function

■ classpath: The fully qualified class name of the class that implements the
function.

In addition, each function can optionally have any number of properties. These
properties are simple name-value pairs that are passed as initialization parameters to
the function.

The property values specified in these tags are passed as a map (indexed by the value
of the name attributes) to the setInitParameters method of the dynamic
assignment functions.

Two of the functions have initialization parameters. These are:

■ ROUND_ROBIN

The parameter MAX_MAP_SIZE specifies the maximum number of sets of users or
groups for which the function can maintain ROUND_ROBIN counts. The dynamic
assignment function holds a list of users and groups in memory for each group (or
list of users and groups) on which it is asked to execute the ROUND_ROBIN
function.

■ MOST_PRODUCTIVE

The parameter DEAFULT_TIME_PERIOD specified the length of time (in days)
over which to calculate the user’s productivity. This value can be overridden when
calling the MOST_PRODUCTIVE dynamic assignment function. Use an XPath
function by specifying an alternative value as the third parameter in the XPath
function call.

Assignment Service Configuration

Introduction to Human Workflow Services 29-37

For more information about configuring the dynamic assignment functions from
Oracle Enterprise Manager Fusion Middleware Control Console, see Oracle Fusion
Middleware Administrator's Guide for Oracle SOA Suite.

29.3.1.3 How to Configure Display Names for Dynamic Assignment Functions
The runtime config service provides methods for returning a list of available user and
group dynamic assignment functions. These functions return both the name of the
function, and a user-displayable label for the function. The functions support
localization of the display name, so that it displays in the appropriate language for the
context user. These functions are used by Oracle BPM Worklist to show a list of
available dynamic assignment functions. This applies exclusively to dynamic
assignment functions. Display names for task escalation functions are not supported.

To configure display names for dynamic assignment functions:
1. Specify display names (and appropriate translations) for your dynamic

assignment functions by adding entries to the resource property file
WorkflowLabels.properties, and associated resource property files in other
languages. This file exists in the classpath identified in the workflow configuration
parameter workflowCustomizationsClasspathURL.

Entries for dynamic assignment functions must be of the form:

DYN_ASSIGN_FN.[function name]=Function Display Name

For instance, the entry for the ROUND_ROBIN function is:

DYN_ASSIGN_FN.ROUND_ROBIN = Round Robin

Note that adding entries to these files for dynamic assignment functions is
optional. If no entry is present in the file, then the name of the function (for
example, ROUND_ROBIN’) is used instead.

For more information about the WorkflowLabels.properties file, see the
workflow-110-workflowCustomizations sample available at the following URL:

http://www.oracle.com/technology/sample_code/products/hwf

29.3.1.4 How to Implement a Task Escalation Function
Task escalation functions are very similar to dynamic assignment functions, but
perform a different function (determining to whom a task is assigned when it is
escalated). Custom implementations must implement a different interface
(IDynamicTaskEscaltionFunction).

29.3.2 Dynamically Assigning Task Participants with the Assignment Service
Human workflow participants are specified declaratively in a routing slip. The routing
slip guides the human workflow by specifying the participants and how they
participate in the human workflow (for example, management chain hierarchy,
sequential list of approvers, and so on).

The Human Task Editor enables you to declaratively create the routing slip using
various built-in patterns. In addition, you can use advanced routing based on business
rules to do more complex routing. However, if you want to do more sophisticated
routing using custom logic, then you implement a custom assignment service to do
routing. To support a dynamic assignment, an assignment service is used. The
assignment service is responsible for determining the task assignees. You can also

Assignment Service Configuration

29-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

implement your own assignment service and plug in that implementation for use with
a particular human workflow.

The assignment service determines the following task assignment details in a human
workflow:

■ The assignment when the task is initiated.

■ The assignment when the task is reinitiated.

■ The assignment when a user updates the task outcome. When the task outcome is
updated, the task can either be routed to other users or completed.

■ The assignees from whom information for the task can be requested.

■ If the task supports reapproval from Oracle BPM Worklist, a user can request
information for reapproval.

■ The users who reapprove the task if reapproval is supported.

The human workflow service identifies and invokes the assignment service for a
particular task to determine the task assignment.

For example, a simple assignment service iteration is as follows:

1. A client initiates an expense approval task whose routing is determined by the
assignment service.

2. The assignment service determines that the task assignee is jcooper.

3. When jcooper approves the task, the assignment service assigns the task to
jstein. The assignment service also specifies that a notification must be sent to
the creator of the task, jlondon.

4. jstein approves the task and the assignment service indicates that there are no
more users to which to assign the task.

29.3.2.1 How to Implement an Assignment Service

To implement an assignment service:
1. Implement the assignment service with the IAssignmentService interface. The

human workflow service passes the following information to the assignment
service to determine the task assignment:

■ Task document

The task document that is executed by the human workflow. The task
document contains the payload and other task information like current state,
and so on.

■ Map of properties

When an assignment service is specified, a list of properties can also be
specified to correlate callbacks with back-end services that determine the task
assignees.

■ Task history

The task history is a list of chronologically-ordered task documents to trace the
history of the task. The task documents in this list contain a subset of
attributes in the actual task (such as state, updatedBy, outcome,
updatedDate, and so on).

Assignment Service Configuration

Introduction to Human Workflow Services 29-39

29.3.2.2 Example of Assignment Service Implementation

You can implement your own assignment service plug-in that the human workflow
service invokes during human workflow execution.

Example 29–4 provides a sample IAssignmentService implementation named
TestAssignmentService.java.

Example 29–4 Sample IAssignmentService Implementation

/* $Header: TestAssignmentService.java 24-may-2006.18:26:16 Exp $ */
/* Copyright (c) 2004, 2006, Oracle. All rights reserved. */
/*
 DESCRIPTION
 Interface IAssignmentService defines the callbacks an assignment
 service will implement. The implementation of the IAssignmentService
 will be called by the workflow service
 PRIVATE CLASSES
 <list of private classes defined - with one-line descriptions>
 NOTES
 <other useful comments, qualifications, etc.>
 MODIFIED (MM/DD/YY)

 */
/**
 * @version $Header: IAssignmentService.java 29-jun-2004.21:10:35 Exp
 $
 *
 *
 */
package oracle.bpel.services.workflow.test.workflow;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import oracle.bpel.services.workflow.metadata.routingslip.model.*;
import oracle.bpel.services.workflow.metadata.routingslip.model.Participants;
import
oracle.bpel.services.workflow.metadata.routingslip.model.ParticipantsType.*;
import oracle.bpel.services.workflow.task.IAssignmentService;
import oracle.bpel.services.workflow.task.ITaskAssignee;
import oracle.bpel.services.workflow.task.model.Task;
public class TestAssignmentService implements
 oracle.bpel.services.workflow.task.IAssignmentService {
 static int numberOfApprovals = 0;
 static String[] users = new String[]{"jstein", "wfaulk", "cdickens"};
 public Participants onInitiation(Task task,

Notes:

■ The assignment service class cannot be stateful because every time
human workflow services must call the assignment service, it
creates a new instance.

■ The getAssigneesToRequestForInformation method can
be called multiple times because one of the criteria to show the
request-for-information action is that there are users to request
information. Therefore, this method is called every time the
human workflow service tries to determine the permitted actions
for a task.

Assignment Service Configuration

29-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 Map propertyBag) {
 return createParticipant();
 }
 public Participants onReinitiation(Task task,
 Map propertyBag) {
 return null;
 }
 public Participants onOutcomeUpdated(Task task,
 Map propertyBag,
 String updatedBy,
 String outcome) {
 return createParticipant();
 }
 public Participants onAssignmentSkipped(Task task,
 Map propertyBag) {
 return null;
 }
 public List getAssigneesToRequestForInformation(Task task,
 Map propertyBag) {
 List rfiUsers = new ArrayList();
 rfiUsers.add("jcooper");
 rfiUsers.add("jstein");
 rfiUsers.add("wfaulk");
 rfiUsers.add("cdickens");
 return rfiUsers;
 }
 public List getReapprovalAssignees(Task task,
 Map propertyBag,
 ITaskAssignee infoRequestedAssignee) {
 List reapprovalUsers = new ArrayList();
 reapprovalUsers.add("jstein");
 reapprovalUsers.add("wfaulk");
 reapprovalUsers.add("cdickens");
 return reapprovalUsers;
 }
 private Participants createParticipant() {
 if (numberOfApprovals > 2) {
 numberOfApprovals = 0;
 return null;
 }
 String user = users[numberOfApprovals++];

 ObjectFactory objFactory = new ObjectFactory();
 Participants participants = objFactory.createParticipants();
 Participant participant = objFactory.createParticipantsTypeParticipant();
 participant.setName("Loan Agent");
 ResourceType resource2 = objFactory.createResourceType(user);
 resource2.setIsGroup(false);
 resource2.setType("STATIC");
 participant.getResource().add(resource2);

 participants.getParticipantOrSequentialParticipantOrAdhoc().
 add(participant);
 return participants;
 }

}

Class Loading for Callbacks and Resource Bundles

Introduction to Human Workflow Services 29-41

29.3.2.3 How to Deploy a Custom Assignment Service

To deploy a custom assignment service:
1. Use one of the following methods to make an assignment service implementation

class and its related classes available in the class path of Oracle BPEL Process
Manager:

■ Load your classes in SCA-INF/classes directly or SCA-INF/lib as a JAR.

■ Change the Oracle BPEL Process Manager shared library to include your JAR
files.

29.3.3 Custom Escalation Function
The custom escalation function enables you to integrate a custom rule in a human
workflow.

To implement a custom escalation function:
1. Create a custom task escalation function and register this with the human

workflow service that uses that function in task definitions.

2. Use the Advanced Settings section of the Human Task Editor to integrate the rule
in a human workflow.

For more information, see Section 25.3.10.1, "Specifying Escalation Rules."

29.4 Class Loading for Callbacks and Resource Bundles
You can load classes for the following callbacks and resource bundles directly from the
SOA project instead of having to load classes in the oracle.soainfra.common
shared library and restarting Oracle WebLogic Server:

■ IAssignmentService

■ IRestrictedAssignmentService

■ IRoutingSlipCallback

■ IPercentageCompletionCallback

■ INotificationCallback

■ Project level resource bundles

The callback classes can be in the following locations:

■ JARs in the SCA-INF/lib directory of the project

■ Classes in the SCA-INF/classes directory of the project

Note:

■ You cannot create different versions of the assignment service for
use in different BPEL processes unless you change package names
or class names.

■ Java classes and JAR files in the suitcase are not available in the
class path and therefore cannot be used as a deployment model
for the assignment service.

■ The steps must be repeated for each node in a cluster.

Resource Bundles in Workflow Services

29-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Additionally, to support backward compatibility, the project level resource bundles can
also be in the same directory as the .task file.

29.5 Resource Bundles in Workflow Services
This section describes the resource bundles used in human workflow services and how
they can be customized to provide alternative resource strings.

The human workflow service APIs and Oracle BPM Worklist use the locale set in the
IWorkflowContext object to access the APIs. This is the locale of the user in the user
directory configured with the identity service. If no locale is specified for the user, then
the default locale for the Java EE server is used instead.

It is possible for API clients to override this locale by setting a new value in the
IWorkflowContext object. Oracle BPM Worklist provides a user preference option
that allows users to use their browser's locale, rather than the locale set in their user
directory.

29.5.1 Task Resource Bundles
Each human workflow component can be associated with a resource bundle. The
bundle defines the resource strings to be used as display names for the task outcomes.
The resource strings are returned by the TaskMetadataService method
getTaskDefinitionOutcomes, and are displayed in Oracle BPM Worklist and the
task flow task details application.

In addition, you can use the human workflow XPath function
getTaskResourceBundle string to look up resource strings for the task's resource
bundle. For example, this XPath function can be used as part of the XPath expression
used to construct notification messages for the task.

A human workflow component is associated with a resource bundle by setting the
Resource Name and Resource Location fields of the Resource Details dialog in the
Advanced Settings section of the Human Task Editor in Oracle JDeveloper. Note that
the value for the Resource Location field is a URL, and the resource bundle can be
contained within a JAR file pointed to by the URL. It is possible to share the same
resource bundle between multiple human workflow components by using a common
location for the resource bundle.

If no resource bundle is specified for the human workflow component, the resource
string is looked up in the global resource bundle. (See Section 29.5.2, "Global Resource
Bundle – WorkflowLabels.properties.") Commonly-used task outcomes can be defined
in the global resource bundle, alleviating the need to define a resource bundle for
individual human workflow components.

If no resource string can be located for a particular outcome, then the outcome name is
used as the display value in all locales.

29.5.2 Global Resource Bundle – WorkflowLabels.properties
The following global resource bundle is used by human workflow service APIs to look
up resource strings:

oracle.bpel.services.worklfow.resource.WorkflowLabels.properties

You can customize this bundle to provide alternatives for existing display strings or to
add additional strings (for example, for flex field attribute labels, standard views, or
custom dynamic assignment functions).

Resource Bundles in Workflow Services

Introduction to Human Workflow Services 29-43

The global resource bundle provides resource strings for the following:

■ Task attributes:

Labels for the various task attributes displayed in Oracle BPM Worklist (or other
clients). Resource string values are returned from the following
TaskMetadataService methods:

– getTaskAttributes

– getTaskAttributesForTaskDefinition

– getTaskAttributesForTaskDefinitions

■ Flex field attribute labels:

Labels for flex field attribute labels created through the runtime config service.
These strings are used in Oracle BPM Worklist when displaying mapped flex field
attributes. Resource string values are returned from the TaskMetadataService
methods:

– getTaskAttributesForTaskDefinition

– getTaskAttributesForTaskDefinitions

If translated resource strings are required for flex field mappings, then customize
the WorkflowLabels.properties bundle to include the appropriate strings.

■ Task outcomes:

Default resource strings for common task outcomes. These can be overridden by
the task resource bundle, as described above. The resource strings are returned by
the TaskMetadataService method getTaskDefinitionOutcomes, if no
task-specific resource bundle has been specified. As shipped, the global resource
bundle contains resource strings for the following outcomes:

– Approve

– Reject

– Yes

– No

– OK

– Defer

– Accept

– Acknowledge

■ Dynamic assignment function names:

Labels for dynamic assignment functions. These strings are returned from the
runtime config service methods getUserDynamicAssignmentFunctions and
getGroupDynamicAssignmentFunctions. The shipped resource bundle
contains labels for the standard dynamic assignment functions (ROUND_ROBIN,
LEAST_BUSY, and MOST_PRODUCTIVE). If additional custom dynamic
assignment functions have been created, then modify the
WorkflowLabels.properties resource bundle to provide resource strings for
the new functions.

■ Standard view names:

Labels for standard views. If you want translated resource strings for any standard
views you create, then add them here. Standard view resource strings are looked

Resource Bundles in Workflow Services

29-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

up from the resource bundle, and are returned as the standard view name from the
UserMetadataService methods getStandardTaskViewList and
getStandardTaskViewDetails. The key for the resource string should be the
name given to the standard view when it is created. If no resource string is added
for a particular standard view, then the name as entered is used instead.

■ Notification messages:

Resource strings used when the task service sends automatic notifications. These
can be customized to suit user requirements.

■ Task routing error comments:

When an error is encountered in the routing of a task, the task service
automatically appends comments to the task to describe the error. The various
strings used for the comments are defined in this resource bundle.

A copy of the WorkflowLabels.properties resource bundle is available in the
sample workflow-110-workflowCustomizations.

You can customize the WorkflowLabels.properties resource bundle by editing it
and then adding the customized version to the class path for workflow services, ahead
of the version that ships with the product.

This can be done in the following ways:

■ Place the customized file in a directory tree:

directory_path/oracle/bpel/services/workflow/resource/WorkflowLabels.properties

■ Update the worklfowCustomClasspathURL configuration parameter to point
to directory_path (As this is a URL, it is possible to host the resource bundles
on a web server, and make them accessible to multiple Oracle WebLogic Servers).
This approach is described in detail in sample
workflow-110-workflowCustomizations. To download this sample, visit the
following URL:

http://www.oracle.com/technology/sample_code/products/hwf

29.5.3 Worklist Client Resource Bundles
The ADF worklist client application uses two resource bundles that contain all the
strings displayed in the worklist client web application.

■ oracle.bpel.worklistapp.resource.WorkflowResourceBundle: This
contains strings used by both the ADF Oracle BPM Worklist, and the JSP-based
sample Oracle BPM Worklist that shipped with version 10.1.3 of Oracle SOA Suite.

■ oracle.bpel.worklistapp.resource.WorklistResourceBundle. This
contains strings used only by the ADF Oracle BPM Worklist.

Copies of the worklist resource bundles are available in the sample
workflow-110-workflowCustomizations.

The sample illustrates how to customize Oracle BPM Worklist by recompiling these
resource bundles, and adding the updated classes to Oracle BPM Worklist.

29.5.4 Task Detail ADF Task Flow Resource Bundles
The ADF task flow applications and associated data controls that get created to display
the details of a particular task type use the resource bundle
oracle.bpel.services.workflow.worklist.resource.worklist to store
their resource strings.

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 29-45

You can provide your own custom resource strings for a task detail ADF task flow by
adding a customized resource bundle in the task flow application.

A copy of the WorkflowLabels.properties resource bundle is available in the
sample workflow-110-workflowCustomizations. This sample illustrates in detail how
to provide your own customized resource strings for the task detail ADF task flow
application.

29.5.5 Case Sensitivity
By default, the human workflow system is case insensitive to user names. All user
names are stored in lowercase. However, group names and application role names are
always case sensitive. User name case insensitivity can be changed in Oracle
Enterprise Manager Fusion Middleware Control Console.

To change case sensitivity:
1. Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

2. In the navigator, expand the SOA folder.

3. Right-click soa-infra, and select Administration > System Mbean Browser.

The System MBean Browser displays on the right side of the page.

4. Expand Application Defined MBeans > oracle.as.soainfra.config > Server:
server_name > WorkflowIdentityConfig > human-workflow >
WorkflowIdentityConfig.PropertyType.

5. Click caseSensitive.

6. Click the Operations tab.

7. Click setValue.

8. In the Value field, enter true, and click Invoke.

If you are upgrading from 10.1.3, which by default was case sensitive, set
caseSensitive to true for the system to be the same as with 10.1.3.

29.6 Introduction to Human Workflow Client Integration with Oracle
WebLogic Server Services

This section describes how human workflow clients integrate with Oracle WebLogic
Server services.

29.6.1 Human Workflow Services Clients
Human workflow services expose the following workflow services:

■ Task service

■ Task query service

■ User metadata service

Caution: Only change this setting after performing a new
installation. Changing this value on an installation that is actively
processing instances, or has many instances in the database, causes
serious issues.

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

29-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Task evidence service

■ Task metadata service

■ Runtime config service

■ Task report service

To use any of these services, you must use the abstract factory pattern for workflow
services. The abstract factory pattern provides a way to encapsulate a group of
individual factories that have a common theme.

Perform the following tasks:

■ Get the IWorkflowServiceClient instance for the specific service type. The
WorkflowServiceClientFactory provides a static factory method to get
IWorkflowServiceClient according to the service type.

■ Use the IWorkflowServiceClient instance to get the service instance to use.

There are three supported service types:

■ Local

■ Remote

■ SOAP

Local and remote clients use Enterprise JavaBeans clients (local Enterprise JavaBeans
and remote Enterprise JavaBeans, accordingly). SOAP uses SOAP clients. Each type of
service requires you to configure workflow clients. Example 29–5 provides details.

Example 29–5 Client Configuration File

<workflowServicesClientConfiguration>
<server name="default" default="true">
 <localClient>
 <participateInClientTransaction>false</participateInClientTransaction>
 </localClient>
 <remoteClient>
 <serverURL>t3://myhost.us.oracle.com:7001</serverURL>
 <userName>weblogic</userName>
 <password>weblogic</password>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory
 </initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
 </remoteClient>
 <soapClient>
 <rootEndPointURL>http://myhost.us.oracle.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>
</server>
</workflowServicesClientConfiguration>

29.6.1.1 Task Query Service Client Code
Example 29–6 provides an example of the task query service client code.

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 29-47

Example 29–6 Task Query Service Client Code

/**
 * WFClientSample
 */
package oracle.bpel.services.workflow.samples;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

import oracle.bpel.services.workflow.IWorkflowConstants;
import oracle.bpel.services.workflow.WorkflowException;
import oracle.bpel.services.workflow.client.IWorkflowServiceClient;
import oracle.bpel.services.workflow.client.WorkflowServiceClientFactory;
import oracle.bpel.services.workflow.client.IWorkflowServiceClientConstants
 .CONNECTION_PROPERTY;
import oracle.bpel.services.workflow.query.ITaskQueryService;
import oracle.bpel.services.workflow.query.ITaskQueryService.AssignmentFilter;
import oracle.bpel.services.workflow.query.ITaskQueryService.OptionalInfo;
import oracle.bpel.services.workflow.repos.Ordering;
import oracle.bpel.services.workflow.repos.Predicate;
import oracle.bpel.services.workflow.repos.TableConstants;
import oracle.bpel.services.workflow.verification.IWorkflowContext;

public class WFClientSample {

 public static List runClient(String clientType) throws WorkflowException {
 try {

 IWorkflowServiceClient wfSvcClient = null;
 ITaskQueryService taskQuerySvc = null;
 IWorkflowContext wfCtx = null;

 // 1. this step is optional since configuration can be set in wf_client_
 config.xml file
 Map<CONNECTION_PROPERTY, String> properties = new HashMap<CONNECTION_
PROPERTY, String>();
 if (WorkflowServiceClientFactory.REMOTE_CLIENT.equals(clientType)) {
 properties.put(CONNECTION_PROPERTY.EJB_INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 properties.put(CONNECTION_PROPERTY.EJB_PROVIDER_URL,
 "t3://myhost.us.oracle.com:7001");
 properties.put(CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS,
 "weblogic");
 properties.put(CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL, "weblogic");
 } else if (WorkflowServiceClientFactory.SOAP_CLIENT.equals(clientType)) {
 properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost:7001");
 properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_
PROPAGATION,"non-saml"); // optional
 }
 // 2. gets IWorkflowServiceClient for specified client type
 wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(clientType, properties,
 null);

 // 3. gets ITaskQueryService instance
 taskQuerySvc = wfSvcClient.getTaskQueryService();

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

29-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 // 4. gets IWorkflowContext instance
 wfCtx = taskQuerySvc.authenticate("jcooper", "welcome1".toCharArray(),
 "jazn.com");

 // 5. creates displayColumns
 List<String> displayColumns = new ArrayList<String>(8);
 displayColumns.add("TASKID");
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("CATEGORY");

 // 6. creates optionalInfo
 List<ITaskQueryService.OptionalInfo> optionalInfo = new
 ArrayList<ITaskQueryService.OptionalInfo>();
 optionalInfo.add(ITaskQueryService.OptionalInfo.DISPLAY_INFO);

 // 7. creates assignmentFilter
 AssignmentFilter assignmentFilter = AssignmentFilter.MY_AND_GROUP;

 // 8. creates predicate
 List<String> stateList = new ArrayList<String>();
 stateList.add(IWorkflowConstants.TASK_STATE_ASSIGNED);
 stateList.add(IWorkflowConstants.TASK_STATE_INFO_REQUESTED);
 Predicate predicate = new Predicate(TableConstants.WFTASK_STATE_COLUMN,
 Predicate.OP_IN, stateList);

 // 9. creates ordering
 Ordering ordering = new Ordering(TableConstants.WFTASK_DUEDATE_COLUMN,
 true, false);
 ordering.addClause(TableConstants.WFTASK_CREATEDDATE_COLUMN, true,
 false);

 // 10. calls service - query tasks
 List taskList = taskQuerySvc.queryTasks(wfCtx,
 (List<String>) displayColumns,
 (List<OptionalInfo>) optionalInfo,
 (AssignmentFilter)
 assignmentFilter,
 (String) null, // keywords is
 optional (see javadoc)
 // optional
 predicate,
 ordering,
 0, // starting row
 100); // ending row for paging, 0
 if no paging

 // Enjoy result
 System.out.println("Successfuly get list of tasks for client type: " +
 clientType +
 ". The list size is " + taskList.size());
 return taskList;
 } catch (WorkflowException e) {
 System.out.println("Error occurred");
 e.printStackTrace();
 throw e;
 }
 }

 public static void main(String args[]) throws Exception {

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 29-49

 runClient(WorkflowServiceClientFactory.REMOTE_CLIENT);
 runClient(WorkflowServiceClientFactory.SOAP_CLIENT);
 }

}

29.6.1.2 Configuration Option
Each type of client is required to have a workflow client configuration. You can set the
configuration in the following locations:

■ wf_client_config.xml file

■ Property map

The property map is always complementary to the wf_client_config.xml file. The
property map can overwrite the configuration attribute. The file is optional. If it cannot
be found in the application classpath, then the property map is the main source of
configuration.

29.6.1.2.1 Workflow Client Configuration File - wf_client_config.xml The client configuration
XSD schema is present in the wf_client_config.xsd file.

The server configuration should contain three types of clients:

■ localClient

■ remoteClient

■ soapClient

Oracle recommends that you specify all clients. This is because some services (for
example, the identity service) do not have remote and local clients. Therefore, when
you use remote clients for other services, the identity service uses the SOAP service.

An example of a client configuration XML file is shown in Example 29–7. The
configuration defines a server named default. The XML file must go into the client
application’s EAR file.

Example 29–7 Client Configuration

<workflowServicesClientConfiguration>
server name="default" default="true">
<localClient>
 <participateInClientTransaction>false</participateInClientTransaction>
</localClient>

<remoteClient>
 <serverURL>t3://myhost.us.oracle.com:7001</serverURL>
 <userName>weblogic</userName>
 <password>weblogic</password>
 <initialContextFactory>weblogic.jndi.WLInitialContextFactory
 </initialContextFactory>
 <participateInClientTransaction>false</participateInClientTransaction>
</remoteClient>

<soapClient>
 <rootEndPointURL>http://myhost.us.oracle.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

29-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 </identityPropagation>
</soapClient>

</server>
</workflowServicesClientConfiguration>

29.6.1.2.2 Workflow Client Configuration in the Property Map If you want to specify the
connection property dynamically, you can use a java.util.Map to specify the
properties. The properties take precedence over definitions in the configuration file.
Therefore, the values of the properties overwrite the values defined in wf_client_
config.xml. If you do not want to dynamically specify connection details to the
server, you can omit the property setting in the map and pass a null value to the
factory method. In that case, the configuration wf_client_config.xml is searched
for in the client application class path.

The configuration file must be in the class path only if you want to get the
configuration from the file. It is optional to have the file if all settings from the specific
client type are done through the property map. The JAXB object is also not required to
have the file, since all settings are taken from the JAXB object.

IWorkflowServiceClient wfSvcClient =
WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory
.REMOTE_CLIENT,
(Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY, String>) null, null);

If you do so, the value from wf_client_config.xml found in the class path is used
by the client to access the services. If the file is not found in the class path and you do
not provide the setting according to the service type, a workflow exception is thrown.
If the properties map is null and the file is not found, an exception is thrown. If the
client omits some properties in the map while the file is not found, the service call fails
at runtime (the properties are complementary to the file).

The IWorkflowServiceClientConstants.CONNECTION_PROPERTY, which can
be used in the properties map, is show in Example 29–8:

Example 29–8 CONNECTION_PROPERTY

public enum CONNECTION_PROPERTY {
 MODE, // not supported , deprecated
 EJB_INITIAL_CONTEXT_FACTORY,
 EJB_PROVIDER_URL,
 EJB_SECURITY_PRINCIPAL,
 EJB_SECURITY_CREDENTIALS,
 // SOAP configuration
 SOAP_END_POINT_ROOT,
 SOAP_IDENTITY_PROPAGATION, // if value is 'saml' then SAML-token
 identity propagation is used
 SOAP_IDENTITY_PROPAGATION_MODE, // "dynamic’
 MANAGEMENT_POLICY_URI, // dafault value is "oracle/log_policy"
 SECURITY_POLICY_URI, // default value is "oracle/wss10_
 saml_token_client_policy"
 // LOCAL and REMOTE EJB option
 TASK_SERVICE_PARTICIPATE_IN_CLIENT_TRANSACTION // default value is
 false
 //(task service EJB will start a new transaction)
 };

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 29-51

Example 29–9 provides an example for remote Enterprise JavaBeans clients.

Example 29–9 Example for Remote Enterprise JavaBeans Clients

Map<CONNECTION_PROPERTY,String> properties = new HashMap<CONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.EJB_INITIAL_CONTEXT_
FACTORY,"weblogic.jndi.WLInitialContextFactory");

properties.put(CONNECTION_PROPERTY.EJB_PROVIDER_URL,
 "t3://myhost.us.oracle.com:7001");
properties.put(CONNECTION_PROPERTY.EJB_SECURITY_PRINCIPAL, "weblogic");
properties.put(CONNECTION_PROPERTY.EJB_SECURITY_CREDENTIALS, "weblogic");
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.REMOTE_CLIENT,
 properties, null);

Example 29–10 provides an example for a SOAP client.

Example 29–10 Example for SOAP Client

Map<CONNECTION_PROPERTY,String> properties = new HashMap<CONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT, "http://myhost:7001");
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
 properties, null);

29.6.1.3 Client Logging
Clients can optionally pass in a java.util.logging.Logger to where the client
logs messages. If there is no logger specified, the workflow service client code does not
log anything. Example 29–11 shows how to pass a logger to the workflow service
clients:

Example 29–11 java.util.logging.Logger

java.util.logging.Logger logger =;

IWorkflowServiceClient client =
WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory
.REMOTE_CLIENT, properties, logger);

29.6.1.4 Configuration Migration Utility
The client configuration schema has changed between release 10.1.3.x and 11g Release
1. To migrate from release 10.1.3.x to 11g Release 1, use the following utility:

java -classpath wsclient_extended.jar:bpm-services.jar
 oracle.bpel.services.workflow.client.config.MigrateClientConfiguration
original_file [new_file];

Note: If you use the properties map, you do not need to specify
IWorkflowServiceClientConstants.CONNECTION_
PROPERTY.MODE. This property has been deprecated in this release.

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

29-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

where original_file is a wf_client_config.xml file from 10.1.3.x and new_
file is the optional name of the new configuration file. If a new name is not specified,
the utility backs up the original configuration file and overwrites the wf_client_
config.xml file.

29.6.2 Identity Propagation
This section describes how to propagate identities using Enterprise JavaBeans and
SAML-tokens for SOAP clients.

There are performance implications for getting the workflow context for every request.
This is also true for identity propagation. If you use identity propagation with
SAML-token or Enterprise JavaBeans, authenticate the client by passing null for the
user and password, get the workflow context instance, and use another service call
with workflow context without identity propagation.

29.6.2.1 Enterprise JavaBeans Identity Propagation
The client application can propagate user identity to services by using Enterprise
JavaBeans identity propagation. The client code is responsible for securing the user
identity.

29.6.2.1.1 Client Configuration If you use identity propagation, the client code must omit
the element’s <userName> and <password> under the <remoteClient> element in
the wf_client_config.xml configuration file. In addition, do not populate the
following properties into
Map<IWorkflowServiceClientConstants.CONNECTION_PROPERTY,String>
properties as you did in Section 29.6.1.2.2, "Workflow Client Configuration in the
Property Map."

■ IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_
SECURITY_PRINCIPAL

■ IWorkflowServiceClientConstants.CONNECTION_PROPERTY.EJB_
SECURITY_CREDENTIALS

29.6.2.1.2 Requirements for Client Applications For Identity Propagation Identity
propagation only works if the application is deployed under the Oracle WebLogic
Server container and secured with container security or the client is secured with a
custom JAAS login module.

End users log in to the client application with the correct user name and password.
The users using the client application must be available in the identity store used by
the SOA application. As a best practice, configure the client to use the same identity
store as the workflow services and Oracle SOA Suite are using. This guarantees that if
the user exists on the client side, they also exist on the server side.

For information about configuring the identity store, see Oracle Fusion Middleware
Security Guide.

29.6.2.2 SAML Token Identity Propagation for SOAP Client
If you use a SOAP client, you can use the SAML-token identity propagation supported
by Oracle web services.

This section assumes the application resides in and is secured by the Oracle WebLogic
Server container.

Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services

Introduction to Human Workflow Services 29-53

29.6.2.2.1 Client configuration To enable identity propagation, the client configuration
must specify a special propagation mode.

29.6.2.2.2 Identity Propagation Mode Setting Through Properties If properties are used, then
populate the property CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION
with the value saml.

■ Dynamic SAML token propagation mode

The SAML token policy is provided dynamically (the default). The following
property is optional. If the identity propagation mode is set, you run by default in
dynamic mode.

properties.put(IWorkflowServiceClientConstants.CONNECTION_PROPERTY.SOAP_
IDENTITY_PROPAGATION_MODE , "dynamic");

By default, SAML-token constructs dynamic policy based on the following security
policy URI: oracle/wss10_saml_token_client_policy. Logging is not used. To
overwrite the default policy URI, the client can add the following code:

properties.put(CONNECTION_PROPERTY.SECURITY_POLICY_URI "oracle/wss10_saml_
token_client_policy");
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");

Example 29–12 shows the SAML token dynamic client.

Example 29–12 Token Dynamic Client

Map<CONNECTION_PROPERTY,String> properties = new HashMap<ONNECTION_
PROPERTY,String>();
properties.put(CONNECTION_PROPERTY.SOAP_IDENTITY_PROPAGATION , "saml");
properties.put(CONNECTION_PROPERTY.SOAP_END_POINT_ROOT,
 "http://myhost.us.oracle.com:7001");
properties.put(ONNECTION_PROPERTY.SECURITY_POLICY_URI, "oracle/wss10_saml_token_
client_policy"); //optional
properties.put(CONNECTION_PROPERTY.MANAGEMENT_POLICY_URI , "oracle/log_policy");
 //optional
IWorkflowServiceClient client =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.SOAP_CLIENT,
properties, null);

The client reference to the policy URI must match the server policy URI. Otherwise,
SAML token propagation fails.

29.6.2.2.3 Identity Propagation Mode Setting in Configuration File In the configuration file,
you can define the propagation mode by using the <identityPropagation>
element in the <soapClient>, as shown in Example 29–13.

Example 29–13 <identityPropagation> Element

<soapClient>
 <rootEndPointURL>http://myhost.us.oracle.com:7001</rootEndPointURL>
 <identityPropagation mode="dynamic" type="saml">
 <policy-references>
 <policy-reference enabled="true" category="security"
 uri="oracle/wss10_saml_token_client_policy"/>
 </policy-references>
 </identityPropagation>
 </soapClient>

Database Views for Oracle Workflow

29-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information, see Oracle Fusion Middleware Security and Administrator's Guide
for Web Services.

29.6.2.2.4 Identity Propagation Mode Setting Through the JAXB Object You can
programmatically set the identity propagation mode with the JAXB object.

29.6.3 Client JAR Files
A client application without identity propagation must have the bpm-services.jar
file in its class path. For 11g Release 1, the client classpath requires the following files:

${bea.home}/wlserver_10.3/server/lib/wlfullclient.jar
${bea.home}/AS11gR1SOA/webservices/wsclient_extended.jar
${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.fabric_11.1.1/bpm-infra.jar
${bea.home}/AS11gR1SOA/soa/modules/oracle.soa.workflow_11.1.1/bpm-services.jar

The wlfullclient.jar file must be generated.

1. Generate the wlfullclient.jar as follows:

cd ${bea.home}/wlserver_10.3/server/lib
java -jar ../../../modules/com.bea.core.jarbuilder_1.3.0.0.jar

29.7 Database Views for Oracle Workflow
This section describes database views that enable queries against the Oracle workflow
services schema to receive reports. Table 29–22 lists the reports exposed in Oracle BPM
Worklist and the database views corresponding to these reports.

29.7.1 Unattended Tasks Report View
Table 29–23 describes the WFUNATTENDEDTASKS_VIEW report view.

Table 29–22 Report Views

Existing Worklist Report Corresponding Database View

Unattended Tasks report WFUNATTENDEDTASKS_VIEW

Task Cycle Time report WFTASKCYCLETIME_VIEW

Task Productivity report WFPRODUCTIVITY_VIEW

Task Priority Report WFTASKPRIORITY_VIEW

Table 29–23 Unattended Tasks Report View

Name Type

TASKID1

1 NOT NULL column

VARCHAR2(64)

TASKNAME VARCHAR2(200)

TASKNUMBER NUMBER

CREATEDDATE DATE

EXPIRATIONDATE DATE

STATE VARCHAR2(100)

PRIORITY NUMBER

ASSIGNEEGROUPS VARCHAR2(2000)

Database Views for Oracle Workflow

Introduction to Human Workflow Services 29-55

For example:

■ Query unattended tasks that have an expiration date of next week:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE expirationdate > current_date AND expirationdate < current_date +
 7;

■ Query unattended tasks for mygroup:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE 'mygroup' IN assigneegroups;

■ Query unattended tasks created in the last 30 days:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW
 WHERE createddate > current_date -30;

29.7.2 Task Cycle Time Report View
Table 29–24 describes the WFTASKCYCLETIME_VIEW report view.

For example:

■ Compute the average cycle time (task completion time) for completed tasks that
were created in the last 30 days:

SELECT avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE createddate >
 (current_date - 30);

■ Query the average cycle time for all completed tasks created in the last 30 days
and group them by task name:

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE
 createddate > (current_date - 30) GROUP BY taskname;

■ Query the least and most time taken by each task:

SELECT taskname, min(cycletime), max(cycletime) FROM WFTASKCYCLETIME_VIEW
 GROUP BY taskname;

■ Compute the average cycle time for tasks completed in the last seven days:

SELECT avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE enddate >
 (current_date - 7);

■ Query tasks that took more than seven days to complete:

Table 29–24 Task Cycle Time Report View

Name Type

TASKID1

1 NOT NULL column

VARCHAR2(64)

TASKNAME VARCHAR2(200)

TASKNUMBER NUMBER

CREATEDDATE DATE

ENDDATE DATE

CYCLETIME NUMBER(38)

Database Views for Oracle Workflow

29-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE cycletime
 > ((current_date +7) - current_date) GROUP BY taskname;

29.7.3 Task Productivity Report View
Table 29–25 describes the WFPRODUCTIVITY_VIEW report view.

For example:

■ Count the number of unique tasks that the user has updated in the last 30 days:

SELECT username, count(distinct(taskid)) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -30) GROUP BY username;

■ Count the number of tasks that the user has updated (one task may have been
updated multiple times) in the last seven days:

SELECT username, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -7) GROUP BY username;

■ Count the number of tasks of each task type on which the user has worked:

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW GROUP
 BY username, taskname;

■ Count the number of tasks of each task type that the user has worked on in the last
100 days:

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE
 lastupdateddate > (current_date -100) GROUP BY username, taskname;

29.7.4 Task Priority Report View
Table 29–26 describes the WFTASKPRIORITY_VIEW report view.

Table 29–25 Task Productivity Report View

Name Type

TASKNAME VARCHAR2(200)

TASKID VARCHAR2(200)

TASKNUMBER NUMBER

USERNAME VARCHAR2(200)

STATE1

1 For completed tasks, the state is null. Use decode(outcome, '', 'COMPLETED', outcome) in
queries.

VARCHAR2(100)

LASTUPDATEDDATE DATE

Table 29–26 Task Priority Report View

Name Type

TASKID1 VARCHAR2(64)

TASKNAME VARCHAR2(200)

TASKNUMBER NUMBER

PRIORITY NUMBER

OUTCOME VARCHAR2(100)

Database Views for Oracle Workflow

Introduction to Human Workflow Services 29-57

For example:

■ Query the number of tasks updated by each user in each task priority:

SELECT updatedby, priority, count(taskid) FROM WFTASKPRIORITY_VIEW GROUP
 BY updatedby, priority;

■ Query task-to-outcome distribution:

SELECT taskname, decode(outcome, '', 'COMPLETED', outcome), count
 (taskid) FROM WFTASKPRIORITY_VIEW GROUP BY taskname, outcome;

■ Query the number of tasks updated by the given user in each priority:

SELECT priority, count(taskid) FROM WFTASKPRIORITY_VIEW WHERE
 updatedby='jstein' GROUP BY priority;

ASSIGNEDDATE DATE

UPDATEDDATE DATE

UPDATEDBY VARCHAR2(64)

1 NOT NULL column

Table 29–26 (Cont.) Task Priority Report View

Name Type

Database Views for Oracle Workflow

29-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

30

Integrating Microsoft Excel with a Human Task 30-1

30 Integrating Microsoft Excel with a Human
Task

Integrating the enterprise system capabilities of Oracle SOA Suite with Microsoft Excel
2007 enables you to:

■ Invoke a BPEL process from Microsoft Excel

■ Attach Microsoft Excel workbooks to workflow email notifications

You can configure this integration without having to switch between tools.

This chapter contains these sections:

■ Section 30.1, "Configuring Your Environment for Invoking a BPEL Process from an
Excel Workbook"

■ Section 30.2, "Attaching Excel Workbooks to Human Task Workflow Email
Notifications"

30.1 Configuring Your Environment for Invoking a BPEL Process from an
Excel Workbook

From an Excel workbook, you can invoke a BPEL process that is deployed in Oracle
WebLogic. To do this, you install a plug-in of the Application Development
Framework Desktop Integration (ADF-DI) on the same host as the Excel document
that invokes the BPEL process.

To enable this functionality, do the following:

30.1.1 How to Create an JDeveloper Project of the Type Web Service Data Control
You use the Create Web Service Data Control Wizard to create the project.

To create an Oracle JDeveloper project of the type web service data control:
1. In JDeveloper, from the File menu, select New. The New Gallery dialog appears.

2. In the Categories section, expand Business Tier, then select Data Controls. The
corresponding items appear in the Items pane.

3. In the Items pane, select Web Service Data Control and click OK. The Create Web
Service Data Control Wizard appears.

4. Follow the instructions in the online Help for this wizard. As you do this, you are
prompted to select the WSDL file and operations that will be used for this project.

Configuring Your Environment for Invoking a BPEL Process from an Excel Workbook

30-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

30.1.2 How to Create a Dummy JSF Page
In this task you generate a page definition file. Note that we are not interested in the
actual layout generated in the JSF file, but simply in generating a page definition file
which contains these controls and actions. This page definition will be used in Excel
file later.

To create a dummy JSF page:
1. In JDeveloper, from the File menu, select New. The New Gallery dialog appears.

2. In the Categories section, from the Web Tier node, select JSF. The corresponding
items appear in the Items pane.

3. In the Items pane, select JSF Page and then click OK. The Create JSF Page dialog
appears.

4. Fill in the various fields by following the instructions in the online Help for this
dialog.

5. When prompted, drag and drop from the Components Palette the controls and
fields you are interested in using in the Excel document.

For an example of how to do this, see "Task 3: Create a Valid Page Definition File to Be
Used in the Excel Workbook" on page 30-12.

30.1.3 How to Add Desktop Integration to Your Oracle JDeveloper Project
To add Oracle ADF Desktop Integration to the technology scope of your project, use
the Project Properties dialog box in JDeveloper.

To add Oracle ADF Desktop Integration to your project:
1. In the Application Navigator, right-click the project to which you want to add the

Oracle ADF Desktop Integration module and choose Project Properties from the
context menu.

If your application uses the Fusion Web Application (ADF) application template,
you select the ViewController project. If your application uses another application
template, select the project that corresponds to the web application.

2. In the Project Properties dialog, select Technology Scope to view the list of
available technologies.

3. Choose the ADF Desktop Integration and ADF Library Web Application
Support project technologies and add them to the Selected Technologies list.

4. Click OK.

30.1.4 What Happens When You Add Desktop Integration to Your JDeveloper Project
When you add the Oracle ADF Desktop Integration module to the technology scope of
your project, the following events occur:

■ The project adds the Oracle ADF Desktop Integration runtime library. This library
references the following .jar files in its class path:

– wsclient.jar

– adf-desktop-integration.jar

– resourcebundle.jar

■ The project adds an ADF bindings filter (adfBindings).

Configuring Your Environment for Invoking a BPEL Process from an Excel Workbook

Integrating Microsoft Excel with a Human Task 30-3

■ The project’s deployment descriptor (web.xml) is modified to include the
following entries:

– A servlet named adfdiRemote

– A filter named adfdiExcelDownload

– A MIME mapping for Excel files (.xlsx and .xlsm)

The previous list is not exhaustive. Adding Oracle ADF Desktop Integration to a
project makes other changes to web.xml. Note that some of the entries in
web.xml will only be added if they do not already exist.

When you add ADF Library Web Application Support to the technology scope of your
project, the project’s web.xml file is modified to include the following entries:

 <filter>
 <filter-name>ADFLibraryFilter</filter-name>
 <filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>ADFLibraryFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>
 <servlet>
 <servlet-name>adflibResources</servlet-name>
 <servlet-class>oracle.adf.library.webapp.ResourceServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>adflibResources</servlet-name>
 <url-pattern>/adflib/*</url-pattern>
 </servlet-mapping>

Make sure that the filter for ADF Library Web Application Support
(<filter-name>ADFLibraryFilter</filter-name>) appears below the
adfdiExcelDownload filter entries in web.xml as in the following example so that
integrated Excel workbooks can be downloaded from the Fusion web application:

<filter>
<filter-name>adfdiExcelDownload</filter-name>
<filter-class>oracle.adf.desktopintegration.filter.DIExcelDownloadFilter</filter-c
lass>
</filter>
<filter>
<filter-name>ADFLibraryFilter</filter-name>
<filter-class>oracle.adf.library.webapp.LibraryFilter</filter-class>
</filter>
...
<filter-mapping>
<filter-name>adfdiExcelDownload</filter-name>
<url-pattern>*.xlsx</url-pattern>
</filter-mapping>

Note: The value for the url-pattern attribute of the
servlet-mapping element for adfdiRemote must match the value
of the RemoteServletPath workbook property described in Oracle
Fusion Middleware Desktop Integration Developer's Guide for Oracle
Application Development Framework.

Attaching Excel Workbooks to Human Task Workflow Email Notifications

30-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

<filter-mapping>
<filter-name>adfdiExcelDownload</filter-name>
<url-pattern>*.xlsm</url-pattern>
</filter-mapping>
...
<filter-mapping>
<filter-name>ADFLibraryFilter</filter-name>
<url-pattern>/*</url-pattern>
<dispatcher>FORWARD</dispatcher>
<dispatcher>REQUEST</dispatcher>
</filter-mapping>

For more information about web.xml, see Oracle Fusion Middleware Desktop Integration
Developer's Guide for Oracle Application Development Framework.

30.1.5 How to Deploy the Web Application You Created in Step 1
For an example of how to do this, see "Task 5: Deploy the ADF Task Flow" on
page 30-21.

30.1.6 How to Install Microsoft Excel
Install Microsoft Excel by following the appropriate Microsoft documentation.

30.1.7 How to Install the Oracle Oracle ADF-Desktop Integration Plug-in
To do this, follow the steps in "Task 4: Prepare the Excel Workbook" on page 30-17:

30.1.8 How to Specify the User Interface Controls and Create the Excel Workbook
For instructions see "Task 4: Prepare the Excel Workbook" on page 30-17.

30.2 Attaching Excel Workbooks to Human Task Workflow Email
Notifications

As an alternative to using the worklist application, you can attach an Excel workbook
with task details as part of a Human Task workflow email notification. In this case, the
user receives an email about a new task. This email has an Excel workbook attached,
and, when the user opens the attachment, she is directed to a login page--similar to
that for the worklist application. The Excel workbook includes such task details as task
ID, payload, and so on. Buttons correspond to the actions the user can perform, and
clicking one of them invokes the corresponding BPEL process.

30.2.1 Enabling Attachment of Excel Workbooks to Human Task Workflow Email
Notifications

To enable this functionality, do the following:

1. In Oracle JDeveloper, create an ADF task flow that corresponds to a particular
Human Task activity in a BPEL process.

2. Modify the settings in the ADF-DI-enabled Excel sheet to point to the server on
which the task flow is deployed, then saves this Excel sheet as part of the .war file
packaged for the ADF task flow. The steps for doing these things are covered in
"Example: Attaching an Excel Workbook to Email Notifications" on page 5. Later,

Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 30-5

you will use the page definition files generated in "How to Create a Dummy JSF
Page" on page 30-2

3. Enable the ADF task flow project for desktop integration and deploys it to the
server.

30.2.2 What Happens During Runtime When You Enable Attachment of Excel
Workbooks to Human Task Workflow Email Notifications

Note the following end-user experience during runtime:

■ A user receives an email notification regarding a new task, with the Excel
attachment. When the attachment is opened, the user is directed to a login page
and prompted to enter username and password. This login page is similar to the
login page for worklist application.

■ The Excel workbook loads up with the task details—for example, task identifier,
payload. There are buttons corresponding to actions the user can take. Clicking
one of these buttons starts the BPEL process in which the task is a step.

Note the following runtime behaviors:

■ The Excel workbook is added as an attachment only when the flag “include task
attachments” for the corresponding task is set to true.

■ Before adding the Excel workbook as an attachment, runtime verifies that a digital
signature is not enabled for the workflow.

■ When the ADF task flow is deployed to the server, such data as the hostname and
port number of the task flow URI is registered in the database.

■ When an email notification is created, runtime retrieves from the database the
hostname and port number of the application server and the context root of the
task flow application. It uses this information to find the Excel workbook,
workflow_name.xls.

30.2.3 Example: Attaching an Excel Workbook to Email Notifications
In general, you configure this integration by doing the following tasks:

■ Task 1: Enable the ADF Task Flow Project with Oracle ADF-DI Capabilities

■ Task 2: Set up Authentication

■ Task 3: Create a Valid Page Definition File to Be Used in the Excel Workbook

■ Task 4: Prepare the Excel Workbook

■ Task 5: Deploy the ADF Task Flow

■ Task 6: Test the Deployed Application

30.2.3.1 Task 1: Enable the ADF Task Flow Project with Oracle ADF-DI Capabilities
In this task, you configure the web application to work with Oracle ADF-DI.

Note: Packaging the Excel workbook with the ADF task flow
assumes that there is a one-to-one correspondence between the ADF
task flow and the Excel sheet used for a workflow.

Attaching Excel Workbooks to Human Task Workflow Email Notifications

30-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1. Create an ADF task flow project based on a Human Task. This creates a data
control corresponding to the task, and .xml files corresponding to the task's
structure. Figure 30–1 shows JDeveloper with a sample project open.

Figure 30–1 Oracle JDeveloper with a Sample Project Open

2. Add Oracle ADF Desktop Integration to the project by following the instructions
in "How to Add Desktop Integration to Your Oracle JDeveloper Project" on
page 30-2.

Figure 30–2 illustrates the Oracle JDeveloper Project Properties dialog when you
are adding Oracle ADF Desktop Integration to your project.

Figure 30–2 Oracle JDeveloper Project Properties Dialog

3. When the technology scopes mentioned in Step 2 are added to the project, verify
that the necessary events have occurred. To do this:

a. In the Application Navigator, right-click the Project.

b. Click Project Properties, then select Libraries and Classpath.

Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 30-7

c. Confirm that the entry ADF Desktop Integration Runtime exists and is
checked.

d. Select this library and click View.

e. Confirm that the library references wsclient.jar and
adf-desktop-integration.jar in its classpath.

Figure 30–3 shows the sequence of dialogs you used to make this verification.

Figure 30–3 Oracle JDeveloper: Verifying the Technology Scope of a Project

4. Confirm that the project's deployment descriptor—namely, web.xml—is modified
to include the following entries:

■ A servlet named adfdiRemote

■ A filter named adfdiExcelDownload

■ A MIME mapping for Excel files

The previous list is not exhaustive. Adding “ADF Desktop Integration” and “ADF
Library Web Application Support” to the project makes other changes to
web.xml. Here is a sample snippet of the deployment descriptor:

<context-param>
 <param-name>javax.faces.STATE_SAVING_METHOD</param-name>
 <param-value>client</param-value>
</context-param>
<context-param>
 <description>...</description>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION
 </param-name>
 <param-value>false</param-value>
</context-param>
<context-param>
 <description>Whether the 'Generated by...' comment at the bottom of ADF
 Faces HTML pages should contain version number information.</description>
 <param-name>oracle.adf.view.rich.versionString.HIDDEN</param-name>
 <param-value>false</param-value>

Attaching Excel Workbooks to Human Task Workflow Email Notifications

30-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

</context-param>
<filter>
 <filter-name>trinidad</filter-name>
 <filter-class>org.apache.myfaces.trinidad.webapp.TrinidadFilter
 </filter-class>
</filter>
<filter>
 <filter-name>ADFLibraryFilter</filter-name>
 <filter-class>oracle.adf.library.webapp.LibraryFilter
 </filter-class>
</filter>
<filter>
 <filter-name>adfBindings</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter
 </filter-class>
</filter>
<filter>
 <filter-name>adfdiExcelDownload</filter-name>
 <filter-class>
 oracle.adf.desktopintegration.filter.DIExcelDownloadFilter
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>trinidad</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<filter-mapping>
 <filter-name>adfBindings</filter-name>
 <servlet-name>Faces Servlet</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<filter-mapping>
 <filter-name>trinidad</filter-name>
 <servlet-name>adfdiRemote</servlet-name>
</filter-mapping>
<filter-mapping>
 <filter-name>adfBindings</filter-name>
 <servlet-name>adfdiRemote</servlet-name>
</filter-mapping>
<filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsx</url-pattern>
</filter-mapping>
<filter-mapping>
 <filter-name>adfdiExcelDownload</filter-name>
 <url-pattern>*.xlsm</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>ADFLibraryFilter</filter-name>
 <url-pattern>/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>
<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>

Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 30-9

 <load-on-startup>1</load-on-startup>
</servlet>
<servlet>
 <servlet-name>resources</servlet-name>

<servlet-class>org.apache.myfaces.trinidad.webapp.ResourceServlet</servlet-clas
s>
</servlet>
<servlet>
 <servlet-name>adflibResources</servlet-name>

 <servlet-class>oracle.adf.library.webapp.ResourceServlet</servlet-class>
</servlet>
<servlet>
 <servlet-name>adfdiRemote</servlet-name>

<servlet-class>oracle.adf.desktopintegration.servlet.DIRemoteServlet</servlet-c
lass>
</servlet>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>/faces/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/adf/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>resources</servlet-name>
 <url-pattern>/afr/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>adflibResources</servlet-name>
 <url-pattern>/adflib/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>adfdiRemote</servlet-name>
 <url-pattern>/adfdiRemoteServlet</url-pattern>
</servlet-mapping>
<session-config>
 <session-timeout>35</session-timeout>
</session-config>
<mime-mapping>
 <extension>html</extension>
 <mime-type>text/html</mime-type>
</mime-mapping>
<mime-mapping>
 <extension>txt</extension>
 <mime-type>text/plain</mime-type>
</mime-mapping>
<mime-mapping>
 <extension>xlsx</extension>

<mime-type>application/vnd.openxmlformats-officedocument.spreadsheetml.sheet</m
ime-type>
</mime-mapping>
<mime-mapping>
 <extension>xlsm</extension>
 <mime-type>application/vnd.ms-excel.sheet.macroEnabled.12</mime-type>
</mime-mapping>

Attaching Excel Workbooks to Human Task Workflow Email Notifications

30-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Add the following <auth-filter> entry to weblogic.xml.

<weblogic-web-app>

<auth-filter>oracle.bpel.services.workflow.client.worklist.util.FDIFilter</auth
-filter>
 .
 .
</weblogic-web-app>

6. Click Save All. Right click the project and click Rebuild. Make sure there are no
compilation errors and the build completes successfully.

The web application is now configured to work with Oracle ADF-DI.

30.2.3.2 Task 2: Set up Authentication
This task is required to add Oracle ADF-Desktop Integration to create a web session
for an Excel workbook.

1. Add ADF security to your project. To do this:

a. From the Application menus, then Secure, then Configure ADF Security.

b. Select ADF Authentication.

c. Click Finish.

2. Create a login page for the application. To do this:

a. From the directory ExpenseReportTaskFlow\public_html\ copy the file
LoginPage.jsp to the directory project_home\public_html.

b. Refresh the view in Oracle JDeveloper.

c. Verify that the file LoginPage.jsp is visible. It should look like what is
illustrated in Figure 30–4.

Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 30-11

Figure 30–4 Oracle JDeveloper: Login.jsp File

3. Once you have added ADF security, confirm that the following entries are added
to the file web.xml. If some entries are missing, add them manually. Note that
form authentication, using the login page created in Step 2 on page 30-10, is used.

<security-constraint>
 <web-resource-collection>
 <web-resource-name>allPages</web-resource-name>
 <url-pattern>/</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Administrators</role-name>
 </auth-constraint>
 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>adfAuthentication</web-resource-name>
 <url-pattern>/adfAuthentication</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Administrators</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>
 <realm-name>jazn.com</realm-name>
 <form-login-config>
 <form-login-page>/LoginPage.jsp</form-login-page>
 <form-error-page>/LoginPage.jsp</form-error-page>
 </form-login-config>
 </login-config>
 <security-role>
 <role-name>Administrators</role-name>
 </security-role>

Attaching Excel Workbooks to Human Task Workflow Email Notifications

30-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–5 shows how these entries appear graphically in the Application
Deployment Descriptor dialog.

Figure 30–5 Oracle JDeveloper: Application Deployment Descriptor

4. For every logical security role added in web.xml, make a corresponding entry in
weblogic.xml as follows:

<weblogic-web-app>

<auth-filter>oracle.bpel.services.workflow.client.worklist.util.FDIAuthFilter</
auth-filter>
 <security-role-assignment>
 <role-name>Administrators</role-name>
 <principal-name>fmwadmin</principal-name>
 <principal-name>users</principal-name>
 </security-role-assignment>
 .
 .
</weblogic-web-app>

5. Click Save All.

The ADF Task Flow web application is now configured for login capability that can be
used by the Excel workbook.

30.2.3.3 Task 3: Create a Valid Page Definition File to Be Used in the Excel
Workbook
The page definition file ExcelControlsPageDef.xml is used to create the Excel
workbook. To do this:

1. Create a new Java class by following these steps:

Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 30-13

a. Select Technologies, then select General, then select Simple Files, then select
Java Class.

b. Specify details as follows:

Name: TaskRetrievers

Package: (leave it as default)

Extends: oracle.bpel.services.workflow.client.worklist.excel.TasksRetriever
(click Browse to select this class)

This creates a new Java class <default-package>.TasksRetriever.

2. Create a data control for this newly created Java class. This data control provides
access to an API that retrieves all assigned tasks for a user. Figure 30–6 shows the
menu involved in creating the data control.

Figure 30–6 Oracle JDeveloper: Creating a Data Control

3. Verify that the newly created Data Control TasksRetriever is visible in the Data
Control palette in the lower portion of the Application Navigator. Figure 30–7
shows the Application Navigator with the Data Control palette expanded.

Attaching Excel Workbooks to Human Task Workflow Email Notifications

30-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–7 Oracle JDeveloper: Application Navigator with Data Control Palette
Expanded

4. Create a new JSF JSP page--namely, ExcelControls.jspx. This generates a
page definition that can be used by ADF-DI while authoring the Excel document.

Figure 30–8 Oracle JDeveloper: Creating a JSF JSP Page

5. Drag and drop the task node from the Data Controls palette to
ExcelControls.jspx. Select Human Task, then select Complete task with

Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 30-15

payload. Figure 30–9 illustrates the sequence of menus you use. Click OK on
windows that pop up.

Figure 30–9 Oracle JDeveloper: Creating an ADF Read-Only Form

6. Drag and drop one or more task actions to the .jspx file. In this example, as
illustrated in Figure 30–10, the actions 'Approve', 'Reject', 'update' and 'Suspend'
are added to create the entries in the page definition.

Figure 30–10 Oracle JDeveloper: Configuring the Page Definition File

Attaching Excel Workbooks to Human Task Workflow Email Notifications

30-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. Drag and drop the retrieveTasksForUser() method from the Data Controls
palette (expand the node TasksRetriever) to ExcelControls.jspx. For now,
click OK on the Edit Action Binding dialog. This creates a binding in
ExcelControlsPageDef.xml to extract all assigned tasks for the logged-in
user.

8. Drag and drop TaskObject from the Data Control palette to
ExcelControls.jspx to create an ADF Read Only Form. Verify that a
corresponding <methodIterator> executable and <attributeValues>
bindings are created in ExcelControlsPageDef.xml.

Figure 30–11 Oracle JDeveloper: Page Definition File

9. Depending on the number of task details to be exposed in the Excel workbook,
drag and drop as many ADF controls as needed. In this example, we expose only
as many task details as needed to develop a minimally operational workbook.

10. Create a list binding in ExcelControlsPageDef.xml that can be used to create
a list of assigned tasks in the Excel workbook. Add the following entry to the
<bindings> element in the page definition.

<list ListOperMode="navigation"
 IterBinding="retrieveTasksForUserIterator" id="retrievedTaskList"
 StaticList="false">
 <AttrNames>
 <Item Value="taskNumber"/>
 </AttrNames>
 </list>

11. Similarly add the following list binding in ExcelControlsPageDef.xml that
can be later used to create a list of an updatable table of expense items in the Excel
workbook.

Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 30-17

<list ListOperMode="navigation" IterBinding="ItemIterator"
 id="expenseItemsList" StaticList="false">
 <AttrNames>
 <Item Value="itemName"/>
 </AttrNames>
 </list>

12. Click Save All. Right click the project and click Rebuild. Make sure that there are
no compilation errors and the build completes successfully.

30.2.3.4 Task 4: Prepare the Excel Workbook
To author the Excel workbook, follow these steps:

1. For information about desktop requirements for running the ADF-DI solution,
read Section 3.1 of Oracle Fusion Middleware Desktop Integration Developer's Guide for
Oracle Application Development Framework.

2. Configure security for Excel. To do this:

a. Open Excel.

b. Click the Microsoft Office button, then click Excel Options.

c. Click the Trust Center tab, then click Trust Center Settings.

d. Click the Macro Settings tab, then click the checkbox labeled Trust Access to
the VBA project object model.

e. Click OK.

3. Run the setup tool that comes with the Oracle ADF-DI module. The setup tool is
stored in the following folder: JDEV_
HOME\jdeveloper\adfdi\bin\excel\client

4. Create a new Excel workbook in the directory project_home\public_html\.
Click View, then click Refresh. This displays the Excel workbook in Oracle
JDeveloper.

5. Run the conversion command on the Excel workbook. The Oracle ADF-DI module
stores the conversion tool, convert-adfdi-excel-solution.exe, in
oracle_jdeveloper_home\jdeveloper\adfdi\bin\excel\convert. To
convert the Excel workbook, execute the following command:
convert-adfdi-excel-solution.exe <workbook.xlsx> -attach.

The Excel workbook is now enabled to use the Oracle ADF-DI framework.

6. Open the Excel workbook and choose a page definition. In this use case, the page
definition is expensereporttaskflow_ExcelControlsPageDef.

Attaching Excel Workbooks to Human Task Workflow Email Notifications

30-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–12 Excel: Page Definition Dialog

7. In the Document Actions pane, select Workbook Properties.

8. Specify ProtectedWebPage: http://application_
server:port//workflow/application_name/faces/app/logon. (Note
that his URL is protected and will trigger form authentication. See Section 30.2.3.2,
"Task 2: Set up Authentication" on page 30-10).

Specify WebAppRoot: http://application_
server:port//workflow/application_name. Click OK.

Figure 30–13 Excel: Setting WebAppRoot

See Also: Section C-2 of Oracle Fusion Middleware Desktop Integration
Developer's Guide for Oracle Application Development Framework

Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 30-19

9. From the Document Actions pane, insert ADF Bindings to create the
corresponding fields in the Excel workbook. For further details on specific
components refer to the Oracle Fusion Middleware Desktop Integration Developer's
Guide for Oracle Application Development Framework. For instance, insert binding
retrievedTaskList to create a list of values.

Figure 30–14 Excel: Creating s List of Values

10. Insert a methodAction binding to create a button in Excel.

Figure 30–15 Excel: Inserting a methodAction Binding

Attaching Excel Workbooks to Human Task Workflow Email Notifications

30-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

11. Insert a tree binding to create a ADF Table component. A Table component is an
updatable table of records in Excel. For instance, the list binding expenseItemsList
is a candidate for a Table component.

A completed Excel workbook for an expense report application looks something
like what you see in Figure 30–16:

Figure 30–16 Excel Workbook Integrated with Oracle ADF-DI

12. Publish the workbook by following these steps:

a. On the toolbar, click Publish. The Publish Workbook dialog appears.

b. In the File name field, specify the name as workflow_name.xls. The
workflow name is the value of the element WorkflowName specified in
project_home\adfmsrc\hwtaskflow.xml. In this example, the name of
the published Excel workbook is ExpenseReportTask.xls.

13. In Oracle JDeveloper, click View, then click Refresh. Verify that the published
workbook is visible under Web Content as illustrated in Figure 30–17.

See Also: Oracle Fusion Middleware Desktop Integration Developer's
Guide for Oracle Application Development Framework for further
information about creating and modifying a Table component.

Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 30-21

Figure 30–17 Oracle JDeveloper: Verifying Workbook Under WebContent

14. Click Save All. The ADF Task Flow is now ready for deployment.

30.2.3.5 Task 5: Deploy the ADF Task Flow
To deploy the ADF Task Flow, follow these steps:

1. For the Excel workbook to be sent as an attachment when a task is assigned, you
must configure the corresponding task in the SCA Composite. To do this:

a. In Oracle JDeveloper, open the SCA Composite Project that corresponds to the
ADF Task Flow.

b. Open the .task file.

c. Verify that the item labeled Send task attachments with email notifications is
checked.

Attaching Excel Workbooks to Human Task Workflow Email Notifications

30-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–18 Oracle JDeveloper: Configuring SCA Composite Task

2. Deploy the application. To do this, right-click the SOA Composite, select Deploy,
select the composite application name, and then select the application server.
Figure 30–19 shows the sequence of menu selections.

Figure 30–19 Oracle JDeveloper: Deploying the Application

3. Deploy the ADF Task Flow. To do this: In the Application Navigator, expand
Projects, and select the application. Then select Deploy, then application_TaskFlow
(In this example, the application task flow is ExpenseReportTaskFlow), then select
the application server. Figure 30–20 shows what the sequence of menus may look
like.

Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 30-23

Figure 30–20 Oracle JDeveloper: Menu Sequence when Deploying an ADF Task Flow

At this point, the ADF Task Flow is successfully deployed.

30.2.3.6 Task 6: Test the Deployed Application
To test the deployed application, follow these steps:

1. Invoke the deployed SOA Composite and verify that the assignee receives the
Excel workbook as part of the email notification.

Figure 30–21 Excel Workbook Attached to an Email

Attaching Excel Workbooks to Human Task Workflow Email Notifications

30-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Open the Excel workbook. You are directed to a login page (This is
LoginPage.jsp from "How to Create a Dummy JSF Page" on page 30-2). Enter
your security credentials.

Figure 30–22 Desktop-Integrated Excel Workbook: Login Page

3. Examine the workbook to verify the following:

■ All the assigned tasks for the logged-in user are retrieved in the Excel
workbook.

Note: To successfully open and execute the workbook, the user's
desktop machine should have the correct security policy and needs to
run the caspol command to grant trust to the client assemblies
hosted on the network share.

Attaching Excel Workbooks to Human Task Workflow Email Notifications

Integrating Microsoft Excel with a Human Task 30-25

Figure 30–23 ADF Desktop-Integrated Excel Workbook with Assigned Tasks

■ You can navigate to the needed task from the list of assigned tasks and update
it as required. For instance, as illustrated in Figure 30–24, in the Expense
Report application, you can upload new expense items.

Figure 30–24 ADF Desktop-Integrated Excel Workbook Uploading New Items

■ The Status column in the workbook indicates if the upload was successful.
Also, you can perform actions on the task by clicking Approve, Reject,
Update, or Suspend.

Attaching Excel Workbooks to Human Task Workflow Email Notifications

30-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 30–25 ADF Desktop-Integrated Excel Workbook

Part VI
Part VI Using Oracle Business Activity

Monitoring

This part describes Oracle Business Activity Monitoring.

This part contains the following chapters:

■ Chapter 31, "Creating Oracle BAM Data Objects"

■ Chapter 32, "Integrating Oracle BAM with SOA Composite Applications"

■ Chapter 33, "Creating Oracle BAM Enterprise Message Sources"

■ Chapter 34, "Using Oracle Data Integrator With Oracle BAM"

■ Chapter 35, "Creating External Data Sources"

■ Chapter 36, "Using Oracle BAM Web Services"

■ Chapter 37, "Creating Oracle BAM Alerts"

■ Chapter 38, "Using ICommand"

31

Creating Oracle BAM Data Objects 31-1

31 Creating Oracle BAM Data Objects

This chapter contains the information needed to create and manage data objects,
including assigning permissions, managing folders, creating security filters, and
adding dimensions and hierarchies.

This chapter contains the following topics:

■ Section 31.2, "Defining Data Objects"

■ Section 31.3, "Creating Permissions on Data Objects"

■ Section 31.4, "Viewing Existing Data Objects"

■ Section 31.5, "Using Data Object Folders"

■ Section 31.6, "Creating Security Filters"

■ Section 31.7, "Creating Dimensions"

■ Section 31.8, "Renaming and Moving Data Objects"

■ Section 31.9, "Creating Indexes"

■ Section 31.10, "Clearing Data Objects"

■ Section 31.11, "Deleting Data Objects"

■ Section 31.2.6, "What You May Need to Know About System Data Objects"

31.1 Introduction to Creating Data Objects
Data objects are tables that store raw data in the database. Each data object has a
specific layout which can be a combination of data fields, lookup fields, and calculated
fields.

The data objects you define are based on the types of data available from Enterprise
Message Sources (EMS) that you can define in Oracle BAM Architect. You must define
columns in the data object. The data object contains no data when you create it. You
must load or stream data into data objects using the technologies discussed in the
following sections:

■ Chapter 32, "Integrating Oracle BAM with SOA Composite Applications"

■ Chapter 33, "Creating Oracle BAM Enterprise Message Sources"

■ Chapter 34, "Using Oracle Data Integrator With Oracle BAM"

■ Chapter 35, "Creating External Data Sources"

■ Chapter 36, "Using Oracle BAM Web Services"

Defining Data Objects

31-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Data objects can also be accessed by Oracle BAM alerts. See Chapter 37, "Creating
Oracle BAM Alerts" for more information.

31.2 Defining Data Objects

31.2.1 How to Define a Data Object

To define a data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Click Create Data Object.

3. Enter a name for the data object.

4. Enter the path to the location in the folder tree in which to store the data object.
Click Browse to use the Select a Folder dialog box.

5. Optionally, enter a description of the data object.

6. If this data object is loaded from an External Data Source (EDS) select the External
Data Source checkbox and configure the following:

■ Select an External Data Source from the list. EDS definitions are configured on
the External Data Sources screen. See Chapter 35, "Creating External Data
Sources" for more information.

■ Select the External Table Name.

7. Add columns to the data object using the Add a field or Add one or more lookup
fields options.

See Section 31.2.2, "How to Add Columns to a Data Object" and Section 31.2.3,
"How to Add Lookup Columns to a Data Object" for more information.

8. Click Create Data Object when you are finished adding columns or lookup
columns.

31.2.2 How to Add Columns to a Data Object

To add columns to a data object:
1. In a data object you are creating or editing, click Add a field.

2. Specify the column name, data type, maximum size (scale for decimal columns),
whether it is nullable, whether it is public, and tip text.

WARNING: Do not read or manipulate data directly in the
database. All access to data must be done using Oracle BAM
Architect or the Oracle BAM Active Data Cache API.

Note: Only the tables that belong to the user are shown when a data
object is created on an EDS.

Creating a data object with multiple time stamp fields on an EDS is
not supported.

Defining Data Objects

Creating Oracle BAM Data Objects 31-3

If you are adding a column in a data object based on an External Data Source you
must also supply the External field name.

The data types include:

■ String. Text columns containing a sequence of characters.

A string with a max size greater than 0 and less than or equal to 2000 becomes
an Oracle database data type VARCHAR field. If the max size is less than zero
or greater than 2000 the string field is stored as a CLOB. To get a CLOB field,
just define a string field with a max size greater than 2000.

■ Integer. Numeric columns containing whole numbers from -2,147,483,648 to
2,147,483,648.

■ Float. Double-precision floating point numbers.

The Oracle BAM Float type does not map to the Oracle database Float type.
Oracle BAM Float truncates numeric data that has very high precision. If you
do not want to see loss of precision use the Oracle BAM Decimal type
(NUMBER in Oracle database) with the scale you want.

■ Decimal. Numbers including decimal points with scale number defined. The
number is stored as a string which uses a character for each digit in the value.

The Oracle BAM Decimal data type is stored as a NUMBER (38, X) in the
Oracle database. The first argument, 38, is the precision, and this is
hard-coded. The second argument, X, is the scale, and you can adjust this
value. The scale value cannot be greater than 38.

■ Boolean. Boolean columns with true or false values.

■ Auto-incrementing integer. Automatically incremented integer column.

■ DateTime. Dates and times combined as a real number.

■ Timestamp. Date time stamp generated to milliseconds. A data object can
contain only one time stamp field. See Section 31.2.5, "How to Add Time
Stamp Columns to a Data Object" for more information.

A DateTime field is stored as an Oracle database data type DATE. A
Timestamp field is stored as an Oracle database data type TIMESTAMP(6).
Depending on how the Timestamp field is populated, Oracle BAM may fill in
the time stamp value for you. For instance, in Oracle BAM Architect you
cannot specify the value for Timestamp when adding a row, but if the value
for Timestamp is specified in an ICommand import file, the specified value is
added as the value of Timestamp instead of the current time.

■ Calculated. Calculated columns are generated by an expression and saved as
another data type. See Section 31.2.4, "How to Add Calculated Columns to a
Data Object" for more information.

Keep adding columns using Add a field and Add one or more lookup fields until
all the required columns are listed. Click Remove to remove a column in the data
object.

3. Click Save changes.

31.2.3 How to Add Lookup Columns to a Data Object
You can add lookup columns to a data object. This performs lookups on key columns
in a specified data object to return columns to the current data object. You can match
multiple columns and return multiple lookup columns.

Defining Data Objects

31-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To add a lookup column to a data object:
1. In a data object you are creating or editing, click Add one or more lookup fields.

The Define Lookup Field dialog box opens.

2. Select the data object to use for the lookup.

3. Select the lookup columns from the data object. You can select one or more
columns by holding down the Shift or Control key when selecting. Selecting
multiple columns creates multiple lookup columns in the data object. These are the
columns you want to return.

4. Select the column to match from the lookup data object.

5. Select the column to match from the current data object. You must have previously
created other columns in this data object so that you have a column to select.

6. Click Add.

The matched column names are displayed in the list. You can click Remove to
remove any matched pairs you create.

7. You can repeat steps 4 through 6 to create multiple matched columns. This is also
known as a composite key.

8. Click OK to save your changes and close the dialog box.

The new lookup columns are added to the data object. Click Modify Lookup Field
in Layout > Edit Layout page to make changes to a lookup column. Multiple
selection of return columns is possible when defining a new lookup but not when
modifying an existing one.

You can click Remove to remove any lookups you create.

31.2.4 How to Add Calculated Columns to a Data Object
When creating calculated columns in a data object you can use operators and
expression functions, combined with column names, to produce a new column.

Table 31–1 Describes the operators you can use to build calculated columns.

The Oracle Fusion Middleware User’s Guide for Oracle Business Activity Monitoring
provides the syntax and examples for expressions you can use in a calculated column.

Note: Oracle Business Activity Monitoring supports two types of
schema models: unrelated tables or star schemas. Any other kind of
schema that does not conform to these models may result in
performance issues or deadlocks. Snowflake dimensions
(daisy-chained lookups) are not supported.

Supported:

Table 1 (with no lookups to any other tables)
Table 1 > Lookup > Table 2

Not supported:

Table 1 > Lookup > Table 2 > Lookup > Table 3

Defining Data Objects

Creating Oracle BAM Data Objects 31-5

Column names containing any special characters, such as the operators listed in
Table 31–1 double quotation marks, or spaces, must be surrounded with curly braces
{}. If column names contain only numbers, letters and underscores and begin with a
letter or underscore they do not need curly braces. For example, if the column name is
Sales+Costs, the correct way to enter this in a calculation is {Sales+Costs}.

Double quotation marks must be escaped with another set of double quotation marks
if used inside double quotation marks. For example, Length("""Hello World, ""
I said").

31.2.5 How to Add Time Stamp Columns to a Data Object
You can create a date time stamp column generated to milliseconds by selecting the
Timestamp data type. This column in the data object must be empty when the data
object is populated by the Oracle BAM ADC so that the time stamp data can be
created.

31.2.6 What You May Need to Know About System Data Objects
The System data objects folder contains data objects used to run Oracle Business
Activity Monitoring. You should not make any changes to these data objects, except
for the following:

■ Custom Parameters lets you define global parameters for Action Buttons.

■ Action Form Templates lets you define HTML forms for Action Form views.

■ Chart Themes lets you add or change color themes for view formatting.

Table 31–1 Operators Used in Calculated Columns

Operator Function

+ (plus sign) Add

- (minus sign) Subtract

* (asterisk) Multiply

/ (slash) Divide

% (percent sign) Modulus

() (parentheses) Parentheses determine the order of operations

&& (double ampersand) Logical AND

!= (exclamation point and equal sign) Logical NOT

|| (double pipe) Logical OR

For example

if ((CallbackClientTime == NULL) ||
(ReceiveInputTime == NULL)) then (-1) else
(CallbackClientTime-ReceiveInputTime)

== (double equal sign) Equality

= (equal sign) Assignment

WARNING: If you enter a calculated column with incorrect syntax
in a data object, you could lose the data object definition.

Creating Permissions on Data Objects

31-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Matrix Themes lets you add or change color themes for the Matrix view.

■ Util Templates lets you define templates that are used by Action Form views to
transform content.

For more information about matrix and color themes, Action Buttons, and Action
Forms see Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.

31.2.7 What You May Need to Know About Oracle Data Integrator Data Objects
If you install the integration files for Oracle BAM and Oracle Data Integrator, three
data objects are created in Oracle BAM Architect: Context, Scenarios and Variables in
the /System/ODI/ folder. These data objects should not be deleted from Oracle BAM
Architect, and their configuration should not be changed.

31.3 Creating Permissions on Data Objects
You can add permissions for users and groups on data objects. When users have at
least a read permissions on a data object they can choose the data object when creating
reports.

31.3.1 How to Create Permissions on a Data Object

To add permissions on a data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object.

The general information for the data object is displayed in the right frame.

3. Click Permissions.

4. Click Edit Permissions.

Alternatively you can copy permissions from another data object. See
Section 31.3.3, "How to Copy Permissions from Other Data Objects" for more
information.

5. Click the Restrict access to Data Object to certain users or groups checkbox.

The list of users and groups and permissions is displayed.

6. You can choose to display the following by choosing an option:

■ Show all users and groups

■ Show only users and groups with permissions

■ Show users only

■ Show groups only

7. You can set permissions for the entire list by clicking the buttons at the top of the
list.

The permissions are Read, Update, and Delete. You can set permissions for
individual users or groups in the list by clicking the checkbox in the permission
column that is next to the user or group name.

Note: Delete and Update permissions are not effective unless a user
is also granted the Read permission.

Viewing Existing Data Objects

Creating Oracle BAM Data Objects 31-7

Members of the Administrator role have all permissions to all data objects, and
their permissions cannot be edited.

8. After indicating the permissions with selected checkboxes, click Save changes.

A message is displayed to confirm that your changes are saved.

9. Click Continue to display the actions for the data object.

31.3.2 How to Add a Group of Users
Users assigned to the Administrator role have access to all data objects. The
Administrator role overrides the data object permissions.

To add a group to the list:
1. Click Add a group to the list.

2. Type the Windows group name in the field. The group must previously exist as a
domain group.

3. Click OK.

The group is added to the list.

31.3.3 How to Copy Permissions from Other Data Objects
You can copy the permissions from another data object and then make additional
changes to the permissions before saving.

In Oracle BAM Architect for a data object, click Permissions and then click Copy from.
Select the data object that contains the permissions to copy and click OK. You can edit
the copied permissions and click Save changes.

To copy permissions from another data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Click the data object to add a security filter to.

The general information for the data object is displayed in the right frame.

3. Click Permissions.

4. Click Copy from.

The Choose Data Object dialog box opens.

5. Select the data object that contains the permissions to copy and click OK.

6. If the data object previously had no permissions assigned, select the Restrict
access to Data Object checkbox.

7. You can edit the copied permissions or add a group to the list.

8. Click Save changes.

31.4 Viewing Existing Data Objects
This section describes how to view information about data objects.

Viewing Existing Data Objects

31-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

31.4.1 How to View Data Object General Information
The general information of a data object displays the owner, when it was created,
when it was last modified, and the row count.

To view the general information of a data object:
■ Click the data object in the list.

If you are currently viewing the layout or contents of a data object, click General.

The general information is displayed in the right frame. It contains the following
information:

■ Created. Date and time the data object was created.

■ Last modified. Date and time the data object was last modified.

■ Row count. Number of rows of data in the data object.

■ Location. Location of the data object.

■ Type. Type of the data object.

■ Data Object ID. The ID used to identify the data object. This is based on the
name although the ID is used throughout the system so that you can edit the
name without affecting any dependencies.

31.4.2 How to View Data Object Layouts
The layout describes the columns in a data object. The columns are described by name,
column ID, data type, maximum length allowed, scale, nullable, public, calculated,
text tip, and lookup.

To view the layout of a data object:
1. Select the data object.

2. The general information is displayed in the right frame.

3. Click Layout.

The layout information is displayed in the right frame. It contains the following
information:

■ Field name. Name of the column.

■ Field ID. Generated by the system.

■ External name. External column name from the External Data Source (only
appears in data objects based on External Data Sources).

■ Field type. Data type of the column.

■ Max length. Maximum number of characters allowed in column value.

■ Scale. Number of digits on the right side of the decimal point.

Note: If the row count is over 500,000 rows, an approximate row
count is displayed in the General information for increased
performance purposes. The approximate row count is accurate within
5-10% of the actual count. If you want to view an exact row count
instead of the approximation, click Show exact count. The exact count
is displayed. This could take a few minutes if the data object has
millions of rows.

Using Data Object Folders

Creating Oracle BAM Data Objects 31-9

■ Nullable. Whether the data type can contain null values.

■ Public. This setting determines if the column is available in Oracle BAM
Active Studio to use in a report. If the box is unchecked, the column does not
appear in Oracle BAM Active Studio. This is useful for including columns for
calculations in data objects that should not appear in reports.

■ Lookup. Displays specifics of a lookup column.

■ Calculated. Displays the expression of a calculated column.

■ Tip Text. Helpful information about the column.

31.4.3 How to View Data Object Contents
You can view the rows of data stored in a data object by viewing the data object
contents. You can also edit the contents of the data object.

To view the contents of a data object:
1. Select the data object.

The general information is displayed in the right frame.

2. Click Contents.

The first 100 rows of the data object display in the right frame.

(To change this default, update the Architect_Content_PageSize property.
See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite for
information.)

3. Click Next, Previous, First, and Last to go to other sets of rows.

Rows are listed with a Row ID column. Displaying only Row ID provides faster
paging for large data objects. Row IDs are assigned one time in each row and
maintain a continuous row count when you clear and reload a data object.

You can click Show row numbers to display an additional column containing a
current row count starting at 1. Click No row numbers to hide the row count
column again.

4. Click Refresh to get the latest available contents.

31.5 Using Data Object Folders
You can organize data objects by creating folders and subfolders for them. When you
create a folder for data objects, you can assign permissions by associating users and
actions with the folder.

31.5.1 How to Create Folders
You can create new folders for organizing data objects. Then you can move or create
data objects into separate folders for different purposes or users. After creating folders,
you can set folder permissions to limit which users can view the data objects it
contains.

To create a new folder:
1. Select Data Objects from the Oracle BAM Architect function list.

The current data object folders display in a tree hierarchy.

Using Data Object Folders

31-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Click Create subfolder.

A field for naming the new folder is displayed.

3. Enter a name for the folder and click Create folder.

The folder is created as a subfolder under the Data Objects folder and a message is
displayed confirming that the new folder was created.

4. Click Continue to view the folder.

31.5.2 How to Open Folders

To open a folder:
1. Expand the tree of folders by clicking the + (plus sign) next to the Data Objects

folder.

The System subfolders contain data objects for running Oracle Business Activity
Monitoring. For more information about these data objects see Section 31.2.6,
"What You May Need to Know About System Data Objects."

2. Click the link next to a folder to open it.

The folder is opened, and the data objects in the folder are shown in the list
underneath the folder tree. The general properties for the folder display in the
right frame and the following links apply to the current folder:

View. Displays the general properties of this folder such as name, date created,
date last modified, user who last modified it. View is selected when you first click
a folder.

Create subfolder. Creates another folder within the selected folder.

Delete. Removes the selected folder and all the data objects it contains.

Rename. Changes the folder name.

Move. Moves this folder to a new location, for example, as a subfolder under
another folder.

Permissions. Sets permissions on this folder.

Create Data Object. Creates a data object in this folder.

31.5.3 How to Set Folder Permissions
When you create a folder, you can set permissions on it so that other users can access
the data objects contained in the folder.

To set permissions on a folder:
1. In the Data Objects folder, select the folder to change permissions on.

2. Click Permissions.

3. Click Edit permissions.

4. Select the Restrict access to Data Object to certain users or groups checkbox.

The list of users and groups and permissions is displayed.

5. You can choose to display the following by selecting a radio button:

■ Show all users and groups

Using Data Object Folders

Creating Oracle BAM Data Objects 31-11

■ Show only users and groups with permissions

■ Show users only

■ Show groups only

6. You can set permissions for the entire list by clicking the column headers at the top
of the list.

The permissions are Read, Update, and Delete. You can set permissions for
individual users or groups in the list by selecting the checkbox in the permission
column that is next to the user or group name.

7. After indicating the permissions with selected checkboxes, click Save changes.

A message is displayed to confirm that your changes are saved.

8. Click Continue to display the actions for the data object.

To add a group to the list:
1. Click the Add a group to the list link.

2. Type the Windows group name in the field. The group must previously exist as a
domain group.

3. Click OK.

The group is added to the list.

31.5.4 How to Move Folders

To move a folder:
1. Select the folder to move.

2. Click Move.

3. Click Browse to select the new location for the folder.

4. Click OK to close the dialog box.

5. Click Move folder.

The folder is moved.

6. Click Continue.

31.5.5 How to Rename Folders

To rename a folder:
1. Select the folder to rename.

2. Click Rename.

3. Enter a new name and click Rename folder.

The folder is renamed. You must assign unique folder names within a containing
folder.

Note: Delete and Update permissions are not effective unless a user
is also granted the Read permission.

Creating Security Filters

31-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. Click Continue.

31.5.6 How to Delete Folders
When you delete a folder, you also delete all of the data objects in the folder.

To delete a folder:
1. Select the folder to delete.

2. Click Delete.

A message is displayed to confirm deletion of the folder and all of its contents.

3. Click OK.

The folder is deleted.

4. Click Continue.

31.6 Creating Security Filters
You can add security filters to data objects so that only specific users can view specific
rows in the data object. This can be useful when working with data objects that contain
sensitive or confidential information that is not intended for all report designers or
report viewers.

Security filters perform a lookup using another data object, referred to as a security
data object, containing user names or group names. Before you can add a security
filter, you must create a security data object containing the user names or group names
and the value in the column to allow for each user name or each group name. Security
data objects cannot contain null values.

If the user has a view open, and you change that user's security filter, it does not effect
the currently open view. If the user reopens that view, it has the new security filter
settings applied. Security filter settings are used to construct the query behind the
view at view construction time, so changes to a security filter are not seen by
previously created views.

31.6.1 How to Create a Security Filter

To add a security filter to a data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object to add a security filter to.

The general information for the data object is displayed in the right frame.

3. Select Security Filters.

If the data object includes security filters, the filter name is displayed and you can
expand and view the information.

4. Click Add filter.

The fields for defining the security filter display.

5. Enter the following information:

Name of this Security Filter. Type a name for this filter.

Security Data Object. Select the name of the security data object containing the
mapped columns.

Creating Security Filters

Creating Oracle BAM Data Objects 31-13

Type of identification. Select either By user or By group from the dropdown list.
The security data object must include either domain or local users or groups
mapped to values in the identification column.

Identification column in Security Data Object. Select the name of the column for
containing user names or group names.

Match column in Security Data Object. Select the column to match in the security
data object.

Match column in this Data Object. Select the name of the column to match in this
data object.

6. Click Add.

For example, to add a security filter to the following data object, you need a security
data object containing Region information to perform the security lookup.

Sample data object:

Security data object:

When the bwright account views a report that accesses the data object with a security
filter applied based on Region ID and Region, it is only able to access information for
jsmith and bwright. It is not able to view the breid information because it is not able to
view data for the same region. On the other hand, the jsmith account is set up to view
data in both region 1 and 2.

31.6.2 How to Copy Security Filters from Other Data Objects
You can copy security filters from another data object and apply them to the data
object you are editing.

To copy security filters from another data object:

1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object to add a security filter to.

The general information for the data object is displayed in the right frame.

3. Select Security Filters.

If the data object includes security filters, the filter name is displayed and you can
expand and view the information.

User Region Sales

John Smith 1 $55,000

Bob Wright 1 $43,000

Betty Reid 2 $38,000

Login Region ID

DomainName\jsmith 1

DomainName\jsmith 2

DomainName\bwright 1

DomainName\breid 2

Creating Dimensions

31-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. Click Copy from.

The Choose Data Object dialog box opens.

5. Select the data object that contains the security filters to copy and click OK.

6. You can make changes to the security filters by viewing the filter details and
clicking Edit.

7. Click Save.

31.7 Creating Dimensions
In Oracle BAM Architect, you can add dimensions to data objects to define drill paths
for charts in Oracle BAM Active Studio. Dimensions contain columns in a hierarchy.
When a hierarchy is selected in chart, the end user can drill down and up the hierarchy
of information. When a user drills down in a chart, they can view data at more and
more detailed levels.

Hierarchies are an attribute of a dimension in a data object. Multiple dimensions can
be created in each data object. Each column in a data object can belong to one
dimension only. You can create and edit multiple, independent hierarchies.

To use hierarchies as drill paths in charts, the report designer must select the hierarchy
to use as the drill path. To create a dimension, you must select multiple columns to
save as a dimension. Then you organize the columns into a hierarchy.

The following is a sample dimension and hierarchy:

31.7.1 How to Create a Dimension

To add a dimension and hierarchy:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object to add a dimension to.

The general information for the data object is displayed in the right frame.

3. Select Dimensions.

4. Click Add a new dimension.

5. Enter a dimension name.

6. Enter a description for the dimension. A description is required for drilling
configuration.

7. Select the column names to include in the dimension. An example is Sales,
Category, Brand, and Description.

The column names are moved from the Data Objects Fields list to the Dimension
Fields list to show that they are selected.

8. Click Save.

9. Click Continue.

Dimension Hierarchy

Sales Category

 Brand

 Description

Creating Dimensions

Creating Oracle BAM Data Objects 31-15

The new dimension is listed. You must still define a hierarchy for the columns.

10. Click Add new hierarchy.

11. Enter a hierarchy name.

12. Enter a description for the hierarchy.

13. Select the column names to define as attributes for the dimension. An example is
Sales remains in the Dimension Field list, and you click Category, Brand, and
Description to arrange them in a general to more specific order. The order that you
click the columns is the order that they are listed in the Hierarchy Field list.
Arrange the more general grouping column at the top of the Hierarchy Fields list
and the most granular column at the bottom of the Hierarchy Fields list.

14. Click Save.

15. Click Continue.

The new hierarchy is listed. You can edit or remove hierarchies and dimensions by
clicking the links. You can also continue defining multiple hierarchies for the
dimension or add new dimensions to the data object.

31.7.2 How to Create a Time Dimension
If your dimension contains a time date data type column, you can select the time levels
to include in the hierarchy.

To select time levels:
1. In a dimension containing a time date data type column, add a hierarchy.

2. Select the time date data type column. If you are editing existing time levels, click
Edit Time Levels.

The Time Levels Definition dialog box opens.

3. Click the levels to include in the hierarchy. The levels include:

■ Year. Year in a four digit number.

■ Quarter. Quarter of four quarters starting with quarter one representing
January, February, March.

■ Month. Months one through 12, starting with January.

■ Week of the Year. Numbers for each week starting with January 1st.

■ Day of the Year. Numbers for each day of the year starting with January 1st.

■ Day of the Month. Numbers for each day of the month.

■ Day of the Week. Numbers for each day of the week, starting from Sunday to
Saturday.

■ Hour. Numbers from one to twenty four.

■ Minute. Numbers from one to 60.

■ Second. Numbers from one to 60.

4. Click OK to close the dialog box.

Renaming and Moving Data Objects

31-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

31.8 Renaming and Moving Data Objects
You can rename and move a data object without editing or clearing the data object. If
you only want to change the data object name or description, use the Rename option.

31.8.1 How to Rename a Data Object

To rename a data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object to rename.

The general information for the data object is displayed in the right frame.

3. Select Rename/Move.

4. Enter the new name, tip text, and description for the data object.

5. Click Save changes.

31.8.2 How to Move a Data Object

To move a data object:
1. Select Data Objects from the list.

2. Select the data object to rename.

The general information for the data object is displayed in the right frame.

3. Select Rename/Move.

4. Click Browse to enter the new location for the data object.

5. Click Save changes.

31.9 Creating Indexes
Indexes improve performance for large data objects containing many rows. Without
any indexes, accessing data requires scanning all rows in a data object. Scans are
inefficient for very large data objects. Indexes can help find rows with a specified value
in a column.

If the data object has an index for the columns requested, the information is found
without having to look at all the data. Indexes are most useful for locating rows by
values in columns, aggregating data, and sorting data.

31.9.1 How to Create an Index
You can add indexes to data objects by selecting columns to be indexed as you are
creating a data object.

To add an index:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object to add an index to.

3. Select Indexes.

4. Click Add Index.

Deleting Data Objects

Creating Oracle BAM Data Objects 31-17

The Add Index dialog box opens.

5. Enter a Name and Description for the index

6. Add as many columns as needed to create an index for the table.

Click a column in the list on the right to remove the column from the index.

7. Click OK.

The index is added and is named after the columns it contains. You can create
multiple indexes. To remove an index you created, click Remove Index next to the
Index name.

31.10 Clearing Data Objects
Clearing a data object removes the current contents without deleting the data object
from the Oracle BAM ADC.

31.10.1 How to Clear a Data Object

To clear a data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Select the data object to clear.

The general information for the data object is displayed in the right frame.

3. Click Clear.

31.11 Deleting Data Objects
When deleting data objects, you must remove referrals to the data object from reports
and alerts that are using it. If the data object is in use by an active alert or report, it
cannot be deleted in Oracle BAM Architect.

31.11.1 How to Delete a Data Object

To delete a data object:
1. Select Data Objects from the Oracle BAM Architect function list.

2. Click the data object to delete.

The general information for the data object is displayed in the right frame.

3. Click Delete.

Deleting Data Objects

31-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

32

Integrating Oracle BAM with SOA Composite Applications 32-1

32 Integrating Oracle BAM with SOA
Composite Applications

Oracle BAM provides an adapter available in the SOA Composite Editor in Oracle
JDeveloper. This chapter provides information about using the Oracle BAM Adapter
and Oracle BAM sensor actions to integrate SOA composite applications with Oracle
BAM.

This chapter contains the following topics:

■ Section 32.1, "Introduction to Integrating Oracle BAM with SOA Composite
Applications"

■ Section 32.2, "Configuring Oracle BAM Adapter"

■ Section 32.3, "Creating a Design Time Connection to an Oracle BAM Server"

■ Section 32.4, "Using Oracle BAM Adapter in an SOA Composite Application"

■ Section 32.5, "Using Oracle BAM Adapter in a BPEL Process"

■ Section 32.6, "Integrating BPEL Sensors with Oracle BAM"

32.1 Introduction to Integrating Oracle BAM with SOA Composite
Applications

The Oracle BAM Adapter is a Java Connector Architecture (JCA)-compliant adapter
which can be used from a Java EE client to send data and events to the Oracle BAM
Server. The Oracle BAM Adapter supports the following operations on Oracle BAM
data objects: inserts, updates, upserts, and deletes.

The Oracle BAM Adapter can perform these operations over Remote Method
Invocation (RMI) calls (if they are deployed in the same farm), direct Java object
invocations (if they are deployed in the same container), or over Simple Object Access
Protocol (SOAP) (if there is a fire wall between them)

Oracle BAM Adapter is configured in Oracle WebLogic Server Administration Console
to provide any of these connection pools. Oracle BAM Adapter provides three
mechanisms by which you can send data to Oracle BAM Active Data Cache from an
SOA composite application.

The Oracle BAM Adapter supports the active Oracle BAM Server migration
automatically, and always communicates with the active server, without losing any
messages.

Oracle BAM Adapter provides three mechanisms by which you can send data to an
Oracle BAM Server in your SOA composite application:

Configuring Oracle BAM Adapter

32-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ The Oracle BAM Adapter can be used as a reference binding component in an
SOA composite application. For example, Oracle Mediator can send data to Oracle
BAM using the Oracle BAM Adapter.

■ The Oracle BAM Adapter can also be used as a partner link in a Business Process
Execution Language (BPEL) process to send data to Oracle BAM as a step in the
process.

■ Oracle BAM sensor actions can be included within a BPEL process to publish
event-based data to the Oracle BAM data objects.

32.2 Configuring Oracle BAM Adapter
The Oracle BAM Adapter Java Naming and Directory Interface (JNDI) connection
pools must be configured when you use the adapter (also used with Oracle BAM
sensor actions in BPEL) to connect with the Oracle BAM Server at runtime. For
information about configuration see "Configuring the Oracle BAM Adapter" in Oracle
Fusion Middleware Administrator's Guide for Oracle SOA Suite.

Make note of the JDNI name that you configure in the Oracle BAM Adapter
properties, so that you can use them in the Oracle BAM Adapter wizard and the
Oracle BAM sensor action configuration in Oracle JDeveloper.

32.3 Creating a Design Time Connection to an Oracle BAM Server
You must create a connection to an Oracle BAM Server to browse the available data
objects and construct transformations while you are designing your applications in
Oracle JDeveloper.

32.3.1 How to Create a Connection to an Oracle BAM Server
You create a connection to an Oracle BAM Server to browse data objects available on
that server and to publish data to those data objects.

To create a connection to an Oracle BAM Server:
1. From the File main menu in Oracle JDeveloper, select New.

The New Gallery dialog box opens.

2. From the General category, choose Connections.

3. From the Items list, select BAM Connection, and click OK.

The BAM Connection wizard opens.

4. Ensure that Application Resources is selected.

5. Provide a name for the connection.

6. Click Next.

7. Enter the connection information about the Oracle BAM Server host described in
Table 32–1.

Notes: Do not create an Oracle BAM Server connection through the
Resource Palette that is displayed when you select View > Resource
Palette. The connection must be created in the application scope.

Using Oracle BAM Adapter in an SOA Composite Application

Integrating Oracle BAM with SOA Composite Applications 32-3

8. Click Next.

9. Test the connection by clicking Test Connection. If the connection was successful,
the following message appears:

Passed.

10. Click Finish.

32.4 Using Oracle BAM Adapter in an SOA Composite Application
The Oracle BAM Adapter is used as a reference that enables the SOA composite
application to send data to an Oracle BAM Server external to the SOA composite
application.

32.4.1 How to Use Oracle BAM Adapter in an SOA Composite Application
You can add Oracle BAM Adapter references that enable the SOA composite
application to send data to Oracle BAM Servers external to the SOA composite
application.

To add an Oracle BAM Adapter reference:
1. In the Component Palette, select SOA.

2. Drag the BAM Adapter to the right swim lane.

This launches the Adapter Configuration wizard.

3. In the Service Name page, provide a Service Name and an optional Description.

4. In the Data Object Operation and Keys page,

a. Select a Data Object using the BAM Data Object Chooser dialog box.

When you click Browse the Data Object Chooser dialog box opens allowing
you to browse the available Oracle BAM Server connections in the BAM Data
Object Explorer tree. Select a data object and click OK.

Table 32–1 Oracle BAM Server Connection Information

Field Description

BAM Web Host Enter the name of the host on which the Oracle BAM Report
Server and web applications are installed. In most cases, the
Oracle BAM web applications host and Oracle BAM Server host
are the same.

BAM Server Host Enter the name of the host on which the Oracle BAM Server is
installed.

User Name Enter the Oracle BAM Server user name.

Password Enter the password of the user name.

HTTP Port Enter the port number or accept the default value of 9001. This is
the HTTP port for the Oracle BAM web applications host.

JNDI Port Enter the port number or accept the default value of 9001. The
JNDI port is for the Oracle BAM report cache, which is part of
the Oracle BAM Server.

Use HTTPS Select this checkbox to use secure HTTP (HTTPS) to connect to
the Oracle BAM Server during design time. Otherwise, HTTP is
used.

Using Oracle BAM Adapter in a BPEL Process

32-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

b. Choose an Operation from the list.

Insert adds a row to the data object.

Upsert inserts new data into an existing row in a data object if the row exists.
If the row does not exist a new row is created. You must select a key from the
Available column to upsert rows in a data object.

Delete removes a row from the data object. You must select a key from the
Available column to delete rows in a data object.

Update inserts new data into an existing row in a data object. You must select
a key from the Available column to update rows in a data object.

c. Provide an appropriate display name in the Operation Name field for this
operation in your SOA composite application.

d. To select Enable Batching select the checkbox.

The data cached in memory by the Oracle BAM Adapter of the Oracle BPEL
Process Manager runtime is flushed (sent) to Oracle BAM Server periodically.
The Oracle BAM component may decide to send data before a batch timeout if
the cache has some data objects between automatically defined lower and
upper limit values.

Batching properties are configured in BAMCommonConfig.xml. See Oracle
Fusion Middleware Administrator's Guide for Oracle SOA Suite for more
information.

5. In the JNDI Name page, specify the JNDI Name for the Oracle BAM Server
connection.

The JNDI name is configured in the Oracle WebLogic Server Administration
Console. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite for more information.

6. Click Finish.

32.5 Using Oracle BAM Adapter in a BPEL Process
The Oracle BAM Adapter is used as a partner link in a BPEL process to send data to
Oracle BAM as a step in the process.

See Section 5.3, "Introduction to Partner Links." for more information.

32.5.1 How to Use Oracle BAM Adapter in a BPEL Process
You can add the Oracle BAM Adapter to a BPEL process to send data to Oracle BAM
as a step in the process. The Oracle BAM Adapter is used as a partner link and
connected to an activity in the BPEL process.

To add an Oracle BAM partner link:
1. In the SOA Composite Editor in Oracle JDeveloper, double-click the BPEL process

icon to open it in the BPEL Process Designer.

2. In the Component Palette, expand the BPEL Services panel.

3. Drag and drop the Oracle BAM Adapter into the Partner Links swim lane on the
right side of the BPEL Process Designer.

4. In the Adapter Configuration wizard, enter a display name in the Service Name
field and click Next.

Using Oracle BAM Adapter in a BPEL Process

Integrating Oracle BAM with SOA Composite Applications 32-5

When the wizard completes, a Web Services Description Language (WSDL) file by
this name appears in the Application Navigator for the BPEL process or Oracle
Mediator message flow. This file includes the adapter configuration settings you
specify with this wizard.

5. In the Data Object Operation and Keys page,

a. Select a Data Object using the BAM Data Object Chooser dialog box.

When you click Browse the Data Object Chooser dialog box opens allowing
you to browse the available Oracle BAM Server connections in the BAM Data
Object Explorer tree. Select a data object and click OK.

b. Choose an Operation from the list.

Insert adds a row to the data object.

Upsert inserts new data into an existing row in a data object if the row exists.
If the row does not exist a new row is created.

Delete removes a row from the data object.

Update inserts new data into an existing row in a data object.

c. Provide an appropriate display name in the Operation Name field for this
operation in your SOA composite application.

d. To select Enable Batching select the checkbox.

The data cached in memory by the Oracle BAM Adapter of the Oracle BPEL
Process Manager runtime is flushed (sent) to Oracle BAM Server periodically.
The Oracle BAM component may decide to send data before a batch timeout if
the cache has some data objects between automatically defined lower and
upper limit values.

Batching properties are configured in BAMCommonConfig.xml. See Oracle
Fusion Middleware Administrator's Guide for Oracle SOA Suite for more
information.

6. In the JNDI Name page, specify the JNDI Name for the Oracle BAM Server
connection.

The JNDI name is configured in the Oracle WebLogic Server Administration
Console. See "Configuring the Oracle BAM Adapter" in Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite for more information.

7. Click Finish.

8. Create a new Process Variable in the BPEL process of type Message Type, and
browse the Type Chooser dialog box to select the WDSL for the data object you
want to write to on the Oracle BAM Server.

For more information about using the Oracle BPEL Process Manager see
Chapter 5, "Getting Started with Oracle BPEL Process Manager."

9. In the BPEL Process add an activity that you can use to map the source data to the
new variable you created.

10. In the BPEL Process add an Invoke activity to send data to the Oracle BAM
Adapter partner link you created. Add the variable you just created as the Input
Variable.

11. Save all of the project files.

Integrating BPEL Sensors with Oracle BAM

32-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

32.6 Integrating BPEL Sensors with Oracle BAM
You can create sensor actions in Oracle BPEL Process Manager to publish sensor data
into existing data objects on an Oracle BAM Server. When you create the sensor action,
you can select an Oracle BPEL Process Manager variable sensor or activity sensor to
get the data from and the data object in Oracle BAM Server in which you want to
publish the sensor data.

The Oracle BAM Adapter supports batching of operations, but behavior with batching
is different from behavior without batching. As the Oracle BAM Adapter is applied to
BPEL sensor actions, the Oracle BAM sensor action is not part of the BPEL transaction.
When batching is enabled, BPEL does not wait for an Oracle BAM operation to
complete. It is an asynchronous call.

When batching is disabled, BPEL waits for the Oracle BAM operation to complete
before proceeding with the BPEL process, but it does not roll back or stop when there
is an exception from Oracle BAM. The Oracle BAM sensor action logs messages to the
same sensor action logger as BPEL. See "Configuring Oracle BAM Batching Properties"
in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite for information
about batching behavior.

These instructions assume you have installed and configured Oracle BAM.

32.6.1 How to Create a Sensor
Before you can create an Oracle BAM sensor action, you must first create a sensor in
the BPEL process. You must create a sensor before creating a Oracle BAM sensor
action.

■ Variable sensor

Restrictions: A Variable sensor’s variable must be defined in a standalone XSD.
This variable must not be defined inline in the WSDL file. If the variable has
message parts, then there must be only one message part.

■ An Activity sensor containing exactly one sensor variable

Restrictions: Because you map the sensor data to a single Oracle BAM Server data
object, the Activity sensor must contain only one variable. All of the Variable
sensor restrictions also apply.

Notes: Connection factory configuration must be completed before
using Oracle BAM sensor actions. Also, if the Oracle BAM Adapter is
using credentials rather than a plain text user name and password, in
order for the Oracle BAM Adapter (including Oracle BAM sensor
actions used in BPEL) to connect to the Oracle BAM Server the
credentials must also be established and mapped. See "Configuring
the Oracle BAM Adapter" in Oracle Fusion Middleware Administrator's
Guide for Oracle SOA Suite for more information.

Note: Any sensor that does not conform to these rules are be filtered
from the Oracle BAM sensor action configuration dialog box. Also, if a
sensor is created conforming to the restrictions, but the variable is
deleted (rendering the sensor invalid), it does not appear in Oracle
BAM sensor action configuration dialog box.

Integrating BPEL Sensors with Oracle BAM

Integrating Oracle BAM with SOA Composite Applications 32-7

For more information about creating sensors, see Section 17.2, "Configuring Sensors
and Sensor Actions in Oracle JDeveloper."

32.6.2 How to Create an Oracle BAM Sensor Action
When you create the Oracle BAM sensor action, you select the BPEL variable sensor or
activity sensor from which to get data, and you select the data object in Oracle BAM
Server to which you want to publish the sensor data.

To create an Oracle BAM sensor action:

1. Go to your BPEL process in Oracle JDeveloper.

2. In the Structure window, right-click Sensor Actions.

If the Structure window is not open, select View > Structure Window to open it.

3. Select Create > BAM Sensor Action.

The Create Sensor Action dialog box appears.

Figure 32–1 Oracle BAM Sensor Action Creation Dialog Box

4. Enter the details described in Table 32–2:

Table 32–2 Create Sensor Action Dialog Box Fields and Values

Field Description

Action Name Enter a unique and recognizable name for the sensor action.

Sensor Select a BPEL sensor to monitor. This is the sensor that you
created in Section 32.6.1, "How to Create a Sensor" for mapping
sensor data to a data object in Oracle BAM Server.

Integrating BPEL Sensors with Oracle BAM

32-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 32–1 shows the Create Sensor Action dialog box with a selected data object.

Data Object Click the Browse icon to open the BAM Data Object Chooser
dialog box to select the data object in Oracle BAM Server in
which you want to publish the sensor data.

If you have not created a connection to Oracle BAM Server to
select data objects, click the icon in the upper right corner of the
BAM Data Object Chooser dialog box.

Operation Select to Delete, Update, Insert, or Upsert a row in the Oracle
BAM Server database. Upsert first attempts to update a row if it
exists. If the row does not exit, it is inserted.

Available Keys/Selected
Keys

If you selected the Delete, Update, or Upsert operation, you
must also select a column name in the Oracle BAM Server
database to use as a key to determine the row with which this
sensor object corresponds. A key can be a single column or a
composite key consisting of multiple columns. Select a key and
click the > button. To select all, click the >> button.

Map File Provide a file name to create a mapping between the sensor data
(selected in the Sensor list) and the Oracle BAM Server data
object (selected in the Data Object list). You can also invoke a
mapper dialog box by clicking the Create Mapping icon (second
icon) or Edit Mapping icon (third icon).

BAM Connection Factory
JNDI

Specify the JNDI name for the Oracle BAM Server connection
factory.

The JNDI name is configured in the Oracle WebLogic Server
Administration Console. See "Configuring the Oracle BAM
Adapter" in Oracle Fusion Middleware Administrator's Guide for
Oracle SOA Suite for more information.

Enable Batching The data accumulated by the Oracle BAM component of the
Oracle BPEL Process Manager runtime is flushed (sent) to Oracle
BAM Server periodically. The Oracle BAM component may
decide to send data before a batch timeout if the queue has some
data objects between automatically defined lower and upper
limit values.

If batching is enabled, performance is dramatically improved,
but there is no transaction guarantee. The BPEL process
continues to run without waiting for the data to get to the Oracle
BAM Server.

If batching is not enabled, the BPEL process waits until the
Oracle BAM Server confirms that the record operation was
completed; however, if there is a failure, the exception from
Oracle BAM Server is logged and the BPEL process continues.
BPEL does not roll back the operation or stop when there is an
exception from Oracle BAM.

See "Configuring Oracle BAM Batching Properties" in Oracle
Fusion Middleware Administrator's Guide for Oracle SOA Suite for
information about batching behavior.

WARNING: If you restart Oracle BPEL Server, any messages
currently being batched are lost. Ensure that all messages have
completed batching before restarting Oracle BPEL Server.

Table 32–2 (Cont.) Create Sensor Action Dialog Box Fields and Values

Field Description

Integrating BPEL Sensors with Oracle BAM

Integrating Oracle BAM with SOA Composite Applications 32-9

5. Click OK to close the Create Sensor Action dialog box.

32.6.3 How to Disable an Oracle BAM Sensor Action
BPEL sensor actions are typically disabled using the Oracle Enterprise Manager Fusion
Middleware Control Console; however, Oracle BAM sensor actions are not
manageable from the Fusion Middleware Control Console.

To disable an Oracle BAM sensor action:

1. Open the project containing the Oracle BAM sensor action in Oracle JDeveloper.

2. Open the BPEL_PROCESS_NAME_sensorAction.xml file in the editor (refresh
the project tree if you cannot see the file).

3. Locate the sensor action you want to disable. You can search on the
publishType="BAM" attribute to find only the Oracle BAM sensor actions.

4. In the <action> element for the sensor action you want to disable, set the
enabled attribute to false.

5. After the file is updated and saved, you must redeploy the application.

Notes: After you click the Create Mapping or Edit Mapping, or the
OK button on the Create Sensor Action dialog box, you must
explicitly save the BPEL file.

Integrating BPEL Sensors with Oracle BAM

32-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

33

Creating Oracle BAM Enterprise Message Sources 33-1

33 Creating Oracle BAM Enterprise Message
Sources

This chapter contain the information required to create Enterprise Message Sources
(EMS) in the Oracle BAM Architect application.

This chapter contains the following topics:

■ Section 33.1, "Introduction to Enterprise Message Sources"

■ Section 33.2, "Creating Enterprise Message Sources"

■ Section 33.3, "Using Foreign JMS Providers"

■ Section 33.4, "Use Case: Creating an EMS Against Oracle Streams AQ JMS
Provider"

33.1 Introduction to Enterprise Message Sources
Enterprise Message Sources (EMS) are used by applications to provide direct Java
Message Service (JMS) connectivity to the Oracle BAM Server. JMS is the standard
messaging API for passing data between application components and allowing
business integration in heterogeneous and legacy environments.

The EMS does not configure Extract Transform and Load (ETL) scenarios, but rather
maps from a message directly to a data object on the Oracle BAM Server; however, you
can still use XML Stylesheet Language (XSL) to perform a transformation in between.
Each EMS connects to a specific JMS topic or queue, and the information is delivered
into a data object in the Oracle BAM Active Data Cache. The Oracle BAM Architect
web application is used to configure EMS definitions.

The following JMS providers are supported:

■ Messaging for Oracle WebLogic Server

■ Non-Oracle certified JMS providers:

– IBM WebSphere MQ 6.0

– Tibco JMS

– Apache ActiveMQ

See Section 33.3, "Using Foreign JMS Providers" for more information.

The following message types are supported:

■ Map message

■ Text message with XML payload

Creating Enterprise Message Sources

33-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The following XML formatting options are supported for Text message transformation:

■ Pre-processing

■ Message specification

■ Column value (Column values can be provided either as elements or attributes in
the XML payload.)

To view the existing EMS definitions, select Enterprise Message Sources from the
Oracle BAM Architect function list.

Figure 33–1 Oracle BAM Architect Function List

33.2 Creating Enterprise Message Sources
When you define an EMS, you specify all of the fields in the messages to be received.
Some messaging systems have a variable number of user-defined fields, while other
systems have a fixed number of fields.

For any string type field, you can apply formatting to that field to break apart the
contents of the field into separate, individual fields. This is useful for messaging
systems where you cannot create user-defined fields and the entire message body is
received as one large field. The formatting specifications allow you to specify the path
to a location in the XML tree, and then extract the attributes or tags as fields.

Before defining an EMS, you must be familiar with the third party application
providing the messages so that you can specify the message source connection details
in Oracle BAM Architect.

Furthermore, note that the JMS server (where you host queues/topics) can be
configured on a different system than that which hosts the Oracle BAM Server. (For
Oracle Advanced Queuing (AQ) it is acceptable to host on the same server as Oracle
BAM because the database hosts the JMS server, but for other cases it is recommended
to host the JMS server on another system).

33.2.1 How to Create an Enterprise Message Source

To define an EMS:
1. Select Enterprise Message Sources from the Oracle BAM Architect function list

(see Figure 33–1).

2. Click Create.

Creating Enterprise Message Sources

Creating Oracle BAM Enterprise Message Sources 33-3

3. Using Table 33–1 as a guide, enter the appropriate values in each of the fields.
Examples given are for connecting to Messaging for Oracle WebLogic Server.

4. If you are using TextMessage type, configure the appropriate parameters in the
XML Formatting sections, using Table 33–2 as a guide.

5. To configure the DateTime Specification in the Source Value Formatting section,
see Section 33.2.2, "How to Configure DateTime Specification."

Note that when DateTime Specification is disabled (not checked), the incoming
value must be in xsd:dateFormat. That is, xsd:dateFormat
([-]CCYY-MM-DDThh:mm:ss[Z|(+|-)hh:mm]) is the default format when
DateTime Specification is not configured.

Creating Enterprise Message Sources

33-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Valid value patterns for xsd:dateTime include:

■ 2001-10-26T21:32:52

■ 2001-10-26T21:32:52+02:00

■ 2001-10-26T19:32:52Z

■ 2001-10-26T19:32:52+00:00

■ -2001-10-26T21:32:52

■ 2001-10-26T21:32:52.12679

6. Map fields from the source message to the selected data object in the Source to
Data Object Field Mapping section.

a. Click Add to add a mapped field.

b. Select the Key checkbox if the field is a key.

c. Enter the source tag or attribute name in the Tag/Attr name field.

d. Select the target data object field from the Data Object Field list.

7. Click Save to save the EMS.

Table 33–1 EMS Configuration Parameters

Parameter Description

Name A unique display name that appears in the EMS list in Oracle
BAM Architect.

Initial Context Factory The initial context factory to be used for looking up specified
JMS connection factory or destination. For example:

weblogic.jndi.WLInitialContextFactory

JNDI Service Provider URL Configuration information for the service provider to use. Used
to set javax.naming.Context.PROVIDER_URL property and
passed as an argument to initialContext(). An incorrect provider
URL is the most common cause of errors. For example:

t3://localhost:7001

Topic/Queue
ConnectionFactory Name

The name used in a JNDI lookup of a previously created JMS
connection factory. For example:

jms/QueueConnectionFactory

Topic/Queue Name The name used in the JNDI lookup of a previously created JMS
topic or queue. For example:

jms/demoQueue

jms/demoTopic

JNDI Username The identity of the principal for authenticating the JNDI service
caller. This user must have RMI login permissions.

Used to set javax.naming.Context.SECURITY_PRINCIPLAL and
passed to initialContext().

Creating Enterprise Message Sources

Creating Oracle BAM Enterprise Message Sources 33-5

JNDI Password The identity of the principal for authenticating the JNDI service
caller.

Used to set javax.naming.Context.SECURITY_CREDENTIALS
and passed to initialContext().

JMS Message Type TextMessage or MapMessage.

If TextMessage is selected, XML is used to specify the contents of
the payload, and an additional set of XML Formatting
configuration parameters must be completed. See Table 33–2 for
more information.

Durable Subscriber Name Enter the name of the subscriber, for example,
BAMFilteredSubscription. The Durable Subscriber Name should
match the event-publisher subscriber name property if it is
provided.

A durable subscription can be used to preserve messages
published on a topic while the subscriber is not active. It enables
Oracle BAM to be disconnected from the JMS provider for
periods of time, and then reconnect to the provider and process
messages that were published during the disconnected period.

Message Selector (Optional) A single name-value pair (currently only one name-value pair is
supported) that allows an application to have a JMS provider
select, or filter, messages on its behalf using application-specific
criteria. When this parameter is set, the application-defined
message property value must match the specified criteria for it
to receive messages. To set message property values, use
stringProperty() method on the Message interface.

Data Object Name Data object in Oracle BAM in which to deposit message data.
Operations can be performed on only one data object per EMS.
The data object can have Lookup columns.

Click Browse to choose a data object.

Operation Select the operation from the list:

Insert inserts all new data as new rows

Upsert merges data into existing rows

Update updates existing rows

Delete removes rows from the data object

Batching Specify whether the EMS communicates with the Oracle BAM
Active Data Cache API with batching enabled. Batching allows
multiple messages to be inserted using a single Text Message. If
Batching is disabled (the default state), each row read from JMS
would be sent to the Active Data Cache as a separate unit and
not part of a batch of rows.

Batching properties are contained in configuration files. See
Oracle Fusion Middleware Administrator's Guide for Oracle SOA
Suite for more information.

Transaction Enabling Transaction ensures that the operation is atomic when
Batching is enabled (Batching allows multiple messages to be
inserted using a single Text Message).

Transaction itself does not have any impact on Active Data
Cache batching, but setting Transaction to true ensures that all of
the messages in Messaging Batching (when many messages are
batched in a single batch) are part of an atomic operation. See
Message Batching inTable 33–2.

Table 33–1 (Cont.) EMS Configuration Parameters

Parameter Description

Creating Enterprise Message Sources

33-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

33.2.2 How to Configure DateTime Specification
To configure DateTime Specification:

1. Select the DateTime Specification checkbox as shown in Figure 33–2.

2. Enter the date and time pattern in the Pattern field.

You must supply a valid date and time pattern that adheres to the Java
SimpleDateFormat. Table 33–3 provides the syntax elements for
SimpleDateFormat, and Table 33–4 provides some examples.

3. Optionally, you can enter the locale information in the Language, Country, and
Variant fields.

Start when BAM Server
starts

Specify whether the EMS starts reading messages and sending
them to the Active Data Cache as soon as the Oracle BAM Server
starts (or restarts).

JMS Username (Optional)

JMS Password (Optional)

You can optionally provide this information when a new JMS
connection is created by a connection factory. Used to
authenticate a connection to a JMS provider for either
application-managed or container-managed authentication.

Table 33–2 EMS XML Formatting Configuration Parameters

Parameter Description

Pre-Processing XSL transformation can be applied to an incoming Text Message
before message retrieval and column mapping are done. See
Section 33.2.3, "How to Use Advanced XML Formatting" for
more information.

XML names can be qualified. If qualified, select the Namespace
Qualified box and enter the namespace URI in the field.

Message Element Name The parent element that contains column values in either its
sub-elements or attributes.

XML names can be qualified. If qualified, select the Namespace
Qualified box and enter the namespace URI in the field.

Message Batching Multiple messages can be batched in a single JMS message. If
this is the case, a wrapper element must be specified as the
containing element in Batch Element Name.

If qualified, select the Namespace Qualified box and enter the
namespace URI in the field.

Column Value Column values can be provided using either elements or
attributes in an XML payload. Specify which column value type
is provided in the payload.

Table 33–1 (Cont.) EMS Configuration Parameters

Parameter Description

Creating Enterprise Message Sources

Creating Oracle BAM Enterprise Message Sources 33-7

Figure 33–2 EMS Configuration Source Value Formatting Section

The examples in Table 33–4 show how date and time patterns are interpreted in the
United States locale. The date and time used in all of the examples are 2001-07-04
12:08:56 local time in the U.S. Pacific Time time zone.

Table 33–3 Syntax Elements for SimpleDateFormat

Symbol Meaning Presentation Example

G Era Text AD

y Year Number 2003

M Month Text or Number July; Jul; 07

w Week in year (1-53) Number 27

W Week in month (1-5) Number 2

D Day in year (1-365 or 1-364) Number 189

d Day in a month Number 10

F Day of week in month (1-5) Number 2

E Day in week Text Tuesday; Tue

a AM/PM marker Text AM

H Hour (0-23) Number 0

k Hour (1-24) Number 24

K Hour (0-11 AM/PM) Number 0

h Hour (1-12 AM/PM) Number 12

m Minute in an hour Number 30

s Second in a minute Number 55

S Millisecond (0-999) Number 978

z Time zone General time zone Pacific Standard Time; PST;
GMT-08:00

Z Time zone RFC 822 time zone -0800

’ Escape for text Delimiter MMM ’’01 -> Jul ’01

Table 33–4 Date and Time Pattern Examples

Date and Time Pattern Result

"yyyy.MM.dd G 'at' HH:mm:ss z" 2001.07.04 AD at 12:08:56 PDT

"EEE, MMM d, ’’ yy" Wed, Jul 4, '01

"h:mm a" 12:08 PM

Creating Enterprise Message Sources

33-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

33.2.3 How to Use Advanced XML Formatting
The Advanced formatting options allow an EMS to contain a user-supplied XSL
Transformation (XSLT) for each formatted field in the message.

Uses for XSLT include:

■ Handling of hierarchical data. The Data Flow does not handle hierarchical data.
The XSLT can flatten the received XML into a single record with repeating fields.

■ Handling of message queues that contain messages of multiple types in a single
queue. The Data Flow requires that all records from the Message Receiver be of the
same schema. The EMS output can be defined as a combined superset of the
message schemas that are received, and the XSL transformation can identify each
message type and map it to the superset schema as appropriate.

■ Handling of XML that, while not expressing hierarchical data, does contain
needed data at multiple levels in the XML. EMS formatting can only read from one
level with the XML. The XSL transformation can identify the data needed at
various levels in the input XML and output it all in new XML that contains all of
the data combined at one level.

To specify an XSL transformation:
1. In an EMS that you are defining or editing, select Pre-Processing in the XML

Formatting section.

2. Click Advanced formatting options.

The Advanced Formatting dialog box opens.

3. Type or paste the XSL markup for the transformation for the XML in this field. You
might want to write the XSL markup in another editing tool and then copy and
paste the code into this dialog box.

4. In the Sample XML to transform field, type sample XML to test the
transformation against. The sample XML is not saved in this dialog box and is not
be displayed if you close and open this dialog box.

5. Click Verify transformation syntax to validate the XSL syntax.

"hh 'o''clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time

"K:mm a, z" 0:08 PM, PDT

"yyyyy.MMMMM.dd GGG hh:mm aaa" 02001.July.04 AD 12:08 PM

"EEE, d MMM yyyy HH:mm:ss Z" Wed, 4 Jul 2001 12:08:56 -0700

"yyMMddHHmmssZ" 010704120856-0700

"yyyy-MM-dd'T'HH:mm:ss.SSSZ" 2001-07-04T12:08:56.235-0700

Table 33–4 (Cont.) Date and Time Pattern Examples

Date and Time Pattern Result

Using Foreign JMS Providers

Creating Oracle BAM Enterprise Message Sources 33-9

6. Click Test transformation on sample XML to test your transformation.

The results are displayed in the field underneath the links. If any errors are found
in the XSL syntax, the sample XML syntax, or during the transformation, the error
text is shown in this field.

33.3 Using Foreign JMS Providers
Oracle WebLogic Server provides support for integrating non-Oracle WebLogic Server
(foreign) JMS providers with applications deployed in it, such as Oracle BAM. Foreign
JMS providers have their own JMS client and Java Naming and Directory Interface
(JNDI) Client APIs. some configuration must be done to identify these depedencies
and make these APIs available on Oracle WebLogic Server so that JMS resources
hosted on a remote provider can be looked up by application deployed in Oracle
WebLogic Server.

See "Configuring Foreign Server Resources to Access Third-Party JMS Providers" in
Oracle Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server for
more information.

Section 33.4.3, "Creating a Foreign JMS Server" in the "Use Case: Creating an EMS
Against Oracle Streams AQ JMS Provider" provides a detailed example.

The high level configuration steps are:

1. Make the JMS and JNDI client library of the foreign the provider available to
applications deployed on Oracle WebLogic Server.

Identify the JMS and JNDI client Java Archive (JAR) files of the foreign provider
and place them in the DOMAIN_HOME/lib directory.

2. Create a foreign server using Oracle WebLogic Server Administration Console.

Go to JMS Modules in Oracle WebLogic Server Administration Console, and
create a new module.

Inside this module, click New, select Foreign Server, and create a new foreign
server by navigating through all of the pages.

Provide appropriate JNDI properties for the remote provider for the foreign server
definition.

3. Create JMS resources (that is, connection factories and destinations) for the foreign
JMS server.

Inside the Foreign Server link, select the Destination tab and create links for

■ Remote ConnectionFactory

■ Remote Destination (Queue/Topic)

Local JNDI names configured for these destinations must be used while
configuring EMS to consume messages from these destinations.

4. Configure an EMS definition in Oracle BAM Architect to consume messages from
foreign destinations.

The whole process of accessing JMS resources hosted on foreign providers is
transparent to Oracle BAM Server. After the previous steps have been followed
correctly, remote destinations from foreign JMS providers are published on the
local WL server JNDI tree, so that applications deployed on the server (like Oracle
BAM EMS) can look them up, just like any other collocated Oracle WebLogic

Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider

33-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Server JMS resource. Oracle WebLogic Server takes care of communicating with
the appropriate foreign JMS provider at runtime.

33.4 Use Case: Creating an EMS Against Oracle Streams AQ JMS
Provider

The following are the steps to configure Oracle Streams AQ JMS Provider (AQ-JMS) in
Oracle WebLogic Server, and an EMS definition in Oracle BAM Architect.

1. Creating a JMS Topic in AQ-JMS.

2. Creating a Data Source in Oracle WebLogic Server.

3. Creating a Foreign JMS Server.

4. Defining an EMS in Oracle BAM Architect.

5. Inserting and Updating Records in the SQL Table.

33.4.1 Creating a JMS Topic in AQ-JMS
Open a SQLplus command prompt and do the following:

1. Login as sysdba

sqlplus sys as sysdba

2. Enter the password for the system dba account when prompted.

3. Create and execute the following scripts in the following order (see Example 33–1,
Example 33–2, and Example 33–3 for the contents of the scripts).

@<SCRIPT_PATH>/usertabletopiccreation.sql
@<SCRIPT_PATH>/createtable.sql
@<SCRIPT_PATH>/createtrigger.sql

The scripts do the following things:

a. Creates a fresh schema under user MyChannelDemoUser.

b. Creates a JMS a topic in AQ-JMS.

c. Creates a SQL table by name EMP.

d. Creates a trigger that publishes messages to AQ-JMS topic on inset/update on
EMP.

Example 33–1 Contents of usertabletopiccreation.sql

DROP USER MyChannelDemoUser CASCADE;

GRANT connect, resource,AQ_ADMINISTRATOR_ROLE TO MyChannelDemoUser IDENTIFIED BY
 MyChannelDemoPassword;
GRANT execute ON sys.dbms_aqadm TO MyChannelDemoUser;
GRANT execute ON sys.dbms_aq TO MyChannelDemoUser;
GRANT execute ON sys.dbms_aqin TO MyChannelDemoUser;
GRANT execute ON sys.dbms_aqjms TO MyChannelDemoUser;

connect MyChannelDemoUser/MyChannelDemoPassword;

BEGIN
--dbms_aqadm.stop_queue(queue_name => 'MY_TOPIC');
--dbms_aqadm.drop_queue(queue_name => 'MY_TOPIC');

Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider

Creating Oracle BAM Enterprise Message Sources 33-11

--DBMS_AQADM.DROP_QUEUE_TABLE (queue_table => 'TTab');
dbms_aqadm.create_queue_table(queue_table => 'TTab', queue_payload_type =>
 'sys.aq$_jms_text_message', multiple_consumers => true);
dbms_aqadm.create_queue(queue_name => 'MY_TOPIC', queue_table => 'TTab');
dbms_aqadm.start_queue(queue_name => 'MY_TOPIC');
END;
/

Example 33–2 Contents of createtable.sql

connect MyChannelDemoUser/MyChannelDemoPassword;

CREATE TABLE EMP (EMPNO NUMBER(4), ENAME VARCHAR2(10), JOB VARCHAR2(9), MGR
 NUMBER(4), HIREDATE DATE, SAL NUMBER(7,2), COMM NUMBER(7,2), DEPTNO NUMBER(2));

quit;

Example 33–3 Contents of createtrigger.sql

connect MyChannelDemoUser/MyChannelDemoPassword;
create or replace
trigger employee AFTER INSERT OR Update ON EMP
 FOR each row
 declare
 xml_complete varchar2(1000);
 v_enqueue_options dbms_aq.enqueue_options_t;
 v_message_properties dbms_aq.message_properties_t;
 v_msgid raw(16);
 temp sys.aq$_jms_text_message;
 v_recipients dbms_aq.aq$_recipient_list_t;

 Begin
 temp:=sys.aq$_jms_text_message.construct;
 xml_complete :=
 '<?xml version="1.0"?>' ||
 '<row>' ||
 '<EMPNO>' || :new.EMPNO || '</EMPNO>' ||
 '<ENAME>' || :new.ENAME || '</ENAME>' ||
 '<JOB>' || :new.JOB || '</JOB>' ||
 '<MGR>' || :new.MGR || '</MGR>' ||
 '<HIREDATE>' || :new.HIREDATE || '</HIREDATE>' ||
 '<SAL>' || :new.SAL || '</SAL>' ||
 '<COMM>' || :new.COMM || '</COMM>' ||
 '<DEPTNO>' || :new.DEPTNO || '</DEPTNO>' ||
 '</row>' ;
 temp.set_text(xml_complete);
 dbms_aq.enqueue(queue_name => 'MY_TOPIC',
 enqueue_options => v_enqueue_options,
 message_properties => v_message_properties,
 payload => temp,
 msgid => v_msgid);
 End ;
/
quit;

Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider

33-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

33.4.2 Creating a Data Source in Oracle WebLogic Server
You can skip this step if a data source exists. An existing data source can also be reused
in this section.

1. Open Oracle WebLogic Server Administration Console at

 http://host_name:7001/console

where host_name is the name of the system where Oracle BAM Server is installed.

2. After logging into the console click the Data Sources link in the JDBC section, and
click New.

3. Enter a name for the data source (For example, BAMAQDataSource).

4. Enter a JNDI name from the data source (for example, jdbc/oracle/bamaq).
This name is used to configure the foreign JMS server.

5. Select Oracle to be the Database Type.

6. Select Oracle's Driver (Thin) for Database Driver field, and click Next.

7. Uncheck Support Global Transaction, and click Next.

8. Enter your database SID in the Database Name field (for example, ORCL).

9. Enter the hostname of the system where the database is installed as the Host
Name (for example, localhost).

10. Enter data base port number (for example, 1521).

11. Enter the user name (for example, MyChannelDemoUser).

12. Enter the password, and click Next.

13. Click Test Configuration to test the configuration.

14. After it is successful, click Finish.

33.4.3 Creating a Foreign JMS Server

To create a foreign JMS server:
1. Add as an Oracle WebLogic Server JMS module.

a. In the Oracle WebLogic Server Administration Console, from the home page,
go to the JMS Modules page.

b. Click New to create an Oracle WebLogic Server JMS module.

c. Enter a name for the JMS module (for example, BAMAQsystemModule).

d. Click Next and assign appropriate targets.

e. Click Next, and click Finish.

2. Add an AQ-JMS foreign server to the JMS module.

a. Select the JMS module that you just created.

b. Click New, and go to the list of JMS resources to add.

c. Select the Foreign Server option, and click Next.

d. Enter a name for the foreign server (for example, BAMAQForeignServer),
and click Finish.

3. Configure the AQ-JMS foreign server.

Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider

Creating Oracle BAM Enterprise Message Sources 33-13

a. Select the AQ-JMS foreign server that you created.

b. In the JNDI Initial Context Factory field, enter

oracle.jms.AQjmsInitialContextFactory

c. In the JNDI Properties area, enter

datasource=datasource_jndi_location

where datasource_jndi_location is the JNDI location of your data
source (for example, jdbc/oracle/bamaq).

4. Add connection factories to the AQ-JMS foreign server.

a. Select the AQ-JMS foreign server that you created.

b. Select the Connection Factories tab.

c. Enter a name for the connection factory. This is a logical name referenced by
Oracle WebLogic Server.

d. In the Local JNDI Name field, enter the local JNDI name that is used by The
Oracle BAM EMS to look up this connection factory (For example,
jms/BAMAQTopicCF).

e. In the Remote JNDI Name field, enter:

- TopicConnectionFactory (select for this use case)
- QueueConnectionFactory
- ConnectionFactory

f. Click OK.

5. Add destinations to the AQ-JMS foreign server.

a. Select the AQ-JMS foreign server that you created.

b. Select the Destinations tab.

c. Enter a name for this destination. This is a logical name referenced by Oracle
WebLogic Server, and it has nothing to do with the destination name.

d. In the Local JNDI Name field, enter the local JNDI name that is used by the
Oracle BAM EMS to lookup this destination (for example, jms/BAMAQTopic).

e. In the Remote JNDI Name field, if the destination is a queue, enter the
following value:

Queues/queue_name

If the destination is a topic enter the following value:

Topics/topic_name

f. Click OK.

6. Restart Oracle WebLogic Server.

33.4.4 Defining an EMS in Oracle BAM Architect
1. Open Oracle BAM Architect, and select Enterprise Message Sources in the

dropdown list.

2. Enter the message source information you just created.

3. Enter the Initial Context Factory value:

Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider

33-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

weblogic.jndi.WLInitialContextFactory

4. Enter the JNDI provider URL:

t3://host_name:7001

5. Enter the Connection Factory Name (for example, jms/BAMAQTopicCF).

6. Enter the Destination Name (for example, jms/BAMAQTopic).

7. Choose the Oracle BAM data object to send the values received from AQ-JMS
server.

8. Complete the source-to-data object field mapping so that data from the incoming
XML can be mapped to an appropriate field in selected data object.

33.4.5 Inserting and Updating Records in the SQL Table
Now you can test the functionality end to end by inserting or updating some records
in the EMP database table.

You can use SQLPlus to run SQL queries.

Now you should see the values from the record being inserted into data object.

For example,

insert into emp values (25,'Ford','ANALYST',7566,sysdate,60000,3000,20);

update emp set ENAME='McOwen' where ENAME='Ford';

34

Using Oracle Data Integrator With Oracle BAM 34-1

34Using Oracle Data Integrator With
Oracle BAM

This chapter provides information about the Oracle Data Integrator integration with
Oracle Business Activity Monitoring. It contains the following topics:

■ Section 34.1, "Introduction to Using the Oracle Data Integrator With Oracle
Business Activity Monitoring"

■ Section 34.2, "Installing the Oracle Data Integrator Integration Files"

■ Section 34.3, "Creating the Oracle BAM Target"

■ Section 34.4, "Using Oracle BAM Knowledge Modules"

■ Section 34.5, "Updating the Oracle Data Integrator External Data Source
Definition"

■ Section 34.6, "Launching Oracle Data Integrator Scenarios From Oracle BAM
Alerts"

Oracle Data Integrator documentation is located on the Oracle Technology Network
web site at the following location:

http://www.oracle.com/technology/products/oracle-data-integrator/10.1.3
/htdocs/1013_support.html

34.1 Introduction to Using the Oracle Data Integrator With Oracle
Business Activity Monitoring

This document assumes the following:

■ The Oracle database is installed and you can connect to it.

■ Oracle BAM is installed and running.

■ Oracle Data Integrator installed and the basic configuration is done (the Oracle
Data Integrator Master repository is created, repository connections are
configured, Work repositories are created and connected, and any source
topologies are configured).

■ If Oracle Data Integrator is installed on a separate host, Java 1.6 must be installed
on the Oracle Data Integrator host before you can work with the Oracle BAM and
Oracle Data Integrator integration.

When using Oracle Data Integrator with Oracle BAM, keep the following in mind:

Installing the Oracle Data Integrator Integration Files

34-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Within the Oracle Data Integrator interface you must add quotation marks around
field names that contain spaces.

■ Oracle Data Integrator cannot insert data into Oracle BAM read-only fields of type
Lookup, Calculated, Auto-incrementing integer, and Timestamp. These fields are
automatically populated.

■ Do not use Oracle BAM as a staging area (for example, if Oracle BAM is used as a
source (as when using a loading knowledge module), do not use this source as
staging area, and if Oracle BAM is being used as a target (as when using an
integration knowledge module) do not use that target as staging area.

34.2 Installing the Oracle Data Integrator Integration Files
There are two ways to set up the Oracle BAM and Oracle Data Integrator integration.

The first method uses an installation script, typically when Oracle Data Integrator and
Oracle BAM are deployed on the same system or the same network file system
(Section 34.2.1, "How to Install Integration Files Using the Script").

The second method uses manual steps to configure the properties and copy the
required files to the Oracle Data Integrator directories (Section 34.2.2, "How to
Manually Install Integration Files"). This method is typically used if you are unable to
map the ODI_HOME drive from the system where Oracle BAM is installed (usually
when Oracle Data Integrator and Oracle BAM are installed in different network or file
system).

34.2.1 How to Install Integration Files Using the Script
Use the installation script when you have Oracle Data Integrator and Oracle BAM
installed on the same system or the same network file system.

To install the integration files:
1. On the Oracle BAM host, go to the ORACLE_HOME\bam\config directory and

edit the bam_odi_configuration.properties file.

■ ODI_HOME

This property identifies the path to the Oracle Data Integrator home directory.

The default value on Linux is /scratch/$user/ODI_HOME/oracledi.

On Microsoft Windows systems, use the short 8-character name convention.
Also, use double back-slashes (\\) to denote a directory separator. For
example, C:\Program Files\ODI_HOME\oracledi would appear as:

ODI_HOME = C:\\Progra~1\\ODI_HOME\\oracledi

■ WL_SERVER

Note: If Oracle BAM Server and Oracle Data Integrator are deployed
on two different machines, then you must map the Oracle Data
Integrator drive on the Oracle BAM system, and then set the
ODI_HOME path using that mapped drive to successfully make use of
the integration configuration scripts. If drive mapping is not possible
see Section 34.2.2, "How to Manually Install Integration Files."

Installing the Oracle Data Integrator Integration Files

Using Oracle Data Integrator With Oracle BAM 34-3

This property identifies the Oracle WebLogic Server folder name on the Oracle
BAM system.

The default value is wlserver_10.3.

2. Execute bam_odi_configuration.sh (or bam_odi_configuration.bat on
a Microsoft Windows host) in ORACLE_HOME\bam\bin.

Figure 34–1 Integration Configuration Script User Input

Enter the values as prompted by the script, as shown in Figure 34–1 (using an
Oracle XE database as an example). You must have the Oracle Data Integrator
Master and Oracle Data Integrator Work repository account credentials to
complete the script execution.

Note that the prompts displayed with [value] have default values in the brackets.
Press Enter to choose the default. If there is no bracketed default value displayed,
an input value is required, or the script stops.

The script creates the resources required in the Oracle BAM web applications, sets
the Oracle BAM configuration properties in Oracle Data Integrator, generates a
Oracle WebLogic Server client Java Archive (JAR) to deploy to the Oracle Data
Integrator system, and copies all of the required files into the appropriate Oracle
Data Integrator directories.

3. After running the script, edit the ODI_
HOME/oracledi/lib/config/BAMCommonConfig.xml file, and update the
entries for ADCServerName and ADCServerPort to the hostname and port
number values where Oracle BAM Server is running.

Note: If you cannot use the script in your environment, use the
instructions in Section 34.2.2, "How to Manually Install Integration
Files."

Installing the Oracle Data Integrator Integration Files

34-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. Shut down and restart the Oracle Data Integrator Topology Manager and Designer
applications to load the changes you made to the BAMCommonConfig.xml file.

Now you can create an Oracle BAM target in the Oracle Data Integrator Topology
Manager. See Section 34.3, "Creating the Oracle BAM Target" for instructions.

34.2.2 How to Manually Install Integration Files
Use these steps if Oracle Data Integrator and Oracle BAM Server are installed on
machines in different networks, or for any reason you cannot use the script in your
environment.

There are four major steps to this process:

1. Create External Data Sources for Oracle Data Integrator

2. Set Oracle Data Integrator Configuration Parameters

3. Copy files to Oracle Data Integrator Directories

4. Generate the Oracle WebLogic Server Client JAR

5. Edit the BAMCommonConfig.xml File

Create External Data Sources for Oracle Data Integrator
Create the external data sources in Oracle BAM Architect.

1. Open Oracle BAM Architect and select the External Data Sources page.

2. Click Create, and configure the two external data sources (ODI_Master and ODI_
Work) with the values shown in Table 34–1 and Table 34–2.

Table 34–1 ODI_Master external data source values

Property Value

External Data Source Name ODI_Master

Driver oracle.jdbc.driver.OracleDriver

Login Oracle Data Integrator Master repository account user name

Password Oracle Data Integrator Master repository account password

Connection String jdbc:oracle:thin:ip_address:port_number:db_service_name

Table 34–2 ODI_Work external data source values

Property Value

External Data Source Name ODI_Work

Driver oracle.jdbc.driver.OracleDriver

Login Oracle Data Integrator Work repository account user name

Installing the Oracle Data Integrator Integration Files

Using Oracle Data Integrator With Oracle BAM 34-5

Set Oracle Data Integrator Configuration Parameters
Modify the ODI_ADDITIONAL_JAVA_OPTIONS and ODI_ADDITIONAL_CLASSPATH
values in the odiparams.sh(bat) file located in ODI_HOME/bin as shown in
Example 34–1 and Example 34–2.

Example 34–1 ODI_ADDITIONAL_JAVA_OPTIONS Modification

ODI_ADDITIONAL_JAVA_OPTIONS="-Djava.util.logging.config.file=../lib/bam_
odi.logging.properties"

Example 34–2 ODI_ADDITIONAL_CLASSPATH Modification

ODI_ADDITIONAL_CLASSPATH=../lib/weblogic/wlfullclient.jar

Copy files to Oracle Data Integrator Directories
This procedure copies several JAR files, logging properties, and knowledge modules
into the Oracle Data Integrator directories.

1. Copy the following files from
ORACLE_HOME/bam/modules/oracle.bam_11.1.1 to
ODI_HOME/lib:

■ oracle-bam-common.jar

■ oracle-bam-etl.jar

■ oracle-bam-adc-ejb.jar

2. Copy the following files from
ORACLE_HOME/bam/modules/oracle.bam.thirdparty_11.1.1 to
ODI_HOME/lib:

■ commons-codec-1.3.jar

■ xstream-1.1.3.jar

3. Copy the following file from
ORACLE_HOME/modules/oracle.odl_11.1.1 to
ODI_HOME/lib:

■ ojdl.jar

4. Copy the following file from
ORACLE_HOME/modules/oracle.jps_11.1.1 to
ODI_HOME/lib:

■ jps-api.jar

5. Copy the following file from
ORACLE_HOME/modules/oracle.dms_11.1.1 to
ODI_HOME/lib:

■ dms.jar

Password Oracle Data Integrator Work repository account password

Connection String jdbc:oracle:thin:ip_address:port_number:db_service_name

Table 34–2 (Cont.) ODI_Work external data source values

Property Value

Creating the Oracle BAM Target

34-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. Copy the following file from
ORACLE_HOME/modules to
ODI_HOME/lib:

■ org.jaxen_1.1.1.jar

7. Copy the following file from
ORACLE_HOME/bam/config to
ODI_HOME/lib:

■ bam.odi.logging.properties

8. Copy the following file from
ORACLE_HOME/bam/ODI/config to
ODI_HOME/lib/config:

■ BAMCommonConfig.xml

9. Copy all of the XML files from
ORACLE_HOME/bam/odi/knowledge_modules to
ODI_HOME/impexp.

Generate the Oracle WebLogic Server Client JAR
1. Generate a wlfullclient.jar file using the Oracle WebLogic Server

JarBuilder tool. See "Using the WebLogic JARBuilder tool" in Oracle Fusion
Middleware Programming Stand-alone Clients for Oracle WebLogic Server for
instructions.

2. Create a subdirectory called ODI_HOME/oracledi/lib/weblogic.

3. Copy wlfullclient.jar into ODI_HOME/oracledi/lib/weblogic.

Edit the BAMCommonConfig.xml File
1. Edit the ODI_HOME/oracledi/lib/config/BAMCommonConfig.xml file, and

update the entries for ADCServerName and ADCServerPort to the hostname
and port number values where Oracle BAM Server is running.

2. Shut down and restart the Oracle Data Integrator Topology Manager and Designer
applications to load the changes you made to the BAMCommonConfig.xml file.

34.3 Creating the Oracle BAM Target
This section details the steps for creating an Oracle BAM target using the Oracle Data
Integrator Topology Manager.

For more information about using Oracle Data Integrator, see the Oracle Data
Integrator documentation located on the Oracle Technology Network web site at:

http://www.oracle.com/technology/products/oracle-data-integrator/10.1.3
/htdocs/1013_support.html

34.3.1 How to Create the Oracle BAM Target

To create an Oracle BAM Target in Oracle Data Integrator:
1. Open the Oracle Data Integrator Topology Manager.

2. Go to Physical Architecture > Technologies > Oracle BAM.

3. Right-click and choose Insert Data Server.

Using Oracle BAM Knowledge Modules

Using Oracle Data Integrator With Oracle BAM 34-7

4. Configure the following in the Data Server Definition tab:

■ Name: Oracle BAM target name

■ Server (Data Server): leave blank

■ User: Oracle BAM Administrator user name

■ Password: Oracle BAM Administrator password

5. Configure the following in the JDBC tab:

■ JDBC Driver: any_text_will_do

■ JDBC URL: instance1:host_name:port_number

The host_name value must be the same as the ADCServerName property
value in the BAMCommonConfig.xml file, and the port_number value must
be the same as the ADCServerPort property value in the
BAMCommonConfig.xml file.

■ Do not use the Test button in this dialog box, because it is not functional for
the integration between Oracle BAM and Oracle Data Integrator. After you
successfully reverse engineer the data objects in the Oracle BAM model, then
you can verify that the connection information is correct.

6. Click OK.

7. Configure the following in the Physical Data Server dialog box:

■ In the Physical Schema Definition tab:

– Modify the Local Object Mask to be %OBJECT.

■ In the Context tab:

– Create a new row which automatically introduces a row with the Context
name Global.

For that row, the Logical Schema value is initially <Undefined>. You
must select the <Undefined> text and replace it with the display name
for Oracle BAM.

– Type in a display name for the Oracle BAM target such as BAM_TARGET as
the name of a new Logical Schema. Oracle Data Integrator automatically
creates the logical schema.

■ Click OK.

34.4 Using Oracle BAM Knowledge Modules
Knowledge modules are generic code templates containing the sequence of commands
necessary for a data integration pattern. A knowledge module contains the knowledge
required by Oracle Data Integrator to perform a specific set of tasks against a specific
storage technology. It defines methods related to a given storage technology and it
enables processes generation for that technology.

There are different knowledge modules for loading (from the source data store),
integration (to target data store), checking, reverse-engineering, journalizing and
creating services. All knowledge modules work by generating code to be executed at
runtime by knowledge module Interpreter.

There is a set of knowledge modules specific to Oracle BAM functionality within
Oracle Data Integrator. These knowledge modules are installed in the ODI_
HOME/oracledi/impexp directory when the integration files are installed. To use

Using Oracle BAM Knowledge Modules

34-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

these Oracle BAM-specific knowledge modules, you must import them into the
appropriate projects in the Oracle Data Integrator Designer application. Table 34–3
describes these Oracle BAM-specific knowledge modules.

Table 34–3 Oracle BAM Knowledge Modules

Knowledge Module Description

CKM Get Oracle BAM Metadata A check knowledge module that is used internally before
integration knowledge module steps. This check knowledge
module is the default knowledge module in Oracle BAM
technology, and it is automatically acquired by Oracle Data
Integrator. This check knowledge module creates two arrays
which are later used by Oracle BAM-specific integration
knowledge modules in the same Java session.

This knowledge module has no options.

IKM SQL to Oracle BAM
(delete)

An integration knowledge module that can be used to
delete rows from Oracle BAM data objects by sending
matching key column values. It has the following options:

COMMIT_SIZE

BATCH_SIZE

DATETIME_PATTERN

KEY_CONDITION

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

IKM SQL to Oracle BAM (insert) An integration knowledge module that can be used to insert
rows to Oracle BAM data objects from heterogeneous data
sources. It has the following options:

BATCH_SIZE

COMMIT_SIZE

CREATE_TARG_TABLE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

Using Oracle BAM Knowledge Modules

Using Oracle Data Integrator With Oracle BAM 34-9

IKM SQL to Oracle BAM
(looksert natural)

An integration knowledge module that can be used to insert
rows into Oracle BAM data objects from heterogeneous data
sources. It differs from IKM SQL to Oracle BAM (insert) by
also inserting new entries in dimension tables (that is, the
data object to which the lookup column refers) if it does not
yet exist.

Looksert integration knowledge modules do an insert into
an Oracle BAM target based on a lookup field. Typically,
this is used to load a fact table in a star schema. (A star
schema is characterized by one or more very large fact
tables that contain the primary information in the data
warehouse, and some much smaller dimension tables (or
lookup tables), each of which contains information about
the entries for a particular attribute in the fact table.)

This integration knowledge module is provided for better
performance. It has the following options:

BATCH_SIZE

COMMIT_SIZE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

NON_KEY_MATCHING

IKM SQL to Oracle BAM
(looksert surrogate)

An integration knowledge module that can be used to insert
rows into Oracle BAM data objects from heterogeneous data
sources. It is similar to IKM SQL to Oracle BAM (looksert
natural) and differs in using a surrogate key instead of a
natural key between a fact data object and dimension object.

Looksert integration knowledge modules do an insert into
an Oracle BAM data object based on a lookup field.
Typically, this used to load a fact table in a star schema. (A
star schema is characterized by one or more very large fact
tables that contain the primary information in the data
warehouse, and some much smaller dimension tables (or
lookup tables), each of which contains information about
the entries for a particular attribute in the fact table.)

If the value for a lookup field does not exist in the relevant
dimension table, the value is automatically inserted.

This integration knowledge module must be used with
LKM Get Source Metadata and CKM Get Oracle BAM
Metadata.

This knowledge module has the following options:

BATCH_SIZE

COMMIT_SIZE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

NON_KEY_MATCHING

Table 34–3 (Cont.) Oracle BAM Knowledge Modules

Knowledge Module Description

Using Oracle BAM Knowledge Modules

34-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

IKM SQL to Oracle BAM
(update)

An integration knowledge module that can be used to
update rows in Oracle BAM data objects from
heterogeneous data sources. It has the following options:

BATCH_SIZE

COMMIT_SIZE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

IKM SQL to Oracle BAM
(upsert)

An integration knowledge module that can be used to
merge (upsert) rows (that is, update a data object if
matching row exists or insert data object if a new row) to
Oracle BAM data objects from heterogeneous data sources.
It has the following options:

BATCH_SIZE

COMMIT_SIZE

DATETIME_PATTERN

LAST_BAM_TASK

LOCALE_COUNTRY

LOCALE_LANGUAGE

LOCALE_VARIANT

Note: During execution, the number of upsert
operations are reported in the No. of Updates field,
because the Oracle Data Integrator Operator user
interface does not have a No. of Upserts field.

LKM Get Source Metadata A loading knowledge module. This is not a traditional
loading knowledge module because it does not load any
data from the source to staging area. Instead it simply
gathers the metadata that is required by the integration
knowledge module IKM SQL to Oracle BAM (looksert
surrogate).

IKM ORACLE to BAM (looksert surrogate) performs the
task of loading directly from a SQL source into the Oracle
BAM target. In doing so, it uses the metadata provided by
LKM Get Source Metadata.

This knowledge module has no options.

Table 34–3 (Cont.) Oracle BAM Knowledge Modules

Knowledge Module Description

Using Oracle BAM Knowledge Modules

Using Oracle Data Integrator With Oracle BAM 34-11

Table 34–4 describes the parameters used in Oracle BAM knowledge modules.

LKM Oracle BAM to SQL A loading knowledge module that allows client applications
to load data from Oracle BAM.

If using an Oracle BAM loading knowledge module as a
source in an interface (for example LKM Oracle BAM to
SQL), the user must change the default execute on button
for each mapped field in the target to staging area. If left at
the default source, erroneous results may occur.
Technologies that do not allow for a staging area, such as
Oracle BAM, should not have transformations performed
on them.

It has the following options:

DELETE_TEMPORARY_OBJECTS

DROP_PURGE

LAST_BAM_TASK

RKM Oracle BAM A customized reverse knowledge module for Oracle BAM.
It has the following options:

GET_COLUMNS

GET_FOREIGN_KEYS

GET_INDEXES

GET_PRIMARY_KEYS

LOG_FILE_NAME

USE_LOG

Table 34–4 Oracle BAM Knowledge Module Parameters

Parameter Description

BATCH_SIZE The maximum number of records which are sent as a batch
across from the client to the server.

The batch size that is used to send batches from the client to the
server. As larger machines are used with bigger Java Virtual
Machine sizes, this parameter can be increased to improve
performance.

Default value: 1024

COMMIT_SIZE The maximum number of records in a single transaction. The
default, 0, means commit all input records in one transaction. A
positive, nonzero, value denotes that the maximum number of
records to be committed at a time.

Negative values for this option are invalid.

Default value: 0

CREATE_TARG_TABLE Select this option to create the target data object on Oracle BAM
Server.

DATETIME_PATTERN This option and Locale specifications (for example, LOCALE_
LANGUAGE, LOCALE_COUNTRY, and LOCALE_VARIANT)
are used to construct a Java SimpleDateFormat object which is
used in parsing the date and time data strings.

See Section 33.2.2, "How to Configure DateTime Specification"
for information about SimpleDateFormat.

Table 34–3 (Cont.) Oracle BAM Knowledge Modules

Knowledge Module Description

Using Oracle BAM Knowledge Modules

34-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

DELETE_TEMPORARY_
OBJECTS

Set this option to NO to retain temporary objects after integration.
This option is useful for debugging.

DROP_PURGE Set this option to YES to not only drop the work table, but purge
it as well. When a table is dropped, it is recoverable in the
database's recycle bin. When the table is dropped and purged, it
is permanently deleted.

GET_COLUMNS Set to Yes to reverse engineer the columns.

GET_FOREIGN_KEYS Set to Yes to reverse engineer the foreign keys.

GET_INDEXES Set to Yes to reverse engineer the indexes.

GET_PRIMARY_KEYS Set to Yes to reverse engineer the primary keys.

KEY_CONDITION Set this option to match one or more corresponding rows from
source to target. Use the following operators: *, =, !=, <, <=, >,
>=. The match value (that is, the where clause value) should be
supplied as the mapping value for the target data store’s key
field in the Diagram tab for the interface in Oracle Data
Integrator Designer.

Note that when the * operator is chosen as the KEY_
CONDITION option value, all rows are deleted from the target
data store, regardless of its key field's mapping value.

LAST_BAM_TASK Use this option to manage the life cycle of the Oracle BAM JDBC
connection. If this task is the last Oracle BAM task in the work
flow, it closes the JDBC connection; otherwise, it leaves the
connection open.

LOCALE_COUNTRY The country option is a valid ISO Country Code. These codes are
the upper-case, two-letter codes as defined by ISO-3166.

This option plus LOCALE_LANGUAGE and LOCALE_VARIANT are
used to construct a Java Locale object.

LOCALE_LANGUAGE The language option is a valid ISO Language Code. These codes
are the lower-case, two-letter codes as defined by ISO-639.

This option plus LOCALE_COUNTRY and LOCALE_VARIANT are
used to construct a Java Locale object.

LOCALE_VARIANT The variant option is a vendor or browser-specific code. For
example, use WIN for Windows, MAC for Macintosh, and POSIX
for POSIX. Where there are two variants, separate them with an
underscore, and put the most important one first. For example, a
Traditional Spanish collation might construct a locale with
parameters for language, country and variant as: es, ES,
Traditional_WIN.

This option plus LOCALE_LANGUAGE and LOCALE_
COUNTRY are used to construct a Java Locale object.

LOG_FILE_NAME Specify when USE_LOG is set to Yes. Specify the path and file
name of the log. Be sure to set this property value properly (that
is, choose a location where user has write permissions) before
running the reverse engineering.

Table 34–4 (Cont.) Oracle BAM Knowledge Module Parameters

Parameter Description

Updating the Oracle Data Integrator External Data Source Definition

Using Oracle Data Integrator With Oracle BAM 34-13

34.5 Updating the Oracle Data Integrator External Data Source Definition
When you install the Oracle BAM integration files for Oracle Data Integrator with a
correctly populated properties file, you are not required to do any other configuration
in Oracle BAM. Two external data source (EDS) definitions are created during the
installation process, and they are populated with the correct values to connect Oracle
BAM Server with the ODI_Master and ODI_Work repositories in Oracle Data
Integrator. These Oracle Data Integrator-specific EDS definitions must never be
deleted.

There are cases in which you must update the Oracle Data Integrator EDS definitions:

■ If you change the Oracle Data Integrator login credentials, you must update the
Oracle Data Integrator EDS definitions in Oracle BAM Architect.

■ If the ODI_Master or ODI_Work repositories are moved to different hosts after the
initial installation, you must update the corresponding EDS definitions in Oracle
BAM Architect.

34.5.1 How to Update the Oracle Data Integrator External Data Source Definitions

To update the Oracle Data Integrator external data source definitions:
1. Open Oracle BAM Architect, and go to the External Data Sources page.

Figure 34–2 Opening External Data Source Page in Oracle BAM Architect

2. Select ODI_Master or ODI_Work, and click Edit.

NON_KEY_MATCHING Determines if the incoming non-key column values are to be
compared to the non-key column values in the dimension table.

If NON_KEY_MATCHING is set to true, if the incoming non-key
column values match those in the dimension table, the row is
inserted into the fact table (which is the target data store).
Otherwise, that row insert fails, which might even lead to the
entire transaction being rolled back (in case COMMIT_SIZE was
set to 0). A COMMIT_SIZE of 1 results in only this row being
rolled back and ignored, and all other row inserts progress as
usual.

If NON_KEY_MATCHING is set to false and lookup succeeds,
incoming non-key column values for the dimension table are
ignored.

USE_LOG Set to Yes if you want the reverse-engineering process log
details in a log file. Specify the log file location using the LOG_
FILE_NAME option.

Table 34–4 (Cont.) Oracle BAM Knowledge Module Parameters

Parameter Description

Launching Oracle Data Integrator Scenarios From Oracle BAM Alerts

34-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 34–3 Editing the ODI_Master External Data Source

3. Update the Login, Password, or Connection String parameters as needed, and
click Save.

34.6 Launching Oracle Data Integrator Scenarios From Oracle BAM
Alerts

Alerts created in Oracle BAM can launch Oracle Data Integrator scenarios when
specified conditions are met. See Section F.3.9, "Run an Oracle Data Integrator
Scenario" for more information.

35

Creating External Data Sources 35-1

35 Creating External Data Sources

This chapter contains the information needed to create and manage External Data
Sources (EDS).

This chapter contains the following topics:

■ Section 35.1, "Introduction to External Data Sources"

■ Section 35.2, "Creating External Data Sources"

35.1 Introduction to External Data Sources
An External Data Source (EDS) is a connection to an external database. An EDS
usually contains data that does not change very much or data that is too large to bring
into the Oracle BAM Active Data Cache (ADC).

The EDS definition in Oracle BAM acts as a pointer to the external data. For example,
looking up the customer name based on a customer code in a customer management
system. The customer name-code mapping is fairly static so that bringing that external
data into Oracle BAM is not required.

EDS definitions can be exported and imported using ICommand, but you cannot
import or edit the contents using ICommand or Oracle BAM Architect.

Passwords are entered in clear text. You cannot use DSNs (data source names).

To view the existing EDS:

■ Select External Data Sources from the Oracle BAM Architect function list.

Figure 35–1 Oracle BAM Architect Function List

35.2 Creating External Data Sources
Oracle BAM external data sources are created, edited, and deleted using Oracle BAM
Architect.

Creating External Data Sources

35-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

35.2.1 How to Create an External Data Source

To define an EDS:
1. Select External Data Sources from the Oracle BAM Architect function list.

2. Click Create.

3. Enter a name and a description for the EDS.

4. Enter Driver, for example, oracle.jdbc.driver.OracleDriver for Oracle.

5. Enter database user credentials in the Login and Password fields.

6. Enter Connection string/URL, for example

jdbc:oracle:thin:@db_host_name:db_port:db_instance

35.2.2 What You May Need to Know About Oracle Data Integrator External Data
Sources

If you install the integration files for Oracle BAM and Oracle Data Integrator, two EDS
definitions are created in Oracle BAM Architect: ODI_Master and ODI_Work. These
EDS definitions cannot be deleted from Oracle BAM Architect, and their configuration
should not be changed unless you are updating your Oracle Data Integrator host.

35.2.3 How to Edit an External Data Source

To edit an EDS:
1. Select External Data Sources from the Oracle BAM Architect function list.

2. Select the EDS to edit.

The EDS properties display.

3. Select Edit.

4. Make the changes and click Save.

35.2.4 How to Delete an External Data Source

To delete an EDS:
1. Select External Data Sources from the Oracle BAM Architect function list.

2. Select the EDS to delete.

The data source properties display.

3. Select Delete.

4. Click OK to confirm deletion of the data source.

The data source is deleted.

Note: If the EDS definitions ODI_Master and ODI_Work appear in
Oracle BAM Architect, do not delete them. These EDS definitions are
used by the integration between Oracle BAM and Oracle Data
Integrator

36

Using Oracle BAM Web Services 36-1

36Using Oracle BAM Web Services

The Oracle BAM web services are part of the Oracle BAM technologies that feeds data
to the Oracle BAM Server. This chapter provides information about using the Oracle
BAM web services.

This chapter contains the following topics:

■ Section 36.1, "Introduction to Oracle BAM Web Services"

■ Section 36.2, "Using the DataObjectOperations Web Services"

■ Section 36.3, "Using the DataObjectDefinition Web Service"

■ Section 36.4, "Using the ManualRuleFire Web Service"

■ Section 36.5, "Using the ICommand Web Service"

36.1 Introduction to Oracle BAM Web Services
The Oracle BAM web services allow users to build applications that publish data to
the Oracle BAM Server for use in real-time charts and dashboards. Any client that can
talk to standard web services can use these APIs to publish data to Oracle BAM. The
Oracle BAM web services interfaces allow integration of Oracle BAM with other
components such as Oracle BPEL Process Manager and Oracle Mediator, and they
facilitate SOA composite application development.

The data objects in the Oracle BAM Server are available using the Oracle BAM web
services. There are several other meta objects that are available using the ICommand
web service.

External web services can be called by an Oracle BAM alert rule. See Section 37.2,
"Creating Alert Rules" for more information.

Oracle BAM provides the following static untyped web service APIs:

■ DataObjectOperations10131 allows clients developed for Oracle BAM 10.1.3.x
servers to make web service calls to DataObjectOperations on Oracle BAM 11g
servers.

■ DataObjectOperationsByID allows developers to interact with data objects by
their ID (for example, _Call_Center).

Note: This option cannot be used for complex processing of
messages, performing lookups in Oracle BAM Active Data Cache to
augment the data, or initial bulk uploads to set up a star schema.

Using the DataObjectOperations Web Services

36-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ DataObjectOperationsByName allows developers to interact with data objects by
their display names (for example, Call Center).

■ DataObjectDefinition performs operations to get, create, delete, and update
definitions of Data Objects.

■ ManualRuleFire is used by other Oracle BAM services to launch rules created in
Oracle BAM Active Studio.

■ ICommand is a DOS command-line utility that provides a set of commands that
perform various operations on items in the Oracle BAM Server. The ICommand
web service exposes all of the ICommand functionality through a web service.

These services can be discovered within an Oracle BAM Server using a WSIL interface.

36.2 Using the DataObjectOperations Web Services
The DataObjectOperations web service allows users to manipulate the Data Objects in
the Oracle BAM Server by inserting, updating, deleting and upserting rows into the
Data Objects.

The following operations are supported by the DataObjectOperations web service
interfaces.

■ Batch performs batch operations on a data object. Batch is not supported for
DataObjectOperationsByName web service.

■ Delete removes a row from the data object.

■ Get fetches the details from a data object per the specifications in the XML
payload. Get is only available in DataObjectOperationsByName web service.

■ Insert adds a row to the data object.

■ Upsert inserts new data into an existing row in a data object if the row exists. If the
row does not exist a new row is created.

■ Update inserts new data into an existing row in a data object.

The request and response messages vary depending on the operation used. See
Section E.1, "DataObjectOperations10131," Section E.2,
"DataObjectOperationsByName," and Section E.3, "DataObjectOperationsByID" for
information about using the operations supported by each of the web services.

36.2.1 How to Use the DataObjectOperations Web Services
To use the DataObjectOperations web service, create a web service proxy in your
application in Oracle JDeveloper.

The Web Services Description Language (WSDL) files for the DataObjectOperations
web services are available at the following URLs on the system where Oracle BAM
web services are installed.

http://host_
name:7001/OracleBAMWS/Services/DataObject/DataObjectOperations.asmx?WSDL

http://host_name:7001/OracleBAMWS/WebServices/DataObjectOperationsByID?WSDL

http://host_name:7001/OracleBAMWS/WebServices/DataObjectOperationsByName?WSDL

Using the DataObjectDefinition Web Service

Using Oracle BAM Web Services 36-3

When the web service proxy is created, you see it in the Application Navigator under
the Application Sources folder in your project as shown in Figure 36–1.

Figure 36–1 DataObjectOperations Web service proxy in Application Sources

36.3 Using the DataObjectDefinition Web Service
The DataObjectDefinition web service allows a web service client to create, update,
delete, and get data object definitions.

The following operations are supported by DataObjectDefinition web service.

■ Create creates a data object. For more information see Section E.4.1, "Create."

■ Delete removes a data object from the server. For more information see
Section E.4.2, "Delete."

■ Get returns the definition of an existing data object. For more information see
Section E.4.3, "Get."

■ Update changes the definition of a data object. For more information see
Section E.4.4, "Update."

The request and response messages vary depending on the operation used. See
Section E.4, "DataObjectDefinition Operations" for more information.

36.3.1 How to Use the DataObjectDefinition Web Service
To use the DataObjectDefinition web service you create a web service proxy in your
application in Oracle JDeveloper.

The WSDL file for the DataObjectDefinition web service is available at the following
URL on the system where Oracle BAM web services are installed.

http://host_name:7001/OracleBAMWS/WebServices/DataObjectDefinition?WSDL

Note: The default port for Oracle BAM web services on the
Administration Server is 7001. On managed servers the default port
number is 9001.

Note: The default port for Oracle BAM web services on the
Administration Server is 7001. On managed servers the default port
number is 9001.

Using the ManualRuleFire Web Service

36-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

When the web service proxy is created, you see it in the Application Navigator under
the Application Sources folder in your project as shown in Figure 36–2.

Figure 36–2 DataObjectDefinition Web service proxy in Application Sources

36.4 Using the ManualRuleFire Web Service
The ManualRuleFire web service allows users to launch rules in the Oracle BAM
Server. FireRuleByName is the available operation. See Section E.5, "ManualRuleFire
Operations" for details.

36.4.1 How to Use the ManualRuleFire Web Service
To use the ManualRuleFire web service, you create a web service proxy in your
application in Oracle JDeveloper.

The WSDL file for the ManualRuleFire web service is available at the following URL
on the system where Oracle BAM web services are installed.

http://host_name:7001/OracleBAMWS/WebServices/ManualRuleFire?WSDL

When the web service proxy is created, you see it in the Application Navigator under
the Application Sources folder in your project.

36.5 Using the ICommand Web Service
ICommand is available as a web service for application developers who want to
interact with ICommand features over HTTP.

The ICommand web service includes most of the same features as the command-line
utility. For example, you can use it to:

■ Delete a data object

■ Import rows into a data object

■ Export a report

The key differences revolve around the fact that the web service cannot access files on
the remote system. Therefore, you cannot pass in a file name when using the import
command or the export command.

Note: The default port for Oracle BAM web services on the
Administration Server is 7001. On managed servers the default port
number is 9001.

Using the ICommand Web Service

Using Oracle BAM Web Services 36-5

Instead, you must pass in the import content inline. Similarly, you receive the
export content inline.

Commands other than import and export generally work the same as with the
command-line utility.

For more information about the commands and parameters provided by ICommand,
see Appendix G, "Oracle BAM ICommand Operations and File Formats."

The ICommand web service has a single method, called Batch. It takes a single input
parameter, which is a string containing a set of commands in the syntax described in
Section G.3, "Format of Command File." The return value is a string containing the
results of executing each command, in the log syntax described in Section G.4, "Format
of Log File."

36.5.1 How to Use the ICommand Web Service
The WSDL file for the ICommand web service is available on the system where Report
Server has been installed. It is available at the following URL:

http://host_name:7001/OracleBAMWS/WebServices/ICommand?WSDL

Example 36–1 Deleting a Data Object (Input)

<OracleBAMCommands>
<Delete type="dataobject" name="/test123"/>

</OracleBAMCommands>

Note: The default port for Oracle BAM web services on the
Administration Server is 7001. On managed servers the default port
number is 9001.

Using the ICommand Web Service

36-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

37

Creating Oracle BAM Alerts 37-1

37 Creating Oracle BAM Alerts

This chapter describes how to create alerts in Oracle BAM.

This chapter contains the following topics:

■ Section 37.1, "Introduction to Creating Alerts"

■ Section 37.2, "Creating Alert Rules"

■ Section 37.3, "Creating Alert Rules From Templates"

■ Section 37.4, "Creating Alert Rules With Messages"

■ Section 37.5, "Creating Complex Alerts"

■ Section 37.7, "Launching Alerts by Invoking Web Services"

37.1 Introduction to Creating Alerts
Alerts are launched by a set of specified events and conditions, known as a rule. Alerts
can be launched by data changing in a report or can be used to send a report to users
daily, hourly, or at set intervals. Events in an alert rule can be an amount of time, a
specific time, or a change in a specific report. Conditions restrict the alert rule to an
event occurring between two specific times or dates. As a result of events and
conditions, reports can be sent to users through email.

Alerts can be created in both the Oracle BAM Architect and Oracle BAM Active Studio
web applications.

Alerts are shown in the Alert Rules table. In Oracle BAM Active Studio the table
includes a Last Launched column that indicates the last time the alert rule was fired.
Each alert name is accompanied by an icon indicating its status as described in
Table 37–1.

Figure 37–1 Alert Rules Table in Oracle BAM Architect

Creating Alert Rules

37-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Note that inactive and expired alerts behave differently. An alert can be deactivated
only if it is running. This behavior is a benefit to users who do not want to receive
alerts for some time interval, but want to retain the ability to activate the alert at a
convenient time. Alerts that are not active, but still valid (displayed with the Normal
icon) can be activated again.

Those alerts that are expired have run for the specified condition and do not run again.
They cannot be activated to run again. However, if you want to reuse an expired alert,
double click the alert, update the definition to make it a valid rule, and save the alert
rule definition. The alert is reloaded and is ready to fire again.

37.2 Creating Alert Rules
A rule specifies the events and conditions under which an alert fires.

37.2.1 How to Create an Alert Rule
This section describes how to create Oracle BAM alert rules in Oracle BAM Architect.
The procedure is the same in Oracle BAM Active Studio.

To create a rule:
1. Select Alerts in the Oracle BAM Architect function list.

In Oracle BAM Active Studio, select the Alerts tab.

2. Click Create A New Alert.

Table 37–1 Alert Rule Icons

Icon Description

Normal indicates that the alert is active and fires under the
conditions specified in the rule.

Invalid indicates that an alert has become orphaned or broken
due to some error. This icon is displayed when an alert cannot be
loaded properly into the Event Engine. The rule might require
correction.

For example, when a report is deleted and an alert based on this
report still exists, that alert cannot be loaded properly.

This icon appears only when rules are loaded into the Event
Engine (on restarts). Alerts displayed with this icon do not fire
again until they are edited and corrected.

Expired means that the alert does not fire again. This icon is seen
in time based alerts which fire only one time, after the alert has
fired. However, these alerts can be edited and reused, resetting
the state to Normal.

Note: If any changes to the time or time zone are made on the Oracle
BAM Server system, the Oracle BAM Server application must be
restarted or time-based alerts misfire.

Note: An alert fires only if its triggering event conditions are met
from the point in time the alert is defined (or reenabled) and forward.
An alert does not fire if its conditions were met before it was defined,
or while it was disabled.

Creating Alert Rules

Creating Oracle BAM Alerts 37-3

The Rule Creation and Edit dialog box opens.

3. Click Create A Rule.

4. Enter a name for the rule.

5. Select an event that launches the alert.

See Section F.1, "Events" for descriptions of each event.

6. Click Next.

7. Select one or more conditions, if needed.

See Section F.2, "Conditions" for descriptions of each condition.

8. Select one or more actions. See Section F.3, "Actions" for descriptions of each
action.

9. In the rule expression, click each underlined item and specify a value to complete
the alert rule.

For example, click select report, and choose a report in the dialog box that opens.
Other values you define include user names receiving reports, dates and times,
time intervals, and filter expressions for a specific field. To continue adding
conditions or actions, click the last line in the expression and then select another
condition or action.

You can click the Back and Next buttons to go between the events page and the
page containing actions and conditions, and make changes to those parts of the
rule expression you have constructed.

10. You can click the Frequency Constraint button to set a limit to how often an alert
can launch.

The default frequency constraint for alerts is five seconds. Type a number and
select a time measurement such as seconds, minutes, or hours, and click OK. To
turn off the frequency constraint, uncheck the Constraint Enabled checkbox. For
more information about frequency constraint see Section F.4, "Frequency
Constraint."

11. Click Delete this expression to remove lines from the alert rule.

12. Click OK.

The alert rule is added to list and is active.

37.2.2 How to Activate Alerts
When you create an alert rule, it is automatically active. If you want an alert to be
temporarily inactive but you do not want to delete it, you can turn it off by deselecting
the Activate checkbox.

To change the activity status of an alert rule:
1. Select Alerts from the Oracle BAM Architect function list.

2. Select the Activate checkbox for the alert rule.

A checked box means the alert rule is active.

An unchecked box means the alert rule is inactive.

Selecting the Activate checkbox does not cause an alert to launch, it only enables the
rule so that if the specified event occurs, the alert launches.

Creating Alert Rules From Templates

37-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

An exclamation mark on the alert icon indicates it has launched and is not valid again,
or because items that it references are missing and it cannot launch.

37.2.3 How to Modify Alert Rules
When you modify alert rules created from a template, you can add new lines and
select conditions and actions the same as when you build alert rules without
templates.

To modify an alert rule:
1. Select the alert rule to edit.

2. Click Edit in the Alert Actions list.

The Rule Creation and Edit dialog box opens.

3. Make changes to the alert and click OK.

37.2.4 How to Delete an Alert

To delete an alert:
1. Select the alert to delete.

2. Click Delete in the Alert Actions list.

A dialog box opens to confirm alert deletion.

3. Click OK.

The alert is deleted.

37.3 Creating Alert Rules From Templates
Alert rule templates are a convenient preselected group of events and conditions based
on some common use cases.

37.3.1 How to Create Alert Rules From Templates

To create an alert rule from a template:
1. Click Create A New Alert.

The Create Alert Rule dialog box opens.

2. Click Create A Rule From A Template.

3. Enter a name for the alert rule.

4. Select a template from the list.

5. In the Rule Expression box, click each underlined item and specify a value to
complete the alert rule. For example, click select report, and choose a report in the
dialog box that opens. Other values you define include user names receiving
reports, dates and times, time intervals, and filter expressions for a specific field.

6. You can click Frequency Constraint to specify how often an alert can launch. The
default frequency constraint for alerts is five seconds. Enter a number and select a
time measurement such as seconds, minutes, or hours, and click OK.

Creating Alert Rules With Messages

Creating Oracle BAM Alerts 37-5

7. You can click Modify this rule to modify the rule without using the template. This
provides more options for creating rules.

8. Click OK.

The alert rule is added to list and is active.

37.4 Creating Alert Rules With Messages
You can create alert rules that send messages. The messages can contain information
such as report names, links to reports, and user names. Messages can also include
variables that are set when the alert is launched, such as the time that an event
occurred and the data that launched the event. To use data variables, the event must be
based on data.

37.4.1 How to Create an Alert Rule With a Message
You can create alert rules that send messages. The messages can contain information
such as report names, links to reports, and user names. Messages can also include
variables that are set when the alert is launched, such as the time that an event
occurred and the data that launched the event. To use data variables, the event must be
based on data.

To create an alert rule that includes a message:
1. Start building an alert rule.

2. Select the action Send a message via email.

3. Click create message in the rule expression.

The Alert Message dialog box opens.

4. Enter a subject in the Subject line.

5. Enter the message in the Message Text box.

6. Include special fields into the message.

Special fields are listed in the box in the lower left corner of the Alert Message
dialog box. The special fields listed change when reports are selected on the right
side of the dialog box.

To insert a special field into the message:

a. Select a special field from the list.

b. Click Insert into subject or Insert into text.

You can insert multiple values of the same type, for example, multiple links to
different reports.

■ Send Report Name inserts name of selected report.

■ Send Report Owner inserts owner name of selected report.

■ Send Report Link inserts link to selected report.

■ Changed Report Name inserts name of the changed report.

■ Changed Report Owner inserts Owner Name Of Changed Report.

■ Target User inserts user name of message recipient.

■ Date/Time Sent inserts date and time of message sent.

Creating Complex Alerts

37-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. Click OK.

37.5 Creating Complex Alerts
You can create nested rules with many actions and chained rules that launch other
rules.

You can chain rules by creating two types of rules:

■ A dependent rule that must be launched by another rule.

■ A rule with an action to launch a dependent rule.

37.5.1 How to Create a Dependent Rule

To create dependent rules:
1. Create a rule that includes the event When this rule is launched. No value is

required for this event.

2. Create a rule that includes the action Launch a rule or Launch rule if an action
fails. The Launch rule if action fails applies to any of the actions contained in the
rule.

3. Click select rule in the action.

The Select Dependent Rule dialog box opens.

4. Select a dependent rule. Only rules that include the When this rule is launched
event are displayed in the list.

5. Click OK.

To handle a failing action, add the action Launch rule if action fails. For example, if a
rule is supposed to send a message, and for some reason the message does not send,
you could launch another rule to notify you.

37.6 Using Alert History
This functionality is only available in Oracle BAM Active Studio.

37.6.1 How to View Alert History
You can view recent history of alert activity on the Alerts tab. The Alerts History list
displays the 25 most recent alerts launched.

In the case of email alerts, the Alerts History list only displays the alert if the user
logged in is an alert recipient. It is not listed in the Alerts History list--even if the user
is the creator of the alert--is not a recipient of the alert.

To view the alert history:
In the Alerts History list, you can view recently launched alerts, the user who created
the alerts, and the time and date that the alerts launched. Alerts that included report
links in them provide links to the report from the report history list.

37.6.2 How to Clear Alert History
When many alerts are actively launching and the alert history list becomes long, you
might want to clear your alert history list.

Launching Alerts by Invoking Web Services

Creating Oracle BAM Alerts 37-7

To clear the alert history:
1. On the Alerts tab, click Clear alert history.

A message is displayed to confirm to clear alert history.

2. Click OK.

The alert history list is deleted. New alerts launched after clearing appear in the
alert history list.

37.7 Launching Alerts by Invoking Web Services
You can use the alerts web service to manually launch alerts. For more information,
refer to:

http://host:http_port/OracleBAMWS/WebServices/ManualRuleFire?wsdl

You define the rule name using the format:

username.alertname

Note: Oracle BAM Active Studio URLs used in alerts and report
links contain a virtual directory using the product build number for
caching and performance purposes. This directory must be included
in links, and it is not recommended to edit these links. Links created
with a previous version of Oracle BAM do not work after a product
upgrade. The alert requires editing or the report shortcut must be
copied again.

Launching Alerts by Invoking Web Services

37-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

38

Using ICommand 38-1

38 Using ICommand

This chapter provides usage information for the ICommand command-line utility. It
contains the following topics:

■ Section 38.1, "Introduction to ICommand"

■ Section 38.2, "Executing ICommand"

■ Section 38.3, "Specifying the Command and Option Syntax"

■ Section 38.4, "Using Command-line-only Parameters"

■ Section 38.5, "Running ICommand Remotely"

38.1 Introduction to ICommand
ICommand is a command-line utility (and web service) that provides a set of
commands that perform various operations on items in the Active Data Cache. You
can use ICommand to export, import, rename, clear, and delete items from Active Data
Cache. The commands can be contained in an input XML file, or a single command
can be entered on the command line. Informational and error messages may be output
to either the command window or to an XML file.

For more information about using the ICommand web service, see Section 36.5, "Using
the ICommand Web Service."

For information about individual commands and their parameters see Appendix G,
"Oracle BAM ICommand Operations and File Formats."

38.2 Executing ICommand
ICommand can be executed using the ORACLE_HOME\bam\bin\icommand.bat file
on the Microsoft Windows platform and ORACLE_HOME\bam\bin\icommand.sh
shell script on UNIX platforms.

Just entering icommand on the command line provides the user with a summary of
the ICommand operations and parameters.

Before attempting to execute ICommand, the JAVA_HOME environment variable must
be set to point to the root directory of the supported version of Java Development Kit
(see the Oracle BAM support matrix on Oracle Technology Network web site for
supported JDK versions).

Specifying the Command and Option Syntax

38-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

38.3 Specifying the Command and Option Syntax
The basic structure of the ICommand command line entry is as follows:

icommand -username user_name -cmd command_name -name value -type value [-parameter
value]

All parameters given on the command line are in the following form:

-parameter value

The parameter portion is not case sensitive. If the value portion contains spaces or
other special characters, it must be enclosed in double quotation marks. For example

icommand -cmd export -name "/Samples/Call Center" -type dataobject
-file C:\CallCenter.xml

It is required to use quotation marks around report names and file names that contain
spaces and other special characters.

For some parameters, the value may be omitted. See Section G.2, "Detailed Operation
Descriptions," for information about individual parameter values.

38.3.1 How to Specify the Security Credentials
ICommand requires users to provide security credentials when running operations. If
no security credentials have been specified in the configuration file, ICommand
securely prompts for a user name and password.

To use default credentials, add the ICommand_Default_User_Name and
ICommand_Default_Password properties to the
ORACLE_HOME\bam\config\BAMICommandConfig.xml file. For example:

<ICommand_Default_User_Name>user_name</ICommand_Default_User_Name>
<ICommand_Default_Password>password</ICommand_Default_Password>

However, command line entries always override the properties specified in the
configuration file.

The user name and password for running ICommand operations can come from the
configuration file, command line prompts, or command line options as follows:

■ If the user name and password are only specified in the configuration file (that is,
-username parameter is not used in the command line), then the ICommand_
Default_User_Name and ICommand_Default_Password values in the
configuration file are used.

Note: When Oracle BAM is installed, ICommand looks for the
Oracle BAM Server on port 9001 by default. If the Oracle BAM Server
port number is changed from the default during the setup and
configuration of Oracle BAM, then the user must manually change the
port number from 9001 to the new port number in the file
BAMICommandConfig.xml.

The property to change is

<ADCServerPort>9001</ADCServerPort>

The BAMICommandConfig.xml file is located in ORACLE_
HOME\bam\config.

Specifying the Command and Option Syntax

Using ICommand 38-3

■ If only the user name is specified in the configuration file and the password is not,
then the user name value is used, and ICommand prompts the user for the
password at the command line.

■ If user name is specified on the command line, then that value is used, and
ICommand prompts the user for a password. The password prompt occurs
regardless of any properties specified in the configuration file. For example:

icommand -cmd export -name TestDO -file C:\TestDO.xml -username user_name

38.3.2 How to Specify the Command
On the command line, commands are specified by the value of the cmd parameter.
Options for the command are specified by additional parameters. For example

icommand -cmd export -name TestDO
-type dataobject -file C:\TestDO.xml

In an XML command file, commands are specified by the XML tag. Options for the
command are given as XML attribute values of the command tag, in the form
parametername=value.

Command names and parameter values (except for Active Data Cache item names) are
not case sensitive.

For information about individual commands and their parameters see Appendix G,
"Oracle BAM ICommand Operations and File Formats."

38.3.3 How to Specify Object Names
Whenever an object name is specified in a command, the following rules apply.

General rules
When specified on a command line, if the name contains spaces or characters that have
special meaning to DOS or UNIX, the name must be quoted according to the rules for
command lines.

When specified in an XML command file, if the name contains characters that have
special meaning within XML, the standard XML escaping must be used.

Data Objects
If the Data Object is not at the root, the full path name must be given, as in the
following example:

/MyFolder/MySubfolder/MyDataObject

If the Data Object is at the root, the leading slash (/) is optional. The following two
examples are equivalent:

/MyDataObject
MyDataObject

Data Object Folders
To specify a folder in Data Objects you must include the prefix
/public/DataObject/ at the beginning of the path to the folder.

/public/DataObject/MyFolder/MySubfolder

Specifying the Command and Option Syntax

38-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Reports and Report Folders
The full path name plus the appropriate prefix must be specified as in the following
examples.

For shared reports the /public/Report/ prefix must be included as shown here:

"/public/Report/Subfolder1/My Report"

For private reports the /private:user_name/Report/ prefix must be included:

"/private:jsmith/Report/Subfolder1/My Report"

The /private:user_name/ part of the prefix may be omitted if the user running
ICommand is the user that owns the report.

"Report/Subfolder1/My Report"

The path information without the public or private prefix is saved in the export
file.

Similarly, a report folder can be specified using the appropriate prefix.

/public/Report/Subfolder1

/private:jsmith/Report/Subfolder1

Alert Rules
Either the name of the Alert, or the full name of the Alert may be specified. The
following two examples are equivalent for Alerts if the user running ICommand is the
user that owns Alert1:

Alert1

/private:user_name/Rule/Alert1

If the user running ICommand is not the owner of Alert1, then only the second form
may be used.

All other object types
Specify the full name of the object.

38.3.4 How to Specify Multiple Parameter Targets
Instead of creating a separate command line for each Active Data Cache object type,
such as Dataobject, Folder, Report, and Rule, on which to execute a particular
command, ICommand enables you to pass parameter values to several object types in
the same command line.

For example:

icommand -cmd export -type all -report,rule,folder:owner 1
-dataobject,folder:permissions 1 -systemobjects 1 -file filename.xml

In this example, while exporting all of the objects in the system, the command passes
owner = 1 to the report, rule, and folder Active Data Cache object types. The command
also passes permissions = 1 to the dataobject and folder object types. The comma (,)
separates the object types and the parameter is listed after a colon (:).

Supplying multiple values in the example single command line gives the same results
as the following three commands:

Using Command-line-only Parameters

Using ICommand 38-5

icommand -cmd export -type report -owner 1 ...
icommand -cmd export -type rule -owner 1 ...
icommand -cmd export -type folder -owner 1 ...

38.4 Using Command-line-only Parameters
The following parameters can appear only on the command line:

■ Cmd

-cmd commandname

Optional parameter that specifies a single command to be executed. Any
parameters needed for the command must also be on the command line.

The Cmdfile and cmd parameters are mutually exclusive. Exactly one of them
must be present.

■ Cmdfile

-cmdfile file_name

Optional parameter that specifies the name of the file that contains commands to
be processed. Because this is an XML file, it would usually have the XML
extension, although that is not required.

The Cmdfile and cmd parameters are mutually exclusive. Exactly one of them
must be present.

■ Debug

-debug flag

Optional parameter that indicates whether extra debugging information is to be
output if there is an error. Any value other than 0 (zero), or the absence of any
value, indicates that debugging information is to be output. If this parameter is not
present, no debugging information is output.

■ Domain

-domain domain_name

Optional parameter that specifies the domain name to use to login to the Active
Data Cache (the name of the computer on which the Active Data Cache server is
running).

If this parameter is omitted, main is used, which means the server information is
obtained from the ADCServerName key in the ICommand.exe.config file.

If the reserved value ADCInProcServer is used, then ICommand directly
accesses the Active Data Cache database (which must be local on the same system
on which ICommand is running) rather than contacting the Active Data Cache
server. This option is necessary only when the Active Data Cache server is not
running; otherwise corruption of the database could occur. The information about
the location and structure of the Active Data Cache database is obtained from
various keys in the ICommand.exe.config file.

■ Logfile

-logfile file_name

Running ICommand Remotely

38-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Optional parameter that specifies the name of the file to which results and errors
are logged. If the file does not exist, it is created. If the file does exist, any contents
are overwritten. Because this is an XML file, it would usually have the XML
extension, although that is not required.

If this parameter is not present, results and errors are output to the console.

See Section G.4, "Format of Log File" for more information about the log file
format.

■ Logmode

-logmode mode

Optional parameter that indicates whether an existing log file is to be overwritten
or appended to. The possible values for this parameter are append or
overwrite. In either case, if the log file does not exist it is created.

If this parameter is not present, overwrite is assumed.

Note that because it is XML that is being added to the log file, if the append
option is used the XML produced may not be strictly legal, as there is no top level
root tag in the XML produced by successive appends (ICommand appends the
same tag each time it is run). It is left up to the user to handle this.

■ Username

-username user_name

Optional parameter that specifies the username that the command should run as.
There is no password parameter.

ICommand requires users to specify security credentials when running
commands. ICommand securely prompts for a user name and password. If the
-username parameter is specified on the command line, ICommand prompts the
user for the password only.

38.5 Running ICommand Remotely
You can run ICommand from a remote system (where Oracle BAM is installed) and
execute the commands on a server located remotely. To run ICommand remotely, add
the properties ServerName and ServerPort in ORACLE_
HOME\bam\config\BAMICommandConfig.xml, as shown below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<BAMICommand>
<ADCServerName>host_name</ADCServerName>
<ADCServerPort>7001</ADCServerPort>
<Communication_Protocol>t3</Communication_Protocol>
<SensorFactory>oracle.bam.common.statistics.noop.SensorFactoryImpl</SensorFactor

y>
<GenericSatelliteChannelName>invm:topic/oracle.bam.messaging.systemobjectnotific

ation</GenericSatelliteChannelName>
</BAMICommand>

The Oracle BAM version installed on the remote system should be same as the Oracle
BAM Server version (that is, both servers should be from the same label).

Part VII
Part VII Using Oracle User Messaging Service

This part describes how to use Oracle User Messaging Service.

This part contains the following chapters:

■ Chapter 39, "Oracle User Messaging Service"

■ Chapter 40, "Sending and Receiving Messages using the User Messaging Service
Java API"

■ Chapter 41, "Parlay X Web Services Multimedia Messaging API"

■ Chapter 42, "User Messaging Preferences"

Oracle User Messaging Service 39-1

39
Oracle User Messaging Service

This chapter describes Oracle User Messaging Service (UMS).

This chapter includes the following section:

■ Section 39.1, "User Messaging Service Overview"

39.1 User Messaging Service Overview
Oracle User Messaging Service enables two-way communication between users and
deployed applications. Key features include:

■ Support for a variety of messaging channels—Messages can be sent and received
through Email, IM (XMPP), SMS (SMPP), and Voice. Messages can also be
delivered to a user’s SOA/WebCenter Worklist.

■ Two-way Messaging—In addition to sending messages from applications to users
(referred to as outbound messaging), users can initiate messaging interactions
(inbound messaging). For example, a user can send an email or text message to a
specified address; the message is routed to the appropriate application which can
then respond to the user or invoke another process according to its business logic.

■ User Messaging Preferences—End users can use a web interface to define
preferences for how and when they receive messaging notifications. Applications
immediately become more flexible; rather than deciding whether to send to a
user’s email address or instant messaging client, the application can simply send
the message to the user, and let UMS route the message according to the user’s
preferences.

■ Robust Message Delivery—UMS keeps track of delivery status information
provided by messaging gateways, and makes this information available to
applications so that they can respond to a failed delivery. Or, applications can
specify one or more failover addresses for a message in case delivery to the initial
address fails. Using the failover capability of UMS frees application developers
from having to implement complicated retry logic.

■ Pervasive integration within Fusion Middleware: UMS is integrated with other
Fusion Middleware components providing a single consolidated bi-directional
user messaging service.

– Integration with Oracle BPEL—Oracle JDeveloper includes pre-built BPEL
activities that enable messaging operations. Developers can add messaging
capability to a SOA composite application by dragging and dropping the
necessary activity into any workflow.

User Messaging Service Overview

39-2 Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite

– Integration with Oracle Human Workflow—UMS enables the Human
Workflow engine to send actionable messages to and receive replies from
users over email.

– Integration with Oracle BAM—Oracle BAM uses UMS to send email alerts in
response to monitoring events.

– Integration with Oracle WebCenter—UMS APIs are available to developers
building applications for Oracle WebCenter Spaces. The API is a realization of
Parlay X Web Services for Multimedia Messaging, version 2.1, a standard web
service interface for rich messaging.

39.1.1 Components
There are three types of components that make up Oracle User Messaging Service.
These components are standard Java EE applications, making it easy to deploy and
manage them using the standard tools provided with Oracle WebLogic Server.

■ UMS Server: The UMS Server orchestrates message flows between applications
and users. The server routes outbound messages from a client application to the
appropriate driver, and routes inbound messages to the correct client application.
The server also maintains a repository of previously sent messages in a persistent
store, and correlates delivery status information with previously sent messages.

■ UMS Drivers: UMS Drivers connect UMS to the messaging gateways, adapting
content to the various protocols supported by UMS. Drivers can be deployed or
undeployed independently of one another depending on what messaging
channels are available in a given installation.

■ UMS Client applications: UMS client applications implement the business logic of
sending and receiving messages. A UMS client application might be a SOA
application that sends messages as one step of a BPEL workflow, or a WebCenter
Spaces application that can send messages from a web interface.

In addition to the components that make up UMS itself, the other key entities in a
messaging environment are the external gateways required for each messaging
channel. These gateways are not a part of UMS or Oracle WebLogic Server. Since UMS
Drivers support widely-adopted messaging protocols, UMS can be integrated with
existing infrastructures such as a corporate email servers or XMPP (Jabber) servers.
Alternatively, UMS can connect to outside providers of SMS or text-to-speech services
that support SMPP or VoiceXML, respectively.

39.1.2 Architecture
The system architecture of Oracle User Messaging Service is shown in Figure 39–1.

For maximum flexibility, the components of UMS are separate Java EE applications.
This allows them to be deployed and managed independently of one another. For
example, a particular driver can be stopped and reconfigured without affecting
message delivery on all other channels.

Exchanges between UMS client applications and the UMS Server occur as
SOAP/HTTP web service requests for web service clients, or through Remote EJB and
JMS calls for BPEL messaging activities. Exchanges between the UMS Server and UMS
Drivers occur through JMS queues.

Oracle UMS server and drivers are installed alongside SOA or BAM in their respective
WebLogic Server instances. A WebCenter installation will include the necessary
libraries to act as a UMS client application, invoking a server deployed in a SOA
instance.

User Messaging Service Overview

Oracle User Messaging Service 39-3

Figure 39–1 UMS architecture

User Messaging Service Overview

39-4 Oracle Fusion Middleware Developer’s Guide for Oracle SOA Suite

40

Sending and Receiving Messages using the User Messaging Service Java API 40-1

40Sending and Receiving Messages using the
User Messaging Service Java API

This chapter describes how to use the User Messaging Service (UMS) API to develop
applications, and describes how to build two sample applications,
usermessagingsample.ear and usermessagingsample-echo.ear.

This chapter includes the following sections:

■ Section 40.1, "Overview of UMS Java API"

■ Section 40.2, "Creating a UMS Client Instance"

■ Section 40.3, "Sending a Message"

■ Section 40.4, "Receiving a Message"

■ Section 40.5, "Using the UMS Enterprise JavaBeans Client API to Build a Client
Application"

■ Section 40.6, "Using the UMS Enterprise JavaBeans Client API to Build a Client
Echo Application"

■ Section 40.7, "Creating a New Application Server Connection"

40.1 Overview of UMS Java API
The UMS Java API supports developing applications for Enterprise JavaBeans clients.
It consists of packages grouped as follows:

■ Common and Client Packages

– oracle.sdp.messaging

– oracle.sdp.messaging.filter: A MessageFilter is used by an
application to exercise greater control over what messages are delivered to it.

■ User Preferences Packages

– oracle.sdp.messaging.userprefs

– oracle.sdp.messaging.userprefs.tools

40.1.1 Creating a Java EE Application Module
There are two choices for a Java EE application module that uses the UMS Enterprise
JavaBeans Client API:

■ Enterprise JavaBeans Application Module - Stateless Session Bean - This is a back
end, core message-receiving or message-sending application.

Creating a UMS Client Instance

40-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Web Application Module - This is for applications that have an HTML or web
front end.

Whichever application module is selected will use the UMS Client API to register the
application with the UMS Server and subsequently invoke operations to send or
retrieve messages, status, and register or unregister access points. For a complete list of
operations refer to the UMS Javadoc.

The samples with source code are available on Oracle Technology Network (OTN).

40.2 Creating a UMS Client Instance
This section describes the requirements for creating a UMS Enterprise JavaBeans
Client. You can create a MessagingEJBClient instance by using the code in the
MessagingClientFactory class.

When creating an application using the UMS Enterprise JavaBeans Client, the
application must be packaged as an EAR file, and the
usermessagingclient-ejb.jar module bundled as an Enterprise JavaBeans
module.

40.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative
Approach

Example 40–1 shows code for creating a MessagingEJBClient instance using the
programmatic approach:

Example 40–1 Programmatic Approach to Creating a MessagingEJBClient Instance

ApplicationInfo appInfo = new ApplicationInfo();
appInfo.setApplicationName("SampleApp");
appInfo.setApplicationInstanceName("SampleAppInstance");
MessagingClient mClient =
 MessagingClientFactory.createMessagingEJBClient(appInfo);

You can also create a MessagingEJBClient instance using a declarative approach.
The declarative approach is normally the preferred approach since it allows you to
make changes at deployment time.

You must specify all the required Application Info properties as environment entries in
your Java EE module's descriptor (ejb-jar.xml or web.xml).

Example 40–2 shows code for creating a MessagingEJBClient instance using the
declarative approach:

Example 40–2 Declarative Approach to Creating a MessagingEJBClient Instance

MessagingClient mClient = MessagingClientFactory.createMessagingEJBClient();

40.2.2 API Reference for Class MessagingClientFactory
The API reference for class MessagingClientFactory can be accessed from the Javadoc.

40.3 Sending a Message
You can create a message by using the code in the MessageFactory class and Message
interface of oracle.sdp.messaging.

Sending a Message

Sending and Receiving Messages using the User Messaging Service Java API 40-3

The types of messages that can be created include plaintext messages, multipart
messages that can consist of text/plain and text/html parts, and messages that include
the creation of delivery channel (DeliveryType) specific payloads in a single message
for recipients with different delivery types.

40.3.1 Creating a Message
This section describes the various types of messages that can be created.

40.3.1.1 Creating a Plaintext Message
Example 40–3 shows how to create a plaintext message using the UMS Java API.

Example 40–3 Creating a Plaintext Message Using the UMS Java API

Message message = MessageFactory.getInstance().createTextMessage("This is a Plain
Text message.");
Message message = MessageFactory.getInstance().createMessage();
message.setContent("This is a Plain Text message.", "text/plain");

40.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML
Parts)
Example 40–4 shows how to create a multipart or alternative message using the UMS
Java API.

Example 40–4 Creating a Multipart or Alternative Message Using the UMS Java API

Message message = MessageFactory.getInstance().createMessage();
MimeMultipart mp = new MimeMultipart("alternative");
MimeBodyPart mp_partPlain = new MimeBodyPart();
mp_partPlain.setContent("This is a Plain Text part.", "text/plain");
mp.addBodyPart(mp_partPlain);
MimeBodyPart mp_partRich = new MimeBodyPart();
mp_partRich
 .setContent(
 "<html><head></head><body><i>This is an HTML
part.</i></body></html>",
 "text/html");
mp.addBodyPart(mp_partRich);
message.setContent(mp, "multipart/alternative");

40.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for
Recipients with Different Delivery Types
When sending a message to a destination address, there could be multiple channels
involved. Oracle UMS application developers are required to specify the correct
multipart format for each channel.

Example 40–5 shows how to create delivery channel (DeliveryType) specific payloads
in a single message for recipients with different delivery types.

Each top-level part of a multiple payload multipart/alternative message should
contain one or more values of this header. The value of this header should be the name
of a valid delivery type. Refer to the available values for DeliveryType in the enum
DeliveryType.

Sending a Message

40-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 40–5 Creating Delivery Channel-specific Payloads in a Single Message for
Recipients with Different Delivery Types

Message message = MessageFactory.getInstance().createMessage();

// create a top-level multipart/alternative MimeMultipart object.
MimeMultipart mp = new MimeMultipart("alternative");

// create first part for SMS payload content.
MimeBodyPart part1 = new MimeBodyPart();
part1.setContent("Text content for SMS.", "text/plain");

part1.setHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "SMS");

// add first part
mp.addBodyPart(part1);

// create second part for EMAIL and IM payload content.
MimeBodyPart part2 = new MimeBodyPart();
MimeMultipart part2_mp = new MimeMultipart("alternative");
MimeBodyPart part2_mp_partPlain = new MimeBodyPart();
part2_mp_partPlain.setContent("Text content for EMAIL/IM.", "text/plain");
part2_mp.addBodyPart(part2_mp_partPlain);
MimeBodyPart part2_mp_partRich = new MimeBodyPart();
part2_mp_partRich.setContent("<html><head></head><body><i>" + "HTML content for
EMAIL/IM." +
"</i></body></html>", "text/html");
part2_mp.addBodyPart(part2_mp_partRich);
part2.setContent(part2_mp, "multipart/alternative");

part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "EMAIL");
part2.addHeader(Message.HEADER_NS_PAYLOAD_PART_DELIVERY_TYPE, "IM");

// add second part
mp.addBodyPart(part2);

// set the content of the message
message.setContent(mp, "multipart/alternative");

// set the MultiplePayload flag to true
message.setMultiplePayload(true);

40.3.2 API Reference for Class MessageFactory
The API reference for class MessageFactory can be accessed from the Javadoc.

40.3.3 API Reference for Interface Message
The API reference for interface Message can be accessed from the Javadoc.

40.3.4 API Reference for Enum DeliveryType
The API reference for enum DeliveryType can be accessed from the Javadoc.

40.3.5 Addressing a Message
This section describes type of addresses and how to create address objects.

Sending a Message

Sending and Receiving Messages using the User Messaging Service Java API 40-5

40.3.5.1 Types of Addresses
There are two types of addresses, device addresses and user addresses. A device address
can be of various types, such as email addresses, instant messaging addresses, and
telephone numbers. User addresses are user IDs in a user repository.

40.3.5.2 Creating Address Objects
You can address senders and recipients of messages by using the class AddressFactory
to create Address objects defined by the Address interface.

40.3.5.2.1 Creating a Single Address Object Example 40–6 shows code for creating a
single Address object:

Example 40–6 Creating a Single Address Object

Address recipient =
AddressFactory.getInstance().createAddress("Email:john.doe@oracle.com");

40.3.5.2.2 Creating Multiple Address Objects in a Batch Example 40–7 shows code for
creating multiple Address objects in a batch:

Example 40–7 Creating Multiple Address Objects in a Batch

String[] recipientsStr = {"Email:john.doe@oracle.com",
"IM:jabber|john.doe@oracle.com"};
Address[] recipients = AddressFactory.getInstance().createAddress(recipientsStr);

40.3.5.2.3 Adding Sender or Recipient Addresses to a Message Example 40–8 shows code
for adding sender or recipient addresses to a message:

Example 40–8 Adding Sender or Recipient Addresses to a Message

Address sender =
AddressFactory.getInstance().createAddress("Email:john.doe@oracle.com");
Address recipient =
AddressFactory.getInstance().createAddress("Email:jane.doe@oracle.com");
message.addSender(sender);
message.addRecipient(recipient);

40.3.5.3 Creating a Recipient with a Failover Address
Example 40–9 shows code for creating a recipient with a failover address:

Example 40–9 Creating a Single Address Object with Failover

String recipientWithFailoverStr = "Email:john.doe@oracle.com,
IM:jabber|john.doe@oracle.com";
Address recipient =
AddressFactory.getInstance().createAddress(recipientWithFailoverStr);

40.3.5.4 API Reference for Class AddressFactory
The API reference for class AddressFactory can be accessed from the Javadoc.

40.3.5.5 API Reference for Interface Address
The API reference for interface Address can be accessed from the Javadoc.

Receiving a Message

40-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

40.3.6 Retrieving Message Status
You can use Oracle UMS to retrieve message status either synchronously or
asynchronously.

40.3.6.1 Synchronous Retrieval of Message Status
To perform a synchronous retrieval of current status, use the following flow from the
MessagingClient API:

String messageId = messagingClient.send(message);
Status[] statuses = messagingClient.getStatus(messageId);

or,

Status[] statuses = messagingClient.getStatus(messageId, address[]) --- where
 address[] is an array of one or more of the recipients set in the message.

40.3.6.2 Asynchronous Notification of Message Status
To retrieve an asynchronous notification of message status, perform the following:

1. Implement a status listener.

2. Register a status listener (declarative way)

3. Send a message (messagingClient.send(message);)

4. The application automatically gets the status through an onStatus(status)
callback of the status listener.

40.4 Receiving a Message
This section describes how an application receives messages. To receive a message you
must first register an access point. From the application perspective there are two
modes for receiving a message, synchronous and asynchronous.

40.4.1 Registering an Access Point
AccessPoint represents one or more device addresses to receive incoming messages.
An application that wants to receive incoming messages must register one or more
access points that represent the recipient addresses of the messages. The server
matches the recipient address of an incoming message against the set of registered
access points, and routes the incoming message to the application that registered the
matching access point.

You can use AccessPointFactory.createAccessPoint to create an access point
and MessagingClient.registerAccessPoint to register it for receiving
messages.

To register an SMS access point for the number 9000:

AccessPoint accessPointSingleAddress =
 AccessPointFactory.createAccessPoint(AccessPoint.AccessPointType.SINGLE_ADDRESS,
 DeliveryType.SMS, "9000");
messagingClient.registerAccessPoint(accessPointSingleAddress);

To register SMS access points in the number range 9000 to 9999:

AccessPoint accessPointRangeAddress =
 AccessPointFactory.createAccessPoint(AccessPoint.AccessPointType.NUMBER_RANGE,
 DeliveryType.SMS,"9000,9999");

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

Sending and Receiving Messages using the User Messaging Service Java API 40-7

messagingClient.registerAccessPoint(accessPointRangeAddress);

40.4.2 Synchronous Receiving
You can use the method MessagingClient.receive to synchronously receive
messages. This is a convenient polling method for light-weight clients that do not want
the configuration overhead associated with receiving messages asynchronously. This
method returns a list of messages that are immediately available in the application
inbound queue.

It performs a nonblocking call, so if no message is currently available, the method
returns null.

40.4.3 Asynchronous Receiving
Asynchronous receiving involves a number of tasks, including configuring MDBs and
writing a Stateless Session Bean message listener. See the sample application
usermessagingsample-echo for detailed instructions.

40.4.4 Message Filtering
A MessageFilter is used by an application to exercise greater control over what
messages are delivered to it. A MessageFilter contains a matching criterion and an
action. An application can register a series of message filters; they will be applied in
order against an incoming (received) message; if the criterion matches the message, the
action is taken. For example, an application can use MessageFilters to implement
necessary blacklists, by rejecting all messages from a given sender address.

You can use MessageFilterFactory.createMessageFilter to create a message
filter, and MessagingClient.registerMessageFilter to register it. The filter is
added to the end of the current filter chain for the application. When a message is
received, it is passed through the filter chain in order; if the message matches a filter's
criterion, the filter's action is taken immediately. If no filters match the message, the
default action is to accept the message and deliver it to the application.

For example, to reject a message with the subject "spam":

MessageFilter subjectFilter = MessageFilterFactory.createMessageFilter("spam",
 MessageFilter.FieldType.SUBJECT, null, MessageFilter.Action.REJECT);
messagingClient.registerMessageFilter(subjectFilter);

To reject messages from email address spammer@foo.com:

MessageFilter senderFilter =
 MessageFilterFactory.createBlacklistFilter("spammer@foo.com");
messagingClient.registerMessageFilter(senderFilter);

40.5 Using the UMS Enterprise JavaBeans Client API to Build a Client
Application

This section describes how to create an application called usermessagingsample, a web
client application that uses the UMS Enterprise JavaBeans Client API for both

Note: A single invocation does not guarantee retrieval of all
available messages. You must poll to ensure receiving all available
messages.

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

40-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

outbound messaging and the synchronous retrieval of message status.
usermessagingsample also supports inbound messaging. Once you have deployed and
configured usermessagingsample, you can use it to send a message to an email client.

Of the two application modules choices described in Section 40.1.1, "Creating a Java EE
Application Module," this sample focuses on the Web Application Module (WAR),
which defines some HTML forms and servlets. You can examine the code and
corresponding XML files for the web application module from the provided
usermessagingsample-src.zip source. The servlets uses the UMS Enterprise
JavaBeans Client API to create an UMS Enterprise JavaBeans Client instance (which in
turn registers the application's info) and sends messages.

This application, which is packaged as a Enterprise ARchive file (EAR) called
usermessagingsample.ear, has the following structure:

■ usermessagingsample.ear

■ META-INF

– application.xml -- Descriptor file for all of the application modules.

– weblogic-application.xml -- Descriptor file that contains the
import of the oracle.sdp.messaging shared library.

■ usermessagingclient-ejb.jar -- Contains the Message Enterprise
JavaBeans Client deployment descriptors.

* META-INF

– ejb-jar.xml

– weblogic-ejb-jar.xml

■ usermessagingsample-web.ear -- Contains the web-based front-end and
servlets.

* WEB-INF

– web.xml

– weblogic.xml

The prebuilt sample application, and the source code (usermessagingsample-src.zip)
are available on OTN.

40.5.1 Overview of Development
The following steps describe the process of building an application capable of
outbound messaging using usermessagingsample.ear as an example:

1. Section 40.5.2, "Configuring the Email Driver"

2. Section 40.5.3, "Using JDeveloper 11g to Build the Application"

3. Section 40.5.4, "Deploying the Application"

4. Section 40.5.5, "Testing the Application"

40.5.2 Configuring the Email Driver
To enable the Oracle User Messaging Service’s email driver to perform outbound
messaging and status retrieval, configure the email driver as follows:

■ Enter the name of the SMTP mail server as the value for the OutgoingMailServer
property.

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

Sending and Receiving Messages using the User Messaging Service Java API 40-9

40.5.3 Using JDeveloper 11g to Build the Application
This section describes using a Windows-based build of JDeveloper to build, compile,
and deploy usermessagingsample through the following steps:

40.5.3.1 Opening the Project
1. Unzip usermessagingsample-src.zip, to the JDEV_

HOME/communications/samples/ directory. This directory must be used for
the shared library references to be valid in the project.

2. Open usermessagingsample.jws (contained in the .zip file) in Oracle
JDeveloper.

Figure 40–1 Oracle JDeveloper Main Window

In the Oracle JDeveloper main window, the project appears.

Note: This sample application is generic and can support outbound
messaging through other channels when the appropriate messaging
drivers are deployed and configured.

Note: If you choose to use a different directory, you must update the
oracle.sdp.messaging library source path to JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar.

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

40-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 40–2 Oracle JDeveloper Main Window

3. Verify that the build dependencies for the sample application have been satisfied
by checking that the following library has been added to the web module.

■ Library: oracle.sdp.messaging, Classpath: JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar. This is the Java library used by UMS and applications
that use UMS to send and receive messages.

1. In the Application Navigator, right-click web module
usermessagingsample-web, and select Project Properties.

2. In the left pane, select Libraries and Classpath.

Figure 40–3 Verifying Libraries

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

Sending and Receiving Messages using the User Messaging Service Java API 40-11

3. Click OK.

4. Verify that the usermessagingclient-ejb project exists in the application. This is an
Enterprise JavaBeans module that packages the messaging client beans used by
UMS applications. The module allows the application to connect with the UMS
server.

5. Explore the Java files under the usermessagingsample-web project to see how the
messaging client APIs are used to send messages, get statuses, and synchronously
receive messages. The application info that is registered with the UMS Server is
specified programmatically in SampleUtils.java in the project
(Example 40–10).

Example 40–10 Application Information

 ApplicationInfo appInfo = new ApplicationInfo();
 appInfo.setApplicationName(SampleConstants.APP_NAME);
 appInfo.setApplicationInstanceName(SampleConstants.APP_INSTANCE_NAME);
 appInfo.setSecurityPrincipal(request.getUserPrincipal().getName());

40.5.4 Deploying the Application
Perform the following steps to deploy the application:

1. Create an Application Server Connection by right-clicking the application in the
navigation pane and selecting New. Follow the instructions in Section 40.7,
"Creating a New Application Server Connection."

2. Deploy the application by selecting the usermessagingsample application,
Deploy, usermessagingsample, to, and SOA_server (Figure 40–4).

Figure 40–4 Deploying the Project

3. Verify that the message Build Successful appears in the log.

4. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample, you must configure any additional drivers in
Oracle User Messaging Service and optionally configure a default device for the
user receiving the message in User Messaging Preferences.

Note: Refer to Oracle Fusion Middleware Administrator's Guide for
Oracle SOA Suite for more information.

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

40-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

40.5.5 Testing the Application
Once usermessagingsample has been deployed to a running instance of Oracle
WebLogic Server, perform the following:

1. Launch a web browser and enter the address of the sample application as follows:
http://host:http-port/usermessagingsample/. For example, enter
http://localhost:7001/usermessagingsample/ into the browser’s
navigation bar.

When prompted, enter login credentials. For example, username weblogic. The
browser page for testing messaging samples appears (Figure 40–5).

Figure 40–5 Testing the Sample Application

2. Click Send sample message. The Send Message page appears (Figure 40–6).

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

Sending and Receiving Messages using the User Messaging Service Java API 40-13

Figure 40–6 Addressing the Test Message

3. As an optional step, enter the sender address in the following format:

Email:sender_address.

For example, enter Email:sender@oracle.com.

4. Enter one or more recipient addresses. For example, enter
Email:recipient@oracle.com. Enter multiple addresses as a
comma-separated list as follows:

Email:recipient_address1, Email:recipient_address2.

If you have configured user messaging preferences, you can address the message
simply to User:username. For example, User:weblogic.

5. As an optional step, enter a subject line or content for the email.

6. Click Send. The Message Status page appears, showing the progress of transaction
(Message received by Messaging engine for processing in Figure 40–7).

Using the UMS Enterprise JavaBeans Client API to Build a Client Application

40-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 40–7 Message Status

7. Click Refresh to update the status. When the email message has been delivered to
the email server, the Status Content field displays Outbound message delivery to
remote gateway succeeded., as illustrated in Figure 40–8.

Figure 40–8 Checking the Message Status

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service Java API 40-15

40.6 Using the UMS Enterprise JavaBeans Client API to Build a Client
Echo Application

This section describes how to create an application called usermessagingsample-echo,
a demo client application that uses the UMS Enterprise JavaBeans Client API to
asynchronously receive messages from an email address and echo a reply back to the
sender.

This application, which is packaged as a Enterprise Archive file (EAR) called
usermessagingsample-echo.ear, has the following structure:

■ usermessagingsample-echo.ear

■ META-INF

– application.xml -- Descriptor file for all of the application modules.

– weblogic-application.xml -- Descriptor file that contains the
import of the oracle.sdp.messaging shared library.

■ usermessagingclient-ejb.jar -- Contains the Message Enterprise
JavaBeans Client deployment descriptors.

* META-INF

– ejb-jar.xml

– weblogic-ejb-jar.xml

■ usermessagingsample-echo-ejb.jar -- Contains the application session
beans (ClientSenderBean, ClientReceiverBean) that process a received message
and return an echo response.

* META-INF

– ejb-jar.xml

– weblogic-ejb-jar.xml

■ usermessagingsample-echo-web.war -- Contains the web-based
front-end and servlets.

* WEB-INF

– web.xml

– weblogic.xml

The prebuilt sample application, and the source code
(usermessagingsample-echo-src.zip) are available on OTN.

40.6.1 Overview of Development
The following steps describe the process of building an application capable of
asynchronous inbound and outbound messaging using
usermessagingsample-echo.ear as an example:

1. Section 40.6.2, "Configuring the Email Driver"

2. Section 40.6.3, "Using JDeveloper 11g to Build the Application"

3. Section 40.6.4, "Deploying the Application"

4. Section 40.6.5, "Testing the Application"

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

40-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

40.6.2 Configuring the Email Driver
To enable the Oracle User Messaging Service’s email driver to perform inbound and
outbound messaging and status retrieval, configure the email driver as follows:

■ Enter the name of the SMTP mail server as the value for the OutgoingMailServer
property.

■ Enter the name of the IMAP4/POP3 mail server as the value for the
IncomingMailServer property. Also, configure the incoming user name, and
password.

40.6.3 Using JDeveloper 11g to Build the Application
This section describes using a Windows-based build of JDeveloper to build, compile,
and deploy usermessagingsample-echo through the following steps:

40.6.3.1 Opening the Project
1. Unzip usermessagingsample.echo-src.zip, to the JDEV_

HOME/communications/
samples/ directory. This directory must be used for the shared library references
to be valid in the project.

2. Open usermessagingsample-echo.jws (contained in the .zip file) in Oracle
JDeveloper (Figure 40–9).

Note: This sample application is generic and can support inbound
and outbound messaging through other channels when the
appropriate messaging drivers are deployed and configured.

Note: If you choose to use a different directory, you must update the
oracle.sdp.messaging library source path to JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar.

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service Java API 40-17

Figure 40–9 Opening the Project

In the Oracle JDeveloper main window the project appears (Figure 40–10).

Figure 40–10 Oracle JDeveloper Main Window

3. Verify that the build dependencies for the sample application have been satisfied
by checking that the following library has been added to the
usermessagingsample-echo-web and usermessagingsample-echo-ejb
modules.

■ Library: oracle.sdp.messaging, Classpath: JDEV_HOME/
communications/modules/oracle.sdp.messaging_11.1.1/
sdpmessaging.jar. This is the Java library used by UMS and applications
that use UMS to send and receive messages.

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

40-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Perform the following steps for each module:

1. In the Application Navigator, right-click the module and select Project
Properties.

2. In the left pane, select Libraries and Classpath (Figure 40–11).

Figure 40–11 Verifying Libraries

3. Click OK.

4. Verify that the usermessagingclient-ejb project exists in the application. This is an
Enterprise JavaBeans module that packages the messaging client beans used by
UMS applications. The module allows the application to connect with the UMS
server.

5. Explore the Java files under the usermessagingsample-echo-ejb project to see how
the messaging client APIs are used to asynchronously receive messages
(ClientReceiverBean), and send messages (ClientSenderBean).

6. Explore the Java files under the usermessagingsample-echo-web project to see
how the messaging client APIs are used to register and unregister access points.

7. Note that the application info that is registered with the UMS Server is specified
declaratively in the usermessagingclient-ejb project’s ejb-jar.xml file.
(Example 40–11).

Example 40–11 Application Information

 <env-entry>
 <env-entry-name>sdpm/ApplicationName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>UMSEchoApp</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>sdpm/ApplicationInstanceName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>UMSEchoAppInstance</env-entry-value>

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service Java API 40-19

 </env-entry>

 <env-entry>
 <env-entry-name>sdpm/ReceivingQueuesInfo</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>OraSDPM/QueueConnectionFactory:OraSDPM/Queues/OraSDPMAppDefRcvQ1<
/env-entry-value>
 </env-entry>

 <env-entry>
 <env-entry-name>
 sdpm/MessageListenerSessionBeanJNDIName
 </env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 ejb/umsEchoApp/ClientReceiverLocal</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>
 sdpm/MessageListenerSessionBeanHomeClassName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 oracle.sdp.messaging.sample.ejbApp.ClientReceiverHomeLocal
 </env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>
 sdpm/StatusListenerSessionBeanJNDIName
 </env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>ejb/umsEchoApp/ClientReceiverLocal</env-entry-value>
 </env-entry>
 <env-entry>

<env-entry-name>sdpm/StatusListenerSessionBeanHomeClassName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>

<env-entry-value>oracle.sdp.messaging.sample.ejbApp.ClientReceiverHomeLocal</env-e
ntry-value>
 </env-entry>

8. Note that the Application Name (UMSEchoApp) and Application Instance Name
(UMSEchoAppInstance) are also used in the Message Selector for the
MessageDispatcherBean MDB, which is used for asynchronous receiving of
messages and statuses placed in the application receiving queue (Example 40–12).

Example 40–12 Application Information

<activation-config-property>
 <activation-config-property-name>
 messageSelector
 </activation-config-property-name>
 <activation-config-property-value>
 appName='UMSEchoApp' or sessionName='UMSEchoApp-UMSEchoAppInstance'
 </activation-config-property-value>
</activation-config-property>

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

40-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

40.6.4 Deploying the Application
Perform the following steps to deploy the application:

1. Create an Application Server Connection by right-clicking the application in the
navigation pane and selecting New. Follow the instructions in Section 40.7,
"Creating a New Application Server Connection."

2. Deploy the application by selecting the usermessagingsample-echo application,
Deploy, usermessagingsample-echo, to, and SOA_server (Figure 40–12).

Figure 40–12 Deploying the Project

3. Verify that the message Build Successful appears in the log.

4. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in
Oracle User Messaging Service and optionally configure a default device for the
user receiving the message in User Messaging Preferences.

40.6.5 Testing the Application
Once usermessagingsample-echo has been deployed to a running instance of Oracle
WebLogic Server, perform the following:

1. Launch a web browser and enter the address of the sample application as follows:
http://host:http-port/usermessagingsample-echo/. For example,
enter http://localhost:7001/usermessagingsample-echo/ into the
browser’s navigation bar.

When prompted, enter login credentials. For example, username weblogic. The
browser page for testing messaging samples appears (Figure 40–13).

Note: If you chose a different Application Name and Application
Instance Name for your own application, remember to update this
message selector. Asynchronous receiving does not work otherwise.

Note: Refer to Oracle Fusion Middleware Administrator's Guide for
Oracle SOA Suite for more information.

Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application

Sending and Receiving Messages using the User Messaging Service Java API 40-21

Figure 40–13 Testing the Sample Application

2. Click Register/Unregister Access Points. The Access Point Registration page
appears (Figure 40–14).

Figure 40–14 Registering an Access Point

Creating a New Application Server Connection

40-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. Enter the access point address in the following format:

EMAIL:server_address.

For example, enter EMAIL:myserver@example.com.

4. Select the Action Register and Click Submit. The registration status page appears,
showing "Registered" in Figure 40–15).

Figure 40–15 Access Point Registration Status

5. Send a message from your messaging client (for email, your email client) to the
address you just registered as an access point in the previous step.

If the UMS messaging driver for that channel is configured correctly, you should
expect to receive an echo message back from the usermessagingsample-echo
application.

40.7 Creating a New Application Server Connection
Perform the following steps to create a new Application Server Connection.

1. Create a new Application Server Connection by right-clicking the project and
selecting New, Connections, and Application Server Connection (Figure 40–16).

Creating a New Application Server Connection

Sending and Receiving Messages using the User Messaging Service Java API 40-23

Figure 40–16 New Application Server Connection

2. Name the connection SOA_server and click Next (Figure 40–17).

3. Select WebLogic 10.3 as the Connection Type.

Figure 40–17 New Application Server Connection

4. Enter the authentication information. A typical value for user name is weblogic.

5. In the Connection dialog, enter the hostname, port, and SSL port for the SOA
admin server, and enter the name of the domain for WLS Domain.

6. Click Next.

Creating a New Application Server Connection

40-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. In the Test dialog, click Test Connection.

8. Verify that the message Success! appears.

The Application Server Connection has been created.

Parlay X Web Services Multimedia Messaging API 41-1

41
Parlay X Web Services Multimedia

Messaging API

This chapter describes the Parlay X Multimedia Messaging Web Service that is
available with Oracle User Messaging Service and how to use the Parlay X Web
Services Multimedia Messaging API to send and receive messages through Oracle
User Messaging Service.

This chapter includes the following sections:

■ Section 41.1, "Overview of Parlay X Messaging Operations"

■ Section 41.2, "Send Message Interface"

■ Section 41.3, "Receive Message Interface"

■ Section 41.4, "Oracle Extension to Parlay X Messaging"

■ Section 41.5, "Parlay X Messaging Client API and Client Proxy Packages"

■ Section 41.6, "Sample Chat Application with Parlay X APIs"

41.1 Overview of Parlay X Messaging Operations
The following sections describe the semantics of each of the supported operations
along with implementation-specific details for the Parlay X Gateway. The following
tables, describing input/output message parameters for each operation, are taken
directly from the Parlay X specification.

Oracle User Messaging Service implements a subset of the Parlay X 2.1 Multimedia
Messaging specification. Specifically Oracle User Messaging Service supports the
SendMessage and ReceiveMessage interfaces. The MessageNotification and
MessageNotificationManager interfaces are not supported.

Note: To learn about the architecture and components of Oracle User
Messaging Service, see Oracle Fusion Middleware Getting Started with
Oracle SOA Suite.

Note: Oracle User Messaging Service also ships with a Java client
library that implements the Parlay X API.

Send Message Interface

41-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

41.2 Send Message Interface
The SendMessage interface allows you to send a message to one or more recipient
addresses by using the sendMessage operation, or get the delivery status for a
previously sent message by using the getMessageDeliveryStatus operation. The
following requirements apply:

■ A recipient address must conform to the address format requirements of Oracle
User Messaging Service (in addition to being a valid URI). The general format is
delivery_type:protocol_specific_address, such as
email:user@domain, sms:5551212 or im:user@jabberdomain.

■ Certain characters are not allowed in URIs; if it is necessary to include them in an
address they can be encoded or escaped. Refer to the JavaDoc for java.net.URI
for details on how to create a properly encoded URI.

■ While the WSDL specifies that sender addresses can be any string, Oracle User
Messaging Service requires that they be valid Messaging addresses.

■ Oracle User Messaging Service requires that you specify sender addresses on a
per-delivery type basis. So for a sender address to apply to a recipient of a given
delivery type, say EMAIL, the sender address must also have delivery type of
EMAIL. Since this operation allows multiple recipient addresses but only one
sender address, the sender address will only apply to the recipients with the same
delivery type.

■ Oracle User Messaging Service does not support the MessageNotification
interface, and therefore will not produce delivery receipts, even if a receiptRequest
is specified. In other words, the receiptRequest parameter is ignored.

41.2.1 sendMessage Operation
Table 41–1 describes message descriptions for the sendMessageRequest input in the
sendMessage operation.

Table 41–1 sendMessage Input Message Descriptions

Part Name Part Type Optional Description

addresses xsd:anyURI[0..unbounded] No Destination address for this
Message.

senderAddress xsd:string Yes Message sender address. This
parameter is not allowed for all
3rd party providers. The Parlay X
server needs to handle this
according to a SLA for the specific
application and its use can
therefore result in a
PolicyException.

subject xsd:string Yes Message subject. If mapped to
SMS this parameter will be used
as the senderAddress, even if a
separate senderAddress is
provided.

priority MessagePriority Yes Priority of the message. If not
present, the network will assign a
priority based on the operator
policy.Charging to apply to this
message.

Receive Message Interface

Parlay X Web Services Multimedia Messaging API 41-3

Table 41–2 describes sendMessageResponse output messages for the sendMessage
operation.

41.2.2 getMessageDeliveryStatus Operation
The getMessageDeliveryStatus operation gets the delivery status for a
previously sent message. The input "requestIdentifier" is the "result" value from a
sendMessage operation. This is the same identifier that is referred to as a Message ID
in other Messaging documentation.

Table 41–3 describes the getMessageDeliveryStatusRequest input messages for
the getMessageDeliveryStatus operation.

Table 41–4 describes the getMessageDeliveryStatusResponse output messages for the
getMessageDeliveryStatus operation.

41.3 Receive Message Interface
The ReceiveMessage interface has three operations. The getReceivedMessages
operation polls the server for any messages received since the last invocation of
getReceivedMessages. Note that getReceivedMessages does not necessarily
return any message content; it generally only returns message metadata.

charging common:
ChargingInformation

Yes Charging to apply to this message.

receiptRequest common:SimpleReference Yes Defines the application endpoint,
interface name and correlator that
will be used to notify the
application when the message has
been delivered to a terminal or if
delivery is impossible.

Table 41–2 sendMessageResponse Output Message Descriptions

Part Name Part Type Optional Description

result xsd:string No This correlation identifier is used
in a getMessageDeliveryStatus
operation invocation to poll for
the delivery status of all sent
messages.

Table 41–3 getMessageDeliveryStatusRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No Identifier related to the delivery
status request.

Table 41–4 getMessageDeliveryStatusResponse Output Message Descriptions

Part Name Part Type Optional Description

result DeliveryInformation
[0..unbounded]

Yes An array of status of the messages
that were previously sent. Each
array element represents a sent
message, its destination address
and its delivery status.

Table 41–1 (Cont.) sendMessage Input Message Descriptions

Part Name Part Type Optional Description

Receive Message Interface

41-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The other two operations, getMessage and getMessageURIs, are used to retrieve
message content.

41.3.1 getReceivedMessages Operation
This operation polls the server for any received messages. Note the following
requirements:

■ The registration ID parameter is a string that identifies the endpoint address for
which the application wants to receive messages. See the discussion of the
ReceiveMessageManager interface for more details.

■ The Parlay X specification says that if the registration ID is not specified, all
messages for this application should be returned. However, the WSDL says that
the registration ID parameter is mandatory. Therefore our implementation treats
the empty string ("") as the "not-specified" value. If you call getReceivedMessages
with the empty string as your registration ID, you will get all messages for this
application. Therefore the empty string is not an allowed value of registration ID
when calling startReceiveMessages.

■ According to the Parlay X specification, if the received message content is "pure
ASCII text", then the message content is returned inline within the
MessageReference object, and the messageIdentifier (Message ID) element is null.
Our implementation treats any content with Content-Type "text/plain", and with
encoding "us-ascii" as "pure ASCII text" for the purposes of this operation. As per
the MIME specification, if no encoding is specified, "us-ascii" is assumed, and if no
Content-Type is specified, "text/plain" is assumed.

■ The priority parameter is currently ignored.

Table 41–5 describes the getReceivedMessagesRequest input messages for the
getReceivedMessages operation.

Table 41–6 describes the getReceivedMessagesResponse output messages for the
getReceivedMessages operation.

Table 41–5 getReceivedMessagesRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No Identifies the off-line provisioning
step that enables the application to
receive notification of Message
reception according to the
specified criteria.

priority MessagePriority Yes The priority of the messages to
poll from the Parlay X gateway.
ALl messages of the specified
priority and higher will be
retrieved. If not specified, all
messages shall be returned, i.e. the
same as specifying "Low."

Receive Message Interface

Parlay X Web Services Multimedia Messaging API 41-5

41.3.2 getMessage Operation
The getMessage operation retrieves message content, using a message ID from a
previous invocation of getReceivedMessages. There is no SOAP body in the response
message; the content is returned as a single SOAP attachment.

Table 41–7 describes the getMessageRequest input messages for the getMessage
operation.

There are no getMessageResponse output messages for the getMessage operation.

41.3.3 getMessageURIs Operation
The getMessageURIs retrieves message content as a list of URIs. Note the following
requirements:

■ These URIs will be HTTP URLs which can be dereferenced to retrieve the content.

■ If the inbound message has a Content-Type of "multipart", then there will be
multiple URIs returned, one per sub-part. If the Content-Type is not "multipart",
then a single URI will be returned.

■ Per the Parlay X specification, if the inbound messages a body text part, defined as
"the message body if it is encoded as ASCII text", it is returned inline within the
MessageURI object. For the purposes of our implementation, we define this
behavior as follows:

– If the message's Content-Type is "text/*" (any text type), and if the charset
parameter is "us-ascii", then the content is returned inline in the MessageURI
object. There will be no URI returned since there is no content other than what
is returned inline.

– If the message's Content-Type is "multipart/" (any multipart type), and if the
first body part's Content-Type is "text/" with charset "us-ascii", then that part
is returned inline in the MessageURI object, and there will be no URI returned
corresponding to that part.

Table 41–6 getReceivedMessagesResponse Output Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No Identifies the off-line provisioning
step that enables the application to
receive notification of Message
reception according to the
specified criteria.

priority MessagePriority Yes The priority of the messages to
poll from the Parlay X gateway.
ALl messages of the specified
priority and higher will be
retrieved. If not specified, all
messages shall be returned. This is
the same as specifying Low.

Table 41–7 getMessageRequest Input Message Descriptions

Part Name Part Type Optional Description

messageRefIdentifier xsd:string No The identity of the message.

Oracle Extension to Parlay X Messaging

41-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– Per the MIME specification, if the charset parameter is omitted, the default
value of "us-ascii" is assumed. If the Content-Type header is not specified for
the message, then a Content-Type of "text/plain" is assumed.

Table 41–8 describes the getMessageURIsRequest input messages for the
getMessageURIs operation.

Table 41–9 describes the getMessageURIsResponse output messages for the
getMessageURIs operation.

41.4 Oracle Extension to Parlay X Messaging
The Parlay X Messaging specification leaves certain parts of the messaging flow
undefined. The main area that is left undefined is the process for binding a client to an
address for synchronous receiving (through the ReceiveMessage interface).

Oracle User Messaging Service includes an extension interface to Parlay X to support
this process. The extension is implemented as a separate WSDL in an Oracle XML
namespace to indicate that it is not an official part of Parlay X. Clients can choose to
not use this additional interface or use it in some modular way such that their core
messaging logic remains fully compliant with the Parlay X specification.

41.4.1 ReceiveMessageManager Interface
ReceiveMessageManager is the Oracle-specific interface for managing client
registrations for receiving messages. Clients use this interface to start and stop
receiving messages at a particular address. (This is analogous to the concept of
registering/unregistering access points in the Messaging API).

41.4.1.1 startReceiveMessage Operation
Invoking this operation allows a client to bind itself to a given endpoint for the
purpose of receiving messages. Note the following requirements:

■ An endpoint consists of an address and an optional "criteria", defined by the
Parlay X specification as the first white space-delimited token of the message
subject or content.

■ In addition to the endpoint information, the client also specifies a "registration ID"
when invoking this operation; this ID is just a unique string which can be used
later to refer to this particular binding in the stopReceiveMessage and
getReceivedMessages operations.

Table 41–8 getMessageURIsRequest Input Message Descriptions

Part Name Part Type Optional Description

messageRefIdentifier xsd:string No The identity of the message to
retrieve.

Table 41–9 getMessageURIsResponse Output Message Descriptions

Part Name Part Type Optional Description

result MessageURI No Contains the complete message,
consisting of the textual part of
the message, if such exists, and a
list of file references for the
message attachments, if any.

Parlay X Messaging Client API and Client Proxy Packages

Parlay X Web Services Multimedia Messaging API 41-7

■ If an endpoint is already registered by another client application, or the
registration ID is already being used, a Policy Error will result.

■ Certain characters are not allowed in URIs; if it is necessary to include them in an
address they can be encoded/escaped. See the javadoc for java.net.URI for details
on how to create a properly encoded URI. For example, when registering to
receive XMPP messages you must specify an address such as
IM:jabber|user@example.com, however the pipe (|) character is not allowed
in URIs, and must be escaped before submitting to the server.

■ There is no guarantee that the server can actually receive messages at a given
endpoint address. That depends on the overall configuration of Oracle User
Messaging Service, particularly the Messaging drivers that are deployed in the
system. No error will be indicated if a client binds to an address where the server
cannot receive messages.

The startReceiveMessage operation has the following inputs and outputs:

Table 41–10 describes the startReceiveMessageRequest input messages for the
startReceiveMessage operation.

There are no startReceiveMessageResponse output messages for the
startReceiveMessage operation.

41.4.1.2 stopReceiveMessage Operation
Invoking this operation removes the previously-established binding between a client
and a receiving endpoint. The client specifies the same registration ID that was
supplied when startReceiveMessage was called in order to identify the endpoint
binding that is being broken. If there is no corresponding registration ID binding
known to the server for this application, a Policy Error will result.

Table 41–11 describes the stopReceiveMessageRequest input messages for the
stopReceiveMessage operation.

There are no stopReceiveMessageResponse output messages for the
stopReceiveMessage operation.

41.5 Parlay X Messaging Client API and Client Proxy Packages
While it is possible to assemble a Parlay X Messaging Client using only the Parlay X
WSDL files and a web service assembly tool, we also provide pre-built web service
stubs and interfaces for the supported Parlay X Messaging interfaces. Due to difficulty

Table 41–10 startReceiveMessageRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No A registration identifier.

messageService
ActivationNumber

xsd:anyURI No Message Service Activation
Number.

criteria xsd:string Yes Descriptive string.

Table 41–11 stopReceiveMessageRequest Input Message Descriptions

Part Name Part Type Optional Description

registrationIdentifier xsd:string No A registration identifier.

Sample Chat Application with Parlay X APIs

41-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

in assembling a web service with SOAP attachments in the style mandated by Parlay
X, we recommend the use of the provided API rather than starting from WSDL.

For a complete listing of the classes available in the Parlay X Messaging API, see the
Messaging JavaDoc. The main entry points for the API are through the following client
classes:

■ oracle.sdp.parlayx.multimedia_
messaging.send.SendMessageClient

■ oracle.sdp.parlayx.multimedia_
messaging.receive.ReceiveMessageClient

■ oracle.sdp.parlayx.multimedia_messaging.extension.receive_
manager.ReceiveMessageManager

Each client class allows a client application to invoke the operations in the
corresponding interface. Additional web service parameters such as the remote
gateway URL and any required security credentials, are provided when an instance of
the client class is constructed. See the Javadoc for more details. The security credentials
will be propagated to the server using standard WS-Security headers, as mandated by
the Parlay X specification.

The general process for a client application is to create one of the client classes above,
set the necessary configuration items (endpoint, username, password), then invoke
one of the business methods (for example, SendMessageClient.sendMessage(),
and so on). For examples of how to use this API, see the Messaging samples on Oracle
Technology Network (OTN), and specifically
usermessagingsample-parlayx-src.zip.

41.6 Sample Chat Application with Parlay X APIs
This chapter describes how to create, deploy and run the sample chat application with
Parlay X APIs provided with Oracle User Messaging Service on OTN.

This chapter contains the following sections:

■ Section 41.6.1, "Overview"

■ Section 41.6.2, "Running the Pre-Built Sample"

■ Section 41.6.3, "Testing the Sample"

■ Section 41.6.4, "Creating a New Application Server Connection"

41.6.1 Overview
This sample demonstrates how to create a web-based chat application to send and
receive messages through email, SMS, or IM. The sample uses standards-based Parlay
X Web Service APIs to interact with a User Messaging server. The sample application
includes web service proxy code for each of three web service interfaces: the
SendMessage and ReceiveMessage services defined by Parlay X, and the
ReceiveMessageManager service which is an Oracle extension to Parlay X. You define
an application server connection in Oracle JDeveloper, and deploy and run the
application.

Note: To learn about the architecture and components of Oracle User
Messaging Service, see Oracle Fusion Middleware Getting Started with
Oracle SOA Suite.

Sample Chat Application with Parlay X APIs

Parlay X Web Services Multimedia Messaging API 41-9

The application is provided as a pre-built Oracle JDeveloper project that includes a
simple web chat interface.

41.6.1.1 Provided Files
The following files are included in the sample application:

■ Project – the directory containing the archived Oracle JDeveloper project files.

■ Readme.txt.

■ Release notes

41.6.2 Running the Pre-Built Sample
Perform the following steps to run and deploy the pre-built sample application:

1. Open the usermessagingsample-parlayx.jws (contained in the .zip file) in Oracle
JDeveloper.

In the Oracle JDeveloper main window the project appears.

Figure 41–1 Oracle JDeveloper Main Window

2. In Oracle JDeveloper, select File > Open..., then navigate to the directory above
and open workspace file "usermessagingsample-parlayx.jws".

This will open the precreated JDeveloper application for the Parlay X sample
application. The application contains one web module. All of the source code for
the application is in place. You will need to configure the parameters that are
specific to your installation.

3. Satisfy the build dependencies for the sample application by adding a library to
the web module.

1. In the Application Navigator, right-click web module
usermessagingsample-parlayx-war, and select Project Properties.

2. In the left pane, select Libraries and Classpath.

Sample Chat Application with Parlay X APIs

41-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–2 Adding a Library

3. Click Add Library.

Figure 41–3 Adding a Library

4. Click New to define a new library.

5. For Library Name, enter oracle.sdp.client.

Sample Chat Application with Parlay X APIs

Parlay X Web Services Multimedia Messaging API 41-11

Figure 41–4 Defining the Library

6. With Class Path selected, select Add Entry.

7. Navigate to JDeveloper_Base_Directory/communications/modules/
oracle.sdp.client_11.1.1, and select jar file sdpclient.jar.

Figure 41–5 Selecting sdpclient.jar

8. Click OK/Accept in all popups to create the library and add it as a
dependency to the sample web module.

4. Create an Application Server Connection by right-clicking the project in the
navigation pane and selecting New. Follow the instructions in Section 41.6.4,
"Creating a New Application Server Connection".

Sample Chat Application with Parlay X APIs

41-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Deploy the project by selecting the usermessasgingsample-parlayx project,
Deploy, usermessasgingsample-parlayx, to, and SOA_server (Figure 41–6).

Figure 41–6 Deploying the Project

6. Verify that the message Build Successful appears in the log.

7. Enter the default revision and click OK.

8. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in
Oracle User Messaging Service and configure a default device for the user
receiving the message in User Messaging Preferences, as described in the
following sections.

41.6.3 Testing the Sample
Perform the following steps to run and test the sample:

1. Open a web browser.

2. Navigate to the URL of the application as follows, and log in:

http://host:port/usermessagingsample-parlayx/

The Messaging Parlay X Sample web page appears (Figure 41–7). This page
contains navigation tabs and instructions for the application.

Note: Refer to Oracle Fusion Middleware Administrator's Guide for
Oracle SOA Suite for more information.

Sample Chat Application with Parlay X APIs

Parlay X Web Services Multimedia Messaging API 41-13

Figure 41–7 Messaging Parlay X Sample Web Page

3. Click Configure and enter the following values (Figure 41–8):

■ Specify the Send endpoint. For example,
http://localhost:port/sdpmessaging/parlayx/SendMessageServ
ice

■ Specify the Receive endpoint. For example,
http://localhost:port/sdpmessaging/parlayx/ReceiveMessageS
ervice

■ Specify the Receive Manager endpoint. For example,
http://localhost:port/sdpmessaging/parlayx/ReceiveMessageM
essageService

■ Specify the Username and Password.

■ Specify a Policy (required if the User Messaging Service instance has WS
security enabled).

Sample Chat Application with Parlay X APIs

41-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–8 Configuring the Web Service Endpoints and Credentials

4. Click Save.

5. Click Manage.

6. Enter a Registration ID to specify the registration and address at which to receive
messages (Figure 41–9). You can also use this page to stop receiving messages at
an address.

Sample Chat Application with Parlay X APIs

Parlay X Web Services Multimedia Messaging API 41-15

Figure 41–9 Specifying a Registration ID

7. Click Start.

Verify that the message Registration operation succeeded appears.

8. Click Chat (Figure 41–10).

9. Enter recipients in the To: field in the format illustrated in Figure 41–10.

10. Enter a message.

11. Click Send.

12. Verify that the message is received.

Sample Chat Application with Parlay X APIs

41-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 41–10 Running the Sample

41.6.4 Creating a New Application Server Connection
Perform the following steps to create a new Application Server Connection.

1. Create a new Application Server Connection by right-clicking the project and
selecting New, Connections, and Application Server Connection (Figure 41–11).

Figure 41–11 New Application Server Connection

Sample Chat Application with Parlay X APIs

Parlay X Web Services Multimedia Messaging API 41-17

2. Name the connection SOA_server and click Next (Figure 41–12).

3. Select WebLogic 10.3 as the Connection Type.

Figure 41–12 New Application Server Connection

4. Enter the authentication information. The typical value for username is
weblogic.

5. In the Connection dialog, enter the hostname, port and SSL port for the SOA
admin server, and enter the name of the domain for WLS Domain.

6. Click Next.

7. On the Test dialog, click Test Connection.

8. Verify that the message Success! appears.

The Application Server Connection has been created.

Sample Chat Application with Parlay X APIs

41-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

User Messaging Preferences 42-1

42
User Messaging Preferences

This chapter describes the User Messaging Preferences that are packaged with Oracle
User Messaging Service. It describes how to work with messaging channels and to
create contact rules using messaging filters.

This chapter contains the following sections:

■ Section 42.1, "Introduction"

■ Section 42.2, "How to Manage Messaging Channels"

■ Section 42.3, "Creating Contact Rules using Filters"

■ Section 42.4, "Configuring Settings"

42.1 Introduction
User Messaging Preferences allows a user who has access to multiple channels
(delivery types) to control how, when, and where they receive messages. Users define
filters, or delivery preferences, that specify which channel a message should be
delivered to, and under what circumstances. Information about a user's devices and
filters are stored in any database supported for use with Oracle Fusion Middleware.

For an application developer, User Messaging Preferences provide increased flexibility.
Rather than an application needing business logic to decide whether to send an email
or SMS message, the application can just send to the user, and the message will be
delivered according to the user's preferences.

Since preferences are stored in a database, this information is shared across all
instances of User Messaging Preferences in a domain.

The oracle.sdp.messaging.userprefs package contains the User Messaging
Preferences API classes. For more information, refer to the Javadoc.

42.1.1 Terminology
User Messaging Preferences defines the following terminology:

■ Channel: a physical channel, such as a phone, or PDA.

■ Channel address: one of the addresses that a channel can communicate with.

Note: To learn about the architecture and components of Oracle User
Messaging Service, see Oracle Fusion Middleware Getting Started with
Oracle SOA Suite.

Introduction

42-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Filters: a set of notification delivery preferences.

■ System term: a pre-defined business term that cannot be extended by the
administrator.

■ Business term: a rule term defined and managed by the system administrator
through Enterprise Manager. Business terms can be added, defined, or deleted.

■ Rule term: a system term or a business term.

■ Operators: comparison operators equals, does not equal, contains, or does not contain.

■ Facts: data passed in from the message to be evaluated, such as time sent, or sender.

■ Rules Engine: the User Messaging Preferences component that processes and
evaluates filters.

■ Channel: the transport type, for example, email, voice, or SMS.

■ Comparison: a rule term and the associated comparison operator.

■ Action: the action to be taken if the specified conditions in a rule are true, such as
Broadcast to All, Failover, or Do not Send to Any Channel.

42.1.2 Configuration of Notification Delivery Preferences
User Messaging Preferences allows configuration of notification delivery preferences
based on the following:

■ a set of well-defined rule terms (system terms or business terms)

■ a set of channel and the corresponding addresses supported by Oracle User
Messaging Service

■ a set of User Messaging Preferences filters that are transparently handled by a
rules engine

One use case for notification delivery preference is for bugs entered into a bug tracking
system. For example, user Alex wants to be notified through SMS and EMAIL channels
for bugs filed against his product with priority = 1 by a customer type = Premium. For
all other bugs with priority > 1, he only wants to be notified by EMAIL. Alex’s
preferences can be stated as follows:

Example 42–1 Notification Delivery Preferences

Rule (1): if (Customer Type = Premium) AND (priority = 1) then notify [Alex] using
 SMS and EMAIL.

Rule (2): if (Customer Type = Premium) AND (priority > 1) then notify [Alex] using
EMAIL.

A runtime service, the Oracle Rules Engine, evaluates the filters to process the
notification delivery of user requests.

42.1.3 Delivery Preference Rules
A delivery preference rule consists of rule comparisons and rule actions. A rule
comparison consists of a rule term (a system term or a business term) and the
associated comparison operators. A rule action is the action to be taken if the specified
conditions in a rule are true.

Introduction

User Messaging Preferences 42-3

42.1.3.1 Data Types
Table 42–2 lists data types supported by User Messaging Preferences. Each system
term and business term must have an associated data type, and each data type has a
set of pre-defined comparison operators. Administrators cannot extend these
operators.

42.1.3.2 System Terms
Table 42–2 lists system terms, which are pre-defined business terms. Administrators
cannot extend the system terms.

42.1.3.3 Business Terms
Business terms are rule terms defined and managed by the system administrator
through Oracle Application Server 11g Enterprise Manager. For more information on
adding, defining, and deleting business terms, refer to Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite. A business term consists of a key, a data
type, an optional description, and an optional List of Values (LOV).

Table 42–1 Data Types Supported by User Messaging Preferences

Data Type
Comparison
Operators Supported Values

Date <, >, between, <=, >= Date is accepted as a java.util.Date object
or string representing the number of
milliseconds since the standard base time
known as "the epoch", namely January 1, 1970,
00:00:00 GMT (in essence, the value from
java.util.Date.getTime() or
java.util.Calendar.getTime()).

Time ==, !=, between A 4-digit integer to represent time of the day
in HHMM format. First 2-digit is the hour in
24-hour format. Last 2-digit is minutes.

Number (Decimal) <, >, between, <=, >= A java.lang.Double object or a string
representing a floating decimal point number
with double precision.

String ==, !=, contains, not
contains

Any arbitrary string.

Note: The String data type does not support regular expressions.

The Time data type is only available to System Terms.

Table 42–2 System Terms Supported by User Messaging Preferences

System Term Data Type Supported Values

Date Date Date is accepted as a java.util.Date object
or string representing the number of
milliseconds since the standard base time
known as "the epoch", namely January 1, 1970,
00:00:00 GMT (in essence, the value from
java.util.Date.getTime() or
java.util.Calendar.getTime()).

Time Time A 4-digit integer to represent time of the day
in HHMM format. First 2-digit is the hour in
24-hour format. Last 2-digit is minutes.

Introduction

42-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 42–3 lists the pre-defined business terms supported by User Messaging
Preferences.

42.1.4 Rule Actions
For a given rule, a User Messaging Preferences user can define one of the following
actions:

■ Broadcast to All: send a broadcast message to all channels in the broadcast
address list.

■ Failover: Send a message serially to channels in the address list until one
successful message is sent. This means performing a send to the next channel
when the current channel returns a failure status. User Messaging Preferences
does not allow a user to specify a channel-specific status code or expiration time.

■ Do not send to Any Channel: Do not send a message to any channel.

Table 42–3 Pre-defined Business Terms for User Messaging Preferences

Business Term Data Type

Organization String

Time Number (Decimal)

Priority String

Application String

Application Type String

Expiration Date Date

From String

To String

Customer Name String

Customer Type String

Status String

Amount Number (Decimal)

Due Date Date

Process Type String

Expense Type String

Total Cost Number (Decimal)

Processing Time Number (Decimal)

Order Type String

Service Request Type String

Group Name String

Source String

Classification String

Duration Number (Decimal)

User String

Role String

How to Manage Messaging Channels

User Messaging Preferences 42-5

■ Default address: if no action is defined, a message will be sent to a default
address, as defined in the Messaging Channels page in Enterprise Manager.

42.2 How to Manage Messaging Channels
Any channel that a user creates is associated with that user’s system ID. In Oracle User
Messaging Service, channels represent both physical channels, such as mobile phones,
and also email client applications running on desktops, and are configurable on the
The Messaging Channels tab (Figure 42–1).

Figure 42–1 Messaging Channels Tab

The Messaging Channels tab enables users to perform the following tasks:

42.2.1 Creating a Channel
To create a channel:

1. Click Create (Figure 42–2).

Figure 42–2 The Create Icon

2. Enter a name for the channel in the Name field (Figure 42–3).

3. Select the channel’s transport type from the Type dropdown menu.

4. Enter the number or address appropriate to the transport type you selected.

5. Select the Default checkbox to set the channel as the default channel.

Tip: User Messaging Preferences does not provide a filter action that
instructs "do not send to a specified channel." A best practice is to
specify only positive actions, and not negative actions in rules.

How to Manage Messaging Channels

42-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 42–3 Creating a Channel

6. Click OK to create the channel. The channel appears on the Channels page. The
Channels page enables you to edit or delete the channel.

42.2.2 Editing a Channel
To edit a channel, select it and click Edit (Figure 42–4). The editing page appears for
the channel, which enables you to add or change the channel properties described in
Section 42.2.1, "Creating a Channel".

Figure 42–4 Edit a Channel

Certain channels are based on information retrieved from your user profile in the
identity store, and this address cannot be modified by User Messaging Preferences
(Figure 42–5). The only operation that can be performed on such as channel is to make
it the default.

Creating Contact Rules using Filters

User Messaging Preferences 42-7

Figure 42–5 Edit a Identity Store-Backed Channel

42.2.3 Deleting a Channel
To delete a channel, select it and click Delete (Figure 42–6).

Figure 42–6 The Delete Icon

42.2.4 Setting a Default Channel
Email is the default for receiving notifications. To set another channel as the default,
select it, click Edit, and then click Set as default channel. A check mark (Figure 42–7)
appears next to the selected channel, designating it as the default means of receiving
notifications.

Figure 42–7 The Default Icon

42.3 Creating Contact Rules using Filters
The Messaging Filters tab (Figure 42–8) enables users to build filters that specify not
only the type of notifications they wish to receive, but also the channel through which
to receive these notifications through a combination of comparison operators (such as
is equal to, is not equal to), business terms that describe the notification type, content or
source, and finally, the notification actions, which send the notifications to all channels,
block channels from receiving notifications, or send notifications to the first available
channel.

Creating Contact Rules using Filters

42-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 42–8 Messaging Filters Tab

Figure 42–9 illustrates the creation of a filter called Travel Filter, by a user named
weblogic, for handling notifications regarding Customers during his travel.
Notifications that match all of the filter conditions are first directed to his "Business
Mobile" channel. Should this channel become unavailable, Oracle User Messaging
Service transmits the notifications as e-mails since the next available channel selected
is Business Email.

Creating Contact Rules using Filters

User Messaging Preferences 42-9

Figure 42–9 Creating a Filter

42.3.1 Creating Filters
To create a filter:

1. Click Create (Figure 42–2). The Create Filter page appears (Figure 42–9).

2. Enter a name for the filter in the Filter Name field.

3. If needed, enter a description of the filter in the Description field.

4. Define the filter conditions using the lists and fields of the Condition section as
follows:

a. Select whether notifications must meet all of the conditions or any of the
conditions by selecting either the All of the following conditions or the Any
of the following conditions options.

b. Select the notification’s attributes. These attributes, or business components,
include

■ Organization

■ Time

■ Priority

■ Application

■ Application Type

■ Expiration Date

Creating Contact Rules using Filters

42-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ From

■ To

■ Customer Name

■ Customer Type

■ Status

■ Amount

■ Due Date

■ Process Type

■ Expense Type

■ Total Cost

■ Processing Time

■ Order Type

■ Service Request Type

■ Group Name

■ Source

■ Classification

■ Duration

■ User

■ Role

5. Combine the selected condition type with one of the following comparison
operators:

■ Is Equal To

■ Is Not Equal To

■ Contains

■ Does Not Contain

If you select the Date attribute, select one of the following comparison operators and
then select the appropriate dates from the calendar application.

■ Is Equal

■ Is Not Equal

■ Is Greater Than

■ Is Greater Than or Equal

■ Is Less Than

■ Is Less Than or Equal

■ Between

■ Is Weekday

■ Is Weekend

6. Add appropriate values describing the attributes or operators.

Configuring Settings

User Messaging Preferences 42-11

7. Click Add (Figure 42–6) to add the attribute and the comparison operators to the
table.

8. Repeat these steps to add more filter conditions. To delete a filter condition, click
Delete (Figure 42–6).

9. Select one of the following delivery rules:

■ Send Messages to all Selected Channels -- Select this option to send messages
to every listed channel.

■ Send to the First Available Channel (Failover in the order) -- Select this
option to send messages matching the filter criteria to a preferred channel (set
using the up and down arrows) or to the next available channel.

■ Send No Messages -- Select this option to block the receipt of any messages
that meet the filter conditions.

10. To set the delivery channels, select a channel from the Add Notification Channel
list and then click Add (Figure 42–6). To delete a channel, click Delete
(Figure 42–6).

11. If needed, use the up and down arrows to prioritize channels. If available, the
top-most channel receives messages meeting the filter criteria if you select Send to
the First Available Channel.

12. Click OK to create the filter. Clicking Cancel discards the filter.

42.3.2 Editing a Filter
To edit a filter, first select it and then click Edit (Figure 42–9). The editing page appears
for the filter, which enables you to add or change the filter properties described in
Section 42.3.1, "Creating Filters".

42.3.3 Deleting a Filter
To delete a filter, first select it and then click Delete (Figure 42–6).

42.4 Configuring Settings
The Settings tab (Figure 42–10), accessed from the upper right area, enables users to
set the following parameters:

■ Accessibility Mode: select Standard or Screen Reader.

■ Locale Source: select From Identity Store or From Your Browser.

Configuring Settings

42-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 42–10 Configuring Settings

Part VIII
Part VIII Sharing Functionality Across Oracle SOA

Suite Components

This part introduces functionality that is shared across components.

This part contains the following chapters:

■ Chapter 43, "Deploying SOA Composite Applications"

■ Chapter 44, "Using Business Events and the Event Delivery Network"

■ Chapter 45, "Creating Transformations with the XSLT Mapper"

■ Chapter 46, "Working with Domain Value Maps"

■ Chapter 47, "Working with Cross References"

■ Chapter 48, "Using Two-Layer Business Process Management (BPM)"

■ Chapter 49, "Testing SOA Composite Applications"

■ Chapter 50, "Managing Policies"

■ Chapter 51, "Defining Composite Sensors"

■ Chapter 52, "Using Service Data Objects and Enterprise JavaBeans"

■ Chapter 53, "Processing Large Documents"

43

Deploying SOA Composite Applications 43-1

43 Deploying SOA Composite Applications

This chapter describes how to deploy SOA composite applications with Oracle
JDeveloper and scripting tools and create configuration plans that enable you to move
SOA composite applications to and from development, test, and production
environments without having to redefine the URLs and properties of each
environment.

This chapter includes the following sections:

■ Section 43.1, "Creating an Application Server Connection"

■ Section 43.2, "Deploying a Single SOA Composite in Oracle JDeveloper"

■ Section 43.3, "Deploying Multiple SOA Composite Applications in Oracle
JDeveloper"

■ Section 43.4, "Deploying and Using Shared Metadata Across SOA Composite
Applications"

■ Section 43.5, "Deploying an Existing SOA Archive in Oracle JDeveloper"

■ Section 43.6, "Managing SOA Composite Applications with Scripts"

■ Section 43.7, "Moving SOA Composite Applications to and from Development,
Test, and Production Environments"

See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite for instructions
on deploying SOA composite applications from Oracle Enterprise Manager Fusion
Middleware Control Console.

43.1 Creating an Application Server Connection
You must create a connection to the Oracle WebLogic Server to which to deploy a SOA
composite application.

To create an application server connection:
1. From the File main menu, select New.

2. In the General list, select Connections.

3. Select Application Server Connection, and click OK.

4. In the Connection Name field, enter a name for the connection.

5. In the Connection Type list, select WebLogic 10.3.

Note: Deployment from Oracle JDeveloper to a two-way,
SSL-enabled Oracle WebLogic Server is not supported.

Deploying a Single SOA Composite in Oracle JDeveloper

43-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. Click Next.

7. In the Username field, enter the user authorized for access to the application
server.

8. In the Password field, enter the password for this user.

9. Click Next.

10. In the Weblogic Hostname field, enter the host on which the Oracle WebLogic
Server is installed.

11. In the Port and SSL Port fields, enter the appropriate port values.

12. If you want to use SSL, enable the Always use SSL checkbox.

13. In the WLS Domain field, enter the Oracle SOA Suite domain. For additional
details about specifying domains, click Help.

14. Click Next.

15. Click Test Connection to test your server connection.

16. If the connection is successful, click Finish. Otherwise, click Back to make
corrections in the previous dialogs.

43.2 Deploying a Single SOA Composite in Oracle JDeveloper
Oracle JDeveloper requires the use of profiles for SOA projects and applications to be
deployed to Oracle WebLogic Server.

43.2.1 How to Deploy a Single SOA Composite
This section describes how to deploy a single SOA composite application with Oracle
JDeveloper.

43.2.1.1 Optionally Creating a Project Deployment Profile
A required deployment profile is automatically created for your project. The
application profile includes the JAR files of your SOA projects. If you want, you can
create additional profiles.

To create a deployment profile:
1. In the Application Navigator, right-click the SOA project.

2. Select Project Properties.

 The Project Properties dialog appears.

3. Click Deployment.

4. Click New.

The Create Deployment Profile dialog appears.

5. Enter the following values:

Deploying a Single SOA Composite in Oracle JDeveloper

Deploying SOA Composite Applications 43-3

6. Click OK.

The SAR Deployment Profile dialog appears.

7. Click OK to close the SAR Deployment Profile Properties dialog.

The deployment profile shown in Figure 43–1 displays in the Application
Properties dialog.

Figure 43–1 Deployment Profile

43.2.1.2 Deploying the Profile
You now deploy the project profile to Oracle WebLogic Server. Deployment requires
the creation of an application server connection. You can create a connection during
deployment by selecting New Connection in Step 3 or before deployment by
following the instructions in Section 43.1, "Creating an Application Server
Connection."

Table 43–1 Create Deployment Profile Dialog Fields and Values

Field Description

Archive Type Select SOA-SAR File.

A SOA archive (SAR) is a deployment unit that describes the
SOA composite application. The SAR packages service
components such as BPEL processes, business rules, human
tasks, and mediator routing services into a single application.
The SAR file is analogous to the BPEL suitcase archive of
previous releases, but at the higher composite level and with any
additional service components that your application includes
(for example, human tasks, business rules, and mediator routing
services).

Name Enter a deployment profile name.

Deploying a Single SOA Composite in Oracle JDeveloper

43-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To deploy the profile:
1. In the Application Navigator, right-click the SOA project.

2. Select Deploy > deployment_profile_name > to.

The value for deployment_profile_name is the SOA project name. Figure 43–2
provides an example.

Figure 43–2 Project Profile Deployment

3. Select one of the following deployment options:

■ to JAR

Creates a JAR file of the selected SOA project, but does not deploy it to Oracle
WebLogic Server. This option is useful for environments in which:

– Oracle WebLogic Server may not be running, but you want to create the
JAR file.

– You want to deploy multiple JAR files to Oracle WebLogic Server from a
batch script. This option offers an alternative to opening all project profiles
(which you may not have) and deploying them from Oracle JDeveloper.

■ to Server_Connection_Name

Creates a JAR file for the selected SOA project and deploys it to Oracle
WebLogic Server. To deploy to Oracle WebLogic Server, you must first create a
connection to it.

The SOA Deployment Configuration dialog that displays differs based on your
selection.

4. Select the deployment option appropriate for your environment.

a. View the SOA Deployment Configuration dialog shown in Figure 43–3.

Table 43–2 Deployment Target

If You Select... Go to...

to JAR Step 4a

to Server_Connection_Name Step 4b

Deploying a Single SOA Composite in Oracle JDeveloper

Deploying SOA Composite Applications 43-5

Figure 43–3 SOA Deployment Configuration Dialog - JAR Deployment

b. View the SOA Deployment Configuration dialog shown in Figure 43–4.

Figure 43–4 SOA Deployment Configuration Dialog - Server Deployment

5. Provide values appropriate to your environment. If you selected to deploy to a
server, an additional field for selecting the server to which to deploy is displayed
at the top of the dialog.

Deploying a Single SOA Composite in Oracle JDeveloper

43-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. Click OK.

7. View the messages that display in the Deployment log window at the bottom of
Oracle JDeveloper.

If deployment is successful, a JAR file for the SOA project is created under the
deploy folder in Oracle JDeveloper with a naming convention of sca_composite_
name_revrevision_number.jar.

You are now ready to monitor your application from Oracle Enterprise Manager
Grid Control Console. See Oracle Fusion Middleware Administrator's Guide for Oracle
SOA Suite for details.

If deployment is unsuccessful, view the messages that display in the Deployment
log window and take corrective actions.

Table 43–3 SOA Deployment Configuration Dialog

Field Description

Choose the target SOA
server(s) to which you want
to deploy this archive

Note: This option only displays if you selected to deploy to a
server.

If there are multiple servers or cluster nodes, select to deploy to
one or more servers or nodes.

Project Displays the project name.

Current Revision ID Displays the current revision ID of the project.

New Revision ID Optionally change the revision ID of the SOA composite
application.

Mark composite revision as
default

If you do not want the new revision to be the default, you can
uncheck this box. By default, a newly deployed composite
revision is the default. This revision is instantiated when a new
request comes in.

Overwrite any existing
composites with the same
revision ID

Select to overwrite any existing SOA composite application of
the same revision value.

Use the following SOA
configuration plan for all
composites

Click Browse to select the same configuration plan to use for all
composite applications. This option is used when deploying
multiple composite applications.

Do not attach configuration
plan

Select to not include a configuration plan with the SOA
composite application JAR file. If you have not created a
configuration plan, this field is disabled.

Select a configuration plan
from the list

Select to include a configuration plan with the SOA composite
application.

The configuration plan enables you to define the URL and
property values to use in different environments. During process
deployment, the configuration plan is used to search the SOA
project for values that must be replaced to adapt the project to
the next target environment.

If you have not created a configuration plan, this field is
disabled.

See Section 43.7, "Moving SOA Composite Applications to and
from Development, Test, and Production Environments" for
instructions on creating a configuration plan.

Deploying a Single SOA Composite in Oracle JDeveloper

Deploying SOA Composite Applications 43-7

43.2.2 What You May Need to Know About Oracle JDeveloper Deployment to a
Managed Oracle WebLogic Server

If you start a managed Oracle WebLogic Server without starting an Oracle WebLogic
Administration Server (known as running in independence mode) and attempt to
deploy a SOA composite application from Oracle JDeveloper, you receive the
following error:

Deployment cannot continue! No SOA Configured target servers found

The Oracle WebLogic Administration Server must be running. Deployment uses the
Oracle WebLogic Administration Server connection to identify the servers running
Oracle SOA Suite. In addition, do not create an application server connection to a
managed Oracle WebLogic Server; only create connections to an Oracle WebLogic
Administration Server.

You can also receive a similar error if the condition of the SOA-configured Oracle
WebLogic Server is not healthy. This condition displays in the Health column of the
Servers page of Oracle WebLogic Server Administration Console.

Note that you can use the WebLogic Scripting Tool (WLST) to deploy SOA composite
applications to a managed Oracle WebLogic Server without starting an Oracle
WebLogic Administration Server. See Section 43.6.1, "How to Manage SOA Composite
Applications with the WLST Utility" for details.

43.2.3 What You May Need to Know About Invoking References in One-Way SSL
Environments in Oracle JDeveloper

When invoking a web service as an external reference from a SOA composite
application in one-way SSL environments, ensure that the certificate name (CN) and
the hostname of the server exactly match. This ensures a correct SSL handshake.

For example, if a web service is named adfbc and the certificate has a server name of
myhost05, the following results in an SSL handshake exception.

 <import namespace="/adfbc1/common/"

@ location="https://myhost05.us.oracle.com:8002/CustomApps-adfbc1-context-root/Ap
pModuleService?WSDL"
 importType="wsdl"/>
 <import namespace="/adfbc1/common/" location="Service1.wsdl"
 importType="wsdl"/>

If you switch the order of import, the SSL handshake passes.

<import namespace="/adfbc1/common/" location="Service1.wsdl"
 importType="wsdl"/>
 <import namespace="/adfbc1/common/"

@ location="https://myhost05.us.oracle.com:8002/CustomApps-adfbc1-context-root/Ap
pModuleService?WSDL"
 importType="wsdl"/>

Note: If you want to redeploy the same version of a SOA composite
application, you cannot change the composite name. You can deploy
with the same revision number if you selected the Overwrite any
existing composites with the same revision ID checkbox on the SOA
Deployment Configuration dialog.

Deploying Multiple SOA Composite Applications in Oracle JDeveloper

43-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Note the following restrictions around this issue:

■ There are no options for ignoring hostname verification in Oracle JDeveloper as
exist with the Oracle WebLogic Server Administration Console. This is because the
SSL kit used by Oracle JDeveloper is different. Only the trust store can be
configured from the command line. All other certificate arguments are not passed.

■ In the WSDL file, https://hostname must match with that in the certificate, as
described above. You cannot perform the same procedures as you can with a
browser. For example, if the hostname is myhost05.us.oracle.com in the
certificate's CN, then you can use myhost05, myhost05.us.oracle.com, or the
IP address from a browser. In Oracle JDeveloper, always use the same name as in
the certificate (that is, myhost05.us.oracle.com).

43.3 Deploying Multiple SOA Composite Applications in Oracle
JDeveloper

You can deploy multiple SOA composite applications to Oracle WebLogic Server at the
same time by using the SOA bundle profile. This profile enables you to include one or
more SAR profiles in the bundle and deploy the bundle to Oracle WebLogic Server.

43.3.1 How to Deploy Multiple SOA Composite Applications

To deploy multiple SOA composite applications
1. From the Application menu, select Application Properties, as shown in

Figure 43–5.

Figure 43–5 Application Properties

Note: You cannot deploy multiple SOA applications that are
dependent upon one another in the same SOA bundle profile. For
example, if application A calls application B, then you must first
deploy application B separately.

Deploying Multiple SOA Composite Applications in Oracle JDeveloper

Deploying SOA Composite Applications 43-9

2. In the Application Properties dialog, click Deployment.

3. Click New.

The Create Deployment Profile dialog appears.

4. In the Archive Type list, select SOA Bundle.

5. In the Name field, enter a name.

Figure 43–6 provides details.

Figure 43–6 Select the SOA Bundle

6. Click OK.

7. In the navigator on the left, select the Dependencies node.

8. Select the SARs you want to include in this bundle, as shown in Figure 43–7.

Figure 43–7 Select the SAR

Deploying and Using Shared Metadata Across SOA Composite Applications

43-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

9. Click OK.

10. Click OK to close the Application Properties dialog.

11. Select the Application menu again, then select Deploy > SOA_bundle_name > to.
Figure 43–8 provides details.

Figure 43–8 Deployment of Application

12. Select one of the following options:

■ to Server_Connection_Name

Creates a ZIP file of the application deployment profile that includes JAR files
of all selected SOA projects and deploys it to Oracle WebLogic Server. To
deploy to Oracle WebLogic Server, you must first create a connection to it.

■ to ZIP

Creates a ZIP file of the application deployment profile that includes JAR files
of all selected SOA projects, but does not deploy it to Oracle WebLogic Server.
This option is useful for environments in which:

– Oracle WebLogic Server may not be running.

– You want to deploy multiple JAR files to Oracle WebLogic Server from a
batch script. This option offers an alternative to opening all application
profiles (which you may not have) and deploying them from Oracle
JDeveloper.

The SOA Deployment Configuration dialog that displays is based on your
selection:

■ If you selected to deploy to a ZIP file, the SOA Deployment Configuration
dialog shown in Figure 43–3 appears.

■ If you selected to deploy to the server, the SOA Deployment Configuration
dialog shown in Figure 43–4 appears.

13. See Step 5 on page 43-6 for details about responses to provide.

14. Click OK.

43.4 Deploying and Using Shared Metadata Across SOA Composite
Applications

This section describes how to deploy and use shared metadata across SOA composite
applications.

Deploying and Using Shared Metadata Across SOA Composite Applications

Deploying SOA Composite Applications 43-11

43.4.1 How to Deploy Shared Metadata
Shared metadata is deployed to the SOA Infrastructure on the application server as a
JAR file. The JAR file should contain all the resources to share. In Oracle JDeveloper,
you can create a JAR profile for creating a shared artifacts archive.

All shared metadata is deployed to an existing SOA Infrastructure partition on the
server. This metadata is deployed under the /apps namespace. For example, if you
have a MyProject/xsd/MySchema.xsd file in the JAR file, then this file is deployed
under the /apps namespace on the server. When you refer to this artifact in Oracle
JDeveloper using an SOA-MDS connection, the URL becomes
oramds:/apps/MyProject/xsd/MySchema.xsd.

This section describes how to perform the following tasks:

■ Create a JAR profile and include the artifacts to share

■ Create a SOA bundle that includes the JAR profile

■ Deploy the SOA bundle to the application server

43.4.1.1 Create a JAR Profile and Include the Artifacts to Share

To create a JAR profile and include the artifacts to share:
1. In the Application Navigator, right-click the SOA project.

2. Select Project Properties.

The Project Properties dialog appears.

3. Click Deployment in the navigational tree on the left.

4. Click New.

The Create Deployment Profile dialog appears.

5. From the Archive Type list, select JAR File.

6. In the Name field, enter a name (for this example, shared_archive is entered).

The Create Deployment Profile looks as shown in Figure 43–9.

Deploying and Using Shared Metadata Across SOA Composite Applications

43-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 43–9 JAR File Selection

7. Click OK.

The JAR Deployment Profile Properties dialog appears.

8. Select JAR Options from the navigational tree on the left.

9. Deselect Include Manifest File (META-INF/MANIFEST.MF), as shown in
Figure 43–10.

This prevents the archive generator from adding the manifest file
(META-INF/MANIFEST.MF) into the JAR file.

Deploying and Using Shared Metadata Across SOA Composite Applications

Deploying SOA Composite Applications 43-13

Figure 43–10 JAR File Options

10. Select File Groups > Project Output > Contributors from the navigational tree on
the left.

11. Deselect the Project Output Directory and Project Dependencies options, as
shown in Figure 43–11.

This prevents the archive generator from adding the contents of the project output
and project dependencies into the archive.

Deploying and Using Shared Metadata Across SOA Composite Applications

43-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 43–11 Contributors

12. Click Add to add a new contributor.

The Add Contributor dialog appears. This dialog enables you to add artifacts to
your archive.

13. Click Browse.

14. Select the folder in which your artifacts reside, as shown in Figure 43–12. Note that
this also determines the hierarchy of artifacts in the archive.

Deploying and Using Shared Metadata Across SOA Composite Applications

Deploying SOA Composite Applications 43-15

Figure 43–12 Artifact Selection

15. Click Select to close the Choose Directory dialog.

16. Click OK to close the Add Contributor dialog.

17. Select File Groups > Project Output > Filters from the navigational tree on the
left.

18. Select only the artifacts to include in the archive, as shown in Figure 43–13. For this
example, the archive contains the following XSD files:

■ SOADemoComposite/xsd/DemoProcess.xsd

■ SOADemoComposite/xsd/Quote.xsd

■ SOADemoComposite/xsd/VacationRequest.xsd

Deploying and Using Shared Metadata Across SOA Composite Applications

43-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 43–13 Artifacts to Include in the Archive

19. Click OK to save changes to the JAR deployment profile.

20. Click OK to save the new deployment profile.

21. From the File main menu, select Save All.

43.4.1.2 Create a SOA Bundle that Includes the JAR Profile

To create a SOA bundle that includes the JAR profile:
1. From the Application Menu, select Application Properties > Deployment.

2. Click New to create a SOA bundle profile.

The Create Deployment Profile dialog appears.

3. From the Archive Type list, select SOA Bundle. A bundle is a collection of
multiple SOA composite applications.

4. In the Name field, enter a name (for this example, sharedArtifactBundle is
entered).

Deploying and Using Shared Metadata Across SOA Composite Applications

Deploying SOA Composite Applications 43-17

Figure 43–14 SOA Bundle Creation

5. Click OK.

6. Select Dependencies from the navigational tree on the left.

7. Select the JAR file and SOA-SAR profiles you previously created (for this example,
named shared_archive and sharedArtifactBundle, respectively). You have the
option of a JAR, an SOA-SAR, or both.

Deploying and Using Shared Metadata Across SOA Composite Applications

43-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 43–15 Deployment Profile Dependencies

8. Click OK to save the SOA bundle deployment profile changes.

9. Click OK to save the new deployment profile.

10. From the File main menu, select Save All.

43.4.1.3 Deploy the SOA Bundle

To deploy the SOA bundle:
1. Right-click the Application menu and select Deploy > SOA_bundle_name > to

server_connection. If you do not have an existing connection, you must first create
one.

This deploys the SOA bundle to the application server (shared artifacts are
deployed to the MDS database of Oracle SOA Suite).

43.4.2 How to Use Shared Metadata
This section describes how to browse and select the shared metadata you created in
Section 43.4.1, "How to Deploy Shared Metadata."

43.4.2.1 Create a SOA-MDS Connection

To create a SOA-MDS connection:
1. From the File menu, select New > Connections > SOA-MDS Connection.

2. In the Welcome page, click Next.

3. In the Connection Name field, enter a name.

4. From the Connection Type list, select DB based MDS.

Deploying and Using Shared Metadata Across SOA Composite Applications

Deploying SOA Composite Applications 43-19

5. Click Next.

The Connection Type page appears.

6. Select an existing connection or create a new connection to the Oracle SOA Suite
database with the MDS schema.

7. From the Select MDS partition list, select the MDS partition (for example,
soa-infra).

8. Click Next.

9. Click Finish.

You can now browse the connection in the Resource Palette and view shared
artifacts under the /apps node.

43.4.2.2 Create a BPEL Process
You can now browse and use the shared metadata from a different SOA composite
application. For this example, you create a BPEL process service component in a
different application.

To create a BPEL process:
1. Create a new BPEL process service component in a different application. For more

information, see Section 5.1.1, "How to Add a BPEL Process Service Component."

2. In the Create BPEL Process dialog, click the Browse icon to the right of the Input
field.

The Type Chooser dialog appears.

3. In the upper right corner, click the Import Schema File icon.

The Import Schema File dialog appears.

4. To the right of the URL field, click the Browse icon.

The SOA Resource Browser dialog appears.

5. At the top of the dialog, select Resource Palette from the list.

6. Select shared metadata, as shown in Figure 43–16. For this example, the Quote.xsd
file that you selected to include in the archive in Step 18 of Section 43.4.1.1, "Create
a JAR Profile and Include the Artifacts to Share" is selected.

Deploying and Using Shared Metadata Across SOA Composite Applications

43-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 43–16 Shared Metadata in the SOA Resource Browser

7. Click OK.

8. In the Import Schema File dialog, click OK.

9. In the Type Chooser dialog, select a node of Quote.xsd (for this example,
QuoteRequest), and click OK.

10. In the Create BPEL Process dialog, click OK to complete creation.

11. In the Application Navigator, select the WSDL file for the BPEL process.

12. Click Source.

The WSDL file includes the following definition.

<wsdl:types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://www.mycompany.com/ns/salesquote"
 schemaLocation="oramds:/apps/SOADemoComposite/xsd/Quote.xsd" />
 </schema>
</wsdl:types>

13. Continue modeling the BPEL process as necessary.

14. Deploy the SOA composite application that includes the BPEL process.

Deploying an Existing SOA Archive in Oracle JDeveloper

Deploying SOA Composite Applications 43-21

43.5 Deploying an Existing SOA Archive in Oracle JDeveloper
You can deploy an existing SOA archive from the Application Server Navigator in
Oracle JDeveloper.

43.5.1 How to Deploy an Existing SOA Archive from Oracle JDeveloper

To Deploy an Existing SOA Archive from Oracle JDeveloper:
1. From the View menu, select Application Server Navigator.

2. Expand your connection name (for this example, named myConnection).

3. Right-click the SOA folder.

4. Select Deploy SOA Archive.

The Deploy SOA Archive dialog shown in Figure 43–17 appears.

Figure 43–17 Deploy SOA Archive

5. Provide responses appropriate to your environment, as shown in Table 43–4.

Notes:

■ The archive must exist. You cannot create an archive in the Deploy
SOA Archive dialog.

■ These instructions assume you have created an application server
connection to an Oracle WebLogic Administration Server on
which the SOA Infrastructure is deployed. Creating a connection
to an Oracle WebLogic Administration Server enables you to
browse for SOA composite applications deployed in the same
domain. From the File main menu, select New > Connections >
Application Server Connection to create a connection.

Managing SOA Composite Applications with Scripts

43-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. Click OK.

43.6 Managing SOA Composite Applications with Scripts
You can also manage SOA composite applications from a command line or scripting
environment using WLST or ant. These options are well-suited for automation and
can be easily integrated into existing release processes.

43.6.1 How to Manage SOA Composite Applications with the WLST Utility
You can manage SOA composite applications with the WLST scripting utility. For
instructions, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

43.6.2 How to Manage SOA Composite Applications with ant Scripts
You can manage SOA composite applications with the ant utility. ant is a Java-based
build tool used by Oracle SOA Suite for managing SOA composite applications. The
configuration files are XML-based and call out a target tree where various tasks are
executed.

Table 43–5 lists the ant scripts available in the Middleware_Home\SOA_Suite_
Home\bin directory.

Table 43–4 Create Deployment Profile Dialog Fields and Values

Field Description

Choose target SOA server(s) to which
you want to deploy this archive

Select the Oracle WebLogic Administration Server to
which to deploy the archive.

SOA Archive Click Browse to select a prebuilt SOA composite
application archive. The archive consists of a JAR file
of a single application or a SOA bundle ZIP file
containing multiple applications.

Configuration Plan (Optional) Click Browse to select a configuration plan to attach to
the SOA composite application archive. The
configuration plan enables you to define the URL and
property values to use in different environments.
During process deployment, the configuration plan is
used to search the SOA project for values that must be
replaced to adapt the project to the next target
environment.

For information about creating configuration plans,
see Section 43.7.4, "How to Create a Configuration
Plan in Oracle JDeveloper" or Section 43.7.5, "How to
Create a Configuration Plan with the WLST Utility."

Overwrite any existing composites
with the same revision ID

Select to overwrite (redeploy) an existing SOA
composite application with the same revision ID. The
consequences of this action are as follows:

■ A new version 1.0 of the SOA composite
application is redeployed, overwriting a
previously deployed 1.0 version.

■ The older, currently-deployed version of this
revision is removed (overwritten).

■ If the older, currently-deployed version of this
revision has running instances, the state of those
instances is changed to stale.

Managing SOA Composite Applications with Scripts

Deploying SOA Composite Applications 43-23

For additional information about ant, visit the following URL:

http://ant.apache.org

43.6.2.1 Testing a SOA Composite Application
Example 43–1 provides an example of executing a test case. Test cases enable you to
automate the testing of SOA composite applications.

Example 43–1 Testing an Application

ant -f ant-sca-test.xml -Dscatest.input=MyComposite
-Djndi.properties=/home/jdoe/jndi.properties

Table 43–5 ant Management Scripts

Script Description

ant-sca-test.xml Attaches, extracts, generates, and validates configuration plans
for a SOA composite application.

ant-sca-compile.xml Compiles a SOA composite application.

ant-sca-package.xml Packages a SOA composite application into a composite SAR
file.

ant-sca-deploy.xml Deploys a SOA composite application.

ant-sca-deploy.xml
undeploy

Undeploys a SOA composite application.

ant-sca-mgmt.xml Manages a SOA composite application, including starting,
stopping, activating, retiring, assigning a default revision
version, and listing deployed SOA composite applications.

ant-sca-upgrade.xml Migrates BPEL and ESB release 10.1.3 metadata to release 11g.

Note: If any Java code is part of the project, you must manually
modify the code to pass compilation with an 11g compiler. For
BPEL process instance data, active data used by the 10.1.3 Oracle
BPEL Server is not migrated.

Argument Definition

scatest Possible inputs are as follows:

■ java.passed.home

The script picks this from the environment value of JAVA_HOME. Provide
this input to override.

■ wl_home

This is the location of Oracle WebLogic Server home (defaults to
Oracle_Home/.../wlserver_10.3).

■ scatest.input

The name of the composite to test.

■ scatest.format

The format of the output file (defaults to native; the other option is
junit).

■ scatest.result

The result directory in which to place the output files (defaults to temp_
dir/out).

■ jndi.properties.input

The jndi.properties file to use.

Managing SOA Composite Applications with Scripts

43-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information on creating and running tests on SOA composite applications,
see Chapter 49, "Testing SOA Composite Applications" and Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite.

43.6.2.2 Compiling a SOA Composite Application
Example 43–2 provides an example of compiling a SOA composite application, which
validates it for structure and syntax.

Example 43–2 Compiling an Application

ant -f ant-sca-compile.xml
-Dscac.input=/myApplication/myComposite/composite.xml

jndi.
properties

Absolute path to the JNDI property file. This is a property file that contains
JNDI properties for connecting to the server. For example:

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.provider.url=t3://myserver.us.oracle.com:8001/soa-infra
java.naming.security.principal=weblogic
dedicated.connection=true
dedicated.rmicontext=true

Since a composite test (in a test suite) is executed on the SOA Infrastructure,
this properties file contains the connection information. For this example,
these properties create a connection to the SOA Infrastructure hosted in
myserver.us.oracle.com, port 8001 and use a user name of weblogic.
You are prompted to specify the password.

You typically create one jndi.properties file (for example, in
/home/myhome/jndi.properties) and use it for all test runs.

Argument Definition

scac Possible inputs are as follows:

■ java.passed.home

The script picks this from the environment value of JAVA_
HOME. Provide this input to override.

■ wl_home

This is the location of Oracle WebLogic Server home (defaults
to Oracle_Home/.../wlserver_10.3).

■ scac.input

The composite.xml file to compile.

■ scac.output

The output file with scac results (defaults to temp_
dir/out.xml).

■ scac.error

The file with scac errors (defaults to temp_dir/out.err).

■ scac.application.home

The application home directory of the composite being
compiled.

■ scac.displayLevel

Controls the level of logs written to scac.output file. The
value can be 1, 2, or 3 (this defaults to 1).

Argument Definition

Managing SOA Composite Applications with Scripts

Deploying SOA Composite Applications 43-25

43.6.2.3 Packaging a SOA Composite Application into a Composite SAR file
Example 43–3 provides an example of packaging a SOA composite application into a
composite SAR file. The outcome of this command is a SOA archive. Check the output
of the command for the exact location of the resulting file.

Example 43–3 Packaging an Application

ant -f ant-sca-package.xml
-DcompositeDir=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POPr
ocessing
-DcompositeName=POProcessing
-Drevision=6-cmdline
-Dsca.application.home=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProces
sing

43.6.2.4 Deploying SOA Composite Application
Example 43–4 provides an example of deploying a SOA composite application.

Example 43–4 Deploying an Application

ant -f ant-sca-deploy.xml
-DserverURL=http://localhost:8001
-DsarLocation=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POPro
cessing\deploy\sca_POProcessing_rev6-cmdline.jar
-Doverwrite=true
-Duser=weblogic
-DforceDefault=true
-Dconfigplan=C:\demo\end2end-105-POProcessing\po\solutions\ch9\POProcessing\POProc
 essing\demed_cfgplan.xml

Argument Definition

compositeDir Absolute path of a directory that contains composite artifacts.

compositeName Name of the composite.

revision Revision ID of the composite.

sca.application.home Optional. Absolute path of the application home directory. This
property is required if you have shared data.

oracle.home Optional. The oracle.home property.

Note: After specifying the user name, enter the password when
prompted.

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost10:8001).

sarLocation Absolute path to one the following:

■ SAR file.

■ ZIP file that includes multiple SARs.

Managing SOA Composite Applications with Scripts

43-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

43.6.2.5 Undeploying a SOA Composite Application
Example 43–5 provides an example of undeploying a SOA composite application.

Example 43–5 Undeploying a SOA Composite Application

ant -f ant-sca-deploy.xml undeploy
-DserverURL=http://localhost:8001
-DcompositeName=POProcessing
-Drevision=rev6-cmdline
-Duser=weblogic

overwrite Optional. Indicates whether to overwrite an existing SOA composite
application on the server.

■ false (default): Does not overwrite the file.

■ true: Overwrites the file.

user Optional. User name to access the composite deployer servlet when
basic authentication is configured.

password Optional. Password to access the composite deployer servlet when
basic authentication is configured.

If you enter the user name, you are prompted to enter the password if
you do not provide it here.

forceDefault Optional. Indicates whether to set the version being deployed as the
default version for that composite application.

■ true (default): Makes it the default composite.

■ false: Does not make it the default composite.

configplan Absolute path of a configuration plan to be applied to a specified SAR
file or to all SAR files included in the ZIP file.

sysPropFile Passes in a system properties file that is useful for setting extra system
properties, for debugging, for SSL configuration, and so on.

If you specify a file name (for example, tmp-sys.properties), you
can define properties such as the following:

javax.net.debug=all

Note: After specifying the user name, enter the password when
prompted.

Argument Definition

serverURL URL of the server that hosts the SOA Infrastructure application (for
example, http://myhost10:7001).

compositeName Name of the SOA composite application.

revision Revision ID of the SOA composite application.

user Optional. User name to access the composite deployer servlet when
basic authentication is configured.

If you enter the user name, you are prompted to enter the
corresponding password.

password Optional. Password to access the composite deployer servlet when
basic authentication is configured.

Argument Definition

Managing SOA Composite Applications with Scripts

Deploying SOA Composite Applications 43-27

43.6.2.6 Managing a SOA Composite Application
Example 43–6 through Example 43–11 provide examples of managing a SOA
composite application.

Example 43–6 Starting an Application

ant -f ant-sca-mgmt.xml startComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
 -DcompositeName=HelloWorld -Drevision=1.0

Example 43–7 Stopping an Application

ant -f ant-sca-mgmt.xml stopComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
-DcompositeName=HelloWorld -Drevision=1.0

Example 43–8 Activate an Application

ant -f ant-sca-mgmt.xml activateComposite -Dhost=myhost -Dport=8001

Note: After specifying the user name, enter the password when
prompted.

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label
identifies the metadata service (MDS) artifacts associated with the
application. If the label is not specified, the system finds the latest
one.

Note: After specifying the user name, enter the password when
prompted.

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label
identifies the MDS artifacts associated with the application. If the
label is not specified, the system finds the latest one.

Managing SOA Composite Applications with Scripts

43-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

-Duser=weblogic-DcompositeName=HelloWorld -Drevision=1.0

Example 43–9 Retire an Application

ant -f ant-sca-mgmt.xml retireComposite -Dhost=myhost -Dport=8001 -Duser=weblogic
-DcompositeName=HelloWorld -Drevision=1.0

Example 43–10 Assigning the Default Version to a SOA Composite Application

ant -f ant-sca-mgmt.xml assignDefaultComposite -Dhost=myhost -Dport=8001
-Duser=weblogic -DcompositeName=HelloWorld -Drevision=1.0

Note: After specifying the user name, enter the password when
prompted.

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label
identifies the MDS artifacts associated with the application. If the
label is not specified, the system finds the latest one.

Note: After specifying the user name, enter the password when
prompted.

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

label Optional. Label of the SOA composite application. The label
identifies the MDS artifacts associated with the application. If the
label is not specified, the system finds the latest one.

Note: After specifying the user name, enter the password when
prompted.

Managing SOA Composite Applications with Scripts

Deploying SOA Composite Applications 43-29

Example 43–11 Listing the Deployed SOA Composite Applications

ant -f ant-sca-mgmt.xml listDeployedComposites -Dhost=myhost -Dport=8001
-Duser=weblogic

43.6.2.7 Upgrading a SOA Composite Application
You can use ant to upgrade a SOA composite application from 10.1.3 to 11g. For
information, see Oracle Fusion Middleware Upgrade Guide for Oracle SOA Suite,
WebCenter, and ADF.

43.6.2.8 How to Manage SOA Composite Applications with ant Scripts
The WebLogic Fusion Order Demo application provides an example of using ant
scripts to compile, package, and deploy the application. You can create the initial ant
build files by selecting New > Ant > Buildfile from Project from the File main menu.

Figure 43–18 shows the build.properties and build.xml files that display in the
Application Navigator after creation.

Figure 43–18 Ant Build Files

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

compositeName Name of the SOA composite application.

revision Revision of the SOA composite application.

Note: After specifying the user name, enter the password when
prompted.

Argument Definition

host Hostname of the Oracle WebLogic Server (for example, myhost).

port Port of the Oracle WebLogic Server (for example, 7001).

user User name for connecting to the running server to get MBean
information (for example, weblogic).

password Password for the user name.

Moving SOA Composite Applications to and from Development, Test, and Production Environments

43-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ build.properties

A file that you edit to reflect your environment (for example, specifying Oracle
home and Java home directories, setting server properties such as hostname and
port number to use for deployment, specifying the application to deploy, and so
on).

■ build.xml

Used by ant to compile, build, and deploy composite applications to the server
specified in the build.properties file.

1. Modify the build.properties file to reflect your environment.

2. From the Build menu, select Run Ant on project_name.

This builds targets defined in the current project’s build file.

For more information about downloading the WebLogic Fusion Order Demo and
modifying and using these files, see Oracle Fusion Middleware Tutorial for Running and
Building an Application with Oracle SOA Suite.

43.7 Moving SOA Composite Applications to and from Development,
Test, and Production Environments

As you move projects from one environment to another (for example, from testing to
production), you typically must modify several environment-specific values, such as
JDBC connection strings, hostnames of various servers, and so on. Configuration plans
enable you to modify these values using a single text (XML) file called a configuration
plan. The configuration plan is created in either Oracle JDeveloper or from the
command line. During process deployment, the configuration plan is used to search
the SOA project for values that must be replaced to adapt the project to the next target
environment.

43.7.1 Introduction to Configuration Plans
A configuration plan enables you to replace the following attributes and properties:

■ You create and edit a configuration plan file in which you can replace the
following attributes and properties:

– Any composite, service component, reference, service, and binding properties
in the SOA composite application file (composite.xml)

– Attribute values for bindings (for example, the location for binding.ws)

– schemaLocation attribute of an import in a WSDL file

– location attribute of an include in a WSDL file

– schemaLocation attribute of an include, import, and redefine in an XSD file

– Any properties in JCA adapter files

– Modify and add policy references for the following:

* Service component

* Service and reference binding components

Moving SOA Composite Applications to and from Development, Test, and Production Environments

Deploying SOA Composite Applications 43-31

■ You attach the configuration plan file to a SOA composite application JAR file or
ZIP file (if deploying a SOA bundle).

■ During deployment, the configuration plan file is used to search the
composite.xml, WSDL, and XSD files in the SOA composite application JAR file
for values that must be replaced to adapt the project to the next target
environment.

43.7.2 Introduction to a Configuration Plan File
The following example shows a configuration plan in which you modify the following:

■ An inFileFolder property for composite FileAdaptorComposite is replaced
with mytestserver/newinFileFolder.

■ A hostname (myserver17) is replaced with test-server and port 8888 is
replaced with 8198 in the following locations:

– All import WSDLs

– All reference binding.ws locations

The composite.xml file looks as shown in Example 43–12:

Example 43–12 composite.xml File

<composite>
 <import namespace="http://example.com/hr/"
 location="http://myserver17.us.oracle.com:8888/hrapp/HRAppService?WSDL"
 importType="wsdl"/>
 <service name="readPO">
 <interface.wsdl
interface="http://xmlns.oracle.com/pcbpel/adapter/file/readPO/#wsdl.interface(Read
_ptt)"/>
 <binding.jca config="readPO_file.jca"/>
 <property name="inFileFolder" type="xs:string" many="false"
 override="may">/tmp/inFile</property>
 </service>
 <reference name="HRApp">
 <interface.wsdl
 interface="http://example.com/hr/#wsdl.interface(HRAppService)"/>
 <binding.ws
port="http://example.com/hr/#wsdl.endpoint(HRAppService/HRAppServiceSoapHttpPort)"
 location="http://myserver17.us.oracle.com:8888/hrapp/HRAppService?WSDL"/>
 <binding.java serviceName="{http://example.com/hr/}HRAppService"
 registryName="HRAppCodeGen_JBOServiceRegistry"/>
 </reference>
</composite>

Note: The configuration plan does not alter XSLT artifacts in the
SOA composite application. If you want to modify any XSL, do so in
the XSLT Mapper. Using a configuration plan is not useful. For
example, you cannot change references in XSL using the configuration
plan file. Instead, they must be changed manually in the XSLT Mapper
in Oracle JDeveloper when moving to and from test, development,
and production environments. This ensures that the XSLT Mapper
opens without any issues in design time. However, leaving the
references unchanged does not impact runtime behavior.

Moving SOA Composite Applications to and from Development, Test, and Production Environments

43-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The configuration plan file looks as shown in Example 43–13.

Example 43–13 Configuration Plan File

<?xml version="1.0" encoding="UTF-8"?>
<soaConfigPlan xmlns:jca="http://xmlns.oracle.com/pcbpel/wsdl/jca/">
 <composite name="FileAdaptorComposite">
 <service name="readPO">
 <binding type="*">
 <property name="inFileFolder">
 <replace>/mytestserver/newinFileFolder</replace>
 </property>
 </binding>
 </service>
 </composite>
 <!-- For all composite replace host and port in all imports wsdls -->
 <composite name="*">
 <imports>
 <searchReplace>
 <search>myserver17</search>
 <replace>test-server</replace>
 </searchReplace>
 <searchReplace>
 <search>8888</search>
 <replace>8198</replace>
 </searchReplace>
 </imports>
 <reference name="*">
 <binding type="ws">
 <attribute name="location">
 <searchReplace>
 <search>myserver17</search>
 <replace>test-server</replace>
 </searchReplace>
 <searchReplace>
 <search>8888</search>
 <replace>8198</replace>
 </searchReplace>
 </attribute>
 </binding>
 </reference>
 </composite>
</soaConfigPlan>

A policy is replaced if a policy for the same URI is available. Otherwise, it is added.
This is different from properties, which are modified, but not added.

43.7.3 Introduction to Use Cases for a Configuration Plan
The following steps provide an overview of how to use a configuration plan when
moving from development to testing environments:

1. User A creates SOA composite application Foo.

2. User A deploys Foo to a development server, fixes bugs, and refines the process
until it is ready to test in the staging area.

3. User A creates and edits a configuration plan for Foo, which enables the URLs and
properties in the application to be modified to match the testing environment.

Moving SOA Composite Applications to and from Development, Test, and Production Environments

Deploying SOA Composite Applications 43-33

4. User A deploys Foo to the testing server using Oracle JDeveloper or a series of
command-line scripts (can be WLST-based). The configuration plan created in Step
3 modifies the URLs and properties in Foo.

5. User A deploys SOA composite application Bar in the future and applies the same
plan during deployment. The URLs and properties are also modified.

The following steps provide an overview of how to use a configuration plan when
creating environment-independent processes:

1. User A creates SOA composite application Foo.

2. User A deploys Foo to their development server, fixes bugs, and refines the
process until it is ready to test in the staging area.

3. User A creates a configuration plan for Foo, which enables the URLs and
properties in the process to be modified to match the settings for User A's
environment.

4. User A checks in Foo and the configuration plan created in Step 3 to a source
control system.

5. User B checks out Foo from source control.

6. User B makes a copy of the configuration plan to match their environment and
applies the new configuration plan onto Foo's artifacts.

7. User B imports the application into Oracle JDeveloper and makes several changes.

8. User B checks in both Foo and configuration plan B (which matches user B's
environment).

9. User A checks out Foo again, along with both configuration plans.

43.7.4 How to Create a Configuration Plan in Oracle JDeveloper
This section describes how to create and use a configuration plan. In particular, this
section describes the following:

■ Creating and editing a configuration plan

■ Attaching the configuration plan to a SOA composite application JAR file

■ Validating the configuration plan

■ Deploying the SOA composite application JAR or ZIP file in which the
configuration plan is included

To create a configuration plan in Oracle JDeveloper:
1. Open Oracle JDeveloper.

2. Right-click the composite.xml file of the project in which to create a configuration
plan, and select Generate Config Plan. Figure 43–19 provides details.

Note: This use case is useful for users that have their own
development server and a common development and testing server if
they share development of the same process. Users that share the
same deployment environment (that is, the same development server)
may not find this use case as useful.

Moving SOA Composite Applications to and from Development, Test, and Production Environments

43-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 43–19 Generate a Configuration Plan

The Composite Configuration Plan Generator dialog appears.

Figure 43–20 Composite Configuration Plan Generator Dialog

3. Create a configuration plan file for editing, as shown in Table 43–6.

4. Click OK.

Table 43–6 Generate a Configuration Plan

Field Description

Specify the file name (.xml)
for the configuration plan

Enter a specific name or accept the default name for the
configuration plan. The file is created in the directory of the
project and packaged with the SOA composite application JAR
or ZIP file.

Note: During deployment, you can specify a different
configuration file when prompted in the SOA Deployment
Configuration dialog.

Overwrite existing file Click to overwrite an existing configuration plan file with a
different file in the project directory.

Moving SOA Composite Applications to and from Development, Test, and Production Environments

Deploying SOA Composite Applications 43-35

This creates and opens a single configuration plan file for editing, similar to that
shown in Example 43–13 on page 43-32. You can modify URLs and properties for
the composite.xml, WSDL, and schema files of the SOA composite application.
Figure 43–21 provides details.

Figure 43–21 Configuration Plan Editor

5. Add values for server names, port numbers, and so on to the existing syntax. You
can also add replacement-only syntax when providing a new value. You can add
multiple search and replacement commands in each section.

6. From the File menu, select Save All.

7. Above the editor, click the x to the right of the file name to close the configuration
plan file.

8. Right-click the composite.xml file again, and select Validate Config Plan.

The Composite Configuration Plan Validator appears, as shown in Figure 43–22.

Figure 43–22 Validate the Configuration Plan

Moving SOA Composite Applications to and from Development, Test, and Production Environments

43-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

9. Select the configuration plan to validate. This step identifies all search and
replacement changes to be made during deployment. Use this option for
debugging only.

10. Note the directory in which a report describing validation results is created, and
click OK.

The Log window in Oracle JDeveloper indicates if validation succeeded and lists
all search and replacement commands to perform during SOA composite
application deployment. This information is also written to the validation report.

11. Deploy the SOA composite application by following the instructions in one of the
following sections:

■ Section 43.2, "Deploying a Single SOA Composite in Oracle JDeveloper"

■ Section 43.3, "Deploying Multiple SOA Composite Applications in Oracle
JDeveloper"

■ Section 43.4, "Deploying and Using Shared Metadata Across SOA Composite
Applications"

During deployment, the SOA Deployment Configuration dialog shown in Step 5
on page 43-5 prompts you to select the configuration plan to include in the SOA
composite application archive.

12. Select the configuration plan to include with the SOA composite application.

13. Click OK.

43.7.5 How to Create a Configuration Plan with the WLST Utility
As an alternative to using Oracle JDeveloper, you can use the WLST command line
utility to perform the following configuration plan management tasks:

■ Generate a configuration plan for editing

■ Attach the configuration plan file to the SOA composite application JAR file

■ Validate the configuration plan

■ Extract a configuration plan packaged with the JAR file for editing

For instructions, see Oracle Fusion Middleware WebLogic Scripting Tool Command
Reference.

Note: The old composite.xml, WSDL, and XSD files are not
replaced with files containing the new values for the URLs and
properties appropriate to the next environment. Replacement occurs
only when the SOA composite application is deployed.

44

Using Business Events and the Event Delivery Network 44-1

44 Using Business Events and the Event
Delivery Network

This chapter describes how to publish and subscribe to business events in a SOA
composite application. Business events consist of message data sent as the result of an
occurrence in a business environment. When a business event is published, other
service components can subscribe to it.

This chapter includes the following sections:

■ Section 44.1, "Introduction to Business Events"

■ Section 44.2, "Creating Business Events in Oracle JDeveloper"

For samples that show how to use business events with Oracle Mediator, visit the
following URL:

http://www.oracle.com/technology/sample_code/products/mediator

For additional information on creating business events in a SOA composite
application, see Oracle Fusion Middleware Tutorial for Running and Building an
Application with Oracle SOA Suite.

44.1 Introduction to Business Events
You can raise business events when a situation of interest occurs. For example, in a
loan flow scenario, a BPEL process executing a loan process can raise a loan completed
event at the completion of the process. Other systems within the infrastructure of this
application can listen for these events and, upon receipt of one instance of an event:

■ Use the event context to derive business intelligence or dashboard data.

■ Signal to a mail department that a loan package must be sent to a customer.

■ Invoke another business process.

■ Send information to Oracle Business Activity Monitoring (BAM)

Business events are typically a one-way, fire-and-forget, asynchronous way to send a
notification of a business occurrence. The business process does not:

■ Rely on any service component receiving the business event to complete.

■ Care if any other service components receive the business event.

■ Need to know where subscribers (if any) are and what they do with the data.

These are important distinctions between business events and direct service
invocations that rely on the Web Services Description Language (WSDL) file contract
(for example, a SOAP service client). If the author of the event depends on the receiver

Introduction to Business Events

44-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

of the event, then messaging typically must be accomplished through service
invocation rather than through a business event. Unlike direct service invocation, the
business event separates the client from the server.

A business event is defined using the event definition language (EDL). EDL is a
schema used to build business event definitions. Applications work with instances of
the business event definition.

EDL consists of the following:

■ Global name

Typically a Java package name (for example,
com.acme.ExpenseReport.created), though this is not required.

■ Custom headers

Used for fast routing. For example, if an event named Expense Report Created has
a Currency header, the component that creates the event at runtime is responsible
for populating the Currency header. The event can be routed based on the value of
the header more quickly than doing an XPath query into the event payload.

■ Payload definition

The most common use for a definition is an XML Schema (XSD). The payload of a
business event is defined using an XSD. The schema URI is contained in the root
element of the payload.

Example 44–1 shows an EDL file with two business events in the BugReport event
definition: bugUpdated and bugCreated. The namespace (BugReport) and
associated schema file (BugReport.xsd) are referenced.

Example 44–1 EDL File with Two Business Events

<?xml version = '1.0' encoding = 'UTF-8'?>
<definitions targetNamespace="/model/events/edl/BugReport"
 xmlns:ns0="/model/events/schema/BugReport"
 xmlns="http://schemas.oracle.com/events/edl">
 <schema-import namespace="/model/events/schema/BugReport"
 location="BugReport.xsd"/>

 <event-definition name="bugCreated">
 <content element="ns0:bugCreatedInfo"/>
 </event-definition>

 <event-definition name="bugUpdated">
 <content element="ns0:bugUpdatedInfo"/>
 </event-definition>
</definitions>

These two events are available for subscription in Oracle Mediator.

Business events are deployed to the metadata service (MDS) repository. Deploying a
business event to MDS along with its artifacts (for example, the XSDs) is known as
publishing the EDL (or event definition). This action transfers the EDL and its artifacts
to a shared area in MDS. An object in an MDS shared area is visible to all applications
in the Resource Palette of Oracle JDeveloper. After an EDL is published, it can be
subscribed to by other applications. EDLs cannot be unpublished; the definition
always exists.

A subscription is for a specific qualified name (QName) (for example,
x.y.z/newOrders). A QName is a tuple (URI, localName) that may be derived

Creating Business Events in Oracle JDeveloper

Using Business Events and the Event Delivery Network 44-3

from a string prefix:localName with a namespace declaration such as
xmlns:prefix=URI or a namespace context. In addition, subscriptions can be further
narrowed down by using content-based filters.

Business events are published in the Event Delivery Network (EDN). The EDN runs
within every SOA instance. Raised events are delivered by EDN to the subscribing
service components.

For this release, the following SOA service components and actions are supported:

■ Oracle Mediator can subscribe to and publish events.

■ Oracle Mediator can subscribe to events that are then wired to the BPEL process.
This feature enables you to pass the principal through the security interceptor for
component-level authorization policy enforcement.

44.1.1 Local and Remote Events Boundaries
A single SOA composite application instance can reside in a single container or can be
clustered across multiple containers. Another application (for example, an Oracle
Application Development Framework (ADF) Business Component application) can be
configured to run in the same container as the SOA composite application instance or
in a different container.

Raising an event from a Java EE application can be done through a local event
connection or a remote event connection:

■ Local event connection

If the publisher resides on the same Oracle WebLogic Server as the application and
the publisher uses a local business event connection factory, the event is raised
through a local event connection. In this scenario, synchronous subscriptions are
executed synchronously.

■ Remote event connection

If the caller resides in a different container (different JVM) then the application, the
event is raised through a remote event connection. Only asynchronous
subscriptions are supported for remote event connections.

You can also raise events through PL/SQL APIs.

If another application (for example, an Oracle ADF Business Component application)
is configured to run in the same container as the SOA composite application, it is
optimized to use local event connections. The boundary for events is the application
instance. When an event is raised in the application instance, subscriptions registered
in the application instance are executed. Events are not propagated from one
application instance to another. Propagation can be achieved through an Oracle
Mediator in both instances, which listens to events and publishes them to a JMS queue.

44.2 Creating Business Events in Oracle JDeveloper
This section provides a high-level overview of how to create and subscribe to a
business event. In this scenario, a business event named NewOrderSubmitted is
created when a user places an order in a store front application (StoreFrontService
service). You then create an Oracle Mediator service component to subscribe to this
business event.

Notes: There are two implementations of the EDN: JMS and AQ
(provides support for PL/SQL APIs).

Creating Business Events in Oracle JDeveloper

44-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

This scenario is part of the larger WebLogic Fusion Order Demo application. For
additional details about this application, see the Oracle Fusion Middleware Tutorial for
Running and Building an Application with Oracle SOA Suite.

44.2.1 How to Create a Business Event

To create a business event:
1. Create a SOA project as an empty composite.

2. Launch the Event Definition Creation wizard in either of two ways:

a. In the SOA Composite Editor, click the icon above the designer. Figure 44–1
provides an example.

Figure 44–1 Event Definition Creation

b. From the File main menu, select New > SOA Tier > Service Components >
Event Definition.

The Event Definition Creation dialog appears.

3. Enter the details described in Table 44–1.

4. Click the Add icon to add an event.

The Add an Event dialog appears.

5. Click the Search icon to select the payload, and click OK. Figure 44–2 provides
details.

Table 44–1 Event Definition Creation Wizard Fields and Values

Field Value

Event Definition Name Enter a name.

Note: Do not enter a forward slash (/) as the event name. This
creates an event definition file consisting of only an extension for
a name (.edn).

Directory Displays the directory path.

Namespace Accept the default namespace or enter a value for the namespace
in which to place the event.

Creating Business Events in Oracle JDeveloper

Using Business Events and the Event Delivery Network 44-5

Figure 44–2 Select the Payload

6. In the Name field, enter a name, as shown in Figure 44–3.

Figure 44–3 Add an Event Dialog

7. Click OK.

The added event now appears in the Events section, as shown in Figure 44–4.

Creating Business Events in Oracle JDeveloper

44-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 44–4 Event Definition Creation Dialog

8. Above the editor, click the x next to event_definition_name.edl to close the
Events editor.

9. Click Yes when prompted to save your changes. If you do not save your changes,
the event is not created and cannot be selected in the Event Chooser window.

The business event is published to MDS and you are returned to the SOA
Composite Editor. The business event displays for browsing in the Resource
Palette.

44.2.2 How to Subscribe to a Business Event

To subscribe to a business event:
1. From the Component Palette, drag a Mediator service component into the SOA

Composite Editor. This service component enables you to subscribe to the
business event.

2. In the Name field, enter a name.

3. From the Options list, select Subscribe to Event.

The window is refreshed to display an events table.

4. Click the Add icon to select an event.

The Event Chooser window appears.

5. Select the event you created and click OK.

You are returned to the Create Mediator dialog.

6. Select a level of delivery consistency for the event.

■ one and only one

Events are delivered to the subscriber in its own global (that is, JTA)
transaction. Any changes made by the subscriber within that transaction are
committed after the event processing is complete. If the subscriber fails, the
transaction is rolled back. Failed events are retried a configured number of
times.

Creating Business Events in Oracle JDeveloper

Using Business Events and the Event Delivery Network 44-7

■ guaranteed

Events are delivered to the subscriber asynchronously without a global
transaction. The subscriber can choose to create its own local transaction for
processing, but it is committed independently of the rest of the event
processing. The event is guaranteed to be handed to the subscriber, but
because there is no global transaction, there is a possibility that a system
failure can cause an event to be delivered more than once. If the subscriber
throws an exception (or fails in any way), the exception is logged, but the
event is not resent.

■ immediate

Events are delivered to the subscriber in the same global transaction and same
thread as the publisher. The publish call does not return until all immediate
subscribers have completed processing. If any subscribers throw an exception,
no additional subscribers are invoked and an exception is thrown to the
publisher. The transaction is rolled back in case of any error during immediate
processing.

7. If you want to filter the event, double-click the Filter column of the selected event
or select the event and click the filter icon (first icon) above the table. This displays
the Expression Builder dialog. This dialog enables you to specify an XPath filter
expression. A filter expression specifies that the contents (payload or headers) of a
message be analyzed before any service is invoked. For example, you can apply a
filter expression that specifies that a service be invoked only if the message
includes a customer ID.

When the expression logic is satisfied, the event is accepted for delivery.

For more information about filters, see Section 19.2.2.6, "Specifying Expression for
Filtering Messages."

Figure 44–5 shows the Create Mediator dialog.

Figure 44–5 Create Mediator Dialog

8. Click OK.

Creating Business Events in Oracle JDeveloper

44-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 44–6 shows an icon on the left side that indicates that Oracle Mediator is
configured for an event subscription.

Figure 44–6 Configuration for Event Subscription

44.2.3 What Happens When You Create and Subscribe to a Business Event
The source code in Example 44–2 provides details about the subscribed event of the
Oracle Mediator service component.

Example 44–2 Subscribed Event

<component name="OrderPendingEvent">
 <implementation.mediator src="OrderPendingEvent.mplan"/>
 <business-events>
 <subscribe
 xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="sub1:NewOrderSubmitted" consistency="oneAndOnlyOne"
 runAsRoles="$publisher"/>
</business-events>
</component>

While not explicitly demonstrated in this example, you can define XPath filters on
events. In Example 44–3, the event is accepted for delivery only if the initial deposit is
greater than 50000:

Example 44–3 Definition of XPath Filters on Events

 <business-events>
 . . .
 . . .
 <filter>
 <xpath xmlns:be="http://oracle.com/fabric/businessEvent"
 xmlns:ns1="http://xmlns.oracle.com/singleString"
 <xpath expression= "/be:business-event/be:content/
 sub1:AccountInfo/Details[@initialDeposit > 50000]" />
 </filter>
 . . .
 . . .
 </business-events>

44.2.4 What You May Need to Know About Subscribing to a Business Event
Note that subscribers in nondefault revisions of SOA composite applications can still
get business events. For example, note the following behavior:

1. Create a composite application with an initial Oracle Mediator service component
named M1 that publishes an event and a second Oracle Mediator service
component named M2 that subscribes to the event. The output is written to a
directory.

2. Deploy the composite application as revision 1.

Creating Business Events in Oracle JDeveloper

Using Business Events and the Event Delivery Network 44-9

3. Modify the composite application by adding a third Oracle Mediator service
component named M3 that subscribes to the same event and writes the output to a
different directory.

4. Deploy the composite application as revision 2 (the default).

5. Invoke revision 2 of the composite application.

Note that Oracle Mediator M2 writes the output to two files with the same content
in the directory. As expected, Oracle Mediator M3 picks up the event and writes
the output successfully to another directory. However, note that Oracle Mediator
M2 (from revision 1) is also picking up and processing the published event from
revision 2 of the composite application. Therefore, it creates one more output file
in the same directory.

44.2.5 How to Publish a Business Event
You can create a second Oracle Mediator to publish the event that you subscribed to in
Section 44.2.2, "How to Subscribe to a Business Event."

To publish a business event:
1. Create a second Oracle Mediator service component that publishes the event to

which the first Oracle Mediator subscribes.

2. Return to the first Oracle Mediator service component.

3. In the Routing Rules section, click the Add icon.

4. Click Service when prompted by the Target Type window.

5. Select the second Oracle Mediator service component.

6. Select Save All from the File main menu.

44.2.6 What Happens When You Publish a Business Event
Note that the two Oracle Mediator service components appear in Example 44–4. One
service component (OrderPendingEvent) subscribes to the event and the other
service component (PublishOrderPendingEvent) publishes the event.

Example 44–4 Event Subscription and Publication

<component name="PublishOrderPendingEvent">
 <implementation.mediator src="PublishOrderPendingEvent.mplan"/>
 <business-events>
 <publishes
xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="pub1:NewOrderSubmitted"/>
 </business-events>
 </component>

<component name="OrderPendingEvent">
 <implementation.mediator src="OrderPendingEvent.mplan"/>
 <business-events>
 <subscribe
 xmlns:sub1="/oracle/fodemo/storefront/entities/events/edl/OrderEO"
 name="sub1:NewOrderSubmitted" consistency="oneAndOnlyOne"
 runAsRoles="$publisher"/>
</business-events>
</component>

Creating Business Events in Oracle JDeveloper

44-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

44.2.7 How to Integrate Oracle ADF Business Component Business Events with Oracle
Mediator

This section provides a high-level overview of how to integrate Oracle ADF Business
Component event conditions with Oracle Mediator.

To integrate Oracle ADF Business Component business events with Oracle
Mediator:
1. Create a business component project.

2. Add a business event definition to the project. This action generates an EDL file
and an XSD file. The XSD file contains the definition of the payload. Ensure also
that you specify that the event be raised by the Oracle ADF Business Component
upon creation.

3. Create an SOA composite application and manually copy the EDL and XSD
schema files to the SOA project’s root directory. For example:

JDeveloper/mywork/SOA_application_name/SOA_project_name

4. Place schema files at the proper relative location from the EDL file based on the
import.

5. Create an Oracle Mediator service component as described in Section 44.2.2, "How
to Subscribe to a Business Event."

6. In the Event Chooser window, select the event’s EDL file, as described in
Section 44.2.2, "How to Subscribe to a Business Event."

7. Create a BPEL process service component in the same SOA composite application
for the Oracle Mediator to invoke. In the Input Element field of the Advanced tab,
ensure that you select the payload of the Business Component business event XSD
created in Step 2.

8. Double-click the BPEL process.

9. Drag an Email activity into the BPEL process.

10. Use the payload of the business event XSD to complete the Subject and Body
fields.

11. Return to the Oracle Mediator service component in the SOA Composite Editor.

12. Design a second service component to publish the event, such as a BPEL process
or a second Oracle Mediator service component.

SOA composite application design is now complete.

For more information about creating and publishing Oracle ADF Business
Component business events, see Oracle Fusion Middleware Fusion Developer's Guide
for Oracle Application Development Framework.

45

Creating Transformations with the XSLT Mapper 45-1

45 Creating Transformations with the XSLT
Mapper

This chapter describes how to use the XSLT Mapper. The XSLT Mapper enables you to
create data transformations between source schema elements and target schema
elements in either Oracle BPEL Process Manager or Oracle Mediator. Version 1.0 of
XSLT is supported.

This chapter includes the following sections:

■ Section 45.1, "Introduction to the XSLT Mapper"

■ Section 45.2, "Creating an XSL Map File"

■ Section 45.3, "Designing Transformation Maps with the XSLT Mapper"

■ Section 45.4, "Testing the Map"

■ Section 45.5, "Demonstrating the New Features of the XSLT Mapper"

For information on invoking the XSLT Mapper from Oracle BPEL Process Manager,
see Section 45.2.1, "How to Create an XSL Map File in Oracle BPEL Process Manager."
For information on invoking the XSLT Mapper from Oracle Mediator, see
Section 45.2.3, "How to Create an XSL Map File in Oracle Mediator."

45.1 Introduction to the XSLT Mapper
You use the XSLT Mapper transformation tool to create the contents of a map file.
Figure 45–1 shows the layout of the XSLT Mapper.

Introduction to the XSLT Mapper

45-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–1 Layout of the XSLT Mapper

The Source and the Target schemas are represented as trees and the nodes in the trees
are represented using a variety of icons. The displayed icon reflects the schema or
property of the node. For example:

■ An XSD attribute is denoted with an icon that is different from an XSD element.

■ An optional element is represented with an icon that is different from a mandatory
element.

■ A repeating element is represented with an icon that is different from a
nonrepeating element, and so on.

The various properties of the element and attribute are displayed in the Property
Inspector in the lower right of the XSLT Mapper when the element or attribute is
selected. (for example, type, cardinality, and so on). The Component Palette in the
upper right of Figure 45–1 is the container for all functions provided by the XSLT
Mapper. The XSLT Mapper is the actual drawing area for dropping functions and
connecting them to source and target nodes.

When an XSLT map is first created, the target tree shows the element and attribute
structure of the target XSD. An XSLT map is created by inserting XSLT constructs and
XPath expressions into the target tree at appropriate positions. When executed, the
XSLT map generates the appropriate elements and attributes in the target XSD.

Editing can be done in design view or source view. When a map is first created, you
are in design view. Design view provides a graphical display and enables editing of
the map. To see the text representation of the XSLT being created, switch to source
view. To switch views, click the Source or Design tabs at the bottom of the XSLT
Mapper.

While in design view, the following pages from the Component Palette can be used:

■ General: Commonly used XPath functions and XSLT constructs.

■ Advanced: More advanced XPath functions such as database and cross-reference
functions.

Introduction to the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-3

■ User Defined: User-defined functions and templates. This page is visible only
when the user has templates in their XSL or user-defined external functions
defined through the preferences pages.

■ All Pages: Provides a view of all functions in one page.

■ My Components: Contains user favorites and recently-used functions. To add a
function to your favorites, right-click the function in the Component Palette and
select Add to Favorites.

While in source view, the XML and the http://www.w3.org/1999/XSL/Transform pages
can be used.

The XSLT Mapper provides three separate context sensitive menus:

■ One in the source panel

■ One in the target panel

■ One in the center panel

Right-click each of the three separate panels to see what the context menus look like.

By default, design view shows all defined prefixes for all nodes in the source and
target trees. You can elect not to display prefixes by selecting Hide Prefixes from the
context menu in the center panel of the design view. After prefixes are hidden, select
Show Prefixes to display them again.

45.1.1 Overview of XSLT Creation
It is important to understand how design view representation of the map relates to the
generated XSLT in source view. This section provides a brief example.

After creating an initial map, the XSLT Mapper displays a graphical representation of
the source and target schemas, as shown in Figure 45–2.

Figure 45–2 Source and Target Schemas

Introduction to the XSLT Mapper

45-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

At this point, no target fields are mapped. Switching to source view displays an empty
XSLT map. XSLT statements are built graphically in design view, and XSLT text is then
generated. For example, design view mapping is shown in Figure 45–3.

Figure 45–3 Design View Mapping

The design view results in the generation of the following XSLT statements in source
view:

■ The OrderDate attribute from the source tree is linked with a line to the
InvoiceDate attribute in the target tree in Figure 45–3. This results in a value-of
statement in the XSLT, as shown in Example 45–1.

Example 45–1 value-of Statement

<xsl:attribute name="InvoiceDate">
 <xsl:value-of select="/ns0:PurchaseOrder/@OrderDate"/>
</xsl:attribute>

■ The First and Last name fields from the source tree in Figure 45–3 are
concatenated using an XPath concat function. The result is linked to the Name
field in the target tree. This results in the XSLT statement shown in Example 45–2:

Example 45–2 concat Function

<Name>
 <xsl:value-of select="concat(/ns0:PurchaseOrder/ShipTo/Name/First,
 /ns0:PurchaseOrder/ShipTo/Name/Last)"/>
</Name>

■ Note the inserted XSLT for-each construct in the target tree in Figure 45–3. For
each HighPriorityItems/Item in the source tree, a ShippedItems/Item element is
created in the target tree and ProductName and Quantity are copied for each. The
XSLT shown in Example 45–3 is generated:

Introduction to the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-5

Example 45–3 for-each Construct

<xsl:for-each
 select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">
 <Item>
 <ProductName>
 <xsl:value-of select="ProductName"/>
 </ProductName>
 <Quantity>
 <xsl:value-of select="Quantity"/>
 </Quantity>
 </Item>
</xsl:for-each>

The line linking Item in the source tree to the for-each construct in the target tree
in Figure 45–3 determines the XPath expression used in the for-each select
attribute. In general, XSLT constructs have a select or test attribute that is
populated by an XPath statement typically referencing a source tree element.

Note that the XPath expressions in the value-of statements beneath the for-each
construct are relative to the XPath referenced in the for-each. In general, the XSLT
Mapper creates relative paths within for-each statements.

If you must create an absolute path within a for-each construct, you must do this
within source view. When switching back to design view, it is remembered that the
path is absolute and the XSLT Mapper does not modify it.

The entire XSLT map generated for this example is shown in Example 45–4:

Example 45–4 Entire XSLT Map

<xsl:template match="/">
 <tns1:Invoice>
 <xsl:attribute name="InvoiceDate">
 <xsl:value-of select="/ns0:PurchaseOrder/@OrderDate"/>
 </xsl:attribute>
 <ShippedTo>
 <Name>
 <xsl:value-of select="concat
(/ns0:PurchaseOrder/ShipTo/Name/First,/ns0:PurchaseOrder/ShipTo/Name/Last)"/>
 </Name>
 </ShippedTo>
 <ShippedItems>
 <xsl:for-each select="/ns0:PurchaseOrder/Items/HighPriorityItems/Item">

Note: In Example 45–3, the fields ProductName and Quantity are
required fields in both the source and target. If these fields are
optional in the source and target, it is a good practice to insert an
xsl:if statement around these mappings to test for the existence of
the source node. If this is not done, and the source node does not exist
in the input document, an empty node is created in the target
document. For example, if ProductName is optional in both the
source and target, map them as follows:

<xsl:if test="ProductName">
 <ProductName>
 <xsl:value-of select="ProductName"/>
 </ProductName>
</xsl:if>

Creating an XSL Map File

45-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <Item>
 <ProductName>
 <xsl:value-of select="ProductName"/>
 </ProductName>
 <Quantity>
 <xsl:value-of select="Quantity"/>
 </Quantity>
 </Item>
 </xsl:for-each>
 </ShippedItems>
 </tns1:Invoice>
</xsl:template>

Subsequent sections of this chapter describe how to link source and target
elements, add XSLT constructs, and create XPath expressions in design view.

45.1.2 Guidelines for Using the XSLT Mapper
■ A node in the target tree can be linked only once (that is, you cannot have two

links connecting a node in the target tree).

■ An incomplete function and expression does not result in an XPath expression in
source view. If you switch from design view to source view with one or more
incomplete expressions, the Mapper Messages window displays warning
messages.

■ When you map duplicate elements in the XSLT Mapper, the style sheet becomes
invalid and you cannot work in the Design view. The Log window shows the
following error messages when you map an element with a duplicate name:

Error: This Node is Already Mapped :
"/ns0:rulebase/for-each/ns0:if/ns0:atom/ns0:rel"
 Error: This Node is Already Mapped :
"/ns0:rulebase/for-each/ns0:if/ns0:atom/choice_1/ns0:ind"
 Error: This Node is Already Mapped :
"/ns0:rulebase/for-each/ns0:if/ns0:atom/choice_1/ns0:var"

Duplicate nodes can be created in design view by surrounding each duplicate
node with a for-each statement that executes once.

45.2 Creating an XSL Map File
Transformations are performed in an XSL map file in which you map source schema
elements to target schema elements. This section describes methods for creating the
XSL map file.

45.2.1 How to Create an XSL Map File in Oracle BPEL Process Manager
A transform activity enables you to create a transformation using the XSLT Mapper in
Oracle BPEL Process Manager. This tool enables you to map one or more source
elements to target elements. For example, you can map incoming source purchase
order schema data to outgoing invoice schema data.

Note: You can also create an XSL map file from an XSL style sheet.
Click New > General > XML > XSL Map From XSL Stylesheet from
the File main menu in Oracle JDeveloper.

Creating an XSL Map File

Creating Transformations with the XSLT Mapper 45-7

To create an XSL map file in Oracle BPEL Process Manager:
1. From the Component Palette, drag a transform activity into your BPEL process

diagram. Figure 45–4 provides an example.

Figure 45–4 Transform Activity

2. Double-click the transform activity.

The Transform dialog shown in Figure 45–5 appears.

Figure 45–5 Transform Dialog

3. Specify the following information:

Creating an XSL Map File

45-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

a. Add source variables from which to map elements by clicking the Add icon
and selecting the variable and part of the variable as needed (for example, a
payload schema consisting of a purchase order request).

b. Add target variables to which to map elements.

c. Add the target part of the variable (for example, a payload schema consisting
of an invoice) to which to map.

4. In the Mapper File field, specify a map file name or accept the default name. The
map file is the file in which you create your mappings using the XSLT Mapper
transformation tool.

5. Click the Add icon (second icon to the right of the Mapper File field) to create a
mapping. If the file exists, click the Edit icon (third icon) to edit the mapping.

The XSLT Mapper appears.

6. Go to Section 45.1, "Introduction to the XSLT Mapper" for an overview of using the
XSLT Mapper.

45.2.2 How to Create an XSL Map File from Imported Source and Target Schema Files
in Oracle BPEL Process Manager

The following steps provide a high level overview of how to create an XSL map in
Oracle BPEL Process Manager using a po.xsd file and invoice.xsd file.

To create an XSL map file from imported source and target schema files in
Oracle BPEL Process Manager:
1. In Oracle JDeveloper, select the application project in which you want to create the

new XSL map.

2. Import the po.xsd and invoice.xsd files into the project (for example, in the
Structure window of Oracle JDeveloper, right-click Schemas and select Import
Schemas).

3. Right-click the selected project and select New.

The New Gallery dialog appears.

4. In the Categories tree, expand General and select XML.

Note: You can select multiple input variables. The first variable
defined represents the main XML input to the XSL map. Additional
variables that are added here are defined in the XSL map as input
parameters.

Note: If you select a file with a.xslt extension such as
xform.xslt, it opens the XSLT Mapper to create an XSL file named
xform.xslt.xsl, even though your intension was to use the
existing xform.xslt file. A .xsl extension is appended to any file
that does not have a .xsl extension, and you must create the
mappings in the new file. As a work around, ensure that your files
first have an extension of .xsl. If the XSL file has an extension of
.xslt, then rename it to .xsl.

Creating an XSL Map File

Creating Transformations with the XSLT Mapper 45-9

5. In the Items list, double-click XSL Map.

The Create XSL Map File dialog appears. This dialog enables you to create an XSL
map file that maps a root element of a source schema file or Web Services
Description Language (WSDL) file to a root element of a target schema file or
WSDL file. Note the following details:

– WSDL files that have been added to the project appear under Project
WSDL Files.

– Schema files that have been added to the project appear under Project
Schema Files.

– Schema files that are not part of the project can be imported using the
Import Schema File facility. Click the Import Schema File icon (first icon
to the right and above the list of schema files).

– WSDL files that are not part of the project can be imported using the
Import WSDL File facility. Click the Import WSDL File icon (second icon
to the right and above the list of schema files).

6. Enter a name for the XSL map file in the File Name field.

7. Select the root element for the source and target trees. In the example in
Figure 45–6, the PurchaseOrder element is selected for the source root element
and the Invoice element is selected for the target root element.

Figure 45–6 Expanded Target Section

8. Click OK.

A new XSL map is created, as shown in Figure 45–7.

Creating an XSL Map File

45-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–7 New XSL Map

9. Save and close the file now or begin to design your transformation. Information on
using the XSLT Mapper is provided in Section 45.1, "Introduction to the XSLT
Mapper."

10. From the Component Palette, drag a transform activity into your BPEL process.

11. Double-click the transform activity.

12. Specify the following information:

a. Add source variables from which to map elements by clicking the Add icon
and selecting the variable and part of the variable as needed (for example, a
payload schema consisting of a purchase order request).

b. Add target variables to which to map elements.

c. Add the target part of the variable (for example, a payload schema consisting
of an invoice) to which to map.

13. To the right of the Mapper File field, click the Search icon (first icon) to browse for
the map file name you specified in Step 6.

14. Click Open.

15. Click OK.

The XSLT Mapper displays your XSL map file.

16. Go to Section 45.1, "Introduction to the XSLT Mapper" for an overview of using the
XSLT Mapper.

45.2.3 How to Create an XSL Map File in Oracle Mediator
The XSLT Mapper enables you to create an XSL file to transform data from one XML
schema to another in Oracle Mediator. After you define an XSL file, you can reuse it in

Note: You can select multiple input variables. The first variable
defined represents the main XML input to the XSL map. Additional
variables that are added here are defined in the XSL map as input
parameters.

Creating an XSL Map File

Creating Transformations with the XSLT Mapper 45-11

multiple routing rule specifications. This section provides an overview of creating a
transformation map XSL file with the XSLT Mapper.

The XSLT Mapper is available from the Application Navigator in Oracle JDeveloper by
clicking an XSL file or from the Oracle Mediator Editor by clicking the transformation
icon, as described in the following steps. You can either create a new transformation
map or update an existing one.

To launch the XSLT Mapper from the Mediator Editor and create or update a data
transformation XSL file, follow these steps.

To create an XSL map file in Oracle Mediator:
1. Open the Oracle Mediator Editor.

2. To the left of Routing Rules, click the + icon to open the Routing Rules panel.

The transformation map icon is visible in the routing rules panel.

3. To the right of the Transform Using field shown in Figure 45–8, click the
appropriate transformation map icon to open the Transformation Map dialog.

Figure 45–8 Routing Rules

The appropriate Transformation Map dialog displays with options for selecting an
existing transformation map (XSL) file or creating a new map file. For example, if
you select the transformation map icon in the Synchronous Reply section, the
dialog shown in Figure 45–9 appears.

Creating an XSL Map File

45-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–9 Reply Transformation Map Dialog

If the routing rule includes a synchronous reply or fault, the Reply Transformation
Map dialog or Fault Transformation Map dialog contains the Include Request in
the Reply Payload option. When you enable this option, you can obtain
information from the request message. The request message and the reply and
fault message can consist of multiple parts, meaning you can have multiple source
schemas. Callback and callback timeout transformations can also consist of
multiple parts.

Each message part includes a variable. For a reply transformation, the reply
message includes a schema for the main part (the first part encountered) and an
in.partname variable for each subsequent part. The include request message
includes an initial.partname variable for each part.

For example, assume the main reply part is the out1.HoustonStoreProduct
schema and the reply also includes two other parts that are handled as variables,
in.HoustonStoreProduct and in.HoustonStoreProduct2. The request message
includes three parts that are handled as the variables initial.expense,
initial.expense2, and initial.expense3. Figure 45–10 provides an example.

Figure 45–10 Reply Part

4. Choose one of the following options:

■ Use Existing Mapper File and then click the Search icon to browse for an
existing XSLT Mapper file (or accept the default value).

Creating an XSL Map File

Creating Transformations with the XSLT Mapper 45-13

■ Create New Mapper File and then enter a name for the file (or accept the
default value). If the source message in the WSDL file has multiple parts,
variables are used for each part, as mentioned in Step 3. When the target of a
transformation has multiple parts, multiple transformation files map to these
targets. In this case, the mediator’s transformation dialog has a separate panel
for each target part. For example, here is a request in which the target has
three parts:

Figure 45–11 provides an example.

Figure 45–11 Request Transformation Map Dialog

5. Click OK.

If you chose Create New Mapper File, the XSLT Mapper opens to enable you to
correlate source schema elements to target schema elements.

6. Go to Section 45.1, "Introduction to the XSLT Mapper" for an overview of using the
XSLT Mapper.

45.2.4 What You May Need to Know About Creating an XSL Map File
XSL file errors do not display during a transformation at runtime if you manually
remove all existing mapping entries from an XSL file except for the basic format data.
Ensure that you always specify mapping entries. For example, assume you perform
the following actions:

1. Create a transformation mapping of input data to output data in the XSLT Mapper.

2. Design the application to write the output data to a file using the file adapter.

3. Manually modify the XSL file and remove all mapping entries except the basic
format data. For example:

<?xml version="1.0" encoding="UTF-8" ?>
<xsl:stylesheet version="1.0"
xmlns:xp20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.fu
nctions.Xpath20"
xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
xmlns:ns0="http://xmlns.oracle.com/pcbpel/adapter/file/MediaterDemo/Validation
UsingSchematron/WriteAccounInfoToFile/"
xmlns:orcl="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.fu
nctions.ExtFunc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue

Designing Transformation Maps with the XSLT Mapper

45-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

"
xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.mediator.servi
ce.common.functions.GetRequestHeaderExtnFunction"
xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
xmlns:imp1="http://www.mycompany.com/MyExample/NewAccount"
xmlns:tns="http://oracle.com/sca/soapservice/MediaterDemo/ValidationUsingSchem
atron/CreateNewCustomerService"
xmlns:xref="http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.XRe
fXPathFunctions"
xmlns:plt="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:ora="http://schemas.oracle.com/xpath/extension"
xmlns:inp1="http://www.mycompany.com/MyExample/NewCustomer"
exclude-result-prefixes="xsi xsl tns xsd inp1 ns0 imp1 plt xp20 bpws orcl dvm
hwf mhdr ids xref ora">
</xsl:stylesheet>

While the file can still be compiled, the XSL mapping is now invalid.

4. Deploy and create an instance of the SOA composite application.

During instance creation, an exception error occurs when the write operation fails
because it did not receive any input. However, note that no errors displayed
during XSL transformation.

45.2.5 What Happens at Runtime If You Pass a Payload Through Oracle Mediator
Without Creating an XSL Map File

If you design a SOA composite application to pass a payload through Oracle Mediator
without defining any transformation mapping, Oracle Mediator passes the payload
through. However, for the payload to be passed through successfully, you must ensure
that your source and target message part names are the same and of the same type.
Otherwise, the target reference may fail to execute with error messages such as Input
source like Null or Part not found.

45.3 Designing Transformation Maps with the XSLT Mapper
The following sections describe how to use the XSLT Mapper in Oracle BPEL Process
Manager or Oracle Mediator.

45.3.1 How to Add Additional Sources
You can add additional sources to an existing XSLT map. These sources are defined as
global parameters and have schema files defining their structure. Multiple source
documents may be required in certain instances depending upon the logic of the map.
For instance, to produce an invoice, the map may need access to both a purchase order
and a customer data document as input.

Note that XSL has no knowledge of BPEL variables. When you add multiple sources in
XSL design time, ensure that you also add these multiple sources in the transform
activity of a BPEL process.

To add additional sources:
1. Right-click the source panel to display the context menu. Figure 45–12 provides

details.

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-15

Figure 45–12 Context Menu

2. Select Add Source.

The Add Source dialog shown in Figure 45–13 appears.

3. Enter a parameter name for the source (the name can also be qualified by a
namespace and prefix).

Figure 45–13 Add Source Dialog

4. In the Source Schema section, click Select to select a schema for the new source.

The Type Chooser dialog appears.

5. Select or import the appropriate schema or WSDL file for the parameter in the
same manner as when creating a new XSLT map. For this example, the Customer
element from the sample customer.xsd file is selected.

6. Click OK.

The schema definition appears in the Source Schema section of the Create Source
as Parameter dialog.

7. Click OK.

Designing Transformation Maps with the XSLT Mapper

45-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The selected schema is imported and the parameter appears in the source panel
above the main source. The parameter can be expanded as shown in Figure 45–14
to view the structure of the underlying schema.

Figure 45–14 Expanded Parameter

The parameter can be referenced in XPath expressions by prefacing it with a $. For
example, a parameter named CUST appears as $CUST in an XPath expression.
Nodes under the parameter can also be referenced (for example,
$CUST/customer/Header/customerid).

45.3.2 How to Perform a Simple Copy by Linking Nodes
To copy an attribute or leaf-element in the source to an attribute or leaf-element in the
target, drag the source to the target. For example, copy the element PurchaseOrder/ID
to Invoice/ID and the attribute PurchaseOrder/OrderDate to Invoice/InvoiceDate, as
shown in Figure 45–15.

Figure 45–15 Linking Nodes

45.3.3 How to Set Constant Values
Perform the following steps to set a constant value.

To set constant values:
1. Select a node in the target tree.

2. Invoke the context menu by right-clicking the mouse.

3. Select the Set Text menu option.

A menu provides the following selections:

■ <Empty>: Enables you to create an empty node.

■ Enter Text: Enables you to enter text.

4. Select Enter Text.

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-17

The Set Text dialog appears.

5. In the Set Text dialog, enter text (for example, Discount Applied, as shown in
Figure 45–16).

Figure 45–16 Set Text Dialog

6. Click OK to save the text.

A T icon is displayed next to the node that has text associated with it. The
beginning of the text that is entered is shown next to the node name.

7. If you want to modify the text associated with the node, right-click the node and
select Edit Text to invoke the Set Text dialog again.

8. Edit the contents and click OK.

For more information about the fields, see the online Help for the Set Text dialog.

9. If you want to remove the text associated with the node, right-click the node and
select Remove Text.

45.3.4 How to Add Functions
In addition to the standard XPath 1.0 functions, the XSLT Mapper provides many
prebuilt extension functions and can support user-defined functions and named
templates. The extension functions are prefixed with oraext or orcl and mimic XPath
2.0 functions.

Perform the following steps to view function definitions and use a function.

To add functions:
1. From the Component Palette, select a category of functions (for example, String

Functions).

2. Right-click an individual function (for example, lower-case).

3. Select Help. A dialog with a description of the function appears, as shown in
Figure 45–17. You can also click a link at the bottom to access this function’s
description at the World Wide Web Consortium at www.w3.org.

Designing Transformation Maps with the XSLT Mapper

45-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–17 Description of Function

4. Drag a function from the Component Palette to the center panel of the XSLT
Mapper. You can then connect the source parameters from the source tree to the
function and the output of the function to a node in the target tree. For the
following example, drag the concat function from the String section of the
Component Palette to the center panel.

5. Concatenate PurchaseOrder/ShipTo/Name/First and
PurchaseOrder/ShipTo/Name/Last. Place the result in Invoice/ShippedTo/Name
by dragging threads from the first and last names and dropping them on the input
(left) side on the concat function.

6. Drag a thread from the ShippedTo name and connect it to the output (right) side
on the concat function, as shown in Figure 45–18.

Figure 45–18 Using the Concat Function

45.3.4.1 Editing Function Parameters
To edit the parameters of any function, double-click the function icon to launch the
Edit Function dialog. For example, if you want to add a new comma parameter so that
the output of the concat function used in the previous example is Last, First, then click
Add to add a comma and reorder the parameters to get this output. Figure 45–19
provides details.

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-19

Figure 45–19 Editing Function Parameters

For more information about how to add, remove, and reorder function parameters, see
the online Help for the Edit Function dialog.

45.3.4.2 Chaining Functions
Complex expressions can be built by chaining functions (that is, mapping the output
of one function to the input of another). For example, to remove all leading and
trailing spaces from the output of the concat function, perform the following steps:

1. Drag the left-trim and right-trim functions into the border area of the concat
function.

2. Chain them as shown in Figure 45–20 by dragging lines from the output side of
one function to the input side of the next function.

Chaining can also be performed by dragging and dropping a function onto a
connecting link.

Figure 45–20 Chaining Functions

45.3.4.3 Using Named Templates
Some complicated mapping logic cannot be represented or achieved by visual
mappings. For these situations, named templates are useful. Named templates enable

Designing Transformation Maps with the XSLT Mapper

45-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

you to share common mapping logic. You can define the common mapping logic as a
named template and then use it as often as you want.

You can define named templates in two ways:

■ Add the template directly to your XSL map in source view.

■ Add the template to an external file that you include in your XSL map.

The templates you define appear in the User Defined Named Templates list of the
User Defined page in the Component Palette. You can use named templates in almost
the same way as you use other functions. The only difference is that you cannot link
the output of a named template to a function or another named template; you can only
link its output to a target node in the target tree.

To create named templates, you must be familiar with the XSLT language. See any
XSLT book or visit the following URL for details about writing named templates:

http://www.w3.org/TR/xslt

For more information about including templates defined in external files, see
Section 45.3.6.7, "Including External Templates with xsl:include."

45.3.4.4 Importing User-Defined Functions
You can create and import a user-defined Java function if you have complex
functionality that cannot be performed in XSLT or with XPath expressions.

Follow these steps to create and use your own functions. External, user-defined
functions can be necessary when logic is too complex to perform within the XSL map.

To import user-defined functions:
1. Code and build your functions.

The XSLT Mapper extension functions are coded differently than the Oracle BPEL
Process Manager extension functions. Two examples are provided in the
SampleExtensionFunctions.java file of the
mapper-107-extension-functions sample scenario. Example 45–5 provides
the text for these functions. To download these and other samples, visit the
following URL:

http://www.oracle.com/technology/sample_code/products/soa

Each function must be declared as a static function. Input parameters and the
returned value must be declared as one of the following types:

■ java.lang.String

■ int

■ float

■ double

■ boolean

■ oracle.xml.parser.v2.XMLNodeList

■ oracle.xml.parser.v2.XMLDocumentFragment

Example 45–5 XSLT Mapper Extension Functions

// SampleExtensionFunctions.java
package oracle.sample;

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-21

/*
This is a sample XSLT Mapper User Defined Extension Functions implementation
class.
*/
public class SampleExtensionFunctions
{
 public static Double toKilograms(Double lb)
 {
 return new Double(lb.doubleValue()*0.45359237);
 }
 public static String replaceChar(String inputString, String oldChar, String
 newChar)
 {
 return inputString.replace(oldChar.charAt(0), newChar.charAt(0));
 }
}

2. Create an XML extension function configuration file. This file defines the functions
and their parameters.

This file must have the name ext-mapper-xpath-functions-config.xml.
See Section B.7, "Creating User-Defined XPath Extension Functions" for more
information on the format of this file. The file shown in Example 45–6 represents
the functions toKilograms and replaceChar as they are coded in
Example 45–5.

Example 45–6 XML Extension Function Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions version="11.1.1"
 xmlns="http://xmlns.oracle.com/soa/config/xpath" xmlns:sample=
"http://www.oracle.com/XSL/Transform/java/oracle.sample.SampleExtensionFunctions"
 >
 <function name="sample:toKilograms">
 <className>oracle.sample.SampleExtensionFunctions</className>
 <return type="number"/>
 <params>
 <param name="pounds" type="number"/>
 </params>
 <desc>Converts a value in pounds to kilograms</desc>
 </function>
 <function name="sample:replaceChar">
 <className>oracle.sample.SampleExtensionFunctions</className>
 <return type="string"/>
 <params>
 <param name="inputString" type="string"/>
 <param name="oldChar" type="string"/>
 <param name="newChar" type="string"/>
 </params>
 <desc>Returns a new string resulting from replacing all occurrences
 of oldChar in this string with newChar</desc>
 </function>
</soa-xpath-functions>

Some additional rules apply to the definitions of XSLT extension functions:

■ The functions need a namespace prefix and a namespace. In this sample, they
are sample and
http://www.oracle.com/XSL/Transform/java/oracle.sample.Sam
pleExtensionFunctions.

Designing Transformation Maps with the XSLT Mapper

45-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ The function namespace must start with
http://www.oracle.com/XSL/Transform/java/ for extension
functions to work with the Oracle XSLT processor.

■ The last portion of the namespace, in this sample
oracle.sample.SampleExtensionFunctions, must be the fully
qualified name of the Java class that implements the extension functions.

■ The types and their equivalent Java types shown in Table 45–1 can be used for
parameter and return values:

3. Create a JAR file containing both the XML configuration file and the compiled
classes. The configuration file must be contained in the META-INF directory for
the JAR file. For the example in this section, the directory structure is as follows
with the oracle and META-INF directories added to a JAR file:

■ oracle

– sample (contains the class file)

■ META-INF

– ext-mapper-xpath-functions-config.xml

The JAR file must then be registered with Oracle JDeveloper.

4. Go to Tools > Preferences > SOA.

5. Click the Add button and navigate to and select your JAR file.

6. Restart Oracle JDeveloper.

New functions appear in the Component Palette under the User Defined page in
the User Defined Extension Functions group.

7. To make the functions available in the runtime environment, Section B.7.3, "How
to Deploy User-Defined Functions to Runtime" for details.

45.3.5 How to Edit XPath Expressions
To use an XPath expression in a transformation mapping, select the Advanced page
and then the Advanced Function group from the Component Palette and drag
xpath-expression from the list into the XSLT Mapper. This is shown in Figure 45–21.

Table 45–1 Types and Equivalent Java Types

XML Configuration File Type Name Java Type

string java.lang.String

boolean boolean

number int, float, double

node-set oracle.xml.parser.v2.XMLNodeList

tree oracle.xml.parser.v2.XMLDocumentFragme
nt

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-23

Figure 45–21 Editing XPath Expressions

When you double-click the icon, the Edit XPath Expression dialog appears, as shown
in Figure 45–22. You can press Ctrl+Space to invoke the XPath Building Assistant.

Figure 45–22 Edit XPath Expression Dialog

Figure 45–23 shows the XPath Building Assistant.

Figure 45–23 The XPath Building Assistant

For more information about using the XPath Building Assistant, see the online Help
for the Edit XPath Expression dialog.

Designing Transformation Maps with the XSLT Mapper

45-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

45.3.6 How to Add XSLT Constructs
While mapping complex schemas, it is essential to be able to add XSLT constructs. For
instance, you may need to create a node in the target when a particular condition
exists; this requires the use of an xsl:if statement or an xsl:choose statement. You
may also need to loop over a node-set in the source such as a list of items in a sales
order and create nodes in the target XML for each item in the sales order; this requires
the use of an xsl:for-each statement. The XSLT Mapper provides XSLT constructs
for performing these and other tasks.

There are two ways to add XSLT constructs such as for-each, if, or choose to the target
XSLT tree:

To add XSLT constructs from the Component Palette:
1. Select the General page and open the XSLT Constructs group. Figure 45–24

provides details.

Figure 45–24 XSLT Constructs Available Through the Component Palette

2. Drag an XSLT construct from the group onto a node in the target tree. If the XSLT
construct can be applied to the node, it is inserted in the target tree. Note that the
when and otherwise constructs must be applied to a previously-inserted choose
node.

To add XSLT constructs through the context menu on the target tree:
1. Right-click the element in the target tree where you want to insert an XSLT

construct. A context menu is displayed. Figure 45–25 provides details.

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-25

Figure 45–25 XSLT Constructs in Available Through the Context Menu

2. Select Add XSL Node and then the XSLT construct you want to insert.

The XSLT construct is inserted. In most cases, an error icon initially appears next to the
construct. This indicates that the construct requires an XPath expression to be defined
for it.

In the case of the for-each construct, for example, an XPath expression defines the
node set over which the for-each statement loops. In the case of the if construct, the
XPath expression defines a boolean expression that is evaluated to determine if the
contents of the if construct are executed.

The XPath expression can be created in the same manner as mapping elements and
attributes in the target tree. The following methods create an underlying XPath
expression in the XSLT. You can perform all of these methods on XSLT constructs in
the target tree to set their XPath expressions:

■ Creating a simple copy by linking nodes

■ Adding functions

■ Adding XPath expressions

The following sections describe specific steps for inserting each supported XSLT
construct.

45.3.6.1 Using Conditional Processing with xsl:if
In Figure 45–26, note that HQAccount and BranchAccount are part of a choice in the
PurchaseOrder schema; only one of them exists in an actual instance. To illustrate
conditional mapping, copy PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/AccountNumber, only if it exists.

To use conditional processing with xsl:if:
1. In the target tree, select Invoice/BilledToAccount/AccountNumber and right-click

to invoke the context sensitive menu.

2. Select Add XSL Node > if and connect
PurchaseOrder/HQAccount/AccountNumber to Invoice/BilledToAccount/if.

3. Connect PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/if/AccountNumber.

Designing Transformation Maps with the XSLT Mapper

45-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–26 shows the results.

Figure 45–26 Conditional Processing with xsl:if

When mapping an optional source node to an optional target node, it is important to
surround the mapping with an xsl:if statement that tests for the existence of the
source node. If this is not done and the source node does not exist in the input
document, an empty node is created in the target document. For example, note the
mapping shown in Example 45–7:

Example 45–7 Statement Without xsl:If

<ProductName>
 <xsl:value-of select="ProductName"/>
</ProductName>

If the ProductName field is optional in both the source and target and the element
does not exist in the source document, then an empty ProductName element is
created in the target document. To avoid this situation, add an if statement to test for
the existence of the source node before the target node is created, as shown in
Example 45–8:

Example 45–8 Statement With xsl:If

<xsl:if test="ProductName">
 <ProductName>
 <xsl:value-of select="ProductName"/>
 </ProductName>
</xsl:if>

45.3.6.2 Using Conditional Processing with xsl:choose
In this same example, you can copy PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/AccountNumber, if it exists. Otherwise, copy
PurchaseOrder/BranchAccount to Invoice/BilledToAccount/AccountNumber.

To use conditional processing with xsl:choose:
1. In the target tree, select Invoice/BilledToAccount/AccountNumber and right-click

to invoke the context sensitive menu.

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-27

2. Select Add XSL Node > choose from the menu.

3. Connect PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/choose/when to define the condition.

4. Connect PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/choose/when/AccountNumber.

5. In the target tree, select XSL Add Node > choose and right-click to invoke the
context sensitive menu.

6. Select Add XSL node > otherwise from the menu.

7. Connect PurchaseOrder/BranchAccount/AccountNumber to
Invoice/BilledToAccount/choose/otherwise/AccountNumber.

Figure 45–27 shows the results.

Figure 45–27 Conditional Processing with xsl:choose

45.3.6.3 Creating Loops with xsl:for-each
The XSLT Mapper enables you to create loops with the xsl:for-each command. For
example, copy PurchaseOrder/Items/HighPriorityItems/Item to
Invoice/ShippedItems/Item.

To create loops with xsl:for-each:
1. In the target tree, select Invoice/ShippedItems/Item and right-click to invoke the

context sensitive menu.

2. Select Add XSL Node > for-each and connect
PurchaseOrder/Items/HighPriorityItems/Item to Invoice/ShippedItems/for-each
to define the iteration.

3. Connect PurchaseOrder/Items/HighPriorityItems/Item/ProductName to
Invoice/ShippedItems/for-each/Item/ProductName.

4. Connect PurchaseOrder/Items/HighPriorityItems/Item/Quantity to
Invoice/ShippedItems/for-each/Item/Quantity.

5. Connect PurchaseOrder/Items/HighPriorityItems/Item/USPrice to
Invoice/ShippedItems/for-each/Item/PriceCharged.

Designing Transformation Maps with the XSLT Mapper

45-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–28 shows the results.

Figure 45–28 Creating Loops with xsl:for-each

45.3.6.4 Cloning xsl:for-each
You can create additional loops by cloning an existing xsl:for-each. For example, copy
all LowPriorityItems to ShippedItems, in addition to HighPriorityItems.

To clone xsl:for-each:
1. Under Invoice/ShippedItems, select for-each.

2. Right-click and select Add XSL Node > Clone ’for-each’.

This inserts a copy of the for-each node beneath the original for-each.

3. Drag PurchaseOrder/Items/LowPriorityItems/Item to the copied for-each to
define the iteration.

4. Connect PurchaseOrder/Items/LowPriorityItems/Item/ProductName to
Item/ProductName in the copied for-each.

5. Connect PurchaseOrder/Items/LowPriorityItems/Item/Quantity to
Item/Quantity in the copied for-each.

6. Connect PurchaseOrder/Items/LowPriorityItems/Item/USPrice to
Item/PriceCharged in the copied for-each.

45.3.6.5 Applying xsl:sort to xsl:for-each
The XSLT Mapper enables you to add xsl:sort statements to xsl:for-each commands.

Notes:

■ Executing an auto map automatically inserts xsl:for-each. To see
the auto map in use, drag
PurchaseOrder/Items/LowPriorityItems to
Invoice/UnShippedItems; for-each is automatically created.

■ Ensure that your design does not include infinite loops. These
loops result in errors similar to the following displaying during
deployment and invocation of your application.

ORAMED-04001:
. . .
oracle.tip.mediator.service.BaseActionHandler requestProcess
SEVERE:
failed reference BPELProcess1.bpelprocess1_client operation =
process

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-29

To add an xsl:sort statement:
1. Right-click a for-each statement in the target tree.

A context menu appears.

2. Select Add XSL Node > sort. The Sort Edit Dialog is displayed.

Figure 45–29 Sort Edit Dialog

3. Select options to add to the sort statement as needed. See the online Help for
information on options.

4. Click OK. The sort statement is added following the for-each.

5. To set the field on which to sort, drag from the necessary sort field node in the
source tree to the sort node in the target tree. This creates a simple link and sets the
XPath expression for the select attribute on the xsl:sort.

6. To add additional sort statements, right-click the for-each to add another sort or
right-click an existing sort node to insert a new sort statement before the selected
sort node.

7. To edit a sort node, double-click the sort node or right-click and select Edit Sort
from the context menu. This invokes the Sort Edit Dialog and enables you to
change the sort options.

45.3.6.6 Copying Nodes with xsl:copy-of
You may need to use the XSLT copy-of construct to copy a node, along with any child
nodes, from the source to the target tree. This is typically done when working with
anyType or any element nodes. Note that anyType and any element and attribute
nodes cannot be mapped directly. Use copy-of or element and type substitution.

To copy nodes with xsl:copy-of:
1. Select the node in the target tree to be created by the copy-of command.

2. Right-click the node and select Add XSL Node > copy-of.

If the node is not an any element node, a dialog appears requesting you to either
replace the selected node or replace the children of the selected node.

Designing Transformation Maps with the XSLT Mapper

45-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. Select the correct option for your application and click OK.

If you select Replace the selected node with the copy-of, a processing directive is
created immediately following the copy-of in the XSL indicating which node is
replaced by the copy-of. Without the processing directive in the XSL, the
conversion back to design view is interpreted incorrectly. For this reason, do not
remove or edit this processing instruction while in source view.

4. Set the source node for the copy-of by dragging and dropping from the source tree
or by creating an XPath expression.

45.3.6.7 Including External Templates with xsl:include
You can reuse templates that are defined in external XSL files by including them in the
current map with an include statement.

To include external templates with xsl:include:
1. In the target tree, select and right-click the root node.

2. From the menu, select Add Include File.

A dialog prompts you for the include file name.

3. Select the file and click OK.

The file is copied to the same project directory as the existing map file. A relative
path name is created for it and the include statement instruction is inserted in the
target tree.

The include file can only contain named template definitions. These are parsed
and available to you in design view of the Component Palette under the User
Defined Named Templates category in the User Defined page.

45.3.7 How to Automatically Map Nodes
Mapping nonleaf nodes starts the auto map feature. The system automatically tries to
link all relevant nodes under the selected source and target. Try the auto map feature
by mapping PurchaseOrder/ShipTo/Address to Invoice/ShippedTo/Address. All
nodes under Address are automatically mapped, as shown in Figure 45–30.

Note: Always create the copy-of command in design view so that
the correct processing directive can be created in the XSLT Mapper to
indicate the correct placement of the copy-of command in the target
tree.

WARNING: The XSLT Mapper does not currently validate the
mapping of data performed through use of the copy-of command.
You must ensure that copy-of is used to correctly map elements to
the target tree so that the target XML document contains valid data.
You can test the validity by using the test tool.

Note: An oramds:// shared location cannot be referenced for a
user-defined named template include file.

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-31

Figure 45–30 Auto Mapping

The behavior of the auto map can be tuned by altering the settings in Oracle
JDeveloper preferences or by right-clicking the XSLT Mapper and selecting Auto Map
Preferences. This displays the dialog shown in Figure 45–31.

Figure 45–31 Auto Map Preferences

This dialog enables you to customize your auto mapping as follows:

■ Invoke the automatic mapping feature, which attempts to automatically link all
relevant nodes under the selected source and target. When disabled, you must
individually map relevant nodes.

■ Display and review all potential source-to-target mappings detected by the XSLT
Mapper, and then confirm to create them.

■ Be prompted to customize the auto map preferences before the auto map is
invoked.

■ Select the Basic or Advanced method for automatically mapping source and target
nodes. This action enables you to customize how the XSLT Mapper attempts to
automatically link all relevant nodes under the selected source and target.

■ Manage your dictionaries. The XSLT Mapper uses the rules defined in a dictionary
when attempting to automatically map source and target elements.

For more information on the fields, see the online Help for the Auto Map
Preferences dialog.

Follow these instructions to see potential source mapping candidates for a target node.

Designing Transformation Maps with the XSLT Mapper

45-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To automatically map nodes:
1. Right-click the target node and select Show Matches.

2. Click OK in the Auto Map Preferences dialog.

The Auto Map dialog appears, as shown in Figure 45–32.

Figure 45–32 Auto Mapping Candidates

For more information on the fields, see the online Help for the Auto Map dialog.

45.3.7.1 Using Auto Mapping with Confirmation
When the Confirm Auto Map Results checkbox shown in Figure 45–31 is selected, a
confirmation dialog appears. If matches are found, the potential source-to-target
mappings detected by the XSLT Mapper are displayed, as shown in Figure 45–33. The
dialog enables you to filter one or more mappings.

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-33

Figure 45–33 Auto Map with Confirmation

For more information about the fields, see the online Help for the Auto Map dialog.

45.3.8 What You May Need to Know About Automatic Mapping
The automatic mapping algorithm depends on existing maps between source and
target nodes. When maps exist between source and target nodes before executing
automatic mapping, these existing maps are used to define valid synonyms that are
used by the algorithm.

For example, assume you have a simple source and target tree, each with two elements
called test1 and test2, as shown in Figure 45–34.

Figure 45–34 Source and Target Tree with Two Elements

If no nodes are mapped, the automatic mapping algorithm does not match the names
test1 and test2. However, if mapping exists between the test1 and test2 nodes, the
algorithm predefines the names test1 and test2 as synonyms for any additional
mapping.

In the example in Figure 45–34, if you drag the exampleElement from the source to the
target, the automatic mapping algorithm maps the test1 node in the source to the test2
node in the target because your map previously linked those two names. This results
in the map shown in Figure 45–35:

Designing Transformation Maps with the XSLT Mapper

45-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–35 Results of Dragging exampleElement

45.3.9 How to View Unmapped Target Nodes
You can view a list of target nodes that are currently unmapped to source nodes.

To view unmapped target nodes:
1. In the XSLT Mapper, right-click in the center panel and select Completion Status.

This dialog provides statistics at the bottom about the number of unmapped target
nodes. This dialog enables you to identify and correct any unmapped nodes before
you test your transformation mapping logic on the Test XSL Map dialog.

2. In the list, select a target node. The node is highlighted. A checkmark indicates
that the target node is required to be mapped. If not required, the checkbox is
empty.

Figure 45–36 provides an example of the Completion Status dialog.

Note: Nodes are marked as required in the Completion Status dialog
based on the XSD definition for a node. It is possible that a node
marked as required is not actually required for a specific mapping if a
parent node of the required node is optional and is not part of the XSL
mapping.

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-35

Figure 45–36 Completion Status

45.3.10 How to Generate Dictionaries
A dictionary is an XML file used by automatic mapping. It contains synonyms for field
names. For instance, assume that the element QtyOrdered should map to the element
Quantity. The element names QtyOrdered and Quantity are then synonyms for one
another. If this mapping commonly appears from one map to another, it is a good
practice to save these synonyms in a dictionary file. After being saved, they can be
reapplied to another map using automatic mapping.

A dictionary can be created from any existing XSL map and contains all mappings that
are not automatically generated by the mapper for the existing map.

To generate and use dictionaries:
1. Create an XSL map that contains specific mappings to reuse in other maps.

2. Go to Tools > Preferences > XSL Maps > Auto Map and note the current
automatic mapping settings.

3. In the XSLT Mapper, right-click in the center panel of the XSLT Mapper and select
Generate Dictionary.

This prompts you for the dictionary name and the directory in which to place the
dictionary.

Note: Because dictionary entries are dependent upon the current
automatic mapping settings, you must make a note of those settings
for future use. To later reapply a dictionary mapping, it is best to set
the automatic mapping preferences to those that were in effect at the
time the dictionary was created. Therefore, it is important to note the
automatic mapping settings at the time the dictionary is created.

Designing Transformation Maps with the XSLT Mapper

45-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. Check the Open Dictionary checkbox to view the dictionary after it is created. If
the dictionary file is empty, this indicates that no fields were mapped that would
not have been mapped with the current automatic mapping settings.

5. To use the dictionary in another map, first load the dictionary by selecting Tools >
Preferences > XSL Maps > Auto Map.

6. Click Add below the Dictionaries list.

7. Browse for and select the dictionary XML file that was previously created from a
similar map.

8. Click OK.

9. Before leaving the automatic mapping preferences, modify the mapping settings to
match those used when creating the dictionary.

10. Click OK.

11. Perform an automatic mapping of whichever portion of the new map corresponds
to the saved dictionary mappings.

For more information about automatic mapping, see Section 45.3.7, "How to
Automatically Map Nodes."

45.3.11 How to Create Map Parameters and Variables
You can create map parameters and variables. You create map parameters in the
source tree and map variables in the target tree.

Note the following issues:

■ Parameters are created in the source tree, are global, and can be used anywhere in
the mappings.

■ Variables are created in the target tree, and are either global or local. The location
in which they are defined in the target tree determines if they are global or local.

– Global variables are defined immediately beneath the <target> node and
immediately above the actual target schema (for example, POAcknowledge).
Right-click the <target> node to create a global variable.

– Local variables are defined on a specific node beneath the actual target schema
(for example, subnode name on schema POAcknowledge). Local variables
can have the same name provided they are in different scopes. Local variables
can only be used in their scopes, while global variables can be used anywhere
in the mappings.

45.3.11.1 Creating a Map Parameter

To create a map parameter:
1. In the source tree root, right-click and select Add Parameter.

The Add Parameter dialog shown in Figure 45–37 appears.

2. Specify details for the parameter. For this example, a parameter named discount
with a numeric default value of 0.0 is added.

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-37

Figure 45–37 Add Parameter Dialog

3. Click OK.

45.3.11.2 Creating a Map Variable

To create a map variable:
1. In the target tree, right-click the target tree root or any node and select Add

Variable.

The Add Variable dialog shown in Figure 45–38 appears.

2. Specify details.

Since variables appear in the target tree, their XPath expression can be set in the
same manner as other XSLT constructs in the target tree after inserting the
variable. Therefore, the only required information in this dialog is a name for the
variable. If you want to set content for the variable, you must do it through this
dialog. Content is handled differently from the XSLT select attribute on the
variable.

Figure 45–38 Add Variable Dialog

3. Click OK.

The variable is added to the target tree at the position selected.

Designing Transformation Maps with the XSLT Mapper

45-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The variable initially has a warning icon beside it. This indicates that its select
XPath statement is undefined. Define the XPath through linking a source node,
creating a function, or defining an explicit XPath expression as done for other
target elements and XSLT constructs.

45.3.12 How to Search Source and Target Nodes
You can search source and target nodes. For example, you can search in a source node
named invoice for all occurrences of the subnode named price.

To search source and target nodes:
1. Right-click a source or target node and select Find from the context menu.

The Find Node dialog shown in Figure 45–39 is displayed.

2. Enter a keyword for which to search.

3. Specify additional details, as necessary. For example:

■ Select Search Annotations if you want annotations text to also be searched.

■ Specify the scope of the search. You can search the entire source or target tree,
search starting from a selected position, or search within a selected subtree.

Figure 45–39 Find Node Dialog

The first match found is highlighted, and the Find dialog closes. If no matches are
found, a message displays on-screen.

4. Select the F3 key to find the next match in the direction specified. To search in the
opposite direction, select the Shift and F3 keys.

Note: You cannot search on functions or text values set with the Set
Text option.

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-39

45.3.13 How to Control the Generation of Unmapped Target Elements
There are five options for controlling the generation of empty elements in the target
XSL:

■ Do not generate unmapped nodes (default option).

■ Generate empty nodes for all unmapped target nodes.

■ Generate empty nodes for all required, unmapped target nodes.

■ Generate empty nodes for all nillable, unmapped target nodes.

■ Generate empty nodes for all required or nillable, unmapped target nodes.

Set these options as follows:

■ At the global level:

Select Tools > Preferences > XSL Maps. The global setting applies only when a
map is created.

■ At the map level:

Select XSL Generation Options from the map context menu. Each map can then
be set independently by setting the options at the map level.

Empty elements are then generated for the selected unmapped nodes. If the
unmapped node is nillable, it is generated with xsi:nil="true".

45.3.14 How to Ignore Elements in the XSLT Document
When the XSLT Mapper encounters any elements in the XSLT document that cannot be
found in the source or target schema, it cannot process them and displays an Invalid
Source Node Path error. XSL map generation fails. You can create and import a file
that directs the XSLT Mapper to ignore and preserve these specific elements during
XSLT parsing by selecting Preferences > XSL Maps in the Tools main menu of Oracle
JDeveloper.

For example, preprocessing may create elements named myElement and
myOtherElementWithNS that you want the XSLT Mapper to ignore when it creates
the graphical representation of the XSLT document. You create and import a file with
these elements to ignore that includes the following syntax:

<elements-to-ignore>
 <element name="myElement"/>
 <element name="myOtherElementWithNS" namespace="NS"/>
</elements-to-ignore>

You must restart Oracle JDeveloper after importing the file.

45.3.15 How to Replace a Schema in the XSLT Mapper
You can replace the map source or target schema that currently displays in the XSLT
Mapper.

To replace a schema in the XSLT Mapper:
1. In either the source or target panel, right-click and select Replace Schema.

This opens the Type Chooser dialog shown in Figure 45–40, which enables you to
select the new source or target schema to use.

Designing Transformation Maps with the XSLT Mapper

45-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–40 Replacing a Schema

2. Select the replacement schema and click OK.

You are then prompted to select if you want to clear expressions in the current
map.

3. Select Yes or No. If expressions are not cleared, you may need to correct the map
in source view before reentering design view.

45.3.16 How to Substitute Elements and Types in the Source and Target Trees
You can substitute elements and types in the source and target trees.

Use element substitution when:

■ An element is defined as the head of a substitution group in the underlying
schema. The element may or may not be abstract. Any element from the
substitution group can be substituted for the original element.

■ An element is defined as an any element. Any global element defined in the
schema can be substituted.

Use type substitution when:

■ A global type is available in the underlying schema that is derived from the type
of an element in the source or target tree. The global type can then be substituted
for the original type of the element. Any type derived from an abstract type can be
substituted for that abstract type.

■ An element in the source or target tree is defined to be of the type anyType. Any
global type defined in the schema can then be substituted.

Type substitution is supported by use of the xsi:type attribute in XML.

To substitute an element or type in the source and target trees:
1. In the source or target tree, right-click the element for which substitution applies.

Designing Transformation Maps with the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-41

2. From the context menu, select Substitute Element or Type. If this option is
disabled, no possible substitutions exist for the element or its type in the
underlying schema.

The Substitute Element or Type dialog shown in Figure 45–41 appears.

Figure 45–41 Substitute Element or Type Dialog

3. Select either Substitute an element or Substitute a type (only one may be
available depending upon the underlying schema).

A list of global types or elements that can be substituted displays in the dialog.

4. Select the type or element to substitute.

5. Click OK.

The element or type is substituted for the originally selected element. This
selection displays differently depending upon whether this is a type or element
substitution and this is the source or target tree.

■ If the element is in the target tree and type substitution is selected:

The xsi:type attribute is added beneath the original element, as shown in
Figure 45–42. It is disabled in design view and set to the type value that was
selected. An S icon displays to indicate the node was substituted. You can map
to any structural elements in the substituted type.

Figure 45–42 If the Element is in the Target Tree and Type Substitution is Selected

■ If the element is in the source tree and type substitution is selected:

The xsi:type attribute is added beneath the original element, as shown in
Figure 45–43. An S icon is displayed to indicate the node was substituted. You
can map from any structural elements in the substituted type.

Designing Transformation Maps with the XSLT Mapper

45-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–43 If the Element is in the Source Tree and Type Substitution is Selected

■ If the element is in the target tree and element substitution is selected:

The original element is replaced in the tree with the substituted element, as
shown in Figure 45–44. A comment indicates the original element name was
added and an S icon displays to indicate the node was substituted. You may
map to any structural elements in the substituted element.

Figure 45–44 If the Element is in the Target Tree and Element Substitution is Selected

■ If the element is in the source tree and element substitution is selected:

The original element and its possible replacement both display in the source
tree under a new node named <Element Substitution>, as shown in
Figure 45–45. An S icon displays to indicate the node was added. This feature
enables you to build a map where the source object can contain either the
original node or a substituted node. You can map to any structural elements in
the substituted element.

Figure 45–45 If the Element is in the Source Tree and Element Substitution is Selected

Testing the Map

Creating Transformations with the XSLT Mapper 45-43

6. If you want to remove a substituted node, right-click any node with an S icon and
select Remove Substitution from the context menu.

7. If you want to see all possible nodes where substitution is allowed, right-click the
source or target tree and select Show Substitution Node Icons.

All nodes where substitution is possible are marked with an * icon, as shown in
Figure 45–46.

Figure 45–46 All Possible Substitutions

8. To hide the icons, right-click and select Hide Substitution Node Icons.

45.4 Testing the Map
The XSLT Mapper provides a test tool to test the style sheet or map. The test tool can
be invoked by selecting the Test menu item, as shown in Figure 45–47.

Note: Unlike element substitution, only one type substitution at a
time can display in the source tree. This does not prevent you from
writing a map that allows the source to sometimes have the original
type or the substituted type; you can switch to another type at any
time. XPath expressions that map to nodes that may not be visible in
the source tree at any given time are still retained.

Testing the Map

45-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–47 Invoking the Test Dialog

45.4.1 How to Test the Transformation Mapping Logic
The Test XSL Map dialog shown in Figure 45–48 enables you to test the transformation
mapping logic you designed with the XSLT Mapper. The test settings you specify are
stored and do not need to be entered again the next time you test. Test settings must be
entered again if you close and reopen Oracle JDeveloper.

Testing the Map

Creating Transformations with the XSLT Mapper 45-45

Figure 45–48 Test XSL Map Dialog

To test the transformation mapping logic:
1. In the Source XML File field, choose to allow a sample source XML file to be

generated for testing or click Browse to specify a different source XML file.

When you click OK, the source XML file is validated. If validation passes,
transformation occurs, and the target XML file is created.

If validation fails, no transformation occurs and a message displays on-screen.

2. Select the Generate Source XML File checkbox to create a sample XML file based
on the map source XSD schema.

3. Select the Show Source XML File checkbox to display the source XML files for the
test. The source XML files display in an Oracle JDeveloper XML editor.

If the map has defined parameters, the Parameters With Schema or Parameters
Without Schema tables can appear.

a. If the Parameters With Schema table appears, you can specify an input XML
file for the parameter using the Browse button. Select the Generate File
checkbox if you want to generate a file.

b. If the Parameters Without Schema table appears, you can specify a value by
selecting the Specify Value checkbox and making appropriate edits to the
Type and Value columns.

4. In the Target XML File field, enter a file name or browse for a file name in which
to store the resulting XML document from the transformation.

5. Select the Show Target XML File checkbox to display the target XML file for the
test. The target XML file displays in an Oracle JDeveloper XML editor.

Testing the Map

45-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. If you select to show both the source and target XML, you can customize the
layout of your XML editors. Select Enable Auto Layout in the upper right corner
and click one of the patterns.

7. Click OK.

The test results shown in Figure 45–49 appear.

For this example, the source XML and target XML display side-by-side with the
XSL map underneath (the default setting). Additional source XML files
corresponding to the Parameters With Schema table are displayed as tabs in the
same area as the main source file. You can right-click an editor and select Validate
XML to validate the source or target XML against the map source or target XSD
schema.

Figure 45–49 Test Results

45.4.2 How to Generate Reports
You can generate an HTML report with the following information:

■ XSL map file name, source and target schema file names, their root element names,
and their root element namespaces

■ Target document mappings

■ Target fields not mapped (including mandatory fields)

■ Sample transformation map execution

Follow these instructions to generate a report.

Note: If the XSL map file contains domain value map (DVM) and
XRef XPath functions, it cannot be tested. These functions cannot be
executed during design time; they can only be executed during
runtime.

Testing the Map

Creating Transformations with the XSLT Mapper 45-47

1. In the center panel, right-click and select Generate Report.

The Generate Report dialog appears, as shown in Figure 45–50. Note that if the
map has defined parameters, the appropriate parameter tables appear.

Figure 45–50 The Generate Report Dialog

For more information about the fields, see the online Help for the Generate Report
dialog.

45.4.2.1 Correcting Memory Errors When Generating Reports
If you attempt to generate a report and receive an out-of-memory error, increase the
heap size of the JVM as follows.

To increase the JVM heap size:
1. Open the JDev_Oracle_Home\jdev\bin\jdev.conf file.

2. Go to the following section:

Set the maximum heap to 512M
#
AddVMOption -Xmx512M

3. Increase the size of the heap as follows (for example, to 1024):

AddVMOption -Xmx1024M

In addition, you can also unselect the Open Report option on the Generate Report
dialog before generating the report.

Demonstrating the New Features of the XSLT Mapper

45-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

45.4.3 How to Customize Sample XML Generation
You can customize sample XML generation by specifying the following parameters.
Select Preferences > XSL Maps in the Tools main menu of Oracle JDeveloper to
display the Preferences dialog.

■ Number of repeating elements

Specifies how many occurrences of an element are created if the element has the
attribute maxOccurs set to a value greater than 1. If the specified value is greater
than the value of the maxOccurs attribute for a particular element, the number of
occurrences created for that particular element is the maxOccurs value, not the
specified number.

■ Generate optional elements

If selected, any optional element (its attribute minOccurs set to a value of 0) is
generated the same way as any required element (its attribute minOccurs set to a
value greater than 0).

■ Maximum depth

To avoid the occurrence of recursion in sample XML generation caused by
optional elements, specify a maximum depth in the XML document hierarchy tree
beyond which no optional elements are generated.

45.5 Demonstrating the New Features of the XSLT Mapper
This sample demonstrates the following new features of the XSLT mapper:

■ Element and type substitution

■ Multiple sources use

■ New XSL constructs xsl:sort and xsl:copy-of

■ New variable use

In addition to this sample, Oracle provides other transformation samples that are
available for download from the Oracle Technology Network (OTN). These samples
are described in Table 45–2. To access these samples, visit the following URL:

http://www.oracle.com/technology/sample_code/products/soa

Table 45–2 Transformation Samples

Sample Description

mapper-101-basic-mapping Demonstrates creation and basic editing of an XSLT map.

mapper-102-import-and-test Demonstrates the following XSL mapper features:

■ Import of external XSL

■ Test execution with an overview of XML editor validation

■ Report execution

mapper-104-auto-mapping Demonstrates the automatic mapping feature of the XSLT Editor.

mapper-105-multiple-sources Demonstrates the use of multiple sources. The following topics
are also covered in the process of creating the map sample.

■ Inserting a cloned for-each

■ Adding predicates to XPath expressions

■ Using variables

Demonstrating the New Features of the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-49

45.5.1 Opening the Application
You first create the sample application. When complete, the application matches the
one provided in the WhatsNewApplication directory described in Step 1.

1. Download sample mapper-109-whats-new from OTN.

The sample includes the following files and directories:

■ artifacts/schemas/po.xsd and Attachment.xsd: source schema

■ artifacts/schemas/invoice.xsd and ReasonCodes.xsd: target
schema

■ artifacts/application: starting application for this sample

■ WhatsNewApplication directory: completed sample map

2. Copy the artifacts/application folder to a separate work area.

3. Start Oracle JDeveloper.

4. Click WhatsNewApplication.jws in the artifacts/application folder
you copied to a separate area.

5. If prompted to migrate files, click Yes.

The WhatsNewApplication displays in the Application Navigator.

45.5.2 Creating a New XSLT Map in the BPEL Process
You now create a new XSLT map with two sources that is invoked from the BPEL
process included in the WhatsNewApplication application.

1. In the Application Navigator, double-click the ProcessPO2Invoice.bpel BPEL
process.

2. From the BPEL Activities and Components section of the Component Palette,
drag a Transform activity below the SetDiscontinuedProducts assign activity.

3. Double-click the Transform activity.

4. In the Name field of the General tab, enter Po2Invoice.

5. In the Transformation tab, perform the following steps:

mapper-107-extension-functi
ons

Demonstrates the use of user-defined extension functions.

mapper-108-substitution-ma
pping

Demonstrates the use of element substitution when:

■ An element is defined as the head of a substitution group in
the underlying schema. The element may or may not be
abstract. Any element from the substitution group can be
substituted for the original element.

■ An element is defined as an any element. Any global
element defined in the schema can be substituted for the
any element. This is subject to any namespace constraints
placed on the definition of the any element.

mapper-109-whats-new Demonstrates the new features in the XSLT Mapper. These
features are described in Section 45.5.1, "Opening the
Application" through Section 45.5.7, "Testing the Map."

Table 45–2 (Cont.) Transformation Samples

Sample Description

Demonstrating the New Features of the XSLT Mapper

45-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

a. Click the Add icon.

b. From the Source Variable list, select inputVariable.

c. From the Source Part list, select payload.

This variable contains the purchase order that is input to the BPEL process.

d. Click OK.

e. Click the Add icon a second time and select DiscontinuedList from the
Source Variable list. The variable is created in the SetDiscontinuedProducts
assign activity before the transformation activity.

f. Click OK.

g. From the Target Variable list, select outputVariable. This is the invoice that is
returned from the BPEL process.

h. In the Mapper File field, change the name to xsl/Po2Invoice.

i. Click the Create Mapping icon to the right of the Mapper Name field to create
and open the mapper file.

The XSLT Mapper opens.

j. From the File menu, select Save All. Your map looks as shown in
Figure 45–51. Note that the second source is loaded as a parameter with the
name DiscontinuedList:

Figure 45–51 XSLT Mapper File

45.5.3 Using Type Substitution to Map the Purchase Order Items
You now use type and element substitutions to map the purchase order (PO) items to
the invoice items.

1. In the target tree, expand the tree so that Invoice/Items/Item is visible. Note that
the Item element has an error icon next to it.

2. Move the mouse over the element to display a tool tip indicating that this element
is defined as an abstract type.

To map to the Item element, you must first indicate which type the element takes
in the final XML output.

3. Perform the following steps to indicate what type the element takes:

a. Right-click the Item element and select Substitute Element or Type.

Demonstrating the New Features of the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-51

The Substitute Element or Type dialog appears.

b. Select ShippedItemType from the list and click OK.

The Item element structure is filled out. The xsi:type attribute sets the type of
the Item element in the target XML.

4. Drag PurchaseOrder/Items to Invoice/Items to invoke the automatic mapper to
map these nodes. To review automatic mapping functionality, see sample
mapper-104-auto-mapping.

When complete, the Item elements in your map now look as shown in
Figure 45–52:

Figure 45–52 Item Elements in XSLT Mapper

5. From the File menu, select Save All to save the map file.

45.5.4 Referencing Additional Source Elements
You now use the information in the additional source variable, DiscontinuedList, to
eliminate items that have been discontinued. If the product name for an item is in
DiscontinuedList, then that item cannot be shipped and is not placed in the final
shipped item list.

1. Add an if statement above the Item node in the target tree by right-clicking the
Item node and selecting Add XSL Node > if.

The if statement must test if a discontinued product exists in DiscontinuedList
with the name of the current item. The item is added only to the shipped items if it
is not in DiscontinuedList. There are many ways to define the test expression for
the if statement. One way is described in the following steps.

2. Define the test expression for the if statement by selecting the following (note that
the method for how variables are set has changed from the previous version of
Oracle JDeveloper):

a. Add a global variable to the target tree by right-clicking the Invoice node and
selecting Add Variable.

The Add Variable dialog appears.

b. In the Local Name field, enter DelimitedList. In the following steps, this
variable is set to a string with a delimited list of discontinued product names.

Note: If you view invoice.xsd, note that ShippedItemType is
derived from the abstract type ItemType, which is the type of the Item
element.

Demonstrating the New Features of the XSLT Mapper

45-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

c. Click OK.

The variable is added with a warning icon next to it.

d. To set the value of the variable, drag the create-delimited-string function from
the String section of the Component Palette to the center panel.

e. Drag DiscontinuedList/ProductName to the input side of the
create-delimited-string function.

f. Drag the output side of the create-delimited-string function to the new
variable named DelimitedList.

g. Double-click the create-delimited-string function to open the Edit Function
dialog.

h. In the delimiter field, add the pipe character.

i. Click OK.

Note that the input source is referenced in XPath expressions with
$DiscontinuedList, as shown in Figure 45–53. This source is referenced as an
input parameter in XPath expressions.

Figure 45–53 $DiscontinuedList

3. To set the XPath expression for the if statement, drag the contains function from
the String section of the Component Palette to the center panel.

4. Drag the not function from the Logical Functions section of the Component
Palette to the shaded area surrounding the contains function you added in Step 3.

5. Drag a line from the output side of the contains function to the input side of the
not function.

6. Drag a line from the output side of the not function to the if statement.

7. Double-click the contains function to open the Edit Function dialog.

8. Enter values for the inputString and searchString, as shown in Figure 45–54, and
click OK.

Figure 45–54 Edit Function Dialog

9. From the File menu, select Save All to save the map file.

Demonstrating the New Features of the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-53

The map file now looks as shown in Figure 45–55.

Figure 45–55 Mapper File

45.5.5 Using Element Substitution to Map the Shipping Address
You now map a substituted shipping contact element in the source to the ShippedTo
element in the target.

1. Expand the PurchaseOrder/CustomerContacts element in the source to see the
Contact element.

Note that this element has an error icon next to it.

2. Place the mouse over this element to display a tool tip indicating that this element
is abstract.

In this situation, you must perform an element substitution to map the element.

3. Right-click the Contact element in the source tree and select Substitute Element or
Type.

The Substitute Element or Type dialog is displayed with a list of elements in the
substitution group of the abstract element Contact.

4. Select ShipToContact and click OK.

This is the element that you expect in the input XML. The structure of the
ShipToContact element is now displayed in the source tree.

5. Expand the ShipToContact/InternationalAddress element in the source tree to
show the address fields.

6. Expand the ShippedTo element in the target tree to show the target address fields.

Note the similarity in field names here, indicating that the automatic mapper can
be used.

7. Drag the InternationalAddress element in the source tree to the ShippedTo
element in the target tree and use the automatic mapper to help map the address
fields below these elements.

8. Map any remaining elements not matched by the automatic mapper so that this
section of the map is as shown in Figure 45–56:

Demonstrating the New Features of the XSLT Mapper

45-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 45–56 XSLT Mapper

9. From the File menu, select Save All to save the map file.

45.5.6 Mapping the Remaining Fields
1. Map PurchaseOrder/ID to Invoice/ID.

2. Expand Invoice/Data to show an any element.

3. Use the copy-of xsl statement to copy the attachment data from the source to the
target any element:

a. Right-click the Invoice/Data/any element and select Add XSL Node >
copy-of.

The copy-of statement is added and the original any element is grayed out.
This indicates that it is to be replaced by the nodes selected by the copy-of
statement.

b. To set the copy-of selection, drag the PurchaseOrder/Attachments element in
the source tree to the copy-of statement.

4. Perform the following steps to map the PurchaseOrder/Comment field to the
Invoice/Comment field. Note that the Invoice/Comment field is an anyType
element.

a. Right-click the Invoice/Comment field and select Substitute Element or Type.

b. Select xsd:string from the list of types provided.

c. Drag the PurchaseOrder/Comment field to the Invoice/Comment field to map
the fields.

5. Add an XSL sort statement to the for-each statement:

a. Right-click the for-each statement in the target tree and select Add XSL Node
> sort.

The Sort Edit dialog appears.

b. Select sort according to data-type Number.

c. Select sort order Descending.

d. Click OK. The sort node is added to the target tree.

e. Drag PurchaseOrder/Items/Item/Price from the source tree to the sort node in
the target tree.

Demonstrating the New Features of the XSLT Mapper

Creating Transformations with the XSLT Mapper 45-55

This sets the field on which to sort.

6. From the File menu, select Save All to save the map file. The map now looks as
shown in Figure 45–57:

Figure 45–57 XLST Mapper

45.5.7 Testing the Map
An XSL map can be tested independently from the BPEL process in Oracle JDeveloper
using the XSLT Mapper test tool. XML files can be input for each source input to the
map.

1. Right-click the center panel and select Test.

The Test XSL Map dialog appears after a warning dialog. The warning indicates
that you can test the map by creating your own sample input XML. The sample
XML generator cannot generate sample data for the source tree substitutions.

A sample input XML file is provided: artifacts/xml/POInput.xml.

2. Follow these steps to select the sample input file for testing:

a. Uncheck the Generate Source XML File checkbox.

b. Click the Browse button for the Source XML File field.

c. Navigate to select the artifacts/xml/POInput.xml file.

A second sample file has been created with discontinued item data. This file is
artifacts/xml/DiscontinuedItems.xml.

3. Follow these steps to use this file as the second source input.

a. Uncheck the Generate File checkbox to the left of the DiscontinuedList
parameter name in the Parameters With Schema section of the dialog.

b. Click Browse for the DiscontinuedList parameter and select the
artifacts/xml/DiscontinuedItems.xml file.

4. Click OK on the Test XSL Mapper dialog to run the test.

Demonstrating the New Features of the XSLT Mapper

45-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A PO2Invoice-Target.xml file is generated by the execution of the map. Note the
use of xsi:type attributes, the Attachments node created by the copy-of statement,
and the ordering of items caused by the sort statement in the
PO2Invoice-Target.xml file.

46

Working with Domain Value Maps 46-1

46Working with Domain Value Maps

This chapter describes how to use domain value maps to map the vocabulary used by
different domains.

This chapter includes the following sections:

■ Section 46.1, "Introduction to Domain Value Maps"

■ Section 46.2, "Creating Domain Value Maps"

■ Section 46.3, "Editing a Domain Value Map"

■ Section 46.4, "Using Domain Value Map Functions"

■ Section 46.5, "Creating a Domain Value Map Use Case for Hierarchical Lookup"

■ Section 46.6, "Creating a Domain Value Map Use Case For Multiple Values"

46.1 Introduction to Domain Value Maps
Domain value maps operate on actual data values that transit through the
infrastructure at runtime. They enable you to map from one vocabulary, used in a
given domain, to another vocabulary used in a different domain. For example, one
domain might represent a city with a long name (Boston) while another domain may
represent a city with a short name (BO). In such cases, you can directly map the values
by using domain value maps. A direct mapping of values between two or more
domains is known as point-to-point mapping. Table 46–1 shows a point-to-point
mapping for cities between two domains:

Each domain value map typically holds a specific category of mappings among
multiple applications. For example, one domain value map might hold mappings for
city codes and another might hold mappings for state codes.

Table 46–1 Point-to-Point Mapping

CityCode CityName

BELG_MN_STLouis BelgradeStLouis

BELG_NC BelgradeNorthCarolina

BO Boston

NP Northport

KN_USA KensingtonUSA

KN_CAN KensingtonCanada

Introduction to Domain Value Maps

46-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Domain value map values are static. You specify the domain value map values at
design time using Oracle JDeveloper, and then at runtime, the domain value map
columns are looked up for values.

46.1.1 Domain Value Map Features
The domain value map functionality consists of the following features:

■ Section 46.1.1.1, "Qualifier Support"

■ Section 46.1.1.2, "Qualifier Order Support"

■ Section 46.1.1.3, "One-to-Many Mapping Support"

46.1.1.1 Qualifier Support
Qualifiers qualify mappings. A mapping may not be valid unless qualified with
additional information. For example, a domain value map containing city code to city
name mapping may have multiple mappings from KN to Kensington because
Kensington is a city in Canada as well as in USA. So, this mapping requires a qualifier
(USA or Canada) to qualify when the mapping becomes valid, as shown in Table 46–2.

You can also specify multiple qualifiers for a domain value map. For example, as
shown in Table 46–3, BELG to Belgrade mapping can also be qualified with state
name.

Note: To dynamically integrate values between applications, you can
use the Cross referencing feature of Oracle SOA Suite. For information
about cross references, see Chapter 47, "Working with Cross
References"

Table 46–2 Qualifier Support Example

Country (Qualifier) CityCode CityName

USA BO Boston

USA BELG_NC Belgrade

USA BELG_MN_Streams Belgrade

USA NP Northport

USA KN Kensington

Canada KN Kensington

Table 46–3 Multiple Qualifier Support Example

Country
(Qualifier) State (Qualifier) CityCode CityName

USA Massachusetts BO Boston

USA North Carolina BELG Belgrade

USA Minnesota BELG Belgrade

USA Alabama NP Northport

USA Kansas KN Kensington

Canada Prince Edward
Island

KN Kensington

Introduction to Domain Value Maps

Working with Domain Value Maps 46-3

Qualifiers are used only to qualify the mappings. So, the qualifier values cannot be
looked up.

46.1.1.2 Qualifier Order Support
A qualifier order is used to find the best match during lookup at runtime. The order of
a qualifier varies from highest to lowest depending on the role of the qualifier in
defining a more exact match. In Table 46–3, the state qualifier can have a higher order
than the country qualifier, as a matching state indicates a more exact match.

Domain value maps support hierarchical lookup. If you specify a qualifier value
during a lookup and no exact match is found, then the lookup mechanism tries to find
a more generalized match by setting the higher order qualifiers to a"". It proceeds
until a match is found, or until a match is not found with all qualifiers set to a"".
Figure 46–1 describes hierarchical lookup performed for the following lookup on
Table 46–3:

State=Arkansas, Country=Canada, CityCode=KN_USA

In this example, the State qualifier has a qualifier value of 1 and the Country
qualifier has a qualifier value of 2.

Figure 46–1 Hierarchical Lookup Example

As shown in Figure 46–1, the lookup mechanism sets the higher order qualifier STATE
to the exact lookup value Arkansas and uses Canada|"" for the lower order
qualifier Country.

When no match is found, the lookup mechanism sets the higher order qualifier, STATE
to value "" and sets the next higher qualifier Country to an exact value Canada.

When no match is found, the lookup mechanism sets the value of the previous higher
order qualifier Country to value "". One matching row is found where CityCode is
KN_USA and Kensington is returned as value.

Table 46–4 provides a summary of these steps.

Table 46–4 Domain Value Map Lookup Result

STATE COUNTRY Short Value Lookup Result

Arkansas CANADA|" " KN_USA No Match

" " CANADA KN_USA No Match

" " " " KN_USA Kensington

Level of
Customization

Level of
GeneralizationStep 3 State=" ", Country=" ", CityCode=KN_USA

Step 2 State=" ", Country=Canada, CityCode=KN_USA

Step 1 State=Arkansas, Country=Canada, CityCode=KN_USA

Creating Domain Value Maps

46-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

46.1.1.3 One-to-Many Mapping Support
You can map one value to multiple values in a domain value map. For example, a
domain value map for Payment Terms can contain mapping of payment terms to three
values, such as discount percentage, discount period, and total payment period, as
shown in Table 46–5.

46.2 Creating Domain Value Maps
You can create one or more domain value maps in a SOA Composite application of
Oracle JDeveloper, and then at runtime, use it to look up for column values.

46.2.1 How to Create Domain Value Maps
You can create a domain value map by using the Create Domain Value Map(DVM) File
dialog in Oracle JDeveloper.

To create a domain value map:
1. In the Application Navigator, right-click the project in which you want to create a

domain value map and select New.

The New Gallery dialog is displayed.

2. Expand the SOA Tier node, and then select the Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog is displayed.

4. In the File Name field, enter the name of the domain value map file. For example,
specify CityCodes to identify a domain value map for city names and city codes.

5. In the Description field, enter a description for the domain value map. For
example, Mappings of city names and city codes. This field is optional.

6. In the Domain Name field, enter a name for each domain. For example, you can
enter CityCode in one Domain Name field and CityName in another. Each
domain name must be unique in a domain value map.

7. In the Domain Value field, enter a value corresponding to each domain. For
example, enter BO for CityCode domain and Boston for CityName domain as
shown in Figure 46–2.

Table 46–5 One-to-Many Mapping Support

Payment Term
Discount
Percentage

Discount
Period

Net Credit
Period

GoldCustomerPaymentTerm 10 20 30

SilverCustomerPaymentTerm 5 20 30

RegularPaymentTerm 2 20 30

Note: You can later add more domains to a domain value map by
using the Domain Value Map Editor.

Creating Domain Value Maps

Working with Domain Value Maps 46-5

Figure 46–2 Populated Create Domain Value Map File Dialog

8. Click OK.

The Domain Value Map Editor is displayed, as shown in Figure 46–3.

Figure 46–3 Domain Value Map Editor

46.2.2 What Happens When You Create a Domain Value Map
A file with extension .dvm gets created and appears in the Application Navigator, as
shown in Figure 46–4.

Creating Domain Value Maps

46-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 46–4 A Domain Value Map File in Application Navigator

 All .dvm files are based on the following schema definition (XSD) file:

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Copyright (c) 2006, Oracle. All rights reserved. -->
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/dvm"
 xmlns:tns="http://xmlns.oracle.com/dvm"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

<xsd:element name="dvm">
 <xsd:annotation>
 <xsd:documentation>The Top Level Element
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="description" minOccurs="0" type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>The DVM Description. This is optional
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="columns">
 <xsd:annotation>
 <xsd:documentation>This element holds DVM's column List.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="column" minOccurs="2" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>This represents a DVM Column
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 <xsd:attribute name="qualifier" default="false"
type="xsd:boolean"
 use="optional"/>

Editing a Domain Value Map

Working with Domain Value Maps 46-7

 <xsd:attribute name="order" use="optional"
type="xsd:positiveInteger"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="rows" minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>This represents all the DVM Rows.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="row" minOccurs="1" maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>
 Each DVM row of values
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="cell" minOccurs="2" maxOccurs="unbounded"
 type="xsd:string">
 <xsd:annotation>
 <xsd:documentation>This is the value for this row and for
 each column in the same order as defined in Columns.
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:annotation>
 <xsd:documentation>This Schema is used to validate the DVM Document got for
 creation and
 update of a DVM.
 </xsd:documentation>
 </xsd:annotation>
</xsd:schema>

46.3 Editing a Domain Value Map
After you have created a domain value map, you can edit it and make adjustments to
the presentation of data in the Domain Value Map Editor.

46.3.1 Adding Columns to a Domain Value Map
A domain value map column defines the domain whose values you want to map with
other domains.

Using Domain Value Map Functions

46-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To add a column to a domain value map:
1. Click Add.

2. Select Add Column.

The Create DVM Column dialog is displayed.

3. In the Name field, enter a column name.

4. In the Qualifier field, select True to set this column as a qualifier, else select False.

5. In the Qualifier Order field, enter a qualifier number. This field is enabled only if
you have selected True in the Qualifier field.

6. Click OK.

46.3.2 Adding Rows to a Domain Value Map
A domain value map row contains the values of the domains.

To add a row to a domain value map:
1. In the Domain Value Map Editor, click Add.

2. Select Add Row.

46.4 Using Domain Value Map Functions
After creating a domain value map, you can use the XPath functions of the domain
value map to look up for appropriate values and populate the targets for the
applications at runtime.

46.4.1 Understanding Domain Value Map Functions
You can use the dvm:lookupValue and dvm:lookupValue1M XPath functions to
look up a domain value map for a single value or multiple values at runtime.

46.4.1.1 dvm:lookupValue
The dvm:lookupValue function returns a string by looking up the value for the
target column in a domain value map, where the source column contains the given
source value.

■ Usage 1

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string, TargetColumnName as string, DefaultValue as string) as
 string

Example:

dvm:lookupValue(’cityMap.dvm’,’CityCodes’,’BO’, ’CityNames’,’CouldNotBeFound’)

■ Usage 2

dvm:lookupValue(dvmMetadataURI as string, SourceColumnName as string,
SourceValue as string, TargetColumnName as string, DefaultValue as string,
(QualifierSourceColumn as string, QualifierSourceValue as string)*) as string

Example:

dvm:lookupValue (’cityMap.dvm’,’CityCodes’,’BO’,’CityNames’,
 ’CouldNotBeFound’, ’State’, ’Massachusetts’)

Using Domain Value Map Functions

Working with Domain Value Maps 46-9

Arguments
■ dvmMetadataURI - The domain value map URI.

■ SourceColumnName - The source column name.

■ SourceValue - The source value (an XPath expression bound to the source
document of the XSLT transformation).

■ TargetColumnName - The target column name.

■ DefaultValue - If the value is not found, then the default value is returned.

■ QualifierSourceColumn: The name of the qualifier column.

■ QualifierSourceValue: The value of the qualifier.

46.4.1.2 dvm:lookupValue1M
The dvm:lookupValue1M function returns an XML document fragment containing
values for multiple target columns of a domain value map, where the value for source
column is equal to the source value.

dvm:lookupValue1M(dvmMetadataURI as string, SourceColumnName as string,
 SourceValue as string,(TargetColumnName as string)?)as nodeset

Arguments
■ dvmMetadataURI - The domain value map URI.

■ SourceColumnName - The source column name.

■ SourceValue - The source value (an XPath expression bound to the source
document of the XSLT transformation).

■ TargetColumnName - The name of the target columns. At least one column name
should be specified. The question mark symbol (?) indicates that you can specify
multiple target column names.

Example
dvm:lookupValue1M ('cityMap.dvm','CityCode','BO','CityName','CityNickName')

The result is:

<CityName>Boston</CityName>
<CityNickName>BeanTown</CityNickName>

46.4.2 Using Domain Value Map Functions in Transformation
The domain value map functions can be used for transformation with a BPEL service
component or a Mediator service component. Transformations are done by using the
XSLT Mapper window, which is displayed when you create an XSL file to transform
the data from one XML schema to another.

For information about XSLT Mapper, see Chapter 45, "Creating Transformations with
the XSLT Mapper".

Using Domain Value Map Functions

46-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

To use the lookupValue1M Function in Transformation:
1. In the Application Navigator, double-click an XSL file to open the XSLT Mapper

window.

2. In the XSLT Mapper window, expand the trees in the Source and Target panes.

3. In the Component Palette, click the down arrow and then select Advanced.

4. Select DVM Functions as shown in Figure 46–5.

Figure 46–5 Domain Value Map Functions in Component Palette

5. Drag and drop lookupValue1M onto the line that connects the source to the target.

A dvm:lookupValue1M icon appears on the connecting line.

6. Double-click the lookupValue1M icon.

The Edit Function – lookupValue1M dialog is displayed, as shown in Figure 46–6.

Figure 46–6 Edit Function – lookupValue1M Dialog

7. Specify values for the following fields in the Edit Function – lookupValue1M
dialog:

Using Domain Value Map Functions

Working with Domain Value Maps 46-11

a. In the dvmLocation field, enter the location URI of the domain value map file
or click Browse to the right of the dvmLocation field to select a domain value
map file. You can select an already deployed domain value map from MDS
and also from the shared location in MDS. This can be done by selecting the
Resource Palette.

b. In the sourceColumnName field, enter the name of the domain value map
column that is associated with the source element value, or click Browse to
select a column name from the columns defined for the domain value map
you previously selected.

c. In the sourceValue field, enter a value or press Ctrl-Space to use XPath
Building Assistant. Press the up and down arrow keys to locate an object in
the list, and press Enter to select an item.

d. In the targetColumnName field, enter the name of the domain value map
column that is associated with the target element value, or click Browse to
select the name from the columns defined for the domain value map you
previously selected.

e. Click Add to add another column as target column and then enter the name of
the column.

A populated Edit Function - lookupValue1M dialog is shown in Figure 46–7.

Figure 46–7 Populated Edit Function – lookupValue1M Dialog

8. Click OK.

The XSLT Mapper window is displayed with the lookupValue1M function icon.

9. From the File menu, click Save All.

46.4.3 Using Domain Value Map Functions in XPath Expressions
You can use the domain value map functions to create XPath expressions in the
Expression Builder dialog. You can access the Expression builder dialog through the
Filter Expressions or the Assign Values functionality of a Mediator service component.

Creating a Domain Value Map Use Case for Hierarchical Lookup

46-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For information about the Assign Values functionality, see Section 19.2.2.8, "Assigning
Values".

To use the lookupValue function in the Expression Builder dialog:
1. In the Functions list, select DVM Functions.

2. Double-click the dvm:lookupValue function to add it to the expression field.

3. Specify the various arguments of the lookupValue function. For example:

dvm:lookupValue('citymap.dvm','CityCodes',$in.Customer/inp1:Customer/Address/Ci
ty,'CityNames','NotFound')

This expression, also shown in Figure 46–8, looks up a domain value map for the
city name equivalent of a city code. The value of the city code depends on the
value specified at runtime.

Figure 46–8 Domain Value Map Functions in the Expression Builder Dialog

46.4.4 What Happens at Runtime
At runtime, a BPEL service component or a Mediator service component uses the
domain value map to look up appropriate values.

46.5 Creating a Domain Value Map Use Case for Hierarchical Lookup
This use case demonstrates the hierarchical lookup feature of domain value maps. The
hierarchical lookup use case consists of the following steps:

1. Files are picked up from a directory by an adapter service named ReadOrders.

Creating a Domain Value Map Use Case for Hierarchical Lookup

Working with Domain Value Maps 46-13

2. The ReadOrders adapter service sends the file data to the ProcessOrders
Mediator.

3. The ProcessOrders Mediator then transforms the message to the structure
required by the adapter reference. During transformation, Mediator looks up the
UnitsOfMeasure domain value map for an equivalent value of the Common
domain.

4. The ProcessOrders Mediator sends the message to an external reference
WriteOrders.

5. The WriteOrders reference writes the message to a specified output directory.

For downloading the sample files mentioned in this section, visit the following URL:

http://www.oracle.com/technology/sample_code/products/mediator

46.5.1 Creating the HierarchicalValue Use Case
This section provides the design-time tasks for creating, building, and deploying your
SOA composite application. These tasks must be performed in the order in which they
are presented.

■ Section 46.5.1.1, "Task 1: Creating an Oracle JDeveloper Application and Project"

■ Section 46.5.1.2, "Task 2: Creating a Domain Value Map"

■ Section 46.5.1.3, "Task 3: Creating a File Adapter Service"

■ Section 46.5.1.4, "Task 4: Creating ProcessOrders Mediator Component"

■ Section 46.5.1.5, "Task 5: Creating a File Adapter Reference"

■ Section 46.5.1.6, "Task 6: Specifying Routing Rules"

■ Section 46.5.1.7, "Task 7: Configuring Oracle Application Server Connection"

■ Section 46.5.1.8, "Task 8: Deploying the Composite Application"

46.5.1.1 Task 1: Creating an Oracle JDeveloper Application and Project

To create an application and a project for the use case:
1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application Wizard appears.

4. In the Application Name field, enter Hierarchical and then click Next.

The Name your SOA project screen appears.

5. In the Project Name field, enter HierarchicalValue and click Next.

The Configure SOA settings for the SOA project screen appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Applications Navigator of Oracle JDeveloper is populated with the new
application and the project, and the Design tab contains a blank palette.

7. From the File menu, click Save All.

Creating a Domain Value Map Use Case for Hierarchical Lookup

46-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

46.5.1.2 Task 2: Creating a Domain Value Map
After creating an application and a project for the use case, you must create a domain
value map.

To create a domain value map:
1. In the Application Navigator, right-click the HierarchicalValue project and select

New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog is displayed.

4. In the File Name field, enter UnitsOfMeasure.dvm.

5. In the Domain Name fields, enter Siebel and Common.

6. In the Domain Value field corresponding to the Siebel domain, enter Ea.

7. In the Domain Value field corresponding to the Common domain, enter Each.

8. Click OK.

The Domain Value Map Editor is displayed.

9. Click Add and then select Add Column.

The Create DVM Column dialog is displayed.

10. In the Name field, enter TradingPartner.

11. In the Qualifier list, select true.

12. In the QualifierOrder field, enter 1 and click OK.

13. Repeat Step 9 through Step 12 to create another qualifier named StandardCode
with qualifier order as 2.

14. Click Add and then select Add Row.

Repeat this step to add two more rows.

15. Enter the following information in the newly added rows of the domain value
map table:

The Domain Value Map Editor would appear as shown in Figure 46–9.

Siebel Common TradingPartner StandardCode

EC Each OAG

E-RN Each A.C.Networks RN

EO Each ABC Inc RN

Creating a Domain Value Map Use Case for Hierarchical Lookup

Working with Domain Value Maps 46-15

Figure 46–9 UnitsOfMeasure Domain Value Map

16. From the File menu, click Save All and close the Domain Value Map Editor.

46.5.1.3 Task 3: Creating a File Adapter Service
After creating the domain value map, you must create a File adapter service, named
ReadOrders to read the XML files from a directory.

To create a File adapter service:
1. From the Components Palette, select SOA.

2. Select File Adapter and drag it to the Exposed Services design area.

3. If the Adapter Configuration Wizard Welcome page appears, click Next.

The Service Name page is displayed.

4. In the Service Name field, enter ReadOrders and then click Next.

The Operation page is displayed.

5. In the Operation Type field, select Read File and then click Next.

The File Directories page is displayed.

6. In the Directory for Incoming Files (physical path) field, enter the directory from
which you want to read the files.

7. Click Next.

The File Filtering page is displayed.

8. In the Include Files with Name Pattern field, enter *.xml and then click Next.

Note: Oracle Mediator may process the same file twice when run
against Oracle RAC planned outages. This is because a File adapter is
a non-XA compliant adapter. So, when it participates in a global
transaction, it may not follow the XA interface specification of
processing each file once and only once.

Creating a Domain Value Map Use Case for Hierarchical Lookup

46-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The File Polling page is displayed.

9. Change the Polling Frequency field value to 10 seconds and then click Next.

The Messages page is displayed.

10. Click Search.

The Type Chooser dialog is displayed.

11. Click Import Schema File.

The Import Schema File dialog is displayed.

12. Click Search and select the Order.xsd file present in the Samples folder.

13. Click OK.

14. Expand the navigation tree to Type Explorer\Imported Schemas\Order.xsd.

15. Select listOfOrder and click OK.

16. Click Next.

The Finish page is displayed.

17. Click Finish.

18. From the File menu, click Save All.

Figure 46–10 shows the ReadOrders service in SOA Composite Editor.

Figure 46–10 ReadOrders Service in the SOA Composite Editor

46.5.1.4 Task 4: Creating ProcessOrders Mediator Component

To create a Mediator component named ProcessOrders:
1. Drag and drop a Mediator from Component Palette to the Components design

area.

The Create Mediator dialog is displayed.

2. In the Name field, enter ProcessOrders.

3. In the Template list, select Define Interface Later.

4. Click OK.

A Mediator with name ProcessOrders is created.

5. In the SOA Composite Editor, connect the ReadOrders service to the
ProcessOrders Mediator, as shown in Figure 46–11.

Creating a Domain Value Map Use Case for Hierarchical Lookup

Working with Domain Value Maps 46-17

This specifies the file adapter service to invoke the ProcessOrders Mediator
while reading a file from the input directory.

Figure 46–11 ReadOrders Service Connected to the ProcessOrders Mediator

6. From the File menu, click Save All.

46.5.1.5 Task 5: Creating a File Adapter Reference

To create a file adapter reference:
1. From the Components Palette, select SOA.

2. Select File Adapter and drag it to the External References design area.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter WriteCommonOrder.

5. Click Next.

The Operation page is displayed.

6. In the Operation Type field, select Write File.

7. Click Next.

The File Configuration page is displayed.

8. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory where you want to write the files.

9. In the File Naming Convention field, enter common_order_%SEQ%.xml and
click Next.

The Messages page is displayed.

10. Click Search.

The Type Chooser dialog is displayed.

11. Navigate to Type Explorer, Project Schema Files, Order.xsd and then select
listOfOrder.

12. Click OK.

13. Click Next.

Creating a Domain Value Map Use Case for Hierarchical Lookup

46-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Finish page is displayed.

14. Click Finish.

Figure 46–12 shows the WriteCommonOrder reference in SOA Composite Editor.

Figure 46–12 WriteCommonOrder Reference in SOA Composite Editor

15. From the File menu, click Save All.

46.5.1.6 Task 6: Specifying Routing Rules
You must specify the path that messages take from the ReadOrders adapter service to
the external reference.

To specify routing rules
1. Connect the ProcessOrders Mediator to the WriteCommonOrder reference as

shown in Figure 46–13.

Figure 46–13 ProcessOrders Mediator Connected to the WriteCommonOrder Reference

2. Double-click ProcessOrders Mediator.

3. Click the icon to the right of the Transform Using field.

The Request Transformation Map dialog is displayed.

4. Select Create New Mapper File and click OK.

A listOfOrder_To_listOfOrder.xsl tab is displayed.

5. Drag and drop the imp1:listOfOrder source element onto imp1:listOfOrder target
element.

Creating a Domain Value Map Use Case for Hierarchical Lookup

Working with Domain Value Maps 46-19

The Auto Map Preferences dialog is displayed.

6. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names.

7. Click OK.

The listOfOrder_To_listOfOrder.xsl tab appears as shown in
Figure 46–14.

Figure 46–14 imp1:listOfOrder To imp1:listOfOrder Transformation

8. In the Components Palette, select Advanced.

9. Click DVM Functions.

10. Drag and drop lookupValue on the line connecting the unitsOfMeasure
elements, as shown in Figure 46–15.

Figure 46–15 Adding lookupValue Function to imp1:listOfOrder To imp1:listOfOrder.xsl

11. Double-click the lookupvalue icon.

The Edit Function-lookupValue dialog is displayed.

12. Click Search to the right of the dvmLocation field.

The SCA Resource Lookup dialog is displayed.

13. Select UnitsofMeasure.dvm and click OK.

14. Click Search to the right of the sourceColumnName field.

The Select DVM Column dialog is displayed.

Creating a Domain Value Map Use Case for Hierarchical Lookup

46-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

15. Select Siebel and click OK.

16. In the sourceValue column, enter

/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:unitOfMeasure.

17. Click Search to the right of the targetColumnName field.

The Select DVM Column dialog is displayed.

18. Select Common and click OK.

19. In the defaultValue field, enter "No_Value_Found".

20. Click Add.

A qualifierColumnName row is added.

21. In the qualifierColumnName field, enter "StandardCode".

22. Click Add.

A qualifierValue row is added.

23. In the qualifierValue field, enter

 /imp1:listOfOrder/imp1:order/imp1:baseData/imp1:standard.

24. Click Add to insert another qualifierColumnName row.

25. In the qualifierColumnName field, enter "TradingPartner".

26. Click Add to insert another qualifierValue row.

27. In the qualifierValue field, enter
/imp1:listOfOrder/imp1:order/imp1:baseData/imp1:tp.

The Edit Function-lookupValue dialog would appear as shown in Figure 46–16.

Figure 46–16 Edit Function-lookupValue Function Dialog: Hierarchical Lookup Use Case

Creating a Domain Value Map Use Case for Hierarchical Lookup

Working with Domain Value Maps 46-21

28. Click OK.

The transformation would appear as shown in Figure 46–17.

Figure 46–17 Complete imp1:listOfOrder To imp1:listOfOrder Transformation

29. From the File menu, click Save All and close the listOfOrder_To_listOfOrder.xsl
tab.

46.5.1.7 Task 7: Configuring Oracle Application Server Connection
An Oracle Application Server connection is required for deploying your SOA
composite application. For information on creating an Oracle Application Server
connection, refer to Oracle Fusion Middleware User's Guide for Technology Adapters.

46.5.1.8 Task 8: Deploying the Composite Application
Deploying the HierarchicalValue composite application to Oracle Application
Server consists of the following steps:

■ Creating an Application Deployment Profile.

■ Deploying the Application to Oracle Application Server.

For detailed information about these steps, see Section 43.2, "Deploying a Single SOA
Composite in Oracle JDeveloper".

46.5.2 Running and Monitoring the HierarchicalValue Application
After deploying the HierarchicalValue application, you can run it by copying the
input XML file sampleorder.xml to the input folder. This file is available in the
samples folder. On successful completion, a file with name common_order_1.xml
is written to the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Console
at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite
infrastructure.

For detailed information about these steps, see Section 43.2, "Deploying a Single SOA
Composite in Oracle JDeveloper".

Creating a Domain Value Map Use Case For Multiple Values

46-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

46.6 Creating a Domain Value Map Use Case For Multiple Values
This use case demonstrates the integration scenario using a DVM lookup between two
endpoints to look up multiple values. For example, if the inbound is State, then the
outbound are Shortname of State, Language, and Capital. The multivalue lookup use
case consists of the following steps:

1. Files are picked up from a directory by an adapter service named readFile.

2. The readFile adapter service sends the file data to the
LookupMultiplevaluesMediator Mediator.

3. The LookupMultiplevaluesMediator Mediator then transforms the message
to the structure required by the adapter reference. During transformation,
Mediator looks up the multivalue domain value map for an equivalent value of
Longname and Shortname domains.

4. The LookupMultiplevaluesMediator Mediator sends the message to an
external reference writeFile.

5. The writeFile reference writes the message to a specified output directory.

For downloading the sample files mentioned in this section, visit the following URL:

http://www.oracle.com/technology/sample_code/products/mediator

46.6.1 Creating the Multivalue Use Case
This section provides the design-time tasks for creating, building, and deploying your
SOA composite application. These tasks should be performed in the order in which
they are presented.

■ Section 46.6.1.1, "Task 1: Creating an Oracle JDeveloper Application and Project"

■ Section 46.6.1.2, "Task 2: Creating a Domain Value Map"

■ Section 46.6.1.3, "Task 3: Creating a File Adapter Service"

■ Section 46.6.1.4, "Task 4: Creating LookupMultiplevaluesMediator Mediator
Component"

■ Section 46.6.1.5, "Task 5: Creating a File Adapter Reference"

■ Section 46.6.1.6, "Task 6: Specifying Routing Rules"

■ Section 46.6.1.7, "Task 7: Configuring Oracle Application Server Connection"

■ Section 46.6.1.8, "Task 8: Deploying the Composite Application"

46.6.1.1 Task 1: Creating an Oracle JDeveloper Application and Project

To create an application and a project for the use case:
1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application Wizard appears.

4. In the Application Name field, enter Multivalue and then click Next.

Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 46-23

The Name your project screen appears.

5. In the Project Name field, enter Multivalue and click Next.

The Configure SOA settings screen appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Applications Navigator of Oracle JDeveloper is populated with the new
application and the project, and the Design tab contains a blank palette.

7. From the File menu, click Save All.

46.6.1.2 Task 2: Creating a Domain Value Map
After creating an application and a project for the use case, you must create a domain
value map.

To create a domain value map:
1. In the Application Navigator, right-click the Multivalue project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Domain Value Map(DVM) and click OK.

The Create Domain Value Map(DVM) File dialog is displayed.

4. In the File Name field, enter multivalue.dvm.

5. In the Domain Name fields, enter Longname, Shortname, Language, and
Capital.

6. In the Domain Value field corresponding to the Longname domain, enter
Karnataka.

7. In the Domain Value field corresponding to the Shortname domain, enter KA.

8. In the Domain Value field corresponding to the Language domain, enter
Kannada.

9. In the Domain Value field corresponding to the Capital domain, enter
Bangalore.

10. Click OK.

The Domain Value Map Editor is displayed.

11. Click Add and then select Add Row.

Repeat this step to add two more rows.

12. Enter the following information in the newly added rows of the domain value
map table:

The Domain Value Map Editor would appear as shown in Figure 46–18.

Longname Shortname Language Capital

Karnataka KA Kannada Bangalore

Tamilnadu TN Tamil Chennai

Andhrapradesh AP Telugu Hyderbad

Kerala KL Malayalam Trivandram

Creating a Domain Value Map Use Case For Multiple Values

46-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 46–18 Multivalue Domain Value Map

13. From the File menu, click Save All and close the Domain Value Map Editor.

46.6.1.3 Task 3: Creating a File Adapter Service
After creating the domain value map, you must create a File adapter service, named
readFile to read the XML files from a directory.

To create a File adapter service:
1. From the Components Palette, select SOA.

2. Select File Adapter and drag it to the Exposed Services design area.

3. If the Adapter Configuration Wizard Welcome page appears, click Next.

The Service Name page is displayed.

4. In the Service Name field, enter readFile and then click Next.

The Adapter Interface page is displayed.

5. Click Define from operation and schema (specified later) and then click Next.

The Operation page is displayed.

6. In the Operation Type field, select Read File and then click Next.

The File Directories page is displayed.

7. In the Directory for Incoming Files (physical path) field, enter the directory from
which you want to read the files.

8. Click Next.

The File Filtering page is displayed.

9. In the Include Files with Name Pattern field, enter *.xml and then click Next.

The File Polling page is displayed.

Note: Oracle Mediator may process the same file twice when run
against Oracle RAC planned outages. This is because a File adapter is
a non-XA compliant adapter. So, when it participates in a global
transaction, it may not follow the XA interface specification of
processing each file once and only once.

Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 46-25

10. Change the Polling Frequency field value to 1 second and then click Next.

The Messages page is displayed.

11. Click Search.

The Type Chooser dialog is displayed.

12. Click Import Schema File.

The Import Schema File dialog is displayed.

13. Click Search and select the input.xsd file present in the Samples folder.

14. Click OK.

15. Expand the navigation tree to Type Explorer\Imported Schemas\input.xsd.

16. Select Root-Element and click OK.

17. Click Next.

The Finish page is displayed.

18. Click Finish.

19. From the File menu, click Save All.

Figure 46–19 shows the readFile service in SOA Composite Editor.

Figure 46–19 readFile Service in the SOA Composite Editor

46.6.1.4 Task 4: Creating LookupMultiplevaluesMediator Mediator Component

To create a Mediator component named LookupMultiplevaluesMediator:
1. Drag and drop a Mediator from Component Palette to the Components design

area.

The Create Mediator dialog is displayed.

2. In the Name field, enter LookupMultiplevaluesMediator.

3. In the Template list, select Define Interface Later.

4. Click OK.

A Mediator with name LookupMultiplevaluesMediator is created.

Creating a Domain Value Map Use Case For Multiple Values

46-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. In the SOA Composite Editor, connect the readFile service to the
LookupMultiplevaluesMediator Mediator, as shown in Figure 46–20.

This specifies the file adapter service to invoke the
LookupMultiplevaluesMediator Mediator while reading a file from the input
directory.

Figure 46–20 readFile Service Connected to the LookupMultiplevaluesMediator Mediator

6. From the File menu, click Save All.

46.6.1.5 Task 5: Creating a File Adapter Reference

To create a file adapter reference:
1. From the Components Palette, select SOA.

2. Select File Adapter and drag it to the External References design area.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter writeFile and then click Next.

The Adapter Interface page is displayed.

5. Click Define from operation and schema (specified later) and then click Next.

The Operation page is displayed.

6. Click Next.

The Operation page is displayed.

7. In the Operation Type field, select Write File.

8. Click Next.

The File Configuration page is displayed.

9. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory where you want to write the files.

10. In the File Naming Convention field, enter multivalue_%SEQ%.xml and click
Next.

The Messages page is displayed.

11. Click Search.

Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 46-27

The Type Chooser dialog is displayed.

12. Navigate to Type Explorer, Project Schema Files, output.xsd and then select
Root-Element.

13. Click OK.

14. Click Next.

The Finish page is displayed.

15. Click Finish.

Figure 46–21 shows the writeFile reference in SOA Composite Editor.

Figure 46–21 writeFile Reference in SOA Composite Editor

16. From the File menu, click Save All.

46.6.1.6 Task 6: Specifying Routing Rules
You must specify the path that messages take from the readFile adapter service to
the external reference.

To specify routing rules
1. Connect the LookupMultiplevaluesMediator Mediator to the writeFile

reference as shown in Figure 46–22.

Figure 46–22 LookupMultiplevaluesMediator Mediator Connected to the writeFile
Reference

2. Double-click the LookupMultiplevaluesMediator Mediator.

Creating a Domain Value Map Use Case For Multiple Values

46-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. Click the icon to the right of the Transform Using field.

The Request Transformation Map dialog is displayed.

4. Select Create New Mapper File and click OK.

A Input_To_Output_with_multiple_values_lookup.xsl tab is displayed.

5. Drag and drop the imp1:Root-Element source element to ns2:Root-Element target
element.

The Auto Map Preferences dialog is displayed.

6. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names.

7. Click OK.

The Input_To_Output_with_multiple_values_lookup.xsl tab appears as shown in
Figure 46–23.

Figure 46–23 imp1:Root-Element To ns2:Root-Element Transformation

8. In the Components Palette, select Advanced.

9. Click DVM Functions.

10. Drag and drop lookupValue1M to the center swim lane, as shown in Figure 46–24.

Figure 46–24 Adding lookupValue Function to imp1:Root-Element to ns2:Root-Element

11. Double-click the lookupvalue1M icon.

The Edit Function-lookupValue1M dialog is displayed.

12. Click Search to the right of dvmLocation field.

The SCA Resource Lookup dialog is displayed.

13. Select multivalue.dvm and click OK.

14. Click Search to the right of sourceColumnName field.

The Select DVM Column dialog is displayed.

Creating a Domain Value Map Use Case For Multiple Values

Working with Domain Value Maps 46-29

15. Select Longname and click OK.

16. In the sourceValue column, enter
/imp1:Root-Element/imp1:Details/imp1:Longname.

17. Click Search to the right of targetColumnName field.

The Select DVM Column dialog is displayed.

18. Select Shortname and click OK.

19. Click Add.

A targetColumnName row is added.

20. In the targetColumnName field, enter "Language".

21. Click Add to insert another targetColumnName row.

22. In the targetColumnName field, enter "Capital".

The Edit Function-lookupValue dialog would appear as shown in Figure 46–25.

Figure 46–25 Edit Function-lookupValue Function Dialog: Multiple Value Lookup Use
Case

23. Click OK.

The Transformation would appear as shown in Figure 46–26.

Figure 46–26 Complete imp1:Root-Element To ns2:Root-Element Transformation

Creating a Domain Value Map Use Case For Multiple Values

46-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

24. From the File menu, click Save All and close the Input_To_Output_with_
multiple_values_lookup.xsl tab.

46.6.1.7 Task 7: Configuring Oracle Application Server Connection
An Oracle Application Server connection is required for deploying your SOA
composite application. For information on creating Oracle Application Server
connection, refer to Oracle Fusion Middleware User's Guide for Technology Adapters.

46.6.1.8 Task 8: Deploying the Composite Application
Deploying the Multivalue composite application to Oracle Application Server
consists of the following steps:

■ Creating an Application Deployment Profile.

■ Deploying the application to Oracle Application Server.

For detailed information about these steps, see Section 43.2, "Deploying a Single SOA
Composite in Oracle JDeveloper".

46.6.2 Running and Monitoring the Multivalue Application
After deploying the Multivalue application, you can run it by copying the input
XML file sampleinput.xml to the input folder. This file is available in the samples
folder. On successful completion, a file with name multivalue_1.xml is written to
the specified output directory.

For monitoring the running instance, you can use Oracle Enterprise Manager Console
at the following URL:

http://hostname:port/em

where hostname is the host on which you installed the Oracle SOA Suite
infrastructure.

In Oracle Enterprise Manager Console, you can click the Multivalue to see the
project dashboard.

To view the detailed execution trail, click the instance ID in the instance column. The
Flow Trace page is displayed.

47

Working with Cross References 47-1

47Working with Cross References

This chapter describes how to use cross referencing feature of Oracle SOA Suite to
associate identifiers for equivalent entities created in different applications.

This chapter includes the following sections:

■ Section 47.1, "Introduction to Cross References"

■ Section 47.2, "Creating and Modifying Cross Reference Tables"

■ Section 47.3, "Populating Cross Reference Tables"

■ Section 47.4, "Looking Up Cross Reference Tables"

■ Section 47.5, "Deleting a Cross Reference Table Value"

■ Section 47.6, "Creating and Running Cross Reference Use Case"

■ Section 47.7, "Creating and Running Cross Reference for 1M Functions"

47.1 Introduction to Cross References
Cross references enable you to dynamically map values for equivalent entities created
in different applications.

When you create or update objects in one application, you may also want to propagate
the changes to other application. For example, when a new customer is created in a
SAP application, you might want to create a new entry for the same customer in your
Oracle E-Business Suite application named as EBS. However, the applications that you
are integrating could be using different entities to represent the same information. For
example, for each new customer in a SAP application, a new row is inserted in its
Customer database with a unique identifier such as SAP_001. When the same
information is propagated to an Oracle E-Business Suite application and a Siebel
application, the new row should be inserted with different identifiers such as EBS_
1001 and SBL001. In such cases, you need some kind of functionality to map these
identifiers with each other so that they could be interpreted by different applications to
be referring to the same entity. This can be done by using the cross references.

Cross references are stored in the form of tables. Table 47–1 shows a cross reference
table containing information about customer identifiers in different applications.

Note: The Cross Referencing feature enables you to dynamically
integrate values between applications, whereas the domain value
maps enables you to specify values at design time. For more
information about domain value maps, see Chapter 46, "Working with
Domain Value Maps".

Introduction to Cross References

47-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The identifier mapping is also required when information about a customer is updated
in one application and the changes must be propagated in other applications. You can
integrate different identifiers by using a common value integration pattern, which
maps to all identifiers in a cross reference table. For example, you can add one more
column named Common to the cross reference table shown in Table 47–1. The updated
cross reference table would appear, as shown in Table 47–2.

Figure 47–1 shows how you can use common value integration pattern to map
identifiers in different applications.

Figure 47–1 Common Value Integration Pattern Example

A cross reference table consists of the following two parts: metadata and the actual
data. The metadata is the .xref file created in Oracle JDeveloper, and is stored in
Metadata Services (MDS) as an XML file. By default, the actual data is stored in the
XREF_DATA table of the database in the SOA infrastructure database schema.

You can create a cross reference table in a SOA composite application of Oracle
JDeveloper and then use it to look up for column values at runtime. However, before
using a cross reference to lookup a particular value, you must populate it at runtime.
This can be done by using the cross reference XPath functions. The XPath functions
enable you to populate a cross reference, perform lookups, and delete a column value.

Table 47–1 Cross Reference Table Sample

SAP EBS SBL

SAP_001 EBS_1001 SBL001

SAP_002 EBS_1002 SBL002

Table 47–2 Cross Reference Table with Common Column

SAP EBS SBL Common

SAP_001 EBS_1001 SBL001 CM001

SAP_002 EBS_1002 SBL002 CM002

C
O
M
M
O
N

V
I
E
W

Cross
Reference
Database

SAP
System

Oracle
E-Business

Suite System

Siebel
System

Transform
Common value

to Siebel System

Transform
Siebel System

value to
Common value

Transform Oracle
E-Business Suite
System value to
Common value

Transform
Common value to
Oracle E-Business
Suite System value

Transform
SAP system

value to
Common value

Creating and Modifying Cross Reference Tables

Working with Cross References 47-3

These XPath functions can be used in the Expression builder dialog to create an
expression or in the XSLT Mapper to create transformations.

You can access the Expression builder dialog through Assign activity, XSL
transformation, or Filter functionality of a BPEL service component or a Mediator
service component. Figure 47–2 shows how you can select the cross reference functions
in the Expression builder dialog.

Figure 47–2 Expression Builder Dialog with Cross Reference Functions

The XSLT Mapper dialog is displayed when you create an XSL file to transform data
from one XML schema to another. Figure 47–3 shows how you can select the cross
reference functions in the XSLT Mapper dialog.

Figure 47–3 XSLT Mapper Dialog with Cross Reference Functions

47.2 Creating and Modifying Cross Reference Tables
You can create cross references tables in a SOA composite application and then use it
with a BPEL service component or a Mediator component during transformations.

Creating and Modifying Cross Reference Tables

47-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

47.2.1 Creating a Cross Reference Table

To create a cross reference table:
1. In Oracle JDeveloper, select the SOA project in which you want to create the cross

reference.

2. Right-click the project and select New.

The New Gallery dialog is displayed.

3. Select SOA Tier from Categories and then select Transformations.

4. Select Cross Reference(XREF) from Items.

5. Click OK.

The Create Cross Reference(XREF) File dialog is displayed.

6. In the File Name field, specify the name of the cross reference file. For example,
specify Customer.

A cross reference name is used to identify a cross reference table uniquely. Two
cross reference tables cannot have same name in the cross reference repository. The
cross reference file name is the name of the cross reference table with an extension
of .xref.

7. In the Description field, enter a description for the cross reference. For example,
Cross reference of Customer identifiers.

8. In the End System fields, enter the end system names.

The end systems map to the cross reference columns in a cross reference table. For
example, you can change the first end system name to SAP and second end system
name to EBS. Each end system name must be unique within a cross reference.

A sample Create Cross Reference(XREF) File dialog is displayed in Figure 47–4.

Figure 47–4 Create Cross Reference(XREF) File Dialog

9. Click OK.

The Cross Reference(XREF) editor is displayed, as shown in Figure 47–5. You can
use this editor to modify the cross reference.

Creating and Modifying Cross Reference Tables

Working with Cross References 47-5

Figure 47–5 Cross Reference Editor

47.2.1.1 What Happens When You Create a Cross Reference
A file with extension .xref gets created and appears in the Application Navigator.
All .xref files are based on the schema definition (XSD) file shown in Example 47–1.

Example 47–1 Cross Reference XSD File

<?xml version="1.0" encoding="UTF-8" ?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://xmlns.oracle.com/xref"
 xmlns:tns="http://xmlns.oracle.com/xref" elementFormDefault="qualified">
 <element name="xref" type="tns:xrefType"/>
 <complexType name="xrefType">
 <sequence>
 <element name="table">
 <complexType>
 <sequence>
 <element name="description" type="string" minOccurs="0"
 maxOccurs="1"/>
 <element name="columns" type="tns:columnsType" minOccurs="0"
 maxOccurs="1"/>
 <element name="rows" type="tns:rowsType" maxOccurs="1"
 minOccurs="0"/>
 </sequence>
 <attribute name="name" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

Populating Cross Reference Tables

47-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <complexType name="columnsType">
 <sequence>
 <element name="column" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>

 <complexType name="rowsType">
 <sequence>
 <element name="row" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <sequence>
 <element name="cell" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="colName" type="string" use="required"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

47.2.2 Adding an End System to a Cross Reference Table

To add an End System to a cross reference table:
1. Click Add.

A new row is added.

2. Double-click the newly added row.

3. Enter the End System name. For example, SBL.

47.3 Populating Cross Reference Tables
A cross reference table needs be populated at runtime before using it. By default, the
data is stored in the XREF_DATA table under the SOA infrastructure database schema.
You can use the xref:populateXRefRow function to populate a cross reference
column with a single value and the xref:populateXRefRow1M function to populate
a cross reference column with multiple values.

Note: You can also store the data in a different database schema by
configuring a data source in the following way:

■ The JNDI name of the data source should be jdbc/xref.

■ The ORACLE_
HOME/rcu/integration/soainfra/sql/xref/createsche
ma_xref_oracle.sql file should be loaded to create the XREF_
DATA table in this data source.

Populating Cross Reference Tables

Working with Cross References 47-7

47.3.1 About xref:populateXRefRow Function
The xref:populateXRefRow function populates a cross reference column with a
single value. The xref:populateXRefRow function returns a string value which is
the cross reference value being populated. For example, as shown in Table 47–3, the
Order table has the following columns: EBS, Common, and SBL with values E100,
100, and SBL_001 respectively.

The syntax of the xref:populateXRefRow function is as follows:

xref:populateXRefRow(xrefLocation as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters
■ xrefLocation: The cross reference table URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to reference column name.

■ xrefColumnName: The name of the column to be populated.

■ xrefValue: The value to be populated in the column.

■ mode: The mode in which the xref:populateXRefRow function populates the
column. You can specify any of the following values: ADD, LINK, or UPDATE.
Table 47–4 describes these modes.

Table 47–3 Cross Reference Table with Single Column Values

EBS Common SBL

E100 100 SBL_001

Table 47–4 xref:populateXRefRow Function Modes

Mode Description Exception Reasons

ADD Adds the reference value
and the value to be added.

For example,
xref:populateXRefRow(
"customers.xref","EBS
","EBS100",
"Common","CM001","ADD
") adds the reference value
EBS100 in the ESB
reference column and value
CM001 in the Common
column.

Exception can occur because
of the following reasons:

■ The specified cross
reference table is not
found.

■ The specified columns
are not found.

■ The values provided
are empty.

■ The value being added
is not unique across
that column for that
table.

■ The column for that
row already contains a
value.

■ The reference value
exists.

Populating Cross Reference Tables

47-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 47–5 describes the xref:populateXRefRow function modes and exception
conditions for these modes.

LINK Adds the cross reference
value corresponding to the
existing reference value. For
example,
xref:populateXRefRow(
"customers.xref","Com
mon","CM001","SBL","S
BL_001","LINK") links
the value CM001 in the
Common column to the SBL_
001 value in the SBL
column.

Exception can occur because
of the following reasons:

■ The specified cross
reference table is not
found.

■ The specified columns
are not found.

■ The values provided
are empty.

■ The reference value is
not found.

■ The value being linked
exists in that column
for that table.

UPDATE Updates the cross reference
value corresponding to an
existing reference
column-value pair. For
example,
xref:populateXRefRow(
"customers.xref","SBL
","SBL_001",
"SBL","SBL_
1001","Update")updates
the value SBL_001 in the
SBL column to value SBL_
1001.

Exception can occur because
of the following reasons:

■ The specified cross
reference table is not
found.

■ The specified columns
are not found.

■ The values provided
are empty.

■ Multiple values are
found for the column
being updated.

■ The reference value is
not found.

■ The column for that
row does not have a
value.

Note: The mode parameter values are case-sensitive and should be
specified in the upper case only as shown in Table 47–4.

Table 47–5 xref:populateXRefRow Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception

Exception

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception

Table 47–4 (Cont.) xref:populateXRefRow Function Modes

Mode Description Exception Reasons

Populating Cross Reference Tables

Working with Cross References 47-9

47.3.2 About xref:populateXRefRow1M Function
Two values in an end system can correspond to a single value in another system. In
such a scenario, you should use the xref:populateXRefRow1M function to populate
a cross reference column with a value. For example, as shown in Table 47–6, SAP_001
and SAP_0011 values refer to one value of the EBS and the SBL application. To
populate the columns such as SAP column, you can use the
xref:populateXRefRow1M function.

The syntax of the xref:populateXRefRow1M function is as follows:

xref:populateXRefRow1M(xrefLocation as string, xrefReferenceColumnName as string,
 xrefReferenceValue as string, xrefColumnName as string, xrefValue as string, mode
 as string) as string

Parameters
■ xrefLocation: The cross reference URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to reference column name.

■ xrefColumnName: The name of the column to be populated.

■ xrefValue: The value to be populated in the column.

■ mode: The mode in which the xref:populateXRefRow function populates the
column. You can specify either of the following values: ADD or LINK. Table 47–7
describes these modes:

UPDATE Absent

Present

Present

Absent

Absent

Present

Exception

Exception

Success

Table 47–6 Cross Reference Table with Multiple Column Values

SAP EBS SBL

SAP_001

SAP_0011

EBS_1001 SBL001

SAP_002 EBS_1002 SBL002

Table 47–5 (Cont.) xref:populateXRefRow Function Results with Different Modes

Mode Reference Value Value to be Added Result

Populating Cross Reference Tables

47-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Table 47–8 describes the xref:populateXRefRow1M function modes and exception
conditions for these modes.

47.3.3 How to Populate a Column of a Cross Reference Table

To populate a column of a cross reference table:
1. In the XSLT Mapper window, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

Table 47–7 xref:populateXRefRow1M Function Modes

Mode Description Exception Reasons

ADD Adds the reference value
and the value to be added.
For example,
xref:populateXRefRow1
M("customers.xref","E
BS","EBS_1002",
"SAP","SAP_
0011","ADD")adds the
reference value EBS_1002
in the reference column EBS
and the value SAP_0011 in
the SAP column.

Exception can occur because
of the following reasons:

■ The specified cross
reference table is not
found.

■ The specified columns
are not found.

■ The values provided
are empty.

■ The value being added
is not unique across
that column for that
table.

■ The reference value
exists.

LINK Adds the cross reference
value corresponding to the
existing reference value. For
example,
xref:populateXRefRow1
M("customers.xref","E
BS","EBS_1002",
"SAP","SAP_
002","LINK") links the
value SAP_002 in the SAP
column to the EBS_1002
value in the EBS column.

Exception can occur because
of the following reasons:

■ The specified cross
reference table is not
found.

■ The specified columns
are not found.

■ The values provided
are empty.

■ The reference value is
not found.

■ The value being added
is not unique across the
column for that table.

Table 47–8 xref:populateXRefRow1M Function Results with Different Modes

Mode Reference Value Value to be Added Result

ADD Absent

Present

Present

Absent

Absent

Present

Success

Exception

Exception

LINK Absent

Present

Present

Absent

Absent

Present

Exception

Success

Exception

Populating Cross Reference Tables

Working with Cross References 47-11

3. In the Component Palette, select Advanced.

4. Select XREF Functions.

5. Drag and drop the populateXRefRow function to the line that connects the source
object to the target object.

A populateXRefRow icon appears on the connecting line.

6. Double-click the populateXRefRow icon.

The Edit Function – populateXRefRow dialog is displayed, as shown in
Figure 47–6.

Figure 47–6 Edit Function – populateXRefRow Dialog

7. Specify the following values for the fields in the Edit Function – populateXRefRow
dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click Browse to the right of the xrefLocation field to select the cross reference
file. You can select an already deployed cross reference from MDS and also
from a shared location in MDS using the Resource Palette.

b. In the referenceColumnName field, enter the name of the cross reference
column.

Click Browse to the right of the referenceColumnName field to select a
column name from the columns defined for the cross reference you previously
selected.

c. In the referenceValue field, you can manually enter a value or press
Ctrl-Space to launch XPath Building Assistant. Press the up and down keys to
locate an object in the list and press enter to select that object.

d. In the columnName field, enter the name of cross reference column.

Click the Browse icon to the right of the columnName field to select a column
name from the columns defined for the cross reference you previously
selected.

e. In the value field, you can manually enter a value or press Ctrl-Space to
launch XPath Building Assistant.

Looking Up Cross Reference Tables

47-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

f. In the mode field, enter a mode in which you want to populate the cross
reference table column. For example, ADD.

You can also click Browse to select a mode. The Select Populate Mode dialog
is displayed from which you can select a mode.

8. Click OK.

A populated Edit Function – populateXRefRow dialog is shown in Figure 47–7.

Figure 47–7 Populated Edit Function – populateXRefRow Dialog

47.4 Looking Up Cross Reference Tables
After populating the cross reference table, you can use it to lookup for a value. The
xref:lookupXRef and xref:lookupXRef1M functions enable you to look up a
cross reference for single and multiple values respectively.

47.4.1 About xref:lookupXRef Function
You can use the xref:lookupXRef function to look up a cross reference column for a
value that corresponds to a specific value in a reference column. For example, the
following function looks up the Common column of the cross reference table, described
in Table 47–2, for a value corresponding to SAP_001 value in SAP column.

xref:lookupXRef("customers.xref","SAP","SAP_001","Common",true())

The syntax of the xref:lookupXRef function is as follows:

xref:lookupXRef(xrefLocation as string, xrefReferenceColumnName as string,
xrefReferenceValue as string, xrefColumnName as string, needAnException as
boolean) as string

Parameters
■ xrefLocation: The cross reference URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to reference column name.

Looking Up Cross Reference Tables

Working with Cross References 47-13

■ xrefColumnName: The name of the column to be looked up for the value.

■ needAnException: When value is set to true, an exception is thrown if the
value is not found, else an empty value is returned.

Exception Reasons
At runtime, an exception can occur because of the following reasons:

■ The cross reference table with the given name is not found.

■ The specified column names are not found.

■ The specified reference value is empty.

■ If multiple values are found.

47.4.2 About xref:lookupXRef1M Function
You can use the xref:lookupXRef1M function to look up a cross reference column
for multiple values corresponding to a specific value in a reference column. The
xref:lookupXRef1M function returns a node-set containing the multiple nodes.
Each node in the node-set contains a value.

For example, the following function looks up the SAP column of Table 47–6 for
multiple values corresponding to EBS_1001 value in the EBS column:

xref:lookupXRef1M("customers.xref","EBS","EBS_1001","SAP",true())

The syntax of the xref:lookupXRefRow1M function is as follows:

xref:lookupXRef1M(xrefLocation as String, xrefReferenceColumnName as String,
 xrefReferenceValue as String, xrefColumnName as String, needAnException as
 boolean) as node-set

Parameters
■ xrefLocation: The cross reference URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.

■ needAnException: If this value is set to true, then an exception is thrown when
the referenced value is not found. Else, an empty node-set is returned.

Example
Consider the Order table with the following three columns: Siebel, Billing1,Billing2

For 1:1 mapping, the
xref:lookupPopulatedColumns("Order","Siebel","100","false")
method returns

Table 47–9 Order Table

Siebel Billing1 Billing2

100 101 102

110 111

112

Looking Up Cross Reference Tables

47-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

<column name="BILLING1">101</column>
<column name="BILLING2">102</column>

In this case, both the columns, Billing1 and Billing2 are populated.

For 1:M mapping, the
xref:lookupPopulatedColumns("Order","Siebel","110","false")
returns

<column name="BILLING2">111</column>
<column name="BILLING2">112</column>

In this case, Billing1 is not populated.

Exception Reasons
An exception can occur because of the following reasons:

■ The cross reference table with the given name is not found.

■ The specified column names are not found.

■ The specified reference value is empty.

47.4.3 About xref:lookupPopulatedColumns Function
You can use the xref:lookupPopulatedColumns function to look up all the
populated columns for a given cross reference table, a cross reference column and a
specific values. The xref:lookupPopulatedColumns function returns a nodeset
with each node containing a column name and the corresponding value.

The syntax of the xref:LookupPopulatedColumns function is as follows:

xref:LookupPopulatedColumns(xrefTableName as String,xrefColumnName as
 String,xrefValue as String,needAnException as boolean)as node-set

Parameters
■ xrefTableName: The name of the reference table.

■ xrefColumnName: The name of the reference column.

■ xrefValue: The value corresponding to reference column name.

■ needAnException: If this value is set to true, then an exception is thrown when
no value is found in the referenced column. Otherwise, an empty node-set is
returned.

Exception Reasons
An exception can occur because of the following reasons:

■ The cross reference table with the given name is not found.

■ The specified column names are not found.

■ The specified reference value is empty.

47.4.4 How to Look Up a Cross Reference Table for a Value

To look up a cross reference table column:
1. In the XSLT Mapper dialog, expand the trees in the Source and Target panes.

Looking Up Cross Reference Tables

Working with Cross References 47-15

2. Drag and drop the source element to the target element.

3. In the Component Palette, select Advanced.

4. Select XREF Functions.

5. Drag and drop the lookupXRef function to the line that connects the source object
to the target object.

A lookupXRef icon appears on the connecting line.

6. Double-click the lookupXRef icon.

The Edit Function – lookupXRef dialog is displayed, as shown in Figure 47–8.

Figure 47–8 Edit Function – lookupXRef Dialog

7. Specify the following values for the fields in the Edit Function – lookupXRef
dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click Browse to the right of the xrefLocation field to select the cross reference
file. You can select an already deployed cross reference from MDS and also
from shared location in MDS by using the Resource Palette.

b. In the referenceColumnName field, enter the name of the cross reference
column.

Click Browse to the right of the referenceColumnName field to select a
column name from the columns defined for the cross reference you previously
selected.

c. In the referenceValue field, you can manually enter a value or press
Ctrl-Space to use the XPath Building Assistant. Press the up and down keys to
locate an object in the list and press enter to select that object.

d. In the columnName field, enter the name of the cross reference column.

Click Browse to the right of the columnName field to select a column name
from the columns defined for the cross reference you previously selected.

e. Click Browse to the right of needException field. The Need Exception dialog
is displayed. Select YES to raise an exception if no value is found else select
No.

Deleting a Cross Reference Table Value

47-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8. Click OK.

A populated Edit Function – lookupXRef dialog is shown in Figure 47–9.

Figure 47–9 Populated Edit Function – lookupXRef Dialog

47.5 Deleting a Cross Reference Table Value
You can use the xref:markForDelete function to delete a value in a cross reference
table. The value in the column is marked as deleted. This function returns true if
deletion is successful else returns false.

Any column value marked for delete is treated as if the value does not exist. Therefore,
you can populate the same column with xref:populateXRefRow function in ADD
mode.

A cross reference table row should have at least two mappings. if you have only two
mappings in a row and you mark one value for delete, then the value in another
column is also deleted.

The syntax for the xref:markForDelete function is as follows:

xref:markForDelete(xrefTableName as string, xrefColumnName as string,
xrefValueToDelete as string) return as boolean

Parameters
■ xrefTableName: The cross reference table name.

■ xrefColumnName: The name of the column from which you want to delete a
value.

■ xrefValueToDelete: The value to be deleted.

Exception Reasons
An exception can occur because of the following reasons:

Note: Using a column value marked for delete as a reference value in
the LINK mode of xref:populateXRefRow function, raises an error.

Deleting a Cross Reference Table Value

Working with Cross References 47-17

■ The cross reference table with the given name is not found.

■ The specified column name is not found.

■ The specified value is empty.

■ The specified value is not found in the column.

■ Multiple values are found.

47.5.1 How to Delete a Cross Reference Table Value

To delete a cross reference table value:
1. In the XSLT Mapper window, expand the trees in the Source and Target panes.

2. Drag and drop the source element to the target element.

3. In the Component Palette, select Advanced.

4. Select XREF Functions.

5. Drag and drop the markForDelete function to the line that connects the source
object to the target object.

A markForDelete icon appears on the connecting line.

6. Double-click the markForDelete icon.

The Edit Function – markForDelete dialog is displayed, as shown in Figure 47–10.

Figure 47–10 Edit Function – markForDelete Dialog

7. Specify the following values for the fields in the Edit Function – markForDelete
dialog:

a. In the xrefLocation field, enter the location URI of the cross reference file.

Click the flashlight icon to the right of the xrefLocation field to select the cross
reference file. You can select an already deployed cross reference from MDS
and also from shared location in MDS by using the Resource Palette.

b. In the columnName field, enter the name of cross reference table column.

Creating and Running Cross Reference Use Case

47-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Click the flashlight icon to the right of the columnName field to select a
column name from the columns defined for the cross reference you previously
selected.

c. In the Value field, you can manually enter a value or press Ctrl-Space to
launch XPath Building Assistant. Press the up and down keys to locate an
object in the list and press enter to select that object.

A populated Edit Function – markForDelete dialog is shown in Figure 47–11.

Figure 47–11 Populated Edit Function – markForDelete Dialog

8. Click OK.

47.6 Creating and Running Cross Reference Use Case
The cross reference use case implements an integration scenario between Oracle EBS,
SAP and Siebel instances. In this use case, when an insert, update, or delete operation
is performed on the SAP_01 table, the corresponding data is inserted or updated in
the EBS and SBL tables. Figure 47–12 provides an overview of this use case.

Creating and Running Cross Reference Use Case

Working with Cross References 47-19

Figure 47–12 XrefCustApp Use Case in SOA Composite Editor

For downloading the sample files mentioned in this section, visit the following URL:

http://www.oracle.com/technology/sample_code/products/mediator

47.6.1 Step-By-Step Instructions for Creating the Use Case
This section provides the design-time tasks for creating, building, and deploying your
SOA Composite application. These tasks should be performed in the order in which
they are presented.

■ Section 47.6.1.1, "Task 1: Configuring Oracle Database and Database Adapter"

■ Section 47.6.1.2, "Task 2: Creating an Oracle JDeveloper Application and Project"

■ Section 47.6.1.3, "Task 3: Creating a Cross Reference"

■ Section 47.6.1.4, "Task 4: Creating a Database Adapter Service"

■ Section 47.6.1.5, "Task 5: Creating EBS and SBL External References"

■ Section 47.6.1.6, "Task 6: Creating Logger External Reference"

■ Section 47.6.1.7, "Task 7: Creating Mediator Components"

■ Section 47.6.1.8, "Task 8: Specifying Routing Rules for Mediator Component"

■ Section 47.6.1.9, "Task 9: Specifying Routing Rules for Common Mediator"

■ Section 47.6.1.10, "Task 10: Configuring Oracle Application Server Connection"

■ Section 47.6.1.11, "Task 11: Deploying the Composite Application"

47.6.1.1 Task 1: Configuring Oracle Database and Database Adapter

To configure Oracle Database and the Database adapter
1. You need SCOTT database account with password TIGER for this use case. You

must ensure that the SCOTT account is unlocked.

You can log in as SYSDBA and then run the setup_user.sql script available in
the XrefOrderApp1M/sql folder to unlock the account.

Creating and Running Cross Reference Use Case

47-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Run the create_schema.sql script available in the XrefOrderApp1M/sql
folder to create the tables required for this use case.

3. Run the create_app_procedure.sql script available in the
XrefOrderApp1M/sql folder to create a procedure that simulates the various
applications participating in this integration.

4. Run the createschema_xref_oracle.sql script available in the
OH/rcu/integration/soainfra/sql/xref/ folder to create a Cross
Reference table to store runtime Cross Reference data.

5. Copy the ra.xml and weblogic-ra.xml files from $BEAHOME/META-INF to
the newly created directory called META-INF on your computer.

6. Edit the weblogic-ra.xml file, available in the $BEAHOME/META-INF folder as
follows:

■ Modify the property to xADataSourceName as follows:

<property>
 <name>xADataSourceName</name>
 <value>jdbc/DBConnection1</value>
</property>

■ Modify the jndi-name as follows:

<jndi-name> eis/DB/DBConnection1</jndi-name>

This sample uses eis/DB/DBConnection1 to poll SAP table for new messages
and to connect to the procedure that simulates Oracle EBS and Siebel instances.

7. Package the ra.xml and weblogic-ra.xml files as a RAR file and deploy the
RAR file by using the Weblogic console.

8. Create a data source using the Weblogic console with the following values:

■ jndi-name=jdbc/DBConnection1

■ user=scott

■ password=tiger

■ url=jdbc:oracle:thin:@host:port:service

■ connection-factory
factory-class=oracle.jdbc.pool.OracleDataSource

9. Create a data source using the Weblogic console with the following values:

■ jndi-name=jdbc/xref

■ user=scott

■ password=tiger

■ url=jdbc:oracle:thin:@host:port:service

■ connection-factory
factory-class=oracle.jdbc.pool.OracleDataSource

47.6.1.2 Task 2: Creating an Oracle JDeveloper Application and Project

To create an application and a project:
1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

Creating and Running Cross Reference Use Case

Working with Cross References 47-21

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter XrefCustApp, and then click Next.

The Name your SOA project screen appears.

5. In the Project Name field, enter XrefCustApp and click Next.

The Configure SOA settings for the SOA project screen appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Applications Navigator of Oracle JDeveloper is updated with the new
application and project and the Design tab contains, a blank palette.

7. From the File menu, click Save All.

47.6.1.3 Task 3: Creating a Cross Reference
After creating an application and a project for the use case, you must create a cross
reference table.

To create a cross reference table:
1. In the Application Navigator, right-click the XrefCustApp project and select New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Cross Reference(XREF) and click OK.

The Create Cross Reference(XREF) File dialog is displayed.

4. In the File Name field, enter customer.xref.

5. In the End System fields, enter SAP_01 and EBS_i76.

6. Click OK.

The Cross Reference Editor is displayed.

7. Click Add.

A new row is added.

8. Enter SBL_78 as the End System name in the newly added row.

9. Click Add and enter Common as End System name.

The Cross Reference Editor would appear as shown in Figure 47–13.

Creating and Running Cross Reference Use Case

47-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 47–13 Customer Cross Reference

10. From the File menu, click Save All and close the Cross Reference Editor.

47.6.1.4 Task 4: Creating a Database Adapter Service

To create a Database adapter service:
1. In the Component Palette, select SOA.

2. Select Database Adapter and drag it to the Exposed Services design area.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter SAP.

5. Click Next.

The Service Connection page is displayed.

6. In the Application Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Poll for New or Changed Records in a Table and click Next.

The Select Table page is displayed.

10. Click Import Tables.

The Import Tables dialog is displayed.

11. Select Scott from Schema.

12. In the Name Filter field, enter %SAP% and click Query.

The Available field is populated with SAP_01 table name.

13. Double-click SAP_01.

Creating and Running Cross Reference Use Case

Working with Cross References 47-23

The selected field is populated with SAP_01.

14. Click OK.

The Select Table page now contains the SAP_01 table.

15. Select SAP_01 and click Next.

The Define Primary Key page is displayed.

16. Select ID as primary key and click Next.

The Relationships page is displayed.

17. Click Next.

The Attribute Filtering page is displayed.

18. Click Next.

The After Read page is displayed.

19. Select Update a Field in the [SAP_01] Table (Logical Delete) and click Next.

The Logical Delete page is displayed.

20. In the Logical Delete field, select LOGICAL_DEL.

21. In the Read Value field, enter Y.

22. In the Unread Value field, enter N.

Figure 47–14 shows the Logical Delete page of the Adapter Configuration Wizard.

Figure 47–14 Logical Delete Page: Adapter Configuration Wizard

23. Click Next.

The Polling Options page is displayed.

24. Click Next.

The Define Selection Criteria page is displayed.

Creating and Running Cross Reference Use Case

47-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

25. Click Next.

The Finish page is displayed.

26. Click Finish.

A Database adapter service SAP is created, as shown in Figure 47–15.

Figure 47–15 SAP Database Adapter Service in SOA Composite Editor

27. From the File menu, click Save All.

47.6.1.5 Task 5: Creating EBS and SBL External References

To create external references named EBS and SBL:
1. In the Component Palette, select SOA.

2. Select Database Adapter and drag it to the External References design area.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter EBS.

5. Click Next.

The Service Connection page is displayed.

6. In the Application Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Call a Stored Procedure or Function and click Next.

The Specify Stored Procedure page is displayed.

10. Select Scott from Schema.

11. Click Browse.

The Stored Procedures dialog is displayed.

Creating and Running Cross Reference Use Case

Working with Cross References 47-25

12. Select POPULATE_APP_INSTANCE as shown in Figure 47–16.

Figure 47–16 Stored Procedure Dialog

13. Click OK.

The Specify Stored Procedure page appears as shown in Figure 47–17.

Figure 47–17 Specify Stored Procedure Page of Adapter Configuration Wizard

14. Click Next.

Creating and Running Cross Reference Use Case

47-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Finish page is displayed.

15. Click Finish.

Figure 47–18 shows the EBS reference in SOA Composite Editor.

Figure 47–18 EBS Reference in SOA Composite Editor

16. From the File menu, click Save All.

17. Repeat Step 2 through Step 16 to create another external references names SBL.

After completing this task, the SOA Composite Editor would appear as shown in
Figure 47–19.

Figure 47–19 SBL Reference in SOA Composite Editor

47.6.1.6 Task 6: Creating Logger External Reference

To create a file adapter reference:
1. From the Component Palette, select SOA.

2. Select File Adapter and drag it to the External References design area.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

Creating and Running Cross Reference Use Case

Working with Cross References 47-27

The Service Name page is displayed.

4. In the Service Name field, enter Logger.

5. Click Next.

The Operation page is displayed.

6. In the Operation Type field, select Write File.

7. Click Next.

The File Configuration page is displayed.

8. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory where you want to write the files.

9. In the File Naming Convention field, enter output.xml and click Next.

The Messages page is displayed.

10. Click Search.

The Type Chooser dialog is displayed.

11. Navigate to Type Explorer, Project Schema Files, SCOTT_POPULATE_APP_
INSTANCE.xsd and then select OutputParameters.

12. Click OK.

13. Click Next.

The Finish page is displayed.

14. Click Finish.

Figure 47–20 shows the Logger reference in the SOA Composite Editor.

Figure 47–20 Logger Reference in SOA Composite Editor

15. From the File menu. click Save All.

Creating and Running Cross Reference Use Case

47-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

47.6.1.7 Task 7: Creating Mediator Components

To create a Mediator component:
1. Drag and drop a Mediator from Components Palette to the Components design

area.

The Create Mediator dialog is displayed.

2. Select Define Interface Later from Template.

3. Click OK.

A Mediator with name Mediator1 is created.

4. Connect the SAP service to the Mediator1 as shown in Figure 47–21.

Figure 47–21 SAP Service Connected to Mediator1

5. Click Save All.

6. Drag and drop another Mediator from Components Palette to the Components
design area.

The Create Mediator dialog is displayed.

7. Select Interface Definition From WSDL from Template.

8. Deselect Create Composite Service with SOAP Bindings.

9. Click Find Existing WSDLs to the right of the WSDL File field.

10. Navigate to and then select the Common.wsdl file. The Common.wsdl file is
available in the Samples folder.

11. Click OK.

12. Click OK.

A Mediator with name Common is created.

47.6.1.8 Task 8: Specifying Routing Rules for Mediator Component
You must specify routing rules for following operations:

Creating and Running Cross Reference Use Case

Working with Cross References 47-29

■ Insert

■ Update

■ UpdateID

■ Delete

To create routing rules for insert operation:
1. Double-click Mediator1 Mediator.

The Mediator Editor is displayed.

2. In Routing Rules panel, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefCustApp, Mediators, Common, Services, Common.

5. Select Insert and click OK.

6. Click the Filter icon.

The Expression Builder dialog is displayed.

7. Enter the following expression in the Expression field:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation='INSERT'

8. Click OK.

9. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

10. Select Create New Mapper File and enter SAP_TO_COMMON_INSERT.xsl.

11. Click OK.

A SAP_TO_COMMON_INSERT.xsl tab is displayed.

12. Drag and drop the top:SAP01 source element to the inp1:Customer target
element.

The Auto Map Preferences dialog is displayed.

13. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names.

14. Click OK.

The transformation is created as shown in Figure 47–22.

Figure 47–22 SAP_TO_COMMON_INSERT.xsl Transformation

Creating and Running Cross Reference Use Case

47-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

15. From the Components Palette, select Advanced.

16. Select XREF Functions.

17. Drag and drop the populateXRefRow function from Components Palette to the
line connecting top:id and inp1:id elements.

18. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

19. Click Search to the right of xrefLocation field.

The SCA Resource Lookup dialog is displayed.

20. Select customer.xref and click OK.

21. In the referenceColumnName field, enter "SAP_01" or click Search to select the
column name.

22. In the referenceValue column, enter
/top:Sap01Collection/top:Sap01/top:id.

23. In the columnName field, enter "Common" or click Search to select the column
name.

24. In the value field, enter oraext:generate-guid().

25. In the mode field, enter "Add" or click Search to select this mode.

Figure 47–23 shows populated Edit Function – populateXRefRow dialog.

Figure 47–23 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case

26. Click OK.

27. From the File menu, click Save All and close the SAP_TO_COMMON_INSERT.xsl
tab.

The Routing Rules panel would appear as shown in Figure 47–24.

Creating and Running Cross Reference Use Case

Working with Cross References 47-31

Figure 47–24 Routing Rules Panel with Insert Operation

To create routing rules for update operation:
Perform the following tasks to create routing rules for Update operation:

1. In Routing Rules panel, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp, Mediators, Common, Services, Common.

4. Select Update and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. Enter the following expression in the Expression field:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation='UPDATE'

7. Click OK.

8. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATE.xsl.

10. Click OK.

A SAP_TO_COMMON_UPDATE.xsl tab is displayed.

11. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Components Palette, select Advanced.

14. Select XREF Functions.

15. Drag and drop the lookupXRef function from Components Palette to the line
connecting top:id and inp1:id elements.

16. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

17. Click Search to the right of xrefLocation field.

Creating and Running Cross Reference Use Case

47-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The SCA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_01" or click Search to select the
column name.

20. In the referenceValue column, enter
/top:Sap01Collection/top:Sap01/top:id.

21. In the columnName field, enter "COMMON" or click Search to select the column
name.

22. In the needException field, enter true() or click Search to select this mode.

Figure 47–25 shows populated Edit Function – looupXRef dialog.

Figure 47–25 Edit Function – lookupXRef Dialog: XrefCustApp Use Case

23. Click OK.

24. From the File menu, click Save All and close the SAP_TO_COMMON_
UPDATE.xsl tab.

The Routing Rules panel would appear as shown in Figure 47–26.

Figure 47–26 Insert Operation and Update Operation

Creating and Running Cross Reference Use Case

Working with Cross References 47-33

To create routing rules for updateID operation:
Perform the following tasks to create routing rules for UpdateID operation:

1. In Routing Rules panel, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp, Mediators, Common, Services, Common.

4. Select updateid and click OK.

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. Enter the following expression in the Expression field:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation = 'UPDATEID'

7. Click OK.

8. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATEID.xsl.

10. Click OK.

A SAP_TO_COMMON_UPDATEID.xsl tab is displayed.

11. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Components Palette, select Advanced.

14. Select XREF Functions.

15. Drag and drop the populateXRefRow function from Components Palette to the
line connecting top:id and inp1:id elements.

16. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

17. Click Search to the right of xrefLocation field.

The SCA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_01" or click Search to select the
column name.

20. In the referenceValue column, enter
/top:Sap01Collection/top:Sap01/top:refId.

21. In the columnName field, enter "SAP_01" or click Search to select the column
name.

22. In the value field, enter /top:Sap01Collection/top:Sap01/top:Id.

23. In the mode field, enter "UPDATE" or click Search to select this mode.

Creating and Running Cross Reference Use Case

47-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 47–27 shows a populated Edit Function – populateXRefRow dialog.

Figure 47–27 Edit Function – populateXRefRow Dialog: XrefCustApp Use Case

24. Drag and drop the lookupXRef function from Components Palette to the line
connecting top:id and inp1:id elements.

25. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

26. Click Search to the right of xrefLocation field.

The SCA Resource Lookup dialog is displayed.

27. Select customer.xref and click OK.

28. In the referenceColumnName field, enter "SAP_01" or click Search to select the
column name.

29. In the referenceValue column, enter the following:

xref:populateXRefRow("customer.xref","SAP_
01",/top:Sap01Collection/top:Sap01/top:refId,"SAP_
01",/top:Sap01Collection/top:Sap01/top:id,"UPDATE").

30. In the columnName field, enter "COMMON" or click Search to select the column
name.

31. In the needException field, enter false() or click Search to select this mode.

Figure 47–28 shows a populated Edit Function – lookupXRef dialog.

Creating and Running Cross Reference Use Case

Working with Cross References 47-35

Figure 47–28 Edit Function – lookupXRef Dialog: XrefCustApp Use Case

32. Click OK.

33. Click Save All and close the SAP_TO_COMMON_UPDATEID.xsl window.

The Routing Rules panel would appear as shown in Figure 47–29.

Figure 47–29 Insert, Update, and UpdateID Operations

To create routing rules for delete operation:
1. In Routing Rules panel, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp, Mediators, Common, Services, Common.

4. Select delete and click OK.

5. Click the Filter icon.

Creating and Running Cross Reference Use Case

47-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Expression Builder dialog is displayed.

6. Enter the following expression in the Expression field:

$in.Sap01Collection/top:Sap01Collection/top:Sap01/top:operation = 'DELETE'

7. Click OK.

8. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_DELETE.xsl.

10. Click OK.

A SAP_TO_COMMON_DELETE.xsl tab is displayed.

11. Right-click <sources> and select Add Parameter.

The Add Parameter dialog is displayed.

12. In the Local Name field, enter COMMONID.

13. Select Set Default Value.

14. Select Expression.

15. In the XPath Expression field, enter
xref:lookupXRef("customer.xref","SAP_
01",/top:Sap01Collection/top:Sap01/top:id,"COMMON",false()).

16. Click OK.

17. Drag and drop the top:Sap01 source element to the inp1:Customer target element.

The Auto Map Preferences dialog is displayed.

18. Click OK.

19. Delete the line connecting top:id and inp1:id.

20. Connect the COMMONID to inp1:id.

21. Right-click inp1:id and select Add XSL node and then if.

A new node if is inserted between inp1:customer and inp1:id.

22. Connect top:id to the if node.

23. From the Components Palette, select Advanced.

24. Select XREF Functions.

25. Drag and drop the markForDelete function from Component Palette to the line
connecting top:id and if node.

26. Double-click the markForDelete icon.

The Edit Function-markForDelete dialog is displayed.

27. Click Search to the right of xrefLocation field.

The SCA Resource Lookup dialog is displayed.

28. Select customer.xref and click OK.

29. In the columnName field, enter "SAP_01" or click Search to select the column
name.

30. In the value field, enter /top:Sap01Collection/top:Sap01/top:Id.

Creating and Running Cross Reference Use Case

Working with Cross References 47-37

Figure 47–30 shows a populated Edit Function – markForDelete dialog.

Figure 47–30 Edit Function – markForDelete Dialog: XrefCustApp Use Case

31. Click OK.

The SAP_TO_COMMON_DELETE.xsl would appear as shown in Figure 47–31.

Figure 47–31 SAP_TO_COMMON_DELETE.xsl

32. Click Save All and close the SAP_TO_COMMON_DELETE.xsl tab.

The Routing Rules panel would appear as shown in Figure 47–32.

Creating and Running Cross Reference Use Case

47-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 47–32 Insert, Update, UpdateID, and Delete Operations

47.6.1.9 Task 9: Specifying Routing Rules for Common Mediator
You must specify routing rules for following operations of Common Mediator:

■ Insert

■ Delete

■ Update

■ UpdateID

To create routing rules for insert operation:
1. Double-click Common Mediator.

The Mediator Editor is displayed.

2. In Routing Rules panel, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefCustApp, References, SBL.

5. Select SBL and click OK.

6. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

7. Select Create New Mapper File and enter COMMON_TO_SBL_INSERT.xsl.

8. Click OK.

A COMMON_TO_SBL_INSERT.xsl tab is displayed.

9. Drag and drop the inp1:Customers source element to the db:InputParameters
target element.

Creating and Running Cross Reference Use Case

Working with Cross References 47-39

The Auto Map Preferences dialog is displayed.

10. Click OK.

The transformation is created as shown in Figure 47–33.

Figure 47–33 COMMON_TO_SBL_INSERT.xsl Transformation

11. From the File menu, click Save All and close the COMMON_TO_SBL_INSERT.xsl
window.

12. In the Synchronous Reply panel, click Browse for target service operations.

The Target Type dialog is displayed.

13. Select Service.

The Target Services dialog is displayed.

14. Navigate to XrefCustApp, References, Logger.

15. Select Write and click OK.

16. Click the Transformation icon next to the Transform Using field.

The Reply Transformation map dialog is displayed.

17. Select Create New Mapper File and enter SBL_TO_COMMON_INSERT.xsl.

18. Select Include Request in the Reply Payload.

19. Click OK.

A SBL_TO_COMMON_INSERT.xsl window is displayed.

20. Connect inp1:Customers source element to the db:X:APP_ID.

21. Drag and drop the populateXRefRow function from Components Palette to the
connecting line.

22. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

23. Enter the information in the following fields:

■ xrefLocation: "customer.xref"

■ referenceColumnName: "Common"

■ referenceValue: $initial.Customers/inp1:Customers/inp1:Customer/inp1:Id

■ columnName:"SBL_78"

■ value:/db:OutputParameters/db:X_APP_ID

■ mode:"LINK"

24. Click OK.

Creating and Running Cross Reference Use Case

47-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The SBL_TO_COMMON_INSERT.xsl would appear as shown in Figure 47–34.

Figure 47–34 SBL_TO_COMMON_INSERT.xsl Transformation

25. From the File menu, click Save All and close the SBL_TO_COMMON_INSERT.xsl
tab.

26. In the Synchronous Reply panel, click the Assign Values icon.

The Assign Values dialog is displayed.

27. Click Add.

The Assign Value dialog is displayed.

28. In the From section, select Expression.

29. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

30. Enter the following expression in the Expression field and click OK.

concat('INSERT-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

31. In the To section, select Property.

32. Select jca.file.FileName property and click OK.

33. Click OK.

The insert operation panel would appear as shown in Figure 47–35.

Figure 47–35 Insert Operation with SBL Target Service

34. From the File menu, click Save All.

35. Repeat the Step 2 through Step 34 to specify another target service EBS and its
routing rules.

Figure 47–36 shows the insert operation panel with SBL and EBS target service.

Creating and Running Cross Reference Use Case

Working with Cross References 47-41

Figure 47–36 Insert Operation with SBL and EBS Target Service

To create routing rules for delete operation:
Perform the following tasks to create the routing rules for delete operation:

1. In Routing Rules panel, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp, References, SBL.

4. Select SBL and click OK.

5. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_DELETE.xsl.

7. Click OK.

A COMMON_TO_SBL_DELETE.xsl tab is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters
target element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created as shown in Figure 47–37.

Creating and Running Cross Reference Use Case

47-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 47–37 COMMON_TO_SBL_DELETE.xsl Transformation

10. Drag and drop the lookupXRef function from Components Palette to the line
connecting inp1:id and db:XCUSTOMER_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter the information in the following fields:

■ xrefLocation: "customer.xref"

■ referenceColumnName: "Common"

■ referenceValue: /inp1:Customers/inp1:Customer/inp1:Id

■ columnName:"SBL_78"

■ needException:false()

13. Click OK.

14. From the File menu, click Save All and close the COMMON_TO_SBL_DELETE.xsl
window.

15. In the Synchronous Reply panel, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp, References, Logger.

18. Select Write and click OK.

19. Click the Transformation icon next to the Transform Using field.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter SBL_TO_COMMON_DELETE.xsl.

21. Click OK.

A SBL_TO_COMMON_DELETE.xsl window is displayed.

22. Connect db:X_APP_ID source element to the db:X:APP_ID target.

23. Drag and drop the markForDelete function from Components Palette to the
connecting line.

24. Double-click the markForDelete icon.

The Edit Function-markForDelete dialog is displayed.

25. Enter the information in the following fields:

■ xrefLocation: "customer.xref"

■ columnName:"SBL_78"

Creating and Running Cross Reference Use Case

Working with Cross References 47-43

■ value:/db:OutputParameters/db:X_APP_ID

26. Click OK.

27. From the File menu, click Save All and close the SBL_TO_COMMON_DELETE.xsl
tab.

28. In the Synchronous Reply panel, click the Assign Values icon.

The Assign Values dialog is displayed.

29. Click Add.

The Assign Value dialog is displayed.

30. In the From section, select Expression.

31. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

32. Enter following expression in the Expression field and click OK.

concat('DELETE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

33. In the To section, select Property.

34. Select jca.file.FileName property and click OK.

35. Click OK.

The delete operation panel would appear as shown in Figure 47–38.

Figure 47–38 Delete Operation with SBL Target Service

36. From the File menu, click Save All.

37. Repeat the Step 1 through Step 36 to specify another target service EBS and specify
the routing rules.

Figure 47–39 shows the delete operation panel with SBL and EBS target service.

Creating and Running Cross Reference Use Case

47-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 47–39 Delete Operation with SBL and EBS Target Service

To create routing rules for update operation:
Perform the following tasks to create routing rules for Update operation:

1. In Routing Rules panel, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp, References, SBL.

4. Select SBL and click OK.

5. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_UPDATE.xsl.

7. Click OK.

A COMMON_TO_SBL_UPDATE.xsl tab is displayed.

8. Drag and drop the inp1:Customers source element to the db:InputParameters
target element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created as shown in Figure 47–37.

10. Drag and drop the lookupXRef function from Components Palette to the line
connecting inp1:id and db:XCUSTOMER_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

Creating and Running Cross Reference Use Case

Working with Cross References 47-45

12. Enter the information in the following fields:

■ xrefLocation: "customer.xref"

■ referenceColumnName: "Common"

■ referenceValue: /inp1:Customers/inp1:Customer/inp1:Id

■ columnName:"SBL_78"

■ needException:true()

13. Click OK.

14. From the File menu, click Save All and close the COMMON_TO_SBL_
UPDATE.xsl window.

15. In the Synchronous Reply panel, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp, References, Logger.

18. Select Write and click OK.

19. Click the Transformation icon next to the Transform Using field.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter SBL_TO_COMMON_UPDATE.xsl.

21. Click OK.

A SBL_TO_COMMON_UPDATE.xsl window is displayed.

22. Connect db:X:APP_ID source element to the db:X:APP_ID.

23. From the File menu, click Save All and close the SBL_TO_COMMON_
UPDATE.xsl tab.

24. In the Synchronous Reply panel, click the Assign Values icon.

The Assign Values dialog is displayed.

25. Click Add.

The Assign Value dialog is displayed.

26. In the From section, select Expression.

27. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

28. Enter following expression in the Expression field and click OK.

concat('UPDATE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

29. In the To section, select Property.

30. Select jca.file.FileName property and click OK.

31. Click OK.

The update operation panel would appear as shown in Figure 47–40.

Creating and Running Cross Reference Use Case

47-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 47–40 Update Operation with SBL Target Service

32. From the File menu, click Save All.

33. Repeat the Step 1 through Step 32 to specify another target service EBS and its
routing rules.

Figure 47–41 shows the update operation panel with SBL and EBS target service.

Figure 47–41 Update Operation with SBL and EBS Target Service

To create routing rules for updateID operation:
Perform the following tasks to create routing rules for UpdateID operation:

1. In Routing Rules panel, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefCustApp, References, SBL.

4. Select SBL and click OK.

Creating and Running Cross Reference Use Case

Working with Cross References 47-47

5. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_SBL_UPDATEID.xsl.

7. Click OK.

A COMMON_TO_SBL_UPDATEID.xsl tab is displayed.

8. Drag and drop inp1:Customers source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created as shown in Figure 47–37.

10. Drag and drop the lookupXRef function from Components Palette to the line
connecting inp1:id and db:X_CUSTOMER_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

12. Enter the information in the following fields:

■ xrefLocation: "customer.xref"

■ referenceColumnName: "Common"

■ referenceValue: /inp1:Customers/inp1:Customer/inp1:Id

■ columnName:"SBL_78"

■ needException:false()

13. Click OK.

14. From the File menu, click Save All and close the COMMON_TO_SBL_
UPDATEID.xsl window.

15. In the Synchronous Reply panel, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefCustApp, References, Logger.

18. Select Write and click OK.

19. Click the Transformation icon next to the Transform Using field.

The Reply Transformation map dialog is displayed.

20. Select Include Request in the Reply Payload.

21. Click OK.

A SBL_TO_COMMON_UPDATEID.xsl window is displayed.

22. Connect inp1:Customers source element to the db:X:APP_ID.

23. Drag and drop the populateXRefRow function from Component Palette to the
connecting line.

24. Double-click the populateXRefRow icon.

Creating and Running Cross Reference Use Case

47-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Edit Function-populateXRefRow dialog is displayed.

25. Enter the information in the following fields:

■ xrefLocation: "customer.xref"

■ referenceColumnName: "Common"

■ referenceValue: $initial.Customers/inp1:Customers/inp1:Customer/inp1:Id

■ columnName:"SBL_78"

■ value:/db:OutputParameters/db:X_APP_ID

■ mode:"UPDATE"

26. Click OK.

27. From the File menu, click Save All and close the SBL_TO_COMMON_
UPDATEID.xsl tab.

28. In the Synchronous Reply panel, click the Assign Values icon.

The Assign Values dialog is displayed.

29. Click Add.

The Assign Value dialog is displayed.

30. In the From section, select Expression.

31. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

32. Enter following expression in the Expression field and click OK.

concat('UPDATEID-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

33. In the To section, select Property.

34. Select jca.file.FileName property and click OK.

35. Click OK.

The updateid operation panel would appear as shown in Figure 47–42.

Figure 47–42 Updateid Operation with SBL Target Service

36. From the File menu, click Save All.

37. Repeat the Step 1 through Step 36 to specify another target service EBS and specify
the routing rules.

Creating and Running Cross Reference Use Case

Working with Cross References 47-49

Figure 47–43 shows the updateid operation panel with SBL and EBS target
service.

Figure 47–43 Updateid Operation with SBL and EBS Target Service

47.6.1.10 Task 10: Configuring Oracle Application Server Connection
An Oracle Application Server connection is required for deploying your SOA
composite application. For information on creating Oracle Application Server
connection, refer to Oracle Fusion Middleware User's Guide for Technology Adapters.

47.6.1.11 Task 11: Deploying the Composite Application
Deploying the XrefCustApp composite application to Oracle Application Server
consists of following steps:

■ Creating an Application Deployment Profile

■ Deploying the Application to Oracle Application Server

For detailed information about these steps, see Section 43.2, "Deploying a Single SOA
Composite in Oracle JDeveloper".

47.6.2 Running and Monitoring the XrefCustApp Application
After deploying the XrefCustApp application, you can run it by using any command
from the insert_sap_record.sql file present in the XrefCustApp/sql folder.
On successful completion, the records are inserted or updated in EBS and SBL tables
and the Logger reference writes the output to the output.xml file.

For monitoring the running instance, you can use the Oracle Enterprise Manager
Console at the following URL:

http://hostname:portnumber/em

where hostname is the host on which you installed the Oracle SOA Suite
infrastructure and portnumber is the port running the service.

Creating and Running Cross Reference for 1M Functions

47-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

47.7 Creating and Running Cross Reference for 1M Functions
The cross reference use case implements an integration scenario between two
end-systems Oracle EBS and SAP instances. In this use case, the order passes from SAP
to EBS. SAP represents the orders with a unique ID, whereas EBS splits the order into
two order ID1 and ID2. This scenario is created using Database Adapters. When you
poll the SAP table for updated or created records, a SAP instance is created. In EBS, the
instance is simulated by a procedure and the table is populated. Figure 47–44 provides
an overview of this use case.

Figure 47–44 XrefOrderApp Use Case in SOA Composite Editor

For downloading the sample files mentioned in this section, visit the following URL:

http://www.oracle.com/technology/sample_code/products/mediator

47.7.1 Step-By-Step Instructions for Creating the Use Case
This section provides the design-time tasks for creating, building, and deploying your
SOA Composite application. These tasks should be performed in the order in which
they are presented.

■ Section 47.7.1.1, "Task 1: Configuring Oracle Database and Database Adapter"

■ Section 47.7.1.2, "Task 2: Creating an Oracle JDeveloper Application and Project"

■ Section 47.7.1.3, "Task 3: Creating a Cross Reference"

■ Section 47.7.1.4, "Task 4: Creating a Database Adapter Service"

■ Section 47.7.1.5, "Task 5: Creating EBS External Reference"

■ Section 47.7.1.6, "Task 6: Creating Logger External Reference"

■ Section 47.7.1.7, "Task 7: Creating Mediator Components"

■ Section 47.7.1.8, "Task 8: Specifying Routing Rules for Mediator Component"

■ Section 47.7.1.9, "Task 9: Specifying Routing Rules for Common Mediator"

■ Section 47.7.1.10, "Task 10: Configuring Oracle Application Server Connection"

■ Section 47.7.1.11, "Task 11: Deploying the Composite Application"

Creating and Running Cross Reference for 1M Functions

Working with Cross References 47-51

47.7.1.1 Task 1: Configuring Oracle Database and Database Adapter

To configure Oracle Database and the Database adapter
1. You need SCOTT database account with password TIGER for this use case. You

must ensure that the SCOTT account is unlocked.

You can log in as SYSDBA and then run the setup_user.sql script available in
the XrefOrderApp1M/sql folder to unlock the account.

2. Run the create_schema.sql script available in the XrefOrderApp1M/sql
folder to create the tables required for this use case.

3. Run the create_app_procedure.sql script available in the
XrefOrderApp1M/sql folder to create a procedure that simulates the various
applications participating in this integration.

4. Run the createschema_xref_oracle.sql script available in the
OH/rcu/integration/soainfra/sql/xref/ folder to create a Cross
Reference table to store runtime Cross Reference data.

5. Copy the ra.xml and weblogic-ra.xml files from $BEAHOME/META-INF to
the newly created directory called META-INF on your computer.

6. Edit the weblogic-ra.xml file, available in the
$BEAHOME/src/oracle/tip/adapter/db/test/deploy/weblogic/META-
INF folder from the ADE label that you are using for your SOA application, as
follows:

■ Modify the property to xADataSourceName as follows:

<property>
 <name>xADataSourceName</name>
 <value>jdbc/DBConnection1</value>
</property>

■ Modify the jndi-name as follows:

<jndi-name> eis/DB/DBConnection1</jndi-name>

This sample uses eis/DB/DBConnection1 to poll SAP table for new messages
and to connect to the procedure that simulates Oracle EBS and Siebel instances.

7. Package the ra.xml and weblogic-ra.xml files as a RAR file and deploy the
RAR file by using the Weblogic console.

8. Create a data source using the Weblogic console with the following values:

■ jndi-name=jdbc/DBConnection1

■ user=scott

■ password=tiger

■ url=jdbc:oracle:thin:@host:port:service

■ connection-factory
factory-class=oracle.jdbc.pool.OracleDataSource

9. Create a data source using the Weblogic console with the following values:

■ jndi-name=jdbc/xref

■ user=scott

■ password=tiger

Creating and Running Cross Reference for 1M Functions

47-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ url=jdbc:oracle:thin:@host:port:service

■ connection-factory
factory-class=oracle.jdbc.pool.OracleDataSource

47.7.1.2 Task 2: Creating an Oracle JDeveloper Application and Project

To create an application and a project:
1. In Oracle JDeveloper, click File and select New.

The New Gallery dialog appears.

2. In the New Gallery, expand the General node, and select the Applications
category.

3. In the Items list, select SOA Application and click OK.

The Create SOA Application wizard appears.

4. In the Application Name field, enter XRefOrderApp, and then click Next.

The Name your project screen appears.

5. In the Project Name field, enter XRefOrderApp and click Next.

The Configure SOA Settings screen appears.

6. In the Composite Template list, select Empty Composite and then click Finish.

The Applications Navigator of Oracle JDeveloper is updated with the new
application and project and the Design tab contains, a blank palette.

7. From the File menu, click Save All.

47.7.1.3 Task 3: Creating a Cross Reference
After creating an application and a project for the use case, you must create a cross
reference table.

To create a cross reference table:
1. In the Application Navigator, right-click the XRefOrderApp project and select

New.

2. In the New Gallery dialog, expand the SOA Tier node, and then select the
Transformations category.

3. In the Items list, select Cross Reference(XREF) and click OK.

The Create Cross Reference(XREF) File dialog is displayed.

4. In the File Name field, enter order.xref.

5. In the End System fields, enter SAP_05 and EBS_i75.

6. Click OK.

The Cross Reference Editor is displayed.

7. Click Add.

A new row is added.

8. Enter COMMON as End System name.

The Cross Reference Editor would appear as shown in Figure 47–45.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 47-53

Figure 47–45 Customer Cross Reference

9. From the File menu, click Save All and close the Cross Reference Editor.

47.7.1.4 Task 4: Creating a Database Adapter Service

To create a Database adapter service:
1. In the Component Palette, select SOA.

2. Select Database Adapter and drag it to the Exposed Services design area.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter SAP.

5. Click Next.

The Service Connection page is displayed.

6. In the Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Poll for New or Changed Records in a Table and click Next.

The Select Table page is displayed.

10. Click Import Tables.

The Import Tables dialog is displayed.

11. Select Scott from Schema.

12. In the Name Filter field, enter %SAP% and click Query.

The Available field is populated with SAP_05 table name.

13. Double-click SAP_05.

The selected field is populated with SAP_05.

14. Click OK.

Creating and Running Cross Reference for 1M Functions

47-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Select Table page now contains the SAP_05 table.

15. Select SAP_05 and click Next.

The Define Primary Key page is displayed.

16. Select ID as primary key and click Next.

The Relationships page is displayed.

17. Click Next.

The Attribute Filtering page is displayed.

18. Click Next.

The After Read page is displayed.

19. Select Update a Field in the [SAP_05] Table (Logical Delete) and click Next.

The Logical Delete page is displayed.

20. In the Logical Delete field, select LOGICAL_DEL.

21. In the Read Value field, enter Y.

22. In the Unread Value field, enter N.

Figure 47–14 shows the Logical Delete page of the Adapter Configuration Wizard.

23. Click Next.

The Polling Options page is displayed.

24. Click Next.

The Define Selection Criteria page is displayed.

25. Click Next.

The Advanced Options page is displayed.

26. Click Next.

The Finish page is displayed.

27. Click Finish.

A Database adapter service SAP is created, as shown in Figure 47–46.

Figure 47–46 SAP Database Adapter Service in SOA Composite Editor

Creating and Running Cross Reference for 1M Functions

Working with Cross References 47-55

28. From the File menu, click Save All.

47.7.1.5 Task 5: Creating EBS External Reference

To create external references named EBS:
1. In the Component Palette, select SOA.

2. Select Database Adapter and drag it to the External References design area.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter EBS.

5. Click Next.

The Service Connection page is displayed.

6. In the Connection field, select DBConnection1.

7. In the JNDI Name field, enter eis/DB/DBConnection1.

8. Click Next.

The Operation Type page is displayed.

9. Select Call a Stored Procedure or Function and click Next.

The Specify Stored Procedure page is displayed.

10. Select Scott from Schema.

11. Click Browse.

The Stored Procedures dialog is displayed.

12. Select POPULATE_APP_INSTANCE_IM as shown in Figure 47–47.

Creating and Running Cross Reference for 1M Functions

47-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 47–47 Stored Procedure Dialog

13. Click OK.

The Specify Stored Procedure page appears as shown in Figure 47–48.

Figure 47–48 Specify Stored Procedure Page of Adapter Configuration Wizard

14. Click Next.

The Advanced Options page is displayed.

15. Click Next.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 47-57

16. The Finish page is displayed.

17. Click Finish.

Figure 47–49 shows the EBS reference in SOA Composite Editor.

Figure 47–49 EBS Reference in SOA Composite Editor

18. From the File menu, click Save All.

47.7.1.6 Task 6: Creating Logger External Reference

To create a file adapter reference:
1. From the Component Palette, select SOA.

2. Select File Adapter and drag it to the External References design area.

The Adapter Configuration wizard Welcome page is displayed.

3. Click Next.

The Service Name page is displayed.

4. In the Service Name field, enter Logger.

5. Click Next.

The Adapter Interface page is displayed.

6. Click Define from operation and schema (specified later).

The Operation page is displayed.

7. In the Operation Type field, select Write File.

8. Click Next.

The File Configuration page is displayed.

9. In the Directory for Outgoing Files (physical path) field, enter the name of the
directory where you want to write the files.

10. In the File Naming Convention field, enter output.xml and click Next.

The Messages page is displayed.

11. Click Search.

Creating and Running Cross Reference for 1M Functions

47-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Type Chooser dialog is displayed.

12. Navigate to Type Explorer, Project Schema Files, SCOTT_POPULATE_APP_
INSTANCE_1M.xsd and then select OutputParameters.

13. Click OK.

14. Click Next.

The Finish page is displayed.

15. Click Finish.

Figure 47–50 shows the Logger reference in the SOA Composite Editor.

Figure 47–50 Logger Reference in SOA Composite Editor

16. From the File menu. click Save All.

47.7.1.7 Task 7: Creating Mediator Components

To create a Mediator component:
1. Drag and drop a Mediator from Components Palette to the Components design

area.

The Create Mediator dialog is displayed.

2. Select Define Interface Later from Template.

3. Click OK.

A Mediator with name Mediator2 is created.

4. Connect the SAP service to the Mediator2 as shown in Figure 47–51.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 47-59

Figure 47–51 SAP Service Connected to Mediator2

5. Click Save All.

6. Drag and drop another Mediator from Components Palette to the Components
design area.

The Create Mediator dialog is displayed.

7. Select Interface Definition From WSDL from Template.

8. Deselect Create Composite Service with SOAP Bindings.

9. Click Find Existing WSDLs to the right of the WSDL File field.

10. Navigate to and then select the Common.wsdl file. The Common.wsdl file is
available in the Samples folder.

11. Click OK.

12. Click OK.

A Mediator with name Common is created.

47.7.1.8 Task 8: Specifying Routing Rules for Mediator Component
You must specify routing rules for following operations:

■ Insert

■ Update

To create routing rules for insert operation:
1. Double-click Mediator2 Mediator.

The Mediator Editor is displayed.

2. In Routing Rules panel, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefOrderApp, Mediators, Common, Services, Common.

5. Select Insert and click OK.

6. Click the Filter icon.

The Expression Builder dialog is displayed.

Creating and Running Cross Reference for 1M Functions

47-60 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. Enter the following expression in the Expression field:

$in.Sap05Collection/top:Sap05Collection/top:Sap05/top:operation='INSERT'

8. Click OK.

9. Click the Transformation icon next to the Using Transformation field.

The Request Transformation map dialog is displayed.

10. Select Create New Mapper File and enter SAP_TO_COMMON_INSERT.xsl.

11. Click OK.

A SAP_TO_COMMON_INSERT.xsl tab is displayed.

12. Drag and drop top:SAP05 source element to the inp1:Order target element.

The Auto Map Preferences dialog is displayed.

13. From the During Auto Map options, deselect Match Elements Considering their
Ancestor Names.

14. Click OK.

The transformation is created as shown in Figure 47–52.

Figure 47–52 SAP_TO_COMMON_INSERT.xsl Transformation

15. From the Components Palette, select Advanced.

16. Select XREF Functions.

17. Drag and drop the populateXRefRow1M function from Components Palette to
the line connecting top:id and inp1:id elements.

18. Double-click the populateXRefRow1M icon.

The Edit Function-populateXRefRow dialog is displayed.

19. Click Search to the right of xrefLocation field.

The SCA Resource Lookup dialog is displayed.

20. Select Order.xref and click OK.

21. In the referenceColumnName field, enter "SAP_05" or click Search to select the
column name.

22. In the referenceValue column, enter
/top:Sap05Collection/top:Sap05/top:id.

23. In the columnName field, enter "Common" or click Search to select the column
name.

24. In the value field, enter orcl:generate-guid().

25. In the mode field, enter "Add" or click Search to select this mode.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 47-61

Figure 47–53 shows populated Edit Function – populateXRefRow1M dialog.

Figure 47–53 Edit Function – populateXRefRow1M Dialog: XrefOrderApp Use Case

26. Click OK.

27. From the File menu, click Save All and close the SAP_TO_COMMON_INSERT.xsl
tab.

The Routing Rules panel would appear as shown in Figure 47–54.

Figure 47–54 Routing Rules Panel with Insert Operation

To create routing rules for update operation:
Perform the following tasks to create routing rules for Update operation:

1. In Routing Rules panel, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefOrderApp, Mediators, Common, Services, Common.

4. Select Update and click OK.

Creating and Running Cross Reference for 1M Functions

47-62 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

5. Click the Filter icon.

The Expression Builder dialog is displayed.

6. Enter the following expression in the Expression field:

$in.Sap05Collection/top:Sap05Collection/top:Sap05/top:operation='UPDATE'

7. Click OK.

8. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

9. Select Create New Mapper File and enter SAP_TO_COMMON_UPDATE.xsl.

10. Click OK.

A SAP_TO_COMMON_UPDATE.xsl tab is displayed.

11. Drag and drop the top:Sap05 source element to the inp1:Order target element.

The Auto Map Preferences dialog is displayed.

12. Click OK.

13. From the Components Palette, select Advanced.

14. Select XREF Functions.

15. Drag and drop the lookupXRef function from Components Palette to the line
connecting top:id and inp1:id elements.

16. Double-click the lookupXRef icon.

The Edit Function-lookupXRef dialog is displayed.

17. Click Search to the right of xrefLocation field.

The SCA Resource Lookup dialog is displayed.

18. Select customer.xref and click OK.

19. In the referenceColumnName field, enter "SAP_05" or click Search to select the
column name.

20. In the referenceValue column, enter
/top:Sap05Collection/top:Sap05/top:id.

21. In the columnName field, enter "COMMON" or click Search to select the column
name.

22. In the needException field, enter true() or click Search to select this mode.

Figure 47–55 shows populated Edit Function – looupXRef dialog.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 47-63

Figure 47–55 Edit Function – looupXRef Dialog: XRefOrderApp Use Case

23. Click OK.

24. From the File menu, click Save All and close the SAP_TO_COMMON_
UPDATE.xsl tab.

The Routing Rules panel would appear as shown in Figure 47–56.

Figure 47–56 Insert Operation and Update Operation

47.7.1.9 Task 9: Specifying Routing Rules for Common Mediator
You must specify routing rules for following operations of Common Mediator:

■ Insert

■ Update

To create routing rules for insert operation:
1. Double-click Common Mediator.

Creating and Running Cross Reference for 1M Functions

47-64 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The Mediator Editor is displayed.

2. In Routing Rules panel, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

3. Select Service.

The Target Services dialog is displayed.

4. Navigate to XrefOrderApp, References, EBS.

5. Select EBS and click OK.

6. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

7. Select Create New Mapper File and enter COMMON_TO_EBS_INSERT.xsl.

8. Click OK.

A COMMON_TO_EBS_INSERT.xsl tab is displayed.

9. Drag and drop inp1:Order source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

10. Set the value of the db:X_APP_INSTANCE node on the right side to EBS_i75.

Click OK.

The transformation is created as shown in Figure 47–57.

Figure 47–57 COMMON_TO_EBS_INSERT.xsl Transformation

11. From the File menu, click Save All and close the COMMON_TO_EBS_INSERT.xsl
window.

12. In the Synchronous Reply panel, click Browse for target service operations.

The Target Type dialog is displayed.

13. Select Service.

The Target Services dialog is displayed.

14. Navigate to XrefOrderApp, References, Logger.

15. Select Write and click OK.

16. Click the Transformation icon next to the Transform Using field.

The Reply Transformation map dialog is displayed.

17. Select Create New Mapper File and enter EBS_TO_COMMON_INSERT.xsl.

18. Select Include Request in the Reply Payload.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 47-65

19. Click OK.

AN EBS_TO_COMMON_INSERT.xsl window is displayed.

20. Connect inp1:Order source element to the db:X:APP_ID.

21. Drag and drop the populateXRefRow function from Components Palette to the
connecting line.

22. Double-click the populateXRefRow icon.

The Edit Function-populateXRefRow dialog is displayed.

23. Enter the information in the following fields:

■ xrefLocation: "order.xref"

■ referenceColumnName: "Common"

■ referenceValue: $initial.Customers/inp1:Customers/inp1:Order/inp1:Id

■ columnName:"EBS_75"

■ value:/db:OutputParameters/db:X_APP_ID

■ mode:"LINK"

24. Click OK.

The EBS_TO_COMMON_INSERT.xsl would appear as shown in Figure 47–58.

Figure 47–58 EBS_TO_COMMON_INSERT.xsl Transformation

25. From the File menu, click Save All and close the EBS_TO_COMMON_INSERT.xsl
tab.

26. In the Synchronous Reply panel, click the Assign Values icon.

The Assign Values dialog is displayed.

27. Click Add.

The Assign Value dialog is displayed.

28. In the From section, select Expression.

29. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

30. Enter the following expression in the Expression field and click OK.

concat('INSERT-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

31. In the To section, select Property.

32. Select jca.file.FileName property and click OK.

33. Click OK.

Creating and Running Cross Reference for 1M Functions

47-66 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The insert operation panel would appear as shown in Figure 47–59.

Figure 47–59 Insert Operation with EBS Target Service

34. From the File menu, click Save All.

To create routing rules for update operation:
Perform the following tasks to create routing rules for Update operation:

1. In Routing Rules panel, click the Create a new Routing Rule icon.

The Target Type dialog is displayed.

2. Select Service.

The Target Services dialog is displayed.

3. Navigate to XrefOrderApp, References, EBS.

4. Select EBS and click OK.

5. Click the Transformation icon next to the Transform Using field.

The Request Transformation map dialog is displayed.

6. Select Create New Mapper File and enter COMMON_TO_EBS_UPDATE.xsl.

7. Click OK.

A COMMON_TO_EBS_UPDATE.xsl tab is displayed.

8. Drag and drop inp1:Orders source element to the db:InputParameters target
element.

The Auto Map Preferences dialog is displayed.

9. Click OK.

The transformation is created as shown in Figure 47–37.

10. Drag and drop the lookupXRef function from Components Palette to the line
connecting inp1:id and db:X_APP_ID.

11. Double-click the lookupXRef icon.

The Edit Function: lookupXRef dialog is displayed.

Creating and Running Cross Reference for 1M Functions

Working with Cross References 47-67

12. Enter the information in the following fields:

■ xrefLocation: "order.xref"

■ referenceColumnName: "Common"

■ referenceValue: /inp1:Customers/inp1:Order/inp1:Id

■ columnName:"EBS_i75"

■ needException:true()

13. Click OK.

14. From the File menu, click Save All and close the COMMON_TO_EBS_
UPDATE.xsl window.

15. In the Synchronous Reply panel, click Browse for target service operations.

The Target Type dialog is displayed.

16. Select Service.

The Target Services dialog is displayed.

17. Navigate to XrefOrderApp, References, Logger.

18. Select Write and click OK.

19. Click the Transformation icon next to the Transform Using field.

The Reply Transformation map dialog is displayed.

20. Select Create New Mapper File and enter EBS_TO_COMMON_UPDATE.xsl.

21. Click OK.

A EBS_TO_COMMON_UPDATE.xsl window is displayed.

22. Connect db:X:APP_ID source element to the db:X:APP_ID.

23. From the File menu, click Save All and close the EBS_TO_COMMON_
UPDATE.xsl tab.

24. In the Synchronous Reply panel, click the Assign Values icon.

The Assign Values dialog is displayed.

25. Click Add.

The Assign Value dialog is displayed.

26. In the From section, select Expression.

27. Click the Invoke Expression Builder icon.

The Expression Builder dialog is displayed.

28. Enter following expression in the Expression field and click OK.

concat('UPDATE-',$in.OutputParameters/db:OutputParameters/db:X_APP_ID,'.xml')

29. In the To section, select Property.

30. Select jca.file.FileName property and click OK.

31. Click OK.

The update operation panel would appear as shown in Figure 47–60.

Creating and Running Cross Reference for 1M Functions

47-68 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 47–60 Update Operation with EBS Target Service

32. From the File menu, click Save All.

47.7.1.10 Task 10: Configuring Oracle Application Server Connection
An Oracle Application Server connection is required for deploying your SOA
composite application. For information on creating Oracle Application Server
connection, refer to Oracle Fusion Middleware User's Guide for Technology Adapters.

47.7.1.11 Task 11: Deploying the Composite Application
Deploying the XrefOrderApp composite application to Oracle Application Server
consists of following steps:

■ Creating an Application Deployment Profile

■ Deploying the Application to Oracle Application Server

For detailed information about these steps, see Section 43.2, "Deploying a Single SOA
Composite in Oracle JDeveloper".

48

Using Two-Layer Business Process Management (BPM) 48-1

48Using Two-Layer Business Process
Management (BPM)

Two-Layer BPM enables you to create dynamic business processes whose execution,
rather than being pre-determined at design time, depends on elements of the context
in which the process executes. Such elements could include, for example, the type of
customer, the geographical location, or the channel.

To illustrate further, suppose that you have an application that performs multi-channel
banking using various processes. In this scenario, the execution of each process would
depend on the channel for each particular process instance.

This chapter includes the following sections:

■ Section 48.1, "Introduction to Two-Layer Business Process Management"

■ Section 48.2, "Phase Activities"

■ Section 48.3, "The Dynamic Routing Decision Table"

■ Section 48.4, "Use Case: Two-Layer BPM"

48.1 Introduction to Two-Layer Business Process Management
Two-Layer BPM enables you to model business processes using a layered approach. In
that model, a first level is a very abstract specification of the business process.
Activities of a first-level process delegate the work to processes or services in a second
level. Figure 48–1 illustrates this behavior.

Introduction to Two-Layer Business Process Management

48-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 48–1 Two-Layer BPM

In Figure 48–1, the Phase I activity of the business process can delegate its work to one
of the corresponding Layer II processes: Task 1.1, Task 1.2 or Task 1.3.

The two-layer BPM functionality enables you to create the key element—namely, the
phase activity—declaratively.

By using the DT@RT functionality of Oracle Business Rules, you can add more
channels dynamically without having to re-deploy the business process. DT@RT
enables you to add rules (columns) to the dynamic routing decision table at runtime.
Then, during runtime, business process instances consider those new rules and
eventually route the requests to a different channel.

The DT@RT functionality of Oracle Business Rules also enables you to modify the
end-point reference of a service that is invoked from a phase activity, pointing that
reference to a different service.

To enable Two-Layer BPM, you follow these steps:

Note: In Oracle Fusion Middleware 11g Release 1 (11.1.1), you can
use the DT@RT functionality of Oracle Business Rules only by way of
the Oracle Business Rules SDK.

For information about using the Oracle Business Rules SDK, see:

■ Oracle Fusion Middleware User's Guide for Oracle Business Rules

■ Oracle Fusion Middleware Java API Reference for Oracle Business Rules

Table 48–1 Steps for Enabling Two-Layer BPM

Step Information

Install the Oracle WebLogic
Server

Oracle WebLogic Server Installation Guide

Design the SOA composite
application

Section 4.2.1, "How to Create an Application and a Project"

Create Element-type
variables named phaseIn
and phaseOut

"Creating Variables" on page 48-9

Create a Phase Activity Section 48.2, "Phase Activities" on page 48-3

Phase I Phase II Phase IIILayer l

Layer ll

Task
1.1

Task
1.2

Task
1.3

Task
2.2

Task
2.3

Task
3.1

Task
3.2

Phase Activities

Using Two-Layer Business Process Management (BPM) 48-3

48.2 Phase Activities
In Two-Layer BPM, a Phase is a level-1 activity in the BPEL process model. It
complements the existing higher-level BPEL activities Business Rule and Human Task.

48.2.1 Creating a Phase Activity
You add a Phase to a process declaratively by using the BPEL Designer in Oracle
JDeveloper just as you would any other BPEL activity—by dragging and dropping it
from the BPEL Activities and Components palette to the process model.

Figure 48–2 Phase Activity in BPEL Designer

48.2.2 How to Create a Phase Activity
You create the Phase activity for your composite application after you have created the
necessary variables as described in "Creating Variables" on page 48-9.

Create and Edit the
Dynamic Routing Decision
Table

Section 48.3, "The Dynamic Routing Decision Table" on
page 48-5

Add Assign activities to the
BPEL process model

Section A.2.2, "Assign Activity"

Create the Application
Deployment Profile

Chapter 43, "Deploying SOA Composite Applications"

Create an Application
Server Connection

Section 43.1, "Creating an Application Server Connection"

Deploy the Application Chapter 43, "Deploying SOA Composite Applications"

Note: The reference WSDL (Layer 2 or Called References) must have
the same abstract WSDL as that for the Phase reference that gets
auto-created.

Table 48–1 (Cont.) Steps for Enabling Two-Layer BPM

Step Information

Phase Activities

48-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Once the Phase is dropped into the level-1 BPEL process, a wizard guides you through
the various configuration steps. It first displays the Create Phase Activity dialog, in
which you specify the input and the output of the Phase.

To create a Phase activity:
In the Create Phase Activity dialog:

1. Enter a value in the Name field.

2. Select the Inputs and Outputs icon, which is a green plus sign (+). The Variable
Chooser dialog appears.

3. Select Process, Variables, and phaseIn, and then click OK. The Phase dialog box is
displayed with the phaseIn variable populated.

4. From the Inputs and Outputs icon, select Select Output. The Variable Chooser
dialog box appears.

5. Select Process, Variables, and phaseOut.

6. Click OK. The Phase dialog box is displayed with the input and output variable
names populated

7. Click OK. The BPEL Designer displays the .bpel page for your process.

8. Click Save All from the File menu. Close the .bpel page.

9. Click the composite.xml page. The SCA composite diagram appears.

48.2.3 What Happens When You Create a Phase Activity
When you create a Phase activity, the artifacts described in Table 48–2 are created.

Table 48–2 Artifacts Created with a Phase Activity

Artifact Description

BPEL scope At the location where the user dropped the phase activity in the BPEL
process model a new BPEL scope is created and inserted into the BPEL
process. The scope has the name of the phase activity. Within the scope, a
bunch of standard BPEL activities are created. The most important ones
are one invoke activity to a mediator and one receive activity from the
mediator.

Mediator
component

With the SCA composite of the BPEL component, a new Mediator
component is created and wired to the phase activity of the BPEL
component that comprises the level-1 BPEL process where the phase
activity has been dropped into the process model. The input and output
of the Mediator component is defined by the input and output of the
phase activity. The mediator plan (this are the processing instructions of
the mediator component) is very simple; it delegates creation of the
processing instructions to the business rules component.

The Dynamic Routing Decision Table

Using Two-Layer Business Process Management (BPM) 48-5

48.2.4 What Happens at Runtime When You Create a Phase Activity
At runtime, the input of the Phase activity is used to evaluate the dynamic routing
decision table. This is performed by a specific decision component of the Phase
activity. The result of this evaluation is an instruction for the Mediator. The Mediator
routes the request to a service based on instructions from the decision component.

48.2.5 What You May Need to Know About Creating a Phase Activity
When creating a phase activity, you need to know the following:

■ Rules that you will need to either configure or create in the decision service. This
will be based on data from payload that you will use to evaluate a rule.

■ For each rule created in the decision service, you need to know the corresponding
endpoint URL that needs to be invoked when a rule evaluates to true. This
endpoint URL will be used by Mediator to invoke the service in layer 2.

48.3 The Dynamic Routing Decision Table
A Dynamic Routing Decision Table is a decision table evaluated by Business Rules.
Conditions are evaluated on the input data of a Phase activity. The result of the
evaluation is routing instruction for the Mediator.

Business Rules
component

Within the SCA composite of the BPEL component, a new Business Rules
component is created and wired to the mediator component associated
with the Phase activity of the BPEL process. The business rule component
includes a rule dictionary. The rule dictionary contains metadata for such
rule engine artifacts as fact types, rule sets, rules, decision tables, and
similar artifacts. As part of creating the business rules component the rule
dictionary is pre-initialized with the following data:

■ Fact Type Model: The data model that can be used for modeling
rules. The rule dictionary will be populated with a fact type model
that corresponds to the input of the phase activity together with
some fixed data model that is required as part of the contract
between the mediator and the business rules component.

■ Ruleset: A container of rules that is used as a kind of grouping
mechanism for rules. A ruleset can be exposed as a service. One
ruleset is created within the rule dictionary.

■ Decision Table: From a rules engine perspective, a decision table is
simply a collection of rules with the same fact type model elements
in the condition and action part of the rules so that the rules can be
visualized in a tabular format. The new decision table is created
within the ruleset.

■ Decision Service: A decision service is created that exposes the
ruleset as a service of the business rules SCA component. The service
interface is used by the mediator to evaluate the decision table.

Note: Phase activity is asynchronous in nature. Synchronous or
one-way Phase activity is not possible.

Table 48–2 (Cont.) Artifacts Created with a Phase Activity

Artifact Description

The Dynamic Routing Decision Table

48-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

48.3.1 How to Create the Routing Decision Table
After you have created the Phase activity, the wizard launches the Rule Designer in
Oracle JDeveloper for you edit the Routing Decision Table. Figure 48–3 shows a
sample decision table within rule designer.

Figure 48–3 Sample Decision Table

You can leave the decision table empty while modeling the level-2 process phases, and
complete it after the level-1 process is being deployed using the Business Analyst tool.

Once you have created and edited the Routing Decision Table, the new level-1 phase
activity appears in the BPEL process in Oracle JDeveloper as illustrated in Figure 48–4.

Figure 48–4 Completed Level-1 Phase in Oracle JDeveloper

Use Case: Two-Layer BPM

Using Two-Layer Business Process Management (BPM) 48-7

48.3.2 What Happens When You Create the Routing Decision Table
By creating the Routing Decision Table, you are configuring the decision service to
dynamically evaluate the conditions applied to the incoming payload and give the
corresponding routing rules to the Mediator. The Mediator then executes these rules
when invoking the service in layer 2.

More specifically, here is what happens at design time when you create the Routing
Decision Table:

■ A new decision component is created in the composite of the project.

■ A new rule dictionary is created in the composite project directory.

■ The rule dictionary is populated with a data model that reflects the data model of
the phase input—that is, the XML schema of the Phase input is imported into the
rule dictionary.

48.4 Use Case: Two-Layer BPM
This section contains a use case for a sales process. Steps to run the use case are as
follows:

1. Install the server as described in Oracle WebLogic Server Installation Guide.

2. Model the sample by performing these tasks:

a. Designing the SOA composite as described in Section 48.4.1, "Designing the
SOA Composite"

b. Section 48.4.2, "Creating a Phase Activity"

c. Section 48.4.3, "Creating and Editing the Dynamic Routing Decision Table"

d. Adding assign activities to the BPEL process model as described in
Section 48.4.4, "Adding Assign Activities to the BPEL Process Model"

3. Deploy the sample with JDeveloper as described in Section 48.4.5, "Deploying the
Sample with JDeveloper".

48.4.1 Designing the SOA Composite
You design the SOA composite application in JDeveloper.

To design the SOA composite:
1. In JDeveloper, select New from the File menu. The New Gallery dialog box

appears.

2. Click OK. The Create Application dialog box appears.

3. Enter LoanFlowRouterApp in the Application Name field, and then click OK.
The Create Project dialog box appears.

4. Click Cancel in the Create Project dialog box.

5. Right-click the LoanFlowRouterApp menu and select New Project. The New
Gallery dialog box appears.

Note: No Transform, Assign or Validation can be performed on a
payload.

Use Case: Two-Layer BPM

48-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

6. Select SOA Project from the Items list and click OK. The Create SOA Project dialog
box appears.

7. Enter LoanFlowRouter in the Project Name field and select Composite With
BPEL in the Composite Template list, and click OK. The Create BPEL Process page
appears.

8. Enter LoanFlowRouterProcess in the Name field of the Create BPEL Process
page and select Asynchronous BPEL Process from the Template list. Click OK.

9. Import the AutoLoanTypes.xsd schema into the project xsd folder. The
AutoLoanTyped.xsd schema is as follows:

<?xml version="1.0"?>
<xsd:schema attributeFormDefault="qualified" elementFormDefault="qualified"
<xsd:schema attributeFormDefault="qualified" elementFormDefault="qualified"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.autoloan.com/ns/autoloan"
xmlns:tns="http://www.autoloan.com/ns/autoloan">
<xsd:element name="loanApplication" type="tns:LoanApplicationType"/>
<xsd:element name="loanOffer" type="tns:LoanOfferType"/>
<xsd:element name="invalidApplication" type="tns:InvalidApplicationType"/>
<xsd:element name="loan" type="tns:LoanType"/>
<xsd:complexType name="InvalidApplicationType">
<xsd:sequence>
<xsd:element name="error" type="xsd:string"/>
<xsd:element name="application" type="tns:LoanApplicationType"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="LoanType">
<xsd:sequence>
<xsd:element ref="tns:loanApplication"/>
<xsd:element ref="tns:loanOffer"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="LoanApplicationType">
<xsd:sequence>
<xsd:element name="SSN" type="xsd:string"/>
<xsd:element name="email" type="xsd:string"/>
<xsd:element name="customerName" type="xsd:string"/>
<xsd:element name="loanAmount" type="xsd:double"/>
<xsd:element name="carModel" type="xsd:string"/>
<xsd:element name="carYear" type="xsd:string"/>
<xsd:element name="creditRating" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="LoanOfferType">
<xsd:sequence>
<xsd:element name="providerName" type="xsd:string"/>
<xsd:element name="selected" type="xsd:boolean"/>
<xsd:element name="approved" type="xsd:boolean"/>
<xsd:element name="APR" type="xsd:double"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

10. After importing the AutoLoanTypes.xsd schema, open the
LoanFlowRouterProcess.bpel page.

Use Case: Two-Layer BPM

Using Two-Layer Business Process Management (BPM) 48-9

Creating Variables

1. Click the Variables... icon. The Variables dialog box appears.

2. Click the Create...Alt+N icon. The Create Variable dialog box appears.

3. Enter phaseIn in the Name field. Click the Element option.

4. Click the Browse Elements icon. The Type Chooser dialog box is displayed.

5. Select Project Schema Files, AutoLoanTypes.xsd, and loanApplication, and then
click OK. The Create Variable dialog box appears with the element name
populated.

6. Click OK. The Variables dialog box is displayed with the variable name populated.

7. Click the Create...Alt+N icon in the Variables dialog box. The Create Variable
dialog appears.

8. Enter phaseOut in the Name field. Click the Element option. Click the Browse
Elements icon. The Type Chooser dialog appears.

9. Select Project Schema Files, AutoLoanTypes.xsd, and loanOffer, and then click
OK. The Create Variable dialog box appears with the element name populated.

10. Click OK. The Variables Dialog box is displayed with the input and output
variable names populated.

11. Click OK. The variables have been created and the
LoanFlowRouterProcess.bpelpage appears.

48.4.2 Creating a Phase Activity
You create the Phase activity by using JDeveloper.

To create a Phase activity:
1. Click the LoanFlowRouterProcess.bpel page. Drag and drop a Phase activity from

the BPEL component palette into the process model. The Phase dialog box
appears.

2. Enter routeToLoanApplication in the Name field. From the Inputs and
Outputs plus icon, select Select Input. The Variable Chooser dialog box appears.

3. Select Process, Variables, and phaseIn, and then click OK. The Phase dialog box is
displayed with the phaseIn variable populated.

4. Select Select Output from the Inputs and Outputs plus icon. The Variable
Chooser dialog box is displayed.

5. Select Process, Variables, and phaseOut.

6. Click OK. The Phase dialog box is displayed with the input and output variable
names populated.

7. Click OK. The LoanFlowRouterProcess.bpel page is displayed.

8. Click Save All from the File menu. Close the LoanFlowRouterProcess.bpel
page.

9. Click the composite.xml page. The SCA composite diagram is displayed.

Note: Phase variables can be only of the Element type.

Use Case: Two-Layer BPM

48-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

48.4.3 Creating and Editing the Dynamic Routing Decision Table
You create and edit the Dynamic Routing Decision Table by using Oracle JDeveloper.

To create and edit the Dynamic Routing Decision Table:
1. Open the LoanFlowRouterProcess.bpel page. Double-click the Phase activity

in the process diagram. The Phase dialog box appears.

2. Click the Edit Dynamic Rules button. The Rule Designer page appears.

3. Click Ruleset_1 under Rulesets from the Types list. The Ruleset_1 page with an
empty RoutingTable appear.

4. Click the arrow under Conditions and select loanAmount from the list. The text
field above the list is populated with LoanApplicationType.loanAmount.

5. Right-click the loanApplicationType.loanAmount condition and select Edit Local
List of Ranges. The Edit Bucketset dialog box is displayed.

6. Click the Click to add “Less Than Or Equal” Range-Position icon (first blue icon)
beside Range Editor. The value 0 is displayed at the center of the range axis (the
default range is -10000 to 100000).

7. Enter 0 in the Minimum field and 100000 in the Maximum field. The Minimum
and Maximum fields are populated with the new values.

8. Click one of the interval icons in the Range Editor and create a range of 0 to
200000.

9. Click one of the interval icons in the Range Editor and create a range of 200000 to
500000. Click OK. The RoutingTable page is displayed.

10. Right-click the LoanApplicationType.loanAmount condition and select Split
Condition. The new rule columns, such as R1, R2, R3 and R4, are displayed with
conditions according to the bucketset definition of the loanAmount attribute.

Note:

■ As part of the Phase activity wizard, three components are
created: Rules, Mediator, and Dynamic Reference.

■ The Rules component returns an executable case for the Mediator
component, on the basis of the rules defined.

■ The Mediator component routs on the basis of the routing rules
received from the Rules component.

■ The Dynamic Reference component is the dummy reference for
the second-level processes.

■ The Rule dictionary is populated with the fact type model of the
Mediator and the fact type corresponding to the input of the
Phase activity, which in this case is LoanApplicationType.

■ An empty decision table called the RoutingTable is created that
needs to be edited providing dynamic routing rules.

Tip: To adjust a range, move it with the mouse along the range axis
or click into the range icon, type a value, and press Enter on the
keyboard.

Use Case: Two-Layer BPM

Using Two-Layer Business Process Management (BPM) 48-11

11. Click the plus icon in the RoutingTable page and select Add Actions and then
assert new from the list. The Create Action dialog box is displayed.

12. Enter some default values for the fact type attributes. Select the Parameterized
option for the serviceBindingInfo attribute.

13. Click OK. The RoutingTable page is displayed with Actions defined for the rules
R1-R4.

14. Enter the values for the parametrized attributes of the Actions. See Table 48–3 for
the values to be entered. This completes editing the RoutingTable page.

15. Click the LoanFlowRouterProcess.bpel page. Click OK in the Phase dialog.

16. Click the composite.xml page. The SCA composite diagram appears after the
Routing Table has been created and edited.

17. Click Save All from the File menu. Close the composite.xml page.

48.4.4 Adding Assign Activities to the BPEL Process Model
Before deploying the Phase activity, you must initialize the Phase variables. You do
this by adding Assign activities in the phase in the BPEL process.

To add Assign activities to the BPEL Process Model
1. Click the LoanFlowRouterProcess.bpel page. Drag and drop an Assign

activity from the BPEL component palette into the process model between the
receiveInput activity and the Phase activity. The Assign activity is added to the
process model.

2. Double-click the Assign activity. The Assign dialog box is displayed.

3. Enter AssignInput in the Name field in the General tab.

4. Select the Copy Operation tab. Click the plus icon and select Copy Operation from
the list. The Create Copy Operation dialog appears.

5. Create an input copy operation for 12345.

6. Similar to Step 5, create the copy operations mentioned in the following table:

Table 48–3 Attributes for the RoutingAction Fact Type

Attribute Default Fixed Parametrized Required Description

caseName No Yes No Some descriptive text (used in Mediator
mplan)

cbkOperation null Yes No No

executionType direct Yes No Yes Execution type can be “direct” or
“queued”

onCbkOperation No Yes Callback operation

serviceBindingInfo No Yes Yes Service endpoint

URL

serviceOperation No Yes Yes Service operation

serviceReference No Yes Yes Service reference

Use Case: Two-Layer BPM

48-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. Click OK in the Create Copy Operation dialog. The Assign dialog box appears
with the input copy operation values populated.

8. Click OK. The LoanFlowRouterProcess.bpel page is displayed again.

9. Drag and drop another Assign activity from the BPEL component palette into the
process model between the Phase activity and the callbackClient activity. The
new Assign activity is added to the process model.

10. Double-click the Assign activity. The Assign dialog box is d.isplayed.

11. Enter AssignOutput in the Name filed in the General tab.

12. Select the Copy Operation tab. Click the plus icon and select Copy Operation from
the list. The Create Copy Operation dialog appears.

13. Create the output copy operation.

14. Click OK in the Create Copy Operation dialog box. The Assign dialog box is
displayed with the output copy operation value populated.

15. Click OK. The LoanFlowRouterProcess.bpel page appears after the input
and output Assign activities are created.

16. Click Save All from the File menu.

48.4.5 Deploying the Sample with JDeveloper
You need to deploy the application profile for the SOA project and application you
created in the earlier steps. Steps to deploy the profile using JDeveloper are:

■ Creating an Application Deployment Profile

■ Creating an Application Server Connection

■ Deploying the Application

48.4.5.1 Creating an Application Deployment Profile

To create an application deployment profile:
1. Click the Application Menu dropdown adjacent to the LoanFlowRouterApp

project and select Application Properties. The Application Properties dialog box is
displayed.

2. Select Deployment. The Application Properties dialog box with the Deployment
page appears on the right pane of the dialog.

Table 48–4 Copy Operations for Adding Assign Activities

From To

‘scott.tiger@oracle.com’ phaseIn/ns1:loanApplication/ns1:email

inputVariable/payload/client:LoanFlowRoute
rProcessProcessRequest/client:input

phaseIn/ns1:ratingrequest/ns1:customerNam
e

number(15000.0) phaseIn/ns1:loanApplication/ns1:loanAmou
nt

‘BMW’ phaseIn/ns1:loanApplication/ns1:carModel

‘2000’ phaseIn/ns1:loanApplication/ns1:carYear

number(300 phaseIn/ns1:loanApplication/ns1:creditRatin
g

Use Case: Two-Layer BPM

Using Two-Layer Business Process Management (BPM) 48-13

3. Click New. The Create Deployment Profile dialog box is displayed.

4. Select OAR File from the Archive Type, and enter phaseActivity in the Name
field.

5. Click OK. The name of the deployment profile you created appears in the
Deployment Profiles pane.

6. Double-click phaseActivity in the Deployment Profiles pane. The OAR
Deployment Profile Properties dialog box is displayed.

7. Click Application Assembly, and select sca_LoanFlowRouter, and click OK.

8. Click OK. You have created the deployment profile with the name phaseActivity.

48.4.5.2 Creating an Application Server Connection
You need to establish connectivity between the design-time environment and the
server on which you want to deploy it.

To create an application server connection:
1. From the File main menu, select New > Connections > Application Server

Connection.

2. Click OK.

3. In the Connection Name field, enter a connection name.

4. From the Connection Type list, select WebLogic 10.3.

5. Click Next.

6. In the Username field, enter weblogic.

7. In the Password field, enter the password for connecting to the application server.

8. Click Next.

9. Enter the hostname for the application server that is configured with the SOA
Infrastructure.

10. In the WLS Domain field, enter the Oracle WebLogic Server domain.

11. Click Next.

12. Click Test Connection. If the test is successful, a message informs you of this.

13. Click Finish.

14. From the File menu, select Save All.

48.4.5.3 Deploying the Application
You are now ready to deploy the composite application to Oracle WebLogic Server.

To deploy the application:
1. Click the Application Menu dropdown and select Deploy, deployment_profile_

name, to, appserver_connection_name.

2. Click OK in the Revision ID dialog box.

3. Click OK in the Deployment Plan dialog box.

Use Case: Two-Layer BPM

48-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

49

Testing SOA Composite Applications 49-1

49 Testing SOA Composite Applications

This chapter describes how to create, deploy, and run test cases that automate the
testing of SOA composite applications. Test cases enable you to simulate the
interaction between a SOA composite application and its web service partners before
deployment in a production environment. This helps to ensure that a process interacts
with web service partners as expected by the time it is ready for deployment to a
production environment.

This chapter includes the following sections:

■ Section 49.1, "Introduction to the Composite Test Framework"

■ Section 49.2, "Introduction to the Components of a Test Suite"

■ Section 49.3, "Creating Test Suites and Test Cases"

■ Section 49.4, "Creating the Contents of Test Cases"

■ Section 49.5, "Deploying and Running a Test Suite"

49.1 Introduction to the Composite Test Framework
Oracle SOA Suite provides an automated test suite framework for creating and
running repeatable tests on a SOA composite application.

The test suite framework provides the following features:

■ Simulates web service partner interactions

■ Validates process actions with test data

■ Creates reports of test results

49.1.1 Test Cases Overview
The test framework supports testing at the SOA composite application level. In this
type of testing, wires, service binding components, service components (such as BPEL
processes and Oracle Mediator service components), and reference binding
components are tested.

For more information, see Section 49.3, "Creating Test Suites and Test Cases."

49.1.2 Test Suites Overview
Test suites consist of a logical collection of one or more test cases. Each test case
contains a set of commands to perform as the test instance is executed. The execution
of a test suite is known as a test run. Each test corresponds to a single SOA composite
application instance.

Introduction to the Components of a Test Suite

49-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

For more information, see the following:

■ Section 49.3, "Creating Test Suites and Test Cases"

■ Section 49.4, "Creating the Contents of Test Cases"

49.1.3 Emulations Overview
Emulations enable you to simulate the behavior of the following components with
which your SOA composite application interacts during execution:

■ Internal service components inside the composite

■ Binding components outside the composite

Instead of invoking another service component or binding component, you can specify
a response from the component or reference.

For more information, see the following:

■ Section 49.2.2, "Emulations"

■ Section 49.4, "Creating the Contents of Test Cases"

49.1.4 Assertions Overview
Assertions enable you to verify variable data or process flow. You can perform the
following types of assertions:

■ Entire XML document assertions:

Compare the element values of an entire XML document to the expected element
values. For example, compare the exact contents of an entire loan request XML
document to another document. The XMLTestCase class in the XMLUnit package
includes a collection of methods for performing assertions between XML files. For
more information about these methods, visit the following URL:

http://xmlunit.sourceforge.net

■ Part section of message assertions:

Compare the values of a part section of a message to the expected values. An
example is a payload part of an entire XML document message.

■ Nonleaf element assertions:

Compare the values of an XML fragment to the expected values. An example is a
loan application, which includes leaf elements SSN, email, customerName, and
loanAmount.

■ Leaf element assertions:

Compare the value of a selected string or number element or a regular expression
pattern to an expected value. An example is the SSN of a loan application.

For more information about asserts, see Section 49.2.3, "Assertions."

49.2 Introduction to the Components of a Test Suite
This section describes and provides examples of the test components that comprise a
test case. Methods for creating and importing these tests into your process are
described in subsequent sections of this chapter.

Introduction to the Components of a Test Suite

Testing SOA Composite Applications 49-3

49.2.1 Process Initiation
You first define the operation of your process in a binding component service such as a
SOAP web service. Example 49–1 defines the operation of initiate to initiate the
TestFwk SOA composite application. The initiation payload is also defined in this
section:

Example 49–1 Process Initiation

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [6/13/07 10:50 AM]. -->
<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@oracle.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
</compositeTest>

49.2.2 Emulations
You create emulations to simulate the message data that your SOA composite
application receives from web service partners.

In the test code in Example 49–2, the loan request is initiated with an error. A fault
message is received in return from a web service partner:

Example 49–2 Emulations

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:29 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/CreditRatingService" operation="process">
 <emulate duration="PT0S">
 <fault faultName="ser:NegativeCredit" xmlns:ser="http://services.otn.com">
 <message>
 <part partName="payload">

Introduction to the Components of a Test Suite

49-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <filePath>creditRatingFault.xml</filePath>
 </part>
 </message>
 </fault>
 </emulate>
 </wireActions>
</compositeTest>

Two message files, loanApplication.xml and creditRatingFault.xml, are
invoked in this emulation. If the loan application request in loanApplication.xml
contains a social security number beginning with 0, the creditRatingFault.xml
file returns the fault message shown in Example 49–3:

Example 49–3 Fault Message

<error xmlns="http://services.otn.com">
 Invalid SSN, SSN cannot start with digit '0'.
</error>

For more information, see Section 49.4, "Creating the Contents of Test Cases."

49.2.3 Assertions
You create assertions to validate an entire XML document, a part section of a message,
a nonleaf element, or a leaf element at a point during SOA composite application
execution. Example 49–4 instructs Oracle SOA Suite to ensure that the content of the
customername variable matches the content specified.

Example 49–4 Assertions

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [6/13/07 10:51 AM]. -->
<compositeTest compositeDN="TestFwk"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <content>
 <loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@oracle.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
 </loanApplication>
 </content>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="client" operation="initiate">
 <assert comparisonMethod="string">
 <expected>
 <location key="input" partName="payload"
 xpath="/s1:loanApplication/s1:customerName"
 xmlns:s1="http://www.autoloan.com/ns/autoloan"/>
 <simple>Joe Smith</simple>
 </expected>

Creating Test Suites and Test Cases

Testing SOA Composite Applications 49-5

 </assert>
 </wireActions>
</compositeTest>

For more information, see Section 49.4, "Creating the Contents of Test Cases."

49.2.4 Message Files
Message instance files provide a method for simulating the message data received
back from web service partners. You can manually enter the received message data
into this XML file or load a file through the test mode of the SOA Composite Editor.
For example, the following message file simulates a credit rating result of 900
returned from a partner:

<rating xmlns="http://services.otn.com">900</rating>

For more information about loading message files into test mode, see Section 49.4,
"Creating the Contents of Test Cases."

49.3 Creating Test Suites and Test Cases
This section describes how to create test suites and their test cases for a SOA composite
application. The test cases consist of sets of commands to perform as the test instance
is executed.

49.3.1 How to Create Test Suites and Test Cases

To create test suites and test cases:
1. Open the SOA Composite Editor.

2. Open the SOA composite application in which to create a test suite.

3. Go to the Application Navigator or Structure window. If the Structure window
shown in Figure 49–1 does not appear, select Structure from the View main menu.

Note: Do not enter a multibyte character string as a test suite name
or test case name. Doing so causes an error to occur when the test is
executed from Oracle Enterprise Manager Fusion Middleware Control
Console.

Creating Test Suites and Test Cases

49-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 49–1 Structure Window

4. Create a test suite in either of two ways:

a. In the Application Navigator, right-click testsuites and select Create Test
Suite. Figure 49–2 provides details.

Figure 49–2 Create Test Suite Selection

b. In the Structure window, right-click Test Suites and select Create Test Suite.
Figure 49–3 provides details.

Figure 49–3 Create Test Suite Selection

5. Enter a test suite name (for example, logicTest).

6. Click OK.

 The Create Composite Test dialog appears.

7. Enter a test name (for this example, TestDelivery is entered) and an optional
description. This description displays in the Description column of the Test Cases
page of the Unit Tests tab in Oracle Enterprise Manager Fusion Middleware
Control Console.

Creating Test Suites and Test Cases

Testing SOA Composite Applications 49-7

8. Click OK.

This action creates a test named TestDelivery.xml in the Applications Navigator,
along with the following subfolders:

■ componenttests

This folder is not used in 11g Release 1.

■ includes

This folder is not used in 11g Release 1.

■ messages

Contains message test files that you load into this directory through the test
mode user interface.

■ tests

Contains TestDelivery.xml.

A TestDelivery.xml folder also displays in the Structure window. Figure 49–4
provides details. This indicates that you are in the test mode of the SOA
Composite Editor. You can create test initiations, assertions, and emulations in test
mode. No other modifications, such as editing the property dialogs of service
components or dropping service components into the editor, can be performed in
test mode.

Figure 49–4 TestDelivery.xml Folder

The following operating system test suite directory is also created:

C:\JDeveloper\mywork\application_name\project_name\testsuites\logicTest

The following subdirectories for adding test files are created beneath logicTest:
componenttests, includes, messages, and tests.

Creating the Contents of Test Cases

49-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

9. If you want to exit test mode and return to design mode in the SOA Composite
Editor, click the last icon below TestDelivery.xml above the designer. Figure 49–5
provides details.

Figure 49–5 Test Mode Exit

10. Save your changes when prompted.

11. Under the testsuites folder in the Application Navigator, double-click
TestDelivery.xml to return to test mode. Figure 49–6 provides details.

Figure 49–6 Test Mode Access

49.4 Creating the Contents of Test Cases
Test cases consist of process initiations, emulations, and assertions. You add these
actions to test cases in the test mode of the SOA Composite Editor. You create process
initiations to initiate client inbound messages into your SOA composite application.
You create emulations to simulate input or output message data, fault data, callback
data, or all of these types that your SOA composite application receives from web
service partners. You create assertions to validate entire XML documents, part sections
of messages, nonleaf elements, and leaf elements as a process is executed.

49.4.1 How to Initiate Inbound Messages

To initiate inbound messages:
You must first initiate the sending of inbound client messages to the SOA composite
application.

1. Go to the SOA Composite application in test mode.

Notes:

■ Do not edit the filelist.xml files that display under the subfolders
of the testsuites folder. These files are automatically created
during design time, and are used during runtime to calculate the
number of test cases.

■ You cannot create test suites within other test suites. However,
you can organize a test suite into subdirectories.

Creating the Contents of Test Cases

Testing SOA Composite Applications 49-9

2. Double-click the service binding component shown in Figure 49–7 (for this
example, named initiate).

Figure 49–7 Binding Component Service Access

The Edit Initiate dialog appears.

3. Enter the details shown in Table 49–1:

Figure 49–8 shows this dialog:

Figure 49–8 Edit Initiate Dialog

Table 49–1 Edit Initiate Dialog Fields and Values

Field Value

Service Displays the name of the binding component service (client).

Operation Displays the operation type of the service binding component
(initiate).

Part Select the type of inbound message to send (for example,
payload).

Value Create a simulated message to send from a client:

■ Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate
a sample file for testing. Click Save As to save the sample file.

■ Load From File Click the Browse icon to load message data from a file. The file
is added to the messages folder in the Application Navigator.

Creating the Contents of Test Cases

49-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 49–5 shows an inbound process initiation message from a client:

Example 49–5 Inbound Process Initiation Message

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/12/07 8:36 AM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about/>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
. . .
. . .

The loanApplication.xml referenced in the process initiation file contains a
loan application payload. Example 49–6 provides details.

Example 49–6 Loan Application Payload

<loanApplication xmlns="http://www.autoloan.com/ns/autoloan">
 <SSN>111222333</SSN>
 <email>joe.smith@oracle.com</email>
 <customerName>Joe Smith</customerName>
 <loanAmount>20000</loanAmount>
 <carModel>Camry</carModel>
 <carYear>2007</carYear>
 <creditRating>800</creditRating>
</loanApplication>

4. Click OK.

49.4.2 How to Emulate Outbound Messages

To emulate outbound messages:

You can simulate a message returned from a synchronous web service partner.

1. Go to the SOA composite application in test mode.

2. Beneath the testsuites folder in the Application Navigator, double-click a test case.
Figure 49–9 provides details.

Note: The creation of multiple emulations in an instance in a test
case is supported only if one emulation is for an output message and
the other is for a callback message.

Creating the Contents of Test Cases

Testing SOA Composite Applications 49-11

Figure 49–9 Test Case Access

The SOA composite application in the SOA Composite Editor is refreshed to
display in test mode. This mode enables you to define test information.

3. Double-click the wire of the SOA composite application area to test. For the
example shown in Figure 49–10, the wire between the LoanBroker process and the
synchronous CreditRating web service is selected.

Figure 49–10 Wire Access

This displays the Wire Actions dialog shown in Figure 49–11, from which you can
design emulations and assertions for the selected part of the SOA composite
application.

Figure 49–11 Wire Actions Dialog

4. Click the Emulates tab.

5. Click the Add icon.

6. Click Emulate Output.

7. Enter the details described in Table 49–2:

Table 49–2 Emulate Output Message Dialog Fields and Values

Field Value

Part Select the message part containing the output (for example,
payload).

Value Create a simulated output message to return from a web service
partner:

Creating the Contents of Test Cases

49-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 49–12 shows this dialog:

Figure 49–12 Emulate Dialog with Emulate Output Selected

Example 49–7 shows a simulated output message from a synchronous web service
partner that you enter manually or load from a file:

Example 49–7 Simulated Output Message Example

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:26 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>

■ Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate
a sample file for testing. Click Save As to save the sample file.

■ Load From File Click the Browse icon to load message data from a file. The file
is added to the messages folder in the Application Navigator.

Duration Enter the maximum amount of time to wait for the message to
be delivered from the web service partner.

Table 49–2 (Cont.) Emulate Output Message Dialog Fields and Values

Field Value

Creating the Contents of Test Cases

Testing SOA Composite Applications 49-13

 </initiate>
 <wireActions wireSource="LoanBroker/CreditRatingService" operation="process">
 <emulate duration="PT0S">
 <message>
 <part partName="payload">
 <filePath>creditRatingResult.xml</filePath>
 </part>
 </message>
 </emulate>
 </wireActions>
</compositeTest>

The creditRatingResult.xml message file referenced in the output message
provides details about the credit rating result.

<rating xmlns="http://services.otn.com">900</rating>

8. Click OK.

49.4.3 How to Emulate Callback Messages

To emulate callback messages:

You can simulate a callback message returned from an asynchronous web service
partner.

1. Access the Wire Actions dialog by following Step 1 through Step 3 on page 49-10.

2. Click the Emulates tab.

3. Click the Add icon.

4. Click Emulate Callback. This field is only enabled for asynchronous processes.

5. Enter the details described in Table 49–3:

Note: The creation of multiple emulations in an instance in a test
case is supported only if one emulation is for an output message and
the other is for a callback message.

Table 49–3 Emulate Callback Message Fields

Field Value

Callback Operation Select the callback operation (for example, onResult).

Callback Message Displays the callback message name of the asynchronous
process.

Part Select the message part containing the callback (for example,
payload).

Value Create a simulated callback message to return from an
asynchronous web service partner:

■ Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate
a sample file for testing. Click Save As to save the sample file.

■ Load From File Click the Browse icon to load message data from a file. The file
is added to the messages folder in the Application Navigator.

Creating the Contents of Test Cases

49-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 49–13 shows this dialog:

Figure 49–13 Emulate Dialog with Emulate Callback Selected

Example 49–8 shows a simulated callback message from a web service partner.
You enter this message manually or load it from a file:

Example 49–8 Simulated Callback Message Example

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Generated by Oracle SCA Test Modeler version 1.0 at [7/3/07 3:27 PM]. -->
<compositeTest compositeDN="CompositeTest"
 xmlns="http://xmlns.oracle.com/sca/2006/test">
 <about></about>
 <initiate serviceName="client" operation="initiate" isAsync="true">
 <message>
 <part partName="payload">
 <filePath>loanApplication.xml</filePath>
 </part>
 </message>
 </initiate>
 <wireActions wireSource="LoanBroker/LoanService" operation="initiate">
 <emulate callbackOperation="onResult" duration="PT0S">
 <message>
 <part partName="payload">

Duration Enter the maximum amount of time to wait for the callback
message to be delivered from the web service partner.

Table 49–3 (Cont.) Emulate Callback Message Fields

Field Value

Creating the Contents of Test Cases

Testing SOA Composite Applications 49-15

 <filePath>loanOffer.xml</filePath>
 </part>
 </message>
 </emulate>
 </wireActions>
</compositeTest>

The loanOffer.xml message file referenced in the callback message provides
details about the credit rating approval. Example 49–9 provides details.

Example 49–9 Credit Rating Approval Details

<loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
 <providerName>Bank Of America</providerName>
 <selected>false</selected>
 <approved>true</approved>
 <APR>1.9</APR>
</loanOffer>

6. Click OK.

49.4.4 How to Emulate Fault Messages

To emulate fault messages:
You can simulate a fault message returned from a web service partner. This simulation
enables you to test fault handling capabilities in your process.

1. Access the Wire Actions dialog by following Step 1 through Step 3 on page 49-10.

2. Click the Emulates tab.

3. Click the Add icon.

4. Click Emulate Fault.

5. Enter the details described in Table 49–4:

Figure 49–14 shows this dialog:

Table 49–4 Emulate Fault Message Fields

Field Value

Fault Select the fault type to return from a partner (for example,
NegativeCredit).

Fault Message Displays the message name.

Part Select the message part containing the fault (for example,
payload).

Value Create a simulated fault message to return from a web service
partner:

■ Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate
a sample file for testing. Click Save As to save the sample file.

■ Load From File Click the Browse icon to load message data from a file. The file
is added to the messages folder in the Application Navigator.

Duration Enter the maximum amount of time to wait for the fault message
to be delivered from the web service partner.

Creating the Contents of Test Cases

49-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 49–14 Emulate Dialog with Emulate Fault Selected

An example of a simulated fault message from a web service partner that you
enter manually or load from a file is shown in Section 49.2.2, "Emulations."

6. Click OK.

49.4.5 How to Create Assertions

To create assertions:
You perform assertions to verify variable data or process flow. Assertions enable you
to validate test data in an entire XML document, a part section of a message, a nonleaf
element, or a leaf element as a process is executed. This is done by extracting a value
and comparing it to an expected value.

1. Access the Wire Actions dialog by following Step 1 through Step 3 on page 49-10.

2. Click the Asserts tab.

 Figure 49–15 shows this dialog:

Creating the Contents of Test Cases

Testing SOA Composite Applications 49-17

Figure 49–15 Wire Actions Dialog with Asserts Tab Selected

3. Click the Add icon.

The Create Assert dialog appears.

4. Select the type of assertion to perform at the top of the dialog, as shown in
Table 49–5. If the operation supports only input messages, the Assert Input button
is enabled. If the operation supports both input and output messages, the Assert
Input and Assert Output buttons are both enabled.

5. See the section shown in Table 49–6 based on the type of assertion you want to
perform.

49.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML
Document

To create assertions on a part section, nonleaf element, or entire XML
document:
This test compares the values to the expected values.

Table 49–5 Assertion Types

Type Description

Assert Input Select to create an assertion in the inbound direction.

Assert Output Select to create an assertion in the outbound direction.

Assert Callback Select to create an assertion on a callback.

Assert Fault Select to assert a fault into the application flow.

Table 49–6 Assertion Types

For an Assertion on... See...

■ A part section of a
document

■ A nonleaf element

■ An entire XML
document

Section 49.4.5.1, "Creating Assertions on a Part Section, Nonleaf
Element, or Entire XML Document"

 A leaf element Section 49.4.5.2, "Creating Assertions on a Leaf Element"

Note: If the message contains multiple parts (for example, payload1,
payload2, and payload3), you must create separate assertions for each
part.

Creating the Contents of Test Cases

49-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1. Click Browse to select the target part section, nonleaf element, or entire XML
document to assert.

The Select Assert Target dialog appears.

2. Select a value, and click OK. For example, select a variable such as payload to
perform a part section assertion.

Figure 49–16 shows this dialog. While this example shows how to perform a part
section assertion, selecting LoanBrokerRequestMessage is an example of an entire
XML document assertion and selecting loanApplication is an example of a
nonleaf assertion.

Figure 49–16 Select a Part Section of a Message

The Create Assert dialog refreshes based on your selection of a variable.

3. Enter details in the remaining fields, as shown in Table 49–7:

Table 49–7 Create Assert Dialog Fields and Values

Field Value

Fault Select the type of fault to assert (for example, NegativeCredit).
This field only displays if you select Assert Fault in Step 4 on
page 49-17.

Assert Target Displays the assert target you selected in Step 2.

Creating the Contents of Test Cases

Testing SOA Composite Applications 49-19

Figure 49–17 shows this dialog with Assert Input selected:

Compare By Specify the strictness of the comparison.

■ xml-identical: Used when the comparison between the
elements and attributes of the XML documents must be
exact. If there is any difference between the two XML
documents, the comparison fails. For example, the
comparison fails if one document uses an element name of
purchaseOrder, while the other uses an element name of
invoice. The comparison also fails if the child attributes of
two elements are the same, but the attributes are ordered
differently in each element.

■ xml-similar: Used when the comparison must be similar in
content, but does not need to exactly match. For example,
the comparison succeeds if both use the same namespace
URI, but have different namespace prefixes. The
comparison also succeeds if both contain the same element
with the same child attributes, but the attributes are ordered
differently in each element.

In both of these examples, the differences are considered
recoverable, and therefore similar.

For more information about comparing the contents of XML
files, see the XMLUnit web site:

http://xmlunit.sourceforge.net/userguide/html/a
r01s03.html#The%20Difference%20Engine

Part Select the message part containing the XML document (for
example, payload).

Value Create an XML document whose content is compared to the
assert target content:

■ Enter Manually Click to manually enter message data in the Enter Value field. A
Generate Sample button enables you to automatically generate
a sample file for testing. Click Save As to save the sample file.

■ Load From File Click the Browse icon to load message data from a file. The file
is added to the messages folder in the Application Navigator.

Description Enter an optional description.

Table 49–7 (Cont.) Create Assert Dialog Fields and Values

Field Value

Creating the Contents of Test Cases

49-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 49–17 Create Assert Dialog with Assert Input Selected

4. Click OK.

The Wire Actions dialog shown in Figure 49–18 displays your selection.

Figure 49–18 Wire Actions Dialog with Asserts Tab Selected

5. Click OK.

49.4.5.2 Creating Assertions on a Leaf Element

To create assertions on a leaf element:
This test compares the value to an expected value.

1. Click Browse to select the leaf element to assert.

The Select Assert Target dialog appears.

Creating the Contents of Test Cases

Testing SOA Composite Applications 49-21

2. Select a leaf element, and click OK. For example, select loanAmount to perform an
assertion. Figure 49–19 provides details.

Figure 49–19 Selection of a Leaf Element

The Create Assert dialog refreshes based on your selection of an entire XML
document.

3. Enter details in the remaining fields, as shown in Table 49–8:

Figure 49–20 shows this dialog with Assert Input selected:

Table 49–8 Create Assert Dialog Fields and Values

Field Value

Fault Select the type of fault to assert (for example, NegativeCredit).
This field only displays if you select Assert Fault in Step 4 on
page 49-17.

Callback Operation Select the type of callback to assert (for example, onResult). This
field only displays if you select Assert Callback in Step 4 on
page 49-17.

Assert Target Displays the variable assert target you selected in Step 2.

Compare By Select the type of comparison:

■ string: Compares string values

■ number: Compares numerical values

■ pattern-match: Compares a regular expression pattern (for
example, [0-9]*). Java Development Kit (JDK) regular
expression (regexp) constructs are supported. For example,
entering a pattern of ab[0-9]*cd means that a value of
ab123cd or ab456cd is correct. An asterisk (*) indicates
any number of occurrences.

Assert Value Enter the value you are expecting. This value is compared to the
value for the assert target.

Description Enter an optional description.

Creating the Contents of Test Cases

49-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 49–20 Create Assert Dialog

4. Click OK.

The Wire Actions dialog shown in Figure 49–18 displays your selection.

Figure 49–21 Wire Actions Dialog with Asserts Tab Selected

49.4.6 What You May Need to Know About Assertions
When a test is executed, and the response type returned is different from the type
expected, the assertion is skipped. For example, you are expecting a fault
(RemoteFault) to be returned for a specific message, but a response
(BpelResponseMessage) is instead returned.

As a best practice, always assert and emulate the expected behavior.

Deploying and Running a Test Suite

Testing SOA Composite Applications 49-23

49.5 Deploying and Running a Test Suite
After creating a test suite of test cases, you deploy the suite as part of a SOA composite
application. You then run the test suites from Oracle Enterprise Manager Fusion
Middleware Control Console.

See Section 43.2.1, "How to Deploy a Single SOA Composite" for instructions on
deploying a SOA composite application from Oracle JDeveloper. See Oracle Fusion
Middleware Administrator's Guide for Oracle SOA Suite for instructions on deploying a
SOA composite application and running a test suite from Oracle Enterprise Manager
Fusion Middleware Control Console.

Deploying and Running a Test Suite

49-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

50

Managing Policies 50-1

50Managing Policies

This chapter describes how to manage policies during design-time in SOA composite
applications.

This chapter includes the following sections:

■ Section 50.1, "Introduction to Policies"

■ Section 50.2, "Attaching Policies to Binding Components and Service Components"

50.1 Introduction to Policies
Oracle Fusion Middleware uses a policy-based model to manage and secure Web
services across an organization. Policies apply security to the delivery of messages.
Policies can be managed by both developers in a design time environment and system
administrators in a runtime environment.

Policies are comprised of one or more assertions. A policy assertion is the smallest unit
of a policy that performs a specific action. Policy assertions are executed on the request
message and the response message, and the same set of assertions is executed on both
types of messages. The assertions are executed in the order in which they appear in the
policy.

Table 50–1 describes the supported policy categories.

Table 50–1 Supported Policy Categories

Category Description

Message Transmission
Optimization
Mechanism (MTOM)

Ensures that attachments are in MTOM format. This format enables
binary data to be sent to and from web services. This reduces the
transmission size on the wire.

Reliability Supports the WS-Reliable Messaging protocol. This guarantees the
end-to-end delivery of messages.

Addressing Verifies that simple object access protocol (SOAP) messages include
WS-Addressing headers in conformance with the WS-Addressing
specification. Transport-level data is included in the XML message
rather than relying on the network-level transport to convey this
information.

Security Implements the WS-Security 1.0 and 1.1 standards. They enforce
authentication and authorization of users. identity propagation, and
message protection (message integrity and message confidentiality).

Management Logs request, response, and fault messages to a message log.
Management policies can also include custom policies.

Attaching Policies to Binding Components and Service Components

50-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Within each category there are one or more policy types that you can attach. For
example, if you select the reliability category, the following types are available for
selection:

■ oracle/wsrm10_policy

Supports version 1.0 of the Web Services Reliable Messaging protocol.

■ oracle/wsrm11_policy

Supports version 1.1 of the Web Services Reliable Messaging protocol.

For more information about available policies and details about which ones to use in
your environment, see Oracle Fusion Middleware Security and Administrator's Guide for
Web Services.

50.2 Attaching Policies to Binding Components and Service Components
You can attach or detach policies to and from service binding components, service
components, and reference binding components in a SOA composite application. Use
Oracle JDeveloper to attach policies for testing security in a design-time environment.
When your application is ready for deployment to a production environment, you can
attach or detach runtime policies in Oracle Enterprise Manager Fusion Middleware
Control Console.

For more information about runtime management of policies, see Oracle Fusion
Middleware Administrator's Guide for Oracle SOA Suite.

50.2.1 How to Attach Policies to Binding Components and Service Components

To attach a policy to a service or reference binding component:
1. In the SOA Composite Editor, right-click a service binding component or reference

binding component.

2. Select Configure WS-Policies.

Depending upon the interface definition of your SOA composite application, you
may be prompted with an additional menu of options.

■ If the selected service or reference is interfacing with a synchronous BPEL
process or Oracle Mediator service component, a single policy is used for both
request and response messages. The Configure SOA WS Policies dialog
immediately appears. Go to Step 4.

■ If the service or reference is interfacing with an asynchronous BPEL process or
Oracle Mediator service component, the policies must be configured
separately for request and response messages. The policy at the callback is
used for the response sent from service to client. An additional menu is
displayed. Go to Step 3.

3. Select the type of binding to use:

■ For Request:

Select the request binding for the service component with which to bind. You
can only select a single request binding. This action enables communication
between the binding component and the service component.

When request binding is configured for a service in the Exposed Services
swimlane, the service acts as the server. When request binding is configured

Attaching Policies to Binding Components and Service Components

Managing Policies 50-3

for a reference in the External References swimlane, the reference acts as the
client.

■ For Callback: (only for interactions with asynchronous processes)

Select the callback binding for the service component with which to bind. This
action enables message communication between the binding component and
the service component. You can only select a single callback binding.

When callback binding is configured for a service in the Exposed Services
swimlane, the service acts as the client. When callback binding is configured
for a reference in the External References swimlane, the reference acts as the
server.

The Configure SOA WS Policies dialog shown in Figure 50–1 appears. For this
example, the For Request option was selected for a service binding component.
The same types of policy categories are also available if you select For Callback.

Figure 50–1 Configure SOA WS Policies Dialog

4. Click the Add icon to display the following categories of polices. For this example,
Security is selected for attachment.

■ MTOM

■ Reliability

■ Addressing

■ Security

■ Management

Attaching Policies to Binding Components and Service Components

50-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The dialog shown in Figure 50–2 is displayed.

Figure 50–2 Security Policies

5. Place your cursor over a policy name to display a description of policy capabilities.

6. Select the type of policy to attach.

7. Click OK.

You are returned to the Configure SOA WS Policies dialog shown in Figure 50–3.
The attached security policy displays in the Security section.

Attaching Policies to Binding Components and Service Components

Managing Policies 50-5

Figure 50–3 Attached Security Policy

8. If necessary, add additional policies.

You can temporarily disable a policy by deselecting the checkbox to the left of the
name of the attached policy. This action does not detach the policy.

9. To detach a policy, click the Delete icon.

10. When complete, click OK on the Configure SOA WS Policies dialog.

You are returned to the SOA Composite Editor.

To attach a policy to a service component:
1. Right-click a service component.

2. Select Configure Component WS Policies.

The Configure SOA WS Policies dialog shown in Figure 50–4 appears.

Attaching Policies to Binding Components and Service Components

50-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 50–4 Configure SOA WS Policies Dialog

3. Click the Add icon for the type of policy to attach.

■ Security

■ Management

The dialog for your selection appears.

4. Select the type of policy to attach.

5. Click OK.

6. If necessary, add additional policies.

7. When complete, click OK on the Configure SOA WS Policies dialog.

For information about attaching policies during runtime in Oracle Enterprise Manager
Fusion Middleware Control Console, see Oracle Fusion Middleware Administrator's
Guide for Oracle SOA Suite.

51

Defining Composite Sensors 51-1

51Defining Composite Sensors

This chapter describes how to define composite sensors in an SOA composite
application.

This chapter includes the following sections:

■ Section 51.1, "Introduction to Composite Sensors"

■ Section 51.2, "Adding Composite Sensors"

■ Section 51.3, "Monitoring Composite Sensor Data During Runtime"

51.1 Introduction to Composite Sensors
Composite sensors provide a method for implementing trackable fields on messages.
Composite sensors enable you to perform the following tasks:

■ Monitor incoming and outgoing messages.

■ Specify composite sensor details in the search utility of the Instances page of an
SOA composite application in Oracle Enterprise Manager Fusion Middleware
Control Console. This action enables you to locate a particular instance.

You define composite sensors on service and reference binding components in Oracle
JDeveloper. This functionality is similar to variable sensors in BPEL processes. During
runtime, composite sensor data is persisted in the database.

51.1.1 Restrictions on Use of Composite Sensors
Note the following restrictions on the use of composite sensors:

■ Functions can only be used with the payload. For example, XPath functions such
as concat() and others cannot be used with properties.

■ Any composite sensor that uses expressions always captures values as strings.
This action makes the search possible only with the like comparison operator.
Also, even if the value is a number, you cannot use other logical operators such as
<, >, =, and any combination of these.

■ Composite sensors only support the predefined DBSensorAction.

■ Header-based sensors are only supported for web service bindings.

Note: Only the database sensor action is supported for this release.
For more information about sensor actions, see Chapter 17, "Using
Oracle BPEL Process Manager Sensors."

Adding Composite Sensors

51-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Sensors for Oracle B2B, service data objects (SDOs), web services invocation
framework (WSIF), and Oracle Business Activity Monitoring bindings are not
supported.

■ Sensor values can only be one of the following types.

1. The following scalar types:

– STRING

– NUMBER

– DATE

– DATE_TIME

2. Complex XML elements

■ When creating an XPath expression for filtering, all functions that return a node
set must be explicitly cast as a string:

xpath20:upper-case(string($in.request/inp1:updateOrderStatus/inp1:orderStatus)
) = "PENDING"

51.2 Adding Composite Sensors
You add sensors to service or reference binding components of an SOA composite
application in the SOA Composite Editor.

51.2.1 How to Add Composite Sensors

To add composite sensors:
1. Use one of the following options to add a composite sensor in the SOA Composite

Editor.

a. Right-click a specific service or reference binding component to which to add a
composite sensor, and select Composite Sensor.

b. Click the Composite Sensor icon above the SOA Composite Editor.

Figure 51–1

The Composite Sensors dialog appears, as shown in Figure 51–2.

Adding Composite Sensors

Defining Composite Sensors 51-3

Figure 51–2 Composite Sensor Dialog

2. Select the Composite Sensors folder, then click the Add icon.

The Create Composite Sensor dialog appears, as shown in Figure 51–3.

Figure 51–3 Create Composite Sensor Dialog

3. Enter the details shown in Table 51–1.

Adding Composite Sensors

51-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. Click Apply to add more composite sensors.

5. Click OK when complete.

A sensor icon displays on the service or reference binding component.

Figure 51–4 Sensor Icon

Table 51–1 Create Composite Sensor Dialog

Name Description

Name Enter a name for the composite sensor. You must enter a name to enable
the Edit icon of the Expression field.

Service Displays the name of the service. This field only displays if you are
creating a composite sensor for a service binding component. This field
cannot be edited.

Service sensors monitor the messages that the service receives from the
external world or from another composite application.

Reference Displays the name of the reference. This field only displays if you are
creating a composite sensor for a reference binding component. This field
cannot be edited.

Reference sensors monitor the messages that the reference sends to the
external world or to another composite application.

Operation Select the operation for the port type of the service or reference.

Expression Click the Edit icon to invoke a dropdown list for selecting the type of
expression to create:

■ Variables: Select to create an expression value for a variable. See
Section 51.2.2, "Adding a Variable" for instructions.

■ Expression: Select to invoke the Expression Builder dialog for
creating an XPath expression. See Section 51.2.3, "Adding an
Expression" for instructions.

■ Properties: Select to create an expression value for a normalized
message header property. These are the same properties that display
under the Properties tab of the invoke activity, receive activity, reply
activity, and OnMessage branch of a pick activity. See Section 51.2.4,
"Adding a Property" for instructions.

Filter Click the Edit icon to invoke the Expression Builder dialog to create an
XPath filter for the expression. You must first create an expression to
enable this field.

For example, you may create an expression for tracking purchase order
amounts over 10,000:

$in.inDict/tns:inDict/ns2:KeyValueOfstringstring/ns2:Value >
10000.00

Composite Sensor
Actions

Displays the supported sensor action (DBSensorAction). This feature
enables runtime sensor data to be stored in the database. For this release,
only this sensor action type is supported for composite sensors. This field
cannot be edited.

Adding Composite Sensors

Defining Composite Sensors 51-5

51.2.2 Adding a Variable
The Select XPath Expression dialog shown in Figure 51–5 enables you to select an
element for tracking.

To add a variable:
1. Expand the tree and select the element to track.

Figure 51–5 Variables

2. Click OK when complete.

51.2.3 Adding an Expression
The Select Properties shown in Figure 51–6 enables you to create an expression for
tracking.

To add an expression:
1. Build an XPath expression of an element to track.

Figure 51–6 Expression

Monitoring Composite Sensor Data During Runtime

51-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

2. Click OK when complete.

51.2.4 Adding a Property
The Select Property shown in Figure 51–7 enables you to select a normalized message
header property for tracking.

To add a property:
1. Select a normalized message header property to track.

Figure 51–7 Properties

2. Click OK when complete.

51.3 Monitoring Composite Sensor Data During Runtime
During runtime, composite sensor data can be monitoring in Oracle Enterprise
Manager Fusion Middleware Control Console:

■ Composite sensor data displays in the flow trace of an SOA composite application.

■ Composite sensor data can be searched for in the Instances page of an SOA
composite application.

For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle
SOA Suite.

52

Using Service Data Objects and Enterprise JavaBeans 52-1

52Using Service Data Objects and Enterprise
JavaBeans

This chapter describes how Enterprise JavaBeans and SOA composite applications
interact by passing service data object (SDO) parameters.

This chapter includes the following sections:

■ Section 52.1, "Introduction to SDO and Enterprise JavaBeans Binding"

■ Section 52.2, "Designing an Enterprise JavaBeans Application"

■ Section 52.3, "Creating an Enterprise JavaBeans Adapter Service in Oracle
JDeveloper"

■ Section 52.4, "Designing an Enterprise JavaBeans Client to Invoke Oracle SOA
Suite"

■ Section 52.5, "Specifying Enterprise JavaBeans Roles"

■ Section 52.6, "Configuring JNDI Access"

52.1 Introduction to SDO and Enterprise JavaBeans Binding
SDOs enable you to modify business data regardless of how it is physically accessed.
Knowledge is not required about how to access a particular back-end data source to
use SDO in an SOA composite application. Consequently, you can use static or
dynamic programming styles and obtain connected and disconnected access.

Enterprise JavaBeans are server-side domain objects that fit into a standard
component-based architecture for building enterprise applications with Java. These
objects become distributed, transactional, and secure components.

Oracle SOA Suite interfaces are described by the Web Services Description Language
(WSDL) file. Enterprise JavaBeans interfaces are described by Java interfaces.
Invocations between the two are made possible in Oracle SOA Suite by an Enterprise
JavaBeans Java interface that corresponds to an Oracle SOA Suite WSDL interface.

Through this interface, Oracle SOA Suite provides support for the following:

■ Invoking Enterprise JavaBeans with SDO parameters through an Enterprise
JavaBeans adapter reference. In this scenario, a SOA composite application passes
SDO parameters to an external Enterprise JavaBeans application.

■ Invoking an Enterprise JavaBeans adapter service through Enterprise JavaBeans
with SDO parameters. In this scenario, an Enterprise JavaBeans application passes
SDO parameters into a SOA composite application.

Figure 52–1 provides an overview.

Designing an Enterprise JavaBeans Application

52-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure 52–1 SDO and Enterprise JavaBeans Binding Integration

52.2 Designing an Enterprise JavaBeans Application
This section provides a high-level overview of the steps for designing an Enterprise
JavaBeans application. For more information, see the following documentation:

■ Oracle Fusion Middleware Programming Enterprise JavaBeans, Version 3.0 for Oracle
WebLogic Server

■ Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development
Framework

■ Oracle JDeveloper online help table of contents for the following topics:

– Enterprise JavaBeans

– SDO for Enterprise JavaBeans/JPA

Access the help by selecting Help > Table of Contents in Oracle JDeveloper.

52.2.1 How to Create SDO Objects Using the SDO Compiler
Select one of the following options for creating SDO objects:

■ EclipseLink is an open source, object-relational mapping package for Java
developers. EclipseLink provides a framework for storing Java objects in a
relational database or converting Java objects to XML documents.

Use EclipseLink to create SDO objects. For instructions on installing, configuring,
and using EclipseLink to create SDO objects, visit the following URL:

http://wiki.eclipse.org/EclipseLink/Installing_and_Configuring_
EclipseLink

■ Oracle JDeveloper enables you to create an SDO service interface for JPA entities.
While this feature is more tailored for use with the Oracle Application
Development Framework (ADF) service binding in a SOA composite application,
you can also use this feature with the Enterprise JavaBeans service binding in SOA
composite applications. The SDO service interface feature generates the necessary
WSDL and XSD files. If you use this feature, you must perform the following tasks
to work with the Enterprise JavaBeans service binding:

– Browse for and select this WSDL file in the SOA Resource Browser dialog,
which is accessible from the WSDL URL field of the Create EJB Service dialog
(described in Section 52.3, "Creating an Enterprise JavaBeans Adapter Service
in Oracle JDeveloper").

– Add the BC4J Service Runtime library to the SOA project. To add this library,
double-click the project and select Libraries and Classpath to add the library
in the Project Properties dialog. You are now ready to design the logic.

For more information, see the SDO for Enterprise JavaBeans/JPA topic in the
Oracle JDeveloper online help (this includes instructions on how create to an SDO
service interface).

EJB
Application

(invokes
an EJB)

EJB
Application

Service

Exposed
Service

External
References

SOA Composite
ApplicationInvoke with

SDO
Parameters

Invoke with
SDO

Parameters
Reference

Designing an Enterprise JavaBeans Application

Using Service Data Objects and Enterprise JavaBeans 52-3

52.2.2 How to Create a Session Bean and Import the SDO Objects

To create a session bean and import the SDO objects:
1. Create a simple session bean with the Create Session Bean wizard. For details on

using this wizard, see the Creating a Session Bean topic in the Oracle JDeveloper
online help.

2. Import the SDO objects into your project through the Project Properties dialog.

3. Add logic and necessary import and library files. In particular, you must import
the Commonj.sdo.jar file. JAR files can be added in the Libraries and Classpath
dialog. This dialog is accessible by double-clicking the project and selecting
Libraries and Classpath in the Project Properties dialog. You are now ready to
design the logic.

4. Expose the method to the remote interface.

52.2.3 How to Create a Profile and an EAR File

To create a profile and an EAR file:
1. Create an Enterprise JavaBeans JAR profile in the Project Properties dialog.

2. Create an application level EAR file in the Application Properties dialog.

52.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean
An Enterprise JavaBeans bean must define the SDO types. Example 52–1 provides
details.

Example 52–1 Definition of SDO Types

InputStreamReader reader = new InputStreamReader(url.openStream());
StreamSource source = new StreamSource(reader);
List<SDOType> list = ((SDOXSDHelper) XSDHelper.INSTANCE).define(source, null);

The weblogic-ejb-jar.xml file is the descriptor file that must be added in the
deployment jar. The weblogic-ejb-jar.xml file is automatically created when you
create a session bean. This file must be modified by adding the following entries.

Caution: Where to call define can be nontrivial. You must force the
types to be defined before remote method invocation (RMI)
marshalling must occur and in the right helper context. The
EclipseLink SDO implementation indexes the helper instance with the
application name or class loader.

When you invoke the Enterprise JavaBeans method, an application
name is available to the EclipseLink SDO runtime. The EclipseLink
SDO looks up the context using the application name as the key.
Ensure that the types are defined when the application name is visible.
When an Enterprise JavaBeans static block is initialized, the
application name is not created. Therefore, putting the define in the
static block does not work if you are using the default application
name-based context. One way to get the application name initialized
is to allocate more than two instance beans using the
weblogic-ejb-jar.xml file.

Designing an Enterprise JavaBeans Application

52-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 52–2 weblogic-ejb-jar.xml File

<?xml version = '1.0' encoding = 'windows-1252'?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-ejb-jar
 http://www.bea.com/ns/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-ejb-jar">

 <weblogic-enterprise-bean>
 <ejb-name>HelloEJB</ejb-name>
 <stateless-session-descriptor>
 <pool>
 <initial-beans-in-free-pool>2</initial-beans-in-free-pool>
 </pool>
 </stateless-session-descriptor>
 </weblogic-enterprise-bean>

 </weblogic-ejb-jar>

Figure 52–2 provides a code example of a session bean with SDO logic defined:

Figure 52–2 Session Bean with Defined SDO Logic

Designing an Enterprise JavaBeans Application

Using Service Data Objects and Enterprise JavaBeans 52-5

52.2.5 How to Use Web Service Annotations
In order to generate the WSDL file, the Enterprise JavaBeans interface must use the
following web service annotations. Use of these annotations is described in JSR 224:
Java API for XML-Based Web Services (JAX-WS) 2.0. Visit the following URL for
details:

http://www.jcp.org/en/jsr/detail?id=224

In addition, only a document/literal WSDL is currently supported by the Enterprise
JavaBeans binding layer.

Table 52–1 describes the annotations to use.

Example 52–3 provides an example of an Enterprise JavaBeans interface with
annotations.

Table 52–1 Annotations

Name Description

@javax.jws.WebResult;

@javax.jws.WebParam;

Customize the mapping of an individual parameter to a web
service message part and XML element. Both annotations are
used to map SDO parameters to the correct XML element from
the normalized message payload.

@javax.jws.Oneway; Denote a method as a web service one-way operation that has
only an input message and no output message. The Enterprise
JavaBeans binding component does not expect any reply in this
case.

@javax.xml.ws.Request
Wrapper;

@javax.xml.ws.Respons
eWrapper;

Tell the Enterprise JavaBeans binding components whether the
deserialized object must be unwrapped or whether a wrapper
must be created before serialization.

An Enterprise JavaBeans interface can be generated from an
existing WSDL or obtained by some other means. If the WSDL
does not exist, it can be generated.

@javax.xml.ws.WebFaul
t;

Map WSDL faults to Java exceptions. This annotation captures
the fault element name used when marshalling the JAXB type
generated from the global element referenced by the WSDL fault
message.

@oracle.webservices.P
ortableWebService

Specify the targetNamespace and serviceName used for the
WSDL. For example:

@PortableWebService(
targetNamespace = "http://hello.demo.oracle/",
serviceName = "HelloService")

The serviceName is used as the WSDL file name. If it is not
specified in the annotations, the SEI class name is used instead.

Add appropriate method
parameter annotations

Add to control how message elements and types are mapped to
the WSDL. For example, if your interface is in doc/lit/bare
style, add the following annotations to the methods.

@WebMethod
@SOAPBinding(parameterStyle =
SOAPBinding.ParameterStyle.BARE)

@SDODatabinding Add to the interface class to use the existing schema instead of a
generated one. For example:

@SDODatabinding(schemaLocation =
"etc/HelloService.xsd")

Creating an Enterprise JavaBeans Adapter Service in Oracle JDeveloper

52-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 52–3 Enterprise JavaBeans Interface with Annotations

@Remote
@PortableWebService(targetNamespace = "http://www.example.org/customer-example",
 serviceName = "CustomerSessionEJBService")
@SDODatabinding(schemaLocation = "customer.xsd")
public interface CustomerSessionEJB {
 @WebMethod(operationName="createCustomer")
 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(targetNamespace = "http://www.example.org/customer-example",
 partName = "parameters", name = "customer")
 CustomerType createCustomer();
 @WebMethod(operationName="addPhoneNumber")
 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(targetNamespace = "http://www.example.org/customer-example",
 partName = "parameters", name = "customer")
 CustomerType addPhoneNumber(@WebParam(targetNamespace =
 "http://www.example.org/customer-example", partName = "parameters", name =
 "phone-number")PhoneNumber phNumber);
}

52.2.6 How to Deploy the Enterprise JavaBeans EAR File

To deploy the EAR file from Oracle JDeveloper:
1. Select the Application context menu to the right of the application name.

2. Select Deploy and deploy the EAR file to a previously created application server
connection.

52.3 Creating an Enterprise JavaBeans Adapter Service in Oracle
JDeveloper

This section describes how to create an Enterprise JavaBeans adapter reference or
Enterprise JavaBeans adapter service in Oracle JDeveloper. This adapter service
enables the Enterprise JavaBeans application to communicate with Oracle SOA Suite
and Oracle SOA Suite to communicate with remote Enterprise JavaBeans.

52.3.1 Invoking SDO-based Enterprise JavaBeans from SOA Composite Applications
You can invoke Enterprise JavaBeans with SDO parameters from the Enterprise
JavaBeans adapter reference in SOA composite applications.

52.3.1.1 How to Invoke SDO-based Enterprise JavaBeans from SOA Composite
Applications

To invoke SDO-based Enterprise JavaBeans from SOA composite applications:
1. Drag an EJB Adapter Service icon into the External References swimlane.

The Create EJB Service dialog appears, as shown in Figure 52–3.

Creating an Enterprise JavaBeans Adapter Service in Oracle JDeveloper

Using Service Data Objects and Enterprise JavaBeans 52-7

Figure 52–3 Create EJB Service in External References Swimlane

2. Enter the details shown in Table 52–2:

Table 52–2 Create EJB Service Dialog

Field Value

Name Accept the default value or enter a different name.

Type Displays Reference if you dragged this icon into the External
References swimlane.

JNDI Name Enter the JNDI name of your Enterprise JavaBeans.

Jar File Click the Search icon to select the Enterprise JavaBeans JAR file
created in the previous section. The SOA Resource Browser
dialog searches for and displays .jar files starting in the
SCA-INF/lib subdirectory of the current project directory. The
JAR file includes the interface class and any supporting classes.

Note: If you select a JAR file outside of the current project,
Oracle JDeveloper creates a copy of the JAR file in the
SCA-INF/lib directory of the current project. When prompted,
click OK to accept.

Java Interface Enter the fully qualified Java class name of the previously
created Enterprise JavaBeans interface. This class must exist in
the selected JAR file. If a JAR file is not specified, it is assumed
that the class is in the /SCA-INF/classes subdirectory of the
current project directory.

WSDL URL Note: Ensure that you have created the annotations for the
Enterprise JavaBeans interface before generating the WSDL file,
as described in Section 52.2.5, "How to Use Web Service
Annotations."

Click the second icon to the right to generate a WSDL file that
represents the Enterprise JavaBeans interface.

If you created SDO objects through Oracle JDeveloper, as
described in Section 52.2.1, "How to Create SDO Objects Using
the SDO Compiler," ensure that you select the WSDL file that
was automatically generated with this option.

Port Type Select the port type.

Callback Port Type Select the callback port type (for asynchronous services).

Creating an Enterprise JavaBeans Adapter Service in Oracle JDeveloper

52-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. Click OK.

52.3.2 Invoking SOA Composite Applications from Enterprise JavaBeans using SDO
Parameters

You can invoke an Enterprise JavaBeans adapter service in SOA composite
applications from Enterprise JavaBeans using SDO parameters.

52.3.2.1 How to Invoke SOA Composite Applications from Enterprise JavaBeans
using SDO Parameters

To invoke SOA composite applications from Enterprise JavaBeans using SDO
parameters:
1. Drag an EJB Adapter Service icon into the Exposed Services swimlane.

The Create EJB Service dialog appears, as shown in Figure 52–4.

Figure 52–4 Create EJB Service in Exposed Services Swimlane

2. Enter the details shown in Table 52–3:

Table 52–3 Create EJB Service in Exposed Services Swimlane

Field Value

Name Accept the default value or enter a different name.

Type Displays Service if you dragged this icon into the Exposed
Services swimlane.

Service ID Accept the default value or enter a different name. The service
ID is used as a token to uniquely identify the composite service
entry from the Enterprise JavaBeans application. If multiple
versions of the same composite are deployed, only the default
version is used when the invocation arrives. Different
composites trying to use the same service ID receive an error
during deployment.

Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite

Using Service Data Objects and Enterprise JavaBeans 52-9

3. Click OK.

52.4 Designing an Enterprise JavaBeans Client to Invoke Oracle SOA
Suite

To invoke an SDO - Enterprise JavaBeans service from Enterprise JavaBeans, you must
use the client library. Follow these guidelines to design an Enterprise JavaBeans client.

■ Look up the SOAServiceInvokerBean from the JNDI tree.

■ Get an instance of SOAServiceFactory and ask the factory to return a proxy for
the Enterprise JavaBeans service interface.

■ You can include a client side Enterprise JavaBeans invocation library
(fabric-ejbClient.jar or the fabric-runtime.jar file located in the
Oracle JDeveloper home directory or Oracle WebLogic Server) in the Enterprise
JavaBeans client application. For example, the fabric-runtime.jar file can be
located in the JDev_
Home\jdeveloper\soa\modules\oracle.soa.fabric_11.1.1 directory.

If the Enterprise JavaBeans application is running in a different JVM than Oracle
SOA Suite, the Enterprise JavaBeans application must reference the ejbClient
library.

Example 52–4 provides an example.

Jar File Click the Search icon to select the Enterprise JavaBeans JAR file
created in the previous section. The SOA Resource Browser
dialog searches for and displays .jar files starting in the
SCA-INF/lib subdirectory of the current project directory. The
JAR file includes the interface class and any supporting classes.

Note: If you select a JAR file outside of the current project,
Oracle JDeveloper creates a copy of the JAR file in the
SCA-INF/lib directory of the current project. When prompted,
click OK to accept.

Java Interface Enter the fully qualified Java class name of the previously
created Enterprise JavaBeans interface. This class must exist in
the selected JAR file. If a JAR file is not specified, it is assumed
that the class is in the /SCA-INF/classes subdirectory of the
current project directory.

WSDL URL Note: Ensure that you have created the annotations for the
Enterprise JavaBeans interface before generating the WSDL file,
as described in Section 52.2.5, "How to Use Web Service
Annotations."

Click the second icon to the right to generate a WSDL file that
represents the Enterprise JavaBeans interface.

If you created SDO objects through Oracle JDeveloper, as
described in Section 52.2.1, "How to Create SDO Objects Using
the SDO Compiler," ensure that you select the WSDL file that
was automatically generated with this option.

Port Type Select the port type.

Callback Port Type Select the callback port type (for asynchronous services).

Table 52–3 (Cont.) Create EJB Service in Exposed Services Swimlane

Field Value

Specifying Enterprise JavaBeans Roles

52-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example 52–4 Enterprise JavaBeans Client Code

Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, "t3://" + HOSTNAME + ":" + PORT);
 InitialContext ctx = new InitialContext(props);
 SOAServiceInvokerBean invoker =
 (SOAServiceInvokerBean)

ctx.lookup("SOAServiceInvokerBean#oracle.integration.platform.blocks.sdox.ejb.api.
SOAServiceInvokerBean");

 //-- Create a SOAServiceFactory instance
 SOAServiceFactory serviceFactory = SOAServiceFactory.newInstance(invoker);

 //-- Get a dynamice proxy that is essentially a remote reference
 HelloInterface ejbRemote =
 serviceFactory.createService("MyTestEJBService", HelloInterface.class);

 //-- Invoke methods
 Item item = (Item) DataFactory.INSTANCE.create(Item.class);
 item.setNumber(new BigInteger("32"));
 SayHello sayHello = (SayHello)
 DataFactory.INSTANCE.create(SayHello.class);
 sayHello.setItem(item);

 SayHelloResponse response = ejbRemote.sayHello(sayHello);
 Item reply = response.getResult();

52.5 Specifying Enterprise JavaBeans Roles
To specify role names required to invoke SOA composite applications from any Java
EE application, you add the roles names in the Enterprise JavaBeans adapter service
configuration. The Enterprise JavaBeans adapter service checks to see if the caller
principal has the security role.

<service name="EJBService" ui:wsdlLocation="BPELEJBProcess.wsdl">
 <interface.wsdl
interface="http://xmlns.oracle.com/EJBApplication/EJBProject/BPELEJBProcess#wsdl.i
nt
erface(BPELProcess1)"callbackInterface="http://xmlns.oracle.com/EJBApplication/
EJBProject/BPELEJBProcess#
wsdl.interface(BPELEJBProcessCallback)"/>
<property name="rolesAllowed">Superuser, Admin</property>
 <binding.ejb javaInterface="java.class.ejb.com" serviceId="EJBService"
 jarLocation="soaejb.jar"/>
</service>

52.6 Configuring JNDI Access
This section describes two methods for configuring JNDI access.

52.6.1 How to Create a Foreign JNDI
Follow these guidelines to configure JNDI access.

Configuring JNDI Access

Using Service Data Objects and Enterprise JavaBeans 52-11

■ You can configure a foreign JNDI provider to link a foreign JNDI tree to your local
server instance and access the object as if it is local. See Oracle Fusion Middleware
Programming JNDI for Oracle WebLogic Server.

■ You can also provide JNDI environment variables as the properties for the
Enterprise JavaBeans adapter reference, as shown in Example 52–5. An Enterprise
JavaBeans binding component enables you to create your own map or use the
default EJBBC binding component map. Note that the map property is optional if
you use EJBBC. For security reasons, the JNDI security credentials must be stored
in a CSF store and be referenced as shown in Example 52–5.

Example 52–5 Environment Variables for Enterprise JavaBeans Adapter Reference

<property name=
"java.naming.factory.initial">weblogic.jndi.WLInitialContextFactory</property>
<property name="java.naming.provider.url">t3://host:7001</property>
<property name="oracle.jps.credstore.map">default</property>
<property name="oracle.jps.credstore.key">weblogic</property>

The security credential can also be stored in the credential store framework. For more
information, see Oracle Fusion Middleware Security Guide.

52.6.2 How to Create a Custom CSF Map for JNDI Lookup
If you create your own credential store framework (CSF) map instead of using the
default Enterprise JavaBeans BC CSF map, you must modify the Domain_
Home/config/fmwconfig/system-jazn.data.xml file and add the following
permission to the entry for the fabric-runtime.jar permission grant.

<class>oracle.security.jps.service.credstore.CredentialAccessPermission</class>
 <name>>context=SYSTEM,mapName=*,keyName=*</name>
 <actions>*</actions>
</permission>

You must then restart Oracle WebLogic Server.

For more information on CSF, see Oracle Fusion Middleware Security Guide.

Configuring JNDI Access

52-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

53

Processing Large Documents 53-1

53Processing Large Documents

This chapter describes best practices and limitations for processing large documents in
Oracle SOA Suite.

This chapter includes the following sections:

■ Section 53.1, "Introduction to Processing Large Documents"

■ Section 53.2, "Best Practices for Handling Large Documents"

■ Section 53.3, "Limitations on Concurrent Processing of Large Documents"

53.1 Introduction to Processing Large Documents
This document provides the best practices for processing large XML document
payloads in Oracle SOA Suite service engines. Limitations on using large payloads are
also described.

Oracle recommends that you follow these best practices before developing and
executing large payloads.

53.2 Best Practices for Handling Large Documents
This section describes the following scenarios of handling large documents and the
best practice approach for each scenario:

■ Section 53.2.1, "Setting Audit Levels from Oracle Enterprise Manager for Large
Payload Processing"

■ Section 53.2.2, "Using the Assign Activity in BPEL/Mediator"

■ Section 53.2.3, "Using XSLT Transformations for Repeating Structures"

■ Section 53.2.4, "Using Adapter Support for Streaming Large Payloads"

■ Section 53.2.5, "Using Correct Settings for Large Payload Scenarios"

■ Section 53.2.6, "Processing Large Documents in Oracle B2B"

■ Section 53.2.7, "Setting the Default JTA Timeout in for Large Documents"

■ Section 53.2.8, "Using Large Number of Activities in BPEL Processes (Without
FlowN)"

■ Section 53.2.9, "Using Large Number of Activities in BPEL Processes (With
FlowN)"

■ Section 53.2.10, "Using a Flow With Multiple Sequences"

■ Section 53.2.11, "Using a Flow with One Sequence"

Best Practices for Handling Large Documents

53-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Section 53.2.12, "Using Flow with No Sequence"

■ Section 53.2.13, "Large Numbers of Mediators in Composites"

■ Section 53.2.14, "Using XSLT Transformations on Large Payloads (For BPEL and
Mediator)"

53.2.1 Setting Audit Levels from Oracle Enterprise Manager for Large Payload
Processing

For large payload processing, turn off audit level logging for the specific composite.
You can set the settings/composite audit level option to Off or Production in Oracle
Enterprise Manager Fusion Middleware Control Console. If you set the
settings/composite audit level option to Development, then it serializes the entire
large payload into an in-memory string and can lead to an out-of-memory error.

For more information about setting audit levels, see Oracle Fusion Middleware
Administrator's Guide for Oracle SOA Suite.

53.2.2 Using the Assign Activity in BPEL/Mediator
When using the assign activity, in BPEL or Mediator, to manipulate large payloads, do
not assign the complete message. Instead, assign only the part of the payload that you
need.

In addition, when using the assign activity in BPEL, Oracle recommends using local
variables instead of process variables wherever possible. Local variables are limited to
the scope of the BPEL process. These get deleted from memory and from the database
after you close the scope. On the other hand, the life cycle of a global variable is tied
with the instance life cycle. These variables stay in memory or disk until the instance
completes. Thus, local variables are preferred to process or global variables.

53.2.3 Using XSLT Transformations for Repeating Structures
In scenarios where the repeating structure is of smaller payloads compared to the
overall payload size, Oracle recommends using XSLT transformation because the
current XSLT implementation materializes the entire DOM in memory. For example,
PurchaseOrder.LineItem.Supplier (a subpart of a large payload).

You can also substitute it with the assign activity, as it performs a shadow copy.
Although a shadow copy does not materialize DOM, it creates a shadow node to point
to the source document.

You can also use the following optimized translation functions while performing
transforms/translations of large payloads:

■ ora:doTranslateFromNative

■ ora:doTranslateToNative

■ ora:doStreamingTranslate

For more information about the usage of these functions, see Oracle Fusion Middleware
User's Guide for Technology Adapters.

53.2.4 Using Adapter Support for Streaming Large Payloads
The streaming feature exposed by the File/FTP adapters is used for processing large
payloads. Only the Files/FTP adapters support large payload processing for both

Best Practices for Handling Large Documents

Processing Large Documents 53-3

inbound and outbound processing. The other adapters do not have explicit support for
both.

For more information about how the streaming feature is used for large payloads, see
Section 4.5.4, "Oracle File Adapter Scalable DOM" in the Oracle Fusion Middleware
User's Guide for Technology Adapters.

53.2.5 Using Correct Settings for Large Payload Scenarios
Add -Dweblogic.resourcepool.max_test_wait_secs=30 in
setDomainEnv.sh for JAVA_OPTIONS, and then restart the server. Without this
setting, the large payload scenarios fails with ResourceDisabledException for the
dehydration data source.

53.2.6 Processing Large Documents in Oracle B2B
For processing large documents in Oracle B2B, various parameters such as
MDSInstance Cache Size, Protocol Message Size, Number of threads,
StuckThread Max Time, and Tablespace must be tuned. The following sections
describe the parameters you must set for processing large documents in Oracle B2B:

■ Section 53.2.6.1, "MDSInstance Cache Size"

■ Section 53.2.6.2, "Protocol Message Size"

■ Section 53.2.6.3, "Number of Threads"

■ Section 53.2.6.4, "StuckThread Max Time"

■ Section 53.2.6.5, "Tablespace"

53.2.6.1 MDSInstance Cache Size
To set MDSInstance cache size, the property and value must be added in the
$DOMAIN_HOME/config/soa-infra/configuration/b2b-config.xml file as
mentioned in the example below:

<property>
 <name>b2b.mdsCache</name>
 <value>200000</value>
 <comment>MDS Instance cache size </comment>
</property>

53.2.6.2 Protocol Message Size
If Oracle B2B wants to send or receive more than 10 MB of message or import/export
configuration is more than 10 MB, then the following settings must be changed
accordingly in the Oracle WebLogic Server Administration Console:

Environment > servers > soa_server > protocols > General >
change Maximum Message Size

This setting can be added/modified in the $DOMAIN_HOME/config/config.xml
file next to the server name configuration, as shown below:

<name>soa_server1</name>

Note: Only the Files/FTP adapters and web services binding support
streaming. You should consider alternative strategies for handling
large documents with other binding.

Best Practices for Handling Large Documents

53-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

<max-message-size>150000000</max-message-size>

53.2.6.3 Number of Threads
This parameter helps to improve the message processing capability of Oracle B2B and
must be set in the $DOMAIN_
HOME/config/soa-infra/configuration/b2b-config.xml file.

<property>
 <name>b2b.inboundProcess.threadCount</name>
 <value>5</value>
 <comment></comment>
</property>
<property>
 <name>b2b.inboundProcess.sleepTime</name>
 <value>10</value>
 <comment></comment>
</property>
<property>
 <name>b2b.outboundProcess.threadCount</name>
 <value>5</value>
 <comment></comment>
</property>
<property>
 <name>b2b.outboundProcess.sleepTime</name>
 <value>10</value>
 <comment></comment>
</property>
<property>
 <name>b2b.defaultProcess.threadCount</name>
 <value>5</value>
 <comment></comment>
</property>
<property>
 <name>b2b.defaultProcess.sleepTime</name>
 <value>10</value>
 <comment></comment>
</property>

53.2.6.4 StuckThread Max Time
The StuckThread Max Time parameter checks the number of seconds that a thread
must be continually working before this server considers the thread stuck. You must
change the following settings in the Oracle WebLogic Server Administration Console:

Environment > servers > soa_server > Configuration > Tuning >
change Stuck Thread Max Time

53.2.6.5 Tablespace
If you must store more than a 150 MB configuration in the data file, then you must
extend or add the data file to increase the tablespace size, as follows:

ALTER TABLESPACE sh_mds add DATAFILE 'sh_mds01.DBF' SIZE 100M autoextend on next
 10M maxsize unlimited;
ALTER TABLESPACE sh_ias_temp add TEMPFILE 'sh_ias_temp01.DBF' SIZE 100M autoextend

Note: By default, max-message-size is not available in this
config.xml file.

Best Practices for Handling Large Documents

Processing Large Documents 53-5

 on next 10M maxsize unlimited;

53.2.7 Setting the Default JTA Timeout in for Large Documents
Oracle recommends that the default JTA Timeout parameter be increased from the
current 30 to an appropriate value for processing large documents.

53.2.8 Using Large Number of Activities in BPEL Processes (Without FlowN)
To deploy BPEL processes that have a large number of activities, for example, 50000,
the following settings are required:

Set MEM_ARGS: -Xms512m -Xmx1024m -XX:PermSize = 128m
-XX:MaxPermSize = 256m

Number of Concurrent Threads = 20

Number of Loops = 5 Delay = 100 ms

The above settings enable you to deploy and execute BPEL processes, which use only
while loops without the flowN activities, successfully.

53.2.9 Using Large Number of Activities in BPEL Processes (With FlowN)
To deploy BPEL processes that have large number of activities, for example, 50000, the
following settings are required:

Set USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m
-XX:MaxPermSize=256m

Number of Concurrent Threads= 10

Number of Loops=5 Delay=100 ms

Set <statsLastN>-1</statsLastN> in the bpel-config.xml file.

The above settings enable you to deploy and execute BPEL processes, which use the
flowN activities, successfully.

For more information, see Chapter 10, "Using Parallel Flow in a BPEL Process."

53.2.10 Using a Flow With Multiple Sequences
BPEL processes, which have large numbers of activities up to 7000, can be deployed
and executed successfully with the following settings:

Set USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m
-XX:MaxPermSize=256m

53.2.11 Using a Flow with One Sequence
BPEL processes, which have large number of activities up to 7000, can be deployed
and executed successfully with the following settings:

Set USER_MEM_ARGS: -Xms2048m -Xmx2048m -XX:PermSize=128m
-XX:MaxPermSize=512m

Note: If you deploy BPEL processes with more than 8000 activities,
then BPEL compilation throws errors.

Limitations on Concurrent Processing of Large Documents

53-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

53.2.12 Using Flow with No Sequence
You can deploy and execute BPEL processes, which have large number of activities, for
example, up to 5000, successfully.

There is a probability that the BPEL compilation could fail for 6000 activities.

53.2.13 Large Numbers of Mediators in Composites
Oracle recommends that you not have more than 50 mediators in a single composite.
The JTA Transaction timeout should be increased to an appropriate high value based
on the environment.

53.2.14 Using XSLT Transformations on Large Payloads (For BPEL and Mediator)
Oracle recommends that you not apply the XSLT Transformation on large payloads as
this would result in out-of-memory errors when XSLT must traverse the entire
document.

53.3 Limitations on Concurrent Processing of Large Documents
This section describes the limitations on concurrent processing of large documents.
This section includes the following topics:

■ Section 53.3.1, "Opaque Schema for Processing Large Payloads"

■ Section 53.3.2, "Streaming MTOM Attachments"

■ Section 53.3.3, "Importing Large Data Sets in Oracle B2B"

53.3.1 Opaque Schema for Processing Large Payloads
There is a limitation when you use an opaque schema for processing large payloads.
The entire data for the opaque translator is converted to a single Base64-encoded
string. An opaque schema is generally used for smaller data. For large data, use the
attachments feature instead of the opaque translator.

For more information about the usage of these functions, see Oracle Fusion Middleware
User's Guide for Technology Adapters.

53.3.2 Streaming MTOM Attachments
The incoming requests for streaming MTOM attachments that are passed through the
Service Infrastructure are normalized, and the processing of such messages are not
optimized inside the Service Infrastructure layer.

53.3.3 Importing Large Data Sets in Oracle B2B
Oracle recommends that you not use browsers for large data set imports and to use the
command-line utility. The following utility commands are recommended for large data
configuration:

■ purge - This command is used to purge the entire repository.

Note: If you deploy BPEL processes with more than 10,000 activities,
then the BPEL compilation fails.

Limitations on Concurrent Processing of Large Documents

Processing Large Documents 53-7

■ import - This command is used to import the specified ZIP file.

■ deploy - This command is used to deploy an agreement with whatever name is
specified. If no name is specified, then all the agreements are deployed.

However, the purgeimportdeploy option is not recommended to be used for
transferring or deploying Oracle B2B configuration.

Limitations on Concurrent Processing of Large Documents

53-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Part IX
Part IX Appendices

This part describes Oracle SOA Suite appendixes.

This part contains the following appendixes:

■ Appendix A, "BPEL Process Activities and Services"

■ Appendix B, "XPath Extension Functions"

■ Appendix C, "Deployment Descriptor Properties"

■ Appendix D, "Understanding Sensor Public Views and the Sensor Actions XSD"

■ Appendix E, "Oracle BAM Web Services Operations"

■ Appendix F, "Oracle BAM Alert Rule Options"

■ Appendix G, "Oracle BAM ICommand Operations and File Formats"

■ Appendix H, "Normalized Message Properties"

■ Appendix I, "Oracle User Messaging Service Applications"

BPEL Process Activities and Services A-1

A
BPEL Process Activities and Services

This appendix describes the activities and services that you use when designing a
BPEL process in a SOA composite application.

This appendix includes the following sections:

■ Section A.1, "Introduction to Activities and Components"

■ Section A.2, "Introduction to BPEL Activities"

■ Section A.3, "Introduction to BPEL Services"

■ Section A.4, "Publishing and Browsing the Oracle Service Registry"

■ Section A.5, "Validating When Loading a Process Diagram"

A.1 Introduction to Activities and Components
When you expand BPEL Activities and Components in the Component Palette of
Oracle BPEL Designer, service components display under the Activities and
Components header.

Figure A–1 Activities and Components

See the following sections for additional details.

■ BPEL process

See Part II, "Using the BPEL Process Service Component"

■ Business rule

 See Part IV, "Using the Business Rules Service Component"

■ Human task

 Section 25.4, "Associating the Human Task Service Component with a BPEL
Process."

Introduction to BPEL Activities

A-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ Mediator

 See Part III, "Using the Oracle Mediator Service Component"

A.2 Introduction to BPEL Activities
Oracle BPEL Designer includes activities that are available for dragging into a BPEL
process. These activities enable you to perform specific tasks within a process. This
section provides a brief overview of these activities and provides references to other
documentation that describes how to use these activities.

To access these activities, expand BPEL Activities and Components in the Component
Palette of Oracle BPEL Designer. The activities display under the BPEL Activities
header.

Figure A–2 BPEL Activities

For more information about activities, see the Business Process Execution Language for
Web Services Specification by visiting the following URL:

http://www.oasis-open.org

A.2.1 Tabs Common to Many Activities
While each activity performs specific tasks, many activities include tabs that enable
you to perform similar tasks. This section describes these common tabs.

■ The Sensors tab displays on all activities and enables you to create sensors for
capturing details about an activity.

■ The Correlations tab displays in invoke, receive, and reply activities, the
onMessage branch of pick activities, and the OnMessage variant of event handlers.
Correlation sets address complex interactions between a process and its partners
by providing a method for explicitly specifying correlated groups of operations
within a service instance. A set of correlation tokens is defined as a set of
properties shared by all messages in the correlated group.

■ The Properties tab displays in invoke, receive, and reply activities, and the
onMessage branch of pick activities. You create header variables for use with the
Oracle JCA adapters.

■ The Annotations tab displays on all activities and enables you to provide
descriptions in activities in the form of code comments and name and pair value
assignments.

Introduction to BPEL Activities

BPEL Process Activities and Services A-3

Note the following issues when using annotations in Oracle JDeveloper:

■ The Annotations tab in activities of Oracle JDeveloper does not provide a
method for changing the order of annotations. As a work around, change the
order of annotations in the Source view of the project’s BPEL file in Oracle
BPEL Designer.

■ The otherwise branch in a switch activity does not allow you to create
annotations. However, the case branch in a switch activity does provide this
functionality.

For more information about these tabs, see the following:

■ The online help for these tabs for additional details about their use

■ Section 9.4, "Using Correlation Sets in an Asynchronous Service"

■ Chapter 17, "Using Oracle BPEL Process Manager Sensors"

■ Appendix H, "Normalized Message Properties"

■ Oracle Fusion Middleware User's Guide for Technology Adapters

A.2.2 Assign Activity
This activity provides a method for data manipulation, such as copying the contents of
one variable to another. This activity can contain any number of elementary
assignments.

Figure A–3 shows the Assign dialog. You can perform the following tasks:

■ Click the General tab to provide the assign activity with a meaningful name.

■ Click the Copy Operation tab and the Add icon (shown in Figure A–3), and then
select Copy Operation from the dropdown list to access the Create Copy
Operation dialog. This action enables you to copy the contents of the source
element (variable, expression, XML fragment, or partner link) in the From field to
the contents of the destination element in the To field. You can also select a part
(typically the payload) and an XPath query (a language for addressing parts of an
XML document). Other selections such as Append Operation, Insert-After
Operation, and others are also available from this list.

Introduction to BPEL Activities

A-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–3 Copy Operations Tab of Assign Activity Dialog

If an assign activity contains multiple bpelx:append settings, it must be split into
two assign activities. Otherwise, the bpelx:append is moved to the end of the list
each time, which can cause problems. As a work around, move it manually.

For more information about the assign activity, see Chapter 7, "Manipulating XML
Data in a BPEL Process."

A.2.3 Bind Entity Activity
This activity enables you to select the entity variable to act as the data handle to access
and plug in different data provider service technologies.

The entity variable can be used with an Oracle Application Development Framework
(ADF) Business Component data provider service using service data object
(SDO)-based data. The entity variable enables you to specify BPEL data operations to
be performed by an underlying data provider service. The data provider service
performs the data operations in a data store behind the scenes and without use of
other data store-related features provided by Oracle BPEL Process Manager (for
example, the database adapter). This action enhances Oracle BPEL Process Manager
runtime performance and incorporates native features of the underlying data provider
service during compilation and runtime.

Introduction to BPEL Activities

BPEL Process Activities and Services A-5

Figure A–4 Bind Entity Dialog

A.2.4 Compensate Activity
This activity invokes compensation on an inner scope activity that has successfully
completed. This activity can be invoked only from within a fault handler or another
compensation handler. Compensation occurs when a process cannot complete several
operations after completing others. The process must return and undo the previously
completed operations. For example, assume a process is designed to book a rental car,
a hotel, and a flight. The process books the car and the hotel, but cannot book a flight
for the correct day. In this case, the process performs compensation by unbooking the
car and the hotel.

The compensation handler is invoked with the compensate activity, which names the
scope on which the compensation handler is to be invoked.

Figure A–5 shows the Compensate dialog. You can perform the following tasks:

■ Click the General tab to provide the activity with a meaningful name.

■ Select the scope activity on which the compensation handler is to be invoked.

Introduction to BPEL Activities

A-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–5 Compensate Dialog

For more information about the compensate activity, see Section 12.10, "Using
Compensation After Undoing a Series of Operations."

A.2.5 Create Entity
This activity enables you to create an entity variable. The entity variable can be used
with an Oracle ADF Business Component data provider service using service data
object (SDO)-based data.

Figure A–6 Create Entity Dialog

For more information, see Section 7.2, "Delegating XML Data Operations to Data
Provider Services."

A.2.6 Email Activity
This activity enables you to send an email notification about an event.

Introduction to BPEL Activities

BPEL Process Activities and Services A-7

For example, an online shopping business process of an online bookstore sends a
courtesy email message to you after the items are shipped. The business process calls
the notification service with your user ID and notification message. The notification
service gets the email address from Oracle Internet Directory.

Figure A–7 shows the Email dialog.

Figure A–7 Email Dialog

For more information about the email activity, see Section 16.3.1, "How To Configure
the Email Notification Channel."

A.2.7 Empty Activity
This activity enables you to insert a no-operation instruction into a process. This
activity is useful when you must use an activity that does nothing (for example, when
a fault must be caught and suppressed).

Figure A–8 shows the Empty dialog.

Introduction to BPEL Activities

A-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–8 Empty Dialog

For more information about the empty activity, see Section 12.9.7, "How to Create an
Empty Activity to Insert No-Op Instructions into a Business Process."

A.2.8 Flow Activity
This activity enables you to specify one or more activities to be performed
concurrently. A flow activity completes when all activities in the flow have finished
processing. Completion of a flow activity includes the possibility that it can be skipped
if its enabling condition is false.

For example, assume you use a flow activity to enable two loan offer providers
(United Loan service and Star Loan service) to start in parallel. In this case, the flow
activity contains two parallel activities – the sequence to invoke the United Loan
service and the sequence to invoke the Star Loan service. Each service can take an
arbitrary amount of time to complete their loan processes.

Figure A–9 shows an initial flow activity with its two panels for parallel processing.
You drag activities into both panels to create parallel processing. When complete, a
flow activity looks like that shown in Figure A–10.

Figure A–9 Flow Dialog (At Time of Creation)

Introduction to BPEL Activities

BPEL Process Activities and Services A-9

Figure A–10 Flow Dialog (After Design Completion)

For more information about the flow activity, see Section 10.2, "Creating a Parallel
Flow."

A.2.9 FlowN Activity
This activity enables you to create multiple flows equal to the value of N, which is
defined at runtime based on the data available and logic within the process. An index
variable increments each time a new branch is created, until the index variable reaches
the value of N.

Figure A–11 shows the FlowN dialog.

Note: Oracle's BPEL implementation executes flows in the same,
single execution thread of the BPEL process and not in separate
threads.

Introduction to BPEL Activities

A-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–11 FlowN Dialog

For more information about the flowN activity, see Section 10.3, "Customizing the
Number of Flow Activities with the flowN Activity."

A.2.10 IM Activity
This activity enables you to send an automatic, asynchronous instant message (IM)
notification to a user, group, or destination address. Figure A–12 shows the IM dialog.

Figure A–12 IM Dialog

For more information, see Section 16.3.2, "How to Configure the IM Notification
Channel."

Introduction to BPEL Activities

BPEL Process Activities and Services A-11

A.2.11 Invoke Activity
This activity enables you to specify an operation you want to invoke for the service
(identified by its partner link). The operation can be one-way or request-response on a
port provided by the service. You can also automatically create variables in an invoke
activity. An invoke activity invokes a synchronous web service or initiates an
asynchronous web service.

The invoke activity opens a port in the process to send and receive data. It uses this
port to submit required data and receive a response. For synchronous callbacks, only
one port is needed for both the send and the receive functions.

The invoke activity supports the bpelx:inputProperty and
bpelx:outputProperty that facilitate the passing of properties through the SOAP
header and the obtaining of SOA runtime system properties for useful information
such as the tracking.compositeInstanceId and tracking.conversationId.

Figure A–13 shows the Invoke dialog. You can perform the following tasks:

■ Provide the activity with a meaningful name.

■ Select the partner link for which to specify an operation.

■ Select the operation to be performed.

■ Automatically create a variable or select an existing variable in which to transport
the data (payload).

Figure A–13 Invoke Dialog

For more information about the invoke activity, see the following:

■ Section 8.2.2.3, "Invoke Activity for Performing a Request"

■ Section 9.2.1.2, "Adding an Invoke Activity"

■ Section 12.8.2, "How to Return a Fault in an Asynchronous Interaction"

■ Chapter 6, "Introduction to Interaction Patterns in a BPEL Process"

Introduction to BPEL Activities

A-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A.2.12 Java Embedding Activity
This activity enables you to add custom Java code to a BPEL process using the Java
BPEL exec extension <bpelx:exec>. This is useful when you have Java code that
can perform a function, and want to use this existing code instead of starting over.

Figure A–14 shows the Edit Java Embedding dialog.

Figure A–14 Edit Java Embedding Dialog

For more information about the Java embedding activity, see Chapter 13,
"Incorporating Java and Java EE Code in a BPEL Process."

A.2.13 Phase Activity
This activity creates Oracle Mediator and business rules service components for
integration with a BPEL process. You create message request input and message
response output variables and design business rules for evaluating variable content for
the BPEL process.

When you complete these tasks, the following activities and service components are
created:

■ An assign activity that includes the message request input and message response
output variables.

■ An invoke activity, which is automatically designed to invoke an Oracle Mediator
partner link in the BPEL process.

■ The Oracle Mediator partner link, which is automatically designed to route the
message request input variable to the business rules service component in the SOA
composite application of which this BPEL process is a part. The business rules
service component displays in the SOA Composite Editor. Oracle Mediator also
displays as a service component in the SOA Composite Editor.

Introduction to BPEL Activities

BPEL Process Activities and Services A-13

■ The business rules service component, which evaluates the content of the message
request input variable and returns the results in the message response output
variable to Oracle Mediator. Oracle Mediator then makes a routing decision and
routes the message to the correct target destinations.

Figure A–15 shows Phase dialog.

Figure A–15 Phase Dialog

A.2.14 Pick Activity
This activity waits for the occurrence of one event in a set of events and performs the
activity associated with that event. The occurrence of the events is often mutually
exclusive (the process either receives an acceptance or rejection message, but not both).
If multiple events occur, the selection of the activity to perform depends on which
event occurred first. If the events occur nearly simultaneously, there is a race and the
choice of activity to be performed is dependent on both timing and implementation.

The pick activity provides two branches, each one with a condition. When you
double-click the Pick icon, the activity shown in Figure A–16 appears and displays
two branches:

■ onMessage (on the left)

Contains the code for receiving a reply, for example, from a loan service.

■ onAlarm (on the right)

Contains the code for a time out, for example, after one minute.

Whichever branch completes first is executed; the other branch is not executed. The
branch that has its condition satisfied first is executed.

Introduction to BPEL Activities

A-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–16 Pick Dialog

If you add correlations to an OnMessage branch, the correlations syntax is placed after
the assign activity syntax. The correlation syntax must go before the assign activity.

As a work around, perform the following steps:

1. Create a correlation set in Oracle JDeveloper.

2. Assign this to the OnMessage branch.

3. Complete the remaining design tasks.

4. Before making or deploying the BPEL process, move the correlation syntax before
the assign activity in the BPEL source code.

For more information about the pick activity, see the following:

■ Section 14.2, "Creating a Pick Activity to Select Between Continuing a Process or
Waiting"

■ Section 14.4, "Setting Timeouts for Synchronous Processes"

■ Chapter 6, "Introduction to Interaction Patterns in a BPEL Process"

A.2.15 Receive Activity
This activity specifies the partner link from which to receive information and the port
type and operation for the partner link to invoke. This activity waits for an
asynchronous callback response message from a service, such as a loan application
approver service. While the BPEL process is waiting, it is dehydrated (compressed and
stored) until the callback message arrives. The contents of this response are stored in a
response variable in the process.

The receive activity supports the bpelx:property extensions that facilitate the
passing of properties through the SOAP header, and the obtaining of SOA runtime
system properties for useful information such as tracking.compositeInstanceId and
tracking.conversationId.

Figure A–17 shows the Receive dialog. You can perform the following tasks:

■ Provide a meaningful name.

■ Select the partner link service for which to specify an operation.

■ Select the operation to be performed.

■ Automatically create a variable or select an existing variable in which to transport
the callback response.

Introduction to BPEL Activities

BPEL Process Activities and Services A-15

Figure A–17 Receive Dialog

For more information about the receive activity, see the following:

■ "Adding a Receive Activity"

■ Chapter 6, "Introduction to Interaction Patterns in a BPEL Process"

A.2.16 Receive Signal Activity
Use this activity in detail processes to wait for the notification signal from the master
process to begin processing and use in a master process to wait for the notification
signal from all detail processes indicating that processing has completed.

Figure A–18 Receive Signal Dialog

For more information, see Chapter 15, "Coordinating Master and Detail Processes."

Introduction to BPEL Activities

A-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

A.2.17 Remove Entity Activity
This activity enables you to remove an entity variable. This action removes the row.
Figure A–19 shows the Remove Entity dialog.

Figure A–19 Remove Entity

A.2.18 Reply Activity
This activity allows the process to send a message in reply to a message that was
received through a receive activity. The combination of a receive activity and a reply
activity forms a request-response operation on the WSDL port type for the process.

Figure A–20 shows the Reply dialog.

Figure A–20 Reply Dialog

Introduction to BPEL Activities

BPEL Process Activities and Services A-17

For more information about the reply activity, see the following:

■ Section 12.8.1, "How to Return a Fault in a Synchronous Interaction"

■ Chapter 6, "Introduction to Interaction Patterns in a BPEL Process"

A.2.19 Scope Activity
This activity consists of a collection of nested activities that can have their own local
variables, fault handlers, compensation handlers, and so on. A scope activity is
analogous to a { } block in a programming language.

Each scope has a primary activity that defines its behavior. The primary activity can be
a complex structured activity, with many nested activities within it to arbitrary depth.
The scope is shared by all the nested activities.

Figure A–21 shows the Scope dialog. Define appropriate activities inside the scope
activity.

Figure A–21 Scope Dialog

Fault handling is associated with a scope activity. The goal is to undo the incomplete
and unsuccessful work of a scope activity in which a fault has occurred. You define
catch activities in a scope activity to create a set of custom fault-handling activities.
Each catch activity is defined to intercept a specific type of fault.

Figure A–22 shows the Add Catch Branch icon inside a scope activity. Figure A–23
shows the catch activity area that appears when you click the Add Catch Branch icon.
Within the area defined as Drop Activity Here, you drag additional activities to create
fault handling logic to catch and manage exceptions.

For example, a client provides a social security number to a Credit Rating service
when applying for a loan. This number is used to perform a credit check. If a bad
credit history is identified or the social security number is identified as invalid, an
assign activity inside the catch activity notifies the client of the loan offer rejection. The
entire loan application process is terminated with a terminate activity.

Introduction to BPEL Activities

A-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–22 Creating a Catch Branch

Figure A–23 Catch Activity Icon

For more information about the scope activity and fault handling, see the following:

■ Section 12.9, "Using a Scope Activity to Manage a Group of Activities"

■ Chapter 6, "Introduction to Interaction Patterns in a BPEL Process"

A.2.20 Sequence Activity
This activity enables you to define a collection of activities to be performed in
sequential order. For example, you may want the following activities performed in a
specific order:

■ A customer request is received in a receive activity.

■ The request is processed inside a flow activity that enables concurrent behavior.

■ A reply message with the final approval status of the request is sent back to the
customer in a reply activity.

A sequence activity makes the assumption that the request can be processed in a
reasonable amount of time, justifying the requirement that the invoker wait for a
synchronous response (because this service is offered as a request-response operation).

When this assumption cannot be made, it is better to define the customer interaction as
a pair of asynchronous message exchanges.

When you double-click the Sequence icon, the activity area shown in Figure A–24
appears. Drag and define appropriate activities inside the sequence activity.

Introduction to BPEL Activities

BPEL Process Activities and Services A-19

Figure A–24 Sequence Activity

For more information about the sequence activity, see the following:

■ Section 10.2, "Creating a Parallel Flow"

■ Chapter 6, "Introduction to Interaction Patterns in a BPEL Process"

A.2.21 Signal Activity
This activity is used in a master process to notify detail processes to perform
processing at runtime and used in detail processes to notify a master process that
processing has completed. Figure A–25 shows the Signal dialog.

Figure A–25 Signal Dialog

For more information, see Chapter 15, "Coordinating Master and Detail Processes."

A.2.22 SMS Activity
This activity enables you to send a short message system (SMS) notification about an
event.

Figure A–26 shows the SMS dialog.

Introduction to BPEL Activities

A-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–26 SMS Dialog

For more information about the SMS activity, see Section 16.3.3, "How to Configure the
SMS Notification Channel."

A.2.23 Switch Activity
This activity consists of an ordered list of one or more conditional branches defined in
a case branch, followed optionally by an otherwise branch. The branches are
considered in the order in which they appear. The first branch whose condition is true
is taken and provides the activity performed for the switch. If no branch with a
condition is taken, then the otherwise branch is taken. If the otherwise branch is not
explicitly specified, then an otherwise branch with an empty activity is assumed to be
available. The switch activity is complete when the activity of the selected branch
completes.

A switch activity differs in functionality from a flow activity. For example, a flow
activity enables a process to gather two loan offers at the same time, but does not
compare their values. To compare and make decisions on the values of the two offers,
a switch activity is used. The first branch is executed if a defined condition (inside the
case branch) is met. If it is not met, the otherwise branch is executed.

Figure A–27 shows a switch activity with the following defined branches.

Note: The fax and pager activities are not supported in 11g Release 1
(11.1.1).

Introduction to BPEL Activities

BPEL Process Activities and Services A-21

Figure A–27 Switch Activity

For more information about the switch activity, see the following:

■ Section 11.2, "Creating a Switch Activity to Define Conditional Branching"

■ Chapter 6, "Introduction to Interaction Patterns in a BPEL Process"

A.2.24 Terminate Activity
A terminate activity enables you to end the tasks of an activity (for example, the fault
handling tasks in a catch branch). For example, if a client’s bad credit history is
identified or a social security number is identified as invalid, a loan application
process is terminated, and the client’s loan application document is never submitted to
the service loan providers.

Figure A–28 shows several terminate activities in the otherwise branch of a switch
activity.

Figure A–28 Terminate Activity

For more information about the terminate activity, see Section 12.11, "Using the
Terminate Activity to Stop a Business Process Instance."

A.2.25 Throw Activity
This activity generates a fault from inside the business process.

Introduction to BPEL Activities

A-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–29 shows the Throw dialog.

Figure A–29 Throw Dialog

For more information about the throw activity, see Section 12.7, "Throwing Internal
Faults."

A.2.26 Transform Activity
This activity enables you to create a transformation that maps source elements to
target elements (for example, incoming purchase order data into outgoing purchase
order acknowledgment data).

Figure A–30 shows the Transform dialog. This dialog enables you to perform the
following tasks:

■ Define the source and target variables and parts to map.

■ Specify the transformation mapper file.

■ Click the second icon (the Add icon) to the right of the Mapper File field to access
the XSLT Mapper for creating a new XSL file for graphically mapping source and
target elements. Click the Edit icon (third icon) to edit an existing XSL file.

Introduction to BPEL Activities

BPEL Process Activities and Services A-23

Figure A–30 Transform Dialog

For more information about the transform activity, see Chapter 45, "Creating
Transformations with the XSLT Mapper."

A.2.27 User Notification
This activity enables you to design a BPEL process in which you do not explicitly
select a notification channel during design time, but simply indicate that a notification
must be sent. The channel to use for sending notifications is resolved at runtime based
on preferences defined by the end user in the User Messaging Preferences user
interface of the Oracle User Messaging Service. This moves the responsibility of
notification channel selection from Oracle BPEL Designer to the end user. If the end
user does not select a preferred channel or rule, email is used by default for sending
notifications to that user. Figure A–31 shows the User Notification dialog.

Introduction to BPEL Activities

A-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–31 User Notification Dialog

A.2.28 Voice Activity
This activity enables you to send a telephone voice notification about an event.

Figure A–32 shows the Voice dialog.

Figure A–32 Voice Dialog

For more information about the voice activity, see Section 16.3.4, "How to Configure
the Voice Notification Channel."

A.2.29 Wait Activity
This activity allows a process to specify a delay for a certain period or until a certain
deadline is reached. A typical use of this activity is to invoke an operation at a certain

Introduction to BPEL Activities

BPEL Process Activities and Services A-25

time. This activity enables you to wait for a given time period or until a certain time
has passed. Exactly one of the expiration criteria must be specified.

Figure A–33 shows the Wait dialog.

Figure A–33 Wait Dialog

For more information about the wait activity, see Section 14.3, "Creating a Wait
Activity to Set an Expiration Time."

A.2.30 While Activity
This activity supports repeated performance of a specified iterative activity. The
iterative activity is repeated until the given while condition is no longer true.

Figure A–34 shows the While dialog. You can enter expressions in this dialog.

Introduction to BPEL Services

A-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure A–34 While Dialog

For more information about the while activity, see Section 11.3, "Creating a While
Activity to Define Conditional Branching."

A.3 Introduction to BPEL Services
BPEL processes can communicate with web-based applications and clients through
web services, JCA adapters, Oracle B2B services, Oracle Business Activity Monitoring,
and partner links.

To access these services, expand BPEL Activities and Components in the Component
Palette of Oracle BPEL Designer. Then expand BPEL Services to display the services.

Figure A–35 BPEL Services

For more information about the adapters described in the following sections, see
Oracle Fusion Middleware User's Guide for Technology Adapters.

Introduction to BPEL Services

BPEL Process Activities and Services A-27

A.3.1 AQ Adapter
This adapter acts as both a dequeue (inbound) and enqueue (outbound) messaging
adapter. In the inbound direction, the adapter polls the queues for messages to
dequeue from a destination. In the outbound direction, the adapter enqueues
messages to the queue for subscribers to dequeue.

A.3.2 Oracle B2B
This adapter enables you to browse B2B metadata in the Metadata Service (MDS)
repository and select document definitions.

Oracle B2B is an e-commerce gateway that enables the secure and reliable exchange of
transactions between an organization and its external trading partners. Oracle B2B and
Oracle SOA Suite are designed for e-commerce business processes that require process
orchestration, error mitigation, and data translation and transformation within an
infrastructure that addresses the issues of security, compliance, visibility, and
management.

For more information, see Oracle Fusion Middleware User's Guide for Oracle B2B.

A.3.3 Oracle BAM Adapter
This adapter integrates Java EE applications with Oracle BAM Server to send data.
This adapter is used as a reference binding component in an SOA composite
application.

For more information, see Oracle Fusion Middleware User's Guide for Oracle Business
Activity Monitoring and Part VI, "Using Oracle Business Activity Monitoring".

A.3.4 Database Adapter
This adapter enables a BPEL process to communicate with Oracle databases or
third-party databases through JDBC. To access an existing relational schema, you use
the Adapter Configuration Wizard to do the following:

■ Import a relational schema and map it as an XML schema (XSD).

■ Abstract SQL operations such as SELECT, INSERT, and UPDATE as web services.

While your BPEL process deals with XML and invokes web services, database rows
and values are queried, inserted, and updated.

A.3.5 File Adapter
This adapter acts as both an inbound and outbound adapter. In the inbound direction,
the adapter polls for files in a directory to retrieve and process. In the outbound
direction, the adapter creates files in a directory.

A.3.6 FTP Adapter
This adapter acts as both an inbound and outbound adapter. In the inbound direction,
the adapter polls for files in a directory to retrieve and process. In the outbound
direction, the adapter creates files in a directory.

A.3.7 JMS Adapter
This adapter acts as both a consume (inbound) and produce (outbound) messaging
adapter. In the inbound direction, the adapter polls (consumes) messages from a JMS

Introduction to BPEL Services

A-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

destination. In the outbound direction, the adapter sends (produces) messages to a
JMS destination.

A.3.8 MQ Adapter
This adapter provides message exchange capabilities between BPEL processes and the
IBM MQSeries messaging software.

A.3.9 Oracle Applications
This adapter provides comprehensive, bidirectional, multimodal, synchronous, and
asynchronous connectivity to Oracle Applications. The adapter supports all modules
of Oracle Applications for versions 11.5.1 to 12. The adapter provides real-time and
bidirectional connectivity to Oracle Applications through interface tables, views,
application programming interfaces (APIs), and XML Gateway. The adapter inserts
data into Oracle Applications using interface tables and APIs. To retrieve data from
Oracle Applications, the adapter uses views. In addition, it uses XML Gateways for
bidirectional integration with Oracle Applications. XML Gateways are also used to
insert and receive Open Application Group Integration Specification
(OAGIS)-compliant documents from Oracle Applications.

A.3.10 Partner Link (Web Service/Adapter)
This service enables you to define the external services with which your process
interacts. A partner link type characterizes the conversational relationship between
two services by defining the roles played by each service in the conversation and
specifying the port type provided by each service to receive messages within the
conversation. For example, if you are creating a process to interact with a Credit
Rating Service and two loan provider services (United Loan and Star Loan), you create
partner links for all three services.

Figure A–36 shows the Partner Link dialog. You provide the following details:

■ A meaningful name for the service.

■ The web services description language (WSDL) file of the external service.

■ The actual service type (defined as Partner Link Type).

■ The role of the service (defined as Partner Role).

■ The role of the process requesting the service (defined as My Role).

Publishing and Browsing the Oracle Service Registry

BPEL Process Activities and Services A-29

Figure A–36 PartnerLink Activity

For more information about partner links, see the following:

■ Chapter 9, "Invoking an Asynchronous Web Service from a BPEL Process"

■ Section 9.2.1.1, "Adding a Partner Link for an Asynchronous Service"

A.3.11 Socket Adapter
This adapter enables you to model standard or nonstandard protocols for
communication over TCP/IP sockets. You can use this adapter to create a client or
server socket, and establish a connection. The data that is transported can be text or
binary.

A.4 Publishing and Browsing the Oracle Service Registry
The Oracle Service Registry (OSR) provides a common standard for publishing and
discovering information about web services. This section describes how to configure
your Oracle SOA Suite environment to use OSR.

You can use Oracle SOA Suite with the following versions of OSR:

■ OSR 10.3 (with Oracle WebLogic Server 10.3)

■ OSR 10.1.3

A.4.1 How to Publish a Business Service
This section provides an overview of how to publish a business service. For specific
instructions, see the documentation at the following URL:

http://www.oracle.com/technology/tech/soa/uddi/index.html

To publish a business service:
1. Go to the Registry Control:

http://hostname:port/registry/uddi/web

2. Click Publish > WSDL.

Publishing and Browsing the Oracle Service Registry

A-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

3. Log in when prompted.

4. Complete the fields on this page to specify the access point URL and publish the
WSDL for the business service.

A.4.2 How to Add a Binding Template
By default, publishing a web service in OSR creates a binding of type HTTP. This is
sufficient for the 10.1.3 version of Oracle JDeveloper to browse for the WSDL.
However, for release 11g R1, you must create an additional binding template of type
wsdlDeployment. The SOA Infrastructure uses the orauddi protocol to communicate
with OSR and retrieve the WSDL URL.

To add a binding template
1. Right-click the business service to publish, and select Add Binding.

2. Add the access point (for example, http://hostname:port/Proj_ep?WSDL).
The access point is the service WSDL URL.

3. From the Use Type list, select wsdlDeployment.

4. Click Add Binding.

5. Click Save. The service is now published to the registry and the orauddi protocol
is configured.

A.4.3 How to Create a Connection to the Registry

To create a connection to the registry:
1. Go to Oracle JDeveloper.

2. Select File > New > Connections > UDDI Registry Connection to create a UDDI
connection.

3. Enter a connection name.

4. Enter an inquiry endpoint URL. For example:

http://myhost.us.oracle.com:7001/registry/uddi/inquiry

5. Ensure that the Business View radio button is selected.

6. Click Next.

7. Click Test Connection.

8. If successful, click Finish. Otherwise, click the Back button and correct your
errors.

A.4.4 How to Configure a SOA project to Invoke a Service from the Registry

To configure a SOA project to invoke a service from the registry:
1. Open the SOA project in which to create a reference to the business service.

2. Drag a Web Service icon into the External Services swimlane.

The Create Web Service dialog appears.

3. To the right of the WSDL URL field, click the first icon to select a WSDL.

4. From the list at the top, select Resource Palette.

Publishing and Browsing the Oracle Service Registry

BPEL Process Activities and Services A-31

5. Expand the navigational tree.

6. Expand UDDI Registry > Business Services.

7. Select the published business service, and click OK.

8. Complete the remaining fields in the Create Web Service dialog, and click OK.

9. Wire the reference with the appropriate service component.

10. Perform additional modeling, as necessary.

11. In the SOA Composite Editor, click Source.

The composite.xml file stores the serviceKey within the orauddi protocol tag.
The endpoint URL is not stored in the SOA composite application. At the time of
SOA Infrastructure restart, the orauddi key is resolved and the endpoint URL is
retrieved from the registry. Each WSDL has its own unique service key.

<property name="oracle.soa.uddi.serviceKey" type="xs:string"
 many="false">uddi:bc2785c0-350c-11de-94cb-1c7f0d2094c6</property>

A.4.5 How To Configure the Inquiry URL for Runtime

To configure the inquiry URL for runtime:
1. Log in to Oracle Enterprise Manager Fusion Middleware Control Console.

2. From the SOA Infrastructure menu, select SOA Administration > Common
Properties.

3. Specify the same UDDI inquiry URL as you specified in the Create UDDI Registry
Connection wizard:

http://myhost.us.oracle.com:7001/registry/uddi/inquiry

4. Click Apply.

5. Exit Oracle Enterprise Manager Fusion Middleware Control Console.

6. To see endpoint statistics, return to the Registry Control.

7. Go to the Manage page and check statistics to see the increase in the number of
invocations when not cached (the first time).

Caching of endpoint WSDL URLs occurs by default during runtime. If an
endpoint WSDL URL is resolved using the orauddi protocol, subsequent
invocations retrieve the WSDL URLs from cache, and not from OSR. When an
endpoint WSDL obtained from cache is no longer reachable, the cache is refreshed
and OSR is contacted to retrieve the new endpoint WSDL location. As a best
practice, Oracle recommends that you undeploy services that are no longer
required in Oracle Enterprise Manager Fusion Middleware Control Console and

Note: If a no wsdlDeployment binding in UDDI message is
displayed, it means that the additional binding template was not
added as described in Section A.4.2, "How to Add a Binding
Template."

Note: Do not enter a user name or password. These are only used for
the secure HTTP configuration of OSR.

Validating When Loading a Process Diagram

A-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

used by the SOA Infrastructure. Endpoint services that are shut down or retired
(but not undeployed) are still reachable. Therefore, the cache is not refreshed.

If you move the business service WSDL from one host to another, ensure that you
change the location in the Registry Control. No change is required in Oracle
JDeveloper or Oracle Enterprise Manager Fusion Middleware Control Console.

A.5 Validating When Loading a Process Diagram
You may see an icon (a yellow triangle with an exclamation point) indicating invalid
settings as you create and open activities such as a scope or an assign for the first time.
The settings are invalid because you have not yet entered details.

To turn this option off for the current project, do the following:

1. Right-click the BPEL diagram and select Display > Diagram Properties.

2. Deselect the Enable Automatic Validation option.

3. Click OK.

4. Select Save All from the File main menu.

Note: In 11g, caching occurs automatically. If you are using Oracle
SOA Suite 10.1.3, caching is supported by setting the
CacheRegistryWSDL property to true in bpel.xml. Setting this
property to false disables caching.

B

XPath Extension Functions B-1

BXPath Extension Functions

This appendix describes the XPath extension functions. Oracle provides XPath
functions that use the capabilities built into Oracle SOA Suite and XPath standards for
adding new functions.

This appendix includes the following sections:

■ Section B.1, "SOA XPath Extension Functions"

■ Section B.2, "BPEL XPath Extension Functions"

■ Section B.3, "Mediator XPath Extension Functions"

■ Section B.4, "Advanced Functions"

■ Section B.5, "Workflow Service Functions"

■ Section B.6, "Using the XPath Building Assistant"

■ Section B.7, "Creating User-Defined XPath Extension Functions"

For additional information about XPath functions, visit the following URL:

http://www.w3.org

B.1 SOA XPath Extension Functions
This section describes the following SOA XPath extension functions:

■ Section B.1.1, "Database Functions"

■ Section B.1.2, "Date Functions"

■ Section B.1.3, "Mathematical Functions"

■ Section B.1.4, "String Functions"

B.1.1 Database Functions
This section describes the following database functions:

B.1.1.1 lookup-table
This function returns a string based on the SQL query generated from the parameters.

The string is obtained by executing:

SELECT outputColumn FROM table WHERE inputColumn = key

against the data source that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a data source

SOA XPath Extension Functions

B-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

JNDI identifier. Only the Oracle Thin Driver is supported if the JDBC connect string is
used.

Example: oraext:lookup-table('employee','id','1234','last_
name','jdbc:oracle:thin:xyz/xyz@localhost:1521:ORCL')

Signature:

oraext:lookup-table(table, inputColumn, key, outputColumn, data
source)

Arguments:

■ table - The table from which to draw the data.

■ inputColumn - The column within the table.

■ key - The key value of the input column.

■ outputColumn - The column to output the data.

■ data source - The source of the data.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.1.2 query-database
This function returns a node set by executing the SQL query against the specified
database.

Signature:

oraext:query-database(sqlquery as string, rowset as boolean, row
as boolean, data source as string)

Arguments:

■ sqlquery - The SQL query to perform.

■ rowset - Indicates if the rows should be enclosed in an element.

■ row - Indicates if each row should be enclosed in an element.

■ data source - Either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a JNDI
name for the database.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.1.3 sequence-next-val
Returns the next value of an Oracle sequence.

The next value is obtained by executing

SELECT sequence.nextval FROM dual

SOA XPath Extension Functions

XPath Extension Functions B-3

against a data source that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a data source
JNDI identifier. Only the Oracle Thin Driver is supported if a JDBC connect string is
used.

Example: oraext:sequence-next-val('employee_id_
sequence','jdbc:oracle:thin:xyz/xyz@localhost:1521:ORCL')

Signature:

oraext:sequence-next-val(sequence as string, data source as
string)

Arguments:

■ sequence - The sequence number in the database.

■ data source - Either a JDBC connect string or a data source JNDI identifier.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.2 Date Functions
This section describes the following functions:

B.1.2.1 add-dayTimeDuration-to-dateTime
This function returns a new date time value adding dateTime to the given duration.

If the duration value is negative, then the resulting value precedes dateTime.

Signature:

xpath20:add-dayTimeDuration-from-dateTime(dateTime as string,
duration as string)

Arguments:

■ dateTime as string - The dateTime to which the function adds the duration,
in string format.

■ duration as string - The duration to add to the dateTime, or subtract if the
duration is negative, in string format.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.2 current-date
This function returns the current date in ISO format YYYY-MM-DD.

Signature:

xpath20:current-date(object)

SOA XPath Extension Functions

B-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Arguments:

■ Object - The time in standard format

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.3 current-dateTime
This function returns the current datetime value in ISO format
CCYY-MM-DDThh:mm:ssTZD.

Signature:

xpath20:current-dateTime(object)

Arguments:

■ object - The time in standard format

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.4 current-time
This function returns the current time in ISO format. The format is hh:mm:ssTZD.

Signature:

xpath20:current-time(object)

Arguments:

■ object - The time in standard format

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.5 day-from-dateTime
This function returns the day from dateTime. The default day is 1.

Signature:

xpath20:day-from-dateTime(object)

Arguments:

■ object - The time in standard format as a string.

Property IDs:

SOA XPath Extension Functions

XPath Extension Functions B-5

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.6 format-dateTime
This function returns the formatted string of dateTime using the format provided.

Signature:

xpath20:format-dateTime(dateTime as string, format as string)

Arguments:

■ dateTime - The dateTime to be formatted.

■ format - The format for the output.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.7 hours-from-dateTime
This function returns the hour from dateTime. The default hour is 0.

Signature:

xpath20:hours-from-dateTime(dateTime as string)

Arguments:

■ dateTime - The string with the date and time.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.8 implicit-timezone
This function returns the current time zone in ISO format +/- hh:mm, indicating a
deviation from UTC (Coordinated Universal Timezone).

Signature:

xpath20:implicit-timezone(object)

Arguments:

■ object - The time in standard format.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

SOA XPath Extension Functions

B-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.1.2.9 minutes-from-dateTime
This function returns the minute from dateTime. The default minute is 0.

Signature:

xpath20:minutes-from-dateTime(dateTime as string)

Arguments:

■ dateTime as string - The date and time.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.10 month-from-dateTime
This function returns the month from dateTime. The default month is 1 (January).

Signature:

xpath20:month-from-dateTime(dateTime as string)

Arguments:

■ dateTime as string - The dateTime to be formatted.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.11 seconds-from-dateTime
This function returns the second from dateTime. The default second is 0.

Signature:

xpath20:seconds-from-dateTime(dateTime as string)

Arguments:

■ dateTime as a string - The dateTime as a string.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.12 subtract-dayTimeDuration-from-dateTime
This function returns a new dateTime value after subtracting the duration from
dateTime.

If the duration value is negative, then the resultant dateTime value follows
input-dateTime value.

Signature:

SOA XPath Extension Functions

XPath Extension Functions B-7

xpath20:subtract-dayTimeDuration-from-dateTime(dateTime as
string, duration as string)

Arguments:

■ dateTime as string - The dateTime from which the function subtracts the
duration, in string format.

■ duration as string - The duration to subtract to the dateTime, or to add if
the duration is negative, in string format.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

B.1.2.13 timezone-from-dateTime
This function returns the time zone from dateTime. The default time zone is
GMT+00:00.

Signature:

xpath20:timezone-from-dateTime(dateTime as string)

Arguments:

■ dateTime as string - The dateTime for which this function returns a time
zone.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.2.14 year-from-dateTime
This function returns the year from dateTime.

Signature:

xpath20:year-from-dateTime(dateTime as string)

Arguments:

■ dateTime - The dateTime as a string.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.3 Mathematical Functions
This section describes the following function.

SOA XPath Extension Functions

B-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.1.3.1 abs
This function returns the absolute value of inputNumber.

If inputNumber is not negative, the inputNumber is returned. If the inputNumber
is negative, the negation of inputNumber is returned.

Example: abs(-1) returns 1.

Signature:

xpath20:abs(inputNumber as number)

Arguments:

■ inputNumber as number - The number for which the function returns an
absolute value.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.4 String Functions
This section describes the string functions.

B.1.4.1 compare
This function returns the lexicographical difference between inputString and
compareString by comparing the unicode value of each character of both the
strings.

This function returns -1 if inputString lexicographically precedes the
compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the
compareString.

Example: xpath20:compare('Audi', 'BMW') returns -1

Signature:

xpath20:compare(inputString as string, compareString as string)

Arguments:

■ variableName - The source variable for the data.

■ propertyName - The qualified name (QName) of the property.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

SOA XPath Extension Functions

XPath Extension Functions B-9

B.1.4.2 compare-ignore-case
This function returns the lexicographical difference between inputString and
compareString while ignoring case and comparing the unicode value of each
character of both the strings.

This function returns -1 if inputString lexicographically precedes the
compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the
compareString.

Example: xpath20:compare-ignore-case('Audi','bmw') returns -1

Signature:

xp:compare-ignore-case(inputString as string, compareString as
string)

Arguments:

■ inputString - The string of data to be searched.

■ CompareString - The string to compare against the input string.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.4.3 create-delimited-string
This function returns a delimited string created from nodeSet delimited by delimiter.

Signature:

oraext:create-delimited-string(nodeSet as node-set, delimiter as
string)

Arguments:

■ nodeSet - The node set to be converted into a delimited string.

■ delimiter - The character that separates the items in the output string; for
example, a comma or a semicolon.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.4 ends-with
This function returns true if inputString ends with searchString.

Example: xpath20:ends-with('XSL Map','Map') returns true

Signature:

xpath20:ends-with(inputString as string, searchString as string)

SOA XPath Extension Functions

B-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Arguments:

■ inputString - The string of data to be searched.

■ searchString - The string for which the function searches.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.4.5 format-string
This function returns the message formatted with the arguments passed. At least one
argument is required and supports up to a maximum of 10 arguments.

Example: oraext:format-string('{0} + {1} = {2}','2','2','4')
returns '2 + 2 = 4'

Signature:

oraext:format-string(string,string,string...)

Arguments:

■ string - One of the strings to be used in the formatted output.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.6 get-content-as-string
This function returns the XML representation of the input element.

Signature:

oraext:get-content-as-string(element as node-set)

Arguments:

■ element as node-set - The input element that the function returns as an XML
representation.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.7 get-content-from-file-function
This function returns the content of the file.

Signature:

oraext:get-content-from-file-function(object)

Arguments:

SOA XPath Extension Functions

XPath Extension Functions B-11

■ object:

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.8 get-localized-string
This function returns the locale-specific string for the key. This function uses language,
country, variant, and resource bundle to identify the correct resource bundle.

The resource bundle in obtained by resolving resourceLocation against the
resourceBaseURL. The URL is assumed to be a directory only if it ends with /.

Usage: oraext:get-localized-string(resourceBaseURL as string,
resourceLocation as string, resource bundle as string, language
as string, country as string, variant as string, key as string)

Example:
oraext:get-localized-string('file:/c:/','','MyResourceBundle','e
n','US','','MSG_KEY') returns a locale-specific string from a resource bundle
'MyResourceBundle' in the C:\ directory

Signature:

oraext:get-localized-string(resourceURL,resourceLocation,resourc
eBundleName,language,country,variant,messageKey)

Arguments:

■ resourceURL - The URL of the resource.

■ resourceLocation - The subdirectory location of the resource.

■ resourceBundleName - The name of the ZIP file containing the resource bundle.

■ language - The language of the localized output.

■ country - The country of the localized output.

■ variant - The language variant of the localized output.

■ messageKey - The message key in the resource bundle.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.9 index-within-string
This function returns the zero-based index of the first occurrence of searchString
within the inputString.

This function returns -1 if searchString is not found.

Example: oraext:index-within-string('ABCABC, 'B') returns 1

Signature:

SOA XPath Extension Functions

B-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

oraext:index-within-string(inputString as string, searchString
as string)

Arguments:

■ inputString - The string of data to be searched.

■ searchString - The string for which the function searches in inputString.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.10 last-index-within-string
This function returns the zero-based index of the last occurrence of searchString
within inputString.

This function returns -1 if searchString is not found.

Example: oraext:last-index-within-string('ABCABC', 'B') returns 4

Signature:

oraext:last-index-within-string(inputString as string,
searchString as string)

Arguments:

■ inputString - The string of data to be searched.

■ searchString - The string for which the function searches in the inputString.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.1.4.11 left-trim
This function returns the value of inputString after removing all the leading white
spaces.

Example: oraext:left-trim(' account ') returns 'account '

Signature:

oraext:left-trim(inputString)

Arguments:

■ inputString - The string to be left-trimmed.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

SOA XPath Extension Functions

XPath Extension Functions B-13

B.1.4.12 lower-case
This function returns the value of inputString after translating every character to its
lower-case correspondent.

Example: xpath20:lower-case('ABc!D') returns 'abc!d'

Signature:

xpath20:lower-case(inputString)

Arguments:

■ inputString - The string of data that is in lowercase.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.4.13 matches
This function returns true if intputString matches the regular expression pattern
regexPattern.

Example: xpath20:matches('abracadabra', '^a.*a$') returns true

Signature:

xpath20:matches(intputString, regexPattern)

Arguments:

■ inputString - The string of data that must be matched.

■ regexPattern - The regular expression pattern.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.1.4.14 right-trim
This function returns the value inputString after removing all the trailing white
spaces.

Example: oraext:right-trim(' account ') returns ' account'

Signature:

oraext:right-trim(inputString as string)

Arguments:

■ inputString - The input string to be right-trimmed.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

BPEL XPath Extension Functions

B-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ namespace-prefix: oraext

B.1.4.15 upper-case
This function returns the value of inputString after translating every character to its
uppercase correspondent.

Example: xpath20:upper-case('abCd0') returns 'ABCD0'

Signature:

xpath20:upper-case(inputString as string)

Arguments:

■ inputString - The string of data that is in uppercase.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xpath20

B.2 BPEL XPath Extension Functions
This section describes the following BPEL XPath extension functions:

B.2.1 addQuotes
This function returns the content of a string with single quotes added.

Signature:

ora:addQuotes(string)

Arguments:

■ string - The string to which this function adds quotes.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.2 appendToList

This function appends to a node list. The node list with which to append should not be
null or empty.

Signature:

ora:appendToList('variableName', 'partName'?, 'locationPath'?,
Object)

Arguments:

Note: The appendToList function is deprecated. Oracle
recommends that you use the bpelx:copyList extension of an
assign activity to append data to a node list.

BPEL XPath Extension Functions

XPath Extension Functions B-15

■ variableName - The source variable for the data.

■ partName - The part to select from the variable (optional).

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

■ Object - The object can be either a list or a single item. If the object is a list, this
function appends each item in the list. Each appended item is either an element, or
an element with the string value of the node created.

Property IDs:

■ deprecated

Use the bpelx:copyList or bpelx:append extension activity to append to a
list.

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.3 copyList

This function copies a node list or a node. The node list to be copied to should not be
null or empty.

Signature:

ora:copyList('variableName', 'partName'?, 'locationPath'?,
Object)

Arguments:

■ variableName - The source variable for the data.

■ partName - The part to select from the variable (optional).

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

■ Object - The object can be either a list or a single item. If the object is a list, each
item in the list is copied. Each item to be copied is either an element, or an element
with the string value of the node created.

Property IDs:

■ deprecated

Use the bpelx:copyList extension activity to append to a list.

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

Note: While the copyList function is still available for use, Oracle
recommends that you use the bpelx:copyList extension to copy a
node list or a node.

BPEL XPath Extension Functions

B-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.2.4 countNodes

This function returns the size of the elements as an integer.

Signature:

ora:countNodes('variableName', 'partName'?, 'locationPath'?)

Arguments:

■ variableName - The source variable for the data.

■ partName - The part to select from the variable (optional).

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.5 doc
This function returns the content of an XML file.

Signature:

ora:doc('fileName','xpath'?)

Arguments:

■ fileName - The name of the XML file.

■ xpath - The path to the file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.6 doStreamingTranslate
This function translates using the streaming XPath APIs. It uses a unique concept
called batching so that the transformation engine does not materialize the result of
transformation into memory. Therefore, it can handle arbitrarily large payloads of the
order of gigabytes. However, it can handle only forward-only XSL constructs such as
for-each. The targetType can be SDOM or ATTACHMENT.

Signature:

ora:doStreamingTranslate('input SDOM or attachment element',
'streaming xpath context', 'SDOM or ATTACHMENT', 'attachment
element?')

Arguments:

Note: While the countNodes function is still available for use,
Oracle recommends that you use version 1.0 of the XPath count()
function to return the size of the elements as an integer.

BPEL XPath Extension Functions

XPath Extension Functions B-17

■ input SDOM or attachment element

■ streaming xpath context

■ SDOM or ATTACHMENT

■ attachment element

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.7 doTranslateFromNative
This function translates the input data to XML, where the input can be a string,
attachment, or element that contains Base64-encoded data. The targetType can be
DOM, ATTACHMENT or SDOM.

Signature:

ora:doTranslateFromNative('input','nxsdTemplate','nxsdRoot','tar
getType','attachment element?')

Arguments:

■ input - The input data of the XPath function.

■ nxsdTemplate - The NXSD schema that you want to use to translate the input
data to XML format.

■ nxsdRoot - The root element in the NXSD schema.

■ targetType - Decides how the XPath function translates the native data into
XML.

■ attachment element - This is the attachment for the returned XML. This
parameter is optional.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.8 doTranslateToNative
This function translates the input DOM to a string or attachment. The targetType
can be STRING or ATTACHMENT

Signature:

ora:doTranslateToNative('input','nxsdTemplate','nxsdRoot','targe
tType','attachment element?')

Arguments:

■ input - The input data of the XPath function.

■ nxsdTemplate - The NXSD schema that you want to use to translate the input
data to XML format.

■ nxsdRoot - The root element in the NXSD schema.

■ targetType - Decides how the XPath function translates the native data into
XML.

BPEL XPath Extension Functions

B-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ attachment element - This is the attachment for the returned XML. This
parameter is optional.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.9 doXSLTransform
This function implements WS-BPEL 2.0's doXSLTransform function that supports
multiple parameters of XSLT. When using this function, the XSL template match must
not be set to root (which is /). It must be the root element.

Signature:

ora:doXSLTransform('url_to_
xslt',input,['paramQname',paramValue]*)

Arguments:

■ url_to_xslt - Specifies the XSL style sheet URL.

■ input - Specifies the input variable name.

■ paramQname - Specifies the parameter QName.

■ paramValue - Specifies the value of the parameter.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.10 doXSLTransformForDoc
This function is a complement XPath function to doXSLTransform(). It aims to
perform the transformation when the XSLT template matches the document.

Signature:

ora:doXSLTransformForDoc('url_to_
xslt',input,['paramQname',paramValue]*)

Arguments:

■ url_to_xslt - Specifies the XSL style sheet URL.

■ input - Specifies the input variable name.

■ paramQname - Specifies the parameter QName.

■ paramValue - Specifies the value of the parameter.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.11 formatDate
This function converts standard XSD date formats to characters suitable for output.

Signature:

BPEL XPath Extension Functions

XPath Extension Functions B-19

ora:formatDate('dateTime','format')

Arguments:

■ dateTime - Contains a date-related value in XSD format. For nonstring
arguments, this function behaves as if a string() function were applied. If the
argument is not a date, the output is an empty string. If it is a valid XSD date and
some fields are empty, this function attempts to fill unspecified fields. For
example, 2003-06-10T15:56:00.

■ format - Contains a string formatted according to
java.text.SimpleDateFormat format

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.12 generateGUID
Generates a unique GUID.

Signature:

ora:generateGUID()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.13 getApplicationName
This function returns the application name.

Signature:

ora:getApplicationName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.14 getAttachmentContent
This function gets the attachment content from an href function.

Signature:

ora:getAttachmentContent(varName[, partName[, query]])

Arguments:

■ varName - Specifies the source variable for the data.

■ partName - (Optional) Specifies the part to select from the variable.

BPEL XPath Extension Functions

B-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ query - (Optional) Specifies an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.15 getComponentName
This function returns the component name.

Signature:

ora:getComponentName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.16 getComponentInstanceID
This function returns the component instance ID.

Signature:

ora:getComponentInstanceID()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.17 getCompositeName
This function returns the composite name.

Signature:

ora:getCompositeName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.18 getCompositeInstanceID
This function returns the BPEL process composite instance ID.

Signature:

ora:getCompositeInstanceID()

Arguments: There are no arguments for this function.

BPEL XPath Extension Functions

XPath Extension Functions B-21

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.19 getCompositeURL
This function returns the composite URL.

Signature:

ora:getCompositeURL()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.20 getContentAsString
This function returns the content of an element as an XML string.

Signature:

ora:getContentAsString(element elementAsNodeList)

Arguments:

■ element - The element (source of the data).

■ elementAsNodeList - The element as the node list.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.21 getConversationId
This function returns the conversation ID.

Signature:

ora:getConversationId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.22 getCreator
This function returns the instance creator.

Signature:

ora:getCreator()

Arguments: There are no arguments for this function.

Property IDs:

BPEL XPath Extension Functions

B-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.23 getCurrentDate
This function returns the current date as a string.

Signature:

ora:getCurrentDate('format'?)

Argument:

■ format - (Optional) Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.24 getCurrentDateTime
This function returns the current date time as a string.

Signature:

ora:getCurrentDateTime('format'?)

Argument:

■ format - (Optional) Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.25 getCurrentTime
This function returns the current time as a string.

Signature:

ora:getCurrentTime('format'?)

Argument:

■ format - (Optional) Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.26 getDomainId
This function returns the current domain ID.

Signature:

ora:getDomainId()

BPEL XPath Extension Functions

XPath Extension Functions B-23

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.27 getECID
This function returns ECID.

Signature:

ora:getECID()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.28 getElement
This function returns an element using index from the array of elements.

Signature:

ora:getElement('variableName', 'partName', 'locationPath',
index)

Arguments:

■ variableName - The source variable for the data.

■ partName - The part to select from the variable (required).

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (required).

■ index - Dynamic index value. The index of the first node is 1.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.29 getFaultAsString
This function returns the fault as a string value.

Signature:

ora:getFaultAsString()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

BPEL XPath Extension Functions

B-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.2.30 getFaultName
This function returns the fault name.

Signature:

ora:getFaultName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.31 getGroupIdsFromGroupAlias
This function returns a List of user Ids for a group alias specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getGroupIdsFromGroupAlias(String aliasName)

Arguments:

■ aliasName - The alias for a list of users or groups.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.32 getInstanceId
This function returns the instance ID.

Signature:

ora:getInstanceId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.33 getNodeValue
This function returns the value of a DOM node as a string.

Signature:

ora:getNodeValue(node)

Arguments:

■ node - The DOM node.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

BPEL XPath Extension Functions

XPath Extension Functions B-25

B.2.34 getNodes
This function gets a node list. This is implemented as an alternate to
bpws:getVariableData, which does not return a node list.

Signature:

ora:getNodes('variableName', 'partName'?, 'locationPath'?)

Arguments:

■ variableName - The source variable for the data.

■ partName - The part to select from the variable (optional).

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.35 getOwnerDocument
This function returns the document object associated with the node.

Signature:

ora:getOwnerDocument(node)

Arguments:

■ node - Specifies the XML node.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.36 getParentComponentInstanceID
This function returns the BPEL process instance parent component instance ID.

Signature:

ora:getParentComponentInstanceID()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.37 getPreference
This function returns the value of a property specified in the preferences section of the
BPEL suitcase descriptor.

Signature:

ora:getPreference(preferenceName)

BPEL XPath Extension Functions

B-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Arguments:

■ preferenceName - The name of the preference as specified in the BPEL suitcase
descriptor.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.38 getProcessId
This function returns the ID of the current BPEL process.

Signature:

ora:getProcessId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.39 getProcessOwnerId
This function returns the ID of the user who owns the process, if specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getProcessOwnerId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.40 getProcessURL
This function returns the root URL of the current BPEL process.

Signature:

ora:getProcessURL()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.41 getProcessVersion
This function returns the current process version.

Signature:

ora:getProcessVersion()

BPEL XPath Extension Functions

XPath Extension Functions B-27

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.42 getUserAliasId
This function returns the user ID for an alias specified in the TaskServiceAliases
section of the BPEL suitcase descriptor.

Signature:

ora:getUserAliasId (String aliasName)

Arguments:

■ aliasName - The alias for a list of users or groups.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.43 getUserIdsFromGroupAlias
This function returns a List of user IDs for a group alias specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getUserIdsFromGroupAlias(String aliasName)

Arguments:

■ aliasName - Alias name of the group.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.44 setCompositeInstanceTitle
This function sets a title to the composite instance which can later be used as one of the
criteria in searching the instances. This function returns the same string that is passed
as the argument.

Signature:

med:setCompositeInstanceTitle(title)

Arguments:

■ title - Specifies the composite instance title. This can be specified as an XPath
expression on the message payload.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

BPEL XPath Extension Functions

B-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.2.45 instanceOf
This function extracts arbitrary values from BPEL variables.

Signature:

ora:instanceOf(an_xpath_expression, 'typeQName')

Arguments:

■ an_xpath_expression - An XPath expression that returns an element

■ typeQName - The QName of a global declared XSD type

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.46 integer
This function returns the content of the node as an integer.

Signature:

ora:integer(node)

Arguments:

■ node - The input node.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.47 parseEscapedXML
This function parses a string to DOM.

Signature:

ora:parseEscapedXML(contentString)

Arguments:

■ contentString - The string that this function parses to a DOM.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.48 parseXML
This function parses a string to DOM.

Signature:

ora:parseXML(contentString)

Arguments:

■ contentString - The string that this function parses to a DOM.

Property IDs:

BPEL XPath Extension Functions

XPath Extension Functions B-29

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.49 processXQuery
This function returns the result of an XQuery transformation.

Signature:

ora: ry('template','context'?)

Arguments:

■ template - The XSLT template.

■ input - The input data to be transformed.

■ properties - The properties as defined in the bpel.xml file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.50 processXSLT
This function returns the result of XSLT transformation using the Oracle XDK XSLT
processor.

Signature:

xdk:processXSLT('template','input','properties'?)

Arguments:

■ template - The XSLT template.

■ input - The input data to be transformed.

■ properties - The properties as defined in the bpel.xml file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: xdk

B.2.51 processXSLTAttachment
This function returns the results of XSLT transformation by using the Oracle XDK
XSLT processor. This function also supports transformations from and to XML
attachments.

Signature:

ora:processXSLTAttachment('template','input','href'?,'properties
'?)

Arguments:

■ template - The XSLT template.

■ input - The input data to be transformed.

■ href - The location of the actual data.

BPEL XPath Extension Functions

B-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ properties - The properties as defined in the bpel.xml file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.52 processXSQL
This function returns the result of the XSQL request.

Signature:

ora:processXSQL('template','input','properties'?)

Arguments:

■ template - The XSLT template.

■ input - The input data to be transformed.

■ properties - The properties as defined in the bpel.xml file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.53 readBinaryFromFile
This function reads data from a file.

Signature:

ora:readBinaryFromFile(fileName)

Arguments:

■ fileName - The file name from which to read data.

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.54 readFile
This function returns the content of the file.

Signature:

ora:readFile('fileName','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

■ fileName - The name of the file. This argument can also be an HTTP URL.

This function by default reads files relative to the suitcase JAR file for the process.
If the file that you want to read is located in a different directory path, you must
specify an extra directory slash (/) to indicate that this is an absolute path. For
example:

ora:readFile(’file:///c:/temp/test.doc’)

BPEL XPath Extension Functions

XPath Extension Functions B-31

If you specify only two directory slashes (//), you receive an error similar to the
following:

XPath expression failed to execute.
Error while processing xpath expression,
the expression is "ora:readFile("file://c:/temp/test.doc")",
the reason is c. Verify the xpath query.

■ nxsdTemplate - The NXSD template for the output

■ nxsdRoot -The NXSD root

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.55 writeBinaryToFile
This function writes the binary bytes of a variable (or part of the variable) to a file of
the given file name.

Signature:

ora:writeBinaryToFile(varName[, partName[, query]])

Arguments:

■ varName - The name of the variable.

■ partName - The name of the part in the messageType variable.

■ query - The query string to a child of the root element.

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.56 BPEL Extension Functions
This section describes BPEL extension functions.

B.2.56.1 getLinkStatus
This function returns a boolean value indicating the status of the link. If the status of
the link is positive the value is true, otherwise the value is false. This function can
only be used in a join condition.

The linkName argument refers to the name of an incoming link for the activity
associated with the join condition.

Signature:

Note: Currently, the readFile function does not support the
functionality to access files on a web server that requires
authorization. If you tried to access such a file, then you get the
following error:

java.io.IOException: Server returned HTTP response
code: 401 for URL

BPEL XPath Extension Functions

B-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

bpws:getLinkStatus ('linkName')

Arguments:

■ variableName - The source variable for the data.

■ propertyName - The QName of the property.

Property IDs:

■ namespace-uri:
http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpws

B.2.56.2 getVariableData
This function extracts arbitrary values from BPEL variables.

When only the first argument is present, the function extracts the value of the variable,
which in this case must be defined using an XML schema simple type or element.
Otherwise, the return value of this function is a node set containing the single node
representing either an entire part of a message type (if the second argument is present
and the third argument is absent) or the result of the selection based on the
locationPath (if both optional arguments are present). If the given locationPath
selects a node set of a size other than one during execution, the standard fault
bpws:selectionFailure is thrown.

Signature:

bpws:getVariableData ('variableName', 'partName'?,
'locationPath'?)

Arguments:

■ variableName - The source variable for the data.

■ partName - The part to select from the variable (optional).

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

Property IDs:

■ namespace-uri:
http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpws

B.2.56.3 getVariableProperty
This function extracts arbitrary values from BPEL variables.

If the given property selects a node set of a size other than one during execution, the
standard fault bpws:selectionFailure is thrown.

Signature:

bpws:getVariableProperty ('variableName', 'propertyname')

Arguments:

■ variableName - The source variable for the data.

■ propertyName - The QName of the property.

BPEL XPath Extension Functions

XPath Extension Functions B-33

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

Property IDs:

■ namespace-uri:
http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpws

B.2.57 Utility Functions
This section describes the utility functions.

B.2.57.1 batchProcessActive
This function returns the number of active processes in the batch.

Signature:

ora:batchProcessActive(String batchId, String processId)

Arguments:

■ batchId - The ID of the batch.

■ processId - The ID of the process.

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.2 batchProcessCompleted
This function returns the number of completed processes in the batch.

Signature:

ora:batchProcessCompleted(String batchId, String processId)

Arguments:

■ batchId - The ID of the batch.

■ processId - The ID of the process.

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.3 format
This function formats a message using Java's message format.

Signature:

ora:format(formatStrings, args+)

Arguments:

■ formatStrings - The string of data to be formatted.

BPEL XPath Extension Functions

B-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ args+ - The arguments referenced by the format specifiers in the format string. If
there are more arguments than format specifiers, the extra arguments are ignored.
The number of arguments is variable and may be zero.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.4 genEmptyElem
This function generates a list of empty elements for the given QName.

Signature:

ora:genEmptyElem('ElemQName',size?, 'TypeQName'?, xsiNil?)

Arguments:

■ ElemQName - The first argument is the QName of the empty elements.

■ size - The second optional integer argument for the number of empty elements. If
missing, the default size is 1.

■ TypeQName - The third optional argument is the QName, which is the xsi:type
of the generated empty name. This xsi:type pattern matches SOAPENC:Array.
If missing or an empty string, the xsi:type attribute is not generated.

■ xsiNil - The fourth optional boolean argument is to specify whether the
generated empty elements are XSI - nil, provided the element is XSD-nillable.
The default is false. If missing or false, xsi:nil is not generated.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.5 getChildElement
This function gets a child element for the given element.

Signature:

ora:getChildElement(element, index)

Arguments:

■ element - The source for the data.

■ index - The integer value of the child element index.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.6 getMessage
This function gets a message based on the arguments.

Signature:

ora:getMessage(locale, relativeLocation, resourceName,
resourceKey, resourceLocation?)

Arguments:

BPEL XPath Extension Functions

XPath Extension Functions B-35

■ locale - The locale of the message.

■ relativeLocation - The subdirectory or message.

■ resourceName - The name of the message resource.

■ resourceKey - The key of the resource.

■ resourceLocation - The location of the resource.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.7 max-value-among-nodeset
This function returns the maximum value from a list of input numbers, the node-set
inputNumber.

The node-set inputNumber can be a collection of text nodes or elements containing
text nodes.

In the case of elements, the first text node's value is considered.

Signature:

oraext:max-value-among-nodeset(inputNumber as node-set)

Arguments:

■ inputNumber - The node-set of input numbers.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.2.57.8 min-value-among-nodeset
This function returns the minimum value from a list of input numbers, the node-set
inputNumbers.

The node-set can be a collection of text nodes or elements containing text nodes.

In the case of elements, the first text node's value is considered.

Signature:

oraext:min-value-among-nodeset(inputNumbers as node-set)

Arguments:

■ inputNumber - The node-set of input numbers.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

BPEL XPath Extension Functions

B-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.2.57.9 square-root
This function returns the square root of inputNumber.

Example: oraext:square-root(25) returns 5

Signature:

oraext:square-root(inputNumber as number)

Arguments:

■ inputNumber - The input number for which the function calculates the square
root.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.2.57.10 translateFromNative
This function translates the input stream to an XML file.

Signature:

ora:translateFromNative('string','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

■ string - The data to be converted into an XML file.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ nxsdRoot - The root element defined in the XSD file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.11 translateToNative
Translates the XML to the native data.

Signature:

ora:translateFromNative('string','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

■ string - The XML file to be converted into a string.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ nxsdRoot -The root element defined in the XSD file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.12 translateFromNativeAttachment
This function translates the input stream to XML.

Mediator XPath Extension Functions

XPath Extension Functions B-37

Signature:

ora:translateFromNativeAttachment('string','nxsdTemplate'?,'nxsR
oot'?)

Arguments:

■ string - The data to be converted into an XML file.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ nxsdRoot - The root element defined in the XSD file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.2.57.13 translateToNativeAttachment
This function translates XML to the native data.

Signature:

ora:translateFromNativeAttachment('string','nxsdTemplate'?,'nxsR
oot'?)

Arguments:

■ string - The data to be converted into an XML file.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ nxsdRoot - The root element defined in the XSD file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

B.3 Mediator XPath Extension Functions
This section describes the following functions:

B.3.1 getComponentInstanceID
This function returns the component instance id.

Signature:

mdhr:getComponentInstanceId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

B.3.2 getComponentName
This function returns the component name.

Signature:

Mediator XPath Extension Functions

B-38 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

mdhr:getComponentName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

B.3.3 getCompositeInstanceID
This function returns the composite instance id.

Signature:

mdhr:getComponentInstanceId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

B.3.4 getCompositeName
This function returns the composite name.

Signature:

mdhr:getCompositeName()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

B.3.5 getHeader
This function returns the value of an XPath expression from the mediator message
header.

Signature:

mdhr:getHeader(xpath as string, namespaces as string)

Arguments:

■ xpath: Refers to the path you traverse from the schema.

■ namespaces: Refers to the abstract container that contains the context of the
XPath expression. This argument is not optional. Namespace declarations are in
the following form:

'prefix=namespace;

Note the semicolon after the namespace declaration. For example:

Note: The getHeader function works only when both parameters
are specified.

Mediator XPath Extension Functions

XPath Extension Functions B-39

getHeader("in.header.ns9_name/ns9:name/ns9:first","ns9=http//exmaple.com;")

In the XSLT Mapper in Oracle JDeveloper, drag the getHeader function into the
mapper. In the Edit Function - getHeader dialog, click Add. The namespaces
argument is added for you to enter the required information.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix:mdhr

B.3.6 getECID
This function returns the ECID.

Signature:

mdhr:getECID()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

B.3.7 getParentComponentInstanceID
This function returns the mediator instance parent component instance id.

Signature:

mdhr:getParentComponentInstanceId()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

B.3.8 setCompositeInstanceTitle
This function sets a title to the composite instance that can be later used as one of the
criteria in searching the instances. This function returns the same string that is passed
as the argument.

Signature:

mdhr:setCompositeInstanceTitle(title)

Arguments:

■ title - Specifies the composite instance title. This can be specified as an XPath
expression on the message payload.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: mdhr

Advanced Functions

B-40 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

B.4 Advanced Functions
This section describes the advanced functions.

B.4.1 create-nodeset-from-delimited-string
The function takes a delimited string and returns a nodeSet.

Signature:

oraext:create-nodeset-from-delimited-string(qname,
delimited-string, delimiter)

Arguments:

■ qname - The qualified name in which each node in the node set must be created.
The QName can be represented in two forms:

– task:assignee

– {http://mytask/task}assignee

■ delimited-string - The sting of elements separated by the delimiter.

■ delimiter - The character that separates the items in the input string; for
example, a comma or a semicolon.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.4.2 generate-guid
The function generates a unique GUID.

Signature:

oraext:generate-guid()

Arguments: There are no arguments for this function.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.4.3 lookupPopulatedColumns
This function is used to look up a cross-reference column for a single value or multiple
values corresponding to a value in a reference column.

Signature:

xref:lookupPopulatedColumns(tableName,columnName,value,needAnExc
eption)

Arguments:

■ xrefTableName: The name of the reference table.

Advanced Functions

XPath Extension Functions B-41

■ xrefColumnName: The name of the reference column.

■ xrefValue: The value corresponding to reference column name.

■ needAnException: If this value is set to true, then an exception is thrown when
no value is found in the referenced column. Otherwise, an empty node-set is
returned.

Property IDs:

■ namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.t
ip.xref.xpath.XRefXPathFunctions

■ namespace-prefix: xref

B.4.4 lookupValue
The function returns a string by looking up the value for the target column in a
domain value map, where the source column contains the given source value.

Signature:

dvm:lookupValue(dvmLocation,sourceColumnName,sourceValue,targetC
olumnName,defaultValue)

Arguments:

■ dvmLocation: The domain value map URI.

■ sourceColumnName: The source column name.

■ sourceValue: The source value (an XPath expression bound to the source
document of the XSLT transformation).

■ targetColumnName: The target column name.

■ defaultValue: If the value is not found, then the default value is returned.

■ QualifierSourceColumn: The name of the qualifier column.

■ QualifierSourceValue: The value of the qualifier.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.Looku
pValue

■ namespace-prefix: dvm

B.4.5 lookupValue1M
The function returns an XML document fragment containing values for multiple target
columns of a domain value map, where the value for source column equals the source
value.

Signature:

dvm:lookupValue1M(dvmLocation,sourceColumnName,sourceValue,targe
tColumnName1,targetColumnName2...)

Arguments:

■ dvmMetadataURI - The domain value map URI.

■ SourceColumnName - The source column name.

Advanced Functions

B-42 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ SourceValue - The source value (an XPath expression bound to the source
document of the XSLT transformation).

■ TargetColumnName - The name of the target columns. At least one column name
should be specified. The question mark symbol (?) indicates that you can specify
multiple target column names.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.Looku
pValue

■ namespace-prefix:dvm

B.4.6 lookupXRef
This function is used to look up a cross-reference column for a value that corresponds
to a value in a reference column.

Signature:

xref:lookupXRef(tableName,referenceColumnName,referenceValue,col
umnName,needAnException)

Arguments:

■ xrefLocation: The cross-reference URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.

■ needAnException: : When value is set to true, an exception is thrown if the
value is not found, else an empty value is returned.

Property IDs:

■ namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.t
ip.xref.xpath.XRefXPathFunctions

■ namespace-prefix: xref

B.4.7 lookupXRef1M
This function is used to look up a cross-reference column for multiple values
corresponding to a value in a reference column.

Signature:

xref:lookupXRef1M(tableName,referenceColumnName,referenceValue,c
olumnName,needAnException)

Arguments:

■ xrefLocation: The cross-reference URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.

■ needAnException: If this value is set to true, then an exception is thrown when
the referenced value is not found. Else, an empty node-set is returned.

Advanced Functions

XPath Extension Functions B-43

Property IDs:

■ namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.t
ip.xref.xpath.XRefXPathFunctions

■ namespace-prefix: xref

B.4.8 lookup-xml
This function returns the string value of an element defined by lookupXPath in an
XML file (docURL) given its parent XPath (parentXPath), the key XPath
(keyXPath), and the value of the key (key).

Example: oraext:lookup-xml('file:/d:/country_data.xml',
'/Countries/Country', 'Abbreviation', 'FullName', 'UK') returns the
value of the element FullName child of /Countries/Country where
Abbreviation = 'UK' is in the file D:\country_data.xml.

Signature:

oraext:lookup-xml(docURL, parentXPath, keyXPath, lookupXPath,
key)

Arguments:

■ docURL - The XML file

■ parentXPath - The parent XPath

■ keyXPath - The key XPath

■ lookupXPath - The lookup XPath

■ key - The key value

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: oraext

B.4.9 markForDelete
The function is used to delete a value in a cross-reference table. The value in the
column is marked as deleted. This function returns true if deletion is successful else
returns false.

Signature:

xref:markForDelete(tableName,columnName,value)

Arguments:

■ xrefTableName: The cross-reference table name.

■ xrefColumnName: The name of the column from which you want to delete a
value.

■ xrefValueToDelete: The value to be deleted.

Property IDs:

■ namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.t
ip.xref.xpath.XRefXPathFunctions

Workflow Service Functions

B-44 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ namespace-prefix: xref

B.4.10 populateXRefRow
The function populates the column name in the cross-reference table (XREF) where the
reference column has the reference value.

Signature:

xref:populateXRefRow(tableName,referenceColumnName,referenceValu
e,columnName,value,mode)

Arguments:

■ xrefLocation: The cross-reference URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.

■ xrefvalue: The value corresponding to reference column name.

■ xrefmode: The name of the XREF population mode.

Property IDs:

■ namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.t
ip.xref.xpath.XRefXPathFunctions

■ namespace-prefix: xref

B.4.11 populateXRefRow1M
The function populates the column multiple values in the cross-reference table (XREF)
where the reference column has the reference value.

Signature:

xref:populateXRefRow1M(tableName,referenceColumnName,referenceVa
lue,columnName,value,mode)

Arguments:

■ xrefLocation: The cross-reference URI.

■ xrefReferenceColumnName: The name of the reference column.

■ xrefReferenceValue: The value corresponding to reference column name.

■ xrefColumnName: The name of the column to be looked up for the value.

■ xrefvalue: The value corresponding to reference column name.

■ xrefmode: The name of the XREF population mode.

Property IDs:

■ namespace-uri:http://www.oracle.com/XSL/Transform/java/oracle.t
ip.xref.xpath.XRefXPathFunctions

■ namespace-prefix: xref

B.5 Workflow Service Functions
This section describes the workflow service functions.

Workflow Service Functions

XPath Extension Functions B-45

B.5.1 clearTaskAssignees
This function clears the current task assignees.

Signature:

hwf:clearTaskAssignees(taskID)

Arguments:

■ task - The task ID of the task.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.2 createWordMLDocument
This function creates a Microsoft Word ML document as a base 64-encoded string.

Signature:

hwf:createWordMLDocument(node, xsltURI)

Arguments:

■ node - The node is an XML Node that is an input to the transformation.

■ xsltURI - The XSLT used to transform the node (the first argument) to Microsoft
Word ML.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.3 getNotificationProperty
This function retrieves a notification property. The function evaluates to corresponding
values for each notification. Only use this function in the notification content XPath
expression. If used elsewhere, it returns null.

Signature:

hwf:getNotificationProperty(propertyName)

Arguments:

■ propertyName - The name of the notification property. It can be one of the
following values:

– recipient - The recipient of the notification.

– recipientDisplay - The display name of the recipient.

– taskAssignees - The task assignees.

– taskAssigneesDisplay - The display names of the task assignees.

– locale - The locale of the recipient.

– taskId - The task ID of the task for which the notification is meant.

– taskNumber - The task number of the task for which the notification is
meant.

Workflow Service Functions

B-46 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

– appLink - The HTML link to the Oracle BPM Worklist task details page.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.4 getNumberOfTaskApprovals
This function computes the number of times the task was approved.

Signature:

hwf:getNumberOfTaskApprovals(taskId)

Arguments:

■ taskId - The ID of the task

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.5 getPreviousTaskApprover
This function retrieves the previous task approver.

Signature:

hwf:getPreviousTaskApprover(taskId)

Arguments:

■ taskId - The ID of the task

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.6 getTaskAttachmentByIndex
This function retrieves the task attachment at the specified index.

Signature:

hwf:getTaskAttachmentByIndex(taskId, attachmentIndex)

Arguments:

■ taskId - The task ID of the task.

■ attachmentIndex - The index of the attachment. The index begins from 1. The
attachmentIndex argument can be a node whose value evaluates to the index
number as a string (all node values are strings). If specified statically, it can be
specified as '1'.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

Workflow Service Functions

XPath Extension Functions B-47

B.5.7 getTaskAttachmentByName
This function retrieves the task attachment by the attachment name.

Signature:

hwf:getTaskAttachmentByName(taskId, attachmentName)

Arguments:

■ taskId - The task ID of the task.

■ attachmentName - The name of the attachment.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.8 getTaskAttachmentContents
This function retrieves the task attachment contents by the attachment name.

Signature:

hwf:getTaskAttachmentContents(taskId, attachmentName)

Arguments:

■ taskId - The task ID of the task.

■ attachmentName - The name of the attachment.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.9 getTaskAttachmentsCount
This function retrieves the number of task attachments.

Signature:

hwf:getTaskAttachmentsCount(taskId)

Arguments:

■ taskId - The task ID of the task.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.10 getTaskResourceBundleString
This function returns the internationalized resource value from the resource bundle
associated with a task definition.

Signature:

 hwf:getTaskResourceBundleString(taskId, key, locale?)

Arguments:

Workflow Service Functions

B-48 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ taskId - The task ID of the task.

■ key - The key to the resource.

■ locale - (Optional) The locale. This value defaults to system locale. This returns a
resourceString XML element in the namespace
http://xmlns.oracle.com/bpel/services/taskService, which contains
the string from the resource bundle.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.11 wfDynamicGroupAssign
This function gets the name of an identity service group, selected according to the
specified assignment pattern. The group is selected from either the subordinate groups
of the specified group (if a single group name is supplied), or from the list of groups (if
a list of user names is supplied). If the identity service is configured with multiple
realms, the realm name for the group and groups must also be supplied. Additional
assignment pattern specific parameters can be supplied. These additional parameters
are optional, depending on the details of the specific assignment pattern used.

There are two signatures of this function.

Signature 1:

hwf:wfDynamicGroupAssign(’patternName’,’groupName’,’realmName’?,
’patternParam1’?,’patternParam2’?,...,’patternParamN’?)

Argument 1:

■ patternName - The name of the assignment pattern (for example, ROUND_
ROBIN).

■ groupName - The name of the group from which to select a subordinate group.

■ realmName - The name of the identity service realm to which the group belongs.

■ patternParam1...patternParamN - Any additional parameters required by
the assignment pattern implementation (may be optional, depending on pattern).

Signature 2:

hwf:wfDynamicGroupAssign(’patternName’,’groupList’,’realmName’?,
’patternParam1’?,’patternParam2’?,...,’patternParamN’?)

Argument 2:

■ patternName - The name of the assignment pattern (for example, ROUND_
ROBIN).

■ groupList - The list of groups from which to select a group.

■ realmName - The name of the identity service realm to which the groups belong.

■ patternParam1...patternParamN - Any additional parameters required by
the assignment pattern implementation (may be optional, depending on the
pattern).

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

Workflow Service Functions

XPath Extension Functions B-49

B.5.12 wfDynamicUserAssign
This function returns the name of an identity service user, selected according to the
specified assignment pattern. The user is selected from either the subordinate users of
the specified group (if a single group name is supplied), or from the list of users (if a
list of user names is supplied). If the identity service is configured with multiple
realms, the realm name for the group and users must also be supplied. Additional
assignment pattern specific parameters can be supplied. These additional parameters
are optional, depending on the details of the specific assignment pattern used.

There are two signatures for this function.

Signature 1:

hwf:wfDynamicUserAssign(’patternName’,’groupName’,’realmName’?,’
patternParam1’?,....,’patternParam2’?,...,’patternParamN’?)

Arguments 1:

■ patternName - The name of the assignment pattern (for example, ROUND_
ROBIN).

■ groupName - The name of the group from which to select a subordinate user.

■ realmName - The name of the identity service realm to which the group belongs.

■ patternParam1 ... patternParamN - Any additional parameters required by
the assignment pattern implementation (may be optional, depending on the
pattern).

Signature 2:

hwf:wfDynamicUserAssign(patternName,userList,realmName?,patternP
aram1?,patternParam2?,...,patternParamN?)

Arguments 2:

■ patternName - The name of the assignment pattern (for example, ROUND_
ROBIN).

■ userList - The list of users from which to select a user.

■ realmName - The name of the identity service realm to which the users belong.

■ patternParam1...patternParamN - Any additional parameters required by
the assignment pattern implementation (may be optional, depending on the
pattern).

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

B.5.13 Identity Service Functions
This section describes the identity service functions.

B.5.13.1 getDefaultRealmName
This function returns the default realm name.

Signature:

ids:getDefaultRealmName()

Arguments: There are no arguments for this function.

Workflow Service Functions

B-50 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Property IDs:

■ namespace-uri:
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

B.5.13.2 getGroupProperty
This function returns the property value for the given group. If the group or attribute
does not exist, it returns null.

Signature:

ids:getGroupProperty(groupName, attributeName, realmName)

Arguments:

■ groupName - String or element containing the group whose attribute must be
retrieved.

■ attributeName - String or element containing the name of the group attribute.
The name is one of the following values:

1. displayName

2. email

If the identity service uses the LDAP providerType or JAZN LDAP-based
providers, configure the LDAP server to enable searching by those attributes.

■ realmName - The realm name. This is optional. If not specified, the default realm
is assumed.

Property IDs:

■ namespace-uri:
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

B.5.13.3 getManager
This function gets the manager of a given user. If the user does not exist or there is no
manager for this user, it returns null.

Signature:

ids:getManager(userName, realmName)

Arguments:

■ userName - The user name.

■ realmName - The realm name. This is optional. If not specified, the default realm
is assumed.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice/xpath

■ namespace-prefix: ids

B.5.13.4 getReportees
This function gets the reportees of the user. If the user does not exist, it returns null.
The function returns a list of nodes. Each node in the list is called user.

Workflow Service Functions

XPath Extension Functions B-51

Signature:

 ids:getReportees(userName, upToLevel, realmName)

Arguments:

■ userName - The user name.

■ upToLevel- Defines the levels of indirect reportees to be included into the result.
If the value is 1, it returns only direct reportees. If the value is -1, it returns all
levels of reportees. It can be either an element with value xsd:number or a string,
for example '1'.

■ realmName - The realm name. This is optional and if not specified, the default
realm is assumed.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice/xpath

■ namespace-prefix: ids

B.5.13.5 getSupportedRealmNames
This function returns the supported realm names.

Signature:

ids:getSupportedRealms()

Property IDs:

■ namespace-uri:
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

B.5.13.6 getUserProperty
This function returns the property of the user. If the user or attribute does not exist, it
returns null.

Signature:

ids:getUserProperty(userName, attributeName, realmName)

Arguments:

■ userName - String or element containing the user whose attribute must be
retrieved.

■ attributeName - The name of the user attribute. The attribute name is one of the
following values:

1. givenName

2. middleName

3. sn

4. displayName

5. mail

6. telephoneNumber

7. homephone

Workflow Service Functions

B-52 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

8. mobile

9. facsimile

10. pager

11. preferredlanguage

12. title

13. manager

If the identity service uses the LDAP providerType or JAZN LDAP-based
providers, configure the LDAP server to enable searching by those attributes.

■ realmName - The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

■ namespace-uri:
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

B.5.13.7 getUserRoles
This function gets the user roles. This function returns a list of objects, either
application roles or groups, depending on the roleType. If the user or role does not
exist, it returns null.

Signature:

ids:getUserRoles(userName, roleType, direct)

Arguments:

■ userName - String or element containing the user whose roles are to be retrieved.

■ roleType - The role type that takes one of three values: ApplicationRole,
EnterpriseRole, or AnyRole.

■ direct - A string or element indicating if direct or indirect roles must be fetched.
This is optional. If not specified, only direct roles are fetched. This is either
xsd:boolean or string true/false.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice

■ namespace-prefix: ids

B.5.13.8 getUsersInGroup
This function gets the users in a group. If the group does not exist, it returns null. The
function returns a list of nodes. Each node in the list is called user.

Signature:

ids:getUsersInGroup(groupName, direct, realmName)

Arguments:

■ groupName - The group name.

Workflow Service Functions

XPath Extension Functions B-53

■ direct - A boolean flag. If true, the function returns direct user grantees;
otherwise, all user grantees are returned. It can be either an element with value
xsd:boolean or string 'true'/'false'.

■ realmName - The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

■ namespace-uri:
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

B.5.13.9 isUserInRole
This function verifies if a user has a given role.

Signature:

ids:isUserInRole(userID, roleName, realmName)

Arguments:

■ userID - A string or element containing the user whose participation in the role
must be verified.

■ roleName - The role name.

■ realmName - The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice/xpath

■ namespace-prefix: ids

B.5.13.10 lookupGroup
This function gets the group. If the group does not exist, it returns null.

Signature:

 ids:lookupGroup(groupName, realmName)

Arguments:

■ groupName - The group name.

■ realmName - The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice/xpath

■ namespace-prefix: ids

B.5.13.11 lookupUser
This function gets the user object. If the user does not exist, it returns null.

Signature:

 ids:lookupUser(userName, realmName)

Using the XPath Building Assistant

B-54 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Arguments:

■ userName - The user name.

■ realmName - The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

■ namespace-uri:
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

B.6 Using the XPath Building Assistant
You can use the XPath Building Assistant to create XPath expressions.

B.6.1 XPath Building Assistant Description
Several dialogs enable you to specify XPath expressions at several places, including:

■ Expression field of the XPath Expression Builder

■ Expression field of an operation created under the Copy Operation tab of assign
activities

■ Expression field of the while, wait, switch, and pick (onAlarm branch) activities

■ Edit XPath Expression and Edit Function dialogs of the XSLT Mapper

Manually specifying long and complex expressions is supported, but can be a
cumbersome and error-prone process. The XPath Building Assistant provides the
following set of features that simplify this process:

■ Automatic completion of the following:

– Elements and attributes

– Functions

– BPEL variables and parts

■ Function parameter tool tips

■ Syntactic and semantic validation of XPaths

B.6.2 Starting the XPath Building Assistant
Start the XPath Building Assistant by clicking inside the Expression field and pressing
Ctrl and then the space bar. The XPath Building Assistant is available within all fields
of the Oracle JDeveloper and XSLT Mapper function dialogs that require XPath
expressions.

Using the XPath Building Assistant

XPath Extension Functions B-55

B.6.3 Using the XPath Building Assistant in Oracle JDeveloper: Step-By-Step Example
This section provides an example of using the XPath Building Assistant to build an
expression in the From section of the Expression field of the Create Copy Operation
dialog. This example models an XPath Expression that appends a string value to
OrderComments within a purchase order. The purchase order element is part of one
of the available BPEL variables.

1. Place the cursor inside the Expression field.

2. Press Ctrl and then the space bar to display a list of values for building an
expression.

3. Make a selection from the list (for this example, concat(String) as String) in either
of the following ways:

■ Scroll down the list and double-click concat(String) as String.

■ Enter the letter c to display only items starting with that letter and
double-click concat(String) as String.

This value is added to the Expression field. The list automatically displays again
with different options and prompts you to enter the next portion of the XPath
expression.

Using the XPath Building Assistant

B-56 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

4. Select and double-click the next portion (for this example, the second entry for
bpws):

This value is added to the Expression field. The list automatically displays again
and prompts you to enter the next portion of the XPath expression.

5. Select and double-click inputVariable.

6. Continue this process to build the remaining parts of the XPath expression (for this
example, double-click payload > ns1:/PurchaseOrder > ns1:/OrderInfo >
ns1:OrderComments as they appear).

7. Manually add text as appropriate (for this example, ,’,Selected: Select
Manufacturing’). If needed, you can also manually enter logical operators (such as
>, <, and so on).

B.6.4 Using the XPath Building Assistant in the XSLT Mapper
This section provides an example of using the XPath Building Assistant to build an
expression in the Edit XPath Expression dialog of the XSLT Mapper.

1. Go to the transformation dialog.

2. Select Advanced Functions from the Component Palette list.

3. Scroll down the list to the xpath-expression.

Note: Instead of using double-clicks on the XPath Building Assistant
popups, you can also use the Enter key to make the selection. If your
expression is complete, but you are still being prompted to enter
information, press Esc. This closes the list.

Using the XPath Building Assistant

XPath Extension Functions B-57

4. Drag and drop the xpath-expression into the transformation dialog.

5. Double-click the function to display the Edit XPath Expression dialog.

6. Click the cursor inside the XPath Expression field.

7. Press Ctrl and then the space bar to display a list of values for building an
expression.

8. Make a selection from the list (for this example, concat(String) as String) in either
of the following ways:

■ Scroll down the list and double-click concat(String) as String.

■ Enter the letter c to display only items starting with that letter and
double-click concat(String) as String.

This selection is added to the XPath Expression field. The list automatically
displays again with different options and prompts you to enter the next portion of
the XPath expression.

9. Continue this process to build the remaining parts of the XPath expression (for this
example, double-click po:PurchaseOrder > po:ShipTo > po:Name > po:First as
they appear).

Using the XPath Building Assistant

B-58 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

10. Continue this process to build the remaining parts of the expression.

11. Click OK to close the Edit XPath Expression dialog when complete.

B.6.5 Function Parameter Tool Tips
Function parameter tool tips display the expected arguments of a chosen XPath
function. For example, if you manually enter the function concat, and then enter (,
the parameter tool tip appears and displays the expected arguments of the concat
function. The current argument name of the function is highlighted in bold.

Once you finish specifying one argument, and enter a comma to move to the next
argument, the tool tip updates itself to highlight the second argument name in bold,
and so on. While editing existing XPaths that contain functions, you can re-invoke
parameter tool tips by positioning the cursor within the function and then pressing a
combination of the Ctrl, Shift, and space bar keys.

B.6.6 Syntactic and Semantic Validation
Within Oracle JDeveloper, an XPath expression is considered syntactically valid if it
conforms to the XPath 1.0 specification. The XPath Building Assistant warns you about
syntactically incorrect XPaths (for example, a missing parenthesis or apostrophe) by
underlining the erroneous area in red. Drag the mouse pointer over this area. The error
message displays as a tool tip. The red underlining error disappears after you make
corrections.

Syntactically valid XPaths may be semantically invalid. This can cause unexpected
errors at runtime. For example, you can misspell the name of an element, variable,
function, or part. The XPath Building Assistant warns you about semantic errors by
underlining the erroneous area in blue. Drag the mouse pointer over this area. The
error message displays as a tool tip. The blue underlining error disappears after you
make corrections.

B.6.7 Creating Expressions with Free Form Text and XPath Expressions
You can mix free form text with XPath expressions in some dialogs.

1. Place your cursor over the field to display a popup message that describes this
functionality.

Creating User-Defined XPath Extension Functions

XPath Extension Functions B-59

2. Enter free form text (in this example, ’Hello, your telephone number’).

3. Enter <% when you are ready to invoke the XPath Building Assistant.

A red underline appears, which indicates that you are being prompted to add
information.

4. Press Ctrl and then the space bar to invoke the XPath Building Assistant.

5. Scroll down the list and double-click the value you want.

6. Continue this process to build the remaining parts of the expression.

B.7 Creating User-Defined XPath Extension Functions
You can create user-defined (custom) XPath extension functions for use in Oracle SOA
Suite. These functions can be created for the following components:

■ Oracle BPEL Process Manager

■ Oracle Mediator

■ XSLT Mapper

■ Human workflow

■ Shared by all of these components

XPath extension functions in Oracle SOA Suite adhere to the following standards:

■ A single schema defines the configuration syntax for both system functions and
user-defined functions.

■ XPath functions are categorized based on usage (Oracle BPEL Process Manager,
Oracle Mediator, human workflow, XSLT Mapper, and those commonly used by
all).

■ System functions are separated from user-defined functions.

Creating User-Defined XPath Extension Functions

B-60 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

■ A repository hosts both system function configuration files and user-defined
function configuration files.

■ A repository hosts user-defined function implementation JAR files and
automatically makes them available for the Java Virtual Machine (JVM) (class
loaders).

As a best practice, follow these conventions for creating functions:

■ If possible, write functions that can be shared across all components. Functions
shared by all components can be created in a configuration file named
ext-soa-xpath-functions-config.xml. Note that you must implement
XSLT Mapper functions differently than functions for Oracle BPEL Process
Manager, Oracle Mediator, and human workflow.

For more information about description of these implementation differences, see
Section B.7.1, "How to Implement User-Defined XPath Extension Functions".

■ If you create a function for one component that cannot be used by others (for
example, a function for Oracle BPEL Process Manager that cannot be used by
Oracle Mediator or human workflow), then create that function in the
configuration file specific to that component. For this example, the Oracle BPEL
Process Manager function must be created in a configuration file named
ext-bpel-xpath-functions-config.xml.

Example B–1 shows the function schema used by system and user-defined functions.

Example B–1 Function Schema

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://xmlns.oracle.com/soa/config/xpath"
 targetNamespace="http://xmlns.oracle.com/soa/config/xpath"
 elementFormDefault="qualified">
 <element name="soa-xpath-functions" type="tns:XpathFunctionsConfig"/>
 <element name="function" type="tns:XpathFunction"/>
 <complexType name="XpathFunctionsConfig">
 <sequence>
 <element ref="tns:function" minOccurs="1" maxOccurs="unbounded"/>
 </sequence>
 <attribute name="resourceBundle" type="string"/>
 <attribute name="version" type="string"/>
 </complexType>

 <complexType name="XpathFunction">
 <sequence>
 <element name="className" type="string"/>
 <element name="return">
 <complexType>
 <attribute name="type" type="tns:XpathType"
 use="required"/>
 </complexType>
 </element>
 <element name="params" type="tns:Params" minOccurs="0"
 maxOccurs="1"/>
 <element name="desc">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>

Creating User-Defined XPath Extension Functions

XPath Extension Functions B-61

 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="detail" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="icon" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="helpURL" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey"
 type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="group" minOccurs="0">
 <complexType>
 <simpleContent>
 <extension base="string">
 <attribute name="resourceKey" type="string"/>
 </extension>
 </simpleContent>
 </complexType>
 </element>
 <element name="wizardClass" type="string" minOccurs="0"/>
</sequence>
<attribute name="name" type="string" use="required"/>
 <attribute name="deprecated" type="boolean" use="optional"/>
</complexType>

 <complexType name="Params">
 <sequence>
 <element name="param" minOccurs="1" maxOccurs="unbounded">
 <complexType>
 <attribute name="name" type="string" use="required"/>
 <attribute name="type" type="tns:XpathType"
 use="required"/>
 <attribute name="minOccurs" type="string"
 default="1"/>
 <attribute name="maxOccurs" type="string"
 default="1"/>

Creating User-Defined XPath Extension Functions

B-62 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <attribute name="wizardEnabled" type="boolean"
 default="false"/>
 </complexType>
 </element>
 </sequence>
 </complexType>
 <simpleType name="XpathType">
 <restriction base="string">
 <enumeration value="string"/>
 <enumeration value="boolean"/>
 <enumeration value="number"/>
 <enumeration value="node-set"/>
 <enumeration value="tree"/>
 </restriction>
 </simpleType>
</schema>

B.7.1 How to Implement User-Defined XPath Extension Functions
This section describes how to implement user-defined XPath extension functions for
Oracle SOA Suite components.

B.7.1.1 How to Implement Functions for the XSLT Mapper
Implementation of user-defined XPath extension functions for the XSLT Mapper is
different than for other components:

■ Each XSLT Mapper function requires a corresponding public static method from a
public static class. The function name and method name must match.

■ XSLT Mapper function namespaces must take the form
http://www.oracle.com/XSL/Transform/java/mypackage.MyFunction
Class, where mypackage.MyFunctionClass is the fully qualified class name
of the public static class containing the public static methods for the functions.

For additional details about creating a user-defined XPath extension function for the
XSLT Mapper, see Section 45.3.4.4, "Importing User-Defined Functions".

B.7.1.2 How to Implement Functions for All Other Components
For Oracle BPEL Process Manager, Oracle Mediator, and human workflow functions,
you must implement either the
oracle.fabric.common.xml.xpath.IXPathFunction interface (defined in the
fabric-runtime.jar file) or javax.xml.xpath.XPathFunction.

To implement functions for all other components:
1. Implement the oracle.fabric.common.xml.xpath.IXPathFunction

interface for your XPath function. The IXPathFunction interface has one
method named call(context, args). The signature of this method is as
follows:

 package oracle.fabric.common.xml.xpath;
 public interface IXPathFunction
 {
 /** Call this function.
 *
 * @param context The context at the point in the
 * expression when the function is called.
 * @param args List of arguments provided during
 * the call of the function.

Creating User-Defined XPath Extension Functions

XPath Extension Functions B-63

 */
 public Object call(IXPathContext context, List args) throws
 XPathFunctionException;
 }

where:

■ context - The context at the point in the expression when the function is
called

■ args - The list of arguments provided during the call of the function

For the following example, a function named getNodeValue(arg1) is
implemented that gets a value of w3c node:

package com.collaxa.cube.xml.xpath.dom.functions;
 import oracle.fabric.common.xml.xpath.IXPathFunction;
 import oracle.fabric.common.xml.xpath.IXPathFunction
 . . .

 public class GetNodeValue implements IXPathFunction {
 Object call(IXPathContext context, List args) throws XPathFunctionException
 {
 org.w3c.dom.Node node = (org.w3c.dom.Node) args.get(0);
 return node.getNodeValue()
 }
 }

B.7.2 How to Configure User-Defined XPath Extension Functions
This section describes how to configure user-defined XPath extension functions.

To configure user-defined xpath extension functions:
1. Create an XPath extension configuration file in which to define the function.

Example B–2 shows a sample configuration file that follows the function schema
shown in Example B–1 on page B-60. In this example, two functions are created:
mf:myFunction1 and mf:myFunction2.

Example B–2 Sample XML Extension Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<soa-xpath-functions resourceBundle="myPackage.myResourceBundle"
 xmlns="http://xmlns.oracle.com/soa/config/xpath"
 xmlns:mf="http://www.my-functions.com">
 <function name="mf:myFunction1">
 <className>myPackage.myFunctionClass1</className>
 <return type="node-set"/>
 <params>
 <param name="p1" type="node-set" wizardEnabled="true"/>
 <param name="p2" type="string"/>
 <param name="p3" type="number" minOccurs="0"/>
 <param name="p4" type="boolean" minOccurs="0" maxOccurs="3"/>
 </params>
 <desc resourceKey="func1-desc-key">this is my first function</desc>
 <detail resourceKey="func2-long-desc-key">my first function does ... </detail>
 <icon>myPackage/resource/image/myFunction1.png</icon>
 <group resourceKey="func-group-key">My Function Group</group>
 <wizardClass>myPackage.myWizardClass1</wizardClass>
 </function>
 <function name="mf:myFunction2">
 <className>myPackage.myFunctionClass2</className>

Creating User-Defined XPath Extension Functions

B-64 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <return type="string"/>
 <params>
 <param name="p1" type="node-set" wizardEnabled="true"/>
 <param name="p2" type="string"/>
 <param name="p3" type="number" minOccurs="0"/>
 <param name="p4" type="boolean" minOccurs="0" maxOccurs="unbounded"/>
 </params>
 <desc resourceKey="func2-desc-key">this is my second function</desc>
 <detail resourceKey="func2-long-desc-key">my second function does ...</detail>
 <icon>myPackage/resource/image/myFunction2.png</icon>
 <group resourceKey="func-group-key">My Function Group</group>
 <wizardClass>myPackage.myWizardClass2</wizardClass>
 </function>
</soa-xpath-functions>

Table B–1 describes the elements of the configuration file. Each function
configuration file uses soa-xpath-functions as its root element. The root
element has an optional resourceBundle attribute. The resourceBundle value is
the fully qualified class name of the resource bundle class providing NLS support
for all function configurations.

Table B–1 Function Schema Elements

Element Description

className The fully qualified class name of the function implementation class.

return The return type of the function. This can be one of the following types supported by XPath and
XSLT: string, number, boolean, node-set, and tree.

params The parameters of the function. A function can have no parameters. A parameter has the
following attributes:

■ name: The name of the parameter.

■ type: The type of the parameter. This can be one of the following types supported by XPath
and XSLT: string, number, boolean, node-set, and tree.

■ minOccurs: The minimum occurrences of the parameter. If set to 0, the parameter is
optional. If set to 1, the parameter is required. The current restriction is that this attribute
must only take a value of either 0 or 1 and that optional parameters must be defined after
the required parameters. The default value is 1 if this attribute is absent.

■ maxOccurs: The maximum occurrences of the parameter. If set to unbounded, the
parameter can repeat anytime. This can support functions such as XPath 1.0 function
concat(), which can take unlimited parameters. The current restriction is that no
parameters except the last parameter of the function can have maxOccurs greater than 1 or
unbounded. The default value is 1 if this attribute is absent.

■ wizardEnabled: Indicates whether to enable a wizard to enter the parameter value. This
supports a user interface where the parameter value must be entered. If set to true, a
wizard launch button is rendered next to the parameter value field. The wizard launch
button, when pressed, launches a popup wizard to help the user enter the parameter value.
The wizard class must be specified later. The default value is false if this attribute is
absent, meaning there is no wizard support for the parameter by default.

desc An optional description of the function. If the resourceKey is present, the description is
retrieved from the resource bundle specified earlier on the root element.

detail An optional longer (detailed) description of the function. If the resourceKey is present, the
description is retrieved from the resource bundle specified earlier on the root element.

icon An optional icon URL of the function. If the resourceKey is present, the icon URL is retrieved
from the resource bundle specified earlier on the root element. This is to support a user interface
in which the function must be displayed.

Creating User-Defined XPath Extension Functions

XPath Extension Functions B-65

2. Name your user-defined XPath extension configuration file based on the
component type with which to use the function. Table B–2 describes the naming
conventions to use for user-defined configuration files.

3. Place the configuration file inside a JAR file along with the compiled classes.
Within the JAR file, the configuration file must be located in the META-INF
directory. The JAR file does not need to reside in a specific directory.

4. In Oracle JDeveloper, go to Tools > Preferences > SOA.

5. Click the Add button and select your JAR file.

6. Restart Oracle JDeveloper for the changes to take effect.

The JAR file is automatically added to the JVM's class path to make it available for
use.

B.7.3 How to Deploy User-Defined Functions to Runtime
 You can deploy user-defined functions to the runtime environment.

To deploy user-defined functions to runtime:
1. Copy the user-defined function JAR files to BEA_Home/user_

projects/domains/domain_name/lib or a subdirectory of lib.

helpURL An optional help HTML URL of the function. If the resourceKey is present, the help URL is
retrieved from the resource bundle specified earlier on the root element. This is to support a user
interface in which the function help link must be displayed.

group An optional group name of the function. If the resourceKey is present, the group name is
retrieved from the resource bundle specified earlier on the root element. This is to support a user
interface where functions must be grouped. If no group name is specified, the function falls into
a built-in advanced functions group when being grouped in a user interface.

wizardClass The fully qualified class name of the wizard class for all parameters that are wizard-enabled.
This is to support a user interface in which parameter values must be entered. This wizard class
is invoked by wizard launch buttons to help you enter parameter values. If there is no
wizard-enabled parameter, this element must be absent.

Note: This element is not supported for user-defined functions. Only system functions currently
support this feature.

Table B–2 User-Defined Configuration Files

To Use with This Component... Use This Configuration File Name...

Oracle BPEL Process Manager ext-bpel-xpath-functions-config.xml

Oracle Mediator ext-mediator-xpath-functions-config.xml

XSLT Mapper ext-mapper-xpath-functions-config.xml

Human workflow ext-wf-xpath-functions-config.xml

All components ext-soa-xpath-functions-config.xml

Note: The customXpathFunction jar must be added explicitly as
it is not part of the SOA composite.

Table B–1 (Cont.) Function Schema Elements

Element Description

Creating User-Defined XPath Extension Functions

B-66 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

where domain_name is the name of the Oracle WebLogic Server domain (for
example, soainfra).

2. Restart the Oracle WebLogic Server.

Note: As an alternative, you can add the BEA_Home/user_
projects/domains/domain_name/lib directory into the class
loader. This prevents you from having to restart the Oracle WebLogic
Server.

C

Deployment Descriptor Properties C-1

CDeployment Descriptor Properties

This appendix describes how to define deployment descriptor properties for BPEL
process service components.

This appendix includes the following sections:

■ Section C.1, "Introduction to Deployment Descriptor Properties"

■ Section C.2, "Deprecated 10.1.3 Properties"

C.1 Introduction to Deployment Descriptor Properties
Deployment descriptors are BPEL process service component properties used at
runtime by Oracle WebLogic Server, Oracle Enterprise Manager, or both. There are
two types of properties:

■ Configuration

■ Partner link binding

C.1.1 How to Define Deployment Descriptor Properties
You define configuration properties and values in the BPEL process service component
section of the composite.xml file. Example C–1 shows how to define the
inMemoryOptimization configuration property.

Example C–1 Configuration Property Definition in composite.xml

...
 <component name="myBPELServiceComponent">

 <property name="bpel.config.inMemoryOptimization">true</property>
</component>

Table C–1 lists the configuration deployment descriptor properties.

Note: You cannot specify deployment descriptor properties at
runtime.

Introduction to Deployment Descriptor Properties

C-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

You define partner link binding properties and values in the BPEL process service
component section of the composite.xml file. Example C–2 shows how to define the
nonBlockingInvoke partner link binding property.

Example C–2 Property Definition in composite.xml

...
 <component name="myBPELServiceComponent">

 <property
name="bpel.partnerLink.nonBlockingInvoke.property">propogate</property>
</component>

Table C–2 lists the partnerLinkBinding deployment descriptor properties.

Table C–1 Properties for the configurations Deployment Descriptors

Property Name Description

completionPersistPolicy This property configures how the instance data is saved. It can only be set at the
BPEL service component level. The following values are available:

■ on (default): The completed instance is saved normally.

■ deferred: The completed instance is saved, but with a different thread and
in another transaction.

■ faulted: Only the faulted instances are saved.

■ off: No instances of this process are saved.

oneWayDeliveryPolicy This property sets the persistence policy of the process in the delivery layer. The
possible values are:

■ async.persist: Messages into the system are saved in the delivery store
before being picked up by the engine.

■ async.cache: Messages into the system are saved in memory before being
picked up by the engine.

■ sync: The instance-initiating message is not temporarily saved in the
delivery layer. The engine uses the save thread to initiate the message.

inMemoryOptimization Default value is false. This property can only be set to true if it does not have
dehydration points. Activities like wait, receive, onMessage, and onAlarm create
dehydration points in the process. If this property is set to true, in-memory
optimization is attempted on the instances of this process on to-spec queries.

keepGlobalVariables Specify whether the server can keep global variable values in the instance store
when the instance completes:

■ false (default): Global variable values are deleted when the instance
completes.

■ true: Global variable values are not deleted.

sensorActionLocation The location of the sensor action XML file. The sensor action XML file configures
the action rule for the events.

sensorLocation The location of the sensor XML file. The sensor XML file defines the list of
sensors into which events are logged.

Deprecated 10.1.3 Properties

Deployment Descriptor Properties C-3

C.1.2 How to Get the Value of a Preference within a BPEL Process
The value of a property can be read by a BPEL process using the XPath extension
function ora:getPreference(myPref). This gets the value of
bpel.preference.myPref.

This function can be used as part of a simple assign statement, used in condition
expressions, or used as part of a more complex XPath expression.

C.2 Deprecated 10.1.3 Properties
Table C–3 lists deprecated properties that can no longer be used.

Table C–2 Properties for the partnerLinkBinding Deployment Descriptors

Property Name Description

nonBlockingInvoke Default value is false. When this is set to true, a separate thread is spawned
to do the invocation so that the invoke activity does not block the instance.

validateXML Enables message boundary validation. When set to true, the XML message is
validated against the XML schema during a receive activity and an invoke
activity for this partner link. If the XML message is invalid, then a
bpelx:invalidVariables runtime fault is thrown. This overrides the
domain level validateXML property. The following example enables validation
for only the StarLoanService partner:

<partnerLinkBinding name="StarLoanService">
<property name="wsdlLocation">
http://<hostname>:9700/orabpel/default/StarLoan/Sta
rLoan?wsdl</property>
<property name="validateXML">true</property>
</partnerLinkBinding>

Table C–3 Deprecated Properties

Property Deployment Descriptor Type Deprecated for Release...

completionPersistLevel configurations 11g Release 1

defaultInput configurations 11g Release 1

initializeVariables configurations 11g Release 1

loadSchema configurations 11g Release 1

noAlterWSDL configurations 11g Release 1

optimizeVariableCopy configurations 11g Release 1

relaxTypeChecking configurations 11g Release 1

relaxXPathQName configurations 11g Release 1

transaction configurations 10.1.3.4

SLACompletionTime configurations 11g Release 1

xpathValidation configurations 11g Release 1

user configurations 11g Release 1

pw configurations 11g Release 1

role configurations 11g Release 1

correlation partnerLinkBinding 11g Release 1

contentType partnerLinkBinding 10.1.3

Deprecated 10.1.3 Properties

C-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

retryInterval partnerLinkBinding Deprecated by the fault
policy feature in 10.1.3.3

retryMaxCount partnerLinkBinding Deprecated by the fault
policy feature in 10.1.3.3

wsdlLocation partnerLinkBinding 11g Release 1

wsdlRuntimeLocation partnerLinkBinding 11g Release 1

wsseHeaders partnerLinkBinding 11g Release 1

wsseUsername partnerLinkBinding 11g Release 1

wssePassword partnerLinkBinding 11g Release 1

preferredPort partnerLinkBinding 11g Release 1

fullWSAddressing partnerLinkBinding 11g Release 1

Table C–3 (Cont.) Deprecated Properties

Property Deployment Descriptor Type Deprecated for Release...

D

Understanding Sensor Public Views and the Sensor Actions XSD D-1

DUnderstanding Sensor Public Views and the
Sensor Actions XSD

This appendix describes the available sensor public views and the sensor actions XSD
file that you can import into Oracle BPEL Designer.

This appendix includes the following sections:

■ Section D.2, "Sensor Public Views"

■ Section D.3, "Sensor Actions XSD File"

For more information, see Chapter 17, "Using Oracle BPEL Process Manager Sensors."

D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File
A set of public views is exposed to allow SQL access to sensor values from literally any
application interested in the data. In addition, a sample sensor action schema is
provided for importing into Oracle BPEL Designer.

D.2 Sensor Public Views
The sensor framework of Oracle BPEL Process Manager provides the functionality to
persist sensor values created by processing BPEL instances in a relational schema
stored in the dehydration store of Oracle BPEL Process Manager. The data is used to
display the sensor values of a process instance in Oracle Enterprise Manager Fusion
Middleware Control Console.

D.2.1 BPM Schema
The database publisher persists the sensor data in a predefined relational schema in
the database. The following public views can be used from a client (Oracle Warehouse,
portals, and so on) to query the sensor values using SQL.

D.2.1.1 BPEL_PROCESS_INSTANCES
This view provides an overview of all the process instances of Oracle BPEL Process
Manager.

Note: In Table D–1 through Table D–4, the Indexed or Unique?
column provides unique index names and the order of the attributes.
For example, U1,2 means that the attribute is the second one in a
unique index named U1. PK means primary key.

Sensor Public Views

D-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES
This view contains all the activity sensor values of the monitored BPEL processes.

Table D–1 BPEL_PROCESS_INSTANCES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

INSTANCE_KEY NUMBER -- PK N Unique instance ID

APPLICATION_
NAME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_
NAME

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_
NAME

VARCHAR2 500 -- N User-defined component name

TITLE NVARCHAR2 200 -- Y User-defined title of the BPEL process

STATE NUMBER -- -- Y State of the BPEL process instance

STATE_TEXT VARCHAR2 21 -- Y Text presentation of the state attribute

PRIORITY NUMBER -- -- Y User-defined priority of the BPEL
process instance

STATUS NVARCHAR2 200 -- Y User-defined status of the BPEL
process

STAGE VARCHAR2 100 -- Y User-defined stage property of a BPEL
process

CONVERSATION_
ID

VARCHAR2 256 -- Y User-defined conversation ID of a
BPEL process

CREATION_DATE TIMESTAMP 6 -- N Creation time stamp of the process
instance

MODIFY_DATE TIMESTAMP 6 -- Y Time stamp when the process instance
was modified

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

EVAL_TIME NUMBER -- -- Y Evaluation time of the process instance
in milliseconds

Table D–2 BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

SENSOR_NAME NVARCHAR2 200 U1,2 N The name of the sensor that fired

SENSOR_TARGET NVARCHAR2 512 -- N The target of the fired sensor

ACTION_NAME NVARCHAR2 200 U1,3 N The name of the sensor action

ACTION_FILTER NVARCHAR2 512 -- Y The filter of the action

CREATION_DATE TIMESTAMP 6 -- N The creation date of the activity sensor
value

MODIFY_DATE TIMESTAMP 6 -- Y The time stamp of last modification

Sensor Public Views

Understanding Sensor Public Views and the Sensor Actions XSD D-3

D.2.1.3 BPEL_FAULT_SENSOR_VALUES
This view contains all the fault sensor values.

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

CRITERIA_
SATISFIED

VARCHAR2 1 -- Y NULL, Y, or N

ACTIVITY_NAME NVARCHAR2 200 -- N The name of the BPEL activity

ACTIVITY_TYPE VARCHAR2 30 -- N The type of the BPEL activity

ACTIVITY_
STATE

VARCHAR2 30 -- Y The state of the BPEL activity

EVAL_POINT VARCHAR2 30 -- N The evaluation point of the activity
sensor

ERROR_MESSAGE NCLOB -- -- Y An error message

RETRY_COUNT NUMBER -- -- Y The number of retries of the activity

EVAL_TIME NUMBER -- -- Y Evaluation time of the activity in
milliseconds

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_
NAME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_
NAME

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_
NAME

VARCHAR2 500 -- N User-defined component name

Table D–3 BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_
NAME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_
NAME

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_
NAME

VARCHAR2 500 -- N User-defined component name

SENSOR_NAME NVARCHAR2 200 U1,2 N The name of the sensor that fired

Table D–2 (Cont.) BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Sensor Public Views

D-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES
This view contains all the variable sensor values.

SENSOR_TARGET NVARCHAR2 512 -- N The target of the fired sensor

ACTION_NAME NVARCHAR2 200 U1,3 N The name of the sensor action

ACTION_FILTER NVARCHAR2 512 -- Y The filter of the action

CREATION_DATE TIMESTAMP 6 -- N The creation date of the activity sensor
value

MODIFY_DATE TIMESTAMP 6 -- Y The time stamp of last modification

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

CRITERIA_
SATISFIED

VARCHAR2 1 -- Y NULL if no action filter specified; Y if
action filter is specified and evaluates
to true; N otherwise

ACTIVITY_NAME NVARCHAR2 200 -- N The name of the BPEL activity

ACTIVITY_TYPE VARCHAR2 30 -- N The type of the BPEL activity

MESSAGE CLOB -- -- Y The fault message

Table D–4 BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

APPLICATION_
NAME

VARCHAR2 500 -- N User-defined application name

COMPOSITE_
NAME

VARCHAR2 500 -- N User-defined composite name

REVISION VARCHAR2 50 -- N User-defined revision number

LABEL VARCHAR2 500 -- N User-defined label

COMPONENT_
NAME

VARCHAR2 500 -- N User-defined component name

SENSOR_NAME NVARCHAR2 200 U1,2 N Name of the sensor that fired

SENSOR_TARGET NVARCHAR2 512 -- N Target of the sensor

ACTION_NAME NVARCHAR2 200 U1,3 N Name of the action

ACTION_FILTER NVARCHAR2 512 -- Y Filter of the action

ACTIVITY_
SENSOR

NUMBER -- -- Y ID of corresponding activity sensor
value

CREATION_DATE TIMESTAMP 6 -- N Creation date

TS_DATE DATE -- -- N Date portion of creation_date

TS_HOUR NUMBER -- -- N Hour portion of creation_date

VARIABLE_NAME NVARCHAR2 512 -- N The name of the BPEL variable

Table D–3 (Cont.) BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-5

D.3 Sensor Actions XSD File
Example D–1 provides a sample sensor action schema that you can import into Oracle
BPEL Designer. This schema is also relevant to custom data publishers.

Example D–1 Sample Sensor Action Schema

<?xml version="1.0" encoding="utf-8"?>
<!--
 This schema contains the sensor definition. Sensors monitor data
 and execute callbacks appropriately.
-->
<xsd:schema blockDefault="#all" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/bpel/sensor"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://xmlns.oracle.com/bpel/sensor">

 <xsd:simpleType name="tSensorActionPublishType">
 <xsd:annotation>
 <xsd:documentation>
 This enumeration lists the possibe publishing types for probes.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="BpelReportsSchema"/>

EVAL_POINT VARCHAR2 30 -- Y Evaluation point of the corresponding
activity sensor

CRITERIA_
SATISFIED

VARCHAR2 1 -- Y NULL, Y, or N

TARGET NVARCHAR2 512 -- -- --

UPDATER_NAME NVARCHAR2 200 -- N The name of the activity or event that
updated the variable

UPDATER_TYPE NVARCHAR2 200 -- N The type of the BPEL activity or event

SCHEMA_
NAMESPACE

NVARCHAR2 512 -- Y Namespace of variable sensor value

SCHEMA_
DATATYPE

NVARCHAR2 512 -- Y Data type of the variable sensor value

VALUE_TYPE NUMBER -- -- N The value type of the variable
(corresponds to java.sql.Types
values)

VARCHAR2_
VALUE

NVARCHAR2 4000 -- Y The value of string-like variables

NUMBER_VALUE NUMBER -- -- Y

DATE_VALUE TIMESTAMP 6 -- Y User-defined date

DATE_VALUE_TZ VARCHAR2 10 -- Y User-defined time zone

BLOB_VALUE BLOB -- -- Y

CLOB_VALUE CLOB -- -- Y

Table D–4 (Cont.) BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Sensor Actions XSD File

D-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <xsd:enumeration value="JMSQueue"/>
 <xsd:enumeration value="JMSTopic"/>
 <xsd:enumeration value="Custom"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="tSensorActionProperty">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <!--
 Attributes of a sensor action
 -->
 <xsd:attributeGroup name="tSensorActionAttributes">
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 <xsd:attribute name="enabled" type="xsd:boolean" use="optional"
 default="true"/>
 <xsd:attribute name="filter" type="xsd:string"/>
 <xsd:attribute name="publishName" type="xsd:string" use="required"/>
 <xsd:attribute name="publishType" type="tns:tSensorActionPublishType"
 use="required"/>
 <!--
 the name of the JMS Queue/Topic or custom java API, ignored for other
 publishTypes
 -->
 <xsd:attribute name="publishTarget" type="xsd:string" use="optional"/>
 </xsd:attributeGroup>

 <!--
 The sensor action type. A sensor action consists:
 + unique name
 + effective date
 + expiration date - Optional. If not defined, the probe is active
 indefinitely.
 + filter (to potentially suppress data publishing even if a sensor marks
 it as interesting). - Optional. If not defined, no filter is
 used.
 + publishName A name of a publisher
 + publishType What to do with the sensor data?
 + publishTarget Name of a JMS Queue/Topic or custom publisher.
 + potentially many sensors.
 -->
 <xsd:complexType name="tSensorAction">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string" minOccurs="1"
 maxOccurs="unbounded"/>
 <xsd:element name="property" minOccurs="0" maxOccurs="unbounded"
 type="tns:tSensorActionProperty"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="tns:tSensorActionAttributes"/>
 </xsd:complexType>

 <!--
 define a listing of sensor actions in a single document. It might be a good
 idea to
 have one sensor action list per business process.

Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-7

 -->
 <xsd:complexType name="tSensorActionList">
 <xsd:sequence>
 <xsd:element name="action" type="tns:tSensorAction" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="tSensorKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="fault"/>
 <xsd:enumeration value="variable"/>
 <xsd:enumeration value="activity"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="tActivityConfig">
 <xsd:annotation>
 <xsd:documentation>
 The configuration part of an activity sensor comprises of a mandatory
 'evalTime' attribute
 and an optional list of variable configurations
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig">
 <xsd:sequence>
 <xsd:element name="variable" type="tns:tActivityVariableConfig"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="evalTime" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tAdapterConfig">
 <xsd:annotation>
 <xsd:documentation>
 The configuration part of a adapter activity extends the activty
 configuration with additional attributes for adapters
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityConfig">
 <xsd:attribute name="headerVariable" use="required" type="xsd:string"/>
 <xsd:attribute name="partnerLink" use="required" type="xsd:string"/>
 <xsd:attribute name="portType" use="required" type="xsd:string"/>
 <xsd:attribute name="operation" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tVariableConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig">
 <xsd:attribute name="outputDataType" use="required" type="xsd:string"/>
 <xsd:attribute name="outputNamespace" use="required" type="xsd:string"/>
 <xsd:attribute name="queryName" use="optional" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>

Sensor Actions XSD File

D-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 </xsd:complexType>

 <xsd:complexType name="tActivityVariableConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableConfig">
 <xsd:attribute name="target" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tFaultConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig"/>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tNotificationSvcConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityConfig">
 <xsd:attribute name="inputVariable" use="required" type="xsd:string"/>
 <xsd:attribute name="outputVariable" use="required" type="xsd:string"/>
 <xsd:attribute name="operation" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tSensorConfig">
 <xsd:sequence>
 <xsd:element name="action" type="tns:tInlineSensorAction" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tInlineSensorAction">
 <xsd:complexContent>
 <xsd:restriction base="tns:tSensorAction"/>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tSensor">
 <xsd:sequence>
 <xsd:element name="activityConfig" type="tns:tActivityConfig"
 minOccurs="0"/>
 <xsd:element name="adapterConfig" type="tns:tAdapterConfig" minOccurs="0"/>
 <xsd:element name="faultConfig" type="tns:tFaultConfig" minOccurs="0"/>
 <xsd:element name="notificationConfig" type="tns:tNotificationSvcConfig"
 minOccurs="0"/>
 <xsd:element name="variableConfig" type="tns:tVariableConfig"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="sensorName" use="required" type="xsd:string"/>
 <xsd:attribute name="kind" use="required" type="tns:tSensorKind"/>
 <xsd:attribute name="classname" use="required" type="xsd:string"/>
 <xsd:attribute name="target" use="required" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="tSensorList">
 <xsd:sequence>
 <xsd:element name="sensor" type="tns:tSensor" minOccurs="0"
 maxOccurs="unbounded"/>

Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-9

 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tRouterData">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tHeaderInfo"/>
 <xsd:element name="payload" type="tns:tSensorData"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tHeaderInfo">
 <xsd:sequence>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processRevision" type="xsd:string"/>
 <xsd:element name="domain" type="xsd:string"/>
 <xsd:element name="instanceId" type="xsd:integer"/>
 <xsd:element name="midTierInstance" type="xsd:string"/>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element name="sensor" type="tns:tSensor"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tSensorData">
 <xsd:sequence>
 <xsd:element name="activityData" type="tns:tActivityData" minOccurs="0"/>
 <xsd:element name="faultData" type="tns:tFaultData" minOccurs="0"/>
 <xsd:element name="adapterData" minOccurs="0" type="tns:tAdapterData"/>
 <xsd:element name="variableData" type="tns:tVariableData" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="notificationData" type="tns:tNotificationData"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tFaultData">
 <xsd:sequence>
 <xsd:element name="activityName" type="xsd:string"/>
 <xsd:element name="activityType" type="xsd:string"/>
 <xsd:element name="data" type="xsd:anyType" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tActivityData">
 <xsd:sequence>
 <xsd:element name="activityType" type="xsd:string"/>
 <xsd:element name="evalPoint" type="xsd:string"/>
 <xsd:element name="errorMessage" nillable="true" minOccurs="0"
 type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 xml type that will be provided to sensors for variable Datas. Note the
 any element represents variable data.
 -->
 <xsd:complexType name="tVariableData">
 <xsd:sequence>
 <xsd:element name="target" type="xsd:string"/>
 <xsd:element name="queryName" type="xsd:string"/>
 <xsd:element name="updaterName" type="xsd:string" minOccurs="1"/>

Sensor Actions XSD File

D-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <xsd:element name="updaterType" type="xsd:string" minOccurs="1"/>
 <xsd:element name="data" type="xsd:anyType"/>
 <xsd:element name="dataType" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tNotificationData">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityData">
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="fromAddress" type="xsd:string" minOccurs="0"/>
 <xsd:element name="toAddress" type="xsd:string" minOccurs="0"/>
 <xsd:element name="deliveryChannel" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>

 </xsd:complexType>
 <xsd:complexType name="tAdapterData">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityData">
 <xsd:sequence>
 <xsd:element name="endpoint" type="xsd:string"/>
 <xsd:element name="direction" type="xsd:string"/>
 <xsd:element name="adapterType" type="xsd:string"/>
 <xsd:element name="priority" type="xsd:string" minOccurs="0"/>
 <xsd:element name="messageSize" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!--
 The header of the document contains some metadata.
 -->
 <xsd:complexType name="tSensorActionHeader">
 <xsd:sequence>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processVersion" type="xsd:string"/>
 <xsd:element name="processID" type="xsd:long"/>
 <xsd:element name="midTierInstance" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="actionName" use="required" type="xsd:string"/>
 </xsd:complexType>

 <!--
 Sensor Action data is presented in the form of a header and potentially many
 data elements depending on how many sensors associated to the sensor action
 marked the data as interesting.
 -->
 <xsd:complexType name="tSensorActionData">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tHeaderInfo"/>
 <xsd:element name="payload" type="tns:tSensorData" minOccurs="1"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
<!--
 <xsd:simpleType name="tActivityEvalPoint">

Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-11

 <xsd:restriction>
 <xsd:enumeration value="start"/>
 <xsd:enumeration value="complete"/>
 <xsd:enumeration value="fault"/>
 <xsd:enumeration value="compensate"/>
 <xsd:enumeration value="retry"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="tNotificationAction">
 <xsd:restriction>
 <xsd:enumeration value="creation"/>
 <xsd:enumeration value="statusUpdate"/>
 </xsd:restriction>
 </xsd:simpleType>
-->

 <!--
 The process sensor value header comprises of a timestamp
 where the sensor was triggered and the sensor metadata
 -->
 <xsd:complexType name="tProcessSensorValueHeader">
 <xsd:sequence>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element ref="tns:sensor"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Extend tActivityData to include more elements
 -->
 <xsd:complexType name="tProcessActivityData">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="evalTime" type="xsd:long" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="retryCount" type="xsd:int" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tVariableData to include more elements
 -->
 <xsd:complexType name="tProcessVariableData">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>

Sensor Actions XSD File

D-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tFaultData to include more elements
 -->
 <xsd:complexType name="tProcessFaultData">
 <xsd:complexContent>
 <xsd:extension base="tns:tFaultData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tAdapterData to include more elements
 -->
 <xsd:complexType name="tProcessAdapterData">
 <xsd:complexContent>
 <xsd:extension base="tns:tAdapterData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tNotificationData to include more elements
 -->
 <xsd:complexType name="tProcessNotificationData">
 <xsd:complexContent>
 <xsd:extension base="tns:tNotificationData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!--
 Copy of tSensorData type with some modified types.
 -->
 <xsd:complexType name="tProcessSensorData">
 <xsd:sequence>
 <xsd:element name="activityData" type="tns:tProcessActivityData"
 minOccurs="0"/>
 <xsd:element name="faultData" type="tns:tProcessFaultData" minOccurs="0"/>
 <xsd:element name="adapterData" minOccurs="0"

Sensor Actions XSD File

Understanding Sensor Public Views and the Sensor Actions XSD D-13

 type="tns:tProcessAdapterData"/>
 <xsd:element name="variableData" type="tns:tProcessVariableData"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="notificationData" type="tns:tProcessNotificationData"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <!--
 A single process sensor value comprises of the sensor value metadata
 (sensor and timestamp) and the payload (the value) of the sensor
 -->
 <xsd:complexType name="tProcessSensorValue">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tProcessSensorValueHeader"/>
 <xsd:element name="payload" type="tns:tProcessSensorData"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Process instance header.
 -->
 <xsd:complexType name="tProcessInstanceInfo">
 <xsd:sequence>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processRevision" type="xsd:string"/>
 <xsd:element name="domain" type="xsd:string"/>
 <xsd:element name="instanceId" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 The list of sensor values comprises of a process header describing the
 BPEL process with name, cube instance id etc. and a list of sensor values
 comprising of sensor metadata information and sensor values.
 -->
 <xsd:complexType name="tProcessSensorValueList">
 <xsd:sequence>
 <xsd:element name="process" type="tns:tProcessInstanceInfo" minOccurs="1"
 maxOccurs="1"/>
 <xsd:element name="sensorValue" type="tns:tProcessSensorValue" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- The sensor list is the root element of the sensor.xml document in the
 bpel process suitcase and is used to define sensors. -->
 <xsd:element name="sensors" type="tns:tSensorList"/>

 <!-- A sensor is used to monitor a particular aspect of a bpel process -->
 <xsd:element name="sensor" type="tns:tSensor"/>

 <!-- The actions element is the root element of the sensorAction.xml document
 in the bpel process suitcase and is used to define sensor actions.
 Sensor actions define how to publish data captured by sensors -->
 <xsd:element name="actions" type="tns:tSensorActionList"/>

 <!-- actionData elements are produced by the sensor framework and sent to the
 appropriate data publishers when sensors 'fire' -->
 <xsd:element name="actionData" type="tns:tSensorActionData"/>

Sensor Actions XSD File

D-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 <!-- This element is used when the client API is used to query sensor values
 stored in the default reports schema -->
 <xsd:element name="sensorValues" type="tns:tProcessSensorValueList"/>
</xsd:schema>

E

Oracle BAM Web Services Operations E-1

E Oracle BAM Web Services Operations

This appendix is a reference for the operations provided by the Oracle BAM
DataObjectOperations and DataObjectDefinition web services. More information
about the Oracle BAM web services is available in Chapter 36, "Using Oracle BAM
Web Services."

This appendix contains the following topics:

■ Section E.1, "DataObjectOperations10131"

■ Section E.2, "DataObjectOperationsByName"

■ Section E.3, "DataObjectOperationsByID"

■ Section E.4, "DataObjectDefinition Operations"

■ Section E.5, "ManualRuleFire Operations"

E.1 DataObjectOperations10131
The following operations are supported by the DataObjectOperations10131 web
service:

■ Section E.1.1, "Batch"

■ Section E.1.2, "Delete"

■ Section E.1.3, "Insert"

■ Section E.1.4, "Update"

■ Section E.1.5, "Upsert"

E.1.1 Batch
Batch performs batch operations on a data object.

E.1.1.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

DataObjectOperations10131

E-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

xmlPayload (xsd:any)
Contains the batch payload for any operations to be performed. For example:

<payload>
<_Employees operation="insert">
<_Salesperson>Tim Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>
<_Employees operation="update" keys="_Sales_Number">
<_Salesperson>Tim Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>
</payload>

E.1.2 Delete
Delete removes a row from the data object.

E.1.2.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:any)
Payload for the where clause to delete rows in a data object. For example:

<_Employees>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

E.1.3 Insert
Insert adds rows to the specified data object.

E.1.3.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

DataObjectOperations10131

Oracle BAM Web Services Operations E-3

xmlPayload (xsd:any)
The payload is specific to each data object.

<_Employees>
<_Salesperson>Time Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

E.1.4 Update
Update operation updates existing data with new data in a data object.

E.1.4.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:any)
Payload for the update statement and where clause to update rows in a data object.
For example:

<_Employees>
<_Sales_Area>Asia Pacific</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

E.1.5 Upsert
Upsert operation updates existing data with new data in an existing row in a data
object. If the row does not exist a new row is created.

E.1.5.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

DataObjectOperationsByName

E-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

xmlPayload (xsd:any)
Payload for the insert or update statement and where clause to upsert rows in a data
object. For example:

<_Employees>
<_Salesperson>Time Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

E.2 DataObjectOperationsByName
The following operations are supported by the DataObjectOperations10131,
DataObjectOperationsByName, and DataObjectOperationsByID web services.

■ Section E.2.1, "Delete"

■ Section E.2.2, "Get"

■ Section E.2.3, "Insert"

■ Section E.2.4, "Update"

■ Section E.2.5, "Upsert"

E.2.1 Delete
Delete removes a row from the data object.

E.2.1.1 Request Message
The request message contains the following parameters.

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

Sales Number, Sales Area

xmlPayload (xsd:any)
Payload for the where clause to delete rows in a data object. For example:

<DataObject Name="Employees" Path="/Samples">
<Contents>
<Row>
<Column Name="Salesperson" Value="Greg Guan" />

</Row>
</Contents>

</DataObject>

E.2.2 Get
Get fetches the details from a data object per the specifications in the XML payload

Get is only available in DataObjectOperationsByName web service.

DataObjectOperationsByName

Oracle BAM Web Services Operations E-5

E.2.2.1 Request Message
The request message contains the following parameters.

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

Sales Number, Sales Area

xmlPayload (xsd:string)
The payload specifies what to get from the data object.

For the DataObjectOperationsByName web service the data object name is specified in
the payload, for example:

<DataObject Name="Employees" Path="/Samples">
<Contents>
<Row>
<Column Name="Salesperson" Value="Greg Masters"/>

</Row>
</Contents>

</DataObject>

E.2.3 Insert
Insert adds rows to the specified data object.

E.2.3.1 Request Message
The request message contains the following parameters.

xmlPayload (xsd:any)
The payload is specific to each data object.

<DataObject Name="Employees" Path="/Samples">
<Contents>
<Row>
<Column Name="Salesperson" Value="Greg Guan" />
<Column Name="Sales Area" Value="Northeast" />
<column Name="Sales Number" Value="5671" />

</Row>
</Contents>

</DataObject>

E.2.4 Update
Update operation updates existing data with new data in a data object.

E.2.4.1 Request Message
The request message contains the following parameters.

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

Sales Number, Sales Area

DataObjectOperationsByID

E-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

xmlPayload (xsd:any)
Payload for the update statement and where clause to update rows in a data object.
For example:

<DataObject Name="Employees" Path="/Samples">
<Contents>
<Row>
<Column Name="Salesperson" Value="Greg Guan" />

</Row>
</Contents>

</DataObject>

E.2.5 Upsert
Upsert operation updates existing data with new data in an existing row in a data
object. If the row does not exist a new row is created.

E.2.5.1 Request Message
The request message contains the following parameters.

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

Sales Number, Sales Area

xmlPayload (xsd:any)
Payload for the insert or update statement and where clause to upsert rows in a data
object. For example:

<DataObject Name="Employees" Path="/Samples">
<Contents>
<Row>
<Column Name="Salesperson" Value="Greg Guan" />
<Column Name="Sales Area" Value="Northeast" />
<column Name="Sales Number" Value="5671" />

</Row>
</Contents>

</DataObject>

E.3 DataObjectOperationsByID
The following operations are supported by the DataObjectOperations10131,
DataObjectOperationsByName, and DataObjectOperationsByID web services.

■ Section E.3.1, "Batch"

■ Section E.3.2, "Delete"

■ Section E.3.3, "Insert"

■ Section E.3.4, "Update"

■ Section E.3.5, "Upsert"

DataObjectOperationsByID

Oracle BAM Web Services Operations E-7

E.3.1 Batch
Batch performs batch operations on a data object.

E.3.1.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

xmlPayload (xsd:any)
Contains the batch payload for any operations to be performed. For example:

<payload>
<_Employees operation="insert">
<_Salesperson>Tim Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>
<_Employees operation="update" keys="_Sales_Number">
<_Salesperson>Tim Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>
</payload>

E.3.2 Delete
Delete removes a row from the data object.

E.3.2.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
This parameter is not required by the DataObjectOperationsByName web service
because the data object name and path are part of the payload.

Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:any)
Payload for the where clause to delete rows in a data object. For example:

<_Employees>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

DataObjectOperationsByID

E-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

E.3.3 Insert
Insert adds rows to the specified data object.

E.3.3.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

xmlPayload (xsd:any)
The payload is specific to each data object.

For the DataObjectOperationsByName web service the data object name is specified in
the payload, for example:

<_Employees>
<_Salesperson>Time Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

E.3.4 Update
Update operation updates existing data with new data in a data object.

E.3.4.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:any)
Payload for the update statement and where clause to update rows in a data object.
For example:

<_Employees>
<_Sales_Area>Asia Pacific</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

DataObjectDefinition Operations

Oracle BAM Web Services Operations E-9

E.3.5 Upsert
Upsert operation updates existing data with new data in an existing row in a data
object. If the row does not exist a new row is created.

E.3.5.1 Request Message
The request message contains the following parameters.

dataObject (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Employees

keysCSV (xsd:string)
Comma separated column IDs that must be used as keys, for example:

_Sales_Number,_Sales_Area

xmlPayload (xsd:any)
Payload for the insert or update statement and where clause to upsert rows in a data
object. For example:

<_Employees>
<_Salesperson>Time Bray</_Salesperson>
<_Sales_Area>EMEA</_Sales_Area>
<_Sales_Number>12345</_Sales_Number>

</_Employees>

E.4 DataObjectDefinition Operations
The following operations are supported by DataObjectDefinition web service.

■ Section E.4.1, "Create"

■ Section E.4.2, "Delete"

■ Section E.4.3, "Get"

■ Section E.4.4, "Update"

E.4.1 Create
Create creates a new data object. By specifying columnar elements, you can create
calculated and lookup fields in addition to regular fields ass show in the examples.

E.4.1.1 Request Message
The request message contains the following parameter.

xmlPayload (xsd:string)
Contains the payload to create a data object.

DataObjectDefinition Operations

E-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example E–1 xmlPayload to Create Data Object With Regular Columns

<DataObject Version="14" Name="Employees3" ID="_Employees3" Path="/Samples"
 External="0">

<Layout>
<Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="30"

 Nullable="1" Public="1" />
<Column Name="Sales Number" ID="_Sales_Number" Type="decimal"

Nullable="1" Public="1" />
<Column Name="Timestamp" ID="_Timestamp" Type="timestamp"

Nullable="0" Public="1" />
<Indexes />

Table E–1 xmlPayload Elements and Descriptions and Valid Values

Element Description and Values

/DataObject/@External 0 (zero) indicates that the data object is not from
an external data source (default).

1 indicates that the data object is from an external
data source.

/DataObject/@Name Name of the data object to be created not
including the directory path.

/DataObject/@Path Directory path in which to create the data object.

/DataObject/@Version Data objects can be versioned 0 (default) through
14.

/DataObject/@TipText Description of the data object to be created.

/DataObject/Layout/Column/@Name Name of the column (field) in the data object.

/DataObject/Layout/Column/@Type The following values are valid for column type:
auto-incr-integer
boolean
calculated
clob
datetime
decimal
float
iterID
integer
lookup
string
timestamp

/DataObject/Layout/Column/@Nullable 1 (default) indicates that the column supports
null values.

0 (zero) indicates that the column does not
support null values.

/DataObject/Layout/Column/@Public 1 (default) indicates that the column is public.

0 (zero) indicates that the column is not public.

/DataObject/Layout/Column/@MaxSize For string type columns, this attribute specifies
the maximum permissible string size.

Default value is 30.

/DataObject/Layout/Column/@Precision For decimal type columns, this attribute specifies
the precision of the decimal value.

/DataObject/Layout/Column/@Scale For decimal type columns, this attribute specifies
the scale of the decimal value.

/DataObject/Layout/Column/@TipText Column description

DataObjectDefinition Operations

Oracle BAM Web Services Operations E-11

</Layout>
</DataObject>

Example E–2 xmlPayload to Create Data Object With Lookup Field

<DataObject Version="14" Name="LookupDO" ID="_LookupDO" Path="/Samples">
<Layout>
<Description><![CDATA[Lookup]]></Description>
<Column Name="Name" ID="_Name" Type="string" MaxSize="100"

Nullable="1" Public="1" />
<Column Name="ID" ID="_ID" Type="integer" Nullable="1" Public="1" />
<Column Name="Sales Area" ID="_Sales_Area" Type="lookup">
<Lookup>
<DataObject>
<ID>_Employees</ID>
<Path>/Samples</Path>

</DataObject>
<LookupFieldID>_Sales_Area</LookupFieldID>
<MatchFields>
<KeyPair>
<PrimaryKeyID>_Sales_Number</PrimaryKeyID>
<ForeignKeyID>_ID</ForeignKeyID>

</KeyPair>
</MatchFields>

</Lookup>
</Column>
<Indexes />

</Layout>
</DataObject>

Note that when you construct the XML payload for the Create operation, and the data
object version is lower than 12, use PrimaryKey instead of PrimaryKeyID, ForeignKey
instead of ForeignKeyID, LookupField instead of LookupFieldID, and provide name
values instead of IDs for those fields.

Example E–3 xmlPayload to Create Data Object With Calculated Field

<DataObject Version="14" Name="CalculatedDO" ID="_CalculatedDO" Path="/Samples">
<Layout>
<Description><![CDATA[Calculated Column]]></Description>
<Column Name="Name" ID="_Name" Type="string" MaxSize="100" Nullable="1"

 Public="1" />
<Column Name="Address" ID="_Address" Type="string" MaxSize="100" Nullable="1"

 Public="1" />
<Column Name="Salary" ID="_Salary" Type="decimal" Scale="10" Nullable="1"

 Public="1" />
<Column Name="Income Tax" ID="_Income_Tax" Type="calculated"

CalculatedExpression="<expression type="MathExpression"
><operation><left><type>FieldID</type><ivalue>
_Salary</ivalue></left><operator>*</operator><right>
<type>DECIMAL</type><ivalue>0.3</ivalue></right><
/operation></expression>" ExpressionUserText="(Salary * 0.3)" />

<Indexes />
</Layout>

</DataObject>

DataObjectDefinition Operations

E-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

E.4.1.2 Response Message
void

E.4.2 Delete
Delete removes a data object definition and its contents.

E.4.2.1 Request Message
The request message contains the following parameter.

dataObjectFullName (xsd:string)
Full relative path and name of the data object to be deleted. For example:

/Samples/Employees

E.4.2.2 Response Message
void

E.4.3 Get
Get retrieves an existing data object definition.

E.4.3.1 Request Message
The request message contains the following parameters.

dataObjectFullName (xsd:string)
Full relative path and name of the data object, for example:

/Samples/Sales

E.4.3.2 Response Message
The response message contains the following parameter.

xmlPayload (xsd:string)
An XML description of the data object is returned. The schema used is the same
definition as described for the Create and Update operations. You can use this
operation to find the ID values of the data object and any columns.

Example E–4 xmlPayload for Get Operation

<DataObject Version="14" Name="Employees" Path="/Samples" External="0">
<Layout>
<Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="100"

Nullable="1" Public="1" />
<Column Name="Sales Area" ID="_Sales_Area" Type="string" MaxSize="100"

Nullable="1" Public="1" />
<Column Name="Sales Number" ID="_Sales_Number" Type="integer" Nullable="1"

Public="1" />
<Column Name="Timestamp" ID="_Timestamp" Type="timestamp" Nullable="0" />

Public="1" />
<Indexes />

</Layout>
</DataObject>

ManualRuleFire Operations

Oracle BAM Web Services Operations E-13

E.4.4 Update
Update updates the definition of an existing data object. If a specified column exists in
the original definition, the new column definition overwrites the old one. If columns in
the existing definition are not specified in the new definition, their definitions are
removed. The data object index definition can be updated as well.

E.4.4.1 Request Message
The request message contains the following parameters.

xmlPayload (xsd:string)
Payload for the Update operation is similar to the Create payload with one additional
attribute. For example:

<DataObject Version="14" Name="Employees4" ID="_Employees4" Path="/Samples"
External="0">
<Layout>
<Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="50"

 Nullable="1" Public="1" />
<Column Name="Sales Number" ID="_Sales_Number" Type="integer"

Nullable="1" Public="1" />
<Column Name="Timestamp" ID="_Timestamp" Type="timestamp"

Nullable="0" Public="1" />
<Indexes />

</Layout>
</DataObject>

E.4.4.2 Response Message
void

E.5 ManualRuleFire Operations
The following operation is supported by ManualRuleFire web service.

■ Section E.5.1, "FireRuleByName"

E.5.1 FireRuleByName
Use this operation to manually launch a rule.

This web service takes a string parameter, which should have user name, followed by
a period (.), followed by the alert name. For example:

user_name.alertname

The period is used as a separator between the user name and the alert name. The web
service always treats last period in the string as the separator, allowing the user name
to contain periods. For example

user.nema.alerrtname

It follows then that the alert names cannot contain a period. If you must use the
ManualRuleFire web service with an alert containing a period in its name, the alert
must be renamed so that it does not contain any periods.

ManualRuleFire Operations

E-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

E.5.1.1 Request Message
The request message contains the following parameter.

xmlPayload (xsd:string)
An example:

<FireRuleByName xmlns="http://xmlns.oracle.com/bam">
<strRuleName>string</strRuleName>

</FireRuleByName>

E.5.1.2 Response Message
Returns (xsd:string)

<FireRuleByNameResponse xmlns="http://xmlns.oracle.com/bam">
<FireRuleByNameResult>string</FireRuleByNameResult>

</FireRuleByNameResponse>

F

Oracle BAM Alert Rule Options F-1

FOracle BAM Alert Rule Options

The following sections describe the options for creating alert rules:

■ Section F.1, "Events"

■ Section F.2, "Conditions"

■ Section F.3, "Actions"

■ Section F.4, "Frequency Constraint"

F.1 Events
Events launch the rule and trigger the action. Each rule contains only one event. Oracle
BAM provides the following events:

■ In a specific amount of time

■ At a specific time today

■ On a certain day at a specific time

■ Every interval between two times

■ Every date interval starting on certain date at a specific time

■ When a report changes

■ When a data field changes in data object

■ When a data field in a report meets specified conditions

■ When a data field in a data object meets specified conditions

■ When this rule is launched

F.1.1 In a specific amount of time
When you select the event In a specific amount of time, you must complete the rule
expression by selecting a time interval in seconds, minutes, or hours.

F.1.2 At a specific time today
When you select the event At a specific time today, you must complete the rule
expression by selecting the time at which to launch the alert.

F.1.3 On a certain day at a specific time
When you select the event On a certain day at a specific time, you must complete the
rule expression by selecting both the date and the time at which to launch the alert.

Events

F-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

F.1.4 Every interval between two times
When you select the event Every interval between two times, you must complete the
rule expression by configuring the following settings.

■ select time interval

Set the number of minutes, hours, or days between each alert launch.

■ select time

Set the times of day between which the rule is valid and the alert is launched.

F.1.5 Every date interval starting on certain date at a specific time
When you select the event Every date interval starting on a certain date at a specific
time, you must complete the rule expression by configuring the following settings.

■ select date interval

Set the alert to launch every Day, Week, Month, or Year.

■ select date

Set the date on which the rule is valid and the alert is launched.

■ select time

Set the time of day at which the rule is valid and the alert is launched.

F.1.6 When a report changes
When a report changes is launched when runtime changes in a report occur (not
changes in the report definition), that is every time a change list is delivered to the
report from the Oracle BAM Server. Report changes can include changes to data in
data objects and changes due to Active Now settings.

When you select the event When a report changes, you must complete the rule
expression by configuring the following settings.

■ select report

Select the report to monitor for changes.

■ run as <user_name> (This option appears only if the user creating the alert is a
member of the administrator role.)

Select the Oracle BAM user who the selected report runs as. You can select only
one run as user. The default run as user is the logged in Oracle BAM user who is
creating the alert.

Only recipients who have security permissions that are the same or higher than
the run as user receive the notification for report changes, honoring row level
security as implemented by the Oracle BAM Architect in the data objects used in
the report.

Names that are preceded with a hash (#) are distribution lists.

If there are changes in a report’s data object rows that none of the alert recipients
have permissions to access, no recipients are notified.

F.1.7 When a data field changes in data object
When you select the event When a data field changes in a data object, you must
complete the rule expression by configuring the following settings.

Events

Oracle BAM Alert Rule Options F-3

■ select data field

Select the data object field to monitor for changes. In the Field Selection dialog
box, locate the data object in the top left section of the dialog box, then select the
field in the top right section of the dialog box. Finally, select one or more fields to
group by and an aggregate function for the selected field.

■ run as <user_name> (This option appears only if the user creating the alert is a
member of the administrator role.)

Select the Oracle BAM user who the selected report runs as. You can select only
one run as user. The default run as user is the logged in Oracle BAM user who is
creating the alert.

Only recipients who have security permissions that are the same or higher than
the run as user receive the notification for report changes, honoring row level
security as implemented by the Oracle BAM Architect in the data objects used in
the report.

Names that are preceded with a hash (#) are distribution lists.

If there are changes in a report’s data object rows that none of the alert recipients
have permissions to access, no recipients are notified.

F.1.8 When a data field in a report meets specified conditions
When you select the event When a data field changes in a data object, you must
complete the rule expression by configuring the following settings.

■ select report

Select the report to monitor for changes.

■ this data field has a condition of x

In the Alert Rule Editor dialog box, select the data object to monitor. Then you can
set the condition under which the alert should fire.

■ Row Filter - Create a filter on a field in the data object to express a condition
that, when met, launches the rule. All of the functionality available in report
filters is provided. See "Filtering Data" in Oracle Fusion Middleware User's Guide
for Oracle Business Activity Monitoring for more information.

■ Group Filter - The Group Filter is similar to the Row Filter in that it provides
all of the filtering functionality available in report filters. The special feature
here is that it allows filters to be created on a field where a summary function
has been applied. See "Filtering Data" in Oracle Fusion Middleware User's Guide
for Oracle Business Activity Monitoring for more information about building
filter expressions.

■ Group - Choose one or more fields on which to create a grouping, adding
further complexity to any filters created in the Row Filter or Group Filter tabs.

■ run as <user_name> (This option appears only if the user creating the alert is a
member of the administrator role.)

Note: The event When a data field in a data object meets specified
conditions responds only to row inserts and row updates, but it does
not respond to row deletes; however, the event When a data field
changes in a data object responds to row deletes.

Events

F-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Select the Oracle BAM user who the selected report runs as. You can select only
one run as user. The default run as user is the logged in Oracle BAM user who is
creating the alert.

Only recipients who have security permissions that are the same or higher than
the run as user receive the notification for report changes, honoring row level
security as implemented by the Oracle BAM Architect in the data objects used in
the report.

Names that are preceded with a hash (#) are distribution lists.

If there are changes in a report’s data object rows that none of the alert recipients
have permissions to access, no recipients are notified.

F.1.9 When a data field in a data object meets specified conditions
When you select the event When a data field in a data object meets specified
condition, you must complete the rule expression by configuring the following
settings.

■ this data field has a condition of x

In the Alert Rule Editor dialog box, select the data object to monitor. Then you can
set the condition under which the alert should fire.

■ Row Filter - Create a filter on a field in the data object to express a condition
that, when met, launches the rule. All of the functionality available in report
filters is provided. See "Filtering Data" in Oracle Fusion Middleware User's Guide
for Oracle Business Activity Monitoring for more information.

■ Group Filter - The Group Filter is similar to the Row Filter in that it provides
all of the filtering functionality available in report filters. The special feature
here is that it allows filters to be created on a field where a summary function
has been applied. See "Filtering Data" in Oracle Fusion Middleware User's Guide
for Oracle Business Activity Monitoring for more information about building
filter expressions.

■ Group - Choose one or more fields on which to create a grouping, adding
further complexity to any filters created in the Row Filter or Group Filter tabs.

■ run as <user_name> (This option appears only if the user creating the alert is a
member of the administrator role.)

Select the Oracle BAM user who the selected report runs as. You can select only
one run as user. The default run as user is the logged in Oracle BAM user who is
creating the alert.

Names that are preceded with a hash (#) are distribution lists.

Only recipients who have security permissions that are the same or higher than
the run as user receive the notification for report changes, honoring row level
security as implemented by the Oracle BAM Architect in the data objects used in
the report.

Note: The event When a data field in a data object meets specified
conditions responds only to row inserts and row updates, but it does
not respond to row deletes; however, the event When a data field
changes in a data object responds to row deletes.

Actions

Oracle BAM Alert Rule Options F-5

If there are changes in a report’s data object rows that none of the alert recipients
have permissions to access, no recipients are notified.

F.1.10 When this rule is launched
The event When this rule is launched is used to create a rule dependent on another
rule which uses the Launch a rule action. Several rules can be created using When this
rule is launched in a hierarchy.

F.2 Conditions
Conditions are optional settings for constraining the time period in which the alert is
fired. You can select any number and combination of conditions. Oracle BAM provides
the following conditions:

■ If it is between two times

■ If It is between two days

■ If it is a particular day of the week

F.2.1 If it is between two times
Select two times between which the rule should launch.

F.2.2 If It is between two days
Select two dates between which the rule should launch.

F.2.3 If it is a particular day of the week
Select a day of the week on which the rule should launch.

F.3 Actions
Actions are the results of the conditions and events of the rule expression having been
met. You can configure any number and combination of actions. Oracle BAM provides
the following actions:

■ Send a report via email

■ Send a message via email

■ Send a report via email and escalate to another user after a specific amount of time

■ Send a parameterized message

■ Launch a rule

■ Launch rule if an action fails

■ Delete rows from a Data Object

■ Call a Web Service

■ Run an Oracle Data Integrator Scenario

F.3.1 Send a report via email
Select a report, select to send the report as a report link or as a rendered report, and
select a recipient.

Actions

F-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

F.3.2 Send a message via email
Create an email message to send and select a recipient.

F.3.3 Send a report via email and escalate to another user after a specific amount of
time

Select a report to send to the specified user. Select a secondary recipient to receive the
message if the first recipient does not respond within the specified time period. The
secondary recipient can be a single user or a distribution list.

When the condition of the alert rule is met, a report link is sent to the recipient. To
respond to this alert, the recipient must click the report link and view the report. If the
recipient does not view the report, it is escalated to the secondary user (or distribution
list).

F.3.4 Send a parameterized message
This option enables you to email reports that require parameter inputs to Oracle BAM
users. This action enables you to create a fully configurable email message and the
parameter values that are passed to the report.

For information about creating prompts and parameters in Oracle BAM dashboards
see "Using Prompts and Parameters" in Oracle Fusion Middleware User's Guide for Oracle
Business Activity Monitoring.

You can use this option to send reports to other users under the conditions specified in
the alert message. This action is available for the events When a data field changes in
data object and When a data field in a data object meets specified conditions.

There are two properties that must be configured in this alert action: create message
and set parameters.

To create the message
1. Click create message in the rule expression.

2. Enter a subject and message to send to the recipient. You can also select links to
reports to send in the message body as shown in Figure F–1.

Actions

Oracle BAM Alert Rule Options F-7

Figure F–1 Alert Message dialog box

To configure the parameter values that are passed to the report when it is opened
by the recipient:
1. Click set parameters in the rule expression.

2. In the Alert Action Parameter Creation and Edit dialog box, populate the User,
Delivery, and Report fields with either predefined values or dynamically from a
Data Object field. Use the buttons to set the field values. Select Field enables you
to select a field in a data object as a value.

Actions

F-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure F–2 Alert Action Parameter Creation and Edit dialog box

■ User field

If you populate this field using the Select User button, the recipients are
selected from Oracle BAM users listed in Oracle BAM Administrator as shown
in Figure F–3.

Figure F–3 Select Names dialog box

■ Delivery field

If you populate this field with predefined values in the list, the only value that
appears in this field is Email.

It is not recommended that you use the Select Field button as you must then
populate a data object with a field set to smtp because this is the only delivery
method supported. (No other delivery options are supported.)

■ Report field

If you populate this field with the Select Report button, the value that appears
in this field is the display name of the report.

Actions

Oracle BAM Alert Rule Options F-9

If you populate this field from a Data Object, the value must be the report ID
of that report, and not the display name. To get the report ID, click the report
and click the Copy Shortcut link. A window opens with a link such as:

http://myServer/oraclebam/ReportServer/default.aspx?Event=ViewReport&
ReportDef=1&Buttons=False

In this link the ReportDef value, 1, is the report ID of the report Emp_Report.
Every report in Oracle Business Activity Monitoring has a unique report ID.

3. Configure the Report Parameter Values.

Enter all of the parameters required by the report.

Click New in the Report Parameter Values list to configure the parameter.

Enter the parameter name in the Name field, and click Select Field to select the
field on which the parameter acts.

Key in the parameter value, or select the field from the Field Selection dialog box,
and click OK.

For special values use the underscore (_), for example, _ALL_, _BLANK_, and _
NULL_.

Actions

F-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The selected field ID appears in the Value text box. Click OK to confirm and
return to the parameters list.

F.3.5 Launch a rule
Select a dependent rule that includes the when this rule is launched event. For an
example of constructing a dependent rule see Section 37.5, "Creating Complex Alerts."

F.3.6 Launch rule if an action fails
Select a dependent rule to launch if any of the actions included in the rule fail. For an
example of constructing a dependent rule see Section 37.5, "Creating Complex Alerts"

F.3.7 Delete rows from a Data Object
Select the data object, and construct a filter entry such that when the filter condition is
met the row is removed from the data object.

Actions

Oracle BAM Alert Rule Options F-11

F.3.8 Call a Web Service
When this action is selected, do the following steps to configure the web service:

1. Enter the web service or WSIL end point URL. The URL must begin with the
"http" scheme and must end in a valid extension (?WSDL, .WSDL or .WSIL).

For example:

http://host_name:port_
number/OracleBAMWS/WebServices/DataObjectOperationsByID?WSDL

http://api.google.com/GoogleSearch.wsdl

http://host_name:port_number/inspection.wsil

If it is a secure web service select the box and enter the required credentials.

2. Click Display Services to display the available services of the URL entered in the
field.

3. Click Map Parameters.

When the event is based on a data object change (for example, When a data field
changes in data object, When a data field in a report meets specified conditions,
When a data field in a data object meets specified conditions), a selection list of
fields to which the parameter can be mapped is displayed.

To map the parameters choose the Data Object Field option, and select a data
object field from the list next to each web service parameter listed in the Alert Web
Service - Parameter Mapping dialog box.

When the event is not based on a data object change, the value is entered in a text
box.

4. Click OK to close the Alert Web Service - Parameter Mapping dialog box and the
Alert Web Service Configuration dialog box.

F.3.9 Run an Oracle Data Integrator Scenario
Use this action to trigger a scenario in Oracle Data Integrator. This action is only
available if the integration files for Oracle Data Integrator have been installed. See
Section 34.2, "Installing the Oracle Data Integrator Integration Files" for more
information.

Ensure that the Oracle Data Integrator agent is running and that the agent host, port,
and login credentials are properly configured in Oracle Enterprise Manager Fusion
Middleware Control. Oracle BAM cannot verify that the Oracle Data Integrator agent
is running, and if it is not running, the alert fires, but the action is not carried out as
expected. Also, Oracle BAM alerts that trigger Oracle Data Integrator scenarios do not

Note: Oracle BAM cannot determine if the web service is hosted on a
server which is behind a secure server. It is your responsibility to
indicate whether the web service is behind an HTTP basic
authentication based server, and you must enter valid credentials if
they are required.

Note: If the web service does not respond to the call, then there are
no logs available pertaining to the non-response or failure.

Frequency Constraint

F-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

track the success or failure of the Oracle Data Integrator scenario call, and it is not
logged on the Oracle BAM side. See "Configuring Oracle Data Integrator Properties,"
in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite for more
information.

In the alert creation dialog box, select the Oracle Data Integrator scenario to invoke by
selecting the scenario name and version from the dropdown list.

If the scenario uses variables in it, choose the values (type in a value or choose a field
value from the data object) to pass to Scenario Variables in the same screen.

F.4 Frequency Constraint
The Frequency Constraint feature prevents a user’s email inbox from being flooded
with alerts by limiting the number of alert messages that can be sent out during a
given time interval.

Frequency Constraint can be edited only if it is appropriate for the event selected.
otherwise it is disabled. It can be set to a value of time which could be in seconds,
minutes, or hours.

This limits the number of times the rule launches in a given time period. With
real-time data, transactions can occur every millisecond, so alerting frequency must be
controlled.

G

Oracle BAM ICommand Operations and File Formats G-1

G Oracle BAM ICommand Operations and File
Formats

This appendix provides a detailed reference for each operation and parameter
available in the ICommand command-line utility and web service. This appendix
contains the following topics:

■ Section G.1, "Summary of Individual Operations"

■ Section G.2, "Detailed Operation Descriptions"

■ Section G.3, "Format of Command File"

■ Section G.4, "Format of Log File"

■ Section G.5, "Sample Export File"

■ Section G.6, "Regular Expressions"

For more information about ICommand see the following topics:

■ Chapter 38, "Using ICommand"

■ Section 36.5, "Using the ICommand Web Service"

G.1 Summary of Individual Operations
This section summarizes the parameters that can be used with each ICommand
operation. You can also see a summary of these operations in the command window
by entering icommand (without any parameters) at the command prompt.

Table G–1 summarizes the commands available in ICommand.

Table G–1 ICommand Command Summary

Command Parameters

clear -name itemname

[-type [dataobject|folder|distributionlist]]

For more information about clear see Section G.2.1, "Clear."

Summary of Individual Operations

G-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

delete [-name itemname]

[-type [dataobject|folder|report|rule|securityfilters|

 distributionlist|ems|eds|all]]

[-match pattern]

[-regex regularexpression]

[-all [0|1]]

[-systemobjects [0|1]]

For more information about delete see Section G.2.2, "Delete."

export -file file_name

[-name itemname]

[-type [dataobject|folder|report|rule|securityfilters|

distributionlist|ems|eds|all]]

[-match pattern]

[-regex regularexpression]

[-all [0|1]]

[-systemobjects [0|1]]

[-dependencies [0|1]]

[-layout [0|1]]

[-contents [0|1]]

[-permissions [0|1]]

[-owner [0|1]]

[-header [0|1]]

[-footer [0|1]]

[-append [0|1]]

[-preview [0|1]]

For more information about export see Section G.2.3, "Export."

import -file file_name

-continueonerror

[-delay milliseconds]

[-updatelayout]

[-mode [preserveid|update|overwrite|append|rename|error]]

[-preserveowner]

[-setcol col_name/[null|now|value:override_value]]

[-preview]

For more information about import see Section G.2.4, "Import."

rename -name itemname

-newname newitemname

[-type [dataobject|folder|report|rule|distributionlist|ems|

 eds]]

For more information about rename see Section G.2.5, "Rename."

Table G–1 (Cont.) ICommand Command Summary

Command Parameters

Detailed Operation Descriptions

Oracle BAM ICommand Operations and File Formats G-3

G.2 Detailed Operation Descriptions
This section details each of the ICommand commands, their parameters, and gives
examples. It includes the following topics:

■ Section G.2.1, "Clear"

■ Section G.2.2, "Delete"

■ Section G.2.3, "Export"

■ Section G.2.4, "Import"

■ Section G.2.5, "Rename"

G.2.1 Clear
Clears the contents of an item in the Active Data Cache.

What it means to be cleared depends upon the item type:

■ For Data Objects, all existing rows within the Data Object are deleted.

■ For Folders, all contents of the Folder are deleted.

■ For Distribution Lists, all members (users and groups) are removed from the
distribution list.

Example G–1 Clearing a Data Object

icommand -cmd clear -name "/Samples/Call Center" -type dataobject

G.2.2 Delete
Deletes an item from the Active Data Cache.

Table G–2 Clear Command Parameters

Parameter Description

-name itemname The name of the item to be cleared. Required.

-type itemtype The type of the item to be cleared. The following are valid:

■ dataobject (see Example G–1)

■ folder

■ distributionlist

dataobject is assumed if this parameter is omitted.

Table G–3 Delete Command Parameters

Parameter Description

-all [0|1] Controls whether all items of the specified type are deleted (see
Example G–3).

A nonzero or omitted value means delete all items of the
specified type, a zero (0) value means only delete the named (or
matched) items. Zero is assumed if this parameter is omitted.

-match pattern A DOS-style pattern matching string, using the asterisk (*) and
question mark (?) characters. The items whose names match the
pattern are deleted.

-name itemname The name of the item to be deleted.

Detailed Operation Descriptions

G-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example G–2 Deleting a Data Object

icommand -cmd delete -name TestDO
//deletes a data object named TestDO. Note that dataobject type is assumed if

 the type parameter is not specified.

Example G–3 Deleting All Reports

icommand -cmd delete -type report -all 1
//deletes all objects of type report

Example G–4 Deleting All Objects

icommand -cmd delete -type all
//deletes all items except systemobejcts

G.2.3 Export
Exports information about one or more objects in the Active Data Cache to an XML
file. See Section G.5, "Sample Export File" for an example of an exported data object.

-regex regularexpr A regular expression pattern matching string. The items whose
names match the pattern are deleted. See Section G.6, "Regular
Expressions" for more information.

-systemobjects [0|1] Controls whether Data Objects in the System folder are
included when the all, match, or regex parameters are used.
Zero (0) means these data objects are not included. Zero is
assumed if this parameter is omitted.

-type itemtype The type of the item to be deleted. The following are valid:

■ dataobject (see Example G–2)

■ folder

■ report (see Example G–3)

■ rule

■ securityfilters (For the specified Data Objects)

■ distributionlist

■ ems (Enterprise Message Source)

■ eds (External Data Source)

■ all (see Example G–4)

dataobject is assumed if this parameter is omitted.

Table G–3 (Cont.) Delete Command Parameters

Parameter Description

Detailed Operation Descriptions

Oracle BAM ICommand Operations and File Formats G-5

Table G–4 Export Command Parameters

Parameter Description

-all [0|1] Controls whether all items of the specified type are exported.

A nonzero or omitted value means export all items of the
specified type, a zero value means only export the named (or
matched) items. Zero (0) is assumed if this parameter is
omitted.

For Reports, Folders, and Rules, only the items owned by the
user running ICommand are exported, unless the user running
ICommand is an administrator. When an administrator runs
ICommand, any user's items may be exported.

See Example G–12, "Exporting All of the Reports in the
System"

-append [0|1] Controls whether the exported information is appended to any
existing file.

A nonzero value means append. Zero (0) means overwrite the
contents of any existing files. Zero is assumed if this parameter
is omitted, or if the value is omitted.

The Append parameter must be used with the Header and
Footer parameters as described in Example G–20, "Using
Append Parameter in Export".

When the Append parameter is used, the Header and Footer
parameters must be defined. If they are not, ICommand
includes XML header information and closing XML
</OracleBAMExport> tags after each append to the export file.
The file is unusable for importing into Oracle BAM, because
the import stops when it finds the first </OracleBAMExport>
closing tag and ignores the rest of the objects.

-contents [0|1] Applies only to Data Objects. Controls whether content
information (row, column values) is to be exported.

A nonzero value means export content information. Zero (0)
means do not export content information. nonzero is assumed
if this parameter is omitted, or if the value is omitted.

-dependencies [0|1] Applies to only to Data Objects. Controls whether other Data
Objects that the exported Data Objects depend on in the
lookup columns are exported.

A nonzero value or the parameter present with no value
specifies that if the Data Objects being exported contain lookup
columns, then the Data Objects that are looked up are
exported. Zero is assumed if this parameter is omitted, or if the
value is omitted.

-file file_name The name of the file to export to. Required.

If the file does not exist, it is created. If the file does exist, any
contents are overwritten, unless the append parameter is used.
Because the file contains XML, it usually has an XML
extension.

Detailed Operation Descriptions

G-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

-footer [0|1] Controls whether closing XML information is written to the
end of the export file. This can be used to allow successive
executions of ICommand to assemble one XML file by
repeatedly appending to the same file.

A nonzero value means write the closing information. Zero (0)
means do not write the closing information. nonzero is
assumed if this parameter is omitted, or if the value is omitted.

When used with the Append parameter, you must set the
Footer value appropriately, or the file cannot be used with
ICommand Import. If Footer is not defined, each append
includes closing </OracleBAMExport> tags and the import
stops when the first closing tag is read and does not import the
remaining objects defined in the file.

See Example G–20, "Using Append Parameter in Export" for a
sample using this parameter.

-header [0|1] Controls whether XML header information is written to the
front of the export file. This can be used to allow successive
executions of ICommand to assemble one XML file by
repeatedly appending to the same file.

A nonzero value means write the header. Zero(0) means do not
write the header. nonzero is assumed if this parameter is
omitted, or if the value is omitted.

See Example G–20, "Using Append Parameter in Export" for a
sample using this parameter.

-layout [0|1] Applies only to Data Objects. Controls whether layout
information is to be exported.

A nonzero value means export layout information. Zero (0)
means do not export layout information. nonzero is assumed if
this parameter is omitted, or if the value is omitted.

-match pattern A DOS-style pattern matching string, using the asterisk (*) and
question mark (?) characters. The items whose names match
the pattern are exported (see Example G–19, "Exporting a Data
Object Using the Match Parameter").

-name itemname The name of the item to be exported.

-owner [0|1] Applies only to Folders, Reports, and Rules. Controls whether
the information about the owner of the items being exported is
included in the export.

A nonzero value means export the owner information. Zero (0)
means do not export the owner information. nonzero is
assumed if this parameter is omitted, or if the value is omitted.

-permissions [0|1] Applies only to Data Objects and Folders. Controls whether
permissions information is to be exported.

A nonzero value means export information about the
permission settings of the exported Data Objects or Folders.
Zero (0) means do not export permission information. Zero is
assumed if this parameter is omitted, or if the value is omitted.

For Data Objects, only the permissions of the Data Object itself
are exported. Any permissions that might be on the folders or
subfolders that the Data Objects are contained within are not
included.

For Folders, the permissions reflect the cumulative permissions
of all parent Folders of the Folders being exported.

Table G–4 (Cont.) Export Command Parameters

Parameter Description

Detailed Operation Descriptions

Oracle BAM ICommand Operations and File Formats G-7

Example G–5 Exporting a Data Object in a Folder

icommand -cmd export -name "/Samples/Call Center" -file "C:\CallCenter.xml"

Note that the type parameter was not included in this example. By default
dataobject is assigned to type if it is not specified.

Example G–6 Exporting a Data Object at the Root

icommand -cmd export -name TestDataObject -file "C:\TestDataObject.xml"

Note that the data object name was not preceded by the slash (/). When a Data Object
is in the root Data Objects folder, a slash is not required.

Example G–7 Exporting a Folder from My Reports

In the first case, the private:owner/Report prefix is used in the name parameter
because the user exporting the folder is not the folder owner.

icommand -cmd export -name "/private:bamadmin/Report/TestMainFolder/TestSubFolder"
 -type folder -file C:\FolderExportTest.xml

-preview [0|1] In preview mode, ICommand goes through the motions of
exporting all of the specified items, but does not actually
output any information. This can be used to see what would be
exported for a given command line, and what errors might
occur. In this mode, ICommand export continues processing
even after some errors that would cause non-preview mode to
stop the export.

A nonzero value means preview mode. nonzero is assumed if
the value is omitted. Zero (0) is assumed if the parameter is
omitted.

-regex regularexpr A regular expression pattern matching string. The items whose
names match the pattern are exported. See Section G.6,
"Regular Expressions" for more information.

-systemobjects [0|1] Controls whether Data Objects in the System folder are
included when the all, match, or regex parameters are used.
Zero (0) means these data objects are not included. Zero is
assumed if this parameter is omitted.

-type itemtype The type of the item to be exported. The following are valid:

■ dataobject (see Example G–5 and Example G–6)

■ folder (see Example G–7, Example G–8, and
Example G–9)

■ report (see Example G–10, Example G–11, and
Example G–12)

■ rule (see Example G–13)

■ securityfilters (For the specified Data Objects) (see
Example G–14)

■ distributionlist (see Example G–15)

■ ems (Enterprise Message Source) (see Example G–16)

■ eds (External Data Source) (see Example G–17)

■ all (see Example G–18)

dataobject is assumed if this parameter is omitted.

Table G–4 (Cont.) Export Command Parameters

Parameter Description

Detailed Operation Descriptions

G-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

In the second case, the private:owner/Report prefix was not used in the name
parameter because the user exporting the folder is the folder owner.

icommand -cmd export -name "/TestMainFolder/TestSubFolder" -type folder -file
 C:\FolderExportTest.xml

Example G–8 Exporting a Folder from Shared Reports

icommand -cmd export -name "/public/Report/MainFolderInShared" -type folder -file
 C:\FolderExportTest2.xml

Note that the public prefix is added to the name parameter.

Example G–9 Exporting a Folder from Data Objects

icommand -cmd export -name "/public/DataObject/Test Sub folder" -type folder -file
 C:\foldertest1.xml

Example G–10 Exporting a Private Report

As in Example G–7, there are two methods of exporting private reports.

icommand -cmd export -name "/private:bamadmin/Report/MyReport" -type report -file
C:\MyReport.xml

icommand -cmd export -name MyReport -type report -file C:\MyReport.xml

Example G–11 Exporting a Shared Report

icommand -cmd export -name "/public/Report/SharedReport" -type report -file
C:\SharedReport.xml

Example G–12 Exporting All of the Reports in the System

icommand -cmd export -type report -all -file C:\temp\TestAll.xml

Example G–13 Exporting an Alert Rule

icommand -cmd export -name Alert1 -type rule -file C:\Alert1.xml

Example G–14 Exporting a Security Filter

icommand -cmd export -type securityfilters -name "TestDO" -file
"C:\TestFilter.xml"

Note that in the name parameter the name of the Data Object is specified rather than
the name of the security filter.

Example G–15 Exporting a Distribution List

icommand -cmd export -name MyDistList -type distributionlist -file
C:\MyDistList.xml

Detailed Operation Descriptions

Oracle BAM ICommand Operations and File Formats G-9

Example G–16 Exporting an Enterprise Message Source

icommand -cmd export -type ems -name TestEMS -file C:\TestEMS.xml

Example G–17 Exporting an External Data Source

icommand -cmd export -type eds -name TestEDS -file C:\TestEDS.xml

Example G–18 Exporting All Oracle BAM Objects in the System

icommand -cmd export -type all -file C:\temp\TestAll.xml

Example G–19 Exporting a Data Object Using the Match Parameter

icommand -cmd export -match "/M*" -file "c:/exportDOstartingwithM.xml"

Example G–20 Using Append Parameter in Export

In the first case (the incorrect example), Append is used without setting the Header
and Footer parameters (by default Header and Footer are set to 1).

icommand -cmd export -type dataobject -name "/Samples/Call Center" -file do.xml
icommand -cmd export -type dataobject -name "/Samples/Employees" -file do.xml
-append
icommand -cmd export -type dataobject -name "/Samples/Film Sales" -file do.xml
-append

The output from these commands is as follows. Notice that an XML header and
closing tags are included with each append to the file. If this file is used for importing
data into Oracle BAM, only the first object is imported. As soon as the first
</OracleBAMExport> is read at line 4, the import stops.

<?xml version="1.0"?>
<OracleBAMExport Version="2020">
<exported object/>

</OracleBAMExport>
<?xml version="1.0"?>
<OracleBAMExport Version="2020">
<exported object/>

</OracleBAMExport>
<?xml version="1.0"?>
<OracleBAMExport Version="2020">
<exported object/>

</OracleBAMExport>

In the second case (the correct example), The Header and Footer parameters are
specified to produce the necessary output.

icommand -cmd export -type dataobject -name "/Samples/Call Center" -file do2.xml
 -header 1 -footer 0
 //only the footer is supressed in the first command
icommand -cmd export -type dataobject -name "/Samples/Employees" -file do2.xml
 -append 1 -header 0 -footer 0
 //both the header and the footer are suppressed in the intermediate commands
icommand -cmd export -type dataobject -name "/Samples/Film Sales" -file do2.xml
 -append 1 -header 0 -footer 1
 //only the header is suppressed in the last commands

Detailed Operation Descriptions

G-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

The output file produced by these commands can be used to import the objects into an
Oracle BAM Server.

<?xml version="1.0"?>
<OracleBAMExport Version="2020">
<exported object>
<exported object>

</OracleBAMExport>

G.2.4 Import
Imports the information from an XML file to an object in the Active Data Cache. The
object may be created, replaced, or updated.

If the object does not exist, it is created if possible. For Data Objects, the input file must
contain layout information to create the Data Object, and if the file contains no content
information, then an empty Data Object is created.

If the user running ICommand is not an administrator, Reports are always imported to
the private folders of the user running ICommand. If the path information in the
import file exactly matches existing private folders of the user running ICommand, the
imported report is placed in that location. Otherwise, it is placed into the root of that
user's private folders.

If the user running ICommand is an administrator, then the preserveowner option
may be used to allow Folders, Reports and Rules to be imported with their original
ownership and to their original location.

Table G–5 Import Command Parameters

Parameter Description

-continueonerror [0|1] While importing objects from a file, by default, ICommand
stops whenever an error is encountered. If you are importing
several objects and do not want to stop when an error is found
in one, use the continueonerror parameter to continue
importing the rest of the objects specified in the command.

Specify a one (1) to ignore errors and continue importing other
objects (see Example G–21).

-delay millisec Applies only to Data Objects. A value that specifies a delay that
is to occur between each row insertion or update.

This can be used to simulate active data at a specified rate.

The number is the number of milliseconds to wait between
each row. It must be greater than zero.

If this parameter is omitted, there is no delay.

See Example G–21, "Importing a Data Object With Delay"

-file file_name The name of the file to import from. Required. This would
usually be a file that was created through the export command.

-preserveowner Applies only to Folders, Reports, and Rules. Controls whether,
when the item is imported, the ownership of the item is set as
specified in the import file.

This setting of ownership can only be done if the ownership
was included in the file during export, and if the user running
ICommand is an administrator.

A nonzero value means set the ownership as specified in the
import file. Zero (0) means the imported items remain owned
by the user running ICommand. Zero is assumed if this
parameter is omitted, or if the value is omitted.

Detailed Operation Descriptions

Oracle BAM ICommand Operations and File Formats G-11

-preview [0|1] In preview mode, ICommand goes through the motions of
importing all of the specified items, but does not actually input
any information. This can be used to see what would be
imported for a given command line, and what errors might
occur. In this mode, ICommand import continues processing
even after some errors that would cause non-preview mode to
stop the import.

A nonzero value means preview mode. nonzero is assumed if
the value is omitted. Zero (0) is assumed if the parameter is
omitted.

This parameter is supported for the following objects: Rule,
Distribution list, EDS, EMS, Report, Folder, and Security Filters.

See Example G–22, "Importing a Report in Preview mode"

Table G–5 (Cont.) Import Command Parameters

Parameter Description

Detailed Operation Descriptions

G-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

-mode mode By default, if the mode parameter is not specified, the value
Error is assumed for objects of type Folder, Report, EDS, EMS,
and Distribution List.

The following mode values are valid for Folders, Reports, EMS,
and EDS objects:

■ overwrite

If the item exists, replaces it with the imported item.

■ rename

If the item exists, changes the name of the imported item.
The new name is computed automatically and reported in
a message.

■ error

If the item exists, terminates the import with an error.

The following values are valid for Distribution List objects:

■ overwrite

If the item exists, replaces it with the imported item.

■ rename

If the item exists, changes the name of the imported item.
The new name is computed automatically and reported in
a message.

■ append

If the item exists, appends the users in the imported list to
the existing list.

■ error

If the item exists, terminates the import with an error.

The following value is supported for Data Objects or Reports:

■ preserveid

This option is important because some other items, such as
Reports, point to the Data Objects they use by ID, not by
name.

Data Object Usage:

If the imported Data Object does not exist and must be
created, ICommand attempts to assign the Data Object the
same internal ID that the exported Data Object had. If it
cannot, the import is terminated with an error.

Report Usage:

If the imported Report does not exist and must be created,
ICommand attempts to assign the Report the same internal
ID that the exported Report had. If it cannot, the import is
terminated with an error.

Table G–5 (Cont.) Import Command Parameters

Parameter Description

Detailed Operation Descriptions

Oracle BAM ICommand Operations and File Formats G-13

-mode mode (cont.) Only the following value is valid for Data Objects:

■ update

Typically, when ICommand imports a Data Object, it
creates a new Data Object or locates the existing Data
Object and inserts the imported rows into that Data Object.

In update mode, ICommand instead attempts to locate
existing matching rows by Row ID, and updates those
existing rows with the values in the import file.
Unmatched rows are inserted. For matching Row IDs in
the import file that have no data columns specified, the
rows are deleted from the existing Data Object.

For Security Filters, the only value supported is overwrite. If
overwrite is not specified and the Data Object contains at
least one Security Filter, the import is terminated with an error.

This parameter is not supported for Rules.

-setcol Allows override of column values from the command line
during import, including setting to current date/time.

-setcol column_name/NULL

-setcol column_name/NOW

-setcol column_name/VALUE:override-value

column_name is the name of a column in the Data Object
being imported. This cannot be a column of type lookup or
calculated. Column names that are not contained in the input
XML being imported can be specified, if they are columns in
the Data Object being imported into.

The portion after the slash specifies a value that should be
substituted for that column on each row that is imported -- any
value for that column in the import file is ignored (overridden).
Note that slash is the one character that is not permitted in
column names, so there is no potential conflict with any
column names in this syntax.

NULL specifies that the column value should be set to null. The
column must be defined as "nullable" in the Data Object's
layout.

NOW specifies that the column value should be set to the current
date/time when the column value is being set into the row.
This option can only be used for columns of type datetime,
timestamp, and string.

VALUE:override-value specifies an arbitrary constant value
(after the colon) that the column should be set to. The value
must be a legal value for the type of the column.

To allow multiple columns to be overridden, any number of
setcol parameters may be present. However, because
duplicate parameters are not permitted, ICommand recognizes
any parameter name that starts with setcol as a setcol
parameter (for example, setcol1, setcol2, and so on).

Sample command line:

icommand -cmd import -file myfile.xml -setcol1
Field1/null -setcol2 Field3/now -setcol3
"Customer Name/value:John Q. Public"

Table G–5 (Cont.) Import Command Parameters

Parameter Description

Detailed Operation Descriptions

G-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Example G–21 Importing a Data Object With Delay

icommand -cmd import -file C:\TestDO.xml -delay 1000 -continueonerror 1

Example G–22 Importing a Report in Preview mode

icommand -cmd import -file C:\TestReport.xml -preview 1

G.2.5 Rename
Renames an item in the Active Data Cache.

Example G–23 Renaming a Data Object in a Folder

icommand -cmd rename -type dataobject -name "/TestDataObjectFolder/TestDataObject"
 -newname NewTestDataObject

Example G–24 Renaming Folders

Renaming a data object folder:

icommand -cmd rename -type folder -name "/public/DataObject/TestFolder"
 -newname "/public/DataObject/NewTestFolder"

-updatelayout Applies only to Data Objects. Controls whether, if the Data
Object being imported exists, the layout (schema) of the Data
Object is updated according to the layout information in the
import file.

True if parameter is present; false if parameter is not present.

Table G–6 Rename Command Parameters

Parameter Description

-name itemname The name of the item to be renamed. Required.

The full folder path must be given when renaming objects of
type Folder (see Example G–24, "Renaming Folders").

-newname newitemname The new name for the item. Required.

The full folder path must be given when renaming objects of
type Folder (see Example G–24, "Renaming Folders").

For Data Objects and Reports, only the new base name should
be given, with no path (for example -newname "MyReport").

-type itemtype The type of object to be renamed. The following are valid:

■ dataobject (see Example G–23)

■ folder (see Example G–24)

■ report (see Example G–25)

■ rule

■ distributionlist (see Example G–26)

■ ems (Enterprise Message Source)

■ eds (External Data Source)

dataobject is assumed if this parameter is omitted. all is
not supported as an item type in the rename command.

Table G–5 (Cont.) Import Command Parameters

Parameter Description

Format of Command File

Oracle BAM ICommand Operations and File Formats G-15

Renaming a private report folder:

icommand -cmd rename -type folder -name "/private:weblogic/Report/MySubFolder"
 -newname "/private:weblogic/Report/NewMySubFolder"

Renaming a shared report folder

icommand -cmd rename -type folder -name "/public/Report/TestSubFolder"
-newname "/public/Report/NewTestSubFolder"

Example G–25 Renaming a Report in a Private Folder

icommand -cmd rename -type report -name "/TestReportFolder/TestReport" -newname
 NewTestReport

Example G–26 Renaming a Distribution List

icommand -cmd rename -type distributionlist -name TestList -newname MyDistList

G.3 Format of Command File
This section contains the following topics:

■ Section G.3.1, "Inline Content"

■ Section G.3.2, "Command IDs"

■ Section G.3.3, "Continue On Error"

The command file contains the root tag OracleBAMCommands.

Within the root tag is a tag for every command to be executed. The tag name is the
command name, and the parameters for the command are attributes.

Sample command file:

<?xml version="1.0" encoding="utf-8"?>
<OracleBAMCommands continueonerror="1">
<Export name="Samples/Media Sales" file="MediaSales.xml" contents="0" />
<Rename name="Samples/Call Center" newname="Call Centre" />
<Delete type="EMS" name="WebLog" />
<Delete type="EMS" name="WebLog2" />

</OracleBAMCommands>

The output of this sample command file is shown in Section G.4, "Format of Log File."

G.3.1 Inline Content
When using a command file to import, the inline option enables you to include the
import content inside the command file, rather than in a separate import file. Here is
an example:

<?xml version="1.0"?>
<OracleBAMCommands>
<Import inline="1">
<OracleBAMExport Version="2013">
 <DataObject Version="14" Name="Employees_Inline" ID="_Employees_Inline"
 Path="/Samples" External="0">
 <Layout>
 <Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="100"
 Nullable="1" Public="1"/>
 <Column Name="Sales Area" ID="_Sales_Area" Type="string" MaxSize="100"

Format of Command File

G-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

 Nullable="1" Public="1"/>
 <Column Name="Sales Number" ID="_Sales_Number" Type="integer"
 Nullable="1" Public="1"/>
 <Column Name="Timestamp" ID="_Timestamp" Type="timestamp" Nullable="0"
 Public="1"/>
 <Indexes/>
 </Layout>
 <Contents>
 <Row ID="1">
 <Column ID="_Salesperson" Value="Greg Masters"/>
 <Column ID="_Sales_Area" Value="Northeast"/>
 <Column ID="_Sales_Number" Value="567"/>
 <Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>
 </Row>
 <Row ID="2">
 <Column ID="_Salesperson" Value="Lynette Jones"/>
 <Column ID="_Sales_Area" Value="Southwest"/>
 <Column ID="_Sales_Number" Value="228"/>
 <Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>
 </Row>
 <Row ID="3">
 <Column ID="_Salesperson" Value="Noel Rogers"/>
 <Column ID="_Sales_Area" Value="Northwest"/>
 <Column ID="_Sales_Number" Value="459"/>
 <Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>
 </Row>
 </Contents>
 </DataObject>
</OracleBAMExport>
</Import>
</OracleBAMCommands>

G.3.2 Command IDs
This feature is only used when output is being sent to a log file. To make the parsing of
log results easier, each command can be given an ID. This ID is included in the Result
or Error elements of any output related to that command.

Sample Input:

<OracleBAMCommands continueonerror="1">
<Delete id="1" type="dataobject" name="Data Object A"/>
<Delete id="2" type="dataobject" name="Data Object B"/>

</OracleBAMCommands>

Sample Output Log File:

<?xml version="1.0"?>
<ICommandLog Login="weblogic">
<Results Command="Delete" ID="1">Data Object "/Data Object A"

 deleted.</Results>
<Error Command="Delete" ID="2">
<![CDATA[BAM-02409: There is no Data Object named "Data Object B".
[ErrorSource="ICommandEngine",ErrorID="ICommandEngine.DOExist"]]]>

</Error>
</ICommandLog>

Format of Log File

Oracle BAM ICommand Operations and File Formats G-17

G.3.3 Continue On Error
Ordinarily, ICommand executes commands in a command file until a failure occurs, or
until they all complete successfully. In other words, if a command file contains 20
commands, and the second command fails for any reason, then no further commands
are executed. This behavior can be changed by using the continueonerror attribute
at either a global level or for each command.

Example G–27 shows how to use the continueonerror attribute so that all
commands are executed regardless of if any failures occur

Example G–27 Enabling Global ContinueOnError Mode

<OracleBAMCommands continueonerror="1">
<Delete id="1" type="dataobject" name="Data Object A"/>
<Delete id="2" type="dataobject" name="Data Object B"/>

</OracleBAMCommands>

In Example G–28, continueonerror only applies to the command that deletes Data
Object A. If this command fails, then ICommand outputs the error and continues. But
if any other command fails, ICommand stops immediately.

Example G–28 Enabling Command-Level ContinueOnError Mode

<OracleBAMCommands>
<Delete id="1" type="dataobject" name="Data Object A" continueonerror="1"/>
<Delete id="2" type="dataobject" name="Data Object B"/>
<Delete id="3" type="dataobject" name="Data Object C"/>
<Delete id="4" type="dataobject" name="Data Object D"/>

</OracleBAMCommands>

G.4 Format of Log File
The log file contains the root tag ICommandLog.

Within the root tag is an entry for every error or informational message logged.

Errors are logged with the tag Error.

Informational messages are logged with the tag Results.

Both Results and Error tags optionally contain an attribute of the form
Command=cmdname, if appropriate, that contains the name of the command that
generated the error or informational message.

This sample log file is output of command file given in Section G.3, "Format of
Command File":

<?xml version="1.0" encoding="utf-8"?>
<ICommandLog Login="user_name">
<Results Command="Export">Data Object "/Samples/Media Sales" exported

 successfully (0 rows).</Results>
<Results Command="Export">1 items exported successfully.</Results>
<Results Command="Rename">Data Object "/Samples/Call Center" renamed to

 "/Samples/Call Centre".</Results>
<Results Command="Delete">Enterprise Message Source "WebLog" deleted.</Results>
<Error Command="Delete"><![CDATA[Error while processing command "Delete".

 [ErrorSource="ICommand", ErrorID="ICommand.Error"] There is no Enterprise Message
 Source named "WebLog2". [ErrorSource="ICommand",
 ErrorID="ICommand.EMSExist"]]]></Error>
</ICommandLog>

Sample Export File

G-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

G.5 Sample Export File
The following example shows a sample file resulting from exporting a Data Object.

<?xml version="1.0"?>
<OracleBAMExport Version="2018">
<DataObject Version="14" Name="Employees" ID="_Employees" Path="/Samples"

 External="0">
<Layout>
<Column Name="Salesperson" ID="_Salesperson" Type="string" MaxSize="100"

 Nullable="1" Public="1"/>
<Column Name="Sales Area" ID="_Sales_Area" Type="string" MaxSize="100"

 Nullable="1" Public="1"/>
<Column Name="Sales Number" ID="_Sales_Number" Type="integer" Nullable="1"

 Public="1"/>
<Column Name="Timestamp" ID="_Timestamp" Type="timestamp" Nullable="0"

 Public="1"/>
<Indexes/>

</Layout>
<Contents>
<Row ID="1">
<Column ID="_Salesperson" Value="Greg Masters"/>
<Column ID="_Sales_Area" Value="Northeast"/>
<Column ID="_Sales_Number" Value="567"/>
<Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>

</Row>
<Row ID="2">
<Column ID="_Salesperson" Value="Lynette Jones"/>
<Column ID="_Sales_Area" Value="Southwest"/>
<Column ID="_Sales_Number" Value="228"/>
<Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>

</Row>
<Row ID="3">
<Column ID="_Salesperson" Value="Noel Rogers"/>
<Column ID="_Sales_Area" Value="Northwest"/>
<Column ID="_Sales_Number" Value="459"/>
<Column ID="_Timestamp" Value="2004-09-14T14:07:41.0000560PDT"/>

</Row>
</Contents>

</DataObject>
</OracleBAMExport>

G.6 Regular Expressions
The export and delete commands optionally accept a regular expression with the
regex parameter.

A regular expression is a pattern of text that consists of ordinary characters (for
example, letters a through z) and special characters, known as metacharacters. The
pattern describes one or more strings to match when searching for items by name.

Note: The behavior of ICommand -regex is exactly like the
java.util.regex package for matching character sequences against
patterns specified by regular expressions.

Regular Expressions

Oracle BAM ICommand Operations and File Formats G-19

Table G–7 contains the complete list of metacharacters and their behavior in the
context of regular expressions.

Table G–7 Metacharacters for Regular Expressions

Character Description

\ Marks the next character as a special character, a literal, a
backreference, or an octal escape. For example, 'n' matches the
character "n". '\n' matches a newline character. The sequence
'\\' matches "\" and "\(" matches "(".

^ Matches the position at the beginning of the input string. If the
RegExp object's Multiline property is set, ^ also matches the
position following '\n' or '\r'.

$ Matches the position at the end of the input string. If the RegExp
object's Multiline property is set, $ also matches the position
preceding '\n' or '\r'.

* Matches the preceding character or subexpression zero or more
times. For example, zo* matches "z" and "zoo". * is equivalent to
{0,}.

+ Matches the preceding character or subexpression one or more
times. For example, 'zo+' matches "zo" and "zoo", but not "z". + is
equivalent to {1,}.

? Matches the preceding character or subexpression zero or one
time. For example, "do(es)?" matches the "do" in "do" or "does". ?
is equivalent to {0,1}

{n} n is a nonnegative integer. Matches exactly n times. For example,
'o{2}' does not match the 'o' in "Bob," but matches the two o's in
"food".

{n,} n is a nonnegative integer. Matches at least n times. For example,
'o{2,}' does not match the "o" in "Bob" and matches all the o's in
"foooood". 'o{1,}' is equivalent to 'o+'. 'o{0,}' is equivalent to 'o*'.

{n,m} M and n are nonnegative integers, where n <= m. Matches at
least n and at most m times. For example, "o{1,3}" matches the
first three o's in "fooooood". 'o{0,1}' is equivalent to 'o?'. Note
that you cannot put a space between the comma and the
numbers.

? When this character immediately follows any of the other
quantifiers (*, +, ?, {n}, {n,}, {n,m}), the matching pattern is
non-greedy. A non-greedy pattern matches as little of the
searched string as possible, whereas the default greedy pattern
matches as much of the searched string as possible. For example,
in the string "oooo", 'o+?' matches a single "o", while 'o+'
matches all 'o's.

. Matches any single character except "\n". To match any
character including the '\n', use a pattern such as '[\s\S]'.

(pattern) A subexpression that matches pattern and captures the match.
The captured match can be retrieved from the resulting Matches
collection using the $0...$9 properties. To match parentheses
characters (), use '\(' or '\)'.

(?:pattern) A subexpression that matches pattern but does not capture the
match, that is, it is a non-capturing match that is not stored for
possible later use. This is useful for combining parts of a pattern
with the "or" character (|). For example, 'industr(?:y|ies) is a
more economical expression than 'industry|industries'.

Regular Expressions

G-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

(?=pattern) A subexpression that performs a positive lookahead search,
which matches the string at any point where a string matching
pattern begins. This is a non-capturing match, that is, the match
is not captured for possible later use. For example 'Windows
(?=95|98|NT|2000)' matches "Windows" in "Windows 2000" but
not "Windows" in "Windows 3.1". Lookaheads do not consume
characters, that is, after a match occurs, the search for the next
match begins immediately following the last match, not after the
characters that comprised the lookahead.

(?!pattern) A subexpression that performs a negative lookahead search,
which matches the search string at any point where a string not
matching pattern begins. This is a non-capturing match, that is,
the match is not captured for possible later use. For example
'Windows (?!95|98|NT|2000)' matches "Windows" in "Windows
3.1" but does not match "Windows" in "Windows 2000".
Lookaheads do not consume characters, that is, after a match
occurs, the search for the next match begins immediately
following the last match, not after the characters that comprised
the lookahead.

x|y Matches either x or y. For example, 'z|food' matches "z" or
"food". '(z|f)ood' matches "zood" or "food".

[xyz] A character set. Matches any of the enclosed characters. For
example, '[abc]' matches the 'a' in "plain".

[^xyz] A negative character set. Matches any character not enclosed.
For example, '[^abc]' matches the 'p' in "plain".

[a-z] A range of characters. Matches any character in the specified
range. For example, '[a-z]' matches any lowercase alphabetic
character in the range 'a' through 'z'.

[^a-z] A negative range characters. Matches any character not in the
specified range. For example, '[^a-z]' matches any character not
in the range 'a' through 'z'.

\b Matches a word boundary, that is, the position between a word
and a space. For example, 'er\b' matches the 'er' in "never" but
not the 'er' in "verb".

\B Matches a nonword boundary. 'er\B' matches the 'er' in "verb"
but not the 'er' in "never".

\cx Matches the control character indicated by x. For example, \cM
matches a Control-M or carriage return character. The value of x
must be in the range of A-Z or a-z. If not, c is assumed to be a
literal 'c' character.

\d Matches a digit character. Equivalent to [0-9].

\D Matches a nondigit character. Equivalent to [^0-9].

\f Matches a form-feed character. Equivalent to \x0c and \cL.

\n Matches a newline character. Equivalent to \x0a and \cJ.

\r Matches a carriage return character. Equivalent to \x0d and
\cM.

\s Matches any white space character including space, tab,
form-feed, and so on. Equivalent to [\f\n\r\t\v].

\S Matches any non-white space character. Equivalent to [^
\f\n\r\t\v].

\t Matches a tab character. Equivalent to \x09 and \cI.

Table G–7 (Cont.) Metacharacters for Regular Expressions

Character Description

Regular Expressions

Oracle BAM ICommand Operations and File Formats G-21

\v Matches a vertical tab character. Equivalent to \x0b and \cK.

\w Matches any word character including underscore. Equivalent to
'[A-Za-z0-9_]'.

\W Matches any nonword character. Equivalent to '[^A-Za-z0-9_]'.

\xn Matches n, where n is a hexadecimal escape value. Hexadecimal
escape values must be exactly two digits long. For example,
'\x41' matches "A". '\x041' is equivalent to '\x04' & "1". Allows
ASCII codes to be used in regular expressions.

\num Matches num, where num is a positive integer. A reference back
to captured matches. For example, '(.)\1' matches two
consecutive identical characters.

\n Identifies either an octal escape value or a backreference. If \n is
preceded by at least n captured subexpressions, n is a
backreference. Otherwise, n is an octal escape value if n is an
octal digit (0-7).

\nm Identifies either an octal escape value or a backreference. If \nm
is preceded by at least nm captured subexpressions, nm is a
backreference. If \nm is preceded by at least n captures, n is a
backreference followed by literal m. If neither of the preceding
conditions exists, \nm matches octal escape value nm when n
and m are octal digits (0-7).

\nml Matches octal escape value nml when n is an octal digit (0-3) and
m and l are octal digits (0-7).

\un Matches n, where n is a Unicode character expressed as four
hexadecimal digits. For example, \u00A9 matches the copyright
symbol (©).

Table G–7 (Cont.) Metacharacters for Regular Expressions

Character Description

Regular Expressions

G-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

H

Normalized Message Properties H-1

HNormalized Message Properties

Header manipulation and propagation is a key business integration messaging
requirement. Oracle BPEL Process Manager, Oracle Mediator, Oracle JCA, and B2B
rely extensively on header support to solve customers’ integration needs. For example,
you can preserve a file name from the source directory to the target directory by
propagating it through message headers. In Oracle BPEL Process Manager and Oracle
Mediator, you can access, manipulate, and set headers with varying degrees of UI
support.

Normalized Message is simplified to have only two parts, properties and payload.

Typically, properties are name-value pairs of scalar types. To fit the existing complex
headers into properties, properties will be flattened into scalar types.

The user experience is simplified while manipulating headers in design time, because
the complex properties are predetermined. In the mediator or BPEL designer, you can
manipulate the headers with some reserved key words.

However, this method does not address the properties that are dynamically generated
based on your input. Based on your choice, the header definitions are defined. These
definitions are not predetermined and hence cannot be accounted for in the list of
predetermined property definitions. You cannot design header manipulation of the
dynamic properties before they are defined. To address this limitation, you must
generate all the necessary services (composite entry points) and references. This
restriction applies to services that are expected to generate dynamic properties. Once
dynamic properties are generated, they must be stored for each composite. Only then
you can manipulate the dynamic properties in Mediator or BPEL designer.

The chapter includes the following sections:

■ Section H.1, "Oracle BPEL Process Manager Properties"

■ Section H.2, "Oracle Web Services Addressing Properties"

H.1 Oracle BPEL Process Manager Properties
Table H–1 lists all the predetermined properties of a normalized message for Oracle
BPEL Process Manager.

Oracle Web Services Addressing Properties

H-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

H.2 Oracle Web Services Addressing Properties
Table H–2 lists all the predetermined properties of a normalized message for Web
Services Addressing.

Table H–1 Properties for Oracle BPEL Process Manager

Property Name
Propagatable
(Yes/No)

Direction
(Inbound
/Outbound)

Data
Type

Range of
Valid Values Description

bpel.metadata Yes Both String Any string,
size limit:
1000

This contains extra
information that user
wants to associate the
BPEL instance to.
Whatever passed in
will be stored in the
metadata column of
the cube_instance
table.

bpel.priority Yes Inbound String
that can
be read
into an
integer

[1-10]. 1
being the
highest
priority

Goes into cube_
instance priority
column. Used by
system to prioritize.

bpel.title No Inbound String Any string,
size limit:
100

Goes into the title
column of cube_
instance table.

bpel.instanceIndex1 No Inbound String Any string,
size limit:
100

This goes into ci_
indexes table. Extra
index for cube_
instance.

bpel.instanceIndex2 No Inbound String Any string,
size limit:
100

This goes into ci_
indexes table. Extra
index for cube_
instance.

bpel.instanceIndex3 No Inbound String Any string,
size limit:
100

This goes into ci_
indexes table. Extra
index for the cube_
instance.

Oracle Web Services Addressing Properties

Normalized Message Properties H-3

Table H–2 Properties for Oracle Web Services Addressing

Property Name
Propagatable
(Yes/No)

Direction
(Inbound
/Outbound)

Data
Type

Range of
Valid Values Description

wsa.messageId No Both String URI format This property specifies
the identifier for the
message and the
endpoint to which
replies to this message
should be sent as an
Endpoint Reference.

wsa.relatesTo No Both String URI format This optional
(repeating) element
information item
contributes one
abstract [relationship]
property value, in the
form of an (IRI, IRI)
pair. The content of this
element (of type
xs:anyURI) conveys
the [message id] of the
related message.

wsa.replyToAddress No Both String URI format Is a contract between
two components
communicating
asynchronously.

wsa.replyToPortType No Both QName Any QName This value is passed to
the WS service to
configure portType on
the service's callback. It
is translated to the
WSA callback
EndpointReference's
PortType element.

Oracle Web Services Addressing Properties

H-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

wsa.replyToService No Both QName Any QName This value is passed to
the WS service to
configure service on
the service's callback. It
is translated to the
WSA callback
EndpointReference's
ServiceName
element.

wsa.action No Both String URI format This REQUIRED
element (whose
content is of type
xs:anyURI) conveys
the value of the
[action] property.

wsa.to No Both String URI format This optional element
(whose content is of
type xs:anyURI)
provides the value for
the [destination]
property. If this
element is NOT
present then the value
of the [destination]
property is
http://www.w3.org
/2005/08/addressi
ng/anonymous.

Table H–2 (Cont.) Properties for Oracle Web Services Addressing

Property Name
Propagatable
(Yes/No)

Direction
(Inbound
/Outbound)

Data
Type

Range of
Valid Values Description

I

Oracle User Messaging Service Applications I-1

IOracle User Messaging Service Applications

This appendix describes how to create your own Oracle User Messaging Service
applications using the procedures and code provided.

This chapter includes the following sections:

■ Section I.1, "Send Message to User Specified Channel"

■ Section I.2, "Send Email with Attachments"

I.1 Send Message to User Specified Channel
This chapter describes how to build and run the Send Message to User Specified
Channel application provided with Oracle User Messaging Service.

This chapter contains the following sections:

■ Section I.1.1, "Overview"

■ Section I.1.2, "Installing and Configuring SOA and User Messaging Service"

■ Section I.1.3, "Building the Sample"

■ Section I.1.4, "Creating a New Application Server Connection"

■ Section I.1.5, "Deploying the Project"

■ Section I.1.6, "Configuring User Messaging Preferences"

■ Section I.1.7, "Testing the Sample"

I.1.1 Overview
The "Send Message to User Specified Channel" application demonstrates a BPEL
process that allows a message to be sent to a user through a messaging channel
specified in User Messaging Preferences. After you have configured a device and
messaging channel addresses for each supported channel and the default device,

Note: For more information, and for code samples, refer to Oracle
Technology Network (http://www.oracle.com/technology).

Note: To learn about the architecture and components of Oracle User
Messaging Service, see Oracle Fusion Middleware Getting Started with
Oracle SOA Suite.

Send Message to User Specified Channel

I-2 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Oracle User Messaging Service routes the message to the user based on the preferred
channel setting that you configured.

I.1.1.1 Provided Files
The following files are included in the application:

■ SendMessage.pdf – this document.

■ Project – the directory containing Oracle JDeveloper project files.

■ Readme.txt.

■ Release notes

I.1.2 Installing and Configuring SOA and User Messaging Service
The installation of SOA and User Messaging Service has already been performed on
your hosted instance, and the sample users have already been seeded. Perform the
following steps to enable notifications in soa-infra, if not already done:

1. Using Enterprise Manager, go to the SOA Infrastructure menu, and select SOA
Administration > Workflow Notification Properties, and set Notification Mode
to ALL.

2. Configure the User Messaging drivers if required as described in "Configuring
Drivers" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite.

3. Set the email address for user weblogic by using the JXplorer LDAP browser.
Refer to "Updating Addresses in Your LDAP User Profile".

4. Restart the server.

I.1.2.1 Updating Addresses in Your LDAP User Profile
Perform the following steps to set the email address for user weblogic by using the
JXplorer LDAP browser:

I.1.2.1.1 Installing Download and install JXplorer from http://www.jxplorer.org.

I.1.2.1.2 Connecting 1.Set the embedded LDAP server admin password as follows:

■ Login to the Oracle WebLogic Server Administration Console.

■ Click the domain name link > Security > Embedded LDAP.

■ Enter a new Credential and Confirm Credential (for example, weblogic).

■ Click Save.

2. Connect from JXplorer by specifying the fields in Table I–1:

Table I–1 JXplorer Connection Fields

Field Value

Host WLS AdminServer hostname

Port WLS AdminServer port

Protocol LDAP v3

Security Level User + Password

User DN cn=Admin

Password password

Send Message to User Specified Channel

Oracle User Messaging Service Applications I-3

I.1.2.1.3 Setting User Messaging Device Addresses in LDAP The following example uses
the user weblogic. You may create and use additional users.

1. Expand the LDAP tree as follows: domain > myrealm > people > weblogic.

2. Click the user entry.

3. Select the HTML view tab on the right.

4. Enter the necessary Email Address and Mobile Phone Number.

5. Click Submit.

I.1.3 Building the Sample
Performing the following procedure of building the sample from scratch allows you to
learn how to add messaging to your SOA Composite Applications, and use User
Messaging Preferences.

1. Open Oracle JDeveloper 11g.

2. Create a new application by selecting File, New, General, Applications, and SOA
Applications. Click OK.

3. Enter the Application Name and click Next (Figure I–1).

Figure I–1 Creating a New Application and Project (1 of 3)

4. Enter the name for the project and click Next (Figure I–2).

Send Message to User Specified Channel

I-4 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure I–2 Creating a New Application and Project (2 of 3)

5. Select the Composite With BPEL composite template (Figure I–3). Click Finish.

Figure I–3 Creating a New Application and Project (3 of 3)

Send Message to User Specified Channel

Oracle User Messaging Service Applications I-5

6. In the Create BPEL Process dialog, enter the BPEL process name as SendMessage
(Figure I–4). Click OK.

Figure I–4 Creating the BPEL Process

7. Verify that Expose as a SOAP service is checked. Click OK.

8. You have now created an empty and default BPEL application (Figure I–5).

In the Oracle JDeveloper main window you can view the following components of
the application under the Composite.xml tab.

■ The left box is the definition of a web service client that is used to initiate an
application.

■ The middle box is a BPEL process that creates and formats the message and
calls the messaging service.

Note: You will later create the messaging service resource that is
used to send the message when you create the User Notification BPEL
process (steps 13 - 19).

Send Message to User Specified Channel

I-6 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure I–5 Empty and Default BPEL Application

9. Expand the xsd folder in the Application Navigator and open BPELProcess1.xsd
by double-clicking it (Figure I–6).

Figure I–6 Accessing the BPELProcess1.xsd File

10. Click the Source tab (Figure I–7).

11. Perform the following modifications to the inputs of this BPEL application:

In the generated file, SendMessage.xsd, in the xsd folder in the Application
Navigator under projects, the following element definition is created by default:

<element name="input" type="string"/>

This XSD element defines the input for the BPEL process.

Select the Source tab (Figure I–7), and replace the line above with the following
three lines:

Send Message to User Specified Channel

Oracle User Messaging Service Applications I-7

<element name="to" type="string"/>
<element name="subject" type="string"/>
<element name="body" type="string"/>

Figure I–7 Modifying the Inputs in the BPELProcess1.xsd File

12. From the File menu, select Save All.

13. View the expanded process element (Figure I–8).

Figure I–8 Viewing the Expanded Process Element

Send Message to User Specified Channel

I-8 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

14. To enable messaging in this process, drag and drop User Notification from BPEL
Activities and Components located in the Component Palette between the
receiveInput and callbackClient activities.

The User Notification activity appears (Figure I–9).

Figure I–9 User Notification Activity Before Configuring the Inputs

15. Click the XPath Expression Builder icon to the right of the To: input box.

16. Modify the expression for the To recipient, as follows:

■ In the BPEL Variables pane, select Variables, inputVariable, Payload,
clientprocess, and client:to (Figure I–10).

■ Click Insert Into Expression.

■ Click OK.

Send Message to User Specified Channel

Oracle User Messaging Service Applications I-9

Figure I–10 Defining the Recipient ("to") Expression

17. Click the XPath Expression Builder icon to the right of the subject: input box.

18. Modify the expression for the subject as follows:

■ In the BPEL Variables pane, select Variables, InputVariable, Payload,
clientprocess, and client:subject (Figure I–11).

■ Click Insert Into Expression.

■ Click OK.

Figure I–11 Defining the Subject Expression

Send Message to User Specified Channel

I-10 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

19. Click the XPath Expression Builder icon to the right of the body: input box.

20. Modify the expression for the body as follows:

■ In the BPEL Variables pane, select Variables, InputVariable, Payload,
clientprocess, and client:body (Figure I–12).

■ Click Insert Into Expression.

Figure I–12 Defining the Body Expression

■ Click OK.

■ Click Apply and then OK to apply the changes (Figure I–13).

Send Message to User Specified Channel

Oracle User Messaging Service Applications I-11

Figure I–13 Confirming the Changes to the Inputs

The changes to the inputs are saved and the configuration of the User
Notification Activity is complete. You can now see the User Notification
activity in the BPEL application (Figure I–14). The SOA Composite is
complete.

Figure I–14 User Notification Activity After Configuration of Inputs

I.1.4 Creating a New Application Server Connection
Perform the following steps to create a new Application Server Connection.

Send Message to User Specified Channel

I-12 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

1. Create a new Application Server Connection by right-clicking the project and
selecting New, Connections, and Application Server Connection (Figure I–15).

Figure I–15 New Application Server Connection

2. Name the connection SOA_server and click Next (Figure I–16).

3. Select WebLogic 10.3 as the Connection Type.

Figure I–16 New Application Server Connection

4. Enter the authentication information. The typical value for username is
weblogic.

Send Message to User Specified Channel

Oracle User Messaging Service Applications I-13

5. In the Connection dialog, enter the hostname, port and SSL port for the SOA
admin server, and enter the name of the domain for WLS Domain.

6. Click Next.

7. In the Test dialog, click Test Connection.

8. Verify that the message Success! appears.

The application server connection has been created.

I.1.5 Deploying the Project
Perform the following steps to deploy the project:

1. Deploy the project by selecting the SendMessage project, Deploy,
SendMessageProj, to, and SOA_server (Figure I–17).

Figure I–17 Deploying the Project

2. Verify that the message Build Successful appears in the log.

3. Enter the default revision and click OK.

4. Verify that the message Deployment Finished appears in the deployment log
(Figure I–18).

Send Message to User Specified Channel

I-14 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure I–18 Verifying that the Deployment is Successful

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in
Oracle User Messaging Service and configure a default device for the user
receiving the message in User Messaging Preferences, as described in the
following sections.

I.1.6 Configuring User Messaging Preferences
For users to receive the notifications, they must register the devices that they use to
access messages through User Messaging Preferences. Perform the following steps:

1. Log in to the User Messaging Preferences application at one of the following
URLs:

■ Directly at http://server:port/sdpmessaging/userprefs-ui

■ Through the Worklist application’s Preferences > Notification tab at:
http://server:port/integration/worklistapp

The User Messaging Preferences application appears.

2. Click the Messaging Channels tab (Figure I–19).

Note: Refer to Oracle Fusion Middleware Administrator's Guide for
Oracle SOA Suite for more information.

Send Message to User Specified Channel

Oracle User Messaging Service Applications I-15

Figure I–19 Messaging Channels Tab

You are prompted for login credentials.

3. In the Messaging Channels tab, select a channel.

4. Set a channel as the default by expanding the device folder, and then clicking Set
as Default adjacent to the selected channel.

A checkmark appears next to the selected channel, designating it as the default
means of receiving notifications. All messages sent to that user will be sent to that
channel.

I.1.7 Testing the Sample
The following steps describe how to perform a test message transmission through
Enterprise Manager.

Perform the following steps to run and test the sample:

1. Open a web browser window and login to Enterprise Manager for the SOA
domain. For example, http://host:port/em.

2. In Oracle Enterprise Manager, expand the SOA folder in the navigation tree, and
click the deployed SendMessageProj composite application. Click the Test button
to launch the test client page.

3. In the Input Arguments section provide the input values for invoking
SendMessageProj.

Enter the following values:

■ to: weblogic (the user)

■ subject: notification test (the subject)

■ body: the message content

4. Click Test Web Service.

Send Email with Attachments

I-16 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

I.1.7.1 Verifying the Execution of Sending the Email
Log in to the Human Workflow Engine. Verify the outgoing notifications and their
statuses from the Notification Manager tab. (Figure I–20).

Figure I–20 Viewing Outgoing Notifications

I.2 Send Email with Attachments
This section describes how to build and run the Send Email with Attachments
application provided with Oracle User Messaging Service.

This chapter contains the following sections:

■ Section I.2.1, "Overview"

■ Section I.2.2, "Installing and Configuring SOA and User Messaging Service"

■ Section I.2.3, "Running the Pre-Built Sample"

■ Section I.2.4, "Testing the Sample"

■ Section I.2.5, "Building the Sample"

■ Section I.2.6, "Creating a New Application Server Connection"

I.2.1 Overview
The "Send Email With Attachment" application demonstrates a BPEL process that
sends an email with an attached file.

Note: To learn about the architecture and components of Oracle User
Messaging Service, see Oracle Fusion Middleware Getting Started with
Oracle SOA Suite.

Send Email with Attachments

Oracle User Messaging Service Applications I-17

A BPEL process looks up a user’s email address from the identity store, reads a file
from the file system, creates email content and then sends an email to the
user.Section I.2.5, "Building the Sample" shows you how to add an email with
attachments to your SOA composite application, allowing your applications to be
enabled with messaging.If you want to model the application from scratch, go to the
section titled Building the Sample. Or, you can directly use the pre-built project
provided with this tutorial.

Before you run the pre-built sample or build the application from scratch, you must
install and configure the server as described in Section I.2.2, "Installing and
Configuring SOA and User Messaging Service". By default, soa-infra does not send out
notifications. The following steps describe installing and configuring the email drivers
needed to communicate with the email server.

I.2.1.1 Provided Files
The following files are included in the sample application:

■ ns_sendemail.pdf – this document.

■ Project – the directory containing Oracle JDeveloper project files.

■ Readme.txt.

■ Release notes

I.2.2 Installing and Configuring SOA and User Messaging Service
The installation of SOA and User Messaging Service has already been performed on
your hosted instance, and the sample user, weblogic, has already been created.
Perform the following steps to enable notifications in soa-infra, if not already done:

1. Using Enterprise Manager, go to the SOA Infrastructure menu, and select SOA
Administration > Workflow Notification Properties, and set Notification Mode
to ALL.

2. Configure the User Messaging drivers if required as described in "Configuring
Drivers" in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite.

3. Set the email address for user weblogic by using the JXplorer LDAP browser.
Refer to "Updating Addresses in Your LDAP User Profile".

4. Restart the server.

I.2.2.1 Updating Addresses in Your LDAP User Profile
Perform the following steps to set the email address for user weblogic by using the
JXplorer LDAP browser:

I.2.2.1.1 Installing Download and install JXplorer from http://www.jxplorer.org.

I.2.2.1.2 Connecting 1.Set the embedded LDAP server admin password as follows:

■ Login to the Oracle WebLogic Server Administration Console.

■ Click the domain name link > Security > Embedded LDAP.

■ Enter a new Credential and Confirm Credential (for example, weblogic).

■ Click Save.

2. Connect from JXplorer by specifying the fields in Table I–2:

Send Email with Attachments

I-18 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

I.2.2.1.3 Setting User Messaging Device Addresses in LDAP The following example uses
the user weblogic. You may create and use additional users.

1. Expand the LDAP tree as follows: domain > myrealm > people > weblogic.

2. Click the user entry.

3. Select the HTML view tab on the right.

4. Enter the necessary Email Address and Mobile Phone Number.

5. Click Submit.

I.2.3 Running the Pre-Built Sample
Perform the following steps to run and deploy the prebuilt sample application:

1. Open SendEmailWithAttachmentsApp.jws (contained in the .zip file) in Oracle
JDeveloper.

In the Oracle JDeveloper main window you can view the following components of
the sample application under the Composite.xml tab.

Figure I–21 Oracle JDeveloper Main Window

Table I–2 JXplorer Connection Fields

Field Value

Host WLS AdminServer hostname

Port WLS AdminServer port

Protocol LDAP v3

Security Level User + Password

User DN cn=Admin

Password password

Send Email with Attachments

Oracle User Messaging Service Applications I-19

■ The left box is the definition of a web service client that is used to initiate an
application.

■ The middle box is a BPEL process that creates and formats the message and
calls the messaging service.

■ The right box is the messaging service resource that is used to send the
message.

2. Create an Application Server Connection by right-clicking the project in the
navigation pane and selecting New. Follow the instructions in Section I.2.6,
"Creating a New Application Server Connection."

3. Deploy the project by selecting the SendEmail project, Deploy, SendEmailProj,
to, and SOA_server (Figure I–22).

Figure I–22 Deploying the Project

4. Verify that the message Build Successful appears in the log.

5. Enter the default revision and click OK.

6. Verify that the message Deployment Finished appears in the deployment log.

You have successfully deployed the application.

Before you can run the sample you must configure any additional drivers in
Oracle User Messaging Service and configure a default device for the user
receiving the message in User Messaging Preferences, as described in the
following sections.

Note: Refer to Oracle Fusion Middleware Administrator's Guide for
Oracle SOA Suite for more information.

Send Email with Attachments

I-20 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

I.2.4 Testing the Sample
The following steps describe how to perform a test message transmission through
Enterprise Manager.

Perform the following steps to run and test the sample:

1. Open a web browser window and login to Enterprise Manager for the SOA
domain. For example, http://host:port/em.

2. In Enterprise Manager, expand the SOA folder in the navigation tree, and click the
deployed SendEmailWithAttachmentsProj composite application. Click the Test
button to launch the test client page.

3. In the Input Arguments section provide the input values for invoking
SendEmailWithAttachmentsProj.

Enter the following values:

■ to: weblogic (the user)

■ subject: notification test (the subject)

■ body: the message content

■ attachmentName: the name of the being attached, including extension.

■ attachmentMimeType: for example, image/gif.

To send files such as PDF, DOC, GIF, or JPEG files, the following values can be
used for the attachmentMimeType entry:

– file-name.doc – attachmentMimeType: application/msword

– file-name.pdf – attachmentMimeType: application/pdf

– file-name.jpg – attachmentMimeType: image/jpeg

– file-name.gif – attachmentMimeType: image/gif

■ attachmentURI: the URI for the attachment

4. Click Test Web Service.

I.2.4.1 Verifying the Execution
Check the weblogic email account. It should have received an email with attachment.

I.2.5 Building the Sample
Performing the following procedure of building the sample from scratch allows you to
learn how to add messaging to your SOA Composite Applications, and use User
Messaging Preferences.

1. Open Oracle JDe1veloper 11g.

2. Create a new application by selecting File, New, Applications, and SOA
Application. Click OK.

3. Enter the Application Name and click Next (Figure I–23).

Send Email with Attachments

Oracle User Messaging Service Applications I-21

Figure I–23 Creating a New Application and Project (1 of 3)

4. Enter the name for the project and click Next (Figure I–24).

Figure I–24 Creating a New Application and Project (2 of 3)

5. Select the Composite With BPEL composite template (Figure I–25). Click Finish.

Send Email with Attachments

I-22 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure I–25 Creating a New Application and Project (3 of 3)

6. In the Create BPEL Process dialog, enter the BPEL process name as
SendEmailWithAttachments (Figure I–26). Click OK.

Figure I–26 Creating the BPEL Process

7. Verify that Expose as a SOAP service is checked. Click OK.

Send Email with Attachments

Oracle User Messaging Service Applications I-23

8. You have now created an empty and default BPEL application.

In the Oracle JDeveloper main window you can view the following components of
the sample application under the Composite.xml tab.

■ The left box is the definition of a web service client that is used to initiate an
application.

■ The middle box is a BPEL process that creates and formats the message and
calls the messaging service.

9. Expand the xsd folder in the Application Navigator and open
SendEmailWithAttachments.xsd by double-clicking it (Figure I–27).

Figure I–27 Accessing the SendEmailWithAttachments.xsd File

10. Click the Source tab (Figure I–27).

11. Perform the following modifications to the inputs of this BPEL application:

In the generated file, SendEmailWithAttachments.xsd, in the xsd folder in the
Application Navigator under projects, the following element definition is created
by default:

<element name="process">
 <complexType>
 <sequence>
 <element name="input" type="string"/>
 </sequence>
 </complexType>
</element>

Select the Source tab, and replace the lines above with the following:

<element name="process">

Note: You will later create the messaging service resource that is
used to send the message when you create the User Notification BPEL
process (steps 13-19).

Send Email with Attachments

I-24 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

<complexType>
 <sequence>
 <element name="to" type="string"/>
 <element name="subject" type="string"/>
 <element name="body" type="string"/>
 <element name="attachmentName" type="string"/>
 <element name="attachmentMimeType" type="string"/>
 <element name="attachmentURI" type="string"/>
 </sequence>
 </complexType>
 </element>

This xsd element defines the input for the BPEL process.

Figure I–28 Editing Email

12. Save the project.

13. Select the SendEmailWithAttachments.bpel editor screen.

14. Drag and drop an Email activity from BPEL Activities and Components located
in the Component Palette between the receiveInput and callbackClient activities
(Figure I–28).

15. In the Edit Email window, leave the From account as Default.

Send Email with Attachments

Oracle User Messaging Service Applications I-25

Figure I–29 Edit Email Window

16. To create the expression for To, select the Expression Builder (the second icon,
Figure I–30) and perform the following steps:

■ Select Identity Service Functions from the functions dropdown list.

■ Select the getUserProperty() function and select Insert into Expression.

■ Under BPEL variables select Variables > Process > Variables >inputVariable
 > payload > client:process > client:to.

■ Click Insert into Expression.

■ Type the string mail manually.

■ Correct the parenthesis so they are matched.

■ Click OK.

This expression (Figure I–30) takes the data from the web service and maps it to
the business email of the local SOA user.

Send Email with Attachments

I-26 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure I–30 Expression Builder for the To Path

The expression should appear as follows:

ids:getUserProperty(bpws:getVariableData('inputVariable',
'payload', '/client:process/client:to'),
'mail')

17. For Subject, select the Expression builder. Select getVariableData from Functions
and click Insert Into Expression.

Figure I–31 shows the Expression Builder for the Subject.

Send Email with Attachments

Oracle User Messaging Service Applications I-27

Figure I–31 Expression Builder for the Subject

The expression should appear as follows:

bpws:getVariableData('inputVariable', 'payload',
'/client:process/
client:subject')

18. For Body, select the Expression Builder and set the expression as shown in
Figure I–32.

Figure I–32 Expression Builder for the Body

The expression should appear as follows:

Send Email with Attachments

I-28 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

bpws:getVariableData('inputVariable','payload','/client:process/client:body')

19. In the Edit Email dialog (Figure I–33), ensure that the Multipart Message with
attachments box is checked.

When an email has multiple parts, the attachment count includes the body that is
set with the Wizard above. The body specified by the Wizard above is set as the
first body part.

For example, to represent a multipart mail with one (1) attached file, enter 2 as the
number of body parts. When there is one attachment, enter 1 as the number of
body parts.

Figure I–33 Edit Email Window

20. Set the attachments:

Each body part has three attributes: MimeType, BodyPartName, and
ContentBody. By default, the wizard generates default names, MIME types and
contents for each of the attachments.

The assignment of these body parts has to be changed to set the correct data by
modifying the copy rules in the assign activity in the notification scope. The copy
rules (specified in the Copy Operation tab) are grouped for each assignment in the
following order (the copy-to constructs are also listed):

MimeType - <to variable="varNotificationReq" part="EmailPayload"

query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/
ns1:MimeType"/>

Name - <to variable="varNotificationReq" part="EmailPayload"

query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/
ns1:BodyPartName"/>

Contents - <to variable="varNotificationReq" part="EmailPayload"

Send Email with Attachments

Oracle User Messaging Service Applications I-29

query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/
ns1:ContentBody"/>

1. Expand the Email node by selecting the plus sign icon (Figure I–34).

Figure I–34 Expanding the Email Node

2. Double-click the EmailParamAssign node (Figure I–35).

Figure I–35 Email ParamAssign Node

Send Email with Attachments

I-30 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

When making changes in the EmailParamAssign node (for example, editing
the XPath variables), perform a Save All from the File menu after making
each change. This will ensure that the changes are reflected in the .bpel file.

3. To edit the mimeType of the second body part (the first body part is the
contents set in the wizard) select the second body part variable ending with
MimeType by double-clicking it (Figure I–36).

Figure I–36 Editing the mimeType of the Second Body Part

4. Edit the XPath as shown below (Figure I–37):

From: /client:process/client:attachmentMimeType,

To: /EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/
ns1:BodyPart[2]/ns1:MimeType

Send Email with Attachments

Oracle User Messaging Service Applications I-31

Figure I–37 Editing the XPath for mimeType

5. Save the project.

6. To edit the attachment name for the second attachment, select the second body
part variable ending with BodyPartName by double-clicking it (Figure I–38).

Figure I–38 Editing the Attachment Name for the Second Attachment

7. Edit the XPath as shown below:

From: /client:process/client:attachmentName

To: /EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart

Send Email with Attachments

I-32 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

/ns1:BodyPart[2]/ns1:BodyPartName

Figure I–39 Editing the XPath for BodyPartName

8. Save the project.

9. To edit the attachment contents of the second attachment, select the second
body part variable ending with ContentBody by double-clicking it
(Figure I–40).

Figure I–40 Editing the Attachment Contents of the Second Attachment

Send Email with Attachments

Oracle User Messaging Service Applications I-33

10. Edit the XPath as shown below (Figure I–41):

From: ora:readFile(bpws:getVariableData('inputVariable','payload','/client:
process/client:attachmentURI'))

To:
/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/
ns1:BodyPart[2]/ns1:ContentBody

The ora:readFile() XPath function is available under BPEL Xpath
Extension Functions.

Figure I–41 Editing the XPath from the ContentBody

11. Click OK in the Edit Copy Operation dialog.

Send Email with Attachments

I-34 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

Figure I–42 Copy Operations Tab

12. Click OK in the assign activity. Save the project.

The Process Modeling procedure is complete. You can use the information in
this procedure to add notification with attachments to your SOA composite
application.

You can now deploy and run the application as described in Section I.2.3,
"Running the Pre-Built Sample."

I.2.6 Creating a New Application Server Connection
Perform the following steps to create a new Application Server Connection.

1. Create a new Application Server Connection by right-clicking the project and
selecting New, Connections, and Application Server Connection (Figure I–43).

Send Email with Attachments

Oracle User Messaging Service Applications I-35

Figure I–43 New Application Server Connection

2. Name the connection SOA_server and click Next (Figure I–44).

3. Select WebLogic 10.3 as the Connection Type.

Figure I–44 New Application Server Connection

4. Enter the authentication information. The typical value for username is
weblogic.

5. On the Connection dialog, enter the hostname, port and SSL port for the SOA
admin server, and enter the name of the domain for WLS Domain.

6. Click Next.

Send Email with Attachments

I-36 Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite

7. In the Test dialog, click Test Connection.

8. Verify that the message Success! appears.

The application server connection has been created.

Index-1

Index

A
abs function

description, B-8
access points, 40-6
access policies

on task content, 25-70
action types, 25-45
actionable emails, 29-30
activities

annotations tab, A-2
assign, A-3
bind entity, A-4
compensate, A-5
correlation sets tab, A-2
create entity, A-6
definition, 5-4
email, A-6
empty, A-7
flow, A-8
flowN, A-9
IM, A-10
invoke, A-11
Java embedding, A-12
overview, 5-4, A-2
phase, A-12
pick, A-13
properties tab, A-2
receive, A-14
receive entity, A-16
receive signal, A-15
reply, A-16
scope, A-17
sensors tab, A-2
sequence, A-18
signal, A-19
SMS, A-19
switch, A-20
tasks common to many activities, A-2
terminate, A-21
throw, A-21
transform, A-22
user notification, A-23
voice, A-24
wait, A-24
while, A-25

activity sensors
definition, 17-2

Adapter Configuration wizard
starting, 5-10

adapters
configuring, 5-10
definition, 5-10
in Oracle JDeveloper, 5-10
Oracle BAM, 32-1
overview, A-26
service names, 5-11
supported, 1-7

add-dayTimeDuration-to-dateTime function
description, B-3

adding a cross reference table column, 47-6
adding columns to domain value maps, 46-7
adding rows to domain value maps, 46-8
addQuotes function

description, B-14
ADF bindings filter, 30-2
ADF task flow for human tasks, 26-3
adfBindings bindings filter, 30-2
adf-desktop-integration.jar, 30-2
adfdiExcelDownload download filter, 30-3
adfdiRemote servlet, 30-3
ADFLibraryFilter filter, 30-3
advanced formatting, message sources, 33-8
aggregate functions in calculations, 31-4
alerts

history, 37-6
Oracle BAM

about, 37-1
actions, F-5
activating, 37-3
activity, 37-6
conditions, F-5
creating, 37-2
dependencies, 37-6
events, F-1
frequency constraint, F-12
history, 37-6
messages, 37-5
parameterized, F-7
templates, 37-4
web services, 37-7

annotations tab

Index-2

in activities, A-2
ant scripts

managing composites, 43-22
appendToList function

description, B-14
application roles

definition, 24-5
application template, 30-2
AQ adapter

capabilities, A-27
arrays

determining the size of, 7-29
in transformations, 45-27
manipulating, 7-28
maxOccurs attribute, 7-28
SOAP-encoded arrays not supported, 7-32
statically indexing into, 7-28

assertion tests
overview, 49-2

assertions
creating value asserts, 49-17
in composite test suites, 49-4

assign activity
adding to an asynchronous service, 9-5
capabilities, A-3
copying data, 7-14
description, 7-2
for data manipulation, 7-2
formatting the email message body as

HTML, 16-8
in asynchronous services, 9-5
using multiple bpelx:append settings, A-4

assignment service
configuration, 29-34
deploying a custom assignment service, 29-41
dynamic assignment functions, 29-34, 29-35,

29-36, 29-37
dynamically assigning task participants, 29-37
example of implementation, 29-39
implementing, 29-38

asynchronous interaction with a notification timer
BPEL process as the client, 6-6
BPEL process as the service, 6-6
definition, 6-5

asynchronous interaction with a timeout
BPEL process as the client, 6-5
BPEL process as the service, 6-5
definition, 6-4

asynchronous interactions
BPEL process as the client, 6-4
BPEL process as the service, 6-4
definition, 6-3
returning faults, 12-24

asynchronous processes
dehydration store, 9-9

asynchronous services
assign activities, 9-5
calling, 9-2
correlation IDs, 9-8
invoke activities, 9-3, 9-7

parallel flows, 10-1
partner links, 9-2, 9-6, 9-7
receive activities, 9-4, 9-7
WS-Addressing, 9-8

attachments
sending with the notification wizard, 16-7
task attachments with email notifications, 29-31
using MIME/DIME SOAP attachments, 7-36
using style sheets, 25-63
using WordML style sheets, 25-63

attribute labels
internationalization, 29-16

attributes
manipulating, 7-19

auto mapping
in transformations, 45-30
with confirmation in transformations, 45-32

B
batching

message batching limitations with Oracle Business
Activity Monitoring, 32-8

batchProcessActive function
description, B-33

batchProcessCompleted function
description, B-33

bind entity activity
capabilities, A-4

binding components
definition, 1-6
supported, 4-10

bindingFault
definition, 12-4

boolean values
assigning, 7-18

BPEL design environment
overview, 5-1

BPEL files
definition, 2-6

BPEL processes
common interaction patterns, 6-1, 22-1
creating, 4-6
definition, 1-2

BPEL projects
naming conventions, 5-2

BPEL sensor
Oracle BAM, 32-6

BPEL XPath functions
examples, 7-4

bpelx
exec extension

embedding SDOs, 13-7
in assign activities, A-4

bpelx extensions
XML data manipulation, 7-20

bpelx:append extension
appending data to a node list, B-14
description, 7-20

bpelx:copyList extension

Index-3

copying a node list or a node, B-15
description, 7-26

bpelx:exec extension
built-in methods, 13-3

bpelx:headerVariable extension
description, 7-34

bpelx:insertAfter extension
description, 7-22

bpelx:insertBefore extension
description, 7-21

bpelx:remove extension
description, 7-23

bpelx:rename extension
description, 7-24

bpelx:validate extension
description, 7-27

building expression with domain value map
functions, 46-11

business events
creating, 44-3
definition, 44-1
local and remote boundaries, 44-3
publishing, 44-9
specifying callback classes, 25-66
subscribing to, 44-6

business faults
definition, 12-3

business rules
action types, 25-45
fact types, 25-45
routing policies, 25-40
specifying advanced routing rules, 25-43
specifying advanced routing rules with business

rules, 25-43
use case for data validation and constraint

checks, 23-2
use case for dynamic processing, 23-2
use case for externalizing decision points in the

process, 23-2
use case for human workflow, 23-2
use cases, 23-2

Business Rules design environment
overview, 23-2

Business Rules Designer
introduction, 2-18

C
calculated fields, 31-4
calculations

aggregate functions, 31-4
datetime functions, 31-4
expressions, 31-4
string functions, 31-4

callback classes
specifying business events, 25-66
specifying on task status, 25-65

callbacks
class loading, 29-41
task routing and customization in BPEL

callbacks, 25-76
viewing, 25-87

case sensitivity
human workflow, 29-45

catch branch
creating, A-17
fault handling, 12-24

channels
email, 16-5
IM, 16-8
SMS, 16-9
voice mail, 16-11

class paths
for clients using local Enterprise JavaBeans, 28-7
for clients using remote Enterprise

JavaBeans, 28-6
for clients using SOAP, 28-6

clearing data objects, 31-17
clearTaskAssignees function

description, B-45
compare function

description, B-8
compare-ignore-case function

description, B-9
compensate activity

capabilities, A-5
definition, 12-31
fault handling, 12-31

complex type
variables, 7-15

Component Palette
introduction, 2-3, 2-9

componentType file
definition, 2-2

composite sensors
adding, 51-2
adding a property, 51-6
adding a variable, 51-5
adding an expression, 51-5
definition, 51-1
monitoring during runtime, 51-6
restrictions on use, 51-1

composite test
assertions overview, 49-2
creating test suites, 49-5
creating value asserts, 49-17
definition, 49-1
deploying test suites, 49-23
emulating inbound messages, 49-8
emulations overview, 49-2
naming limitations on test suites and test

cases, 49-5
test case overview, 49-1
test suite assertions, 49-4
test suite components, 49-2
test suite emulations, 49-3
test suites overview, 49-1
test suites process initiation, 49-3
XML assert, 49-2

composite.xml file

Index-4

definition, 2-2, 4-4
deployment descriptors, C-1, C-2
registering sensors and sensor actions, 17-11
syntax, 4-21

concat function
description, 7-17

conditional branching logic
definition, 11-1
use of XPath expressions, 11-1
using switch activities, 11-2
using while activities, 11-4

conditional processing
with xsl choose, 45-26
with xsl if, 45-25

configuration plans
creating, 43-33
creating with the WLST utility, 43-36
definition, 43-30
use cases, 43-32

configuration properties
deployment descriptors, C-1

connections
Oracle BAM Server, 32-2

constant values
in transformations, 45-16

copying security filters, 31-13
copyList function

description, B-15
core XPath functions

examples, 7-3
correlation ID

WS-Addressing, 9-8
correlation sets

associating with receive activities, 9-20
creating, 9-20
creating property aliases, 9-21

correlation sets tab
in activities, A-2

correlations
adding on an OnMessage branch of a pick

activity, A-14
countNodes function, 7-29

description, B-16
create domain value maps, 46-4
create entity activity

capabilities, A-6
create instance

definition, 9-7
in receive activities, 9-7

create-delimited-string function
description, B-9

createInstance attribute, 9-8
create-nodeset-from-delimited-string function

description, B-40
createWordMLDocument function

description, B-45
creating cross reference tables, 47-4
creating folders for data objects, 31-9
creating mediator component

mediator files, 18-4

creating mediator service component
mediator files, 2-13

cross reference table look up, 47-12
xref

lookupXRef function, 47-12
cross reference tables, 47-1

adding a column, 47-6
creating, 47-3
deleting values, 47-16
looking up, 47-12
modifying, 47-3
populating columns, 47-6
xref

lookupXRef function, 47-12
markForDelete function, 47-16
populateXRefRow1M function, 47-9

cross references
creating, 47-3
introduction, 47-1
modifying, 47-3
overview, 47-1

current-date function
description, B-3

current-dateTime function
description, B-4

current-time function
description, B-4

custom classes
adding to a SOA composite application, 13-5

custom escalation function
using, 29-41

custom sensors
publish type, 17-2

D
data manipulation

accessing fields with complex type variables, 7-15
assigning boolean values, 7-18
assigning date or time, 7-18
assigning literal strings, 7-17
assigning numeric values, 7-16
concatenating strings, 7-17
converting from a string to a structured XML

object type, 7-33
copying data between variables, 7-14
determining array sizes, 7-29
dynamically indexing into a data sequence, 7-29
generating array-equivalent functionality with the

genEmptyElem function, 7-31
initializing variables, 7-13
manipulating arrays, 7-28
manipulating attributes, 7-19
mathematical calculations with XPath

functions, 7-16
statically indexing into a data sequence, 7-28
with assign activities, 7-2, 7-14
with XQuery and XSLT, 7-4

data objects
about, 31-1

Index-5

adding dimensions, 31-14
calculated column, 31-4
clearing contents, 31-17
contents, 31-9
creating folders, 31-9
datetime column, 31-5
defining, 31-2
deleting, 31-17
dimensions, 31-14
general information, 31-8
indexes, 31-16
layout, 31-8
lookup column, 31-3
moving, 31-16
Oracle Data Integrator, 31-6
organizing, 31-9
permissions, 31-6

folders, 31-10
renaming, 31-16
security filters, 31-12
system, 31-5
viewing, 31-7

data sequences
dynamically indexing into, 7-29

database
sensor publish type, 17-2

database adapter
capabilities, A-27

database views
human workflow, 29-54

DataObjectDefinition web service, 36-3
DataObjectOperations web service, 36-2
date time stamp field, 31-5
dates

assigning, 7-18
datetime functions in calculations, 31-4
day-from-dateTime function

description, B-4
defining a fault handler, 12-21
dehydration store, 9-9

definition, 9-9
deleting cross reference table value, 47-16

xref
markForDelete function, 47-16

deleting data objects, 31-17
deleting folders, 31-12
demos

sensor actions, 17-3
sensors, 17-3

deployment
creating an application server connection, 43-1
managing deployed composites, 4-24
of a single composite, 43-2
of an existing archive, 43-21
of multiple composites, 43-8
of shared metadata across composites, 43-10
of SOA composite applications, 4-26
with the ant scripts, 43-22
with the WLST utility, 43-22

deployment descriptor file

See web.xml file
deployment descriptors

composite.xml file, C-1, C-2
configuration properties, C-1
defining a configuration property, C-1
deprecated, C-3

dictionaries
in transformations, 45-35

digital signatures, 29-17
acting on tasks that require a signature, 27-34
specifying, 25-68

dimensions
adding to data objects, 31-14
data object, 31-14
time, 31-15

doc function
description, B-16

domain value maps
add columns, 46-7
add rows, 46-8
creation, 46-4
dvm

lookupValue function, 46-8
lookupValue1M function, 46-9

editing, 46-7
features, 46-2

one-to-many mapping, 46-4
qualifier order, 46-3
qualifiers, 46-2

one-to-many mapping, 46-4
qualifier order, 46-3
qualifiers, 46-2
using, 46-8
using in a transformation, 46-9
using lookupValue functions, 46-11

domain value maps functions
dvm

lookupValue, 46-8
lookupValue1M, 46-9

domain value maps qualifiers, 46-2
download filter, 30-3
dvm

lookupValue function, 46-8
lookupValue1M function, 46-9

dynamic assignment functions
configuring, 29-36
configuring display names, 29-37
definition, 29-34
implementing, 29-35

E
edit domain value maps, 46-7

add columns, 46-7
add rows, 46-8

elements
ignoring in XSLT documents, 45-39

email
dynamically setting addresses, 16-11
making emails actionable, 29-30

Index-6

notifications support, 16-2, 16-5
email activity

capabilities, A-6
email attachments

notifications support, 16-7
email messages

HTML content for message body, 16-8
empty activity

capabilities, A-7
definition, 12-30
fault handling, 12-30

emulation tests
overview, 49-2

emulations
emulating inbound messages, 49-8
in BPEL test suites, 49-3

ending
tasks, 25-52

ends-with function
description, B-9

Enterprise JavaBeans
creating an Enterprise JavaBeans adapter

service, 52-6
interacting with SOA composite

applications, 52-1
support in workflow services, 29-1

enterprise message sources
about, 33-1
creating, 33-2
datetime specification, 33-6
defining, 33-2, 35-1
XML formatting, 33-8

entity variable
binding key, 7-9
creating, 7-6
definition, 7-5
samples, 7-6
using, 7-4

error assignee
configuring, 25-50
definition, 24-7

errors
invalid settings, A-32

escalating
tasks, 25-52

escalation policy
escalate after, 25-55
overview, 25-52, 25-53
specifying, 25-62

evaluation time
definition, 17-4

evidence store service, 29-17
definition, 29-17
Enterprise JavaBeans, SOAP, and Java

support, 29-2
WSDL file location, 29-3

Excel workbook
MIME mapping, 30-3

exceptions, 12-3
expiration policy

expire after, 25-54
never expire, 25-53
overview, 25-52, 25-53
renew after, 25-54

export file sample
ICommand, G-18

expression builder dialog
using domain value map functions, 46-11

expression constants
variable initialization, 7-13

expressions in calculations, 31-4
external data source

about, 35-1
creating, 35-1
Oracle Data Integrator, 35-2

external routing
routing policy, 25-49

F
fact types, 25-45
fault bindings, 20-6
fault handling, 12-21

creating, 12-1, 12-21
definition, 12-1
importing RuntimeFault.wsdl, 12-21
modifying the WSDL files, 12-21
returning external faults, 12-23, 12-24
throwing internal faults, 12-22
using catch branches, 12-24
using compensate activities, 12-31
using empty activities, 12-30
using scope activities, 12-24
using terminate activities, 12-33
using the getFaultAsString function, 12-21
using throw activities, 12-22

fault management framework
associating a fault policy with a fault policy

binding, 12-10
definition, 12-4
designing, 12-5
executing a fault policy, 12-15
using a Java action fault policy, 12-15

fault policy, 20-1
actions, 20-4
associating with a fault policy binding, 12-10
component level, 20-6
composite level, 20-6
conditions, 20-2
definition, 12-4
designing, 12-5
executing, 12-15
sample file, 12-9
using a Java action fault policy, 12-15

fault policy bindings
sample file, 12-14

fault sensors
definition, 17-2

fault-bindings.xml, 20-12
fault policy bindings file, 12-5

Index-7

fault-policies.xml, 20-8
fault policy file, 12-5

faults
categories of faults in BPEL, 12-3
Qname fault name, 12-3
returning external faults, 12-23, 12-24
standard faults, 12-3
throwing internal faults, 12-22

fields
calculated, 31-4
lookup, 31-3
timestamp, 31-5

file adapter
capabilities, A-27

Filter
adfBindings, 30-2
adfdiExcelDownload, 30-3
ADFLibraryFilter, 30-3
bindings filter, 30-2

filters
copying, 31-13
Oracle BAM security, 31-12

fire and forget
one-way message, 6-1

flex fields
using, 27-52
values, 29-15

flow activity
capabilities, A-8

flowN activity
capabilities, A-9
definition, 10-5

folder permissions, 31-10
folders

deleting, 31-12
renaming, 31-11

format function
description, B-33

formatDate function
description, B-18

format-dateTime function
description, B-5

format-string function
description, B-10

FTP adapter
capabilities, A-27

functions
abs, B-8
add-dayTimeDuration-to-dateTime, B-3
addQuotes, B-14
appendToList, B-14
batchProcessActive, B-33
batchProcessCompleted, B-33
chaining in transformations, 45-19
clearTaskAssignees, B-45
compare, B-8
compare-ignore-case, B-9
concat, 7-17
copyList, B-15
countNodes, 7-29, B-16

create-delimited-string, B-9
create-nodeset-from-delimited-string, B-40
createWordMLDocument, B-45
creating user-defined XPath extension

functions, B-59
current-date, B-3
current-dateTime, B-4
current-time, B-4
day-from-dateTime, B-4
descriptions, 45-17
doc, B-16
dynamically setting email addresses and telephone

numbers, 16-11
editing in transformations, 45-18
editing XPath expressions in

transformations, 45-22
ends-with, B-9
examples, 7-3
format, B-33
formatDate, B-18
format-dateTime, B-5
format-string, B-10
functions prefixed with xp20 or orcl, 45-17
genEmptyElem, 7-31, B-34
generateGUID, B-19
generate-guid, B-40
getChildElement, B-34
getContentAsString, B-21
get-content-as-string, B-10
getConversationId, B-21
getCreator, B-21
getCurrentDate, 7-18, B-22
getCurrentDateTime, 7-18, B-22
getCurrentTime, 7-18, B-22
getDefaultRealmName, B-49
getDomainId, B-22
getElement, B-23
getFaultAsString, 12-21
getGroupIdsFromGroupAlias, B-24
getGroupProperty, B-50
getInstanceId, B-24
getLinkStatus, B-31
get-localized-string, B-11
getManager, B-50
getMessage, B-34
getNodes, B-25
getNodeValue, B-24
getNotificationProperty, B-45
getNumberOfTaskApprovals, B-46
getPreference, B-25
getPreviousTaskApprover, B-46
getProcessId, B-26
getProcessOwnerId, B-26
getProcessURL, B-26
getProcessVersion, B-26
getReportees, B-50
getTaskAttachmentByIndex, B-46
getTaskAttachmentByName, B-47
getTaskAttachmentContents, B-47
getTaskAttachmentsCount, B-47

Index-8

getTaskResourceBindingString, B-47
getUserAliasId, B-27
getUserProperty, 16-12, B-51
getUserRoles, B-52
getUsersInGroup, B-52
getVariableData, 16-12, B-32
getVariableProperty, B-32
hours-from-dateTime, B-5
implicit-timezone, B-5
in transformations, 45-17
index-within-string, B-11
integer, B-28
isUserInRole, B-53
last-index-within-string, B-12
left-trim, B-12
location of function descriptions, 7-4
lookupGroup, B-53
lookup-table, B-1
lookupUser, B-53
lookup-xml, B-43
lower-case, B-13
matches, B-13
max-value-among-nodeset, B-35
minutes-from-dateTime, B-6
min-value-among-nodeset, B-35
month-from-dateTime, B-6
parseEscapedXML, 7-33, B-28
position, 7-29
prefixed with xp20 or orcl, 45-17
processXQuery, B-29
processXSLT, 16-8, B-29
processXSQL, B-30
query-database, B-2
readBinaryFromFile, B-30
readFile, B-30
right-trim, B-13
seconds-from-dateTime, B-6
selecting an data sequence element, 7-28
sequence-next-val, B-2
square-root, B-36
subtract-dayTimeDuration-from-dateTime, B-6
timezone-from-dateTime, B-7
translateFromNative, B-36
translateToNative, B-36
upper-case, B-14
wfDynamicGroupAssign, B-48
wfDynamicUserAssign, B-49
writeBinaryToFile, B-31
year-from-dateTime, B-7

Fusion Web Application (ADF) application
template, 30-2

FYI assignee
configuring, 25-37
definition, 24-5, 25-37
workflow participant type, 24-5, 25-37

G
genEmptyElem function

description, 7-31, B-34

generateGUID function
description, B-19

generate-guid function
description, B-40

getChildElement function
description, B-34

getContentAsString function
description, B-21

get-content-as-string function
description, B-10

getConversationId function
description, B-21

getCreator function
description, B-21

getCurrentDate function
description, 7-18, B-22

getCurrentDateTime function
description, 7-18, B-22

getCurrentTime function
description, 7-18, B-22

getDefaultRealmName function
description, B-49

getDomainId function
description, B-22

getElement function
description, B-23

getFaultAsString function
description, 12-21

getGroupIdsFromGroupAlias function
description, B-24

getGroupProperty function
description, B-50

getInstanceId function
description, B-24

getLinkStatus function
description, B-31

get-localized-string function
description, B-11

getManager function
description, B-50

getMessage function
description, B-34

getNodes function
description, B-25

getNodeValue function
description, B-24

getNotificationProperty function
description, B-45

getNumberOfTaskApprovals function
description, B-46

getPreference function
description, B-25

getPreviousTaskApprover function
description, B-46

getProcessId function
description, B-26

getProcessOwnerId function
description, B-26

getProcessURL function
description, B-26

Index-9

getProcessVersion function
description, B-26

getReportees function
description, B-50

getTaskAttachmentByIndex function
description, B-46

getTaskAttachmentByName function
description, B-47

getTaskAttachmentContents function
description, B-47

getTaskAttachmentsCount function
description, B-47

getTaskResourceBindingString function
description, B-47

getUserAliasId function
description, B-27

getUserProperty function
description, B-51
example, 16-12

getUserRoles function
description, B-52

getUsersInGroup function
description, B-52

getVariableData function
description, 7-17, B-32
example, 16-12
using in mathematical calculations, 7-16

getVariableProperty function
description, B-32

global task variable name
specifying in human task activities, 25-83

group vote
configuring, 25-30
consensus percentage, 25-32
immediately triggering a voted outcome when a

minimum percentage is met, 25-32
specifying group voting details, 25-32
waiting until all votes are in before triggering an

outcome, 25-33

H
headers

SOAP headers, 7-34
heap size

increasing, 45-47
hours-from-dateTime function

description, B-5
human task activity

associating with a BPEL process, 25-77
identification key, 25-83
including the task history of other tasks, 25-84
scope name and global task variable name, 25-83
specifying a task initiator and task priority, 25-80
specifying a task title, 25-79
specifying task parameters, 25-80
task owner, 25-83
viewing BPEL callbacks, 25-87

human task definition
associating with a BPEL process, 25-2

Human Task Editor
abruptly completing a condition, 25-41
accessing the sections of, 25-6
actionable emails, 29-30
allowing all participants to invite other

participants, 25-41
assigning task participants by name or

expression, 25-25, 25-52
bypassing task participants, 25-30, 25-34, 25-37
configuring the error assignee, 25-50
creating a human task, 25-3
editing notification messages, 25-59
escalate after policy, 25-55
escalating, renewing, or ending a task, 25-52
escalation and expiration policy overview, 25-52,

25-53
escalation rules, 25-62
expire after policy, 25-54
FYI assignee task participant, 25-37
group voting details, 25-32
introduction, 2-14
inviting additional task participants, 25-30, 25-34,

25-36
multilingual settings, 25-63, 29-29
never expire policy, 25-53
notification preferences, 25-56
notifying recipients of changes to task

status, 25-57
parallel task participant, 25-30
renew after policy, 25-54
securing notifications, 29-32
serial task participant, 25-34
setting up reminders, 25-60
sharing attachments and comments with task

participants, 25-33
single approver task participant, 25-22
specifying access policies, 25-70
specifying business event callbacks, 25-66
specifying callback classes, 25-65
specifying digital signatures, 25-68
style sheets in attachments, 25-63
task attachments with email notifications, 29-31
task category, 25-10
task outcome, 25-8
task owner specification through the user

directory, 25-11
task owner specification through XPath

expressions, 25-15
task participants, 25-18
task payload data structure, 25-16
task priority, 25-10
task routing and customization in BPEL

callbacks, 25-76
task title, 25-8
time limits for acting on tasks, 25-29, 25-33, 25-36
WordML style sheets in attachments, 25-63

human tasks
creating, 25-3
designing a human task, 24-13

human workflow

Index-10

access rules, 24-9
application roles, 24-5
case sensitivity, 29-45
concepts, 24-3
database views, 29-54
definition, 24-1
groups, 24-5
integration with Oracle WebLogic Server, 29-45
participant assignments, 24-5
participant types, 24-4
participants, 24-4
routing policies, 25-38
task assignments, 24-6
task deadlines, 24-8
task stakeholders, 24-7
use cases, 24-11
users, 24-5

I
ICommand

clear, G-3
command line, 38-5
delete, G-3
detailed command descriptions, G-3
export, G-4

sample, G-18
general command and option syntax, 38-2
import, G-10
log, G-17
operations, G-1
regular expressions, G-18
remote execution, 38-6
rename, G-14
running, 38-1
sample export file, G-18
summary of commands, G-1
syntax, 38-2
syntax, object names, 38-3
XML file, G-15

ICommand utility, 38-1
ICommand web service, 36-4
identification key

specifying in human task activities, 25-83
identity service

definition, 24-28, 29-9
determining a user’s local language and time

zone, 27-62
Enterprise JavaBeans, SOAP, and Java

support, 29-2
functions

getDefaultRealmName, B-49
getGroupProperty, B-50
getManager, B-50
getReportees, B-50
getUserProperty, B-51
getUserRoles, B-52
getUsersInGroup, B-52
isUserInRole, B-53
lookupGroup, B-53

lookupUser, B-53
providers, 29-10, 29-11
support for in workflows, 29-9
supported task operations, 29-9
use with JAZN, 29-9, 29-10
use with LDAP, 29-9, 29-10
WSDL file location, 29-2

IM activity
capabilities, A-10
notifications support, 16-8

implicit-timezone function
description, B-5

import
source and target schemas into a

transformation, 45-8
two schema files of the same name into the same

project is not supported, 2-11
indexes

in data objects, 31-16
indexing methods

using XPath, 7-29
index-within-string function

description, B-11
instances

starting new, 9-8
integer function

description, B-28
interaction patterns

asynchronous interaction with a notification
timer, 6-5

asynchronous interaction with a timeout, 6-4
asynchronous interactions, 6-3
common patterns between a BPEL process and

another application, 6-1, 22-1
multiple interactions, 6-10
one request, a mandatory response, and an

optional response, 6-8
one request, multiple responses, 6-6
one request, one of two possible responses, 6-7
one-way message, 6-1
partial processing, 6-9
synchronous interactions, 6-2

Invalid Settings error message, A-32
invoke activity

adding to an asynchronous service, 9-3
capabilities, A-11
definition, 5-5, 8-1
in asynchronous services, 9-3, 9-7
in synchronous services, 8-1, 8-5

isUserInRole function
description, B-53

J
JAR

See .JAR Files
.JAR files

adding custom classes and JAR files, 13-5
adf-desktop-integration.jar, 30-2
resourcebundle.jar file, 30-2

Index-11

wsclient.jar, 30-2
Java

support in workflow services, 29-1
Java applications

wrapped as SOAP services, 13-1
Java Connector Architecture (JCA)

definition, 1-2
Java embedding

bpelx:exec extension, 13-3
example, 13-6
in a BPEL process, 13-1

Java embedding activity
capabilities, A-12

JAZN
storing a user’s local language and time

zone, 27-62
use with identity service, 29-9, 29-10

JMS
definition, 1-2

JMS adapter
capabilities, A-27
sensor publish type, 17-2

JMS queue
sensor publish type, 17-2

JMS topic
sensor publish type, 17-2

K
knowledge module

Oracle BAM, 34-2

L
languages

changing, 27-62
preferences, 27-62
setting in JAZN, 27-62
setting in LDAP, 27-62

large documents
best practices for handling, 53-1
importing large data sets in Oracle B2B, 53-6
large numbers of mediators in composites, 53-6
limitations on concurrent processing, 53-6
opaque schema for processing large

payloads, 53-6
processing, 53-1
processing in Oracle B2B, 53-3
setting a default JTA timeout for large

documents, 53-5
setting audit levels, 53-2
streaming MTOM attachments, 53-6
using a flow with multiple sequences, 53-5
using a flow with no sequence, 53-6
using a flow with one sequence, 53-5
using adapter support for streaming large

payloads, 53-2
using assign activities in BPEL and

mediator, 53-2
using correct settings for large payload

scenarios, 53-3
using large numbers of activities in BPEL processes

(with FlowN), 53-5
using large numbers of activities in BPEL processes

(without FlowN), 53-5
using XSLT transformations for repeating

structures, 53-2
using XSLT transformations on large payloads (for

BPEL and mediator), 53-6
last-index-within-string function

description, B-12
layouts, data object, 31-8
LDAP

storing a user’s local language and time
zone, 27-62

used with identity service, 29-9, 29-10
left-trim function

description, B-12
literal strings

assigning, 7-17
literal XML

variable initialization, 7-13
localization, worklist, 27-62
looking up cross reference tables, 47-12

xref
lookupXRef function, 47-12

lookup fields, 31-3
lookupGroup function

description, B-53
lookup-table function

description, B-1
lookupUser function

description, B-53
lookupValue functions

dvm
lookupValue function, 46-8
lookupValue1M function, 46-9

lookup-xml function
description, B-43

lower-case function
description, B-13

M
management chains

participant lists, 25-26
ManualRuleFire web service, 36-4
map parameters

creating in transformations, 45-36
map variables

creating in transformations, 45-36
master and detail processes

creating, 15-6
definition, 15-1
receive signal activity, A-15
signal activity, A-19

matches function
description, B-13

maxOccurs attribute, 7-28, 7-29
setting for transformations, 45-48

Index-12

max-value-among-nodeset function
description, B-35

mediator creation
specifying operation or event subscription

properties, 18-25
mediator files

.componentType, 2-13, 18-5
composite.xml, 2-13, 18-5
.mplan, 2-13, 18-5
.wsdl, 2-13, 18-5

mediator service component
mediator files, 2-13, 18-4

message filtering, 40-7
message schemas

updating, 4-21, 4-22
message source advanced formatting, 33-8
message sources, 33-1
MessageFilter, 40-7
MessageFilterFactory, 40-7
messages

receiving, 40-6
rejecting, 40-7

MessagingClientFactory, 40-2
MessagingClient.receive, 40-7
MessagingClient.registerAccessPoint, 40-6
MessagingClient.registerMessageFilter, 40-7
metadata

service components, 23-10
Metadata Service (MDS)

definition, 1-6
MIME mapping

Excel workbook, 30-3
minOccurs attribute

setting for transformations, 45-48
minutes-from-dateTime function

description, B-6
min-value-among-nodeset function

description, B-35
modes

xref
populateXRefRow function, 47-7
populateXRefRow1M function, 47-9

modifying a mediator, 18-25
modifying event subscriptions, 18-27
modifying operations, 18-25

modifying cross reference tables
adding a column, 47-6

modifying mediator event subscriptions, 18-27
modifying mediator operations, 18-25
month-from-dateTime function

description, B-6
MQ adapter

capabilities, A-28
multilingual settings

specifying in tasks, 25-63, 29-29
myRole attribute

definition, 9-7

N
named templates

creating, 45-19
in functions, 45-19

names and expressions
participant list, 25-24

naming conventions
for BPEL projects, 5-2

normalized message properties
Oracle BPEL Process Manager, H-1
Oracle Web Services Addressing, H-2

NOT operator, 31-4
notification messages

editing, 25-59
notification services

actionable emails, 29-30
configuring the notification channel, 29-28
custom notification headers, 29-34
definition, 24-28
error message support, 29-27
multilingual settings, 29-29
notification contents, 29-26
reliability support, 29-27
sending inbound and outbound

attachments, 29-31
sending inbound comments, 29-32
sending reminders, 29-32
sending secure notifications, 29-32
setting automatic replies to unprocessed

messages, 29-33
specifying participant notification

preferences, 25-56
notifications

allowing the end user to select the notification
channels, 16-13

configuring in Oracle JDeveloper, 16-3
definition, 24-8
dynamically setting email addresses and telephone

numbers, 16-11
email attachment support, 16-7
email support, 16-2, 16-5
formatting the email message body as

HTML, 16-8
IM support, 16-8
selecting recipients by browsing the user

directory, 16-12
setting up, 16-3
SMS support, 16-9
voice mail support, 16-11

notifications and reminders
in tasks, 29-25

numeric values
assigning, 7-16

O
onAlarm branch

of pick activity, 14-2
one-to-many mapping, 46-4
onMessage branch

Index-13

of pick activity, 14-2
operators

AND operator, 31-4
OR operator, 31-4
Oracle Application Development Framework (ADF)

binding component, 1-7
Oracle Applications adapter

capabilities, A-28
Oracle B2B

capabilities, A-27
Oracle BAM, 32-6

See Oracle Business Activity Monitoring
Oracle BAM Adapter, 32-1
Oracle BAM knowledge modules, 34-2
Oracle BAM Server

creating a BPEL sensor, 32-6
creating a BPEL sensor action, 32-7
creating a connection to, 32-2

Oracle BAM Server connection, 32-2
Oracle BPEL Designer

introduction, 2-4
Oracle BPM Worklist

See worklist
Oracle Business Activity Monitoring

capabilities, A-27
creating a BPEL sensor action for Oracle BAM

Server, 32-7
creating a BPEL sensor for Oracle BAM

Server, 32-6
creating a connection to Oracle BAM Server, 32-2
definition
integration with Oracle BPEL Process Manager

sensors, 32-6
message batching limitations, 32-8
overview, 32-6

Oracle Enterprise Manager
introduction, 2-20

Oracle Internet Directory
storing a user’s local language and time

zone, 27-62
Oracle JDeveloper

adapters, 5-10
adding the SOA extensions, 4-2
Component Palette, 2-9
configuring notifications, 16-3
creating sensors, 17-3
overview of design environment, 5-1
overview of rules designer environment, 23-2
services, 2-9
transformations, 45-6

Oracle JDeveloper project
desktop integration, adding, 30-2

Oracle Mediator
define routing rules, 19-1
definition, 18-1
routing rules, 19-1

Oracle Mediator component creation
mediator files, 2-13, 18-4

Oracle Mediator Editor, 18-5
environment

Application Navigator, 18-4
History Window, 18-5
Log Window, 18-6
Oracle Mediator Editor, 18-5
Property Inspector, 18-6
Source View, 18-5
Structure Window, 18-6

introduction, 2-11
Oracle Mediator error handling

actions, 20-4
conditions, 20-2
fault bindings, 20-6
fault policy, 20-1
introduction, 20-1
using, 20-7
XML schema files, 20-8

Oracle Service Registry
publishing and browsing, A-29

Oracle SOA Suite
introduction, 1-1

Oracle User Messaging Service (UMS)
configuring, 39-1
definition, 16-2

organizing data objects, 31-9
overview, 17-2

P
parallel

definition, 25-30
workflow participant type, 25-30

parallel blocks
definition, 25-19

parallel flows
definition, 10-1

parseEscapedXML function
description, 7-33, B-28

partial processing
BPEL process as the client, 6-10
BPEL process as the service, 6-10
definition, 6-9

participant assignments
definition, 24-5

participant lists
rulesets, 25-27
value-based management chains, 25-26
value-based names and expressions, 25-24

participant types
FYI assignee, 24-5, 25-37
parallel, 24-4, 25-30
serial, 24-4, 25-34
single approver, 24-4, 25-22

partner links
adding to an asynchronous service, 9-2
capabilities, A-28
creating, 5-6
definition, 5-5
in asynchronous services, 9-2, 9-6, 9-7
in synchronous services, 8-1
Oracle BAM, 32-4

Index-14

overview, 5-5
specifying a WSDL file, 5-6

partnerLinkType
definition, 9-6

partnerRole attribute
definition, 9-7

patterns
of interaction between a BPEL process and another

application, 6-1, 22-1
permissions

copying, 31-7
data objects, 31-6
setting on folders, 31-10

phase activity
capabilities, A-12

pick activity
adding correlations on an OnMessage

branch, A-14
capabilities, A-13
code example, 14-4
condition branches, 14-1
for timeouts, 14-1
onAlarm branch, 14-2
onMessage branch, 14-2

policies
attaching, 50-2
definition, 50-1
supported categories, 50-1

populating cross reference tables, 47-6
xref

populateXRefRow1M function, 47-9
ports

in synchronous services, 8-1
portType

definition, 9-6
position function

description, 7-29
process initiation

in BPEL test suites, 49-3
processes

naming conventions, 5-2
processXQuery function

description, B-29
processXSLT function

description, B-29
example, 16-8

processXSQL function
description, B-30

projects
BPEL file, 2-6
importing two schema files of the same name into

the same project is not supported, 2-11
naming conventions, 5-2
ViewController, 30-2
WSDL file, 2-6

properties tab
in activities, A-2

property aliases
creating for correlation sets, 9-21

public views

sensors, D-1
publish types

creating a custom publisher, 17-9
custom, 17-2
database, 17-2
definition, 17-2
JMS Adapter, 17-2
JMS queue, 17-2
JMS topic, 17-2

Q
Qname

fault name, 12-3
qualifier, 46-2

qualifier order, 46-3
qualifier order, 46-3
query-database function

description, B-2

R
readBinaryFromFile function

description, B-30
readFile function

description, B-30
reading files from absolute directory paths, B-30

receive activity
adding to an asynchronous service, 9-4
associating with correlation sets, 9-20
capabilities, A-14
create instance, 9-7
creating new instances, 9-8
in asynchronous services, 9-4, 9-7

receive entity activity
capabilities, A-16

receive signal activity
capabilities, A-15

receiving a message, 40-6
references

adding, 4-17, 4-19
definition, 1-6, 4-11
deleting, 4-19
wiring, 4-19

regular expressions
ICommand, G-18

rejecting messages, 40-7
reminders

for task notifications, 29-32
remoteFault

definition, 12-4
renaming data objects, 31-16
renaming folders, 31-11
renewing

tasks, 25-52
repeating elements

in transformations, 45-27
replayFault

definition, 12-4
reply activity

Index-15

capabilities, A-16
reporting schema

for database publish type of sensors, D-1
reports

correcting memory errors when generating for
transformations, 45-47

customizing sample XML generation for
transformations, 45-48

generating for transformations, 45-46
worklist, 27-57

resource bundles, 29-42
class loading, 29-41
for displaying tasks in different languages, 25-63,

29-29
Resource Palette

introduction, 2-3
using, 4-12

resourcebundle.jar file, 30-2
revisions

invoking the default revision, 4-15
setting the default revision, 4-26

right-trim function
description, B-13

roles
for partner links in asynchronous services, 9-6

routing policies
available types, 25-40
business rules, 25-40
completing parent subtasks of early completing

subtasks, 25-43
enabling early completion in parallel

subtasks, 25-43
external routing, 25-40, 25-49
routing a task to all participants in the order

specified, 25-40
selecting, 25-38

routing rules, 19-1
define, 19-1
defining, 19-1
filter expression, 19-15
introduction, 19-1

routing slip
definition, 25-29

RPC styles
differences with document-literal styles in WSDL

files, 7-1, 7-33
rules

service component, 23-10
rulesets

participant lists, 25-27
runtime config service

definition, 24-29
Enterprise JavaBeans, SOAP, and Java

support, 29-2
supported task operations, 29-14
WSDL file location, 29-3

runtime exceptions, 12-3
runtime faults

definition, 12-3
example, 12-21

RuntimeFault.wsdl file
importing into a process, 12-21

S
SAR

See SOA archive (SAR)
SCA technologies

introduction, 1-4
schema files

creating a transformation map file from imported
schemas, 45-8

replacing in the XSLT Mapper, 45-39
schemas

updating message schemas, 4-21, 4-22
scope activity

capabilities, A-17
creating, 12-25
fault handling, 12-24
using a fault handler in a scope activity, 12-27

scope name
specifying in human task activities, 25-83

seconds-from-dateTime function
description, B-6

security filters
copying, 31-13
on data objects, 31-12

security model
for workflow services, 29-3
in SOAP web services, 29-4
workflow context on behalf of a user, 29-4

sensor actions
configuring, 17-6
creating a BPEL sensor action for Oracle BAM

Server monitoring, 32-7
demos, 17-3
viewing metadata, 17-12
XSD schema file, D-5

sensor data
persisting in a reporting schema, D-1

sensors, 17-2, 32-6
activity sensors, 17-2
BPEL reporting schema, D-1
configuring, 17-3
creating a BPEL sensor for Oracle BAM Server to

monitor, 32-6
creating a connection to Oracle BAM Server, 32-2
creating a custom publish type, 17-9
creating in Oracle JDeveloper, 17-3
definition, 17-2
demos, 17-3
evaluation time, 17-4
fault sensors, 17-2
integration with Oracle Business Activity

Monitoring, 32-6
public views, D-1
publish types, 17-2
sensor actions XSD schema file, D-5
variable sensors, 17-2
viewing metadata, 17-12

Index-16

sensors tab
in activities, A-2

sequence activity
capabilities, A-18

sequence-next-val function
description, B-2

sequential blocks
definition, 25-19

sequential list of approvers
configuring, 25-34

serial
definition, 25-34
workflow participant type, 25-34

Service Component Architecture (SCA)
definition, 1-2

service components
adding, 4-5, 4-7
available types, 1-7
BPEL process, 1-8
business rules, 1-8
deleting, 4-7
editing, 4-8
human task, 1-8
introduction, 4-5
mediator, 1-8
metadata, 23-10
rules, 23-10
web service, 23-10
wiring, 4-15, 4-19

Service Data Objects (SDO), 7-6
definition, 1-2

converting from XML to SDO, 7-12
declaring SDO-based variables, 7-11

embedding with bpelx
exec, 13-7

entity variable support, 7-6
passing parameters between Enterprise JavaBeans

and SOA composite applications, 52-1
using in an Enterprise JavaBeans

application, 52-2
using standalone SDO-based variables, 7-11

service engines
definition, 1-6
human workflow, 24-31

service infrastructure
definition, 1-6

service names
in adapters, 5-11

services
adding, 4-9, 4-14
AQ adapter, A-27
automatically exposing as a SOAP service, 4-10
database adapter, A-27
definition, 1-6, 2-9, 4-11
deleting, 4-14
file adapter, A-27
FTP adapter, A-27
JMS adapter, A-27
MQ adapter, A-28
Oracle Applications adapter, A-28

Oracle B2B, A-27
Oracle Business Activity Monitoring, A-27
overview, A-26
partner link, A-28
selecting a WSDL, 4-11
socket adapter, A-29
wiring, 4-15

servlet
adfdiRemote, 30-3

setting folder permissions, 31-10
setting up, 29-30
signal activity

capabilities, A-19
single approver

configuring, 25-22
definition, 25-22
workflow participant type, 25-22

SMS activity
capabilities, A-19
notifications support, 16-9

SOA archive (SAR)
deploying, 43-3

SOA composite applications
activating, 4-26
creating, 4-1
definition, 1-3
deploying a single composite, 43-2
deploying an existing archive, 43-21
deploying multiple composites, 43-8
deploying shared metadata across

composites, 43-10
deployment, 4-26
interacting with Enterprise JavaBeans, 52-1
invoking other composites, 4-23
invoking the default revision, 4-15
retiring, 4-26
setting as the default revision, 4-26
shutting down, 4-25
starting up, 4-25
testing, 4-27
undeploying, 4-26

SOA Composite Editor
introduction, 2-1, 4-1
overview, 4-1

SOA extensions
adding to Oracle JDeveloper, 4-2

SOA project
creating, 4-1

SOAP
definition, 1-2
security in SOAP web services, 29-4
support in workflow services, 29-1
using MIME/DIME attachments, 7-36

SOAP headers, 7-34
receiving in BPEL, 7-35
sending in BPEL, 7-36

SOAP services
performance issues, 13-1
using Java code, 13-1

SOAP-encoded arrays

Index-17

not supported, 7-32
socket adapter

capabilities, A-29
sources

message, 33-1
specifying operation or event subscription

properties, 18-25
validate syntax (XSD), 18-25

square-root function
description, B-36

stages
definition, 25-19

standard faults
definition, 12-3

string functions in calculations, 31-4
strings

concatenating, 7-17
converting to an XML element, 7-33

style sheets
using for attachments, 25-63

subtract-dayTimeDuration-from-dateTime function
description, B-6

switch activity
capabilities, A-20
in conditional branching logic, 11-2

synchronous callbacks, 8-1
operational concepts, 8-2
syncMaxWaitTime property, 8-2

synchronous interactions
BPEL process as the client, 6-3
BPEL process as the service, 6-3
definition, 6-2
returning faults, 12-23

synchronous processes
calling a one-way mediator, 8-6

synchronous receiving, 40-7
synchronous services

callbacks with the partner link and invoke
activity, 8-1

calling, 8-2
invoke activities, 8-5
ports, 8-1

syncMaxWaitTime property
in synchronous callbacks, 8-2

T
task action time limits

specifying, 25-29, 25-33, 25-36
task admin

definition, 24-7
task assignments

dynamic, 24-6
rule-based, 24-6
static, 24-6

task category
specifying, 25-10

task conditions
abruptly completing a condition, 25-41

task deadlines

definition, 24-8
task display form

creating, 26-6, 26-13, 26-15
definition, 25-3, 26-1
deploying, 26-25, 26-27
displaying, 26-35

.task file
associating with a BPEL process, 25-2, 25-77
definition, 25-2, 25-5

task flow
ADF

task display form for human tasks, 26-3
task history

specifying in human task activities, 25-84
task initiator

definition, 24-7
specifying, 25-80

task instance attributes, 29-21
task metadata service

definition, 24-28
Enterprise JavaBeans, SOAP, and Java

support, 29-2
supported task operations, 29-11
WSDL file location, 29-2

task notification
editing notification messages, 25-59
making email actionable, 29-30
notifying recipients of changes to task

status, 25-57
overview, 25-56
reminders, 29-32
securing notifications, 29-32
setting up reminders, 25-60
task attachments with email notifications, 29-31

task outcome
specifying, 25-8

task owner
definition, 24-7
specifying by browsing the user directory, 25-11
specifying in human task activities, 25-83
specifying through XPath expressions, 25-15

task parameters
specifying, 25-80

task participants
allowing all participants to invite other

participants, 25-41
assigning task participants by name or

expression, 25-25, 25-52
bypassing, 25-30, 25-34, 25-37
dynamically assigning with the assignment

service, 29-37
inviting additional task participants, 25-30, 25-34,

25-36
sharing attachments and comments, 25-33
specifying, 25-18

task payload data structure
specifying, 25-16

task priority
specifying, 25-10, 25-80

task query service

Index-18

definition, 24-28
Enterprise JavaBeans, SOAP, and Java

support, 29-2
supported task operations, 29-7
WSDL file location, 29-2

task reminders
setting up, 25-60

task report service
Enterprise JavaBeans, SOAP, and Java

support, 29-2
supported task operations, 29-14
WSDL file location, 29-3

task reviewer
definition, 24-7

task routing service
definition, 24-28

task service
definition, 24-28
Enterprise JavaBeans, SOAP, and Java

support, 29-2
supported task operations, 29-4
WSDL file location, 29-2

task stages
definition, 24-9

task title
specifying, 25-79

tasks
escalating, renewing, or ending a task, 25-52
notifications and reminders, 29-25

TCP tunneling
setting up a TCP listener for asynchronous

services, 9-11
setting up a TCP listener for synchronous

services, 9-11
terminate activity

capabilities, A-21
definition, 12-33
fault handling, 12-33

test suites
components, 49-2
creating, 49-5
definition, 49-1
limitations on multibyte character names, 49-5

throw activity
capabilities, A-21
throwing internal faults, 12-22

time
assigning with a function, 7-18

time dimensions, 31-15
time duration format, 14-2
time stamp field, 31-5
time zones, changing, 27-63
timeouts

of BPEL processes, 14-1
using pick activities, 14-1
using the wait activity, 14-5

timezone-from-dateTime function
description, B-7

title
specifying, 25-8

trackable fields
composite sensors, 51-1

transform activity
capabilities, A-22
creating, 45-6

transformations
adding XSLT constructs, 45-24
auto mapping, 45-30
auto mapping with confirmation, 45-32
chaining functions, 45-19
correcting memory errors, 45-47
creating, 45-6
creating a map file from imported schemas, 45-8
creating a new map file, 45-6
creating an XSL map from an XSL style

sheet, 45-6
customizing sample XML generation, 45-48
dictionaries, 45-35
editing functions, 45-18
editing XPath expressions, 45-22
error when mapping duplicate elements, 45-6
functions, 45-17
functions prefixed with xp20 or orcl, 45-17
generating optional elements, 45-48
generating reports, 45-46
ignoring elements, 45-39
linking source target nodes, 45-16
map parameter and variable creation, 45-36
named templates in functions, 45-19
repeating elements, 45-27
replacing schemas, 45-39
rules, 45-6
searching source and target nodes, 45-38
setting constant values, 45-16
setting the maximum depth, 45-48
setting the number of repeating elements, 45-48
testing the map file, 45-43
using arrays, 45-27
using the XSLT Mapper, 45-14
using XQuery and XSLT, 7-4
viewing unmapped target nodes, 45-34
xsl choose conditional processing, 45-26
xsl if conditional processing, 45-25

translateFromNative function
description, B-36

translateToNative function
description, B-36

U
UDDI See Oracle Service Registry
undeployment

SOA composite applications, 4-26
Unicode support, 4-4
upper-case function

description, B-14
user directory

selecting notification recipients by browsing the
directory, 16-12

user metadata service

Index-19

definition, 24-28
Enterprise JavaBeans, SOAP, and Java

support, 29-2
supported task operations, 29-12
WSDL file location, 29-2

user notification activity
capabilities, A-23

user notifications
definition, 16-13

using domain value maps, 46-8
using domain value maps a transformation, 46-9
using error handling, 20-7
using lookupValue functions, 46-11
using Oracle Mediator error handling, 20-7

V
validate syntax (XSD), 18-25
validate syntax (XSD) property, 18-25
validation

of XML data with bpelx
validate, 7-27

when loading a process diagram, A-32
variable sensors

definition, 17-2
variables

complex type, 7-15
copying data between, 7-14
initializing with expression constants, 7-13
initializing with literal XML, 7-13

ViewController project, 30-2
voice activity

capabilities, A-24
voice mail

dynamically setting telephone numbers, 16-11
notifications support, 16-11

W
wait activity

capabilities, A-24
code example, 14-5
definition, 14-5

web service
DataObjectDefinition, 36-3
DataObjectOperations, 36-2
ICommand, 36-4
ManualRuleFire, 36-4
service component, 23-10
WSDL, 23-10

WebLogic Fusion Order Demo application
introduction, 3-1
overview, 3-3
setting up, 3-2

web.xml file, 30-3
wfDynamicGroupAssign function

description, B-48
wfDynamicUserAssign function

description, B-49
while activity

capabilities, A-25
in conditional branching logic, 11-4

wires
definition, 1-8
deleting, 4-16
using, 4-15
wiring a service component and reference, 4-19

WLST utility
creating a configuration plan, 43-36
deployment with, 43-22

WordML style sheets
using for attachments, 25-63

workflow context
creating on behalf of a user, 29-4

workflow functions
overview, 29-1

workflow service clients, 28-3
interface, 28-5

workflow services
abruptly completing a condition, 25-41
actionable emails, 29-30
allowing all participants to invite other

participants, 25-41
assigning task participants by name or

expression, 25-25, 25-52
assignment service configuration, 29-34
associating the human task activity with a BPEL

process, 25-77
associating the human task definition with a BPEL

process, 25-2
bypassing task participants, 25-30, 25-34, 25-37
editing notification messages, 25-59
Enterprise JavaBeans references, 28-7
Enterprise JavaBeans support, 29-1
escalate after policy, 25-55
escalating, renewing, or ending a task, 25-52
escalation and expiration policy overview, 25-52,

25-53
escalation rules, 25-62
expire after policy, 25-54
functions

clearTaskAssignees, B-45
createWordMLDocument, B-45
getNotificationProperty, B-45
getNumberOfTaskApprovals, B-46
getPreviousTaskApprover, B-46
getTaskAttachmentByIndex, B-46
getTaskAttachmentByName, B-47
getTaskAttachmentContents, B-47
getTaskAttachmentsCount, B-47
getTaskResourceBindingString, B-47
wfDynamicGroupAssign, B-48
wfDynamicUserAssign, B-49

FYI assignee task participant, 25-37
group voting details, 25-32
identification key, 25-83
identity service, 24-28
including the task history of other tasks, 25-84
inviting additional task participants, 25-30, 25-34,

25-36

Index-20

Java support, 29-1
multilingual settings, 25-63, 29-29
never expire policy, 25-53
notification contents, 29-26
notification preferences, 25-56
notification service, 24-28, 29-28
notifications, 29-25
notifying recipients of changes to task

status, 25-57
overview, 29-1
parallel task participant, 25-30
renew after policy, 25-54
routing slip

definition, 25-29
runtime config service, 24-29
scope name and global task variable name, 25-83
securing notifications, 29-32
security model, 29-3, 29-4
serial task participant, 25-34
setting up reminders, 25-60
sharing attachments and comments with task

participants, 25-33
single approver task participant, 25-22
SOAP support, 29-1
specifying a task initiator and task priority, 25-80
specifying a task title, 25-79
specifying callback classes, 25-65
specifying task parameters, 25-80
style sheets in attachments, 25-63
support for identity service, 29-9
task attachments with email notifications, 29-31
task category, 25-10
task display form, 25-3, 26-1
.task file

definition, 25-2, 25-5
task metadata service, 24-28
task notifications, 29-25
task outcome, 25-8
task owner, 25-83
task owner specification through the user

directory, 25-11
task owner specification through XPath

expressions, 25-15
task participants, 25-18
task payload data structure, 25-16
task priority, 25-10
task query service, 24-28
task routing and customization in BPEL

callbacks, 25-76
task routing service, 24-28
task service, 24-28
task title, 25-8
time limits for acting on tasks, 25-29, 25-33, 25-36
user metadata service, 24-28
viewing BPEL callbacks, 25-87
WordML style sheets in attachments, 25-63

worklist
acting on tasks, 27-27
acting on tasks that require a digital

signature, 27-34

administration functions, 27-43
approving tasks, 27-37
assignment rules for tasks with multiple

assignees, 27-43
changing the display, 27-44
creating a subtask, 27-20
creating a ToDo list, 27-19
creating and customizing worklist views, 27-14
creating group rules, 27-41
creating user rules, 27-40
customizing the task status chart, 27-18
definition, 27-1
filtering tasks, 27-7
logging in, 27-3
managing messaging channels, 27-47
managing messaging filters, 27-49
managing rules, 27-43
mapping flex fields, 27-53
messaging filter rules, 27-46
reports, 27-56, 27-57
rule actions, 27-47
setting a vacation period, 27-38
setting rules, 27-39
specifying notification settings, 27-46
system actions, 27-24
Task Details page, acting on tasks, 27-21
task history, 27-24
Task Listing page contents, 27-6
Task Listing page, customizing, 27-7
using flex fields, 27-52

worklist clients
building for workflow services, 28-1
class paths for clients using local Enterprise

JavaBeans, 28-7
class paths for clients using remote Enterprise

JavaBeans, 28-6
class paths for clients using SOAP, 28-6
customizing, 28-1
packages and classes for, 28-2

writeBinaryToFile function
description, B-31

WS-Addressing
sending correlation IDs, 9-8

wsclient.jar file, 30-2
WSDL

service component metadata, 23-10
WSDL files

definition, 1-2, 2-6
differences between document-literal styles and

RPC styles, 7-1, 7-33
invoking the default revision, 4-15
location for evidence store service, 29-3
location for identity service, 29-2
location for runtime config service, 29-3
location for task metadata service, 29-2
location for task query service, 29-2
location for task report service, 29-3
location for task service, 29-2
location for user metadata service, 29-2
modifying to generate a fault, 12-21

Index-21

references, 4-14
selecting, 4-11
specifying when creating a partner link, 5-6
using an existing WSDL file, 4-12

X
XML assert

overview, 49-2
XML data in BPEL, 7-2
XML data manipulation

bpelx:append extension, 7-20
bpelx:copyList extension, 7-26
bpelx:insertAfter extension, 7-22
bpelx:insertBefore extension, 7-21
bpelx:remove extension, 7-23
bpelx:rename extension, 7-24
bpelx:validate extension, 7-27

XML documents
manipulating, 7-2, 7-4
overview, 7-2, 7-4

XML facades
definition, 13-3
Java embedding, 13-3

XML schema files
error handling, 20-8
fault-bindings.xml, 20-12
fault-policies.xml, 20-8

XML schemas
message types and variable types, 7-1

XPath expressions
assigning numeric values, 7-16
boolean expressions in switch activities, 11-3
dynamically creating another XPath

expression, 7-29
dynamically setting email addresses and telephone

numbers, 16-12
editing in transformations, 45-22
examples, 7-3
fetching a data sequence element, 7-29
in conditional branching logic, 11-1
specifying a task owner, 25-15

XPath extension functions
creating user-defined functions, B-59
dvm

lookupValue function, 46-8
lookupValue1M function, 46-9

XPath functions
examples, 7-4
in transformations, 45-17
indexing methods, 7-29
mathematical calculations, 7-16

XPath queries
copying data, 7-15
examples, 7-3

XQuery, 7-2, 7-4
xref

lookupXRef function, 47-12
exception reasons, 47-13
parameters, 47-12

lookupXRef1M function
exception reasons, 47-14
parameters, 47-13, 47-14

markForDelete function, 47-16
exception reasons, 47-16
parameters, 47-16

populateXRefRow function
modes, 47-7
parameters, 47-7

populateXRefRow1M function, 47-9
modes, 47-9
parameters, 47-9

xsl choose
conditional processing, 45-26

xsl if
conditional processing, 45-25

XSL map
creating from an XSL style sheet, 45-6

XSL style sheet
creating an XSL map, 45-6

XSL transformations
definition, 1-2

XSLT, 7-2, 7-4
XSLT constructs

adding in transformations, 45-24
XSLT Mapper

adding XSLT constructs, 45-24
auto mapping, 45-30
auto mapping with confirmation, 45-32
chaining functions, 45-19
correcting memory errors when generating

reports, 45-47
creating a map file, 45-1
creating a map file from imported schemas, 45-8
creating a new map file, 45-6
creating a transform activity, 45-6
creating an XSL map from an XSL style

sheet, 45-6
customizing sample XML generation for

transformations, 45-48
dictionaries, 45-35
editing functions, 45-18
editing XPath expressions, 45-22
error when mapping duplicate elements, 45-6
functions, 45-17
functions prefixed with xp20 or orcl, 45-17
generating optional elements, 45-48
generating reports, 45-46
ignoring elements, 45-39
layout in Oracle JDeveloper, 45-1
linking source and target nodes, 45-16
map parameter and variable creation, 45-36
named templates in functions, 45-19
repeating elements, 45-27
replacing schemas, 45-39
rules, 45-6
searching source and target nodes, 45-38
setting constant values, 45-16
setting the maximum depth, 45-48
setting the number of repeating elements, 45-48

Index-22

testing the map file, 45-43
using, 45-14
using arrays, 45-27
viewing unmapped target nodes, 45-34
xsl choose conditional processing, 45-26
xsl if conditional processing, 45-25

XSLT mapper
using, 19-49

Y
year-from-dateTime function

description, B-7

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Introduction to Oracle SOA Suite
	1 Introduction to SOA Composite Applications
	1.1 Introduction to Oracle SOA Suite
	1.2 Introduction to SOA Composite Applications
	1.3 Introduction to SCA Technologies
	1.3.1 Binding Components
	1.3.2 Service Infrastructure
	1.3.3 Service Engines and Service Components
	1.3.4 Deployed Service Archives
	1.3.5 Wires

	1.4 Learning Oracle SOA Suite

	2 Overview of SOA Component Editors
	2.1 Introduction to the SOA Composite Editor
	2.1.1 Application Navigator
	2.1.2 Designer
	2.1.3 Left Swim Lane (Exposed Services)
	2.1.4 Right Swim Lane (External References)
	2.1.5 Component Palette
	2.1.6 Resource Palette
	2.1.7 Log Window
	2.1.8 Property Inspector

	2.2 Introduction to the Oracle BPEL Designer
	2.2.1 Application Navigator
	2.2.2 Design Window
	2.2.3 Source Window
	2.2.4 History Window
	2.2.5 Component Palette
	2.2.6 Property Inspector
	2.2.7 Structure Window
	2.2.8 Log Window

	2.3 Introduction to the Oracle Mediator Editor
	2.3.1 Application Navigator
	2.3.2 Mediator Editor
	2.3.3 Source View
	2.3.4 History Window
	2.3.5 Property Inspector
	2.3.6 Structure Window
	2.3.7 Log Window

	2.4 Introduction to the Human Task Editor
	2.4.1 Task Title
	2.4.2 Parameters
	2.4.3 Assignment and Routing Policy
	2.4.4 Expiration and Escalation Policy
	2.4.5 Notification Settings
	2.4.6 Advanced Settings
	2.4.7 Annotations

	2.5 Introduction to the Business Rules Designer
	2.5.1 Application Navigator
	2.5.2 Rules Designer Window
	2.5.3 Structure Window
	2.5.4 Business Rule Validation Log Window

	2.6 Introduction to Oracle Enterprise Manager

	3 Introduction to the SOA Sample Application
	3.1 Introduction to the WebLogic Fusion Order Demo Application
	3.1.1 The Store Front Module
	3.1.2 The WebLogic Fusion Order Demo Module

	3.2 Setting Up the WebLogic Fusion Order Demo Application
	3.3 Taking a Look at the WebLogic Fusion Order Demo Application
	3.3.1 Project Applications of the WebLogic Fusion Order Demo Application
	3.3.2 The composite.xml File

	4 Introduction to the Functionality of the SOA Composite Editor
	4.1 Introduction to the SOA Composite Editor
	4.2 Designing an SOA Composite Application in Oracle JDeveloper
	4.2.1 How to Create an Application and a Project
	4.2.2 How to Add a Service Component
	4.2.3 What You May Need to Know About Adding and Deleting a Service Component
	4.2.4 How to Edit a Service Component
	4.2.5 How to Add a Service
	4.2.6 What You May Need to Know About Adding and Deleting Services
	4.2.7 What You May Need to Know About WSDL References
	4.2.8 What You May Need to Know About Invoking the Default Revision of a Composite
	4.2.9 How to Wire a Service and a Service Component
	4.2.10 What You May Need to Know About Adding and Deleting Wires
	4.2.11 How to Add a Reference
	4.2.12 What You May Need to Know About Adding and Deleting References
	4.2.13 How to Wire a Service Component and a Reference
	4.2.14 How to Update Message Schemas of Components (Optional)
	4.2.15 What You May Need to Know About Updating Message Schemas of Components
	4.2.16 How to Invoke Other Composites
	4.2.17 How to Deploy the SOA Composite Application
	4.2.18 How to Manage Deployed Composites
	4.2.19 How to Test the SOA Composite Application

	Part II Using the BPEL Process Service Component
	5 Getting Started with Oracle BPEL Process Manager
	5.1 Introduction to the BPEL Process Service Component
	5.1.1 How to Add a BPEL Process Service Component

	5.2 Introduction to Activities
	5.3 Introduction to Partner Links
	5.4 Creating a Partner Link
	5.4.1 How to Create a Partner Link
	5.4.1.1 Partner Links for an Outbound Adapter
	5.4.1.2 Partner Links for an Inbound Adapter
	5.4.1.3 Partner Links from an Abstract WSDL to Call a Service
	5.4.1.4 Partner Links from an Abstract WSDL to Implement a Service
	5.4.1.5 Partner Links and Human Tasks or Business Rules
	5.4.1.6 Partner Links from an Existing Human Task, Business Rule, or Oracle Mediator

	5.5 Introduction to Technology Adapters

	6 Introduction to Interaction Patterns in a BPEL Process
	6.1 Introduction to One-Way Messages
	6.2 Introduction to Synchronous Interactions
	6.3 Introduction to Asynchronous Interactions
	6.4 Introduction to Asynchronous Interactions with a Timeout
	6.5 Introduction to Asynchronous Interactions with a Notification Timer
	6.6 Introduction to One Request, Multiple Responses
	6.7 Introduction to One Request, One of Two Possible Responses
	6.8 Introduction to One Request, a Mandatory Response, and an Optional Response
	6.9 Introduction to Partial Processing
	6.10 Introduction to Multiple Application Interactions

	7 Manipulating XML Data in a BPEL Process
	7.1 Introduction to Manipulating XML Data in BPEL Processes
	7.1.1 XML Data in BPEL
	7.1.2 Data Manipulation and XPath Standards

	7.2 Delegating XML Data Operations to Data Provider Services
	7.2.1 How to Create an Entity Variable
	7.2.1.1 Understanding How SDO Works in the Inbound Direction
	7.2.1.2 Understanding How SDO Works in the Outbound Direction
	7.2.1.3 Creating an Entity Variable and Choosing a Partner Link
	7.2.1.4 Creating a Binding Key

	7.3 Using Standalone SDO-based Variables
	7.3.1 How to Declare SDO-based Variables
	7.3.2 How to Convert from XML to SDO

	7.4 Initializing a Variable with Expression Constants or Literal XML
	7.4.1 How To Assign a Literal XML Element

	7.5 Copying Between Variables
	7.5.1 How to Copy Between Variables

	7.6 Accessing Fields Within Element-Based and Message Type-Based Variables
	7.6.1 How to Access Fields Within Element-Based and Message Type-Based Variables

	7.7 Assigning Numeric Values
	7.7.1 How to Assign Numeric Values

	7.8 Using Mathematical Calculations with XPath Standards
	7.8.1 How To Use Mathematical Calculations with XPath Standards

	7.9 Assigning String Literals
	7.9.1 How to Assign String Literals

	7.10 Concatenating Strings
	7.10.1 How to Concatenate Strings

	7.11 Assigning Boolean Values
	7.11.1 How to Assign Boolean Values

	7.12 Assigning a Date or Time
	7.12.1 How to Assign a Date or Time

	7.13 Manipulating Attributes
	7.13.1 How to Manipulate Attributes

	7.14 Manipulating XML Data with bpelx Extensions
	7.14.1 How to Use bpelx:append
	7.14.2 How to Use bpelx:insertBefore
	7.14.3 How to Use bpelx:insertAfter
	7.14.4 How to Use bpelx:remove
	7.14.5 How to Use bpelx:rename and XSD Type Casting
	7.14.6 How to Use bpelx:copyList

	7.15 Validating XML Data with bpelx:validate
	7.15.1 How to Validate XML Data with bpelx:validate

	7.16 Manipulating XML Data Sequences That Resemble Arrays
	7.16.1 How to Statically Index into an XML Data Sequence That Uses Arrays
	7.16.2 How to Determine Sequence Size
	7.16.3 How to Dynamically Index by Applying a Trailing XPath to an Expression
	7.16.3.1 Applying a Trailing XPath to the Result of getVariableData
	7.16.3.2 Using the bpelx:append Extension to Append New Items to a Sequence
	7.16.3.3 Merging Data Sequences
	7.16.3.4 Generating Functionality Equivalent to an Array of an Empty Element

	7.16.4 What You May Need to Know About SOAP-Encoded Arrays
	7.16.5 What You May Need to Know About Using the Array Identifier

	7.17 Converting from a String to an XML Element
	7.17.1 How To Convert from a String to an XML Element

	7.18 Understanding the Differences Between Document-Style and RPC-Style WSDL Files
	7.18.1 How To Use RPC-Style Files

	7.19 Manipulating SOAP Headers in BPEL
	7.19.1 How to Receive SOAP Headers in BPEL
	7.19.2 How to Send SOAP Headers in BPEL

	7.20 Using MIME/DIME SOAP Attachments

	8 Invoking a Synchronous Web Service from a BPEL Process
	8.1 Introduction to Invoking a Synchronous Web Service
	8.2 Invoking a Synchronous Web Service
	8.2.1 How to Invoke a Synchronous Web Service
	8.2.2 What Happens When You Invoke a Synchronous Web Service
	8.2.2.1 Partner Link in the BPEL Code
	8.2.2.2 Partner Link Type and Port Type in the BPEL Code
	8.2.2.3 Invoke Activity for Performing a Request
	8.2.2.4 Synchronous Invocation in BPEL Code

	8.3 Calling a One-Way Mediator with a Synchronous BPEL Process

	9 Invoking an Asynchronous Web Service from a BPEL Process
	9.1 Introduction to Invoking an Asynchronous Web Service
	9.2 Invoking an Asynchronous Web Service
	9.2.1 How to Invoke an Asynchronous Web Service
	9.2.1.1 Adding a Partner Link for an Asynchronous Service
	9.2.1.2 Adding an Invoke Activity
	9.2.1.3 Adding a Receive Activity
	9.2.1.4 Performing Additional Activities

	9.2.2 What Happens When You Invoke an Asynchronous Web Service
	9.2.2.1 portType Section of the WSDL File
	9.2.2.2 partnerLinkType Section of the WSDL File
	9.2.2.3 Partner Links Section in the BPEL File
	9.2.2.4 Composite Application File
	9.2.2.5 Invoke and Receive Activities
	9.2.2.6 createInstance Attribute for Starting a New Instance
	9.2.2.7 Dehydration Points for Maintaining Long-Running Asynchronous Processes
	9.2.2.8 Multiple Runtime Endpoint Locations

	9.3 Using WS-Addressing in an Asynchronous Service
	9.3.1 How to Use WS-Addressing in an Asynchronous Service
	9.3.1.1 Using TCP Tunneling to See Messages Exchanged Between Programs
	9.3.1.1.1 Setting up a TCP Listener for Synchronous Services
	9.3.1.1.2 Setting up a TCP Listener for Asynchronous Services

	9.4 Using Correlation Sets in an Asynchronous Service
	9.4.1 How to Use Correlation Sets in an Asynchronous Service
	9.4.1.1 Step 1: Creating a Project
	9.4.1.2 Step 2: Configuring Partner Links and File Adapter Services
	9.4.1.2.1 Creating an Initial Partner Link and File Adapter Service
	9.4.1.2.2 Creating a Second Partner Link and File Adapter Service
	9.4.1.2.3 Creating a Third Partner Link and File Adapter Service

	9.4.1.3 Step 3: Creating Three Receive Activities
	9.4.1.3.1 Creating an Initial Receive Activity
	9.4.1.3.2 Creating a Second Receive Activity
	9.4.1.3.3 Creating a Third Receive Activity

	9.4.1.4 Step 4: Creating Correlation Sets
	9.4.1.4.1 Creating an Initial Correlation Set
	9.4.1.4.2 Creating a Second Correlation Set

	9.4.1.5 Step 5: Associating Correlation Sets with Receive Activities
	9.4.1.5.1 Associating the First Correlation Set with a Receive Activity
	9.4.1.5.2 Associating the Second Correlation Set with a Receive Activity
	9.4.1.5.3 Associating the Third Correlation Set with a Receive Activity

	9.4.1.6 Step 6: Creating Property Aliases
	9.4.1.6.1 Creating Property Aliases for NameCorr
	9.4.1.6.2 Creating Property Aliases for IDCorr

	9.4.1.7 Step 7: Reviewing WSDL File Content

	10 Using Parallel Flow in a BPEL Process
	10.1 Introduction to Parallel Flows in BPEL Processes
	10.2 Creating a Parallel Flow
	10.2.1 How to Create a Parallel Flow
	10.2.2 What Happens When You Create a Parallel Flow

	10.3 Customizing the Number of Flow Activities with the flowN Activity
	10.3.1 How to Create a flowN Activity
	10.3.2 What Happens When You Create a FlowN Activity

	11 Using Conditional Branching in a BPEL Process
	11.1 Introduction to Conditional Branching
	11.2 Creating a Switch Activity to Define Conditional Branching
	11.2.1 How to Create a Switch Activity
	11.2.2 What Happens When You Create a Switch Activity

	11.3 Creating a While Activity to Define Conditional Branching
	11.3.1 How To Create a While Activity
	11.3.2 What Happens When You Create a While Activity

	12 Using Fault Handling in a BPEL Process
	12.1 Introduction to a Fault Handler
	12.2 Introduction to BPEL Standard Faults
	12.3 Introduction to Categories of BPEL Faults
	12.3.1 Business Faults
	12.3.2 Runtime Faults
	12.3.2.1 bindingFault
	12.3.2.2 remoteFault
	12.3.2.3 replayFault

	12.4 Using the Fault Management Framework
	12.4.1 How to Design a Fault Policy
	12.4.1.1 Understanding How Fault Policy Binding Resolution Works
	12.4.1.2 Creating a Fault Policy File for Automated Fault Recovery
	12.4.1.3 Associating a Fault Policy with Fault Policy Binding
	12.4.1.4 Additional Fault Policy and Fault Policy Binding File Samples
	12.4.1.5 Designing a Fault Policy with Multiple Rejection Handlers

	12.4.2 How to Execute a Fault Policy
	12.4.3 How to Use a Java Action Fault Policy
	12.4.4 What You May Need to Know About Fault Management Behavior When the Number of Instance Retries is Exceeded
	12.4.5 What You May Need to Know About Binding Level Retry Execution Within Fault Policy Retries

	12.5 Catching BPEL Runtime Faults
	12.5.1 How to Catch BPEL Runtime Faults

	12.6 Getting Fault Details with the getFaultAsString XPath Extension Function
	12.6.1 How to Get Fault Details with the getFaultAsString XPath Extension Function

	12.7 Throwing Internal Faults
	12.7.1 How to Create a Throw Activity
	12.7.2 What Happens When You Create a Throw Activity

	12.8 Returning External Faults
	12.8.1 How to Return a Fault in a Synchronous Interaction
	12.8.2 How to Return a Fault in an Asynchronous Interaction

	12.9 Using a Scope Activity to Manage a Group of Activities
	12.9.1 How to Create a Scope Activity
	12.9.2 What Happens After You Create a Scope Activity
	12.9.3 What You May Need to Know About Scopes
	12.9.4 How to Use a Fault Handler within a Scope
	12.9.5 How to Create a Catch Activity
	12.9.6 What Happens When You Create a Catch Branch
	12.9.7 How to Create an Empty Activity to Insert No-Op Instructions into a Business Process
	12.9.8 What Happens When You Create an Empty Activity

	12.10 Using Compensation After Undoing a Series of Operations
	12.10.1 How to Use Compensation After Undoing a Series of Operations
	12.10.2 How to Create a Compensate Activity
	12.10.3 What Happens When You Create a Compensate Activity

	12.11 Using the Terminate Activity to Stop a Business Process Instance
	12.11.1 How to Create a Terminate Activity
	12.11.2 What Happens When You Create a Terminate Activity

	13 Incorporating Java and Java EE Code in a BPEL Process
	13.1 Introduction to Java and Java EE Code in BPEL Processes
	13.2 Incorporating Java and Java EE Code in BPEL Processes
	13.2.1 How to Wrap Java Code as a SOAP Service
	13.2.2 What You May Need to Know About Wrapping Java Code as a SOAP Service
	13.2.3 How to Embed Java Code Snippets into a BPEL Process with the bpelx:exec Tag
	13.2.4 How to Use an XML Facade to Simplify DOM Manipulation
	13.2.5 How to Use bpelx:exec Built-in Methods
	13.2.6 How to Use Java Code Wrapped in a Service Interface

	13.3 Adding Custom Classes and JAR Files
	13.3.1 How to Add Custom Classes and JAR Files

	13.4 Using Java Embedding in a BPEL Process in Oracle JDeveloper
	13.4.1 How To Use Java Embedding in a BPEL Process in Oracle JDeveloper

	13.5 Embedding Service Data Objects with bpelx:exec

	14 Using Events and Timeouts in BPEL Processes
	14.1 Introduction to Event and Timeout Concepts
	14.2 Creating a Pick Activity to Select Between Continuing a Process or Waiting
	14.2.1 How To Create a Pick Activity
	14.2.2 What Happens When You Create a Pick Activity

	14.3 Creating a Wait Activity to Set an Expiration Time
	14.3.1 How To Create a Wait Activity
	14.3.2 What Happens When You Create a Wait Activity

	14.4 Setting Timeouts for Synchronous Processes
	14.4.1 How To Set Timeouts for Synchronous Processes

	15 Coordinating Master and Detail Processes
	15.1 Introduction to Master and Detail Process Coordinations
	15.1.1 BPEL File Definition for the Master Process
	15.1.1.1 Correlating a Master Process with Multiple Detail Processes

	15.1.2 BPEL File Definition for Detail Processes

	15.2 Defining Master and Detail Process Coordination in Oracle JDeveloper
	15.2.1 How to Create a Master Process
	15.2.2 How to Create a Detail Process
	15.2.3 How to Create an Invoke Activity

	16 Using the Notification Service
	16.1 Introduction to the Notification Service
	16.2 Introduction to Notification Channel Setup
	16.3 Selecting Notification Channels During BPEL Process Design
	16.3.1 How To Configure the Email Notification Channel
	16.3.1.1 Setting Email Attachments
	16.3.1.2 Formatting the Body of an Email Message as HTML

	16.3.2 How to Configure the IM Notification Channel
	16.3.3 How to Configure the SMS Notification Channel
	16.3.4 How to Configure the Voice Notification Channel
	16.3.5 How to Select Email Addresses and Telephone Numbers Dynamically
	16.3.6 How to Select Notification Recipients by Browsing the User Directory

	16.4 Allowing the End User to Select Notification Channels
	16.4.1 How to Allow the End User to Select Notification Channels
	16.4.1.1 How to Create and Send Headers for Notifications

	17 Using Oracle BPEL Process Manager Sensors
	17.1 Introduction to Sensors
	17.2 Configuring Sensors and Sensor Actions in Oracle JDeveloper
	17.2.1 How to Configure Sensors
	17.2.2 How to Configure Sensor Actions
	17.2.3 How to Publish to Remote Topics and Queues
	17.2.4 How to Create a Custom Data Publisher
	17.2.5 How to Register the Sensors and Sensor Actions in composite.xml

	17.3 Viewing Sensors and Sensor Action Definitions in Oracle Enterprise Manager Fusion Middleware Control Console

	Part III Using the Oracle Mediator Service Component
	18 Getting Started with Oracle Mediator
	18.1 Introduction to Oracle Mediator
	18.2 Overview of Mediator Editor Environment
	18.3 Creating a Mediator
	18.3.1 Creating a Mediator Without Interface Definition
	18.3.1.1 How to Create a Mediator with No Interface Definition
	18.3.1.2 How to Define an Interface for a Mediator with no Interface Definition

	18.3.2 Creating a Mediator Based on a WSDL File
	18.3.2.1 How to Create a Mediator Based on a WSDL File

	18.3.3 Creating a Mediator with One-Way Interface Definition
	18.3.3.1 How to Create a Mediator with One-Way Interface Definition
	18.3.3.2 What Happens When You Create a Mediator Component with One-Way Interface Definition

	18.3.4 Creating a Mediator with Synchronous Interface Definition
	18.3.4.1 How to Create a Mediator with Synchronous Interface Definition
	18.3.4.2 What Happens When You Create a Mediator Component with Synchronous Interface Definition

	18.3.5 Creating a Mediator with Asynchronous Interface Definition
	18.3.5.1 How to Create a Mediator with Asynchronous Interface Definition
	18.3.5.2 What Happens When You Create a Mediator Component with Asynchronous Interface Definition

	18.3.6 Creating a Mediator Component for Event Subscription
	18.3.6.1 How to Create a Mediator for Event Subscription
	18.3.6.2 What Happens When You Create a Mediator Component for Event Subscription

	18.3.7 What You May Need to Know About the Information Available in Mediator User Interface
	18.3.7.1 Mediator Definition
	18.3.7.2 Routing Rule

	18.4 Generating a WSDL File
	18.5 Specifying Operation or Event Subscription Properties
	18.6 Modifying a Mediator Component
	18.6.1 Modifying Operations
	18.6.2 Modifying Event Subscriptions

	19 Creating Mediator Routing Rules
	19.1 Introduction to Routing Rules
	19.2 Defining Routing Rules
	19.2.1 Using the Routing Rules Panel
	19.2.2 Creating Static Routing Rules
	19.2.2.1 Specifying Mediator Services or Events
	19.2.2.2 Specifying Sequential or Parallel Execution
	19.2.2.3 Handling Response Messages
	19.2.2.4 Handling Multiple Callbacks
	19.2.2.5 Handling Faults
	19.2.2.6 Specifying Expression for Filtering Messages
	19.2.2.6.1 Using User-Defined Extension Functions

	19.2.2.7 Creating Transformations
	19.2.2.8 Assigning Values
	19.2.2.9 Access Headers for Filters and Assignments
	19.2.2.9.1 Manual Expression Building for accessing Headers for Filters and Assignments
	19.2.2.9.2 Manual Expression Building for Accessing Properties for Filters and Assignments

	19.2.2.10 Using Semantic Validation
	19.2.2.11 Support for Java Callouts

	19.2.3 Creating Dynamic Routing Rules

	19.3 Creating a Mediator for Routing Messages
	19.3.1 Step-By-Step Instructions for Creating the CustomerRouter Use Case
	19.3.1.1 Task 1: Creating an Oracle JDeveloper Application and Project
	19.3.1.2 Creating CustomerRouter Mediator Component
	19.3.1.3 Creating a File Adapter Service
	19.3.1.4 Creating a File adapter reference
	19.3.1.5 Specifying Routing Rules
	19.3.1.6 Creating Oracle Application Server Connection
	19.3.1.7 Deploying CustomerRouterProject

	19.3.2 Running and Monitoring the CustomerRouterProject Application

	19.4 Creating Asynchronous Request Response Using Mediator
	19.4.1 Step-By-Step Instructions for Creating the AsyncMediator Use Case
	19.4.1.1 Task 1: Creating an Oracle JDeveloper Application and Project
	19.4.1.2 Task 2: Creating a Server BPEL Process
	19.4.1.3 Task 3: Create a Mediator Component
	19.4.1.4 Task 4: Creating a Client BPEL Process
	19.4.1.5 Task 5: Creating the Invoke, Receive, and Assignment Activities
	19.4.1.6 Task 6: Configuring Oracle Application Server Connection
	19.4.1.7 Task 7: Deploying the Composite Application

	20 Using Mediator Error Handling
	20.1 Introduction to Oracle Mediator Error Handling
	20.1.1 Fault Policies
	20.1.1.1 Conditions
	20.1.1.2 Actions

	20.1.2 Fault Bindings
	20.1.3 Error groups in Mediator

	20.2 Using Error Handling with Mediator
	20.2.1 How to Use Error Handling for a Mediator Component
	20.2.2 What Happens at Runtime

	20.3 Fault Recovery Using Enterprise Manager
	20.4 Error Handling XML Schema Definition Files
	20.4.1 Schema Definition File for Fault-policies.xml
	20.4.2 Schema Definition File for Fault-bindings.xml

	21 Working with Multiple Part Messages in Mediator
	21.1 Introduction to Mediator Multipart Message Support Feature
	21.1.1 Working with Multipart Request Messages
	21.1.1.1 Specifying Filter Expressions
	21.1.1.2 Adding Validations
	21.1.1.3 Creating Transformations
	21.1.1.4 Assigning Values

	21.1.2 Working with Multipart Reply, Fault, and Callback Source Messages
	21.1.3 Working with Multipart Target Messages

	22 Understanding Message Exchange Patterns of a Mediator
	22.1 Understanding One-way Message Exchange Pattern
	22.2 Understanding Request-Reply Message Exchange Pattern
	22.3 Understanding Request-Reply-Fault Message Exchange Pattern
	22.4 Understanding Request-Callback Message Exchange Pattern
	22.5 Understanding Request-Reply-Callback Message Exchange Pattern
	22.6 Understanding Request-Reply-Fault-Callback Message Exchange Pattern

	Part IV Using the Business Rules Service Component
	23 Using the Business Rule Service Component
	23.1 Introduction to the Business Rule Service Component
	23.1.1 Integrating BPEL Processes, Business Rules, and Human Tasks

	23.2 Introduction to Creating and Editing Business Rules
	23.2.1 How to Create Business Rules Components
	23.2.2 Introduction to Working with Business Rules in Rules Designer

	23.3 Adding Business Rules to a BPEL Process
	23.3.1 How to Add Business Rules to a BPEL Process
	23.3.2 What Happens When You Add Business Rules to a BPEL Process
	23.3.3 What Happens When You Create a Business Rules Dictionary
	23.3.4 What You Need to Know About Invoking Business Rules in a BPEL Process
	23.3.5 What You Need to Know About Decision Component Stateful Operation

	23.4 Adding Business Rules to an SOA Composite Application
	23.4.1 How to Add Business Rules to an SOA Composite Application
	23.4.2 How to Select and Modify a Decision Function in a Business Rule Component

	23.5 Running Business Rules in a Composite Application

	Part V Using the Human Workflow Service Component
	24 Getting Started with Human Workflow
	24.1 Introduction to Human Workflow
	24.2 Introduction to Human Workflow Concepts
	24.2.1 Introduction to Design and Runtime Concepts
	24.2.1.1 Task Assignment and Routing
	24.2.1.1.1 Participant
	24.2.1.1.2 Participant Type
	24.2.1.1.3 Participant Assignment
	24.2.1.1.4 Ad Hoc Routing
	24.2.1.1.5 Outcome-based Completion of Routing Flow

	24.2.1.2 Static, Dynamic, and Rule-Based Task Assignment
	24.2.1.3 Task Stakeholders
	24.2.1.4 Task Deadlines
	24.2.1.5 Notifications
	24.2.1.6 Task Forms
	24.2.1.7 Advanced Concepts
	24.2.1.7.1 Rule-based Routing
	24.2.1.7.2 Rule-based Participant Assignment
	24.2.1.7.3 Stages
	24.2.1.7.4 Access Rules
	24.2.1.7.5 Callbacks

	24.2.1.8 Reports and Audit Trails

	24.2.2 Introduction to the Stages of Human Workflow Design

	24.3 Introduction to Human Workflow Features
	24.3.1 Human Workflow Use Cases
	24.3.1.1 Task Assignment to a User or Role
	24.3.1.2 Use of the Various Participant Types
	24.3.1.3 Escalation, Expiration, and Delegation
	24.3.1.4 Automatic Assignment and Delegation
	24.3.1.5 Dynamic Assignment of Users Based on Task Content

	24.3.2 Designing a Human Task from Start to Finish
	24.3.2.1 Prerequisites
	24.3.2.2 How to Create the Vacation Request Process
	24.3.2.2.1 Creating an Application and a Project with a BPEL Process
	24.3.2.2.2 Create the Human Task Service Component
	24.3.2.2.3 Designing the Human Task
	24.3.2.2.4 Associating the Human Task and BPEL Process Service Components
	24.3.2.2.5 Creating an Application Server Connection
	24.3.2.2.6 Deploying the SOA Composite Application
	24.3.2.2.7 Initiating the Process Instance
	24.3.2.2.8 Creating a Task Display Form Project
	24.3.2.2.9 Acting on the Task in Oracle BPM Worklist
	24.3.2.2.10 Deploying the Task Display Form

	24.3.3 Additional Tutorials

	24.4 Introduction to Human Workflow Architecture
	24.4.1 Human Workflow Services
	24.4.2 Use of Human Task
	24.4.3 Service Engines

	25 Designing Human Tasks
	25.1 Introduction to Human Task Design Concepts
	25.2 Introduction to the Modeling Process
	25.2.1 Create a Human Task Definition
	25.2.2 Associate the Human Task Definition with a BPEL Process
	25.2.3 Generate the Task Display Form

	25.3 Creating the Human Task Definition with the Human Task Editor
	25.3.1 How to Create a Human Task Service Component
	25.3.2 What Happens When You Create a Human Task Service Component
	25.3.3 How to Access the Sections of the Human Task Editor
	25.3.4 How to Specify the Title, Description, Outcome, Priority, Category, and Owner
	25.3.4.1 Specifying a Task Title
	25.3.4.2 Specifying a Task Description
	25.3.4.3 Specifying a Task Outcome
	25.3.4.4 Specifying a Task Category
	25.3.4.5 Specifying a Task Priority
	25.3.4.6 Specifying a Task Owner
	25.3.4.6.1 Specifying a Task Owner Statically Through the User Directory or Application Roles
	25.3.4.6.2 Specifying a Task Owner Dynamically Through an XPath Expression

	25.3.5 How to Specify the Task Payload Data Structure
	25.3.6 How to Assign Task Participants
	25.3.6.1 Configuring the Single Participant Type
	25.3.6.1.1 Creating a Single Task Participant List
	25.3.6.1.2 Specifying a Time Limit for Acting on a Task
	25.3.6.1.3 Inviting Additional Participants to a Task
	25.3.6.1.4 Bypassing a Task Participant

	25.3.6.2 Configuring the Parallel Participant Type
	25.3.6.2.1 Specifying the Voting Outcome
	25.3.6.2.2 Creating a Parallel Task Participant List
	25.3.6.2.3 Sharing Attachments and Comments with Task Participants
	25.3.6.2.4 Specifying a Time Limit for Acting on a Task
	25.3.6.2.5 Inviting Additional Participants to a Task
	25.3.6.2.6 Bypassing a Task Participant

	25.3.6.3 Configuring the Serial Participant Type
	25.3.6.3.1 Creating a Serial Task Participant List
	25.3.6.3.2 Specifying a Time Limit for Acting on a Task
	25.3.6.3.3 Inviting Additional Participants to a Task
	25.3.6.3.4 Bypassing a Task Participant

	25.3.6.4 Configuring the FYI Participant Type
	25.3.6.4.1 Creating an FYI Task Participant List

	25.3.7 How to Select a Routing Policy
	25.3.7.1 Routing Tasks to All Participants in the Specified Order
	25.3.7.1.1 Allowing All Participants to Invite Other Participants
	25.3.7.1.2 Stopping Routing of a Task to Further Participants
	25.3.7.1.3 Enabling Early Completion in Parallel Subtasks
	25.3.7.1.4 Completing Parent Subtasks of Early Completing Subtasks

	25.3.7.2 Specifying Advanced Task Routing Using Business Rules
	25.3.7.2.1 Introduction to Advanced Task Routing Using Business Rules
	25.3.7.2.2 Facts
	25.3.7.2.3 Action Types
	25.3.7.2.4 Sample Rule Set
	25.3.7.2.5 Creating Advanced Routing Rules

	25.3.7.3 Using External Routing
	25.3.7.4 Configuring the Error Assignee

	25.3.8 How to Escalate, Renew, or End the Task
	25.3.8.1 Introduction to Escalation and Expiration Policy
	25.3.8.2 Specifying a Policy to Never Expire
	25.3.8.3 Specifying a Policy to Expire
	25.3.8.4 Extending an Expiration Policy Period
	25.3.8.5 Escalating a Task Policy
	25.3.8.6 Specifying a Due Date

	25.3.9 How to Specify Participant Notification Preferences
	25.3.9.1 Notifying Recipients of Changes to Task Status
	25.3.9.2 Editing the Notification Message
	25.3.9.3 Setting Up Reminders
	25.3.9.4 Changing the Character Set Encoding
	25.3.9.5 Securing Notifications to Exclude Details
	25.3.9.6 Making Email Messages Actionable
	25.3.9.7 Sending Task Attachments with Email Notifications

	25.3.10 How To Specify Advanced Settings
	25.3.10.1 Specifying Escalation Rules
	25.3.10.2 Specifying WordML Style Sheets for Attachments
	25.3.10.3 Specifying Style Sheets for Attachments
	25.3.10.4 Specifying Multilingual Settings
	25.3.10.5 Specifying Callback Classes on Task Status
	25.3.10.5.1 Specifying Java Callbacks
	25.3.10.5.2 Specifying Business Event Callbacks

	25.3.10.6 Specifying a Workflow Signature Policy
	25.3.10.7 Specifying a Certificate Authority
	25.3.10.8 Specifying Access Policies on Task Content
	25.3.10.8.1 Introduction to Access Rules
	25.3.10.8.2 Specifying User Privileges for Acting on Task Content
	25.3.10.8.3 Specifying Actions for Acting Upon Tasks

	25.3.10.9 Specifying Restrictions on Task Assignments
	25.3.10.10 Allowing Task and Routing Customization in BPEL Callbacks
	25.3.10.11 Showing the Complete Graphical History

	25.3.11 How to Specify Annotations
	25.3.12 How to Exit the Human Task Editor and Save Your Changes

	25.4 Associating the Human Task Service Component with a BPEL Process
	25.4.1 How to Associate a Human Task with a BPEL Process
	25.4.2 What You May Need to Know About Deleting a Wire Between a Human Task Service Component and a BPEL Process
	25.4.3 How to Define the Human Task Activity Title, Initiator, Priority, and Parameter Variables
	25.4.3.1 Specifying the Task Title
	25.4.3.2 Specifying the Task Initiator and Task Priority
	25.4.3.3 Specifying Task Parameters

	25.4.4 How to Define the Human Task Activity Advanced Features
	25.4.4.1 Specifying a Scope Name and a Global Task Variable Name
	25.4.4.2 Specifying a Task Owner
	25.4.4.3 Specifying an Identification Key
	25.4.4.4 Specifying an Identity Context
	25.4.4.5 Specifying an Application Context
	25.4.4.6 Including the Task History of Other Human Tasks

	25.4.5 How to View the Generated Human Task Activity
	25.4.5.1 Invoking BPEL Callbacks

	25.4.6 What You May Need to Know About Changing the Generated Human Task Activity
	25.4.7 What You May Need to Know About Deleting a Partner Link Generated by a Human Task
	25.4.8 How to Define Outcome-Based Modeling
	25.4.8.1 Specifying Payload Updates
	25.4.8.2 Using Case Statements for Other Task Conclusions

	26 Designing Task Display Forms for Human Tasks
	26.1 Introduction to the Task Display Form
	26.2 Associating the Task Flow with the Task Service
	26.3 Creating an ADF Task Flow Based on a Human Task
	26.3.1 How To Autogenerate an ADF Task Flow for a Human Task
	26.3.2 How To Create an ADF Task Flow Based on a Human Task
	26.3.3 What Happens When You Create an ADF Task Flow Based on a Human Task

	26.4 Creating a Task Display Form
	26.4.1 How To Create a Task Display Form Using the Complete Task with Payload Drop Handler
	26.4.2 How To Create Task Display Form Regions Using Individual Drop Handlers
	26.4.3 How To Add the Payload to the Task Display Form
	26.4.4 What Happens When You Create a Task Display Form

	26.5 Refreshing Data Controls When the Task XSD Changes
	26.6 Securing the Task Flow Application
	26.7 Creating an Email Notification
	26.7.1 How To Create an Email Notification
	26.7.1.1 Creating a Task Flow with a Router
	26.7.1.2 Creating an Email Notification Page

	26.7.2 What Happens When You Create an Email Notification Page
	26.7.3 What You May Need to Know About Creating an Email Notification Page

	26.8 Deploying a Composite Application with a Task Flow
	26.8.1 Before Deploying the Task Display Form: Port Changes
	26.8.2 How To Deploy a Composite Application with a Task Flow
	26.8.3 How To Redeploy the Task Display Form
	26.8.4 How To Deploy a Task Flow as a Separate Application
	26.8.5 How To Deploy a Task Display Form to a non-SOA Oracle WebLogic Server
	26.8.5.1 Deploying oracle.soa.workflow.jar to a non-SOA Oracle WebLogic Server
	26.8.5.2 Defining the Foreign JNDI Provider on a non-SOA Oracle WebLogic Server
	26.8.5.3 Defining the Foreign JNDI Provider Links on a non-SOA Oracle WebLogic Server
	26.8.5.4 Including a Grant for bpm-services.jar
	26.8.5.5 Deploying the Application

	26.8.6 What Happens When You Deploy the Task Display Form

	26.9 Displaying a Task Display Form in the Worklist
	26.9.1 How To Display the Task Display Form in the Worklist

	26.10 Displaying a Task in an Email Notification

	27 Using Oracle BPM Worklist
	27.1 Introduction to Oracle BPM Worklist
	27.1.1 What You May Need To Know About Oracle BPM Worklist

	27.2 Logging In to Oracle BPM Worklist
	27.2.1 How To Log In to the Worklist
	27.2.1.1 Enabling the weblogic User for Logging in to the Worklist

	27.2.2 What Happens When You Log In to the Worklist

	27.3 Customizing the Task List Page
	27.3.1 How To Filter Tasks
	27.3.2 How To Create and Customize Worklist Views
	27.3.3 How To Customize the Task Status Chart
	27.3.4 How To Create a ToDo Task
	27.3.5 How To Create a Subtask

	27.4 Acting on Tasks: The Task Details Page
	27.4.1 System Actions
	27.4.2 Task History
	27.4.3 How To Act on Tasks
	27.4.4 How To Act on Tasks That Require a Digital Signature

	27.5 Approving Tasks
	27.6 Setting a Vacation Period
	27.7 Setting Rules
	27.7.1 How To Create User Rules
	27.7.2 How To Create Group Rules
	27.7.3 Assignment Rules for Tasks with Multiple Assignees

	27.8 Using the Worklist Administration Functions
	27.8.1 How To Manage Other Users’ or Groups’ Rules (as an Administrator)
	27.8.2 How To Set the Worklist Display (Application Preferences)

	27.9 Specifying Notification Settings
	27.9.1 Messaging Filter Rules
	27.9.1.1 Data Types
	27.9.1.2 Attributes

	27.9.2 Rule Actions
	27.9.3 Managing Messaging Channels
	27.9.3.1 Viewing Your Messaging Channels
	27.9.3.2 Creating, Editing, and Deleting a Messaging Channel

	27.9.4 Managing Messaging Filters
	27.9.4.1 Viewing Messaging Filters
	27.9.4.2 Creating Messaging Filters
	27.9.4.3 Editing a Messaging Filter
	27.9.4.4 Deleting a Messaging Filter

	27.10 Using Flex Fields
	27.10.1 How To Map Flex Fields

	27.11 Creating Worklist Reports
	27.11.1 How To Create Reports
	27.11.2 What Happens When You Create Reports
	27.11.2.1 Unattended Tasks Report
	27.11.2.2 Tasks Priority Report
	27.11.2.3 Tasks Cycle Time Report
	27.11.2.4 Tasks Productivity Report

	27.12 Accessing Oracle BPM Worklist in Local Languages
	27.12.1 How To Change the Language Used in the Worklist
	27.12.2 How To Change the Time Zone Used in the Worklist

	28 Building a Custom Worklist Client
	28.1 Introduction to Building Clients for Workflow Services
	28.2 Packages and Classes for Building Clients
	28.3 Workflow Service Clients
	28.3.1 The IWorkflowServiceClient Interface

	28.4 Class Paths for Clients Using SOAP
	28.5 Class Paths for Clients Using Remote EJBs
	28.6 Class Paths for Clients Using Local EJBs
	28.7 Enterprise JavaBeans References in Web Applications
	28.8 Initiating a Task
	28.8.1 Creating a Task
	28.8.2 Creating a Payload Element in a Task
	28.8.3 Initiating a Task Programmatically

	28.9 Changing Workflow Standard View Definitions
	28.10 Writing a Worklist Application Using the HelpDeskUI Sample

	29 Introduction to Human Workflow Services
	29.1 Introduction to Human Workflow Services
	29.1.1 Enterprise JavaBeans, SOAP, and Java Support for the Human Workflow Services
	29.1.2 Security Model for Services
	29.1.2.1 Limitation on Propagating Identity to Workflow Services when Using SOAP Web Services
	29.1.2.2 Creating Human Workflow Context on Behalf of a User

	29.1.3 Task Service
	29.1.4 Task Query Service
	29.1.5 Identity Service
	29.1.5.1 Identity Service Providers
	29.1.5.1.1 Custom User Repository Plug-ins

	29.1.6 Task Metadata Service
	29.1.7 User Metadata Service
	29.1.8 Task Report Service
	29.1.9 Runtime Config Service
	29.1.9.1 Internationalization of Attribute Labels

	29.1.10 Evidence Store Service and Digital Signatures
	29.1.10.1 Prerequisites
	29.1.10.2 Interfaces and Methods

	29.1.11 Task Instance Attributes

	29.2 Notifications from Human Workflow
	29.2.1 Contents of Notification
	29.2.2 Error Message Support
	29.2.3 Reliability Support
	29.2.4 Management of Oracle Human Workflow Notification Service
	29.2.5 How to Configure the Notification Channel Preferences
	29.2.6 How to Configure Notification Messages in Different Languages
	29.2.7 How to Send Actionable Messages
	29.2.7.1 How to Send Actionable Emails for Human Tasks

	29.2.8 How to Send Inbound and Outbound Attachments
	29.2.9 How to Send Inbound Comments
	29.2.10 How to Send Secure Notifications
	29.2.11 How to Set Channels Used for Notifications
	29.2.12 How to Send Reminders
	29.2.13 How to Set Automatic Replies to Unprocessed Messages
	29.2.14 How to Create Custom Notification Headers

	29.3 Assignment Service Configuration
	29.3.1 Dynamic Assignment and Task Escalation Functions
	29.3.1.1 How to Implement a Dynamic Assignment Function
	29.3.1.2 How to Configure Dynamic Assignment Functions
	29.3.1.3 How to Configure Display Names for Dynamic Assignment Functions
	29.3.1.4 How to Implement a Task Escalation Function

	29.3.2 Dynamically Assigning Task Participants with the Assignment Service
	29.3.2.1 How to Implement an Assignment Service
	29.3.2.2 Example of Assignment Service Implementation
	29.3.2.3 How to Deploy a Custom Assignment Service

	29.3.3 Custom Escalation Function

	29.4 Class Loading for Callbacks and Resource Bundles
	29.5 Resource Bundles in Workflow Services
	29.5.1 Task Resource Bundles
	29.5.2 Global Resource Bundle - WorkflowLabels.properties
	29.5.3 Worklist Client Resource Bundles
	29.5.4 Task Detail ADF Task Flow Resource Bundles
	29.5.5 Case Sensitivity

	29.6 Introduction to Human Workflow Client Integration with Oracle WebLogic Server Services
	29.6.1 Human Workflow Services Clients
	29.6.1.1 Task Query Service Client Code
	29.6.1.2 Configuration Option
	29.6.1.2.1 Workflow Client Configuration File - wf_client_config.xml
	29.6.1.2.2 Workflow Client Configuration in the Property Map

	29.6.1.3 Client Logging
	29.6.1.4 Configuration Migration Utility

	29.6.2 Identity Propagation
	29.6.2.1 Enterprise JavaBeans Identity Propagation
	29.6.2.1.1 Client Configuration
	29.6.2.1.2 Requirements for Client Applications For Identity Propagation

	29.6.2.2 SAML Token Identity Propagation for SOAP Client
	29.6.2.2.1 Client configuration
	29.6.2.2.2 Identity Propagation Mode Setting Through Properties
	29.6.2.2.3 Identity Propagation Mode Setting in Configuration File
	29.6.2.2.4 Identity Propagation Mode Setting Through the JAXB Object

	29.6.3 Client JAR Files

	29.7 Database Views for Oracle Workflow
	29.7.1 Unattended Tasks Report View
	29.7.2 Task Cycle Time Report View
	29.7.3 Task Productivity Report View
	29.7.4 Task Priority Report View

	30 Integrating Microsoft Excel with a Human Task
	30.1 Configuring Your Environment for Invoking a BPEL Process from an Excel Workbook
	30.1.1 How to Create an JDeveloper Project of the Type Web Service Data Control
	30.1.2 How to Create a Dummy JSF Page
	30.1.3 How to Add Desktop Integration to Your Oracle JDeveloper Project
	30.1.4 What Happens When You Add Desktop Integration to Your JDeveloper Project
	30.1.5 How to Deploy the Web Application You Created in Step 1
	30.1.6 How to Install Microsoft Excel
	30.1.7 How to Install the Oracle Oracle ADF-Desktop Integration Plug-in
	30.1.8 How to Specify the User Interface Controls and Create the Excel Workbook

	30.2 Attaching Excel Workbooks to Human Task Workflow Email Notifications
	30.2.1 Enabling Attachment of Excel Workbooks to Human Task Workflow Email Notifications
	30.2.2 What Happens During Runtime When You Enable Attachment of Excel Workbooks to Human Task Workflow Email Notifications
	30.2.3 Example: Attaching an Excel Workbook to Email Notifications
	30.2.3.1 Task 1: Enable the ADF Task Flow Project with Oracle ADF-DI Capabilities
	30.2.3.2 Task 2: Set up Authentication
	30.2.3.3 Task 3: Create a Valid Page Definition File to Be Used in the Excel Workbook
	30.2.3.4 Task 4: Prepare the Excel Workbook
	30.2.3.5 Task 5: Deploy the ADF Task Flow
	30.2.3.6 Task 6: Test the Deployed Application

	Part VI Using Oracle Business Activity Monitoring
	31 Creating Oracle BAM Data Objects
	31.1 Introduction to Creating Data Objects
	31.2 Defining Data Objects
	31.2.1 How to Define a Data Object
	31.2.2 How to Add Columns to a Data Object
	31.2.3 How to Add Lookup Columns to a Data Object
	31.2.4 How to Add Calculated Columns to a Data Object
	31.2.5 How to Add Time Stamp Columns to a Data Object
	31.2.6 What You May Need to Know About System Data Objects
	31.2.7 What You May Need to Know About Oracle Data Integrator Data Objects

	31.3 Creating Permissions on Data Objects
	31.3.1 How to Create Permissions on a Data Object
	31.3.2 How to Add a Group of Users
	31.3.3 How to Copy Permissions from Other Data Objects

	31.4 Viewing Existing Data Objects
	31.4.1 How to View Data Object General Information
	31.4.2 How to View Data Object Layouts
	31.4.3 How to View Data Object Contents

	31.5 Using Data Object Folders
	31.5.1 How to Create Folders
	31.5.2 How to Open Folders
	31.5.3 How to Set Folder Permissions
	31.5.4 How to Move Folders
	31.5.5 How to Rename Folders
	31.5.6 How to Delete Folders

	31.6 Creating Security Filters
	31.6.1 How to Create a Security Filter
	31.6.2 How to Copy Security Filters from Other Data Objects

	31.7 Creating Dimensions
	31.7.1 How to Create a Dimension
	31.7.2 How to Create a Time Dimension

	31.8 Renaming and Moving Data Objects
	31.8.1 How to Rename a Data Object
	31.8.2 How to Move a Data Object

	31.9 Creating Indexes
	31.9.1 How to Create an Index

	31.10 Clearing Data Objects
	31.10.1 How to Clear a Data Object

	31.11 Deleting Data Objects
	31.11.1 How to Delete a Data Object

	32 Integrating Oracle BAM with SOA Composite Applications
	32.1 Introduction to Integrating Oracle BAM with SOA Composite Applications
	32.2 Configuring Oracle BAM Adapter
	32.3 Creating a Design Time Connection to an Oracle BAM Server
	32.3.1 How to Create a Connection to an Oracle BAM Server

	32.4 Using Oracle BAM Adapter in an SOA Composite Application
	32.4.1 How to Use Oracle BAM Adapter in an SOA Composite Application

	32.5 Using Oracle BAM Adapter in a BPEL Process
	32.5.1 How to Use Oracle BAM Adapter in a BPEL Process

	32.6 Integrating BPEL Sensors with Oracle BAM
	32.6.1 How to Create a Sensor
	32.6.2 How to Create an Oracle BAM Sensor Action
	32.6.3 How to Disable an Oracle BAM Sensor Action

	33 Creating Oracle BAM Enterprise Message Sources
	33.1 Introduction to Enterprise Message Sources
	33.2 Creating Enterprise Message Sources
	33.2.1 How to Create an Enterprise Message Source
	33.2.2 How to Configure DateTime Specification
	33.2.3 How to Use Advanced XML Formatting

	33.3 Using Foreign JMS Providers
	33.4 Use Case: Creating an EMS Against Oracle Streams AQ JMS Provider
	33.4.1 Creating a JMS Topic in AQ-JMS
	33.4.2 Creating a Data Source in Oracle WebLogic Server
	33.4.3 Creating a Foreign JMS Server
	33.4.4 Defining an EMS in Oracle BAM Architect
	33.4.5 Inserting and Updating Records in the SQL Table

	34 Using Oracle Data Integrator With Oracle BAM
	34.1 Introduction to Using the Oracle Data Integrator With Oracle Business Activity Monitoring
	34.2 Installing the Oracle Data Integrator Integration Files
	34.2.1 How to Install Integration Files Using the Script
	34.2.2 How to Manually Install Integration Files

	34.3 Creating the Oracle BAM Target
	34.3.1 How to Create the Oracle BAM Target

	34.4 Using Oracle BAM Knowledge Modules
	34.5 Updating the Oracle Data Integrator External Data Source Definition
	34.5.1 How to Update the Oracle Data Integrator External Data Source Definitions

	34.6 Launching Oracle Data Integrator Scenarios From Oracle BAM Alerts

	35 Creating External Data Sources
	35.1 Introduction to External Data Sources
	35.2 Creating External Data Sources
	35.2.1 How to Create an External Data Source
	35.2.2 What You May Need to Know About Oracle Data Integrator External Data Sources
	35.2.3 How to Edit an External Data Source
	35.2.4 How to Delete an External Data Source

	36 Using Oracle BAM Web Services
	36.1 Introduction to Oracle BAM Web Services
	36.2 Using the DataObjectOperations Web Services
	36.2.1 How to Use the DataObjectOperations Web Services

	36.3 Using the DataObjectDefinition Web Service
	36.3.1 How to Use the DataObjectDefinition Web Service

	36.4 Using the ManualRuleFire Web Service
	36.4.1 How to Use the ManualRuleFire Web Service

	36.5 Using the ICommand Web Service
	36.5.1 How to Use the ICommand Web Service

	37 Creating Oracle BAM Alerts
	37.1 Introduction to Creating Alerts
	37.2 Creating Alert Rules
	37.2.1 How to Create an Alert Rule
	37.2.2 How to Activate Alerts
	37.2.3 How to Modify Alert Rules
	37.2.4 How to Delete an Alert

	37.3 Creating Alert Rules From Templates
	37.3.1 How to Create Alert Rules From Templates

	37.4 Creating Alert Rules With Messages
	37.4.1 How to Create an Alert Rule With a Message

	37.5 Creating Complex Alerts
	37.5.1 How to Create a Dependent Rule

	37.6 Using Alert History
	37.6.1 How to View Alert History
	37.6.2 How to Clear Alert History

	37.7 Launching Alerts by Invoking Web Services

	38 Using ICommand
	38.1 Introduction to ICommand
	38.2 Executing ICommand
	38.3 Specifying the Command and Option Syntax
	38.3.1 How to Specify the Security Credentials
	38.3.2 How to Specify the Command
	38.3.3 How to Specify Object Names
	38.3.4 How to Specify Multiple Parameter Targets

	38.4 Using Command-line-only Parameters
	38.5 Running ICommand Remotely

	Part VII Using Oracle User Messaging Service
	39 Oracle User Messaging Service
	39.1 User Messaging Service Overview
	39.1.1 Components
	39.1.2 Architecture

	40 Sending and Receiving Messages using the User Messaging Service Java API
	40.1 Overview of UMS Java API
	40.1.1 Creating a Java EE Application Module

	40.2 Creating a UMS Client Instance
	40.2.1 Creating a MessagingEJBClient Instance Using a Programmatic or Declarative Approach
	40.2.2 API Reference for Class MessagingClientFactory

	40.3 Sending a Message
	40.3.1 Creating a Message
	40.3.1.1 Creating a Plaintext Message
	40.3.1.2 Creating a Multipart/Alternative Message (with Text/Plain and Text/HTML Parts)
	40.3.1.3 Creating Delivery Channel-Specific Payloads in a Single Message for Recipients with Different Delivery Types

	40.3.2 API Reference for Class MessageFactory
	40.3.3 API Reference for Interface Message
	40.3.4 API Reference for Enum DeliveryType
	40.3.5 Addressing a Message
	40.3.5.1 Types of Addresses
	40.3.5.2 Creating Address Objects
	40.3.5.2.1 Creating a Single Address Object
	40.3.5.2.2 Creating Multiple Address Objects in a Batch
	40.3.5.2.3 Adding Sender or Recipient Addresses to a Message

	40.3.5.3 Creating a Recipient with a Failover Address
	40.3.5.4 API Reference for Class AddressFactory
	40.3.5.5 API Reference for Interface Address

	40.3.6 Retrieving Message Status
	40.3.6.1 Synchronous Retrieval of Message Status
	40.3.6.2 Asynchronous Notification of Message Status

	40.4 Receiving a Message
	40.4.1 Registering an Access Point
	40.4.2 Synchronous Receiving
	40.4.3 Asynchronous Receiving
	40.4.4 Message Filtering

	40.5 Using the UMS Enterprise JavaBeans Client API to Build a Client Application
	40.5.1 Overview of Development
	40.5.2 Configuring the Email Driver
	40.5.3 Using JDeveloper 11g to Build the Application
	40.5.3.1 Opening the Project

	40.5.4 Deploying the Application
	40.5.5 Testing the Application

	40.6 Using the UMS Enterprise JavaBeans Client API to Build a Client Echo Application
	40.6.1 Overview of Development
	40.6.2 Configuring the Email Driver
	40.6.3 Using JDeveloper 11g to Build the Application
	40.6.3.1 Opening the Project

	40.6.4 Deploying the Application
	40.6.5 Testing the Application

	40.7 Creating a New Application Server Connection

	41 Parlay X Web Services Multimedia Messaging API
	41.1 Overview of Parlay X Messaging Operations
	41.2 Send Message Interface
	41.2.1 sendMessage Operation
	41.2.2 getMessageDeliveryStatus Operation

	41.3 Receive Message Interface
	41.3.1 getReceivedMessages Operation
	41.3.2 getMessage Operation
	41.3.3 getMessageURIs Operation

	41.4 Oracle Extension to Parlay X Messaging
	41.4.1 ReceiveMessageManager Interface
	41.4.1.1 startReceiveMessage Operation
	41.4.1.2 stopReceiveMessage Operation

	41.5 Parlay X Messaging Client API and Client Proxy Packages
	41.6 Sample Chat Application with Parlay X APIs
	41.6.1 Overview
	41.6.1.1 Provided Files

	41.6.2 Running the Pre-Built Sample
	41.6.3 Testing the Sample
	41.6.4 Creating a New Application Server Connection

	42 User Messaging Preferences
	42.1 Introduction
	42.1.1 Terminology
	42.1.2 Configuration of Notification Delivery Preferences
	42.1.3 Delivery Preference Rules
	42.1.3.1 Data Types
	42.1.3.2 System Terms
	42.1.3.3 Business Terms

	42.1.4 Rule Actions

	42.2 How to Manage Messaging Channels
	42.2.1 Creating a Channel
	42.2.2 Editing a Channel
	42.2.3 Deleting a Channel
	42.2.4 Setting a Default Channel

	42.3 Creating Contact Rules using Filters
	42.3.1 Creating Filters
	42.3.2 Editing a Filter
	42.3.3 Deleting a Filter

	42.4 Configuring Settings

	Part VIII Sharing Functionality Across Oracle SOA Suite Components
	43 Deploying SOA Composite Applications
	43.1 Creating an Application Server Connection
	43.2 Deploying a Single SOA Composite in Oracle JDeveloper
	43.2.1 How to Deploy a Single SOA Composite
	43.2.1.1 Optionally Creating a Project Deployment Profile
	43.2.1.2 Deploying the Profile

	43.2.2 What You May Need to Know About Oracle JDeveloper Deployment to a Managed Oracle WebLogic Server
	43.2.3 What You May Need to Know About Invoking References in One-Way SSL Environments in Oracle JDeveloper

	43.3 Deploying Multiple SOA Composite Applications in Oracle JDeveloper
	43.3.1 How to Deploy Multiple SOA Composite Applications

	43.4 Deploying and Using Shared Metadata Across SOA Composite Applications
	43.4.1 How to Deploy Shared Metadata
	43.4.1.1 Create a JAR Profile and Include the Artifacts to Share
	43.4.1.2 Create a SOA Bundle that Includes the JAR Profile
	43.4.1.3 Deploy the SOA Bundle

	43.4.2 How to Use Shared Metadata
	43.4.2.1 Create a SOA-MDS Connection
	43.4.2.2 Create a BPEL Process

	43.5 Deploying an Existing SOA Archive in Oracle JDeveloper
	43.5.1 How to Deploy an Existing SOA Archive from Oracle JDeveloper

	43.6 Managing SOA Composite Applications with Scripts
	43.6.1 How to Manage SOA Composite Applications with the WLST Utility
	43.6.2 How to Manage SOA Composite Applications with ant Scripts
	43.6.2.1 Testing a SOA Composite Application
	43.6.2.2 Compiling a SOA Composite Application
	43.6.2.3 Packaging a SOA Composite Application into a Composite SAR file
	43.6.2.4 Deploying SOA Composite Application
	43.6.2.5 Undeploying a SOA Composite Application
	43.6.2.6 Managing a SOA Composite Application
	43.6.2.7 Upgrading a SOA Composite Application
	43.6.2.8 How to Manage SOA Composite Applications with ant Scripts

	43.7 Moving SOA Composite Applications to and from Development, Test, and Production Environments
	43.7.1 Introduction to Configuration Plans
	43.7.2 Introduction to a Configuration Plan File
	43.7.3 Introduction to Use Cases for a Configuration Plan
	43.7.4 How to Create a Configuration Plan in Oracle JDeveloper
	43.7.5 How to Create a Configuration Plan with the WLST Utility

	44 Using Business Events and the Event Delivery Network
	44.1 Introduction to Business Events
	44.1.1 Local and Remote Events Boundaries

	44.2 Creating Business Events in Oracle JDeveloper
	44.2.1 How to Create a Business Event
	44.2.2 How to Subscribe to a Business Event
	44.2.3 What Happens When You Create and Subscribe to a Business Event
	44.2.4 What You May Need to Know About Subscribing to a Business Event
	44.2.5 How to Publish a Business Event
	44.2.6 What Happens When You Publish a Business Event
	44.2.7 How to Integrate Oracle ADF Business Component Business Events with Oracle Mediator

	45 Creating Transformations with the XSLT Mapper
	45.1 Introduction to the XSLT Mapper
	45.1.1 Overview of XSLT Creation
	45.1.2 Guidelines for Using the XSLT Mapper

	45.2 Creating an XSL Map File
	45.2.1 How to Create an XSL Map File in Oracle BPEL Process Manager
	45.2.2 How to Create an XSL Map File from Imported Source and Target Schema Files in Oracle BPEL Process Manager
	45.2.3 How to Create an XSL Map File in Oracle Mediator
	45.2.4 What You May Need to Know About Creating an XSL Map File
	45.2.5 What Happens at Runtime If You Pass a Payload Through Oracle Mediator Without Creating an XSL Map File

	45.3 Designing Transformation Maps with the XSLT Mapper
	45.3.1 How to Add Additional Sources
	45.3.2 How to Perform a Simple Copy by Linking Nodes
	45.3.3 How to Set Constant Values
	45.3.4 How to Add Functions
	45.3.4.1 Editing Function Parameters
	45.3.4.2 Chaining Functions
	45.3.4.3 Using Named Templates
	45.3.4.4 Importing User-Defined Functions

	45.3.5 How to Edit XPath Expressions
	45.3.6 How to Add XSLT Constructs
	45.3.6.1 Using Conditional Processing with xsl:if
	45.3.6.2 Using Conditional Processing with xsl:choose
	45.3.6.3 Creating Loops with xsl:for-each
	45.3.6.4 Cloning xsl:for-each
	45.3.6.5 Applying xsl:sort to xsl:for-each
	45.3.6.6 Copying Nodes with xsl:copy-of
	45.3.6.7 Including External Templates with xsl:include

	45.3.7 How to Automatically Map Nodes
	45.3.7.1 Using Auto Mapping with Confirmation

	45.3.8 What You May Need to Know About Automatic Mapping
	45.3.9 How to View Unmapped Target Nodes
	45.3.10 How to Generate Dictionaries
	45.3.11 How to Create Map Parameters and Variables
	45.3.11.1 Creating a Map Parameter
	45.3.11.2 Creating a Map Variable

	45.3.12 How to Search Source and Target Nodes
	45.3.13 How to Control the Generation of Unmapped Target Elements
	45.3.14 How to Ignore Elements in the XSLT Document
	45.3.15 How to Replace a Schema in the XSLT Mapper
	45.3.16 How to Substitute Elements and Types in the Source and Target Trees

	45.4 Testing the Map
	45.4.1 How to Test the Transformation Mapping Logic
	45.4.2 How to Generate Reports
	45.4.2.1 Correcting Memory Errors When Generating Reports

	45.4.3 How to Customize Sample XML Generation

	45.5 Demonstrating the New Features of the XSLT Mapper
	45.5.1 Opening the Application
	45.5.2 Creating a New XSLT Map in the BPEL Process
	45.5.3 Using Type Substitution to Map the Purchase Order Items
	45.5.4 Referencing Additional Source Elements
	45.5.5 Using Element Substitution to Map the Shipping Address
	45.5.6 Mapping the Remaining Fields
	45.5.7 Testing the Map

	46 Working with Domain Value Maps
	46.1 Introduction to Domain Value Maps
	46.1.1 Domain Value Map Features
	46.1.1.1 Qualifier Support
	46.1.1.2 Qualifier Order Support
	46.1.1.3 One-to-Many Mapping Support

	46.2 Creating Domain Value Maps
	46.2.1 How to Create Domain Value Maps
	46.2.2 What Happens When You Create a Domain Value Map

	46.3 Editing a Domain Value Map
	46.3.1 Adding Columns to a Domain Value Map
	46.3.2 Adding Rows to a Domain Value Map

	46.4 Using Domain Value Map Functions
	46.4.1 Understanding Domain Value Map Functions
	46.4.1.1 dvm:lookupValue
	46.4.1.2 dvm:lookupValue1M

	46.4.2 Using Domain Value Map Functions in Transformation
	46.4.3 Using Domain Value Map Functions in XPath Expressions
	46.4.4 What Happens at Runtime

	46.5 Creating a Domain Value Map Use Case for Hierarchical Lookup
	46.5.1 Creating the HierarchicalValue Use Case
	46.5.1.1 Task 1: Creating an Oracle JDeveloper Application and Project
	46.5.1.2 Task 2: Creating a Domain Value Map
	46.5.1.3 Task 3: Creating a File Adapter Service
	46.5.1.4 Task 4: Creating ProcessOrders Mediator Component
	46.5.1.5 Task 5: Creating a File Adapter Reference
	46.5.1.6 Task 6: Specifying Routing Rules
	46.5.1.7 Task 7: Configuring Oracle Application Server Connection
	46.5.1.8 Task 8: Deploying the Composite Application

	46.5.2 Running and Monitoring the HierarchicalValue Application

	46.6 Creating a Domain Value Map Use Case For Multiple Values
	46.6.1 Creating the Multivalue Use Case
	46.6.1.1 Task 1: Creating an Oracle JDeveloper Application and Project
	46.6.1.2 Task 2: Creating a Domain Value Map
	46.6.1.3 Task 3: Creating a File Adapter Service
	46.6.1.4 Task 4: Creating LookupMultiplevaluesMediator Mediator Component
	46.6.1.5 Task 5: Creating a File Adapter Reference
	46.6.1.6 Task 6: Specifying Routing Rules
	46.6.1.7 Task 7: Configuring Oracle Application Server Connection
	46.6.1.8 Task 8: Deploying the Composite Application

	46.6.2 Running and Monitoring the Multivalue Application

	47 Working with Cross References
	47.1 Introduction to Cross References
	47.2 Creating and Modifying Cross Reference Tables
	47.2.1 Creating a Cross Reference Table
	47.2.1.1 What Happens When You Create a Cross Reference

	47.2.2 Adding an End System to a Cross Reference Table

	47.3 Populating Cross Reference Tables
	47.3.1 About xref:populateXRefRow Function
	47.3.2 About xref:populateXRefRow1M Function
	47.3.3 How to Populate a Column of a Cross Reference Table

	47.4 Looking Up Cross Reference Tables
	47.4.1 About xref:lookupXRef Function
	47.4.2 About xref:lookupXRef1M Function
	47.4.3 About xref:lookupPopulatedColumns Function
	47.4.4 How to Look Up a Cross Reference Table for a Value

	47.5 Deleting a Cross Reference Table Value
	47.5.1 How to Delete a Cross Reference Table Value

	47.6 Creating and Running Cross Reference Use Case
	47.6.1 Step-By-Step Instructions for Creating the Use Case
	47.6.1.1 Task 1: Configuring Oracle Database and Database Adapter
	47.6.1.2 Task 2: Creating an Oracle JDeveloper Application and Project
	47.6.1.3 Task 3: Creating a Cross Reference
	47.6.1.4 Task 4: Creating a Database Adapter Service
	47.6.1.5 Task 5: Creating EBS and SBL External References
	47.6.1.6 Task 6: Creating Logger External Reference
	47.6.1.7 Task 7: Creating Mediator Components
	47.6.1.8 Task 8: Specifying Routing Rules for Mediator Component
	47.6.1.9 Task 9: Specifying Routing Rules for Common Mediator
	47.6.1.10 Task 10: Configuring Oracle Application Server Connection
	47.6.1.11 Task 11: Deploying the Composite Application

	47.6.2 Running and Monitoring the XrefCustApp Application

	47.7 Creating and Running Cross Reference for 1M Functions
	47.7.1 Step-By-Step Instructions for Creating the Use Case
	47.7.1.1 Task 1: Configuring Oracle Database and Database Adapter
	47.7.1.2 Task 2: Creating an Oracle JDeveloper Application and Project
	47.7.1.3 Task 3: Creating a Cross Reference
	47.7.1.4 Task 4: Creating a Database Adapter Service
	47.7.1.5 Task 5: Creating EBS External Reference
	47.7.1.6 Task 6: Creating Logger External Reference
	47.7.1.7 Task 7: Creating Mediator Components
	47.7.1.8 Task 8: Specifying Routing Rules for Mediator Component
	47.7.1.9 Task 9: Specifying Routing Rules for Common Mediator
	47.7.1.10 Task 10: Configuring Oracle Application Server Connection
	47.7.1.11 Task 11: Deploying the Composite Application

	48 Using Two-Layer Business Process Management (BPM)
	48.1 Introduction to Two-Layer Business Process Management
	48.2 Phase Activities
	48.2.1 Creating a Phase Activity
	48.2.2 How to Create a Phase Activity
	48.2.3 What Happens When You Create a Phase Activity
	48.2.4 What Happens at Runtime When You Create a Phase Activity
	48.2.5 What You May Need to Know About Creating a Phase Activity

	48.3 The Dynamic Routing Decision Table
	48.3.1 How to Create the Routing Decision Table
	48.3.2 What Happens When You Create the Routing Decision Table

	48.4 Use Case: Two-Layer BPM
	48.4.1 Designing the SOA Composite
	48.4.2 Creating a Phase Activity
	48.4.3 Creating and Editing the Dynamic Routing Decision Table
	48.4.4 Adding Assign Activities to the BPEL Process Model
	48.4.5 Deploying the Sample with JDeveloper
	48.4.5.1 Creating an Application Deployment Profile
	48.4.5.2 Creating an Application Server Connection
	48.4.5.3 Deploying the Application

	49 Testing SOA Composite Applications
	49.1 Introduction to the Composite Test Framework
	49.1.1 Test Cases Overview
	49.1.2 Test Suites Overview
	49.1.3 Emulations Overview
	49.1.4 Assertions Overview

	49.2 Introduction to the Components of a Test Suite
	49.2.1 Process Initiation
	49.2.2 Emulations
	49.2.3 Assertions
	49.2.4 Message Files

	49.3 Creating Test Suites and Test Cases
	49.3.1 How to Create Test Suites and Test Cases

	49.4 Creating the Contents of Test Cases
	49.4.1 How to Initiate Inbound Messages
	49.4.2 How to Emulate Outbound Messages
	49.4.3 How to Emulate Callback Messages
	49.4.4 How to Emulate Fault Messages
	49.4.5 How to Create Assertions
	49.4.5.1 Creating Assertions on a Part Section, Nonleaf Element, or Entire XML Document
	49.4.5.2 Creating Assertions on a Leaf Element

	49.4.6 What You May Need to Know About Assertions

	49.5 Deploying and Running a Test Suite

	50 Managing Policies
	50.1 Introduction to Policies
	50.2 Attaching Policies to Binding Components and Service Components
	50.2.1 How to Attach Policies to Binding Components and Service Components

	51 Defining Composite Sensors
	51.1 Introduction to Composite Sensors
	51.1.1 Restrictions on Use of Composite Sensors

	51.2 Adding Composite Sensors
	51.2.1 How to Add Composite Sensors
	51.2.2 Adding a Variable
	51.2.3 Adding an Expression
	51.2.4 Adding a Property

	51.3 Monitoring Composite Sensor Data During Runtime

	52 Using Service Data Objects and Enterprise JavaBeans
	52.1 Introduction to SDO and Enterprise JavaBeans Binding
	52.2 Designing an Enterprise JavaBeans Application
	52.2.1 How to Create SDO Objects Using the SDO Compiler
	52.2.2 How to Create a Session Bean and Import the SDO Objects
	52.2.3 How to Create a Profile and an EAR File
	52.2.4 How to Define the SDO Types with an Enterprise JavaBeans Bean
	52.2.5 How to Use Web Service Annotations
	52.2.6 How to Deploy the Enterprise JavaBeans EAR File

	52.3 Creating an Enterprise JavaBeans Adapter Service in Oracle JDeveloper
	52.3.1 Invoking SDO-based Enterprise JavaBeans from SOA Composite Applications
	52.3.1.1 How to Invoke SDO-based Enterprise JavaBeans from SOA Composite Applications

	52.3.2 Invoking SOA Composite Applications from Enterprise JavaBeans using SDO Parameters
	52.3.2.1 How to Invoke SOA Composite Applications from Enterprise JavaBeans using SDO Parameters

	52.4 Designing an Enterprise JavaBeans Client to Invoke Oracle SOA Suite
	52.5 Specifying Enterprise JavaBeans Roles
	52.6 Configuring JNDI Access
	52.6.1 How to Create a Foreign JNDI
	52.6.2 How to Create a Custom CSF Map for JNDI Lookup

	53 Processing Large Documents
	53.1 Introduction to Processing Large Documents
	53.2 Best Practices for Handling Large Documents
	53.2.1 Setting Audit Levels from Oracle Enterprise Manager for Large Payload Processing
	53.2.2 Using the Assign Activity in BPEL/Mediator
	53.2.3 Using XSLT Transformations for Repeating Structures
	53.2.4 Using Adapter Support for Streaming Large Payloads
	53.2.5 Using Correct Settings for Large Payload Scenarios
	53.2.6 Processing Large Documents in Oracle B2B
	53.2.6.1 MDSInstance Cache Size
	53.2.6.2 Protocol Message Size
	53.2.6.3 Number of Threads
	53.2.6.4 StuckThread Max Time
	53.2.6.5 Tablespace

	53.2.7 Setting the Default JTA Timeout in for Large Documents
	53.2.8 Using Large Number of Activities in BPEL Processes (Without FlowN)
	53.2.9 Using Large Number of Activities in BPEL Processes (With FlowN)
	53.2.10 Using a Flow With Multiple Sequences
	53.2.11 Using a Flow with One Sequence
	53.2.12 Using Flow with No Sequence
	53.2.13 Large Numbers of Mediators in Composites
	53.2.14 Using XSLT Transformations on Large Payloads (For BPEL and Mediator)

	53.3 Limitations on Concurrent Processing of Large Documents
	53.3.1 Opaque Schema for Processing Large Payloads
	53.3.2 Streaming MTOM Attachments
	53.3.3 Importing Large Data Sets in Oracle B2B

	Part IX Appendices
	A BPEL Process Activities and Services
	A.1 Introduction to Activities and Components
	A.2 Introduction to BPEL Activities
	A.2.1 Tabs Common to Many Activities
	A.2.2 Assign Activity
	A.2.3 Bind Entity Activity
	A.2.4 Compensate Activity
	A.2.5 Create Entity
	A.2.6 Email Activity
	A.2.7 Empty Activity
	A.2.8 Flow Activity
	A.2.9 FlowN Activity
	A.2.10 IM Activity
	A.2.11 Invoke Activity
	A.2.12 Java Embedding Activity
	A.2.13 Phase Activity
	A.2.14 Pick Activity
	A.2.15 Receive Activity
	A.2.16 Receive Signal Activity
	A.2.17 Remove Entity Activity
	A.2.18 Reply Activity
	A.2.19 Scope Activity
	A.2.20 Sequence Activity
	A.2.21 Signal Activity
	A.2.22 SMS Activity
	A.2.23 Switch Activity
	A.2.24 Terminate Activity
	A.2.25 Throw Activity
	A.2.26 Transform Activity
	A.2.27 User Notification
	A.2.28 Voice Activity
	A.2.29 Wait Activity
	A.2.30 While Activity

	A.3 Introduction to BPEL Services
	A.3.1 AQ Adapter
	A.3.2 Oracle B2B
	A.3.3 Oracle BAM Adapter
	A.3.4 Database Adapter
	A.3.5 File Adapter
	A.3.6 FTP Adapter
	A.3.7 JMS Adapter
	A.3.8 MQ Adapter
	A.3.9 Oracle Applications
	A.3.10 Partner Link (Web Service/Adapter)
	A.3.11 Socket Adapter

	A.4 Publishing and Browsing the Oracle Service Registry
	A.4.1 How to Publish a Business Service
	A.4.2 How to Add a Binding Template
	A.4.3 How to Create a Connection to the Registry
	A.4.4 How to Configure a SOA project to Invoke a Service from the Registry
	A.4.5 How To Configure the Inquiry URL for Runtime

	A.5 Validating When Loading a Process Diagram

	B XPath Extension Functions
	B.1 SOA XPath Extension Functions
	B.1.1 Database Functions
	B.1.1.1 lookup-table
	B.1.1.2 query-database
	B.1.1.3 sequence-next-val

	B.1.2 Date Functions
	B.1.2.1 add-dayTimeDuration-to-dateTime
	B.1.2.2 current-date
	B.1.2.3 current-dateTime
	B.1.2.4 current-time
	B.1.2.5 day-from-dateTime
	B.1.2.6 format-dateTime
	B.1.2.7 hours-from-dateTime
	B.1.2.8 implicit-timezone
	B.1.2.9 minutes-from-dateTime
	B.1.2.10 month-from-dateTime
	B.1.2.11 seconds-from-dateTime
	B.1.2.12 subtract-dayTimeDuration-from-dateTime
	B.1.2.13 timezone-from-dateTime
	B.1.2.14 year-from-dateTime

	B.1.3 Mathematical Functions
	B.1.3.1 abs

	B.1.4 String Functions
	B.1.4.1 compare
	B.1.4.2 compare-ignore-case
	B.1.4.3 create-delimited-string
	B.1.4.4 ends-with
	B.1.4.5 format-string
	B.1.4.6 get-content-as-string
	B.1.4.7 get-content-from-file-function
	B.1.4.8 get-localized-string
	B.1.4.9 index-within-string
	B.1.4.10 last-index-within-string
	B.1.4.11 left-trim
	B.1.4.12 lower-case
	B.1.4.13 matches
	B.1.4.14 right-trim
	B.1.4.15 upper-case

	B.2 BPEL XPath Extension Functions
	B.2.1 addQuotes
	B.2.2 appendToList
	B.2.3 copyList
	B.2.4 countNodes
	B.2.5 doc
	B.2.6 doStreamingTranslate
	B.2.7 doTranslateFromNative
	B.2.8 doTranslateToNative
	B.2.9 doXSLTransform
	B.2.10 doXSLTransformForDoc
	B.2.11 formatDate
	B.2.12 generateGUID
	B.2.13 getApplicationName
	B.2.14 getAttachmentContent
	B.2.15 getComponentName
	B.2.16 getComponentInstanceID
	B.2.17 getCompositeName
	B.2.18 getCompositeInstanceID
	B.2.19 getCompositeURL
	B.2.20 getContentAsString
	B.2.21 getConversationId
	B.2.22 getCreator
	B.2.23 getCurrentDate
	B.2.24 getCurrentDateTime
	B.2.25 getCurrentTime
	B.2.26 getDomainId
	B.2.27 getECID
	B.2.28 getElement
	B.2.29 getFaultAsString
	B.2.30 getFaultName
	B.2.31 getGroupIdsFromGroupAlias
	B.2.32 getInstanceId
	B.2.33 getNodeValue
	B.2.34 getNodes
	B.2.35 getOwnerDocument
	B.2.36 getParentComponentInstanceID
	B.2.37 getPreference
	B.2.38 getProcessId
	B.2.39 getProcessOwnerId
	B.2.40 getProcessURL
	B.2.41 getProcessVersion
	B.2.42 getUserAliasId
	B.2.43 getUserIdsFromGroupAlias
	B.2.44 setCompositeInstanceTitle
	B.2.45 instanceOf
	B.2.46 integer
	B.2.47 parseEscapedXML
	B.2.48 parseXML
	B.2.49 processXQuery
	B.2.50 processXSLT
	B.2.51 processXSLTAttachment
	B.2.52 processXSQL
	B.2.53 readBinaryFromFile
	B.2.54 readFile
	B.2.55 writeBinaryToFile
	B.2.56 BPEL Extension Functions
	B.2.56.1 getLinkStatus
	B.2.56.2 getVariableData
	B.2.56.3 getVariableProperty

	B.2.57 Utility Functions
	B.2.57.1 batchProcessActive
	B.2.57.2 batchProcessCompleted
	B.2.57.3 format
	B.2.57.4 genEmptyElem
	B.2.57.5 getChildElement
	B.2.57.6 getMessage
	B.2.57.7 max-value-among-nodeset
	B.2.57.8 min-value-among-nodeset
	B.2.57.9 square-root
	B.2.57.10 translateFromNative
	B.2.57.11 translateToNative
	B.2.57.12 translateFromNativeAttachment
	B.2.57.13 translateToNativeAttachment

	B.3 Mediator XPath Extension Functions
	B.3.1 getComponentInstanceID
	B.3.2 getComponentName
	B.3.3 getCompositeInstanceID
	B.3.4 getCompositeName
	B.3.5 getHeader
	B.3.6 getECID
	B.3.7 getParentComponentInstanceID
	B.3.8 setCompositeInstanceTitle

	B.4 Advanced Functions
	B.4.1 create-nodeset-from-delimited-string
	B.4.2 generate-guid
	B.4.3 lookupPopulatedColumns
	B.4.4 lookupValue
	B.4.5 lookupValue1M
	B.4.6 lookupXRef
	B.4.7 lookupXRef1M
	B.4.8 lookup-xml
	B.4.9 markForDelete
	B.4.10 populateXRefRow
	B.4.11 populateXRefRow1M

	B.5 Workflow Service Functions
	B.5.1 clearTaskAssignees
	B.5.2 createWordMLDocument
	B.5.3 getNotificationProperty
	B.5.4 getNumberOfTaskApprovals
	B.5.5 getPreviousTaskApprover
	B.5.6 getTaskAttachmentByIndex
	B.5.7 getTaskAttachmentByName
	B.5.8 getTaskAttachmentContents
	B.5.9 getTaskAttachmentsCount
	B.5.10 getTaskResourceBundleString
	B.5.11 wfDynamicGroupAssign
	B.5.12 wfDynamicUserAssign
	B.5.13 Identity Service Functions
	B.5.13.1 getDefaultRealmName
	B.5.13.2 getGroupProperty
	B.5.13.3 getManager
	B.5.13.4 getReportees
	B.5.13.5 getSupportedRealmNames
	B.5.13.6 getUserProperty
	B.5.13.7 getUserRoles
	B.5.13.8 getUsersInGroup
	B.5.13.9 isUserInRole
	B.5.13.10 lookupGroup
	B.5.13.11 lookupUser

	B.6 Using the XPath Building Assistant
	B.6.1 XPath Building Assistant Description
	B.6.2 Starting the XPath Building Assistant
	B.6.3 Using the XPath Building Assistant in Oracle JDeveloper: Step-By-Step Example
	B.6.4 Using the XPath Building Assistant in the XSLT Mapper
	B.6.5 Function Parameter Tool Tips
	B.6.6 Syntactic and Semantic Validation
	B.6.7 Creating Expressions with Free Form Text and XPath Expressions

	B.7 Creating User-Defined XPath Extension Functions
	B.7.1 How to Implement User-Defined XPath Extension Functions
	B.7.1.1 How to Implement Functions for the XSLT Mapper
	B.7.1.2 How to Implement Functions for All Other Components

	B.7.2 How to Configure User-Defined XPath Extension Functions
	B.7.3 How to Deploy User-Defined Functions to Runtime

	C Deployment Descriptor Properties
	C.1 Introduction to Deployment Descriptor Properties
	C.1.1 How to Define Deployment Descriptor Properties
	C.1.2 How to Get the Value of a Preference within a BPEL Process

	C.2 Deprecated 10.1.3 Properties

	D Understanding Sensor Public Views and the Sensor Actions XSD
	D.1 Introduction to Sensor Public Views and the Sensor Actions XSD File
	D.2 Sensor Public Views
	D.2.1 BPM Schema
	D.2.1.1 BPEL_PROCESS_INSTANCES
	D.2.1.2 BPEL_ACTIVITY_SENSOR_VALUES
	D.2.1.3 BPEL_FAULT_SENSOR_VALUES
	D.2.1.4 BPEL_VARIABLE_SENSOR_VALUES

	D.3 Sensor Actions XSD File

	E Oracle BAM Web Services Operations
	E.1 DataObjectOperations10131
	E.1.1 Batch
	E.1.1.1 Request Message

	E.1.2 Delete
	E.1.2.1 Request Message

	E.1.3 Insert
	E.1.3.1 Request Message

	E.1.4 Update
	E.1.4.1 Request Message

	E.1.5 Upsert
	E.1.5.1 Request Message

	E.2 DataObjectOperationsByName
	E.2.1 Delete
	E.2.1.1 Request Message

	E.2.2 Get
	E.2.2.1 Request Message

	E.2.3 Insert
	E.2.3.1 Request Message

	E.2.4 Update
	E.2.4.1 Request Message

	E.2.5 Upsert
	E.2.5.1 Request Message

	E.3 DataObjectOperationsByID
	E.3.1 Batch
	E.3.1.1 Request Message

	E.3.2 Delete
	E.3.2.1 Request Message

	E.3.3 Insert
	E.3.3.1 Request Message

	E.3.4 Update
	E.3.4.1 Request Message

	E.3.5 Upsert
	E.3.5.1 Request Message

	E.4 DataObjectDefinition Operations
	E.4.1 Create
	E.4.1.1 Request Message
	E.4.1.2 Response Message

	E.4.2 Delete
	E.4.2.1 Request Message
	E.4.2.2 Response Message

	E.4.3 Get
	E.4.3.1 Request Message
	E.4.3.2 Response Message

	E.4.4 Update
	E.4.4.1 Request Message
	E.4.4.2 Response Message

	E.5 ManualRuleFire Operations
	E.5.1 FireRuleByName
	E.5.1.1 Request Message
	E.5.1.2 Response Message

	F Oracle BAM Alert Rule Options
	F.1 Events
	F.1.1 In a specific amount of time
	F.1.2 At a specific time today
	F.1.3 On a certain day at a specific time
	F.1.4 Every interval between two times
	F.1.5 Every date interval starting on certain date at a specific time
	F.1.6 When a report changes
	F.1.7 When a data field changes in data object
	F.1.8 When a data field in a report meets specified conditions
	F.1.9 When a data field in a data object meets specified conditions
	F.1.10 When this rule is launched

	F.2 Conditions
	F.2.1 If it is between two times
	F.2.2 If It is between two days
	F.2.3 If it is a particular day of the week

	F.3 Actions
	F.3.1 Send a report via email
	F.3.2 Send a message via email
	F.3.3 Send a report via email and escalate to another user after a specific amount of time
	F.3.4 Send a parameterized message
	F.3.5 Launch a rule
	F.3.6 Launch rule if an action fails
	F.3.7 Delete rows from a Data Object
	F.3.8 Call a Web Service
	F.3.9 Run an Oracle Data Integrator Scenario

	F.4 Frequency Constraint

	G Oracle BAM ICommand Operations and File Formats
	G.1 Summary of Individual Operations
	G.2 Detailed Operation Descriptions
	G.2.1 Clear
	G.2.2 Delete
	G.2.3 Export
	G.2.4 Import
	G.2.5 Rename

	G.3 Format of Command File
	G.3.1 Inline Content
	G.3.2 Command IDs
	G.3.3 Continue On Error

	G.4 Format of Log File
	G.5 Sample Export File
	G.6 Regular Expressions

	H Normalized Message Properties
	H.1 Oracle BPEL Process Manager Properties
	H.2 Oracle Web Services Addressing Properties

	I Oracle User Messaging Service Applications
	I.1 Send Message to User Specified Channel
	I.1.1 Overview
	I.1.1.1 Provided Files

	I.1.2 Installing and Configuring SOA and User Messaging Service
	I.1.2.1 Updating Addresses in Your LDAP User Profile
	I.1.2.1.1 Installing
	I.1.2.1.2 Connecting
	I.1.2.1.3 Setting User Messaging Device Addresses in LDAP

	I.1.3 Building the Sample
	I.1.4 Creating a New Application Server Connection
	I.1.5 Deploying the Project
	I.1.6 Configuring User Messaging Preferences
	I.1.7 Testing the Sample
	I.1.7.1 Verifying the Execution of Sending the Email

	I.2 Send Email with Attachments
	I.2.1 Overview
	I.2.1.1 Provided Files

	I.2.2 Installing and Configuring SOA and User Messaging Service
	I.2.2.1 Updating Addresses in Your LDAP User Profile
	I.2.2.1.1 Installing
	I.2.2.1.2 Connecting
	I.2.2.1.3 Setting User Messaging Device Addresses in LDAP

	I.2.3 Running the Pre-Built Sample
	I.2.4 Testing the Sample
	I.2.4.1 Verifying the Execution

	I.2.5 Building the Sample
	I.2.6 Creating a New Application Server Connection

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

