

Oracle® Fusion Middleware
Developer's Guide for Oracle Portal

11g Release 1 (11.1.1)

E10238-01

May 2009

Oracle Fusion Middleware Developer's Guide for Oracle Portal, 11g Release 1 (11.1.1)

E10238-01

Copyright © 2004, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Showvik Roy Chowdhuri

Contributing Authors: Frank Rovitto, Lalithashree Rajesh, Promila Chitkara, Susan Highmoor, Vanessa
Wang

Contributors: Gareth Bryan, Joan Carter, Candace Fender, Tugdual Grall, Helen Grembowicz, Christian
Hauser, Peter Henty, Karthik Lakshmanan, Bill Lankenau, Pankaj Mittal, Peter Moskovits, Lei Oh, Jitinder
Sethi, Ingrid Snedecor, Julie Tower, Sue Vickers, Alistair Wilson

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xix

Intended Audience.. xix
Documentation Accessibility ... xx
Related Documents ... xxi
Conventions ... xxi

Part I Portlet Overview

1 Understanding Portlets

1.1 Introduction to Portal Development .. 1-1
1.2 Understanding Portlets .. 1-1
1.3 Portlet Anatomy.. 1-3
1.4 Portlet Resources... 1-4
1.4.1 Out-of-the-Box Portlets ... 1-4
1.4.2 Other Sources of Prebuilt Portlets ... 1-5
1.4.3 Web Clipping ... 1-6
1.4.4 OmniPortlet .. 1-8
1.4.5 Portlet Builder ... 1-10
1.4.6 JSF Portlets ... 1-10
1.4.7 Programmatic Portlets ... 1-11
1.4.8 Deciding Which Tool to Use ... 1-12

2 Portlet Technologies Matrix

2.1 The Portlet Technologies Matrix... 2-1
2.2 General Suitability .. 2-4
2.2.1 Web Clipping ... 2-4
2.2.2 OmniPortlet .. 2-4
2.2.3 Java Portlets ... 2-5
2.2.4 Portlet Builder ... 2-5
2.2.5 PL/SQL Portlets... 2-5
2.3 Expertise Required.. 2-6
2.3.1 Web Clipping ... 2-6
2.3.2 OmniPortlet .. 2-6
2.3.3 Java Portlets .. 2-6
2.3.4 Portlet Builder .. 2-7

iv

2.3.5 PL/SQL Portlets... 2-7
2.4 Deployment Type ... 2-7
2.4.1 Web Providers .. 2-8
2.4.2 WSRP Producers .. 2-8
2.4.3 Database Providers.. 2-9
2.4.4 Provider Architecture... 2-10
2.4.5 Provider Registration ... 2-12
2.5 Caching Style .. 2-13
2.5.1 Web Clipping, OmniPortlet, and Portlet Builder... 2-14
2.5.2 Java Portlets ... 2-14
2.5.3 PL/SQL Portlets.. 2-14
2.6 Development Tool ... 2-14
2.6.1 Web Clipping, OmniPortlet, and Portlet Builder... 2-14
2.6.2 Java Portlets ... 2-14
2.6.3 PL/SQL Portlets.. 2-14
2.7 Portlet Creation Style... 2-15
2.7.1 OmniPortlet and Web Clipping.. 2-16
2.7.2 Java Portlets ... 2-16
2.7.3 Portlet Builder ... 2-16
2.7.4 PL/SQL Portlets.. 2-16
2.8 User Interface Flexibility... 2-16
2.8.1 Web Clipping .. 2-16
2.8.2 OmniPortlet ... 2-16
2.8.3 Java Portlets and PL/SQL Portlets... 2-17
2.8.4 Portlet Builder ... 2-17
2.9 Ability to Capture Content from Web Sites ... 2-17
2.9.1 Web Clipping .. 2-17
2.9.2 OmniPortlet ... 2-17
2.9.3 Java Portlets ... 2-17
2.9.4 PL/SQL Portlets.. 2-17
2.10 Ability to Render Content Inline ... 2-17
2.10.1 Web Clipping .. 2-18
2.10.2 OmniPortlet ... 2-18
2.10.3 Java Portlets ... 2-18
2.10.4 Portlet Builder ... 2-18
2.10.5 PL/SQL Portlets.. 2-19
2.11 Charting Capability ... 2-19
2.11.1 Web Clipping .. 2-19
2.11.2 OmniPortlet ... 2-19
2.11.3 Java Portlets ... 2-19
2.11.4 Portlet Builder ... 2-19
2.11.5 PL/SQL Portlets.. 2-19
2.12 Public Portlet Parameters Support .. 2-19
2.13 Private Portlet Parameter Support .. 2-20
2.13.1 OmniPortlet, Web Clipping, and Portlet Builder... 2-20
2.13.2 Java Portlets and PL/SQL Portlets... 2-20
2.14 Event Support... 2-21

v

2.14.1 Web Clipping, OmniPortlet, and Java Portlets .. 2-21
2.14.2 Portlet Builder and PL/SQL Portlets ... 2-21
2.15 Ability to Hide and Show Portlets Based on User Privileges.. 2-21
2.15.1 Web Clipping and OmniPortlet.. 2-21
2.15.2 Java Portlets ... 2-21
2.15.3 Portlet Builder ... 2-21
2.15.4 PL/SQL Portlets.. 2-22
2.16 Multilingual Support... 2-22
2.16.1 Web Clipping, OmniPortlet, Java Portlets, and PL/SQL Portlets 2-22
2.16.2 Portlet Builder ... 2-22
2.17 Pagination Support .. 2-22
2.17.1 Web Clipping .. 2-22
2.17.2 OmniPortlet ... 2-22
2.17.3 Java Portlets and PL/SQL Portlets... 2-22
2.17.4 Portlet Builder ... 2-22
2.18 Single Sign-On and External Application Integration.. 2-22
2.18.1 Web Clipping .. 2-22
2.18.2 OmniPortlet ... 2-23
2.18.3 Java Portlets ... 2-23
2.18.4 PL/SQL Portlets.. 2-23

Part II Creating Portlets

3 Creating Portlets with OmniPortlet

3.1 Introduction to OmniPortlet.. 3-1
3.2 The OmniPortlet Wizard.. 3-2
3.2.1 Type .. 3-3
3.2.2 Source ... 3-4
3.2.2.1 Proxy Authentication ... 3-4
3.2.2.2 Connection Information .. 3-5
3.2.2.3 Spreadsheet ... 3-6
3.2.2.4 SQL ... 3-6
3.2.2.4.1 SQL Connection Information... 3-7
3.2.2.4.2 Using Stored Procedures.. 3-8
3.2.2.5 XML .. 3-8
3.2.2.6 Web Service ... 3-9
3.2.2.7 Web Page .. 3-10
3.2.3 Filter.. 3-11
3.2.4 View.. 3-12
3.2.5 Layout... 3-12
3.2.5.1 Tabular Layout... 3-13
3.2.5.2 Chart Layout .. 3-14
3.2.5.3 News Layout .. 3-15
3.2.5.4 Bullet Layout .. 3-17
3.2.5.5 Form Layout ... 3-17
3.2.5.6 HTML Layout .. 3-19

vi

3.2.6 Edit Defaults mode... 3-19
3.2.7 Events ... 3-20
3.3 Parameters and Events.. 3-21
3.3.1 Portlet Parameters and Events.. 3-21
3.3.2 Page Parameters and Events ... 3-22

4 Building Example Portlets with OmniPortlet

4.1 Adding an OmniPortlet Instance to a Portal Page ... 4-2
4.2 Building an OmniPortlet Based on a Web Service ... 4-3
4.3 Building an OmniPortlet Based on a Spreadsheet (CSV).. 4-5
4.4 Building an OmniPortlet Based on an XML Data Source ... 4-7
4.5 Building an OmniPortlet Based on a Web Page Data Source... 4-9
4.6 Setting Up Portlet Parameters and Events ... 4-18
4.6.1 Configure Portlets to Accept Parameters .. 4-18
4.6.2 Map the Page Parameter to the Portlet Parameters... 4-20
4.6.3 Configure the Chart Portlet to Use Events.. 4-22
4.6.4 Map the Chart Event to the Page.. 4-23
4.7 Building an OmniPortlet Using the HTML Layout .. 4-25

5 Creating Content-Based Portlets with Web Clipping

5.1 What Is Web Clipping? .. 5-1
5.2 Adding Web Page Content to a Portal Page ... 5-3
5.2.1 Adding a Web Clipping Portlet to a Page.. 5-3
5.2.2 Selecting a Section of a Web Page to Display in the Web Clipping Portlet 5-4
5.2.3 Setting Web Clipping Portlet Properties .. 5-8
5.3 Integrating Authenticated Web Content Using Single Sign-On .. 5-9
5.4 Adding a Web Clipping That Users Can Personalize .. 5-14
5.4.1 Adding a Web Clipping Portlet to a Personal Page... 5-14
5.4.2 Selecting a Clipping in OTN ... 5-15
5.4.3 Personalizing a Web Clipping Portlet ... 5-17
5.5 Using Web Clipping Open Transport API ... 5-20
5.6 Migrating from URL-Based Portlets ... 5-21
5.6.1 Preparing for Migration... 5-21
5.6.2 Performing the Migration.. 5-22
5.6.3 Post-Migration Configuration... 5-23
5.6.4 Maintaining Migrated Portlets.. 5-24
5.6.5 Limitations in Migrating URL-Based Portlets .. 5-25
5.7 Current Limitations for Web Clipping ... 5-26

6 Creating Java Portlets

6.1 Guidelines for Writing Java Portlets ... 6-2
6.1.1 Guidelines for Show Modes ... 6-2
6.1.1.1 Shared Screen Mode (View Mode for JPS).. 6-3
6.1.1.1.1 HTML Guidelines for Rendering Portlets ... 6-3
6.1.1.1.2 Cascading Style Sheet Guidelines for Rendering Portlets............................... 6-4
6.1.1.2 Edit Mode (JPS and Pdk-Java) .. 6-4

vii

6.1.1.2.1 Guidelines for Edit Mode Operations .. 6-4
6.1.1.2.2 Guidelines for Buttons in Edit Mode.. 6-5
6.1.1.2.3 Guidelines for Rendering Personalization Values ... 6-5
6.1.1.3 Edit Defaults Mode (JPS and PDK-Java)... 6-5
6.1.1.3.1 Guidelines for Edit Defaults Mode Options.. 6-6
6.1.1.3.2 Guidelines for Buttons in Edit Defaults Mode.. 6-6
6.1.1.3.3 Guidelines for Rendering Personalization Values ... 6-6
6.1.1.4 Preview Mode (JPS and PDK-Java).. 6-6
6.1.1.5 Full Screen Mode (PDK-Java) ... 6-7
6.1.1.6 Help Mode (JPS and Oracle Portal) ... 6-7
6.1.1.7 About Mode (JPS and PDK-Java) ... 6-7
6.1.1.8 Link Mode (PDK-Java)... 6-8
6.1.2 Guidelines for Navigation within a Portlet ... 6-8
6.1.2.1 Types of Links for Portlets .. 6-8
6.1.2.1.1 Intraportlet Links... 6-9
6.1.2.1.2 Portal Links .. 6-9
6.1.2.1.3 External Links .. 6-9
6.1.2.1.4 Internal/Resource Links .. 6-9
6.1.3 Guidelines for JavaScript ... 6-10
6.1.4 Guidelines for Mobile Portlets .. 6-10
6.1.4.1 Declare Capabilities... 6-11
6.1.4.2 Declare a Short Title .. 6-11
6.1.4.3 Implement Personalization of the Short Title.. 6-11
6.1.4.4 Implement Link Mode .. 6-12
6.1.4.5 Heed Device Information ... 6-12
6.1.4.6 Tailor Personalization Pages.. 6-12
6.2 Introduction to Java Portlet Specification (JPS) and WSRP ... 6-12
6.3 Building JPS-Compliant Portlets with Oracle JDeveloper ... 6-14
6.3.1 Creating a JSR 168 Portlet .. 6-15
6.3.2 Adding Portlet Logic to Your JSR 168 Portlet... 6-24
6.3.3 Deploying Your JSR 168 Portlet to the Oracle WebLogic Server............................... 6-24
6.3.4 Registering and Viewing Your JSR 168 Portlet .. 6-26
6.4 Introduction to Oracle PDK-Java... 6-29
6.5 Building Oracle PDK-Java Portlets with Oracle JDeveloper ... 6-30
6.5.1 Creating an Oracle PDK-Java Portlet and Provider .. 6-30
6.5.2 Adding Portlet Logic to Your Oracle PDK-Java Portlet.. 6-39
6.5.3 Validating Your Oracle PDK-Java Portlet and Provider... 6-39
6.5.4 Deploying Your Oracle PDK-Java Portlet to an Application Server......................... 6-40
6.5.5 Registering and Viewing Your Oracle PDK-Java Portlet.. 6-41

7 Enhancing Java Portlets

7.1 Enhancing JPS Portlets ... 7-1
7.1.1 Adding Personalization .. 7-1
7.1.1.1 Assumptions.. 7-1
7.1.1.2 Implementing Personalization ... 7-2
7.2 Enhancing PDK-Java Portlets.. 7-4
7.2.1 Adding Show Modes... 7-4

viii

7.2.1.1 Assumptions.. 7-5
7.2.1.2 Implementing Extra Show Modes.. 7-5
7.2.1.3 Updating the XML Provider Definition .. 7-5
7.2.1.4 Viewing the Portlet... 7-6
7.2.2 Adding Personalization .. 7-8
7.2.2.1 Assumptions.. 7-9
7.2.2.2 Implementing Personalization for Edit and Edit Defaults Pages....................... 7-10
7.2.2.2.1 Reviewing the Generated Code ... 7-10
7.2.2.2.2 Modifying the Generated Code.. 7-11
7.2.2.3 Implementing Personalization for Show Pages .. 7-12
7.2.2.4 Preference Information Within the XML Provider Definition............................ 7-12
7.2.2.5 Viewing the Portlet.. 7-13
7.2.3 Passing Parameters and Submitting Events ... 7-13
7.2.3.1 Assumptions... 7-14
7.2.3.2 Adding Public Parameters ... 7-14
7.2.3.3 Passing Private Portlet Parameters ... 7-16
7.2.3.3.1 Portlet URL Types .. 7-16
7.2.3.3.2 Building Links with the Portlet URL Types ... 7-17
7.2.3.3.3 Building Forms with the Portlet URL Types.. 7-19
7.2.3.3.4 Implementing Navigation within a Portlet .. 7-20
7.2.3.4 Submitting Events ... 7-23
7.2.4 Using JNDI Variables ... 7-27
7.2.4.1 Declaring JNDI Variables ... 7-27
7.2.4.1.1 Variable Types .. 7-27
7.2.4.1.2 Variable Naming Conventions... 7-27
7.2.4.1.3 Examples.. 7-28
7.2.4.2 Setting JNDI Variable Values... 7-28
7.2.4.3 Retrieving JNDI Variables.. 7-29
7.2.5 Creating Private Events ... 7-30
7.2.6 Accessing Session Information ... 7-32
7.2.6.1 Assumptions... 7-33
7.2.6.2 Implementing Session Storage... 7-33
7.2.6.3 Viewing the Portlet.. 7-35
7.2.7 Implementing Portlet Security.. 7-35
7.2.7.1 Assumptions... 7-35
7.2.7.2 Introduction to Portlet Security Features... 7-35
7.2.7.2.1 Authentication .. 7-35
7.2.7.2.2 Authorization.. 7-36
7.2.7.2.3 Communication Security... 7-36
7.2.7.3 Single Sign-On.. 7-37
7.2.7.3.1 Partner Application.. 7-37
7.2.7.3.2 External Application .. 7-38
7.2.7.3.3 No Application Authentication.. 7-38
7.2.7.4 Oracle Portal Access Control Lists (ACLs) .. 7-38
7.2.7.5 Portlet Security Managers .. 7-39
7.2.7.5.1 Viewing the Portlet .. 7-40
7.2.7.5.2 Implementing Your Own Security Manager.. 7-41

ix

7.2.7.6 Oracle Portal Server Security ... 7-41
7.2.7.7 Message Authentication ... 7-41
7.2.7.8 HTTPS Communication.. 7-43
7.2.7.9 LDAP (Oracle Internet Directory) Security ... 7-43
7.2.7.9.1 Implementing Oracle Internet Directory Security... 7-44
7.2.7.9.2 Viewing Your Portlets ... 7-46
7.2.7.10 User Input Escape.. 7-47
7.2.7.10.1 Default Container Encoding ... 7-47
7.2.7.10.2 Escape Methods .. 7-48
7.2.8 Controlling the Export/Import of Portlet Personalizations 7-48
7.2.8.1 Import/Export Programming Interface ... 7-49
7.2.8.2 Exporting Personalizations Example.. 7-51
7.2.8.3 Implementing Security for Export/Import.. 7-56
7.2.8.3.1 Securing Provider Communications ... 7-57
7.2.8.3.2 Disabling Export/Import of Personalizations ... 7-57
7.2.8.3.3 Obfuscating Data for Transport (Automatic)... 7-58
7.2.8.3.4 Encrypting Personalization Data for Transport... 7-58
7.2.8.3.5 Exporting by Reference ... 7-58
7.2.8.3.6 Encrypting Personalization Data Example... 7-58
7.2.8.3.7 Exporting by Reference Example... 7-61
7.2.9 Enhancing Portlet Performance with Caching ... 7-63
7.2.9.1 Assumptions... 7-64
7.2.9.2 Activating Caching.. 7-64
7.2.9.3 Adding Expiry-Based Caching .. 7-65
7.2.9.4 Adding Invalidation Based Caching .. 7-66
7.2.9.4.1 Configuring the Provider Servlet... 7-66
7.2.9.4.2 Defining the Oracle Web Cache Invalidation Port .. 7-66
7.2.9.4.3 Configuring the XML Provider Definition ... 7-68
7.2.9.4.4 Manually Invalidating the Cache... 7-68
7.2.9.5 Adding Validation-Based Caching ... 7-69
7.2.10 Enhancing Portlets for Mobile Devices ... 7-70
7.2.10.1 Accessing Configuration, User, and Device Information.................................... 7-75
7.2.10.1.1 Configuration Data .. 7-76
7.2.10.1.2 User Data ... 7-76
7.2.10.1.3 Device Information .. 7-76
7.2.10.2 Modifying Navigation for Mobile Portlets .. 7-77
7.2.11 Writing Multilingual Portlets.. 7-79
7.2.11.1 Assumptions... 7-79
7.2.11.2 Internationalizing Your Portlet.. 7-79
7.2.11.2.1 Providing Translations for Portlet Content .. 7-79
7.2.11.2.2 Providing Translation for Portlet Attributes .. 7-82
7.2.11.3 Viewing the Portlet.. 7-85
7.3 Building Struts Portlets with Oracle JDeveloper... 7-85
7.3.1 Oracle Portal and the Apache Struts Framework .. 7-85
7.3.1.1 Model View Controller Overview .. 7-85
7.3.1.2 Apache Struts Overview... 7-86
7.3.1.3 Oracle Portal Integration with Struts.. 7-87

x

7.3.1.4 Summary... 7-88
7.3.2 Creating a Struts Portlet... 7-88
7.3.2.1 Creating a Struts Portlet ... 7-89
7.3.2.1.1 Create a new flow and view to host the portlet actions 7-90
7.3.2.1.2 Creating the new JSPs.. 7-90
7.3.2.1.3 Creating a Portlet ... 7-91
7.3.2.1.4 Extending the portlet to add Portal Business Logic 7-92
7.3.2.2 Registering the Provider... 7-92
7.3.2.3 Summary... 7-92
7.3.3 Creating an Oracle Application Development Framework (ADF) Portlet 7-93

8 Creating PL/SQL Portlets

8.1 Guidelines for Creating PL/SQL Portlets ... 8-2
8.1.1 Portlet Show Modes .. 8-2
8.1.2 Recommended Portlet Procedures and Functions.. 8-3
8.1.3 Guidelines for Mobile Portlets ... 8-3
8.2 Building PL/SQL Portlets with the PL/SQL Generator ... 8-4
8.2.1 Creating the Input XML File .. 8-4
8.2.2 Running the PL/SQL Generator ... 8-7
8.2.3 Publishing the Generated PL/SQL Portlet .. 8-8
8.2.3.1 Installing the Packages in the Database .. 8-8
8.2.3.2 Registering the Database Provider... 8-9
8.2.3.3 Adding Your Portlet to a Page.. 8-9
8.3 Building PL/SQL Portlets Manually.. 8-9
8.3.1 Implementing the Portlet Package ... 8-10
8.3.2 Implementing the Provider Package ... 8-11
8.3.3 Adding Your Portlet to a Page.. 8-15
8.4 Implementing Information Storage... 8-15
8.4.1 Implementing a Preference Store ... 8-15
8.4.1.1 Using a Preference Store... 8-16
8.4.1.2 Creating and Accessing a Preference Store ... 8-16
8.4.2 Implementing a Session Store ... 8-20
8.5 Using Parameters ... 8-22
8.5.1 Passing Private Parameters ... 8-23
8.5.2 Passing Page Parameters and Mapping Public Portlet Parameters 8-23
8.5.3 Retrieving Parameter Values .. 8-24
8.6 Accessing Context Information.. 8-25
8.6.1 Using Context Information.. 8-25
8.6.2 Using wwctx_api to Obtain Context Information.. 8-26
8.7 Implementing Portlet Security ... 8-27
8.7.1 Using Security ... 8-28
8.7.2 Coding Security... 8-29
8.8 Improving Portlet Performance with Caching .. 8-31
8.8.1 Using Caching ... 8-32
8.8.1.1 Validation-Based Caching.. 8-32
8.8.1.2 Expiry-Based Caching... 8-32
8.8.1.3 Invalidation-Based Caching... 8-33

xi

8.8.2 Configuring and Monitoring the Cache .. 8-33
8.8.3 Implementing Validation-Based Caching ... 8-33
8.8.4 Implementing Expiry-Based Caching.. 8-35
8.8.5 Implementing Invalidation-Based Caching.. 8-36
8.9 Implementing Error Handling... 8-37
8.9.1 Using Error Handling .. 8-38
8.9.2 Adding Error Handling ... 8-39
8.10 Implementing Event Logging .. 8-41
8.10.1 Using Event Logging.. 8-42
8.10.2 Adding Event Logging... 8-42
8.11 Writing Multilingual Portlets... 8-44
8.11.1 Using Multilingual Support .. 8-44
8.11.2 Adding Multilingual Support... 8-45
8.11.2.1 Loading Language Strings ... 8-45
8.11.2.2 Retrieving Language Strings.. 8-46
8.12 Enhancing Portlets for Mobile Devices... 8-47
8.13 Registering Providers Programmatically ... 8-52
8.13.1 Registration Prerequisites.. 8-52
8.13.2 Provider Record Input ... 8-52
8.13.3 Registration Example ... 8-53

Part III Content Management APIs

9 Content Management API Introduction

9.1 Overview.. 9-1
9.2 Content Management APIs ... 9-2
9.2.1 Secure Content Repository Views ... 9-3
9.2.2 Terminology ... 9-3
9.3 Providing Access to the APIs and Secure Views.. 9-3
9.4 Guidelines for Using the APIs .. 9-4
9.4.1 Using a Separate Schema.. 9-4
9.4.2 Using Constants ... 9-4
9.4.3 Invalidating the Cache .. 9-5
9.4.4 Issuing Commits .. 9-5
9.4.5 Resetting CMEF Global Variables ... 9-5
9.4.6 Using Predefined Exceptions ... 9-6
9.4.7 Naming Objects.. 9-7
9.5 Guidelines for Using the Secure Views ... 9-7
9.5.1 Identifying Primary Keys ... 9-7
9.5.2 Querying Translatable Objects .. 9-7
9.5.3 Selecting Data for the Current User .. 9-8
9.6 Code Samples .. 9-8

10 Getting Started with Content Management APIs

10.1 Setting the Session Context... 10-1
10.2 API Parameters... 10-1

xii

10.3 Finding an Object ID.. 10-2
10.3.1 Finding a Page Group ID... 10-2
10.3.2 Finding a Page ID ... 10-3
10.3.3 Finding Region IDs... 10-4
10.3.4 Finding an Item ID.. 10-4

11 Performing Simple Content Management Tasks

11.1 Editing Page Properties... 11-1
11.2 Editing Content .. 11-6
11.2.1 Setting Item Attributes... 11-6
11.2.2 Editing an Item.. 11-11
11.2.3 Checking Items Out and In ... 11-12
11.2.4 Using Version Control ... 11-13
11.3 Reorganizing Content ... 11-13
11.3.1 Moving an Item to a Different Page... 11-14
11.3.2 Moving Pages .. 11-14
11.3.3 Moving Categories and Perspectives... 11-15
11.4 Copying Content .. 11-16
11.4.1 Copying Items ... 11-16
11.4.2 Copying Pages... 11-16
11.5 Deleting Content .. 11-17
11.5.1 Deleting Items ... 11-17
11.5.2 Deleting Pages... 11-19

12 Extending Your Portal

12.1 Creating a Page Group.. 12-1
12.2 Creating Pages.. 12-2
12.3 Creating Categories and Perspectives .. 12-3
12.4 Creating Items .. 12-4
12.5 Setting Perspectives Attributes of Pages and Items.. 12-8
12.6 Approving and Rejecting Items ... 12-9

13 Searching Portal Content

13.1 Searching For Items Across All Page Groups.. 13-2
13.2 Searching For Pages in Specific Page Groups.. 13-3
13.3 Searching For Items By Attribute .. 13-4
13.4 Transforming Search Results into XML.. 13-5
13.4.1 Creating a Directory for the XML File ... 13-5
13.4.2 Creating an XML File from a CLOB... 13-6
13.4.3 Generating Search Results in XML... 13-7
13.4.4 Workaround for get_item_xml ... 13-7
13.5 Displaying Search Results .. 13-9
13.5.1 Displaying XML Search Results in OmniPortlet.. 13-9
13.5.2 Displaying Search Results in a Dynamic Page ... 13-10

xiii

14 Creating Multi-Lingual Content

14.1 Introduction to Multi-Lingual Support .. 14-1
14.2 Querying the Default Language .. 14-1
14.3 Setting the Session Language... 14-2
14.4 Modifying an Existing Translation.. 14-2
14.5 Creating a Translation for an Item .. 14-3
14.6 Translations and Item Versioning ... 14-4

15 Implementing Content Security

15.1 Retrieving Object Privileges ... 15-1
15.2 Setting Page Level Privileges ... 15-3
15.2.1 Granting Page Level Privileges... 15-3
15.2.2 Removing Page Level Privileges .. 15-4
15.3 Setting Item Level Privileges.. 15-5
15.3.1 Granting Item Level Privileges ... 15-6
15.3.2 Removing Item Level Privileges... 15-7
15.3.3 Inheriting Item Level Privileges from the Page.. 15-8

16 Using the Content Management Event Framework

16.1 What Is the Content Management Event Framework? .. 16-1
16.2 How Does the Content Management Event Framework Work? 16-1
16.2.1 Enqueuing Messages.. 16-2
16.2.2 Subscribers and Dequeuing Messages... 16-3
16.2.2.1 Adding a Subscriber to the WWSBR_EVENT_Q Queue 16-3
16.2.2.2 Subscriber Queue Management .. 16-4
16.2.2.3 Dequeuing Messages .. 16-4
16.2.3 Exception Handling.. 16-6
16.2.4 Listening for Messages... 16-6
16.3 Using the Content Management Event Framework ... 16-8
16.3.1 Creating Subscriber Code.. 16-8
16.3.2 Adding a Subscriber to WWSBR_EVENT_Q ... 16-9
16.3.3 Enabling CMEF Events at the Page Group Level .. 16-9
16.3.4 Examining CMEF Events... 16-11
16.3.5 Running a CMEF Subscriber... 16-11
16.3.6 CMEF Message Payload .. 16-12
16.3.7 Oracle Portal Actions and CMEF Events .. 16-13
16.3.7.1 Page and Page Group Actions ... 16-13
16.3.7.1.1 Creating a Page ... 16-13
16.3.7.1.2 Updating the Access Control List of a Page ... 16-14
16.3.7.1.3 Updating the Access Control List of a Page Group 16-14
16.3.7.1.4 Deleting a Page ... 16-15
16.3.7.2 Item Actions ... 16-15
16.3.7.2.1 Creating an Item and Publishing it at the Same Time 16-15
16.3.7.2.2 Adding an Item That Requires Approval ... 16-16
16.3.7.2.3 Approving an Item... 16-16
16.3.7.2.4 Applying a Category or Perspective to an Item... 16-17

xiv

16.3.7.2.5 Deleting an Item ... 16-18
16.4 Installing the Examples ... 16-18
16.5 Example: Portal Object Event Logging ... 16-19
16.6 Example: Item Notification... 16-22
16.7 Example: Item Validation ... 16-27
16.8 Example: Integrating External Workflow .. 16-30
16.8.1 Integrating Workflow with Oracle Portal ... 16-30
16.8.2 Example Overview ... 16-31
16.8.3 Detailed Example Description .. 16-32
16.8.3.1 Enable Approvals and Notifications in Oracle Portal.. 16-32
16.8.3.2 Grant Users the Manage Items With Approval Privileges................................ 16-33
16.8.3.3 Run Scripts Required for the CMEF Workflow Integration Example 16-34
16.8.3.4 Create Subscriber and Check Procedures .. 16-34
16.8.3.5 Register the WF_CHECKURL Process with Oracle Workflow 16-38
16.8.3.6 Add the CMEF_WORKFLOW Subscriber to the WWSBR_EVENT_Q Queue

16-39

Part IV Appendixes

A Creating Portlets with the Portlet Builder

B Troubleshooting Portlets and Providers

B.1 Diagnosing General Portlet Problems... B-1
B.1.1 Portlet Refresh Failure.. B-1
B.1.2 HTML Tags Appearing in Portlet .. B-2
B.2 Diagnosing Java Portlet Problems... B-2
B.2.1 Portlet Logging.. B-3
B.2.2 Installation and Deployment Problems... B-3
B.2.2.1 Cannot Find a Java Class Object.. B-3
B.2.2.2 Cannot Deploy the template.ear File .. B-4
B.2.2.3 Error When Attempting to Register Provider ... B-4
B.2.2.4 Error Adding a Portlet to a Provider .. B-7
B.2.2.5 Portlet Does Not Exist... B-7
B.2.2.6 File Not Found ... B-8
B.2.2.7 XML Parser Error... B-8
B.2.2.8 Error Adding Portlets ... B-9
B.2.2.9 Content Request Timed Out .. B-9
B.2.2.10 Message 500 Returned .. B-10
B.2.2.11 JPS Portlets with the get Method not Working ... B-10
B.2.2.12 Portlet Displays Session Expired Message After Redeployment B-10
B.2.3 Portlet Code Does Not Compile ... B-10
B.2.4 Application Server Connection Test Fails ... B-11
B.2.5 Provider Test Page Shows Error... B-11
B.2.6 Web Provider Not Appearing in Portlet Repository ... B-12
B.2.7 Portlet Does Not Display on Page.. B-12
B.2.8 After Initial Successful Display, Portlet Does Not Display on Page B-12
B.3 Diagnosing OmniPortlet Problems ... B-13

xv

B.3.1 OmniPortlet Cannot Access the Specified URL ... B-13
B.3.2 Portlet Content Is Not Refreshed.. B-15
B.3.3 Edit Defaults Changes are Not Reflected in the Personalized Portlet B-15
B.4 Diagnosing Web Clipping Problems... B-15
B.4.1 Setting Logging Levels... B-16
B.4.2 Reviewing Error Messages .. B-16
B.4.3 Checking the Status of the Provider with the Test Page... B-16
B.4.4 Problem Connecting to the Web Site for Clipping .. B-16
B.4.5 HTTP Error Code 407 When Clipping Outside Firewall .. B-18
B.4.6 Cannot Clip a Page ... B-18
B.4.7 Images Not Retrieved with Clipping... B-18
B.4.8 Resolving Problems with Migration of URL-based Portlets B-19
B.4.8.1 File Not Found Exception When Running Migration Tool................................. B-19
B.4.8.2 Null Pointer Exception When Running Migration Tool...................................... B-19
B.4.8.3 Target provider.xml is Already Migrated Error ... B-20
B.4.8.4 Cannot Migrate provider.xml with Class Error .. B-20
B.5 Need More Help?... B-20

C Mapping Profile Items to Attributes

C.1 Mapping userProfileItems to Attributes... C-1

D Manually Packaging and Deploying PDK-Java Providers

D.1 Introduction .. D-1
D.1.1 WAR and EAR files .. D-2
D.1.2 Service Identifiers ... D-2
D.2 Packaging and Deploying Your Providers... D-2
D.2.1 Packaging Your Provider... D-3
D.2.1.1 Preparing Your Directories .. D-3
D.2.1.2 Specifying Your Default Service.. D-4
D.2.1.3 Creating Your WAR File... D-4
D.2.1.4 Creating Your EAR File .. D-4
D.2.2 Deploying Your EAR File Using Fusion Middleware Control D-5
D.2.3 Testing Deployment ... D-6
D.2.4 Setting Deployment Properties... D-7
D.2.5 Securing Your Provider ... D-7
D.2.6 Registering Your Provider... D-8

E Oracle Portal Provider Test Suite

E.1 Provider Test Page ... E-1
E.2 Test Harness.. E-2
E.2.1 Test Definition File ... E-2
E.2.2 runTest Command.. E-3
E.2.3 Running a Test with Test Harness ... E-4

xvi

F Content Management APIs and Views

F.1 Supported APIs .. F-1
F.1.1 The WWSBR_API Package.. F-1
F.1.2 The WWSRC_API Package.. F-1
F.1.3 The WWSEC_API Package.. F-2
F.1.4 The WWCTX_API Package ... F-2
F.1.5 The WWPRO_API_INVALIDATION Package .. F-2
F.2 Secure Views... F-2
F.2.1 WWSBR_ALL_CATEGORIES .. F-3
F.2.2 WWSBR_ALL_CONTENT_AREAS... F-4
F.2.3 WWSBR_ALL_FOLDER_REGIONS.. F-4
F.2.4 WWSBR_ALL_FOLDERS.. F-5
F.2.5 WWSBR_ALL_ITEMS.. F-8
F.2.6 WWSBR_ALL_NAVIGATION_BARS... F-12
F.2.7 WWSBR_ALL_PERSPECTIVES ... F-12
F.2.8 WWSBR_ALL_STYLES.. F-13
F.2.9 WWSBR_APPROVER .. F-13
F.2.10 WWSBR_ATTRIBUTES ... F-14
F.2.11 WWSBR_CONTENT_AREA_APPROVAL... F-15
F.2.12 WWSBR_CONTENT_AREA_ITEM_TYPES... F-15
F.2.13 WWSBR_FOLDER_ATTRIBUTES ... F-16
F.2.14 WWSBR_FOLDER_PERSPECTIVES ... F-16
F.2.15 WWSBR_FOLDER_TYPE_ATTRIBUTES ... F-17
F.2.16 WWSBR_FOLDER_TYPES.. F-18
F.2.17 WWSBR_ITEM_APPROVAL.. F-18
F.2.18 WWSBR_ITEM_ATTRIBUTES ... F-20
F.2.19 WWSBR_ITEM_PERSPECTIVES ... F-20
F.2.20 WWSBR_ITEM_TYPE_ATTRIBUTES ... F-21
F.2.21 WWSBR_ITEM_TYPES.. F-22
F.2.22 WWSBR_SUBSCRIPTION... F-23
F.2.23 WWSBR_USER_FOLDERS.. F-23
F.2.24 WWSBR_USER_PAGES... F-26

G Content Management Event Framework Events

G.1 Actions and Events for Items ... G-1
G.2 Actions and Events for Pages... G-5
G.3 Actions and Events for Tabs... G-7
G.4 Actions and Events for Page Groups .. G-8
G.5 Actions and Events for Attributes ... G-9
G.6 Actions and Events for Item Types ... G-9
G.7 Actions and Events for Page Types... G-10
G.8 Actions and Events for Categories .. G-11
G.9 Actions and Events for Perspectives ... G-11
G.10 Actions and Events for Templates... G-12

xvii

Glossary

Index

xviii

xix

Preface

This manual describes how to build portlets for Oracle Portal (Oracle Portal) using a
variety of tools and technologies. This manual includes information that helps you
understand the various technology choices open to you, choose the technology that
best meets your requirements, and use the appropriate tools to build and deploy your
portlets.

Intended Audience
This manual is intended primarily for portal developers, but page designers may also
find it useful. This manual guides you through the process of first understanding and
choosing a portlet technology, and then building your portlets with that technology.

What Is a Portal Developer? A portal developer is a user who writes code to help
make a portal meet the specific requirements of an organization. For example, a portal
developer may build portlets and make them available to page designers and other
users for inclusion on their pages. This type of portal developer is also referred to as a
portlet developer. A portal developer may also use the public APIs provided with
OracleAS Portal to perform certain portal tasks programmatically, rather than through
the product's user interface. A portal developer will generally, although not always, be
someone with at least some programming knowledge. The privileges assigned to a
portal developer depend on the type of tasks that developer performs.

What Is a Portlet Developer? A portlet developer is a user with the following global
privileges: Create All Portal DB Providers and Manage All Shared Components. Since
OracleAS Portal offers such a wide spectrum of tools and technologies for building
portlets, a portlet developer may or may not have substantial programming
background.

Note: Examples of how to use APIs to perform content management
tasks will be provided soon on Portal Center
(http://portalcenter.oracle.com) and will be incorporated
into a later release of this guide.

xx

What Is a Page Designer? A page designer, also known as a page manager, is a user
with the Manage privilege on a page. A user with this privilege can perform any
action on the page and can create sub-pages under the page. The page designer is
often responsible for designing the layout (or region configuration) of the page and
assigning privileges on the page to other users (for example, to determine who can
add content to the page).

The scope of a page designer's control over a page may be limited if the page is based
on a template.

For information about the different privileges in Oracle Portal and how these affect
the tasks you can perform, see the Oracle Portal User's Guide.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Note: You can find information on using Portlet Builder in
Appendix A "Creating Portlets with the Portlet Builder" of the Oracle
Fusion Middleware Developer's Guide for Oracle Portal 10g Release 2
(10.1.4) in the Oracle Fusion Middleware 10g Release 2 (10.1.2.0.2)
library located on the Oracle Technology Network (OTN)
(http://www.oracle.com/technology/documentation/apps
erver.html).

Note: For the portable document format (PDF) version of this
manual, when a URL breaks onto two lines, the full URL data is not
sent to the browser when you click it. To get to the correct target of
any URL included in the PDF, copy and paste the URL into your
browser's address field. In the HTML version of this manual, you can
click a link to directly display its target in your browser.

xxi

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information, see the following manuals in the Oracle Portal documentation
set:

■ Oracle Portal Release Notes

■ Oracle Fusion Middleware User's Guide for Oracle Portal

■ Oracle Fusion Middleware Administrator's Guide for Oracle Portal

You may also find the following manuals in the Oracle Fusion Middleware
documentation set useful:

■ Oracle Fusion Middleware Concepts

■ Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

■ Oracle Fusion Middleware Administrator's Guide for Oracle Web Cache

■ Oracle Fusion Middleware PL/SQL Web Toolkit Reference

Conventions
The following text conventions are used in this document:

Note: You can find all documentation related to Oracle Portal on
the OracleAS Portal Documentation page on OTN
(http://www.oracle.com/technology/products/ias/porta
l/documentation.html)

Note: You can find documentation related to Oracle Fusion
Middleware on OTN
(http://www.oracle.com/technology/documentation/inde
x.html).

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.

xxii

 ... Ellipsis points in an example mean that information not directly related
to the example has been omitted.

ORACLE_HOME Represents the full path of the Oracle home.

INSTANCE_HOME Represents the full path of the instance home associated with MID_
TIER_ORACLE_HOME.

INFRA_ORACLE_
HOME

Represents the full path of the Oracle Application Server Infrastructure
Oracle home, and is used where it is necessary to distinguish between
the middle tier, Oracle Application Server Infrastructure, or Oracle
Metadata Repository.

METADATA_REP_
ORACLE_HOME

Represents the full path of the OracleAS Infrastructure home
containing the Oracle Metadata Repository, and is used where it is
necessary to distinguish between the middle tier, Oracle Application
Server Infrastructure, or Oracle Metadata Repository.

Convention Meaning

Part I
Part I Portlet Overview

Part I contains the following chapters:

■ Chapter 1, "Understanding Portlets"

■ Chapter 2, "Portlet Technologies Matrix"

1

Understanding Portlets 1-1

1 Understanding Portlets

This chapter provides an overview of portlets and describes, with help of examples,
the use of portlets. It explains portlet anatomy, and the resources to create portlets.
This chapter contains the following sections:

■ Section 1.1, "Introduction to Portal Development"

■ Section 1.2, "Understanding Portlets"

■ Section 1.3, "Portlet Anatomy"

■ Section 1.4, "Portlet Resources"

1.1 Introduction to Portal Development
Oracle Portal enables you to present information from multiple, unrelated data
sources in one, organized view. This view, a portal page, can contain one or more
components—called portlets—that can each get their content from different data
sources.

Oracle Portal has all the tools you need for developing portlets and adding them to
your portal pages. Oracle Portal's tools support a wide range of development skills:
from the novice business developer to the experienced IT programmer. You can
develop portlets either declaratively, through the Oracle Portal user interface, or
programmatically, through Oracle Portal's collection of application programming
interfaces (APIs), known as the Oracle Portal Developer Kit (PDK). Additionally, you
can develop portlets through other development tools, external to Oracle Portal, and
integrate them through the PDK and an Oracle Portal entity called a provider. To learn
more about providers, see Chapter 2, "Portlet Technologies Matrix."

This chapter defines portlets, lists and describes some sources for pre-built portlets
and resources for building portlets, and suggests the best resource for the job.

1.2 Understanding Portlets
A portlet is a reusable Web component that can draw content from many different
sources. A typical portlet is one that displays summaries of Web content, as shown in
Figure 1–1.

Understanding Portlets

1-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 1–1 Portlets on the My Oracle Home Page

For example, in your portal you may have a news feed portlet that supplies linked
news article headlines that are each accompanied by a sentence describing the content
of the article (Figure 1–2).

Figure 1–2 The Oracle News Portlet on the My Oracle Home Page

Users click the linked headlines to get to the full text of the article, which is hosted on
an external news service (Figure 1–3). The portlet has a somewhat dynamic nature in
that headlines change automatically as news stories are added and removed at the
source.

Portlet Anatomy

Understanding Portlets 1-3

Figure 1–3 Content Target from a Portlet Link

Portlets provide a means of presenting data from multiple sources in a meaningful
and related way. Portlets can display excerpts of other Web sites, generate summaries
of key information, perform searches, and access assembled collections of information
from a variety of data sources. Because different portlets can be placed on a common
page, the user receives a single-source experience. In reality, the content may be
derived from multiple sources.

1.3 Portlet Anatomy
In Oracle Portal a portlet on a page is rendered in an HTML table cell. A portlet can
display various types of content, such as HTML, formatted text, images, or elements of
an HTML form.

Figure 1–4 illustrates a typical portlet anatomy. This includes a header that contains
the portlet title. You can create a hyperlink in the portlet title, so that when a user
clicks the title, the portlet displays in a full browser page. A portlet can also include a
border, to distinguish the layout from other portlets on the page.

You, the portlet developer, can expose links such as Personalize, Help, and About, to
the page designer, who can then turn them on or off. Clicking the Personalize link
displays a number of options where the end user can personalize various attributes of
the portlet. Clicking the Help link displays a window containing help text that you can
create to assist the end user with the portlet. Clicking the About link displays a
window that you can create to describe the contents of the portlet.

Each portlet also contains the refresh icon and a standard collapse icon, which the end
user can click to collapse or expand the portlet on the page.

Figure 1–4 Portlet Anatomy

Portlet Resources

1-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

1.4 Portlet Resources
Portlet resources include the many prebuilt portlets available out of the box from
many sources, including Oracle Portal, Oracle E-Business Suite, and third-party
sources. Portlet resources also include portlet-building tools available through the
Oracle Portal user interface as well as from the PDK and other Oracle tools. Each of
these tools offers different product features that are targeted toward different
developer roles.

This section describes different portlet resources, suggests the level of expertise
required to use them, and provides examples of when they might best be used. It
includes the following subsections:

■ Section 1.4.1, "Out-of-the-Box Portlets"

■ Section 1.4.2, "Other Sources of Prebuilt Portlets"

■ Section 1.4.3, "Web Clipping"

■ Section 1.4.4, "OmniPortlet"

■ Section 1.4.5, "Portlet Builder"

■ Section 1.4.7, "Programmatic Portlets"

This section introduces you to the various portlet resources. For specific information
on each tool and its benefits, see Chapter 2, "Portlet Technologies Matrix."

1.4.1 Out-of-the-Box Portlets

What Are They?
Out-of-the-box portlets are prebuilt, fully developed, registered portlets that are
immediately available from the Portlet Repository when you install Oracle Portal
(Figure 1–5). They include such portlets as Search, Saved Searches, Favorites, and My
Notifications.

Figure 1–5 The Portlet Repository

You'll find information on the prebuilt portlets in Oracle Portal in Oracle Fusion
Middleware User's Guide for Oracle Portal.

Portlet Resources

Understanding Portlets 1-5

Who Is the Intended User?
Out-of-the-box portlets are best suited for use by end users and page designers,
though they are available to users at all levels of expertise.

When Should They Be Used?
Use out-of-the-box portlets when your needs are satisfied by the functions the portlets
offer, and the level of personalization readily available is sufficient to complete the
desired task.

Consider alternatives when you need to extend or personalize the portlet, such as
when you need a different user interface, or when the functionality you require is not
available out of the box.

For more information on when you should use each technology, see Chapter 2, "Portlet
Technologies Matrix."

1.4.2 Other Sources of Prebuilt Portlets

What Are They?
Other sources of prebuilt portlets include partner portlets and integration solutions.

Partner portlets are available through Oracle's partnerships with leading system
integrators, software vendors, and content providers. You can access these portlets by
using the keywords portal or portlet when searching the Oracle PartnerNetwork
Solutions Catalog:

http://solutions.oracle.com

Examples of these prebuilt portlets include portlets for the following purposes:

■ Generating point-to-point driving directions

■ Accessing IT information from a wide variety of sources

■ Viewing summary information on news, stocks, and weather

Portal Integration (POINT) Solutions provide solutions for customers who require
basic functionality for popular applications such as Microsoft Exchange, Lotus Notes,
SAP, IMAP, SMTP, and the like. These portlets are available on the Oracle Portal
Integration Solutions page on OTN:

http://www.oracle.com/technology/products/ias/portal/point.html

Who Is the Intended User?
Fully developed, downloadable portlets are best suited for use by end users and page
designers who understand how to download, install, and register Web and database
providers in Oracle Portal. They are available for use by all levels of experience.

When Should They Be Used?
As with out-of-the-box portlets, use prebuilt portlets from other sources when your
needs are satisfied by the functions the portlets offer, and the level of personalization
readily available is sufficient to complete the desired task.

Consider alternatives when you need to extend or personalize the portlet, for example,
when you need a different user interface or when the functionality you require is not
available out of the box.

Portlet Resources

1-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

1.4.3 Web Clipping

What Is It?
Web Clipping is a browser-based declarative tool that enables you to integrate any
Web application with Oracle Portal. It is designed to give you quick integration by
leveraging the Web application's existing user interface. Web Clipping has been
implemented as a Web provider using the PDK-Java, which is a component of Oracle
Portal.

To create a Web Clipping portlet, the portal page designer uses a Web browser to
navigate to the Web page that contains the desired content. Through the Web Clipping
Studio, the page designer can drill down through a visual rendering of the target page
to choose the desired the content (Figure 1–6 and Figure 1–7).

Figure 1–6 Selecting Web Content through the Web Clipping Studio

Portlet Resources

Understanding Portlets 1-7

Figure 1–7 Clipped Content Rendered as a Portlet in Portal

Web Clipping supports the following:

■ Navigation through various styles of login mechanisms, including form- and
JavaScript-based submission and HTTP Basic and Digest Authentication with
cookie-based session management.

■ Fuzzy matching of clippings. If a Web clipping gets reordered within the source
page or if its character font, size, or style changes, it will still be identified correctly
by the Web Clipping engine and delivered as the portlet content.

■ Reuse of a wide range of Web content, including basic support of pages written
with HTML 4.0.1, JavaScript, applets, and plug-in enabled content, retrieved
through HTTP GET and POST (form submission).

■ Personalization, allowing a page designer to expose input parameters that page
viewers can modify when they personalize the portlet. These parameters can be
exposed as public parameters that a page designer can map as Oracle Portal page
parameters. This feature enables end users to obtain personalized clippings.

■ Integrated authenticated Web content through Single Sign-On, including
integration with external applications, which enables you to leverage Oracle
Application Server Single Sign-On and to clip content from authenticated external
Web sites.

■ Inline rendering, enabling you to set up Web Clipping portlets to display links
within the context of the portlet. As a result, when a user clicks a link in the Web
Clipping portlet, the results display within the same portlet. You can use this
feature with internal and external Web sites.

■ Proxy Authentication, including support for global proxy authentication and
per-user authentication. You can specify the realm of the proxy server and
whether all users will automatically log in using a user name and password you
provide, each user will log in using an individual user name and password, or all
users will log in using a specified user name and password.

■ Resource Tunnelling of images.

■ Open Transport API for customizing authentication mechanisms to clipped sites.

■ Security Enhancement that enables administrators to control access to content
that can be clipped by the Web Clipping portlet.

■ Migration from URL-based portlets, enabling you to migrate your URL-based
portlets to Web Clipping.

Portlet Resources

1-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Who Is the Intended User?
Web Clipping is best suited for use by page designers and portlet developers who
want to leverage an existing Web page for rapid portlet development. The Web
Clipping portlet is accessible out of the box, and is available in the Portlet Repository
of Oracle Portal. This portlet can be added to a page by any user with the appropriate
privileges.

When Should It Be Used?
Use Web Clipping when you want to repurpose live content and functionality from an
existing Web page and expose it in your portal as a portlet. Consider alternatives if
you want to change the way information is presented in the clipped portlet. That is,
you don't need to control the user interface or application flow, and you are accessing
Web-based applications. For a greater level of control, use OmniPortlet's Web page
data source instead of Web Clipping.

The following are some examples of when you might consider using the Web Clipping
portlet:

■ Stock chart portlet. You want to create a portlet that displays the stock market's
daily performance chart from your financial advisor's Web site. You could clip this
information from an external Web site, even if your company is using a proxy.

■ Personalized weather portlet. You want to create a portlet that displays weather
information from a major Internet weather site, and you want your users to be
able to personalize the portlet by providing the desired zip code.

■ Web mail portlet. Your users want to access their confidential Web mail accounts
through a portlet and display their in-boxes in the portlet.

For more information on using Web Clipping, see Chapter 5, "Creating Content-Based
Portlets with Web Clipping."

1.4.4 OmniPortlet

What Is It?
OmniPortlet is a declarative portlet-building tool that enables you to build portlets
against a variety of data sources, including XML files, character-separated value files
(CSV, for example, spreadsheets), Web Services, databases, Web pages, and SAP data
sources. OmniPortlet users can also choose a prebuilt layout for the data. Prebuilt
layouts include tabular, news, bullet, form, chart, or HTML. HTML layout enables
OmniPortlet users to write their own HTML and inject the data into that HTML.
Figure 1–8 shows an OmniPortlet with a tabular format.

Note: To use the Web Clipping portlet, OmniPortlet, or the Simple
Parameter Form with Windows (2000 with SP4, 2003 (32 bit) with
SP2/R2 or later, XP with SP2/R2 or later, Vista, and Server 2008),
you must use Firefox 3.0 or later, or Microsoft Internet Explorer 7 or
later.

Portlet Resources

Understanding Portlets 1-9

Figure 1–8 An OmniPortlet Using Tabular Format

Like Web Clipping, OmniPortlet supports proxy authentication, including support for
global proxy authentication as well as authentication for each user. You can specify
whether all users will automatically log in using a user name and password you
provide, each user will log in using an individual user name and password, or all
users will log in using a specified user name and password.

You'll find information about OmniPortlet on Portal Center. Navigate to the following
URL, then click Portlet Development:

http://portalcenter.oracle.com

Who Is the Intended User?
OmniPortlet is best suited for use by business users with a minimum knowlegde of the
URLs to their targeted data.

When Should It Be Used?
Use OmniPortlet when you want to build portlets rapidly against a variety of data
sources with a variety of layouts. Consider alternatives when you want complete
control of the design and functionality of the portlet.

The following are some examples of when you might consider using OmniPortlet:

■ RSS news feed portlet. You want to create a portlet that displays live, scrolling
news information to your users. The data comes from a Really Simple Syndication
(RSS) news feed, such as the Oracle Technology Network Headlines. You also
want the portlet to contain hyperlinks to the news source.

■ Sales chart portlet. You want to present up-to-date information on your
company's sales results. You also want to display data in the form of a pie chart,
and your company stores its sales information in a remote relational database.

■ SAP portlet. You want to display information from a company's SAP system. To
minimize the load on the company's SAP Business Suite, the information retrieved
from the system must be cached for each user for the entire day.

For more information about OmniPortlet, see Chapter 3, "Creating Portlets with
OmniPortlet" and Chapter 4, "Building Example Portlets with OmniPortlet."

Note: The SAP data source is not included with Oracle Portal. To
learn more about using the SAP data source, visit the Oracle Portal
Integration Solutions page on OTN:

http://www.oracle.com/technology/products/ias/port
al/point.html

Portlet Resources

1-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

1.4.5 Portlet Builder

What Is It?
Oracle Portal includes a number of portlet-building wizards that are accessible
through the Provider tab in the Portal Navigator. These wizards can be used to build
charts, reports, forms, calendars, and lists of values as shown in Figure 1–9.

Figure 1–9 Sample Form, Report, and Chart from the Portlet Builder

When Should It Be Used?
It is recommended that you use OmniPortlet as an alternative to Portlet Builder
whenever possible. OmniPortlet provides more flexibility and a separation of data and
layout which enables you to change from a report to chart without re-creating the
entire portlet (as is required with Portlet Builder). OmniPortlet also provides more
options for deployment to many different portals simultaneously. Oracle Portal will
continue to support Portlet Builder as a portlet building option. However, new
features and enhancements will be directed toward the OmniPortlet tool.

For more information about OmniPortlet, see Section 1.4.4, "OmniPortlet." For more
information about Portlet Builder, see Appendix A, "Creating Portlets with the Portlet
Builder."

1.4.6 JSF Portlets

What Are They?
JSF portlets are created using the JSF Portlet Bridge. The JSF Portlet Bridge enables
application developers to expose their existing JSF applications and task flows as JSR
168 portlets. The portlet bridge simplifies the integration of JSF applications with
WSRP portlet consumers, such as Oracle Portal.

JSF portlets do not require separate source code from that of the JSF application. Since
these portlets are created using the portlet bridge, you need to only maintain one
source for both your application and your portlets. Similarly, when you deploy your
JSF application, JSF portlets are also deployed with it. Therefore, using the bridge
eliminates the need to store, maintain, and deploy your portlets separately from your
application.

Portlet Resources

Understanding Portlets 1-11

Who Is the Intended User?
Application developers with knowledge of Faces and WSRP.

When Should They Be Used?
JSF portlets are best suited when application developers intend to display contents
from a JSF application as a portlet without hosting the entire application, or without
separately building a portlet for the same. Once portletized, the consumption of the
portlet is the same as registering any WSRP provider using their provider URLs.

For more information, see Oracle Fusion Middleware Developer's Guide for Oracle
WebCenter Suite.

1.4.7 Programmatic Portlets

What Are They?
Programmatic portlets are portlets that you write yourself, in Java or PL/SQL. The
Oracle PDK contains a set of portlet-building APIs that you can use to create
programmatic portlets.

You'll find more information about these APIs on Portal Center:

http://portalcenter.oracle.com

Who Is the Intended User?
These tools are best used by experienced and knowledgeable IT developers.

When Should They Be Used?
Use programmatic portlets when you have very specialized business rules or logic or
when you require personalized authentication, granular processing of dynamic results,
and complete user interface control. Additionally, use programmatic portlets when
you need to satisfy any of the following conditions:

■ You're building a portlet from the start and need complete control over all of its
functionality.

■ You know Java or PL/SQL.

■ You are comfortable with the PDK and the configuration of Oracle Portal
providers.

Consider using this approach when the out-of-the-box declarative tools do not address
your needs.

The following are some examples of when you might consider using Java portlets
created with the Oracle Portal Developer Kit:

Note: JSF Portlet Bridge integrate Oracle WebCenter Services into
Oracle Portal. It is only available if you are using a licensed Oracle
WebCentre.

Note: The PDK-PL/SQL is not described in detail in this manual. For
specific information on the PDK-PL/SQL, refer to the Developer
Services area on Portal Center:

http://portalcenter.oracle.com

Portlet Resources

1-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ Discussion forum portlet. You want to create a portlet that integrates your
company's JSP-based discussion forum application with Oracle Portal. The
discussion forum posts are stored in a relational database. The portlet must also
follow the strict look and feel of your company's Internet Web site.

■ E-mail portlet. You want to create a portlet that enables users to send e-mail from
the company's intranet portal. You must integrate the e-mail portlet with the
company's LDAP server so that the users can use the address book on the LDAP
server.

For more information about using the PDK-Java, see Chapter 6, "Creating Java
Portlets" and Chapter 7, "Enhancing Java Portlets." For more information about using
the PDK-PL/SQL, see Chapter 8, "Creating PL/SQL Portlets."

1.4.8 Deciding Which Tool to Use
Figure 1–10 illustrates the spectrum of portlet resources described in the previous
section. Notice how one end of the spectrum is geared toward a more declarative
environment as required by page designers while the other end focuses more on
hand-coding and portlet developers. You can choose your tool depending on which
type of environment is most comfortable and suitable for your skill-base.

For more information on deciding which tool to use, refer to Chapter 2, "Portlet
Technologies Matrix".

Figure 1–10 Portlet Resources from Page Designers to Experienced Developers

2

Portlet Technologies Matrix 2-1

2 Portlet Technologies Matrix

This chapter describes portlet features, characteristics, technologies, and tools to help
you decide which portlet building technology best suits your needs. It includes the
following sections:

■ Section 2.1, "The Portlet Technologies Matrix"

■ Section 2.2, "General Suitability"

■ Section 2.3, "Expertise Required"

■ Section 2.4, "Deployment Type"

■ Section 2.5, "Caching Style"

■ Section 2.6, "Development Tool"

■ Section 2.7, "Portlet Creation Style"

■ Section 2.8, "User Interface Flexibility"

■ Section 2.9, "Ability to Capture Content from Web Sites"

■ Section 2.10, "Ability to Render Content Inline"

■ Section 2.11, "Charting Capability"

■ Section 2.12, "Public Portlet Parameters Support"

■ Section 2.13, "Private Portlet Parameter Support"

■ Section 2.14, "Event Support"

■ Section 2.15, "Ability to Hide and Show Portlets Based on User Privileges"

■ Section 2.16, "Multilingual Support"

■ Section 2.17, "Pagination Support"

■ Section 2.18, "Single Sign-On and External Application Integration"

2.1 The Portlet Technologies Matrix
Table 2–1, " Portlet Building Technologies Comparison Matrix" summarizes the
technologies and tools you can use with Oracle Portal on one axis, and the features
and characteristics on the other. The matrix describes the tools and technologies that
are covered in more detail in this guide: OmniPortlet, Web Clipping, the Java Portlets
(PDK-Java) including Standards, Portlet Builder as an appendix, and PL/SQL Portlets
(PDK-PL/SQL) (in the matrix only).

The Portlet Technologies Matrix

2-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

The other sections in this chapter provide further detail on the characteristics listed in
Table 2–1. Use the table to quickly scan all the features and characteristics, then see the
subsequent sections for more in-depth information.

Note: While these are the primary tools for building portlets,
additional tools and technologies exist, such as other Oracle products,
including Oracle Reports and Oracle Business Intelligence Discoverer.
These other tools are not covered in this guide.

Table 2–1 Portlet Building Technologies Comparison Matrix

Web Clipping OmniPortlet PDK-Java Standards Portlet Builder PDK-PL/SQL

General Suitability

A simple
wizard-based tool
that helps you
retrieve and
present Web
content, originating
from other Web
sites, in your portal.

Wizard-based tool,
accessible from the
browser. Capable
of retrieving and
presenting data
from a wide variety
of data sources.

APIs for portlets
built specifically for
Oracle Portal.

Portlets that should
work with portals
of other vendors.
Oracle supports
both WSRP and
JSR-168.

Wizard-based tool,
accessible from the
browser. Best
suited for simple,
DB-centric
applications or
portlets.

APIs for portlets
built specifically for
Oracle Portal.

Expertise Required

No expertise
required.

Basic
understanding of
one or more
supported data
sources and the
concepts of portlet
and page
parameters and
events.

Java, Servlet, JSP
knowledge.

Java, Servlet, JSP
knowledge.

Basic
understanding of
relational DB
concepts.
Optionally SQL,
PL/SQL.

SQL, PL/SQL,
PL/SQL Web
Toolkit.

Supported Data
Sources (for details,
see Section 2.3,
"Expertise
Required")

Any Web site
accessible on the
network over
HTTP or HTTPS.

CSV, XML, Web
Service, SAP, SQL,
Web site, JCA.

No limitations. No limitations. SQL (local DB or
remote DB through
DB link)

SQL (local DB or
remote DB through
DB link)

Deployment Type

Web provider Web provider Web provider WSRP Database provider Database provider

Caching Style

Expiry-based
caching,
invalidation-based
caching (auto
invalidate when
personalized).

Expiry-based
caching,
invalidation-based
caching (auto
invalidate when
personalized).

Expiry-based,
validation, and
invalidation
caching, ESI.

Validation and
expiry-based
caching.

Expiry-based
caching.

Expiry-based,
validation, and
invalidation
caching.

Development Tool

Browser - wizard. Browser - wizard. Oracle JDeveloper -
Java Portlet Wizard
(or any other Java
development
environment -
without the
Wizard).

Oracle JDeveloper -
Java Portlet Wizard
(or any other Java
development
environment -
without the
Wizard).

Browser -
optionally PL/SQL
development
environment.

PL/SQL
development
environment.

Portlet Creation
Style

The Portlet Technologies Matrix

Portlet Technologies Matrix 2-3

Develop in place. Develop in place. No in-place portlet
building
experience. Add
portlet to page, edit
defaults, and
personalize.

No in-place portlet
building
experience. Add
portlet to page, edit
defaults, and
personalize.

Develop first, then
add and develop in
place.

No in-place portlet
building
experience. Add
portlet to page, edit
defaults, and
personalize.

User Interface
Flexibility

N/A Very flexible, by
using the HTML
layout.

Very flexible. Very flexible. Limited. Very flexible.

Ability to Capture
Content from Web
Sites

Yes, by its nature. Yes, by using the
Web Data Source.

Yes, by using the
java.net package.

Yes, by using the
java.net package.

No Yes, by using the
UTIL_HTTP
package.

Ability to Render
Content Inline

Yes. (Supported by
Web Clipping
9.0.4.0.2 or later.)

No URL rewriting
support, but can be
achieved by using
public portlet
parameters and
events.

By using private
portlet parameters.

Include servlets
and JSPs (using the
PortletContext.getR
equestDispatcher()
method).

Pagination in
reports and charts
is rendered inline.

By using private
portlet parameters.

Charting
Capability

N/A Yes, 2D-3D charts. By using BI Beans. By using BI Beans. HTML charts. Programmatically,
HTML charts.

Public Portlet
Parameters
Support

Yes. (Supported by
Web Clipping
9.0.4.0.2 or later.)

Yes Yes No Yes Yes

Private Portlet
Parameter Support

N/A N/A Yes Yes No Yes

Event Support

Yes Yes Yes Portlet private
events (actions).

No No

Ability to Hide
and Show Portlets
Based on User
Privileges

No, though it is
possible to apply
security managers
that are not
exposed through
the UI.

No, though it is
possible to apply
security managers
that are not
exposed through
the UI.

Yes, by using the
Security managers.

Yes, the Servlet
security model is
supported by using
methods such as
PortletRequest.isUs
erInRole() and
PortletRequest.get
UserPrincipal().

Yes Yes, by using the
Security APIs.

Multilingual
Support

N/A Yes Yes Yes No Yes

Table 2–1 (Cont.) Portlet Building Technologies Comparison Matrix

Web Clipping OmniPortlet PDK-Java Standards Portlet Builder PDK-PL/SQL

General Suitability

2-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

2.2 General Suitability
This section describes each portlet-building technology in terms of its usage
characteristics (for example, wizard-based or programmatic).

2.2.1 Web Clipping
Web Clipping is a simple wizard-based tool that helps you retrieve and present Web
content, originating from other Web sites, in your portal. Web Clipping does not
require you to have any technical background.

Examples of portlets you can build using Web Clipping
You can build the following portlets using Web Clipping:

■ Stock chart portlet

■ Personalized weather portlet

■ Web mail portlet

2.2.2 OmniPortlet
OmniPortlet is an easy-to-use, wizard-based tool for presenting information from a
wide variety of data sources in a variety of formats. OmniPortlet runs completely in
the browser. Drop OmniPortlet on a portal page, click the Define link, and choose a
data source and presentation format. Select from a wide variety of data sources
including the following:

■ Spreadsheet

■ SQL

■ XML

■ Web Service

■ Web page

OmniPortlet does not require you to use an additional development tool or have a
strong technical background. Even so, you can use it to build reusable and
high-performing portlets.

Pagination
Support

N/A No Programmatically Programmatically Yes Programmatically

Single Sign-On
and External
Application
Integration

Web Clipping
9.0.4.0.2 and higher
supports external
application
integration.

Basic
authentication
support if the data
source requires it.

External
application
integration
supported. LDAP
integration is
supported when
the portlet is
running behind the
same firewall as the
LDAP server.

No. (Feasible
through custom
user attributes.)
LDAP integration
is supported.

No. (It runs in the
Oracle Portal
repository; it does
not require SSO
integration.)

SSO is enabled by
using mod_oso.

Table 2–1 (Cont.) Portlet Building Technologies Comparison Matrix

Web Clipping OmniPortlet PDK-Java Standards Portlet Builder PDK-PL/SQL

General Suitability

Portlet Technologies Matrix 2-5

Examples of portlets you can create with OmniPortlet
You can create the following portlets using OmniPortlet:

■ RSS news feed portlet

■ Sales chart portlet

■ SAP Business Suite portlet

2.2.3 Java Portlets
If the wizard-based portlet building tools do not satisfy your needs, you can build
your portlets programmatically using Java. The Java Community Process standardized
the Java portlet APIs in 2003. Portlets built against the Java Specification Request (JSR)
168 standard are interoperable across different portal platforms. The Java Portlet
Wizard, an Oracle JDeveloper plug-in, helps you get started with your Java portlets.

Examples of portlets you can build using Java
You can build the following portlets in Java:

■ Discussion forum portlet

■ E-mail portlet

2.2.4 Portlet Builder
Portlet Builder is a wizard-based tool to create data-driven portlets, where the data
resides in an Oracle database. You can build interactive forms to insert, update, and
delete database records. You can create flexible reports and HTML bar charts to
display information from the database. Portlet Builder also enables you to pass
parameters and navigate between your data-driven portlets by using dynamic links.

Examples of portlets you can build using the Portlet Builder
You can build the following portlets using Portlet Builder:

■ Data entry portlet

■ Dynamic list of partners portlet

■ Sales results portlet

2.2.5 PL/SQL Portlets
Similar to Java portlets, PL/SQL portlets provide a flexible approach to build Web
applications that cannot be satisfied by built-in portlets. For example, your application
may require implementation of special business rules or logic or meet
custom-designed authorization requirements. PL/SQL portlets are commonly used
when you need to perform data intensive operations by using SQL and PL/SQL.
Oracle Portal offers a rich set of PL/SQL APIs, such as programmatic provider
registration, object level privilege management, user interface control, or multilingual
support.

For example, any information provider can create custom portlets to display an
application to users through Oracle Portal. Developers simply build their portlets

Note: When building portlets in Java, you have full control over
your portlet's functionality. For example, you can control what it looks
like and how it behaves.

Expertise Required

2-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

according to Oracle Portal Developer Kit (PDK) specifications and register the
provider with Oracle Portal. Developers can use the Oracle PDK to develop portlets to
suit their needs.

Examples of portlets you can build using PL/SQL
You can build the following portlets using PL/SQL:

■ Content upload portlet

■ Site map portlet

■ Sophisticated data entry and report portlet

2.3 Expertise Required
While some of the portlet building tools do not require portlet development skills,
others assume a strong technical background. This section describes each tool in terms
of the level of knowledge required to use it effectively.

2.3.1 Web Clipping
Web Clipping is a tool that does not require any technical background at all. However,
if you want to parameterize the Web page content that you clipped, you need to have
an understanding of public portlet parameters and page parameters.

2.3.2 OmniPortlet
OmniPortlet requires you to have basic knowledge of the data source you want to
leverage in your portlet. Table 2–2 lists the types of data sources that can be used with
OmniPortlet and describes the type of information required to work with each type.

2.3.3 Java Portlets
To build Java portlets, you must know at least a subset of J2EE. Knowing HTML, Java
servlets, and XML is a must, and JSP experience is recommended. Additional Java

Table 2–2 OmniPortlet Data Sources

Data Source Required Information

Spreadsheet The URL that points to the spreadsheet containing the data that
you want to display in the portlet.

SQL The connection information to the data source and the SQL
query that retrieves the data from the database.

XML The location of the XML source and optionally the address of the
XSL filter and the XML schema.

Web Service The Web Services Description Language (WSDL) URL, the
method of the Web service, and optionally the XSL filter URL
and the XML schema URL.

Web page The Web page data source uses the same environment as Web
Clipping. No technical background is required.

J2EE Connector
Architecture

Although not displayed on the OmniPortlet Wizard’s Type
page, a J2EE Connector Architecture (JCA) 1.0 adapter is also
available. JCA provides a mechanism to store and retrieve
enterprise data such as that held in ERP systems (Oracle
Financials, SAP, PeopleSoft, and so on).

Deployment Type

Portlet Technologies Matrix 2-7

knowledge is optional, depending on the task you want to perform. Using Java
portlets you can access any data source (supported by the Java language).

2.3.4 Portlet Builder
If you want to use Portlet Builder, you must have a good understanding of relational
database concepts. Depending on what you want to achieve, SQL and PL/SQL
knowledge may be required, as well. Using Portlet Builder, you can consume data
from the local (Oracle Fusion Middleware infrastructure) database or remote
databases using database links.

2.3.5 PL/SQL Portlets
To build PL/SQL portlets, you must know how to write SQL statements, code and
debug PL/SQL program units using SQL*Plus or similar development tool that
enables you to connect to the Oracle database. You should also know HTML and
PL/SQL Web Toolkit to generate the portlet content. Experience of coding the PL/SQL
Server Pages (PSP) is optional.

2.4 Deployment Type
Before a portlet can be consumed by an application, you must first deploy it, then
register the provider you have deployed the portlet to. As shown in Figure 2–1,
portlets can be deployed to Oracle Portal through three provider types:

■ Web providers

■ WSRP producers

■ Database providers.

Web providers are deployed to a J2EE application server, which is often remote and
communicates with Oracle Portal through Simple Object Access Protocol (SOAP) over
HTTP. Web Services for Remote Portlets (WSRP), an OASIS standard, is supported in
the Developer's Preview of Oracle Portal. Database providers are implemented in
PL/SQL and deployed in the Oracle database where Oracle Portal is installed.

Figure 2–1 Portlet Provider Overview

Deployment Type

2-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

2.4.1 Web Providers
Web providers are the most commonly used and flexible type of provider. They may
reside on the same application server as Oracle Portal, on a remote application server,
or anywhere on the network (Figure 2–2). A Web provider could be implemented
using virtually any Web technology. However, the Oracle Portal Developer Kit
provides a Java framework that simplifies the task of building Web providers.

Web providers use open standards, such as XML, SOAP, HTTP, or J2EE for
deployment, definition, and communication with Oracle Portal. Also, because Web
providers can be deployed to a J2EE container, they do not put an additional load on
the Oracle Portal Repository database.

Figure 2–2 Web Providers

There are several benefits when developing portlets and exposing them as Web
providers. You can perform the following tasks:

■ Deploy portlets remotely.

■ Leverage existing Web application code to create portlets.

■ Specify providers declaratively.

■ Take advantage of more functionality than that with database providers.

■ Use standard Java technologies (for example, servlets and JSPs) to develop portlets
of Web providers.

To expose your portlets using a Web provider, you must create a provider that
manages your portlets and can communicate with Oracle Portal using SOAP. To learn
how to expose your portlets using a Web provider, see Section 6.3, "Building
JPS-Compliant Portlets with Oracle JDeveloper."

2.4.2 WSRP Producers
Web Services for Remote Portlets (WSRP) is a Web services standard that enables the
plug-and-play of visual, user-facing Web services with portals or other intermediary
Web applications. Being a standard, WSRP enables interoperability between a
standards-enabled container based on a particular language (such as JSR 168, .NET,

Deployment Type

Portlet Technologies Matrix 2-9

Perl) and any WSRP portal. So, a portlet (regardless of language) deployed to a
WSRP-enabled container can be rendered on any portal that supports this standard.
From an architecture perspective, WSRP producers are very similar to Web providers.
For more information on the WSRP portal architecture, see "The Relationship Between
WSRP and JPS".

To expose your portlets as a WSRP producer, you must create a producer that manages
your portlets. To learn more about WSRP, see the WSRP and JSR 168 Standards page
on the Oracle Technology Network. To learn how to expose your portlets as a WSRP
producer, see Section 6.3.3, "Deploying Your JSR 168 Portlet to the Oracle WebLogic
Server." You can also test your WSRP producers online using the Oracle Portal
Verification Service:

http://portalstandards.oracle.com

By default, the Portal session store maintains the user's profile information, which is
obtained from Oracle Internet Directory, for the duration of a Portal session.

However, in some scenarios, WSRP producers require updates to the WSRP
UserContext information sent to them. This information changes during the course of
the session. In this scenario, to clear out the cached user information and obtain new
information from Oracle Internet Directory when the target page is generated, the
application or portlet producer redirects the browser to the following URL:

http(s)://server.domain.com:port/portal/pls/portal/portal.wwsec_app_user_
info.flush_cache?p_requested_url=<url-encoded-target-page>

2.4.3 Database Providers
You can also create a database provider that owns one or more PL/SQL portlets.
Database providers and their PL/SQL portlets reside in the Oracle Metadata
Repository database and are implemented as PL/SQL packages. To access database
providers on remote servers, you can use the Federated Portal Adapter (Figure 2–3).
For more information about the Federated Portal Adapter, see Oracle Fusion Middleware
Administrator's Guide for Oracle Portal.

Deployment Type

2-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 2–3 Database Providers

Database providers are ideal when you need to perform data-intensive operations
using PL/SQL. An example of this is when you are building forms or charts with the
Oracle Portal user interface or the PL/SQL APIs provided in the PDK.

To learn how to expose your PL/SQL portlets using a database provider, refer to
Section 8.13, "Registering Providers Programmatically".

2.4.4 Provider Architecture
Figure 2–4 illustrates the basic architecture of portlet providers.

Deployment Type

Portlet Technologies Matrix 2-11

Figure 2–4 Provider Architecture

When users display the portal page in their Web browsers, the flow of the request
works as follows:

1. The user requests a portal page from the Web browser by entering a URL in the
browser's address field.

2. The Parallel Page Engine (PPE), which resides in the Oracle Fusion Middleware's
middle tier, retrieves the portal page layout, portlet, and provider information
(also called the page metadata) from the Oracle Portal Repository.

3. The PPE contacts all the providers for the portlet content.

4. The providers make the necessary calls to their portlets so that the portlets
generate the portlet content in the form of HTML or XML code.

5. The providers return the portlet content back to the PPE.

6. The PPE assembles the portal page, and the Oracle Fusion Middleware returns the
page to the Web browser.

For more information about the portlet and provider architecture, visit the Portlet
Development page on Portal Center:

http://portalcenter.oracle.com

Web Clipping, OmniPortlet, and Java portlets communicate with Oracle Portal
through Web providers. After you install Oracle Portal, Web Clipping and OmniPortlet
are ready to use; their providers are registered with Oracle Portal out of the box. You
have to register the provider of your Java portlets explicitly.

Note: The PPE is responsible for constructing the requested portal
page based on the page metadata.

Deployment Type

2-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Data-driven portlets, built with Portlet Builder, communicate with Oracle Portal
through database providers. You do not need to register the Portlet Builder providers
with Oracle Portal explicitly; they are automatically registered for you.

PL/SQL portlets communicate with Oracle Portal through a database provider. You
have to register the database provider explicitly.

2.4.5 Provider Registration
Oracle Portal includes a provider registration wizard, accessible from the Providers
tab in the Navigator. The registration screen contains the following sections:

■ Provider Information: Contains the provider name, time out details, and the
implementation style.

■ User/Session Information: Contains information on how session information is
communicated to the providers.

■ Database Providers: Contains information specific to database providers, such as
the implementation owner and name.

■ Web Providers: Contains information specific to Web providers, such as the URL
of the provider, the user's identity communicated to the provider, and proxy
information.

■ WSRP Producers: Contains information specific to WSRP producers, such as the
WSDL URL and the session handling information supplied by the producer.

The sections that impact session handling are the User/Session Information section
and the cookie domain check box on the Web provider registration page of the wizard.
For more information on using the same cookie domain, refer to the "Sharing Session
Cookies Not Allowed in PDK-Java Release 2" article, which can be accessed from the
Portlet Development page on Portal Center
(http://www.oracle.com/technology/products/ias/portal/portlet_
development_10gr2.html).

User/Session Information
In the User/Session Information section, you can choose one of two options,
depending on the session-related information you want the providers to receive from
Oracle Portal. The options are as follows:

■ Public: Choosing this option sets the name of the user to Public. The providers
will not receive any session-related information like the session ID or the time the
user logged in. This option is the equivalent of the LOGIN_FREQUENCY_PUBLIC
in the provider registration API (see Section 8.13, "Registering Providers
Programmatically").

■ User: Choosing this option sends the name of the Oracle Portal user to the
providers. This section contains the following two options:

Note: Web Clipping and OmniPortlet are developing very rapidly.
The most recent versions of these portlets are available for download
on OTN. If you decide to go with the downloaded version of these
tools, you must deploy them to Oracle WebLogic Server and register
them with Oracle Portal as Web providers. For more information, see
Oracle Fusion Middleware Administrator's Guide for Oracle Portal.

Caching Style

Portlet Technologies Matrix 2-13

■ Login Frequency: Here, you can select one of three options (always, once for
each user session, and never) to determine how often the session information
must be sent to the provider, and thus how often the user needs to log in.

■ Require Portal user-specific session information: Here, you can specify
whether the session information will be sent in the provider calls.

2.5 Caching Style
Caching plays an essential role in ensuring that your portal is highly performant.
Oracle Portal supports caching on various levels, such as caching pages, portlets,
styles, and page metadata. Caching portlets is key to delivering accurate information
in a timely manner to your users. All portlet building technologies, available with
Oracle Portal, support caching.

As Oracle Portal supports user personalization of pages and portlets, the view of a
page can vary from user to user. Oracle Portal's caching is designed to allow content to
vary for each user. Therefore, portal objects, including portlets, can be cached at two
levels, user level and system level, and can be described as follows:

■ User-level caching is for a specific user; the cache entries stored are unique for that
user and cannot be accessed by other users. Good candidates for user-level
caching are portlets supporting personalization, such as e-mail or stock ticker
portlets.

■ System-level caching enables users to share a single cache entry and, therefore,
there is no need to cache a copy of the object for every user. Examples of content
that might be suitable for system-level caching are news portlets that are not
personalizable, or custom-built navigation portlets.

When not using caching, you may find accessing various data sources with Web
Clipping, OmniPortlet, and Portlet Builder to be time consuming. When you enable
caching, you instruct Oracle Portal or Oracle Web Cache to maintain a copy of the
portlet content. If the portlet is requested and the content was cached previously, the
portlet does not have to spend time contacting the data source and regenerating its
content again. Simply, the previously cached portlet content is returned. Different
types of caching are as follows:

■ Expiry-based caching: Consider using expiry-based caching when the portlet
content is static or when it is not critical that the most up-to-date content be
displayed. When using expiry-based caching, you must specify the caching
period.

■ Validation-based caching: Consider using validation-based caching for portlets
with dynamic content that changes frequently or unpredictably. The portlet
associates its content with a caching key and returns the key value along with the
content. When the portlet content is requested, the portlet decides, based on the
caching key, if the current content is valid. If the portlet content is valid, then it
returns a response indicating that the cached content can be used (that is, the
content is valid) or generates the new portlet content and returns it along with a
new caching key for that content.

■ Invalidation-based caching: Invalidation-based caching is the most complex, but
also the most flexible, form of caching. Consider using invalidation-based caching
when you require the efficiency of expiry-based caching with the ability to
invalidate the cache content any time. Objects in Oracle Web Cache are considered
valid until they are invalidated explicitly.

Development Tool

2-14 Oracle Fusion Middleware Developer's Guide for Oracle Portal

2.5.1 Web Clipping, OmniPortlet, and Portlet Builder
For portlets built with Web Clipping, OmniPortlet, and Portlet Builder you can specify
a period of time for which they are cached (expiry-based caching). In addition to this,
portlets built with Web Clipping and OmniPortlet are refreshed automatically when
the end user personalizes them.

2.5.2 Java Portlets
Java portlets support three types of caching: expiry-, validation-, and
invalidation-based caching. With Java portlets, you can combine invalidation-based
caching with either expiry-based or validation-based caching.

In addition to caching all your portlet's content, you can also cache fragments of your
portlets by using Edge Side Includes (ESI).

2.5.3 PL/SQL Portlets
Similar to Java portlets, PL/SQL portlets also support three types of caching: expiry-,
validation-, and invalidation-based caching.

2.6 Development Tool
This section describes development tools you can use to build different types of
portlets.

2.6.1 Web Clipping, OmniPortlet, and Portlet Builder
OmniPortlet, Web Clipping, and Portlet Builder use a browser-based wizard as the
development tool.

2.6.2 Java Portlets
Although you can use any Java development environment to build Java portlets, it is
highly recommended that you use Oracle JDeveloper, a professional, integrated
development environment (IDE). While you can consider other IDEs, the PDK
contains an Oracle JDeveloper plug-in that includes the Java Portlet Wizard, to
minimize your Java portlet development efforts.

The Java Portlet Wizard generates a starting skeleton and file structure for both JSR
168 and PDK-Java portlets. You need to add only your own business logic to the
skeleton. Oracle JDeveloper can also package and deploy your applications to your
J2EE container, such as Oracle WebLogic Server (WLS). Also, Oracle JDeveloper helps
you test your portlet provider. Oracle recommends that you use the preconfigured
WLS that is shipped withOracle JDeveloper as your development Java portlet runtime
environment, if the version matches that of the platform on which you plan to deploy.

2.6.3 PL/SQL Portlets
When developing a PL/SQL portlet, you create PL/SQL program units that access
Oracle Portal by calling Oracle Portal PL/SQL APIs. To enable this access, you create a
schema, the provider schema, to store the provider and portlet PL/SQL packages in
the same database in which Oracle Portal is installed. The provider schema must be
granted execute privileges on the Oracle Portal PL/SQL APIs.

To facilitate the development of database providers and PL/SQL portlets, you can use
the PL/SQL Generator, a hosted utility that creates installable PL/SQL code for a

Portlet Creation Style

Portlet Technologies Matrix 2-15

database provider and its PL/SQL portlets. The PL/SQL Generator is a Web
application that receives the provider and portlet definitions in the form of an XML
file. The syntax of the XML tags that are used for the provider and portlet definition is
a subset of the XML tags that are used for defining Web providers with the PDK-Java.
The output of the PL/SQL Generator is a SQL script that can be run from SQL*Plus.
The script contains SQL commands for installing the provider and portlet packages.

The hosted PL/SQL Generator is available on the Oracle Portal Developer Kit page of
OTN:

http://www.oracle.com/technology/products/ias/portal/pdk.html

2.7 Portlet Creation Style
Oracle Portal supports the following two types of portlet creation as shown in
Figure 2–5:

■ Develop in-place

■ Develop first, add later

The figure also indicates that the develop first, add later portlet creation is usually the
task of the portlet developer, while the develop in-place portlet creation is the page
designer's responsibility.

Figure 2–5 Portlet Creation Style

User Interface Flexibility

2-16 Oracle Fusion Middleware Developer's Guide for Oracle Portal

2.7.1 OmniPortlet and Web Clipping
OmniPortlet and Web Clipping both offer a develop in-place portlet creation style.
First you add the portlets to a portal page and then you define them in place on the
page.

2.7.2 Java Portlets
Typically Java portlets offer a develop first, add later portlet creation style. Two
wizards are available through Oracle JDeveloper to assist with the creation of Oracle
PDK-Java and JSR 168 portlets. The wizards generate the basic files required for
portlet creation. The developer hand-codes the portlet logic. The development
sequence for Java portlets is to create the portlet, deploy it to a provider, register the
provider with Oracle Portal, and then add the portlet to a page.

2.7.3 Portlet Builder
With Portlet Builder you define the portlets first. The previously defined portlets are
then made available to you in the Portlet Repository so you can add them to your
pages. For simple portlets, though, Portlet Builder offers you the develop in-place
experience, similar to OmniPortlet and Web Clipping.

2.7.4 PL/SQL Portlets
Similar to the Java portlets, PL/SQL portlets typically follow the develop first, add
later creation path. Extensive coding is required to develop in-place PL/SQL portlets.
For example, simple in-place portlets that are offered by Portlet Builder are written in
PL/SQL.

2.8 User Interface Flexibility
This section describes the portlet building tools in terms of the control you have over
the user interface.

2.8.1 Web Clipping
Because of its nature, Web Clipping always displays the remote Web site content,
therefore UI flexibility is not a requirement for this portlet.

2.8.2 OmniPortlet
OmniPortlet enables you to use a number of different prebuilt layouts, such as
scrolling news, tabular, and chart. You can also use the built-in HTML layout to
personalize the look and feel of your portlet using HTML and JavaScript.

Note: With extensive coding, you can create develop in-place Java
portlets. For example, Web Clipping and OmniPortlet are both Java
portlets.

Note: Portlets built with Portlet Builder's develop in-place
technology are somewhat limited as compared to those built using the
Navigator.

Ability to Render Content Inline

Portlet Technologies Matrix 2-17

2.8.3 Java Portlets and PL/SQL Portlets
In Java portlets and PL/SQL portlets, you have full control over your portlet's user
interface. Your portlet is free to generate any HTML content that conforms the
rendering rules for Oracle Portal pages.

2.8.4 Portlet Builder
While you can be very productive in building portlets with Portlet Builder, it is
somewhat limiting with respect to the user interface.

2.9 Ability to Capture Content from Web Sites
This section describes the portlet building tools in terms of their ability to include
content from other sources.

2.9.1 Web Clipping
For portlets that display content from a remote Web site as it is presented at the source
location, the best tool to use is Web Clipping. Web Clipping can tolerate the changes of
the source HTML page to some extent. If a clipped table moves from one place to
another in the source page, the Web Clipping engine can find the table again using the
internal "fuzzy match" algorithm. Portlets built with Web Clipping can also maintain
sessions to the remote Web sites. Web Clipping also supports end user personalization
of HTML form values.

2.9.2 OmniPortlet
For portlets using the data but not the layout from a remote Web site, the best choice is
OmniPortlet. Use OmniPortlet to retrieve the data, process the data (format, filter, and
so on), and present it in a portlet in a tabular, chart, or news format. OmniPortlet is a
powerful tool that extracts data from Web pages by using its Web page data source.

2.9.3 Java Portlets
Java portlets can take advantage of the low-level Java networking APIs to retrieve and
process content from remote Web sites. To avoid unnecessary development efforts,
before choosing Java always make sure that Web Clipping or OmniPortlet are not
viable options.

2.9.4 PL/SQL Portlets
PL/SQL portlets can communicate with Web servers to access data on the Internet by
using procedures and functions from the UTL_HTTP package. The package makes
HTTP callouts from SQL and PL/SQL. The package also supports HTTP over the
Secured Socket Layer protocol (SSL), also known as HTTPS, directly or through an
HTTP proxy. Other Internet-related data-access protocols (such as the File Transfer
Protocol (FTP) or the Gopher protocol) are also supported using an HTTP proxy server
that supports those protocols.

2.10 Ability to Render Content Inline
Active elements in your portlets, such as links or form buttons, enable your users to
navigate to remote URLs. In a News portlet, for example, you can click a hyperlink to
navigate to a news site with detailed information about news of interest. For example,

Ability to Render Content Inline

2-18 Oracle Fusion Middleware Developer's Guide for Oracle Portal

a user clicks a news summary link in a News portlet, leaves the page, and lands on the
news site.

You may have a requirement to keep your users within the context of the portal page
by rendering the requested content within the same portlet container. For example, a
user clicks a news summary link in a News portlet, and the portlet refreshes with the
detailed news article.

2.10.1 Web Clipping
The Web Clipping portlet supports URL rewriting for achieving inline content
rendering. It can process the links originating from the source Web site and rewrite
them to achieve the desired functionality.

You can choose from the following three options:

■ Select not to rewrite the URLS within the portlet, in which case clicking the links
takes users out of the portal to the Web site that provides the clipping. Whenever
the link brings the user to a place that requires authentication, the user must enter
login information before the link target is displayed.

■ If the Web Clipping provider is registered with an External Application and the
clipping requires authentication, you can instruct Web Clipping to rewrite all
URLs within the portlet to point to the Login Server. In this case, navigation will
cause the user to leave Oracle Portal, while also using the Login Server to log the
browser into the External Application.

■ Select to rewrite all URLS within the portlet (inline rendering) to point back to the
portal page so that all browsing within the Web Clipping portlet remains within
Oracle Portal. If the Web Clipping provider is registered with an External
Application, this will cause the Web Clipping provider to log itself into the
External Application. In this case, the navigation within the portal through the
Web Clipping provider is authenticated in the External Application.

2.10.2 OmniPortlet
OmniPortlet does not offer URL rewriting directly, but you can achieve inline
rendering functionality by using public portlet parameters and events. Then you have
to map the events to the same portal page where your OmniPortlet resides.

2.10.3 Java Portlets
Since you have full control over the links and buttons in Java portlets, you can easily
implement inline rendering functionality. To achieve inline rendering, you must
append the private portlet parameters to the page URL.

If you use Struts in your portlet, the PDK-Struts integration framework renders your
content always in the same portlet container.

If your portlet consists of multiple JSPs (for example, several steps in a survey or
wizard), your portlet can make use of a special parameter to specify at run time the
JSP to use to render the content.

2.10.4 Portlet Builder
Portlets built with Portlet Builder do not have inherent inline rendering support. You
can, however, construct your links in SQL-based reports and charts so that they point
to specific portal pages. If required, you can also pass parameters to portal pages,
which in turn can be mapped to portlet parameters.

Public Portlet Parameters Support

Portlet Technologies Matrix 2-19

2.10.5 PL/SQL Portlets
Similar to Java portlets, you have full control over the active elements in PL/SQL
portlets and, therefore, you can achieve the inline rendering functionality
programmatically by implementing private portlet parameters.

2.11 Charting Capability
This section describes the portlet building tools in terms of their charting functionality.

2.11.1 Web Clipping
Web Clipping clips pre-existing content. So, while it does not create charts, it can
retrieve and present HTML content that contains charts.

2.11.2 OmniPortlet
OmniPortlet supports bar, line, and pie charts. Charts in OmniPortlet are dynamically
generated images, which can include hyperlinks.

2.11.3 Java Portlets
You can create sophisticated chart portlets programmatically in your Java portlets
using Oracle's Business Intelligence (BI) Beans.

2.11.4 Portlet Builder
With Portlet Builder, you can build HTML-based bar chart portlets. Among other
features, you can specify the color and orientation of the bars.

2.11.5 PL/SQL Portlets
In PL/SQL portlets, HTML-based charting can be achieved by extensive coding.

2.12 Public Portlet Parameters Support
There are three types of parameters in Oracle Portal: page parameters, public portlet
parameters, and private portlet parameters. These parameters can be described as
follows:

■ Page parameters: You can use a page parameter to pass a value to a page. Using
page parameters, the information that is displayed on a page can vary depending
on where the page is called from and who is viewing the page. Using page
parameters, page designers can synchronize the portlets on a page by passing
them the same values. This provides the ability to reuse and tailor portlets on
pages by merely integrating them with page parameters. Without this
functionality, you would have to code portlets individually to use different
parameter values.

■ Public portlet parameters: You can use a public portlet parameter to pass a value
to a portlet. Using portlet parameters, the information that is displayed in a portlet
can be specific to a particular page or a user. Portlet parameters are created by the

Note: Oracle Reports and Oracle BI Discoverer portlets use BI Beans
to create professional graphs.

Private Portlet Parameter Support

2-20 Oracle Fusion Middleware Developer's Guide for Oracle Portal

portlet developer and are exposed to the page designer, through the user interface.
After adding a portlet to a page, page designers can assign values to the public
portlet parameters to make the information displayed in the portlet specific to the
page.

Page designers can assign values to public portlet parameters by providing a
specific value (constant), a system variable (for example, the portal user name), or
a page parameter. At run time, the portlet receives the values from the sources
specified. In this way, page designers have complete control over the source of the
parameter, whereas you have complete control over how the data is used after it is
transmitted to the portlet.

■ Private portlet parameters: You can use private portlet parameters to implement
internal navigation in your portlet. You can pass parameters to your portlets every
time the page is requested. Private portlet parameters can be passed exclusively
from the portlet instance to the same portlet instance.

Private portlet parameters do not require a full page refresh. You can create a link
in a portlet that can be used to refresh the portlet only, without triggering a full
portal page refresh. By doing this, only the content of the affected portlet is
updated and the rest of the page is not. Refer to "Partial Page Refresh" in
Chapter 7, "Enhancing Java Portlets" for details about setting this
programmatically.

Portlets supporting public portlet parameters enable page designers to tailor the
portlets' data input for each portlet instance. In this case, the portlet developer can
focus on the portlet logic, while page designers can easily reuse portlets and address
the interaction between the page and the portlets.

All five portlet building technologies discussed in this chapter (OmniPortlet, Web
Clipping, Java portlets, Portlet Builder, and PL/SQL portlets) support public portlet
parameters. OmniPortlet, Web Clipping, and Portlet Builder provide complete support
through their wizard interface. You can add public portlet parameter support to your
Java portlets programmatically or with the Java Portlet Wizard. PL/SQL portlets
support public parameters only programmatically.

2.13 Private Portlet Parameter Support
This section describes the portlet building tools in terms of their support for private
parameters.

2.13.1 OmniPortlet, Web Clipping, and Portlet Builder
OmniPortlet, Web Clipping, and Portlet Builder do not provide access to the portlet
developer to private portlet parameters.

2.13.2 Java Portlets and PL/SQL Portlets
In your Java portlets and PL/SQL portlets, you can implement internal navigation by
using private portlet parameters.

Note: The JSR 168 standard does not cover the notion of public
portlet parameters. If you want to utilize public portlet parameters in
your Java portlets, you have to use PDK-Java.

Ability to Hide and Show Portlets Based on User Privileges

Portlet Technologies Matrix 2-21

2.14 Event Support
An event is a user action that you define to display a Portal page. User actions include
clicking a link or a button in a portlet. Page designers specify what to do when an
event occurs in a portlet on a page. When an event occurs, page designers can either
redisplay the current page or navigate the user to another portal page, optionally
passing values to that page's parameters.

2.14.1 Web Clipping, OmniPortlet, and Java Portlets
Web Clipping, OmniPortlet, and Java portlets support events.

2.14.2 Portlet Builder and PL/SQL Portlets
Portlet Builder and PL/SQL portlets do not support events.

2.15 Ability to Hide and Show Portlets Based on User Privileges
This section describes the portlet building tools in terms of their support for
authorization functionality.

2.15.1 Web Clipping and OmniPortlet
You can hide and show portlets built with Web Clipping and OmniPortlet on portal
pages dynamically by using security managers. Although Web Clipping and
OmniPortlet do not expose security managers through the user interface, you can
apply them by editing their XML provider definition file.

2.15.2 Java Portlets
The PDK provides a number of security managers for Java portlets. Following are two
examples:

■ Group security manager: The group security manager makes the portlet appear to
users who are members of a specified group, while hiding it from those who are
not members.

■ Authentication level security manager: You can use the authentication level
security manager to control access to the portlets based on the user's
authentication level. For example you may hide the portlet from public users but
display it to authenticated users.

JSR 168 portlets support the standard servlet mechanisms.

2.15.3 Portlet Builder
Portlet Builder provides a declarative user interface to control access to portlets.

Note: PL/SQL portlets do not support private and public
parameters simultaneously. You need to decide which parameter type
to support before coding your PL/SQL portlet.

Multilingual Support

2-22 Oracle Fusion Middleware Developer's Guide for Oracle Portal

2.15.4 PL/SQL Portlets
The PDK provides security APIs to implement hiding and showing content in PL/SQL
portlets.

2.16 Multilingual Support
This section describes the portlet building tools in terms of their support for other
languages.

2.16.1 Web Clipping, OmniPortlet, Java Portlets, and PL/SQL Portlets
Web Clipping, OmniPortlet, Java portlets, and PL/SQL portlets display textual
information in the language selected by the portal user.

2.16.2 Portlet Builder
Portlets built with Portlet Builder support English only.

2.17 Pagination Support
Support for pagination is useful when a portlet must display a relatively large set of
records.

2.17.1 Web Clipping
Pagination support is not applicable to Web Clipping.

2.17.2 OmniPortlet
OmniPortlet does not support pagination.

2.17.3 Java Portlets and PL/SQL Portlets
You can implement pagination in your Java portlets and PL/SQL portlets
programmatically.

2.17.4 Portlet Builder
Portlet Builder has built-in support for pagination.

2.18 Single Sign-On and External Application Integration
This section describes the portlet building tools in terms of authentication for external
application.

2.18.1 Web Clipping
Web Clipping's integration with the external application framework provides a fully
automated mechanism to store passwords to external Web sites. All you have to do is
to associate an External Application ID to the Web Clipping provider when registering
the provider.

Single Sign-On and External Application Integration

Portlet Technologies Matrix 2-23

2.18.2 OmniPortlet
OmniPortlet enables you to store connection information when the data source is
password protected. The credentials to access the data source can either be shared
across all users, or saved individually for each user. OmniPortlet is capable of storing
database credentials, as well as HTTP basic authentication user name-password pairs.
The credentials are stored in the secured data repository of OmniPortlet, in an Oracle
database.

2.18.3 Java Portlets
Java portlets support programmatic integration with the external application
framework as well as any LDAP server, such as Oracle Internet Directory.

2.18.4 PL/SQL Portlets
You can build PL/SQL portlets that enable single sign-on by using mod_osso, an
authentication module on the Oracle HTTP Server. mod_osso is a simple alternative to
the single sign-on SDK, used in earlier releases to integrate partner applications. mod_
osso simplifies the authentication process by serving as the sole partner application to
the Single Sign-On server.

PL/SQL portlets can integrate with the external application framework
programmatically.

Single Sign-On and External Application Integration

2-24 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Part II
Part II Creating Portlets

Part II contains the following chapters:

■ Chapter 3, "Creating Portlets with OmniPortlet"

■ Chapter 4, "Building Example Portlets with OmniPortlet"

■ Chapter 5, "Creating Content-Based Portlets with Web Clipping"

■ Chapter 6, "Creating Java Portlets"

■ Chapter 7, "Enhancing Java Portlets"

■ Chapter 8, "Creating PL/SQL Portlets"

3

Creating Portlets with OmniPortlet 3-1

3 Creating Portlets with OmniPortlet

This chapter provides an overview of OmniPortlet and explains the user interface
elements associated with OmniPortlet. This chapter contains the following sections:

■ Section 3.1, "Introduction to OmniPortlet"

■ Section 3.2, "The OmniPortlet Wizard"

■ Section 3.3, "Parameters and Events"

For information about using OmniPortlet to build example portlets, see Chapter 4,
"Building Example Portlets with OmniPortlet." For troubleshooting information
regarding OmniPortlet, see Section B.3, "Diagnosing OmniPortlet Problems." For
information about registering and configuring OmniPortlet with Oracle Portal, see
Oracle Fusion Middleware Administrator's Guide for Oracle Portal.

3.1 Introduction to OmniPortlet
OmniPortlet is a subcomponent of Oracle Portal that enables page designers and
developers to easily publish data from various data sources using a variety of layouts
without writing any code. You can base an OmniPortlet on almost any kind of data
source, such as a spreadsheet (character-separated values), XML, and even application
data from an existing Web page.

OmniPortlet enables page designers and content contributors to do the following:

■ Display data from multiple sources (CSV, XML, SQL, and so on)

■ Sort the data to display

■ Format data using a variety of layouts (bulleted list, chart, HTML, and so on)

■ Use portlet parameters

■ Raise portlet events

■ Expose personalizable settings to page viewers

To display personalized data, you can refine the retrieved data by filtering the results
returned from a data source, and parameterize the credential information used to
access secure data. Out of the box, OmniPortlet provides the most common layout for
portlets: tabular, chart, HTML, news, bulleted list, and form.

Note: You can find more information about developing different
types of portlets in Chapter 1, "Understanding Portlets," and
information about providers and other portlet technologies in
Chapter 2, "Portlet Technologies Matrix."

The OmniPortlet Wizard

3-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

You can add an OmniPortlet to a portal page just as you would add any other portlet.
OmniPortlet can be found under Portlet Builders in the Portlet Repository. If you have
downloaded OmniPortlet as part of the Oracle Portal Developer Kit, for example, to
upgrade to a later release, you must register it before you can use it.

You can find more information about building portal pages and adding portlets in
Oracle Fusion Middleware User's Guide for Oracle Portal.

Instructions for installing, configuring, and registering the OmniPortlet provider are
provided within the pdksoftware.zip file containing the PDK-Java and Portal
Tools. For specific information on configuring OmniPortlet, see Oracle Fusion
Middleware Administrator's Guide for Oracle Portal.

3.2 The OmniPortlet Wizard
The OmniPortlet Wizard initially contains five steps. When you first define your
OmniPortlet, you set the data source type, data source options, filter options, view
options, and layout. When you've completed these steps of the wizard, you can
re-enter the wizard by clicking Edit Defaults for the portlet. When you re-enter the
wizard, you can change the definitions on the Source, Filter, View, and Layout tabs, as
well as set up the event parameters on the Events tab.

This section provides a high-level overview of the six tabs, which are described in
Table 3–1. You can also find information in the online Help (accessible by clicking the
Help link in the product), which describes the options on each tab.

Note: To use OmniPortlet, the Simple Parameter Form, or the
Web Clipping portlet with Windows 2000, you must use Netscape
7.0 or later, or Microsoft Internet Explorer 5.5 or later.

Note: On the IBM Linux on Power platform, if the action buttons
(Next, Previous, Finish, and Cancel) are minimized to dots when
defining the OmniPortlet, increase the stack size shell limit to
unlimited and restart the WLS_PORTAL instance. Run the following
command to set the stack size shell limit to unlimited:

prompt> ulimit -s unlimited

Table 3–1 OmniPortlet Wizard and Edit Defaults

Step/Tab Description

Type Provides your data source options. Displays only in the initial
definition of the portlet, and is not available when editing the
defaults of the portlet.

Source Provides the options for the selected data source, such as the
URL of the Web Service you want to use. You can change these
options later when editing the defaults of the portlet.

Filter Provides sorting options at the Oracle Portal level to enable
you to refine your results. You can change these options later
when editing the defaults of the portlet.

View Provides options for displaying portlet header and footer text,
the layout style, and caching. You can change these options
later when editing the defaults of the portlet.

The OmniPortlet Wizard

Creating Portlets with OmniPortlet 3-3

3.2.1 Type
When you first start OmniPortlet, the Type step displays, which enables you to choose
your data source (Figure 3–1). Out of the box, OmniPortlet supports the data sources
shown in Table 3–2.

Figure 3–1 Type Tab of the OmniPortlet Wizard

Layout Provides detailed options for customizing the layout. You can
change these options later when editing the defaults of the
portlet.

Events Does not display in the initial definition of the portlet. Provides
options for adding events to the portlet. Displays only after the
portlet has been defined in the Edit Defaults mode of the
wizard.

Note: If you've downloaded and installed an additional data
source, the data source will display on the Type tab.

Table 3–2 Supported Data Source Types

Data Source Type Description

Spreadsheet Displays data from a text file containing character-separated
values (CSV).

SQL Displays data from a database using SQL.

XML Displays data from an XML file.

Web Service Displays data from a discrete business service that can be
accessed over the Internet using standard protocols.

Web Page Displays data based on existing Web content.

Table 3–1 (Cont.) OmniPortlet Wizard and Edit Defaults

Step/Tab Description

The OmniPortlet Wizard

3-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

After you complete the OmniPortlet Wizard and edit the defaults of the portlet, you
cannot change the data source type.

3.2.2 Source
After you've chosen your data source type, the Source step of the OmniPortlet Wizard
displays. This step adapts to the data source you've chosen, enabling you to specify
the options offered by that data source. The Source tab contains a Proxy
Authentication section if the OmniPortlet provider has been configured to use a proxy
server requiring authentication, and a Connection section where you can provide the
necessary information for connecting to the data source.

This section contains information about the following two common areas on the
Source tab:

■ Section 3.2.2.1, "Proxy Authentication"

■ Section 3.2.2.2, "Connection Information"

Later, this section also describes the portion of the Source tab specific to each data
source. The data sources available are as follows:

■ Section 3.2.2.3, "Spreadsheet"

■ Section 3.2.2.4, "SQL"

■ Section 3.2.2.5, "XML"

■ Section 3.2.2.6, "Web Service"

■ Section 3.2.2.7, "Web Page"

3.2.2.1 Proxy Authentication
OmniPortlet supports proxy authentication, including support for global proxy
authentication and authentication for each user. You can specify whether all users will
automatically log in using a user name and password you provide, each user will log
in using an individual user name and password, or all users will log in using a
specified user name and password. If the OmniPortlet provider has been set up to use
proxy authentication that requires your login, a Proxy Authentication section displays
on the Source tab where you can enter this information.

The Proxy Authentication section only displays for the data sources that may require
you to use a proxy server to access them: CSV (character-separated values), XML, Web
Service, and Web Page. For more information on configuring the OmniPortlet
provider to use proxy authentication, see the online Help topic that displays when you
click Help on the Edit Providers: OmniPortlet Provider page. If the OmniPortlet

J2EE Connector
Architecture*

(Displays only if the Sample Provider is registered with Oracle
Portal). A J2EE Connector Architecture (JCA) 1.0 adapter is
also available. JCA provides a mechanism to store and retrieve
enterprise data such as that held in ERP systems (Oracle
Financials, SAP, PeopleSoft, and so on).

Note: For more information on the Source tab options, click Help
in the upper right corner of the page.

Table 3–2 (Cont.) Supported Data Source Types

Data Source Type Description

The OmniPortlet Wizard

Creating Portlets with OmniPortlet 3-5

provider is configured to "Require login for all users," each user must set his or her
own login information:

 - For page designers, set this in Edit Defaults: Source tab.

 - For page viewers, set this on the Personalize screen.

You can also find more information on configuring OmniPortlet in Oracle Fusion
Middleware Administrator's Guide for Oracle Portal.

3.2.2.2 Connection Information
For each data source except the Web Page data source, the Source step contains a
Connection section, where you can define the connection information to access
secured data. The Source step for all data sources includes a Portlet Parameters
section, where you can define the parameters for the portlet (Figure 3–2). You can then
map the portlet parameters to the page-level parameters.

Figure 3–2 Source Tab: Connection and Portlet Parameters Section

To edit the connection information, click the Edit Connection button and fill out the
information on the page shown in Figure 3–3. On this page, you can enter a name for
the connection information, as well as the user name and password. For the SQL data
source, you can enter more information to specify the driver you wish to use to
connect to the data source. For more information, see Section 3.2.2.4, "SQL."

Figure 3–3 Edit Connection Page

Note: If you are using the Web Page data source, the Proxy
Authentication section displays in the Web Clipping Studio, after
you have clicked the Select Web Page button on the Source tab.

Note: If you use parameters in place of Username, Password, or
Connection String, the Test button will return an error, however the
connection information is correct when the parameter values are
substituted.

The OmniPortlet Wizard

3-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

3.2.2.3 Spreadsheet
Spreadsheets are a common method of storing small data sets. OmniPortlet enables
you to share spreadsheets by supporting character-separated values (CSV) as a data
source. On the Source tab, you specify the location of the CSV file (Figure 3–4). If the
file is located on a secure server, you can specify the connection information in the
Connection section described in Figure 3–2. You can also select the character set to use
when Oracle Portal reads the file, as well as the delimiter and text qualifier.

Since the OmniPortlet provider exists and executes in a tier different from the Oracle
Portal application and does not have access to the Oracle Portal session information,
you must expose CSV files that are uploaded to Oracle Portal as PUBLIC in order for
OmniPortlet to access them.

Figure 3–4 Source Tab: Spreadsheet

3.2.2.4 SQL
The relational database is the most common place to store data. OmniPortlet enables
you to use standard JDBC drivers and provides out-of-the-box access to Oracle and
any JDBC database. You can specify the driver type when you configure the
connection information. Figure 3–5 shows the Source tab for a SQL data source.

Note: For more information about the Connection section and the
Edit Connection button, click Help on the Source tab of the
OmniPortlet wizard.

Note: For more information on using the CSV data source, see
Section 4.3, "Building an OmniPortlet Based on a Spreadsheet
(CSV)."

The OmniPortlet Wizard

Creating Portlets with OmniPortlet 3-7

Figure 3–5 Source Tab: SQL

3.2.2.4.1 SQL Connection Information You can use the DataDirect JDBC drivers to access
other relational databases. To configure OmniPortlet to use these drivers, see Oracle
Fusion Middleware Administrator's Guide for Oracle Portal.

After the driver is installed, you'll notice it listed in the Driver Name list on the
Connection dialog box on the Source tab, as shown in Figure 3–6.

Figure 3–6 Connection Information on the SQL Source Tab

When you want to use one of the DataDirect drivers, you must use a unique
connection string format: hostname:port, where hostname is the name of the server
where the database is running, and port is the listening port of the database. You can
see an example in Figure 3–7.

Figure 3–7 Edit Connection Page with DataDirect Driver

Note: For more information on DataDirect drivers, see the
Certification Matrix for Oracle Application Server and DataDirect JDBC
(http://www.oracle.com/technology/products/index.h
tml).

The OmniPortlet Wizard

3-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

3.2.2.4.2 Using Stored Procedures You can also make a call to Stored Procedures instead
of SQL statements to add business logic to your data. You can create your package and
stored procedure in your database and refer the stored procedure in OmniPortlet.

For example, you could do the following using the SCOTT sample schema:

1. Create a package and declare a ref cursor:

create or replace package emp_pack is
type empcurr is ref cursor;
end;

2. Define a stored procedure, for example the following procedure accepts JOB as a
parameter and returns a ref cursor, where JOB Column in the scott.Emp table,
its value can be CLERK, MANAGER, and so on.

create or replace procedure emp_proc(eset OUT emp_pack.empcurr,
jname IN VARCHAR2)
is
sql_statement varchar2(200);
begin
sql_statement := 'select empno,ename,hiredate
from emp
where job = '''||jname||'''
order by EMPNO,hiredate';
open eset for sql_statement;
end;

3. Add the PL/SQL statements from steps 1 and 2 to a SQL file (for example,
proc.sql) and save it to a directory.

4. Connect to the database using the following command:

sqlplus userid/password@Connection_String

Replace userid, password, and Connection_String with the connection
information to your database. You can find the connection string in the
tnsnames.ora file within your INSTANCE_HOME/config directory.

5. Run the procedure:

@proc

6. Finally, create an OmniPortlet based on the SQL data source, enter the appropriate
database connection information. In the SQL Statement box, enter the following
code:

call emp_proc('CLERK')

3.2.2.5 XML
You can access XML data sources across the intranet or Internet. On the Source tab,
you can specify the URL of the XML file that contains your data as shown in
Figure 3–8.

Note: For more information on using the XML data source, see
Section 4.4, "Building an OmniPortlet Based on an XML Data
Source."

The OmniPortlet Wizard

Creating Portlets with OmniPortlet 3-9

Figure 3–8 Source Tab: XML

Next to the XML URL and the XSL Filter URL fields are Test buttons which you can
use to validate your XML data source and the XSL filter.

The specified XML file can either be in tabular (ROWSET/ROW) structure, or you can
provide an XML Style Sheet (XSL) to transform the data into the ROWSET/ROW
structure. The following example shows the ROWSET/ROW structure of an XML data
source.

<TEAM>
 <EMPLOYEE>
 <DEPTNO>10</DEPTNO>
 <ENAME>KING</ENAME>
 <JOB>PRESIDENT</JOB>
 <SAL>5000</SAL>
 </EMPLOYEE>
 <DEPTNO>20</DEPTNO>
 <ENAME>SCOTT</ENAME>
 <JOB>ANALYST</JOB>
 <SAL>3000</SAL>
 <EMPLOYEE>
</TEAM>

In this example, the <TEAM> tags delineate the rowset, and the <EMPLOYEE> tags
delineate the rows.

Regardless of the format of the XML file, OmniPortlet automatically inspects the XML
to determine the column names, which will then be used to define the layout. If you
want to specify this information yourself, you can supply a URL to an XML schema
that describes the data.

Similar to the other data sources, you can also specify the connection information for
this data source, if the XML file is located on a secured server protected by HTTP Basic
Authentication.

3.2.2.6 Web Service
A Web Service is a discrete business service that can be programmatically accessed
over the Internet using standard protocols, such as SOAP and HTTP. Web Services are
not specific to a platform or language, and are typically registered with a Web Service
broker. When you find a Web Service you want to use, you must obtain the URL to the

Note: Since the OmniPortlet provider exists and executes in a
different tier from Oracle Portal and does not have access to the
Oracle Portal session information, you must expose XML files that
are uploaded to Oracle Portal as PUBLIC in order for OmniPortlet
to access them.

The OmniPortlet Wizard

3-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Web Service Description Language (WSDL) file that describes the Web Service and
specifies the methods that can be called, the expected parameters, and a description of
the returned data.

OmniPortlet supports both types of Web Services: Document and RPC (Remote
Procedure Calls). After a WSDL document/file is supplied, it is parsed, and the
available methods that can be called display on the Source tab.

Similar to the XML data source, OmniPortlet expects the Web Service data in
ROWSET/ROW format, though you can also use an XSL file to transform the data.
OmniPortlet inspects the WSDL document/file to determine the column names,
though you may also specify an XML schema to describe the returned data set.

Figure 3–9 shows the Source tab for a Web service.

Figure 3–9 Source Tab: Web Service

3.2.2.7 Web Page
OmniPortlet enables you to use existing Web content as a source of data to publish
information to your portal. It provides and renders clipped Web content as a data
source.

The Web Page data source extends the scope offered by the Web Clipping Portlet to
include scraping functionality. It also supports the following features:

■ Navigation through various login mechanisms, including form- and
JavaScript-based submission, and HTTP Basic and Digest Authentication with
cookie-based session management.

■ Fuzzy matching of clippings. If a Web clipping gets reordered within the source
page or if its character font, size, or style changes, it will still be identified correctly
by the Web page data source and delivered as the portlet content.

■ Reuse of a wide range of Web content, including basic support of pages written
with HTML 4.0.1 and JavaScript, retrieved through HTTP GET and POST (form
submission).

All Web clipping definitions are stored persistently in the Oracle Fusion Middleware
infrastructure database or on another Oracle database. Any secure information, such

Note: For more information on using the Web Service data source,
see Section 4.2, "Building an OmniPortlet Based on a Web Service."

The OmniPortlet Wizard

Creating Portlets with OmniPortlet 3-11

as passwords, is stored in encrypted form, according to the DES (Data Encryption
Standard), using Oracle Database encryption technology.

The Source tab of the OmniPortlet Wizard (Figure 3–10) enables you to start the Web
Clipping Studio by clicking the Select Web Page button. Once you start the Web
Clipping Studio, you can see the Oracle Fusion Middleware Web Clipping online
Help.

Figure 3–10 Source Tab: Web Page

3.2.3 Filter
After you've selected the data source and specified the data source options, you can
further refine your data by using OmniPortlet's filtering options. To use filtering
efficiently, it is better to refine the data as much as possible at the data source level on
the Source tab, then use the options on the Filter tab to streamline the data. For
example, if you are using a SQL data source, you could use a WHERE clause to return
only specific data from the specified columns. In this case, you could skip the Filter tab
and continue to the View page of the wizard. However, if there are no filtering options
at the data source level, you can use the options on the Filter tab to sort your data
(Figure 3–11).

Figure 3–11 Filter Tab

Note: For more information on using the Web Page data source,
see Section 4.5, "Building an OmniPortlet Based on a Web Page
Data Source."

The OmniPortlet Wizard

3-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

3.2.4 View
Once you've specified the data and sorted it, you can choose the view options and
layout for your OmniPortlet. The View tab (Figure 3–12) enables you to add Header
and Footer text, choose a Layout style that you can later refine on the Layout tab, and
enable caching. You can choose from the following layouts:

■ Tabular

■ Chart

■ News

■ Bullet

■ Form

■ HTML

Figure 3–12 View Tab

3.2.5 Layout
The Layout tab changes depending on the Layout Style you chose on the View tab,
and enables you to further personalize the appearance of your portlet. For example,
OmniPortlet supports drill-down hyperlinks in the chart layout. That is, you can set
up the chart so that when a user clicks on a specific part of the chart, an action occurs
(for example, jump to another URL).

For the other layout styles, you can define each column to display in a specific format,
such as plain text, HTML, an image, button, or field. For example, suppose you
selected a data source that includes a URL to an image. To see this image, you can
select Image for the display of this column. Each column can also be mapped to an
action, similar to the behavior of chart hyperlinks.

Note: For more information on the different layout styles you can
use with OmniPortlet, see the next section or click Help in the
upper right corner of the page in the OmniPortlet Wizard.

The OmniPortlet Wizard

Creating Portlets with OmniPortlet 3-13

The following layout styles are available with OmniPortlet:

■ Section 3.2.5.1, "Tabular Layout"

■ Section 3.2.5.2, "Chart Layout"

■ Section 3.2.5.3, "News Layout"

■ Section 3.2.5.4, "Bullet Layout"

■ Section 3.2.5.5, "Form Layout"

■ Section 3.2.5.6, "HTML Layout"

3.2.5.1 Tabular Layout
Once you've chosen the tabular style on the View tab, you can refine the layout on the
Layout tab (Figure 3–13). Typically, you use the tabular layout if you have one or more
columns of data that you want to display in a table. You can choose Plain to display all
rows in the table without any background color, or Alternating to display a
background color for every other row in the table.

Figure 3–13 Layout Tab: Tabular Style

In the Column Layout section, you can choose which data columns to display in the
portlet, then select a display format for the data. Here, you can set a column to display
a hyperlink, so that a secondary Web page displays when the user clicks that column
in the table. You can also specify whether the secondary Web page displays in a new
window. Figure 3–14 shows an example of an OmniPortlet using a tabular format.

Figure 3–14 Example of an OmniPortlet Using a Tabular Layout

Note: You can control the background color of a portlet through
the portal page style. For more information on using portal page
styles, see Oracle Fusion Middleware User's Guide for Oracle Portal.

The OmniPortlet Wizard

3-14 Oracle Fusion Middleware Developer's Guide for Oracle Portal

3.2.5.2 Chart Layout
You can use the chart layout to display your data graphically, as a bar, pie, or line
chart. On the Layout tab (Figure 3–15), you select the chart style and the column
layout. When you choose the column layout, you can choose the groups, or columns
on which the labels will be based. The category defines the values that will be used to
create the chart legend, and the value determines the relative size of the bars, lines, or
slices in the chart. You can also select whether the sections of the chart should point to
a hyperlink, and whether the targeted information should display in a new window.
Figure 3–16 shows an example of the Layout tab for a pie chart layout.

Figure 3–15 Layout Tab: Chart

Note: For more information on using the OmniPortlet Wizard,
click the Help link in the upper right corner of the Layout tab.

Note: To group the information in the chart, you must group the
information at the data level (for example, in your SQL query
statement). Also, if numeric values in a data source contain
formatted strings, commas, or currency (for example, $32,789.00),
they are considered to be text and ignored when the chart is
generated. You should remove these formatting characters if you
want them to be correctly read as numerical values.

The OmniPortlet Wizard

Creating Portlets with OmniPortlet 3-15

Figure 3–16 Example of the Layout Tab for a Pie Chart Layout

You can also define chart hyperlinks so that each bar, pie section, or line links to
another Web page. For example, you can display a chart portlet and a report portlet on
your portal page, then set up the chart hyperlink to display a row in the report that
displays more detailed information about the selected data.

In Figure 3–17, you can see an example of a pie chart. Below the chart, you can see that
the category, Department, is used for the legend.

Figure 3–17 Example of an OmniPortlet Using a Pie Chart Layout

3.2.5.3 News Layout
You can use the news layout to display links to articles with brief descriptions for
each. You can use this layout to publish information in standard XML formats, such as
RDF (Resource Description Framework) or RSS (RDF Site Summary) to your portal
page. In the Column Layout section (Figure 3–18), you can add a heading that displays
at the top of the portlet. You can also add a logo, or use the scrolling layout so that the
user can view all the information in the portlet as it moves vertically. Here, also, you

The OmniPortlet Wizard

3-16 Oracle Fusion Middleware Developer's Guide for Oracle Portal

can enter a URL so that another Web page displays when the user clicks on specific
data in the portlet. You can also specify whether the secondary Web page displays in a
new window.

Figure 3–18 Layout Tab: News

Figure 3–19 shows an example OmniPortlet using a news layout.

Figure 3–19 Example of an OmniPortlet Using a News Layout

Note: The News Layout Scroll type in OmniPortlet is supported
on Microsoft Internet Explorer and Netscape 7.0.

Note: For more information on using the OmniPortlet Wizard,
click the Help link in the upper right corner of the Layout tab.

The OmniPortlet Wizard

Creating Portlets with OmniPortlet 3-17

3.2.5.4 Bullet Layout
You can use the bullet layout to display your data in a bulleted list. The Layout tab
(Figure 3–20) provides a variety of different bullet and numbered bullet styles. In the
Column Layout section, you can choose how the columns will display in the portlet, as
well as whether a second Web page will display when the user clicks that column. You
can also specify whether the second Web page displays in a new window.

Figure 3–20 Layout Tab: Bullet

Figure 3–21 shows an example of an OmniPortlet using a bullet layout.

Figure 3–21 Example of an OmniPortlet Using a Bullet Layout

3.2.5.5 Form Layout
You can use the form layout (Figure 3–22) if you have data you want to display as
labels or default values in a form, such as Name: <name>. You can then use portlet
parameters and events to pass data to the selected row.

Note: For more information on using the OmniPortlet Wizard,
click the Help link in the upper right corner of the Layout tab.

The OmniPortlet Wizard

3-18 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 3–22 Layout Tab: Form

You can also specify whether to display the target of a URL in a new window
(Figure 3–23). Figure 3–24 shows an example of an OmniPortlet using a Form layout.

Figure 3–23 Open In New Window Check Box

Figure 3–24 Example of an OmniPortlet Using a Form Layout

Note: For more information on using the OmniPortlet Wizard,
click the Help link in the upper right corner of the Layout tab.

The OmniPortlet Wizard

Creating Portlets with OmniPortlet 3-19

3.2.5.6 HTML Layout
You can use the HTML layout to create a customized look and feel for your portlet by
choosing from either a built-in HTML layout and modifying the code, or by creating a
new layout from scratch. You can hand-code your own HTML or JavaScript based on
data columns that OmniPortlet has retrieved based on the selected data source
(Figure 3–25). By coding your own HTML and JavaScript, you have full control over
the appearance and can develop a rich interface for your portlet. For an example of
using JavaScript in the HTML layout, choose the Sortable Table layout from the Quick
Start list on this tab.

Figure 3–25 Layout Tab: HTML

Figure 3–26 shows an example of an OmniPortlet using the HTML layout.

Figure 3–26 Example of an OmniPortlet Using the HTML Layout

3.2.6 Edit Defaults mode
After you have created your OmniPortlet and returned to your portal page, you can
click the Edit Defaults icon to change the portlet options if required. You will notice
that, in the Edit Defaults mode, there are tabs that correspond to the different steps in
the OmniPortlet Wizard (except for the Type step) to directly access the different
options. There is also one extra tab, the Events tab, which is explained in the next
section.

When you edit an OmniPortlet using the Edit Defaults mode, keep in mind the
following notes:

The OmniPortlet Wizard

3-20 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ A new mode, "none," is the default setting for the Locale Personalization Level of
OmniPortlet and the Simple Parameter form. This mode indicates that, when you
edit the portlet defaults using the Edit Defaults mode, the changes apply to all
users, regardless of the current Oracle Portal session language and the locale of
your browser. For more information about these settings, see Oracle Fusion
Middleware Administrator's Guide for Oracle Portal.

■ You can personalize the portlet at runtime by clicking the Personalize link on the
portlet. When you personalize the portlet, a complete copy of the personalization
object is created. Since all properties are duplicated, subsequently modifying the
portlet through Edit Defaults will not be reflected in the personalized version of
the portlet. To ensure the latest changes are made to the portlet, you must click
Personalize again (after the modifications from the Edit Defaults wizard are
made), then select the Reset to Defaults option.

■ By default, the OmniPortlet provider uses the file-based Preference Store to store
the personalization object, which stores the object in a file system in the
middle-tier. If you decide to deploy OmniPortlet in a multiple middle-tier
environment, you must use a shared Preference Store, such as the database
Preference Store (DBPreferenceStore). To do so, you can choose to do one of the
following:

■ Use a file-based Preference Store now, then migrate to the database Preference
Store later using the PDK Preference Store Migration Utility.

■ Configure OmniPortlet to use the DBPreferenceStore, and follow the steps on
configuring Portal Tools and Web providers in Oracle Fusion Middleware
Administrator's Guide for Oracle Portal.

3.2.7 Events
On the Events tab (Figure 3–27) in the Edit Defaults mode of the OmniPortlet Wizard,
you can identify event parameters based on the portlet parameters you selected on the
Source tab.

Figure 3–27 Events Tab of the OmniPortlet Wizard

Parameters and Events

Creating Portlets with OmniPortlet 3-21

3.3 Parameters and Events
Out of the box, OmniPortlet can receive up to five parameters and raise up to three
events. Each of the events can send one or more parameters. For example, you can set
up a chart that displays the employees in a department. When the user clicks one piece
of the chart (for example, a department name), an event is raised that sends a
parameter to the page. The page may then pass a parameter to all the portlets on that
page that display information about the employees. Then, all the portlets on the page
display information about the employees in the selected department.

To set up parameters and events, you must first enable the page group to accept
parameters and events. In Oracle Application Server 10g, parameters and events are
enabled by default. Then, you set up each portlet to accept the necessary parameters,
and raise the required events. After you've set up the portlet parameters, you can link
the portlets together by setting up the page-level parameters and events.

3.3.1 Portlet Parameters and Events
Out of the box, you can define up to five portlet parameters for an OmniPortlet. You
can define parameters in the following places:

■ On the Source tab of the wizard when you define the OmniPortlet

■ On the Source tab when you select Edit Defaults for the OmniPortlet

Figure 3–28 shows the Portlet Parameters section on the Source tab.

Figure 3–28 Source Tab: Portlet Parameters Section

Parameter values determine what data is displayed in the portlet. You can also use a
parameter to pass a value in a URL or to embed a value in the portlet text.

You can set up each OmniPortlet to raise up to three events. Each event can pass up to
three parameters. Each parameter can be a portlet parameter, such as Param1, or a

Note: To learn how to use parameters and events with
OmniPortlet, follow the steps in Chapter 4, "Building Example
Portlets with OmniPortlet". If you are comfortable with the
provider.xml file, you can add more parameters and events by
editing the file.

Note: You can learn more about portlet parameters in the online
Help, which you can access by clicking the Help link on the Source
tab in the OmniPortlet Wizard. The online Help describes portlet
parameters in detail, and how to set them up for your OmniPortlet.
You can also refer to Oracle Fusion Middleware User's Guide for Oracle
Portal.

Parameters and Events

3-22 Oracle Fusion Middleware Developer's Guide for Oracle Portal

data source column, such as Department_No. You set up events on the Events tab in
the Edit Defaults mode of OmniPortlet (Figure 3–29).

Figure 3–29 Events Tab

3.3.2 Page Parameters and Events
After you've set up the parameters and events for each OmniPortlet on a portal page,
you can map the portlet parameters and events to other portlets on the same page. For
more information on using page parameters and events, refer to the Oracle Portal
online Help and Oracle Fusion Middleware User's Guide for Oracle Portal.

4

Building Example Portlets with OmniPortlet 4-1

4 Building Example Portlets with OmniPortlet

This chapter shows you how to use OmniPortlet to create four portlets based on
different data sources: a Web service, a spreadsheet (CSV), XML, and an existing Web
page. You will build these portlets based on the various built-in layouts, and will
create a separate portlet based on an HTML layout. You will learn how to create and
modify these portlets, as well as use page parameters and events to add interactivity to
your portal page.

This chapter includes the following sections:

■ Section 4.1, "Adding an OmniPortlet Instance to a Portal Page"

■ Section 4.2, "Building an OmniPortlet Based on a Web Service"

■ Section 4.3, "Building an OmniPortlet Based on a Spreadsheet (CSV)"

■ Section 4.4, "Building an OmniPortlet Based on an XML Data Source"

■ Section 4.5, "Building an OmniPortlet Based on a Web Page Data Source"

■ Section 4.6, "Setting Up Portlet Parameters and Events"

■ Section 4.7, "Building an OmniPortlet Using the HTML Layout"

At the end of this chapter, you will create a page that contains four portlets, as shown
in Figure 4–1.

Note: To learn more about specific pages and tabs in OmniPortlet,
click the Help link in the top right corner of the wizard. The online
Help describes the contents of the selected page or tab. You can also
find more information about using OmniPortlet in Chapter 3,
"Creating Portlets with OmniPortlet." or about registering and
configuring OmniPortlet with Oracle Portal in Oracle Fusion
Middleware Administrator's Guide for Oracle Portal.

Adding an OmniPortlet Instance to a Portal Page

4-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 4–1 Portal Page with Four OmniPortlet Examples

All four of these example portlets require you to be able to connect to the Internet. If
you must use a proxy server to connect to the Internet, you will need to configure the
HTTP proxy settings on the OmniPortlet Provider Test page to use proxy
authentication. If the OmniPortlet provider has been set up to use proxy
authentication that requires your login, you can enter your user information in the
Proxy Authentication section of the Source tab in the OmniPortlet wizard. For more
information on proxy authentication, refer to Section 3.2.2, "Source." For specific
information on configuring the provider's proxy settings, refer to the Oracle Fusion
Middleware Administrator's Guide for Oracle Portal.

4.1 Adding an OmniPortlet Instance to a Portal Page
In this section, you will learn how to add an OmniPortlet instance to your portal page.

To add an OmniPortlet instance to a page, perform the following steps:

1. In the Edit mode of the page where you want to add the OmniPortlet, click the
Add Portlets icon.

2. On the Add Portlets page, in the Available Portlets list, click the Portlet Builders
link.

3. Click the OmniPortlet link.

Note: The steps in this chapter assume that you are using the
OmniPortlet provider that is available with Oracle Portal. If you
installed the Oracle Portal Developer Kit separately, you may need
to slightly modify the instructions when adding an OmniPortlet
instance to the page. Instructions for registering and configuring
OmniPortlet with Oracle Portal are located in Oracle Fusion
Middleware Administrator's Guide for Oracle Portal.

Building an OmniPortlet Based on a Web Service

Building Example Portlets with OmniPortlet 4-3

4. Click OK. The new instance of OmniPortlet now displays on your portal page, as
shown in Figure 4–2.

Figure 4–2 OmniPortlet Instance on a Portal Page

4.2 Building an OmniPortlet Based on a Web Service
The steps in this section will show you how to create a portlet that displays weather
forecast information for a particular zip code. You will base this portlet on the Web
Service available on the Oracle Technology Network. You will need Internet access to
be able to complete this section.

To create an OmniPortlet based on a Web Service, perform the following steps:

1. In the new OmniPortlet instance on your portal page, click the Edit Default link to
start the OmniPortlet Wizard.

2. On the Type page, select the Web Service radio button, then click Next.

3. On the Source page, in the WSDL URL field, enter the following URL:

http://webservices.oracle.com/WeatherWS/WeatherWS?WSDL

4. Click Show Methods.

5. In the Web Service Methods section, in the param0 parameter field, enter a sample
Zip code (for example, 94065), then click Test. The Web Service: Test Result
window displays, where you can verify the XML data returned by the Web
Service, as shown in Figure 4–3.

Note: On the IBM Linux on Power platform, if the action buttons
(Next, Previous, Finish, and Cancel) are minimized to dots when
defining the OmniPortlet, increase the stack size shell limit to
unlimited and restart the WLS_PORTAL instance. Run the following
command to set the stack size shell limit to unlimited:

prompt> ulimit -s unlimited

Note: This Web Service has one method
(WeatherWS.giveMeSomeWeatherInfo) and accepts one
parameter (param0). If you use a method that has parameters, the
parameters will display in this section of the tab. You can enter a
sample value for the parameter, then click Test to view the sample
XML data, the SOAP response, and the SOAP Request.

Building an OmniPortlet Based on a Web Service

4-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 4–3 OmniPortlet: Web Service Test Results Page

6. Close the window.

The Source page should look like the image shown in Figure 4–4.

Figure 4–4 OmniPortlet: Web Service Source Tab

7. Click Next.

8. On the Filter page, click Next.

9. On the View page, in the Title field, enter Weather Forecast.

10. In the Header Text field, enter Forecast per Zip Code.

11. Make sure the Show Header Text check box is selected, and clear the Show Footer
Text check box, as shown in Figure 4–5.

Note: If you do not have access to the Internet, you can use a
different Web Service, but keep in mind that your results will not
match the example in this chapter.

Building an OmniPortlet Based on a Spreadsheet (CSV)

Building Example Portlets with OmniPortlet 4-5

Figure 4–5 OmniPortlet: Web Service View Tab

12. Make sure the Tabular radio button is selected, then click Next.

13. On the Layout page, select the Plain radio button.

14. Specify the Column Label, Column, and Display As properties for your data
according to Table 4–1.

15. Now that you've completed defining the portlet, click Finish. Your portlet should
look like Figure 4–6.

Figure 4–6 OmniPortlet: Web Service Portlet

4.3 Building an OmniPortlet Based on a Spreadsheet (CSV)
The steps in this section show you how to use OmniPortlet to define a portlet that
displays regional information based on a spreadsheet (CSV) data source. This portlet
will display the population of major U.S. urban areas in a pie chart.

Table 4–1 Column Properties for the Weather Forecast Portlet

Column Label Column Display As

Day dayOfWeek Text

High hiTemp Text

Low lowTemp Text

Precipitation precip Text

(Blank) img Image

Building an OmniPortlet Based on a Spreadsheet (CSV)

4-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

To create an OmniPortlet based on a spreadsheet, perform the following steps:

1. Create a region below the existing region on your portal page.

2. Add an OmniPortlet to this new region.

3. Start the OmniPortlet Wizard by clicking the Edit Default link.

4. On the Type page, select the Spreadsheet radio button, then click Next.

5. On the Source page, in the CSV URL field, replace the existing text with the
following CSV:

http://webservices.oracle.com/WeatherWS/city_population.csv

6. Ensure that the Use first row of spreadsheet for column names check box is
selected

7. Click Next.

8. On the Filter page, click Next.

9. On the View page, in the Title field, enter Major U.S. Urban Areas -
Population.

10. Clear the Show Header Text check box.

11. In the Footer Text field, enter Click a pie section to view the
population of the specified urban area.

12. Ensure that the Show Footer Text check box is selected.

13. Under Layout Style, select the Chart radio button, then click Next.

14. On the Layout page, select the Pie radio button.

15. In the Width field, enter 300.

16. In the Height field, enter 300.

17. From the Legend list, choose Top.

18. Select the 3D Effect check box.

19. Under Column Layout, from the Group list, choose <None>.

20. From the Category list, choose City.

21. From the Value list, choose Population. The Layout tab should now look like the
image shown in Figure 4–7.

Note: If you do not have access to the Internet, you can use the
default URL, but keep in mind that your results will not match the
example in this chapter.

Note: The text you just entered in the Footer Text field instructs
your end users to click a pie section to view more details about the
selected population. To enable this feature, you will need to
complete the steps in Section 4.6, "Setting Up Portlet Parameters
and Events".

Building an OmniPortlet Based on an XML Data Source

Building Example Portlets with OmniPortlet 4-7

Figure 4–7 OmniPortlet: Character-Separated Values (CSV) Layout Tab

22. Click Finish.

Your portlet now displays on your portal page below the Weather Forecast portlet,
and should look like Figure 4–8.

Figure 4–8 OmniPortlet: CSV OmniPortlet on the Page

4.4 Building an OmniPortlet Based on an XML Data Source
The steps in this section will show you how to use OmniPortlet to define a portlet that
displays news information in a scrolling layout, based on an XML data source.

Building an OmniPortlet Based on an XML Data Source

4-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

To create an OmniPortlet based on an XML data source, perform the following steps:

1. Create a region next to the Web Services portlet (Weather Forecast) on your portal
page.

2. Add an OmniPortlet to this new region.

3. Start the OmniPortlet Wizard by clicking the Edit Default link.

4. On the Type page, select the XML radio button, then click Next.

5. On the Source page, in the XML URL field, enter the following URL:

http://www.nytimes.com/services/xml/rss/nyt/Travel.xml

6. In the XSL Filter URL field, enter the following URL for the XSL file:

http://www.oracle.com/technology/products/ias/portal/viewlets
/omniportletnews.xsl

7. Click Next.

8. On the Filter page, click Next.

9. On the View page, in the Title field, enter Travel News.

10. Clear the Show Header Text check box.

11. In the Footer Text field, enter Source: The New York Times.

12. Ensure that the Show Footer Text check box is selected.

13. Under Layout Style, select the News radio button, then click Next.

14. On the Layout page, under News Style, select the Scrolling radio button.

15. In the Width field, enter 475.

16. In the Height field, enter 50.

The News Style section of the Layout tab should now look like the image shown in
Figure 4–9.

Figure 4–9 OmniPortlet: XML Layout Tab - News Style

Note: If you do not have access to the Internet, you can use a
different RSS feed, but keep in mind that your results will not
match the images in this example.

Note: This XSL filter transforms the RSS news feed into the
ROWSET/ROW structure that OmniPortlet can consume.

Building an OmniPortlet Based on a Web Page Data Source

Building Example Portlets with OmniPortlet 4-9

17. Under Column Layout, next to Field 1 choose title from the Column list,
Hyperlink from the Action list, and enter ##link## in the URL field, as shown in
Figure 4–10.

Figure 4–10 OmniPortlet: News Style Column Layout

18. Next to Field2, choose description from the Column list and leave the default
values for the other settings. Ensure this section of the Layout tab looks like
Figure 4–11.

Figure 4–11 Column Layout Section of the Layout Tab

19. Click Finish.

Your portlet now displays on your portal page, as shown in Figure 4–12.

Figure 4–12 OmniPortlet: XML Scrolling News OmniPortlet on the Page

4.5 Building an OmniPortlet Based on a Web Page Data Source
The steps in this section will show you how to use OmniPortlet to create a portlet that
displays weather information in a text format based on an existing Web Page. In this
section, you will use OmniPortlet to clip and scrape content from Web sites.

To create an OmniPortlet based on a Web page data source, perform the following
steps:

1. Create a region below the XML portlet (Travel News) on your portal page.

2. Add an OmniPortlet to this new region.

3. Start the OmniPortlet Wizard by clicking the Edit Default link.

4. On the Type tab of the OmniPortlet Wizard, select the Web Page radio button,
then click Next.

5. On the Source tab, click Select Web Page.

Building an OmniPortlet Based on a Web Page Data Source

4-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

6. On the Web Clipping Studio page that displays, in the URL Location field
(Figure 4–13), enter the URL of the page you want to clip:

http://www.wunderground.com

Figure 4–13 URL Location Field

7. Click Start to display the Web Clipping Studio. You should see the Web page
display in the Web Clipping Studio, as shown in Figure 4–14.

Figure 4–14 Web Clipping Studio Containing the www.wunderground.com Home Page

8. On the home page, enter a zip code (for example, 94065) in the Weather field, as
shown in Figure 4–15, then click the magnifying glass icon next to the field.

Note: You can use a different Web page, but keep in mind that
your results will not match the example in this chapter.

Note: In this example, we use a third party Web site owned by
The Weather Underground, Inc. Because this Web site is
continually updated based on current weather forecasts, the images
and steps included in this section may not reflect exactly what you
see when you create this example. As you go further into this
example, some of the steps may not work, as the owners may
change the technology of this third party Web site.

Building an OmniPortlet Based on a Web Page Data Source

Building Example Portlets with OmniPortlet 4-11

Figure 4–15 Entering the Zip Code 94065 into the Weather Field

9. The weather information for Redwood City, California displays in the Web
Clipping Studio. A segment of the page is shown in Figure 4–16.

Figure 4–16 Weather Information for Redwood City, California

10. In the top right corner of the Web Clipping Studio, click the Section button, as
shown in Figure 4–17.

Figure 4–17 The Section Button

11. After you click the Section button, you'll notice that the elements of the Web page
are broken down, and that a new icon displays called Choose at the top of each
section. Figure 4–18 shows a snapshot of the Web Clipping Studio.

Building an OmniPortlet Based on a Web Page Data Source

4-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 4–18 Web Clipping Studio Displaying the Web Page Sections

12. Find the section shown in Figure 4–19, which shows the weather information for
the city you chose (in this example, San Francisco Bay Shoreline).

Figure 4–19 Weather Information for San Francisco Bay Shoreline with the Choose Icon

13. Click the Choose icon for this section, located directly above the "Forecast for San
Francisco Bay Shoreline" title bar, as shown in Figure 4–19. The section displays in
the Web Clipping Studio, as shown in Figure 4–20.

Building an OmniPortlet Based on a Web Page Data Source

Building Example Portlets with OmniPortlet 4-13

Figure 4–20 Weather Information Section for San Mateo County in the Web Clipping
Studio

14. After you have chosen the clipping, you can refine your data further by scraping
the data, that is, selecting specific cells you wish to display in your portlet. Click
the Scrape button (Figure 4–21).

Figure 4–21 The Scrape Button

15. While in Scraping mode, you can identify the text pieces in the Web clipping by
selecting the check boxes next to each item. You can repeat these items at the
column level, row level, or table level.

In this example, we want to show the title and the description of each resulting
article from our search. We can repeat the title and description at the row level, so
that each result returned by the search displays only the title and the description
of every result. In general, you choose the text items in the first row that contains
all the pieces you wish to repeat for each row.

After you click the Scrape button, you'll notice that check boxes display next to
each item on the Web page, as shown in Figure 4–22.

Figure 4–22 Scraping Check Boxes

16. Select the output you want by selecting the check boxes next to the
items.Figure 4–23 shows an example of a check box.

Building an OmniPortlet Based on a Web Page Data Source

4-14 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 4–23 Check Box for San Mateo County Title

17. After you select the check box for "Forecast for San Mateo County," notice that a
corresponding label displays in the Data section of the Web Clipping Studio at the
bottom of the screen, as shown in Figure 4–24.

Figure 4–24 San Mateo County Label in Data Section

18. In the Name field, enter a more meaningful name, such as
"SanMateoCountyForecast." Do not include spaces in the name.

19. Select the fields you wish to display and add the corresponding labels as you
select them. The following is a list of sample information we chose for this
example, but you can choose your own examples depending on the current
weather. You can see the following selected weather information in Figure 4–25:

■ Forecast for San Mateo County title

■ Today

■ Today's Weather

■ Thursday

■ Thursday's Weather

Note: Depending on the color of the section you want to select,
the check boxes may not be prominently displayed.

Building an OmniPortlet Based on a Web Page Data Source

Building Example Portlets with OmniPortlet 4-15

Figure 4–25 Selected Weather Information

20. Now that you've selected the data you want to display, click the Continue button,
as shown in Figure 4–26.

Figure 4–26 The Continue Button

21. On the page that displays, verify that the information in the Clipping Attributes
section includes the title: "Weather Underground: Redwood City, California
Forecast," as shown in Figure 4–27.

Figure 4–27 Clipping Attributes Section of the Web Clipping Studio

22. Verify that the information in the Clipping Parameters section includes the
parameters as shown in Figure 4–28.

Note: With the Web page data source, you can select URLs as part
of your Web clipping. In Oracle Portal 10.1.2 and later, the context
of the application is maintained. So, for example, any images that
display on the hyperlinked page will be maintained.

Building an OmniPortlet Based on a Web Page Data Source

4-16 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 4–28 Clipping Parameters Section of the Web Clipping Studio

23. Select the Clipping Parameter? check box for the second parameter with the name
"query."

24. Click OK.

25. On the Source tab of the OmniPortlet Wizard, the new title and description now
display. To edit the Web clipping in the Web Clipping Studio, you can click the
Select Web Page button again, as shown in Figure 4–29.

Figure 4–29 Web Page Source Tab

26. Under the Clipping Parameters heading, you should see the clipping parameter
you set on the previous page, as shown in Figure 4–30:

Figure 4–30 Clipping Parameter to Portlet Parameter Mapping

27. Under the Portlet Parameters heading, next to Param1, set the Default Value to
the zip code, 94065, as shown in Figure 4–31.

Figure 4–31 Portlet Parameters Section

28. Click Next.

29. On the Filter tab, click Next.

30. On the View tab, in the Title field, enter Weather Information.

31. In the Footer Text field, enter Source: Weather Underground and make sure
the Show Footer Text check box is selected.

32. Under Layout Style, select the News radio button. The View tab should look like
Figure 4–32.

Building an OmniPortlet Based on a Web Page Data Source

Building Example Portlets with OmniPortlet 4-17

Figure 4–32 View Tab with the Options Selected

33. Click Next.

34. Verify that the Layout tab looks like Figure 4–33.

Figure 4–33 Layout Tab

35. Click Finish.

36. Your new Web Page portlet displays on the portal page, and should look like
Figure 4–34.

Figure 4–34 Weather Information Portlet on the Portal Page

Now that you have completed building all four example OmniPortlets, your page
should look like Figure 4–35.

Setting Up Portlet Parameters and Events

4-18 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 4–35 Portal Page Displaying the Four Example OmniPortlets

4.6 Setting Up Portlet Parameters and Events
The steps in this section show you how to set up the portlets and page you created to
use parameters. Then, when a user clicks a slice of the pie chart (generating a portlet
event) that corresponds to a region (for example, New York), the Weather Forecast per
Zip Code portlet (based on a Web Service) and the Weather Information portlet (based
on a Web page) will display the corresponding weather information for that region
(New York).

To set up portlet parameters and events, you will need to do the following:

■ Section 4.6.1, "Configure Portlets to Accept Parameters"

■ Section 4.6.2, "Map the Page Parameter to the Portlet Parameters"

■ Section 4.6.3, "Configure the Chart Portlet to Use Events"

■ Section 4.6.4, "Map the Chart Event to the Page"

4.6.1 Configure Portlets to Accept Parameters
The steps in this section will show you how to configure the two portlets on your page
that accept parameters (the Web Service portlet that displays Weather Forecast per Zip
Code information and the Web page portlet that displays Weather Information).

To configure the two portlets to accept parameters, perform the following steps:

1. In Edit mode of the page, click the Edit Defaults icon in the top left corner of the
Web Services portlet, as shown in Figure 4–36.

Setting Up Portlet Parameters and Events

Building Example Portlets with OmniPortlet 4-19

Figure 4–36 Edit Defaults Icon in the Web Services Portlet

2. On the Source tab, replace the value of param0 (94065) with ##Param1##, as
shown in Figure 4–37.

Figure 4–37 param0 Set to ##Param1##

3. Under Portlet Parameters, set the default value of Param1 to 94065.

4. In the Personalize Page Label field, enter Zip.

5. In the Personalize Page Description field, enter Enter zip code, as shown in
Figure 4–38.

Figure 4–38 Portlet Parameters Section of the Web Services Source Tab

6. Click OK.

7. On the portal page, in Edit mode, click the Edit Defaults icon for the Web page
portlet, as shown in Figure 4–39.

Figure 4–39 Edit Defaults Icon for the Web Page Portlet

8. On the Source tab, since you have already mapped a portlet parameter to the
clipping parameter, you can simply add a label and description to the portlet
parameter Param1, as shown in Figure 4–40.

Setting Up Portlet Parameters and Events

4-20 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 4–40 Portlet Parameters Section of the Web Page Source Tab

9. Click OK.

You have created two portlet parameters in the Web Services and Web page portlets to
accept page parameters. Next, you will map a page parameter to these two portlet
parameters.

4.6.2 Map the Page Parameter to the Portlet Parameters
The steps in this section will show you how to map the page parameters to the two
portlets you configured in the previous section.

To map the page parameter to the portlet parameters, perform the following steps:

1. On the page, in Edit mode, click the Page: Properties link at the top of the screen,
as shown in Figure 4–41.

Figure 4–41 Page: Properties Link

2. Click the Parameters tab.

3. Under New Page Parameter, in the Parameter Name field, enter zip, then click
Add, as shown in Figure 4–42.

Figure 4–42 New Page Parameter

4. Under Page Parameter Properties, the new page parameter displays. In the
Default Value field, enter 94065, as shown in Figure 4–43.

Figure 4–43 Default Value for the "zip" Page Parameter

5. Under Portlet Parameter Values, you will see a list of portlets listed. If you have
followed all the steps in this chapter, you will see four instances of OmniPortlet

Setting Up Portlet Parameters and Events

Building Example Portlets with OmniPortlet 4-21

listed. The Web Services portlet is the first in the list, and the Web Page data
source is the fourth (or the bottom) instance of OmniPortlet in the list.

6. Click the arrow next to the first instance of OmniPortlet to expand the Portlet
Parameters list, as shown in Figure 4–44.

Figure 4–44 Portlet Parameter Values Section

7. Next to Param1, from the list, choose Page Parameter.

8. From the list that displays, ensure that zip is selected.

9. For the fourth OmniPortlet in the list, follow the same steps to set Param1 to the
Page Parameter of zip, as shown in Figure 4–45.

Setting Up Portlet Parameters and Events

4-22 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 4–45 Portlet Parameters Section of the Page Parameters Tab

The page parameter zip is now mapped to the portlet parameters for the Web
Services and Web page portlets. Next, you will set up the chart portlet so that when a
slice of the pie chart is clicked, the selected zip code will be sent to the page.

4.6.3 Configure the Chart Portlet to Use Events
The steps in this section will show you how to configure the chart portlet to use
events. That is, based on an event in the portlet (such as clicking a slice in a pie chart),
an event will occur. In this case, you will configure the portlet so that when a slice is
clicked by an end user, the zip code associated with that slice will be sent to the page.
Then, the data in the two portlets you configured in Section 4.6.1, "Configure Portlets
to Accept Parameters" will refresh depending on the selected zip code.

To configure the chart portlet, perform the following steps:

1. In the Edit mode of the page, click the Edit Defaults icon for the chart portlet, as
shown in Figure 4–46.

Figure 4–46 Edit Defaults Icon for the Chart Portlet

2. Click the Layout tab.

Setting Up Portlet Parameters and Events

Building Example Portlets with OmniPortlet 4-23

3. Under Chart Drilldown, choose Event1 from the Action list.

4. Notice that in Edit Defaults mode, a new tab displays in the wizard called Events.
Click the Events tab.

5. On this tab, you will configure Event1 (which you set on the Layout tab) to pass
the zip code from the chart to the page as the event output.

Set Event1Param1 to zipcode, as shown in Figure 4–47, then click OK.

Figure 4–47 Events Tab for the Chart Portlet

You have configured the chart portlet so that a user can click a slice of the pie chart,
and set up an event so that the zip code selected in the pie chart will be sent to the
page. Next, you will set up the page to accept this event parameter.

4.6.4 Map the Chart Event to the Page
The steps in this section will show you how to map the chart event you created in the
previous section to the page, so that when a user clicks on a slice of the pie chart, the
zip code selected in the pie chart will be accepted by the page as the page input. The
page will then display the data that corresponds to the selected zip code in the Web
Service and Web page portlets.

To map the chart event to the page, perform the following steps:

1. On the page, in Edit mode, click the Page: Properties link, then click the Events
tab.

2. Expand the second OmniPortlet in the list to display the events below it, and select
Event1, as shown in Figure 4–48.

Figure 4–48 Portlet Events Section of the Page Events Tab

3. Select the Go to page radio button, then, next to the field, click the Browse Pages
icon to search for the name of your page (in this case, OmniPortlet Examples).
Next to your page name, click Return Object.

Setting Up Portlet Parameters and Events

4-24 Oracle Fusion Middleware Developer's Guide for Oracle Portal

4. Set the Page Input as shown in Figure 4–49.

Figure 4–49 Page Input on the Events Tab

5. Click OK.

6. Now, when you drag your mouse over the pie chart in the Chart portlet, you
should notice that you can click one of the sections. Try clicking on the largest slice
(New York). You will notice that the page refreshes.

In the URL of the page, you should see a parameter value set after the page name,
for example: OmniPortlet%20Examples?zip=10001. The Weather Forecast
information changes, and looks something like Figure 4–50.

Figure 4–50 Weather Forecast (Web Service) Portlet for New York

The Weather Information portlet changes, and looks something like Figure 4–51.

Note: If you do not know the name of the page, you can return to
the Edit mode of the page by clicking Cancel. Then, click the Page
Group: Properties link to view the display name of the page group.
When you return to the Events tab of the Page Properties, you can
click the Browse Pages icon to search for the page group, under
which you should see the page name.

Building an OmniPortlet Using the HTML Layout

Building Example Portlets with OmniPortlet 4-25

Figure 4–51 Weather Information (Web Page) Portlet for New York

4.7 Building an OmniPortlet Using the HTML Layout
As you can see from the examples in this chapter, you can use any data source with
any of the built-in layouts in OmniPortlet. This section will show you how to use the
same Web Service data source you used in Section 4.2, "Building an OmniPortlet Based
on a Web Service" to create a portlet using the HTML layout in OmniPortlet. At the
end of this section, your portlet will look like Figure 4–52.

Figure 4–52 OmniPortlet Using the HTML Layout

To create a portlet using the HTML layout, perform the following steps:

1. Follow steps 1-8 in Section 4.2, "Building an OmniPortlet Based on a Web Service"
to use the Web Service data source.

2. On the View tab, under Layout Style, select HTML, then click Next.

3. On the Layout tab, the default layout is a Simple Table.

You can switch the layout using the Quick Start drop-down list, or clear the fields
to create your own layout. For this example, use the default Simple Table layout.
In the Repeating Section, you can see how OmniPortlet automatically populates
the columns from the data source into your layout. You can modify the HTML in
any of the sections as you wish.

4. Click Finish. Your portlet looks like Figure 4–53.

Building an OmniPortlet Using the HTML Layout

4-26 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 4–53 Initial View of an OmniPortlet Using the HTML Layout

5. You'll notice that under "img," the URL displays instead of an actual image. To
change the HTML source, click the Edit Defaults (pencil) icon to edit your
OmniPortlet.

6. Click the Layout tab.

7. In the Repeating Section, look for the row with the code: <TD>##img##</TD>.

8. Replace this code with: <TD></TD>.

9. You can also change the column headers in the Non-Repeating Heading Section.
For example, replace:

<TH CLASS='PortletHeading1'>img</TH>"

with

<TH CLASS='PortletHeading1'>Weather Graphic</TH>

10. In the Non-Repeating Heading section, delete the line:

 <TH CLASS='PortletHeading1'>Zip Code</TH>

11. In the Repeating Section, delete the line:

 <TD>##zipCode##</TD>

12. Perform the same action for any other headings you wish to change, then click
Finish. Your portlet now looks like Figure 4–54.

Figure 4–54 Final View of an OmniPortlet Using the HTML Layout

5

Creating Content-Based Portlets with Web Clipping 5-1

5 Creating Content-Based Portlets with Web
Clipping

Web Clipping is a browser-based declarative tool that enables you to integrate any
Web application with Oracle Portal. It is designed to give you quick integration by
leveraging the Web application's existing user interface. Web Clipping has been
implemented as a Web provider using the Oracle Portal Developer Kit, which is a
component of Oracle Portal.

With Web Clipping, you can collect Web content into portlets in a single centralized
Web page. You can use Web Clipping to consolidate content from Web sites scattered
throughout a large organization.

This chapter contains the following sections:

■ Section 5.1, "What Is Web Clipping?"

■ Section 5.2, "Adding Web Page Content to a Portal Page"

■ Section 5.3, "Integrating Authenticated Web Content Using Single Sign-On"

■ Section 5.4, "Adding a Web Clipping That Users Can Personalize"

■ Section 5.5, "Using Web Clipping Open Transport API"

■ Section 5.6, "Migrating from URL-Based Portlets"

■ Section 5.7, "Current Limitations for Web Clipping"

5.1 What Is Web Clipping?
Web Clipping allows clipping of an entire Web page or a portion of it and reusing it as
a portlet. Basic and HTML-form-based sites may be clipped. Use Web Clipping when
you want to copy content from an existing Web page and expose it in your portal as a
portlet. The Web Clipping portlet supports the following:

Note: Web Clipping is provided with Oracle Portal 11g Release 1
(11.1.1) and is also available as a download with the Oracle Portal
Developer Kit. In Oracle Portal, you can add a Web Clipping portlet
from the Oracle Portal Repository in the Portlet Builders folder. If
you've downloaded Web Clipping as part of the Oracle Portal
Developer Kit, you must register it before you can use it. To learn
more about registering a Web provider, see Oracle Fusion Middleware
Administrator's Guide for Oracle Portal. You can then add an Web
Clipping portlet to any portal page.

What Is Web Clipping?

5-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ Navigation through various styles of login mechanisms, including form- and
JavaScript-based submission and HTTP Basic and Digest Authentication with
cookie-based session management.

■ Fuzzy matching of clippings, meaning that if a Web clipping gets reordered
within the source page or if its character font, size, or style changes, it will still be
identified correctly by the Web Clipping engine and delivered as the portlet
content.

■ Reuse of a wide range of Web content, including basic support of pages written
with HTML 4.0.1, JavaScript, applets, and plug-in enabled content, retrieved
through HTTP GET and POST (form submission).

■ Personalization, enabling page designers to expose input parameters that page
viewers can modify when they personalize the portlet. These parameters can be
exposed as public parameters that a page designer can map as Oracle Portal page
parameters. This feature enables end users to obtain personalized clippings.

■ Integrated authenticated Web content through Single Sign-On, including
integration with external applications, which enables you to leverage Oracle
Application Server Single Sign-On and to clip content from authenticated external
Web sites.

■ Inline rendering, enabling you to set up Web Clipping portlets to display links
within the context of the portlet. As a result, when a user clicks a link in the Web
Clipping portlet, the results display within the same portlet. You can use this
feature with internal and external Web sites.

■ Proxy authentication, including support for global proxy authentication and
per-user authentication. You can specify proxy server authentication details
including type (Basic or Digest) and realm, through the Web Clipping Provider
Test page. In addition, you can specify one of the following schemes for entering
user credentials:

– All users automatically log in using a user name and password you provide.

– All users will need to log in using a user name and password they provide.

– All public users (not authenticated into Portal) automatically log in using a
user name and password you provide, while valid users (authenticated into
Portal) will need to log in using a user name and password they provide.

See the Oracle Fusion Middleware Administrator's Guide for Oracle Portal for more
information.

■ Migration from URL-based portlets, enabling you to migrate your URL-based
portlets to Web Clipping. See Section 5.6, "Migrating from URL-Based Portlets" for
more information.

■ Navigation and clipping of HTTPS-based external Web sites, if appropriate
server certificates are acquired.

■ Open Transport API for customizing authentication mechanisms to clipped
sites. By default, Web Clipping provider supports only HTTP challenge-based
authentication methods like Basic and Digest, and form submission logins. To
support custom authentication methods, like Kerberos proxy authentication, users
can use the Web Clipping Transport API. See Section 5.5, "Using Web Clipping
Open Transport API" for more information.

■ Clipping of page content from HTML 4.0.1 pages, including the following:

– Clipping of <applet>, <body>, <div>, <embed>, , <object>, ,
, <table>, and tagged content

Adding Web Page Content to a Portal Page

Creating Content-Based Portlets with Web Clipping 5-3

– Preservation of <head> styles and fonts, and Cascading Style Sheets (CSS)

– UTF-8 compliant character sets

– Navigation through hyperlinks (HTTP GET), form submissions (HTTP POST),
frames, and URL redirection

■ National Language Sets (NLS) in URLs and URL parameters. See Section 5.7,
"Current Limitations for Web Clipping" for information about how Web Clipping
determines the character set of clipped content.

By default, all Web clipping definitions are stored persistently in the Oracle Fusion
Middleware infrastructure database. Any secure information, such as passwords, are
stored in encrypted form, according to the Data Encryption Standard (DES), using
Oracle encryption technology.

5.2 Adding Web Page Content to a Portal Page
To add Web page content to a portal page, follow the steps described in the following
sections:

■ Section 5.2.1, "Adding a Web Clipping Portlet to a Page"

■ Section 5.2.2, "Selecting a Section of a Web Page to Display in the Web Clipping
Portlet"

■ Section 5.2.3, "Setting Web Clipping Portlet Properties"

5.2.1 Adding a Web Clipping Portlet to a Page
To add a Web Clipping portlet to an Oracle Portal page, perform the following steps:

1. Navigate to the Page Groups portlet. By default, the Page Groups portlet is located
on the Build tab of the Portal Builder page.

2. In the Layout & Appearance section, for Pages, click Browse.

3. Figure 5–1 shows the Page Groups tab with the list of pages. For the page to which
you want to add the Web Clipping portlet, click Edit in the Actions column.

Figure 5–1 Selecting a Page

The page you want to edit is displayed.

Adding Web Page Content to a Portal Page

5-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

4. In the region in which you want to add the Web Clipping portlet, click the Add
Portlet icon.

Figure 5–2 shows a portion of the page.

Figure 5–2 Adding a Portlet to a Page

5. On the Add Portlets page, in the Available Portlets list, click the Portlet Builders
link.

6. Click the Web Clipping Portlet link.

7. Click OK. The new instance of the Web Clipping portlet now displays on your
portal page, as shown in Figure 5–3.

Figure 5–3 Web Clipping Portlet Added to a Page

5.2.2 Selecting a Section of a Web Page to Display in the Web Clipping Portlet
To select a section of a Web page to display in the Web Clipping portlet, you use the
Web Clipping Studio. Using the Web Clipping Studio, you can do the following:

■ Browse for Web content

■ Section the chosen target page

■ Choose the exact portion of the Web content to clip

■ Preview the clipped content as a portlet

■ Save the clipped content as a portlet

■ Set portlet properties and save the updated portlet information

To select a section of a Web page to display in the Web Clipping portlet, perform the
following steps:

1. Above the Web Clipping portlet, click the Edit Defaults icon, as shown in
Figure 5–4.

Figure 5–4 Editing Default Settings

Adding Web Page Content to a Portal Page

Creating Content-Based Portlets with Web Clipping 5-5

The Find a Web Clipping page is displayed.

2. In the URL Location field, enter the location of the starting Web page that links to
the content you want to clip, as shown in Figure 5–5.

Figure 5–5 Specifying a URL

3. Click Start.

The Web Clipping Studio displays the page you specified, as shown in Figure 5–6.

Figure 5–6 Browsing to a Page Containing Content for a Web Clipping

Note that the URL in the browser bar changes from:

http://host:port/portal/page?_dad=portal&_schema=PORTAL...

To:

http://host:port/portalTools/webClipping...

Adding Web Page Content to a Portal Page

5-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

4. Browse to the page that contains the content you want to clip.

As you click hyperlinks in the Web page, your navigation links are recorded.

5. Once you display the page that contains the content you want to clip, in the Web
Clipping Studio banner, click Section, as shown in Figure 5–7.

Figure 5–7 Sectioning the Target Web Page

Sectioning divides the target Web page into its clippable sections, as shown in
Figure 5–8. After you click Section, you are no longer able to browse links in the
displayed page. If you want to continue navigation, click Unsection in the Web
Clipping Studio banner.

Figure 5–8 Sectioned Target Web Page

6. At the top left of the section of the Web content you want to clip, click Choose.

You can choose only one section as a clipping at a time.

Note: Any browsing operations that do not contribute to the
eventual Web clipping will be discarded. Only the significant
browsing operations are recorded for later playback during the show
mode; any discarded links are not visited.

For any Web sites that require HTTP Basic or Digest Authentication, a
form is displayed that requests user name and password information.
This encoded authentication information is recorded as part of the
browsing information.

Adding Web Page Content to a Portal Page

Creating Content-Based Portlets with Web Clipping 5-7

7. Web Clipping Studio displays a preview of your chosen section. If it is the section
you want, click Select in the Web Clipping Studio banner. The Web Clipping
Studio displays the Find a Web Clipping page, with the properties of the clipping.

If you do not want to use the section you clipped in your portlet, click Unselect to
return to the page containing the section. You can choose another section on the
page, or click Unsection to navigate to another page.

Some sections may contain no data, only whitespace. For example, a Web page
may contain an HTML <DIV> tag that contains no text or images. If you click
Choose on a section that contains no data, Web Clipping displays a preview, but
the preview correctly shows only whitespace. In this case, click Unselect in the
preview page to return to the sectioned page. Then, select a section containing
data.

8. In the Find a Web Clipping page, click OK to display the selected Web clipping in
the Web Clipping portlet on your page. (You can edit default properties in the
page. See Section 5.2.3, "Setting Web Clipping Portlet Properties" for more
information.)

Figure 5–9 shows the content added to the Web Clipping portlet.

Figure 5–9 Clipped Content Added to the Web Clipping Portlet on a Portal Page

Note that the Refresh link in the Web Clipping Portlet retrieves fresh data from the
originating Web site. The Portlet Refresh link reloads the portlet, but it may retrieve
the data from the cache, depending upon the settings for expiration.

Note: To increase the number of sections available from which to
choose, click Section Smaller in the Web Clipping Studio banner. For
example, you would click Section Smaller to drill down one level of
nested tables. To decrease the number of sections available from
which to choose, click Section Larger.

Adding Web Page Content to a Portal Page

5-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

5.2.3 Setting Web Clipping Portlet Properties
You can edit various portlet settings to change the appearance of the Web Clipping
portlet and to specify how end users can interact with the portlet.

To set Web Clipping portlet properties, perform the following steps:

1. Choose the section you want, click Select in the Web Clipping Studio banner. Web
Clipping Studio displays the Find a Web Clipping page with a Properties section,
as shown in Figure 5–10.

Figure 5–10 Properties Section of Find a Web Clipping Page

2. From the URL Rewriting list in the Properties section, choose Inline if you want
link targets to be displayed inside the portlet, or choose None if you want link
targets to replace the current Portal page in the browser.

3. In the Title field, enter a title to display in the portlet banner.

4. In the Description field, enter a description of the portlet.

5. In the Time Out (seconds) field, enter the amount of time (in seconds) for the Web
Clipping provider to attempt to contact the Web page from which the content was
clipped.

6. In the Expires (minutes) field, enter the amount of time (in minutes) that cached
content is valid. Any requests for portlet content that occur within the time period
you specify will be satisfied from the cache.

Once the cache period is exceeded, requests for portlet content will be satisfied by
retrieving content from the portlet's Web Clipping data source. The cache will also
be refreshed with this content.

7. If you entered any information in a form while clipping content for the Web
Clipping portlet, the Parameterize Inputs section is available. Select the Click to
start parameterizing check box to customize parameters associated with the Web
Clipping portlet content. Then perform the following steps:

a. From the Parameters list, choose the parameters that you want to customize.

b. From the Personalizable list, select a parameter if you want to allow end users
to provide their own values for the parameters when they personalize the
portlet. Select None if you do not want to allow this.

c. In the Display Name field, enter a name to be displayed for the parameter.

d. In the Default Value field, enter a value to use by default for the parameter.

Section 5.4.3, "Personalizing a Web Clipping Portlet" provides an example of
personalizing parameters.

8. Click OK.

Integrating Authenticated Web Content Using Single Sign-On

Creating Content-Based Portlets with Web Clipping 5-9

5.3 Integrating Authenticated Web Content Using Single Sign-On
This section walks you through an example that demonstrates how you can leverage
OracleAS Single Sign-On to integrate content from external Web sites that require
authentication into a Web Clipping portlet.

The example incorporates a secured page from Oracle Metalink (an external
application) into a Web Clipping portlet.

To integrate an external application, perform the following steps:

1. Set up the external application in Oracle Portal, specifying the authentication
information by performing the following steps. Refer to Oracle Fusion Middleware
Administrator's Guide for Oracle Portal for more details.

a. Log in to Oracle Portal as a user who has SSO Administration privileges, for
example, the orcladmin user.

b. Navigate to the Administer External Applications portlet. (Click the
Administer tab, then click the Portal subtab. In the SSO Server
Administration section, which is in the right column, select Administer
External Applications.)

c. Click Add External Application.

d. In the Create External Application page, in the Application Name field, enter
a name for the application, for example, Metalink.

e. For Login URL, enter the URL to log in to the application, for example,
http://metalink.oracle.com/metalink/plsql/sit_
main.showSitemap?p_showTitle=0. To determine the URL, navigate to
the desired application in a browser and note the URL.

For Form-based Authorization, view the source of the login page for the
external application and note the URL to be accessed during the login action.

f. For User Name/ID Field Name, enter the field name that the external
application uses for the user name. Determine the field name by viewing the
source for the desired page. If the Authentication method uses Basic
Authentication, you do not need to enter a field name. For Metalink, you do
not need to enter anything in this field.

g. For Password Field Name, enter the field name that the external application
uses for the password. Determine the field name by viewing the source for the
desired page. If the Authentication method uses Basic Authentication, you do
not need to enter a field name. For Metalink, you do not need to enter
anything in this field.

h. Select Basic Authentication as the authentication method.

Figure 5–11 shows a portion of the Create External Application page:

Integrating Authenticated Web Content Using Single Sign-On

5-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 5–11 Creating an External Application

i. In the Additional Fields section, you can enter names and values of any
additional fields that are submitted with the login form of the external
application. To specify a field name that is used to indicate a redirection URL,
enter redirectFieldName for Field Name. For this example, you do not
need to enter additional fields. Figure 5–12 shows the Additional Fields
section.

Figure 5–12 Specifying Redirection

j. Click OK.

k. To test your credentials with Oracle Metalink, in the Administer External
Applications page, click the name of the application you just created. Then, in
the External Application Login page, log in to the application Oracle Metalink
using your Oracle Metalink user name and password.

Integrating Authenticated Web Content Using Single Sign-On

Creating Content-Based Portlets with Web Clipping 5-11

In the Administer External Applications page, click Close.

For more information about OracleAS Single Sign-On Server and external
applications, see the Oracle Application Server Single Sign-On Administrator's Guide.

2. For the Web Clipping portlet, create a new Web Clipping provider by performing
the following steps:

a. Click the Administer tab, then click the Portlets tab.

b. Select Register a Provider.

c. In the Register a Provider page, enter webClippingMetalink for the Name
and webClipping Metalink for the Display Name. Enter values for
Timeout and Timeout Message. Choose Web for the Implementation Style.

d. Click Next.

e. In the General Properties section of the Define Connection page, for the URL,
enter:

http://host:port/portalTools/webClipping/providers/webClipping

Note that host:port refers to the host and port where the providers are
located. This corresponds to the URL for Oracle Portal.

f. For the user's identity, select The user's identity needs to be mapped to a
different name in the Web provider's application, and/or the Web provider
requires an external application login for establishment of a browser
session. If selecting this option, specify the external application ID below.

g. For External Application ID, click the List of Values icon and select the
external application you added.

Figure 5–13 shows the top part of the Define Connections page.

Figure 5–13 Specifying an External Application for a Web Clipping Provider

h. In the User/Session Information section, select User to send user specific
information to the provider. For Login Frequency, select Once Per User
Session.

Integrating Authenticated Web Content Using Single Sign-On

5-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

i. Check that the proxy settings are correct. If you use a proxy server to contact
the Web providers from the middle tier, enter the proxy server for Middle
Tier.

If you use a proxy server to contact the Web providers from the portal
repository, enter the proxy server for Portal Repository.

Usually, because the Oracle Portal and Web Clipping URLs point to the same
middle tier, this step is not necessary.

j. Click Finish.

k. In the Registration Confirmation page, if the registration was successful, click
OK.

3. Add a portlet to a page, using the Web Clipping Metalink provider that you just
created, by performing the following steps:

a. In Oracle Portal, navigate to the page in which you want to add the portlet.

b. In the region in which you want to add the Web Clipping portlet, click the
Add Portlet icon.

c. In the Add Portlets to Region page, search for Web Clipping Metalink. It is
located in the Portlet Staging Area. Click it to move it to the Selected Portlets
box.

d. Click OK.

Section 5.2.1, "Adding a Web Clipping Portlet to a Page" describes in detail how to
add a portlet.

4. If you have not entered your credentials for the External Application representing
Metalink, the portlet will contain an Update login information link. Click the link
and enter your credentials. Then, click OK.

5. Select a section of a page to display in the Web Clipping portlet, by performing the
following steps:

a. In the Web Clipping portlet, click the Edit Defaults icon.

The Find a Web Clipping page is displayed.

b. In the URL Location field, the default URL for the External Application is
displayed. Change it to the location of the starting Web page that links to the
content you want to clip. In this case, enter
http://www.metalink.oracle.com.

c. Click Start. The Web Clipping Studio displays the page you specified. Log in
to Oracle Metalink.

d. Browse to the page that contains the content you want to clip. After you
display the page that contains the content you want to clip, click Section in the
Web Clipping Studio banner. Figure 5–14 shows the external application
displayed in Web Clipping Studio.

Integrating Authenticated Web Content Using Single Sign-On

Creating Content-Based Portlets with Web Clipping 5-13

Figure 5–14 External Application in Web Clipping Studio

e. At the top left of the section of the Web content you want to clip, click Choose.

f. Web Clipping Studio displays a preview of your chosen section. If it is the
section you want, click Select in the Web Clipping Studio banner.

The Web Clipping Studio displays the Find a Web Clipping page, with the
properties of the clipping, as shown in Figure 5–15.

Figure 5–15 Properties of the External Application

Adding a Web Clipping That Users Can Personalize

5-14 Oracle Fusion Middleware Developer's Guide for Oracle Portal

g. In the Find a Web Clipping page, from the URL Rewriting list, choose Inline
to specify that you want link targets displayed inside the portlet, rather than
in a new browser window. OK to display the selected Web clipping in the
Web Clipping portlet on your page, as shown in Figure 5–16.

Figure 5–16 External Application Displayed in Portlet

Now, the Web clipping, even though it is from a page requiring authentication, is
available in your portlet.

Note that you can associate only one external application with a provider. For each
external application, you must register a new provider. Each portal user accesses the
authenticated content using their user name and password for that system, not the
page designer's credentials.

5.4 Adding a Web Clipping That Users Can Personalize
This section walks you through an example that demonstrates how you can enable
end users to personalize their own view of the content in a Web Clipping portlet.

In the example, you perform the following tasks:

■ Section 5.4.1, "Adding a Web Clipping Portlet to a Personal Page"

■ Section 5.4.2, "Selecting a Clipping in OTN"

■ Section 5.4.3, "Personalizing a Web Clipping Portlet"

5.4.1 Adding a Web Clipping Portlet to a Personal Page
Administrators can set up personal pages for all users. This task assumes that the
administrator has enabled this functionality. This task explains how to add the Web
Clipping portlet to your personal page. To do this, perform the following steps:

Adding a Web Clipping That Users Can Personalize

Creating Content-Based Portlets with Web Clipping 5-15

1. In the Work In field of the Page Groups portlet, select the page group that
contains personal pages.

By default the Page Groups portlet is located on the Build tab of the Portal Builder
page and the Personal Pages are located in Shared Objects page group.

2. In the Pages section, select Personal Pages. Expand the node for the first letter of
your user name. To View the Personal pages page (Figure 5–17), click on View link
in Page Group portlet.

Figure 5–17 Expanding Page Group Map Nodes

3. Click your Page Name. Your personal page is displayed.

4. In any portlet region, click the Add Portlets icon.

5. In the Add Portlets page, click the Web Clipping Portlet link.

By default, the Web Clipping portlet is located in the Portal Builder page of the
Portlet Repository. If you cannot find this page, use the Search field to find the
portlet.

6. The Web Clipping portlet is added to the Selected Portlets list. Click OK.

5.4.2 Selecting a Clipping in OTN
In this task, you navigate to the Oracle Technology Network (OTN) and search for
specific information, then select the results as the clipping for your portlet. To do this,
perform the following steps:

1. In the Web Clipping portlet, click the Edit Defaults icon.

2. In the Web Clipping Studio's Find a Web Clipping page, in the URL Location
field, enter:

http://www.oracle.com/technology/products/ias/portal/index.html

Click Start. OTN displays the Portal Center page.

3. Enter a search string in the Search field at the top of the page. For this example,
enter "web clipping portlet" (including the quotation marks), then click
Search.

Adding a Web Clipping That Users Can Personalize

5-16 Oracle Fusion Middleware Developer's Guide for Oracle Portal

The Search result is displayed in the Web Clipping Studio, as shown in
Figure 5–18.

Figure 5–18 Searching for Information on OTN

4. Click Section. Web Clipping Studio divides the target Web page into its clippable
sections, as shown in Figure 5–19.

Figure 5–19 Sectioning the Target Web Page

5. At the top left corner of the search result, click Choose.

A preview of the search result section displays.

Some sections may contain no data, only whitespace. For example, a Web page
may contain an HTML <DIV> tag that contains no text or images. If you click
Choose on a section that contains no data, Web Clipping displays a preview, but
the preview correctly shows only whitespace. In this case, click Unselect in the
preview page to return to the sectioned page. Then, select a section containing
data.

6. Click Select to confirm that the search result section is the one you want to clip.

Adding a Web Clipping That Users Can Personalize

Creating Content-Based Portlets with Web Clipping 5-17

7. In the Find a Web Clipping page, click OK to display the selected Web Clipping in
the Web Clipping portlet on your page. Figure 5–20 shows the Web Clipping
displayed in the page.

Figure 5–20 Selected Web Clipping Displayed in Web Clipping Portlet

5.4.3 Personalizing a Web Clipping Portlet
In this task, you edit the properties of the Web Clipping portlet to allow end users to
display different search results in the portlet. To do this, perform the following tasks:

1. Above the Web Clipping portlet you just added, click the Edit Defaults icon, as
shown in Figure 5–21.

Figure 5–21 Clicking Edit Defaults for the Web Clipping Portlet

2. In the Find a Web Clipping page, modify the following items in the Properties
section:

■ From the URL Rewriting list, choose Inline to specify that you want link
targets displayed inside the portlet, rather than in a new browser window.

Adding a Web Clipping That Users Can Personalize

5-18 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ In the Title field, enter OTN Search. This title displays in the header of your
Web Clipping portlet, as well as the pages where users can personalize
parameters for the Web clipping.

Figure 5–22 shows the Properties and Parameterize Inputs sections of the Find a
Web Clipping page.

Figure 5–22 Setting Properties for a Web Clipping

3. Because the content displayed in the portlet was reached by entering information
in the Search field on OTN, you can customize the parameters used by the search
to allow end users to specify their own search string.

In the Parameterize Inputs section, select the Click to start parameterizing check
box.

4. In the parameters table, make the following changes:

■ In the Parameters column, choose p_Query from the list.

■ In the Personalizable column, choose Param1 from the list. You can manually
add more parameters in the provider.xml file if you need to.

■ In the Display Name column, enter OTN Search.

■ Make sure that Default Value displays "web clipping portlet" to be sure you
have selected the right parameter.

Figure 5–23 shows the parameters table.

Figure 5–23 Specifying Parameters for User Input

5. Click OK to display the default search results in the Web Clipping portlet on your
page.

6. In the Editing Views section, click View Page.

7. In the Web Clipping portlet header, click Personalize, as shown in Figure 5–24.

Adding a Web Clipping That Users Can Personalize

Creating Content-Based Portlets with Web Clipping 5-19

Figure 5–24 Clicking Personalize in the Web Clipping Portlet Header

8. In the page that displays, scroll down to the Inputs section. Notice that the
parameter field for the search string is labeled OTN Search, as you specified for
the Display Name for this parameter. In the OTN Search field, enter a different
search string. For example, enter OmniPortlet 2004, as shown in Figure 5–25.

Figure 5–25 Specifying Input for Parameters

9. Click OK.

The Web Clipping portlet now displays the results of performing a search on OTN
for OmniPortlet 2004 information, as shown in Figure 5–26.

Figure 5–26 New Web Clipping Result Based on Customer Input Parameter

Using Web Clipping Open Transport API

5-20 Oracle Fusion Middleware Developer's Guide for Oracle Portal

5.5 Using Web Clipping Open Transport API
To support custom authentication methods, users can use the Web Clipping Transport
API. To extend the Web Clipping transport layer to support custom authentication
methods, users must perform the following implementation and deployment
procedures:

Implementation
Users can implement their own transport classes.

■ Users can provide overrides for two use cases of the
oracle.portal.wcs.transport.http.HttpTransportLiaison interface.
In Web Clipping, this interface is used to abstract the HTTP transport layer. By
default, the two use cases of this interface are manifested by following
implementations:

– HttpClientStudioTransportLiaison, which handles HTTP transport in
Web Clipping Studio mode

– HttpClientProviderTransportLiaison, which handles HTTP transport
in Web Clipping Producer show mode

To support more authentication methods, users must override the
addRequestHeaders methods for both the Studio and Provider
HttpClientTransportLiaison implementations to add their own
authentication-specific headers. For more information about implementation, see
Oracle WebLogic Server Web Clipping Transport API Reference.

■ Users must compile the new subclasses and package them into a jar file. To
compile the new subclasses, users can use the following command:

javac -classpath path_to_wcejar -d classes/

Where, path_to_wcejar refers to the path to the wce.jar file.

To create the jar file, for example, users can use the following command from the
classes directory:

jar cvf ../mytransport.jar

Where, mytransport.jar refers to t he jar file users want to create.

Deployment
Users must deploy the jar file to support the custom authentication method.

■ Users must place the jar file into the class path or shared library that is used by the
Web Clipping producer at runtime.

■ Users must register the transport class in the web.xml file for Web Clipping
producer by making the following modifications to the context parameters
defined for HttpClientProviderTranportiaison and
HttpClientStudioTransportLiaison:

– Change the parameter value for
oracle.webclipping.provider.TransportLiaisonClass to the
name of the new class extended from the
HttpClientProviderTransportLiaison class.

– Change the parameter value for
oracle.webclipping.studio.TransportLiaisonClass to the name of
the new class extended from the HttpClientStudioTransportLiaison
class.

Migrating from URL-Based Portlets

Creating Content-Based Portlets with Web Clipping 5-21

■ Finally, users must restart the producer server for the changes to take effect.

5.6 Migrating from URL-Based Portlets
You can migrate URL-based portlets that are stored in a provider.xml file to Web
Clipping portlets. These Web Clipping portlets will exist in the Web Clipping
Repository, but you can access the portlets through pointers defined in the
provider.xml file.

Note that, during the migration process, no modifications will be done on the original
files used by these URL-based portlets.

This section describes the following tasks:

■ Section 5.6.1, "Preparing for Migration"

■ Section 5.6.2, "Performing the Migration"

■ Section 5.6.3, "Post-Migration Configuration"

■ Section 5.6.4, "Maintaining Migrated Portlets"

■ Section 5.6.5, "Limitations in Migrating URL-Based Portlets"

5.6.1 Preparing for Migration
Before you begin the migration, take the following steps:

1. Verify that the Web provider that contains the URL-based portlets you want to
migrate is functional. The migration process will not succeed with non-functional
URL-based portlets. To verify, make sure that the URL-based portlets are used by
your Portal pages and that they appear correctly.

2. Find existing URL-based portlets.

Before you run the migration tool, make sure that you know the file path to the
service deployment properties file, which holds pointers to everything about the
service, including the path to the provider.xml file that holds the URL services
definitions.

You must run the migration tool once for each service. If you have multiple
services, find the entire list of service deployment properties files that will be used
during migration.

The location of these service deployment properties files may vary depending on
individual deployment scenarios. Typically, with JPDK samples, they are located
in:

<Domain_home>/servers/WLS_PORTAL/tmp/_WL_user/jpdk

JPDK samples that are shipped with the Oracle Portal are located in the same
directory path.

The list of sample service deployment properties files include the following:

■ urlbasicauth.properties

■ urlexternalauth.properties

■ urlnls.properties

■ urlparams.properties

■ urlsample.properties

Migrating from URL-Based Portlets

5-22 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ urlssl.properties

In the migration process, the service deployment properties file as well as the
provider.xml file used to contain old URL-based portlets will be copied and
imported into the Web Clipping application, together with all the previous
customizations based on the File Preference store. Because no modifications will
be done on the original files used by these URL-based portlets, you do not need to
back up any of these files. They can continue to be used as URL-based portlets.

3. Depending on the types of URL-based portlets you have, you may need to
rearrange them as follows:

■ Because Web Clipping does not offer parallel functionality for the XML Filter
capability that URL-based portlets offer, isolate all of the URL-based portlets
that use the XML Filter into a separate service deployment (and
provider.xml file) that will not be migrated.

■ Because you may face limitations when migrating URL-based portlets that use
external applications, you may decide that the migration is too costly for that
subset of your URL-based portlets. In this case, you can isolate them into a
separate service deployment (and provider.xml file) that will not be
migrated.

4. Make sure that the machine where you are planning to run the migration tool has
local access to the service deployment files and files that the deployment files
point to, for both the URL-based portlets provider and the Web Clipping provider.

5. Make sure that both the Web Clipping Repository and the HTTP Proxy are
configured, and that the proxy settings concur with those used by your
deployment of URL-based portlets. If you have a proxy server that requires
authentication, the Web Clipping provider must be configured with Requires
Authentication enabled. Set the Login scheme to use a global log in (Use Login
below for all users).

Check the Web Clipping Provider Test page at:

http://host:port/portalTools/webClipping/providers/webClipping

See the Oracle Fusion Middleware Administrator's Guide for Oracle Portal for more
information about setting proxy authentication.

6. Shut down the WLS instance where your Portal Tools application is running. This
step ensures that no modifications are made to the files that will be migrated. Do
not restart the WLS instance until after the migration is completed.

To shut down the WLS instance in a Portal instance, use the following command
(from the Oracle\Middleware\user_projects\domains\<Domain
Name>\bin directory):

stopWebLogic.cmd

Domain Name refers to the domain you have configured for your Portal.

5.6.2 Performing the Migration
The migration tool parses the service deployment properties file to find the
provider.xml file that contains the XML definition of the URL-based portlets to be
migrated.

The tool changes the Provider Definition class from URLProviderDefinition to
WcProviderDefinition. For each of the URL-based portlets defined in the
provider.xml file, an equivalent clipping definition is created and inserted into the

Migrating from URL-Based Portlets

Creating Content-Based Portlets with Web Clipping 5-23

Web Clipping Repository. Then, the PortletDefinition XML snippet corresponding to
the portlet being migrated is replaced with a new one that uses WcPortletDefinition as
its class. The replacement XML snippet contains a Clip Id that is a pointer to the newly
inserted clipping definition.

The new PortletDefinition XML snippet will no longer contain the same information as
it did when it was a URLPortletDefinition. Namely, the migration tool uses the URL to
visit as well as the headerTrimTag and footerTrimTag to generate an equivalent Web
Clipping definition that will be stored within the Web Clipping Repository and only
accessible from the provider.xml file through the Clip Id. The only information
remaining will be the title and description. See Section 5.2.3, "Setting Web Clipping
Portlet Properties" for instructions on modifying your clipping.

To migrate portlets, take the following steps:

1. Set environment variables as follows:

■ On UNIX, set LD_LIBRARY_PATH to either the Install_home/lib or
Install_home/lib32, depending on whether the operating system is 32-bit
or 64-bit.

■ On Windows, set PATH to Install_home\bin.

2. Change to the ORACLE_HOME/portal/jlib directory.

3. Use the following command to import the portlet to Web Clipping:

java -Doracle.ons.oraclehome=ORACLE_HOME -jar wcwebdb.jar -import -from
urlservices webclip_depprop urlsvc_depprop

In the example, the parameters have the following meanings:

■ ORACLE_HOME refers to the directory where Oracle application is installed.

■ webclip_depprop refers to the path to your webClipping service deployment
properties file. The path is typically:

MIDDLEWARE_HOME\user_projects\domains\<Domain Name>\servers\WLS_
PORTAL\tmp_WL_user\portalTools\6znell\war\WEB-INF\deployment

Inst_Home refers to the location where Portal is installed. WLS_PORTAL refers
to the WLS instance where your PortalTools application is deployed.

■ urlsvc_depprop refers to the path for the URL-based portlets service
deployment properties file that points to URL-based portlets that you wish to
migrate.

For example, assume your URL-based portlets are deployed in the following
directory on UNIX:

MIDDLEWARE_HOME\user_projects\domains\<DomainName>\servers\WLS_PORTAL\tmp_WL_
user\portalTools\6znell\war\WEB-INF\providers

5.6.3 Post-Migration Configuration
After you migrate all of the URL-based portlets, take the following steps:

1. Start the WLS instance that hosts your provider.

To start the WLS instance, use the following command:

startWeblogic.cmd

Migrating from URL-Based Portlets

5-24 Oracle Fusion Middleware Developer's Guide for Oracle Portal

2. Update all Portal instances where URL-Based portlets were previously registered.
Go to Portal Navigator to find your previously registered URL-based Portlet
provider. Click Edit Registration and then click the Connection tab to edit the
connection information to the newly migrated provider. Depending on how you
registered the portlet, perform either of the following steps:

■ If you previously registered your URL-based Portlet provider using the
Service Id mechanism, your provider URL looked similar to the following:

http://host:port/jpdk/jpdk/providers

In this case, because the Service Id field already contains urn:someservice,
you now need only to update the provider URL value to the following:

http://host:port/portalTools/webClipping/providers

■ If you registered your URL-based Portlet provider using a provider URL that
contained the Service Id, your provider URL looked similar to the following:

http://host:port/jpdk/jpdk/providers/service_id

In this case, you need to update the provider to the following:

http://host:port/portalTools/webClipping/providers/service_id

For the most part, the rest of the registration details can remain as they are.
However, if you plan on using the in-line rendering functionality of the migrated
portlets, you must select Once Per User Session for Login Frequency.

3. Restore HTTP proxy authentication setting that you altered in preparation for the
migration. During the migration process, URL-based portlets are converted to
Web Clipping portlets. If the Web Clipping provider has originally been
configured with Requires Authentication enabled, your migrated URL-based
portlets may not function properly.

Check the test page at:

http://host:port/portalTools/webClipping/providers/webClipping

If the Login Scheme is not set to Use login below for all users, then authentication
is accomplished by mapping the current portal user to a proxy server username
and password. A portal user's proxy server credentials can only be entered
through the Personalize link of the Web Clipping portlet. However this cannot be
accomplished through the Personalize link of the migrated URL-based portlets.
The workaround is to temporarily add a Web Clipping portlet to the page and
personalize it to provide the security credentials. After this is complete, you can
remove the temporary portlet.

4. Review each Portal page where you had used URL-based portlets and verify that
the page still contains the content. Occasionally, you may find that, after
migration, what used to be a "trimmed" Web page is now the entire Web page.
This may be due to some of the limitations of the migration tool, which are
discussed in Section 5.6.5, "Limitations in Migrating URL-Based Portlets." If this
happens, edit the portlet by altering the Web Clipping associated with it.

5.6.4 Maintaining Migrated Portlets
After you have migrated the portlets, you no longer use the provider.xml file to
edit the portlets. Instead, you use Web Clipping to edit the portlets, as described in
Section 5.2.3, "Setting Web Clipping Portlet Properties."

Migrating from URL-Based Portlets

Creating Content-Based Portlets with Web Clipping 5-25

Note the following:

■ Whatever modifications you make to the clipping will affect it at the portlet
definition level and therefore will affect all the instances of that portlet which may
exist across Portal pages.

■ When you modify the clipping and you have made the portlet rendering to be
Inline, and have registered the provider with a Login Frequency of Once per User
Session, then page viewers who have an instance of the particular portlet on their
page, will need to log out of Oracle Portal and log in again to see the changes
implemented. This feature avoids disruption of the page viewer's usage of a
particular portlet when it is being modified.

■ For portlets with Web Clippings that require authentication to an external
application prior to accessing the page containing the clip, the "off-line" editing
mechanism detailed in the previous item does not provide such authentication
information. Consequently, there is no way to modify the migrated clipping if the
original URL-based portlet uses external applications. There is currently no
workaround for this limitation.

5.6.5 Limitations in Migrating URL-Based Portlets
This sections describes limitations in migrating URL-based portlets to Web Clipping
and describes some differences between the two methods. Following are the
differences:

■ There is a fundamental difference between URL-based portlets and Web Clipping
in the way that clippings are defined.

URL-based portlets use the headerTrimTags and footerTrimTags tags to define the
begin and end of a particular section in an HTML page. On the other hand, Web
Clippings use the HTML tag path (for example,
html/body/table[2]/tr[2]/td[1]) to denote the path to use when looking
for an HTML tag that would contain the clipping within the page.

While the header and footer trim tags for URL-based portlets offer greater
flexibility (that is, the clipping does not need to reside within one single HTML
tag), it is not as robust. When a clipping can no longer be found in the same
location within a page, there is no way to apply fuzzy matching logic to find the
clipping again. On the other hand, Web Clipping stores key pieces of information
to locate the clipping within the page. If the clipping is not in the same location,
the fuzzy match feature looks for other candidates on the same HTML page to
account for the possibility that the clip may have moved.

■ The migration tool tries to find the clipping (HTML Tag) that encapsulates the
headerTrimTags and footerTrimTags. Often, this will not be the exact HTML that
was extracted by the URL-based portlet. In these cases, the entire Web page will be
returned as the content of the migrated Web Clipping Portlet. To amend this,
simply edit the portlet.

■ URL-based portlets that have been migrated to Web Clipping do not support
proxy authentication by default. This is because URL-based portlets inherently do
not support proxy authentication and Web Clipping preserves the edit mode of
the portlets. Their edit mode does not provide an opportunity to enter
authentication information. To work around this restriction, add an empty Web
Clipping portlet to the same portal and use the Web Clipping portlet Personalize
link to enter the user name and password for proxy authentication.

■ URL-based portlets that used external applications are migrated as full-page Web
Clipping portlets. This means that the URL previously specified by the URL-based

Current Limitations for Web Clipping

5-26 Oracle Fusion Middleware Developer's Guide for Oracle Portal

portlet definition will be the one used to display the full page after the log in
process. Whatever headerTrimTags and footerTrimTags you have previously
specified will be lost, because external application integration occurs at the Portal
side while the migration tool only handles the provider side. Because you are not
connected to any Portal instances at the time of the migration, and the external
applications framework resides only on the Portal side, the migration tool cannot
fetch the authentication information necessary to log in to parse the HTML and
use the headerTrimTags and footerTrimTags that you have previously specified to
compute an HTML Tag Path to store in the Web Clipping Definition.

In maintaining migrated portlets, you can edit the clipping through links in the
test page. However, this does not include URL-based portlets that used external
applications to authenticate themselves to the external sites. There is currently no
workaround for this issue.

■ URL-based portlets that use the XML Filter cannot be migrated to Web Clipping
portlets because there is a lack of such a functionality in the Web Clipping Portlet.
Before proceeding with migration, make sure that you have backed up the
URL-based portlets that use the XML Filter into a separate URL-based portlet
provider. You must do this because the migration occurs at the provider level.
That is, upon interpreting that a particular provider.xml file has
URLProviderDefinition for its provider definition class, all the portlet definitions
contained within that provider definition are migrated.

5.7 Current Limitations for Web Clipping
This section describes current limitations for Web Clipping. For information about the
latest limitations in a release, be sure to read the Oracle Portal Release Notes. Following
are the limitations:

■ If the site to which you are connecting uses a large amount of JavaScript to
manipulate cookies or uses the JavaScript method document.write to modify
the HTML document being written, you may not be able to clip content from the
site.

■ When you integrate with partner applications (through the use of mod_osso), you
cannot clip directly through those partner applications in an authenticated
manner. However, you can use the partner applications through the external
application framework.

■ You cannot use the Web Clipping portlet to clip Oracle Portal pages. As a
workaround, examine the portlet that is supplying the data and take the
appropriate action, as follows:

– For database provider portlets, use export/import to copy pages across
portals.

– For Web provider portlets, re-register the same provider in the destination
portal and edit the portal manually.

■ You cannot use the Web Clipping portlet to clip a Web page that contains more
that one frame, that is, a frameset.

■ Note the following about Web Clipping and the use of cascading style sheets
(CSS):

– If a Web page contains more than one portlet that uses a CSS, they should not
conflict if the CSS uses distinct style names, such as OraRef, to specify a style
within an HTML tag, rather than using an HTML tag name, such as <A>, as
the name of the style.

Current Limitations for Web Clipping

Creating Content-Based Portlets with Web Clipping 5-27

– If one portlet uses a CSS, and that CSS overwrites the behavior of HTML tags
by using the name of the tag, such as <A>, as the name of the style, and a
second portlet on the same page does not use a CSS, the second portlet will be
affected by the style instructions of the CSS of the first portlet.

– If two portlets on the same page use a different CSS and each CSS overwrites
the behavior of HTML tags by using the name of an HTML tag, such as <A>,
as the name of the style, the style that will be displayed depends on the
browser.

■ Web Clipping checks for NLS settings in the following way:

1. Web Clipping checks the Content-Type in the HTTP header for the charset
attribute. If this is present, it assumes that this is the character encoding of the
HTML page.

2. If the charset attribute is not present, it checks the HTML META tag on the
page to determine the character encoding.

3. If the HTML META tag is not found, Web Clipping uses the charset in the
previous browsed page. If this is the first page, it defaults to the ISO-8859-1
character encoding.

4. If the value of the charset for Content-Type or META tag is not supported
(for example, if the charset was specified as NONE), Web clipping uses the
default character set, ISO-8859-1, not the charset in the previously browsed
page.

■ To use the Web Clipping portlet, you must use Netscape 7.0 or higher, or
Microsoft Internet Explorer 5.5 or higher for Windows 2000, or Microsoft Internet
Explorer 6.0 or higher for Windows XP.

If you use browser versions older than these, you may encounter JavaScript errors.

For troubleshooting information, see Appendix B, "Troubleshooting Portlets and
Providers."

Current Limitations for Web Clipping

5-28 Oracle Fusion Middleware Developer's Guide for Oracle Portal

6

Creating Java Portlets 6-1

6 Creating Java Portlets

This chapter explains how to create Java portlets based on the Java Portlet
Specification (JSR 168) or the Oracle Portal Developer Kit-Java (PDK-Java) using the
JSR 168 Java Portlet Wizard and Java Portlet Wizard in Oracle JDeveloper. This chapter
includes the following sections:

■ Section 6.1, "Guidelines for Writing Java Portlets"

■ Section 6.2, "Introduction to Java Portlet Specification (JPS) and WSRP"

■ Section 6.3, "Building JPS-Compliant Portlets with Oracle JDeveloper"

■ Section 6.4, "Introduction to Oracle PDK-Java"

■ Section 6.5, "Building Oracle PDK-Java Portlets with Oracle JDeveloper"

The source code for many of the examples referenced in this chapter is available as
part of PDK-Java. You can download PDK-Java from the Oracle Portal Developer Kit
(PDK) page on Oracle Technology Network (OTN):

http://www.oracle.com/technology/products/ias/portal/pdk.html

When you unzip PDK-Java, you will find the examples in a zip file:

../pdk/jpdk/v2/src.zip

To access the Javadoc reference for PDK-Java, extract jpdk.war from inside of:

../pdk/jpdk/v2/jpdk.ear

Then unzip jpdk.war. The Javadoc is located in a folder called apidoc.

Guidelines for Writing Java Portlets

6-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

6.1 Guidelines for Writing Java Portlets
When you write your portlets in Java for either the Java Portlet Specification (JPS) or
PDK-Java, you should follow the best practices described in this section, which are as
follows:

■ Section 6.1.1, "Guidelines for Show Modes"

■ Section 6.1.2, "Guidelines for Navigation within a Portlet"

■ Section 6.1.3, "Guidelines for JavaScript"

■ Section 6.1.4, "Guidelines for Mobile Portlets"

6.1.1 Guidelines for Show Modes
Show mode exhibits the runtime portlet functionality seen by users. JPS offers some
modes not offered by PDK-Java and vice versa. If you are coding portlets to JPS, you
can declare custom portlet modes in portlet.xml that map to the extra modes
offered by PDK-Java, or to accommodate any other functionality you may want to
provide. For example, the JSR 168 Java Portlet Wizard for JPS portlets includes a
custom mode call print, which you can use to provide a printer friendly version of the
portlet. Defining custom modes is especially useful if the portlet must interoperate
with portal implementations from other vendors

The different Show modes that a portlet may have, each with its own visualization and
behavior, are discussed in the following sections:

■ Section 6.1.1.1, "Shared Screen Mode (View Mode for JPS)"

■ Section 6.1.1.2, "Edit Mode (JPS and Pdk-Java)"

■ Section 6.1.1.3, "Edit Defaults Mode (JPS and PDK-Java)"

■ Section 6.1.1.4, "Preview Mode (JPS and PDK-Java)"

■ Section 6.1.1.5, "Full Screen Mode (PDK-Java)"

■ Section 6.1.1.6, "Help Mode (JPS and Oracle Portal)"

■ Section 6.1.1.7, "About Mode (JPS and PDK-Java)"

Note: Throughout this chapter, you will see references to ORACLE_
HOME. ORACLE_HOME represents the full path of the Oracle home,
and is used in cases where it is easy to determine which Oracle home
is referenced. The following conventions are used in procedures
where it is necessary to distinguish between the middle tier, Oracle
Application Server Infrastructure, or Oracle Metadata Repository
Oracle home:

■ ORACLE_HOME, contains read-only files consisting of system
component binary files and libraries.

■ INSTANCE_HOME, contains one or more OPMN-managed
components, such as Oracle Web Cache, Oracle HTTP Server, or
Oracle Internet Directory. An Oracle instance contains updatable
files, such as configuration files, log files, and temporary files.

■ METADATA_REP_ORACLE_HOME, represents the OracleAS
Infrastructure home containing the Oracle Metadata Repository
and Oracle Internet Directory.

Guidelines for Writing Java Portlets

Creating Java Portlets 6-3

■ Section 6.1.1.8, "Link Mode (PDK-Java)"

6.1.1.1 Shared Screen Mode (View Mode for JPS)
A portlet uses Shared Screen mode (known as View mode in JPS) to appear on a page
with other portlets. This is the mode most people think about when they envision a
portlet. A JPS portlet must have a view mode, the rest are optional.

When developing portlets, you must consider all of the factors that may influence the
portlet’s appearance on the page, such as the portlet’s containing object and the other
portlets with which your portlet will share a page. In Oracle Portal, portlets are
rendered inside HTML table cells when in Shared Screen mode. This means a portlet
can display only content that can be rendered within a table cell, including, among
other technologies, HTML, plug-ins, and Java applets. The actual size of the table cell
is variable depending on user settings, the browser width, and the amount and style of
content in the portlet.

6.1.1.1.1 HTML Guidelines for Rendering Portlets Plain HTML is the most basic way to
render portlets and provides a great deal of flexibility to portlet developers. You can
use almost any standard HTML paradigm, such as links, forms, images, and tables, as
long as it can display within an HTML table cell. Improperly written HTML may
appear inconsistently across different browsers and, in the worst case, could cause
parts of your page not to appear at all. Ensure that you adhere to the following rules:

■ Use standard HTML. The official HTML specification is available from the W3C
(more information available at: http://www.w3.org/MarkUp/).

■ Avoid unterminated and extraneous tags. The behavior of pages with improperly
terminated tags is unpredictable because it depends on what the browser chooses
to do. Tools like weblint (http://www.weblint.org/) and HTML Tidy
(http://www.w3.org/People/Raggett/tidy/) can help detect and fix
hanging and unnecessary tags.

■ Avoid elements that cannot be rendered properly in an HTML table cell. Some
constructs cannot be used simply because they do not display correctly in a table
cell. Frames, for example, do not appear when inserted in a table.

■ Keep portlet content concise. Do not try to take full screen content and expose it
through a small portlet. You will only end up with portlet content too small or
cramped for smaller monitors. Full screen content is best viewed in Full Screen
mode of PDK-Java.

■ Do not create fixed-width HTML tables in portlets. You have no way to tell how
wide a column your portlet will have on a user's page. If your portlet requires
more room than given, it might overlap with another portlet in certain browsers.

■ Avoid long, unbroken lines of text. The result is similar to what happens with
wide fixed-width tables. Your portlet might overlap other portlets in certain
browsers.

■ Check behavior when resizing the page. Test your portlet's behavior when the
browser window is resized to ensure that it works in different browser window
sizes.

■ Check behavior when the default browser font changes. People may choose
whatever font size they wish and they can change it at any time. Your portlet
should handle these situations gracefully.

The HTML you use also impacts the perceived performance of your site. Users judge
performance based on how long it takes for them to see the page they requested, and

Guidelines for Writing Java Portlets

6-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

browsers require time to interpret and display HTML. Given that, you should consider
the following:

■ Avoid deeply nested tables. Deeply nested tables slow performance dramatically
in some older browser versions. Oracle Portal draws several levels of tables to
render portlets. If your portlets use tables within tables, your users may have to
wait quite a while for those pages to render.

■ Avoid lengthy, complex HTML. Portlets share a page with other portlets. Thus,
portlet generation times can significantly effect the overall performance of the
page. If portlets must render complex HTML or wait for external resources, such
as third party applications, it can greatly slow the rendering of the page.

6.1.1.1.2 Cascading Style Sheet Guidelines for Rendering Portlets The fonts and colors of
every portlet on a page should match the style settings chosen by the user. To
accomplish this goal, these style selections are embedded automatically using a
Cascading Style Sheet (CSS) on each Oracle Portal page. The portlets access these
settings for their fonts and colors, either directly or using the API.

While different browsers have implemented varying levels of the full CSS
specification, Oracle Portal uses a very basic subset of this specification to allow for
consistent fonts and colors. CSS implementation levels should not affect the
consistency of your pages across browsers. Follow these guidelines for using CSS:

■ Use CSS instead of hard coding. Hard coding fonts and colors is extremely
dangerous. If you hard code fonts and colors, your portlet may look out of place
when the user changes the page style settings. Since you have no way of knowing
the user's font and color preference choices, you might also choose to hard code a
font color that turns out to be the same as the user's chosen background color, in
which case your portlet appears to be invisible to that user.

■ Use the CSS APIs to format your text. The stylesheet definition is available at the
top of Oracle Portal pages, but you should not call it directly. Instead, use the APIs
provided to format your text appropriately. This method ensures that your
portlets work even if the stylesheet changes in the future.

■ Avoid using CSS for absolute positioning. Since users can personalize their
portal pages, you cannot guarantee that your portlet can appear in a particular
spot.

■ Follow Accessibility Standards. You should ensure that you code you style sheets
according to existing accessibility standards (more information available at
http://www.w3.org/TR/WCAG10-CSS-TECHS/).

6.1.1.2 Edit Mode (JPS and Pdk-Java)
A portlet uses Edit mode to allow users to personalize the behavior of the portlet. Edit
mode provides a list of settings that the user can change. These settings may include
the title, type of content, formatting, amount of information, defaults for form
elements, and anything that affects the appearance or content of the portlet.

Portal users typically access a portlet's Edit mode by clicking Personalize on the
portlet banner. When users click Personalize, a new page appears in the same browser
window. The portlet typically creates a Web page representing a dialog box to choose
the portlet's settings. After applying the settings, users automatically return to the
original page.

6.1.1.2.1 Guidelines for Edit Mode Operations The following guidelines should govern
what you expose to users in Edit mode:

Guidelines for Writing Java Portlets

Creating Java Portlets 6-5

■ Allow users to personalize the title of the portlet. The same portlet may be added
to the same portal page several times. Allowing the user to personalize the title
helps alleviate confusion.

■ If using caching, invalidate the content. If personalizations cause a change in
portlet display or content, you must ensure that the portlet content is regenerated
and not returned from the cache. Otherwise, the user may see incorrect content.

■ Do not use Edit mode as an administrative tool. Edit mode is meant to give users
a way of changing the behavior of their portlets. If you need to change provider
settings or do other administrative tasks, you should create secured portlets
specifically for those tasks.

■ Only show mobile options when applicable. The portlet can interrogate whether
an Oracle Portal instance is enabled for mobile devices. If the instance is not
mobile-enabled, then you need not show any mobile-specific options.
Furthermore, if the page might serve both mobile and desktop users, you should
consider delineating between mobile options and desktop options. Refer to
Section 6.1.4.6, "Tailor Personalization Pages" for additional tips.

6.1.1.2.2 Guidelines for Buttons in Edit Mode For consistency and user convenience, Edit
mode should implement the following buttons in the following order:

■ OK saves the user personalizations and returns the portlet to shared screen mode.

■ Apply saves the user personalizations and reloads the current page.

■ Cancel returns the portlet to shared screen mode without saving changes.

6.1.1.2.3 Guidelines for Rendering Personalization Values When you show the forms used
to change personalization settings, you should default the values such that the user
does not have to constantly re-enter settings. When rendering the personalization
values, use the following sequence to provide consistent behavior:

1. User preference: Query and display this user's personalizations, if available.

2. Instance defaults: If no user personalizations are found, query and display system
defaults for the portlet instance. These are set in Edit Defaults mode and apply
only to this portlet instance.

3. Portlet defaults: If no system default personalizations are found, display general
portlet defaults, which may be blank. General portlet defaults are sometimes hard
coded into the portlet but should be overridden if either of the two previous
conditions apply.

This logic enables the personalizations to be presented in a predictable way, consistent
with the other portlets in the portal. PDK-Java makes this type of logic easy to
implement.

6.1.1.3 Edit Defaults Mode (JPS and PDK-Java)
A portlet uses the Edit Defaults mode to enable page designers to customize the
default behavior of a particular portlet instance. Edit Defaults mode provides a list of
settings that the page designer can change. These settings may include the title, type of
content, formatting, amount of information, defaults for form elements, and anything
that affects the appearance or content of the portlet.

These default personalization settings can change the appearance and content of that
individual portlet for all users. Because Edit Defaults mode defines the system level
defaults for what a portlet displays and how it displays it, this mode should not be
used as an administrative tool or for managing other portlets.

Guidelines for Writing Java Portlets

6-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Page designers access Edit Defaults mode, when editing a page, by clicking the Edit
Defaults icon just above the portlet banner.

When users click the Edit Defaults icon, a new page appears in the same browser
window. The portlet typically creates a Web page representing a dialog box to
customize the portlet instance settings. After applying the settings, users are
automatically returned to the original page.

6.1.1.3.1 Guidelines for Edit Defaults Mode Options The following guidelines should
govern what you expose to page designers in Edit Defaults mode:

■ If using caching, invalidate the cache. If customizations cause a change in portlet
display or content, you must ensure that the portlet content is regenerated and not
returned from the cache. Otherwise, the user may see incorrect content.

■ Do not use Edit Defaults mode as an administrative tool. Edit Defaults mode
gives users a way of changing the behavior of their portlets. If you need to change
provider settings or do other administrative tasks, you should create secured
portlets specifically for those tasks.

■ Only show mobile options when applicable. The portlet can interrogate whether
an Oracle Portal instance is enabled for mobile devices. If the instance is not
mobile-enabled, then you need not show any mobile-specific options.
Furthermore, if the page might serve both mobile and desktop users, you should
consider delineating between mobile options and desktop options. Refer to
Section 6.1.4.6, "Tailor Personalization Pages" for additional tips.

6.1.1.3.2 Guidelines for Buttons in Edit Defaults Mode For consistency and user
convenience, Edit Defaults mode should implement the following buttons in the
following order:

■ OK saves the user customizions and returns the portlet to shared screen mode.

■ Apply saves the user customizations and reloads the current page.

■ Cancel returns the portlet to shared screen mode without saving changes.

6.1.1.3.3 Guidelines for Rendering Personalization Values When you show the forms used
to change customization settings, you should default the values so that the page
designer does not have to constantly re-enter settings. When rendering customization
values, use the following sequence to provide consistent behavior:

1. Instance preferences: Query and display system defaults for the portlet instance.

2. Portlet defaults: If no system default customizations are found, display general
portlet defaults, which may be blank. General portlet defaults are sometimes hard
coded into the portlet but should be overridden by system defaults.

This logic enables the customizations to be presented in a predictable way, consistent
with the other portlets in the portal.

6.1.1.4 Preview Mode (JPS and PDK-Java)
A portlet uses Preview mode to show the user how the portlet looks before adding it
to a page. Preview mode visually represents what the portlet can do.

Portal users typically access a portlet's Preview mode by clicking its Preview icon from
the Add Portlet page. A window then displays the preview of the chosen portlet. The
user has the option to add that portlet to the page. Portal administrators may access
Preview mode from the Portlet Repository.

Guidelines for Writing Java Portlets

Creating Java Portlets 6-7

Guidelines for Preview Mode
The following guidelines should govern what you expose to users in Preview mode:

■ Provide an idea of what the portlet does. Preview mode should generate enough
content for the user to get an idea of the actual content and functionality of the
portlet.

■ Keep your portlet previews small. The amount of data produced in this mode
should not exceed a few lines of HTML or a screen shot. Preview mode appears in
a small area, and exceeding the window's size looks unprofessional and forces
users to scroll.

■ Do not use live hyperlinks. Links may not behave as expected when rendered in
Preview mode. Hyperlinks can be simulated using the underlined font.

■ Do not use active form buttons. Forms may not behave as you expect them to
when rendered in Preview mode. If you decide to render form elements, do not
link them to anything.

6.1.1.5 Full Screen Mode (PDK-Java)
Portlets use Full Screen mode to provide a larger version of the portlet for displaying
additional details. Full Screen mode lets a portlet have the entire window to itself.

For example, if a portlet displays expense information, it could show a summary of the
top ten spenders in Shared Screen mode and the spending totals for everyone in Full
Screen mode. Portlets can also provide a shortcut to Web applications. If a portlet
provided an interface to submitting receipts for expenses in Shared Screen mode, it
could link to the entire expense application from Full Screen mode.

Portal users access a portlet's Full Screen mode by clicking the title of the portlet.

Technically, JPS portlets do not have Full Screen mode. However, you can implement
the equivalent of Full Screen mode for a JPS portlet with View mode (Shared Screen
mode) and a maximized state for the window.

6.1.1.6 Help Mode (JPS and Oracle Portal)
A portlet uses Help mode to display information about the functionality of the portlet
and how to use it. The user should be able to find useful information about the portlet,
its content, and its capabilities with this mode.

Portal users access a portlet's Help mode by clicking Help in the portlet header.

Guidelines for Help Mode
The following guidelines should govern what you expose to users in Help mode:

■ Describe how to use the portlet. Users may not know all the features your portlet
provides just from its interface. Describe the features and how to get the most out
of them.

6.1.1.7 About Mode (JPS and PDK-Java)
Users should be able to see what version of the portlet is currently running, its
publication and copyright information, and how to contact the author. Portlets that
require registration may link to Web-based applications or contact information from
this mode, as well.

Portal users access a portlet's About mode by clicking About on the portlet header. A
new page appears in the same browser window. The portlet can either generate the
content for this new page or take the user to an existing page or application.

Guidelines for Writing Java Portlets

6-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Guidelines for About Mode
The following guidelines should govern what you expose to users in About mode:

■ Display relevant copyright, version, and author information. Users want to
know what portlet they are using and where they can get more information. The
about page may become important when supporting your portlets.

6.1.1.8 Link Mode (PDK-Java)
A portlet uses Link mode to render a link to itself that displays on a mobile page.
When the user clicks the link, the portlet is called in Show mode. The portlet then
renders itself in the mobile View/Shared Screen mode.

For JPS portlets that declare support of the Oracle Mobile XML content type, Oracle
Portal renders the link in one of two ways, as follows:

■ Call the portlet's View mode with the MINIMIZED window state, if the portlet
declares support for it.

■ Otherwise, render a link using the portlet's title.

Guidelines for Link Mode
The following guidelines should govern what you expose to users in Link mode:

■ Limit content. The purpose of Link mode is to render a link without extraneous
material. Link mode should simply render the short title and possibly some
relevant summary information (usually just a word or two).

6.1.2 Guidelines for Navigation within a Portlet
In some ways, navigation between different sections or pages of a single portlet is
identical to navigation between standard Web pages. Users can submit forms and click
links. In the case of typical, simple Web pages, both of these actions involve sending a
message directly to the server responsible for rendering the new content, which is then
returned to the client. In the case of portlets, which comprise only part of a page, the
form submission or link rendered within the portlet does not directly target the
portlet. It passes information to the portlet through the portal. If a link or form within
a portlet does not refer back to the portal, then following that link takes the user away
from the portal, which is not typically the desired behavior.

The portlet developer does not need to know the detailed mechanics of how the
parameters of a form or link get passed around between the user, portal, and portlet.
However, they must understand that they cannot write links in a portlet the same way
they do for typical, simple Web pages.

6.1.2.1 Types of Links for Portlets
A portlet may render links of four classes, as follows:

■ Intraportlet links require the portlet to be aware of the address of Oracle Portal
because they actually refer to it in some way.

■ Portal links, like intraportlet links, must be aware of the address of Oracle Portal
for the same reason.

■ External links make no reference to Oracle Portal and behave in portlets as they
would do in a normal Web page.

■ Internal/Resource links, like external links, also make no reference to Oracle
Portal.

Guidelines for Writing Java Portlets

Creating Java Portlets 6-9

Figure 6–1 contains a summary of these link types. The arrows indicate how the links
reference the resources to which they logically refer.

Figure 6–1 Oracle Portal Link Types

6.1.2.1.1 Intraportlet Links Intraportlet links go to different sections or pages within a
given portlet. Strictly speaking, they refer to the page containing the portlet, but they
contain parameters that cause the portlet to render a different section or page within
that page when it is requested by the user.

As a direct consequence, a portlet cannot expect to render links to different sections or
pages of itself using relative links or absolute links based on its own server context.
Intraportlet link are useful for intraportlet navigation, either as links or form
submission targets.

6.1.2.1.2 Portal Links Portal links refer to significant pages within Oracle Portal, such
as the user's home page.

6.1.2.1.3 External Links External links refer neither to the portlet (through a page) nor
to any part of the portal. If selected, these links take the user away from the portal, for
example, www.oracle.com.

6.1.2.1.4 Internal/Resource Links Internal/Resource links refer to internal (to the portlet)
resources. Sometimes they are exclusively used internally during portlet rendering, for
example as a server side include. On other occasions, they may be used externally to
reference portlet resources like images. In this latter case, you can use the PDK-Java
constructResourceURL method in the UrlUtils class to retrieve images from
behind a firewall using resource proxy.

For example, lottery.jsp of the lottery sample, which is available with PDK-Java,
contains resource proxy requests for images.

<%@ page contentType="text/html;charset=UTF-8" %>
<%@ page session="false" import="oracle.portal.provider.v2.render.*" %>
<%@ page import="oracle.portal.provider.v2.render.http.HttpPortletRendererUtil" %>
<%@ page import="oracle.portal.provider.v2.url.UrlUtils" %>
<%@ page import="oracle.portal.sample.v2.devguide.lottery.*" %>

Guidelines for Writing Java Portlets

6-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

<%
 LottoPicker picker = new LottoPicker();
 picker.setIdentity(request.getRemoteAddr()); %>
<% PortletRenderRequest portletRequest = (PortletRenderRequest)
request.getAttribute("oracle.portal.PortletRenderRequest"); %>
<% String name = portletRequest.getUser().getName(); %>
<P class="PortletHeading1" ALIGN="CENTER">Hi <%= name %>, Your Specially
 Picked</P>
<P ALIGN="CENTER"><IMG SRC="<%= UrlUtils.constructResourceURL(portletRequest,
 HttpPortletRendererUtil.absoluteLink(request, "images/winningnumbers.gif")) %>"
 WIDTH="450" HEIGHT="69" ALIGN="BOTTOM" BORDER="0"></P>
<P>
<P ALIGN="CENTER">
<TABLE ALIGN="CENTER" BORDER="0" CELLPADDING="0" CELLSPACING="0">
<TR>
<%
 int [] picks = picker.getPicks();
 for (int i = 0; i < picks.length; i++) {
%>
 <TD>
 <IMG SRC="<%= UrlUtils.constructResourceURL(portletRequest,
 HttpPortletRendererUtil.absoluteLink(request, "images/ball" + picks[i])) %>
 .gif" WIDTH="68" HEIGHT="76" ALIGN="BOTTOM" BORDER="0">
 </TD>
<%
 }

These calls cause the Parallel Page Engine to make the request to the resource and
return it to the browser. For session-based providers, any cookies returned from the
original initSession call to the provider are sent with the request back to the
provider to maintain the right session context.

6.1.3 Guidelines for JavaScript
You may find the use of JavaScript useful within a portlet, but bear in mind the
following guidelines within your portlets:

■ You should never use JavaScript to redirect the page in which the portlet is
rendered. If you need to direct users elsewhere, you should do so in your portlet
action handling code or open a new window in the browser.

■ Ensure that identifiers in your JavaScript are qualified. By qualifying your
identifiers, you ensure that they are unique and do not clash with any other
JavaScript on the page.

6.1.4 Guidelines for Mobile Portlets
Oracle Portal is capable of rendering its pages for both HTML and non-HTML
(mobile) devices. When rendering for a mobile device, Oracle Portal requires portlets
to generate content in a universal markup language called OracleAS Wireless XML.

Many portlets, known as desktop portlets, generate only HTML responses and as such
can only render themselves in standard HTML browsers. Some portlets, known as
mobile portlets, generate only OracleAS Wireless XML responses. These portlets can
render themselves on any device, including standard HTML browsers. Many portlets,
though, take a hybrid approach that renders either HTML or OracleAS Wireless XML
depending on the environment. These hybrid portlets can render themselves on any
device, but they render best on standard HTML browsers. Although OracleAS
Wireless XML is sufficient for HTML responses, it is not as expressive as HTML. Since

Guidelines for Writing Java Portlets

Creating Java Portlets 6-11

portlets running in both a desktop and mobile environment are typically accessed
using the desktop, developers commonly choose to create hybrid portlets that can
provide the best possible rendition in the desktop environment.

When building mobile portlets, you should adhere to the following guidelines:

■ Section 6.1.4.1, "Declare Capabilities"

■ Section 6.1.4.2, "Declare a Short Title"

■ Section 6.1.4.3, "Implement Personalization of the Short Title"

■ Section 6.1.4.4, "Implement Link Mode"

■ Section 6.1.4.5, "Heed Device Information"

■ Section 6.1.4.6, "Tailor Personalization Pages"

For information on how to build mobile-enabled portlets, refer to Section 7.2.10,
"Enhancing Portlets for Mobile Devices".

6.1.4.1 Declare Capabilities
To properly manage portlets, Oracle Portal must know the set of content types a
portlet generates. Oracle Portal uses this information in the following ways:

■ To restrict the Portlet Repository view in the Add Portlet dialog. Only those
portlets capable of being rendered on the targeted page will appear in the Add
Portlet dialog. For example, when a user invokes the Add Portlet dialog from a
mobile design page, only portlets that indicate they can generate OracleAS
Wireless XML responses are displayed.

■ To display an icon in the Portlet Repository view in the Add Portlet dialog that
identifies portlets capable of being rendered on many devices. For example, when
a user invokes the Add Portlet dialog from a standard design page, those portlets
that are mobile capable are listed with the icon shown in Figure 6–2 to indicate
they will also render on mobile devices.

Figure 6–2 Mobile-enabled Icon

■ To display only those portlets registered with the capability of generating
OracleAS Wireless XML when rendering a standard page on a mobile device.

■ To include only those portlets registered with the capability of generating
OracleAS Wireless XML when creating a new mobile page based on an existing
standard page.

6.1.4.2 Declare a Short Title
The small screen size of the typical mobile device limits the number of characters it can
display in a single line without scrolling. Portlet titles, which appear as the menu item
label when Oracle Portal renders the mobile page in a menu structure, are often too
long for mobile displays. Hence, you can define a short title for your portlet. The short
title replaces the standard title where display space is limited.

6.1.4.3 Implement Personalization of the Short Title
The standard portlet title represents the default portlet instance name when rendered
in the header of a portlet on a standard page. The portlet's short title represents the
default portlet instance name when rendered as a menu item in a mobile page. Just as

Introduction to Java Portlet Specification (JPS) and WSRP

6-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

we recommend that portlets support personalizing the standard title, we also
recommend that your portlets support personalizing the short title. This functionality
enables the page designer or end user to give the instance a meaningful name.

6.1.4.4 Implement Link Mode
When Oracle Portal renders a standard page to the desktop, it assembles portlets on
the page in the tabular layout defined by the page designer. Thus, Oracle Portal
aggregates the content of many portlets on a single page. Because of their small
displays, mobile devices cannot effectively display the content of multiple portlets on
a single page. Instead, the page's portlets appear as links (menu items). Users view
portlet content by navigating the menu one portlet at a time. The menu item links
typically use the portlet's short name. Since well behaved portlets allow
personalization of the short name and the portlet manages its own personalization
data, the portlet must participate in rendering the menu item link. To enable this
functionality, you can implement the Link mode for portlets. In response to a request
to render a portlet in Link mode, a portlet generates a link to itself in the appropriate
content type. For example, if the render requests HTML, the portlet returns an anchor
tag. If the render requests OracleAS Wireless XML, the portlet returns a SimpleHref
tag.

6.1.4.5 Heed Device Information
All requests, whether from mobile devices or the desktop, pass general device
information. For example, one passed attribute identifies the device class, such as
pcbrowser, pdabrowser, or microbrowser (cell phones). A portlet developer may
use this attribute to adjust the response's layout or quantity of data.

6.1.4.6 Tailor Personalization Pages
A single portlet instance must maintain a single set of user personalizations spanning
all devices, mobile and desktop. Therefore, the same personalization page appears
even if the instance is shared between a standard and mobile page, and some fields
apply only to one environment, desktop or mobile. In this situation, the portlet should
identify these fields that pertain to only one environment. For example, a portlet might
display a mobile-only section on its personalization page. Furthermore, because the
mobile capability is configurable, a portlet could remove mobile-only references from
its personalization page when it detects that the mobile functionality is disabled.

6.2 Introduction to Java Portlet Specification (JPS) and WSRP
Organizations engaged in enterprise portal projects have found application integration
to be a major issue. Until now, users developed portlets using proprietary APIs for a
single portal platform and often faced a shortage of available portlets from a particular
portal vendor. All this changes with the introduction of the following standards:

■ Web Services for Remote Portlets (WSRP)

■ Java Portlet Specification (JPS)1 based on JSR 168

These two standards enable the development of portlets that interoperate with
different portal products, and therefore widen the availability of portlets within an
organization. This wider availability can, in turn, dramatically increase an
organization's productivity when building enterprise portals.

1 The Java Portlet Specification 1.0 arose from Java Specification Request 168 and the JSR168
Expert Group.

Introduction to Java Portlet Specification (JPS) and WSRP

Creating Java Portlets 6-13

WSRP is a Web services standard that enables the plug-and-play of visual, user-facing
Web services with portals or other intermediary Web applications. Being a standard,
WSRP enables interoperability between a standards-enabled container and any WSRP
portal. WSRP defines the following:

■ Web Services Definition Language (WSDL) interface for the invocation of WSRP
services

■ Markup fragment rules for markup emitted by WSRP services

■ The method to publish, find, and bind WSRP services and metadata

JPS is a specification that defines a set of APIs to enable interoperability between
portlets and portals, addressing the areas of aggregation, personalization,
presentation, and security. JPS defines container services which provide the following:

■ A portlet API for coding portlet functionality

■ The URL-rewriting mechanism for creating user interaction within a portlet
container

■ The security and personalization of portlets

Oracle actively participates in the WSRP committee and is also a member of the expert
group for JPS.

The Relationship Between WSRP and JPS
WSRP is a communication protocol between portal servers and portlet containers,
while JPS describes the Java Portlet API for building portlets. Combining these
standards enables developers to integrate their applications from any internal or
external source as portlets with WSRP portals. Building portal pages becomes as
simple as selecting portlets from the Oracle Portal repository. Figure 6–3 shows the
architecture of the WSRP specification.

Note: HTML forms can be submitted using either the get or post
method, but the WSRP standard only requires the consumer (portal)
to use the post method. Support of the get method is optional
according to the standard. Since portal consumers are not required to
support the get method, Oracle recommends that you use the post
method when developing your portlets.

Note: Figure 6–3 illustrates the use of JPS portlets with WSRP, but it
should be noted that WSRP can also work with non-JPS portlets.

Building JPS-Compliant Portlets with Oracle JDeveloper

6-14 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 6–3 WSRP Specification Architecture

Since Oracle Portal's existing architecture is so similar to the one specified by the
WSRP committee, Oracle Portal is able to support communication between our portal
and both the new Java Portlet APIs as well as our existing APIs (PDK-Java). Figure 6–4
shows the architecture of the WSRP portal. Notice that the JPS-compliant portlet
container uses the WSRP protocol for communication and the PDK-Java portlet
container uses Oracle's proprietary SOAP protocol for communication.

Figure 6–4 Oracle Portal's WSRP Architecture

6.3 Building JPS-Compliant Portlets with Oracle JDeveloper
Using the JSR 168 Portlet Wizard in Oracle JDeveloper you can expose your portlet
over WSRP quickly and easily.

This section assumes the following:

■ You are familiar with portlet terminology such as portlet Show modes. See
Chapter 1, "Understanding Portlets" and Section 6.1, "Guidelines for Writing Java
Portlets."

Building JPS-Compliant Portlets with Oracle JDeveloper

Creating Java Portlets 6-15

■ You are already familiar with Oracle JDeveloper and know how to build and
deploy Java components using it. You can download Oracle JDeveloper from
OTN. Visit the Oracle JDeveloper page on OTN:

http://www.oracle.com/technology/products/jdev/index.html

This section contains the following sections:

■ Section 6.3.1, "Creating a JSR 168 Portlet"

■ Section 6.3.2, "Adding Portlet Logic to Your JSR 168 Portlet"

■ Section 6.3.3, "Deploying Your JSR 168 Portlet to the Oracle WebLogic Server"

■ Section 6.3.4, "Registering and Viewing Your JSR 168 Portlet"

6.3.1 Creating a JSR 168 Portlet
This section walks you through the JSR 168 Java Portlet Wizard. You can choose which
portlet Show modes you want to implement and the implementation method (JSP,
HTTP servlet, Java class, or HTML). The wizard then creates a simple sample
implementation for each of the selected modes.

The steps to create a portlet using the JSR 168 Java Portlet Wizard are as follows:

1. Start Oracle JDeveloper.

2. In the Application Navigator, expand the application under which you want to
create your portlet.

3. Right-click the project under which you want to create your portlet, and select
New.

4. In New Gallery, expand Web Tier, select Portlets and then Standards-based Java
Portlet (JSR 168) (see Figure 6–5).

Note: If you do not have a project yet, you can create one in one of
the following two ways:

■ Right-click an existing application in the Application Navigator
and choose New Project. Select Empty Project and click OK. Fill
out the Create Project dialog box and click OK.

■ Right-click the Applications node and choose New Application.
Fill out the Create Application dialog box and click OK. When the
Create Project dialog box appears, fill it out and click OK.

Note: Selecting Standards-based Java Portlet opens the Portlet
Wizard for creating JPS-compliant portlets. Selecting Oracle
PDK-Java Portlet opens the Portlet Wizard for creating PDK-Java
portlets.

Building JPS-Compliant Portlets with Oracle JDeveloper

6-16 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 6–5 New Gallery Dialog Box for Standards-based Java Portlet

5. Click OK to display the General Portlet Information page (see Figure 6–6).

Figure 6–6 General Portlet Information Page

6. In the Name field, enter a name for the portlet. You can accept the default name or
enter your own.

7. In the Class field, enter a name for the class that the wizard will create for the
portlet. You can accept the default name provided or enter your own. If you
supply your own name, it must be a valid Java name.

8. From the Package list, select the package in which the class will reside. Click the
Browse button to find packages within the project. If you do not select a specific
package, the wizard uses the default package of the project.

Building JPS-Compliant Portlets with Oracle JDeveloper

Creating Java Portlets 6-17

9. From the Language list, select the default language that your portlet will support.
The wizard uses English by default.

10. Select Enable users to edit portlet content if you want your portlet to support Edit
mode. In the wizard, this option is selected by default..

If you select this option, you can specify the details for the Edit mode later on in
the wizard.

11. Select Enable inter-portlet communication using Oracle WSRP V2 extensions if
you want to create a portlet that supports Oracle WSRP 2.0 extensions and then
click Next.

12. In the Additional Portlet Information page (see Figure 6–7) In the Display Name
field, enter a name for your portlet. This name will be displayed in the Oracle
Portal catalog or repository.

Figure 6–7 The Additional Portlet Information page

13. In the Portlet Title field, enter a descriptive title for your portlet.

The portlet title is displayed in the Resource Palette or Application Resources
panel, so make the title something that will help users decide whether the portlet
is useful to them. The portlet title is also displayed on the portlet header when the
portlet appears on a page.

14. In the Portlet Title field, enter a title for your portlet. This title will be displayed
on the portlet header when the portlet appears on a page.

15. In the Short Title field, enter a shorter title for your portlet. This short title will be
displayed on the portlet header when the portlet appears on a page on a mobile
device.

Note: JSR 168 portlets built with Oracle extensions can be consumed
by any consumer that supports WSRP 2.0. To leverage WSRP 2.0, the
portlets must be deployed to the Oracle WebLogic Server.

Building JPS-Compliant Portlets with Oracle JDeveloper

6-18 Oracle Fusion Middleware Developer's Guide for Oracle Portal

16. In the Description field, enter a description of your portlet. This description will
be displayed beneath the portlet name in the Portlet Repository.

17. In the Keywords field, enter any additional keywords to help users find your
portlet in a search.

18. Click Next to display the Content Types and Portlet Modes page shown in
Figure 6–8.

Alternatively, you can click Finish to create the portlet immediately, using the
default values for all remaining settings.

Figure 6–8 Content Types and Portlet Modes Page

19. By default, your portlet will display text/html as the content type. If you want to
add other content types, select text/html, then click Add.

The list of available content types displays (Figure 6–9). Select the desired content
types in the Available list and use the arrow buttons to move them to the Selected
list. When you are finished, click OK.

Figure 6–9 Content Types Dialog Box

Building JPS-Compliant Portlets with Oracle JDeveloper

Creating Java Portlets 6-19

20. By default, your portlet includes view mode. If you selected Editable on the
General Portlet Properties page, your portlet also includes Edit mode. If you want
to include additional portlet Show modes, select an existing Show mode (for
example, view), then click Add.

The list of available portlet Show modes displays (Figure 6–10). You can add Show
modes by moving the desired modes from the Available list to the Selected list.
When you are finished, click OK. For more information about portlet Show
modes, see Section 6.1, "Guidelines for Writing Java Portlets."

Figure 6–10 Portlet Modes Dialog Box

21. Once you have added all of the desired portlet Show modes, choose a function to
be performed for each mode. For each portlet mode, click the portlet mode and
select an option on the right as follows:

■ Select Generate JSP if you want Oracle JDeveloper to generate a JSP for the
portlet mode. Enter a name for the JSP in the corresponding field, or accept the
defaults.

When you complete the wizard, the generated JSP displays in the Application
Navigator where it can be selected for further development. This is the default
selection for all portlet display modes. This selection enters code in the
generated portlet java class that routes requests for the given mode to the
generated JSP.

■ Select Generate ADF-Faces JSPX to generate .jspx files. The .jspx files will
generate exactly the same markup as JSPs.

■ Select Map to Path if you want to map the portlet to an existing Web resource,
such as a page. Enter the path in the corresponding field. With this selection,
you must write the targeted resource or file yourself. The target could be, for
example, a JSP, a servlet, or an HTML file. This selection enters code in the
generated portlet java class that routes requests for the given mode to the
specified target.

■ Select Custom Code if you want to implement the portlet mode through a
custom coded object. You will create this object later. This selection generates
a skeleton method to render content (private void do<MODE_
NAME><CONTENT_TYPE>) in the generated portlet Java class. You must
update this code to render useful content.

22. Click Next.

If you selected Editable on the General Portlet Properties page earlier in the
wizard, then the Customization Preferences page displays(Figure 6–11). Go to step
23.

Building JPS-Compliant Portlets with Oracle JDeveloper

6-20 Oracle Fusion Middleware Developer's Guide for Oracle Portal

If you did not select this option, then the Security Roles page displays
(Figure 6–13). Go to step 31.

Figure 6–11 Customization Preferences Page

23. If you want to include additional customization preferences, click Add. The Add
New Preferences dialog box displays.

Figure 6–12 Add New Preference Dialog Box

24. In the Name field, enter a name for the new preference. The name must be unique
in the portlet. Use only letters, numbers, and the underscore character.

25. In the Default Value(s) field, enter one or more default values for the new
customization preference. Separate multiple values with commas.

26. Select the Translate Preference check box if you want the customization
preference value to be translated. If you select this option, Oracle JDeveloper
generates a resource bundle class with strings for which you can obtain
translations. At run time, the portlet references the resource bundle entries.

Note: The Name is always translated, but there is not always a
need to translate the Default Value. For example, if the value is an
integer, no translation is needed

Building JPS-Compliant Portlets with Oracle JDeveloper

Creating Java Portlets 6-21

27. Click OK. Repeat the preceding steps if you want to add more customization
preferences.

28. To edit details for existing customization preferences, select the preference in the
Portlet Preferences list and edit the fields in the Preference Details section.

29. To delete an existing customization preference, select the preference in the Portlet
Preferences list and click Remove.

30. Click Next to display the Security Roles page (Figure 6–13).

Figure 6–13 Security Roles Page

31. JSR 168 portlets may use J2EE security roles that are defined in web.xml and
referenced in portlet.xml. The Available list displays the security roles
defined in the portlet application’s Web deployment file (web.xml). Moving a
security role from the Available list to the Selected list creates a reference to the
security role in the application’s portlet deployment file (portlet.xml) that
refers to the security role in web.xml.

32. If you want to define a new security role, click New Security Role. The Create
New Security Role dialog box displays (Figure 6–14).

Figure 6–14 Create New Security Role Dialog Box

33. In the Name field, enter a unique name for the security role.

34. In the Description field, enter a description for the security role, explaining the
access privileges and restrictions this role will have on the portlet.

Building JPS-Compliant Portlets with Oracle JDeveloper

6-22 Oracle Fusion Middleware Developer's Guide for Oracle Portal

35. Click OK.

The new security role is added to the Available list. You can also manually create
security roles.

36. Click Next to display the Caching Option page (Figure 6–15).

Figure 6–15 Caching Option Page

37. Select Cache Portlet if you want to enable caching for your portlet.

Selecting this option indicates that portlet caching is managed by the portlet
container. The portlet itself may choose to cache content for any given response.
The settings on this page apply only when the portlet itself does not specify a
caching condition for a response.

38. In the Default Expiry Conditions section, select:

■ Cache Content Expires After [] Seconds if you want the cached portlet
content to expire after a certain amount of time. Specify the time limit in the
adjacent field.

■ Cache Content Never Expires if you do not want the cached portlet content to
expire. You may want to select this option if the portlet contains static content
that is unlikely to change.

Note: If you do not want any default caching for this portlet,
choose Do Not Cache By Default. In this case, the wizard actually
sets a cache duration of 0 seconds. As stated earlier, this cache
setting only comes into play when the portlet itself does not specify
a caching condition for a response.

If you choose no caching here and you later decide that you want
default caching for the portlet, you can easily go back and change
the cache duration value in the portlet.xml file, which is
generated by the wizard, to a number greater than zero.

Building JPS-Compliant Portlets with Oracle JDeveloper

Creating Java Portlets 6-23

39. Click Next to display the Initialization Parameters page (Figure 6–16).

Figure 6–16 Initialization Parameters Page

40. Initialization parameters provide the Web application developer, who decides
what goes into the .war file, an alternative to JNDI variables for configuring the
behavior of all of the different components of the Web application (for example,
servlets and portlets) in a compatible way. These initialization parameters are
added to the portlet.xml file.

If you want to add an initialization parameter, click New. This adds a new row to
the table of parameters. You can then double click the row to edit the details.

41. In the Name field, enter a unique name for the initialization parameter. Use only
letters, numbers, and the underscore character.

42. In the Value field, enter a default value for the parameter.

43. In the Description field, enter a description for the parameter.

44. To delete an initialization parameter, select it in the table and click Remove.

45. Click Next to display the Finish page.

46. Click Finish to generate the files for your portlet. The following files should be
generated for your project node in the Application Navigator (see Figure 6–17):

■ If you selected Generate JSP for the portlet modes, generated code for each
mode

If you selected Custom Code instead, that code will reside in the portlet's Java
class.

■ Two Java classes

Note: If your Portal is WSRP2 enabled, then the Portal Navigation
Parameters page appears. Click Next to display the Finish page.

Building JPS-Compliant Portlets with Oracle JDeveloper

6-24 Oracle Fusion Middleware Developer's Guide for Oracle Portal

– <packagename>.<portletname>.java is invoked by the portlet
container and contains all the methods required by the portlet standards

– <packagename>.<portletname>Bundle.java contains all the
translation strings for the portlet

■ portlet.xml

■ oracle-portlet.xml

■ web.xml

Figure 6–17 Application Navigator

6.3.2 Adding Portlet Logic to Your JSR 168 Portlet
After you create the default implementation of your portlet, you can extend the
sample code with your own business logic to implement the desired functionality and
features. See the JPS or Javadoc for more information on adding functionality and
features.

6.3.3 Deploying Your JSR 168 Portlet to the Oracle WebLogic Server
After you finish the wizard and successfully generate your portlet, you are ready to
deploy it to the Oracle WebLogic Server. To create and deploy a WAR file, perform the
following steps:

1. In the Application Navigator, right-click the project that contains your portlet and
select New.

2. In the New Gallery, expand General and select Deployment Profiles.

3. In the Items list, select WAR File and click OK.

The Create Deployment Profile -- WAR File dialog box opens.

4. In the Deployment Profile Name field, enter a meaningful name for the
deployment profile (for example, webapp).

5. Click OK.

The Edit WAR Deployment Profile Properties dialog box opens.

6. Under Web Application’s Context Root, select Specify J2EE Web Context Root
and enter the context root in the corresponding field, for example my-portlet.

7. Click OK.

The Project Properties dialog box opens.

8. Click OK.

Building JPS-Compliant Portlets with Oracle JDeveloper

Creating Java Portlets 6-25

9. In the Application Navigator, right-click your project and select Deploy, then
select the deployment profile, next select to, and finally select the
IntegratedWLSConnection.

10. In the Select deployment type dialog box, select Yes and click OK.

11. When the Deployment Finished message displays in the Deployment Log at the
bottom of Oracle JDeveloper, verify that no errors occurred.

12. Construct the WSDL URL for your JPS-compliant portlet as follows:

http://host:port/context-root/portlets/wsrp2?WSDL

where host is the server to which your producer has been deployed.

port is the Oracle Web Cache HTTP Listener port from the Ports tab of the
Application Server Control Console main page.

context-root is the Web Application's Context Root, which is found in the
WAR Deployment Profile Properties under General.

13. In a Web browser, enter the WSDL URL from the previous step to ensure that it is
working. If the WSDL definition does not appear in the browser, then the
deployment of your WAR file must have failed. Refer to Appendix B.2,
"Diagnosing Java Portlet Problems".

14. If you are using SSL (HTTPS), you must modify your WSDL URL before
registering the producer with Oracle Portal. If you are not using SSL, you may
skip to the next step now.

To modify your WSDL URL, perform the following steps:

a. In a Web browser, enter the HTTPS WSDL URL. For example:

http://host:port/context-root/portlets/WSRPBaseService?WSDL

Each port in the definition should be displayed with an HTTPS location, for
example:

<wsdl:port binding="bind:WSRP_v1_Markup_Binding_SOAP"
name="WSRPBaseService">
<soap:address
location="https://host:port/context-root/portlets/WSRPBaseService"/>
</wsdl:port>

b. If the ports are not listed with HTTPS locations, you must change them
manually before proceeding. You can do this by saving the XML to a file from
the browser and opening it in a text editor.

c. Save a copy of the WSDL definition to a file on your application server in a
location where it can be accessed externally over HTTP. For example, the
htdocs directory of your Apache installation. When you register the producer
in Oracle Portal, use the location of this WSDL for your WSDL URL on the
Define Connection page of the registration.

Note: In order for HTTPS to work with a producer, you must have
previously configured the server certificate in the infrastructure server
certificate store as described in the Oracle Fusion Middleware
Administrator's Guide for Oracle Portal.

Building JPS-Compliant Portlets with Oracle JDeveloper

6-26 Oracle Fusion Middleware Developer's Guide for Oracle Portal

15. You should now register your producer and view your portlet. Refer to
Section 6.3.4, "Registering and Viewing Your JSR 168 Portlet".

When you redeploy your portlets to the portlet container, all existing sessions
between the producer and all of its consumers are lost. If a consumer tries to reuse
an existing producer session, it may receive an error message the first time it tries
to contact the producer after redeployment.

Error: Could not get markup. The cookie or session is invalid or there is a
runtime exception.

To reestablish the producer's session, refresh the portal page. You won't see this
error message if you are re-accessing the portlet from a new browser session
because it automatically establishes a new producer session.

6.3.4 Registering and Viewing Your JSR 168 Portlet
After you've created and deployed the provider and its portlets, you should register
the provider with Oracle Portal. Registering your provider gives Oracle Portal the
information it needs to locate and communicate with that provider. After you register
a provider, the provider and its portlets become available in the Portlet Repository.
They are also listed in the Oracle Portal Navigator.

To register providers for your standards-based portlets:

1. Open Oracle Portal and log in. Note that to register your provider, you need to
have Manage or Edit privileges on providers. If you do not have these privileges,
you need to request them from your administrator.

2. If you are not already on the Portal Builder page, click Builder in the upper right
corner.

3. Click the Administer tab.

4. Click the Portlets subtab.

5. In the Remote Providers portlet, click Register a Provider to display the Register
Provider page (Figure 6–18).

Note: When you build portlets and providers with built-in tools,
such as the Portlet Builder, Oracle Portal automatically registers the
provider for you. Once you've created your portlet, it automatically
displays in the Portlet Repository. Oracle Portal also offers built-in
portlets that are contained in a preconfigured provider. For example,
OmniPortlet and Web Clipping are portlets that you can use out of the
box, and are already registered with Oracle Portal. You can view these
portlets in the Add Portlets list. However, if you build the portlets and
providers programmatically, you must then register these providers
to make them available to the portal user.

Note: If you do not want to install Oracle Portal but you still need to
test your portlets, you may want to use the Oracle Portal Verification
Service on OTN to validate your WSRP producers:
http://portalstandards.oracle.com/

Building JPS-Compliant Portlets with Oracle JDeveloper

Creating Java Portlets 6-27

Figure 6–18 Register Provider Page

6. In the Name field, enter the name of the provider. This name must not be more
than 200 characters or contain spaces or other special characters.

7. In the Display Name field, enter a name to display for the provider when it is
referenced, for example in the Portlet Repository. The display name must not be
more than 200 characters.

8. In the Timeout field, enter the number of seconds Oracle Portal should try to
connect to the provider before displaying the timeout message.

9. In the Timeout Message field, enter the message to display when Oracle Portal
cannot establish contact with the provider within the number of seconds specified
in the Timeout field. The message displays within the body of the portlet. The
message may not contain HTML or mobileXML.

10. From the Implementation Style list, select WSRP for your WSRP provider.

11. Click Next to display the Define Connection page (Figure 6–19).

12. In the WSDL URL field, enter the WSDL URL for your provider. For example:

http://myserver.com:8888/my-portlet/portlets/WSRPBaseService?WSDL

Note: If a provider is unavailable for some reason, it can slow down
the rendering of pages that contain portlets from that provider. By
default, Oracle Portal waits until all portlets are returned before
completing the page assembly. To avoid delays, you can set a time
limit using the Page Assembly Timeout on the Main tab of the page
properties. If Oracle Portal cannot retrieve the portlet from the
provider within the specified timeout period, it will render the page
without the portlet. If, at a later time, the provider becomes available,
Oracle Portal refreshes the page, adding the missing portlets. In this
way, page rendering is never halted due to the unavailability of a
particular provider. For more information on the Page Assembly
Timeout, see Oracle Fusion Middleware User's Guide for Oracle Portal.

Building JPS-Compliant Portlets with Oracle JDeveloper

6-28 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 6–19 Define Connection Page

13. Click Next to display the Portal Registration Property Values page (Figure 6–20).

14. Provide any registration properties required by the provider. If there are none,
you can proceed to the next step.

Figure 6–20 Provider Registration Property Values Page

15. Click Finish. You should see a Registration Confirmation page similar to the one
in Figure 6–21.

Figure 6–21 Registration Confirmation Page

This figure shows the Registration Confirmation page, which appears when you
complete the registration process.

16. Your portlet should now be available for adding to pages just as any other portlet
in the Portlet Repository. To add your portlet to a page, follow the instructions in
the Oracle Fusion Middleware User's Guide for Oracle Portal.

Introduction to Oracle PDK-Java

Creating Java Portlets 6-29

6.4 Introduction to Oracle PDK-Java
Oracle PDK-Java gives you a framework to simplify the development of Java portlets
by providing commonly required utilities and allowing you to leverage existing
development skills and application components such as JSPs, servlets, and static
HTML pages. Oracle PDK-Java also enables you to create portlets without having to
deal directly with the complexity of communications between Oracle Portal and
providers.

The Oracle PDK-Java framework is divided into the following areas:

■ The Provider Adapter insulates the developer from the HTTP syntax defined by
Oracle Portal for communication with Web providers. It translates the
information passed between Oracle Portal and your Java Web provider. Without
an adapter, your provider would not only manage portlets, but it would also have
to communicate this information directly to Oracle Portal in the expected
language. The adapter eliminates the need for your Web provider to understand
the portal language and vice-versa.

■ The Provider Interface defines the APIs (functions) required by your Java
implementation to integrate with the Provider Adapter. The Provider Adapter
receives messages from the portal, translates them into calls to the Provider
Interface, and translates the provider's response into a format that the portal can
understand. The Provider Interface contains a set of Java classes that define the
methods your provider needs to implement and, in many cases, provides a
standard implementation. Some of the primary classes are as follows:

– ProviderDefinition (oracle.portal.provider.v2.ProviderDefinition)

– ProviderInstance (oracle.portal.provider.v2.ProviderInstance)

– PortletDefinition (oracle.portal.provider.v2.PortletDefinition)

– PortletInstance (oracle.portal.provider.v2.PortletInstance)

– ParameterDefinition (oracle.portal.provider.v2.ParameterDefinition)

– EventDefinition (oracle.portal.provider.v2.EventDefinition)

■ The Provider Runtime provides a base implementation that follows the
specification of the Provider Interface. The Provider Runtime includes a set of
default classes that implement each one of the Provider Interfaces and enables you
to leverage the rendering, personalization, and security frameworks provided
with PDK-Java. These classes and the associated frameworks simplify the
development of a provider by implementing common functions for Oracle Portal
requests and providing a declarative mechanism for configuring the provider.
Using the Provider Runtime, you can focus your development efforts on the
portlets themselves rather than the infrastructure needed to communicate with the
portal. If the standard behavior of the Provider Runtime does not meet your
requirements, you can easily extend or override specific behaviors. Some of the
primary classes are as follows:

– DefaultProviderDefinition
(oracle.portal.provider.v2.DefaultProviderDefinition)

– DefaultProviderInstance (oracle.portal.provider.v2.DefaultProviderInstance)

– DefaultPortletDefinition (oracle.portal.provider.v2.DefaultPortletDefinition)

– DefaultPortletInstance (oracle.portal.provider.v2.DefaultPortletInstance)

– PortletRenderer (oracle.portal.provider.v2.render.PortletRenderer)

Building Oracle PDK-Java Portlets with Oracle JDeveloper

6-30 Oracle Fusion Middleware Developer's Guide for Oracle Portal

– PortletPersonalizationManager
(oracle.portal.provider.v2.personalize.PortletPersonalizationManager)

– PortletSecurityManager
(oracle.portal.provider.v1.http.DefaultSecurityManager)

■ The Provider Utilities provide methods for simplifying the rendering of portlets.
The utilities include methods for constructing valid links (hrefs), rendering the
portlet's container (including the header), rendering HTML forms that work
within a portal page, and supporting portlet caching.

6.5 Building Oracle PDK-Java Portlets with Oracle JDeveloper
Using the Oracle PDK-Java Portlet Wizard in Oracle JDeveloper you can begin your
portlet development quickly and easily.

This section assumes the following:

■ You are familiar with portlet terminology such as portlet Show modes. Refer to
Chapter 1, "Understanding Portlets" and Section 6.1, "Guidelines for Writing Java
Portlets".

■ You are already familiar with Oracle JDeveloper and know how to build and
deploy Java components using it. You can download Oracle JDeveloper from
OTN. Visit the Oracle JDeveloper page on OTN:

http://www.oracle.com/technology/products/jdev/index.html

This section contains the following sections:

■ Section 6.5.1, "Creating an Oracle PDK-Java Portlet and Provider"

■ Section 6.5.2, "Adding Portlet Logic to Your Oracle PDK-Java Portlet"

■ Section 6.5.3, "Validating Your Oracle PDK-Java Portlet and Provider"

■ Section 6.5.4, "Deploying Your Oracle PDK-Java Portlet to an Application Server"

■ Section 6.5.5, "Registering and Viewing Your Oracle PDK-Java Portlet"

6.5.1 Creating an Oracle PDK-Java Portlet and Provider
This section walks you through the Oracle PDK-Java Portlet Wizard. You can choose
which portlet Show modes you want to implement and the implementation method
(JSP, HTTP servlet, Java class, or HTML). The wizard then creates a simple sample
implementation for each of the selected modes.

The steps to create a portlet and provider are as follows:

1. Start Oracle JDeveloper.

2. In the Application Navigator, expand the application under which you want to
create your portlet.

3. Right-click the project under which you want to create your portlet, and select
New.

Building Oracle PDK-Java Portlets with Oracle JDeveloper

Creating Java Portlets 6-31

4. In the New Gallery, expand the Web Tier category and select Portlets.

5. In the Items list, select Oracle PDK-Java Portlet (Figure 6–22).

Figure 6–22 New Gallery Dialog Box for Oracle PDK-Java Portlet

6. Click OK to display the Provider Details Page (Figure 6–23).

Note: If you do not have a project yet, you can create one in one of
the following ways:

■ Right-click an existing application in the Application Navigator
and choose New Project. Select Empty Project and click OK. Fill
out the Create Project dialog box and click OK.

■ Right-click the Applications node and choose New Application.
Fill out the Create Application dialog box and click OK. When the
Create Project dialog box appears, fill it out and click OK.

Note: Selecting Standards-based Java Portlet opens the Portlet
Wizard for creating JPS-compliant portlets. Selecting Oracle
PDK-Java Portlet opens the Portlet Wizard for creating PDK-Java
portlets.

Building Oracle PDK-Java Portlets with Oracle JDeveloper

6-32 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 6–23 Provider Details Page

7. In the Provider Details page, enter a name for the new producer that will contain
your portlet. This name must be unique within the project. In the PDK-Java, the
term provider is used instead of producer. A provider is exactly the same thing as
a producer.

8. Select Generate Deployment Properties File.

This automatically generates two .properties files:

■ serviceID.properties defines properties for a producer with that service
ID. The service ID has the same value as the producer name.

■ _default.properties is a default properties file. A producer application
may have more than one producer, each with its own service ID. On
registration, if no service ID is defined, then the default properties file is used.

9. Select Generate XML Entries.

This automatically generates a producer definition file (provider.xml) for the
producer that contains details of the portlets belonging to the producer, including
those generated by the wizard.

10. Select Generate Index JSP.

This automatically generates an index.jsp file that lists all the producers that
reside in the application with hyperlinks that enable easy access to producer test
pages.

11. Click Next to display the General Portlet Information Page.

Building Oracle PDK-Java Portlets with Oracle JDeveloper

Creating Java Portlets 6-33

Figure 6–24 General Portlet Information Page

12. In the Portlet Name field, enter a meaningful name for your portlet. This name is
used internally and is not exposed to users. The display name is displayed to users
in portlet selection lists, such as the Component Palette.

13. In the Display Name field, enter a display name for your portlet. This name will
be displayed in portlet selection lists, such as the Portlet Repository, where users
choose which portlets to add to a page.

14. In the Description field, enter a description for your portlet. This description will
be displayed beneath the portlet name in the Portlet Repository.

15. In the Timeout field, enter the number of seconds to allow for rendering the
portlet.

16. In the Timeout Message field, enter a message to display if the rendering of the
portlet exceeds the timeout value specified.

17. Click Next to display the View Modes page (Figure 6–25).

Building Oracle PDK-Java Portlets with Oracle JDeveloper

6-34 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 6–25 View Modes Page

18. In the Show page section, select the implementation style for Shared Screen mode
from the Implementation style list:

■ Select JSP to implement the portlet’s Shared Screen mode as a JavaServer
Page. In the File name field, enter the name of the file to be generated by the
wizard.

■ Select HTTP Servlet to implement the portlet’s Shared Screen mode as an
HTTP servlet. In the Package name field, enter the name of the package that
contains the HTTP servlet. In the Class name field, enter the Java class to be
referenced in conjunction with the portlet’s Shared Screen mode.

■ Select HTML File to implement the portlet’s Shared Screen mode as an HTML
file. In the File name field, enter the name of the file to be generated by the
wizard. Note that, when you choose HTML File, it results in the following
being added inside the <renderer> element of your provider.xml file:

<showPage class="oracle.portal.provider.v2.render.http.ResourceRenderer">
 <resourcePath>/hub_inside/index.html</resourcePath>
 <contentType>text/html</contentType>
 <charSet>UTF-8</charSet>
</showPage>

<charSet> tells the provider what character set to use to encode the HTML
page. The default character set specified by the wizard is UTF-8. If you require
character set encoding other than UTF-8, you must update this element of
provider.xml accordingly.

■ Select Java class to implement the portlet’s Shared Screen mode as a Java class.
In the Package name field, enter the name of the package that contains the
Java class. In the Class name field, enter the name of the Java class.

For more information about Shared Screen mode, see Section 6.1.1.1, "Shared
Screen Mode (View Mode for JPS)."

Building Oracle PDK-Java Portlets with Oracle JDeveloper

Creating Java Portlets 6-35

19. If you want to implement Full Screen mode for your portlet, select Show details
page, then select an Implementation style as described earlier for Show page.

For more information about Full Screen mode, see Section 6.1.1.5, "Full Screen
Mode (PDK-Java)."

20. Click Next to display the Customize Modes page (Figure 6–26)

Figure 6–26 Customize Modes Page

21. Edit page is selected by default. If you want to implement Edit mode for your
portlet, select an Implementation style as described earlier for Show page. If you
do not want to implement Edit mode, clear the Edit page check box.

For more information about Edit mode, see Section 6.1.1.2, "Edit Mode (JPS and
Pdk-Java)."

22. If you want to implement Edit Defaults mode for your portlet, select Edit Defaults
page, then select an Implementation style as described earlier for Show page.

For more information about Edit Defaults mode, see Section 6.1.1.3, "Edit Defaults
Mode (JPS and PDK-Java)."

23. Click Next to display the Additional Modes page (Figure 6–27).

Building Oracle PDK-Java Portlets with Oracle JDeveloper

6-36 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 6–27 Additional Modes Page

24. If you want to implement Help mode for your portlet, select Help page, then
select an Implementation style as described earlier for Show page.

For more information about Help mode, see Section 6.1.1.6, "Help Mode (JPS and
Oracle Portal)."

25. If you want to implement About mode for your portlet, select About page, then
select an Implementation style as described earlier for Show page.

For more information about About mode, see Section 6.1.1.7, "About Mode (JPS
and PDK-Java)."

26. Click Next to display the Public Portlet Parameters page (Figure 6–28)

Building Oracle PDK-Java Portlets with Oracle JDeveloper

Creating Java Portlets 6-37

Figure 6–28 Public Portlet Parameters Page

27. If you want to add public parameters to your portlet, click Add to create a blank
row. For more information about using parameters, see Section 7.2.3, "Passing
Parameters and Submitting Events."

28. In the Name field, enter an internal name for the parameter, for example,
MyParam.

29. In the Display Name field, enter a name to display to users, for example, My
Portlet Parameter.

30. In the Description field, enter descriptive information about the parameter.

31. Click Next to display the Public Portlet Events page (Figure 6–29).

Building Oracle PDK-Java Portlets with Oracle JDeveloper

6-38 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 6–29 Public Portlet Events Page

32. On this page you can map parameters to events. For more information about using
events, see Section 7.2.3, "Passing Parameters and Submitting Events."

33. Click Finish to generate the files for your portlet. The following files should be
generated for your project in the Application Navigator (see Figure 6–30):

■ Files for each portlet mode you selected

■ provider.xml

■ web.xml

■ index.jsp

■ _default.properties

■ <serviceID>.properties

All these files are required to deploy and run the portlet successfully, except for
index.jsp, which is used by Oracle JDeveloper for testing purposes.

Figure 6–30 Application Navigator

Building Oracle PDK-Java Portlets with Oracle JDeveloper

Creating Java Portlets 6-39

6.5.2 Adding Portlet Logic to Your Oracle PDK-Java Portlet
After you create the default implementation of your portlet, you can extend the
sample code with your own business logic to implement the desired functionality and
features. See the JPS or Javadoc for more information on adding functionality and
features.

6.5.3 Validating Your Oracle PDK-Java Portlet and Provider
After you have built your portlet, you need to check the configuration to ensure that
the portlet and its provider operate correctly.

To validate your portlet and provider:

1. In Oracle JDeveloper, open the project you created in the previous sections.

2. In the Application Navigator, right-click the index.jsp file for you portlet and
select Run.

Your browser opens a page similar to the one shown in Figure 6–31.

Figure 6–31 Portlet Application Test Page

3. Click the link underneath Service Name.

Your browser opens with a page similar to the one shown in Figure 6–32. Note that
you need the URL from this page to register your provider, which is the next task.

Note: This procedure is for testing purposes only. After this
procedure, you still need to register your provider as described in
Section 6.5.5, "Registering and Viewing Your Oracle PDK-Java
Portlet". For development and production, you should always
deploy your portlet to an application server as described in
Section 6.5.4, "Deploying Your Oracle PDK-Java Portlet to an
Application Server".

Building Oracle PDK-Java Portlets with Oracle JDeveloper

6-40 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 6–32 Provider Test Page

6.5.4 Deploying Your Oracle PDK-Java Portlet to an Application Server
After you finish the wizard and successfully generate your portlet, you are ready to
deploy it to the Oracle WebLogic Server (WLS). The following sections describe how
to deploy an Oracle PDK-Java portlet to WLS.

To create and deploy the WAR file:

1. In the Application Navigator, right-click the project that contains your portlet and
select New.

2. In the New Gallery, expand the General category and select Deployment Profiles.

3. In the Items list, select WAR File and click OK. The Create Deployment Profile --
WAR File dialog box opens.

4. In the Deployment Profile Name field, enter a meaningful name for the
deployment profile (for example, myj2eeportlet).

5. Click OK. The WAR Deployment Profile Properties dialog box opens.

6. Under Web Application’s Context Root, select Specify Java EE Web Context Root
and enter the context root in the corresponding field, for example myj2eeportlet1.

7. Select the Contributors node under WEB-INF/lib.

8. Select Portlet Development.

9. Click OK. The Project Properties dialog opens.

10. Click OK.

11. In the Application Navigator, right-click your project and select Deploy, then
select the deployment profile, next select to, and finally select the application
server connection to which you want to deploy the portlet.

12. When the Deployment Finished message displays in the Deployment Log at the
bottom of Oracle JDeveloper, verify that no errors occurred.

13. Construct the URL for your portlet as follows:

http://host:port/context-root/providers

Building Oracle PDK-Java Portlets with Oracle JDeveloper

Creating Java Portlets 6-41

where host is the server to which your provider has been deployed.

port is the Oracle Web Cache HTTP Listener port from the Ports tab of the
Application Server Control Console main page.

context-root is the Web Application's Context Root, which is found in the
WAR Deployment Profile Properties under General.

14. In a Web browser, enter the URL from the previous step to ensure that it is
working. You should see a page similar to the one in Figure 6–33.

Figure 6–33 PDK - Java Test Page for Portlets

6.5.5 Registering and Viewing Your Oracle PDK-Java Portlet
After you've created and deployed the provider and its portlets, you should register
the provider with Oracle Portal. Registering your provider gives Oracle Portal the
information it needs to locate and communicate with that provider. After you register
a provider, the provider and its portlets become available in the Portlet Repository.
They are also listed in the Oracle Portal Navigator.

Building Oracle PDK-Java Portlets with Oracle JDeveloper

6-42 Oracle Fusion Middleware Developer's Guide for Oracle Portal

To register providers for your Oracle PDK-Java portlets:

1. Open Oracle Portal and log in. Note that to register your provider, you need to
have Manage or Edit privileges on providers. If you do not have these privileges,
you need to request them from your administrator.

2. If you are not already on the Portal Builder page, click the Builder link in the
upper right corner.

3. Click the Administer tab.

4. Click the Portlets sub tab.

5. In the Remote Providers portlet, click Register a Provider to display the Register
Provider page.

6. In the Name field, enter the name of the provider. The name must not be more
than 200 characters or contain spaces or other special characters.

7. In the Display Name field, enter a name to display for the provider when it is
referenced, for example in the Portlet Repository. The display name must not be
more than 200 characters.

8. In the Timeout field, enter the number of seconds Oracle Portal should try to
connect to the provider before displaying the timeout message.

9. In the Timeout Message field, enter the message to display when Oracle Portal
cannot establish contact with the provider within the number of seconds specified
in the Timeout field. The message displays within the body of the portlet. The
message may not contain HTML or mobileXML.

10. From the Implementation Style list, select Web.

11. Click Next to display the Define Connection page (Figure 6–34)

Note: When you build portlets and providers with built-in tools,
such as the Portlet Builder, Oracle Portal automatically registers the
provider for you. Once you've created your portlet, it automatically
displays in the Portlet Repository. Oracle Portal also offers built-in
portlets that are contained in a preconfigured provider. For example,
OmniPortlet and Web Clipping are portlets that you can use out of the
box, and are already registered with Oracle Portal. You can view these
portlets in the Add Portlets list. However, if you build the portlets and
providers programmatically, you must then register these providers
in order to make them available to the portal user.

Building Oracle PDK-Java Portlets with Oracle JDeveloper

Creating Java Portlets 6-43

Figure 6–34 Define Connection Page

12. In the URL field, enter the URL for your provider. This URL is the one that you
created at the end of Section 6.5.4, "Deploying Your Oracle PDK-Java Portlet to an
Application Server."

13. In the Service ID field, enter the service ID for your provider.

Building Oracle PDK-Java Portlets with Oracle JDeveloper

6-44 Oracle Fusion Middleware Developer's Guide for Oracle Portal

To access a sample provider test page, you must use the URL and service ID. An
example of a URL for a sample provider is as follows:

http://myserver.com:8888/myj2eeportlet1/providers/sample

where, http://myserver.com:8888/myj2eeportlet1/providers is the
URL value, and sample is the service ID.

14. Click Finish. You should see a Registration Confirmation page.

15. Your portlet should now be available for adding to pages just as any other portlet
in the Portlet Repository. To add your portlet to a page, follow the instructions in
the Oracle Fusion Middleware User's Guide for Oracle Portal.

Note: PDK-Java enables you to deploy multiple providers under a
single adapter servlet. The providers are identified by the Service ID
field. When you deploy a new provider, you must assign a service
identifier to the provider and use that service identifier when creating
your provider WAR file. The service identifier is used to look up a file
called service_id.properties, which defines the characteristics
of the provider, such as whether to display its test page.

For more information about service identifiers, refer to Section D.1.2,
"Service Identifiers".

7

Enhancing Java Portlets 7-1

7 Enhancing Java Portlets

This chapter explains how to enhance Java portlets you created with the Oracle
JDeveloper Portal Add-In, and how to make a portlet out of your struts application.
This chapter contains the following sections:

■ Section 7.1, "Enhancing JPS Portlets"

■ Section 7.2, "Enhancing PDK-Java Portlets"

■ Section 7.3, "Building Struts Portlets with Oracle JDeveloper"

The source code for many of the examples referenced in this chapter is available as
part of PDK-Java. You can download PDK-Java on Oracle Technology Network
(OTN):

http://www.oracle.com/technology/products/webcenter/index.html

When you unzip PDK-Java, you will find the examples in:

../pdk/jpdk/v2/src/oracle/portal/sample/v2/devguide

You can find the Javadoc reference for PDK-Java in:

../pdk/jpdk/v2/apidoc

7.1 Enhancing JPS Portlets
Once you have built your initial portlet in the Portlet Wizard as described in
Section 6.3.1, "Creating a JSR 168 Portlet", you will want to enhance it. Because JPS
portlets adhere to the Java standards, you can find substantial information about
enhancing them from many different sources, such as third party books and Web
pages. One of the more important enhancements that you might wish to perform is
Section 7.1.1, "Adding Personalization", which is described in this section.

7.1.1 Adding Personalization
In this section, you enhance the portlet you created in Section 6.3.1, "Creating a JSR 168
Portlet" with some code that allows a user in Edit or Edit Defaults mode to paste
HTML into a field for the portlet to render. You will also see how easily you can
redeploy a portlet.

7.1.1.1 Assumptions
To perform the tasks in this section, we are making the following assumption:

■ You built a portlet using the wizard, successfully registered the producer, and
added the portlet to the page.

Enhancing JPS Portlets

7-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

7.1.1.2 Implementing Personalization
In this section, you add some code to My Java Portlet, redeploy the portlet, and then
test it in Oracle Portal. To do this, perform the following steps:

1. In Oracle JDeveloper, double-click the view.jsp file for your JPS-Standard
portlet in the Application Navigator.

2. Add the code that is indicated in bold in the following snippet:

<%@ page contentType="text/html"
 import="javax.portlet.*,java.util.*,mypackage1.Portlet1,
 mypackage1.resource.Portlet1Bundle"%>"
<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet"%>
<portlet:defineObjects/>
<%
 PortletPreferences prefs = renderRequest.getPreferences();
%>
<%= prefs.getValue("portletContent", "Portlet Content") %>

3. Open edit.jsp in the visual designer and click the Design tab. Notice that the
JSP consists of a form field, a form input field, and two form button fields, as
shown in Figure 7–1.

Figure 7–1 edit.jsp in the Design View

4. Add the code that is indicated in bold in the following snippet to implement a
form field called Content:

<FORM ACTION="<portlet:actionURL/>" METHOD="POST">
<TABLE BORDER="0">
<TR><TD WIDTH="20%">
<P CLASS="portlet-form-field" ALIGN="right">
<%= res.getString(Portlet1Bundle.PORTLETTITLE) %>
</P></TD><TD WIDTH="80%">
<INPUT CLASS="portlet-form-input-field" TYPE="TEXT"
 NAME="<%= Portlet1.PORTLETTITLE_KEY %>"
 VALUE="<%= prefs.getValue(Portlet1.PORTLETTITLE_KEY,

Enhancing JPS Portlets

Enhancing Java Portlets 7-3

 res.getString("javax.portlet.title")) %>"
 SIZE="20">
</TD></TR>
<tr><td width="20%">
<p class="portlet-form-field" align="right">
Content
</p>
</td><td width="80%">
</td></tr>
<TR><TD COLSPAN="2" ALIGN="CENTER">
<INPUT CLASS="portlet-form-button" TYPE="SUBMIT" NAME=
 "<%= Portlet1.OK_ACTION%>"
 VALUE="<%= res.getString(Portlet1Bundle.OK_LABEL) %>">
<INPUT CLASS="portlet-form-button" TYPE="SUBMIT" NAME=
 ="<%=Portlet1.APPLY_ACTION %>"
 VALUE="<%= res.getString(Portlet1Bundle.APPLY_LABEL) %>">
</TD></TR>
</TABLE>

5. Click the Design tab to see the new form field that you just added (Figure 7–2).

Figure 7–2 Modified edit.jsp in the Design View

6. Open WelcomePortlet.java in the visual editor and insert the following two
lines of code (indicated in bold) in the processAction method:

// Save the preferences.
PortletPreferences prefs = request.getPreferences();
String param = request.getParameter(PORTLETTITLE_KEY);
prefs.setValues(PORTLETTITLE_KEY, buildValueArray(param));
String contentParam = request.getParameter("portletContent");
prefs.setValues("portletContent", buildValueArray(contentParam));
prefs.store();

7. Redeploy the portlet. Notice that Oracle JDeveloper automatically saves and
compiles the code before deploying the portlet. Refer to Section 6.3.3, "Deploying

Enhancing PDK-Java Portlets

7-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Your JSR 168 Portlet to the Oracle WebLogic Server" for a reminder of how to
perform this step.

8. In Oracle Portal, reload the page that contains the portlet. The portlet displays the
text Portlet Content, which was one of the changes you made in Oracle
JDeveloper.

9. Click the Customize link. You can see the new form field that you added in Oracle
JDeveloper.

10. Enter the following HTML in the Content field, replacing the words Portlet
Content.

<p>Read The Path to Portlet Interoperability by John Edwards in
Oracle Magazine, Nov-Dec 2003. </p>
<p>It discusses JSR 168 and WSRP open portals. </p>

11. Click Apply and then click Close. The HTML is rendered in the portlet.

7.2 Enhancing PDK-Java Portlets
Once you have built your initial portlet in the Portlet Wizard as described in
Section 6.5, "Building Oracle PDK-Java Portlets with Oracle JDeveloper", you may
perform the following tasks to enhance it:

■ Section 7.2.1, "Adding Show Modes"

■ Section 7.2.2, "Adding Personalization"

■ Section 7.2.3, "Passing Parameters and Submitting Events"

■ Section 7.2.4, "Using JNDI Variables"

■ Section 7.2.6, "Accessing Session Information"

■ Section 7.2.7, "Implementing Portlet Security"

■ Section 7.2.8, "Controlling the Export/Import of Portlet Personalizations"

■ Section 7.2.9, "Enhancing Portlet Performance with Caching"

■ Section 7.2.11, "Writing Multilingual Portlets"

This section assumes the following:

■ You are familiar with portlet terminology such as portlet Show modes. Refer to
Chapter 1, "Understanding Portlets" and Section 6.1, "Guidelines for Writing Java
Portlets".

■ You have already downloaded and installed the Java Portlet Container.

■ You are already familiar with Oracle JDeveloper and know how to build and
deploy Java components using it. You can download Oracle JDeveloper from
OTN. Visit the Oracle JDeveloper page on OTN:

http://www.oracle.com/technology/products/jdev/index.html

7.2.1 Adding Show Modes
In the Portlet Wizard, you add Show modes by checking boxes on the wizard pages.
Refer to Section 6.5, "Building Oracle PDK-Java Portlets with Oracle JDeveloper" for
more information about using the wizard. For each Show mode that you select in the
wizard, a basic HelloWorld skeleton is created. If you need to add a Show mode after
creating the portlet or you are adding one of the modes (preview or link) not available

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-5

through the wizard, you can do that manually by updating provider.xml and
HTML or JSPs in Oracle JDeveloper. The following sections explain how to add Show
modes to a PDK-Java portlet:

■ Section 7.2.1.2, "Implementing Extra Show Modes"

■ Section 7.2.1.3, "Updating the XML Provider Definition"

■ Section 7.2.1.4, "Viewing the Portlet"

Once you have completed this section, you will be able to implement any Show mode
using RenderManager because the principles are the same for all modes. For
example, even though this section does not describe how to implement the Help mode
in detail, you will understand how to do it, as the process is the same as for Preview
mode, which is described here.

For more detailed information on the PDK runtime classes used in this section, refer to
the Javadoc on OTN by clicking Java Doc API on the Portlet Development page
available at

http://www.oracle.com/technology/products/ias/portal/portlet_development_
10g1014.html

For more information on the syntax of provider.xml, refer to the provider Javadoc:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/xml_tag_
reference_v2.html

7.2.1.1 Assumptions
To perform the tasks in this section, we are making the following assumption:

■ You built a portlet using the wizard, successfully registered the producer, and
added the portlet to the page.

7.2.1.2 Implementing Extra Show Modes
Your first task when creating Show modes manually is to create an HTML file or JSP
for each mode. For example, if you want to implement Preview mode, you need to
create an HTML file to provide preview content.

To create an HTML file to preview content, perform the following steps:

1. In Oracle JDeveloper, open the project that contains your portlets.

2. Under Web Content, htdocs\myportlet, create an HTML page called
PreviewPage.html. The content of the file could be something similar to the
following:

<p>This is the <i>preview</i> mode of your portlet!</p>

Once you have created the HTML file for previewing content, you are ready to update
the XML provider definition.

7.2.1.3 Updating the XML Provider Definition
When you want to expose additional Show modes you must update your XML
provider definition as follows:

■ Set a boolean flag that indicates to the PDK Framework that a link or icon to that
mode should be rendered.

■ Point to the HTML file or JSP that you created for that mode.

Enhancing PDK-Java Portlets

7-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

For more information on the syntax of provider.xml, refer to the provider Javadoc
on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/xml_tag_
reference_v2.html

For example, if you want to render Preview mode, perform the following steps:

1. Edit the provider definition file, provider.xml and add the tag to activate
Preview mode within the <portlet></portlet> tags:

<showPreview>true</showPreview>

2. Specify the preview page to be the HTML page that you created in Section 7.2.1.2,
"Implementing Extra Show Modes":

<previewPage>/htdocs/myportlet/MyPortletPreviewPage.html</previewPage>

3. Save the updates to provider.xml.

4. Redeploy your portlet. Refer to step 11 in Section 6.5.4, "Deploying Your Oracle
PDK-Java Portlet to an Application Server.".

When you redeploy, Oracle JDeveloper automatically saves and compiles the code
before deploying the portlet.

7.2.1.4 Viewing the Portlet
To view the new Show modes, you must ensure that your updated XML provider
definition is re-parsed. To do this, perform the following steps:

1. Copy the HTML file you created in Section 7.2.1.2, "Implementing Extra Show
Modes" and provider.xml to the WebLogic Server instance where you plan to
deploy the portlet.

2. Refresh the provider.

3. Refresh the portal page containing your portlet.

To view Preview mode, do the following:

1. Edit a page or create a new page and choose Add Portlet.

2. Navigate to the location of your provider in the Portlet Repository (for example,
Portlet Staging Area) and find your portlet. Note the magnifying glass icon next to
the portlet shown in Figure 7–3

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-7

Figure 7–3 Add Portlet Page

3. Click the magnifying glass icon next to the portlet and a preview window similar
to the one in Figure 7–4 displays.

Enhancing PDK-Java Portlets

7-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 7–4 Preview Window

7.2.2 Adding Personalization
In Section 7.2.1, "Adding Show Modes" you learned how to use the PDK Provider
Framework to activate and render additional Show modes that were either not
activated when creating the portlet with the wizard or not available through the
wizard (such as Link and Preview modes). This section describes the two
Personalization modes (Edit and Edit Defaults) in more detail. When selected in the
Java Portlet Wizard, Edit page and Edit Defaults page cause the generation of skeleton
code for the two Personalization modes. The skeleton code enables you to access the
personalization framework with a few lines of code rather than completely hand
coding a personalization framework and a data store to hold the values.

To add personalization to your portlet, you need to do the following:

■ Update the Edit page of your portlet to set and retrieve personalization changes.

■ Update the Edit Defaults page of your portlet to set and retrieve personalization
changes.

■ Update the Show page of your portlets to use the personalization set by the user.

The Edit and Edit Defaults modes allow portlet users to change a set of customizable
parameters supported by the portlet, which typically drive the way the portlet is
rendered in other modes. For a particular instance of a portlet on an Oracle Portal
page, the personalizations made in the Edit and Edit Defaults modes apply only to
that instance of the portlet. This is explained as follows:

■ Edit mode personalizations are specific to the individual user making the
personalizations. This mode is activated by clicking the Personalize link on the
portlet header in show mode.

■ Edit defaults mode personalizations apply to all users in the same locale who
have not yet made specific personalizations to that portlet instance. This mode is
generally only available to page designers, and can be activated by following the
Edit icon on the page.

When rendering Edit and Edit Defaults modes, a PortletRenderer can carry out
either of the following tasks to support the personalization process:

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-9

■ Render the Edit Form: For each of the portlet's customizable parameters,
PortletRenderer uses a PortletPersonalizationManager to retrieve the
current value and renders a control in an HTML form so the current value can be
edited.

■ Handle Edit Form actions: When an OK or Apply button is clicked on the
standard edit form header, PortletRenderer uses a
PortletPersonalizationManager to store the personalized parameters
submitted by the edit form and redirects the browser to the appropriate portal
page.

Therefore, the purpose of the PortletPersonalizationManager controller is to
enable a PortletRenderer to store and retrieve the current values of customizable
parameters that apply to a particular portlet instance and user. The PDK Framework
uses the abstraction of a PersonalizationObject as a container for a set of
personalized parameters and a PortletReference as the key under which a set of
personalizations are stored. Thus, a PortletPersonalizationManager is simply a
mechanism that allows the storage and retrieval of persisted
PersonalizationObjects under a given PortletReference.

A preference store is a mechanism for storing information like user preference data,
portlet/provider settings, or even portlet data, while using Oracle Portal. The
information stored in the preference store is persistent in the sense that, even if you log
out and log back in later, you can still access previously saved preferences. The
preference store maintains the user preference information and invokes the user
preferences whenever the user logs in again. PDK-Java provides the
PrefStorePersonalizationManager, which uses a PreferenceStore
implementation to persist personalized data. Currently, PDK-Java has two
PreferenceStore implementations: DBPreferenceStore and
FilePreferenceStore. The DBPreferenceStore persists data using a JDBC
compatible relational database and FilePreferenceStore persists data using the
file system.

For more details of these implementations, refer to the Javadoc on OTN by clicking
Java Doc API on the Portlet Development page available at

http://www.oracle.com/technology/products/ias/portal/portlet_development_
10g1014.html

To add personalization functionality to your portlet you use
PrefStorePersonalizationManager in conjunction with
NameValuePersonalizationObject, that is, the default
PersonalizationObject implementation. By default, the wizard generates a
simple edit form for both the Edit and Edit Defaults modes to enable users to
personalize the portlet title. This section describes how to update the existing code to
enable portal users to personalize the portlet greeting.

7.2.2.1 Assumptions
To perform the tasks in this section, we are making the following assumptions:

Note: PDK-Java provides the Preference Store Migration/Upgrade
Utility to help migrate the preference store from a file system to a
database and upgrade personalizations from earlier releases. This
utility is described more fully on OTN.

http://www.oracle.com/technology/products/webcenter/index.html

Enhancing PDK-Java Portlets

7-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

1. You have followed through and understood the following sections:

■ Section 6.5, "Building Oracle PDK-Java Portlets with Oracle JDeveloper"

■ Section 7.2.1, "Adding Show Modes"

2. You built a portlet using the wizard, with Edit page and Edit Defaults page
selected, and successfully added it to a page.

7.2.2.2 Implementing Personalization for Edit and Edit Defaults Pages
The Edit page of your portlet is called when a user personalizes the portlet. By default,
the JSP generated by the wizard includes all of the required code to provide
personalization of the portlet title. You just need to insert a few lines of code into the
Edit page for additional personalization.

7.2.2.2.1 Reviewing the Generated Code The wizard creates the following code for you by
default:

<%@page contentType="text/html; charset=windows-1252"
 import="oracle.portal.provider.v2.render.PortletRenderRequest"
 import="oracle.portal.provider.v2.http.HttpCommonConstants"
 import="oracle.portal.provider.v2.personalize.NameValuePersonalizationObject"
 import="oracle.portal.provider.v2.render.PortletRendererUtil"
%>

<%
 PortletRenderRequest pReq = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
%>

<P>Hello <%=pReq.getUser().getName() %>.</P>
<P>This is the <i>Edit</i> render mode!</P>
<%-- This page both displays the personalization
 form and processes it,. Display the form if
 there is no action parameter, process it
 otherwise --%>

<%
 String actionParam = PortletRendererUtil.getEditFormParameter(pReq);
 String action = request.getParameter(actionParam);
 String title = request.getParameter("my2portlet_title");
 NameValuePersonalizationObject data = (NameValuePersonalizationObject)
 PortletRendererUtil.getEditData(pReq);
 // Cancel automatically redirects to the page, so
 // will only receive OK or APPLY
 if (action !=null)
 {
 data.setPortletTitle(title);
 PortletRendererUtil.submitEditData(pReq, data);
 return;
 }

 // Otherwise just render the form.
 title = data.getPortletTitle();
%>
<table border="0">
 <td width="20%">
 <p align="right">Title:</p>
 </td>
 <td width="80%">

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-11

 <input type="TEXT" name="my2portlet_title" value="<%= title %>">
 </td>
</table>

7.2.2.2.2 Modifying the Generated Code The JSP contains an input field for the portlet
title. This field represents the Personalize page of the portlet where users can update
the portlet title. To modify the generated code, perform the following steps:

1. Following the table in the generated code, add a second table containing a text
field and a prompt, allowing users to enter a new greeting for the portlet:

<table border="0">
 <tr>
 <td width="20%">
 <p align="right">Greeting:</p>
 </td>
 <td width="80%">
 <input type="TEXT" name="myportlet_greeting" value="<%= greeting %>">
 </td>
 </tr>
</table>

2. This HTML simply specifies a field to enter a new greeting on the Edit page. This
new greeting is displayed in the portlet's Shared Screen mode. Next, you add a
string below String title that retrieves the value of the greeting:

String title = request.getParameter("my2portlet_title");
String greeting = request.getParameter("myportlet_greeting");

3. Generating an Edit page from the wizard automatically includes access to the
personalization framework in the page code. At the top of the Edit page, you see
the NameValuePersonalizationObject declared. This form of
personalization in Oracle Portal allows easy storage of name/value pairs.

The Edit page handles two cases: viewing the page or applying changes to it. The
changes we have made so far affect the code for viewing the page. Applying
changes to the Edit page is handled in the block of code beginning with if
(action !=null).

In this block of code, you must store the new portlet greeting. You must also
account for the case where the user decides to make no changes and you simply
retrieve the existing greeting:

if (action !=null)
{
 data.setPortletTitle(title);
 //Put the new greeting.
 data.putString("myportlet_greeting", greeting);
 PortletRendererUtil.submitEditData(pReq, data);
 return;
}
//Otherwise just render the form.
title = data.getPortletTitle();
//Get the old greeting.
greeting = data.getString("myportlet_greeting");

You are now done updating the Edit page.

You can simply duplicate these changes for the Edit Defaults page. The Edit Defaults
page is called when a page designer or portal administrator clicks Edit on the page
and then clicks the Edit Defaults icon for the portlet. This page sets the default

Enhancing PDK-Java Portlets

7-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

personalization for this instance of the portlet. Even though the code in the JSP is
identical, the PDK Framework and Oracle Portal automatically handle the
personalization differently depending on the Show mode (Edit or Edit Defaults).

7.2.2.3 Implementing Personalization for Show Pages
To have access to the personalization data in the portlet's Shared Screen mode, you
need to add a few lines of code to the Show page. By adding these lines you perform
the following:

■ Adding import statements.

■ Declaring the NameValuePersonalizationObject.

■ Retrieving the personalization data.

To implement personalization of the Show page, perform the following steps:

1. Edit your Show page and import NameValuePersonalizationObject and
PortletRendererUtil. You can copy these from the Edit page if necessary.

<%@page contentType="text/html; charset=windows-1252"
 import="oracle.portal.provider.v2.render.PortletRenderRequest"
 import="oracle.portal.provider.v2.http.HttpCommonConstants"
 import="oracle.portal.provider.v2.personalize.
 NameValuePersonalizationObject"
 import="oracle.portal.provider.v2.render.PortletRendererUtil"
%>

2. Declare the NameValuePersonalizationObject and retrieve the edit data
from the portlet render request. You can copy this from the portlet's Edit page.

<%
 PortletRenderRequest pReq = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 NameValuePersonalizationObject data = (NameValuePersonalizationObject)
 PortletRendererUtil.getEditData(pReq);
%>

3. Get the string information from the personalization framework:

<%
String greeting = data.getString("myportlet_greeting");
%>

4. Add some text to the Show page that displays the greeting in the Shared Screen
mode of the portlet.

<P>Hello <%= pReq.getUser().getName() %>.</P>
<P>This is the <i>show</i>, render mode!</P>
<P>Greeting: <%= greeting %></P>

You have now completed updating the Show page of the portlet.

7.2.2.4 Preference Information Within the XML Provider Definition
The Portlet Wizard generates all of the necessary tags for accessing the
PreferenceStore in the XML provider definition file (provider.xml). By default,
at the provider level, the wizard uses the FilePreferenceStore class to store
preferences:

<provider class="oracle.portal.provider.v2.DefaultProviderDefinition">
<session>false</session>
<passAllUrlParams>false</passAllUrlParams>

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-13

<preferenceStore class="oracle.portal.provider.v2.preference.FilePreferenceStore">
 <name>prefStore1</name>
 <useHashing>true</useHashing>
</preferenceStore>

At the portlet level, tags are added to use PrefStorePersonalizationManager as
the personalizationManager class and NameValuePersonalizationObject
as the data class:

<personalizationManager class="oracle.portal.provider.v2.personalize.
 PrefStorePersonalizationManager">
 <dataClass>oracle.portal.provider.v2.NewValuePersonalizationObject</dataClass>
</personalizationManager>

You need not make any changes or updates to the XML Provider Definition if you
choose to continue to use the FilePreferenceStore class. However, if you have a
global environment for Oracle Portal (for example, you are running in a load balanced,
multi-node cluster of Oracle Containers for Java EE instances) or would prefer to store
preferences in the database, you can change the class from FilePreferenceStore
to DBPreferenceStore.

For more information on using DBPreferenceStore, refer to the Oracle Fusion
Middleware Administrator's Guide for Oracle Portal.

For more information on the syntax of provider.xml, refer to the provider Javadoc
on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/xml_tag_
reference_v2.html

7.2.2.5 Viewing the Portlet
To view the personalization changes you made in the preceding sections, you need to
deploy the portlet to your application server or Oracle Containers for Java EE and
refresh the page containing your portlet. For more information on deploying your
portlet, refer to Section 6.5.4, "Deploying Your Oracle PDK-Java Portlet to an
Application Server".

You should now see that the portlet contains a null greeting. Click Personalize in the
portlet title bar and update the greeting. When you return to the page, you should see
your changes.

You can also test Edit Defaults by clicking Edit on the page and then clicking the Edit
Defaults icon. Since you have already modified the portlet, the changes will not appear
to you in Shared Screen mode unless you view the page as a public user or a different
user.

7.2.3 Passing Parameters and Submitting Events
Oracle Portal and the PDK provide page parameters, public and private portlet
parameters, and events to enable portlet developers to easily write reusable, complex
portlets. The Portlet Wizard in Oracle JDeveloper creates portlets that are already set
up to use parameters and events. This feature enables you to focus solely on adding
business logic to your portlets and does not require any changes to provider.xml.

For an overview of parameters and events, refer to the following:

■ Section 2.12, "Public Portlet Parameters Support"

■ Section 2.13, "Private Portlet Parameter Support"

■ Section 2.14, "Event Support"

Enhancing PDK-Java Portlets

7-14 Oracle Fusion Middleware Developer's Guide for Oracle Portal

7.2.3.1 Assumptions
To perform the tasks in this section, the following assumptions are made:

1. You have followed through and understood Section 6.5, "Building Oracle
PDK-Java Portlets with Oracle JDeveloper".

2. You built a portlet using the wizard and successfully added it to a page.

7.2.3.2 Adding Public Parameters
Using the wizard in Section 6.5, "Building Oracle PDK-Java Portlets with Oracle
JDeveloper", you built a basic portlet and specified a parameter called MyParam. If you
did not create a parameter, you can create a new portlet now by right clicking on
provider.xml in the Applications - Navigator of Oracle JDeveloper, selecting Add
Portlet, and following the steps in Section 6.5, "Building Oracle PDK-Java Portlets with
Oracle JDeveloper".

By default, the wizard creates a portlet to which you can easily map page parameters
without updating any code or files. In this section, you will use the default parameter
created for you by the wizard.

To use the default parameter, you need only register the provider and add the portlet
to a page. After that, you perform the following tasks:

■ Create a page parameter.

■ Wire the page parameter to your Java portlet.

■ Enter parameter values in the URL or another portlet that passes this page
parameter.

To add parameters to your portlet:

1. Go to the Parameter tab of the page properties. Note that parameters should be
enabled by default, but, if not, you must enable them before proceeding.

2. Create a page parameter called MyParameter with a default value of My
Default Value.

3. Expand your Java portlet and map the page parameter you just created to the
portlet parameter. The portlet's parameter should map to the page parameter
called MyParameter.

4. Go back to the page. Notice that, in the portlet, a value of My Default Value
appears.

5. View the page and enter the parameter and a value at the end of the URL:

&MyParameter=This%20portlet%20works

Figure 7–5 shows an example of a parameter portlet.

Note: Each portlet is limited to 4K of data. The lengths of parameter
and event names, display names, and descriptions all contribute
toward this 4K limit. Hence, you should not use an excessive number
of parameters and events for each portlet, or give them lengthy names
and descriptions.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-15

Figure 7–5 Parameter Portlet

If you have a portlet, such as the Simple Parameter Form included with OmniPortlet,
that can pass parameters, you can map parameters from that portlet to your Java
portlet using the Events tab.

If you now take a look at the code and tags generated by the wizard, you see that very
little code was needed to enable parameters in the Java portlet.

Review provider.xml. Note that the wizard added one tag group called
inputParameter, which includes the name of the parameter for which the portlet
listens.

<inputParameter class="oracle.portal.provider.v2.DefaultParameterDefinition">
 <name>MyParam</name>
 <displayName>My Portlet Parameter</displayName>
</inputParameter>

For more information on the syntax of provider.xml, refer to the provider Javadoc
on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/xml_tag_
reference_v2.html

The wizard also generated code in the JSP for your Show page that receives this
parameter, and displays the parameter name and its value.

<%
ParameterDefinition params[] =
 pReq.GetPortletDefinition().getInputParameters();
%>

<p>This portlets input parameters are ...</p>
<table align="left" width="50%"><tr><td>Value
 </td></tr>
<%
 String name = null;
 String value = null;
 String[] values = null;
for (int i = 0; i < params.length; i++)
{
 name = params[i].getName();
 values = pReq.getParameterValues(name);
 if (values != null)
 {
 StringBuffer temp = new StringBuffer();
 for (int j = 0; j < params.length; j++)
 {
 temp.append(values[j]);
 if (j + 1 != values.length)
 {
 temp.append(", ");
 }

Enhancing PDK-Java Portlets

7-16 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 }
 value = temp.toString();
 }
 else
 {
 value = "No values submitted yet.";
 }
%>
<tr>
 <td><span class="PortletText2" <%= name %></td>
 <td><span class="PortletText2" <%= value %></td>
</tr>
<%
}
%>
</table>

7.2.3.3 Passing Private Portlet Parameters
Parameters that are used within a single portlet are known as private parameters.
They are visible to a single portlet instance only. Portlet parameters are created and
accessed using PDK-Java APIs described in this section. Parameter names are qualified
so that it will be correctly handled by the portlet consumer. The following API will do
this:

HttpPortletRendererUtil.portletParameter(HttpServletRequest request, String
param);

HttpPortletRendererUtil is in the package
oracle.portal.provider.v2.render.http.

For example:

qualParamQ = HttpPortletRendererUtil.portletParameter(r, "q");

To fetch the value of a portlet parameter from the incoming request, you can use the
following API:

PortletRenderRequest.getQualifiedParameter(String name);

PortletRenderRequest is in the package
oracle.portal.provider.v2.render.

For example:

valueQ = r.getQualifiedParameter("q");

The utilities for using private parameters are discussed in Section 7.2.3.3.2, "Building
Links with the Portlet URL Types" and Section 7.2.3.3.3, "Building Forms with the
Portlet URL Types."

7.2.3.3.1 Portlet URL Types Intraportlet links refer to the Oracle Portal page on which
the portlet resides, and that portlet is most likely running remotely from Oracle Portal.
Hence, you must consider how the portlet can render a link to the correct page
without some knowledge of the Oracle Portal page's URL. For more information about

Note: The API converts the parameter name into the qualified
parameter name before fetching the value from the incoming request.
Hence, you need not perform this step.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-17

the types of links used by portlets, refer to Section 6.1.2, "Guidelines for Navigation
within a Portlet".

When Oracle Portal requests that a portlet render itself, Oracle Portal passes it various
URLs, which the portlet can then use to render links, including any intraportlet links it
requires. You can fetch and manipulate these URLs to simplify the task of creating
links among portlets and pages in Oracle Portal.

Oracle Portal provides the following URLs to its portlets:

■ PAGE_LINK is a URL to the page upon which the portlet instance resides. You
use this URL as the basis for all intraportlet links. If the portlet renders a link that
navigates the user to another section of the same portlet, then this navigation must
be encoded as a set of parameters using the PAGE_LINK. This URL is useful to
both desktop and mobile portlets.

■ DESIGN_LINK is a URL to an Oracle Portal page that represents the portlet's
personalization page. In Oracle Portal, a portlet's Edit and Customize modes are
not rendered on the same page as the portlet. The Edit and Customize modes take
over the entire browser window. Oracle Portal's portlet edit/customize page is not
accessible to every user. It represents a minimal, static framework in which the
portlet is free to render its personalization or edit options. This URL is only of use
when rendering edit and customize links, which themselves are only supported in
desktop clients.

■ LOGIN_LINK is a URL to OracleAS Single Sign-On Server, should the portlet
need to prompt the user (if PUBLIC) to login. This link is rarely used and only
applicable to the desktop rendering of portlets.

■ BACK_LINK is a URL to a page that Oracle Portal considers a useful return point
from the current page where the portlet renders itself. For example, when the
portlet is rendering it's Edit page, this link refers to the page on which the portlet
resides and from which the user navigated to the Edit page. Consequently, it is the
link you would encode in the buttons that accept or cancel the pending action.
This URL is only useful for the desktop rendering of portlets (usually in Edit or
Customize mode). Mobile portlets render a Back link automatically leaving the
portlet to render just it's own content.

■ EVENT_LINK is a URL that raises an event rather than explicitly navigate to
some page. This link points to the Oracle Portal entry point to the event manager.
This URL is useful to both desktop and mobile portlets.

7.2.3.3.2 Building Links with the Portlet URL Types To build links with the URL
parameters, you need to access them and use them when writing portlet rendering
code. To fetch the URL for a link, you call the following APIs in the PDK:

portletRenderRequest.getRenderContext().getPageURL()
portletRenderRequest.getRenderContext().getEventURL()
portletRenderRequest.getRenderContext().getDesignURL()
portletRenderRequest.getRenderContext().getLoginServerURL()
portletRenderRequest.getRenderContext().getBackURL()

In the case of portlet navigation, you need to add (or update) your portlet's parameters
in the page URL. To perform this task, you can use the following API to build a
suitable URL:

UrlUtils.constructLink(
 PortletRenderRequest pr,
 int linkType, -- UrlUtils.PAGE_LINK in this case
 NameValue[] params,
 boolean encodeParams,

Enhancing PDK-Java Portlets

7-18 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 boolean replaceParams)

UrlUtils resides in the package called oracle.portal.provider.v2.url.
Notice that you do not actually fetch the page URL yourself. Rather you use one of the
supplied portlet URL types, UrlUtils.PAGE_LINK.

The parameter names in the params argument should be fully qualified. Moreover,
assuming that you properly qualify the parameters, UrlUtils.constructLink
with the appropriate linkType does not disturb other URL parameters that are not
owned by the portlet.

An alternative version of UrlUtils.contructLink accepts a URL as the basis for
the returned URL. If you require an HTML link, you can use
UrlUtils.constructHTMLLink to produce a complete anchor element.

The following example portlet, ThesaurusLink.jsp, uses the parameter q to
identify the word for which to search the thesaurus. It then creates links on the found,
related words that the user may follow in order to get the thesaurus to operate on that
new word. Refer to the example in Section 7.2.3.3.3, "Building Forms with the Portlet
URL Types" to see the initial submission form that sets the value of q.

<%
 String paramNameQ = "q";
 String qualParamNameQ =
 HttpPortletRendererUtil.portletParameter(paramNameQ);
 PortletRenderRequest pRequest = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 String paramValueQ = pRequest.getQualifiedParameter(paramNameQ);
%>
<!-- Output the HTML content -->
<center>
 Words similar to <%= paramValueQ %>

 Click on the link to search for words related to that word.

<%
 String[] relatedWords = Thesaurus.getRelatedWords(paramValueQ);
 NameValue[] linkParams = new NameValue[1];
 for (int i=0; i<=relatedWords.length; i++)
 {
 linkParams[0] = new NameValue(
 qualParamNameQ, relatedWords[i]);
%>

 <%= relatedWords[i] %>
 <%= UrlUtils.constructHTMLLink(
 pRequest,
 UrlUtils.PAGE_LINK,
 "(words related to " + relatedWords[i] + ")",
 "",

Note: When rendering attributes in SimpleResult (for a mobile
portlet), you must escape the attribute value if it is likely to contain
invalid XML characters. Most URLs contain & to separate the URL's
parameters. Hence, you usually need to escape attributes that contain
URLs with:

oracle.portal.utils.xml.v2.XMLUtil.escapeXMLAttribute

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-19

 linkParams,
 true,
 true)%>

<%
 }
%>

</center>

7.2.3.3.3 Building Forms with the Portlet URL Types Use of portlet parameters in forms is
little different from links. The following two fundamental rules continue to apply:

■ Qualify the portlet's parameter names.

■ Do not manipulate or remove the other parameters on the incoming URL.

In terms of markup and behavior, forms and links differ quite considerably. However,
just as with links, PDK-Java contains utilities for complying with these two basic rules.

The code for properly qualifying the portlet's parameter name is the same as described
in Section 7.2.3.3.2, "Building Links with the Portlet URL Types". After all, a parameter
name is just a string, whether it be a link on a page or the name of a form element.

Forms differ from links in the way you ensure that the other parameters in the URL
remain untouched. Once you open the form in the markup, you can make use of one
of the following APIs:

UrlUtils.htmlFormHiddenFields(pRequest,UrlUtils.PAGE_LINK, formName);
UrlUtils.htmlFormHiddenFields(someURL);

where formName = UrlUtils.htmlFormName(pRequest,null).

The htmlFormHiddenFields utility writes HTML hidden form elements into the
form, one form element for each parameter on the specified URL that is not owned by
the portlet.

<INPUT TYPE="hidden" name="paramName" value="paramValue">

Thus, the developer needs only to add their portlet's parameters to the form.

The other item of which you need to be aware is how to derive the submission target
of your form. In most cases, the submission target is the current page:

formTarget = UrlUtils.htmlFormActionLink(pRequest,UrlUtils.PAGE_LINK)

The value of formTarget can be the action attribute in an HTML form or the target
attribute in a SimpleForm. Even though the method name includes HTML, it actually
just returns a URL and thus you can use it in mobile portlets, too.

The following example form renders the thesaurus portlet's submission form. Refer to
the example in Section 7.2.3.3.2, "Building Links with the Portlet URL Types" for the
portlet that results from the submission of this form.

<%

Note: Just as parameters in URLs and element names in forms
require qualification to avoid clashing with other portlets on the page,
form names must be fully qualified because any given page might
have several forms on it.

Enhancing PDK-Java Portlets

7-20 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 String paramNameSubmit = "submit";
 String paramNameQ = "q";
 String qualParamNameQ =
 HttpPortletRendererUtil.portletParameter(paramNameQ);
 String qualParamNameSubmit =
 HttpPortletRendererUtil.portletParameter(paramNameSubmit);
 PortletRenderRequest pRequest = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 String formName = UrlUtils.htmlFormName(pRequest,"query_form");
%>
<!-- Output the HTML content -->
<center>
 Thesaurus
 Enter the word you wish to search for
 <form name="<%= formName %>" method="POST"
 action="<%= UrlUtils.htmlFormActionLink(pRequest,UrlUtils.PAGE_LINK) %>">
 <%= UrlUtils.htmlFormHiddenFields(pRequest,UrlUtils.PAGE_LINK, formName)%>
 <table><tr><td>
 Word of interest:
 </td><td>
 <input
 type="text"
 size="20"
 name="<%= qualParamNameQ %>"
 value="">
 </td></tr></table>
 <input type=submit name="<%= qualParamNameSubmit %>" Value="Search">
 </form>
</center>

7.2.3.3.4 Implementing Navigation within a Portlet You can implement navigation within a
portlet in one of three ways, as follows:

■ Pass navigation information in rendered URLs using explicit portlet parameters.
Branching logic within the portlet code then determines which section of the
portlet to render based on the URL. This option represents a small extension to the
thesaurus example presented in Section 7.2.3.3.2, "Building Links with the Portlet
URL Types" and Section 7.2.3.3.3, "Building Forms with the Portlet URL Types".
Basically, instead of performing thesaurus search operations using the value of
parameter q, the portlet branches based on the parameter value and renders
different content accordingly.

■ Pass navigation information as described in the previous item but use PDK-Java to
interpret the parameter and thus branch on its value. This option requires some
further changes to the thesaurus example and is more fully explained
subsequently.

■ Use session storage to record the portlet state and URL parameters to represent
actions rather than explicit navigation. This method provides the only way that
you can restore the portlet to it's previous state when the user navigates off the
page containing the portlet. Once the user leaves the page, all portlet parameters
are lost and you can only restore the state from session storage, assuming you
previously stored it there. This option requires that you understand and
implement session storage. Refer to Section 7.2.6.2, "Implementing Session
Storage" for more information about implementing session storage.

The following portlet code comes from the multi-page example in the sample provider
of PDK-Java:

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-21

<portlet>
 <id>11</id>
 <name>Multipage</name>
 <title>MultiPage Sample</title>
 <shortTitle>MultiPage</shortTitle>
 <description>
 This portlet depicts switching between two screens all
 in the context of a Portal page.
 </description>
 <timeout>40</timeout>
 <timeoutMessage>MultiPage Sample timed out</timeoutMessage>
 <renderer class="oracle.portal.provider.v2.render.RenderManager">
 <contentType>text/html</contentType>
 <showPage>/htdocs/multipage/first.jsp</showPage>
 <pageParameterName>next_page</pageParameterName>
 </renderer>
</portlet>

Notice that the value of pageParameterName is the name of a portlet parameter,
next_page, that the PDK framework intercepts and interprets as an override to the
value of the showPage parameter. If the PDK framework encounters the qualified
version of the parameter when the multi-page portlet is requested, it will render the
resource identified by next_page rather than first.jsp. Note that the PDK does
not render the parameter within the portlet, that responsibility falls to the portlet.

You can modify the thesaurus example to operate with the use of this parameter.
Specifically, you can use the form submission portlet to be the input for the thesaurus
(the first page of the portlet), then navigate the user to the results page, which contains
links to drill further into the thesaurus. The following examples illustrate these
changes.

ThesaurusForm.jsp:

<%
 PortletRenderRequest pRequest = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 String paramNameSubmit = "submit";
 String paramNameQ = "q";
 String qualParamNameQ =
 HttpPortletRendererUtil.portletParameter(pRequest, paramNameQ);
 String qualParamNameSubmit =
 HttpPortletRendererUtil.portletParameter(pRequest, paramNameSubmit);
 String formName = UrlUtils.htmlFormName(pRequest,"query_form");
%>
<!-- Output the HTML content -->
<center>
 Thesaurus
 Enter the word you wish to search for
 <form name="<%= formName %>" method="POST"
 action="<%= UrlUtils.htmlFormActionLink(pRequest,UrlUtils.PAGE_LINK) %>">
 <%= UrlUtils.htmlFormHiddenFields(pRequest,UrlUtils.PAGE_LINK, formName)

Note: The example that follows is most useful for relatively simple
cases, such as this thesaurus example. If your requirements are more
complex (for example, you want to build a wizard experience), then
you should consider using an MVC framework such as Struts. For
information on how to build portlets from struts applications, refer to
Section 7.3, "Building Struts Portlets with Oracle JDeveloper".

Enhancing PDK-Java Portlets

7-22 Oracle Fusion Middleware Developer's Guide for Oracle Portal

%>
 <%= UrlUtils.emitHiddenField(
 HttpPortletRendererUtil.portletParameter(request, "next_page"),
 "htdocs/path/ThesaurusLink.jsp") %>
 <table><tr><td>
 Word of interest:
 </td><td>
 <input
 type="text"
 size="20"
 name="<%= qualParamNameQ %>"
 value="">
 </td></tr></table>
 <input type=submit name="<%= qualParamNameSubmit %>" Value="Search">
 </form>
</center>

Notice how next_page must be explicitly set to point to ThesaurusLink.jsp. If
you do not explicitly set next_page in this way, it defaults to the resource registered
in provider.xml, which is ThesaurusForm.jsp.

ThesaurusLink.jsp:

<%
 PortletRenderRequest pRequest = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 String paramNameQ = "q";
 String paramNameNextPage = "next_page";
 String qualParamNameQ =
 HttpPortletRendererUtil.portletParameter(pRequest, paramNameQ);
 String qualParamNameNextPage =
 HttpPortletRendererUtil.portletParameter(pRequest, paramNameNextPage);
 String paramValueQ = pRequest.getQualifiedParameter(paramNameQ);
%>
<!-- Output the HTML content -->
<center>
 Words similar to <%= paramValueQ %>

 Click on the link to search for words related to that word.

<%
 Thesaurus t = new Thesaurus();
 String[] relatedWords = t.getRelatedWords(paramValueQ);
 NameValue[] linkParams = new NameValue[2];
 linkParams[0] = new NameValue(
 qualParamNameNextPage, "htdocs/path/ThesaurusLink.jsp");
 for (int i=0; i<relatedWords.length; i++)
 {
 linkParams[1] = new NameValue(
 qualParamNameQ, relatedWords[i]);
%>

 <%= relatedWords[i] %>
 <%= UrlUtils.constructHTMLLink(
 pRequest,
 UrlUtils.PAGE_LINK,
 "(words related to " + relatedWords[i] + ")",
 "",
 linkParams,
 true,

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-23

 true)%>

<%
 }
%>

 <a href="<%=XMLUtil.escapeXMLAttribute
 (pRequest.getRenderContext().getPageURL())%>">
 Reset Portlet

</center>

Partial Page Refresh
Portlets can refresh themselves without refreshing the entire page. For example, in the
multi-page portlet sample, firstpage.jsp uses the API to specifically enable the
portlet to link to and display the second page without refreshing the entire portal
page. The text in bold in the following example shows how this can be set:

<%@ page contentType="text/html;charset=UTF-8" %>
<%@ page language="java" session="false" %>
<%@ page import="oracle.portal.provider.v2.url.UrlUtils" %>
<%@ page import="oracle.portal.provider.v2.render.http.HttpPortletRendererUtil" %>
<%@ page import="oracle.portal.provider.v2.render.PortletRenderRequest" %>
<%@ page import="oracle.portal.provider.v2.http.HttpCommonConstants" %>
<%@ page import="oracle.portal.utils.NameValue" %>
<%
PortletRenderRequest prr = (PortletRenderRequest)
request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);

NameValue[] linkParams = new NameValue[1];
linkParams[0] = new NameValue(HttpPortletRendererUtil.portletParameter(request,
"next_page"), "/htdocs/multipage/second.jsp");
%>

<center>
Hello, this is the first page<p>
<%=UrlUtils.constructHTMLLink(prr, UrlUtils.REFRESH_LINK, "second page", "",
linkParams, true, true)%>
</center>

7.2.3.4 Submitting Events
In the previous section, you created a portlet that received parameters. Now you will
create a portlet that passes parameters and events to other portlets on the same page or
a different page. Some portlets, like the Simple Parameter Form in OmniPortlet,
provide an easy, declarative interface to create a simple form to pass parameters to
other portlets. If you want complete control over the events passed and the look of
your portlet, though, you can add events to your Java portlet.

The Portlet Wizard does not create all of the code needed to pass parameters to other
portlets. The wizard updates the tags in provider.xml and requires that you add the
necessary business logic to your JSP code. To create a portlet that uses events, you
perform the following tasks:

■ Create a new portlet with the Portlet Wizard.

■ Add code to your JSP page.

■ Map this portlet's parameters to the portlet you created in Section 7.2.3.2, "Adding
Public Parameters".

Enhancing PDK-Java Portlets

7-24 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Creating an Events Portlet
To create an events portlet, perform the following steps:

1. Create a new portlet called MyEventsPortlet in the same provider you used for
the parameter portlet in Section 7.2.3.2, "Adding Public Parameters"by invoking
the Portlet Wizard (Figure 7–6). Go through the wizard as normal. In step 5 of the
wizard, create a parameter. In step 6 of the wizard, enter the information shown in
Table 7–1.

Figure 7–6 Public Portlet Events Page of Portlet Wizard

The wizard generates the following code in provider.xml:

<showDetails>false</showDetails>
<inputParameter class="oracle.portal.provider.v2.
 DefaultParameterDefinition">
 <name>MyParam</name>
 <displayName>My Parameter</displayName>
</inputParameter>
<event class="oracle.portal.provider.v2.DefaultEventDefinition">
 <name>MyEvent</name>
 <displayName>My Event</displayName>
 <parameter class="oracle.portal.provider.v2.DefaultParameterDefinition">
 <name>MyParam</name>
 <displayName>My Parameter</displayName>
 </parameter>
</event>

Table 7–1 Events

Events Area Name Display Name Description

Events Exposed MyEvent My Event This is my event.

Parameters
Associated

MyParam My Parameter This is my
parameter

Note: In the following example, notice that the input parameter and
the event parameter have the same name, MyParam. They are two
different parameters, even though they have the same name.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-25

<renderer class="oracle.portal.provider.v2.render.RenderManager">

For more information on the syntax of provider.xml, refer to the provider
Javadoc on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/x
ml_tag_reference_v2.html

2. Import the following necessary classes into MyEventsPortlet:

■ oracle.portal.provider.v2.event.EventUtils

■ oracle.portal.utils.NameValue

■ oracle.portal.provider.v2.url.UrlUtils

3. In MyEventsPortlet, add a link that passes the parameter value to another
portlet. As shown in the following sample code, you receive the same page
parameter as the previous portlet, but in addition you create a link that passes an
event as well:

<%@page contentType="text/html; charset=windows-1252"
import="oracle.portal.provider.v2.render.PortletRenderRequest"
import="oracle.portal.provider.v2.http.HttpCommonConstants"
import="oracle.portal.provider.v2.ParameterDefinition"
import="oracle.portal.provider.v2.event.EventUtils"
import="oracle.portal.utils.NameValue"
import="oracle.portal.provider.v2.url.UrlUtils"
%>
<%
PortletRenderRequest pReq = (PortletRenderRequest)
request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
%>
<%
 NameValue[] parameters = new NameValue[2];
 parameters[0] = new NameValue(EventUtils.eventName("MyEvent"),"");
 parameters[1] = new
NameValue(EventUtils.eventParameter("MyParam"),pReq.getParameter
 ("MyParam"));
%>

<a href="<%= UrlUtils.constructLink
 (pReq, pReq.getRenderContext().getEventURL(), parameters , true, true)%>">
The value of the stock is <%= pReq.getParameter("MyParam") %>

4. Add the portlet to a different page (in the same page group) than the previous
portlet (the Parameter Portlet). Expand the portlet and wire it to receive the same
parameter as the previous portlet.

My Parameter = Page Parameter MyParameter

5. Apply your changes on the Parameter tab and go to the Events tab. Expand the
Event portlet and select the event. Select Go to Page and find the page to which

Note: This sample code does not handle NULL values. When the
portlet is initially added to the page, you may receive an error, but,
after wiring the portlet to the page parameter, it should work fine.

Enhancing PDK-Java Portlets

7-26 Oracle Fusion Middleware Developer's Guide for Oracle Portal

you want to pass the event. Choose the page where the Parameter portlet is
located. Configure this portlet to pass an event as the page parameter
MyParameter as shown in Figure 7–7.

MyParameter = Event Output MyParameter

Figure 7–7 Portlet Events in the Edit Page

6. Click OK to view the page. Your Event portlet should have a link that displays the
value received from the page (Figure 7–8).

Figure 7–8 My Event Portlet Before Parameter Change

7. You can append a parameter value to the URL and the portlet displays the value
in the link.

&MyParameter=20

8. When you click the link, that value is passed to the Parameter portlet on its page
(Figure 7–9).

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-27

Figure 7–9 My Event Portlet After Parameter Change

7.2.4 Using JNDI Variables
When writing Java portlets, you may set deployment specific properties through the
JNDI service such that their values may be retrieved from your provider code. In this
way, you can specify any property in a provider deployment and then easily access it
anywhere in your provider code. PDK-Java provides utilities to enable the retrieval of
both provider and non-provider JNDI variables within a J2EE container. To use JNDI
variables, you need to perform the following tasks:

■ Section 7.2.4.1, "Declaring JNDI Variables"

■ Section 7.2.4.2, "Setting JNDI Variable Values"

■ Section 7.2.4.3, "Retrieving JNDI Variables"

7.2.4.1 Declaring JNDI Variables
You declare JNDI variables in the web.xml file for your provider. The format for
declaring a JNDI variable is as follows:

<env-entry>
 <env-entry-name>variableName</env-entry-name>
 <env-entry-type>variableType</env-entry-type>
 <env-entry-value>variableValue</env-entry-value>
</env-entry>

The env-entry-name element contains the name by which you want identify the
variable. env-entry-type contains the fully qualified Java type of the variable.
env-entry-value contains the variable's default value.

7.2.4.1.1 Variable Types In the env-entry-type element, you should supply the
fully-qualified Java type of the variable, which will be expected by your Java code. The
Java types you may use in your JNDI variables are as follows:

■ java.lang.Boolean

■ java.lang.String

■ java.lang.Integer

■ java.lang.Double

■ java.lang.Float

The J2EE container uses these type declarations to automatically construct an object of
the specified type and gives it the specified value when you retrieve that variable in
your code.

7.2.4.1.2 Variable Naming Conventions The PDK-Java defines a number of environment
variables that can be set at the individual provider service level or at the Web
application level. To avoid naming conflicts between different provider services or
different application components packaged in the same Web application, we
recommend you devise some naming convention.

Enhancing PDK-Java Portlets

7-28 Oracle Fusion Middleware Developer's Guide for Oracle Portal

For example:

■ Provider service specific names should be of the form:

{company}/{component name}/{provider name}/{variable name}

■ Shared names should be of the form:

{company}/{component name}/{provider name}/global
where:

■ {company} is the name of the company owning the application.

■ {component name} is the name of the application or component with which the
provider is associated.

■ {provider name} is the service name of the provider.

■ {variable name} is the name of the variable itself.

As you can see, these naming conventions are similar to those used for Java packages.
This approach minimizes the chance of name collisions between applications or
application components. PDK-Java provides utilities that allow you to retrieve
variables in this form without hard coding the service name of the provider into your
servlets or JSPs. The service name need only be defined in the provider's WAR file.
Refer to Section 7.2.4.3, "Retrieving JNDI Variables" for more information on retrieving
JNDI variables.

7.2.4.1.3 Examples The following examples illustrate provider variable names:

oracle/portal/myProvider/myDeploymentProperty
oracle/portal/myprovider/myProperties/myProperty

The following example illustrates non-provider variable names:

oracle/portal/myOtherProperty

7.2.4.2 Setting JNDI Variable Values
In your provider deployment, you may want to set a new value for some or all of your
JNDI variables. You can perform this task by setting the values manually in a Oracle
WebLogic Server deployment plan as follows:

1. Go to the provider deployment in the Oracle WebLogic Administration Console,
and create a new Deployment Plan if one hasn't been set against it.

2. Edit the Deployment Plan XML file. For each deployment property you want to
set, add the following variable definition directly under the <deployment-plan>
tag:

<variable-definition>
 <variable>
 <name>jndi_var_def</name>
 <value>false</value>
 </variable>
 </variable-definition>

Note: If you use the EnvLookup method, you must use
oracle/portal/provider/service/property. You cannot
substitute your own company name or component in this case.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-29

3. To tie this variable definition to and actual JNDI variable that you want to set, do
the following for each property under the WEB-INF/web.xml module descriptor
(oracle/portal/sample/rootDirectory is used as an example):

<module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 <variable-assignment>
 <name>jndi_var_def</name>
<xpath>/web-app/env-entry/[env-entry-name="oracle/portal/sample/rootDirect
ory"]/env-entry-value</xpath>
 </variable-assignment>
 </module-descriptor>

4. Save the file.

5. Select 'Update' on the provider deployment to apply the Deployment Plan for the
new settings to take effect.

7.2.4.3 Retrieving JNDI Variables
JNDI is a standard J2EE technology. As such, you can access JNDI variables through
J2EE APIs. For example:

String myVarName = "oracle/portal/myProvider/myVar"
String myVar = null;
try
{
 InitialContext ic = new InitialContext();
 myVar = (String)ic.lookup("java:env/" + myVarName);
}
catch(NamingException ne)
{
 exception handling logic
}

In addition to the basic J2EE APIs, PDK-Java includes a simple utility class for
retrieving the values of variables defined and used by the PDK itself. These variables
all conform to the naming convention described in Section 7.2.4.1.2, "Variable Naming
Conventions" and are of the form:

oracle/portal/provider_service_name/variable_name
oracle/portal/variable_name

To use these APIs, you need only provide the provider_service_name and the
variable_name. The utilities construct the full JNDI variable name, based on the
information you provide, and look up the variable using code similar to that shown
earlier and return the value of the variable.

The EnvLookup class (oracle.portal.utils.EnvLookup) provides two
lookup() methods. One retrieves provider variables and the other retrieves
non-provider variables. Both methods return a java.lang.Object, which can be
cast to the Java type you are expecting.

The following code example illustrates the retrieval of a provider variable:

EnvLookup el = new EnvLookup();
String s = (String)el.lookup(myProviderName, myVariableName);

myProviderName represents the service name for your provider, which makes up
part of the variable name. myVariableName represents the portion of the variable

Enhancing PDK-Java Portlets

7-30 Oracle Fusion Middleware Developer's Guide for Oracle Portal

name that would come after the provider's service name. The example assumes the
variable being retrieved is of type java.lang.String.

To retrieve a non-provider variable, you use the same code, you pass only one
parameter, the variable name, to the lookup(), again excluding the oracle/portal
prefix.

EnvLookup el = new EnvLookup();
Object o = el.lookup(myVariableName);

Table 7–2 shows the JNDI variables provided by default with PDK-Java. If you do not
declare these variables, PDK-Java looks for their values in their original locations
(web.xml and the deployment properties file).

7.2.5 Creating Private Events
In some cases, it is useful for a portlet to complete a transaction before rendering a
page on which it resides rather than having the transaction and the rendering executed
simultaneously. For example, suppose a portlet has a link that initiates an update of
some data value that might effect other portlets on the page. If the transaction takes

Table 7–2 PDK-Java JNDI Variables

Variable Description

oracle/portal/provider/provider_name/autoReload Boolean auto reload flag.
Defaults to true.

oracle/portal/provider/provider_name/definition Location of provider's
definition file.

oracle/portal/provider/global/log/logLevel Log setting (0 through 8). 0
being no logging and 8 the
most possible logging.

oracle/portal/provider/provider_name/maxTimeDifference Provider's HMAC time
difference.

oracle/portal/provider/<service_name>/resourceUrlKey Authentication key for
resource proxying through
the Parallel Page Engine.
Refer to Oracle Fusion
Middleware Administrator's
Guide for Oracle Portal for
more information.

oracle/portal/provider/provider_name/rootDirectory Location for provider
personalizations. No default
value.

oracle/portal/provider/provider_name/sharedKey HMAC shared key. No
default value.

oracle/portal/provider/provider_name/showTestPage (non-provider) A boolean
flag that determines if a
provider's test page is
accessible. Defaults to true.

oracle/portal/provider/global/transportEnabled A boolean flag that
determines whether Edit
Defaults personalizations
may be exported and
imported. Refer to
Section 7.2.8.3.2, "Disabling
Export/Import of
Personalizations" for more
information.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-31

place simultaneously with a refresh of the page, other portlets that rely on that data
value may or may not be refreshed with the latest value. Furthermore, when
transactions and rendering are tied together in this way, an action such as the user
hitting Back in their browser could cause the transaction to be repeated, perhaps
creating a duplicate record.

In JPS portlets, this situation is solved using the processAction method, which
allows an individual portlet to complete a transaction, such as updating a value,
before allowing the page rendering to take place. PDK-Java does not have
processAction, but you can achieve the same results by submitting data to your
servlet through a different mechanism. If you are using Struts for the page flow and
control of a portlet, you could use the form tag and transaction tokens to avoid
submitting the same parameter twice. Refer to Section 7.3, "Building Struts Portlets
with Oracle JDeveloper" for more information about Struts portlets.

Another possibility is to submit data through Edit mode rather than Shared Screen
mode. Requests based on full page Show modes, such as Edit mode, are sent only to
the portlet that generated the link. Other portlets on the same portal page never even
see a render request. Hence, these full page Show modes provide you with the
capability to execute a transaction for a portlet separately from the page and its other
portlets.

Once you have processed the portlet's submission, you redirect from the full page
Show mode back to the page using the back URL. This action has two desirable effects,
as follows:

■ It returns the user to the page from which they came.

■ It clears all traces of the form submission from the browser.

As a result, any refreshing of the page is guaranteed to occur after the processing of
the data submission. Because the page refresh comes after the submission you can be
sure that all portlets on the page will access the updated data and not cause a
duplicate submission.

This technique is illustrated by a sample portlet in the PDK called the private event
submission portlet. It demonstrates submitting a simple form to the portlet and
logging the contents of the form. In the private event submission portlet, we overload
Edit mode to handle both the data submission and the portlet's rendering for
personalizations. Note that any of the other full page Show modes (Edit, Help, About,
and Edit Defaults) would be equally effective for this purpose.

Edit mode for this portlet includes additional code that first looks for a specific
parameter. If this parameter is present, it means that the request represents a private
event. The same mode can handle many different private events by using different
values for the distinguishing parameter. If the distinguishing parameter does not exist,
then Edit mode falls through to the standard portlet personalization logic.

After handling the private event, this mode redirects to the page using exactly the
same logic that Edit mode uses when a user clicks OK. Refer to EditServlet.java
in the sample files for the complete source code illustrating this technique.

Enhancing PDK-Java Portlets

7-32 Oracle Fusion Middleware Developer's Guide for Oracle Portal

7.2.6 Accessing Session Information
When a user accesses any portal page, Oracle Portal initiates a public unauthenticated
session and maintains a cookie to track information about the session across requests.
If the user logs in to Oracle Portal, this session becomes an authenticated session of the
logged-in user. This portal session terminates when the any of the following occur:

■ The browser session terminates (that is, the user closes all the browser windows).

■ The user explicitly logs out.

■ The session times out because the user's idle time exceeds the configured limit.

As part of the metadata generation, Oracle Portal contacts all of the providers that
contribute portlets to the page, if they specify during registration that they get called
for some special processing. This call allows providers to do processing based on the
user session, log the user in the provider's application if needed, and establish
provider sessions in Oracle Portal. For Database providers, this call is referred to as
do_login and for Web providers it is initSession. Since most Web-enabled
applications track sessions using cookies, this API call allows the provider of the
application to return cookies.

You can utilize the session store to save and retrieve information that persists during
the portal session. This information is only available, and useful, to you during the life
of the session. You should store only temporary information in the session store.
Application developers may use the session store to save information related to the
current user session. Data in the session store can be shared across portlets.

If the information you want to store must persist across sessions, you may want to
store it in the preference store instead. Some common applications of the session store
are as follows:

■ to cache data that is expensive to load or calculate (for example, search results).

■ to cache the current state of a portlet (for example, the current range, or page, of
search results displayed in the portlet, or sequence of events performed by user).

Note: When you use this technique, you must take care that the
details of your event are persisted somewhere. Since portlet rendering
does not happen in the same request cycle as the event processing,
any data from the event required to render the portlet must be
available from storage. Otherwise, the portlet or the page may lack the
data it requires the next time it is rendered.

If you need to persist your data, be sure to store it in a qualified
manner (by the user and portlet reference). Otherwise, you may
accidentally associate an event from one user/portlet with the
rendering of the same portlet for another user on a different page, or
even associate the same user/same portlet with a different portlet
reference on the same page.

Note: If you need to replicate session state across middle tiers, you
must mark the Web application as distributable and create a cluster
island for your OC4J servers. For more information, refer to Oracle
Containers for J2EE Servlet Developer's Guide.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-33

Before you implement session storage, you should carefully consider the performance
costs. Because portlets and providers are remote, it can be a relatively expensive
operation to create and maintain even a small amount of information in the session
store. For this reason, you may want to avoid altogether any session storage for public
pages that are accessed frequently by many users.

If scalability is an important concern for you, a stateful application may cause you
problems. Stateful applications can impact the load-balancing and failover mechanism
for your Oracle Portal configuration. Even though you may deploy multiple
middle-tiers accessing the same Oracle Portal instance, you must implement sticky
routing (where the same node handles subsequent requests in the same session) to
track state. Sticky routing may result in lopsided load-balancing or loss of session data
in case a node crashes, impacting failover. This issue is one reason why many
developers prefer to build stateless applications. However, if scalability is not a
concern, then a stateful application should present no problems for you.

In the example in this section, session storage is used to count the number of times
your portlet has rendered in Shared Screen mode.

7.2.6.1 Assumptions
To perform the tasks in this section, we are making the following assumptions:

1. You have followed through and understood Section 6.5, "Building Oracle
PDK-Java Portlets with Oracle JDeveloper".

2. You built a portlet using the wizard and successfully added it to a page.

7.2.6.2 Implementing Session Storage
The PDK Framework represents the session with a ProviderSession object, which
is established during the call to the Provider Instance's initSession method. This
object is associated with the ProviderUser. To make data persistent between
requests from Oracle Portal, you need to write data into the session object using the
setAttribute method on the ProviderSession object. This method maps a
java.lang.Object to a java.lang.String and stores that mapping inside the
session object. The String can then be used to retrieve the Object during a
subsequent request, provided the session is still valid.

A provider session may become invalid for the following reasons:

■ The session times out.

■ The invalidate method on ProviderSession is called.

■ The JVM process running the servlet container is terminated.

All portlets contained by the same ProviderInstance share the same session for a
particular ProviderUser. Therefore, data unique to a particular portlet instance must
be mapped to a unique String in the session. This is accomplished using the
portletParameter method in the PortletRendererUtil class. This method
makes a supplied String parameter or attribute name unique to a
PortletInstance, by prefixing it with a generated identifier for that instance. You
can use the returned instance-specific name to write portlet instance data into the
session.

For more detailed information on the PDK Framework classes, refer to the Javadoc on
OTN by clicking Java Doc API on the Portlet Development page available at

http://www.oracle.com/technology/products/ias/portal/portlet_development_
10g1014.html

Enhancing PDK-Java Portlets

7-34 Oracle Fusion Middleware Developer's Guide for Oracle Portal

To implement session storage, you need to perform the following tasks:

■ Import ProviderSession, PortletRendererUtil, and
HttpPortletRendererUtil.

■ Retrieve the provider session.

■ Read and write the session by accessing it from within your Java portlet.

■ Set the session to true in provider.xml.

■ Register the provider for session storage and set the Login Frequency.

The steps that follow describe how to add a session count to your portlet that displays
how many times the portlet has been rendered for the current session.

1. After using the wizard to create a portlet, you can edit the JSP for the Show page
in Oracle JDeveloper. You need to import the following classes:

<%@page contentType="text/html; charset=windows-1252"
import="oracle.portal.provider.v2.render.PortletRenderRequest"
import="oracle.portal.provider.v2.http.HttpCommonConstants"
import="oracle.portal.provider.v2.ProviderSession"
import="oracle.portal.provider.v2.render.PortletRendererUtil"
import="oracle.portal.provider.v2.render.http.HttpPortletRendererUtil"
%>

2. Insert code that checks for a valid session first and then increments the count and
displays it. If the session is valid and a previously stored value exists, you display
the value, increment the count, and store the new value. If the session is valid but
no previously stored value exists, you initialize a new count starting with 1, and
display and store the value. You also want to obtain the unique string key for this
portlet and then use an it in an array to count the session. If no session information
was received, you want to provide information to the user indicating they may
need to log back in.

<%
PortletRenderRequest pReq = (PortletRenderRequest)
request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
ProviderSession pSession = pReq.getSession();
 if (pSession != null)
 {
 String key = PortletRendererUtil.portletParameter(pReq, "count");
 Integer i = (Integer)pSession.getAttribute(key);
 if (i == null)
 {
 i = new Integer(0);
 }
 i = new Integer(i.intValue()+1);
 pSession.setAttribute(key, i);
%>

<p>Render count in this session: <%=i%> </p>

<%
 }
 else
 {
%>

<p>The session has become invalid</p>

Please log out and log in again.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-35

<%
 }
%>

3. By default, the wizard does not set session to true in provider.xml. You need to
update this flag in order for the provider to receive session information from the
portal. You should only set this tag to true if you are using session information in
your provider or portlets. By setting this flag to true, extra load is added to the
provider calls.

<provider class="oracle.portal.provider.v2.DefaultProviderDefinition">
<session>true</session>

For more information on the syntax of provider.xml, refer to the provider
Javadoc on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/x
ml_tag_reference_v2.html

4. Register the provider in Oracle Portal. Ensure that you select the User radio button
and choose a Login Frequency of Once Per Session on the Define Connections
page of the wizard. For a reminder on how to register your portlet, refer to
Section 6.5.5, "Registering and Viewing Your Oracle PDK-Java Portlet".

7.2.6.3 Viewing the Portlet
If you have not already added your Java portlet to a page, do so now. Ensure that you
perform the following tasks:

■ Set your provider to Once per User Session for the login frequency value.

■ Refresh the provider to accept the new changes.

■ Re-login in case your session is no longer valid.

7.2.7 Implementing Portlet Security
This section describes the available security services for your Java portlet.

For more detailed information about the PDK classes referred to in this section, refer to
the Javadoc on OTN by clicking Java Doc API on the Portlet Development page
available at

http://www.oracle.com/technology/products/ias/portal/portlet_development_
10g1014.html

7.2.7.1 Assumptions
To perform the tasks in this section, we are making the following assumptions:

1. You have followed through and understood Section 6.5, "Building Oracle
PDK-Java Portlets with Oracle JDeveloper".

2. You built a portlet using the wizard and successfully added it to a page.

7.2.7.2 Introduction to Portlet Security Features
This section introduces the major features that are available to secure your portlet
providers.

7.2.7.2.1 Authentication When a user first logs in to an Oracle Portal instance, they
must enter their password to verify their identity and obtain access. This

Enhancing PDK-Java Portlets

7-36 Oracle Fusion Middleware Developer's Guide for Oracle Portal

authentication is performed by OracleAS Single Sign-On Server server. Refer to
Section 7.2.7.3, "Single Sign-On" for more information.

Once the user’s identity is passed to the provider in shown requests, the provider
code has access to the authenticated user's identity from the
PortletRenderRequest that is available from the HttpServletRequest object as
follows:

PortletRenderRequest pr = (PortletRenderRequest)request.getAttribute
 (HttpCommonConstants.PORTLET_RENDER_REQUEST);
 String userName = pr.getUser().getName();

Refer to Oracle Fusion Middleware Administrator's Guide for Oracle Portal for more
information.

7.2.7.2.2 Authorization Authorization determines if a particular user may view or
interact with a portlet. Oracle Portal provides the following two types of authorization
checking:

■ Portal Access Control Lists (ACLs): After a user is authenticated by OracleAS
Single Sign-On Server, Oracle Portal uses ACLs to determine what privileges that
user has to perform actions on portal objects, such as folders and portlets. The
actions available to a user can range from simply viewing an object to performing
administrative functions on it. If a user does not belong to a group that has been
granted a specific privilege, Oracle Portal prevents that user from performing the
actions associated with that privilege. Refer to Section 7.2.7.4, "Oracle Portal
Access Control Lists (ACLs)" for more information.

■ Programmatic Portlet Security: You can also implement your own security
manager programmatically. Refer to Section 7.2.7.5, "Portlet Security Managers"
for more information.

7.2.7.2.3 Communication Security To this point, we have covered user authentication
and authorization, which do not check the authenticity of messages received by a
provider. The following measures can be used to properly secure communication
between a portal and a web provider:

■ Oracle Portal Server Authentication restricts access to a provider to a small
number of recognized machines. This method compares the IP address or the host
name of an incoming HTTP message with a list of trusted hosts. If the IP address
or host name is in the list, the message is passed to the provider. If not, it is
rejected before reaching the provider. Refer to Section 7.2.7.6, "Oracle Portal Server
Security" for more information.

■ Message Authentication uses a shared key to assert the Portal client identity and
to prevent message tampering. Refer to Section 7.2.7.7, "Message Authentication"
for more information.

■ Message Encryption encrypts message contents. Refer to Section 7.2.7.8, "HTTPS
Communication" for more information.

■ User Input Escape causes Oracle Portal to escape any user input strings and treat
them as text only to protect against XSS attacks, where an attacker attempts to pass
in malicious scripts through user input forms. Refer to Section 7.2.7.10, "User Input
Escape" for more information.

For more information about communication security, refer to the Oracle Fusion
Middleware Administrator's Guide for Oracle Portal.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-37

7.2.7.3 Single Sign-On
Portlets act as windows into an application. They display summary information and
provide a way to access the full functionality of the application. Portlets expose
application functionality directly in the portal or provide deep links that take you to
the application itself to perform a task.

An application may need to authenticate the user accessing the application through
the portlet. Following are the possible application authentication methods:

■ Section 7.2.7.3.1, "Partner Application". In this case, the application user is the
same authenticated user used by Oracle Portal.

■ Section 7.2.7.3.2, "External Application". In this case, the Oracle Portal user is
different from the application user, but the application user name and password
are managed by the Oracle Portal user.

■ Section 7.2.7.3.3, "No Application Authentication". In this case, the communication
between provider and Oracle Portal is not protected at all.

For more information about Single Sign-On, refer to the Oracle Fusion Middleware
Administrator's Guide for Oracle Portal.

7.2.7.3.1 Partner Application A partner application is an application that shares the
same OracleAS Single Sign-On Server as Oracle Portal for its authentication. Thus,
when a user is already logged in to Oracle Portal, their identity can be asserted to the
partner application without them having to log in again.

Partner applications are tightly integrated with OracleAS Single Sign-On Server. When
a user attempts to access a partner application, the partner application delegates the
authentication of the user to OracleAS Single Sign-On Server. Once a user is
authenticated (that is, has provided a valid user name and password) for one partner
application, the user does not need to provide a user name or password when
accessing other partner applications that share the same OracleAS Single Sign-On
Server instance. OracleAS Single Sign-On Server determines that the user was
successfully authenticated and indicates successful authentication to the new partner
application.

The advantages of a partner application implementation are as follows:

■ Provides the tightest integration with Oracle Portal and OracleAS Single Sign-On
Server.

■ Provides the best single sign-on experience to users.

■ Provides the most secure form of integration because user names and passwords
are not transmitted between Oracle Portal and the provider.

The disadvantages of a partner application implementation are as follows:

■ The application must share the same user repository as Oracle Portal even though
the application's user community may be a subset of the Oracle Portal user
community. While worth some consideration, this issue is a minor one because the
portal pages that expose the application can be easily restricted to the application's
user community.

■ The application can only be tightly integrated to one or more OracleAS Single
Sign-On Server instances if they share the same user repository.

■ The application must be written such that it delegates authentication to OracleAS
Single Sign-On Server.

■ You must have access to the application source code.

Enhancing PDK-Java Portlets

7-38 Oracle Fusion Middleware Developer's Guide for Oracle Portal

7.2.7.3.2 External Application An external application uses a different authentication
server than Oracle Portal. The application may use a different instance of OracleAS
Single Sign-On Server than that used by Oracle Portal or some other authentication
method. However OracleAS Single Sign-On Server does store the user name and
password of the external application for that user. This means that when a user is
already logged into Oracle Portal, they will be logged into the external application
without having to type in their user name or password.

Applications that manage the authentication of users can be loosely integrated with
OracleAS Single Sign-On Server if the administrator registers them as external
applications. When a user who was previously authenticated by OracleAS Single
Sign-On Server accesses an external application for the first time, OracleAS Single
Sign-On Server attempts to authenticate the user with the external application. The
authentication process submits an HTTP request that combines the registration
information and the user's user name and password for the application. If the user has
not yet registered their user name and password for the external application, OracleAS
Single Sign-On Server prompts the user for the required information before making
the authentication request. When a user supplies a user name and password for an
external application, OracleAS Single Sign-On Server maps the new user name and
password to the user's Oracle Portal user name and stores them. They will be used the
next time the user needs authentication with the external application.

The advantages of an external application implementation are as follows:

■ Allows integration with many portals. If, however, one of the portals is preferred
over the others, the application could be integrated as a partner application of that
preferred portal and an external application of the others.

■ Provides a single sign-on experience for users. However, users still must maintain
different user names and passwords. In addition, the external application user
name mapping must be maintained.

■ Allows integration with multiple portals independent of their user repositories
and OracleAS Single Sign-On Server.

■ Avoids the requirement of having access to the application source code.

The disadvantages of an external application implementation are as follows:

■ Does not share the same user repository as the portal, which requires additional
maintenance of user information by the end user.

■ Transmits the user name and password to the provider in plain text, unless you
implement SSL.

7.2.7.3.3 No Application Authentication The provider trusts the Oracle Portal instance
sending the request completely. The provider can determine if the user is logged in
and the portal user name, but the application has not authenticated the user.

The advantages of no application authentication are as follows:

■ Provides the easiest form of integration and the fastest to implement.

The disadvantages of no application authentication are as follows:

■ Provides the least security.

■ Provides the weakest integration with Oracle Portal.

7.2.7.4 Oracle Portal Access Control Lists (ACLs)
When users log in to an Oracle Portal instance, they are authenticated by an OracleAS
Single Sign-On Server instance. Having verified their identity, Oracle Portal uses ACLs

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-39

to determine whether they are authorized to access particular portlets and add them to
pages from the Portlet Repository.

Oracle Portal ACLs operate according to the following security characteristics:

■ Privileges define the actions that can be performed on the object to which they are
granted. Privileges include actions such as Manage and Execute.

■ Oracle Portal users and their privileges are granted from the Administer tab of
the Builder.

■ Oracle Portal user groups are administered from the Administer tab of Oracle
Portal Builder. Membership in the groups and privileges granted to the groups are
all defined and maintained here. A privilege granted to a user group is inherited
by all the users of that group.

■ Provider privileges apply to the provider and all of its portlets. Provider ACLs are
administered on the Provider tab of the Oracle Portal Navigator.

■ Portlet privileges can override the privileges set for the provider of the portlet.
Portlet ACLs are administered from the Provider tab of the Oracle Portal
Navigator. Clicking Open for a provider takes you to a page that manages the
portlets of the provider.

For more information on the available privileges for objects, users, and user groups in
Oracle Portal, refer to the Oracle Fusion Middleware Administrator's Guide for Oracle
Portal.

The advantages of ACLs are as follows:

■ ACLs offer a simple, yet powerful, mechanism to secure Oracle Portal objects.

■ Central management of user group membership simplifies the management of
ACLs because it negates the necessity of modifying the ACLs associated with each
object.

The disadvantages of ACLs are as follows:

■ ACLs are applied at the provider or portlet level. You cannot vary the security
rules for a portlet depending on the page where you place it.

7.2.7.5 Portlet Security Managers
Portlet security managers are implemented within a provider to verify that a given
user may view an instance of the portlet. When a user views a page with a portlet
instance on it, security managers determine whether the user has the appropriate
privileges to see the portlet. Implementing access control methods in the provider
restricts the retrieval of content from a portlet (that is, hides the portlet) from users
without the appropriate privileges. Only if the specified characteristics, such as user
details and preferences, pass the authorization logic will the content be retrieved for
the user. If no portlet security methods are implemented in the provider, then any user
name may be passed in, even fictitious, unauthenticated ones.

A provider can implement two portlet security methods as follows:

■ Get a list of portlets.

■ Verify the accessibility of the portlet.

Portlets have access to the Oracle Portal user privileges and groups of which the user
is a member. The following information can be used by the security methods:

■ The default group of the user

■ The privileges of a user or group

Enhancing PDK-Java Portlets

7-40 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ The highest available privilege of a user across all groups

■ The objects the user can access (only in database providers)

AuthLevelSecurityManager has access to the following information about
authorization level:

■ Strongly authenticated.

The user has been authenticated by OracleAS Single Sign-On Server in the current
Oracle Portal session, that is, the user logged in with a valid user name and
password, and requested the portlet in the context of that session.

■ Weakly authenticated.

A user who was previously strongly authenticated returns to view a page without
an active Oracle Portal session. A persistent cookie (maintained by the user's
browser) indicates that in some previous session the user logged on with a valid
user name and password.

■ Public or not authenticated.

The user has not logged in within the context of the current Oracle Portal session,
and does not have a persistent cookie to indicate that such a state previously
existed.

To incorporate these security services into your Java portlet, you simply need to
update provider.xml and set the security level to strong, weak, or public. Place the
following XML right before the </portlet> tag in provider.xml:

<securityManager class="oracle.portal.provider.v2.security.AuthLevelSecurityManager">
 <securityLevel>strong</securityLevel>
</securityManager>

After you make this change to provider.xml, refresh the provider.

For more information on the syntax of provider.xml, refer to the provider Javadoc
on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/xml_
tag_reference_v2.html

The advantages of security methods are as follows:

■ You can enable a portlet to produce different output depending on the level of
authorization.

The disadvantages of security methods are as follows:

■ Most security manager implementations will use the authorization level or some
other user specific element in an incoming message. A check of this type could be
bypassed by an entity imitating an Oracle Portal instance.

7.2.7.5.1 Viewing the Portlet After you add a security manager to a portlet, you can
validate it by following these steps:

1. Ensure you are logged in to an Oracle Portal instance with privileges to create
pages and add portlets to a page.

2. Create a new portal page, ensuring it is visible to PUBLIC.

3. Add your Java portlet to the page.

4. Make a note of the direct URL to your new Portal page.

5. Now log out of the Portal instance by clicking the Logout link.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-41

6. Directly access the Portal page by entering the URL noted in Step 4 into your
browser's address bar.

You will see the page created in Step 2 but not the portlet added in Step 3. When you
added the portlet to the page, you were logged in and hence strongly authenticated.
The PDK runtime detected this and allowed you to add the portlet. When you logged
out and viewed the page, you were no longer strongly authenticated and hence the
PDK Framework did not allow rendering of the portlet's contents.

If you log in again and view the page, you will see that the portlet is still there.

7.2.7.5.2 Implementing Your Own Security Manager If your portlet requires special security
arrangements which are not provided by the implementations shipped with the PDK,
you will need to supply your own custom PortletSecurityManager controller
class. To do this, extend the
oracle.portal.provider.v2.security.PortletSecurityManager class
and supply implementations for the two methods specified by the interface. Then
replace the class attribute of the securityManager controller element in the XML
provider definition with you new class name and configure child elements
appropriately.

7.2.7.6 Oracle Portal Server Security
One way to prevent unauthorized access to providers is to restrict access to the
provider to known client machines at the server level. Because only the identified
clients may access the provider, this method defends against denial of service attacks.

In Oracle Fusion Middleware, you use the allow and deny directives in the
httpd.conf file to control access to client machines based on their host names or IP
addresses. If host names are used as discriminators, the server needs to look them up
on its Domain Name Server (DNS), which adds extra overhead to the processing of
each request. Using the IP address circumvents this problem, but the IP address of a
remote client may change without warning.

The advantages of server security are as follows:

■ It limits access to the provider to trusted hosts only.

■ It simplifies configuration.

The disadvantages of server security are as follows:

■ Oracle Web Cache does not have IP address checking capability. If Oracle Web
Cache sits in front of a provider, you have no protection from a client on any host
sending show requests to Oracle Web Cache.

■ Restricting access to certain IP addresses and host names may be circumvented by
sending messages to a provider containing fake IP addresses and host names. This
trick is difficult to perform effectively since return messages go to the machine
whose IP address was copied, but it can still cause problems.

For more information on this topic, refer to the Oracle Fusion Middleware
Administrator's Guide for Oracle Portal.

7.2.7.7 Message Authentication
Message authentication uses a shared key known to the client (Portal instance) and
provider to restrict access to known clients. This may be used in SSL communication
with a provider instead of client certificates.

Oracle Portal sends a digital signature, calculated using a Hashed Message
Authentication Code (HMAC) algorithm, with each message to a provider. A provider

Enhancing PDK-Java Portlets

7-42 Oracle Fusion Middleware Developer's Guide for Oracle Portal

may authenticate the message by checking the signature using its own copy of the
shared key. This technique may be used in Secure Socket Layer (SSL) communication
with a provider instead of client certificates.

A single provider instance cannot support more than one shared key because it could
cause security and administration problems. For instance, if one copy of the shared
key is compromised in some way, the provider administrator has to create a new key
and distribute it to all of the Oracle Portal clients, who then must update their
provider definitions. The way around this problem is to deploy different provider
services, specifying a unique shared key for each service. Each provider service has its
own deployment properties file so that each service is configured independently of the
others. The overhead of deploying multiple provider services within the same
provider adapter is relatively small.

In a provider without Oracle Web Cache in front of it, this use of the same signature
cookie over the lifetime of a provider session implies a trade-off between performance
and the security provided by authenticating the requests. The signature cookie value is
only calculated once after the initial SOAP request establishes the session with the
provider. The shorter the provider session timeout, the more often a signature will be
calculated providing greater security against a show request being resent illegally.
However, the SOAP request required to establish a session incurs a time penalty.

In a provider using Oracle Web Cache to cache show request responses, you have a
similar trade-off. Cached content is secured in the sense that incoming requests must
include the signature cookie to retrieve it, but caching content for an extended period
of time leaves the provider open to show requests being illegally trapped and resent to
the provider.

While the signature element provides protection against interception and resending of
messages, it does nothing to prevent interception and reading of message contents.
Messages are still transmitted in plain text. If you are concerned about the content of
messages being read by unauthorized people, you should use message authentication
in conjunction with SSL.

The advantages of message authentication are as follows:

■ Ensures that the message received by a provider comes from a legitimate Oracle
Portal instance.

The disadvantages of message authentication are as follows:

■ Causes administration problems if a provider serves more than one portal.

■ Entails performance implications if made very secure by having a short session
timeout.

For more information on this topic, refer to the Oracle Fusion Middleware
Administrator's Guide for Oracle Portal.

Credential Store Share Key
The Producer’s shared key is stored in the credential store. To store a shared key into
the credential store do the following:

Create the Credential
To create the credentials, run the following WLST command:

createCred(map='PDK', key='pdk.omniPortlet.sharedKey', user='sharedKey',
password='1234567890abc')

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-43

Grant PDK Java Code Access to the Credential Store
To grant pdk java code access to the credential store permission :

grantPermission(appStripe=None,principalClass=None,principalName=None,codeBaseURL=
'file:${domain.home}/servers/WLS_Portal/tmp/_WL_
user/-',permClass='oracle.security.jps.service.credstore.CredentialAccessPermissio
n',permTarget='context=SYSTEM,mapName=PDK,keyName=*',permActions='read')

7.2.7.8 HTTPS Communication
Normal communication between Oracle Portal and a provider uses HTTP, a network
protocol that transmits data as plain text using TCP as the transport layer. HTTPS uses
an extra secured layer (SSL) on top of TCP to secure communication between a client
and a server, making it difficult to intercept and read messages.

Each entity (for example, an Oracle Web Cache instance) receiving a communication
using SSL has a freely available public key and a private key known only to the entity
itself. Any messages sent to an entity are encrypted with its public key. A message
encrypted by the public key may only be decrypted by the private key so that, even if
a message is intercepted by a felonious third party, it cannot be decrypted.

Certificates used to sign communications ensure that the public key does in fact
belong to the correct entity. These are issued by trusted third parties, known as
Certification Authorities (CA). They contain an entity's name, public key, and other
security credentials and are installed on the server end of an SSL communication to
verify the identity of the server. Client certificates may also be installed on the client to
verify the identity of a client.

Oracle Wallet Manager manages public key security credentials. It generates public
and private key pairs, creates a certificate request to a CA, and installs the certificate
on a server.

For more information on this topic, refer to the Oracle Fusion Middleware
Administrator's Guide for Oracle Portal.

Configuration of SSL
When a provider is registered from an Oracle Portal instance, only one URL is entered,
which means either HTTP or HTTPS may be used but not both.

Each port on each server that may be used to receive SSL messages must have a
server-side certificate installed (that is, an OracleAS Web Cache instance) in front of
the Web provider and the server that hosts the provider. The certificate installed on a
server port ensures that communication between two points is encrypted but does not
authenticate the source of a message. Message authentication should be used as well
to fully secure communication between a trusted Oracle Portal instance and a
provider.

For more information about SSL configuration for Oracle Portal, refer to the Oracle
Fusion Middleware Administrator's Guide for Oracle Portal.

7.2.7.9 LDAP (Oracle Internet Directory) Security
PDK-Java uses Portlet Security Managers for LDAP (Oracle Internet Directory)
security. PDK-Java uses Oracle Internet Directory as a repository of users, groups, and
permissions. It retrieves information about the logged-in user and determines whether
the user has the required permissions to view the portlet and data within the portlet.
By enabling Oracle Internet Directory security, your providers perform the following:

■ Secure portlets based on groups.

Enhancing PDK-Java Portlets

7-44 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ Restrict access to the administrative functions of your portlets (using your own
security manager).

■ Retrieve all of the user property information stored in the Oracle Internet
Directory including first name, last name, title, e-mail, telephone number, groups,
and photo.

■ Create users and groups for Oracle Portal.

By default, Oracle Internet Directory security is disabled. You must make a change in
the deployment properties file for a specific provider to enable this feature. Enabling
and using Oracle Internet Directory to secure your portlets can be done quickly and
easily. To do this, perform the following steps:

1. Enable the Oracle Internet Directory manager in the deployment properties files
(provider_name.properties).

oidManager=true
oidAdminClass=class_that_extends_oracle.portal.provider.v2.oid.OidInfo

2. Provide the connection information for Oracle Internet Directory by extending the
simple class called OidInfo.

3. Provide a list of groups that can view your portlet in the provider definition file.

<group>cn=group1,cn=groups,dc=us,dc=oracle,dc=com</group>

Your provider connects to Oracle Internet Directory using the information
provided to the OidInfo class by you. The portlet accesses Oracle Internet
Directory using the credentials provided (for example, user name and password)
and performs the specified tasks. We recommend that you create an Oracle
Internet Directory user specifically for your provider connection with the
minimum set of privileges needed to complete the tasks requested by your
portlets. For example, if your portlet only checks group information, do not
connect to the Oracle Internet Directory as an administrator.

7.2.7.9.1 Implementing Oracle Internet Directory Security PDK-Java provides a set of
default classes specifically for Oracle Internet Directory integration. These classes
handle the connection from your portlets to Oracle Internet Directory, enable your
portlets to be secured based on Oracle Portal groups, and provide access to user
property information from within Oracle Internet Directory. The classes used by your
Web provider for Oracle Internet Directory integration are as follows:

■ oracle.portal.provider.v2.oid.OidInfo receives the Oracle Internet
Directory connection information provided by the developer and connects to
Oracle Internet Directory. When building your own portlets, you should extend
this class to send secure connection details from the provider to Oracle Internet
Directory.

■ oracle.portal.sample.v2.devguide.oid.UnsafeOidInfo is an
extension of OidInfo and provides an easy way to test portlet security. This class
is used by the Oracle Internet Directory samples in PDK-Java and parses the
deployment properties file for the Oracle Internet Directory connection
information (seen subsequently). This class should be used only for testing and
development, it is not safe to use in a production scenario.

■ oidManager is set to false by default. It must be set to true in provider_
name.properties to enable Oracle Internet Directory. (If you have only one
provider in your Web application, ensure that provider_name.properties is
identical to _default.properties.) For example:

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-45

serviceClass=oracle.webdb.provider.v2.adapter.soapV1.ProviderAdapter
loaderClass=oracle.portal.provider.v2.http.DefaultProviderLoader
showTestPage=true
definition=providers/lab_provider/provider.xml
autoReload=true
oidManager=true
oidAdminClass=oracle.portal.sample.v2.devguide.oid.UnsafeOidInfo
oidHost=myhost.mydomain.com
oidPort=oidPort
oidUser=oidUser
oidPasswd=oidPassword

■ oidAdminClass is set to the class that extends OidInfo. PDK-Java provides
UnsafeOidInfo by default, but as the name suggests, this class should not be
used in production scenarios.

– oidHost is the machine where Oracle Internet Directory is hosted.

– oidPort is the port used by the Oracle Internet Directory.

– oidUser is the Oracle Internet Directory account.

– oidPasswd is the Oracle Internet Directory password.

For example:

serviceClass=oracle.webdb.provider.v2.adapter.soapV1.ProviderAdapter
loaderClass=oracle.portal.provider.v2.http.DefaultProviderLoader
showTestPage=true
definition=providers/lab_provider/provider.xml
autoReload=true
oidManager=true
oidAdminClass=oracle.portal.sample.v2.devguide.oid.UnsafeOidInfo
oidHost=myhost.mydomain.com
oidPort=oidPort
oidUser=oidUser
oidPasswd=oidPassword

■ oracle.portal.provider.v2.security.GroupSecurityManager
manages which groups have access to your provider and its portlets. It retrieves
this information from the provider definition file and is portlet specific. Each
portlet in a provider may have different group settings. There is no limit on the
number of groups that can be set using this tag, but, since the Web provider parses
and validates each group in turn, listing many groups may degrade performance.

■ <group> is the tag in provider.xml that handles group management. It lists the
groups allowed to access the portlet. The group information here follows the same
case sensitivity as the Oracle Internet Directory.

<securityManager class="oracle.portal.provider.v2.security.
 GroupSecurityManager">
 <group>cn=DBA,cn=portal_instance_id,cn=groups,
 dc=us,dc=oracle,dc=com</group>
</securityManager>

Note: The following example refers to your portal_instance_id,
which is specific to your installation. To find your instance identifier,
refer to your Oracle Fusion Middleware Administrator's Guide for Oracle
Internet Directory.

Enhancing PDK-Java Portlets

7-46 Oracle Fusion Middleware Developer's Guide for Oracle Portal

For more information on the syntax of provider.xml, refer to the provider
Javadoc on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/x
ml_tag_reference_v2.html

The advantages of Oracle Internet Directory security are as follows:

■ Offers a simple, powerful way to secure your portlets.

■ Secures data within your portlets based on the user's group membership.

■ Creates users and groups directly from your portlets exposed as Web providers.

The disadvantages of Oracle Internet Directory security are as follows:

■ Slightly degrades performance when authorizing your portlet through Oracle
Internet Directory. There is a cost associated with obtaining group information
from any LDAP server, but this cost only happens the first time a user accesses a
portlet in a session.

■ Requires provider access to Oracle Internet Directory.

■ Assumes all Oracle Portal instances served by the provider use the same Oracle
Internet Directory instance.

For more information on securing your providers using Oracle Internet Directory or to
set up the sample portlets secured using Oracle Internet Directory, review the
technical note, Installing the Oracle Internet Directory Portlets on OTN.

7.2.7.9.2 Viewing Your Portlets After you secure your provider with Oracle Internet
Directory, you can validate its behavior by following these steps:

1. Ensure you are logged in to an Oracle Portal instance as a user who is a member of
the group specified in the <group> tag in provider.xml.

2. Use an existing page or create a new one, ensuring it is visible to PUBLIC.

3. Add your Java portlet to the page.

4. Make a note of the direct URL to your new page.

5. Click Logout.

6. Directly access the page by entering the URL noted in Step 4 in your browser's
address bar or login to Oracle Portal using a user that is not part of the group
listed in provider.xml.

You will see the page created in Step 2 but not the portlet added in Step 3, as shown in
Figure 7–10. When you added the portlet to the page, you were logged in as a user
authorized to view the portlet. The PDK runtime detected this and allowed you to add
the portlet. When you logged out and viewed the page, you were no longer part of the
group allowed to view the portlet and hence the PDK Framework did not allow
rendering of the portlet's contents.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-47

Figure 7–10 Page and Portlets for Developer

If you log in again and view the page, you will see that the portlet is still there
(Figure 7–11).

Figure 7–11 Page and Portlets for Developer/Administrator

7.2.7.10 User Input Escape
By accepting user input without escaping it to text, you run the risk of an XSS attack,
where an attacker attempts to pass in malicious scripts through user input forms. For
example, if a portlet title is customizable, an attacker might attempt to pass scripts or
commands to the portlet through the title string. Oracle Portal provides the following
features to ensure that you can protect your portlets from such attacks:

■ Section 7.2.7.10.1, "Default Container Encoding"

■ Section 7.2.7.10.2, "Escape Methods"

7.2.7.10.1 Default Container Encoding To prevent any script inside a portlet title from
being executed, the framework default container renderer class encodes any script
characters. This default behavior is controlled through a JNDI variable,
escapeStrings. When set to true, the markup tags in portlet titles are rendered as
visible tag characters. For example, a title customization of <i>title</i> will be
rendered as <i>title</i> not title. This mode is secure, but, if it is not the desired
behavior, you can set escapeStrings to false for that provider.

Enhancing PDK-Java Portlets

7-48 Oracle Fusion Middleware Developer's Guide for Oracle Portal

escapeStrings applies to all logical providers within a Web provider. You can set
the value of escapeStrings from the WebLogic Server Administration Console as
you would any other JNDI variable. Refer to Section 7.2.4.2, "Setting JNDI Variable
Values" for more information.

7.2.7.10.2 Escape Methods If you have code that renders customized values, you need
to ensure that you escape those input values appropriately to avoid XSS attacks. This
requirement applies to code for rendering pages in any mode. Oracle Portal supplies
two new static methods for this purpose. They are in the Java class
oracle.portal.provider.v2.url.UrlUtils, and can be described as follows:

■ public static escapeString(string_text) escapes any script characters
in a given string. For example, less than < becomes <. This method is unaffected
by the escapeStrings JNDI variable and is the secure, recommended method to
use.

■ public static escapeStringByFlag(string_text) escapes any script
characters in a given string. This method is controlled by the escapeStrings
JNDI variable and is therefore less secure and not the recommended method to
use.

For example:

title = UrlUtils.escapeString(data.getPortletTitle());

7.2.8 Controlling the Export/Import of Portlet Personalizations
The export/import facility of Oracle Portal is a multi-purpose tool for moving your
portal objects, such as portlets, between instances of Oracle Portal. For example, you
might use export/import to move objects from a development environment to a stage
environment and then, finally, to a production environment. You might also use
export/import to move pages and page groups between Oracle Portal instances, or to
move Web providers from one machine to another. For more information about
export/import in general, please refer to the Oracle Fusion Middleware Administrator's
Guide for Oracle Portal.

Because portlet default settings can be set by the administrator and then changed by
the user, they require some special consideration when you import and export them.
To simplify the transport process, Oracle Portal provides default functionality that
handles administrator personalization data (that is, data created using Edit Defaults
mode) for you. When a portlet is exported, the default personalization data stored
using PDK-Java's PreferenceStore mechanism is exported with the portlet by
default. Hence, when the portlet is imported into a target instance of Oracle Portal, this
data is imported along with it. As a result, the portlet instance's default settings are
maintained when the portlet is moved from one portal instance to another.1

The aforementioned behavior is provided to you as a convenience and it requires no
action on your part to leverage. You might, however, want to exercise more granular
control over the export of personalization data than that provided by the default
functionality. To implement your own requirements for export/import, you can make
use of the programming interface to augment or override the default handling of
personalizations.

If you use the PDK-Java preference store mechanism, the export/import of your Edit
Default personalizations is built-in and requires no additional effort on your part. This
default export/import of administrator personalizations relies on the PDK-Java

1 User personalization data for Oracle Portal objects is never exported. This restriction applies
to portlets as well as other objects, such as pages.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-49

preference store. If you have created your own preference store mechanism (for
example, a file or database preference storage system), then you also must implement
your own export/import support that performs the following functions:

■ Exports personalizations. This functionality must at least export administrator
personalizations, but it could optionally include user personalizations, too.

■ Imports personalizations. Note that this functionality must reflect whatever you
implemented for export. For example, if you allow the export of both
administrator and user personalizations, then the import functionality must
support both as well.

The export/import functionality for personalizations requires that your Oracle Portal
instance and provider are on Release 10.1.2. Export/import of personalizations
behaves the same regardless of the location of your provider, which can be either of
the following:

■ in the default Oracle Containers for Java EE of the Oracle Fusion Middleware,
where the Oracle Portal instance is different.

■ in a separate Oracle Containers for Java EE, where the Oracle Portal instance may
be different, and the provider is the same but is not registered on the target Oracle
Portal instance.

7.2.8.1 Import/Export Programming Interface
The PDK-Java's preference store mechanism allows data to be persisted by any
number of application entities. The following three entities are the ones that persist
data for the purposes of export/import:

1. The portlet instance is the portlet on a page with the default personalizations made
to it by the administrator. The API for the portlet instance is as follows:

■ oracle.portal.provider.v2.PortletInstance

– exportData

public byte[] exportData
 (
 boolean exportUsers,
 String[] userNames,
 TransportLogger logger
)
 throws PortletException

– importData

public void importData
 (
 byte[] data,
 TransportLogger logger
)
 throws PortletException

2. The portlet definition is the base portlet without any personalizations applied to it.
You might think of the portlet definition as the version of the portlet that exists in
the Portlet Repository before it is placed on a particular page for use. The API for
the portlet definition is as follows:

■ oracle.portal.provider.v2.PortletDefinition

– exportData

Enhancing PDK-Java Portlets

7-50 Oracle Fusion Middleware Developer's Guide for Oracle Portal

public byte[] exportData
 (
 ProviderInstance pi,
 boolean exportUsers,
 String[] userNames,
 TransportLogger logger
)
 throws PortletException

– importData

public void importData
 (
 ProviderInstance pi,
 byte[] data,
 TransportLogger logger
)
 throws PortletException

3. The provider instance is the entity that contains and communicates with a set of
portlets. The API for the provider instance is as follows:

■ oracle.portal.provider.v2.ProviderInstance

– exportData

public byte[] exportData
 (
 boolean exportUsers,
 String[] userNames,
 TransportLogger logger
)
 throws ProviderException

– importData

public void importData
 (
 byte[] data,
 TransportLogger logger
)
 throws ProviderException

By default, each of these entities employs an instance of
oracle.portal.provider.v2.transport.PrefStoreTransporter to
transform the data from an
oracle.portal.provider.v2.preference.PreferenceStore to a byte array
for transport. For the default export/import behavior, though, only the portlet
instance entity's personalization data is exported and imported. If you have persisted
data at the portlet definition or provider instance level, you may want to export that
data as well. For example, a billing handle that you persisted at the
ProviderInstance level may need to be exported.

To change the behavior of PrefStoreTransporter, you can override its default
implementation. The example in Section 7.2.8.3.7, "Exporting by Reference Example"
illustrates how you can override PrefStoreTransporter.

Logging Interface
To simplify troubleshooting of your export/import transactions, you can send
messages to both the calling Oracle Portal instance and the Web provider log.
PDK-Java provides a transport logging class that enables you to add events to the log

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-51

during export and import operations. In this way, you can better keep track of events
that occur during the transport of portlet personalizations. The log can be a valuable
troubleshooting tool if you encounter unexpected behavior in your portlets during or
after transport. For example, you can log events when incompatibilities between
PDK-Java versions are found.

You log events using the logger object, an instance of the
oracle.portal.provider.v2.transport.TransportLogger class provided
for each of the methods mentioned earlier. You log events with the calling portal
through the instance provided for each method. You record events in the Web
provider log with the normal logging mechanism,
oracle.portal.log.LogManager. The log levels for export/import are as follows:

■ TransportLogger.SEVERITY_INFO

■ TransportLogger.SEVERITY_WARNING

■ TransportLogger.SEVERITY_ERROR

7.2.8.2 Exporting Personalizations Example
This example illustrates the most basic case where you build a portlet and accept the
default behavior for the export of personalizations. In the examples in Section 7.2.8.3.6,
"Encrypting Personalization Data Example" and Section 7.2.8.3.7, "Exporting by
Reference Example", you will see how to enhance the security of your personalizations
during export and import. To implement the more basic form of exporting
personalizations, do the following:

1. Create a stock portlet and implement the Show mode with the following
MyStockPortletShowRenderer.java class. Note that this class does not
incorporate any special code to enable export/import.

package oracle.portal.sample.v2.devguide.tx;
import java.util.StringTokenizer;
import oracle.portal.provider.v2.PortletException;
import oracle.portal.provider.v2.personalize.NameValuePersonalizationObject;
import oracle.portal.provider.v2.render.PortletRenderRequest;
import oracle.portal.provider.v2.render.PortletRendererUtil;
import oracle.portal.provider.v2.render.http.BaseManagedRenderer;
import java.io.PrintWriter;
import oracle.portal.sample.v2.devguide.webservices.
 NetXmethodsServicesStockquoteStockQuoteServiceStub;
public class MyStockPortletShowRenderer extends BaseManagedRenderer
{
 private String pid = null;
 private String userdata;
 private String stockList;
 private String stockCode;
 public void renderBody(PortletRenderRequest request) throws PortletException
 {
 // Use the PrintWriter from the PortletRenderRequest
 PrintWriter out = null;
 NetXmethodsServicesStockquoteStockQuoteServiceStub ns = new
 NetXmethodsServicesStockquoteStockQuoteServiceStub();
 try
 {
 out = request.getWriter();
 NameValuePersonalizationObject data = null;
 data = (NameValuePersonalizationObject)PortletRendererUtil.
 getEditDefaultData(request);
 stockList= data.getString("stock");

Enhancing PDK-Java Portlets

7-52 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 if(stockList!=null) {
 StringTokenizer st = new StringTokenizer(stockList,",");
 out.println("<table border='0'>");
 out.println("<thead>");
 out.println("<tr>");
 out.println("<th width='20%'>");
 out.println("<p align='left'> Stock Code</p></th><th width='20%'>");
 out.println("<p align='left'> Quote</p>");
 out.println("</th>");
 out.println("</tr>");
 out.println("<thead>");
 while(st.hasMoreElements()) {
 stockCode= st.nextElement().toString();
 out.println("<tr>");
 out.println("<td width='20%'>");
 out.println("<p align='left'>"+ stockCode +
 "</p></td><td width='20%'>");
 out.println(ns.getQuote(stockCode));
 out.println("</td>");
 out.println("</tr>");
 }
 out.println("</table>");
 }
 else
 {
 out.println("
 Click Edit Defaults to define stock codes.");
 }
 }
 catch(Exception ioe)
 {
 throw new PortletException(ioe);
 }
 }
}

2. Implement the Edit Defaults mode for your stock portlet with the following class,
MyStockPortletEditDefaultsRenderer.java. This class enables the
administrator to make and store default personalizations, which are then exported
according to the default behavior.

package oracle.portal.sample.v2.devguide.tx;
import oracle.portal.provider.v2.PortletException;
import oracle.portal.provider.v2.http.HttpCommonConstants;
import oracle.portal.provider.v2.render.PortletRenderRequest;
import oracle.portal.provider.v2.render.http.BaseManagedRenderer;
import oracle.portal.provider.v2.render.PortletRendererUtil;
import oracle.portal.provider.v2.personalize.NameValuePersonalizationObject;
import java.io.PrintWriter;
import java.io.IOException;
import oracle.portal.provider.v2.render.http.HttpPortletRendererUtil;
public class MyStockPortletEditDefaultsRenderer extends BaseManagedRenderer
{
 public void renderBody(PortletRenderRequest request) throws PortletException
 {
 PrintWriter out = null;
 try
 {
 out = request.getWriter();
 }
 catch(IOException ioe)

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-53

 {
 throw new PortletException(ioe);
 }

 // Personalize the portlet title and stock
 String actionParam = PortletRendererUtil.getEditFormParameter(request);
 PortletRenderRequest prr = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 String action = request.getParameter(actionParam);
 String title = prr.getQualifiedParameter("myportlet_title");
 String stock = prr.getQualifiedParameter("myportlet_stock");
 NameValuePersonalizationObject data = null;
 try
 {
 data = (NameValuePersonalizationObject)
 PortletRendererUtil.getEditDefaultData(request);
 }
 catch(IOException io)
 {
 throw new PortletException(io);
 }
 // Cancel automatically redirects to the page, so
 // will only recieve OK or APPLY
 if (action != null)
 {
 data.setPortletTitle(title);
 data.putString("stock",stock);
 try
 {
 PortletRendererUtil.submitEditData(request, data);
 }
 catch(IOException ioe)
 {
 throw new PortletException(ioe);
 }
 return;
 }
 // Otherwise just render the form
 title = data.getPortletTitle();
 stock = data.getString("stock");
 out.print("<table border='0'> <tr> ");
 out.println("<td width='20%'> <p align='right'>Title:</p></td>
 <td width='80%'>");
 out.print("<input type='TEXT' name='" +
 HttpPortletRendererUtil.portletParameter(prr, "myportlet_title")
 + "' value='" + title + "'>");
 out.println("</td> </tr>");
 out.print("<tr> <td width='20%'> <p align='right'>Stock Codes:</p></td>
 <td width='80%'>");
 out.print("<input type='TEXT' name='" +
 HttpPortletRendererUtil.portletParameter(prr, "myportlet_stock")
 + "' value='" + stock + "'>");
 out.println("
 For example use US Stock Codes separated by comma:
 <i> SUNW,IBM,ORCL</i>");
 out.print("</td> </tr>");
 out.println("</table>");
 }
}

Enhancing PDK-Java Portlets

7-54 Oracle Fusion Middleware Developer's Guide for Oracle Portal

3. Create the following class,
NetXmethodsServicesStockquoteStockQuoteServiceStub.java, for
your stock portlet:

package oracle.portal.sample.v2.devguide.webservices;
import oracle.soap.transport.http.OracleSOAPHTTPConnection;
import org.apache.soap.encoding.SOAPMappingRegistry;
import java.net.URL;
import org.apache.soap.rpc.Call;
import org.apache.soap.Constants;
import java.util.Vector;
import org.apache.soap.rpc.Parameter;
import org.apache.soap.rpc.Response;
import org.apache.soap.Fault;
import org.apache.soap.SOAPException;
import java.util.Properties;
public class NetXmethodsServicesStockquoteStockQuoteServiceStub
{
 public NetXmethodsServicesStockquoteStockQuoteServiceStub()
 {
 m_httpConnection = new OracleSOAPHTTPConnection();
 m_smr = new SOAPMappingRegistry();
 }
 private String _endpoint = "http://64.124.140.30:9090/soap";
 public String getEndpoint()
 {
 return _endpoint;
 }
 public void setEndpoint(String endpoint)
 {
 _endpoint = endpoint;
 }
 private OracleSOAPHTTPConnection m_httpConnection = null;
 private SOAPMappingRegistry m_smr = null;
 public Float getQuote(String symbol) throws Exception
 {
 Float returnVal = null;
 URL endpointURL = new URL(_endpoint);
 Call call = new Call();
 call.setSOAPTransport(m_httpConnection);
 call.setTargetObjectURI("urn:xmethods-delayed-quotes");
 call.setMethodName("getQuote");
 call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
 Vector params = new Vector();
 params.addElement(new Parameter("symbol", String.class, symbol, null));
 call.setParams(params);
 call.setSOAPMappingRegistry(m_smr);
 Response response = call.invoke(endpointURL,
 "urn:xmethods-delayed-quotes#getQuote");
 if (!response.generatedFault())
 {
 Parameter result = response.getReturnValue();
 returnVal = (Float)result.getValue();
 }
 else
 {
 Fault fault = response.getFault();
 throw new SOAPException(fault.getFaultCode(), fault.getFaultString());
 }
 return returnVal;

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-55

 }
 public void setMaintainSession(boolean maintainSession)
 {
 m_httpConnection.setMaintainSession(maintainSession);
 }
 public boolean getMaintainSession()
 {
 return m_httpConnection.getMaintainSession();
 }
 public void setTransportProperties(Properties props)
 {
 m_httpConnection.setProperties(props);
 }
 public Properties getTransportProperties()
 {
 return m_httpConnection.getProperties();
 }
}

4. Create a Web provider through provider.xml for this portlet. Notice the use of
the <preferenceStore> element to allow for the storing of personalizations:

<provider class="oracle.portal.provider.v2.DefaultProviderDefinition">
 <session>false</session>
 <passAllUrlParams>false</passAllUrlParams>
 <preferenceStore class="oracle.portal.provider.
 v2.preference.FilePreferenceStore">
 <name>prefStore1</name>
 <useHashing>true</useHashing>
 </preferenceStore>
 <portlet class="oracle.portal.provider.v2.DefaultPortletDefinition">
 <id>1</id>
 <name>MyStockPortlet</name>
 <title>My Stock Portlet</title>
 <description>Simple Stock Portlet to show Export and Import
 feature of web providers</description>
 <timeout>80</timeout>
 <showEditToPublic>false</showEditToPublic>
 <hasAbout>false</hasAbout>
 <showEdit>false</showEdit>
 <hasHelp>false</hasHelp>
 <showEditDefault>true</showEditDefault>
 <showDetails>false</showDetails>
 <renderer class="oracle.portal.provider.v2.render.RenderManager">
 <renderContainer>true</renderContainer>
 <renderCustomize>true</renderCustomize>
 <autoRedirect>true</autoRedirect>
 <contentType>text/html</contentType>
 <showPage class="oracle.portal.sample.v2.
 devguide.tx.MyStockPortletShowRenderer"/>
 <editDefaultsPage class="oracle.portal.sample.v2.devguide.tx.
 MyStockPortletEditDefaultsRenderer"/>
 </renderer>
 <personalizationManager class="oracle.portal.provider.v2.personalize.
 PrefStorePersonalizationManager">
 <dataClass>oracle.portal.provider.v2.personalize.
 NameValuePersonalizationObject
 </dataClass>
 </personalizationManager>
 </portlet>
</provider>

Enhancing PDK-Java Portlets

7-56 Oracle Fusion Middleware Developer's Guide for Oracle Portal

For more information on the syntax of provider.xml, refer to the provider
Javadoc on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/x
ml_tag_reference_v2.html

5. Register this export-enabled provider with the source Oracle Portal instance. For
more information about registering Web providers, refer to Section 6.5.5,
"Registering and Viewing Your Oracle PDK-Java Portlet".

6. Create two regions on a sample page and add My Stock Portlet to the first region.
For information on creating regions and pages, refer to the Oracle Fusion
Middleware User's Guide for Oracle Portal.

7. Edit the page and click the Edit Defaults icon for My Stock Portlet. Choose the
stock codes SUNW,IBM,ORCL. For more information on how to edit defaults for a
portlet on a page, refer to the Oracle Fusion Middleware User's Guide for Oracle
Portal.

8. Add My Stock Portlet to a second region and again edit the defaults. Use a
different stock code this time, MSFT.

9. Export the page group containing this page. For instructions on how to export a
page group, refer to Chapter 10, "Exporting and Importing Content," in the Oracle
Fusion Middleware Administrator's Guide for Oracle Portal.

10. Import the page group into a target Oracle Portal instance. For instructions on how
to import a page group, refer to Chapter 10, "Exporting and Importing Content," in
the Oracle Fusion Middleware Administrator's Guide for Oracle Portal.

11. View the page with My Stock Portlet in the target Oracle Portal instance and
ensure that the personalizations were maintained.

7.2.8.3 Implementing Security for Export/Import
Transporting personalizations can present a security concern if your portlet stores
sensitive data and is not operating in a secured environment. At the provider and
portlet level, Oracle Portal provides several ways for you to secure the export and
subsequent import of portlet personalizations. To better secure portlets and providers
for exportation and importation, you can take the following actions:

■ Section 7.2.8.3.1, "Securing Provider Communications". Using Oracle Portal
configuration options, you can secure the communications between providers and
Oracle Portal. This step in turn makes the export and import of portlets more
secure.

■ Section 7.2.8.3.2, "Disabling Export/Import of Personalizations". You can disable
the export of all portlet personalization data for each Web application. This
method provides the greatest security but only at a significant cost in functionality
because it prevents administrators from retaining their default personalizations
when the portlet is moved.

Note: If the Web provider is running in a secured environment,
remember to provide the proxy host and port while starting up Oracle
WebLogic Server. For example:

JAVA_OPTIONS=“-Dhttp.proxyHost=www-proxy.us.oracle.com
-Dhttp.proxyPort=80

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-57

■ Section 7.2.8.3.3, "Obfuscating Data for Transport (Automatic)". By default, Oracle
Portal obfuscates but does not encrypt personalization data before transporting it.

■ Section 7.2.8.3.4, "Encrypting Personalization Data for Transport". You may want
to encrypt personalization data for transport if any of the following are true:

– Your Web provider connection is not secured using HTTPS.

– You want to ensure the data is secured during transit.

– You want the data to remain secure while stored in the Oracle Portal instance.

■ Section 7.2.8.3.5, "Exporting by Reference". Instead of including portlet
personalization data directly in the transport set, you can include it by reference in
the transport set. Because the data itself is not present in the transport set, export
by reference is the most secure way of transporting personalizations.

7.2.8.3.1 Securing Provider Communications If the security of exporting/importing
portlets is of concern to you, you should configure Oracle Portal to secure
communications with your portlet providers. The chief mechanisms for securing
provider communications in Oracle Portal are as follows:

■ Message authentication through a Hashed Message Authentication Code (HMAC)
algorithm. For more information on message authentication for providers, refer to
Section 6.1.7.8, "Message Authentication", in the Oracle Fusion Middleware
Administrator's Guide for Oracle Portal.

■ HTTPS between providers and Oracle Portal. For more information on HTTPS for
provider communications, refer to Section 6.1.7.9, "HTTPS Communication", in the
Oracle Fusion Middleware Administrator's Guide for Oracle Portal.

7.2.8.3.2 Disabling Export/Import of Personalizations The JNDI variable,
oracle/portal/provider/global/transportEnabled, controls whether to
allow the exportation and importation of personalizations. If you set the variable to
true, personalizations are transported as part of export and import. If you set it to
false, they are not transported. You can set JNDI variables for PDK-Java through a
Deployment Plan set on the PDK-Java web application in the Oracle WebLogic Server.
This can be done using the WebLogic Server Administration Console. Deployment
Plans allow for easy modification of an application's configuration, without modifying
the packaged deployment descriptor files. After setting up the Deployment Plan, you
can make manual changes to it for the JNDI variable within the pre-existing
WEB-INF/web.xml module descriptor, like the following:

<module-descriptor external="false">
 <root-element>web-app</root-element>
 <uri>WEB-INF/web.xml</uri>
 <variable-assignment>
 <name>provider_transportEnabled</name>
<xpath>/web-app/env-entry/[env-entry-name="oracle/portal/provider/global/tran
sportEnabled"]/env-entry-value</xpath>
 </variable-assignment>
 </module-descriptor>

The variable definition of this variable assignment is made directly under the
<deployment-plan> tag, and will look like:

Note: You cannot use certificates for the HTTPS communication with
providers.

Enhancing PDK-Java Portlets

7-58 Oracle Fusion Middleware Developer's Guide for Oracle Portal

<variable-definition>
 <variable>
 <name>provider_transportEnabled</name>
 <value>false</value>
 </variable>
 </variable-definition>

This sets oracle/portal/provider/global/transportEnabled to false.

7.2.8.3.3 Obfuscating Data for Transport (Automatic) By default, personalization data is
encoded (Base64). This encoding ensures that data is obfuscated during transport. You
do not need to take any actions to leverage Base64 encoding as it is provided by
default. However, if you want greater security, you can encrypt the data. Refer to
Section 7.2.8.3.4, "Encrypting Personalization Data for Transport".

7.2.8.3.4 Encrypting Personalization Data for Transport By implementing the
oracle.portal.provider.v2.security.CipherManager class for your
provider, you can encrypt the personalization data prior to exporting it. Upon import,
the cipher manager is invoked again to decrypt the data. Refer to Section 7.2.8.3.6,
"Encrypting Personalization Data Example".

7.2.8.3.5 Exporting by Reference As mentioned previously, the default behavior for
exporting of portlets is to include the actual personalization data in the transport set.
For a more secure transport, you can code your portlet such that the personalizations
are exported using pointers rather than by including the actual preference data. When
the transport set is imported, the target Oracle Portal instance sends the pointer back
to the Web provider, which then has the opportunity to reassociate the actual data
with the new portlet instance. Refer to Section 7.2.8.3.7, "Exporting by Reference
Example".

7.2.8.3.6 Encrypting Personalization Data Example To encrypt personalization data in your
Web provider, you need to create your own cipher manager and associate it with your
portlet provider. This example provides a simple, insecure cipher manager for
illustrative purposes only. To implement a secure implementation of the cipher
manager for your production system, you would need to significantly extend this
sample. Some of the issues you would need to consider for a production
implementation are as follows:

■ Do not hold the key object in memory. Read it from a persistent store as necessary.

See: Oracle Fusion Middleware Deploying Applications to Oracle
WebLogic Server

Note: If you choose to encrypt your Web providers for export using
the cipher manager, you must also devise your own key management
strategy for the encryption algorithm.

Note: When exporting across security zones, exporting by reference
may not work effectively. In general, you should only employ export
by reference when transporting within the same general security
environment.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-59

■ Use the provider's PreferenceStore API supported by a
DBPreferenceStore to work in the clustered case.

■ On import, if the cipher manager instance obtained from provider.xml matches
the class name returned in the SOAP message, that CipherManager instance is
used to perform the decryption. Hence, the instance maintained in the
portlet/provider definition may be configured using any applicable means (for
example, tags in provider.xml or JNDI variable) and that configuration is
reused on import.

To encrypt personalization data in your Web provider, do the following:

1. Create a cipher manager class, InsecureCipherManager. This class will be used
for encryption and decryption of personalization data exported from or imported
to a Web provider. A base64 encoded, hard coded secret key is used with the DES
algorithm supplied by the default javax.crypto provider of the underlying Java
Runtime Environment. As a result, this particular sample is insecure because the
encoded key can be recovered by a malicious party simply by decompiling the
byte code.

package oracle.portal.sample.v2.devguide.tx;
import java.io.IOException;
import java.security.GeneralSecurityException;
import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.DESKeySpec;
import oracle.portal.provider.v2.ProviderException;
import oracle.portal.provider.v2.security.CipherManager;
import sun.misc.BASE64Decoder;
public final class InsecureCipherManager implements CipherManager
{
 /**
 * Base64 encoded external form of a javax.crypto.SecretKey which was
 * generated for the DES algorithm. This is completely insecure! Anyone
 * can decompile the bytecode and recostitue the key. A more secure
 * implementation would implement a key management policy in a
 * java.security.KeyStore.
 */
 private static final String sEncodedKey = "UTJds807Arw=";
 /**
 * Generated from the (insecure) encoded form in sEncodedKey.
 */
 private SecretKey mKey;
 /**
 * Transforms the input data to a more secure form, in a single operation,
 * using the DES cryptographic algorithm along with a statically defined
 * secret key.

Note: The following sample is for illustrative purposes only. You
would need to significantly enhance it for use in a production
environment.

Note: This sample makes use of the javax.crypto package, which
is optional in Java 1.3 and must be installed manually. In Java 1.4,
though, this package is present by default.

Enhancing PDK-Java Portlets

7-60 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 * @param toEncode the input data.
 * @return an encoded form of the input data.
 * @throws ProviderException if an error occurs during transform.
 */
 public final byte[] encode(byte[] toEncode) throws ProviderException
 {
 try
 {
 Cipher c = Cipher.getInstance("DES");
 c.init(Cipher.ENCRYPT_MODE, getSecretKey());
 return c.doFinal(toEncode);
 }
 catch (GeneralSecurityException gse)
 {
 throw new ProviderException(gse);
 }
 catch (IOException ioe)
 {
 throw new ProviderException(ioe);
 }
 }
 /**
 * Transforms the input data to its original form, in a single operation,
 * using the DES cryptographic algorithm along with a statically defined
 * secret key.
 * @param toDecode the input data.
 * @return a decoded form of the input data.
 * @throws ProviderException if an error occurs during transform.
 */
 public final byte[] decode(byte[] toDecode) throws ProviderException
 {
 try
 {
 Cipher c = Cipher.getInstance("DES");
 c.init(Cipher.DECRYPT_MODE, getSecretKey());
 return c.doFinal(toDecode);
 }
 catch (GeneralSecurityException gse)
 {
 throw new ProviderException(gse);
 }
 catch (IOException ioe)
 {
 throw new ProviderException(ioe);
 }
 }
 /**
 * Returns a <code>javax.crypto.SecretKey</code> deserialized from the
 * obuscated form in sEncodedKey. Note, this is highly insecure!!
 */
 private SecretKey getSecretKey()
 throws GeneralSecurityException, IOException
 {
 if (mKey == null)
 {
 DESKeySpec ks = new DESKeySpec((new BASE64Decoder()).decodeBuffer(
 sEncodedKey));
 SecretKeyFactory skf = SecretKeyFactory.getInstance("DES");
 mKey = skf.generateSecret(ks);
 }

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-61

 return mKey;
 }
}

2. Modify your provider.xml to reference the cipher manager:

<?xml version = '1.0' encoding = 'UTF-8'?>
<?providerDefinition version="3.1"?>
<provider class="oracle.portal.provider.v2.DefaultProviderDefinition">
<providerInstanceClass>net.mzyg.tx.TxProviderInstance</providerInstanceClass>
 <session>false</session>
 <passAllUrlParams>false</passAllUrlParams>
 <preferenceStore class="oracle.portal.provider.v2.
 preference.DBPreferenceStore">
 <name>prefStore1</name>
 <connection>java:comp/env/jdbc/PortletPrefs</connection>
 </preferenceStore>
<cipherManager class="oracle.portal.sample.v2.devguide.tx.
 InsecureCipherManager"/>

7.2.8.3.7 Exporting by Reference Example To export by reference rather than exporting
the actual personalization, do the following:

1. Override the DefaultPortletInstance with the following
ExportByRefDefaultPortletInstance:

package oracle.portal.sample.v2.devguide.tx;
import oracle.portal.provider.v2.DefaultPortletInstance;
import oracle.portal.provider.v2.preference.PreferenceStore;
import oracle.portal.provider.v2.transport.PrefStoreTransporter;
public class ExportByRefDefaultPortletInstance extends DefaultPortletInstance
{
 /**
 * Returns a {@link oracle.portal.provider.v2.transport.PrefStoreTransporter}
 * capable of carrying out transport operations such as export/import on
 * data applicable to {@link oracle.portal.provider.v2.PortletInstance}
 * persisted in {@link oracle.portal.provider.v2.preference.PreferenceStore}.
 * This implementation returns an {@link ExportByRefPrefStoreTransporter}.
 * @param ps the {@link oracle.portal.provider.v2.preference.PreferenceStore}
 * containing the data to be transported.
 * @return a {@link oracle.portal.provider.v2.transport.PrefStoreTransporter}
 */
 protected PrefStoreTransporter getPrefStoreTransporter(PreferenceStore ps)
 {
 return new ExportByRefPrefStoreTransporter(ps);
 }
}

2. Create the ExportByRefPrefStoreTransporter class referenced in
ExportByRefDefaultPortletInstance. This class implements an alternative
preference store transporter that does not send preference data during the export
operation. Instead, it writes the context path of the source preference to the stream.
During the export, it reads the context path and uses that path to look up the
preference data and copy it to the new instance. This method of exporting by
reference assumes that the source and target providers have access to the same
preference store. In fact, the best case for this example would be the situation
where the source and target providers are the same.

package oracle.portal.sample.v2.devguide.tx;
import java.io.IOException;
import java.io.InputStream;

Enhancing PDK-Java Portlets

7-62 Oracle Fusion Middleware Developer's Guide for Oracle Portal

import java.io.OutputStream;
import java.io.DataInputStream;
import java.io.DataOutputStream;
import oracle.portal.provider.v2.transport.PrefStoreTransporter;
import oracle.portal.provider.v2.transport.TransportLogger;
import oracle.portal.provider.v2.preference.Preference;
import oracle.portal.provider.v2.preference.PreferenceStore;
import oracle.portal.provider.v2.preference.PreferenceStoreException;
public class ExportByRefPrefStoreTransporter extends PrefStoreTransporter
{
 public ExportByRefPrefStoreTransporter(PreferenceStore prefStore)
 {
 super(prefStore);
 }
 /**
 * Exports the context path of the supplied {@link
 * oracle.portal.provider.v2.preference.Preference} from the {@link
 * oracle.portal.provider.v2.preference.PreferenceStore}.
 * @param pref the source {@link
 * oracle.portal.provider.v2.preference.Preference}
 * @param out the <code>java.io.OutputStream</out> to which data will be
 * written.
 * @param logger
 */
 protected void exportPreference(Preference pref, OutputStream out,
 TransportLogger logger) throws PreferenceStoreException, IOException
 {
 // Get the context path of the preference we are exporting.
 String contextPath = pref.getContextPath();
 DataOutputStream dos = new DataOutputStream(out);
 // Write the context path in the export data. The import process
 // will use this context path to lookup this preference in the
 // preference store and copy it to the new context
 dos.writeUTF(contextPath);
 }
 /**
 * Reads a context path from the stream and copies preference data
 * from that location into the {@link
 * oracle.portal.provider.v2.preference.PreferenceStore}.
 * @param pref the target {@link
 * oracle.portal.provider.v2.preference.Preference}
 * @param in the <code>java.io.InputStream</code> from which to read data.
 * @param logger
 */
 protected void importPreference(Preference pref, InputStream in,
 TransportLogger logger) throws PreferenceStoreException, IOException
 {
 // Read the context path to copy the value for this
 // preference from.
 DataInputStream dis = new DataInputStream(in);
 String contextPath = dis.readUTF();
 // Create preference object to copy from (identical to the
 // target preference but with a different context path)
 Preference sourcePref = new Preference(contextPath,
 pref.getName(), pref.getType(), (String)null);
 // Copy across the preference
 getPrefStore().copy(sourcePref, pref, true);
 }
}

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-63

3. Update provider.xml to include the following element for your portlet:

<portlet class="oracle.portal.provider.v2.DefaultPortletDefinition">
...
<portletInstanceClass>oracle.portal.sample.v2.devguide.tx.
 ExportByRefDefaultPortletInstance</portletInstanceClass>
</portlet>

For more information on the syntax of provider.xml, refer to the provider
Javadoc on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/x
ml_tag_reference_v2.html

7.2.9 Enhancing Portlet Performance with Caching
In the previous sections of this chapter, you learned how to write fully-functional Java
portlets using the PDK Framework. Once you complete the basic functionality of your
portlet, you may want to turn your attention to portlet performance.

Caching is a common technique for enhancing the performance of Web sites that
include a great deal of dynamic content. The overhead involved in retrieving data and
generating the output for dynamic content can be significantly reduced by proxying
requests through a local agent backed by a large, low-latency data store known as a
cache. The cache agent responds to a request in one of two ways, as follows:

■ If a valid version of the requested content exists in the cache, the agent simply
returns the existing cached copy, thus skipping the costly process of content
retrieval and generation. This condition is called a cache hit.

■ If a valid version of the requested content does not exist in the cache, the agent
forwards the request to its destination and awaits the return of the content. The
agent returns the content to the requestor and stores a local copy in its cache for
reuse if a subsequent request for the same content arises. This condition is called a
cache miss.

Web providers generate dynamic content (that is, portlets) and they often reside
remotely from the Oracle Portal instance on which they are deployed. As such, caching
might improve their performance. The architecture of Oracle Portal lends itself well to
caching, since all rendering requests originate from a single page assembling agent,
known as the Parallel Page Engine (PPE), which resides on the middle tier. You can
make the PPE cache the portlets rendered by your Web provider and reuse the cached
copies to handle subsequent requests, minimizing the overhead your Web provider
imposes on page assembly.

The Web provider can use any one of three different caching methods, depending
upon which one is best suited to the application. The methods differ chiefly in how
they determine whether content is still valid. Following are the three caching methods:

1. Expiry-based Caching: When a provider receives a render request, it stamps its
response with an expiry time. The rendered response remains in the cache and fills
all subsequent requests for the same content until its expiry time passes. This
caching scheme is perhaps the simplest and most performant because the test for
cache validity requires very little overhead and does not involve any network
round trips. Expiry-based caching suits applications where the content has a
well-defined life span. For content with a less certain life span, however,
expiry-based caching is less effective. Refer to Section 7.2.9.2, "Activating Caching"
and Section 7.2.9.3, "Adding Expiry-Based Caching" for more information.

Enhancing PDK-Java Portlets

7-64 Oracle Fusion Middleware Developer's Guide for Oracle Portal

2. Invalidation-based Caching: Invalidation-based caching works essentially the
same way as expiry-based caching, except that the contents of the cache can expire
or become invalid at any time. Invalidation of cache content is usually triggered by
an event.

For example, if you have a calendar portlet that shows your appointments for the
day, the content for the portlet could be generated once, the first time you show
the calendar for that day. The content remains cached until something happens to
change your schedule for that day, such as the addition of an appointment, the
deletion of an existing appointment, or a change of time for an appointment. Each
of these change events can trigger an action in the calendar application. When
such an event takes place, your calendar application can generate an invalidation
request for any cached portlet content affected by the change. The next time you
view a page containing your calendar portlet, the cache will not contain an entry.
Your Web provider will be contacted to regenerate the new content with the
modified schedule.

This method is a very efficient way to cache content because the originator of the
content, that is, your Web provider, is contacted only when new content needs to
be generated, but you are not bound to a fixed regeneration schedule. Refer to
Section 7.2.9.2, "Activating Caching" and Section 7.2.9.4, "Adding Invalidation
Based Caching" for more information.

3. Validation-based Caching: When a provider receives a render request, it stamps
its response with a version identifier (or E Tag). The response goes into the cache,
but, before the PPE can reuse the cached response, it must determine whether the
cached version is still valid. It sends the provider a render request that includes
the version identifier of the cached content. The provider determines whether the
version identifier remains valid. If the version identifier is still valid, the provider
immediately sends a lightweight response to the PPE without any content, which
indicates the cached version can be used. Otherwise, the provider generates new
content with a new version identifier, which replaces the previously cached
version. In this form of caching, the PPE must always confirm with the provider
whether the content is up to date. The validity of the cached copy is determined by
some logic in the provider. The advantage of this approach is that the provider
controls the use of the cached content rather than relying on a fixed period of time.
Refer to Section 7.2.9.2, "Activating Caching" and Section 7.2.9.5, "Adding
Validation-Based Caching" for more information.

7.2.9.1 Assumptions
To perform the tasks in these sections, we are making the following assumptions:

1. You have followed through and understood Section 6.5, "Building Oracle
PDK-Java Portlets with Oracle JDeveloper".

2. You built a portlet using the wizard and successfully added it to a page.

7.2.9.2 Activating Caching
To use the caching features of Oracle Portal in your Web providers, you must first
activate the middle tier cache. This cache is known as the PL/SQL Cache because it is
the same cache used by mod_plsql, the Oracle HTTP Server plug-in that calls database
procedures, and hence database providers, over HTTP.

Usually, your OracleAS Portal administrator is responsible for the configuration
details of caching.

For invalidation-based caching, you need to configure Oracle Web Cache in front of
the Web provider. Bear in mind that remote Web providers often do not have Oracle

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-65

Web Cache installed. For more information about Oracle Web Cache, refer to the Oracle
Fusion Middleware Administrator's Guide for Oracle Web Cache.

Once you have installed and configured Oracle Web Cache, ensure the following in the
Oracle Web Cache Manager:

■ It points to the host name and port of the Web provider.

■ Caching rules do not cause the caching of provider content. Content should be
cached according to the surrogate control headers generated by the provider in its
response.

7.2.9.3 Adding Expiry-Based Caching
Expiry-based caching is one of the simplest caching schemes to implement, and can be
activated declaratively in your XML provider definition. You can set an expiry time for
the output of any ManagedRenderer you utilize by setting its pageExpires
property to the number of minutes you want the output to be cached for. For example,
suppose you want portlet output to be cached for one minute. To add expiry-based
caching, perform the following steps:

1. After you have used the Portlet Wizard to build a portlet as described in
Section 6.5, "Building Oracle PDK-Java Portlets with Oracle JDeveloper", edit the
provider.xml file and set the pageExpires property tag of showPage to 1.
This will set an expires entry of 1 minute for the portlet.

By default the wizard generates a standard and compressed tag for showPage.
You need to expand the tag to include a subtag of pageExpires:

<showPage class="oracle.portal.provider.v2.render.http.ResourceRenderer">
 <resourcePath>/htdocs/mycacheportlet/MyCachePortletShowPage.jsp
 </resourcePath>
 <pageExpires>1</pageExpires>
</showPage>

For more information on the syntax of provider.xml, refer to the provider
Javadoc on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/x
ml_tag_reference_v2.html

2. Test that the portlet is cached for 1 minute by adding some JSP code to your show
page. You can simply add the current time to your JSP.

<%@page contentType="text/html; charset=windows-1252"
 import="oracle.portal.provider.v2.render.PortletRenderRequest"
 import="oracle.portal.provider.v2.http.HttpCommonConstants"
 import="java.util.Date"
 import="java.text.DateFormat"
%>

<%
 PortletRenderRequest pReq = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 DateFormat df = DateFormat.getDateTimeInstance(DateFormat.LONG,
 DateFormat.LONG,pReq.getLocale());
 String time = df.format(new Date());
%>

<P>Hello <%=pReq.getUser().getName() %>.</P>
<P>This is the <i>Edit</i> render mode!</P>
<P>This information is correct as of <%=time%>.</P>

Enhancing PDK-Java Portlets

7-66 Oracle Fusion Middleware Developer's Guide for Oracle Portal

When viewing the portlet, you see that the time (including seconds) is constant for
1 minute. After the time has expired, the portlet displays the most current time
and a new cache is set.

7.2.9.4 Adding Invalidation Based Caching
When using Oracle Web Cache, requests for content are sent using HTTP and content
is either returned from the cache or the HTTP request is forwarded to the originator of
the content. When content is returned to Oracle Web Cache, it is added to the cache
before being returned to the requestor. Cache content is invalidated by sending
invalidation requests directly to Oracle Web Cache. PDK-Java uses the Java API for
Web Cache (JAWC) to generate invalidation requests. This section describes how to
configure Oracle Web Cache and use the invalidation-based caching sample that
comes with PDK-Java.

Not all requests sent to Oracle Web Cache are cached. In order for the content to be
cached, the content must include directives that tell Oracle Web Cache to cache the
content. Usually Oracle Web Cache uses the URL associated with the request as the
cache key, but you can specify additional keys by setting special HTTP headers,
known as surrogate control headers, on the response.

To configure a Java portlet to use invalidation-based caching, you do the following:

■ Configuring Oracle Web Cache. Refer to Oracle Fusion Middleware Administrator's
Guide for Oracle Web Cache for more information.

■ Section 7.2.9.4.1, "Configuring the Provider Servlet"

■ Section 7.2.9.4.2, "Defining the Oracle Web Cache Invalidation Port"

■ Section 7.2.9.4.3, "Configuring the XML Provider Definition"

■ Section 7.2.9.4.4, "Manually Invalidating the Cache"

7.2.9.4.1 Configuring the Provider Servlet To enable invalidation-based caching, you must
switch it on at the provider servlet level. The flag is set in an initialization parameter
inside the PDK-Java Web application deployment descriptor, web.xml. For example:

<servlet>
...
 <servlet-class>oracle.webdb.provider.v2.adapter.SOAPServlet</servlet-class>
 <init-param>
 <param-name>invalidation_caching</param-name>
 <param-value>true</param-value>
 </init-param>
</servlet>

If the flag is not defined here, then invalidation-based caching is switched off. The
status of this flag can be checked by displaying the provider's test page. If the
testPageURI property is not set in the sample.properties file, then the provider
code displays the test page in the old default style. The old style test page correctly
picks up the invalidation caching flag from the web.xml file. The format of the test
page URL is as follows:

http://provider_hostname:port/jpdk/providers/sample

7.2.9.4.2 Defining the Oracle Web Cache Invalidation Port If you are using an Oracle Fusion
Middleware installation type where PDK-Java was automatically pre-installed (for
example, an Oracle Portal and Wireless type installation), you should find that Oracle
Web Cache invalidation settings have already been preconfigured in MID_TIER_

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-67

ORACLE_HOME/portal/conf/cache.xml. In this case, you can safely ignore the
instructions in this section and proceed to Section 7.2.9.4.3, "Configuring the XML
Provider Definition". Otherwise, you will need to configure the invalidation portlet for
Oracle Web Cache.

First, you need the user name and password for the invalidation port(s) of the Oracle
Web Cache instance(s) associated with your application server. After you obtain those,
use the provided oracle.webdb.provider.v2.cache.Obfuscate Java utility to
convert the user name and password into an obfuscated string of the format required
by the JAWC API. In a default Oracle Fusion Middleware installation, the user name
for the invalidation port is usually invalidator and the password is usually the
same as the application server administrator's password. For example, suppose you
installed Oracle Fusion Middleware in D:\as904, with an invalidation port user
name of invalidator and a password of welcome. You would run the following
command:

D:\as904\jdk\bin\java -classpath
D:\as904\j2ee\home\shared-lib\oracle.jpdk\1.0\pdkjava.jar
 oracle.webdb.provider.v2.cache.Obfuscate invalidator:welcome

If successful, the command should print a hexadecimal string like the following:

0510198d5df8efd5779406342be2528aa0cccb179ea6b77baf49f019f5075a3a11

Now, use this information to create a JAWC configuration file, cache.xml, which
specifies one or more Oracle Web Cache instances and their invalidation ports. For
example:

<?xml version="1.0"?>
<webcache>
<invalidation
 host="cache.mycompany.com"
 port="4001"
authorization="0510198d5df8efd5779406342be2528aa0cccb179ea6b77baf49f019f5075a3a11"/>
</webcache>

JAWC finds this configuration file using the system property file. To set this system
property for a Oracle WebLogic Server, simply add an appropriate line to the
.product.properties file for the particular instance in which PDK-Java is installed
(for example, MIDDLEWARE_HOME/wlserver_10.3/.product.properties) and
then restart that instance.

Note: The command that follows assumes that pdkjava.jar and
jawc.jar are present in ORACLE_
HOME/j2ee/home/shared-lib/oracle.jpdk/1.0, as required
by the PDK-Java installation guide.

If you are using a standalone Oracle Containers for Java EE
installation, you need to substitute in the path to the java executable
an external Java 2 SDK installation.

Note: Since the location of the cache configuration file is defined as a
system property, only one cache may be defined for each server
instance. It is not possible to have two different Web Provider
instances behind separate Oracle Web Cache configurations.

Enhancing PDK-Java Portlets

7-68 Oracle Fusion Middleware Developer's Guide for Oracle Portal

7.2.9.4.3 Configuring the XML Provider Definition Using a combination of tags in
provider.xml, you can activate automatic invalidation-based caching for an entire
portlet or some of its pages. To turn on automatic invalidation-based caching, you
need to declare it as follows either at the level of individual pages or the renderer, to
indicate that invalidation-based caching should be activated for all pages:

<useInvalidationCaching>true</useInvalidationCaching>

If your portlet supports personalization (through the Edit or Edit Defaults modes), you
may also want to declare <autoInvalidate>true</autoInvalidate> for your
renderer. This declaration causes invalidation of all the cached content for the portlet
when you click OK or Apply in Edit mode, thus causing new markup to be generated
based on the personalized settings.

The maximum time for holding the page in the cache is the minimum of the following:

■ Maximum expiry time from Oracle Portal defined in the Cache tab of the Global
Settings page.

■ Web Provider default (24 hours) if no maximum expiry time is specified by Oracle
Portal.

■ The time in minutes of the <pageExpires> tag, if present.

The following excerpt from provider.xml specifies that this portlet shall be cached
for up to 5 minutes and shall be automatically invalidated upon personalization:

<renderer class="oracle.portal.provider.v2.render.RenderManager">
 <contentType>text/html</contentType>
 <renderContainer>true</renderContainer>
 <autoRedirect>true</autoRedirect>
 <autoInvalidate>true</autoInvalidate>
 <showPage class="oracle.portal.provider.v2.render.http.ResourceRenderer">
 <resourcePath>/htdocs/invalidation/invalidation1.jsp</resourcePath>
 <useInvalidationCaching>true</useInvalidationCaching>
 <pageExpires>5</pageExpires>
 </showPage>
 <editPage class="oracle.portal.sample.v2.devguide.invalidation.
 InvalidationEditRenderer"/>
</renderer>

For more information on the syntax of provider.xml, refer to the provider Javadoc
on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/xml_
tag_reference_v2.html

7.2.9.4.4 Manually Invalidating the Cache You may want the cached version of the portlet
invalidated when a request is processed or information somewhere has been updated.
In these cases, you may want to manually invalidate the cache.

The invalidation-based caching portlet sample included with PDK-Java contains a
single portlet that displays the time the content was cached and a link to trigger an
invalidation request. The first time a page request is made to the Web provider

Note: The pageExpires tag is also used for normal expiry based
caching. These two forms of caching are mutually exclusive.
Invalidation-based caching takes place in an Oracle Web Cache
instance located in the same place as the Web provider. Pages stored
using expiry based caching are cached in the middle tier of Oracle
Portal.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-69

through the cache, the response is cached. Subsequent requests for the portlet content
are fulfilled by returning content from Oracle Web Cache. When you click the link at
the bottom of the portlet an invalidation request is generated by the provider that
removes the portlet from the cache. The next request for the portlet is forwarded to the
provider and the provider generates a new portlet with the current time.

To perform invalidation calls to Oracle Web Cache, first you need to have a handle to a
ServletInvalidationContext object. You can get this handle by calling the
static getServletInvalidationContext() method of the
ServletInvalidationContextFactory class.

Once you have the handle, you need to specify the cache key. In the cache key, you
need to specify whether you want to invalidate a particular portlet instance, all the
instances of a portlet, or all the portlets managed by a provider. To perform this task,
you use the methods of the ServletInvalidationContext class or the methods of
its super class, InvalidationContext. This is where you can specify whether the
portlet should be cached for this particular user (USER level). If there is no user
specified in the cache key, then the cached content is returned to all users, which
means you are using SYSTEM level caching.

The following example invalidates a portlet instance and calls the
setFullProviderPath() and setPortletReference() methods. When the
caching key is set, you call the invalidate() method on the
InvalidationContext object that sends the invalidation message to Oracle Web
Cache.

ServletInvalidationContext inv =
 ServletInvalidationContextFactory.getServletInvalidationContext();
inv.setFullProviderPath
 ((ServletPortletRenderRequest)pReq);
inv.setPortletReference
 (pReq.getPortletReference());
int num = inv.invalidate();

Review the Web cache sample provider for more information.

7.2.9.5 Adding Validation-Based Caching
Adding validation-based caching requires slightly more effort, but gives you explicit
control over exactly which requests to your provider are cache hits. As an example,
you may want to update the cache only when data within the portlet has changed. To
implement this algorithm, you need to override the prepareResponse method. The
signature of the BaseManagedRenderer.prepareResponse method is:

public boolean prepareResponse(PortletRenderRequest pr)
 throws PortletException,
 PortletNotFoundException

In your version of prepareResponse(), you need to do the following:

■ Retrieve the cached version identifier set by the PPE in the render request by
calling the HttpPortletRendererUtil.getCachedVersion() method:

public static java.lang.String getCachedVersion
 (PortletRenderRequest request)

■ If the portlet finds the previously cached version valid, the appropriate header has
to be set by calling the HttpPortletRendererUtil.useCachedVersion()
method. It also instructs the RenderManager that it won't be necessary to call
renderBody() to render the portlet body.

Enhancing PDK-Java Portlets

7-70 Oracle Fusion Middleware Developer's Guide for Oracle Portal

public static void useCachedVersion(PortletRenderRequest request)

Otherwise, use HttpPortletRendererUtil.setCachedVersion() to
generate a new version of the portlet, which will be cached. It also indicates to the
PPE that the renderBody() method has to be called to regenerate the portlet
content.

public static void setCachedVersion(PortletRenderRequest request,
 java.lang.String version,
 int level)
 throws java.lang.IllegalArgumentException

For validation-based caching, you need not update provider.xml. You can view the
portlet by refreshing the page or adding the portlet to a page and updating the
content. If the content has changed, the portlet shows the new content. If the content
has not changed, a cached version of the portlet is displayed.

7.2.10 Enhancing Portlets for Mobile Devices
This section explains how to go about enhancing a PDK-Java portlet for a mobile
device. Before proceeding with this section, you should familiarize yourself with the
guidelines for building mobile-enabled portlets, Section 6.1.4, "Guidelines for Mobile
Portlets", and the methods of building portlets with PDK-Java, Section 7.2, "Enhancing
PDK-Java Portlets".

To properly build a portlet for a mobile device, do the following:

1. Create a JSP to generate the OracleAS Wireless XML in response to the show
request for the portlet. The portlet's JSPs are managed and controlled by the built
in renderer,
oracle.portal.provider.v2.render.http.ResourceRenderer.

With this renderer, you can define distinct resources (JSPs) for each Show mode as
well as which JSP to call for each Show mode. Hence, you can define one JSP to
handle the Show mode when the requested content is HTML and another when
the requested content is OracleAS Wireless XML. For example, this capability
enables you to put the lottery portlet's mobile rendition in a separate JSP. In this
sample, mlotto.jsp generates the mobile rendition.

Note the contentType declaration in the first line of the source code. The content
type of the JSPs response is set to text/vnd.oracle.mobilexml. This is the
MIME type name for OracleAS Wireless XML. All mobile responses must set their
content type to this value to work properly.

<%@ page session="false" contentType="text/vnd.oracle.mobilexml" %>
<%@ page import="oracle.portal.sample.v2.devguide.lottery.LottoPicker" %>
<% LottoPicker picker = new LottoPicker();
 picker.setIdentity(request.getRemoteAddr()); %>
<SimpleText>
 <SimpleTextItem />
 <SimpleTextItem>Your numbers:</SimpleTextItem>
 <SimpleTextItem />
 <SimpleTextItem HALIGN="CENTER" >
 <%
 int [] picks = picker.getPicks();
 for (int i = 0; i < picks.length; i++) {
 out.print(picks[i] + " ");
 }
 out.println("");
 %>

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-71

 </SimpleTextItem>
</SimpleText>

2. Modify provider.xml by adding the acceptContentType tag in the portlet
definition to indicate that the portlet can generate OracleAS Wireless XML
responses. Each acceptContentType tag defines a distinct content type that the
portlet can render. The value is the MIME type of the content. In this case the
lottery portlet declares that it can generate HTML (text/html) and OracleAS
Wireless XML (text/vnd.oracle.mobilexml).

<acceptContentType>text/html</acceptContentType>
<acceptContentType>text/vnd.oracle.mobilexml</acceptContentType>

For more information on the syntax of provider.xml, refer to the provider
Javadoc on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/x
ml_tag_reference_v2.html

3. Declare the mapping of JSP renderers to Show modes in provider.xml.

You need to define a render handler for the pertinent Show modes by content
type. One showPage declaration identifies a JSP that renders the HTML response
and another one identifies the JSP that renders the OracleAS Wireless XML
response. Note that the class attribute is now required, whereas, in a simpler case,
it could allow the class to default. You express the association of a particular JSP to
a particular content type through the resourcePath and contentType tags
inside the showPage declaration as follows:

■ resourcePath defines the JSP used to render this mode.

■ contentType defines the response type of this JSP.

When the ResourceRenderer receives a show request for the lottery portlet it
invokes lotto.jsp to render the HTML response and mlotto.jsp for
OracleAS Wireless XML. The following code illustrates how you express this
relationship in provider.xml:

<renderer class="oracle.portal.provider.v2.render.RenderManager">
 <contentType>text/html</contentType>
 <renderContainer>true</renderContainer>
 <showPage
 class="oracle.portal.provider.v2.render.http.ResourceRenderer">
 <resourcePath>/htdocs/lottery/lotto.jsp</resourcePath>
 <contentType>text/html</contentType>
 </showPage>
 <showPage
 class="oracle.portal.provider.v2.render.http.ResourceRenderer">
 <resourcePath>/htdocs/lottery/mlotto.jsp</resourcePath>
 <contentType>text/vnd.oracle.mobilexml</contentType>
 </showPage>
 ...
</renderer>

Enhancing PDK-Java Portlets

7-72 Oracle Fusion Middleware Developer's Guide for Oracle Portal

4. Declare a short title. A short title is the short form of a portlet's name and is for use
where display space is limited. Specifically, Oracle Portal uses it when rendering
portlets as menu items in the page menu generated in response to a mobile
request. If the portlet has registered a short title, Oracle Portal uses that as the
menu item label. Otherwise, it uses the portlet's standard title. To declare a short
title, you include the shortTitle tag in the portlet's metadata section in
provider.xml:

<portlet class="oracle.portal.provider.v2.DefaultPortletDefinition">
 <id>2</id>
 <name>Lottery</name>
 <title>Lottery Portlet</title>
 <shortTitle>Lottery</shortTitle>
 ...
</portlet>

5. Support short title personalization. Because the portlet's short title is presented to
the user as the menu item label that references the portlet instance on the page, we
recommend that all portlets allow users to personalize the short title. PDK-Java
provides a base data class that manages both the short and standard title:

oracle.portal.provider.v2.personalize.NameValuePersonalizationObject

The NameValuePersonalizationObject manages both the title and short
title. It contains methods for getting and setting the values. The personalization

Note: The ResourceRenderer (and any portlet) determines the
type of request it has received by the request's Accept header. The
Accept header is a standard HTTP header that defines the acceptable
response types for a given request. It may be a list with multiple
values if multiple content types are acceptable. When there are
multiple values, they are listed in order from most to least preferred.
Oracle Portal controls the values passed to the portlet in the Accept
header. In the case of an HTML request, the Accept header is:

text/html, text/xml, text/vnd.oracle.mobilexml

These values indicate that Oracle Portal prefers an HTML response
but also accepts XML and OracleAS Wireless XML.

For mobile requests, the Accept header is:

text/vnd.oracle.mobilexml, text/xml

These values indicate that Oracle Portal prefers OracleAS Wireless
XML but also accepts general XML that contains a stylesheet reference
that transforms to OracleAS Wireless XML.

The ResourceRenderer maps requested content type to the specific
resource renderer by working through the Accept list in preference
order. Once it finds a match between an acceptable response type and
a registered renderer, it dispatches the request to the resource. For
example, for HTML requests the ResourceRenderer will match the
first entry, text/html, to the declaration that defines lotto.jsp as
the text/html handler. Likewise, when a mobile request is received,
the ResourceRenderer matches the first entry,
text/vnd.oracle.mobilexml, to the declaration that defines
mlotto.jsp as the text/vnd.oracle.mobilexml handler.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-73

code is split into two parts, form display and form submit. The logic first acquires
the current data personalization object. Next, it checks to see if this is a form
submit. If so, it updates the values in the data personalization object, writes them
back to the repository, and returns. PDK-Java subsequently redirects back to this
same form but without the parameters that indicate it is a form submit causing the
form to redisplay with the new values. In this situation, the JSP responds with the
personalization page including the current personalization values.

We recommend that portlets use this class or subclass to inherit this base support.
The only personalization the lottery sample supports is these two titles. Hence, it
uses the NameValuePersonalizationObject class directly in custom.jsp:

<%@ page session="false" import="oracle.portal.provider.v2.*" %>
<%@ page import="oracle.portal.provider.v2.http.*" %>
<%@ page import="oracle.portal.provider.v2.render.*" %>
<%@ page
 import="oracle.portal.provider.v2.personalize.NameValuePersonalizationObject"
%>
<%-- This page both displays the personalization form and processes it.
 We display the form if there isn't a submitted title parameter,
 else we apply the changes --%>
<%
 PortletRenderRequest portletRequest = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 String title = request.getParameter("lotto_title");
 String sTitle = request.getParameter("lotto_short_title");
 String actionParam =
PortletRendererUtil.getEditFormParameter(portletRequest);
 String action = request.getParameter(actionParam);
 NameValuePersonalizationObject data = (NameValuePersonalizationObject)
 PortletRendererUtil.getEditData(portletRequest);
 // Cancel automatically redirects to the page
 // -- so will only receive 'OK' or 'APPLY'
 if (action != null) {
 data.setPortletTitle(title);
 data.setPortletShortTitle(sTitle);
 PortletRendererUtil.submitEditData(portletRequest, data);
 return;
 }
 // otherwise just render the form
 title = data.getPortletTitle();
 sTitle = data.getPortletShortTitle();
%>
<TABLE BORDER="0">
 <TR>
 <TD WIDTH="20%">
 <P ALIGN="RIGHT">Title:
 </TD>
 <TD WIDTH="80%">
 <INPUT TYPE="TEXT" NAME="lotto_title"
 VALUE="<%= title %>" SIZE="20">
 </TD>
 </TR>
 <TR>
 <TD WIDTH="20%">
 <P ALIGN="RIGHT">Short Title:
 </TD>
 <TD WIDTH="80%">
 <INPUT TYPE="TEXT" NAME="lotto_short_title" VALUE="<%= sTitle %>"
 SIZE="20" MAXLENGTH="20">

Enhancing PDK-Java Portlets

7-74 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 </TD>
 </TR>
</TABLE>

6. Support the rendering of personalized short titles. Once you add short title
personalization, a portlet must take responsibility for rendering the portlet as a
menu item in the mobile page response. Because of the small screen displays on
mobile devices, portlets aren't rendered together. Users are presented with a menu
of links to portlets on a given page. The user navigates to each portlet through this
menu to see the content. To better support this model, Oracle Portal provides Link
mode, where portlets generate Link references to themselves.

For HTML requests, Link mode generates an anchor tag, a href. For mobile
requests, Link mode generates a simpleHref tag. Currently, Oracle Portal only
sends a Link mode request when assembling a mobile page response. Hence, you
only need to support rendering the text/vnd.oracle.mobilexml content type
for Link mode. If your portlet also has an HTML rendition, we recommend you
also support HTML Link mode.

The lottery portlet example implements each Link rendition in a distinct JSP, as
follows:

■ milotto.jsp contains the code to generate a
text/vnd.oracle.mobilexml Link response.

■ anchorlotto.jsp contains the code to generate a text/html Link
response.

The code for each is almost identical. Since the purpose of supporting Link mode
is to render the personalized short title, the code first acquires the short title from
the repository. It then generates the appropriate link tag for the requested markup.
The acquired short title is rendered as the link's label. Since Oracle Portal is
responsible for creating the URL that references any particular usage of a portlet
on a page, Oracle Portal creates the URL used in the link and passes it to the
portlet, which then uses the URL to create the link. The URL for the link is
retrieved from the request's PageURL parameter. The code for milotto.jsp is as
follows:

<%@ page session="false" contentType="text/vnd.oracle.mobilexml" %>
<%@ page import="oracle.portal.provider.v2.http.HttpCommonConstants" %>
<%@ page import="oracle.portal.provider.v2.render.*" %>
<%@ page
 import="oracle.portal.provider.v2.personalize.NameValuePersonalizationObject"
%>
<%@ page import="oracle.portal.utils.xml.v2.XMLUtil" %>
<%
 PortletRenderRequest portletRequest = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 NameValuePersonalizationObject data = (NameValuePersonalizationObject)
 PortletRendererUtil.getEditData(portletRequest);
 String title = data.getPortletShortTitle();
 // if short title is empty then use the title
 if (title == null || title.length() == 0)
 title = data.getPortletTitle();
%>
<SimpleHref target="<%= XMLUtil.escapeXMLAttribute(
 portletRequest.getRenderContext().getPageURL()) %>">
 <%= XMLUtil.escapeXMLText(title) %>
</SimpleHref>

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-75

7. Declare support for Link mode. Once you have implemented Link mode, you
must update provider.xml to indicate the presence of Link mode. You declare
Link mode by adding code similar to the following to provider.xml:

<portlet class="oracle.portal.provider.v2.DefaultPortletDefinition">
 <id>2</id>
 <name>Lottery</name>
 ...
 <showLink>true</showLink>
 <showEdit>true</showEdit>
 <showEditToPublic>false</showEditToPublic>
 ...
</portlet>

8. Bind the JSPs to the Link mode. The portlet must declare the mapping between the
Show modes and the JSP renderers. The syntax for Link mode is similar to that for
Show mode.

<portlet class="oracle.portal.provider.v2.DefaultPortletDefinition">
 <id>2</id>
 <name>Lottery</name>
 ...
 <renderer class="oracle.portal.provider.v2.render.RenderManager">
 <contentType>text/html</contentType>
 <renderContainer>true</renderContainer>
 <linkPage
 class="oracle.portal.provider.v2.render.http.ResourceRenderer" >
 <resourcePath>/htdocs/lottery/anchorlotto.jsp</resourcePath>
 <contentType>text/html</contentType>
 </linkPage>
 <linkPage
 class="oracle.portal.provider.v2.render.http.ResourceRenderer" >
 <resourcePath>/htdocs/lottery/milotto.jsp</resourcePath>
 <contentType>text/vnd.oracle.mobilexml</contentType>
 </linkPage>
 ...
 </renderer>
 ...
</portlet>

7.2.10.1 Accessing Configuration, User, and Device Information
To better support mobile devices, Oracle Portal passes extra information to the portlet
for use in generating its response. This information falls into three major categories, as
follows:

■ Section 7.2.10.1.1, "Configuration Data"

Note: The text being output as the URL and the short title label are
passed through special XML escape utilities. Because
text/vnd.oracle.mobilexml is an XML content type, generated
responses must adhere to XML rules, which require the escaping of
specific characters. Unless generating static text, we recommend that
all text be escaped using the two supplied utilities. The reason for two
utility methods is that the set of characters requiring escape varies
depending upon whether the text is a tag attribute value or a tag
value.

Enhancing PDK-Java Portlets

7-76 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ Section 7.2.10.1.2, "User Data"

■ Section 7.2.10.1.3, "Device Information"

7.2.10.1.1 Configuration Data Oracle Portal sends a flag that indicates whether the
mobile function is enabled when requesting that the portlet render its personalization
or edit pages. Portlets can use this information to exclude or include mobile specific
attributes in their personalization pages as appropriate.

The portlet accesses this information using the PortletRenderRequest object:

...
if (portletRequest.getPortalConfig().isMobileEnabled()) {
...
}
...

7.2.10.1.2 User Data OracleAS Wireless adds the user location to the requests it
forwards to Oracle Portal for response. This user location information is determined
by the user's actual location, if the user's device has this support, or a profiled location.
The user location is exposed by the ProviderUser object, which you can access from
the PortletRenderRequest object. Portlets that are location aware can use this
information to adjust the content they generate.

...
UserLocation location = portletRequest.getUser().getLocation();
if (location != null) {
 ...
}
...

7.2.10.1.3 Device Information On each request, Oracle Portal sends characteristics about
the requesting device to the portlet. This information is sent for all portlet requests, not
just mobile requests. The information classifies the type of device making the request,
its layout orientation, the maximum response size the device can handle, and an
indication of whether the connection with the device is secure. Table 7–3 describes the
available device types.

Portlets may choose to alter the layout or representation of the content in their
response based on the type of device making the request. For example, a portlet may
break a wide table into a series of screens that link column groups together for small
screen devices.

Table 7–3 Device Classes

Class Description

voice Indicates a voice-only device, such as a normal telephone calling
a voice access number.

micromessenger Indicates text messenging devices, such as SMS phones or
pagers.

messenger Indicates general messenging devices, such as e-mail.

microbrowser Indicates a small size display device, which supports a markup
browser, such as a WAP phone.

pdabrowser Indicates a medium size display device, such as a Palm or
PocketPC.

pcbrowser Indicates a large size display device used with desktop
browsers.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-77

The maximum response size is a hint that a portlet can use to constrain the amount of
data it returns. The size is expressed in bytes. A maximum response size of 0 means
the size is unknown.

The portlet accesses this information using the PortletRenderRequest object.

...
DeviceInfo deviceInfo = portletRequest.getDeviceInfo();
switch (deviceInfo.getDeviceClass()) {
 case DeviceInfo.DeviceClass.MICROBROWSER:
 renderMicroBrowser(portletRequest);
 break;
 default:
 renderDefault(portletRequest);
 break;
}
...

7.2.10.2 Modifying Navigation for Mobile Portlets
Much of the information in Section 7.2.3.3.4, "Implementing Navigation within a
Portlet" is also relevant to the development of mobile portlets, but some of the utilities
referenced are specific to portlets that render HTML. For portlets that render
SimpleResult, the equivalent utilities shown in Table 7–4 are available.

The following example illustrates how to adapt the thesaurus sample for a
mobile-enabled portlet. Note that, when deployed as a mobile portlet, both sets of JSPs
(HTML and SimpleResult) are deployed. These JSPs complement their HTML
counterparts, they do not replace them. Notice also that the JSPs use SimpleResult
as their markup and the value of the navigation parameter has changed such that it
points to the next mobile JSP rather than the next desktop JSP.

mThesaurusForm.jsp:

<%
 PortletRenderRequest pRequest = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 String paramNameQ = "q";
 String qualParamNameQ =
 HttpPortletRendererUtil.portletParameter(pRequest, paramNameQ);
%>
<!-- Output the MXML content -->
<SimpleText>
 <SimpleTitle>Thesaurus</SimpleTitle>
 <SimpleTextItem>Enter the word you wish to search for:</SimpleTextItem>
 <SimpleForm
 method="POST"
 target="<%= UrlUtils.htmlFormActionLink(pRequest,UrlUtils.PAGE_LINK) %>">
 <%=UrlUtils.mxmlFormHiddenFields
 (pRequest.getRenderContext().getPageURL()) %>
 <%= UrlUtils.emitMxmlHiddenField(
 HttpPortletRendererUtil.portletParameter(request, "next_page"),

Table 7–4 Equivalent HTML and SimpleResult Utilities

HTML Utilities SimpleResult Utilities

UrlUtils.constructHTMLLink UrlUtils.constructMXMLLink

UrlUtils.htmlFormHiddenFields UrlUtils.mxmlFormHiddenFields

UrlUtils.emitHiddenField UrlUtils.emitMxmlHiddenField

Enhancing PDK-Java Portlets

7-78 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 "htdocs/path/mThesaurusLink.jsp") %>
 <SimpleFormItem type="text" size="20" name="<%= qualParamNameQ %>"
 value="" />
 </SimpleForm>
</SimpleText>

mThesaurusLink.jsp:

<%
 PortletRenderRequest pRequest = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);
 String paramNameQ = "q";
 String paramNameNextPage = "next_page";
 String qualParamNameQ =
 HttpPortletRendererUtil.portletParameter(pRequest, paramNameQ);
 String qualParamNameNextPage =
 HttpPortletRendererUtil.portletParameter(pRequest, paramNameNextPage);
 String paramValueQ = pRequest.getQualifiedParameter(paramNameQ);
%>
<!-- Output the MXML content -->
<SimpleText>
 <SimpleTitle>Words similar to <%= paramValueQ %></SimpleTitle>
<%
 Thesaurus t = new Thesaurus();
 String[] relatedWords = t.getRelatedWords(paramValueQ);
 NameValue[] linkParams = new NameValue[2];
 linkParams[0] = new NameValue(
 qualParamNameNextPage, "htdocs/path/mThesaurusLink.jsp");
 for (int i=0; i<relatedWords.length; i++)
 {
 linkParams[1] = new NameValue(
 qualParamNameQ, relatedWords[i]);
%>
 <SimpleTextItem>
 <%= relatedWords[i] %>
 <SimpleBreak/>
 <%= UrlUtils.constructMXMLLink(
 pRequest,
 pRequest.getRenderContext().getPageURL(),
 "(words related to " + relatedWords[i] + ")",
 "",
 linkParams,
 true,
 true)%>
 </SimpleTextItem>
<%
 }
%>
 <SimpleTextItem>
 <SimpleHref target="<%=XMLUtil.escapeXMLAttribute(
 pRequest.getRenderContext().getPageURL())%>">
 Reset Portlet
 </SimpleHref>
 </SimpleTextItem>
</SimpleText>

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-79

7.2.11 Writing Multilingual Portlets
This section shows you how to build a Java portlet that can be rendered in different
languages. The language used in your portlet will depend upon on the language
setting that has been chosen in the portal that is displaying it.

Once you have completed this section you will be able to write portlets that support as
many or as few languages as you wish. You will also be able to convert your existing
portlets to support multiple languages. Once a portlet is written to support multiple
languages, it is easy to plug in new languages. The basic model for multilingual Java
portlets is similar to the standard Java Internationalization model. If you already know
about Java Internationalization, you should find this process very familiar.

7.2.11.1 Assumptions
To perform the tasks in this section, we are making the following assumptions:

1. You have followed through and understood Section 6.5, "Building Oracle
PDK-Java Portlets with Oracle JDeveloper".

2. You built a portlet using the wizard and successfully added it to a page.

7.2.11.2 Internationalizing Your Portlet
This consists of the following two tasks:

■ Section 7.2.11.2.1, "Providing Translations for Portlet Content"

■ Section 7.2.11.2.2, "Providing Translation for Portlet Attributes"

7.2.11.2.1 Providing Translations for Portlet Content In Section 6.5, "Building Oracle
PDK-Java Portlets with Oracle JDeveloper", you created a portlet using the Java Portlet
Wizard. The basic message created by the wizard is only available in one language and
the text displayed is hard-coded in to the portlet's renderer class. To make your
portlets available in multiple languages, you have to store such language dependent
elements in their own resource bundles.

Creating Resource Bundles
For each language you want your portlet to be available in, you will need a resource
bundle. You will also need to create a resource bundle to use when there is no resource
bundle corresponding to the language setting chosen in the portal. Perform the
following tasks:

■ Create a Default Resource Bundle

Perform the following steps:

1. In Oracle JDeveloper, create a Java class called MyProviderBundle that
extends ListResourceBundle from the java.util.package. The class
should contain a multi-dimensional array of objects that holds key-value pairs
representing each of the language dependent elements from your JSP show
page. This implementation is demonstrated in the following code:

package mypackage2;
import java.util.ListResourceBundle;
public class MyProviderBundle extends ListResourceBundle
{
public static String HELLO_MSG = "MyPortletHelloMessage";
public static String INFO_MSG = "MyPortletInfoMessage";
public Object[][] getContents()
{

Enhancing PDK-Java Portlets

7-80 Oracle Fusion Middleware Developer's Guide for Oracle Portal

return contents;
}
static private final Object[][] contents =
{
{HELLO_MSG, "Hello"},
{INFO_MSG, "This is the show page of the portlet and it is being generated
in the default language!"}
};
}

2. Save MyProviderBundle.

■ Creating Resource Bundles for Other Supported Languages

Now you must create a resource bundle class for each language you want your
portlet to support. Each of these classes must be named the same as your default
resource bundle class, but with a language code appended to the end. For
example, if you want to support the French language, create a Java class named
MyProviderBundle_fr. The language code fr is the same as the code that will
be used by the locale object in the portal if the language setting is set to French

For more information on Locales, search for java.util.Locale in the Javadoc.
Refer to the Javadoc on OTN by clicking Java Doc API on the Portlet Development
page available at

http://www.oracle.com/technology/products/ias/portal/portlet_
development_10g1014.html

When you change the language setting in Oracle Portal, you change the value of
the current locale object and therefore the locale object's language code. These
language codes adhere to the ISO:639 codes for representation for names of
languages. To create resource bundles for other supported languages, perform the
following steps:

1. To create a French resource bundle, create a Java class named
MyProviderBundle_fr, as described earlier.

2. Using your default resource bundle as a template, replace the English
language strings with their French equivalents. An example is as follows:

package mypackage2;

import java.util.ListResourceBundle;
public class MyProviderBundle_fr extends
ListResourceBundle
{
public Object[][] getContents()
{
return contents;
}
static private final Object[][] contents =
{
{MyProviderBundle.HELLO_MSG, "Bonjour"},
{MyProviderBundle.INFO_MSG, "Cette page est le 'show mode' de la portlet
 et est generee dans la langue par defaut."}
};
}

3. Save MyProviderBundle_fr.

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-81

4. Repeat steps 1 through 3 for every language that you wish to create a resource
bundle for, updating the class name with the appropriate language code and
the message strings with their equivalent in the appropriate language.

Updating Your Renderer
To make use of the resource bundles you just created, you need to edit the JSP show
page and replace the hard-coded messages with references that will pickup the
messages at run time from the resource bundle that corresponds most closely with the
locale object of the portal. To update your renderer, perform the following steps:

1. Open the JSP that represents your show page and change the following:

<%@page contentType="text/html; charset=windows-1252"
 import="oracle.portal.provider.v2.render.PortletRenderRequest"
 import="oracle.portal.provider.v2.http.HttpCommonConstants"
 import="java.util.ResourceBundle"
%>

<%
 PortletRenderRequest pReq = (PortletRenderRequest)
 request.getAttribute(HttpCommonConstants.PORTLET_RENDER_REQUEST);

<!-- Get a resource bundle object for the current language. -->
ResourceBundle b =
ResourceBundle.getBundle("mypackage2.MyProviderBundle",pReq.getLocale());
%>

<!-- Pull the message from the appropriate resource bundle. -->
<P> <%= b.getString(mypackage2.MyProviderBundle.HELLO_MSG) %>
 <%= pReq.getUser().getName() %>.</P>
<P> <%= b.getString(mypackage2.MyProviderBundle.INFO_MSG) %></P>

2. Save your JSP page.

Now you can refresh your portlet and view the changes (Figure 7–12).

Figure 7–12 Portlet in English

To view the French greeting, you set the language in the Set Language portlet to
French instead of English (Figure 7–13).

Figure 7–13 Portlet in French

Enhancing PDK-Java Portlets

7-82 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Notice that the text inside the portlet has changed, but the portlet title remains in the
default language, English. You can also have the portlet set the appropriate portlet
attributes (such as portlet name, portlet title, and portlet description) by pointing to a
resource bundle from provider.xml, as described in the next section.

7.2.11.2.2 Providing Translation for Portlet Attributes In your provider's definition file,
provider.xml, a number of attributes describing your portlet are defined such as the
portlet's name and description, these are used in places, for example in your portlet's
title bar in Show mode and so should be translated, too. There are two different ways
of providing these translations, which one you choose is up to you. Both of these
methods are outlined in the following sections:

■ "Method 1: Using Resource Bundles at the Provider Level"

■ "Method 2: Creating Resource Bundles at Portlet Level"

Method 1: Using Resource Bundles at the Provider Level
You can provide translations for your portlet attributes in your resource bundle(s),
then specify that you want to use these resource bundles in provider.xml,
specifying the keys you have used in your resource bundles. Using this method you
can use the keys you want to, and as long as you use different keys for each
corresponding attribute in your provider's various portlets you can have just one set of
resource bundles that all of your provider's portlets can use. This section consists of
the following tasks:

■ Updating Your Resource Bundles

Perform the following steps:

1. Open your default resource bundle, MyProviderBundle.java.

2. Add additional strings to your resource bundle that represent your portlet
attributes and then add text for those strings:

package mypackage2;

import java.util.ListResourceBundle;
public class MyProviderBundle extends ListResourceBundle
{
public static String HELLO_MSG = "MyPortletHelloMessage";
public static String INFO_MSG = "MyPortletInfoMessage";
public static String PORTLET_NAME = "FirstPortletName";
public static String PORTLET_TITLE = "FirstPortletTitle";
public static String PORTLET_SHORT_TITLE = "FirstPortletShortTitle";
public static String PORTLET_DESCRIPTION = "FirstPortletDescription";
public static String TIMEOUT_MESSAGE = "FirstPortletTimeoutMessage";

public Object[][] getContents()
{
return contents;
}
static private final Object[][] contents =
{
{HELLO_MSG, "Hi"},
{INFO_MSG, "This is the show page of the portlet and it is being generated
 in the default language!"},
{PORTLET_NAME, "MyNLSPortlet"},
{PORTLET_TITLE, "My NLS Portlet"},
{PORTLET_SHORT_TITLE, "MyNLSPortlet"},
{PORTLET_DESCRIPTION, "My first ever NLS portlet, using my
 MyPortletShowPage.jsp"},

Enhancing PDK-Java Portlets

Enhancing Java Portlets 7-83

{TIMEOUT_MESSAGE, "Timed out waiting for MyNLSPortlet"}
};
}

3. Save MyProviderBundle.java.

4. Open MyProviderBundle_fr.java. Change it so that it contains the French
strings that match the strings declared in MyProviderBundle.

package mypackage2;

import java.util.ListResourceBundle;
public class MyProviderBundle_fr extends ListResourceBundle
{
public Object[][] getContents()
{
return contents;
}
static private final Object[][] contents =
{
{MyProviderBundle.HELLO_MSG, "Bonjour"},
{MyProviderBundle.INFO_MSG, "Cette page est le 'show mode' de la portlet
 et est generee en francais!"},
{MyProviderBundle.PORTLET_NAME, "MaPremierePortlet"},
{MyProviderBundle.PORTLET_TITLE, "Ma Portlet Multi-Langue"},
{MyProviderBundle.PORTLET_SHORT_TITLE, "Ma NLS Portlet"},
{MyProviderBundle.PORTLET_DESCRIPTION, "Ma premiere portlet
 multi-langue, utilisant mon renderer"},
{MyProviderBundle.TIMEOUT_MESSAGE, "Temps d'acces a la portlet
 demandee expire"}
};
}

5. Save MyProviderBundle_fr.java.

■ Updating provider.xml

Perform the following steps:

1. Open the XML provider definition file and update it to point to the resource
bundle instead of using the hard-coded portlet attribute values.

<portlet class="oracle.portal.provider.v2.DefaultPortletDefinition">
 <id>3</id>
 <resource>mypackage2.MyProviderBundle</resource>
 <nameKey>FirstPortletName</nameKey>
 <titleKey>FirstPortletTitle</titleKey>
 <ShortTitleKey>FirstPortletShortTitle</ShortTitleKey>
 <descriptionKey>FirstPortletDescription</descriptionKey>
<timeout>10</timeout>
 <timeoutMessageKey>FirstPortletTimeoutMessage</timeoutMessageKey>
 <showEditToPublic>false</showEditToPublic>
 <hasAbout>true</hasAbout>

For more information on the syntax of provider.xml, refer to the provider
Javadoc on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javado
c/xml_tag_reference_v2.html

Enhancing PDK-Java Portlets

7-84 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Method 2: Creating Resource Bundles at Portlet Level
PDK-Java defines a set of resource bundle keys that you can use for providing
translations for your portlet attributes. Making use of these keys means that you don't
have to specify the resource bundle keys in your provider.xml file, as we did in
"Method 1: Using Resource Bundles at the Provider Level". However, you do have to
provide a separate set of resource bundles for each portlet in your provider as the keys
you use for each portlet need to be the same, but their values will differ. You must
perform the following tasks:

■ Updating Your Resource Bundles

Perform the following steps:

1. Open your default resource bundle, MyProviderBundle.java.

2. Remove any changes you made from the previous section, and import
oracle.portal.provider.v2.PortletConstants. You can then
reference the following constants instead of the strings. You do not have to
declare static strings when using PortletConstants:

{PortletConstants.NAME, "MyNLSPortlet"},
{PortletConstants.TITLE, "My NLS portlet"},
{PortletConstants.SHORTTITLE, "MyNLSPortlet"},
{PortletConstants.DESCRIPTION, "My first ever NLS portlet"},
{PortletConstants.TIMEOUTMSG, "Timed out waiting for MyNLSPortlet"}

3. Save MyProviderBundle.java.

4. Open MyProviderBundle_fr.java. Remove the portlet attributes added in
the previous section, import
oracle.portal.provider.v2.PortletConstants, and reference the
constants instead of the strings.

{PortletConstants.NAME, "MaPremierePortlet"},
{PortletConstants.TITLE, "Ma Portlet Multi-Langue"},
{PortletConstants.SHORTTITLE, "Ma NLS Portlet"},
{PortletConstants.DESCRIPTION, "Ma premiere portlet multi-langue,
 utilisant mon renderer"},
{PortletConstants.TIMEOUTMSG, "Temps d'acces a la portlet demandee
 expire"}

5. Save MyProviderBundle_fr.java.

■ Updating provider.xml

Perform the following steps:

1. In provider.xml, you need to use only one tag instead of one tag for each
string as you did in "Method 1: Using Resource Bundles at the Provider
Level". Delete all translated strings in the file, for example, the <nameKey>,
<titleKey>, <ShortTitleKey>, and <descriptionKey> tags. Then add
the following tag between the portlet id and the timeout number value:

<resource>mypackage2.MyProviderBundle</resource>

For more information on the syntax of provider.xml, refer to the provider
Javadoc on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javado
c/xml_tag_reference_v2.html

For more information on Java Internationalization see the Internationalization trail
of the Java Tutorial.

Building Struts Portlets with Oracle JDeveloper

Enhancing Java Portlets 7-85

7.2.11.3 Viewing the Portlet
Once you have updated your provider and deployed it to Oracle Containers for Java
EE, refresh the provider and portal page containing your portlet. To see your resource
bundles working, add the "Set Language" portlet to your page and try changing the
language setting to French. Remember that the default resource bundle is English, and
that selecting any other language that doesn't have a corresponding resource bundle
will result in the portlet being displayed in English.

7.3 Building Struts Portlets with Oracle JDeveloper
This section describes the framework for building Struts portlets with Oracle
JDeveloper for use in Oracle Portal. You will learn how to build a Struts portlet from
an existing application by adding the Struts Tag Library from the Oracle Portal
Developer Kit (version 9.0.4.0.2 or higher) to Oracle JDeveloper, then use the Oracle
PDK Java Portlet wizard to create the Java portlet itself. This sections covers the
following tasks:

■ Section 7.3.1, "Oracle Portal and the Apache Struts Framework"

■ Section 7.3.2, "Creating a Struts Portlet"

7.3.1 Oracle Portal and the Apache Struts Framework
This section discusses the use of the Apache Struts with Oracle Portal. Struts is an
implementation of the Model-View-Controller (MVC) design pattern. The following
topics are discussed in this section:

■ Section 7.3.1.1, "Model View Controller Overview"

■ Section 7.3.1.2, "Apache Struts Overview"

■ Section 7.3.1.3, "Oracle Portal Integration with Struts"

■ Section 7.3.1.4, "Summary"

7.3.1.1 Model View Controller Overview
Enterprise applications undertake several distinct tasks, as follows:

■ Data access

■ Business logic implementation

■ User interface display

■ User interaction

■ Application (page) Flow

The MVC (Model View Controller) architecture provides a way of compartmentalizing
these tasks, based on the premise that activities, such as data presentation, should be
separate from data access. This architecture enables you to easily plug a data source
into the application without having to rewrite the user interface. MVC allows the
logical separation of an application into three distinct layers: the Model, the View, and
the Controller.

The Model
The Model is the repository for the application data and business logic. One facet of
the Model's purpose is to retrieve data from and persist data to the database. It is also
responsible for exposing the data in such a way that the View can access it, and for
implementing a business logic layer to validate and consume the data entered through

Building Struts Portlets with Oracle JDeveloper

7-86 Oracle Fusion Middleware Developer's Guide for Oracle Portal

the View. At the application level, the Model acts as the validation and abstraction
layer between the user interface and the business data that is displayed. The database
server itself is simply a persistence layer for the Model.

The View
The View is responsible for rendering the Model data using JSPs. The View code does
not include a hardcoded application or navigation logic, but may contain some logic to
carry out tasks like displaying conditional data based on a user role. When an end user
executes an action within the HTML page that the View renders, an event is submitted
to the Controller. The Controller then determines the next step.

The Controller
The Controller is the linchpin of the MVC pattern. Every user action carried out in the
View is submitted through the Controller. The Controller then performs the next
action, based on the content of the request from the browser.

The Controller can be driven in several different ways. For example, you can use URL
arguments to route the requests to the correct code. The MVC pattern itself determines
the function of the Controller, not how it should work.

Benefits
The MVC architecture provides a clear and modular view of the application and its
design. By separating the different components and roles of the application logic, it
allows developers to design applications as a series of simple and different
components: the Model, the View, and the Controller. This pattern should help to
create applications that are easier to maintain and evolve. For example, once you
create one view, you can easily create another view using the same business logic.
Because of the ease and reusability, the MVC pattern is the most widely used pattern
in the context of Web-based application development.

Figure 7–14 shows how the MVC pattern applies to a conventional thin-client Web
application:

Figure 7–14 The MVC Pattern

7.3.1.2 Apache Struts Overview
The Apache Struts framework (http://struts.apache.org) is one of the most
popular frameworks for building Web applications, and provides an architecture
based on the JSP Model 2 approach of the MVC design paradigm. In the Model 2
approach, end user requests are managed by a servlet that controls the flow, and uses
components such as JavaBeans or EJBs to access and manipulate the data. It then uses

Building Struts Portlets with Oracle JDeveloper

Enhancing Java Portlets 7-87

JSPs to render the application content in a Web browser. This model differs from JSP
Model 1, where the JSPs managed the browser request and data access.

The Struts framework provides its own HTTP Servlet as a controller component. The
Struts framework is driven by an XML configuration file that contains the page flow of
the application. Struts does not provide the Model, but allows developers to integrate
it to any data access mechanism, for example EJBs, TopLink, or JDBC. The most
common technology for writing View components is JSP and Struts provides various
tag libraries to help in writing these, although some of these tags have now been
superseded by the Java Standard Tag Library (JSTL), which may also be used.

7.3.1.3 Oracle Portal Integration with Struts
The Oracle Portal Developer Kit contains numerous examples and documents
regarding the usage of the Oracle Portal APIs, such as personalization and caching.
The integration of the application flow and business logic is not part of the portlet
APIs. By using the Struts framework, however, you can leverage the MVC architecture
to create and publish applications within your enterprise portal.

Oracle Struts Portlet
To create a portlet using the Struts framework, or to generate a portlet from an existing
Struts application, you must deploy all the components in the J2EE container. In the
context of Oracle Portal, the Struts application is called by the PPE, and not by the
browser as compared to a standalone Struts application. When a portlet show call is
made, the page engine sends a request to the Struts portlet renderer, which then
forwards the request to the Apache Struts Controller servlet, as shown in Figure 7–15.

Figure 7–15 Integrating Struts Applications with Oracle Portal

The following code shows a portion of the provider definition file (provider.xml):

...

Note: For more information about JSTL and JSF, see the FAQ on the
Apache Software Foundation Web site
(http://struts.apache.org/kickstart.html).

Building Struts Portlets with Oracle JDeveloper

7-88 Oracle Fusion Middleware Developer's Guide for Oracle Portal

<renderContainer>true</renderContainer>
 <renderCustomize>true</renderCustomize>
 <autoRedirect>true</autoRedirect>
 <contentType>text/html</contentType>
 <showPage class="oracle.portal.provider.v2.render.http.StrutsRenderer">
 <defaultAction>showCustomer.do</defaultAction>
 </showPage>
</renderer>
...

For more information on the syntax of provider.xml, refer to the provider Javadoc
on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/xml_
tag_reference_v2.html

The showPage tag defines the business logic that will be executed in the Show mode
of the portlet. The showPage of the Struts portlet contains two important components,
which are as follows:

1. The renderer class
(oracle.portal.provider.v2.render.http.StrutsRenderer), which
receives the portlet request from the PPE and acts as a proxy to forward the
request to the Struts Action Servlet.

2. The defaultAction tag, which defines the Struts action that will be used by
default when the portlet is called for the first time.

The PDK-Java enables you to easily develop a view (Portal View) of your Struts
application. This view enforces a consistent look and feel of your Struts portlet using
portal styles, and allows the end user to use the application within the portal.

To create a Struts portlet, you must use the Oracle Portal JSP tags, which are extensions
of the default Struts JSP tags. This development process is similar to that of creating a
standalone Struts application. To learn how to build a Struts portlet, refer to
Section 7.3.2.1, "Creating a Struts Portlet". Also, since the portlet and struts application
must also be in the same Servlet Context, you must create a single Web application
that contains both elements. To learn how to easily create this Web application in
Oracle JDeveloper, refer to the next section, Section 7.3.2.1, "Creating a Struts Portlet".

7.3.1.4 Summary
Apache Struts has become the de facto standard for developing MVC-based J2EE
applications, because it offers a clean and simple implementation of the MVC design
paradigm. This framework enables you, as the portlet developer, to separate the
different components of an application, and to leverage the Struts controller to easily
publish an existing Struts application to Oracle Portal without completely changing
the existing business logic.

7.3.2 Creating a Struts Portlet
Oracle PDK contains new extensions to integrate Apache Struts applications. This
section explains how to build a portlet from an existing struts application. You can also

Note: For more information on the Oracle Portal Developer Kit, see
Portal Center
(http://www.oracle.com/technology/products/ias/porta
l/pdk.html)

Building Struts Portlets with Oracle JDeveloper

Enhancing Java Portlets 7-89

follow these steps to create a portlet that uses the Model View Controller paradigm. To
learn more about the Apache Struts framework, refer to Section 7.3.1, "Oracle Portal
and the Apache Struts Framework". The PDK-Java extensions described in this section
rely on Apache Struts 1.1.

This section contains the following steps:

■ Section 7.3.2.1, "Creating a Struts Portlet"

■ Section 7.3.2.2, "Registering the Provider"

■ Section 7.3.2.3, "Summary"

7.3.2.1 Creating a Struts Portlet
To publish a part of an existing Struts application as portlet, we recommend that you
first create a new view to serve as the Portal View of your application. This view uses
existing objects (Actions, ActionForm, and so on) with a new mapping and new
JSPs.

In this example, you will create a portlet that enables you to add a new entry to a Web
Logger (Blog). Figure 7–16 and Figure 7–17 show how you submit a blog and save a
blog entry.

Figure 7–16 Submitting a Blog

Note: Although we recommend that you create a Portal View of
your application, you could alternatively replace your application's
struts tags with PDK-Java struts tags. This approach enables your
application to run both as a standalone struts application and a
portlet.

Building Struts Portlets with Oracle JDeveloper

7-90 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 7–17 Saving a Blog Entry

prepareNewBlog is a simple empty action that redirects the request to the
enterNewBlog.jsp page. This page shows a form for submitting a new blog.

The corresponding entry in the struts-config.xml is:

<action path="/prepareNewBlog" scope="request"
type="view.PrepareNewBlogAction" >
 <forward name="success" path="/view/enterNewBlog.jsp"/>
</action>
<action path="/saveNewBlog" name="blogForm" scope="request"
 type="view.SaveNewBlogAction" input"/view/enterNewBlog.jsp" >
 <forward name="success" path="/view/newBlogConfirmation.jsp"/>
</action>

7.3.2.1.1 Create a new flow and view to host the portlet actions To create a new view, first
create a new set of ActionMappings (page flow) that will redirect the various actions
and requests to Portal-specific JSPs.

<action path="/portal/prepareNewBlog" scope="request"
 type="view.PrepareNewBlogAction" >
 <forward name="success" path="/view/portal/enterNewBlog.jsp"/>
</action>
<action path="/portal/saveNewBlog" name="blogForm" scope="request"
type="view.SaveNewBlogAction" input="/view/enterNewBlog.jsp" >
 <forward name="success" path="/view/portal/newBlogConfirmation.jsp"/>
</action>

As you can see, only the path attributes are modified. The FormBean Action
responsible for the application business logic remains unchanged.

7.3.2.1.2 Creating the new JSPs As specified in the previous step, the actions forward
the request to new JSPs, which are responsible for rendering the portlet content. Your
new portlet view JSPs can share the HTML with the standalone view, but be sure that
the portlet meets the following criteria:

■ Uses Portal styles that enforce a consistent look and feel with the rest of the portal
page.

■ Contains HTML code that is allowed in HTML table cells (that is, no <html>,
<body>, and <frame> tags).

■ Renders portal-aware links and forms. This is necessary to ensure that your Struts
portlet renders its content inline, thus keeping your users within the context of the
portal page by rendering the requested content within the same portlet container.

Building Struts Portlets with Oracle JDeveloper

Enhancing Java Portlets 7-91

To achieve inline rendering in your Struts portlet, you must use Oracle PDK tags:

<pdk-struts-html:form action="/portal/saveNewBlog.do">
...
...
</pdk-struts-html:form>

During the rendering of the portlet, one of the JSP tags (for example, the
pdk-struts-html:form tag), submits the form to the Parallel Page Engine (PPE),
which then sends the parameters to the Struts portlet. The Struts controller executes
the logic behind these actions and returns the next JSP to the portlet within the portal
page.

The PDK contains all the Struts tags, and extends all the tags that are related to URLs.
The following is a list of the PDK extended tags:

■ form: creates an HTML form and embeds the portal page context in the form to
ensure inline rendering

■ text: renders fields on the form.

■ link and rewrite: create a link to the portal page, and are required for inline
rendering

■ img: creates an absolute link that points to the Web provider. If you want to use
this tag in the context of Internet Web sites that have firewalls, you must make
sure the provider is directly accessible from the Internet. If it is not possible, you
can deploy the images to the Oracle Portal middle tier and use the Apache Struts
image link to generate a relative link (relative to the portal, not to the application).

7.3.2.1.3 Creating a Portlet You can create your Struts portlet either manually or by
using the Java Portlet wizard. Although the wizard does not explicitly offer Struts
support, you can utilize the wizard to build your Struts portlet.

To create a portlet, perform the following steps:

1. In Oracle JDeveloper, open the Java Portlet Wizard to create an Oracle PDK Java
Portlet.

2. For the Implementation Style of the show page, select Java Class.

3. For the Package Name, enter oracle.portal.provider.v2.render.http

4. For the Class Name, enter StrutsRenderer. This generates the skeleton of the
portlet renderer class, StrutsRenderer.

5. Since the StrutsRenderer is part of the PDK, you do not need this generated
file. So, when you finish the wizard, you must delete the file generated by the

Note: You can register the Oracle PDK with Oracle JDeveloper so
that you can drop the tags from the Oracle JDeveloper Components
Palette. For more information, see the Registering a Custom Tag Library
in JDeveloper section in the Oracle JDeveloper online help.

Note: The Java Portlet and Oracle PDK Java Portlet options are used
to create JPS-compliant portlets and PDK-Java portlets respectively.
Clicking Java Portlet or Oracle PDK Java Portlet opens the Java
Portlet Wizard. For more information on opening the wizard, see
Section 6.5.1, "Creating an Oracle PDK-Java Portlet and Provider".

Building Struts Portlets with Oracle JDeveloper

7-92 Oracle Fusion Middleware Developer's Guide for Oracle Portal

wizard. To do so, click the file in the System Navigator window, then choose File >
Erase from Disk in Oracle JDeveloper.

6. Edit the provider.xml and change the following properties:

At the provider level, perform the following:

■ If you want users to always return to the same portlet state as when they left
the portal page, you can configure the struts renderer to save the struts action
in the struts context:

<actionInSession>true</actionInSession>

If you prefer that users always start from the beginning of the portlet when
they return from outside the portal page, then you should not save the struts
action:

<actionInSession>false</actionInSession>

■ If the Struts application uses sessions (for example, the form sysnchronizer
token mechanism is used or <actionInSession> is set to true), enable
session handling:

<session>true</session>

At the portlet level, perform the following:

■ Specify the first action to raise when the portlet is called. Use the following
code:

<showPage class="oracle.portal.provider.v2.render.http.StrutsRenderer">
<defaultAction>/portal/prepareNewBlog.do</defaultAction>
</showPage>

For more information on the syntax of provider.xml, refer to the provider
Javadoc on OTN:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/x
ml_tag_reference_v2.html

7.3.2.1.4 Extending the portlet to add Portal Business Logic In your application, you should
add code specific to your portal, such as the user's information, personalization, and
localization. To do so, you can create a new Action class that is only called in the
Portal context, and handles all Portal-specific business logic.

7.3.2.2 Registering the Provider
Now that your portlet is ready to be used by Oracle Portal, you must make it
accessible to Oracle Portal by registering it. For information on how to register your
PDK-Java portlet, refer to Section 6.5.5, "Registering and Viewing Your Oracle
PDK-Java Portlet". If you chose to save the struts action in the session context,
<actionInSession>true</actionInSession>, then you must specify the
provider login frequency as Once per user session during registration. Setting the
login frequency this way ensures the session information is passed to your struts
portlet.

7.3.2.3 Summary
Oracle Fusion Middleware enables you to easily create Struts portlets using Oracle
JDeveloper and publish existing Struts applications to Oracle Portal. For more
information on using the Oracle JDeveloper Java Portlet wizards, refer to the

Building Struts Portlets with Oracle JDeveloper

Enhancing Java Portlets 7-93

beginning of this chapter. For more information on using Oracle Portal, refer to the
Oracle Fusion Middleware User's Guide for Oracle Portal and the Oracle Portal Online Help.

7.3.3 Creating an Oracle Application Development Framework (ADF) Portlet
Similarly to Struts, Oracle ADF relies on the MVC design pattern. Oracle ADF
applications leveraging the Struts controller can be turned into portlets and deployed
to Oracle Portal the same way as Struts applications. Refer to Section 7.3.2, "Creating a
Struts Portlet".

To create the ADFBindingFilter filter and filter mappings, include the following in
your web.xml file:

<filter>
 <filter-name>ADFBindingFilter</filter-name>
 <filter-class>oracle.adf.model.servlet.ADFBindingFilter</filter-class>
 <init-param>
 <param-name>encoding</param-name>
 <param-value>windows-1252</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>ADFBindingFilter</filter-name>
 <url-pattern>*.jsp</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>ADFBindingFilter</filter-name>
 <url-pattern>*.jspx</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>ADFBindingFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>ADFBindingFilter</filter-name>
 <url-pattern>*</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>ADFBindingFilter</filter-name>
 <servlet-name>action</servlet-name>
 </filter-mapping>
 <filter-mapping>
 <filter-name>ADFBindingFilter</filter-name>
 <servlet-name>jsp</servlet-name>
 </filter-mapping>

Note: After creating the Oracle ADF portlet, you may find that the
JSP page does not display correctly. This is because the Parallel Page
Engine request is sent to a provider through a SOAP request
(oracle.webdb.provider.v2.adapter.SOAPServlet), which
implies that the portal does not serve the page as a standard .JSP
page. To resolve this, create the ADFBindingFilter filter.

Building Struts Portlets with Oracle JDeveloper

7-94 Oracle Fusion Middleware Developer's Guide for Oracle Portal

8

Creating PL/SQL Portlets 8-1

8 Creating PL/SQL Portlets

The Oracle Portal PL/SQL APIs are implemented as a set of PL/SQL packages and
objects. Database providers and portlets are deployed to a database schema as
PL/SQL packages. This chapter explains how to create PL/SQL portlets based on the
Oracle Portal Developer Kit-PL/SQL (PDK-PL/SQL). To make effective use of this
chapter, you should already know PL/SQL and have some familiarity with the
PL/SQL Web Toolkit.

This chapter contains the following sections:

■ Section 8.1, "Guidelines for Creating PL/SQL Portlets"

■ Section 8.2, "Building PL/SQL Portlets with the PL/SQL Generator"

■ Section 8.3, "Building PL/SQL Portlets Manually"

■ Section 8.4, "Implementing Information Storage"

■ Section 8.5, "Using Parameters"

■ Section 8.6, "Accessing Context Information"

■ Section 8.7, "Implementing Portlet Security"

■ Section 8.8, "Improving Portlet Performance with Caching"

■ Section 8.9, "Implementing Error Handling"

■ Section 8.10, "Implementing Event Logging"

■ Section 8.11, "Writing Multilingual Portlets"

■ Section 8.12, "Enhancing Portlets for Mobile Devices"

■ Section 8.13, "Registering Providers Programmatically"

The source code for many of the examples referenced in this chapter is available as
part of PDK-PL/SQL. You can download PDK-PL/SQL from the Oracle Portal
Developer Kit (PDK) page on Oracle Technology Network (OTN):

http://www.oracle.com/technology/products/ias/portal/pdk.html

When you unzip PDK-PL/SQL, you will find the examples in:

Note: In general, Oracle recommends that you build your portlets
using Java rather than PL/SQL. For more information on choosing a
technology for building your portlets, refer to Chapter 2, "Portlet
Technologies Matrix". For more information on building your portlets
using Java, refer to Chapter 6, "Creating Java Portlets".

Guidelines for Creating PL/SQL Portlets

8-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

../pdk/plsql/starter

../pdk/plsql/sample

../pdk/plsql/cache

../pdk/plsql/sso

../pdk/plsql/svcex

You can find the reference for PDK-PL/SQL in:

../pdk/plsql/doc

8.1 Guidelines for Creating PL/SQL Portlets
When you write your portlets in PL/SQL, you should follow the best practices
described in this section:

■ Section 8.1.1, "Portlet Show Modes"

■ Section 8.1.2, "Recommended Portlet Procedures and Functions"

■ Section 8.1.3, "Guidelines for Mobile Portlets"

8.1.1 Portlet Show Modes
Just like a Java portlet, a PL/SQL portlet has a variety of Show modes available to it. A
Show mode is an area of functionality provided by a portlet. The following available
Show modes are described more fully in Chapter 6, "Creating Java Portlets":

■ Shared Screen mode is described in Section 6.1.1.1, "Shared Screen Mode (View
Mode for JPS)"

■ Edit mode is described in Section 6.1.1.2, "Edit Mode (JPS and Pdk-Java)".

■ Edit Defaults mode is described in Section 6.1.1.3, "Edit Defaults Mode (JPS and
PDK-Java)".

■ Preview mode is describe in Section 6.1.1.4, "Preview Mode (JPS and PDK-Java)".

■ Full Screen mode is described in Section 6.1.1.5, "Full Screen Mode (PDK-Java)".

■ Help mode is described in Section 6.1.1.6, "Help Mode (JPS and Oracle Portal)".

■ About mode is described in Section 6.1.1.7, "About Mode (JPS and PDK-Java)".

■ Link mode is described in Section 6.1.1.8, "Link Mode (PDK-Java)".

To check for the selected Show mode, you can use the constants in the wwpro_api_
provider package. These constants are listed with their corresponding Show mode in
Table 8–1.

Table 8–1 Show Mode Constants in wwpro_api_provider

Show mode Constant

Shared Screen MODE_SHOW

Edit MODE_SHOW_EDIT

Edit Defaults MODE_SHOW_EDIT_DEFAULTS

Preview MODE_SHOW_PREVIEW

Full Screen MODE_SHOW_DETAILS

Help MODE_SHOW_HELP

About MODE_SHOW_ABOUT

Guidelines for Creating PL/SQL Portlets

Creating PL/SQL Portlets 8-3

8.1.2 Recommended Portlet Procedures and Functions
The primary goal of the portlet's code is to generate the HTML output that displays on
a page for all of the Show modes required by Oracle Portal. Although it is possible to
implement the portlet as a set of separate PL/SQL stored program units, organizing
the portlet's code into a PL/SQL package is the best way of encapsulating related
portlet code and data as a single unit in the database. You also achieve better database
performance and ease of portlet maintenance.

As you may recall from Section 2.4, "Deployment Type", requests from Oracle Portal
for a particular portlet go through the portlet's provider. To communicate with its
portlets, the provider contains a set of required methods that make calls to the portlet
code.

When implementing a portlet as a PL/SQL package, it is a good idea to organize the
portlet code in parallel with the provider code. For example, when the provider needs
to retrieve information about one of its portlets, it uses its get_portlet function.
Hence, it makes sense for the portlet to contain a get_portlet_info function that
returns the requested information when called by the provider's get_portlet
function. Similarly, it is logical for the provider's show_portlet procedure to call the
portlet's show procedure, which produces the HTML output for a requested Show
mode and returns it to the provider.

Table 8–2 describes the recommended procedures and functions for a PL/SQL portlet
to communicate effectively with the database provider.

8.1.3 Guidelines for Mobile Portlets
Oracle Portal is capable of rendering its pages for both HTML and non-HTML
(mobile) devices. When designing a portlet for a mobile device, you must consider

Link MODE_SHOW_LINK

Table 8–2 Recommended Functions and Procedures for PL/SQL Portlets

Procedure/Function Name Purpose

get_portlet_info Returns the portlet record to the provider.

show Produces HTML output for a requested Show mode and returns
it to the provider.

register Initializes the portlet at the instance level. The register procedure
should not contain any transaction closing statements, such as
COMMIT, ROLLBACK, or SAVEPOINT. OracleAS Portal
handles the closing of the transactions itself.

deregister Enables cleanups at the instance level. The deregister procedure
should not contain any transaction closing statements, such as
COMMIT, ROLLBACK, or SAVEPOINT. OracleAS Portal
handles the closing of the transactions itself.

is_runnable Determines whether the portlet can be run. Security checks can
be performed in this function.

copy Copies the personalized and default values of portlet
preferences from one portlet instance to a new portlet instance
when Oracle Portal makes a copy of the page.

describe_parameters Returns a list of public portlet parameters.

Table 8–1 (Cont.) Show Mode Constants in wwpro_api_provider

Show mode Constant

Building PL/SQL Portlets with the PL/SQL Generator

8-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

some additional guidelines. The guidelines for mobile portlets are described fully in
Section 6.1.4, "Guidelines for Mobile Portlets".

For information on how to build mobile-enabled portlets, refer to Section 8.12,
"Enhancing Portlets for Mobile Devices".

8.2 Building PL/SQL Portlets with the PL/SQL Generator
To facilitate the development of database providers and PL/SQL portlets, you can use
the PL/SQL Generator, a utility that creates installable PL/SQL code for a database
provider and its portlets. The PL/SQL Generator is a standalone Web application that
receives the provider and portlet definitions in the form of an XML file (similar in
format to the provider.xml file). The XML tags used for the provider and portlet
definition are a subset of the XML tags used for defining Web providers with
PDK-Java. The output of the PL/SQL Generator is a SQL script that can be run from
SQL*Plus. The script contains SQL commands for installing the provider and portlet
packages in the correct order.

You can download the PL/SQL Generator along with its installation instructions from:

http://www.oracle.com/technology/products/ias/portal/files/plsqlgenerat
or.zip

The general model for working with the PL/SQL Generator is as follows:

1. Create an XML file that defines the provider and portlets that you want to build,
as described in Section 8.2.1, "Creating the Input XML File".

2. Run the PL/SQL Generator using the XML file as input, as described in
Section 8.2.2, "Running the PL/SQL Generator".

3. Publish the generated PL/SQL portlet, which includes the following steps:

■ Install the provider generated by the PL/SQL Generator into the database, as
described in Section 8.2.3.1, "Installing the Packages in the Database".

■ Register the database provider with the Oracle Fusion Middleware, as
described in Section 8.2.3.2, "Registering the Database Provider".

■ Add the generated portlet to a page, as described in Section 8.2.3.3, "Adding
Your Portlet to a Page".

8.2.1 Creating the Input XML File
The source XML file starts and ends with the <provider> and </provider> tags,
and can include one or more portlet definitions. Each portlet definition is bracketed by
the <portlet> and </portlet> tags. A portlet definition includes the XML tags
that specify values for the portlet record attributes and enable the links in the portlet
header. For example, the <name> tag specifies the portlet name in the provider
domain and the <title> tag specifies the portlet display name or title. When set to
true, the <showEdit> tag enables the Edit mode for the portlet and the corresponding
link in the portlet header. Table 8–3 lists the available XML tags for PL/SQL Generator
input.

Table 8–3 XML Tags for PL/SQL Generator Input

XML Tag Definition Value Type

provider Encloses provider definition tags. Not applicable

portlet Encloses portlet definition tags. Not applicable

Building PL/SQL Portlets with the PL/SQL Generator

Creating PL/SQL Portlets 8-5

id Specifies the portlet ID in the provider. This value
must be unique within the provider.

string

name Specifies the portlet name. The name should not
contain any spaces. The generator uses the
information provided in the name tag for the portlet
package name.

string

title Specifies the portlet display name. string

shortTitle Specifies the portlet short display name. This tag is
useful for mobile portlets.

string

description Specifies the portlet description. string

defaultLocale Specifies the language the portlet renders by default.
The value is the two letter ISO language and country
codes expressed as language.country.

string

timeout Specifies the portlet's timeout interval in seconds. number

timeoutMsg Specifies the message to display when the portlet
times out.

string

showEdit Indicates whether the portlet supports Edit mode,
which enables the user to personalize the portlet's
properties.

Boolean

showEditDefault Indicates whether the portlet supports the Edit
Defaults mode, which enables page administrators
to personalize the default values of the portlet's
properties.

Boolean

showDetails Indicates whether the portlet can be viewed in Full
Screen mode. In this mode, the entire browser
window is dedicated to the portlet. Full screen mode
enables the portlet to show more details than when
it shares the page with other portlets.

Boolean

showPreview Indicates whether the portlet supports the Preview
mode.

Boolean

hasHelp Indicates whether the portlet supports the Help
mode.

Boolean

hasAbout Indicates whether the portlet supports the About
mode.

Boolean

language Defines the portlet's default language (for example,
en).

string

contentType Indicates the default content type supported by the
portlet. The tag can take one of the following values:

wwpro_api_provider.CONTENT_TYPE_HTML
wwpro_api_provider.CONTENT_TYPE_XML
wwpro_api_provider.CONTENT_TYPE_MOBILE

string

apiVersion Specifies the version of the Oracle Portal PL/SQL
API to which the portlet conforms. The value should
be wwpro_api_provider.API_VERSION_1.

string

callIsRunnable Indicates whether OracleAS Portal must check for
the user's credentials before displaying the portlet.
The default value is true.

Boolean

Table 8–3 (Cont.) XML Tags for PL/SQL Generator Input

XML Tag Definition Value Type

Building PL/SQL Portlets with the PL/SQL Generator

8-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

callGetPortlet Indicates whether the portal can use the portlet
record data stored in the Portlet Metadata
Repository (PMR) instead of contacting the provider
for the portlet record. If the portlet record (specified
by provider id, portlet id, and language) returned
by a provider does not change, then the provider
should set the value for call_get_portlet to
false. This tells the portal to use the PMR instead of
making calls to the provider's get_portlet and
get_portlet_list functions. An example of
when a provider would not want the portal to use
portlet metadata from the PMR is when the value of
the portlet records is different for logged on users.
The default value is true.

Boolean

acceptContentType Specifies a comma-delimited list of content types
that the portlet can produce. For example, if a
portlet can produce content of both HTML and
MOBILEXML type, then the tag value is:

text/html,text/vnd.oracle.mobilexml

string

hasShowLinkMode Indicates whether the portlet implements the Link
mode. If the value is false, the portlet uses its short
or full title to display a link label that references the
portlet content in a mobile device. Otherwise, a
personalized link can be generated in the portlet
code. The default value is false.

Boolean

mobileOnly Indicates whether the portlet is available only to
mobile devices. The default value is false.

Boolean

preferenceStorePath Specifies the base preference store path where the
provider has stored the portlet personalization
information. This path is used when exporting
portlets.

string

createdOn Defines the portlet creation date. The default value
is sysdate.

date

createdBy Identifies the user who created the portlet record. string

lastUpdatedOn Defines the most recent date on which the portlet
record was changed. The default value is sysdate.

date

lastUpdatedBy Identifies the user who most recently changed the
portlet record.

string

passAllUrlParams Indicates parameter passing behavior in the portlet.
If the tag value is true, then Oracle Portal passes all
parameters in the URL to the portlet. If the tag value
is false, then the portlet receives only those
parameters that are intended for the portlet. The
default value is true.

Boolean

cacheLevel Indicates a portlet's cache level. It can take one of the
following values:

wwpro_api_provider.CACHE_LEVEL_SYSTEM
wwpro_api_provider.CACHE_LEVEL_USER

string

rewriteUrls Indicates whether or not URL rewriting will be
performed on the output from a portlet render
request. The default value is false.

Boolean

Table 8–3 (Cont.) XML Tags for PL/SQL Generator Input

XML Tag Definition Value Type

Building PL/SQL Portlets with the PL/SQL Generator

Creating PL/SQL Portlets 8-7

Following is a sample of the input XML for the PL/SQL Generator. Mandatory
information is shown in bold.

<!-- This is a sample provider.xml file for the PLSQL Generator 1.2 -->
<provider>
 <portlet>
 <id>1</id>
 <name>Test_Portlet</name>
 <title>Test Portlet Title</title>
 <shortTitle>Short portlet title</shortTitle>
 <description>This is a Test portlet</description>
 <timeout>30</timeout>
 <timeoutMsg>Test Portlet Timed Out</timeoutMsg>
 <showEdit>true</showEdit>
 <showEditDefault>true</showEditDefault>
 <showDetails>true</showDetails>
 <showPreview>true</showPreview>
 <hasHelp>true</hasHelp>
 <hasAbout>true</hasAbout>
 <language>en</language>
 <contentType>wwpro_api_provider.CONTENT_TYPE_HTML</contentType>
 <apiVersion>wwpro_api_provider.API_VERSION_1</apiVersion>
 <callIsRunnable>true</callIsRunnable>
 <callGetPortlet>true</callGetPortlet>
 <acceptContentType>'text/html'</acceptContentType>
 <hasShowLinkMode>false</hasShowLinkMode>
 <mobileOnly>false</mobileOnly>
 <passAllUrlParams>true</passAllUrlParams>
 <cacheLevel>wwpro_api_provider.CACHE_LEVEL_USER</cacheLevel>
 <rewriteUrls>true</rewriteUrls>
 </portlet>
</provider>

8.2.2 Running the PL/SQL Generator
After you have created a valid XML input file, you can run the PL/SQL Generator to
generate the provider and portlet packages in the form of a SQL file as follows:

1. If you have not already done so, install the PL/SQL Generator according to the
instructions that came with the download.

2. From your browser, go to the URL for the PL/SQL Generator. It should look
something like the page shown in Figure 8–1.

Building PL/SQL Portlets with the PL/SQL Generator

8-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 8–1 PL/SQL Generator Page

3. Click Browse and select the source XML file for the Source XML File field. Refer
to Section 8.2.1, "Creating the Input XML File" for more information on creating
the XML file.

4. In the Provider Name field, enter the name of the provider. The provider name
must not contain any spaces. The generator uses the value entered in this field for
the provider package name.

5. Click Generate to generate the SQL file that contains the installable PL/SQL code
for the provider and portlet packages. When the browser prompts you to save or
open the file, choose Save.

6. In the Save dialog box, change the file extension to .sql and revise the file name
as you wish.

7. Save the file.

8.2.3 Publishing the Generated PL/SQL Portlet
After you have run the PL/SQL Generator and obtained a SQL file, you still need to
perform the following tasks to make the provider and portlets available to Oracle
Portal:

■ Section 8.2.3.1, "Installing the Packages in the Database"

■ Section 8.2.3.2, "Registering the Database Provider"

■ Section 8.2.3.3, "Adding Your Portlet to a Page"

8.2.3.1 Installing the Packages in the Database
To install the generated provider and portlet packages into the database where you
installed Oracle Portal, perform the following steps:

1. Start a SQL*Plus session and log in to the PORTAL schema.

2. Create a new database schema, the provider schema, to store the generated
provider and portlet packages by entering the following commands in SQL*Plus:

Building PL/SQL Portlets Manually

Creating PL/SQL Portlets 8-9

create user provider_schema identified by provider_schema_password;
grant resource, connect to provider_schema;

3. Grant the EXECUTE privilege for the Oracle Portal APIs to the provider schema
by running the provsyns.sql script that is located in the ORACLE_
HOME/portal/admin/plsql/wwc directory as follows:

@provsyns.sql provider_schema

4. Log in to the provider schema and run the generated SQL file. It will create the
provider and portlet packages in the database.

8.2.3.2 Registering the Database Provider
After creating the provider and portlet packages in the database, you must register the
provider with Oracle Portal before adding the PL/SQL portlet to a portal page, by
performing the following steps:

1. Log in to Oracle Portal as an administrator.

2. From the Portal Builder, click the Administer tab then the Portlets tab.

3. In the Remote Providers portlet, click Register a Provider.

4. Fill in the Name, Display Name, Timeout, and Timeout Message as desired.

5. From the Implementation Style, list choose Database.

6. Click Next and complete the remainder of the wizard.

7. When you complete the wizard, click Finish.

8. From the Portlet Repository portlet, click Display Portlet Repository.

9. Browse the repository and find the provider that you just registered. Typically,
new providers appear in the Portlet Staging Area of the repository.

10. Once you find the provider, confirm that it contains all of the portlets you created
in the provider. If the provider or its portlets do not appear, then retrace the steps
in this section and the preceding sections (Section 8.2.3.1, "Installing the Packages
in the Database", Section 8.2.1, "Creating the Input XML File", and Section 8.2.2,
"Running the PL/SQL Generator") to ensure that you correctly created and
registered your provider and portlet.

8.2.3.3 Adding Your Portlet to a Page
Once your provider and its portlets appear in the repository, you can add it to a page.
To add your portlet to a page, follow the instructions in the Oracle Fusion Middleware
User's Guide for Oracle Portal.

8.3 Building PL/SQL Portlets Manually
This section describes how to build a basic PL/SQL portlet using the hello world
sample contained in the starter provider sample. The starter provider sample,
located in ..\pdkplsql\pdk\plsql\starter in PDK-PL/SQL (pdkplsql.zip),
consists of the following files:

■ starter_provider.pks is the package specification of the starter provider.

■ starter_provider.pkb is the package body of the starter provider.

■ helloworld_portlet.pks is the package specification of the hello world
portlet.

Building PL/SQL Portlets Manually

8-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ helloworld_portlet.pkb is the package body of the hello world portlet.

■ snoop_portlet.pks is the package specification of the snoop portlet.

■ snoop_portlet.pkb is the package body of the snoop portlet.

■ insintpr.sql is the installation script for the starter provider.

The general model for building PL/SQL portlets manually is as follows:

1. Modify the hello world portlet package specification and body to create your
own portlet package, as described in Section 8.3.1, "Implementing the Portlet
Package".

2. Modify the starter provider package specification and body to add your new
portlet to a provider, as described in Section 8.3.2, "Implementing the Provider
Package".

3. Add your portlet to a page, as described in Section 8.3.3, "Adding Your Portlet to a
Page".

8.3.1 Implementing the Portlet Package
To modify helloworld_portlet.pks and helloworld_portlet.pkb to create
your own portlet package, perform the following steps:

1. Make copies of the package specification, helloworld_portlet.pks, and
body, helloworld_portlet.pkb.

2. Rename the copies to my_first_portlet.pks and my_first_portlet.pkb,
respectively.

3. Open my_first_portlet.pks in an editor and change the name of the package
to my_first_portlet:

CREATE OR REPLACE
package my_first_portlet
is
...

end my_first_portlet;

4. Open my_first_portlet.pkb in an editor and repeat the change that you
made in the previous step; that is, change the name of the package to my_first_
portlet.

5. In my_first_portlet.pkb, find the function named get_portlet_info and
modify it as follows:

function get_portlet_info
(
 p_provider_id in integer
 ,p_language in varchar2
)
return wwpro_api_provider.portlet_record
is
 l_portlet wwpro_api_provider.portlet_record;
begin
 l_portlet.id := starter_provider.PORTLET_FIRST;
 l_portlet.provider_id := p_provider_id;
 l_portlet.title := 'My First Portlet';
 l_portlet.name := 'My_First_Portlet';
 ...

Building PL/SQL Portlets Manually

Creating PL/SQL Portlets 8-11

6. In my_first_portlet.pkb, find the procedure named show and modify it as
follows:

procedure show
(
 p_portlet_record wwpro_api_provider.portlet_runtime_record
)
is
 l_portlet wwpro_api_provider.portlet_record;
 l_text_name in varchar2(100);
 l_text in varchar2(200);
begin
...
 /*
 Display the content of the portlet in the show mode.
 Use the wwui_api_portlet.portlet_text() API when
 generating the content of the portlet so that the
 output uses the portlet CSS.
 */
 htp.p(wwui_api_portlet.portlet_text(
 p_string => 'Hello World - Mode Show'
 ,p_level => 1
));
 /*
 Add the functionality you want here. In this case we are adding
 a welcome message addressed to the current user.
 */
 l_text_name := 'Welcome to my first portlet ' || wwctx_api.get_user;
 l_text := wwui_api_portlet.portlet_text(
 p_string => l_text_name,
 p_level => 1);
 htp.p(l_text); htp.para;
 if (p_portlet_record.has_border) then
 wwui_api_portlet.close_portlet;
 end if;
...

7. Save my_first_portlet.pkb.

8.3.2 Implementing the Provider Package
After you implement the portlet package, you must add your portlet to a provider. To
modify starter_provider.pks and starter_provider.pkb to add your new
portlet to a provider, perform the following steps:

1. Make copies of the package specification, starter_provider.pks, and body,
starter_provider.pkb.

2. Rename the copies to starter_provider2.pks and starter_
provider2.pkb, respectively.

3. Open starter_provider2.pks in an editor.

Note: If you want to create a new, empty provider, remove all
references to the hello world and snoop portlets from starter_
provider2.pks and starter_provider2.pkb before performing
the steps that follow.

Building PL/SQL Portlets Manually

8-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

4. Add a constant called PORTLET_FIRST. This constant is used as the identifier for
the portlet within the provider. Hence, the constant's value must be unique within
the provider.

CREATE OR REPLACE
package STARTER_PROVIDER
is
 /**
 * This package is used as an example to show how providers can be created
 * in the portal system.
 *
 * This provider contains the following portlets:
 *
 * Hello World (PORTLET_HELLOWORLD)
 * Snoop (PORTLET_SNOOP)
 *
 */
 PORTLET_HELLOWORLD constant integer := 1;
 PORTLET_SNOOP constant integer := 2;
 PORTLET_FIRST constant integer := 3;

5. Save starter_provider2.pks.

6. Open starter_provider2.pkb in an editor.

7. In starter_provider2.pkb, add a call for the new portlet's get_portlet_
info function in the get_portlet function of the provider package. This step
entails adding the call my_first_portlet.get_portlet_info in the get_
portlet function. The get_portlet function allows the portal to retrieve
information for the portlet when necessary.

function get_portlet
 p_provider_id in integer
 ,p_portlet_id in integer
 ,p_language in varchar2
)
return wwpro_api_provider.portlet_record
is
begin
 if (p_portlet_id = PORTLET_HELLOWORLD) then
 return helloworld_portlet.get_portlet_info(
 p_provider_id => p_provider_id
 ,p_language => p_language
);
 elsif (p_portlet_id = PORTLET_SNOOP) then
 return snoop_portlet.get_portlet_info(
 p_provider_id => p_provider_id
 ,p_language => p_language
);
 elsif (p_portlet_id = PORTLET_FIRST) then
 return my_first_portlet.get_portlet_info(
 p_provider_id => p_provider_id
 ,p_language => p_language
);
 else
 raise wwpro_api_provider.PORTLET_NOT_FOUND_EXCEPTION;
 end if;
end get_portlet;

8. In starter_provider2.pkb, add the new portlet to the list of portlets returned
by the provider. This step entails adding the new portlet to the get_portlet_

Building PL/SQL Portlets Manually

Creating PL/SQL Portlets 8-13

list function of the provider. The get_portlet_list function tells the portal
which portlets the provider implements.

function get_portlet_list
...
begin
 l_cnt := 0;
 if (p_security_level = false) then
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => PORTLET_HELLOWORLD
 ,p_language => p_language
);
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => PORTLET_SNOOP
 ,p_language => p_language
);
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => PORTLET_FIRST
 ,p_language => p_language
);
 else
 if (helloworld_portlet.is_runnable(
 p_provider_id => p_provider_id
 ,p_reference_path => null)
) then
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => PORTLET_HELLOWORLD
 ,p_language => p_language
);
 end if;
 if (snoop_portlet.is_runnable
 p_provider_id => p_provider_id
 ,p_reference_path => null)
) then
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => PORTLET_SNOOP
 ,p_language => p_language
);
 end if;
 if (my_first_portlet.is_runnable(
 p_provider_id => p_provider_id
 ,p_reference_path => null)
) then
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => PORTLET_FIRST
 ,p_language => p_language
);
 end if;
 end if;

Building PL/SQL Portlets Manually

8-14 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 return l_portlet_list;
end get_portlet_list;

9. In starter_provider2.pkb, modify the is_portlet_runnable function to
add a call to the is_runnable function of the new portlet.

function is_portlet_runnable
(
 p_portlet_instance in wwpro_api_provider.portlet_instance_record
)
return boolean
is
begin
 if (p_portlet_instance.portlet_id = PORTLET_HELLOWORLD) then
 return helloworld_portlet.is_runnable(
 p_provider_id => p_portlet_instance.provider_id
 ,p_reference_path => p_portlet_instance.reference_path
);
 elsif (p_portlet_instance.portlet_id = PORTLET_SNOOP) then
 return snoop_portlet.is_runnable(
 p_provider_id => p_portlet_instance.provider_id
 ,p_reference_path => p_portlet_instance.reference_path
);
 elsif (p_portlet_instance.portlet_id = PORTLET_FIRST) then
 return my_first_portlet.is_runnable(
 p_provider_id => p_portlet_instance.provider_id
 ,p_reference_path => p_portlet_instance.reference_path
);
 else
 raise wwpro_api_provider.PORTLET_NOT_FOUND_EXCEPTION;
 end if;
end is_portlet_runnable;

10. Repeat step 9 according to the information in Table 8–4.

11. Save and close starter_provider2.pkb.

Table 8–4 Changes to starter_provider2.pkb

Procedure/Function Addition

procedure register_portlet elsif (p_portlet_instance.portlet_id =
 PORTLET_FIRST) then
my_first_portlet.register(p_portlet_instance)

procedure deregister_portlet elsif (p_portlet_instance.portlet_id =
 PORTLET_FIRST) then
my_first_portlet.deregister
 (p_portlet_instance)

function describe_portlet_
parameters

elsif (p_portlet_id =
 PORTLET_FIRST) then
return my_first_portlet.describe_parameters
 (p_provider_id, p_language);

procedure show_portlet elsif (p_portlet_record.portlet_id =
 PORTLET_FIRST) then
my_first_portlet.show(p_portlet_record)

procedure copy_portlet elsif (p_copy_portlet_info.portlet_id =
 PORTLET_FIRST) then
my_first_portlet.copy(p_portlet_record)

Implementing Information Storage

Creating PL/SQL Portlets 8-15

12. Log in to Oracle Portal as you normally would.

13. From the Portal Builder, click the Administer tab then the Portlets tab.

14. From the Portlet Repository portlet, click Display Portlet Repository.

15. Browse the repository and find the starter provider (typically it will appear in the
Portlet Staging Area of the repository). It should contain its two original portlets:
hello world and snoop.

16. From a command line prompt, start SQL*Plus and connect as the owner of the
starter provider schema.

17. Compile the new and modified PL/SQL packages in the following order:

■ starter_provider2.pks

■ my_first_portlet.pks

■ starter_provider2.pkb

■ my_first_portlet.pkb

18. If any compilation errors occur, fix and recompile them until all of the packages
compile successfully.

19. From the Portlet Repository portlet, click Display Portlet Repository.

20. Browse the repository and find the starter provider again. It should now
contain your new portlet, my_first_portlet, in addition to its original portlets.

8.3.3 Adding Your Portlet to a Page
Your portlet should now be available for adding to pages like any other portlet in the
Portlet Repository. To add your portlet to a page, follow the instructions in Oracle
Fusion Middleware User's Guide for Oracle Portal.

8.4 Implementing Information Storage
Oracle Portal provides APIs for storing and retrieving individual portlet preferences,
and storing and manipulating temporary data for the current session. Implementing
information storage consists of the following:

■ Section 8.4.1, "Implementing a Preference Store"

■ Section 8.4.2, "Implementing a Session Store"

8.4.1 Implementing a Preference Store
Oracle Portal provides a set of APIs for storing and retrieving individual preferences
for each unique portlet instance in a persistent manner. It provides a unique identifier
for each individual, a preference store automatically mapped by user, and access
mechanisms for storing and retrieving personalization information in your PL/SQL
portlets.

By default, when you enable end-user personalization, Personalize appears on the title
bar of your portlet. This link displays a form where users can choose settings for that
portlet.

Note: If you make changes to an existing provider or the portlet
record, you need to refresh your provider before seeing the changes
reflected in your Oracle Portal instance.

Implementing Information Storage

8-16 Oracle Fusion Middleware Developer's Guide for Oracle Portal

End-user personalization options are available through the wwpre_api_name and
wwpre_api_value packages.

8.4.1.1 Using a Preference Store
In general, you can set up preference storage as follows:

1. Create the preference path using wwpre_api_name.create_path.

2. Create the preference using wwpre_api_name.create_name.

3. Set the preference values by providing the preference name and scoping level for
which you want to set the value. Use wwpre_api_value.set_value_as_
varchar2, set_value_as_number, or set_value_as_date for this purpose.

4. Get preference values by providing the preference name and path whenever you
want to retrieve the preference value. Use wwpre_api_value.get_value_as_
varchar2, get_value_as_number, or get_value_as_date for this purpose.

8.4.1.2 Creating and Accessing a Preference Store
The services example, located in ..\pdkplsql\pdk\plsql\svcex in PDK-PL/SQL
(pdkplsql.zip), illustrates how you can implement preference storage. The
objective is to achieve the following functionality:

■ When a user clicks Personalize, they can enter text in two fields.

■ The first field prompts for personalized text. The second prompts for a
personalized portlet title.

■ The values the user enters for these two fields are stored in the preference store.

■ The personalized text and portlet titles are retrieved whenever that user invokes
the portlet instance.

You can browse through this example as follows to see how to create the preference
store, store values in it, and retrieve values from it:

1. Open the services_portlet.pkb file in an editor.

The portlet path and preference names are provided with aliases in the constants
part of your portlet definition.

DOMAIN constant varchar2(30) := 'provider';
SUBDOMAIN constant varchar2(32) := 'services';
PORTLET_PATH constant varchar2(256):= 'oracle.portal.pdk.servicesportlet.';
PREFNAME_STRING constant varchar2(30) := 'services_string';
PREFNAME_TITLE constant varchar2(30) := 'services_title';

2. Find the register procedure. Your portlet needs to create a path for storing
preferences. To do so, it calls wwpre_api_name.create_path for creating the
preference path. It then calls wwpre_api_name.create_name for creating the
preference name, taking the portlet path, name, and description as input
parameters. Another input parameter is the p_type_name that indicates special
value types. The NLSID type indicates that the value stored is an NLS id. The
functions for setting and retrieving this type treat it as a number value. Apart from
that, when a preference store value of this type is exported or copied, so are its
associated strings. The last input parameter, the language, is obtained from a
context API.

procedure register
(
 p_portlet_instance in wwpro_api_provider.portlet_instance_record

Implementing Information Storage

Creating PL/SQL Portlets 8-17

)
is
begin
 --
 -- Create a path for the portlet instance. This is used to create
 -- the preferences for the portlet instance in the preference store.
 --
 wwpre_api_name.create_path(
 p_path => PORTLET_PATH || p_portlet_instance.reference_path
);
 --
 -- Create the names to store the portlet preferences.
 --
 wwpre_api_name.create_name(
 p_path => PORTLET_PATH
 || p_portlet_instance.reference_path,
 p_name => PREFNAME_STRING,
 p_description => 'Single custom row in '
 || 'Introductory Example portlet.',
 p_type_name => 'NLSID',
 p_language => wwctx_api.get_nls_language);
 wwpre_api_name.create_name(
 p_path => PORTLET_PATH
 || p_portlet_instance.reference_path,
 p_name => PREFNAME_TITLE,
 p_description => 'Single custom row in '
 || 'Introductory Example portlet.',
 p_type_name => 'NLSID',
 p_language => wwctx_api.get_nls_language);
exception
 when others then
 raise;
end register;

3. The deregister procedure must eliminate the preference store with a call to
wwpre_api_name.delete_name.

procedure deregister
(
 p_portlet_instance in wwpro_api_provider.portlet_instance_record
)
is
begin
 --
 -- Delete the path used by the portlet instance. This will delete
 -- all the names and all the values associated with the path.
 --
 wwpre_api_name.delete_path(
 p_path => PORTLET_PATH || p_portlet_instance.reference_path
);
exception
 when others then
 raise;
end deregister;

4. The portlet must also get and set the values in the preference store using wwpre_
api_value.set_value and wwpre_api_value.get_value. Find the get_
default_preference function. Notice how this function loads the system level
default values from the preference store. The default preferences are associated
with an instance. The language strings are set in the database.

Implementing Information Storage

8-18 Oracle Fusion Middleware Developer's Guide for Oracle Portal

function get_default_preference
...
begin
 --
 -- Try to find a previously entered portlet instance string preference,
 -- if any.
 -- A portlet instance string preference is stored in the preference
 -- store and has a level of SYSTEM_LEVEL_TYPE.
 --
 p_path => PORTLET_PATH || p_reference_path,
 l_prefs.string_id := to_char(wwpre_api_value.get_value_as_number(
 p_name => PREFNAME_STRING,
 p_level_type => wwpre_api_value.SYSTEM_LEVEL_TYPE
));
 --
 -- If the value returned above is null it is an indication that there
 -- is no default string yet. Initialize the string id to 0 to indicate
 -- this and load the default string value.
 --
 if (l_prefs.string_id is null or to_number(l_prefs.string_id) = 0) then
 wwpre_api_value.set_value_as_number(
 p_path => PORTLET_PATH || p_reference_path,
 p_name => PREFNAME_STRING,
 p_level_type => wwpre_api_value.SYSTEM_LEVEL_TYPE,
 p_level_name => null,
 p_value => 0
);
...
end get_default_preference;

5. Find the show procedure. Notice the behavior when the portlet is in Edit Defaults
or Edit mode. Note also how p_action is populated when the user clicks APPLY,
CANCEL, or OK. Once the form is submitted, the show procedure of the portlet is
called again and, if the p_action parameter is not null, then the save_prefs
procedure is called to save the personalizations and redirect to the relevant page.

procedure show
(
 p_portlet_record wwpro_api_provider.portlet_runtime_record
)
is
 l_str varchar2(32000);
 l_pref_record preference_record;
 l_action varchar2(10);
 l_names owa.vc_arr;
 l_values owa.vc_arr;
begin
...
 elsif (p_portlet_record.exec_mode =
 wwpro_api_provider.MODE_SHOW_EDIT)
 or (p_portlet_record.exec_mode =
 wwpro_api_provider.MODE_SHOW_EDIT_DEFAULTS)
 then
 wwpro_api_parameters.retrieve(l_names, l_values);
 for i in 1..l_names.count loop
 if (upper(l_names(i)) = upper('p_string')) then
 l_pref_record.string := l_values(i);
 elsif l_names(i) = 'p_title' then
 l_pref_record.title_string := l_values(i);
 elsif l_names(i) = 'p_action' then

Implementing Information Storage

Creating PL/SQL Portlets 8-19

 l_action := l_values(i);
 end if;
 end loop;
 if (l_action in (ACTION_OK,ACTION_APPLY,ACTION_CANCEL)) then
 if (p_portlet_record.exec_mode =
 wwpro_api_provider.MODE_SHOW_EDIT) then
 save_prefs(p_string => l_pref_record.string,
 p_title => l_pref_record.title_string,
 p_action => l_action,
 p_level => wwpre_api_value.USER_LEVEL_TYPE,
 p_portlet_record => p_portlet_record);
 else
 save_prefs(p_string => l_pref_record.string,
 p_title => l_pref_record.title_string,
 p_action => l_action,
 p_level => wwpre_api_value.SYSTEM_LEVEL_TYPE,
 p_portlet_record => p_portlet_record);
 end if;
 else
 show_edit(p_portlet_record => p_portlet_record);
 end if;
...
end show;

6. The show_edit procedure renders the page for Edit or Edit Defaults mode. It
renders two text fields that allow the user to change the personalizable values in a
form with three buttons (Apply, OK, and Cancel). Note that this function uses the
wwpro_api_adapter.open_form to create the HTML form with the correct
action attribute for the <FORM> tag and with the correct hidden fields. It is
important to use this procedure to create the <FORM> tag if you want to use the
portlet with the Federated Portal Adapter from remote Oracle Portal instances.

procedure show_edit
(
 p_portlet_record in wwpro_api_provider.portlet_runtime_record
)
is
 l_prefs preference_record;
 l_text_prompt_string varchar2(30);
 l_title_prompt_string varchar2(30);
begin
...
 htp.centeropen;
 htp.tableOpen(cattributes => 'BORDER="1" WIDTH=90%');
 htp.tableRowOpen;
 htp.p('<TD>');
 --
 -- This procedure call creates the <FORM> tags with a set of
 -- standard parameters. Using this procedure makes the
 -- personalization page work through the pl/sql http adapter.
 --
 wwpro_api_adapter.open_form(p_formattr => 'NAME="services"',
 p_prr => p_portlet_record);
 htp.p('</TD>');
 htp.tableRowClose;
 htp.tableClose;
 htp.centerclose;
 htp.formclose;
end show_edit;

Implementing Information Storage

8-20 Oracle Fusion Middleware Developer's Guide for Oracle Portal

7. Review the following procedures and functions, which are related to the
preference storage implementation in this example:

■ get_user_preference retrieves the user personalized string and title for
the portlet.

■ save_prefs is invoked to save the preferences to the preference store when
the user clicks OK or Apply after making personalization changes.

■ entered_text_is_valid checks to see if the text entered in the
personalizable text fields is valid.

8. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 8.3.2, "Implementing the
Provider Package" for information on how to add it.

9. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Oracle Fusion Middleware
User's Guide for Oracle Portal.

8.4.2 Implementing a Session Store
The services example, located in ..\pdkplsql\pdk\plsql\svcex in PDK-PL/SQL
(pdkplsql.zip), illustrates how you can implement a session store. The objective is
to achieve the following functionality:

■ When a user invokes this portlet, it displays text that reads: "This portlet has
rendered x times in this session." x is the number of times the portlet has been
rendered.

■ Every time the user invokes the portlet, the counter increases by 1.

■ Clicking Details in the portlet enables the user to reset the counter using Clear.
After clearing the counter, the counter starts again from zero.

Creating and Accessing a Session Store
You can browse through this example as follows to see how to create the session store,
store values in it, and retrieve values from it:

1. Open the services_portlet.pkb file in an editor.

The domain and subdomain definitions for your session object are provided with
aliases in the constants part of your portlet definition.

DOMAIN constant varchar2(30) := 'provider';
SUBDOMAIN constant varchar2(32) := 'services';
PORTLET_PATH constant varchar2(256):= 'oracle.portal.pdk.servicesportlet';
PREFNAME_STRING constant varchar2(30) := 'services_string';
PREFNAME_TITLE constant varchar2(30) := 'services_title';

2. Find the clear_count procedure. clear_count is called from the show
procedure when the user clicks Clear to reset the counter. clear_count calls
wwsto_api_session.load_session to load the session object. Then, it calls
wwsto_api_session.set_attribute to set the counter to zero. Lastly, it
saves the session object by calling save_session.

procedure clear_count
(
 p_action in varchar2,
 p_back_url in varchar2,
 p_reference_path in varchar2
)

Implementing Information Storage

Creating PL/SQL Portlets 8-21

is
 ex_counter integer;
 session_parms &&1..wwsto_api_session;
begin
 --
 -- Clear the display counter.
 --
 if (p_action = ACTION_CLEAR) then
 --
 -- Load the session object that contains the display counter
 --
 session_parms :=
 &&1..wwsto_api_session.load_session (DOMAIN,SUBDOMAIN);
 ex_counter :=
 session_parms.get_attribute_as_number(
 'ex_counter' || p_reference_path);
 --
 -- Reset the display counter.
 --
 ex_counter := 0;
 session_parms.set_attribute(
 'ex_counter' || p_reference_path, ex_counter);
 --
 -- Save the changes to the database immediately to avoid any
 -- data consistency problems with the data stored in the
 -- session object.
 --
 session_parms.save_session;
 end if;
 owa_util.redirect_url(curl=>p_back_url);
end clear_count;

3. Find the show_contents procedure. show_contents is called from the show
procedure to retrieve the counter, increment it by one, and save the value in the
session store. Notice how it retrieves the session object to display the number of
times the user has rendered the portlet. It also retrieves the counter value with
get_attribute_as_number and increments the counter for every invocation of
this procedure.

procedure show_contents
(
 p_portlet_record wwpro_api_provider.portlet_runtime_record
)
is
 l_prefs preference_record;
 session_parms &&1..wwsto_api_session;
 ex_counter integer;
 l_portlet wwpro_api_provider.portlet_record;
 l_str varchar2(32000);
begin
 --
 -- In this mode a session counter is used to indicate
 -- the number of invocations of this portlet during the
 -- current session. The counter is stored in the session
 -- store.
 --
 session_parms :=
 &&1..wwsto_api_session.load_session(DOMAIN,SUBDOMAIN);
 ex_counter :=
 session_parms.get_attribute_as_number(

Using Parameters

8-22 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 'ex_counter' || p_portlet_record.reference_path);
 if (ex_counter is null) then -- first invocation
 session_parms.set_attribute(
 'ex_counter' || p_portlet_record.reference_path,1);
 ex_counter := session_parms.get_attribute_as_number(
 'ex_counter' || p_portlet_record.reference_path);
 else -- on every invocation increase by 1
 ex_counter := ex_counter + 1;
 session_parms.set_attribute(
 'ex_counter'
 || p_portlet_record.reference_path, ex_counter);
 end if;
 session_parms.save_session;
...
end show_contents;

4. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 8.3.2, "Implementing the
Provider Package" for information on how to add it.

5. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Oracle Fusion Middleware
User's Guide for Oracle Portal.

8.5 Using Parameters
The functionality of portlets can be extended with the help of parameters. The
business logic implemented by portlets may produce different HTML output
depending on the parameters passed to the page. By using portlet parameters, you can
navigate within the portlet in Shared Screen mode without changing the current page.
Portlets can also communicate with each other through parameters.

Portlet parameters are structured as name-value pairs. These pairs map directly to the
URL parameter passing format by using the GET submission method or can use the
HTTP message body by using the POST submission method. Portlets can also expose
their parameters to Oracle Portal. When added to a page, these portlets can accept
values in the form of page parameters created by the page designer.

Portlets do not have direct access to the URL, the HTTP message body, or the page
parameters. To retrieve the parameter values, portlets must call the Oracle Portal
PL/SQL parameter APIs provided in the wwpro_api_parameters package.

Oracle Portal offers the following types of parameters:

■ Private portlet parameters enable the implementation of internal navigation in
your portlet.

Note: Portlet parameter names should not start with an underscore
(_) because those parameters are reserved for internal use by Oracle
Portal and are not passed to the portlet.

Caution: You cannot mix the usage of public and private
parameters in a portlet. To enable public parameters for your
portlet, you must take steps that preclude the usage of private
parameters and vice versa.

Using Parameters

Creating PL/SQL Portlets 8-23

■ Public portlet parameters let you pass control over the data flow of your portlet to
the page designer. The page designer can map the public portlet parameters to
their page parameters, provide default values, and allow users to personalize
those values.

■ Page parameters are defined in a simple user interface by page designers. These
page parameters can be mapped to public portlet parameters in order for the page
designer to pass parameter values from the page to the portlets on it.

For more information about parameters, refer to Section 2.12, "Public Portlet
Parameters Support" and Section 2.13, "Private Portlet Parameter Support".

8.5.1 Passing Private Parameters
You can use either GET or POST HTML submission methods when passing private
portlet parameters. The GET method uses the URL to pass the parameters, whereas the
POST method places the parameters in an HTTP message body. For both methods, you
must specify the portlet instance on the portal page, how the parameter is called, and
the value of the parameter.

There are the following two types of private portlet parameters:

■ Qualified parameters ensure that a private portlet parameter is not read by any
other portlet on the page. The reference path, which is assigned when the portlet is
added to a page, is the unique prefix of the parameter. For example,
http://page_url?277_MAP_368673.region=Europe. The qualified
parameter's reference path is 277_MAP_368673, the name is region, and the
value is Europe. For private parameters, we strongly recommend that you always
use qualified parameters.

■ Unqualified parameters have no information about the portlet instance and can
be read by any portlet on the page. For example, http://page_
url?region=Europe. The unqualified parameter's name is region and its
value is Europe. For private parameters, we strongly recommend that you avoid
unqualified parameters.

8.5.2 Passing Page Parameters and Mapping Public Portlet Parameters
Public portlet parameters enhance the flexibility of your portlets by enabling page
designers to reuse your portlets on multiple pages. As a result, page designers do not
have to ask you to make changes to the portlet code when adding the portlet to
different pages. By using public portlet parameters, any portlet on a page can easily
receive its value from the mapped page parameter, regardless of the portlet parameter
name.

For example, suppose you have a page parameter named dept_id. Three portlets
need this value, but one portlet calls it dept, another calls it deptno, and still another
department_id. Mapping the page parameter enables all three portlets to receive the
value from the dept_id parameter and place it in the appropriate portlet parameter.
Furthermore, the page designer may set a default value (for example, department 20)
that can be personalized by users (for example, department 30) and applied to all three
portlets.

The general model for passing public and page parameters is as follows:

1. Enable public parameters in the portlet record by setting pass_all_url_params
to false. This ensures that the portlet is only passed parameters intended for that
portlet.

Using Parameters

8-24 Oracle Fusion Middleware Developer's Guide for Oracle Portal

2. Declare the public parameters in the provider's describe_portlet_
parameters function. For each of the portlets that belong to the provider, this
procedure should return a list of the parameters that the portlet accepts in the
form of a PL/SQL table of records of the type:

type portlet_parameter_table is table of
portlet_parameter_record index by binary_integer;

3. Provide descriptive information for the parameters in the portlet's describe_
parameters function. For example:

function describe_parameters
 (p_provider_id in integer, p_language in varchar2)
return wwpro_api_provider.portlet_parameter_table
 is
l_params wwpro_api_provider.portlet_parameter_table;
 begin
 l_params(1).name := 'dept_id';
 l_params(1).datatype := wwpro_api_provider.STRING_TYPE;
 l_params(1).description := 'Defines a department ID';
 l_params(1).display_name := 'Department ID';
 return l_params;
end describe_parameters;

4. Assign values to the public parameters. Public parameters typically get their
values through page parameters. Page parameters are usually assigned default
values by the page designer and the user can then personalize the value at
runtime. Alternatively, page parameter values can be assigned in the calling URL.
For more information about how page designers can use page parameters, refer to
the Oracle Fusion Middleware User's Guide for Oracle Portal.

8.5.3 Retrieving Parameter Values
Regardless of whether you are using private or public parameters, you use the same
APIs to retrieve their values. Portlets obtain their parameters by calling the following
PL/SQL parameter APIs in the wwpro_api_parameters package:

■ wwpro_api_parameters.get_value returns the parameter value that is
specified by a given parameter name. Parameter names are not case sensitive,
whereas parameter values are case sensitive. For example:

l_region := wwpro_api_parameters.get_value
 (p_name => 'region',
 p_reference_path => p_portlet_record.reference_path);

■ wwpro_api_parameters.get_values returns an array of parameter values.
This function returns all the values that are associated with a single parameter
name or an empty list if no matches are found. Some business logic may require
multiple selections, when multiple values are passed to the portlet by using the
same parameter name. Portlets can take one or more values of the same
parameter. For example:

l_region_values owa.vc_arr;
...
l_region_values := wwpro_api_parameters.get_values
 (p_name = 'region',
 p_reference_path => p_portlet_record.reference_path);

Accessing Context Information

Creating PL/SQL Portlets 8-25

■ wwpro_api_parameters.get_names returns the names of the parameters that
are passed on to a specified portlet that is identified by the reference path. The
returned list is a PL/SQL table of the owa.vc_ar type that is defined as follows:

type vc_arr is table of varchar2(32000) index by binary_integer;

For example:

l_names owa.vc_arr;
...
l_names := wwpro_api_parameters.get_names
 (p_reference_path => p_portlet_record.reference_path);

■ wwpro_api_parameters.retrieve returns the names and values of all of the
portlet's parameters. For example:

procedure show_portlet
 (p_portlet_record in out
 wwpro_api_provider.portlet_runtime_record)
is
 l_names owa.vc_arr;
 l_values owa.vc_arr;
...
begin
...
 wwpro_api_parameters.retrieve (l_names, l_values);
 for i in 1..l_names.count loop
 htp.p('Parameter Name: '||l_names(i));
 htp.p('Parameter Value: '||l_values(i));
 htp.br;
 end loop;
...
end show_portlet;

8.6 Accessing Context Information
Whenever a user accesses a page in Oracle Portal, a public session is established. When
the user logs in to Oracle Portal, the public session becomes an authenticated session.
This session contains several pieces of context information about the user, such as user
name, current session ID, IP address, and language preference. It also includes
supporting information such as the Oracle Portal schema currently in use.

Session context services return information about a user's session and are available
through the wwctx_api package.

8.6.1 Using Context Information
The general model for working with the session context is as follows:

1. Identify the piece of information you require for your functionality.

2. Use the appropriate method from wwctx_api to get and optionally set this value.

Table 8–5 lists the function calls used to obtain the various pieces of session
information.

Note: Portlet parameter names should not start with an underscore
(_) because those parameters are reserved for internal use by Oracle
Portal and are not passed to the portlet.

Accessing Context Information

8-26 Oracle Fusion Middleware Developer's Guide for Oracle Portal

8.6.2 Using wwctx_api to Obtain Context Information
The services example, located in ..\pdkplsql\pdk\plsql\svcex in
PDK-PL/SQL (pdkplsql.zip), illustrates how you can obtain session information
using the wwwctx_api package. You can browse through this example as follows to
see how the function calls are implemented in a portlet:

1. Open the services_portlet.pkb file in an editor.

2. Find the get_portlet_info function.

3. Notice the usage of wwctx_api.get_user to derive the user information and set
that value in the portlet information record:

...
 l_portlet.timeout := null;
 l_portlet.timeout_msg := null;
 l_portlet.created_on := to_date('10/19/2000', 'MM/DD/YYYY');
 l_portlet.created_by := wwctx_api.get_user;
 l_portlet.last_updated_on := to_date('10/19/2000', 'MM/DD/YYYY');
 l_portlet.last_updated_by := wwctx_api.get_user;
 l_portlet.has_show_edit_defaults := true;
 l_portlet.has_show_preview := true;
 l_portlet.preference_store_path := PORTLET_PATH;
...

4. wwctx_api.get_user is used similarly in various places throughout
services_portlet.pkb. Search the code for other occurrences of wwctx_
api.get_user.

5. Another example of getting context information occurs in the is_runnable
function:

function is_runnable
(
 p_provider_id in integer
 ,p_reference_path in varchar2

Note: For more information on the context APIs, see the PL/SQL
API Reference. The API Reference can be found on Portal Center
(http://portalcenter.oracle.com) or, if you downloaded
PDK-PL/SQL (pdkplsql.zip), in ..\pdkplsql\pdk\plsql\doc.

Table 8–5 Context Information Function Calls

Session Information Function Call

Current user wwctx_api.get_user

Login status of user wwctx_api.is_logged_on

Login time wwctx_api.get_login_time

Language wwctx_api.get_nls_language

Current session id wwctx_api.get_sessionid

IP address of user client wwctx_api.get_ip_address

User schema wwctx_api.get_db_user

Oracle Portal schema wwctx_api.get_product_schema

Oracle Portal version wwctx_api.get_product_version

Implementing Portlet Security

Creating PL/SQL Portlets 8-27

)
return boolean
is
begin
 --
 -- Portlet security check. It allows the portlet to be visible
 -- if the user is logged on, that is, the current session is not a
 -- public session.
 --
 return wwctx_api.is_logged_on;
end is_runnable;

6. In the register procedure, wwctx_api.get_nls_language is used to get the
language:

 --
 -- Create the names to store the portlet preferences.
 --
 wwpre_api_name.create_name(
 p_path => PORTLET_PATH
 || p_portlet_instance.reference_path,
 p_name => PREFNAME_STRING,
 p_description => 'Single custom row in '
 || 'Introductory Example portlet.',
 p_type_name => 'NLSID',
 p_language => wwctx_api.get_nls_language);
 wwpre_api_name.create_name(
 p_path => PORTLET_PATH
 || p_portlet_instance.reference_path,
 p_name => PREFNAME_TITLE,
 p_description => 'Single custom row in '
 || 'Introductory Example portlet.',
 p_type_name => 'NLSID',
 p_language => wwctx_api.get_nls_language);

7. Close services_portlet.pkb. You can implement session context similarly
but based upon your own functional requirements.

8. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 8.3.2, "Implementing the
Provider Package" for information on how to add it.

9. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Oracle Fusion Middleware
User's Guide for Oracle Portal.

8.7 Implementing Portlet Security
Portlet security refers to the techniques and methods used by portlets to control their
access by end users. The portlets leave authentication to Oracle Portal and trust that
the portal will return them to the correct, validated user upon request.

Oracle Portal strictly controls access to information and applications by assigning
specific privileges to users and groups. Portal security services allow you to specify
access control programmatically and check for the appropriate privileges at runtime.
Security mechanisms used by portlets ensure that only authorized users gain access to
these portlets. These security services are available through the wwsec_api package.

Implementing Portlet Security

8-28 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Portlet security is invoked when a portlet is displayed on a portal page and when a
portlet is returned in a portlet list by the get_portlet_list function for database
providers. Security services in the Portal framework have the following key features:

■ Portlet Display: Before a portlet is displayed on a page, the provider checks for
the portlet's access privileges. The provider needs to define the is_portlet_
runnable function which calls the portlet's is_runnable function to check
access privileges.

■ User Group: You can find which default group a user belongs to by using the
wwsec_api.get_defaultgroup function.

■ Check Privileges: You can find whether a user or group has the required
privileges to personalize a portlet by using the wwsec_api.has_privilege
function.

■ Highest Privilege: You can find the highest available privilege of a user across all
groups by using the wwsec_api.get_privilege_level function.

■ Accessible Objects: You can find all the objects to which a user has access, given a
privilege level, by using the wwsec_api.accessible_objects function. You
can find other similar associated functions in the API documentation. The API
Reference can be found on Portal Center
(http://portalcenter.oracle.com) or, if you downloaded PDK-PL/SQL
(pdkplsql.zip), in ..\pdkplsql\pdk\plsql\doc.

8.7.1 Using Security
To implement PL/SQL portlet security, the portal requires the function is_portlet_
runnable be implemented by database providers. The actual implementation of this
function is up to the application; that is, the security scheme that determines whether
the current user has enough privileges to access the portlet is defined by the individual
portlet implementation. The portal also requires the function get_portlet_list for
database providers to return the set of portlets that are accessible by the current user.

Guidelines for Using the Security APIs
The portlet security mechanism may use the context and security subsystem APIs and
infrastructure. The context APIs can be used to retrieve information about the current
user. The security subsystem can be used to check the privileges of the current user.

While using these APIs, keep in mind the following:

■ Only authorized users should be able to see your portlet in the Add Portlet dialog.
This objective can be accomplished by implementing the is_portlet_
runnable function in the provider. You can also allow public access to your
portlet.

■ If a portlet does not want to render itself to a user, it should return no HTML or
return an exception that the page engine will ignore. It should not return an error
message. Doing so adds unnecessarily to the error stack, which has its limits. Refer
to Section 8.9, "Implementing Error Handling" for more information.

Note: For more information on the context and security subsystem
APIs, see the PL/SQL API Reference. The API Reference can be found
on Portal Center (http://portalcenter.oracle.com) or, if you
downloaded PDK-PL/SQL (pdkplsql.zip), in
..\pdkplsql\pdk\plsql\doc.

Implementing Portlet Security

Creating PL/SQL Portlets 8-29

■ Portlet security allows the portlet to perform a runtime security check to ensure
that the current user has the necessary authorization to access the portlet.

■ When a portlet is rendered in Show mode, it may call the is_runnable function
for database providers to determine whether the portlet should be displayed for
the currently logged on user. The portal does not make the call to this function
directly. It is not a requirement, however, for the portlet to make this call. The
portlet should make this call in its Show mode only if it implements portlet
security.

■ The result of the call to is_runnable determines whether the portlet is actually
displayed. If the result is true, the portlet displays; otherwise it does not display.
The portlet is rendered in Show mode when it is displayed in a portal page.

■ When a portlet is returned in a portlet list by a call to the provider function get_
portlet_list, the value of the p_security_level parameter determines the
purpose of the function call. When the call is made from the Portlet Repository
refresh operation in order to retrieve the master list of portlets that the provider
implements, the parameter p_security_level has a value of false. This
setting indicates to the provider that no portlet security check should be made and
a master list of all the portlets that the provider implements must be returned. The
master list of portlets returned in this case is used to populate the Portlet
Repository for that provider.

■ If the value of p_security_level is true, then it is up to the provider
implementation to decide whether portlet security should be performed. If portlet
security is implemented, the provider may return a different list of portlets
depending on the current user.

■ When the Portlet Repository is displayed, Oracle Portal calls the is_portlet_
runnable function for database providers for each of the portlets that exist in the
Portlet Repository. This step is done to display only the portlets that the currently
logged on user is authorized to see. One example where the Portlet Repository is
displayed is in the Add Portlets dialog.

8.7.2 Coding Security
The services example, located in ..\pdkplsql\pdk\plsql\svcex in
PDK-PL/SQL (pdkplsql.zip), illustrates how you can implement security. You can
browse through this example as follows to see how the security functions are
implemented in a portlet:

1. Open the services_provider.pkb file in an editor.

2. Find the is_portlet_runnable function. This function calls the security
implementation through the portlet's is_runnable function to check portlet
access privileges.

function is_portlet_runnable
(
 p_portlet_instance in wwpro_api_provider.portlet_instance_record
)
return boolean
is
begin
 if (p_portlet_instance.portlet_id = SERVICES_PORTLET_ID) then
 return services_portlet.is_runnable(
 p_provider_id => p_portlet_instance.provider_id
 ,p_reference_path => p_portlet_instance.reference_path
);

Implementing Portlet Security

8-30 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 else
 raise wwpro_api_provider.PORTLET_NOT_FOUND_EXCEPTION;
 end if;
end is_portlet_runnable;

3. Find the get_portlet_list procedure. get_portlet_list allows the portlet
to be included in the list of portlets implemented by this provider. get_
portlet_list first checks the security flag (p_security_level) to find out
whether security is enabled. If the flag is set to true, get_portlet_list uses
is_runnable to check whether the portlet is accessible. The value of the p_
security_level parameter indicates whether to perform security checks before
returning a portlet in the list. When a portlet repository refresh operation retrieves
the master list of portlets implemented by the provider, p_security_level has
a value of false. A value of false means the provider does not need to perform
a security check and that a master list of all of the portlets implemented by the
provider must be returned. The master list of portlets returned is used to populate
the portlet repository for that provider. If the value of p_security_level is
true, then the provider implementation decides whether to perform portlet
security checks. If portlet security is implemented, the provider may return a
different list of portlets depending on the currently logged on user.

function get_portlet_list
...
 if (p_security_level = false) then
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => SERVICES_PORTLET_ID
 ,p_language => p_language
);
 else
 if (services_portlet.is_runnable(
 p_provider_id => p_provider_id
 ,p_reference_path => null)
) then
 l_cnt := l_cnt + 1;
 l_portlet_list(l_cnt) := get_portlet(
 p_provider_id => p_provider_id
 ,p_portlet_id => SERVICES_PORTLET_ID
 ,p_language => p_language
);
 end if;
...
end get_portlet_list;

4. Open the services_portlet.pkb file in an editor.

5. Find the show procedure. Before displaying a portlet, the show procedure runs a
security check to determine whether the current user is allowed to see the portlet.

procedure show
...
 -- Perform a security check
 if (not is_runnable(
 p_provider_id => p_portlet_record.provider_id
 ,p_reference_path => p_portlet_record.reference_path)
) then
 wwerr_api_error.add(
 DOMAIN, SUBDOMAIN,
 'securityerr', 'services_portlet.show');

Improving Portlet Performance with Caching

Creating PL/SQL Portlets 8-31

 raise wwpro_api_provider.PORTLET_SECURITY_EXCEPTION;
 end if;
...
end show;

6. Find the is_runnable function. is_runnable is the place where you
implement your security checks. In this example, the security check is quite
simple. If the user is logged on (that is, not in a public session), then the function
returns true and the portlet is displayed to the user. For your own purposes, you
could, of course, code much more complex security checks in the is_runnable
function.

function is_runnable
(
 p_provider_id in integer
 ,p_reference_path in varchar2
)
return boolean
is
begin
 --
 -- Portlet security check. It allows the portlet to be visible
 -- if the user is logged on, that is, the current session is not a
 -- public session.
 --
 return wwctx_api.is_logged_on;
end is_runnable;

7. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 8.3.2, "Implementing the
Provider Package" for information on how to add it.

8. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Oracle Fusion Middleware
User's Guide for Oracle Portal.

8.8 Improving Portlet Performance with Caching
Oracle Portal provides for the caching of PL/SQL portlets. This functionality permits
PL/SQL portlets to cache their Web content on the middle tier. Subsequent requests
for the content may be retrieved from the cache, with or without validation from the
database, decreasing the database workload.

Oracle Portal provides three types of caching for your PL/SQL portlets:

■ Validation-based caching compares a key value to check whether the contents of
the cache are still valid. If the key value does not change, it uses the cached
content. Otherwise, it makes a round trip to the portal node to fetch the portlet
content.

■ Expiry-based caching uses a given expiration period for the contents of the cache
when rendering the portlet. This form of caching is useful for content that changes
infrequently or at very regular intervals (for example, every day at the close of
business).

■ Invalidation-based caching is the most complex form of caching but also the most
flexible. The objects in Oracle Web Cache are considered valid as long as they are
not invalidated explicitly. You can also combine invalidation-based caching with
either expiry-based or validation-based caching.

Improving Portlet Performance with Caching

8-32 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Because Oracle Portal supports user personalization of pages and portlets, the view of
a page can vary from one user to another. Oracle Portal's caching is designed to allow
content to vary on a per-user basis, even if the URL is the same across all users.
Therefore, portal objects can be cached at either the user level or the system level and
can be described as follows:

■ User-level caching is for a specific user. The cache entries are unique for that user
and cannot be accessed by other users.

■ System-level caching is for all users. One cache entry is used for all users.
Examples of content that might be suitable for system-level caching are page
banners and news portlets.

When a database provider issues a request for a portlet, the request is sent to the
portlets's show procedure. This procedure accepts the portlet_runtime_record as
a parameter. This record structure contains fields that can be examined and set by the
portlet to enable caching. The caching control fields of this record are as follows:

■ caching_key: This value is communicated in the ETAG header for this request
and returned back to the portlet provider in subsequent requests. Setting this field
enables validation-based caching.

■ caching_period: This field enables expiry-based caching. The value is the
number of minutes the content should be held in the cache. This mode overrides
validation-based caching. If a value is set for this field, then the caching_key
field is ignored.

■ caching_level: This field defines whether the content is meant for general use
or for a specific user. The valid values are SYSTEM and USER.

8.8.1 Using Caching
The general model for working with portlet caching varies according to the type of
caching you choose. To a great extent, the type of caching you choose depends on the
portlet content. If the portlet content changes at fairly regular intervals (for example, at
the close of business every day), then it probably makes sense to use expiry-based
caching. If the portlet content changes at irregular intervals, then validation- or
invalidation-based caching is probably best.

8.8.1.1 Validation-Based Caching
If you choose validation-based caching, the general model is as follows:

1. Set the caching_key field of the portlet_runtime_record parameter. Add a
check to compare the value of the current key with the value of the caching_key
field of the portlet_runtime_record parameter. Note that the first time the
show procedure is called, the key is null and its value must be set.

2. Determine whether you want to use system or user level caching. Set the
caching_level field of the portlet_runtime_record parameter
accordingly.

8.8.1.2 Expiry-Based Caching
If you choose expiry-based caching, the general model is as follows:

1. Set the caching_period field of the portlet_runtime_record parameter to
the desired interval for the cache (in minutes).

Improving Portlet Performance with Caching

Creating PL/SQL Portlets 8-33

2. Determine whether you want to use system or user level caching. Set the
caching_level field of the portlet_runtime_record parameter
accordingly.

8.8.1.3 Invalidation-Based Caching
If you choose invalidation-based caching, the general model is as follows:

1. Indicate to Oracle Portal that it must generate specific headers for Oracle Web
Cache by calling wwpro_api_provider.USE_INVALIDATION.

2. Determine whether you want to use system or user level caching. Set the
caching_level field of the portlet_runtime_record parameter
accordingly.

3. Optionally, set up validation- or expiry-based caching as well.

4. Add invalidation logic to your portlet where needed (for example, when the
portlet is personalized) and make appropriate calls to wwpro_api_
invalidation.

8.8.2 Configuring and Monitoring the Cache
The Oracle Fusion Middleware Administrator's Guide for Oracle Portal describes how to
configure caching as well as how to monitor and tune performance.

8.8.3 Implementing Validation-Based Caching
The caching example, located in ..\pdkplsql\pdk\plsql\cache in PDK-PL/SQL
(pdkplsql.zip), illustrates how you can implement validation and expiry-based
caching. You can browse through this example as follows to see how the
validation-based functions are implemented in a portlet:

1. Open the validcache_portlet.pkb file in an editor.

2. At the very top of the file, notice the aliases for the caching level constants.

CREATE OR REPLACE
package body VALIDCACHE_PORTLET
is
 -- Caching Constants
 CACHE_LEVEL_SYSTEM constant varchar2(10) := 'SYSTEM';
 CACHE_LEVEL_USER constant varchar2(10) := 'USER';

3. Find the show procedure. Notice first that the p_portlet_record is an in and
out parameter for this procedure.

procedure show
(
 p_portlet_record in out wwpro_api_provider.portlet_runtime_record
)

4. In the procedure's security check, the caching fields of p_portlet_record are
set to null if the security check fails.

begin
 if (not is_runnable(
 p_provider_id => p_portlet_record.provider_id
 ,p_reference_path => p_portlet_record.reference_path)
) then
 -- Set it to null so that cache does not get used even if exists
 p_portlet_record.caching_level := null;

Improving Portlet Performance with Caching

8-34 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 p_portlet_record.caching_key := null;
 raise wwpro_api_provider.PORTLET_SECURITY_EXCEPTION;
 end if;

5. After that, the procedure calls the get_cache_key function to get the cache key's
value and assign it to a temporary value:

 --
 -- CACHE IS VALID?
 --
 l_cache_key := get_cache_key();

6. Find the get_cache_key function, which is referenced from the show procedure.
This function generates a key for the portlet. You can implement your own logic
here based upon your portlet's requirements.

function get_cache_key
return varchar2
is
 l_date date;
begin
 select sysdate into l_date from dual;
 return trim(substr(to_char(l_date, 'YYYY:MM:DD:HH:MI:SS'),1,18));
exception
 when others then
 null;
end get_cache_key;

7. Now return to the show procedure. Notice how the code checks your portlet_
runtime_record parameter for the current values of the caching_key and the
caching_level. This same piece of code can compare your caching_key
values.

 if p_portlet_record.caching_level = CACHE_LEVEL_SYSTEM then
 if l_cache_key is not null then
 -- Cache exists for the user, overwrite it
 p_portlet_record.caching_level := CACHE_LEVEL_USER;
 p_portlet_record.caching_key := l_cache_key;
 else
 return; -- System cache is still valid.
 end if;
 elsif p_portlet_record.caching_level = CACHE_LEVEL_USER then
 if p_portlet_record.caching_key != l_cache_key then
 -- cache has expired. reset it
 p_portlet_record.caching_key := l_cache_key;
 else
 return; -- User cache is good as gold
 end if;
 elsif p_portlet_record.caching_level is null then
 if p_portlet_record.caching_key is not null then
 -- Cache does not exists for the user, create it
 p_portlet_record.caching_level := CACHE_LEVEL_USER;
 p_portlet_record.caching_key := l_cache_key;
 else
 -- Define a sytem cache. This can happen only once!
 -- the first time the portlet is rendered.
 p_portlet_record.caching_level := CACHE_LEVEL_SYSTEM;
 p_portlet_record.caching_key := 'MY_INITIAL_CACHE_KEY';
 end if;
 else
 p_portlet_record.caching_level := CACHE_LEVEL_SYSTEM;

Improving Portlet Performance with Caching

Creating PL/SQL Portlets 8-35

 p_portlet_record.caching_key := 'MY_INITIAL_CACHE_KEY';
 end if;

8. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 8.3.2, "Implementing the
Provider Package" for information on how to add it.

9. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Oracle Fusion Middleware
User's Guide for Oracle Portal.

8.8.4 Implementing Expiry-Based Caching
The caching example, located in ..\pdkplsql\pdk\plsql\cache in PDK-PL/SQL
(pdkplsql.zip), illustrates how you can implement expiry-based caching. You can
browse through this example as follows to see how the expiry-based functions are
implemented in a portlet:

1. Open the expirycache_portlet.pkb file in an editor.

2. At the very top of the file, notice the aliases for the caching level constants.

CREATE OR REPLACE
package body VALIDCACHE_PORTLET
is
 -- Caching Constants
 CACHE_LEVEL_SYSTEM constant varchar2(10) := 'SYSTEM';
 CACHE_LEVEL_USER constant varchar2(10) := 'USER';

3. Find the show procedure. Notice first that the p_portlet_record is an in and
out parameter for this procedure.

procedure show
(
 p_portlet_record in out wwpro_api_provider.portlet_runtime_record
)

4. In the procedure's security check, the caching fields of p_portlet_record are
set to null if the security check fails.

begin
 if (not is_runnable(
 p_provider_id => p_portlet_record.provider_id
 ,p_reference_path => p_portlet_record.reference_path)
) then
 -- Set it to null so that cache does not get used even if exists
 p_portlet_record.caching_level := null;
 p_portlet_record.caching_key := null;
 raise wwpro_api_provider.PORTLET_SECURITY_EXCEPTION;
 end if;

5. After that, the procedure sets the value of the caching period in minutes in a
temporary variable:

 -- Set the Caching Period to one minute
 l_cache_period := 1;

6. Next, notice how the code checks your portlet_runtime_record parameter
for the current values of the caching_period and sets the caching_period
accordingly. This same piece of code can compare your caching_period values.

 if p_portlet_record.caching_level = CACHE_LEVEL_SYSTEM then

Improving Portlet Performance with Caching

8-36 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 -- Cache does not exists for the user, create it
 p_portlet_record.caching_level := CACHE_LEVEL_USER;
 p_portlet_record.caching_period := l_cache_period;
 elsif p_portlet_record.caching_level = CACHE_LEVEL_USER then
 -- Cache exists for the user, overwrite it
 p_portlet_record.caching_period := l_cache_period;
 elsif p_portlet_record.caching_level is null then
 if p_portlet_record.caching_period is not null then
 -- Cache does not exists for the user, create it
 p_portlet_record.caching_level := CACHE_LEVEL_USER;
 p_portlet_record.caching_period := l_cache_period;
 else
 -- Define a sytem cache. This can happen only once!
 p_portlet_record.caching_level := CACHE_LEVEL_SYSTEM;
 p_portlet_record.caching_period := l_cache_period;
 end if;
 else -- p_portlet_record.caching_level value is messed up!
 p_portlet_record.caching_level := CACHE_LEVEL_SYSTEM;
 p_portlet_record.caching_period := l_cache_period;
 end if;

7. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 8.3.2, "Implementing the
Provider Package" for information on how to add it.

8. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Oracle Fusion Middleware
User's Guide for Oracle Portal.

8.8.5 Implementing Invalidation-Based Caching
Suppose you have a portlet that displays a map of the world, map_portlet.pkb and
map_portlet.pks. You would go about adding invalidation-based functions to it as
follows:

1. In the show procedure, you need to add a call to wwpro_api_provider.use_
invalidation. This call indicates to Oracle Portal that the portlet content should
be cached by Oracle Web Cache. Note that we have also specified that the content
be cached at the user level and that expiry-based caching be used as well (that is,
an expiration interval of one minute has been set).

procedure show
...
 if (p_portlet_record.exec_mode = wwpro_api_provider.MODE_SHOW) then
 p_portlet_record.caching_invalidation :=
 wwpro_api_provider.use_invalidation;
 p_portlet_record.caching_level := 'USER';
 p_portlet_record.caching_period := 1;
...

2. Create a procedure in your map_portlet.pkb file that invalidates the cache. For
example:

procedure map_invalidation
(
p_provider_id in number,
p_portlet_id in number,
p_instance_id in varchar2,
p_page_url in varchar2
)

Implementing Error Handling

Creating PL/SQL Portlets 8-37

is
begin
 wwpro_api_invalidation.invalidate_by_instance
 (p_provider_id => p_provider_id,
 p_portlet_id => p_portlet_id,
 p_instance_id => p_instance_id,
 p_user => wwctx_api.get_user);
 owa_util.redirect_url(p_page_url);
end map_invalidation;

3. In the show procedure, add a link for refreshing the portlet before the code that
draws the map. For example:

/* Draw the Refresh Me link */
htp.anchor(
 curl => wwctx_api.get_user||
 '.map_invalidation?p_provider_id='||p_portlet_record.provider_id||
 '&p_portlet_id='||p_portlet_record.portlet_id||
 '&p_instance_id='||p_portlet_record.reference_path||
 '&p_page_url='||utl_url.escape(
 url => p_portlet_record.page_url,
 escape_reserved_chars => TRUE),
 ctext => wwui_api_portlet.portlet_text(
 p_string =>'Refresh Me',
 p_level => 1)
);

4. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 8.3.2, "Implementing the
Provider Package" for information on how to add it.

5. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Oracle Fusion Middleware
User's Guide for Oracle Portal.

8.9 Implementing Error Handling
Oracle Portal provides the capability for you to trap erroneous input and return
meaningful error messages. It manages the internal error stack by tracking the raised
exceptions and retaining information about them. Oracle Portal also includes a set of
APIs for presenting errors in a standardized way.

Error handling services are available through the wwerr_api_error and wwerr_
api_error_ui packages. These error handling services include the following key
features:

■ Error stack. Oracle Portal uses an error stack to keep track of the error messages.
When an error occurs, the error message is pushed onto an error stack. Whenever
procedures or function calls are nested, the error stack keeps track of all the error
messages. You can choose to retrieve only the top error (or most recent error) by
using the wwerr_api_error.get_top method. Alternatively, you can get all
the error messages on the stack using the wwerr_api_error.get_errors
function. The stack can also be checked for the presence of any errors by calling
the wwerr_api_error.is_empty function.

■ Error messages. Error handling services provide a way to define meaningful error
messages. To define your own error messages, you need to define their name
space. The name space consists of the following:

– Name is the error name.

Implementing Error Handling

8-38 Oracle Fusion Middleware Developer's Guide for Oracle Portal

– Domain is the area of the product where the error occurred.

– Subdomain is the subsystem where the error occurred.

– Context is the name of the function where the error occurred.

The name space uniquely identifies your error message. If it does not do so, a
wwc-0000 error message is generated.

The default domains include the portal (WWC), application (WWV), and page groups
(WWS). Each domain is further classified into subdomains, which define the object
types. The portal domain includes the portlet, page, and document object types.
The application domain includes object types such as forms, menus, reports, and
charts. The page group domain includes object types such as pages, items,
categories, and perspectives. If you need to define an error that does not fall
within these classifications, you can define your own domain with subdomains for
your errors.

■ Message parameters. The other language strings that you create for your errors
can take substitution parameters for your messages. The p1, p2, p3... parameters
can be used to pass substitution parameters to the error messages. For example,
for this string:

(domain='yahoo', subdomain='provider', name='generalerror', string='Error: %1')

an error can be added as follows:

wwerr_api_error.add(p_domain=>'yahoo', p_sub_domain=>'provider',
 p_name=>'generalerror', p_context=>'yahoo.show', p1=> sqlerrm);

■ Error display. The wwerr_api_error_ui package provides a means to generate
a standard user interface for displaying the errors in Oracle Portal. The error
messages can be displayed in the following two ways:

– Full screen user interface: These error messages are displayed in a full screen
mode. You may want to display full screen errors when the system encounters
fatal or show-stopper errors.

– Inline user interface: These error messages are displayed within the current
page itself. You may use inline errors for minor errors or warnings.

Additionally, you can choose the output format of the display (HTML, XML, or
ASCII text).

8.9.1 Using Error Handling
In general, you set up error handling as follows:

1. On detecting error conditions, add the error message, with an appropriate domain
and sub-domain combination, to the stack using the wwerr_api_error.add
procedure.

2. When necessary (for example, at the end of a routine), expose the error messages
using the wwerr_api_error_ui procedures. To display full screen messages,
use the procedures show_html, show_xml, or show_text depending on your
preferred output type. To display inline messages, use the procedures show_
inline_html, show_inline_xml, or show_inline_text, depending on the
output type you desire.

Guidelines for Error Handling
While implementing error handling, keep in mind the following:

Implementing Error Handling

Creating PL/SQL Portlets 8-39

■ While defining your own error messages, use your own error domain for these
messages. Never use the WWC, WWV, or WWS domain for your error messages. You
will need to write a small loader script to load these into the other language tables.

■ Avoid unnecessary error messages. If you do not want to do anything in a
function, just return null rather than an error. For example, suppose you are
coding a copy_portlet procedure for your portlet because the provider calls it
for all of its other portlets. If you do not wish the copy_portlet procedure for
this particular portlet to do anything, then simply have it return null. If you
return errors, it will unnecessarily disrupt the portlet functionality.

■ A maximum of ten error messages is kept on the stack. Beyond ten, messages are
ignored when a call to wwerr_api_error.add is made.

■ Use the API as a programmatic way of finding the problem. You can use the
non-user-interface format for this purpose. For example, when you
programmatically register a provider, the exception block can use get_text_
stack to get the error messages and print them. This approach helps when
debugging calls to public APIs since all of them add errors to the stack for
exceptions.

■ Remember to seed the other language strings for your error messages. For more
information, refer to Section 8.11, "Writing Multilingual Portlets".

■ The standard user interface for error messages provides a navigation link back to
the previous page. It also includes a Help icon for the specified help URL.

8.9.2 Adding Error Handling
The services example, located in ..\pdkplsql\pdk\plsql\svcex in
PDK-PL/SQL (pdkplsql.zip), illustrates how you can implement error handling.
You can browse through the following example to see how the error handling
functions are implemented in a portlet:

1. Open the services_portlet.pkb file in an editor.

2. The domain and subdomain definitions for your error messages are provided with
aliases in the constants part of your portlet definition.

DOMAIN constant varchar2(30) := 'provider';
SUBDOMAIN constant varchar2(32) := 'services';
PORTLET_PATH constant varchar2(256):= 'oracle.portal.pdk.servicesportlet';
PREFNAME_STRING constant varchar2(30) := 'services_string';
PREFNAME_TITLE constant varchar2(30) := 'services_title';

3. Find the show procedure. This procedure performs a security check and, if an
error condition arises, it calls wwerr_api_error.add to push the securityerr
error message onto the stack.

procedure show
(
 p_portlet_record wwpro_api_provider.portlet_runtime_record
)
is
...
begin
 -- Perform a security check
 if (not is_runnable(
 p_provider_id => p_portlet_record.provider_id
 ,p_reference_path => p_portlet_record.reference_path)
) then

Implementing Error Handling

8-40 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 wwerr_api_error.add(
 DOMAIN, SUBDOMAIN,
 'securityerr', 'services_portlet.show');
 raise wwpro_api_provider.PORTLET_SECURITY_EXCEPTION;
 end if;

4. The show procedure also checks for any other kind of execution mode and
generates an appropriate error message for an invalid display mode.

if (p_portlet_record.exec_mode = wwpro_api_provider.MODE_SHOW) then
...
elsif (p_portlet_record.exec_mode = wwpro_api_provider.MODE_SHOW_EDIT)
...
else
 wwerr_api_error.add(DOMAIN, SUBDOMAIN,
 'invaliddispmode', 'services_portlet.show');
 raise wwpro_api_provider.PORTLET_EXECUTION_EXCEPTION;
end if;

5. Lastly, the show procedure implements a general error message in the exception
handler to catch any errors not trapped by the preceding conditions.

exception
 when others then
 wwerr_api_error.add(
 DOMAIN, SUBDOMAIN,
 'generalerr', 'services_portlet.show');
 raise wwpro_api_provider.PORTLET_EXECUTION_EXCEPTION;
end show;

6. Error handling is also implemented in the save_prefs and save_default_
prefs procedures. They check whether the error stack is empty and, if it is not,
the portlet makes a call to wwerr_api_error.show_html to display the error in
full screen mode.

exception
 when INVALID_TEXT_EXCEPTION then
 l_information := l_user||'%'||l_time
 ||'%INVALID_TEXT_EXCEPTION%'||p_string;
 l_action := LOG_FAILED;
 wwlog_api.log (p_domain => DOMAIN,
 p_subdomain => SUBDOMAIN,
 p_name => l_user,
 p_action => l_action,
 p_information => l_information,
 p_url => l_url,
 p_row_count => 0,
 p_elapsed_time=> l_elapsed_time);
 wwerr_api_error.add(DOMAIN, SUBDOMAIN,
 'invalid_text', 'services_portlet.save_prefs');
 if (not wwerr_api_error.is_empty) then
 wwerr_api_error_ui.show_html;
 end if;
end save_prefs;

7. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 8.3.2, "Implementing the
Provider Package" for information on how to add it.

Implementing Event Logging

Creating PL/SQL Portlets 8-41

8. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Oracle Fusion Middleware
User's Guide for Oracle Portal.

8.10 Implementing Event Logging
Oracle Portal can log events that occur during transactions with its objects. It stores
these logs in the database, which makes them available through standard SQL calls
and reporting tools.

You can choose the events you would like to log and organize them categorically
based on user-defined domains and subdomains. For the logged events, you can view
information about the event, the time the event started and stopped, the host or IP
address of the remote user, the browser type, and the language.

Event logging services are available through the wwlog_api and wwlog_api_admin
packages. These services include the following key features:

■ Event logs are useful for tracking specific usage of the portal. To track such
information, you create a log event. Log events require a name space that consists
of the following:

– Name, which is the event name.

– Domain, which is the area of the product where the event occurred.

– Subdomain, which is the subsystem that generated the event.

The default domains include the portal (WWC), application (WWV), and page group
(WWS). Each domain is further classified into subdomains that define the object
types. The portal domain includes the portlet, page, and document object types.
The application domain includes object types such as forms, menus, reports, and
charts. The page group domain includes object types such as folders, items,
categories, and perspectives. Events themselves could be of types such as add,
delete, personalize, hide, copy, execute, and export. If you need to define an event
that does not fall within these classifications, you can define your own domain
with subdomains for your events.

■ Logs can track information in the following two ways:

– Interval logging calculates the elapsed time for the action performed (for
example, the time taken to render a portlet).

– Event logging logs the occurrence of a single step event you care about (for
example, whenever a user personalizes a portlet).

■ Log switching enables you to set a switch interval that defines how long you want
to maintain your existing log records. The log information stored in the database
uses two different tables. The log records are purged based on the value entered
for the Activity Log Interval in the Configuration tab of Global Settings
(accessible from the Services portlet in the Portal subtab of the Administer tab).
When the log interval (in days) is reached, the logging switches between the two
logging tables in the database (for example, A and B). Logs first go into A. When
the log interval is reached the first time, the logs are written to B. When the log
interval is reached again, the logs go back to A. A is emptied in preparation to
store the new log records. If you set your log interval to 14 (the default setting), the
logs will switch every 14 days, thus preserving for you, at any point in time,
records dated between 14 and 28 days old.

Implementing Event Logging

8-42 Oracle Fusion Middleware Developer's Guide for Oracle Portal

8.10.1 Using Event Logging
In general, you can set up event logging as follows:

1. Add the event object, with an appropriate domain and subdomain combination,
using wwlog_api_admin.add_log_event. Adding the event ensures that lists
of values and other user interface components invoked when the user is
monitoring the events show this new event in their lists.

2. Register the log event record by using wwlog_api_admin.add_log_registry.
The log registry record represents the events you want to log in the future and
provides a means to filter the events that need to be logged.

3. Use start_log and stop_log to mark the events you want to log in your code.
Alternatively, for entering single step event log information, just call the log
method to mark that event.

Guidelines for Event Logging
While implementing event logging, keep in mind the following:

■ Log only what you really care about to improve performance. You don't want to
flood the system with log messages that are irrelevant to you. If events are logged
in Show mode, then multiple instances of these portlets mean additional hits to the
database.

■ Choose your domain, subdomain, and log events carefully. While using the log
APIs, do not use the Oracle Portal domains such as WWC, WWV, or WWS for your log
messages. Organize your domains and subdomains hierarchically ensuring that
they are unique across portlets. If other portlets happen to use the same domains
or subdomains, you will see those log messages interspersed with your own.

■ Create log events that show up in the pop-up lists of values monitoring the logs.
You can simply create log registry records that filter the events that would actually
be logged, either by specifying particular events or using the generic filters with
wild cards (%). Apart from creating log registry records, we recommend that you
create log events for events that you want to monitor. This way the lists of values
in the user interface show these records for additional functions such as
monitoring.

■ Provide required privileges to users or user groups who need to monitor the logs.
Any logs created by a user can be viewed by that user, the Portal Administrator,
and any user with the Edit privilege on the ANY_LOGS object type.

8.10.2 Adding Event Logging
The services example, located in ..\pdkplsql\pdk\plsql\svcex in
PDK-PL/SQL (pdkplsql.zip), illustrates how you can implement event logging.
You can browse through this example as follows to see how the event logging
functions are implemented in a portlet:

1. Open the services_portlet.pkb file in an editor.

The domain and subdomain definitions for your log messages are provided with
aliases in the constants part of your portlet definition.

DOMAIN constant varchar2(30) := 'provider';
SUBDOMAIN constant varchar2(32) := 'services';
PORTLET_PATH constant varchar2(256):= 'oracle.portal.pdk.servicesportlet';
PREFNAME_STRING constant varchar2(30) := 'services_string';
PREFNAME_TITLE constant varchar2(30) := 'services_title';

Implementing Event Logging

Creating PL/SQL Portlets 8-43

2. Find the save_prefs procedure. This procedure provides personalizable
functionality where you can personalize text and the portlet title in Edit mode.
save_prefs stores these personalizations in the database. While saving the
changes, you should also log them. Hence, this procedure provides an ideal
example of implementing the logging service. A single step event is logged using
wwlog_api.log. The first instance of wwlog_api.log logs the event of
personalizing text. The second instance logs the event of personalizing the portlet
title.

procedure save_prefs
...
begin
...
 if (l_prefs.string_id is null or to_number(l_prefs.string_id) = 0)
 then
 l_action := LOG_INSERT;
...
 else -- string exists in at least one language so update it
 l_action := LOG_UPDATE;
...
 end if;
-- Log this transaction
l_information := l_user||'%'||l_time||'%completed%'||p_string;
 wwlog_api.log (p_domain => DOMAIN,
 p_subdomain => SUBDOMAIN,
 p_name => l_user,
 p_action => l_action,
 p_information => l_information,
 p_url => l_url,
 p_row_count => l_row_count,
 p_elapsed_time=> l_elapsed_time);
...
 if (l_prefs.title_id is null or to_number(l_prefs.title_id) = 0)
 then
 l_action := LOG_INSERT;
...
 else
 l_action := LOG_UPDATE;
...
-- Log this transaction
 l_information := l_user||'%'||l_time||'%completed%'||p_title;
 wwlog_api.log (p_domain => DOMAIN,
 p_subdomain => SUBDOMAIN,
 p_name => l_user,
 p_action => l_action,
 p_information => l_information,
 p_url => l_url,
 p_row_count => l_row_count,
 p_elapsed_time=> l_elapsed_time);
...
end save_prefs;

3. The save_prefs procedure also logs an event with wwlog_api.log when an
exception occurs.

exception
 when INVALID_TEXT_EXCEPTION then
 l_information := l_user||'%'||l_time
 ||'%INVALID_TEXT_EXCEPTION%'||p_string;
 l_action := LOG_FAILED;

Writing Multilingual Portlets

8-44 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 wwlog_api.log (p_domain => DOMAIN,
 p_subdomain => SUBDOMAIN,
 p_name => l_user,
 p_action => l_action,
 p_information => l_information,
 p_url => l_url,
 p_row_count => 0,
 p_elapsed_time=> l_elapsed_time);
...

4. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 8.3.2, "Implementing the
Provider Package" for information on how to add it.

5. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Oracle Fusion Middleware
User's Guide for Oracle Portal.

8.11 Writing Multilingual Portlets
Oracle Portal has a robust set of APIs for interacting with Oracle Portal multilingual
storage facility. This storage facility provides a mechanism for storing and retrieving
strings in different languages. These APIs abstract the native multilingual
functionality and provide developers with a powerful storage mechanism for
developing providers that support different language environments.

Multilingual services are available through the wwnls_api package. These services
include the following key features:

■ The multilingual APIs enable the provider to load several translations for the
strings displayed in their portlets. Once the strings have been loaded, the provider
can call the APIs to retrieve the strings from the multilingual table as needed.

■ Context APIs retrieve the user's language and the appropriate translation for that
language. The Context APIs determine the user's language environment from the
language setting in the browser. When a requested translation does not exist, the
APIs return the base language translation.

For example, assume that the provider's register procedure loads US and French
translations for the portlet title. When the portlet is rendered, the provider
implementation retrieves the portlet title string from the table and displays the
following results:

■ A request for a French string causes the portlet title to appear in French.

■ A request for a US string causes the portlet title to appear in US English.

■ A request for a Chinese string causes the portlet title to appear in US English
because we did not load a translation for the Chinese language.

8.11.1 Using Multilingual Support
In general, you can set up multilingual support as follows:

1. Load your string definitions into the database using the string equivalents for each
language you intend to use. For this purpose, call the wwnls_api.add_string
or wwnls_api.set_string with an appropriate domain, subdomain, error
message name, and error text combination.

2. Retrieve the strings you require with wwnls_api.get_string for the language
that you desire.

Writing Multilingual Portlets

Creating PL/SQL Portlets 8-45

8.11.2 Adding Multilingual Support
To add multilingual support, you need to perform the following tasks:

■ Section 8.11.2.1, "Loading Language Strings"

■ Section 8.11.2.2, "Retrieving Language Strings"

8.11.2.1 Loading Language Strings
Language strings can be loaded by a script that is part of the provider installation. This
script calls add_string and set_string to create equivalent strings for different
languages.

Oracle Portal uniquely identifies language strings using a combination of domain,
subdomain, and name. The domain and subdomain provide a way to categorize the
strings. The domain and subdomain should be unique enough to reasonably preclude
conflicts with other users of the APIs.

■ A domain is a particular area of the product. An example of a domain could be
provider or page group.

■ A subdomain is a subsystem of the domain. For example, the subdomain could be
the provider name (for example, HelloProvider) or subpage name (for example,
HelloPage).

The services example, located in ..\pdkplsql\pdk\plsql\svcex in PDK-PL/SQL
(pdkplsql.zip), illustrates how you can implement multilingual support. You can
browse through this example as follows to see how to load strings for multilingual
support:

1. Open the services_seed.sql file in an editor.

2. Notice the add_string call with the parameters for domain name, subdomain
name, string name, language, and the actual string text. It returns the String ID for
the language string. For setting equivalent strings in other languages, set_
string is called with the same parameters.

set serveroutput on size 1000000
set define off

declare
 l_string_id integer;
 l_person_id integer;
 l_group_id integer;
begin
...
-- strings for portlet record fields
l_string_id := wwnls_api.add_string(
 'provider','services','ptldefname','us','DatabaseServicesPortlet');
wwnls_api.set_string(
 'provider','services','ptldefname','d','DatenbankServicesPortlet-d');
l_string_id := wwnls_api.add_string(
 'provider','services','ptldeftitle','us','Database Services Portlet');
wwnls_api.set_string(
 'provider','services','ptldeftitle','d','Datenbank Services Portlet - d');
l_string_id := wwnls_api.add_string(
 'provider','services','ptldefdesc','us','This is the database services
portlet implemented in PL/SQL. It displays 6 show modes.');
wwnls_api.set_string(
 'provider','services','ptldefdesc','d','Dies ist das Datenbank Service
Portlet, erstellt in PL/SQL. Es stellt 6 Anzeigemodi dar. - d');
l_string_id := wwnls_api.add_string(

Writing Multilingual Portlets

8-46 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 'provider','services','ptldevtmmsg','us','Web Services Portlet Timed
Out.');
wwnls_api.set_string(
 'provider','services','ptldevtmmsg','d','Zeitüeberschreitung aufgetreten
in Web Services Portlet. -d');

8.11.2.2 Retrieving Language Strings
The services example, located in ..\pdkplsql\pdk\plsql\svcex in PDK-PL/SQL
(pdkplsql.zip), illustrates how you can implement multilingual support. You can
browse through this example as follows to see how to retrieve strings for multilingual
support:

1. Open the services_portlet.pkb file in an editor.

2. The domain and subdomain definitions for your language strings are provided
with aliases in the constants part of your portlet definition.

DOMAIN constant varchar2(30) := 'provider';
SUBDOMAIN constant varchar2(32) := 'services';
PORTLET_PATH constant varchar2(256):= 'oracle.portal.pdk.servicesportlet';
PREFNAME_STRING constant varchar2(30) := 'services_string';
PREFNAME_TITLE constant varchar2(30) := 'services_title';

3. Find the get_portlet_info function. Notice the calls to wwnls_api.get_
string to populate the portlet title, name, and description.

function get_portlet_info
(
 p_provider_id in integer
 ,p_language in varchar2
)
return wwpro_api_provider.portlet_record
is
 l_portlet wwpro_api_provider.portlet_record;
begin
 l_portlet.id := services_provider.SERVICES_PORTLET_ID;
 l_portlet.provider_id := p_provider_id;
 l_portlet.language := p_language;
 l_portlet.title :=
 wwnls_api.get_string(
 p_domain => DOMAIN
 ,p_sub_domain => SUBDOMAIN
 ,p_name => 'ptldeftitle'
 ,p_language => p_language
);
 l_portlet.description :=
 wwnls_api.get_string(
 p_domain => DOMAIN
 ,p_sub_domain => SUBDOMAIN
 ,p_name => 'ptldefdesc'
 ,p_language => p_language
);
 l_portlet.name :=
 wwnls_api.get_string(
 p_domain => DOMAIN
 ,p_sub_domain => SUBDOMAIN
 ,p_name => 'ptldefname'
 ,p_language => p_language
);
...

Enhancing Portlets for Mobile Devices

Creating PL/SQL Portlets 8-47

4. Browse the rest of the file to examine other usage examples of wwnls_api.get_
string, which is used in several other places in services_portlet.pkb.

5. Optionally, if you want to see this portlet on a page and it is not already in the
Portlet Repository, refer to the instructions in Section 8.3.2, "Implementing the
Provider Package" for information on how to add it.

6. Once your portlet appears in the repository, you can add it to a page to test it. To
add your portlet to a page, follow the instructions in Oracle Fusion Middleware
User's Guide for Oracle Portal.

8.12 Enhancing Portlets for Mobile Devices
This section explains how to go about enhancing a portlet with PDK-PL/SQL for a
mobile device. Before proceeding with this section, you should familiarize yourself
with the guidelines for building mobile-enabled portlets, Section 8.1.3, "Guidelines for
Mobile Portlets", and the methods of building portlets with PDK-PL/SQL, Section 8.2,
"Building PL/SQL Portlets with the PL/SQL Generator" and Section 8.3, "Building
PL/SQL Portlets Manually".

To properly build a portlet for a mobile device, do the following:

1. Set the portlet record attributes to support mobile output. Requests arriving from
mobile devices through the mobile gateway need to be answered with OracleAS
Wireless XML using the text/vnd.oracle.mobilexml content type in the
header. A mobile-enabled portlet must specify that it can handle these types of
requests and produce the mobile content accordingly.

Table 8–6 lists the portlet record attributes pertinent to mobile portlets and
explains how you should specify them.

Table 8–6 Portlet Record Attributes

Attribute Description

accept_content_type Specify a comma-delimited list of the content types that the
portlet produces. If the portlet can produce both HTML and
OracleAS Wireless XML, the string would be:

text/html, text/vnd.oracle.mobilexml

If the portlet can produce only OracleAS Wireless XML, the
string would be:

text/vnd.oracle.mobilexml

mobile_only Indicate whether the portlet is available only to mobile pages.
TRUE declares the portlet as mobile only, and it will not appear
in the Add Portlets page for a standard page. FALSE declares
the portlet as mobile and standard, and it will appear in the Add
Portlets page for both standard and mobile pages. If the portlet
only produces OracleAS Wireless XML and you set this flag to
FALSE, the OracleAS Wireless XML is automatically
transformed into HTML for desktop devices (such as a normal
PC Web browser). This functionality enables you to develop
portlets that output only OracleAS Wireless XML but can be
viewed on standard pages for desktop access as well as for
mobile access.

short_title Enter a shorter version of the portlet title. This title is used on
mobile devices because it is more likely to fit the smaller screen.
If you do not set a short title, then the portlet title is used
instead.

Enhancing Portlets for Mobile Devices

8-48 Oracle Fusion Middleware Developer's Guide for Oracle Portal

2. If the portlet can produce both HTML and OracleAS Wireless XML, then, during
execution, it must determine whether the request is for a mobile or a desktop
device. If it is a desktop request, then the portlet must product HTML output. If it
is a mobile request, then it must produce OracleAS Wireless XML output. You can
determine the request type with the wwctx_api.get_http_accept(). It
fetches the HTTP accept header, which indicates the request type. In the portlet
response, you must set the MIME header to the appropriate value in the HTTP
header before the portlet content is produced. If not, then the portlet response is
rejected when the resulting page is built by Oracle Portal. If the call to get wwctx_
api.get_http_accept() returns a string starting with
text/vnd.oracle.mobilexml, then you can assume it is a mobile request.
Otherwise, it is a desktop request. In the case of a mobile request, you should set
the MIME header to text/vnd.oracle.mobilexml. In the case of a desktop
request, you can explicitly set the MIME header to text/html, but it is not
required that you do so because it's the default setting.

If you want to produce HTML for desktop requests and OracleAS Wireless XML
for mobile requests, the show procedure for your portlet should look similar to the
following:

procedure show
 (
 p_portlet_record in out wwpro_api_provider.portlet_runtime_record
)
 is
 begin
 --
 -- Does the portal want us to render the portlet contents?
 --
 if (p_portlet_record.exec_mode = wwpro_api_provider.MODE_SHOW) then
 --
 -- Is this a mobile request?
 --
 if owa_util.get_cgi_env('HTTP_ACCEPT') like
 wwpro_login.CONTENT_TYPE_MOBILEXML || '%' then
 --
 -- This is a mobile request for the portlet contents
 -- call the mobile show contents procedure
 --
 render_mobile_show_contents(p_portlet_record);
 else
 --
 -- This is a desktop request for the portlet contents,
 -- call the desktop show contents procedure
 --
 render_desktop_show_contents(p_portlet_record);
 end if;
 elsif -- check for other show modes, and handle them
 ...
end show;

has_show_link_mode Indicate whether you have implemented Link mode for the
portlet. We recommend that all mobile portlets enable Link
mode. The rationale for using Link mode is more fully explained
when you reach step 3.

Table 8–6 (Cont.) Portlet Record Attributes

Attribute Description

Enhancing Portlets for Mobile Devices

Creating PL/SQL Portlets 8-49

If you want to produce only OracleAS Wireless XML for all requests, the show
procedure for your portlet should look similar to the following:

procedure show
 (
 p_portlet_record in out wwpro_api_provider.portlet_runtime_record
)
 is
 begin
 --
 -- Does the portal want us to render the portlet contents?
 --
 if (p_portlet_record.exec_mode = wwpro_api_provider.MODE_SHOW) then
 --
 -- This is either a desktop or mobile request for the portlet
 -- contents call the show contents procedure to render the
 -- OracleAS Wireless XML output
 --
 render_show_contents(p_portlet_record);
 elsif -- check for other modes
 ...
end show;

In order to generate OracleAS Wireless XML, the render_show_contents or
render_show_mobile_contents procedure would need to contain something
similar to the following:

...
 (
 p_portlet_record in out wwpro_api_provider.portlet_runtime_record
)
 is
 begin
 --
 -- Set the MIME type to be Oracle9iAS Wireless XML
 --
 owa_util.mime_header('text/vnd.oracle.mobilexml');
 --
 -- Output the Oracle9iAS Wireless XML markup
 --
 htp.p('<SimpleText><SimpleTextItem>');
 htp.p('Hello World!');
 htp.p('</SimpleTextItem></SimpleText>');
...

3. If you want your portlet to allow personalization of titles for mobile rendering,
you need to implement Link mode. Link mode is only called for mobile requests
and it renders a link to the portlet content. This link appears in the menu of page
contents when the user first navigates to the page. If a Link mode is not present for

Note: As this is a mobile request the MIME header is set to
text/vnd.oracle.mobilexml. In the OracleAS Wireless XML
markup, you only need to render the actual content. Oracle Portal fits
it into the complete OracleAS Wireless XML document. You do not
need <SimpleResult> or <SimpleContainer> tags. These tags
are rendered by Oracle Portal along with a back link, which, by
default, is assigned to one of the buttons on the mobile device.

Enhancing Portlets for Mobile Devices

8-50 Oracle Fusion Middleware Developer's Guide for Oracle Portal

a portlet, then Oracle Portal renders a default link mode using the short title from
the portlet record. You can also use Link mode to render more than just a title. For
example, in a stock portlet, you could render the stock price of a user's favorite
stock. Thus, they could see the current stock price without drilling down further.

The link for Link mode rendition is provided by Oracle Portal and passed to the
portlet through the page_url parameter on the portlet record. The portlet can
extend or completely replace this behavior. If this link is rewritten as a URL that
takes the user away from Oracle Portal (it does not point to the Oracle Portal
middle tier server), then the portlet should set the show_behaviour_style field
to wwpro_api_provider.EXTERNAL_PORTLET on the portlet record.

The following example illustrates how to code your show procedure to include
Link mode:

procedure show
 (
 p_portlet_record in out wwpro_api_provider.portlet_runtime_record
)
 is
 begin
 --
 -- Does the portal want us to render the portlet contents?
 --
 if (p_portlet_record.exec_mode = wwpro_api_provider.MODE_SHOW) then
 --
 -- Is this a mobile request?
 --
 if owa_util.get_cgi_env('HTTP_ACCEPT') like
 wwpro_login.CONTENT_TYPE_MOBILEXML || '%' then
 --
 -- This is a mobile request for the portlet contents,
 -- call the mobile show contents procedure
 --
 render_mobile_show_contents(p_portlet_record);
 else
 --
 -- This is a desktop request for the portlet contents,
 -- call the desktop show contents procedure
 --
 render_desktop_show_contents(p_portlet_record);
 end if;
 --
 -- Does the portal want us to render the LINK mode?
 --
 elsif (p_portlet_record.exec_mode = wwpro_api_provider.MODE_LINK) then
 --
 -- This is a mobile request for the portlet link mode,
 -- call the mobile link procedure
 --
 render_mobile_link(p_portlet_record);
 elsif -- check for other show modes, and handle them
 ...
end show;

The following example illustrates what you must implement in the render_
mobile_link procedure for Link mode. In particular, notice the setting of the
MIME type, the usage of get_custom_short_title, and the OracleAS
Wireless XML output.

procedure render_mobile_link

Enhancing Portlets for Mobile Devices

Creating PL/SQL Portlets 8-51

 (
 p_portlet_record in out wwpro_api_provider.portlet_runtime_record
)
 is
 l_short_title varchar2(80);
 begin
 --
 -- Set the MIME type to be Oracle9iAS Wireless XML
 --
 owa_util.mime_header('text/vnd.oracle.mobilexml');
 --
 -- Get the personalized short title for this portlet instance
 -- using the language and reference path held in the portlet
 -- record
 --
 l_short_title := get_custom_short_title(p_portlet_record);
 --
 -- Output the OracleAS Wireless XML markup
 --
 if l_short_title is not null then
 htp.p('<SimpleHref target="'
 || htf.escape_sc(p_portlet_record.page_url)
 || '">'
 || l_short_title
 || '</SimpleHref>');
 else
 htp.p('<SimpleHref target="'
 || htf.escape_sc(p_portlet_record.page_url)
 || '">'
 || get_custom_title(p_portlet_record)
 || '</SimpleHref>');
 end if;
end render_mobile_link;

Accessing the DeviceClass Header
To further facilitate the creation of mobile-enabled portlets, you can access information
in the DeviceClass header, which is sent to all portlets through owa_util.get_
cgi_env('x-oracle-device.class'). You can use the values of this header to
determine the complexity of the OracleAS Wireless XML rendition of the portlet. For
example, the PDA rendition could contain considerably richer content than the
microbrowser rendition. The voice rendition could contain extra tags for voice
commands and links to sound files, which play instead of the text-to-speech system.

Table 8–7 describes the values available in the header.

Table 8–7 DeviceClass Header Values

Value Description

voice Indicates a voice-only device, such as a normal telephone calling
a voice access number.

microbrowser Indicates a small size display device, which supports a markup
browser, such as a WAP phone.

pdabrowser Indicates a medium size display device, such as a Palm or
PocketPC.

pcbrowser Indicates a large size display device used with desktop browsers

Registering Providers Programmatically

8-52 Oracle Fusion Middleware Developer's Guide for Oracle Portal

8.13 Registering Providers Programmatically
In most cases, you use the Oracle Portal user interface to register providers as
described in Section 8.2.3.2, "Registering the Database Provider". In some instances,
though, you may wish to register a provider programmatically rather than through the
user interface. This section describes as follows how to use wwpro_api_provider_
registry.register_provider to register your providers:

■ Section 8.13.1, "Registration Prerequisites"

■ Section 8.13.2, "Provider Record Input"

■ Section 8.13.3, "Registration Example"

8.13.1 Registration Prerequisites
In order to register a provider programmatically with wwpro_api_provider_
registry.register_provider, the following requirements must be met:

■ You must first install the provider as described in Section 8.2.3.1, "Installing the
Packages in the Database".

■ You must have the necessary privileges to execute wwpro_api_provider_
registry.register_provider. As it is a secure API, a security check
determines whether the user calling it has the necessary privileges. At a minimum,
you must have wwsec_api.ANYPROVIDER_PUBLISH. If you have the privileges
to execute the API, you also have sufficient privileges to set the Oracle Portal
session using wwctx_api.set_context.

8.13.2 Provider Record Input
The wwpro_api_provider_registry.register_provider API requires the
provider_record as input. When you pass the provider_record to register_
provider, all of the fields are not required. Table 8–8 indicates which fields are
required for Web and database providers. If a field is not applicable for a particular
type of provider, it is shown as NA.

Note: If the database user of the SQL*Plus session is the Oracle
Portal schema owner, then, by default, the user is the Oracle Portal
schema owner (unless wwctx_api.set_context is called with a
different user). The schema owner already has the necessary
privileges to execute wwpro_api_provider_
registry.register_provider.

Table 8–8 Required provider_record Fields

Field

Required for
database
providers

Required for
Web providers Comments

name Yes Yes None

implementation_style Yes Yes This field is always the following
for PL/SQL portlets:

wwpro_api_provider_registry.
 DATABASE_IMPL;

implementation_owner NA Yes This field is the schema where
the provider/portlet is located.

Registering Providers Programmatically

Creating PL/SQL Portlets 8-53

8.13.3 Registration Example
The following sample SQL script illustrates the usage of wwpro_api_provider_
registry.register_provider.

set serveroutput on size 1000000
set define on
declare
 l_prov_rec wwpro_api_provider_registry.provider_record;
 l_prov_id integer;
begin
 l_prov_rec.name := 'CacheProvider';
 l_prov_rec.display_name := 'Cache Provider';
 l_prov_rec.timeout := 10;
 l_prov_rec.timeout_msg := 'The provider timed out';
 l_prov_rec.implementation_style := wwpro_api_provider_registry.DATABASE_IMPL;
 l_prov_rec.implementation_owner := '&&2';
 l_prov_rec.implementation_name := 'cache_provider';
 l_prov_rec.language := wwctx_api.get_nls_language;
 l_prov_rec.enable_distribution := true;
 l_prov_rec.login_frequency := wwpro_api_provider_registry.LOGIN_
 FREQUENCY_NEVER;
 l_prov_rec.created_on := sysdate;
 l_prov_rec.created_by := '&&1';
 l_prov_rec.last_updated_on := sysdate;
 l_prov_rec.last_updated_by := '&&1';
 l_prov_id := wwpro_api_provider_registry.register_provider(l_prov_rec);
 commit;
 dbms_output.put_line('Cache Provider successfully registered');

implementation_name NA Yes When registering a database
provider the implementation
package of the provider must be
valid for the registration to be
successful.

login_frequency Yes Yes This field specifies how often to
grab the session information.

http_app_type Yes NA For external application Web
providers:

wwpro_api_provider_
registry.HTTP_APP_TYPE_
EXTERNAL

For regular Web providers:

wwpro_api_provider_
registry.HTTP_APP_TYPE_
PORTAL

http_url Yes NA None

require_url Yes NA None

encryption_key If provider_key
is not null,yes.

If provider_key
is null, no.

If provider_key
is not null,yes.

If provider_key
is null, no.

None

Table 8–8 (Cont.) Required provider_record Fields

Field

Required for
database
providers

Required for
Web providers Comments

Registering Providers Programmatically

8-54 Oracle Fusion Middleware Developer's Guide for Oracle Portal

exception
 when others then
 dbms_output.put_line('ERROR: Could not register Cache Provider');
 dbms_output.put_line('SQLERRM: ' || SQLERRM);
 rollback;
end;
/

Note: After you have registered your provider, you may also refresh
the Portlet Repository programmatically using wwpro_api_
provider_registry.refresh_portlet_repository or
through the Oracle Portal user interface.

Part III
Part III Content Management APIs

Part III contains the following chapters:

■ Chapter 9, "Content Management API Introduction"

■ Chapter 10, "Getting Started with Content Management APIs"

■ Chapter 11, "Performing Simple Content Management Tasks"

■ Chapter 12, "Extending Your Portal"

■ Chapter 13, "Searching Portal Content"

■ Chapter 14, "Creating Multi-Lingual Content"

■ Chapter 15, "Implementing Content Security"

■ Chapter 16, "Using the Content Management Event Framework"

9

Content Management API Introduction 9-1

9 Content Management API Introduction

This chapter provides an overview of a selection of the APIs provided with Oracle
Portal. You can use these particular APIs to write code for performing content
management tasks. It contains the following sections:

■ Section 9.1, "Overview"

■ Section 9.2, "Content Management APIs"

■ Section 9.3, "Providing Access to the APIs and Secure Views"

■ Section 9.4, "Guidelines for Using the APIs"

■ Section 9.5, "Guidelines for Using the Secure Views"

■ Section 9.6, "Code Samples"

9.1 Overview
Oracle Portal uses a schema within the Oracle Metadata Repository, shown in
Figure 9–1, to store the content and metadata associated with the portal instance. This
schema is sometimes referred to as the content repository. For example, when a
contributor adds a file item to a portal page, the file is uploaded to a table in the portal
schema of the MDS Repository along with the metadata supplied.

Figure 9–1 The MDS Repository

Content Management APIs

9-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

For more information about the MDS Repository and Oracle Portal architecture in
general, refer to the Oracle Fusion Middleware Administrator's Guide for Oracle Portal.

Oracle Portal provides many built-in tools to help you manage the content in the
portal schema of the MDS Repository right from your Web browser. However,
sometimes you may find that you need to work with your content in an environment
outside of the Oracle Portal browser-based user interface.

The following are some examples of when you might want to do this:

■ Building an alternative user interface when the product user interface does not
quite meet your requirements, for instance:

– to change the look and feel of the wizards to meet your own corporate design

– to add custom validations

– to provide a custom search form or search results page

■ Bulk loading content with metadata

■ Integrating with external applications and content management systems

■ Archiving items (for example, moving them to an archive page or offline storage)

■ Managing versions (for example, deleting or purging noncurrent versions, limiting
the number of versions, and so on)

■ Integrating with external workflow systems

The content management APIs enable you to interact with the portal schema of the
MDS Repository programmatically, rather than by using the Oracle Portal user
interface. For more information, refer to Section 9.2, "Content Management APIs".

You can also query the data in the content repository using a set of secure views. For
more information, refer to Section 9.2.1, "Secure Content Repository Views".

9.2 Content Management APIs
There are multiple public APIs that enable you to programmatically perform many
content management tasks, such as adding items and creating pages.

The majority of the APIs for content management are contained within the WWSBR_
API package. You may also find the following API packages useful when writing code
to perform content management tasks:

■ The WWSRC_API package contains APIs for performing searches on content in
the portal schema of the MDS Repository.

■ The WWSEC_API package contains APIs for controlling access to content in the
portal schema of the MDS Repository.

■ The WWCTX_API package contains APIs for managing a session context for a
specific user.

■ The WWPRO_API_INVALIDATION package contains APIs for invalidating
content in Oracle Web Cache.

Note: Only use public APIs in your code. The use of non-public APIs
is not supported and may cause your code to break when upgrading
to new releases.

Providing Access to the APIs and Secure Views

Content Management API Introduction 9-3

For more information about these packages, refer to Section F.1, "Supported APIs". For
a full list of the supported PL/SQL APIs, refer to the Oracle Portal PL/SQL API
Reference on Portal Center:

http://portalcenter.oracle.com

In the Portal Focus Areas section, click Portlet Development, then in the APIs and
References section, click PL/SQL API Reference.

9.2.1 Secure Content Repository Views
Held within the portal schema are a number of content repository views. You can use
these views to query back data on the documents and items stored in the content
repository. For a list of the secure views, refer to Section F.2, "Secure Views".

Many of the content management APIs that are discussed in this manual require you
to pass object IDs as parameters. To do this, you need to know the IDs of the objects
with which you want to work. You can use the secure content repository views to find
the IDs of portal objects. For more information, refer to Section 10.3, "Finding an Object
ID".

9.2.2 Terminology
To maintain backward compatibility with the Oracle9iAS Portal Release 1 (3.0.9)
content area APIs and views, many of the API procedure and parameter names and
the view and column names continue to use Release 1 terminology. You may find
Table 9–1 useful to map the Release 1 terminology to the current terminology.

9.3 Providing Access to the APIs and Secure Views
The portal schema automatically has the appropriate access to the public APIs and
secure views. To enable another schema to access the public APIs and secure views,
use the following script:

ORACLE_HOME/portal/admin/plsql/wwc/provsyns.sql

To provide access to the APIs, perform the following steps:

1. Change to the directory containing the provsyns.sql script:

Windows: cd <ORACLE_HOME>\portal\admin\plsql\wwc
Linux/Unix: cd <ORACLE_HOME>/portal/admin/plsql/wwc

2. Log in to SQL*Plus as the portal schema owner. For example:

sqlplus portal/oracle1

Note: Direct access to other tables and views in the portal schema of
the MDS Repository is not supported, as the definition of those tables
and views may change between releases.

Table 9–1 Mapping of Release 1 Terminology to Current Terminology

Release 1 Terminology Current Terminology

content area page group

folder page

navigation bar navigation page

Guidelines for Using the APIs

9-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

You must run provsyns.sql as the portal schema owner. By default the portal
schema is called PORTAL. An administrator can use Oracle Internet Directory to
obtain the portal schema password as follows:

a. Navigate to:

– Entry Management

– cn=OracleContext

– cn=Products

– cn=IAS

– cn=Infrastructure Databases

– OrclReferenceName=Infrastructure Database (for example,
iasdb.server.domain.com)

– OrclResourceName=Schema Name (for example, PORTAL)

b. Click this entry.

c. Look for the orclpasswordattribute value in the right panel. This is the schema
password.

3. Run the provsyns.sql script:

SQL>@provsyns.sql <schema>

Where schema is the name of the schema to which you want to grant access.

9.4 Guidelines for Using the APIs
When using the APIs described in this manual, you should follow the best practice
guidelines described in the following sections.

9.4.1 Using a Separate Schema
When creating procedures and packages that use the content management APIs, create
them in a separate schema of the database in which Oracle Portal is installed. Do not
create them in the portal schema. Creating additional procedures and packages in the
portal schema is not supported and they may be lost when upgrading to a new release.

Once you have created the schema for your procedures and packages, you must grant
it access to the APIs and secure content repository views. For information about how
to do this, refer to Section 9.3, "Providing Access to the APIs and Secure Views".

9.4.2 Using Constants
All the API packages include predefined constants that you can use to easily refer to
Oracle Portal objects and metadata. For example, the WWSBR_API package includes
constants for base attributes (such as ATTRIBUTE_AUTHOR and ATTRIBUTE_TEXT),
seeded item types (such as ITEM_TYPE_FILE and ITEM_TYPE_URL), and image
alignment options (such as ALIGN_BOTTOM and ALIGN RIGHT). To make your
code robust, you should use these constants wherever possible for object IDs and
attribute values. That way, if the actual ID or values change, your code will still work
because the name of the constant will stay the same.

Tip: Ignore any messages related to a missing file when running
provsyns.sql.

Guidelines for Using the APIs

Content Management API Introduction 9-5

For a full list of the constants available in each API package, refer to the Oracle Portal
PL/SQL API Reference on Portal Center:

http://portalcenter.oracle.com

In the Portal Focus Areas section, click Portlet Development, then in the APIs and
References section, click PL/SQL API Reference.

9.4.3 Invalidating the Cache
Many of the APIs automatically generate cache invalidation messages for the pages
that are affected by the changes. Therefore, you should always call wwpro_api_
invalidation.execute_cache_invalidation at the end of your routine to
process these messages (see Example 11–3 for an example of how to do this). If you do
not call this procedure, your changes may not be visible until the affected pages are
invalidated through other means.

There is no need to call execute_cache_invalidation more than once. For
example, if you are adding or updating multiple items in a loop, call execute_
cache_invalidation when the loop is complete.

9.4.4 Issuing Commits
The APIs do not issue commits. However, if you are calling the APIs from a browser
session through Portal Services, Portal Services will perform an automatic commit
before returning control to the browser.

The wwpro_api_invalidation.execute_cache_invalidation API also issues
a commit. If you are calling the APIs from an external environment (for example,
SQL*Plus or a Web provider), and you need to commit before processing the cache
invalidations, you must explicitly issue a commit statement in your code. Similarly, if
you need to rollback, do so before calling execute_cache_invalidation.

9.4.5 Resetting CMEF Global Variables
If you are using the content management APIs in conjunction with the Content
Management Event Framework (CMEF) you need to make sure that you reset the
CMEF global variables before or after each API call.

When a user performs an action using the user interface, Oracle Portal uses various
global variables to determine which CMEF messages get logged. After each action,
these global variables are automatically reset ready for the next action. When you use
the APIs to perform portal actions, these global variables are not automatically reset.
Therefore, to ensure that CMEF messages are logged correctly, you must reset the
CMEF variables explicitly by calling the wwsbr_api.clear_cmef_context API
before or after each API call.

For example, if you use the APIs to create several items on a page, you need to call the
clear_cmef_context API between each of the add_item calls (see Example 9–1).

Example 9–1 Calling the clear_cmef_context API

...
l_new_item_master_id1 := wwsbr_api.add_item(
 p_caid => l_caid,
 p_folder_id => l_folder_id,
 ...
);
wwsbr_api.clear_cmef_context;

Guidelines for Using the APIs

9-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

l_new_item_master_id2 := wwsbr_api.add_item(
 p_caid => l_caid,
 p_folder_id => l_folder_id,
 ...
);
wwsbr_api.clear_cmef_context;
...

For more information about CMEF, refer to Chapter 16, "Using the Content
Management Event Framework".

9.4.6 Using Predefined Exceptions
The API packages contain many predefined exceptions. When coding with the content
management APIs, it is good practice to include the appropriate predefined exceptions
rather than relying on the WHEN OTHERS exception to pick up all errors. This also
has the advantage that any error messages generated by the code can be more specific
to the actual problem. Example 9–2 shows some of the exceptions you might include
when calling the wwsbr_api.set_attribute API.

Example 9–2 Using Predefined Exceptions

begin
 wwsbr_api.set_attribute(
 p_site_id => 37,
 p_thing_id => 8056,
 p_attribute_site_id => wwsbr_api.SHARED_OBJECTS,
 p_attribute_id => wwsbr_api.ATTRIBUTE_TITLE,
 p_attribute_value => 'New Display Name'
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 when wwsbr_api.ITEM_NOT_FOUND_ERROR then
 dbms_output.put_line('Item does not exist');
 when wwsbr_api.ATTRIBUTE_NOT_FOUND then
 dbms_output.put_line('Attribute does not exist');
 when wwsbr_api.ITEM_NOT_FOR_UPDATE then
 dbms_output.put_line('Cannot update an item with a status of Rejected, Deleted
or Marked for Delete');
 when wwsbr_api.NOT_AUTHORIZED_USER then
 dbms_output.put_line('User trying to update the item is not the current user or
the user who checked the item out');
 when wwsbr_api.EDIT_CUSTOM_ATTR then
 dbms_output.put_line('Error while trying to update a custom attribute');
 when OTHERS then
 dbms_output.put_line('Error '||to_char(sqlcode)||': '||sqlerrm);
end;
/

For a full list of the exceptions available in each API package, refer to the Oracle Portal
PL/SQL API Reference on Portal Center:

http://portalcenter.oracle.com

Tip: When using predefined exceptions, remember to include the
name of the package that owns it, for example wwsbr_api.PAGE_
NOT_FOUND.

Guidelines for Using the Secure Views

Content Management API Introduction 9-7

In the Portal Focus Areas section, click Portlet Development, then in the APIs and
References section, click PL/SQL API Reference.

9.4.7 Naming Objects
When creating page groups and page group objects, you specify a unique internal
name for the object (p_name). Internal names must:

■ be no more than 60 characters in length.

■ not contain spaces or special characters other than the underscore character (_).

9.5 Guidelines for Using the Secure Views
When using the secure views described in this manual, you should follow the best
practice guidelines described in the following sections.

9.5.1 Identifying Primary Keys
The primary key for most objects contains the object id, the page group id (caid), and
the language. When joining between views, always use these columns in the JOIN
clause. Example 9–3 shows the JOIN when joining an item to its page.

Example 9–3 Joining an Item to Its Page

select ...
from wwsbr_all_items i,
 wwsbr_all_folders p
where i.folder_id = p.id
 and i.caid = p.caid
 and i.language = p.language

9.5.2 Querying Translatable Objects
If an object is translatable (that is, it resides in a page group for which translations are
enabled and it includes languages in its key), you must observe the following rules:

■ If the object (or its current version) is translated, a row will exist for the translation.
To select the row for the current session language, compare the value of the
language column to the function wwctx_api.get_nls_language().

■ If the object is not translated, select the row for the page group's default language.

Example 9–4 selects the translated page display name for all pages in a given page
group.

Example 9–4 Selecting a Translated Page Display Name

select p.display_name title
from wwsbr_all_folders p
where p.caid = 53
and (p.language = wwctx_api.get_nls_language -- The current language.
 or (exists -- A row for the page in the page group default language.

Note: In this release, there is no supported view of the document
table in the repository. A secure view of the document table is
planned for a future release.

Code Samples

9-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 (select pg.id
 from wwsbr_all_content_areas pg
 where pg.id = p.caid
 and pg.default_language = p.language
)
 and not exists -- A row for the page in the current language.
 (select p2.id
 from wwsbr_all_folders p2
 where p2.id = p.id
 and p2.language = wwctx_api.get_nls_language
)
)
)
/

9.5.3 Selecting Data for the Current User
To select data for the current user, use the function wwctx_api.get_user.
Example 9–5 selects items created by the current user.

Example 9–5 Selecting Items Created by the Current User

declare
 l_user varchar2(60);
 ...
begin
 ...
 l_user := wwctx_api.get_user;
 select ...
 from wwsbr_all_items
 where creator = l_user
 ...
end;
/

9.6 Code Samples
The code samples provided in the next few chapters are intended to provide some
examples of how you can use the content management and associated APIs. Not all of
the APIs are used in these samples, and the samples provided do not utilize all the
parameters, constants, exceptions, and so on available to the APIs.

For a full list of the public APIs available with Oracle Portal and their parameters,
constants, exceptions and so on, refer to the Oracle Portal PL/SQL API Reference on
Portal Center:

http://portalcenter.oracle.com

In the Portal Focus Areas section, click Portlet Development, then in the APIs and
References section, click PL/SQL API Reference.

Tip: When writing PL/SQL routines that refer to the current session
language, call wwctx_api.get_nls_language once and store it in
a variable. Referring to the variable in any following SQL statements,
rather than calling the API multiple times, results in better performing
code.

Code Samples

Content Management API Introduction 9-9

The examples are written to be run from SQL*Plus. If running from other
environments, for example Portal Services, you may need to make changes to the code
given the context in which it is executing.

The examples, with the exception of Chapter 14, "Creating Multi-Lingual Content",
which deals with translations, assume that the language context is set to the default
language of the page group being manipulated. This simplifies the WHERE clause on
any SQL statements. Objects always have a translation in the default language
therefore the queries will return a single row as appropriate.

If this assumption on the language code does not hold true for your code, refer back to
Section 9.5.2, "Querying Translatable Objects" for an example of how to extend the
WHERE clause to deal with multiple translations or the non-existence of a translation
in the given language context.

Code Samples

9-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

10

Getting Started with Content Management APIs 10-1

10 Getting Started with Content Management
APIs

This chapter introduces some tasks and concepts that you may find useful before you
start using the content management APIs provided with Oracle Portal. It contains the
following sections:

■ Section 10.1, "Setting the Session Context"

■ Section 10.2, "API Parameters"

■ Section 10.3, "Finding an Object ID"

10.1 Setting the Session Context
All of the content management APIs and the secure views assume that the context has
been set for the functions to execute as a specific portal user. If you call an API from
within a browser session (for example, a database provider or PL/SQL item), the
context is set automatically to the user who is currently logged in to the portal. If you
call an API from a Web provider or an external application (for example, SQL*Plus or
Portal Services), you must set the context to a specific user by using the wwctx_
api.set_context API.

This API allows an application to assert an identity, by providing a user name and
password that the portal can verify with the Oracle Application Server Single Sign-On
Server before establishing a session for the asserted user. If the assertion fails, due to
an invalid password, for example, an exception is raised.

Example 10–1 sets the context to user JOE.BLOGS with the password welcome1.

Example 10–1 Setting the Session Context (set_context API)

declare
 p_user_name varchar2(60) := 'JOE.BLOGGS';
 p_password varchar2(60) := 'welcome1';
 p_company varchar2(60) := null;
begin
 wwctx_api.set_context(p_user_name,p_password,p_company);
end;
/

10.2 API Parameters
■ The following parameters refer to the page group ID:

Finding an Object ID

10-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

– p_site_id

– p_siteid

– p_caid

For backward compatibility purposes these parameter names have not been
changed, and will not be changed, to use the most recent terminology. For more
information, refer to Section 9.2.2, "Terminology".

■ The following parameters refer to the page ID:

– p_folder_id

– p_id

For backward compatibility purposes these parameter names have not been
changed, and will not be changed, to use the most recent terminology. For more
information, refer to Section 9.2.2, "Terminology".

■ An item has two IDs. All versions of the item have the same master item ID
(GUID). However, when you create a new version of an item it is assigned its own
ID that uniquely identifies that particular version of the item. Some APIs simply
need the master item ID to identify an item (p_master_item_id). However,
some APIs (for example, modify_item) also need to know which particular
version of the item you want to work with. In this case you need to pass the
unique item ID (p_item_id). In some APIs, you will find that the item ID is
referred to as p_thing_id.

■ The primary key for most objects contains the ID of the actual object and the ID of
the page group to which the object belongs. When referencing an existing object in
a parameter, you must reference both the object ID and its page group ID. The
referenced object's page group must either be the same as the page group of the
referencing object or the Shared Objects page group. For example, when adding an
item, you need to specify the item type (for example, file, text, image, and so on).
To do this you must pass the item type ID (p_type_id) and the ID of the page
group which contains the item type (p_type_caid).

10.3 Finding an Object ID
Many of the content management APIs require you to pass object IDs to their
parameters. To do this, you need to know the IDs of the objects with which you want
to work. You can obtain these IDs by using the secured content repository views.

10.3.1 Finding a Page Group ID
Many of the content management APIs include the ID of a page group as one of the
parameters. For example, when creating a page using the add_folder API, you need
to specify the ID of the page group in which you want to create the page using the p_
caid parameter. Example 10–2 shows a query that you could use to find out this ID.

Example 10–2 Finding the ID of a page group

select id "Page Group ID"
from wwsbr_all_content_areas
where name = '&pagegroup'
 and language = '&language'
/

Example 10–3 shows how you might use this query in a function.

Finding an Object ID

Getting Started with Content Management APIs 10-3

Example 10–3 Function to Find the ID of a Page Group

create or replace function get_page_group_id (p_name in varchar2) return number is
 l_page_group number;
 l_language varchar2(30);
begin
 l_language := wwctx_api.get_nls_language;
 select id
 into l_page_group
 from wwsbr_all_content_areas
 where name = p_name
 and language = l_language;
 return l_page_group;
exception
 ...
end;
/

10.3.2 Finding a Page ID
When working with pages and items using the content management APIs, you need to
know the ID of the page in which you want to work. For example, if you want to
delete a page using the delete_page API, you need to identify the page that you
want to delete by its ID. Example 10–4 shows how to find out the ID of a page if you
know the ID of the page group to which it belongs.

Example 10–4 Finding the ID of Page in a Known Page Group

select id "Page ID"
from wwsbr_all_folders
where name = '&page'
 and caid = 53
 and language = '&language'
/

Sometimes you may not know the ID of the page group to which a particular page
belongs. Example 10–5 shows how to find out the ID of a page and its owning page
group.

Example 10–5 Finding the IDs for a Page and Its Page Group Given Page and Page
Group Names

column 'Page Group Name' format a25;
column 'Page Name' format a25;
select f.caid "Page Group ID",
 c.name "Page Group Name",
 f.id "Page ID",
 f.name "Page Name"
from wwsbr_all_content_areas c,
 wwsbr_all_folders f
where f.name = '&page'
 and c.id = f.caid
 and c.name = '&pagegroup'
 and c.language = '&language'
 and c.language = f.language
/

Finding an Object ID

10-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

10.3.3 Finding Region IDs
When adding an item to a page using the add_item API, you need to know the ID of
the region in which you want to place the item. You can add items only to item regions
that have been set up to allow content to be added to them. Example 10–6 shows a
query that finds out the IDs and types of the insertable regions on a particular page.
Given this information, you can choose the region ID of an appropriate region on the
page in which to place your new item.

Example 10–6 Finding the IDs and Types of Insertable Regions on a Given Page

select distinct r.id "Region ID",
 r.type "Type"
from wwsbr_all_content_areas c,
 wwsbr_all_folders f,
 wwsbr_all_folder_regions r
where f.name = '&page'
 and c.name = '&pagegroup'
 and c.id = f.caid
 and f.id = r.folder.id
 and f.caid = r.folder.caid
 and r.allow_content = 1
 and c.language = '&language'
 and c.language = f.language
 and (f.language = r.language
 or r.language is null)
/

10.3.4 Finding an Item ID
Example 10–7 illustrates how to find the ID of an item by querying the WWSBR_ALL_
ITEMS view.

Example 10–7 Finding the ID of the Current Version of an Item Given its Master Item ID

select id
from wwsbr_all_items
where masterid = 513
 and caid = 53
 and active = 1
 and is_current_version = 1
 and language = '&language'
/

To avoid duplicate rows when querying for currently published items, always include
the LANGUAGE, ACTIVE (active=1), and IS_CURRENT_VERSION (is_current_
version=1) columns. Example 10–8 shows how to select all items on a given page
(folder_id=1) and a given page group (caid=75).

Example 10–8 Finding Item IDs

select i.display_name title, i.id latestversion
from wwsbr_all_items i
where i.folder_id = 1
 and i.caid = 75
 and i.active = 1
 and i.is_current_version = 1
 and (i.language = '&language' -- The current session language.
 or (exists -- A row for the item in the page group default language.

Finding an Object ID

Getting Started with Content Management APIs 10-5

 (select pg.id
 from wwsbr_all_content_areas pg
 where pg.id = i.caid
 and pg.default_language = i.language
)
 and not exists -- A row for the item in the current language.
 (select i2.id
 from wwsbr_all_items i2
 where i2.id = i.id
 and i2.language = '&language'
 and i2.active = i.active
 and i2.is_current_version = i.is_current_version
)
)
)
order by i.id
/

Finding an Object ID

10-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

11

Performing Simple Content Management Tasks 11-1

11 Performing Simple Content Management
Tasks

This chapter describes how to use the APIs provided with Oracle Portal to perform
simple content management tasks. It contains the following sections:

■ Section 11.1, "Editing Page Properties"

■ Section 11.2, "Editing Content"

■ Section 11.3, "Reorganizing Content"

■ Section 11.4, "Copying Content"

■ Section 11.5, "Deleting Content"

For more information about any of the APIs mentioned in this chapter, refer to the
Oracle Portal PL/SQL API Reference on Portal Center:

http://portalcenter.oracle.com

In the Portal Focus Areas section, click Portlet Development, then in the APIs and
References section, click PL/SQL API Reference.

11.1 Editing Page Properties
If you want to edit page properties, you need to perform the following steps:

1. Query the WWSBR_USER_PAGES view to populate a page record.

2. Modify the properties you want to update.

3. Pass the updated page record to the modify_folder API.

You can update the properties shown inTable 11–1 in the page record.

Tip: Remember, if you are calling the APIs from a Web provider or
external application, you need to set the session context first. For more
information, refer to Section 10.1, "Setting the Session Context".

Table 11–1 Editable Page Record Properties

Property Data Type Description

NAME VARCHAR2(60) Name of the page. This name
is used in path based URLs.

TITLE VARCHAR(256) Display name, or title, of the
page.

Editing Page Properties

11-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

SETTINGSSETID NUMBER ID of the style used by the
page.

SETTINGSSETSITEID NUMBER Page group ID of the style
used by the page.

ISPUBLIC NUMBER(1) Indicates that the page is
viewable by public users.
Valid values:

■ 0 - not public

■ 1 - is public

IMAGE VARCHAR2(350) Unique document name of the
image associated with the
page, for example 6001.JPG.

ROLLOVERIMAGE VARCHAR2(350) Unique document name of the
rollover image associated with
the page, or the inactive tab
image for the tab, for example
6001.JPG.

TITLEIMAGE VARCHAR2(350) Unique document name of the
active tab image for the tab,
for example 6001.JPG.

LEADER VARCHAR2(256) E-mail address of the page
contact.

DESCRIPTION VARCHAR2(2000) Description of the page.

CREATEDATE DATE Date the page was created.

CREATOR VARCHAR2((256) User name of the person who
created the page.

HAVEITEMSECURITY NUMBER(1) Indicates that item level
security is enabled for the
page. Valid values:

■ 0 - ILS disabled

■ 1 - ILS enabled

ITEMVERSIONING VARCHAR2(30) Indicates the level of item
versioning for the page. Valid
values:

■ versionnone - no
versioning

■ versionsimple - simple
versioning

■ versionaudit - audit
versioning

TOPICID NUMBER ID of the category assigned to
the page.

TOPIC_SITEID NUMBER Page group ID of the category
assigned to the page.

Table 11–1 (Cont.) Editable Page Record Properties

Property Data Type Description

Editing Page Properties

Performing Simple Content Management Tasks 11-3

VALUE VARCHAR2(2000) For PL/SQL pages, the
PL/SQL code.

For JSP pages, the JSP source
document name. Do not
change this value for JSP
pages.

IS_PORTLET NUMBER(1) Indicates if the page is
published as a portlet. Valid
values:

■ 0 - not a portlet

■ 1 - is a portlet

PLSQL_EXECUTOR VARCHAR2(30) For PL/SQL type pages, the
database schema used to
execute the PL/SQL code.
Valid values:

■ $PUBLIC$

■ $CREATOR$

■ <database user name>

KEYWORDS VARCHAR2(2000) Keywords for the page.

IS_READY NUMBER(1) Indicates that page creation is
complete. Valid values:

■ 1 - page creation is
complete

INHERIT_PRIV VARCHAR2(200) The page from which this
page inherits its privileges.
Use the following format:

<page group id>/<page id>

CACHE_MODE NUMBER(1) Caching mode for the page.
Valid values:

■ 2 - no caching

■ 1 - cache page definition
only

■ 0 - cache page definition
and content for x minutes

■ 4 - cache page definition
only at system level

■ 3 - cache page definition
and content at system
level for x minutes

CACHE_EXPIRES NUMBER(38) Cache period in minutes.

ALLOW_PAGE_STYLE NUMBER(1) For templates, indicates if
pages can use a different style.
Valid values:

■ 1 - allow pages to use
different style.

Table 11–1 (Cont.) Editable Page Record Properties

Property Data Type Description

Editing Page Properties

11-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

ALLOW_PAGE_ACL NUMBER(!) For templates, indicates if
pages have different access
settings. Valid values:

■ 1 - allow pages to have
different access settings

INIT_JSPFILE VARCHAR2(256) For JSP pages, initial JSP file if
the JSP source of the page is a
JAR or WAR file.

UI_TEMPLATE_ID NUMBER(38) ID of HTML page skin.

TEMPLATE_ISPUBLIC NUMBER(1) Indicates if the template is
ready to use. Valid values:

■ 1 - template is ready to
use

CONTAINER_ID NUMBER ID of the container page.

DEFAULT_ITEM_REGION_
ID

NUMBER ID of the default item region
for the page.

DEFAULT_PORTLET_
REGION_ID

NUMBER ID of the default portlet
region for the page.

ITEMTYPE_INHERIT_FLAGS NUMBER(1) For WebDAV, indicates if
default item types are
inherited from parent page.
Valid values:

■ 7 - inherit all item types
from parent page

■ 0 - specify all types on
this page

REGFILE_ITEMTYPE RAW(32) For WebDAV, GUID of
default item type for regular
files.

ZIPFILE_ITEMTYPE RAW(32) For WebDAV, GUID of
default item type for zip files.

IMAGEFILE_ITEMTYPE RAW(32) For WebDAV, GUID of
default item type for image
files.

DISPLAYINPARENT NUMBER(1) Indicates if the page is
displayed in its parent page's
sub page region. Valid values:

■ 1 - display page in
parent's sub page region

SEQ NUMBER The sequence (order) of the
page in its parent page's sub
page region.

ALPHABETICAL_SORT NUMBER(1) Indicates that sub pages are
displayed in alphabetical
order. Valid values:

■ 1 - display sub pages in
alphabetical order

ITEM_PAGE_ID NUMBER(38) ID of the item template.

Table 11–1 (Cont.) Editable Page Record Properties

Property Data Type Description

Editing Page Properties

Performing Simple Content Management Tasks 11-5

Users need to have Manage privileges on a page to edit its properties.

When updating translatable page attributes, modify_folder updates the translation
determined by the session language setting. Therefore to make sure you update the
translation with the correct values for all the translatable attributes, you must query
the page attributes of the same language first.

Example 11–1 shows how to use the modify_folder API to edit the English
translation of the display name of a page.

Example 11–1 Editing Page Properties

declare
 l_page wwsbr_api.page_record;
begin
 wwctx_api.set_nls_language(
 p_nls_language => wwnls_api.AMERICAN
);
 select *
 into l_page
 from <schema>.wwsbr_user_pages
 where siteid = 33
 and id = 1
 and language = wwnls_api.AMERICAN;
 l_page.title := 'New Page Display Name';
 wwsbr_api.modify_folder(
 p_page => l_page

ITEM_PAGE_SITE_ID NUMBER(28) Page group ID of the item
template.

ITEM_PAGE_TABSTRING VARCHAR2(512) Tab strings of the item
template. Use the following
format:

<tab name>:<sub tab
name>:...:<sub tab name>

INHERIT_ITEM_PAGE NUMBER(1) For item template only,
indicates that items inherit the
parent page's item template.
Valid values:

■ 1 - inherit parent page's
item template

ALLOW_ITEM_PAGE_
OVERRIDE

NUMBER(1) For item template only,
indicates that items can have
their own item template. Valid
values:

■ 1 - allow items on the
page to have their own
item template

HAS_INPLACE_ITEM NUMBER(1) Indicates if the page or tab has
a placeholder item. Valid
values:

■ 1 - has a placeholder item

TIMEOUT NUMBER Limit time, in seconds, used to
fetch portlets.

Table 11–1 (Cont.) Editable Page Record Properties

Property Data Type Description

Editing Content

11-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

p_page is the page record for the page you want to modify.

schema is the portal schema (that is, the schema in which Oracle Portal is installed).

11.2 Editing Content
This section contains the following examples:

■ Section 11.2.1, "Setting Item Attributes"

■ Section 11.2.2, "Editing an Item"

■ Section 11.2.3, "Checking Items Out and In"

■ Section 11.2.4, "Using Version Control"

11.2.1 Setting Item Attributes
If you want to set a particular attribute for an item, use the set_attribute API. This
API updates the value of an attribute for a particular version of an item. The values
provided are validated against the data type of the attribute. You can use this API to
set the value of a base attribute (see Table 11–2) or a custom attribute. You cannot use
this API to edit rejected items, items marked for deletion, and rejected items that have
been marked for deletion.

Example 11–2 shows how you can use the set_attribute API to set a particular
attribute for an item.

Example 11–2 Setting the Display Name of an Item (set_attribute API)

begin
 wwsbr_api.set_attribute(
 p_site_id => 37,
 p_thing_id => 8056,
 p_attribute_site_id => wwsbr_api.SHARED_OBJECTS,
 p_attribute_id => wwsbr_api.ATTRIBUTE_TITLE,
 p_attribute_value => 'New Display Name'
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception

Note: When editing an item, it is good practice to check the item out
first to ensure that any changes made by your code are not
overwritten by other users. Don't forget to check the item back in after
you have completed your edits. For information about checking items
out and in, refer to Section 11.2.3, "Checking Items Out and In".

Tip: Use the set_attribute API when you want to set a single
item attribute. If you want to set multiple item attributes, use the
modify_item API (described in Section 11.2.2, "Editing an Item").

Editing Content

Performing Simple Content Management Tasks 11-7

 ...
end;
/

■ p_site_id is the ID of the page group to which the item belongs.

■ p_thing_id is the unique item ID. The item ID identifies the particular version of
the item that you want to edit.

■ p_attribute_site_id is the ID of the page group to which the attribute belongs. For
base attributes, use the wwsbr_api.SHARED_OBJECTS constant.

■ p_attribute_id is the ID of the attribute. For base attributes, use the constants from
the WWSBR_API package as shown in Table 11–2.

■ p_attribute_value is the new value that you want to assign to the attribute. For
base attributes, see Table 11–2.

For information about how to obtain an object ID, for example a page group ID or item
ID, refer to Section 10.3, "Finding an Object ID".

Table 11–2 provides guidelines for setting the values of base attributes.

Table 11–2 Attribute Values for Base Attributes

Attribute Constant Value (p_attribute_value)

Author wwsbr_api.ATTRIBUTE_
AUTHOR

Any varchar2(50) value

Category wwsbr_api.ATTRIBUTE_
CATEGORY

<pagegroupid>_<categoryid>

Character Set wwsbr_api.ATTRIBUTE_
CHARSET

■ wwsbr_api.VALUE_BIG5

■ wwsbr_api.VALUE_EUC_JP

■ wwsbr_api.VALUE_GBK

■ wwsbr_api.VALUE_ISO_8859

■ wwsbr_api.VALUE_SHIFT_JIS

■ wwsbr_api.VALUE_US_ASCII

■ wwsbr_api.VALUE_UTF8

■ wwsbr_api.VALUE_WINDOWS_
1252

Description wwsbr_api.ATTRIBUTE_
DESCRIPTION

Any varchar2(2000) value

Display Name wwsbr_api.ATTRIBUTE_
TITLE

Any varchar2(256) value

Display Option wwsbr_api.ATTRIBUTE_
DISPLAYOPTION

■ wwsbr_api.IN_PLACE to display the
item directly in place

■ wwsbr_api.FULL_SCREEN to
display the item in the full browser
window

■ wwsbr_api.NEW_WINDOW to
display the item in a new browser
window

Enable Item Check-out wwsbr_api.ATTRIBUTE_
ITEMCHECKOUT

■ wwsbr_api.ENABLE_ITEM_FOR_
CHECK_OUT

■ wwsbr_api.DISABLE_ITEM_FOR_
CHECK_OUT

Editing Content

11-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Expiration Period wwsbr_api.ATTRIBUTE_
EXPIRATIONPER

■ wwsbr_api.PERMANENT to
un-expire the item

■ Any numeric value to set the expire
mode to NUMBER

■ Any date value greater than the
publish date to set the expire date to
the value passed and the expire
mode to DATE

File wwsbr_api.ATTRIBUTE_
FILE

The path and file name of the file that you
want to upload

Image wwsbr_api.ATTRIBUTE_
IMAGE

The path and file name of the image that
you want to upload

ImageMap wwsbr_api.ATTRIBUTE_
IMAGEMAP

Any varchar2(4000) value

Image Alignment wwsbr_api.ATTRIBUTE_
IMAGEALIGN

■ wwsbr_api.ALIGN_TEXT_TOP

■ wwsbr_api.ALIGN_ABSOLUTE_
BOTTOM

■ wwsbr_api.ALIGN_ABSOLUTE_
MIDDLE

■ wwsbr_api.ALIGN_BOTTOM

■ wwsbr_api.ALIGN_RIGHT

■ wwsbr_api.ALIGN_TOP

■ wwsbr_api.ALIGN_LEFT

■ wwsbr_api.ALIGN_MIDDLE

■ wwsbr_api.ALIGN_BASELINE

■ wwsbr_api.ALIGN_IMAGE_
ABOVE_LINK

Item Link wwsbr_api.ATTRIBUTE_
ITEM_LINK

<pagegroupid>_<itemid>

Item Template wwsbr_api.ATTRIBUTE_
ITEM_TEMPLATE

<pagegroupid>_<itemtemplateid>

Keywords wwsbr_api.ATTRIBUTE_
KEYWORDS

Any varchar2(2000) value

Mime Type wwsbr_api.ATTRIBUTE_
MIME_TYPE

Any of the mime type constants in the
WWSBR_API package. For example:

■ wwsbr_api.VALUE_TEXT_HTML

■ wwsbr_api.VALUE_TEXT_PLAIN

■ wwsbr_api.VALUE_IMAGE_GIF

For a list of the available mime type
constants, refer to the Oracle Portal
PL/SQL API Reference on Portal Center:

http://portalcenter.oracle.com

In the Portal Focus Areas section, click
Portlet Development, then in the APIs
and References section, click PL/SQL API
Reference.

Table 11–2 (Cont.) Attribute Values for Base Attributes

Attribute Constant Value (p_attribute_value)

Editing Content

Performing Simple Content Management Tasks 11-9

Name wwsbr_api.ATTRIBUTE_
NAME

Any varchar2(256) value

Specify a name that is unique within the
page and all its tabs and sub-pages

Page Link wwsbr_api.ATTRIBUTE_
PAGE_LINK

<pagegroupid>_<pageid>

Perspectives wwsbr_api.ATTRIBUTE_
PERSPECTIVES

<pagegroupid>_<perspectiveid>

Separate multiple perspectives with
commas.

Non-existing perspective IDs are
identified by the API. Only those
perspectives that are available to the page
group are added to the item.

PL/SQL wwsbr_api.ATTRIBUTE_
PLSQL

Any varchar2(2000) value

Publish Date wwsbr_api.ATTRIBUTE_
PUBLISHDATE

Any date value

This is a required attribute.

Rollover Image wwsbr_api.ATTRIBUTE_
ROLLOVERIMAGE

The path and file name of the image file
that you want to upload

Table 11–2 (Cont.) Attribute Values for Base Attributes

Attribute Constant Value (p_attribute_value)

Editing Content

11-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Smart Link wwsbr_api.ATTRIBUTE_
SMARTLINK

■ wwsbr_api.VALUE_ACCOUNT_
INFO

■ wwsbr_api.VALUE_ADVANCED_
SEARCHE

■ wwsbr_api.VALUE_BUILDER

■ wwsbr_api.VALUE_COMMUNITY

■ wwsbr_api.VALUE_CONTACT

■ wwsbr_api.VALUE_EDIT_PAGE

■ wwsbr_api.VALUE_FAVOURITES

■ wwsbr_api.VALUE_HELP

■ wwsbr_api.VALUE_PORTAL_
HOME

■ wwsbr_api.VALUE_CUST_
MOBILE_HOME_PAGE

■ wwsbr_api.VALUE_NAVIGATOR

■ wwsbr_api.VALUE_PAGE_GROUP_
HOME

■ wwsbr_api.VALUE_PERSONAL_
PAGE

■ wwsbr_api.VALUE_CUSTOMIZE_
PAGE

■ wwsbr_api.VALUE_PORTLET_
REPOS_REF_STATUS

■ wwsbr_api.VALUE_PORTLET_
REPOS

■ wwsbr_api.VALUE_PROPERTY_
SHEET

■ wwsbr_api.VALUE_REF_PORTLET_
REPOS

■ wwsbr_api.VALUE_REFRESH_
PAGE

■ wwsbr_api.VALUE_SUBSCRIBE

Smart Text wwsbr_api.ATTRIBUTE_
SMARTTEXT

■ wwsbr_api.VALUE_SMART_TEXT_
CURRENT_DATE

■ wwsbr_api.VALUE_SMART_TEXT_
CURRENT_PAGE

■ wwsbr_api.VALUE_SMART_TEXT_
CURRENT_USER

Text wwsbr_api.ATTRIBUTE_
TEXT

Any varchar2(4000) value

URL wwsbr_api.ATTRIBUTE_
URL

Any URL value up to varchar2(2000)

Table 11–2 (Cont.) Attribute Values for Base Attributes

Attribute Constant Value (p_attribute_value)

Editing Content

Performing Simple Content Management Tasks 11-11

11.2.2 Editing an Item
To edit an existing item, use the modify_item API. This API enables you to set the
properties of an item and also enables you to perform the following:

■ Add new versions of the item (if item version is enabled for the page). See
Section 11.2.4, "Using Version Control".

■ Enable item level security for the item (if item level security (ILS) is enabled for the
page). See Section 15.3, "Setting Item Level Privileges" for an alternative way of
doing this.

■ Upload files that are associated with the item. If the file that you want to associate
with the item has already been uploaded, use the modify_item_post_upload
API instead.

You should use this API to edit only those items with an ACTIVE value of 1. That is,
do not use it to edit pending, rejected, or deleted items.

You must pass both the item's master ID to identify the item and its ID to identify the
specific version of the item that you want to update. The specified ID does not have to
be the current version of the item. For information about obtaining an object ID, refer
to Section 10.3, "Finding an Object ID".

The modify_item API modifies the value of every attribute, even if the attribute is
not passed in the parameter list. If an attribute is not passed, its value will revert to the
default value of the parameter. If you want to preserve the current value of attributes,
you must retrieve those values for the item and pass them to the API. The value of
attributes can be retrieved from the following views and APIs:

■ WWSBR_ALL_ITEMS for built-in attributes

■ WWSBR_ITEM_ATTRIBUTES for custom attributes

■ WWSBR_ITEM_TYPE_ATTRIBUTES for a list of attributes for an item type

■ WWSBR_ITEM_PERSPECTIVES for perspectives

■ wwsec_api.grantee.list for a list of privileges on the item type. See
Section 15.3, "Setting Item Level Privileges" for more information on using this
API.

Example 11–3 updates the display name and text of a text item.

Example 11–3 Editing an Item (modify_item API)

declare
 l_item_master_id number;
begin
 l_item_master_id := wwsbr_api.modify_item(

Version Number wwsbr_api.ATTRIBUTE_
VERSION_NUMBER

Any positive number. The number does
not have to be an integer.

Specify a version number that is unique,
that is, it should not be the same as any
existing version of the item. If you supply
a value that is the same as an existing
version number for the item, then it will
be set to one more than the highest
version number for the item.

Table 11–2 (Cont.) Attribute Values for Base Attributes

Attribute Constant Value (p_attribute_value)

Editing Content

11-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 p_master_item_id => 453,
 p_item_id => 454,
 p_caid => 33,
 p_folder_id => 45,
 p_display_name => 'Movie Review',
 p_text => 'This is the text of the review.'
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_master_item_id is the master ID of the item. You can look up this value in the
MASTERID column of the WWSBR_ALL_ITEMS view.

■ p_item_id is the ID of the item. This identifies the version of the item and does not
have to be the item's current version.

■ p_caid is the ID of the page group to which the item belongs.

■ p_folder_id is the ID of the page on which the item appears.

■ p_display_name is the display name (title) of the item.

■ p_text is the text for the item (the item in this example is a text item).

11.2.3 Checking Items Out and In
If an item is enabled for check-out, before editing it, you should check the item out so
that other users cannot make changes at the same time (Example 11–4).

Example 11–4 Checking an Item Out and In (check_out_item and check_in_item)

begin
 -- Check out the item.
 wwsbr_api.check_out_item(
 p_master_item_id => 12345, -- Master ID is the same for all versions.
 p_caid => 33
);
 -- Update the display name of the item.
 wwsbr_api.set_attribute(
 p_site_id => 33,
 p_thing_id => 8056, -- Unique item ID.
 p_attribute_site_id => wwsbr_api.SHARED_OBJECTS,
 p_attribute_id => wwsbr_api.ATTRIBUTE_TITLE,
 p_attribute_value => 'New Display Name'
);
 -- Check the item back in.
 wwsbr_api.check_in_item(
 p_master_item_id => 12345, -- Master ID is the same for all versions.
 p_caid => 33
);

Tip: To identify the item's current version, use the following query:

select id
from wwsbr_all_items
where master_id = 453
 and is_current_version = 1;

Reorganizing Content

Performing Simple Content Management Tasks 11-13

 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_ache_invalidation;
exception
 ...
end;
/

■ p_master_item_id is the master ID of the item being checked out or in.

■ p_caid is the ID of the page group to which the item belongs.

For information about the set_attribute API used in Example 11–4, refer to
Section 11.2.1, "Setting Item Attributes".

11.2.4 Using Version Control
When you edit an item using the modify_item API, if you set p_addnewversion =
TRUE, a new version is created for the item. The new version is given a new ID (the
master ID stays the same). If you do not want the new version of the item to be
immediately published as the current version, set p_add_as_current_version =
FALSE.

Example 11–5 shows how you can use the modify_item API to create a new version of
an item.

Example 11–5 Creating a New Version of an Item (modify_item API)

declare
 l_item_master_id number;
begin
 l_item_master_id := wwsbr_api.modify_item(
 p_master_item_id => 453,
 p_item_id => 454,
 p_caid => 33,
 p_folder_id => 45,
 p_display_name => 'Movie Review',
 p_text => 'This is the text of the review.',
 p_addnewversion => true
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

For a description of the parameters used here, see Example 11–3.

11.3 Reorganizing Content
Content is very rarely static, so you may find that you need to move content around
within your portal.

This section contains the following examples:

Note: To check whether an item is already checked out, query the
IS_ITEM_CHECKEDOUT column of the WWSBR_ALL_ITEMS view.
For more information about this view, refer to Section F.2.5, "WWSBR_
ALL_ITEMS".

Reorganizing Content

11-14 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ Section 11.3.1, "Moving an Item to a Different Page"

■ Section 11.3.2, "Moving Pages"

11.3.1 Moving an Item to a Different Page
You can use the move_item API to move an item to a different page in the same page
group or to a page in a different page group. Moving an item preserves the item's
metadata. To move an item to a different page group, the item must not be:

■ based on a local item type.

■ associated with a local category.

■ associated with any local perspectives.

Example 11–6 moves an item from one page group to a page in a different page group.

Example 11–6 Moving an Item to a Different Page Group (move_item API)

begin
 wwsbr_api.move_item(
 p_caid => 33,
 p_master_item_id => 12345,
 p_dest_caid => 53,
 p_dest_page_id => 1,
 p_dest_region_id => 5
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_caid is the ID of the page group to which the item currently belongs.

■ p_master_item_id is the master ID of the item that you want to move.

■ p_dest_caid is the ID of the page group to which you want to move the item.

■ p_dest_page_id is the ID of the page to which you want to move the item.

■ p_dest_region_id is the ID of the item region of the page in which you want to
move the item. If you do not specify a region ID, the item is moved to the page's
default item region, which may not be desirable.

11.3.2 Moving Pages
You can use the move_folder API to move a page within the same page group. You
cannot move a page to a different page group.

To move a page, users must have Manage privileges on the page being moved and the
page under which the page is being moved.

Example 11–7 shows how to move a page.

Example 11–7 Moving a Page (move_folder API)

begin
 wwsbr_api.move_folder(
 p_id => 12345,
 p_siteid => 33,

Reorganizing Content

Performing Simple Content Management Tasks 11-15

 p_parent_id => 10000
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_id is the ID of the page that you want to move.

■ p_siteid is the ID of the page group to which the page belongs.

■ p_parent_id is the ID of the page under which you want to move the page.

11.3.3 Moving Categories and Perspectives
You can, if necessary, move categories and perspectives around within a page group.
You cannot move a category or perspective to a different page group.

To move a category or perspective, a user must have Manage Classifications privileges
or higher on the owning page group.

To move a category, use the move_category API, as shown in Example 11–8.

Example 11–8 Moving a Category (move_category API)

begin
 wwsbr_api.move_category(
 p_src_id => 2000,
 p_dest_id => 3000,
 p_siteid => 33
);
exception
 ...
end;
/

To move a perspective, use the move_perspective API, as shown in Example 11–9.

Example 11–9 Moving a Perspective (move_perspective API)

begin
 wwsbr_api.move_perspective(
 p_src_id => 2000,
 p_dest_id => 3000,
 p_siteid => 33
);
exception
 ...
end;
/

■ p_src_id is the ID of the category or perspective that you want to move.

■ p_dest_id is the ID of the category or perspective under which you want to move
the category or perspective.

■ p_siteid is the ID of the page group to which the category or perspective belongs.

Copying Content

11-16 Oracle Fusion Middleware Developer's Guide for Oracle Portal

11.4 Copying Content
If you want to add content that is the same as, or similar to, some content that already
exists, instead of creating it all over again, you can copy the existing content.

This section contains the following examples:

■ Section 11.4.1, "Copying Items"

■ Section 11.4.2, "Copying Pages"

11.4.1 Copying Items
You can use the copy_item API to copy an item to a different page in the same page
group or to a page in a different page group. To copy an item to a different page
group, the item must not be any of the following:

■ based on a local item type

■ associated with a local category

■ associated with any local perspectives

Copying an item preserves the item's metadata.

Example 11–10 copies an item to a page in a different page group:

Example 11–10 Creating a Copy of an Item in a Different Page Group (copy_item API)

begin
 wwsbr_api.copy_item(
 p_caid => 33,
 p_master_item_id => 12345,
 p_dest_caid => 53,
 p_dest_page_id => 1,
 p_dest_region_id => 5
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_caid is the ID of the page group to which the item currently belongs.

■ p_master_item_id is the master ID of the item that you want to copy.

■ p_dest_caid is the ID of the page group to which you want to copy the item.

■ p_dest_page_id is the ID of the page to which you want to copy the item.

■ p_dest_region_id is the ID of the item region of the page in which you want to
copy the item. If you do not specify a region ID, the item is copied to the page's
default item region, which may not be desirable.

11.4.2 Copying Pages
You can use the copy_folder API to copy a page within the same page group. You
cannot copy a page to a different page group.

To copy a page, users must have View privileges on the page being copied and Manage
privileges on the page under which the page is being copied.

Deleting Content

Performing Simple Content Management Tasks 11-17

Example 11–11 shows how to copy a page.

Example 11–11 Creating a Copy of a Page (copy_folder API)

declare
 l_new_pageid number;
begin
 l_new_pageid := wwsbr_api.copy_folder(
 p_id => 12345,
 p_siteid => 33,
 p_parent_id => 10000
 p_name => 'page1',
 p_title => 'page1'
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_id is the ID of the page that you want to copy.

■ p_siteid is the ID of the page group to which the page belongs.

■ p_parent_id is the ID of the page under which you want to copy the page.

■ p_name is the name for the new page created by the copy operation.

■ p_title is the display name for the new page created by the copy operation.

11.5 Deleting Content
When content is no longer required, you can use APIs to remove it from the portal and
free up space.

This section contains the following examples:

■ Section 11.5.1, "Deleting Items"

■ Section 11.5.2, "Deleting Pages"

11.5.1 Deleting Items
You can use the delete_item API to delete all versions of an item or just a single
specific version. This API also deletes all sub items associated with the versions being
deleted. When you delete an item using this API, you can choose to accept the default
delete mode for the page group or override this setting.

Example 11–12 deletes version 1 of an item permanently from the page group. The
item version is permanently removed, even if the page group is set up to retain deleted
items.

Example 11–12 Deleting an Item (delete_item API)

begin
 procedure delete_item(
 p_master_item_id => 48037,
 p_caid => 54,
 p_version_number => 1,
 p_mode => wwsbr_api.DELETE_ITEM_PURGE
);

Deleting Content

11-18 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_master_item_id is the master ID of the item that you want to delete.

■ p_caid is the ID of the page group to which the item belongs.

■ p_version_number is the version of the item that you want to delete. If you
attempt to delete the current version of the item, the ITEM_ACTIVE_VERSION
exception is raised. If you do not specify an item version, all versions of the item
are deleted.

■ p_mode is the mode to use when deleting the item. It can take the following
values:

– wwsbr_api.DELETE_ITEM_DEFAULT uses the page group setting.

– wwsbr_api.DELETE_ITEM_PURGE deletes the item immediately, regardless
of the page group setting.

– wwsbr_api.DELETE_ITEM_LAZYDELETE marks the item as deleted,
regardless of the page group setting.

To restore a previously deleted item, use the undelete_item API (Example 11–13). If
the item had any sub-items, those sub-items are also restored.

Example 11–13 Restoring a Previously Deleted Item (undelete_item API)

begin
 wwsbr_api.undelete_item(
 p_thing_id => 12345,
 p_caid => 33
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_thing_id is the unique ID of the deleted item that you want to restore.

■ p_caid is the ID of the page group to which the item belongs.

Tip: If you want to delete the current version of the item, you must
either delete all versions, or use the Oracle Portal user interface to
revert to a previous version.

Note: You can restore a deleted item only if the page group that
owns the item is set up to retain deleted items, or the item was deleted
using the wwsbr_api.DELETE_ITEM_LAZYDELETE mode, and the
item has not been purged from the content repository.

Deleting Content

Performing Simple Content Management Tasks 11-19

11.5.2 Deleting Pages
Use the delete_folder API to delete a page. Users need to have Manage privileges
on the page to be able to delete it.

Example 11–14 shows how to delete a page.

Example 11–14 Deleting a Page (delete_folder API)

begin
 wwsbr_api.delete_folder(
 p_id => 12345,
 p_siteid => 33
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_id is the ID of the page that you want to delete.

■ p_siteid is the ID of the page group to which the page belongs.

Note: Deleted pages cannot be restored by another API call.

Deleting Content

11-20 Oracle Fusion Middleware Developer's Guide for Oracle Portal

12

Extending Your Portal 12-1

12 Extending Your Portal

This chapter describes how to use the APIs provided with Oracle Portal to extend your
portal. It contains the following sections:

■ Section 12.1, "Creating a Page Group"

■ Section 12.2, "Creating Pages"

■ Section 12.3, "Creating Categories and Perspectives"

■ Section 12.4, "Creating Items"

■ Section 12.5, "Setting Perspectives Attributes of Pages and Items"

■ Section 12.6, "Approving and Rejecting Items"

For more information about any of these APIs, refer to the Oracle Portal PL/SQL API
Reference on Portal Center:

http://portalcenter.oracle.com

In the Portal Focus Areas section, click Portlet Development, then in the APIs and
References section, click PL/SQL API Reference.

12.1 Creating a Page Group
To create a new page group, use the add_content_area API as shown in
Example 12–1.

Example 12–1 Creating a Page Group (add_content_area API)

declare
 l_new_page_group_id number;
begin
 -- Create the page group.
 l_new_page_group_id := wwsbr_api.add_content_area(
 p_name => 'ENTERTAINMENT',
 p_display_name => 'Entertainment Page Group',
 p_versioning => wwsbr_api.VERSIONING_AUDIT,
 p_default_language => 'us'
);
 -- process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception

Tip: Remember, if you are calling the APIs from a Web provider or
external application, you need to set the session context first. For more
information, refer to Section 10.1, "Setting the Session Context".

Creating Pages

12-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 ...
end;
/

■ p_name is the internal name for the new page group. This name is used in path
based URLs and must be unique.

■ p_display_name is the display name for the new page group.

■ p_versioning is the version level for items in the page group. It can take the
following values:

– wwsbr_api.VERSIONING_NONE

– wwsbr_api.VERSIONING_SIMPLE

– wwsbr_api.VERSIONING_AUDIT

■ p_default_language is the default language for the page group.

12.2 Creating Pages
If you want to create a new page, use the add_folder API. By default, the new page
has two regions: a portlet region containing the default navigation page of the page
group, and an item region. This means that pages created programmatically, rather
than through the Oracle Portal user interface, may be quite limited in their layout.

However, you can programmatically create pages with a more sophisticated layout by
basing the parent page of the new page on a Portal Template with the desired layout.
Then if you configure the page group to automatically copy parent page properties,
your new page will use the same template as its parent. Using this method means that
your pages can have any layout that you require.

You cannot use this API to create JSP pages or navigation pages. To create these types
of pages, use the Create Page Wizard in Oracle Portal.

If the page type on which you base the page has default values set for any page
properties, these values override any values set using this API.

To define privileges for your new page, use the APIs in the WWSEC_API package
(Example 12–2). For more information, refer to Section 15.2, "Setting Page Level
Privileges".

Example 12–2 Creating a Page (add_folder API)

declare
 l_new_page_id number;
 l_caid number := 33;
begin
 -- create the page.
 l_new_page_id := wwsbr_api.add_folder(
 p_caid => l_caid,
 p_name => 'ENTERTAINMENT',
 p_display_name => 'Entertainment Page',
 p_type_id => wwsbr_api.FOLDER_TYPE_CONTAINER,
 p_type_caid => wwsbr_api.SHARED_OBJECTS,
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;

Creating Categories and Perspectives

Extending Your Portal 12-3

/

■ p_caid is the ID of the page group to which you want to add the page.

■ p_name is the internal name for the new page. This name is used in path based
URLs.

■ p_display_name is the display name (title) for the new page.

■ p_type_id is the ID of the page type on which you want to base the page. The page
type must be available to the page group in which you are creating the page.
Seeded page types have the following constants defined:

– wwsbr_api.FOLDER_TYPE_CONTAINER

– wwsbr_api.FOLDER_TYPE_URL

– wwsbr_api.FOLDER_TYPE_PLSQL

– A value from the ID column of the WWSBR_FOLDER_TYPES view

You can find the IDs for custom page types by querying the ID column of the
WWSBR_FOLDER_TYPES view.

■ p_type_caid is the ID of the page group to which the page type used for the page
belongs. This value must be the same as the page group in which you are creating
the page (p_caid) or the Shared Objects page group (use the wwsbr_api.SHARED_
OBJECTS constant).

12.3 Creating Categories and Perspectives
If you have already defined a quite large taxonomy for your portal, you might prefer
to set it up programmatically, rather than use the Oracle Portal user interface.

Use the add_category API to create a new category (Example 12–3). Use the add_
perspective API to create a new perspective (Example 12–4). To create a category or
perspective, users must have Manage Classifications privileges or higher on the page
group.

Example 12–3 Creating a Category (add_category API)

declare
 l_new_category_id number;
 l_caid number := 33;
begin
 l_new_category_id := wwsbr_api.add_category(
 p_caid => l_caid,
 p_parent_id => 0,
 p_name => 'newcategory1',
 p_display_name => 'New Category 1'
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

Example 12–4 Creating a Perspective (add_perspective API)

declare

Creating Items

12-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 l_new_perspective_id number;
 l_caid number := 33;
begin
 l_new_perspective_id := wwsbr_api.add_perspective(
 p_caid => 33,
 p_parent_id => 0,
 p_name => 'newperspective1',
 p_display_name => 'New Perspective 1'
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_caid is the ID of the page group in which you want to create the category or
perspective.

■ p_parent_id is the ID of the category or perspective under which you want to
create the new category or perspective. If this is a top-level category or
perspective, use 0 (zero).

■ p_name is the internal name for the new category or perspective.

■ p_display_name is the display name for the new category or perspective.

12.4 Creating Items
To create an item on a page, use the add_item API (Example 12–5).

This API returns the master ID of the item, which is not the item's unique ID. To look
up the ID of the item after it is created, query the WWSBR_ALL_ITEMS view as
shown in Example 10–7. For more information about the difference between an item's
unique ID and its master item ID, refer to Section 10.2, "API Parameters".

Example 12–5 Creating a Text Item (add_item API)

declare
 l_new_item_master_id number;
begin
 l_new_item_master_id := wwsbr_api.add_item(
 p_caid => 33,
 p_folder_id => 13923,
 p_display_name => 'Movie Review',
 p_type_id => wwsbr_api.ITEM_TYPE_TEXT,
 p_type_caid => wwsbr_api.SHARED_OBEJCTS,
 p_region_id => 5,
 p_text => 'This is the text of the review.',
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_caid is the ID of the page group that owns the page in which you want to create
the item.

■ p_folder_id is the ID of the page in which you want to create the item.

Creating Items

Extending Your Portal 12-5

■ p_display_name is the display name (title) of the new item.

■ p_type_id is the ID of the item type on which the item is based. Use the constants
defined in the WWSBR_API package. Example are as follows:

– wwsbr_api.ITEM_TYPE_FILE

– wwsbr_api.ITEM_TYPE_TEXT

– wwsbr_api.ITEM_TYPE_URL

For a full list of constants for the seeded item types, refer to the Oracle Portal
PL/SQL API Reference on Portal Center:

http://portalcenter.oracle.com

In the Portal Focus Areas section, click Portlet Development, then in the APIs and
References section, click PL/SQL API Reference.

You can find the IDs for custom item types by querying the ID column of the
WWSBR_ITEM_TYPES view.

The item type must be available in the page group on which you are creating the
item, and therefore listed in the WWSBR_CONTENT_AREA_ITEM_TYPES view.

■ p_type_caid is the ID of the page group to which the item type used for the item
belongs. This value must be the same as the page group to which you are adding
the item (p_caid), or the Shared Objects page group (use the wwsbr_api.SHARED_
OBJECTS constant).

■ p_region_id is the ID of the region in which you want to create the item. If you do
not specify a region, or if the region ID is invalid, the item is placed in the default
item region for the page. Use the WWSBR_ALL_FOLDER_REGIONS view to look
up the region ID.

■ p_text is the text for a text item.

Creating File Items
If an object is associated with one or more files (for example, images, file items, and so
on), its APIs allow you to upload these files when creating or modifying the object.
You can pass a file location consisting of a directory path and file name to the file and
image parameters for these APIs. The directory in which you place the files must be
visible to your database (that is, local to the database server) and the files themselves
must have proper permissions. If you see strange exceptions resulting from API calls
in which you are trying to upload files, double check the permissions on the
directories and files.

When the file that you want to upload resides on the same server as the database in
which Oracle Portal is installed, you can upload the file at the same time as you create
or update the item. Example 12–6 shows how you might do this.

Example 12–6 Creating a File Item (add_item API)

declare
 l_item_masterthing_id number;
begin
 -- Add an item that resides on the same server as the OracleAS Portal
 -- content repository database.
 l_item_masterthing_id := wwsbr_api.add_item(
 p_caid => 53, -- A known page group ID.
 p_folder_id => 1, -- A known page ID.
 p_display_name => 'My File',

Creating Items

12-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 p_type_id => wwsbr_api.ITEM_TYPE_FILE,
 p_type_caid => wwsbr_api.SHARED_OBJECTS,
 p_region_id => 513, -- A known region on the page.
 p_description => 'Description of my file',
 p_file_filename => '/tmp/myfile.txt'
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_caid is the ID of the page group that owns the page in which you want to create
the item.

■ p_folder_id is the ID of the page in which you want to create the item.

■ p_display_name is the display name (title) of the new item.

■ p_type_id is the ID of the item type on which the item is based.

■ p_type_caid is the ID of the page group to which the item type used for the item
belongs. This value must be the same as the page group to which you are adding
the item (p_caid), or the Shared Objects page group (use the wwsbr_api.SHARED_
OBJECTS constant).

■ p_region_id is the ID of the region in which you want to create the item. If you do
not specify a region, or if the region ID is invalid, the item is placed in the default
item region for the page. Use the WWSBR_ALL_FOLDER_REGIONS view to look
up the region ID.

■ p_description is a description of the item.

■ p_file_filename is the directory path and file name of the file associated with this
item. The file must be located on the same server as database in which Oracle
Portal is installed.

If the file does not reside on the same server as the database in which Oracle Portal is
installed, you must first load the file into the content repository document tables using
the upload_blob API (Example 12–7). The upload_blob API returns a unique
document name. Use the add_item_post_upload API to create a new item that
claims the file specified by the returned document name.

Example 12–7 Uploading a File to the Content Repository and Creating a File Item Using
the Uploaded File (upload_blob API and add_item_post_upload API)

declare
 l_blob blob;
 l_blob_filename varchar2(250);
 l_mime_type varchar2(100) := 'text/html';
 l_doc_name varchar2(500);
 l_display_name varchar2(250);
 l_region_id number := 2013;
 l_file_name varchar2(100);

Note: Your calling application must declare a BLOB and assign it to
an object compatible with the database BLOB data type (refer to
Application Developer's Guide - Large Objects in your Oracle Database
documentation set). You can then pass the BLOB to the p_blob
parameter of the upload_blob API.

Creating Items

Extending Your Portal 12-7

 l_image_name varchar2(100);
 l_site_id number := 73;
 l_page_id number := 1;
 l_item_type_id number := wwsbr_api.ITEM_FILE_TYPE;
 l_item_type_siteid number := wwsbr_api.SHARED_OBJECTS;
 l_description varchar2(1000);
 l_item_masterthing_id number;
begin
 -- Your calling application must define the my_get_blob() function and retrieve
 -- your document into a blob so that it can be uploaded in the subsequent step.
 l_blob := my_get_blob('8001.HTML');
 -- Upload the BLOB to the Oracle Portal document table.
 l_blob_filename := 'index2.html';
 l_doc_name := wwsbr_api.upload_blob(
 p_file_name => l_blob_filename,
 p_blob => l_blob,
 p_mime_type => l_mime_type
);
 l_display_name := l_blob_filename;
 l_file_name := l_doc_name;
 l_description := 'File uploaded to portal = ' || l_doc_name;
 -- Use add_item_post_upload() to claim the document and add the item to a page.
 l_item_masterthing_id := wwsbr_api.add_item_post_upload(
 p_caid => l_site_id,
 p_folder_id => l_page_id,
 p_display_name => l_display_name,
 p_file_name => l_file_name,
 p_type_id => l_item_type_id,
 p_type_caid => l_item_type_siteid,
 p_region_id => l_region_id,
 p_description => l_description,
 p_display_option => wwsbr_api.FULL_SCREEN
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

The following are parameters for upload_blob:

■ p_file_name is the file name that you want to assign to the BLOB. This is not the
value returned by the function. Usually this is the file name by which the file is
known on the source file system.

■ p_blob is the BLOB containing the content.

■ p_mime_type is the MIME type for the BLOB. Use the predefined constants
provided in the WWSBR_API package.

The following are parameters for add_item_post_upload:

■ p_caid is the ID of the page group that owns the page in which you want to create
the item.

■ p_folder_id is the ID of the page in which you want to create the item.

■ p_display_name is the display name (title) of the new item.

■ p_file_name is the internal document name for the file item, matching a document
in the document table. Pass the value returned by upload_blob to this parameter
to reference the uploaded document as the file for this item.

Setting Perspectives Attributes of Pages and Items

12-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ p_type_id is the ID of the item type on which the item is based.

■ p_type_caid is the ID of the page group to which the item type used for the item
belongs. This value must be the same as the page group to which you are adding
the item (p_caid), or the Shared Objects page group (use the wwsbr_api.SHARED_
OBJECTS constant).

■ p_region_id is the ID of the region in which you want to create the item. If you do
not specify a region, or if the region ID is invalid, the item is placed in the default
item region for the page. Use the WWSBR_ALL_FOLDER_REGIONS view to look
up the region ID.

■ p_description is a description of the item.

■ p_file_filename is the directory path and file name of the file associated with this
item. The file must be located on the same server as database in which Oracle
Portal is installed.

■ p_display_option is how the item should be displayed. Use the following
predefined constants:

– wwsbr_api.FULL_SCREEN to display a link that, when clicked, displays the
item in the same browser window.

– wwsbr_api.NEW_WINDOW to display a link that, when click, displays the
item in a new browser window.

– wwsbr_api.IN_PLACE to display the item in the region (this applies to text
and PL/SQL items only).

If you have already created the item that you want to use to claim the uploaded
document, use the modify_item_post_upload API.

12.5 Setting Perspectives Attributes of Pages and Items
When creating a page or item you can, optionally, specify the perspectives that apply
to that page or item.

Example 12–8 shows how you specify the perspectives that apply to a page when
creating the page. Example 12–9 shows how you specify the perspectives that apply to
an item when creating the item.

Example 12–8 Specifying Perspectives When Creating a Page

declare
 l_new_page_id number;
 l_perspective_ids wwsbr_api.g_perspectiveidarray;
 l_perspective_caids wwsbr_api.g_caid_array;
begin
 select id, caid
 bulk collect into l_perspective_ids, l_perspective_caids
 from wwsbr_all_perspectives
 where caid in (l_caid, wwsbr_api.shared_objects);
 l_new_page_id := wwsbr_api.add_folder(
 p_caid => 33,
 p_name => 'ENTERTAINMENT',
 p_display_name => 'Entertainment Page',
 p_type_id => wwsbr_api.FOLDER_TYPE_CONTAINER,
 p_type_caid => wwsbr_api.SHARED_OBJECTS,
 p_perspectives => l_perspective_ids,
 p_perspective_caid => l_perspective_caids
);

Approving and Rejecting Items

Extending Your Portal 12-9

 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

Example 12–9 Specifying Perspectives When Creating an Item

declare
 l_new_item_master_id number;
 l_perspective_ids wwsbr_api.g_perspectiveidarray;
 l_perspective_caids wwsbr_api.g_caid_array;
begin
 -- Select perspectives with the name prefix = 'ENTERTAINMENT'.
 select id, caid
 bulk collect into l_perspective_ids, l_perspective_caids
 from wwsbr_all_perspectives
 where caid in (l_caid, wwsbr_api.shared_objects) and
 display_name like 'ENTERTAINMENT%';
 l_new_item_master_id := wwsbr_api.add_item(
 p_caid => 33,
 p_folder_id => 13923,
 p_display_name => 'Movie Review',
 p_type_id => wwsbr_api.ITEM_TYPE_TEXT,
 p_type_caid => wwsbr_api.SHARED_OBEJCTS,
 p_region_id => 5,
 p_text => 'This is the text of the review.',
 p_perspectives => l_perspective_ids,
 p_perspectives_caid => l_perspective_caids
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_perspectives is an array of perspective IDs.

■ p_perspective_caid is an array of page group IDs for the perspectives identified in
p_perspectives. The position of each element in this array must match the
position of the corresponding perspective ID in p_perspectives. The values in
p_perspective_caid must be the same as the page group in which you are
creating the page or item (p_caid) or the Shared Objects page group (use the
wwsbr_api.SHARED_OBJECTS constant).

For descriptions of the other parameters in these examples, refer to Example 12–2 and
Example 12–5.

12.6 Approving and Rejecting Items
The WWSBR_API package includes two APIs to help with managing approvals. To
see how you might use these APIs in conjunction with the Content Management Event
Framework, refer to Section 16.7, "Example: Item Validation" and Section 16.8,
"Example: Integrating External Workflow"

Example 12–10 shows how to approve a pending item. Example 12–11 shows how to
reject a pending item.

Approving and Rejecting Items

12-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Example 12–10 Approving an Item

begin
 wwsbr_api.approve(
 p_item_id => 8056,
 p_site_id => 53,
 p_comment => 'Item approved'
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
end;
/

Example 12–11 Rejecting an Item

begin
 wwsbr_api.reject(
 p_item_id => 8056,
 p_site_id => 53,
 p_comment => 'Item rejected'
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
end;
/

■ p_item_id is the unique ID of the item being approved or rejected.

■ p_site_id is the ID of the page group to which the item belongs.

■ p_comment provides additional information about the approval or rejection of the
item.

13

Searching Portal Content 13-1

13 Searching Portal Content

This chapter describes how to use the public search APIs provided with Oracle Portal.
The search APIs are available in the WWSRC_API package.

The public search APIs enable you to search your portal programmatically and return
search results as content records or an XML document. Using these APIs, you can
design completely custom search forms that seamlessly integrate with Oracle Portal
pages. You can also customize how portal search results get displayed on a page; you
are no longer limited to the search results portlet provided with Oracle Portal. As the
public search APIs can return the results in XML, you may process or format the
search results however you require.

You can also use the search APIs to display portal content in any custom application.
For example, if you have a Web-based application you could easily provide a search
form in the application and display the search results from Oracle Portal there as well.

The WWSRC_API package provides the following two types of API:

■ Search submission/execution APIs

– Item search

– Page search

– Category search

– Perspective search

■ Search results APIs

– Get item results as XML document

– Get page results as XML document

To determine the structure of the search results returned by the search APIs, refer to
the appropriate secure content repository view, as shown in Table 13–1.

Table 13–1 Search Results to Secure View Mapping

Search API Secure Content Repository View

wwsrc_api.item_search WWSBR_ALL_ITEMS

wwsrc_api.page_search WWSBR_ALL_FOLDERS

wwsrc_api.category_search WWSBR_ALL_CATEGORIES

wwsrc_api.perspective_search WWSBR_ALL_PERSPECTIVES

Searching For Items Across All Page Groups

13-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

For example, the results returned by the item_search API have the same structure
as the WWSBR_ALL_ITEMS view. For information about the structure of the secure
views, refer to Chapter F, "Content Management APIs and Views".

This chapter contains the following sections:

■ Section 13.1, "Searching For Items Across All Page Groups"

■ Section 13.2, "Searching For Pages in Specific Page Groups"

■ Section 13.3, "Searching For Items By Attribute"

■ Section 13.4, "Transforming Search Results into XML"

■ Section 13.5, "Displaying Search Results"

For the examples in the following sections, you need to enable output in SQL*Plus. To
do this log on to SQL*Plus as the portal schema owner and enter the following
command:

SQL> SET SERVEROUTPUT ON

For more information about the public search APIs, refer to the Oracle Portal PL/SQL
API Reference on Portal Center:

http://portalcenter.oracle.com

In the Portal Focus Areas section, click Portlet Development, and then click PL/SQL
API Reference (APIs and References section).

13.1 Searching For Items Across All Page Groups
Example 13–1 uses the item_search API to search all the page groups in your portal
for items that contain the term 'portal'.

Example 13–1 Searching Across All Page Groups (item_search API)

declare
 l_results wwsrc_api.items_result_array_type;
 l_count number;
 l_scores wwsrc_api.number_list_type;
begin
 l_results := wwsrc_api.item_search(
 p_mainsearch => 'portal',
 p_out_count => l_count,
 p_out_scores => l_scores
);
 dbms_output.put_line('Number of results: ' || l_count);
exception
 ...
end;
/

■ p_mainsearch is the keyword or term for which you want to search. This may be
any value, including an Oracle Text query expression.

■ p_out_count is the number of search hits.

Tip: Remember, if you are calling the APIs from a Web provider or
external application, you need to set the session context first. For more
information, refer to Section 10.1, "Setting the Session Context".

Searching For Pages in Specific Page Groups

Searching Portal Content 13-3

■ p_out_scores is an array of search results scores. This is the Oracle Text relevancy
score, rating how well each result matches the search term (or any other textual
search criteria). The index of the array matches the index of the results array
returned by the function.

In Example 13–1, the maximum number of search results that may be returned is
determined by the wwsrc_api constant MAX_ROWS (default is 1000). This avoids the
possibility of a search query with many hits taking too long to run if a specific number
of rows is not specified. For an example of how to specify the number of rows to
return see Example 13–2.

13.2 Searching For Pages in Specific Page Groups
Example 13–2 uses the page_search API to search in two specific page groups
(MyPageGroup and Shared) for pages that contain the term 'Oracle'. In this example,
only the first ten results are returned.

Example 13–2 Searching in Specific Page Groups (page_search API)

declare
 l_results wwsrc_api.pages_result_array_type;
 l_count number;
 l_scores wwsrc_api.number_list_type;
 l_pggroups wwsrc_api.number_list_type;
begin
 l_pggroups(1) := 0; -- Page group 0 (shared).
 l_pggroups(2) := 33; -- Page group 33 (mypagegroup).
 l_results := wwsrc_api.page_search(
 p_mainsearch => 'Oracle',
 p_page_groups => l_pggroups,
 p_rows => 10,
 p_out_count => l_count,
 p_out_scores => l_scores
);
 dbms_output.put_line('Number of results:' || l_count);
exception
 ...
end;
/

■ p_mainsearch is the keyword or term for which you want to search. This may be
any value, including an Oracle Text query expression.

■ p_page_groups is an array of the IDs of the page groups that you want to search.
If you do not include this parameter, the value defaults to wwsrc_api.EMPTY_
NUMBER_LIST (that is, all page groups).

■ p_rows is the maximum number of search results to return. This defaults to the
wwsrc_api constant value MAX_ROWS.

■ p_out_count is the number of search hits.

■ p_out_scores is an array of search result scores. This is the Oracle Text relevancy
score, rating how well each result matches the search term (or any other textual
search criteria). The index of the array matches the index of the results array
returned by the function.

Searching For Items By Attribute

13-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

13.3 Searching For Items By Attribute
Example 13–3 uses the specify_attributes and item_search APIs to search for
all file items created by Joe Bloggs since 01-Jan-2004 that contain the term 'Oracle'.

Example 13–3 Searching Specific Attributes (specify_attributes API)

declare
 l_results wwsrc_api.items_result_array_type;
 l_count number;
 l_scores wwsrc_api.number_list_type;
 l_attributes wwsrc_runtime_attr_varray;
 l_createdate_attrid wwsbr_attributes.id%type;
 l_createdate_caid wwsbr_attributes.caid%type;
 l_createdate_type wwsbr_attributes.data_type%type;
begin
 -- Build up attribute object with author criteria.
 wwsrc_api.specify_attributes(
 p_id => wwsbr_api.ATTRIBUTE_AUTHOR,
 p_siteid => wwsbr_api.SHARED_OBJECTS,
 p_value => 'Joe Bloggs',
 p_operator => wwsrc_api.CONTAINS_ALL,
 p_datatype => wwsrc_api.DATA_TYPE_TEXT,
 p_in_out_attr_varray => l_attributes
);
 -- Build up attribute object with create date criteria
 -- using wwsbr_attributes view.
 select id, caid, data_type
 into l_createdate_attrid, l_createdate_caid, l_createdate_type
 from wwsbr_attributes
 where name = 'createdate'
 and rownum = 1; -- Ignore translations.
 wwsrc_api.specify_attributes(
 p_id => l_createdate_attrid,
 p_siteid => l_createdate_caid,
 p_value => '01-JAN-2004',
 p_operator => wwsrc_api.GREATER_THAN,
 p_datatype => l_createdate_type,
 p_in_out_attr_varray => l_attributes
);
 -- Perform the search.
 l_results := wwsrc_api.item_search(
 p_mainsearch => 'Oracle',
 p_itemtypeid => wwsbr_api.ITEM_TYPE_FILE,
 p_itemtypesiteid => wwsbr_api.SHARED_OBJECTS,
 p_attributes => l_attributes,
 p_out_count => l_count,
 p_out_scores => l_scores
);
 dbms_output.put_line('Number of results: ' || l_count);
exception
 ...
end;
/

The following are parameters for specify_attributes:

■ p_id is the ID of the attribute. Use the wwsbr_api constants or query the
WWSBR_ATTRIBUTES view to find this ID.

■ p_siteid is the ID of the page group to which the attribute belongs.

Transforming Search Results into XML

Searching Portal Content 13-5

■ p_value is the attribute value to include as search criteria. This must be a text
value.

■ p_operator is the search operator that you want to use.

■ p_datatype is the datatype of the attribute value.

■ p_in_out_attr_varray is the existing varray of attributes (if any).

The following are parameters for item_search:

■ p_mainsearch is the keyword or term for which you want to search. This may be
any value, including an Oracle Text query expression.

■ p_itemtypeid is the ID of the type of item for which you want to search. Use the
wwsbr_api constants or query the WWSBR_ITEM_TYPES view to find this ID.
Note that this is the actual subtype of the item, not the base type.

■ p_itemtypesiteid is the ID of the page group to which the item type belongs.

■ p_attributes is an array of attributes to search together with their operators and
values. You can build up the values for this parameter by calling the specify_
attributes API.

■ p_out_count is the number of search hits.

■ p_out_scores is an array of search result scores. This is the Oracle Text relevancy
score, rating how well each result matches the search term (or any other textual
search criteria). The index of this array matches the index of the results array
returned by the function.

13.4 Transforming Search Results into XML
The APIs mentioned so far return search results in an array. To provide you with more
flexibility about how to display your search results, Oracle Portal also provides several
APIs that return search results as XML. These APIs return the XML results as a CLOB.

The following sections describe how you can generate a physical XML file from a
CLOB produced by the search APIs and store the XML file in a directory on the Oracle
Portal middle tier:

1. Section 13.4.1, "Creating a Directory for the XML File".

2. Section 13.4.2, "Creating an XML File from a CLOB"

3. Section 13.4.3, "Generating Search Results in XML"

These examples assume that the database is on the same machine as the Oracle Portal
middle tier.

13.4.1 Creating a Directory for the XML File
If you decide to transform your search results into an XML file, you must first perform
some set up tasks to define the physical directory in which to write the file.

To create a directory on the Oracle Portal middle tier, perform the following steps:

1. In SQL*Plus, connect as SYSTEM or SYS and enter the following command:

create directory <dirname> as '<physical_location>';

For example:

create directory RESULTDIR as '/u02/ora/OraHome_101202_
PortalMF/Apache/Apache/htdocs/searchapi';

Transforming Search Results into XML

13-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

In this example, we use the htdocs directory of the Oracle Portal middle tier. This
is a good location to use as you can then access the XML results file through
HTTP, in the format:

http://<Portal_Mid_Tier>:<Port>/<directory>/<XML_Output_File>

For example:

http://my.portal.com:7778/searchapi/results.xml

You can then use this to specify the XML file as the data source for OmniPortlet.
For an example of how to do this, refer to Section 13.5.1, "Displaying XML Search
Results in OmniPortlet".

2. Still in SQL*Plus, grant write privileges to the directory from PL/SQL programs.
In our example, we would do this by entering the following command:

grant write on directory RESULTDIR to public;

3. Check that you can write files to the new directory by running the following
procedure:

declare
 2 v_output_file1 utl_file.file_type;
 3 begin
 4 v_output_file1 := utl_file.fopen('RESULTDIR', 'NEW.txt', 'a');
 5 utl_file.put_line(v_output_file1, 'NATURE and Beauty');
 6 utl_file.fclose_all;
 7 end;
 8 /

PL/SQL procedure successfully completed.

Now, when you go to the directory on the file system, you should see the NEW.txt
file.

13.4.2 Creating an XML File from a CLOB
When you have specified the location for the XML output, you can write the
procedure that creates it. Example 13–4 shows a generic procedure that takes the
CLOB produced by the get_all_items_xml API and writes an XML file to a
specific location. It takes two input parameters: the file name and the CLOB.

Example 13–4 Writing an XML File to a Specific File System Location

create or replace procedure results_xml_to_file(xml_filename varchar2, result_xml
clob) as
 l_amount binary_integer;
 l_offset number := 1;
 l_text varchar2(32767);
 l_file utl_file.file_type;
 l_clob clob;
begin
 l_clob := result_xml;
 l_file := utl_file.fopen(
 location => 'RESULTDIR', -- Directory name is case-sensitive.
 filename => xml_filename,
 open_mode => 'w'
);
 l_amount := 32767;

Transforming Search Results into XML

Searching Portal Content 13-7

 l_offset := 1;
 begin
 dbms_lob.open(l_clob, dbms_lob.file_readonly);
 loop
 dbms_lob.read(l_clob, l_amount, l_offset, l_text);
 utl_file.put(
 file => l_file,
 buffer => l_text
);
 l_offset := l_offset + l_amount;
 exit when l_amount < 32767;
 end loop;
 utl_file.new_line(file => l_file);
 dbms_lob.close(l_clob);
 end;
 utl_file.fclose(file => l_file);
exception
 ...
end;
/

13.4.3 Generating Search Results in XML
Now, when you use the APIs to produce search results as XML, you can call the
procedure in Example 13–4 to write the resulting CLOB to an XML file on the file
system. Example 13–5 shows how you might do this.

Example 13–5 Generating Search Results in XML (get_all_items_xml API)

declare
 l_results wwsrc_api.items_result_array_type;
 l_scores wwsrc_api.number_list_type;
 l_count number;
 l_clob clob;
begin
 l_results := wwsrc_api.item_search(
 p_mainsearch => 'portal',
 p_out_count => l_count,
 p_out_scores => l_scores
);
 l_clob := wwsrc_api.get_all_items_xml(l_results);
 results_xml_to_file('results12.xml', l_clob);
exception
 ...
end;
/

For information about the item_search API used inExample 13–5, refer to
Section 13.1, "Searching For Items Across All Page Groups".

You can use the XML file generated by this API as a data source for OmniPortlet. For
an example of how you might do this, refer to Section 13.5.1, "Displaying XML Search
Results in OmniPortlet".

13.4.4 Workaround for get_item_xml
When you use get_item_xml to transform search results to XML, the API produces a
<?xml version="1.0" ?> element for each search result. This produces invalid

Transforming Search Results into XML

13-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

XML. Example 13–6 shows a workaround that removes these tags and also adds
opening and closing <ResultSet> tags to produce an XML file with the
ROWSET/ROW structure. If you want to use the XML file as a data source for
OmniPortlet, you should do something similar.

Example 13–6 Using get_item_xml to Write Search Results to a File

declare
 l_amount binary_integer;
 l_offset number := 1;
 l_text varchar2(32767);
 l_file utl_file.file_type;
 l_clob clob;
 l_results wwsrc_api.items_result_array_type;
 l_scores wwsrc_api.number_list_type;
 l_count number;
begin
 l_results := wwsrc_api.item_search(
 p_mainsearch => 'portal',
 p_out_count => l_count,
 p_out_scores => l_scores
);
 l_file := utl_file.fopen(
 location => 'RESULTDIR', -- Directory name is case-sensitive.
 filename => 'results14.xml',
 open_mode => 'w'
);
 utl_file.put(
 file => l_file,
 buffer => '<ResultSet>'
);
 for i in 1..l_results.count loop
 l_amount := 32767;
 l_offset := 1;
 begin
 l_clob := wwsrc_api.get_item_xml(l_results(i));
 dbms_lob.open(l_clob, dbms_lob.file_readonly);
 loop
 dbms_lob.read(l_clob, l_amount, l_offset, l_text);
 -- Workaround for XML generated with get_item_xml.
 if instr(l_text, '?>') != 0 then
 l_text := substr(l_text, instr(l_text, '?>') + 2);
 end if;
 -- End of workaround.
 utl_file.put(
 file => l_file,
 buffer => l_text
);
 l_offset := l_offset + l_amount;
 exit when l_amount < 32767;
 end loop;
 utl_file.new_line(file => l_file);
 dbms_lob.close(l_clob);
 end;

Note: Example 13–6 loops through the search results and writes
them all to XML (producing the same results as using get_all_
items_xml). Typically, you would use get_item_xml to filter the
search results somehow.

Displaying Search Results

Searching Portal Content 13-9

 end loop;
 utl_file.put(
 file => l_file,
 buffer => '</ResultSet>'
);
 utl_file.fclose(file => l_file);
exception
 ...
end;
/

13.5 Displaying Search Results
For your search query to be useful, you need to display the results somewhere. You
can choose to display the results of the search directly from the array, for example, in a
dynamic page. For more flexibility, you can transform the search results into XML first
and then display the XML, for example in OmniPortlet.

13.5.1 Displaying XML Search Results in OmniPortlet
The steps in this section provide an example of how to use the XML generated by the
search APIs as the data source for OmniPortlet. For example, you could schedule a job
to regularly execute an API to produce search results as XML and then automatically
display those results in an OmniPortlet.

For more information about OmniPortlet, refer to Chapter 3, "Creating Portlets with
OmniPortlet".

To display XML search results in OmniPortlet, perform the following steps:

1. First you need to add a new OmniPortlet instance to a page.

2. Click the Define link to launch the OmniPortlet Wizard.

3. On the Type page of the wizard, select XML, then click Next.

4. On the Source page, in the XML URL field, enter the URL of your XML file, for
example:

http://my.portal.com:7778/searchapi/results.xml

Because the XML data produced by the search APIs uses a ROWSET/ROW
structure, you do not need to specify an XSL filter.

5. Click Next.

6. On the View page, select Tabular for the Layout Style, then click Next.

Note: The XML produced by the search APIs is returned in a CLOB.
Therefore, if you want to use the XML as a data source for
OmniPortlet, you must first write the CLOB to a file. For an example
of how to do this, refer to Section 13.4, "Transforming Search Results
into XML".

Tip: OmniPortlet is usually available in the Portlet Builders area of
the Portlet Repository.

Displaying Search Results

13-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

7. On the Layout page, choose the columns you want to display in the portlet and
how you want them to appear.

8. Click Finish to create the OmniPortlet instance.

13.5.2 Displaying Search Results in a Dynamic Page
The following two examples show how to display search results in a dynamic page
portlet. Users can then add this portlet to any page within your portal. To do this,
perform the following steps:

1. Create a procedure that the dynamic page can call to perform the search.

The procedure in Example 13–7 uses the item_search API to search for a
specified term (searchterm) and displays only those results with a score higher
than a specified value (score).

Example 13–7 Procedure to Perform the Search

create or replace procedure search_results(searchterm varchar2, score number) as
 x varchar2(100);
 y number;
 l_results wwsrc_api.items_result_array_type;
 l_count number;
 l_scores wwsrc_api.number_list_type;
begin
 x := searchterm;
 y := score;
 l_results := wwsrc_api.item_search(
 p_mainsearch => x,
 p_out_count => l_count,
 p_out_scores => l_scores
);
 htp.p('Number of total hits: ' || l_count);
 htp.p('
');
 htp.p('
');
 for i in 1..l_results.count loop
 if (l_scores(i) > y) then
 htp.p('' || i || ' - <a href="' || l_results(i).url ||
 '">' || l_results(i).display_name || '');
 htp.p('
');
 htp.p('score = ' || l_scores(i));
 htp.p('
');
 end if;
 end loop;
exception
 ...
end;
/
grant execute on search_results to public;

For information about the item_search API used inExample 13–7, refer to
Section 13.1, "Searching For Items Across All Page Groups".

2. Create the dynamic page.

Note: You must create the procedure in the database in which your
portal resides.

Displaying Search Results

Searching Portal Content 13-11

A dynamic page is one of the portlets you can build using the Oracle Portal Portlet
Builder. For more information about Portlet Builder, refer to the Oracle Fusion
Middleware Developer's Guide for Oracle Portal. For more information about building
dynamic pages, refer to the Oracle Portal online Help.

Example 13–8 shows the code to use for the dynamic page.

Example 13–8 Code for Dynamic Page to Display Results

<html>
 <head>
 <title>Example for Search API UI</title>
 </head>
 <body>
 <h2>My Search Form</h2>
 <oracle>
 declare
 x varchar2(100);
 y number;
 begin
 x := :searchterm;
 y := :score;
 <schemaname>.search_results(x,y);
 end;
 </oracle>
 </body>
</html>

3. Provide default values for the two bind variables defined in the HTML code so
that the dynamic page displays some results (Figure 13–1).

Figure 13–1 Providing Default Values for Bind Variables

4. Make sure the dynamic page is available as a portlet.

5. You can now add this dynamic page portlet to any page in your portal.

The dynamic page portlet displays search results based on the default values
provided when you created the dynamic page, as shown in Figure 13–2.

Tip: Replace <schema> with the name of the schema in which you
created your procedure.

Tip: You should find the portlet in the Staging Area of the Portlet
Repository under the name of the provider in which you created it.

Displaying Search Results

13-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 13–2 Default Search Results Displayed in the Dynamic Page Portlet

6. Users can personalize this portlet to provide their own search term and minimum
score, as shown in Figure 13–3.

Figure 13–3 Personalizing Search Criteria

In Figure 13–4 you can see the changes in the search results when a user
personalizes the portlet and changes the minimum score to 70.

Figure 13–4 Personalized Search Results Displayed in the Dynamic Page Portlet

14

Creating Multi-Lingual Content 14-1

14 Creating Multi-Lingual Content

This chapter describes how to use the APIs provided with Oracle Portal to create
content in different languages. It contains the following sections:

■ Section 14.1, "Introduction to Multi-Lingual Support"

■ Section 14.2, "Querying the Default Language"

■ Section 14.3, "Setting the Session Language"

■ Section 14.4, "Modifying an Existing Translation"

■ Section 14.5, "Creating a Translation for an Item"

■ Section 14.6, "Translations and Item Versioning"

For more information about any of these APIs, refer to the Oracle Portal PL/SQL API
Reference on Portal Center:

http://portalcenter.oracle.com

In the Portal Focus Areas section, click Portlet Development, then in the APIs and
References section, click PL/SQL API Reference.

14.1 Introduction to Multi-Lingual Support
The page group administrator must have configured the page group to support
multiple languages before you can use the APIs to create translations of portal objects.
Before using the APIs, it is recommended that you read Chapter 20 "Translating Portal
Content" of the Oracle Fusion Middleware User's Guide for Oracle Portal to understand
how to configure a page group and how objects with translations behave.

The basic approach to creating or modifying a translation of a portal object is to set the
language context and then use the appropriate content management API to create or
modify the item.

14.2 Querying the Default Language
To determine the default language of a page group, run the following query:

select distinct wwnls_api.get_language(default_language) "Page Group Default
Language"
from wwsbr_all_content_areas pg
where name = 'MyPageGroup';

Tip: Remember, if you are calling the APIs from a Web provider or
external application, you need to set the session context first. For more
information, refer to Section 10.1, "Setting the Session Context".

Setting the Session Language

14-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

To determine the language context of a SQL*Plus session:

■ The SQL statement which is used to get the default language should be executed
as Portal schema user. To connect to the protal schema, enter the portal schema
password and the SERVICE_NAME/SID of the database where the portal
repository is installed.

■ Run the following query:

select wwctx_api.get_nls_language "Session Context Language Code",
 wwnls_api.get_language(wwctx_api.get_nls_language) "Language
Description"
from dual;

14.3 Setting the Session Language
Before creating content in a different language, use the wwctx_api.set_nls_
language API to set the session language, as shown in Example 14–1.

Example 14–1 Setting the Session Language (set_nls_language API)

begin
 wwctx_api.set_nls_language(
 p_nls_language => wwnls_api.GREEK,
 p_nls_territory => wwnls_api.TER_GREECE
);
exception
 ...
end;
/

■ p_nls_language is the Globalization Support language abbreviation of the
language that you want to set for the session.

■ p_nls_territory is the Globalization Support territory abbreviation of the territory
that you want to set for the session.

For a list of available language and territory constants, refer to the documentation for
the WWNLS_API package in the Oracle Portal PL/SQL API Reference on Portal Center:

http://portalcenter.oracle.com

In the Portal Focus Areas section, click Portlet Development, then in the APIs and
References section, click PL/SQL API Reference.

14.4 Modifying an Existing Translation
Modifying an existing translation is simply a matter of setting the language context
and using the appropriate API to modify the object. Example 14–2 modifies the text of
an existing text item that has a translation in French.

Example 14–2 Modifying a Translation

declare

Note: When you log in to SQL*Plus and set your user context, you
are initially in the language specified by your NLS_LANG
environment variable.

Creating a Translation for an Item

Creating Multi-Lingual Content 14-3

 l_item_master_id number;
begin
 -- Set the language context.
 wwctx_api.set_nls_language(
 p_nls_language => wwnls_api.FRENCH
);
 -- Edit the item (this edits the French translation).
 l_item_master_id := wwsbr_api.modify_item(
 p_master_item_id => 453,
 p_item_id => 454,
 p_caid => 33,
 p_folder_id => 45,
 p_display_name => 'Revue de Film');
 p_text => 'C'est le texte de la revue');
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

For information about the modify_item API used in Example 14–2, refer to
Section 11.2.2, "Editing an Item".

14.5 Creating a Translation for an Item
If the session is using a different language from the default language for the page
group and translations for the session language are enabled for the page group, the
add_item API creates a translation for an item when the item is created. For example,
if the default language for the page group is English, the session language is French,
and French translations are enabled for the page group, the API adds the following
two rows to the item table:

■ One with a value of 'us' (English) for the default language.

■ One with a value of 'f' (French) for the session language.

Other than the language, both rows will have identical values for all attributes,
including the item ID. To avoid this, it is recommended that you always add an item
in the default language first before creating any of its translations.

In similar circumstances, the modify_item API updates the translation for the
session language (if it exists). If the translation does not exist, as long as translations
are enabled for the session language, the API creates a new translation. Therefore, if
you want to add a translation for an existing item, use the modify_item (or modify_
item_post_upload) API. Example 14–3 creates a file item then changes the
language context and adds a translation for the item.

Example 14–3 Creating a Translation

declare
 l_item_masterthing_id number;
 l_item_masterthing_id2 number;
 l_item_id number;
begin
 -- Set the language context.
 wwctx_api.set_nls_language(
 p_nls_language => wwnls_api.AMERICAN
);

Translations and Item Versioning

14-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 -- Add an item that resides on the same server as the portal content repository
 -- database.
 l_item_masterthing_id := wwsbr_api.add_item(
 p_caid => 53, - A known page group ID.
 p_folder_id => 1, - A known page ID.
 p_display_name => 'My File',
 p_type_id => wwsbr_api.ITEM_TYPE_FILE,
 p_type_caid => wwsbr_api.SHARED_OBJECTS,
 p_region_id => 513, - A known region on the page.
 p_description => 'Description of my file',
 p_file_filename => '/docs_for_upload/English_File.txt'
);
 -- Note that if the default language was not American then OracleAS Portal
 -- would in addition automatically create a translation of the item in the
 -- default language.
 --
 -- Determine the item id.
 select id
 into l_item_id
 from wwsbr_all_items
 where masterid = l_item_masterthing_id
 and caid = l_site_id
 and language = wwctx_api.get_nls_language
 and is_current_version = 1;
 -- Change the language context to French.
 wwctx_api.set_nls_language(
 p_nls_language => wwnls_api.FRENCH
);
 -- Modify item adding its translation and any translated attributes.
 l_item_masterthing_id2 := wwsbr_api.modify_item(
 p_master_item_id => l_item_masterthing_id,
 p_item_id => l_item_id,
 p_caid => l_site_id,
 p_folder_id => l_page_id,
 p_display_name => 'Mon Fichier',
 p_description => 'Description du fichier',
 p_file_filename => '/docs_for_upload/French_File.txt'
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

For information about the add_item API used in Example 14–3, refer to Section 12.4,
"Creating Items". For information about the modify_item API, refer to Section 11.2.2,
"Editing an Item".

14.6 Translations and Item Versioning
If you attempt to create a new version of an item in a nondefault language, by setting
p_addnewversion to TRUE using modify_item API, a new version is not created;
a new translation is added instead.

When using versioning in conjunction with translations, we recommend that you
create new versions of items in the default language and then translate the new
version of the item.

Translations and Item Versioning

Creating Multi-Lingual Content 14-5

For a more detailed discussion of the effect of item versioning on translations, refer to
Section 20.3 "Creating Translatable Content" in the Oracle Fusion Middleware User's
Guide for Oracle Portal.

Translations and Item Versioning

14-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

15

Implementing Content Security 15-1

15 Implementing Content Security

This chapter describes how to use the APIs provided with Oracle Portal to ensure that
your content is secure. It contains the following sections:

■ Section 15.1, "Retrieving Object Privileges"

■ Section 15.2, "Setting Page Level Privileges"

■ Section 15.3, "Setting Item Level Privileges"

For more information about any of these APIs, refer to the Oracle Portal PL/SQL API
Reference on Portal Center:

http://portalcenter.oracle.com

In the Portal Focus Areas section, click Portlet Development, then in the APIs and
References section, click PL/SQL API Reference.

15.1 Retrieving Object Privileges
To retrieve a list of privileges that are currently defined for an object, use the wwsec_
api.grantee_list API. Example 15–1 prints the values of the grantee array for a
page with an ID of 17623 in page group with an ID of 33. Example 15–2 prints the
values of the grantee array for an item with a master ID of 32919 in a page group with
an ID of 53.

Example 15–1 Retrieving the List of Privileges for a Page (grantee_list API)

declare
 l_grantees wwsec_api.grantee_array;
 l_object_type_name varchar2(5) := wwsec_api.PAGE_OBJ;
 l_name varchar2(60) := '33/17623';
begin
 -- Call the function.
 l_grantees := wwsec_api.grantee_list(
 p_object_typ_name => l_object_type_name,
 p_name => l_name
);
 -- Output the results
 if l_grantees is not null then
 if l_grantees.count > 0 then
 for i in l_grantees.first..l_grantees.last loop
 if l_grantees.exists(i) then

Tip: Remember, if you are calling the APIs from a Web provider or
external application, you need to set the session context first. For more
information, refer to Section 10.1, "Setting the Session Context".

Retrieving Object Privileges

15-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 dbms_output.put.line('GRANTEE_TYPE '||to_char(i)||'= '||l_
grantees(i).GRANTEE_TYPE);
 dbms_output.put.line('GRANTEE_ID '||to_char(i)||'= '||l_
grantees(i).GRANTEE_ID);
 dbms_output.put.line('GRANTEE_NAME '||to_char(i)||'= '||l_
grantees(i).GRANTEE_NAME);
 dbms_output.put.line('PRIVILEGE '||to_char(i)||'= '||l_
grantees(i).PRIVILEGE);
 end if;
 end loop;
 end if;
 end if;
exception
 ...
end;
/

Example 15–2 Retrieving the List of Privileges for an Item

declare
 l_grantees wwsec_api.grantee_array;
 p_object_type_name varchar2(5) := wwsec_api.ITEM_OBJ;
 p_name varchar2(60) := '53/32919';
begin
 -- Call the function.
 l_grantees := wwsec_api.grantee_list(p_object_type_name, p_name);
 -- Output the results.
 if l_grantees is not null then
 if l_grantees.count > 0 then
 for i in l_grantees.first..l_grantees.last loop
 if l_grantees.exists(i) then
 dbms_output.put.line('GRANTEE_TYPE '||to_char(i)||'= '||l_
grantees(i).GRANTEE_TYPE);
 dbms_output.put.line('GRANTEE_ID '||to_char(i)||'= '||l_
grantees(i).GRANTEE_ID);
 dbms_output.put.line('GRANTEE_NAME '||to_char(i)||'= '||l_
grantees(i).GRANTEE_NAME);
 dbms_output.put.line('PRIVILEGE '||to_char(i)||'= '||l_
grantees(i).PRIVILEGE);
 end if;
 end loop;
 end if;
 end if;
exception
 ...
end;
/

The grantee_list API takes the following three parameters:

■ p_object_type_name is the type of the object. Use the predefined constants in the
WWSEC_API package to specify the value of this parameter, for example wwsec_
api.PAGE_OBJ or wwsec_api.ITEM_OBJ.

■ p_name is the reference to the object. Use the format '<page group
ID>/<object ID>'. So for items, use '<page group ID>/<master item
ID>', for example '53/32919'.

■ p_owner is the name of the schema that owns the object. For items, do not pass a
value to this parameter as it defaults to the portal schema owner.

Setting Page Level Privileges

Implementing Content Security 15-3

The API returns an array (WWSEC_API.GRANTEE_ARRAY) with the following
columns:

■ grantee_type is either USER or GROUP

■ grantee_id is the unique ID of the user or group

■ grantee_name is the user name or group name

■ privilege is the privilege granted to the user or group

15.2 Setting Page Level Privileges
This section shows how to use APIs in the WWSEC_API package to set page level
privileges.

15.2.1 Granting Page Level Privileges
Example 15–3 shows how to use the set_group_acl API to grant privileges to a
group. Example 15–4 shows how to use the set_user_acl API to grant privileges to
a user.

Example 15–3 Granting Page Privileges to a Group (set_group_acl API)

declare
 l_group_id number := wwsec_api.group_id('MYGROUP');
 l_name varchar2(60) := '33/17623';
BEGIN
 wwsec_api.set_group_acl(
 p_group_id => l_group_id,
 p_object_type_name => wwsec_api.PAGE_OBJ,
 p_name => l_name,
 p_privilege => wwsec_api.VIEW_PRIV
);
end;
/

Example 15–4 Granting Page Privileges to a User (set_user_acl API)

declare
 l_person_id number := wwsec_api.id('JOHN.SMITH');
 l_name varchar2(60) := '33/17623';
begin
 wwsec_api.set_user_acl(
 p_person_id => l_person_id,
 p_object_type_name => wwsec_api.PAGE_OBJ,
 p_name => l_name,
 p_privilege => wwsec_api.VIEW_PRIV
);

Note: You can also use the APIs listed in the following sections to set
tab level access by using the following format for the p_name
parameter:

<page group ID>/<tab ID>

You do not need to specify the ID of the container page, as the tab ID
is enough to uniquely identify the tab within the page group.

Setting Page Level Privileges

15-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

end;
/

These two APIs take the following parameters:

■ p_group_id is the ID of the group to which you want to grant privileges (set_
group_acl only)

■ p_person_id is the ID of the user to whom you want to grant privileges (set_
user_acl only)

■ p_object_type_name is type of the object on which you want to grant privileges.
Use the predefined constants in the WWSEC_API package to specify the value of
this parameter, for example wwsec_api.PAGE_OBJ.

■ p_name is the reference to the object. Use the format '<page group ID>/<page
ID>', for example '33/17623'.

■ p_privilege is the level of privilege you want to grant to the user or group. Use the
predefined constants in the WWSEC_API package to specify the value of this
parameter, for example wwsec_api.VIEW_PRIV.

15.2.2 Removing Page Level Privileges
At some point, it may become necessary to remove a user or group's privileges from a
page. Example 15–5 shows how to use the remove_group_acl API to remove a
group's privileges. Example 15–6 shows how to use the remove_user_acl API to
remove a user's privileges.

Example 15–5 Removing Page Privileges from a Group (remove_group_acl API)

declare
 l_group_id number := wwsec_api.group_id('MYGROUP');
 l_name varchar2(60) := '33/17623';
BEGIN
 wwsec_api.remove_group_acl(
 p_object_type_name => wwsec_api.PAGE_OBJ,
 p_name => l_name,
 p_group_id => l_group_id,
 p_privilege => wwsec_api.MANAGE_PRIV
);
end;
/

Example 15–6 Removing Page Privileges from a User (remove_user_acl API)

declare
 l_person_id number := wwsec_api.id('JOHN.SMITH');
 l_name varchar2(60) := '33/17623';
BEGIN
 wwsec_api.remove_user_acl(
 p_object_type_name => wwsec_api.GROUP_OBJ,
 p_name => l_name,
 p_person_id => l_person_id,
 p_privilege => wwsec_api.MANAGE_PRIV
);
end;
/

These two APIs take the following parameters:

Setting Item Level Privileges

Implementing Content Security 15-5

■ p_object_type_name is type of the object from which you want to remove
privileges. Use the predefined constants in the WWSEC_API package to specify
the value of this parameter, for example wwsec_api.PAGE_OBJ.

■ p_name is the reference to the object. Use the format '<page group ID>/<page
ID>', for example '33/17623'.

■ p_group_id is the ID of the group whose privileges you want to remove
(remove_group_acl only). Set this parameter to NULL if you want to remove
the specified privilege on this page from all groups.

■ p_person_id is the ID of the user whose privileges you want to remove (remove_
user_acl only). Set this parameter to NULL if you want to remove the specified
privilege on this page from all users.

■ p_privilege is the level of privilege you want to remove from the user or group.
Use the predefined constants in the WWSEC_API package to specify the value of
this parameter, for example wwsec_api.VIEW_PRIV. Set this parameter to NULL
if you want to remove all privileges on the page from the user or group.

15.3 Setting Item Level Privileges
If item level security (ILS) is enabled for a page, you can specify access privileges for
individual items on the page.

Example 15–7 shows how to use the modify_folder API to enable ILS for a page.

Example 15–7 Enabling Item Level Security for a Page

declare
 l_page wwsbr_api.page_record;
begin
 select *
 into l_page
 from <schema>.wwsbr_user_pages
 where siteid = 33
 and id = 1
 and rownum = 1;
 l_page.haveitemsecurity := 1;
 wwsbr_api.modify_folder(
 p_page => l_page
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

For information about the modify_folder API and WWSBR_USER_PAGES view
used in Example 15–7, refer to Section 11.1, "Editing Page Properties".

Example 15–8 shows how to enable ILS for an individual item (this is the same as
selecting Define Item Level Access Privileges in the Oracle Portal user interface):

Example 15–8 Enabling Item Level Security for an Item (enable_ils_for_item API)

begin
 wwsbr_api.enable_ils_for_item(
 p_master_item_id => 453,
 p_caid => 33,

Setting Item Level Privileges

15-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 p_folder_id => 45
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_master_item_id is the master ID of the item. You can find this value in the
MASTERID column of the WWSBR_ALL_ITEMS view.

■ p_caid is the ID of the page group to which the item belongs.

■ p_folder_id is the ID of the page on which the item appears.

15.3.1 Granting Item Level Privileges
After enabling ILS for the item, you can define access privileges for one or more users
or groups.

When setting item level privileges, the type of privileges that are granted is dependent
on which of the following parameters are passed rather than the parameter values:

■ Pass an array of user IDs to p_itemown_user to grant the Manage privilege to a
list of users.

■ Pass an array of user IDs to p_itemmanage_user to grant the Edit privilege to a
list of users.

■ Pass an array of user IDs to p_itemview_user to grant the View privilege to a
list of users.

■ Pass an array of group IDs to p_itemown_group to grant the Manage privilege to
a list of groups.

■ Pass an array of group IDs to p_itemmanage_group to grant the Edit privilege to
a list of groups.

■ Pass an array of group IDs to p_itemview_group to grant the View privilege to a
list of groups.

You can pass values to any combination of these parameters in the same procedure
call to set a range of privileges across different users and groups.

Example 15–9 shows how you can use the add_item_ils_privileges API to grant
item-level privileges to users.

Example 15–9 Granting Item Level Privileges to Users (add_item_ils_privileges API)

declare
 l_itemown_username_array wwsbr_type.array;
 l_itemown_userid_array wwsbr_type.array;
begin
 l_itemown_username_array(1) := 'jsmith';
 l_itemown_username_array(2) := 'janesmith';
 l_itemown_username_array(3) := 'joedoe';

Tip: If you want to edit other attributes for the item as well as the ILS
setting, you can use the modify_item or modify_item_post_
upload APIs instead. To enable ILS set the p_access_level
parameter to wwsbr_api.ITEM_ACCESS, to disable ILS set the
parameter to wwsbr_api.FOLDER_ACCESS.

Setting Item Level Privileges

Implementing Content Security 15-7

 for i in 1 .. l_itemown_username_array.count loop
 -- Get the user ID from the wwsec_api.id_sso API.
 l_itemown_userid_array(i) := wwsec_api.id_sso(
 p_username => l_itemown_username_array(i)
);
 end loop;
 wwsbr_api.add_item_ils_privileges(
 p_master_item_id => 453,
 p_caid => 33,
 p_folder_id => 45,
 p_itemown_user => l_itemown_userid_array
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_master_item_id is the master ID of the item. You can find this value in the
MASTERID column of the WWSBR_ALL_ITEMS view.

■ p_caid is the ID of the page group to which the item belongs.

■ p_folder_id is the ID of the page on which the item appears.

■ p_itemown_user is an array of user IDs to which you want to grant Manage
privileges.

If you pass the same user or group in more than one of the privilege arrays, the user or
group is granted the highest privilege level specified.

15.3.2 Removing Item Level Privileges
If for some reason, you need to remove a user or group's privileges on an item, use the
delete_ils_privilege API, as shown in Example 15–10.

Example 15–10 Removing Item Level Privileges (delete_ils_privilege API)

declare
 l_user_id number := 334;
 l_page_group_id number := 75;
 l_page_id number := 1;
 l_item_id number := 74637;
begin
 wwsbr_api.delete_ils_privilege(
 p_user_or_group_id => l_user_id,
 p_caid => l_page_group_id,
 p_folder_id => l_page_id,
 p_master_item_id => l_item_id
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

Tip: You can also update the access privileges for an item using the
add_item_ils_privileges API.

Setting Item Level Privileges

15-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ p_user_or_group_id is the ID of the user or group for which you want to remove
privileges.

■ p_caid is the ID of the page group to which the item belongs.

■ p_folder_id is the ID of the page on which the item appears.

■ p_master_item_id is the master ID of the item. You can find this value in the
MASTERID column of the WWSBR_ALL_ITEMS view.

15.3.3 Inheriting Item Level Privileges from the Page
If you decide that an item that has its own privileges defined should, in fact, simply
inherit its privileges from the page instead, use the inherit_folder_privileges
API to disable ILS (this is the same as selecting Inherit Parent Page Access Privileges
in the Oracle Portal user interface). Example 15–11 shows how to use the inherit_
folder_privileges API.

Example 15–11 Inheriting Item Privileges from the Parent Page (inherit_folder_privileges
API)

begin
 wwsbr_api.inherit_folder_privileges(
 p_master_item_id => 453,
 p_caid => 33,
 p_folder_id => 45
);
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 ...
end;
/

■ p_master_item_id is the master ID of the item. You can find this value in the
MASTERID column of the WWSBR_ALL_ITEMS view.

■ p_caid is the ID of the page group to which the item belongs.

■ p_folder_id is the ID of the page on which the item appears.

Tip: If you want to edit other attributes for the item as well as the ILS
setting, you can use the modify_item or modify_item_post_
upload APIs instead. To enable ILS set the p_access_level
parameter to wwsbr_api.ITEM_ACCESS, to disable ILS set the
parameter to wwsbr_api.FOLDER_ACCESS.

16

Using the Content Management Event Framework 16-1

16Using the Content Management Event
Framework

This chapter describes the Oracle Portal Content Management Event Framework
(CMEF). It contains the following sections:

■ Section 16.1, "What Is the Content Management Event Framework?"

■ Section 16.2, "How Does the Content Management Event Framework Work?"

■ Section 16.3, "Using the Content Management Event Framework"

■ Section 16.4, "Installing the Examples"

■ Section 16.5, "Example: Portal Object Event Logging"

■ Section 16.6, "Example: Item Notification"

■ Section 16.7, "Example: Item Validation"

■ Section 16.8, "Example: Integrating External Workflow"

16.1 What Is the Content Management Event Framework?
CMEF enables you to extend Oracle Portal's content management functionality by
adding programmatic hooks to certain pre-defined portal events. The framework
publishes these events to an Oracle database queue. This allows third party programs
to subscribe to these events and to use the APIs to extend your portal. In this way, you
can use page and item related events within a portal to trigger actions within one or
more external applications.

16.2 How Does the Content Management Event Framework Work?
CMEF uses Oracle Streams Advanced Queuing (AQ) technology. Oracle Streams AQ
is an Oracle database component that provides a message-queue system with a rich
and industry standard feature set. Oracle Streams AQ offers the following features:

■ Multiple ways for applications (producers) to place messages in a queue
(enqueue).

■ Multiple ways for applications (consumers) to get messages from a queue
(dequeue).

■ A publish/subscribe model that enables the producer application to be
independent of the consumer applications.

■ Propagation of messages between queues on different machines and databases.

How Does the Content Management Event Framework Work?

16-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ Guaranteed delivery of messages along with exception handling in case messages
cannot be delivered.

■ Persistent storage of messages.

■ Message prioritization.

■ Time properties for messages such as expiration and delays.

For more information, refer to the Oracle Streams Advanced Queuing page on the
Oracle Technology Network (OTN):

http://www.oracle.com/technology/products/aq

Actions within a portal (through the Oracle Portal user interface, the Web-based
Distributed Authoring and Versioning (WebDAV) protocol, or PL/SQL APIs) trigger
CMEF events. These events cause Oracle Portal to publish CMEF messages to a queue.
You can create subscribers to consume the messages on the queue and perform actions
based on them. For example, you could create a subscriber to verify that when a user
adds an item to a portal page, its display name is less than 80 characters. The
subscriber may process events as they occur or process them based on some time
interval.

There are three major types of CMEF events: ADD, UPDATE, and DELETE. Every
content management action falls under one of these events. An event can be in one of
several different states. For example, when a user adds an item to a page, the state of
the ADD event indicates whether the item is available immediately (PUBLISHED) or
at some later date (NOT_PUBLISHED). Refer to Section 16.3, "Using the Content
Management Event Framework" to learn more about how subscribers can use this
information to retrieve messages of interest to them.

Using the events published by CMEF involves the following five basic queuing
operations:

■ Enqueuing Messages: Oracle Portal publishes messages (known as enqueuing) to
the multiconsumer queue named WWSBR_EVENT_Q. Messages to this queue
never expire. For more information, refer to Section 16.2.1, "Enqueuing Messages".

■ Dequeuing Messages: Subscribing applications pick up messages (known as
dequeuing) from the queue. For more information, refer to Section 16.2.2,
"Subscribers and Dequeuing Messages".

■ Exception Handling: A message is said to be processed normally if it is consumed
within the specified time interval and within the specified number of attempts.
Messages not consumed normally are placed in a separate queue called the
exception queue. For more information, refer to Section 16.2.3, "Exception
Handling".

■ Listening for Messages: An application can use LISTEN to wait for messages for
multiple subscriptions without having to repeatedly poll the queue. For more
information, refer to Section 16.2.4, "Listening for Messages".

■ Notifications: This Oracle Streams AQ feature enables users or clients to receive
notification of a message of interest. For more information, refer to the Oracle
Streams AQ documentation.

You use the DBMS_AQ package to perform queuing operations.

16.2.1 Enqueuing Messages
CMEF enqueues messages to the WWSBR_EVENT_Q queue, specifying AQ message
properties that subscriber applications can then use at dequeue time (Table 16–1).

How Does the Content Management Event Framework Work?

Using the Content Management Event Framework 16-3

The WWSBR_EVENT_Q queue is a multiconsumer queue. This enables more than one
subscriber to consume a single message, allowing for multiple subscribers without
having to make multiple copies of each message. Since all messages in the queue have
the same priority, this queue works on a first-in first-out basis.

Each message that CMEF enqueues to the WWSBR_EVENT_Q queue contains a
payload that contains information about the portal object to which the event relates,
such as page ID or page group ID. Subscribers can use this payload information to
perform actions on the portal object. The contents of the CMEF message payload are
described in more detail in Section 16.3.6, "CMEF Message Payload".

CMEF enqueues messages for immediate consumption, that is, a message is posted on
the WWSBR_EVENT_Q queue as soon as an action occurs in the portal; there is no
delay. Messages created by CMEF do not have an expiration time.

16.2.2 Subscribers and Dequeuing Messages
On the consuming end, subscribers have various mechanisms to consume the
messages produced by CMEF. Subscribers can process messages as they arrive, and
thus must wait for the messages to arrive. Alternatively, subscribers can choose to be
notified when the messages arrive. These notifications can be Oracle Call Interface
(OCI) callback functions, PL/SQL functions, or even e-mails.

16.2.2.1 Adding a Subscriber to the WWSBR_EVENT_Q Queue
For a subscriber to be able to consume messages produced by CMEF, you need to add
it to the WWSBR_EVENT_Q queue using the DBMS_AQADM.ADD_SUBSCRIBER
procedure and you need to login as the Portal schema user:

GRANT EXECUTE ON DBMS_AQADM TO <<PORTAL_SCHEMA>>;
GRANT Aq_administrator_role TO <<PORTAL_SCHEMA>>;

Example 16–1 adds the JAY subscriber to the WWSBR_EVENT_Q queue.

Example 16–1 Adding a Subscriber to WWSBR_EVENT_Q

subscriber := sys.aq$_agent('JAY', null, null);
dbms_aqadm.add_subscriber(
 queue_name => 'portal.wwsbr_event_q',
 subscriber => subscriber
);

Since Oracle Streams AQ supports a maximum of 1024 subscribers for each
multiconsumer queue, you can add up to a maximum of 1024 subscribers to the

Table 16–1 AQ Message Properties Set by CMEF

Message Property Type Value

PRIORITY BINARY_INTEGER 1

DELAY BINARY_INTEGER NO_DELAY

EXPIRATION BINARY_INTEGER NEVER

CORRELATION VARCHAR2(128) NULL

RECIPIENT_LIST AQ$_RECIPIENT_LIST_T NULL

EXCEPTION_QUEUE VARCHAR2(51) WWSBR_EVENT_ERR_Q

ORIGINAL_MSGID RAW(16) NULL

How Does the Content Management Event Framework Work?

16-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

WWSBR_EVENT_Q queue. All consumers that are added as subscribers to this queue
must have unique values for the AQ$_AGENT parameter.

You can remove a subscriber using the DBMS_AQADM.REMOVE_SUBSCRIBER
procedure.

For an example of a simple subscriber, refer to Section 16.3.1, "Creating Subscriber
Code".

16.2.2.2 Subscriber Queue Management
Oracle Enterprise Manager DBA Studio enables you to manage Oracle Streams AQ.
You can use DBA Studio to create queue tables, create queues, browse AQ messages,
archive or purge AQ messages, add AQ subscribers, and manage propagation. DBA
Studio also shows the topology for the propagation of messages between queues at
database level and queue level.

The Oracle Diagnostics and Tuning pack supports alerts and monitoring for AQ
queues. You can set up alerts for when the number of messages for a particular
subscriber exceeds a threshold, or when there is an error in propagation. In addition,
you can monitor queues for the number of messages in a ready state or the number of
messages for each subscriber, and so on.

You can also manage the subscriber queue using the standard AQ APIs. For more
information, refer to your Oracle Enterprise Manager documentation.

16.2.2.3 Dequeuing Messages
The operation of retrieving messages from a queue is known as dequeuing
(Figure 16–1).

Figure 16–1 The Dequeuing Process

You use the DBMS_AQ.DEQUEUE procedure for dequeuing messages from the
WWSBR_EVENT_Q queue. Example 16–2 illustrates dequeuing for the subscriber JAY.

How Does the Content Management Event Framework Work?

Using the Content Management Event Framework 16-5

Example 16–2 Dequeuing Messages

...
dequeue_options.wait := dbms_aq.NO_WAIT;
dequeue_options.consumer_name := 'JAY';
dequeue_options.navigation := dbms_aq.FIRST_MESSAGE;
dequeue_options.dequeue_mode := dbms_aq.BROWSE;
dbms_aq.dequeue(
 queue_name => 'WWSBR_EVENT_Q',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle
);
...

■ NAVIGATION: Use the NAVIGATION parameter of the DBMS_AQ.DEQUEUE
operation to determine the sequence in which you want to dequeue the messages.
The default NAVIGATION parameter for the dequeue request is NEXT_
MESSAGE. This means that the subsequent dequeue operation will retrieve the
messages from the queue based on the snapshot obtained in the first dequeue. In
particular, a message that is enqueued after the dequeue command will be
processed only after processing all the messages already enqueued before in the
queue. This is sufficient for messages enqueued for the WWSBR_EVENT_Q queue
since it does not have priority-based ordering.

■ DEQUEUE_MODE: A dequeue request can either view a message or delete a
message. To view a message, the subscriber can use the BROWSE or LOCK modes.
To consume a message, the subscriber can use the REMOVE or REMOVE_
NODATA modes. If a subscriber browses a message, the message remains
available for further processing. Similarly a locked message remains available for
further processing after the subscriber releases the lock by performing a
transaction commit or rollback. To prevent a viewed message from being
dequeued by a concurrent user, you should view the message in locked mode.
After a subscriber consumes a message using either of the REMOVE modes, the
message is no longer available for dequeue requests.

When a subscriber dequeues a message using REMOVE_NODATA mode, the
request does not retrieve the payload of the message. This mode is useful when
the user has already examined the message payload, possibly by means of a
previous BROWSE dequeue. In this way, you can avoid the overhead of payload
retrieval that can be substantial for large payloads.

■ CONSUMER_NAME: A subscriber can dequeue a message from the WWSBR_
EVENT_Q queue by supplying this queue name:

Note: NEXT_MESSAGE with some delay is the optimal way of
processing AQ messages. When the first message in the queue needs
to be processed by every dequeue command, subscribers must
explicitly use the FIRST_MESSAGE navigation option.

Note: One event is enqueued for each subscriber. Thus removing an
event from one subscriber's queue does not remove it from the queues
of other subscribers.

How Does the Content Management Event Framework Work?

16-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

– In PL/SQL you supply the consumer name using the CONSUMER_NAME
field in the DEQUEUE_OPTIONS_T record.

– In OCI you supply the consumer name using the OCISetAttr procedure to
specify a text string as the OCI_ATTR_CONSUMER_NAME of an OCI_
DTYPE_AQDEQ_OPTIONS descriptor.

– In Visual Basic (OO4O) you supply the consumer name by setting the
consumer property of the OraAQ object.

Multiple processes or operating system threads can use the same to dequeue
concurrently from a queue. Unless the message ID of a specific message is
specified during dequeue, the consumers can dequeue messages that are in the
READY state.

16.2.3 Exception Handling
A message is considered processed when all intended consumers have successfully
dequeued the message. If a message cannot be processed for some reason, it moves to
an exception queue.

A message is considered expired if one or more consumers does not dequeue it before
the expiration time. Expired messages also move to an exception queue. An exception
queue is a repository for all expired or unserviceable messages.

Applications cannot directly enqueue into exception queues. Also, an exception queue
cannot have subscribers associated with it. However, an application that intends to
handle these expired or unserviceable messages must dequeue from the exception
queue.

CMEF exceptions are sent to the WWSBR_EVENT_ERR_Q exception queue. Expired
messages from the WWSBR_EVENT_Q multiconsumer queue cannot be dequeued by
the intended recipients of the message. However, they can be dequeued in REMOVE
mode once by specifying a NULL consumer name in the dequeue options. The queue
monitor removes expired messages from multiconsumer queues. This allows
dequeuers to complete the dequeue operation by not locking the message in the queue
table.

Since the queue monitor removes messages that have been processed by all consumers
from multiconsumer queues at regular intervals, users may see a delay between when
the messages have been completely processed and when they are physically removed
from the queue.

16.2.4 Listening for Messages
Oracle Streams AQ can monitor multiple queues for messages with a single LISTEN
call. A subscriber can use LISTEN to wait for messages for multiple subscriptions. It
can also be used by gateway applications to monitor multiple queues. If the LISTEN
call returns successfully, a dequeue must be used to retrieve the message. Without the
LISTEN call, an application which sought to dequeue from a set of queues would have
to continuously poll the WWSBR_EVENT_Q queue to determine if there is a message.

Note: You should not need to use the Search parameters to dequeue
CMEF events.

Note: The WWSBR_EVENT_ERR_Q exception queue, like all
exception queues, is a single-consumer queue.

How Does the Content Management Event Framework Work?

Using the Content Management Event Framework 16-7

Alternatively, you could design your subscriber to have a separate dequeue process
for each queue. However, if there are long periods with no traffic in any of the queues,
including WWSBR_EVENT_Q, these approaches will create unacceptable overhead.
The LISTEN call is well suited for such subscribers. When there are messages for
multiple agents in the agent list, LISTEN returns with the first agent for whom there is
a message.

You can use the LISTEN call to monitor receipt of messages on one or more queues on
behalf of a list of agents. The call takes a list of agents as an argument. You specify the
queue to be monitored in the address field of each agent listed. You also must specify
the name of the agent when monitoring multiconsumer queues. Example 16–3 shows
how to use the LISTEN call to listen to messages on multiple queues.

Example 16–3 Listening to Messages on Multiple Queues

declare
 agent_w_msg aq$agent;
 qlist dbms_aq.agent_list_t;
begin
 -- MYQ1, MYQ2, MYQ3 are multiconsumer queues in the SCOTT schema.
 qlist(1) := aq$agent('agent1', 'scott.MYQ1', null);
 qlist(2) := aq$agent(null, 'scott.MYQ2', null);
 qlist(3) := aq$agent('agent3', 'scott.MYQ3', null);
 -- Listen with a timeout of 100 seconds.
 dbms_aq.listen(
 agent_list => qlist,
 wait => 100,
 agent => agent_w_msg
);
 dbms_output.put_line('MSG in Q: '||agent_w_msg.address||'for '
 ||agent_w_msg.name);
 dbms_output.put_line('');
end;
/

This is a blocking call that returns when there is a message ready for consumption for
an agent in the list. If there are messages for more than one agent, only the first agent
listed is returned. If there are no messages found when the wait time expires, an error
is raised.

A successful return from the call is only an indication that there is a message for one of
the listed agents in one of the specified queues. The interested agent should dequeue
the relevant message. Example 16–4 illustrates the dequeue process combined with
listening. Here, we dequeue the messages for the subscriber, JAY, for a certain time
period.

Example 16–4 Listening and Dequeuing Messages

begin
 agent_list(1) := sys.aq$_agent('JAY', 'WWSBR_EVENT_Q', null);
 wait_time integer := 100;
 loop
 -- Wait for order status messages.
 dbms_aq.listen(
 agent_list => agent_list,
 wait => wait_time,
 agent => agent_w_message
);
 -- If there are messages for JAY, dequeue them.
 if (agent_w_message.name = 'JAY') then

Using the Content Management Event Framework

16-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 dequeue_options.wait := dbms_aq.NO_WAIT;
 dequeue_options.consumer_name := 'JAY';
 dequeue_options.navigation := dbms_aq.FIRST_MESSAGE;
 dequeue_options.dequeue_mode := dbms_aq.BROWSE;
 dbms_aq.dequeue(
 queue_name => 'item_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle
);
 end if;
 end loop;
exception
 when NO_MESSAGES then
 dbms_output.put_line('No more messages for Jay');
end;
/

16.3 Using the Content Management Event Framework
Every portal item and page action generates a CMEF message that is enqueued to the
WWSBR_EVENT_Q queue. A subscriber can use the information contained within this
message to perform various actions using the Oracle Portal PL/SQL APIs.

There are three basic steps in handling CMEF events, each of which is described and
illustrated later in this section. These steps are as follows:

1. Section 16.3.1, "Creating Subscriber Code"

2. Section 16.3.2, "Adding a Subscriber to WWSBR_EVENT_Q"

3. Section 16.3.3, "Enabling CMEF Events at the Page Group Level"

This section also provides a description of the message payload, followed by several
examples of common portal actions and the events they generate.

16.3.1 Creating Subscriber Code
Oracle Streams AQ offers a content-based subscription model. Subscriber applications
can specify interest based on message content. You should execute CMEF event
subscriber code in the Oracle Portal schema. Example 16–5 shows a sample subscriber.

Example 16–5 An Example Subscriber

create or replace <procedure name> as
 agent_list dbms_aq.aq$_agent_list_t;
 wait_time integer := <time in seconds>;
 agent_w_message sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 message_handle raw(16);
 message <portal schema>.wwsbr_event;
 l_subscriber varchar2(30) := '<subscriber name>';
 l_queue varchar2(30) := 'PORTAL.WWSBR_EVENT_Q';
 l_mode binary_integer := dbms_aq.[BROWSE|LOCK|REMOVE|REMOVE_NODATA];
 ...
 <additional parameters>
 ...
BEGIN

Using the Content Management Event Framework

Using the Content Management Event Framework 16-9

 agent_list(1) := sys.aq$_agent(l_subscriber, l_queue, null);
 loop
 -- Listen for messages.
 dbms_aq.listen(
 agent_list => agent_list,
 wait => wait_time,
 agent => agent_w_message
);
 -- If there are messages for the subscriber then dequeue them.
 if (agent_w_message.name = l_subscriber) then
 dequeue_options.wait := dbms_aq.NO_WAIT;
 dequeue_options.consumer_name := l_subscriber;
 dequeue_options.navigation := dbms_aq.[NEXT_MESSAGE|FIRST_MESSAGE];
 dequeue_options.dequeue_mode := l_mode;
 -- Dequeue messages.
 dbms_aq.dequeue(
 queue_name => l_queue,
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle
);
 -- Determine the type of event that occurred and act accordingly.
 ...
 <your code here>
 ...
 end if;
 end loop;
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
end;
/

16.3.2 Adding a Subscriber to WWSBR_EVENT_Q
A subscriber subscribes to a queue from where it consumes messages. You have to add
a subscriber to the WWSBR_EVENT_Q queue in order to process CMEF event
messages, as shown in Example 16–6.

Example 16–6 Adding a Subscriber to WWSBR_EVENT_Q

declare
 subscriber sys.aq$_agent;
begin
 subscriber := sys.aq$_agent('<subscriber>', null, null);
 dbms_aqadm.add_subscriber(
 queue_name => '<portal schema>.wwsbr_event_q',
 subscriber => subscriber
);
end;
/

16.3.3 Enabling CMEF Events at the Page Group Level
In Oracle Portal, CMEF is enabled or disabled at the page group level. By default,
CMEF is enabled when a user creates a page group, and thus, events are triggered
whenever changes occur within the Oracle Portal user interface or WebDAV.

To enable or disable CMEF for a page group, perform the following steps:

Using the Content Management Event Framework

16-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

1. Go to any page of the page group and switch to Edit mode.

2. In the toolbar at the top of the page, click the Properties link next to Page Group.

Figure 16–2 The Page Group Properties Link on the Edit Mode Toolbar

3. Click the Configure tab to bring it forward.

4. In the Content Management Event Framework section you can see whether CMEF
is enabled or disabled. If you want to change this setting, click the Edit link
(Figure 16–3).

Figure 16–3 Status of CMEF for a Page Group

5. To enable CMEF, select the Enable Content Management Event Framework check
box (Figure 16–4). To disable CMEF, clear the check box.

Figure 16–4 Enabling or Disabling CMEF for a Page Group

6. Click OK to save your changes.

7. Click Close to return to the page.

Note: Make sure you click the link next to Page Group and not the
one next to Page (Figure 16–2).

Using the Content Management Event Framework

Using the Content Management Event Framework 16-11

16.3.4 Examining CMEF Events
Use the CMEF Events page (Figure 16–5) to examine the subscribers that have been
added to the WWSBR_EVENTS_Q queue.

To access the CMEF Events page, perform the following steps:

1. Login to your portal as the portal schema owner.

2. Enter the following URL in the browser Address field:

http://<host>:<port>/portal/pls/<dad>/<schema>.wwsbr_event_dbg.show

■ host is the machine on which your portal midtier is installed.

■ port is the port used by your portal

■ dad is the Database Access Descriptor (DAD) for your Oracle Portal
installation.

■ schema is the schema in which Oracle Portal is installed.

Figure 16–5 CMEF Events Page

16.3.5 Running a CMEF Subscriber
To run a subscriber, issue the command shown in Example 16–7 at a SQL prompt.

Example 16–7 Running a Subscriber

begin
 <subscriber procedure>();
end;
/

Note: The CMEF Events page is not supported by Oracle, but it is
included within Oracle Portal for debugging purposes. It is only
accessible by the portal schema owner.

Using the Content Management Event Framework

16-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

16.3.6 CMEF Message Payload
Every Oracle Portal user interface or PL/SQL content management action falls under
one of the three main CMEF events: INSERT, UPDATE, DELETE. States provide more
meaning to events. For example, the following types of ADD/INSERT ITEM events:

■ Add an item and publish it immediately.

■ Add an item and publish it at a later date.

■ Add an item that requires approval, because the user has Manage Items With
Approval privileges.

For a detailed list of the actions and related events and states, refer to Appendix G,
"Content Management Event Framework Events".

Each CMEF event has an associated CMEF message payload as shown in Table 16–2.

Table 16–2 CMEF Message Payload Properties

Message Property Type Description

ACTION VARCHAR2(30) The portal action that triggered the
event.

RAW_EVENT VARCHAR2(30) The event produced as a result of the
portal action.

STATE VARCHAR2(30) Provides additional information related
to the event.

OBJECT_ID NUMBER The ID of the object to which the event
relates (for example, item, page,
category, and so on).

OBJECT_SITE_ID NUMBER The ID of the page group to which the
object belongs.

OBJECT_LANGUAGE VARCHAR2(30) The session language.

NULL if the action is independent of
language.

PAGE_ID NUMBER For items, the ID of the page on which
the item appears.

NULL for other objects.

PAGE_SITE_ID NUMBER For items, the ID of the page group to
which the page identified in PAGE_ID
belongs.

NULL for non-item related events.

OBJECT_CLASS VARCHAR2(30) Records the class of object about which
an event has been raised.

EVENTS_USER VARCHAR2(256) The name of the user who performed
the portal action.

EVENTS_DATE VARCHAR2(60) The date on which the event occurred.
Format: dd-mon-yyyy HH12:MI PM

ID1 (OVERLOADED) NUMBER For items, the item type ID.

For pages, the page type ID.

For item and page types, the base type
ID.

Using the Content Management Event Framework

Using the Content Management Event Framework 16-13

16.3.7 Oracle Portal Actions and CMEF Events
This section describes some of the most common portal actions and shows how to
include code in your subscriber to detect these actions. These actions may occur
through the Oracle Portal user interface, the Oracle Portal PL/SQL APIs, or WebDAV.

For a more detailed list of portal actions and the events and message payloads that
they generate, refer to Appendix G, "Content Management Event Framework Events".

16.3.7.1 Page and Page Group Actions
In Oracle Portal, a portal is a collection of one or more page groups. A page group is a
hierarchical collection of pages for which common attributes and mechanisms can be
established.

16.3.7.1.1 Creating a Page Creating a page produces the following CMEF message
payload:

The first message is for the page itself, and the second is for the portlet instance that
displays the default navigation page on the page.

If you want your subscriber to respond to the creation of a page, perform the following
check:

if ((message.object_class = 'PAGE') and
 (message.raw_event = wwsbr_event_q_access.EVENT_INSERT) then
. . .
end if;

SITE_ID1
(OVERLOADED)

NUMBER For item types, the ID of the page group
to which the item type belongs.

For pages, the ID of the page group to
which the page type belongs.

For item and page types, the ID of the
page group to which the base type
belongs.

GROUP_ID NUMBER When multiple messages are associated
with a particular event, related
messages have the same group ID.

OBJECT PATH VARCHAR2(4000) A unique path to the portal object being
referenced by this message on the queue
(this can be NULL). It is used only for
pages, items, categories, perspectives,
item types, and page types.

OBJECT UID VARCHAR2(4000) A unique immutable identifier to the
portal object being referenced by this
message. It is used only for pages, items,
categories, perspectives, item types, and
page types.

Action Event State Object Class

ADD_PAGE INSERT PUBLISHED PAGE

ADD_ITEM INSERT PUBLISHED ITEM

Table 16–2 (Cont.) CMEF Message Payload Properties

Message Property Type Description

Using the Content Management Event Framework

16-14 Oracle Fusion Middleware Developer's Guide for Oracle Portal

16.3.7.1.2 Updating the Access Control List of a Page Changing the ACL of a page so that
it does not inherit from that of its page group, then clicking Apply or OK produces the
following message payload:

Now, adding a user to the ACL of a page, then clicking Add produces the following
message payload:

Changing the ACL of a page so that it does not inherit from that of its page group,
immediately adding a user or group to the ACL, and then clicking Apply or OK
produces the following message payload:

Changing the ACL of a page so that it inherits that of the page group then clicking
Apply or OK produces the following message payload:

Clicking Apply or OK on the Page Properties page, produces an additional message:

16.3.7.1.3 Updating the Access Control List of a Page Group Updating the access control list
(ACL) of a page group by adding a user or group, or deleting a user or group
produces the following message payload:

If you want your subscriber to respond to general ACL updates on a page group,
perform the following check:

Action Event State Object Class

SPECIFY_PAGE_ACL UPDATE GENERAL PAGE

Action Event State Object Class

ADD_PAGE_ACL UPDATE GENERAL PAGE

Action Event State Object Class

SPECIFY_AND_
ADD_PAGE_ACL

UPDATE GENERAL PAGE

Action Event State Object Class

INHERIT_PAGE_
ACL

UPDATE GENERAL PAGE

Action Event State Object Class

UPDATE_PAGE_ACL UPDATE GENERAL PAGE

Action Event State Object Class

ADD_PAGEGROUP_
ACL

or

DELETE_PAGE_
GROUP_ACL

UPDATE GENERAL PAGE_GROUP

UPDATE_PAGE_
GROUP_ACL

UPDATE GENERAL PAGE_GROUP

Using the Content Management Event Framework

Using the Content Management Event Framework 16-15

if ((message.action = 'UPDATE_PAGE_GROUP_ACL') and
 (message.object_class = 'PAGE_GROUP') and
 (message.raw.event = wwsbr_event_q_access.EVENT_UPDATE)) then
. . .
end if;

However, if you are more interested in filtering for actual update and delete events on
the page group's ACL, then your subscriber should perform the following checks:

if ((message.object_class = 'PAGE_GROUP') and
 (message.raw_event = wwsbr_event_q_access.EVENT_UPDATE)) then
 if (message.action = 'ADD_PAGE_GROUP_ACL') then
 . . .
 end if;
 if (message.action = 'DELETE_PAGE_GROUP_ACL') then
 . . .
 end if;
 . . .
end if;

16.3.7.1.4 Deleting a Page Deleting a page produces the following message payload:

16.3.7.2 Item Actions
Items are one of the basic components of a portal page. Items in a portal are based on
item types. An action on an item triggers a CMEF event irrespective of the item type.

For example, an ADD_ITEM action occurs whenever a user adds an item of a base,
extended, or custom item type. This ensures that there is consistent CMEF messaging
behavior when an item action occurs.

16.3.7.2.1 Creating an Item and Publishing it at the Same Time If a user has Manage
privileges, creating an item of any type on a page produces the following message
payload:

If you want you subscriber to respond to this action, perform the following check:

if ((message.action = 'ADD_ITEM') and
 (message.object_class = 'ITEM') and

Note: The ADD_PAGE_GROUP_ACL and DELETE_PAGE_
GROUP_ACL events are triggered when the user clicks Add for each
user that is added to/deleted from the ACL. The UPDATE_PAGE_
GROUP_ACL is generated when the user clicks Apply or OK.

Action Event State Object Class

DELETE_PAGE DELETE PURGED PAGE

Note: Events are not generated for the sub-pages or items that are on
the page.

Action Event State Object Class

ADD_ITEM INSERT PUBLISHED ITEM

Using the Content Management Event Framework

16-16 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 (message.raw_event = 'INSERT') and
 (message.state = 'PUBLISHED')) then
 . . .
end if;

16.3.7.2.2 Adding an Item That Requires Approval If approvals and notifications are
enabled for a page (or page group), and a user with Manage Items With Approval
privileges, adding an item to a page produces the following message payload:

If you want your subscriber to respond to this action, perform the following check:

if ((message.action = 'SUBMIT_ITEM_FOR_APPROVAL') and
 (message.object_class = 'ITEM') and
 (message.raw_event = 'INSERT') and
 (message.state = 'NOT_PUBLISHED')) then
 . . .
end if;

16.3.7.2.3 Approving an Item Approving an item triggers either an INSERT or UPDATE
event, which may also be followed by either a DELETE or UPDATE event depending
upon whether or not versioning is enabled.

Item approved; versioning disabled

This is the simplest case. If the item still has approval steps to pass through, then an
UPDATE event is triggered:

If the item has completed all approval steps, then an INSERT event is triggered:

Item approved; versioning enabled; current version overwritten

If item versioning is set to Simple at the page or page group level, and a user selects
Overwrite Current Version when editing an item, on approval of the item, two events
are generated. The first event is for the item that is approved, and a second DELETE
event for the item that is overwritten as a result of the item being approved:

Action Event State Object Class

SUBMIT_ITEM_FOR_
APPROVAL

INSERT NOT_PUBLISHED ITEM

Action Event State Object Class

APPROVE_ITEM_
STEP

UPDATE GENERAL ITEM

Action Event State Object Class

APPROVE_ITEM INSERT PUBLISHED ITEM

Action Event State Object Class

APPROVE_ITEM INSERT PUBLISHED ITEM

APPROVE_ITEM DELETE PURGED ITEM

Using the Content Management Event Framework

Using the Content Management Event Framework 16-17

Item approved; versioning enabled; new and current version

If item versioning is set to Audit at the page or page group level, or it is set to Simple
and a user selects Add Item As New And Current Version, on approval of the item an
INSERT event is generated. An UPDATE event is also generated that is related to
marking the previous version of the item as UNPUBLISHED:

If you are writing a subscriber that sends a notification when an item is approved or
has passed through a stage of being approved, you should perform the following
check:

-- If an item is approved.
if ((message.action = 'APPROVE_ITEM') and
 (message.object.class = 'ITEM') and
 (message.raw_event = 'INSERT') and
 (message.state = 'PUBLISHED')) then
 . . .
-- If an item has passed an approval step.
elsif ((message.action = 'APPROVE_ITEM_STEP') and
 (message.object_class = 'ITEM') and
 (message.raw_event = 'UPDATE') and
 (message.state = 'PUBLISHED')) then
 . . .
end if;

Item approved, versioning enabled; new but not current version

An INSERT event occurs for the item that is added, but the state of the item is marked
as NOT_PUBLISHED to indicate that it is not published as the current version:

16.3.7.2.4 Applying a Category or Perspective to an Item Applying a different category or
perspective to an item produces the same message payload as editing an item:

If you want your subscriber to respond to this action, perform the following check:

if ((message.action = 'EDIT_ITEM') and
 (message.object_class = 'ITEM') and
 (message.raw_event = 'UPDATE') and
 (message.state = 'GENERAL') then

Action Event State Object Class

APPROVE_ITEM INSERT PUBLISHED ITEM

APPROVE_ITEM UPDATE UNPUBLISHED ITEM

Action Event State Object Class

APPROVE_ITEM INSERT NOT_PUBLISHED ITEM

Action Event State Object Class

EDIT_ITEM UPDATE GENERAL ITEM

Note: No specific event is generated when the category or
perspectives applied to an item are changed, and no additional
information is provided.

Installing the Examples

16-18 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 . . .
end if;

16.3.7.2.5 Deleting an Item Deleting an item from a page group that retains deleted
items (that is, items are marked for deletion, but not actually deleted) produces the
following message payload:

Deleting an item from a page group that does not retain deleted items (that is, deleted
items are immediately and permanently removed) produces the following message
payload:

Your subscriber can use the state value within the message payload to determine what
type of delete action occurred:

if ((message.action = 'DELETE_ITEM') and
 (message.object_class = 'ITEM') and
 (message.raw_event = 'DELETE')) then
 . . .
 -- If item is in a page group that does not actually delete items.
 if (message.state = 'MARKED_FOR_DELETE') then
 . . .
 -- If item is in a page group that actually deletes items.
 elsif (message.state = 'PURGED') then
 . . .
 end if;
end if;

16.4 Installing the Examples
If you would like to deploy and use the examples within the next few sections, we
recommend that you create them in a separate schema, called CMEFSAMPLES. To
create this schema, use the following steps:

1. Create the database schema CMEFSAMPLES. You need to do this as the SYS user,
since you need to grant permissions packages to which only SYS has access. This
database schema must be in the same database as that in which the Oracle Portal
repository resides. For example:

@connect "/ as sysdba"
drop user cmefsamples cascade;
create user cmefsamples identified by oracle1
default tablespace users temporary tablespace temp;
grant connect, resource to cmefsamples;

2. As the SYS schema, grant the following privileges to CMEFSAMPLES:

@connect "/ as sysdba"
grant create table to cmefsamples;

Action Event State Object Class

DELETE_ITEM DELETE MARKED_FOR_
DELETE

ITEM

Action Event State Object Class

DELETE_ITEM DELETE PURGED ITEM

Example: Portal Object Event Logging

Using the Content Management Event Framework 16-19

grant create sequence to cmefsamples;
grant create view to cmefsamples;
grant create procedure to cmefsamples;
grant create trigger to cmefsamples;
grant create indextype to cmefsamples;

grant create synonym to cmefsamples;
grant create public synonym to cmefsamples;

grant create database link to cmefsamples;
grant create public database link to cmefsamples;
grant execute on dbms_utility to cmefsamples;
grant aq_administrator_role to cmefsamples;
grant aq_user_role to cmefsamples;
grant execute on dbms_aqadm to cmefsamples;
grant execute on dbms_aq to cmefsamples;
grant execute on aq$_agent to cmefsamples;
grant execute on dbms_job to cmefsamples;

execute dbms_aqadm.grant_type_access('cmefsamples');
execute dbms_aqadm.grant_system_privilege('ENQUEUE_ANY','cmefsamples',FALSE);
execute dbms_aqadm.grant_system_privilege('DEQUEUE_ANY','cmefsamples',FALSE);
execute dbms_aqadm.grant_system_privilege('MANAGE_ANY', 'cmefsamples', FALSE);
EXECUTE DBMS_AQADM.GRANT_QUEUE_PRIVILEGE('ENQUEUE','portal.WWSBR_EVENT_
Q','cmefsamples', FALSE);
EXECUTE DBMS_AQADM.GRANT_QUEUE_PRIVILEGE('DEQUEUE','portal.WWSBR_EVENT_
Q','cmefsamples', FALSE);

3. Grant the CMEFSAMPLES schema the permission to call the Oracle Portal
PL/SQL APIs. For information about how to do this, refer to Section 9.3,
"Providing Access to the APIs and Secure Views".

4. Log in to the portal schema and grant permissions on the following:

EXECUTE DBMS_AQADM.GRANT_QUEUE_PRIVILEGE('DEQUEUE','WWSBR_EVENT_
Q','cmefsamples', FALSE);
grant execute on wwsbr_event_q_access to cmefsamples;
grant execute on wwpob_page_util to cmefsamples;
grant select on wwsbr_all_folders to cmefsamples;
grant execute on wwsbr_thing_types to cmefsamples;
grant execute on wwv_thingdb to cmefsamples;
grant execute on wwsbr_event to cmefsamples;

5. Log in to the CMEFSAMPLES schema and run the following:

sqlplus cmefsamples/<password>
create synonym aq$_agent for sys.aq$_agent;

You can download the code for the following examples from OTN:

http://www.oracle.com/technology/products/ias/portal/files/cm_overview_
10g1014_cmef_samples.zip

16.5 Example: Portal Object Event Logging
The LOG_PORTAL_EVENT subscriber in Example 16–9 listens to CMEF events and
then writes them to a log database table called CMEF_LOG_TABLE (Example 16–8).

Example: Portal Object Event Logging

16-20 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Example 16–8 The CMEF_LOG_TABLE

create table cmef_log_table(
 action varchar2(30),
 event varchar2(30),
 state varchar2(30),
 object_type varchar2(30),
 object_id number,
 object_site_id number,
 object_language varchar2(30),
 page_id number,
 page_site_id number,
 performed_by varchar2(30)
)

Example 16–9 The LOG_PORTAL_EVENT Subscriber

create or replace procedure log_portal_event as
 agent_list dbms_aq.aq$_agent_list_t;
 wait_time integer := 5;
 agent_w_message sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 message_handle raw(16);
 message portal.wwsbr_event;
 l_subscriber varchar2(30) := 'CMEF_LOG_PORTAL_EVENT';
 l_queue varchar2(30) := 'PORTAL.WWSBR_EVENT_Q';
 l_mode binary_integer := dbms_aq.REMOVE;
begin
 agent_list(1) := sys.aq$_agent(l_subscriber, l_queue, null);
 loop
 -- Wait for messages.
 dbms_aq.listen(
 agent_list => agent_list,
 wait => wait_time,
 agent => agent_w_message
);
 if (agent_w_message.name = l_subscriber) then
 dequeue_options.wait := dbms_aq.NO_WAIT;
 dequeue_options.consumer_name := l_subscriber;
 dequeue_options.navigation := dbms_aq.FIRST_MESSAGE;
 dequeue_options.dequeue_mode := l_mode;
 dbms_aq.dequeue(
 queue_name => l_queue,
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle
);
 insert into cmef_log_table values(
 message.action,
 message.raw_event,
 message.state,
 message.object_class,
 message.object_id,
 message.object_site_id,
 message.object_language,
 message.page_id,
 message.page_site_id,
 message.events_user

Example: Portal Object Event Logging

Using the Content Management Event Framework 16-21

);
 commit;
 end if;
 end loop;
end;
/

The LOG_PORTAL_EVENT subscriber continuously listens for events on the
WWSBR_EVENT_Q queue until the wait time of 5 seconds (as specified in the wait_
time variable) is reached. It then dequeues CMEF events in REMOVE mode and then
inserts the message payload values into the log table.

You could use the code in Example 16–9 to build an HTML page that displays the
results of the log table. For example, the table in Figure 16–6 shows the CMEF message
payload for an edit item action:

Figure 16–6 HTML Table Displaying CMEF Message Payload Values

The properties of the CMEF message payload (for example, message.raw_event)
are described in Section 16.3.6, "CMEF Message Payload".

If you want the LOG_PORTAL_EVENT subscriber to continually remove messages off
the WWSBR_EVENT_Q queue, then you need to remove the following from
Example 16–9:

dbms_aq.listen(
 agent_list => agent_list,
 wait => wait_time,
 agent => agent_w_message
);
if (agent_w_message.name = l_subscriber) then
 dequeue_options.wait := dbms_aq.NO_WAIT;
 dequeue_options.consumer_name := l_subscriber;
 dequeue_options.navigation := dbms_aq.FIRST_MESSAGE;
 dequeue_options.dequeue_mode := l_mode;
END IF;

Example 16–10 shows how to add the LOG_PORTAL_EVENT subscriber created in the
previous section to the WWSBR_EVENT_Q queue.

Example 16–10 Adding the LOG_PORTAL_EVENT Subscriber to WWSBR_EVENT_Q

declare
 subscriber sys.aq$_agent;
begin
 subscriber := sys.aq$_agent('CMEF_LOG_PORTAL_EVENT', null, null);
 dbms_aqadm.add_subscriber(
 queue_name => 'portal.wwsbr_event_q',
 subscriber => subscriber
);
end;
/

To run the LOG_PORTAL_EVENT subscriber, issue the command shown in
Example 16–11.

Example: Item Notification

16-22 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Example 16–11 Running the LOG_PORTAL_EVENT CMEF Subscriber

begin
 log_portal_event();
end;
/

16.6 Example: Item Notification
The item_notify subscriber in Example 16–12 sends an e-mail notification whenever a
user adds, updates, or deletes an item on a specified page:

Example 16–12 The CMEF_ITEM_NOTIFY Subscriber

create or replace procedure item_notify as
 MIME_TYPE_TEXT constant varchar(30) := 'text/plain';
 CUSTOM_ATTRIBUTE_ID constant number := 1020;
 ADDED constant varchar2(20) := 'added';
 UPDATED constant varchar2(20) := 'updated';
 DELETED constant varchar2(20) := 'deleted';
 ITEM constant varchar2(10) := 'ITEM';
 agent_list dbms_aq.aq$_agent_list_t;
 wait_time integer := 5;
 begin_time pls_integer;
 end_time pls_integer;
 agent_w_message sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 message_handle raw(16);
 message portal.wwsbr_event;
 l_subscriber varchar2(30) := 'CMEF_ITEM_NOTIFY';
 l_queue varchar2(30) := 'PORTAL.WWSBR_EVENT_Q';
 l_page_id number := 33; -- Page ID of page.
 l_mode binary_integer := dbms_aq.REMOVE;
 l_rec varchar2(256);
 l_body varchar2(4000) := null;
 l_from_user varchar2(30) := '<from-email-address>';
 l_to_user varchar2(30) := '<to-email-address>';
 l_event varchar2(30) := '';
 l_portal_user_name varchar2(30) := 'portal';
 l_portal_password varchar2(30) := '<portal password>';
 l_display_name varchar2(256) := '';

begin
 begin_time := dbms_utility.get_time;
 agent_list(1) := sys.aq$_agent(l_subscriber, l_queue, null);
 loop
 -- Wait for messages.
 dbms_aq.listen(
 agent_list => agent_list,
 wait => wait_time,
 agent => agent_w_message
);
 if (agent_w_message.name = l_subscriber) then
 dequeue_options.wait := DBMS_AQ.NO_WAIT;
 dequeue_options.consumer_name := l_subscriber;
 dequeue_options.navigation := dbms_aq.FIRST_MESSAGE;
 dequeue_options.dequeue_mode := l_mode;
 dbms_aq.dequeue(

Example: Item Notification

Using the Content Management Event Framework 16-23

 queue_name => l_queue,
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle
);
 if ((message.object_class = ITEM)) then
 -- Determine the type of event that occurred.
 if (message.raw_event = portal.wwsbr_event_q_access.EVENT_INSERT) then
 l_event := ADDED;
 elsif (message.raw_event = portal.wwsbr_event_q_access.EVENT_UPDATE) then
 l_event := UPDATED;
 elsif (message.raw_event = portal.wwsbr_event_q_access.EVENT_DELETE) then
 l_event := DELETED;
 end if;
 if ((l_event = ADDED) or
 (l_event = UPDATED) or
 (l_event = DELETED)) then
 -- Set the Portal Context.
 portal.wwctx_api.set_context(l_portal_user_name, l_portal_password);

 begin
 -- Get the Item Display name from the all items view.
 select display_name
 into l_display_name
 from portal.wwsbr_all_items
 where id=message.object_id
 and caid=message.object_site_id;
 exception
 when NO_DATA_FOUND then
 dbms_output.put_line(sqlerrm);
 exit;
 end;

 -- Only send an e-mail if the item has a display name.
 if (l_display_name is not null) then
 -- Construct the body of the message.
 l_body := l_body || '
An item titled '
 || CSBR_UTIL.file_viewer_hyperlink(
 message.object_id, message.page_site_id, l_display_name)
 || ' was '
 || l_event || ' on '
 || to_char(message.events_date,'dd-mon-yyyy hh12:mi pm')
 || ' by ' || message.events_user || '. ';
 -- Send the message.
 html_email(
 p_from => l_from_user,
 p_to => l_to_user,
 p_subject => 'Item ' || l_event || ' Notification',
 p_text => 'Text',
 p_html => l_body
);
 end if;
 end if;
 end if;
 end if;
 end_time := dbms_utility.get_time;
 if (end_time - begin_time) > 3000 then
 exit;
 end if;

Example: Item Notification

16-24 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 end loop;
end;
/

The ITEM_NOTIFY CMEF subscriber removes the actual events from the queue so
that multiple e-mails are not sent to the user.

For further information on the performance and timing of AQ events, refer to the
Streams Advanced Queuing page on OTN:

http://www.oracle.com/technology/products/aq

For an example of how to add a subscriber to the WWSBR_EVENT_Q queue, refer to
Example 16–10.

For an example of how to run a subscriber, refer to Example 16–11.

The ITEM_NOTIFY CMEF subscriber runs for 3 seconds. This ensures that the
subscriber does not continuously run and consume system resources. Alternatively,
you could modify the wait_time value used in the subscriber to a higher value, say
60 seconds, so that the subscriber listens for new events every minute. You could also
use a DBMS_JOB to have the subscriber run at a specified interval, for example, 30
minutes, as shown in Example 16–13.

Example 16–13 Using DMBS_JOB

declare
 v_job number;
begin
 dbms_job.submit(
 job => v_job,
 what => 'item_notify()',
 interval => 'SYSDATE + (30/(24*60))'
);
end;
/

Additional Code
Example 16–14 shows the CSBR_UTIL package.

Example 16–14 CSBR_UTIL Package

create or replace package CSBR_UTIL as
 function file_viewer_hyperlink(
 p_item_id in number,
 p_caid in number,
 p_text in varchar2) return varchar2;
end;

create or replace package body CSBR_UTIL as

 function file_viewer_url(

Note: For descriptions of the file_viewer_hyperlink function,
which gets the URL of the item, and the html_email procedure,
which handles the actual sending of the message, refer to "Additional
Code".

Example: Item Notification

Using the Content Management Event Framework 16-25

 p_item_id in number,
 p_caid in number) return varchar2 is

 l_return varchar2(10000);
 l_item_name varchar2(100);
 l_folder_id number;
 l_folder_name varchar2(100);
 l_portal_url varchar2(1000);
 begin
 select name, folder_id
 into l_return, l_folder_id
 from portal.wwsbr_all_items
 where id = p_item_id
 and caid = p_caid
 and active = 1;
 begin
 while 1=1 loop
 select parent_id, name
 into l_folder_id, l_folder_name
 from portal.wwsbr_all_folders
 where id = l_folder_id
 and caid = p_caid;
 l_return := l_folder_name||'/'||l_return;
 end loop;
 exception
 when NO_DATA_FOUND then
 null; -- Exit loop at no rows found, this is expected.
 END;
 -- Set the Portal URL.
 l_portal_url := 'http://<host>:<port>/portal/page/<dad>/';
 return l_portal_url||l_return;
 exception
 when OTHERS then
 dbms_output.put_line(sqlerrm);
 return 'Error';
 end file_viewer_url;

 function file_viewer_hyperlink(
 p_item_id in number,
 p_caid in number,
 p_text in varchar2) return varchar2 is
 begin
 return ('<a href="'||file_viewer_url(
 p_item_id => p_item_id,
 p_caid => p_caid)||'">'||p_text||'');
 end file_viewer_hyperlink;

end;
/

Example 16–15 shows the html_email procedure.

Example 16–15 The HTML E-mail Procedure

create or replace procedure html_email(
 p_to in varchar2,

Note: For this procedure to work you will need to deploy the Oracle
Database Sendmail package on your database.

Example: Item Notification

16-26 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 p_from in varchar2 default '',
 p_subject in varchar2,
 p_text in varchar2 default null,
 p_html in varchar2 default null
)
is
 l_boundary varchar2(255) default 'a1b2c3d4e3f2g1';
 l_connection utl_smtp.connection;
 l_body_html clob := empty_clob; -- This LOB will be the e-mail message.
 l_offset number;
 l_ammount number;
 l_temp varchar2(32767) default null;
begin
 l_connection := utl_smtp.open_connection('<Mail Server here>');
 utl_smtp.helo(l_connection, '<Mail Server here>');
 utl_smtp.mail(l_connection, p_from);
 utl_smtp.rcpt(l_connection, p_to);
 l_temp := l_temp || 'MIME-Version: 1.0' || chr(13) || chr(10);
 l_temp := l_temp || 'To: ' || p_to || chr(13) || chr(10);
 l_temp := l_temp || 'From: ' || p_from || chr(13) || chr(10);
 l_temp := l_temp || 'Subject: ' || p_subject || chr(13) || chr(10);
 l_temp := l_temp || 'Reply-To: ' || p_from || chr(13) || chr(10);
 l_temp := l_temp || 'Content-Type: multipart/alternative; boundary=' || chr(34)
|| l_boundary || chr(34) || chr(13) || chr(10);
 --
 -- Write the headers.
 dbms_lob.createtemporary(l_body_html, false, 10);
 dbms_lob.write(l_body_html, length(l_temp), 1,l_temp);

 -- Write the text boundary.
 l_offset := dbms_lob.getlength(l_body_html) + 1;
 l_temp := '--' || l_boundary || chr(13) || chr(10);
 l_temp := l_temp || 'content-type: text/plain; charset=us-ascii' || chr(13) ||
chr(10) || chr(13) || chr(10);
 dbms_lob.write(l_body_html, length(l_temp), l_offset, l_temp);

 --
 -- Write the plain text portion of the e-mail.
 l_offset := dbms_lob.getlength(l_body_html) + 1;
 dbms_lob.write(l_body_html, length(p_text), l_offset, p_text);

 --
 -- Write the HTML boundary.
 l_temp := chr(13) || chr(10) || chr(13) || chr(10) || '--' || l_boundary ||
chr(13) || chr(10);
 l_temp := l_temp || 'content-type: text/html;' || chr(13) || chr(10) || chr(13)
|| chr(10);
 l_offset := dbms_lob.getlength(l_body_html) + 1;
 dbms_lob.write(l_body_html, length(l_temp), l_offset, l_temp);

 --
 -- Write the HTML portion of the message.
 l_offset := dbms_lob.getlength(l_body_html) + 1;
 dbms_lob.write(l_body_html, length(p_html), l_offset, p_html);

 --
 -- Write the final HTML boundary.
 l_temp := chr(13) || chr(10) || '--' || l_boundary || '--' || chr(13);
 l_offset := dbms_lob.getlength(l_body_html) + 1;

Example: Item Validation

Using the Content Management Event Framework 16-27

 dbms_lob.write(l_body_html, length(l_temp), l_offset, l_temp);

 --
 -- Send the e-mail in 1900 byte chunks to UTL_SMTP.
 l_offset := 1;
 l_ammount := 1900;
 utl_smtp.open_data(l_connection);
 while l_offset < dbms_lob.getlength(l_body_html) loop
 utl_smtp.write_data(l_connection, dbms_lob.substr(l_body_html,l_ammount,l_
offset));
 l_offset := l_offset + l_ammount;
 l_ammount := least(1900, dbms_lob.getlength(l_body_html) - l_ammount);
 end loop;
 utl_smtp.close_data(l_connection);
 utl_smtp.quit(l_connection);
 dbms_lob.freetemporary(l_body_html);
end;
/

16.7 Example: Item Validation
The item_valication CMEF subscriber in Example 16–16 validates that a URL item
added to a specified portal page includes a URL. If the item includes a URL, then the
item is approved using the wwsbr_api.approve API. Otherwise the item is rejected
using the wwsbr_api.reject API.

Example 16–16 The ITEM_VALIDATION CMEF Subscriber

create or replace procedure item_validation as
 MIME_TYPE_TEXT constant varchar2(30) := 'text/plain';
 agent_list dbms_aq.aq$_agent_list_t;
 wait_time integer := 5;
 begin_time pls_integer;
 end_time pls_integer;
 agent_w_message sys.aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 message_handle raw(16);
 message portal.wwsbr_event;
 l_subscriber varchar2(30) := 'CMEF_ITEM_VALIDATION';
 l_queue varchar2(30) := 'PORTAL.WWSBR_EVENT_Q';
 l_mode binary_integer := dbms_aq.REMOVE;
 l_attribute_site_id number := 0;
 l_event varchar2(30);
 l_doc wwdoc_api.document_record;
 l_desc varchar2(4000);
 l_portal_user_name varchar2(30) := 'portal';
 l_portal_password varchar2(30) := ' <portal password>';
 l_itemtype varchar2(30) := '';
 l_url varchar2(4000) := '';
begin
 begin_time := dbms_utility.get_time;
 agent_list(1) := sys.aq$_agent(l_subscriber, l_queue, null);
 loop
 -- Wait for messages.
 dbms_aq.listen(
 agent_list => agent_list,
 wait => wait_time,

Example: Item Validation

16-28 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 agent => agent_w_message
);
 if (agent_w_message.name = l_subscriber) then
 dequeue_options.wait := DBMS_AQ.NO_WAIT;
 dequeue_options.consumer_name := l_subscriber;
 dequeue_options.navigation := dbms_aq.FIRST_MESSAGE;
 dequeue_options.dequeue_mode := l_mode;
 dbms_aq.dequeue(
 queue_name => l_queue,
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle
);
 -- If the event is an ITEM INSERT event and marked for later publication.
 if ((message.action = 'SUBMIT_ITEM_FOR_APPROVAL') and
 (message.object_class = 'ITEM') and
 (message.raw_event = 'INSERT') and
 (message.state = 'NOT_PUBLISHED')) then

 -- Set the Portal Context.
 portal.wwctx_api.set_context(l_portal_user_name, l_portal_password);
 -- Get the Object Information.
 begin
 select itemtype, url
 into l_itemtype, l_url
 from portal.wwsbr_all_items
 where id=message.object_id
 and caid=message.object_site_id;
 exception
 when NO_DATA_FOUND then
 dbms_output.put_line(sqlerrm);
 exit;
 end;
 -- If the item type is a URL and no URL is specified.
 if (l_itemtype = portal.wwsbr_thing_types.BASE_ITEM_TYPE_URL) and
 (l_url is null) then
 begin
 -- Update item to indicate that a URL needs to be specified.
 l_desc := 'NO URL SPECIFIED';
 -- Reset the CMEF global variables.
 wwsbr_api.clear_cmef_context;
 wwsbr_api.set_attribute(
 p_site_id => message.object_site_id,
 p_thing_id => message.object_id,
 p_attribute_site_id => l_attribute_site_id,
 p_attribute_id => wwsbr_api.ATTRIBUTE_DESCRIPTION,
 p_attribute_value => l_desc
 p_log_cmef_message => FALSE
);
 -- Reject the item.
 wwsbr_api.reject(
 p_item_id => message.object_id,
 p_site_id => message.object_site_id,
 p_comment => 'Rejected'
);
 -- Reset the CMEF global variables.
 wwsbr_api.clear_cmef_context;
 exception
 when OTHERS then

Example: Item Validation

Using the Content Management Event Framework 16-29

 dbms_output.put_line(sqlerrm);
 end;
 else
 -- Approve the item.
 begin
 wwsbr_api.approve(
 p_item_id => message.object_id,
 p_site_id => message.object_site_id,
 p_comment => 'Approved'
);
 -- Reset the CMEF global variables.
 wwsbr_api.clear_cmef_context;
 exception
 when OTHERS then
 dbms_output.put_line(sqlerrm);
 end;
 end if;
 commit;
 end if;
 end if;
 end_time := dbms_utility.get_time;
 if (end_time - begin_time) > 3000 then
 exit;
 end if;
 end loop;
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
end;
/

The following check in the item_validation CMEF subscriber determines whether the
item requires approval:

-- If the event is an ITEM INSERT event and marked for later publication.
if ((message.action = 'SUBMIT_ITEM_FOR_APPROVAL') and
 (message.object_class = 'ITEM') and
 (message.raw_event = 'INSERT') and
 (message.state = 'NOT_PUBLISHED')) then
 . . .
end if;

The item_validation CMEF subscriber uses the wwsbr_api.set_attribute API to
set the item description to indicate that the user did not specify a URL. The subscriber
also chooses not to log CMEF messages when calling this API (p_log_cmef_
messages = FALSE).

-- Update item to indicate that a URL needs to be specified.
l_desc := 'No FILE NAME SPECIFIED';
wwsbr_api.set_attribute(
 p_site_id => l_thing.siteid,
 p_thing_id => l_thing.id,
 p_attribute_site_id => l_attribute_site_id,
 p_attribute_id => wwsbr_api.ATTRIBUTE_DESCRIPTION,
 p_attribute_value => l_desc
 p_log_cmef_message => FALSE
);

Approving or rejecting an item with the approve or reject APIs triggers an event
just the same as if the item were approved or rejected through the Oracle Portal UI.

Example: Integrating External Workflow

16-30 Oracle Fusion Middleware Developer's Guide for Oracle Portal

For example, calling the wwsbr_api.approve API triggers an INSERT event with an
action of APPROVE_ITEM.

wwsbr_api.approve(
 p_item_id => l_thing.id,
 p_site_id => l_thing.siteid,
 p_comment => 'Approved'
);

For an example of how to add a subscriber to the WWSBR_EVENT_Q queue, refer to
Example 16–10.

For an example of how to run a subscriber, refer to Example 16–11.

16.8 Example: Integrating External Workflow
Organizations often find that they want to integrate their business processes into their
enterprise portal. Using the capabilities of Oracle Workflow, you can implement
portals to route information of any type according to the compliance rules defined for
your organization. With CMEF, you can integrate both traditional, applications-based
workflow and e-business integration workflow with your Oracle Portal content
management system.

This section provides an example of how to integrate external workflow with the
Oracle Portal content management system.

16.8.1 Integrating Workflow with Oracle Portal
Oracle Workflow is a component of Oracle Fusion Middleware and Oracle E-Business
Suite that enables you to design internal business processes and store them in a central
repository. You can use Oracle Workflow to support a wide variety of compliance
mandates, designing processes that are both auditable and repeatable, and enforce
pre-set approvals and limits. Oracle's newest compliance solution, Oracle Internal
Controls Manager (Oracle ICM) works in conjunction with Oracle Workflow to
monitor internal business processes and ensure they are performed as designed.

In general, there are five steps involved in integrating Oracle Workflow with the
Oracle Portal content management system for content approval, and these steps are as
follows:

1. Enable approvals and notifications in Oracle Portal.

2. Grant users the Manage Items With Approval privileges.

3. Create a portal user that will be used by the Oracle Workflow process to either
approve or reject items and add that user to the portal approval process.

4. Register the workflow process with Oracle Workflow. This workflow process calls
your compliance process, or it may perform your actual compliance process.

5. Create subscriber code and add the subscriber to WWSBR_EVENT_Q to process
CMEF events. This subscriber initializes the workflow engine and then calls the
workflow process.

We can see how this works by modifying the item validation example described in
Section 16.7, "Example: Item Validation" to call a workflow process to perform the item
validation.

Let's take a look at how this process would work, based on the diagram in Figure 16–7.

Example: Integrating External Workflow

Using the Content Management Event Framework 16-31

Figure 16–7 Process Flow for Workflow Integration with Oracle Portal

16.8.2 Example Overview
Figure 16–7 shows the process flow diagram for using CMEF to integrate Oracle
Workflow with the Oracle Portal content management system. When a user with
Manage Items With Approval privileges adds an item to the portal, that item is marked
as pending. Just as with the ITEM_VALIDATION subscriber in Example 16–16, an
Oracle Streams Advanced Queuing subscriber is required to listen for events on the
WWSBR_EVENT_Q queue (see Example 16–17). If the event is of type SUBMIT_
ITEM_FOR_APPROVAL, the subscriber launches the workflow engine process, WF_
CHECKURL, and passes the parameters for the portal item to the workflow process.
The workflow process calls an external PL/SQL procedure (see Example 16–18) to
perform its business logic, which in this case includes either approving or rejecting the
portal item.

If the user specifies a URL, then Oracle Workflow approves the item using the wwsbr_
api.approve API. Otherwise, Oracle Workflow rejects the item using the wwsbr_
api.reject API.

This example assumes the following prerequisites:

■ The CMEFSAMPLES schema exists in the same database as the portal schema.

■ The Oracle OWF_MGR workflow schema is installed in the same database as the
portal schema.

■ The AQ_TM_PROCESSES parameter should be set to at least five. To check this,
log in to the database as the SYS user and execute the following query:

select value
from v$parameter
where name = 'aq_tm_processes';

If the value is less than five, then set the value as follows:

Example: Integrating External Workflow

16-32 Oracle Fusion Middleware Developer's Guide for Oracle Portal

alter system set aq_tm_processes=5;

■ Restart your database.

■ Oracle Portal 11g has been installed.

16.8.3 Detailed Example Description
When a portal user with Manage Items With Approval privileges adds an item to a page,
a SUBMIT_ITEM_FOR_APPROVAL event is added to the WWSBR_EVENT_Q queue.
The item is marked as pending on the portal page. This user's items must be approved
before they are made visible on the page.

The Streams Advanced Queuing subscriber CMEF_WORKFLOW listens for events on
WWSBR_EVENT_Q. If the event is of type SUBMIT_ITEM_FOR_APPROVAL, then it
launches the workflow engine process and passes the parameters for the portal item to
the workflow process.

The workflow process WF_CHECKURL performs its business logic, which in this case
includes either approving or rejecting portal items.WF_ CHECKURL uses the views
and APIs to approve or reject the item. If it approves the item, then an APPROVE_
ITEM event is added to WWSBR_EVENT_Q. If it rejects the item, then a REJECT_
ITEM event is added to WWSBR_EVENT_Q.

When the user refreshes the page, he or she will either see the item published on the
page (if it was approved), or removed (if it was rejected).

The following six steps occur within this example:

1. Section 16.8.3.1, "Enable Approvals and Notifications in Oracle Portal"

2. Section 16.8.3.2, "Grant Users the Manage Items With Approval Privileges"

3. Section 16.8.3.3, "Run Scripts Required for the CMEF Workflow Integration
Example"

4. Section 16.8.3.4, "Create Subscriber and Check Procedures"

5. Section 16.8.3.5, "Register the WF_CHECKURL Process with Oracle Workflow"

6. Section 16.8.3.6, "Add the CMEF_WORKFLOW Subscriber to the WWSBR_
EVENT_Q Queue"

Each of these steps is described in more detail in the following sections.

16.8.3.1 Enable Approvals and Notifications in Oracle Portal
The first thing you need to do is enable approvals and notifications in the page group.

To enable approvals and notifications, perform the following steps:

1. Go to any page of the page group and switch to Edit mode.

2. In the toolbar at the top of the page, click the Properties link next to Page Group.

3. Click the Configure tab to bring it forward.

4. In the Approvals and Notifications section you can see whether approvals and
notifications are enabled or disabled. If you want to change this setting, click the
Edit link (Figure 16–8).

Note: Make sure you click the link next to Page Group and not the
one next to Page (Figure 16–2).

Example: Integrating External Workflow

Using the Content Management Event Framework 16-33

Figure 16–8 Status of Approvals and Notifications for a Page Group

5. To enable approvals and notifications, select the Enable Approvals and
Notifications check box (Figure 16–9).

Figure 16–9 Enabling or Disabling Approvals and Notifications for a Page Group

6. Click OK to save your changes.

7. Click Close to return to the page.

16.8.3.2 Grant Users the Manage Items With Approval Privileges

The next step is to grant Manage Items With Approval privileges to all users who need
approval for their items. For the purposes of this example, let's specify that all users
require approval for their items.

To specify that all users require approval for their items, perform the following steps:

1. Go to any page in the page group and switch to Edit mode.

2. In the toolbar at the top of the page, click the Properties link next to Page Group.

3. Click the Approval tab to bring it forward.

4. Select the Require Approval for All Users check box (Figure 16–10).

Note: You can skip this step if your external workflow process does
not require the approval or rejection of portal items.

Note: Make sure you click the link next to Page Group and not the
one next to Page (Figure 16–2).

Example: Integrating External Workflow

16-34 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Figure 16–10 Specifying That All Users Require Approval for Their Items

5. Click OK.

16.8.3.3 Run Scripts Required for the CMEF Workflow Integration Example
Before you proceed to the next step, there are several tasks that you need to perform.
These steps are as follows:

1. Log in to the SYS schema and run the following command:

GRANT EXECUTE ON owf_mgr.wf_engine to cmefsamples;

2. Log in to the portal schema and run provsyns.sql. When prompted for the
schema/provider name enter owf_mgr.

3. Log in to the CMEFSAMPLES schema and run the following:

drop sequence WF_SEQ

create sequence WF_SEQ
increment by 1
start with 1
maxvalue 1000000000
minvalue 1
cache 20

grant select on wf_seq to owf_mgr;

This creates the sequence required by workflow, and allows the OWF_MGR
workflow schema SELECT privileges on the sequence.

4. Create the synonym WF_ENGINE to the workflow schema:

create synonym wf_engine for owf_mgr.wf_engine;

16.8.3.4 Create Subscriber and Check Procedures
You need to create a subscriber that listens to the WWSBR_EVENT_Q queue, waiting
until a user adds an item that requires approval. The subscriber calls the WF_
CHECKURL workflow process to perform the item validation and to send the e-mail
notification. Example 16–17 shows the WORKFLOW_APPROVAL subscriber code.

Example 16–17 The WORKFLOW_APPROVAL Subscriber

create or replace procedure workflow_approval is
 MIME_TYPE_TEXT constant varchar2(30) := 'text/plain';
 agent_list dbms_aq.aq$_agent_list_t;
 wait_time integer := 30;
 begin_time pls_integer;
 end_time pls_integer;
 agent_w_message aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;

Example: Integrating External Workflow

Using the Content Management Event Framework 16-35

 message_handle raw(16);
 message portal.wwsbr_event;
 l_subscriber varchar2(30) := 'CMEF_WORKFLOW';
 l_queue varchar2(30) := 'PORTAL.WWSBR_EVENT_Q';
 l_mode binary_integer := dbms_aq.REMOVE;
 l_attribute_site_id number := 0;
 l_event varchar2(30);
 l_doc wwdoc_api.document_record;
 l_desc varchar2(4000);
 l_itemkey varchar2(100);
 l_job_nr number;
 l_itemtype varchar2(100) := 'WF';
 l_wf_process varchar2(100) := 'WF_CHECKURL';
 l_is_indirect boolean := TRUE;
 l_portal_user_name varchar2(30) := 'portal';
 l_portal_password varchar2(30) := '<portal password>';
 l_url varchar2(4000); := '';

begin
 begin_time := dbms_utility.get_time;
 agent_list(1) := aq$_agent(l_subscriber, l_queue, null);
 loop
 -- Wait for messages.
 dbms_aq.listen(
 agent_list => agent_list,
 wait => wait_time,
 agent => agent_w_message
);
 if (agent_w_message.name = l_subscriber) then
 dequeue_options.wait := dbms_aq.NO_WAIT;
 dequeue_options.consumer_name := l_subscriber;
 dequeue_options.navigation := dbms_aq.FIRST_MESSAGE;
 dequeue_options.dequeue_mode := l_mode;
 dbms_aq.dequeue(
 queue_name => l_queue,
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle
);
 -- If the event is an ITEM INSERT event and marked for later publication.
 if ((message.action = 'SUBMIT_ITEM_FOR_APPROVAL') and
 (message.object_class = 'ITEM') and
 (message.raw_event = 'INSERT') and
 (message.state = 'NOT_PUBLISHED') then
 portal.wwctx_api.set_context(l_portal_user_name, l_portal_password);
 -- Get the URL property for the object.
 select url
 into l_url
 from portal.wwsbr_all_items
 where id = message.object_id
 and caid = message.object_site_id;
 -- Get the nextval of the workflow sequence for the itemkey.
 select wf_seq.nextval
 into l_job_nr
 from dual;
 l_itemkey := lpad(to_char(l_job_nr), 5, '0');
 -- Launch the workflow engine process and pass the paramters for
 -- the portal item to the workflow process.
 wf_engine.createprocess(l_itemtype, l_itemkey, l_wf_process);

Example: Integrating External Workflow

16-36 Oracle Fusion Middleware Developer's Guide for Oracle Portal

 -- Set the value for the portal URL.
 wf_engine.setitemattrtext(l_itemtype, l_itemkey, 'PORTAL_URL', l__url);
 -- Set the value for the portal item ID.
 wf_engine.setitemattrnumber(l_itemtype, l_itemkey, 'PORTAL_ITEM_ID',
message.object_id);
 -- Set the value for the portal page group ID.
 wf_engine.setitemattrnumber(l_itemtype, l_itemkey, 'PORTAL_SITE_ID',
message.object_site_id);
 -- Start the workflow process.
 wf_engine.startprocess(l_itemtype, l_itemkey);
 end if;
 end if;
 end_time := dbms_utility.get_time;
 if (end_time - begin_time) > 3000 then
 exit;
 end if;
 end loop;
exception
 when OTHERS then
 dbms_output.put_line(sqlerrm);
end workflow_approval;
/
You also need to create a procedure to check whether the user specified a file name for
the item to determine whether or not it can be approved. The workflow process
delegates the actual validation and approval of the item to this CHECK_URL
procedure. Example 16–18 shows how to create the CHECK_URL procedure.

Example 16–18 The CHECK_URL Procedure

create or replace procedure check_url(
 itemtype in varchar2,
 itemkey in varchar2,
 actid in number,
 funcmode in varchar2,
 resultout out varchar2) is

 MIME_TYPE_TEXT constant varchar2(30) := 'text/plain';
 agent_list dbms_aq.aq$_agent_list_t;
 wait_time integer := 30;
 begin_time pls_integer;
 end_time pls_integer;
 agent_w_message aq$_agent;
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 message_handle RAW(16);
 message portal.wwsbr_event;
 l_subscriber varchar2(30) := 'CMEF_WORKFLOW';
 l_queue varchar2(30) := 'PORTAL.WWSBR_EVENT_Q';
 l_mode BINARY_INTEGER := dbms_aq.REMOVE;
 l_attribute_site_id number := 0;
 l_event varchar2(30);
 l_doc wwdoc_api.document_record;
 l_desc varchar2(4000);
 l_itemtype varchar2(100) := 'WF';
 l_itemkey varchar2(100);
 l_url varchar2(100);
 l_siteid number;
 l_itemid number;
 l_ignore boolean := FALSE;
 l_is_indirect boolean := TRUE;

Example: Integrating External Workflow

Using the Content Management Event Framework 16-37

 l_portal_user_name varchar2(30) := 'portal';
 l_portal_password varchar2(30) := '<portal password>');
begin
 -- Get the values for the attributes stored in the procedure.
 l_url := wf_engine.getitemattrtext(itemtype,itemkey,'PORTAL_URL',l_ignore);
 l_itemid := wf_engine.getitemattrnumber(itemtype,itemkey,'PORTAL_ITEM_ID',l_
ignore);
 l_siteid := wf_engine.getitemattrnumber(itemtype,itemkey,'PORTAL_SITE_ID',l_
ignore);
 -- Set the portal context.
 portal.wwctx_api.set_context(l_portal_user_name, l_portal_password);
 -- If the item type is a URL item and no URL is specified.
 if l_url is null then
 begin
 -- Update the item to indicate that the URL needs to be specified.
 l_desc := 'NO URL SPECIFIED';
 -- Reset the CMEF global variables.
 wwsbr_api.clear_cmef_context;
 wwsbr_api.set_attribute(
 p_site_id => l_siteid,
 p_thing_id => l_itemid,
 p_attribute_site_id => l_attribute_site_id,
 p_attribute_id => wwsbr_api.attribute_description,
 p_attribute_value => l_desc
 p_log_cmef_message => FALSE
);
 -- Reject the item.
 wwsbr_api.reject(
 p_item_id => l_itemid,
 p_site_id => l_siteid,
 p_is_indirect => l_is_indirect,
 p_comment => 'Rejected'
);
 -- Reset the CMEF global variables.
 wwsbr_api.clear_cmef_context;
 end;
 else
 -- Approve the item.
 begin
 wwsbr_api.approve(
 p_item_id => l_itemid,
 p_site_id => l_siteid,
 p_comment => 'Approved'
);
 -- Reset the CMEF global variables.
 wwsbr_api.clear_cmef_context;
 end;
 end if;
 commit;
 -- Process cache invalidation messages.
 wwpro_api_invalidation.execute_cache_invalidation;
exception
 when OTHERS then
 dbms_output.put_line(sqlerrm);
end check_url;
/

Example: Integrating External Workflow

16-38 Oracle Fusion Middleware Developer's Guide for Oracle Portal

16.8.3.5 Register the WF_CHECKURL Process with Oracle Workflow
The WF_CHECKURL process actually approves or rejects the portal item and sends
the e-mail notification. You need to register this process with Oracle Workflow using
the Oracle Workflow Builder (Figure 16–11).

Figure 16–11 The CHECK_FILE Oracle Workflow Process

Use the following steps to install the WF_CHECKURL process into the OWF_MGR
schema:

1. Open the Oracle Workflow Builder.

2. Start a new workflow project.

3. Save the workflow project as wf_checkurl.wft.

4. Close the Oracle Workflow Builder.

5. Open wf_checkurl.wft in a text editor, for example, Notepad.

6. Copy and paste the WF_CHECKURL code into the file. You can download this
code from Portal Center:

http://www.oracle.com/technology/products/ias/portal/files/cm_
overview_10g1014_cmef_samples.zip

7. Save the file and close the text editor.

8. Open wf_checkurl.wft in Oracle Workflow Builder.

9. Save wf_checkurl.wft into your portal database using the OWF_MGR schema.

Note: CMEFSAMPLES will need to grant execute on WORKFLOW_
APPROVAL and CHECK_URL to OWF_MGR:

grant execute on workflow_approval to owf_mgr;
grant execute on check_filename to owf_mgr;

Tip: After installing the Workflow Builder, you may have to run it
from the command line because you will have to set the ORACLE_
HOME environment variable to that of the Workflow Builder. For
example:

set ORACLE_HOME=c:\oraclewf

Example: Integrating External Workflow

Using the Content Management Event Framework 16-39

16.8.3.6 Add the CMEF_WORKFLOW Subscriber to the WWSBR_EVENT_Q Queue
Next, you need to add the CMEF_WORKFLOW subscriber to the WWSBR_EVENT_Q
queue so that it can process the CMEF events and trigger the WF_CHECKURL Oracle
Workflow process, as shown in Example 16–19.

Example 16–19 Adding the CMEF_WORKFLOW Subscriber to WWSBR_EVENT_Q

declare
 subscriber sys.aq$_agent;
begin
 1_subscriber := sys.aq$_agent('CMEF_WORKFLOW', null, null);
 dbms_aqadm.add_subscriber(
 queue_name => 'portal.wwsbr_event_q',
 1_subscriber => subscriber
);
end;
/

Now, when a user with Manage Items With Approval privileges add an item to a page, it
is marked as Pending and a single INSERT event occurs, with a state of NOT_
PUBLISHED:

The CMEF_WORKFLOW_APPROVAL subscriber responds to this action and invokes
the PORTAL_ITEM_WORKFLOW Oracle Workflow process.

The PORTAL_ITEM_APPROVAL Oracle Workflow process performs its business
logic and calls the Oracle Portal approve or reject API to approve or reject the item.
It also sends an e-mail notification to the specified e-mail ID indicating the approval
status.

Tip: If you do not know the OWF_MGR password, see MetaLink
Note 198800.1.

Action Event State Object Class

SUBMIT_ITEM_FOR_
APPROVAL

INSERT NOT_PUBLISHED ITEM

Example: Integrating External Workflow

16-40 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Part IV
Part IV Appendixes

Part IV contains the following appendixes:

■ Appendix A, "Creating Portlets with the Portlet Builder"

■ Appendix B, "Troubleshooting Portlets and Providers"

■ Appendix C, "Mapping Profile Items to Attributes"

■ Appendix D, "Manually Packaging and Deploying PDK-Java Providers"

■ Appendix E, "Oracle Portal Provider Test Suite"

■ Appendix F, "Content Management APIs and Views"

■ Appendix G, "Content Management Event Framework Events"

A

Creating Portlets with the Portlet Builder A-1

A Creating Portlets with the Portlet Builder

You can find information on using Portlet Builder in Appendix A "Creating Portlets
with the Portlet Builder" of the Oracle Fusion Middleware Developer's Guide for Oracle
Portal Release 2 (10.1.4) in the Oracle Fusion Middleware Release 2 (10.1.2.0.2) library
located on the Oracle Technology Network
(http://www.oracle.com/technology/documentation/appserver1012.ht
ml).

A-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

B

Troubleshooting Portlets and Providers B-1

B Troubleshooting Portlets and Providers

This appendix describes common problems that you might encounter when using
Oracle Portal and explains how to solve them. It contains the following topics:

■ Section B.1, "Diagnosing General Portlet Problems"

■ Section B.2, "Diagnosing Java Portlet Problems"

■ Section B.3, "Diagnosing OmniPortlet Problems"

■ Section B.4, "Diagnosing Web Clipping Problems"

■ Section B.5, "Need More Help?"

B.1 Diagnosing General Portlet Problems
This section describes common problems and solutions for all portlets. It contains the
following topic:

■ Section B.1.1, "Portlet Refresh Failure"

■ Section B.1.2, "HTML Tags Appearing in Portlet"

B.1.1 Portlet Refresh Failure
When using the JavaScript document.write() method in conjunction with a
Mozilla browser, you may find that portlet refresh does not work.

Note: Throughout this chapter, you will see references to ORACLE_
HOME. ORACLE_HOME represents the full path of the Oracle home,
and is used in cases where it is easy to determine which Oracle home
is referenced. The following conventions are used in procedures
where it is necessary to distinguish between the middle tier, OracleAS
Infrastructure, or Oracle Metadata Repository Oracle home:

■ ORACLE_HOME, represents the full path of the middle-tier
Oracle home.

■ INSTANCE_HOME, represents the full path of the instance home
associated with ORACLE_HOME.

■ INFRA_ORACLE_HOME, represents the full path of the Oracle
Application Server Infrastructure Oracle home.

■ METADATA_REP_ORACLE_HOME, represents the full path of
the Oracle Infrastructure home containing the Oracle Metadata
Repository.

Diagnosing Java Portlet Problems

B-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Problem
When using a Mozilla browser, such as Firefox, the document.write() method
causes portlet refresh to no longer work as expected.

Solution
Avoid using document.write() in your output if you also want portlet refresh to
work on Firefox. If this is not possible, you can choose to have the portlet not display
the Refresh and Restore icons during rendering. You can also turn off portlet refresh
and restore at the region level.

B.1.2 HTML Tags Appearing in Portlet
After upgrading from an earlier release to 11g Release 1 (11.1.1), you may find
unformatted HTML appearing in your portlets, for example, in the portlet title.

Problem
When viewing a portlet, you see raw HTML. For example, you might see the following
in a portlet title:

Oracle Application Server 10<i>g</i> Collateral

when what you expected to see was:

Oracle Fusion Middleware 10g Collateral

To protect against cross site scripting (XSS) attacks, Oracle Portal Release 10.1.4
escapes all user input by default. Thus, some HTML that was formatted in earlier
releases now appears unformatted because it has been escaped to plain text.

Solution
You can resolve this issue in one of the following two ways:

■ Tell your users to stop entering HTML tags as part of their input and have them
enter only plain text.

■ Turn on compatibility mode to make your Oracle Portal instance behave the way it
did in releases prior to Release 10.1.4, that is, stop the default escaping of HTML to
plain text. Note that turning on compatibility mode makes your portal instance
less secure.

For more information on these options, refer to Oracle Fusion Middleware Upgrade Guide
for Oracle Portal, Forms, Reports, and Discoverer.

B.2 Diagnosing Java Portlet Problems
This section describes common problems and solutions for Java portlets. It contains
the following topics:

■ Section B.2.1, "Portlet Logging"

■ Section B.2.2, "Installation and Deployment Problems"

■ Section B.2.3, "Portlet Code Does Not Compile"

■ Section B.2.4, "Application Server Connection Test Fails"

■ Section B.2.5, "Provider Test Page Shows Error"

■ Section B.2.7, "Portlet Does Not Display on Page"

Diagnosing Java Portlet Problems

Troubleshooting Portlets and Providers B-3

■ Section B.2.8, "After Initial Successful Display, Portlet Does Not Display on Page"

B.2.1 Portlet Logging
In addition to specific issues listed in the other sections of this appendix, the following
general techniques can help you to troubleshoot portlet problems.

Problem 1
When accessing a portal page, the portlet does not display or displays an error
message.

Solution 1
Check the diagnostic log file look for errors.

For Oracle Portal:

MIDDLEWARE_HOME\user_projects\domains\<DomainName>\servers\WLS_PORTAL\logs\WLS_
PORTAL-diagnostic.log

For a custom Web provider:

MIDDLEWARE_HOME\user_projects\domains\<DomainName>\servers\WLS_PORTAL\logs\WLS_
PORTAL-diagnostic.log

Problem 2
Pertinent information that may help solve the problem is not being recorded in the log
file.

Solution 2
Increase the provider's log level to produce more detailed logging information by
adding the following entry to the web.xml file:

<env-entry>
 <env-entry-name>oracle/portal/provider/global/log/logLevel</env-entry-name>
 <env-entry-value>6</env-entry-value>
 <env-entry-type>java.lang.Integer</env-entry-type>
</env-entry>

B.2.2 Installation and Deployment Problems
This section describes problems that you may encounter when installing and
deploying the PDK-Java framework and samples.

B.2.2.1 Cannot Find a Java Class Object
You receive an error message about a Java class that does not exist. For example:

An unexpected error occurred-29540 : class
 oracle/webdb/provider/web/HttpProviderDispatcher does not exist (WWC-43000)

Problem
The referenced Java class object is not in the database or it is invalid. Oracle Portal, not
PDK-Java, generates the error message when it cannot execute the class.

Diagnosing Java Portlet Problems

B-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Solution
Log in to the database as your main Oracle Portal schema. Execute a SELECT
statement to verify that the object is in the schema. For example:

SELECT object_name, object_type, status FROM user_objects
 WHERE object_name like '%HttpProvider%'

Note that the name between quotes is case sensitive.

You should receive the following back:

/3334f18_HttpProviderDispatcher

Check for invalid or missing JAVA CLASS objects. Something could be wrong with
the Oracle Portal installation. If so, then recompiling invalid objects might help resolve
it.

B.2.2.2 Cannot Deploy the template.ear File
You receive the following error message when deploying your EAR file based on
template.ear:

Invalid J2EE application file specified - Base Exception:
Cannot get xml document by parsing WEB-INF/web.xml in template.war: <Line 88,
Column 14> : '--' is not allowed in comments.
Resolution:

Problem
The web.xml file contains a syntax error.

Solution
Verify that the syntax of web.xml is correct. Some versions of web.xml shipped in
template.war have a misplaced comment tag. Make sure that all opening comment
tags, <!--, have a matching closing tag, -->, before starting a new comment tag.

B.2.2.3 Error When Attempting to Register Provider
A number of errors may occur when you attempt to register your provider. This
section explains what can go wrong and how you can correct it. If your scenario is not
covered in this section, then check the application.log of your provider or, if that
does not help, use logcfg.sql for Portal Repository logging. For more information
logcfg.sql and application.log, refer to the Oracle Fusion Middleware
Administrator's Guide for Oracle Portal.

Problem 1
You receive the following error message:

Internal error (WWC-00006)
The provider URL specified may be wrong or the provider is not running.
(WWC-43176)

When OracleAS Portal attempts to register your provider, it must contact the listener
that serves your Web portlets. If you have already accessed the provider's test page,
http://host.domain:port/context/providers/servicename, according to
the installation instructions, Oracle Portal may not recognize your machine.

Diagnosing Java Portlet Problems

Troubleshooting Portlets and Providers B-5

Solution 1
Make sure the machine where Oracle Portal resides can access your Web provider
listener. The easiest way to test this setup is to start a browser on the host of the Oracle
Portal repository database and try to access the provider's test page. If the browser
needs a proxy setting to reach the provider, then you should set the same proxy for
Oracle Portal on the Administer tab. You should also use this proxy when registering
the provider.

If your Web provider server is not part of the DNS, then add an entry in the Oracle
Portal server's host file.

If a firewall exists between the machine with the Oracle Portal database and the
machine with the provider, then make sure that the necessary port is open.

Problem 2
You receive the following error:

Internal error (WWC-00006)
The provider URL specified may be wrong or the provider is not running.
(WWC-43176)
The following error occurred during the call to Web provider: Can't read
deployment properties for service: _default (WWC-43147)

When you register a provider, you have the option of specifying a Service Id. If you do
not specify anything in the Service Id field, the registration URL will not contain the
service name part, http://host.domain:port/context/providers/.
Therefore, Oracle Portal is looking for a default service, which is stored in a
deployment file called _default.properties. When this file is not found, you
receive this error.

Solution 2
Make sure that you bundle a file called _default.properties into your WAR file
with the following path:

/Web-inf/deployment/

The _default.properties file should define the default service to use when none
is specified for the provider. The file should look similar to the following:

serviceClass=oracle.webdb.provider.v2.adapter.soapV1.ProviderAdapter
loaderClass=oracle.portal.provider.v2.http.DefaultProviderLoader
showTestPage=true
definition=providers/test/provider.xml
autoReload=true
testPageURI=/htdocs/testpage/TestPage.jsp

Problem 3
You receive the following error message:

Internal error (WWC-00006)
The provider URL specified may be wrong or the provider is not running.
(WWC-43176)
The following error occurred during the call to Web provider: Can't read
deployment properties for service: test (WWC-43147)

Oracle Portal cannot find the deployment properties file for the service you specified
in the Service Id field or the service name part of the registration URL,
http://host.domain:port/context/providers/servicename. For example,

Diagnosing Java Portlet Problems

B-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

suppose you received this error in response to your attempt to register your provider
with the following URL:

http://host.domain:port/context/providers/test

In this case, you probably do not have a file called test.properties in your WAR
file in /Web-inf/deployment/.

Solution 3
Make sure that you bundle a deployment properties file (for example,
test.properties) into your WAR file with the following path:

/Web-inf/deployment/

The file should look similar to the following:

serviceClass=oracle.webdb.provider.v2.adapter.soapV1.ProviderAdapter
loaderClass=oracle.portal.provider.v2.http.DefaultProviderLoader
showTestPage=true
definition=providers/test/provider.xml
autoReload=true
testPageURI=/htdocs/testpage/TestPage.jsp

Problem 4
You receive the following error message:

An error occurred when attempting to call the providers register function.
(WWC-43134)
The provider URL specified may be wrong or the provider is not running.
(WWC-43176)
The following error occurred during the call to Web provider: Class
oracle.portal.provider.v2.render.RenderManager has no set or add method for tag
"createdOn" (WWC-43147)

Solution 4
If you are using DefaultProvider, provider.xml includes the element
<createdOn>. When the XML is parsed, the initialization process looks for a method
called setCreatedOn in the class representing the containing element. For example:

<renderer class="my.local.Renderer">
<createdOn>12-Mar-2001</createdOn>
...
</renderer>

In this example, the initialization process looks for
my.local.Renderer.setCreatedOn(). In your case, the appropriate method
does not exist, causing this error.

Problem 5
You receive an error like the following:

(WWC-00006)
An unexpected error occurred: User-Defined Exception
(WWC-43000)
wwpro_api_provider_registry.register_provider
An unexpected error occurred: ava.sql.SQLException: Inserted value too large for
column:

Diagnosing Java Portlet Problems

Troubleshooting Portlets and Providers B-7

This error indicates that your portlet has exceeded the data limit for a portlet. Each
portlet is limited to 4K of data. The lengths of all of the following contribute toward
this data limit:

■ provider name, display name, and description

■ parameter name, display name, and description

■ event name, display name, and description

Solution 5
You can take the following two actions to reduce the amount of data used for the
portlet:

■ Reduce the length of the portlet's parameter and event names, display names, and
descriptions.

■ Reduce the number of parameters and events in your portlet

B.2.2.4 Error Adding a Portlet to a Provider
You added a portlet to your provider, but, when you view the provider in Oracle
Portal, you do not see the new portlet.

Problem
The most common problem is a syntactical error in provider.xml, but it could also
be that the updated provider.xml file is not being found for some reason.

Solution
Try the following:

■ Examine provider.xml. Ensure that you have two syntactically correct opening
and closing portlet tags within the provider tag. For example:

<provider class="oracle.portal.provider.v2.DefaultProviderDefinition"
 session="true">
 <portlet class="oracle.portal.provider.v2.DefaultPortletDefinition"
 version="1">
 <id>1</id>
 ...
 </portlet>
 <portlet class="oracle.portal.provider.v2.DefaultPortletDefinition"
 version= "1">
 <id>2</id>
 ...
 </portlet>
</provider>

■ Check the test page for errors. If no errors are found, then refresh the provider.

■ Check the application.log of the provider for errors.

B.2.2.5 Portlet Does Not Exist
You received the following error message:

Error: The listener returned the following Message: 500 Portlet with id $1 doesn't
 exist

Diagnosing Java Portlet Problems

B-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Problem
You removed a portlet from provider.xml without first removing the portlet from
the page. The portlet no longer appears on the Customization page and therefore you
cannot remove it from the page.

Solution
Delete the region that contains the portlet. Remember, when deleting a portlet from
provider.xml, delete the portlet from the page first.

B.2.2.6 File Not Found
You receive the following error message:

Request URI:/jpdk/snoop/snoopcustom.jsp Exception: javax.servlet.ServletException:
java.io.FileNotFoundException:
C:\iAS\Apache\Apache\htdocs\jpdk\snoop\snoopcustom.jsp (The system cannot find the
path specified)

Problem
You added a JSP portlet to your page. Oracle Portal cannot locate the JSP in the file
system through provider.xml.

Solution
Confirm the file name and location and verify the information within provider.xml.

B.2.2.7 XML Parser Error
The XML Parser may fail at times when parsing your provider.xml. This section
explains what can go wrong and how you can correct it.

Problem 1
You receive the following error message:

Error: The XML parser encountered an Error, and could not complete the conversion
for portlet id=150, it returned the following message: XML Parsing Error

You attempted to register your provider or display portlets on a page, and received
this error message. When altering provider.xml, one or more of the tags were
corrupt and the file cannot be parsed.

Solution 1
Review provider.xml for errors.

Problem 2
You receive the following error message:

Error: The XML parser encountered an Error, and could not complete the conversion
for portlet id=146, it returned the following message: XSL reference value missing
in XML document.

You attempt to add your portlet to a page or register your provider, and you receive
this error. The portlet information within provider.xml may be incorrect. Another
possibility is that your classes cannot be located.

Diagnosing Java Portlet Problems

Troubleshooting Portlets and Providers B-9

Solution 2
Check that no tags are missing and that they appear in the correct sequence. Verify
that your class files exist and are specified correctly within provider.xml.

B.2.2.8 Error Adding Portlets
You receive the following error message when trying to add portlets to a page:

Error: An unexpected error occurred: ORA-29532: Java call terminated by uncaught
Java exception: Attribute value should start with quote.
(WWC-43000) An unexpected error occurred: Attribute value should start with quote.
at oracle.xml.parser.v2.XMLError.flushErrors(XMLError.java:205)

Problem
Oracle Portal has an issue with provider.xml. Most likely, an attribute within the
file is corrupt.

Solution
Review provider.xml for errors.

B.2.2.9 Content Request Timed Out
You receive the following error message:

ERROR TIMEOUT FOR CONTENT=timeout

Problem
You successfully registered your Web provider. When adding portlets to a page or
refreshing a page with existing portlets, you receive the timeout error message. This
error indicates that Oracle Portal timed out trying to contact your Java portlet listener.

Solution
Verify that you can still access the sample page:

http://host:port/context/providers/servicename

You set the timeout period by adding the following init parameters to the page
servlet of Oracle Portal’s appConfig.xml at:

MIDDLEWARE_HOME\user_projects\domains\<DomainName>\servers\WLS_
PORTAL\stage\portal\portal\configuration

Note that this appConfig.xml file is for the Parallel Page Engine. For example:

<requesttime>1000</requesttime>
<minTimeout>100</minTimeout>
<stall>500</stall>

For more information about appConfig.xml and its configuration parameters, refer
to Oracle Fusion Middleware Administrator's Guide for Oracle Portal.

You may also set a timeout value for individual providers when you register them
with Oracle Portal. Note that the provider timeout value must match or exceed the
minTimeout parameter value in appConfig.xml in order to have any effect. For
information about registering PDK-Java providers, refer to Section 6.5.5, "Registering
and Viewing Your Oracle PDK-Java Portlet". For information about registering WSRP
providers, refer to Section 6.3.4, "Registering and Viewing Your JSR 168 Portlet."

Diagnosing Java Portlet Problems

B-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

B.2.2.10 Message 500 Returned
You receive the following error message:

Error: The listener returned the following Message: 500

Problem
This generic message displays when Oracle Portal receives an Internal Server Error
while attempting to display your portlet. This problem might have any one of several
causes.

Solution
Review the WLS_PORTAL-diagnostic.log file located at MIDDLEWARE_
HOME\user_projects\domains\<DomainName>\servers\WLS_PORTAL\logs
to discover the cause of the error.

B.2.2.11 JPS Portlets with the get Method not Working
HTML forms can be submitted using either the get or post method, but the WSRP
standard only requires the consumer (portal) to use the post method. Support of the
get method is optional according to the standard. Since portal consumers are not
required to support the get method, we highly recommended that you use the post
method when developing your portlets.

Problem
You have JPS portlets that use the get method and they are not working correctly in
Oracle Portal. Forms with get lose the query string in the action URL when the form
is submitted. The query string is needed for the portlets to return back to the portal
and for the WSRP state.

Solution
Replace the get method with the post method.

B.2.2.12 Portlet Displays Session Expired Message After Redeployment
When you redeploy your portlets to the portlet container, all existing sessions between
the producer and all of its consumers are lost. If a consumer tries to reuse an existing
producer session, it may receive an error message the first time it tries to contact the
producer after redeployment.

Problem
You receive an error message in your portlet the first time you access it after
redeployment.

Error: Could not get markup. The cookie or session is invalid or there is a
runtime exception.

Solution
To reestablish the producer's session, refresh the portal page. You won't see this error
message if you are re-accessing the portlet from a new browser session because it
automatically establishes a new producer session.

B.2.3 Portlet Code Does Not Compile
When you try to compile the code for your portlet, you receive a compilation error.

Diagnosing Java Portlet Problems

Troubleshooting Portlets and Providers B-11

Problem
The Portlet Development library is not selected.

Solution
Make sure that Portlet Development library is selected for the project. Edit your
project's properties and select the Profiles > Development > Libraries entry in the
pane on the right. Make sure that the Portlet Development library is listed under
Selected Libraries.

B.2.4 Application Server Connection Test Fails
In Oracle JDeveloper, the Application Server Connection Test fails with the message
Connection refused: connect.

Problem 1
WebLogic Server is not running.

Solution 1
Make sure WebLogic Server is up and running by typing the following URL in your
browser: http://yourhostyourdomain:7001

Problem 2
The connection information is incorrect.

Solution 2
Verify the connection information that you provided in the Connection Setup wizard.

B.2.5 Provider Test Page Shows Error
When accessing the provider test page with your browser, an error is shown.

Problem 1
The provider.xml syntax is incorrect.

Solution 1
Correct the provider.xml syntax. Refer to the PDK-Java XML Provider Definition Tag
Reference document on Portal Studio:

http://www.oracle.com/technology/products/ias/portal/html/javadoc/xml_tag_
reference_v2.html

Problem 2
Needed JAR files are missing from the deployment environment.

Solution 2
Search the JAR files for the missing class. When the missing JAR file is identified, you
can add to the lib directory of the application from the Oracle JDeveloper
Deployment Profile. Refer to the Oracle JDeveloper Online Help System for more
information about the deployment profile.

Diagnosing Java Portlet Problems

B-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

B.2.6 Web Provider Not Appearing in Portlet Repository
Users cannot see a Web provider, such as Omniportlet, in the Portlet Repository even
though it has been registered successfully and is visible in the navigator.

Problem
The Web provider uses DBPreferenceStore and the database information stored in
data-sources.xml is incorrect.

Solution
Correct the information in data-sources.xml. Refresh the provider and invalidate
the Portlet Repository cache.

B.2.7 Portlet Does Not Display on Page
When you access a portal page, the portlet does not display on the page.

Problem 1
The provider is not running.

Solution 1
Make sure that the provider is up and running by entering the provider registration
URL in your browser's address bar.

Problem 2
The security manager for the provider is preventing the portlet from displaying.

Solution 2
In the provider definition file, provider.xml, delete or comment out the security
manager, if any.

Problem 3
The user may not have the Execute privilege for the portlet as defined on the portlet's
Access page.

Solution 3
Check the privileges for the portlet and, if the user or a group the user belongs to does
not have the Execute privilege, grant them access. Portlets sometimes inherit their
access privileges from the provider. You can use the Navigator in Oracle Portal to find
the portlet's provider and check its access privileges, then drill down to the portlet to
see its access privileges.

Problem 4
You get an error trying to display the portlet after you redeployed it.

Solution 4
Refer to Section B.2.2.12, "Portlet Displays Session Expired Message After
Redeployment".

B.2.8 After Initial Successful Display, Portlet Does Not Display on Page
When you access a portal page, the portlet initially displays on the page but returns
error messages in subsequent display attempts.

Diagnosing OmniPortlet Problems

Troubleshooting Portlets and Providers B-13

Problem
The provider session information is incorrect.

Solution
Check whether or not the provider uses sessions. If it does, edit the provider
registration information to make sure that you registered it accordingly:

Login Frequency: Once per User Sessions

You should also confirm that <session> is set to true in provider.xml.

B.3 Diagnosing OmniPortlet Problems
This section provides information to help you troubleshoot problems you may
encounter while using OmniPortlet.

To view errors that occur during the execution of OmniPortlet, perform the following:

■ Open the WLS_PORTAL.log file:

MIDDLEWARE_HOME\user_projects\domains\<DomainName>\servers\WLS_PORTAL\logs

■ Display the HTML source (for example, in Microsoft Internet Explorer browser,
choose View > Source), and locate the errors embedded in the output HTML as
comments.

To alter the logging level of the OmniPortlet Provider, perform the following action:

■ Open the web.xml file and modify the context-param value of
oracle.portal.log.LogLevel to the possible values ranging from 1 to 8
(where 8 means debug). The web.xml file is located at:

MIDDLEWARE_HOME\user_projects\domains\ClassicDomain\servers\WLS_PORTAL\tmp_WL_
user\portalTools\l1nt2k\war\WEB-INF\web.xml

The OmniPortlet errors that you are most likely to encounter, and possible solutions,
are as follows:

■ Section B.3.1, "OmniPortlet Cannot Access the Specified URL"

■ Section B.3.2, "Portlet Content Is Not Refreshed"

B.3.1 OmniPortlet Cannot Access the Specified URL
Your OmniPortlet displays errors or does not display the correct content.

Problem 1
The URL is not active.

Solution 1
Type the URL directly in your browser address field to test its validity.

Problem 2
If a proxy server is required to reach the site, the proxy settings are not valid. The
following messages may display:

Failed to open specified URL.
Cannot open the URL specified because of connection timeout.

Diagnosing OmniPortlet Problems

B-14 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Solution 2
Check that your proxy settings are valid by clicking Edit for the HTTP Proxy Setting in
the OmniPortlet Provider Test Page.

Problem 3
The message OmniPortlet timed out displays in your OmniPortlet.

Solution 3
Perform either of the following tasks:

1. If a proxy server is required to reach the site, see "Solution 2".

2. If the URL request takes a long time to process (for example, it executes a long
running query), try increasing the timeout value (in seconds) in the OmniPortlet
provider.xml file in:

MIDDLEWARE_HOME\user_projects\domains\<DomainName>\servers\WLS_PORTAL\tmp_WL_
user\portalTools\l1nt2k\war\WEB-INF\providers\omniPortlet

If you change the timeout value, you also need to do the following:

■ Bounce your middle-tier.

■ Increase the provider registration Timeout value of the Oracle Portal instances
with which this provider is registered.

Problem 4
If HTTP authentication is required and the user name and password are missing or not
valid, the following error message displays:

Authorization failed when connecting to the URL specified.
Provide correct user name and password to connect.

Solution 4
To configure the Secured Data (Web Clipping) Repository Setting, click Edit on the
OmniPortlet Provider Test Page. On the Source tab, click Edit Connection and enter a
valid user name and password on the Connection Information page. To enter the
connection information, the Secured Data Repository must be already be configured.
To configure its settings, click Edit on the OmniPortlet Provider Test Page.

Problem 5
If opening a URL to an HTTPS site with a certificate and the certificate is identified as
not valid, the following error message displays in the portlet:

SSL handshake failed for HTTPS connection to the specified URL.
The certificate file needs to be augmented.

Solution 5
See the Oracle Fusion Middleware Administrator's Guide for Oracle Portal.

Problem 6
If the proxy server requires authentication and the user name and password are
missing or not valid, the following error message displays:

Invalid or missing user proxy login information.

Diagnosing Web Clipping Problems

Troubleshooting Portlets and Providers B-15

Solution 6
Check that your proxy server user name and password are valid. Refer to
Section B.4.5, "HTTP Error Code 407 When Clipping Outside Firewall" for more
information.

B.3.2 Portlet Content Is Not Refreshed
After changing portlet properties in the Edit Defaults page, your portlet content is not
refreshed.

Problem 1
Oracle Web Cache invalidation is not configured properly.

Solution 1
See Section I.2.1.3 "Configuring Caching (PDK Only)" in the Oracle Fusion
Middleware Administrator's Guide for Oracle Portal.

Problem 2
You have personalized the portlet.

Solution 2
See Section B.3.3, "Edit Defaults Changes are Not Reflected in the Personalized
Portlet".

B.3.3 Edit Defaults Changes are Not Reflected in the Personalized Portlet
When you personalize the portlet at runtime using the Personalize link, the new
property values are not reflected in the personalized version of the portlet.

Problem
When you personalize the portlet, a complete copy of the personalization object file is
created. Since all properties are duplicated, subsequent modifications through Edit
Defaults are not reflected in the personalized version.

Solution
To ensure the latest changes are made to the portlet, click Personalize again (after the
modifications using Edit Defaults), then select the Reset to Defaults option.

B.4 Diagnosing Web Clipping Problems
This section provides information to help you troubleshoot the following problems
you may encounter while using the Web Clipping provider or Web Clipping Studio:

■ Section B.4.1, "Setting Logging Levels"

■ Section B.4.2, "Reviewing Error Messages"

■ Section B.4.3, "Checking the Status of the Provider with the Test Page"

■ Section B.4.4, "Problem Connecting to the Web Site for Clipping"

■ Section B.4.5, "HTTP Error Code 407 When Clipping Outside Firewall"

■ Section B.4.6, "Cannot Clip a Page"

■ Section B.4.7, "Images Not Retrieved with Clipping"

Diagnosing Web Clipping Problems

B-16 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ Section B.4.8, "Resolving Problems with Migration of URL-based Portlets"

B.4.1 Setting Logging Levels
By default, the logging level of Web Clipping is set to level 3, which provides
information about configuration, severe errors, and warnings. This level is reasonable
for day-to-day operations. To view information useful for debugging, you should set
the logging level to 8.

To set the logging level, edit the web.xml file, which is located at:

MIDDLEWARE_HOME\user_projects\domains\<DomainName>\servers\WLS_PORTAL\tmp_WL_
user\portalTools\6znell\war\WEB-INF\web.xml

To set the level to 8 and display debugging information, set the value of the parameter
oracle.portal.log.LogLevel as follows:

<context-param>
 <param-name>oracle.portal.log.LogLevel</param-name>
 <param-value>8</param-value>
</context-param>

After you make the change, restart the Web application.

B.4.2 Reviewing Error Messages
Errors that occur when accessing the Test Page or executing of the Web Clipping
portlet are written to:

MIDDLEWARE_HOME\user_projects\domains\<DomainName>\servers\WLS_PORTAL\logs\WLS_
PORTAL.log

B.4.3 Checking the Status of the Provider with the Test Page
You can use the Web Clipping Provider Test Page to determine if the provider is
functioning properly. To access the Test Page, click Web Clipping Provider from the
Portal Tools Application Welcome Page, which is located at:

http://host:port/portalTools

The Provider Test Page: Web Clipping is displayed. It provides the following
information:

■ Portlet information about the Web Clipping portlet. The Web Clipping provider
contains only one portlet.

■ Provider initialization parameters and values.

■ Provider status, with links to pages for editing the configuration.

For more information about using the Test Page, see the "Administering Web
Clipping" appendix in the Oracle Fusion Middleware Administrator's Guide for Oracle
Portal.

B.4.4 Problem Connecting to the Web Site for Clipping
You encounter difficulties making or maintaining connections to the Web site
containing the clipping.

Diagnosing Web Clipping Problems

Troubleshooting Portlets and Providers B-17

Problem 1
If you cannot access the Web site using Web Clipping Studio, you may be using an
incorrect URL.

Solution 1
To be sure a URL is correct, test the URL that you want to clip in a browser before you
attempt to clip it. Also test the URL to be sure that it is accessible from the provider
middle tier.

Problem 2
The connection times out when attempting to browse to any Web site and your
environment uses a proxy server to connect to HTTP servers outside a firewall.

Solution 2
Make sure that the proxy servers are configured correctly.

To configure the proxy servers, go to the Web Clipping Provider Test Page, as
described in Section B.4.3, "Checking the Status of the Provider with the Test Page". In
the Web Clipping Provider Test Page, click Edit in the Actions column of the HTTP
Proxy row. In the Edit Provider page, specify the HTTP Proxy Host and the HTTP
Proxy Port for the HTTP Proxy.

For access to servers inside the firewall, you can specify a list of domain names that
need not go through the firewall by selecting No Proxy for Domains beginning with
and entering the URL. You do not need to restart the managed server for the new
settings to take effect.

For more information about configuring proxy servers, see the "Administering Web
Clipping" appendix of the Oracle Fusion Middleware Administrator's Guide for Oracle
Portal.

Problem 3
Your configuration includes a load balancer and you experience difficulty making or
maintaining connections while attempting to add a clip to a Web Clipping portlet.

Solution 3
The configuration was not set up correctly. To solve this problem, perform the
following:

■ If multiple OC4J instances are set up behind a load balancer, the Web Clipping
Repository and HTTP proxy must be configured identically on all OC4J instances
before you join them to the load balancer.

Web clippings have definitions that must be stored persistently in the Web
Clipping Repository hosted by an Oracle Database server. In a multiple
middle-tier environment, all instances of OC4J must store definitions in the same
repository.

In addition, all instances of OC4J must have identical HTTP proxy configurations.

■ The Load Balancer must be session-enabled. If it is not, the first request connects,
but subsequent requests, which may be routed to a different instance, fail.

For more information about configuring with a load balancer, see the "Performing
Advanced Configuration" chapter of the Oracle Fusion Middleware Administrator's Guide
for Oracle Portal.

Diagnosing Web Clipping Problems

B-18 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Problem 4
You use a reverse proxy, but cannot make a connection.

Solution 4
Make sure that the reverse proxy server is configured correctly. See the "Performing
Advanced Configuration" chapter of the Oracle Fusion Middleware Administrator's Guide
for Oracle Portal for information about configuring a reverse proxy.

Problem 5
You cannot connect and the error log contains a message about denying logon to the
database. (See Section B.4.1, "Setting Logging Levels" for information about the error
log.)

Solution 5
The PORTAL schema password for the infrastructure database may have been
modified manually and it may not match the password stored in Oracle Internet
Directory. Refer to the Oracle Fusion Middleware Administrator's Guide for Oracle Internet
Directory for more information about setting the password.

B.4.5 HTTP Error Code 407 When Clipping Outside Firewall
The proxy servers are configured for proxy authentication and you receive HTTP error
code 407 when you attempt to clip a page outside the firewall.

Problem
The proxy servers are configured for proxy authentication, but you have not
configured proxy authentication.

Solution
You must manually configure proxy authentication. Web Clipping supports both
global proxy and per-user authentication. You can specify the realm of the proxy
server and whether all users login automatically with a provided user name and
password, each user logs in with an individual user name and password, or all users
log in with a specified user name and password. For more information about
configuring proxy authentication, see the "Administering Web Clipping" appendix of
the Oracle Fusion Middleware Administrator's Guide for Oracle Portal.

B.4.6 Cannot Clip a Page
You can connect to the Web site, but you cannot clip the page.

Problem
The page may be overpopulated with IFrames.

Solution
View the page in a browser and look at the page source. If it contains IFrames, start
browsing in Web Clipping Studio using the URL pointed to by the IFrame src
attribute.

B.4.7 Images Not Retrieved with Clipping
Images in a Web clipping are not retrieved with the rest of the clipping.

Diagnosing Web Clipping Problems

Troubleshooting Portlets and Providers B-19

Problem
Because images are treated as links (using the src attribute of the IMG tag), images
from clipped sites are served directly from the original sites. If the images require that
you enable proxy settings during creation of the clipping, then disabling the browser
proxy setting disables the viewing of the images in a clipping.

Solution
Enable proxy settings in the browser.

B.4.8 Resolving Problems with Migration of URL-based Portlets
You can migrate URL-based portlets that are stored in a provider.xml file to Web
Clipping portlets. This section explains how to troubleshoot issues that arise as you
migrate your portlets to Web Clipping portlets. For more information on the migration
process itself, refer to Section 5.6, "Migrating from URL-Based Portlets".

B.4.8.1 File Not Found Exception When Running Migration Tool
When you run the migration tool, you receive the following exception:

Exception in thread "main" java.io.FileNotFoundException:
 /wrongpath/somservice.properties (No such file or directory)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:103)
 at oracle.webdb.wcs.client.urlservices.UrlServicesMigrator.importService
 (UrlServicesMigrator.java:631)
 at oracle.webdb.wcs.client.urlservices.UrlServicesMigrator.main
 (UrlServicesMigrator.java:724)
 at oracle.webdb.wcs.WcWebdbMain.main(WcWebdbMain.java:60)

Problem
The files you specified for the deployment properties file for either the URL-based
portlets service or the Web Clipping Portlet service do not exist.

Solution
Verify the path to both service deployment properties files in the argument list to see if
they point to the correct location.

B.4.8.2 Null Pointer Exception When Running Migration Tool
When you run the migration tool, you receive the following exception:

Exception in thread "main" java.lang.NullPointerException
 at java.util.Hashtable.put(Hashtable.java:375)
 at java.util.Properties.setProperty(Properties.java:97)
 at oracle.webdb.wcs.client.urlservices.UrlServicesMigrator.setRepository
 (UrlServicesMigrator.java:415)
 at oracle.webdb.wcs.client.urlservices.UrlServicesMigrator.main
 (UrlServicesMigrator.java:733)
 at oracle.webdb.wcs.WcWebdbMain.main(WcWebdbMain.java:58)

Problem
The Repository settings are not configured for the Web Clipping Provider.

Solution
See Section 5.6.1, "Preparing for Migration" for information about steps you must take
before running the migration tool.

Need More Help?

B-20 Oracle Fusion Middleware Developer's Guide for Oracle Portal

B.4.8.3 Target provider.xml is Already Migrated Error
When you run the migration tool, you receive the following error:

Error: Target provider.xml is already migrated.

Problem
The provider.xml file pointed to by the URL-based portlets service deployment
properties file has already been migrated. The provider definition class specified in the
provider.xml file is already in WcProviderDefinition.

Solution
If you want to redo the migration, rename your service in both the deployment
properties file and the entire directory name under WEB-INF/providers and then run
the migration again.

B.4.8.4 Cannot Migrate provider.xml with Class Error
When you run the migration tool, you receive the following error:

Error: Can't migrate provider.xml with class <someclass>

Problem
The provider.xml file pointed to by the URL-based portlets service deployment
properties file contains a provider class name that does not match the one used by
URL-based portlets. Specifically, the Provider class name specified in the file is not
oracle.portal.provider.v2.http.URLProviderDefinition. The migration
tool is intended to migrate URL-based Portlet provider definitions, not any other kind
of provider definitions. Even those classes which sub-class from URL-based portlets
provider definition will not be correctly migrated.

Solution
You cannot migrate this service.

B.5 Need More Help?
You can find more solutions on Oracle MetaLink, http://metalink.oracle.com.
If you do not find a solution for your problem, log a service request.

See Also: Oracle Portal Release Notes, available on the Oracle
Technology Network.

C

Mapping Profile Items to Attributes C-1

C Mapping Profile Items to Attributes

When developing portlet functionality that requires access to a user's identity, you
often need to map between attributes in Oracle Portal and Oracle Internet Directory,
and userProfileItems in WSRP. Note that for Oracle Portal Release 2 (10.1.4),
these attributes are static and cannot be configured. This appendix provides a table
that shows the mapping between various attributes.

C.1 Mapping userProfileItems to Attributes
Table C–1 provides a mapping of userProfileItems to Oracle Internet Directory
and Oracle Portal attributes.

Note: In cases where the Oracle Internet Directory attribute holds a
complex string, like homePostalAddress, it is parsed into the
needed component strings. The delimiter is assumed to be the dollar
sign ($). For example, suppose you had the following value for
homePostalAddress in Oracle Internet Directory:

123 Main St$$$SmallvilleNY10001

In the Oracle Portal profile attributes, this string would be parsed as
follows:

■ 123 Main St goes into HOME_ADDR1.

■ Smallville goes into HOME_CITY.

■ NY goes into HOME_STATE.

■ 10001 goes into HOME_ZIP.

Table C–1 userProfileItems Mapping

Oracle Portal
Profile Attributes

Oracle Internet Directory
Attributes WSRP userProfileItems

FIRST_NAME givenName name/given

LAST_NAME sn name/family

MIDDLE_NAME middleName name/middle

KNOWN_AS displayName name/nickname

DATE_OF_BIRTH orclDateOfBirth bDate

Mapping userProfileItems to Attributes

C-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

ORGANIZATION o employerInfo/employer

TITLE title employerInfo/jobtitle

HOME_ADDR1 homePostalAddress homeInfo/postal/name

HOME_ADDR2 homeInfo/postal/street

HOME_ADDR3 homeInfo/postal/organization

HOME_CITY homeInfo/postal/city

HOME_STATE homeInfo/postal/stateprov

HOME_ZIP homeInfo/postal/postalcode

HOME_COUNTRY homeInfo/postal/country

HOME_PHONE homePhone homeInfo/telecom/telephone/number

OFFICE_ADDR1 street businessInfo/postal/name

OFFICE_ADDR2 businessInfo/postal/street

OFFICE_ADDR3 businessInfo/postal/organization

OFFICE_CITY l businessInfo/postal/city

OFFICE_STATE st businessInfo/postal/stateprov

OFFICE_ZIP postalCode businessInfo/postal/postalcode

OFFICE_
COUNTRY

c businessInfo/postal/country

WORK_PHONE telephoneNumber businessInfo/telecom/telephone/number

FAX facsimileTelephoneNumbe
r

businessInfo/telecom/fax/number

MOBILE_PHONE mobile businessInfo/telecom/mobile/number

EMAIL mail businessInfo/online/email

Table C–1 (Cont.) userProfileItems Mapping

Oracle Portal
Profile Attributes

Oracle Internet Directory
Attributes WSRP userProfileItems

D

Manually Packaging and Deploying PDK-Java Providers D-1

D Manually Packaging and Deploying
PDK-Java Providers

This appendix explains how to manually package your PDK-Java provider
implementation into a portable format suitable for deployment on the Oracle
WebLogic Server or another J2EE application server. It then explains how to deploy
the resulting EAR file in an Oracle WebLogic Server environment and subsequently
register it with one or more Oracle Portal instances.

■ Section D.1, "Introduction"

■ Section D.2, "Packaging and Deploying Your Providers"

D.1 Introduction
Before preceding with packaging and deploying your provider, you must understand
the following basic concepts:

■ Section D.1.1, "WAR and EAR files"

Note: In general, we recommend that you package and deploy your
providers using the tools available in Oracle JDeveloper. However, if
you find that you must package and deploy your providers manually
for some reason, we provide the information in this appendix for your
reference.

Note: Throughout this chapter, you will see references to ORACLE_
HOME. ORACLE_HOME represents the full path of the Oracle home,
and is used in cases where it is easy to determine which Oracle home
is referenced. The following conventions are used in procedures
where it is necessary to distinguish between the middle tier, OracleAS
Infrastructure, or Oracle Metadata Repository Oracle home:

■ ORACLE_HOME, represents the full path of the middle-tier
Oracle home.

■ INFRA_ORACLE_HOME, represents the full path of the
infrastructure Oracle home.

■ METADATA_REP_ORACLE_HOME, represents the full path of
the OracleAS Infrastructure home containing the Oracle Metadata
Repository.

Packaging and Deploying Your Providers

D-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

■ Section D.1.2, "Service Identifiers"

D.1.1 WAR and EAR files
WAR and EAR files are used to deploy applications on a J2EE application server, such
as Oracle Fusion Middleware. The WAR and EAR files encapsulate all of the
components necessary to run an application in a single file. These files make the
deployment of an application very easy and consistent, reducing the possibility of
errors when moving an application from development to test, and test to production.

■ WAR files represent a Web application and include all the components of that
Web application, including Java libraries or classes, servlet definitions and
parameter settings, JSP files, static HTML files, and any other required resources.

■ EAR files represent an enterprise application.

D.1.2 Service Identifiers
PDK-Java enables you to deploy multiple providers under a single adapter servlet.
The providers are identified by a service identifier. When you deploy a new provider,
you must assign a service identifier to the provider and use that service identifier
when creating your provider WAR file. The service name is used to look up a file
called service_id.properties, which defines the characteristics of the provider,
such as whether to display its test page.

For example, you can register the PDK-Java samples provider using the following
URL and a service identifier of urn:sample:

http://mycompany.com/jpdk/providers

Alternatively, you can use a URL of the form:

http://mycompany.com/jpdk/providers/sample

where the provider name (sample) is appended to the URL of the PDK-Java samples
provider. In this case, you should leave the Service Id field blank when registering the
provider.

You can specify the service identifier separately in cases where multiple portals are
sharing the same provider. By registering each portal with a different service
identifier, you can specify the provider properties for each consumer independently.

Once your provider has been deployed, you must use the correct service identifier to
register your provider with Oracle Portal, which ensures that requests are routed to
the correct provider. If the adapter servlet receives a request without a service
identifier, the request goes to the default provider.

D.2 Packaging and Deploying Your Providers
The following sections show the steps you must perform to package and deploy a
provider manually:

Note: If you do not know the service identifier, check the provider
test page or contact the administrator of the provider. If you are using
the Federated Portal Adapter, the URL points to the adapter, not the
provider, thus you must enter a value for this field. In this case, the
service identifier would be urn: followed by the name of the
database provider.

Packaging and Deploying Your Providers

Manually Packaging and Deploying PDK-Java Providers D-3

■ Section D.2.1, "Packaging Your Provider"

■ Section D.2.2, "Deploying Your EAR File Using Fusion Middleware Control"

■ Section D.2.3, "Testing Deployment"

■ Section D.2.4, "Setting Deployment Properties"

■ Section D.2.5, "Securing Your Provider"

■ Section D.2.6, "Registering Your Provider"

D.2.1 Packaging Your Provider
The steps in this section explain how to manually package a WAR file. If you are
familiar with one of the various utilities for assembling WAR files, you are free to
assemble your WAR file that way.

■ Section D.2.1.1, "Preparing Your Directories"

■ Section D.2.1.2, "Specifying Your Default Service"

■ Section D.2.1.3, "Creating Your WAR File"

■ Section D.2.1.4, "Creating Your EAR File"

D.2.1.1 Preparing Your Directories
In preparation for creating your WAR file, you need to perform the following steps:

1. Create a working directory where you can collect the necessary files.

2. Extract the template.war file from /pdk/jpdk/v2/template.war into your
working directory. Make sure that you extract the file paths, too.

3. If your provider needs any additional JAR files, add them to the WEB-INF/lib
directory.

4. If your provider needs any additional Java classes not contained in a JAR file, add
them to the WEB-INF/classes directory. Make sure that you save the class file in
a directory structure that corresponds to their Java package names.

5. Add any static HTML files, JSPs and images to your working directory. Create
subdirectories as needed to organize the files. Note that the subdirectories will
become part of the path necessary to access the HTML or JSP files.

6. Create a subdirectory for your provider under the providers directory.

7. Copy the _default.properties file to service_name.properties and edit
it to reflect your provider's configuration.

8. Set the definition value in the provider_name.properties file that is
available in the WEB-INF/deployment folder, as follows:

definition=providers/provider_dir_you_created/provider.xml

9. Place your provider definition file in the subdirectory you just created.

10. Edit _default.properties to reflect the configuration settings of your default
provider. The default provider is accessed if a service identifier is not specified in
a request. Refer to Section D.2.1.2, "Specifying Your Default Service" for more
information on this step.

11. If you use servlets to render content, edit WEB-INF/web.xml to add your servlets
to the list of pre-defined servlets. Be careful not to remove the entries for servlets
required by PDK-Java.

Packaging and Deploying Your Providers

D-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

D.2.1.2 Specifying Your Default Service
The default service is the provider that receives any request without a service name.
You specify a default provider by editing the _default.properties file in the
deployment directory of your WAR file.

Edit the definition entry to point to the provider definition file that represents your
default provider. Paths should be relative to the WEB-INF directory within your WAR
file, not the physical location of the file in the file system.

The _default.properties file looks similar to the following:

serviceClass=oracle.webdb.provider.v2.adapter.soapV1.ProviderAdapter
loaderClass=oracle.portal.provider.v2.http.DefaultProviderLoader
showTestPage=true
definition=providers/sample/provider.xml
autoReload=true

D.2.1.3 Creating Your WAR File
Once you have specified the contents of your WAR file, you are ready to create the
WAR file itself. To create the WAR file, perform the following steps:

1. Zip the contents of the working directory you created in Section D.2.1.1,
"Preparing Your Directories", including the subdirectory paths but not the working
directory path itself.

2. Rename the resulting file to give it a meaningful name and change the extension to
.war.

D.2.1.4 Creating Your EAR File
To create the EAR file manually, perform the following steps:

1. Create another working directory for the creation of your EAR file.

2. Extract the template.ear file from /pdk/jpdk/v2/template.ear into your
working directory. Make sure that you extract the file paths, too.

3. Open the META-INF/application.xml file that was contained in the template
EAR file. It should look something like the following:

<?xml version "1.0">
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.
 //DTD J2EE Application 1.3//EN"
 "http://java.sun.com/j2ee/dtds/application_1_3.dtd">
<application>
 <display-name>Display Name of the Application</display-name>
 <description>Description of the application</description>
 <module>
 <web>
 <web-uri>yourwarfile.war</web-uri>
 <context-root>/</context-root>
 </web>
 </module>
</application>

Table D–1 describes the elements of application.xml.

Table D–1 Elements of application.xml

Element Description

<display-name> Is the name of the application.

Packaging and Deploying Your Providers

Manually Packaging and Deploying PDK-Java Providers D-5

4. Save application.xml back to the same location without changing the name of
the file.

5. Copy the WAR file you created earlier into your working directory. Put it in the
working directory itself, not a subdirectory.

6. Zip the contents of the working directory, including the subdirectory paths but not
the working directory path itself.

7. Rename the resulting file to give it a meaningful name and change the extension to
.ear.

D.2.2 Deploying Your EAR File Using Fusion Middleware Control
You can deploy your EAR file to your WebLogic Managed Server (WLS_PORTAL)
using Fusion Middleware Control. To deploy the EAR file :

1. Start the Oracle Fusion Middleware Control and navigate to the home page of the
Portal instance in which you configured PDK-Java (for example, WLS_PORTAL).

2. From the WebLogic Server menu, choose Application Deployment, then Deploy.

The Select Archive page is displayed.

3. In the Archive or Exploded Directory section, you can select one of the following:

■ Archive is on the machine where this browser is running. Then, enter the
location of the archive or click Browse to find the archive file.

■ Archive or exploded directory is on the server where Enterprise Manager is
running. Then, enter the location of the archive or click Browse to find the
archive file.

4. Click Continue. The URL mapping for Web Modules displays. The mappings will
default to the context roots specified in application.xml (for example,
/myapp), but you can change them to avoid clashing with the context roots of
other deployed applications.

5. In the Deployment Plan section, you can select one of the following:

■ Automatically create a new deployment plan.

■ Deployment plan is on the machine where this web browser is running. If
you select this option, enter the path to the plan.

■ Deployment plan is on the server where Enterprise Manager is running. I If
you select this option, enter the path to the plan.

6. Click Next.

The Select Target page is displayed.

7. Select the target to which you want to deploy the application. The Administration
Server, Managed Servers, and clusters are listed. You can select a cluster, one or
more Managed Server in the cluster, or a Managed Server that is not in a cluster.

<description> Is a description of the application and its functions.

<web-uri> Is the name of your WAR file.

<context-root> Is the prefix you would like to map to your application by
default (for example, /myapp).

Table D–1 (Cont.) Elements of application.xml

Element Description

Packaging and Deploying Your Providers

D-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Although the Administration Server is shown in the list of targets, you should not
deploy an application to it. The Administration Server is intended only for
administrative applications such as the Oracle WebLogic Server Administration
Console.

8. Click Next.

The Application Attributes page is displayed.

9. In the Application Attributes section, for Application Name, enter the application
name.

10. In the Context Root of Web Modules section, if the web module does not have the
context root configured in the application.xml file, you can specify the context root
for your application. The context root is the URI for the web module. Each web
module or EJB module that contains web services may have a context root.

11. If the application’s adf-config.xml file archive contains contains MDS
configuration, the Target Metadata Repository section is displayed. It allows you
to choose the repository and partition for this application:

■ To change the repository, click the icon next to the Repository Name. In the
Metadata Repositories dialog box, select the repository and click OK.

■ To change the partition, enter the partition name in Partition Name.

12. In the Distribution section, you can select one of the following:

■ Distribute and start application (servicing all requests)

■ Distribute and start application in admin mode (servicing only admin
requests)

■ Distribute only

13. Click Next.

The Deployment Wizard, Deployment Settings page is displayed.

14. On this page, you can perform common tasks before deploying your application
or you can edit the deployment plan or save it to a disk. You can:

■ Configure Web modules

■ Configure application security

15. Expand Deployment Plan.

You can edit and save the deployment plan, if you choose.

16. Click Deploy.

Application Server Control displays processing messages.

17. When the deployment is completed, click Close.

D.2.3 Testing Deployment
To test your provider deployment, you access the provider test page with a URL of the
following form:

http://host:port/context_root/providers

where:

host and port are the host name and port number of the HTTP listener for your
target OC4J instance. In an Oracle Fusion Middleware installation with Oracle Web

Packaging and Deploying Your Providers

Manually Packaging and Deploying PDK-Java Providers D-7

Cache installed, port should be the Oracle Web Cache listener port (for example,
7777). In a standalone OC4J installation, the default HTTP port number is 8888.

context_root is the URI path prefix you mapped to the provider Web application
on deployment (for example, /myapp) or the default one specified in
application.xml in the case of a manual deployment with dcmctl.

For example:

http://my.host.com:7777/newProvider/providers

If your .properties file specifies showTestPage=true, you should see the
familiar test page for your default provider. To view the test page for a specific
provider service, you can append the service name to the URL. For example:

http://my.host.com:7777/newProvider/providers/myService

D.2.4 Setting Deployment Properties
In PDK-Java, you can specify a number of deployment properties through JNDI
variables. Table D–2 provides a list of these variables with descriptions.

Setting the Variables
You can set the values of the variables in Table D–2 as you would any other JNDI
variables. Refer to Section 7.2.4.2, "Setting JNDI Variable Values" for information on
how to set JNDI variables.

D.2.5 Securing Your Provider
When using the PDK-Java framework in a production environment, you should secure
your providers. For more information on securing providers, refer to Section 7.2.7,
"Implementing Portlet Security" and the Oracle Fusion Middleware Administrator's Guide
for Oracle Portal.

Table D–2 JNDI Variables for Provider Deployment

Variable Description

oracle/portal/provider/global/log/logLevel Is the logging level (0-8) used by
PDK-Java and applies to all providers.

oracle/portal/service_name/showTestPage Is a Boolean flag that specifies whether a
provider's test page is accessible. The
default value is true.

oracle/portal/service_name/maxTimeDifference Is the provider's HMAC time difference.

oracle/portal/service_name/definition Is the location of the provider's
definition file, provider.xml.

oracle/portal/service_name/autoReload Is a Boolean auto reload flag. The default
value is true.

oracle/portal/service_name/sharedKey Is the HMAC shared key. It has no
default value.

oracle/portal/service_name/rootDirectory Is the location for provider
customizations. It has no default value.

Packaging and Deploying Your Providers

D-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

D.2.6 Registering Your Provider
Once you have successfully deployed and verified your provider, you can register it as
you would any other provider. Refer to Section 6.5.5, "Registering and Viewing Your
Oracle PDK-Java Portlet" for more information about registering your provider.

E

Oracle Portal Provider Test Suite E-1

EOracle Portal Provider Test Suite

The Oracle Portal Provider Test Suite performs sanity, performance, and unit tests on a
Web provider without an installation of Oracle Portal or Internet access from the
provider machine. The following two types of utilities are available to the user in the
test suite:

■ Section E.1, "Provider Test Page"

■ Section E.2, "Test Harness"

You can download the Oracle Portal Provider Test Suite from the Oracle Portal
Developer Kit (PDK) page on Oracle Technology Network (OTN):

http://www.oracle.com/technology/products/ias/portal/pdk.html

From the Oracle Portlet Developer Kit (PDK) home page, select Download the
PDK-Java TestSuite.

E.1 Provider Test Page
The provider test page provides a basic sanity test for the provider. It contains a list of
portlets, servlet initialization arguments, and the version numbers of the ptlshare
and pdkjava libraries. The provider test page is the simplest utility available for
testing any Web provider. You access the test page by a URL after deploying the
enterprise application or Web application on Oracle WebLogic Server (WLS). You test
the Web provider by accessing this URL from a browser:

http://server:port/application_name/providers/provider_name

For example, the PDK-Java comes with a sample application and portlets. The
application is encapsulated in a WAR file, which in turn is encapsulated in an EAR
file. When you deploy it, Oracle WebLogic Server extracts the files and creates a
directory structure with the sample portlets under:

MIDDLEWARE_HOME\user_projects\domains\<DomainName>\servers\WLS_PORTAL\tmp_WL_
user\jpdk

To view the test page for this provider, you would use this URL:

http://server:port/jpdk/providers/sample

When you access the test page, the SOAP servlet validates the XML provider
definition, provider.xml, ensuring that the corresponding provider is well formed.
This validation is useful for debugging deployment issues with your provider before
attempting to register it with a Oracle Portal. If you successfully deploy your Web
application on WLS, you receive a success message on the test page.

Test Harness

E-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

You can turn the test page on and off by using the JNDI variable
oracle/portal/provider/provider_name/showTestPage to true or false.
Once a provider is tested and in service you might want to restrict access to the test
page. For more information about retrieving and setting JNDI variables, refer to
Section 7.2.4, "Using JNDI Variables".

E.2 Test Harness
The test harness is a command line utility for unit- and performance-testing your
providers without accessing an Oracle Portal instance. The test harness sends HTTP
requests to the target Web provider and records the responses for further analysis. The
responses are logged into an XML file. Performance statistics are logged into another
file for analysis.

The test harness provides considerable flexibility in the following ways:

■ You create your own test definition. Based on the information in the test
definition, the harness sends requests to the provider. The test definition file is in
XML format and lists request instances to send to the target Web provider.

■ The information returned by the provider is stored in a standard XML file, which
makes it easier to understand and analyze.

■ You can perform load testing of the Web provider.

E.2.1 Test Definition File
The test definition file is an XML file that lists the request instances for a particular
test. You can optionally subdivide the request instances into request groups within the
test definition file. You can include the details of the request instances in the test
definition file or refer to a request library XML file that defines the instance details.

In addition to the request instances, the test definition file also includes information
about the host and port of the target Web provider and any pre-processors to which it
needs to be sent. A pre-processor enables you to include application-specific logic in
the request instances at runtime in the test harness. For example, a pre-processor
might check the validity of XML in the SOAP messages being sent to the target Web
provider. The test harness provides the following three built-in pre-processors:

■ Oracle Portal pre-processor

■ Validation-based caching pre-processor

■ HMAC (Hashed Message Authentication Checksum) pre-processor

The following sample test definition file illustrates the format and content of the file:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?testDefinition version="0.1"?>
<testDefinition>
 <defaultHost>machine.name.com</defaultHost>
 <defaultPort>80</defaultPort>
 <defaultPath>/jpdk/providers/sample</defaultPath>
 <property name="portletId" value="1"/>
 <preProcessorDefinitions>
 <preProcessor
 class="oracle.webdb.testharness.preprocessor.PortalPreProcessor">
 <name>portal</name>
 </preProcessor>
 <preProcessor class="oracle.webdb.testharness.preprocessor.HMACPreProcessor">
 <name>hmac</name>

Test Harness

Oracle Portal Provider Test Suite E-3

 <sharedKey>1234567890aBcDeFgHiJ</sharedKey>
 </preProcessor>
 </preProcessorDefinitions>
 <requestGroup id="register">
 <description>Carries out necessary registrations</description>
 <cycles>1</cycles>
 <threads>1</threads> -- increase the number to load test the Web provider.
 <requestInstance id="register_provider">
 <libraryId>ptl902</libraryId>
 <definitionId>registerProvider</definitionId>
 <runs>1</runs>
 </requestInstance>
 <requestInstance id="register_portlet">
 <libraryId>ptl902</libraryId>
 <definitionId>registerPortlet</definitionId>
 <runs>1</runs>
 </requestInstance>
 </requestGroup>
 <requestGroup id="show">
 <description>Carries out work necessary to show the portlet</description>
 ...
 ...
 </requestGroup>
 ...
</testDefinition>

E.2.2 runTest Command
The runTest command invokes the test harness with the specified options using the
specified test definition.

runTest options test_definition

Table E–1 describes the command options for runTest.

Table E–1 runTest Options

Option Description

-n testname Assigns the specified name to this run. Defaults to a date-time
name.

-g groupId Is a comma separated list of the identifiers of the request groups
in the test definition file to be run for this test. To run all groups,
specify --all-groups.

-p perfLogFile Is the name of the performance log file. Defaults to the test
name. To disable performance testing, use --no-perf.

-l resLogFile Is the name of the response log file. Defaults to the test name.

-v resLogLevel Is the level of response logging (MIN | HEADERS | ALL).
Default is ALL.

-c csvFile Is the name of the response data CSV file. Default is to not
generate it.

-s ctlFile Is the name of the response data ctl file. Default is to not
generate it.

--no-perf Switches off all logging of performance data.

--all-groups Runs all groups in the test definition.

-verbose Produces verbose informational logging.

Test Harness

E-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

E.2.3 Running a Test with Test Harness
In order to test Web providers using the test harness, do the following:

1. Extract the pdktestsuite.zip file to a convenient location. This will create a
directory called pdk\testsuite\pdktest to which all the test harness files are
extracted.

2. Set an environment variable called PDKTEST_HOME to point to the location created
in the previous step. For example, if you extracted to your D drive, you would
now have a directory called D:\pdk\testsuite\pdktest. Set the value of
PDKTEST_HOME, to D:\pdk\testsuite\pdktest. The Test Harness provides
executable scripts in the bin directory.

3. Create a test definition file similar to the one in Section E.2.1, "Test Definition File".

4. Invoke the runTest command as described in Section E.2.2, "runTest Command".

F

Content Management APIs and Views F-1

F Content Management APIs and Views

This appendix lists the supported Oracle Portal content management APIs and views.
It contains the following sections:

■ Section F.1, "Supported APIs"

■ Section F.2, "Secure Views"

F.1 Supported APIs
This section provides an overview of the APIs available to you for performing content
management tasks.

For more information about the contents of the different packages, refer to the Oracle
Portal PL/SQL API Reference on Portal Center:

http://portalcenter.oracle.com

In the Portal Focus Areas section, click Portlet Development, then in the APIs and
References section, click PL/SQL API Reference.

F.1.1 The WWSBR_API Package
This package contains APIs for accessing and manipulating the contents in the portal
schema of the MDS Repository. You can perform the following actions using these
APIs:

■ Create, edit, and delete portal objects, such as pages, categories, and items.

■ Copy and move items and pages.

■ Check items in and out.

■ Approve or reject pending items.

F.1.2 The WWSRC_API Package
This package contains APIs for searching content in the MDS Repository. You can
perform the following actions using these APIs:

■ Search for items, pages, categories, and perspectives.

■ Filter search results based on specific attribute values.

■ Return search results as an XML document.

Secure Views

F-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

F.1.3 The WWSEC_API Package
This package contains APIs for administering Oracle Portal security. You can perform
the following actions using these APIs:

■ User maintenance (create user profile entries, activate portal access, update user
properties, delete user profile entries, and other associated tasks).

■ Group maintenance (create, activate, update, delete groups, and other associated
tasks).

■ Access control (grant, check, copy, update, remove user/group privileges, and
other associated tasks).

F.1.4 The WWCTX_API Package
This package contains APIs for enabling access to a session context. These APIs
provide the methods necessary to manage a session context for a specific user.

A session is established when a user accesses the portal. A public session is created
upon initial access. It is converted to an authenticated session after the user logs in and
exists until the user logs out. Old sessions are also periodically cleaned up by the
portal.

F.1.5 The WWPRO_API_INVALIDATION Package
This package contains APIs for invalidating content cached in the Oracle Web Cache.
Use these APIs when your code causes content to change to make sure that those
changes are immediately visible to users. For example, you may need to call an API to
invalidate the cache in code that adds an item to a page.

F.2 Secure Views
The views in wwsbr_api_views enable you to safely build custom queries against
the portal schema of the MDS Repository, without having to worry about the
definitions changing between releases. Table F–1 lists the currently supported views:

Table F–1 Secure Content Repository Views

View Description

WWSBR_ALL_CATEGORIES Describes all categories.

WWSBR_ALL_CONTENT_AREAS Describes all page groups.

WWSBR_ALL_FOLDER_REGIONS Describes all page regions on pages that the
current user is able to view.

WWSBR_ALL_FOLDERS Describes pages on which the current user has
View privileges or higher.

WWSBR_ALL_ITEMS Describes the items that the current user is able to
view.

WWSBR_ALL_NAVIGATION_BARS Describes all navigation pages that the current
user is able to view.

WWSBR_ALL_PERSPECTIVES Describes all perspectives.

WWSBR_ALL_STYLES Describes all styles.

WWSBR_APPROVER Describes the approvers for every page group
approval step.

WWSBR_ATTRIBUTES Describes all attributes.

Secure Views

Content Management APIs and Views F-3

F.2.1 WWSBR_ALL_CATEGORIES
Table F–2 lists the columns in the WWSBR_ALL_CATEGORIES view, which describes
all categories.

WWSBR_CONTENT_AREA_APPROVAL Describes the approval definition for a page
group.

WWSBR_CONTENT_AREA_ITEM_TYPES Describes which item types are available to
which page groups.

WWSBR_FOLDER_ATTRIBUTES Describes the attributes associated with pages
that the current user is able to view

WWSBR_FOLDER_PERSPECTIVES Describes the perspectives associated with pages
that the current user is able to view.

WWSBR_FOLDER_TYPE_ATTRIBUTES Describes the attributes that are available within
each page type.

WWSBR_FOLDER_TYPES Describes all page types.

WWSBR_ITEM_APPROVAL Describes item approval information for every
item that goes through approval.

WWSBR_ITEM_ATTRIBUTES Describes the attributes and attribute values
associated with items that the current user is able
to view.

WWSBR_ITEM_PERSPECTIVES Describes the perspectives associated with items
that the current user is able to view.

WWSBR_ITEM_TYPE_ATTRIBUTES Describes the attributes that are available within
each item type.

WWSBR_ITEM_TYPES Describes all item types.

WWSBR_SUBSCRIPTION Describes user subscription to portal pages and
items.

WWSBR_USER_FOLDERS Describes pages on which the current user has
Manage privileges or higher.

WWSBR_USER_PAGES Describes pages on which the current user has
Manage privileges or higher.

Note: In the following tables, an asterisk (*) indicates that the
column is part of the view's primary key.

Table F–2 WWSBR_ALL_CATEGORIES

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER ID of the category.

CAID* NOT NULL NUMBER Page group ID for the
category.

Foreign key to WWSBR_
ALL_CONTENT_
AREAS.ID

PARENTID NUMBER ID of the parent category. 0 (zero) if the category
has no parent.

Table F–1 (Cont.) Secure Content Repository Views

View Description

Secure Views

F-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

F.2.2 WWSBR_ALL_CONTENT_AREAS
Table F–3 lists the columns in the WWSBR_ALL_CONTENT_AREAS view, which
describes all page groups. This view shows all page groups in the repository,
regardless of the current user's privileges.

F.2.3 WWSBR_ALL_FOLDER_REGIONS
Table F–4 lists the columns in the WWSBR_ALL_FOLDER_REGIONS view, which
describes all page regions on pages viewable by the current user.

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

NAME VARCHAR2(60) Internal name of the
category. Unique within
parent category.

DISPLAY_NAME NOT NULL VARCHAR2(240) Display name, or title, of
the category.

Note: An alternative way of uniquely identifying a row in this view
is to use the NAME and LANGUAGE columns.

Table F–3 WWSBR_ALL_CONTENT_AREAS

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER ID of the page group.

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

NAME NOT NULL VARCHAR2(60) Internal name of the page
group.

DISPLAY_NAME VARCHAR2(256) Display name, or title, of
the page group.

DEFAULT_
LANGUAGE

NOT NULL VARCHAR2(30) Language code for the
default language of the
page group.

Table F–4 WWSBR_ALL_FOLDER_REGIONS

Column Null? Data Type Description Notes

ID* NUMBER(38) ID of the region.

DISPLAY_NAME* VARCHAR2(4000) Display name, or title, of
the region.

LANGUAGE VARCHAR(7) Language code.

FOLDER_ID NUMBER(38) ID of the page containing
the region.

Foreign key to:

■ WWSBR_ALL_
FOLDERS.ID

■ WSBR_USER_
FOLDERS.ID

Table F–2 (Cont.) WWSBR_ALL_CATEGORIES

Column Null? Data Type Description Notes

Secure Views

Content Management APIs and Views F-5

F.2.4 WWSBR_ALL_FOLDERS
Table F–5 lists the columns in the WWSBR_ALL_FOLDERS view, which describes the
pages on which the current user has View privileges or higher.

FOLDER_CAID NUMBER(38) Page group ID for the page
containing the region.

Foreign key to:

■ WWSBR_ALL_
FOLDERS.CAID

■ WWSBR_USER_
FOLDERS.CAID

PARENT_ID NUMBER(38) ID of the parent region, if
the region is nested.

TYPE VARCHAR2(30) The region type. Valid values:

■ NONE - undefined

■ TAB - tab region

■ SUBPAGE - sub
page region

■ ITEM - item region

■ PORTLET - portlet
region

SEQ NUMBER Sequence of a region within
the parent region.

ALLOW_CONTENT NUMBER Indicates if the region
allows content to be added.

Valid values:

■ 0 - does not allow
content to be added

■ 1 - allows content to
be added

Table F–5 WWSBR_ALL_FOLDERS

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER Unique identifier of the
page within the page
group.

CAID* NOT NULL NUMBER ID of the page group. Foreign key to WWSBR_
ALL_CONTENT_
AREAS.ID

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

PARENT_ID NUMBER ID of the parent page. 0 (zero) if root page of
the page group.

NAME NOT NULL VARCHAR2(60) Internal name of the page. Must be unique within
the parent page.

DISPLAY_NAME NOT NULL VARCHAR2(256) Display name, or title, of
the page.

CATEGORY_ID NUMBER ID of the category assigned
to the page.

Foreign key to WWSBR_
ALL_CATEGORIES.ID

CATEGORY_SITEID NUMBER Page group ID for the
category assigned to the
page.

Foreign key to WWSBR_
ALL_
CATEGORIES.CAID

Table F–4 (Cont.) WWSBR_ALL_FOLDER_REGIONS

Column Null? Data Type Description Notes

Secure Views

F-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

DESCRIPTION VARCHAR2(2000) Description of the page.

TYPE_ID NOT NULL NUMBER ID of the page type. Foreign key to WWSBR_
FOLDER_TYPES.ID

TYPE_SITEID NOT NULL NUMBER Page group ID for the page
type.

Foreign key to WWSBR_
FOLDER_TYPES.CAID

BASE_TYPE_ID NOT NULL NUMBER The ID of the page base
type

Foreign key to WWSBR_
FOLDER_TYPES.ID
where WWSBR_
FOLDER_TYPES.IS_
BASE_FOLDER_TYPE=1

IS_PORTLET NOT NULL NUMBER(1) Indicates if the page is
published as a portlet.

Valid values:

■ 0 - not a portlet

■ 1 - is a portlet

IS_CACHING_ON VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility
only.

CACHE_MODE NUMBER(1) The caching mode for the
page.

Valid values:

■ 2 - no caching

■ 1 - cache page
definition only

■ 0 - cache page
definition and
content for x
minutes

■ 4 - cache page
definition only at
system level

■ 3 - cache page
definition and
content at system
level for x minutes

SUB_FOLDER_
SEQUENCE

NUMBER The sequence (order) of the
page in its parent page's
sub-page region.

DISPLAY_IN_
PARENT_FOLDER

NOT NULL NUMBER(1) Indicates if the page is
displayed in its parent
page's sub page region.

ITEMVERSIONING VARCHAR2(30) Determines the level of
item versioning for the
page.

Valid values:

■ versionnone - no
versioning

■ versionsimple -
simple versioning

■ versionaudit - audit
versioning.

STYLE_ID NOT NULL NUMBER ID for the style used by the
page.

Foreign key to WWSBR_
ALL_STYLES.ID

STYLE_CAID NOT NULL NUMBER Page group ID for the style
used by the page.

Foreign key to WWSBR_
ALL_STYLES.CAID

Table F–5 (Cont.) WWSBR_ALL_FOLDERS

Column Null? Data Type Description Notes

Secure Views

Content Management APIs and Views F-7

URL_VALUE VARCHAR2(4000) URL value for a URL type
page.

SEARCH_VALUE VARCHAR2(2000) DEPRECATED. This
column is retained for
backward compatibility
only.

PLSQL_VALUE VARCHAR2(2000) PL/SQL value for a
PL/SQL page.

IMAGE VARCHAR2(350) Unique name of the image
associated with the page.

Matches the NAME
column in the document
table.

TITLE_IMAGE_
NAME

VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility
only.

ROLLOVER_IMAGE_
NAME

VARCHAR2(350) The unique name of the
rollover image associated
with the page.

Matches the NAME
column in the document
table.

BANNER_IMAGE_
NAME

VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility
only.

NAVIGATION_BAR_
ID

VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility
only.

NAVIGATION_BAR_
CAID

VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility
only.

IS_PUBLIC NOT NULL NUMBER(1) Indicates that the page is
viewable by public users.

Valid values:

■ 0 - not public

■ 1 - is public

ITEM_LEVEL_
SECURITY

NOT NULL NUMBER(1) Indicates that item level
security is enabled for the
page.

Valid values:

■ 0 - ILS disabled

■ 1 - ILS enabled

DISPLAY_FULL_
SCREEN

VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility
only.

PLSQL_FOLDER_
EXECUTOR

VARCHAR2(30) For PL/SQL type pages,
the database schema used
to execute the PL/SQL
code.

CREATEDATE DATE Date the page was created.

Table F–5 (Cont.) WWSBR_ALL_FOLDERS

Column Null? Data Type Description Notes

Secure Views

F-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

F.2.5 WWSBR_ALL_ITEMS
Table F–6 lists the columns in the WWSBR_ALL_ITEMS view, which describes the
items viewable by the current user.

For an example of how to use this view, refer to Section 10.3.4, "Finding an Item ID".

CREATOR VARCHAR2(256) User name of the person
who created the page.

UPDATEDATE DATE Date the page was last
updated.

UPDATOR VARCHAR2(256) User name of the person
who last updated the page.

Table F–6 WWSBR_ALL_ITEMS

Column Null? Data Type Description Notes

MASTERID NOT NULL NUMBER Master ID of the item. All versions and
translations of an item
have the same master ID.

ID* NOT NULL NUMBER ID of the item. Each version of an item
receives a new ID. If
translations and
approvals are enabled,
multiple rows may exist
for the same ID.

CAID* NOT NULL NUMBER Page group ID for the item. Foreign key to:

■ WWSBR_ALL_
FOLDERS.CAID

■ WWSBR_USER_
FOLDERS.CAID

■ WWSBR_ALL_
CONTENT_
AREAS.ID

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

IS_CURRENT_
VERSION*

NOT NULL NUMBER(1) Indicates that the item is
the current version.

Valid values:

■ 0 - not current
version

■ 1 - is current version

FOLDER_ID NOT NULL NUMBER ID of the page containing
the item.

Foreign key to:

■ WWSBR_ALL_
FOLDERS.ID

■ WWSBR_USER_
FOLDERS.ID

■ WWSBR_ALL_
FOLDER_
REGIONS.FOLDER_
ID

FOLDER_REGION_
ID

NOT NULL NUMBER ID of the region containing
the item.

Foreign key to WWSBR_
ALL_FOLDER_
REGIONS.ID

Table F–5 (Cont.) WWSBR_ALL_FOLDERS

Column Null? Data Type Description Notes

Secure Views

Content Management APIs and Views F-9

NAME NOT NULL VARCHAR2(256) Internal name of the item. The name is a system
generated GUID value
that can be used as an
alternate ID. The name is
also used in path based
URLs.

DISPLAY_NAME VARCHAR2(256) Display name, or title, of
the item.

ITEMTYPE NOT NULL VARCHAR2(30) The base item type, for
example, BASEFILE,
BASETEXT, BASEURL, and
so on.

SUBTYPE VARCHAR2(40) ID of the item type. Foreign key to WWSBR_
ITEM_TYPES.ID

SUBTYPE_CAID NUMBER Page group ID of the item
type.

Foreign key to WWSBR_
ITEM_TYPES.CAID

PARENT_ITEM_ID NUMBER ID of the parent item, if the
item is a sub item.

0 (zero) if the item is not
a sub item.

CATEGORY_ID NUMBER ID for the category
assigned to the item.

Foreign key to WWSBR_
ALL_CATEGORIES.ID

CATEGORY_CAID NUMBER page group ID for the
category assigned to the
item.

Foreign key to WWSBR_
ALL_
CATEGORIES.CAID

AUTHOR VARCHAR2(50) Author of the item.

DESCRIPTION VARCHAR2(2000) Description of the item.

PUBLISH_DATE NOT NULL DATE Date the item will be
published.

EXPIREMODE VARCHAR2(90) Expiration mode for the
item.

Valid values:

■ 'PERMANENT' -
item never expires

■ 'NUMBER' - item
expires in
EXPIRENUMBER
days from
CREATEDATE

■ 'DATE' - item
expires on
EXPIREDATE

EXPIRENUMBER NUMBER Number of days after
CREATEDATE when item
will expire.

Only valid when
EXPIREMODE =
'NUMBER'.

EXPIREDATE DATE Date when item will expire. Only valid when
EXPIREMODE = 'DATE'.

Table F–6 (Cont.) WWSBR_ALL_ITEMS

Column Null? Data Type Description Notes

Secure Views

F-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

IMAGE VARCHAR2(350) Image associated with the
item.

This value may be a
reference (for example, a
path to an image stored
on the file system or in
the content repository) or
a unique document name
that matches the NAME
column in the document
table.

KEYWORDS VARCHAR2(2000) Keywords for the item.

URL VARCHAR2(4000) URL for a URL type item.

FILENAME VARCHAR2(350) Unique name of the file
associated with a file type
item.

Matches the NAME
column in the document
table.

TEXT CLOB Text for a text type item.

FOLDER_LINK_ID NUMBER Page ID for a page link type
item

Foreign key to:

■ WWSBR_ALL_
FOLDERS.ID

■ WWSBR_USER_
FOLDERS.ID

FOLDER_LINK_
CAID

NUMBER Page group ID for a page
link type item.

Foreign key to:

■ WWSBR_ALL_
FOLDERS.CAID

■ WWSBR_USER_
FOLDERS.CAID

ACTIVE* NOT NULL NUMBER(1) Indicates the active status
of the item.

Valid values:

■ 1 - active

■ 2 - pending approval
as new and current
version

■ 3 - pending approval
as new but not
current version

■ 0 - pending approval

■ -1 - deleted

■ -7 - rejected

■ -9 - reject deleted

CAN_BE_
CHECKEDOUT

NUMBER(1) Indicates if the item can be
checked out.

Valid values:

■ 0 - cannot be
checked out

■ 1 - can be checked
out

IS_ITEM_
CHECKEDOUT

NUMBER(1) Indicates if the item is
checked out.

Valid values:

■ 0 - item is not
checked out

■ 1 - item is checked
out

Table F–6 (Cont.) WWSBR_ALL_ITEMS

Column Null? Data Type Description Notes

Secure Views

Content Management APIs and Views F-11

CHECKER_
USERNAME

VARCHAR2(256) User name of the user who
checked out the item.

CHECKOUT_DATE DATE Date the item was checked
out.

FULLSCREEN NOT NULL NUMBER(1) Indicates the rendering
behavior for an item shown
as a link.

Valid values:

■ 0 - clicking the link
displays the item in
a new browser
window

■ 1 - clicking the link
displays the item in
the same browser
window

INPLACE NOT NULL NUMBER(1) Indicates the rendering
behavior for a text or
PL/SQL item.

Valid values:

■ 0 - a link to the item
is displayed; the
rendering behavior
of the link depends
on the value of the
FULLSCREEN
column

■ 1 - the item is
rendered in-place in
the region

CREATEDATE NOT NULL DATE Date the item was created.

CREATOR NOT NULL VARCHAR2(256) User name of the person
who created the item.

UPDATEDATE DATE Date the item was last
updated.

UPDATOR VARCHAR2(256) User name of the person
who last updated the item.

SECURITY VARCHAR2(25) Indicates whether security
has been set for the item.

Valid values:

■ item - ILS is enabled
on the page and
security is set at the
item level

■ folder - security is
set at the page level

VISIBLE NOT NULL NUMBER(1) Indicates whether the item
is hidden.

Valid values:

■ 0 - item is hidden

■ 1 - item is shown

SEQUENCE NOT NULL NUMBER Regular sequence of the
item if there is no grouping.

CATEGORY_
SEQUENCE

NOT NULL NUMBER Sequence of the item when
items are grouped by
category.

Table F–6 (Cont.) WWSBR_ALL_ITEMS

Column Null? Data Type Description Notes

Secure Views

F-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

F.2.6 WWSBR_ALL_NAVIGATION_BARS
Table F–7 lists the columns in the WWSBR_ALL_NAVIGATION_BARS view, which
describes all navigation pages viewable by the current user.

F.2.7 WWSBR_ALL_PERSPECTIVES
Table F–8 lists the columns in the WWSBR_ALL_PERSPECTIVES view, which
describes all perspectives.

AUTHOR_
SEQUENCE

NOT NULL NUMBER Sequence of the item when
items are grouped by
author.

CREATE_DATE_
SEQUENCE

NOT NULL NUMBER Sequence of the item when
items are grouped by create
date.

ITEMTYPE_
SEQUENCE

NOT NULL NUMBER Sequence of the item when
items are grouped by item
type.

Note: An alternative way of uniquely identifying a row in this view
is to use the NAME, CAID, and LANGUAGE columns.

Table F–7 WWSBR_ALL_NAVIGATION_BARS

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER ID of the navigation page.

CAID* NOT NULL NUMBER Page group ID for the
navigation page.

Foreign key to WWSBR_
ALL_CONTENT_
AREAS.ID

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

NAME NOT NULL VARCHAR2(60) Internal name of the
navigation page.

Unique within page
group.

DISPLAY_NAME NOT NULL VARCHAR2(256) Display name, or title, of
the navigation page.

STYLE_ID NOT NULL NUMBER ID for the style used by the
navigation page.

Foreign key to WWSBR_
ALL_STYLES.ID

STYLE_CAID NOT NULL NUMBER Page group ID for the style
used by the navigation
page.

Foreign key to WWSBR_
ALL_STYLES.CAID

IS_PORTLET NOT NULL NUMBER(1) Indicates if the page is
published as a portlet.

Valid values:

■ 0 - not a portlet

■ 1 - is a portlet

ALIGNMENT VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility.

Table F–6 (Cont.) WWSBR_ALL_ITEMS

Column Null? Data Type Description Notes

Secure Views

Content Management APIs and Views F-13

F.2.8 WWSBR_ALL_STYLES
Table F–9 lists the columns in the WWSBR_ALL_STYLES view, which describes all
styles.

F.2.9 WWSBR_APPROVER
Table F–10 lists the columns in the WWSBR_APPROVER view, which describes the
approvers for every page group approval step. The STEP_ID column corresponds to
the STEP_ID column in the WWSBR_CONTENT_AREA_APPROVAL view. For every
step, there could be one or more approvers. An approver can be a user or group and
this information is stored in the APPROVER_TYPE column.

Table F–8 WWSBR_ALL_PERSPECTIVES

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER ID of the perspective.

CAID* NOT NULL NUMBER Page group ID for the
perspective.

Foreign key to WWSBR_
ALL_CONTENT_
AREAS.ID

PARENTID NUMBER ID of the parent
perspective.

0 (zero) if the perspective
has no parent

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

NAME VARCHAR2(60) Internal name of the
perspective.

Unique within parent
perspective.

DISPLAY_NAME NOT NULL VARCHAR2(240) Display name, or title, of
the perspective.

Note: An alternative way of uniquely identifying a row in this view
is to use the NAME, CAID, and LANGUAGE columns.

Table F–9 WWSBR_ALL_STYLES

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER ID of the style.

CAID* NOT NULL NUMBER Page group ID for the style. Foreign key to WWSBR_
ALL_CONTENT_
AREAS.ID

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

NAME NOT NULL VARCHAR2(65) Internal name of the style. Unique within the page
group.

DISPLAY_NAME VARCHAR2(350) Display name, or title, of
the style.

Secure Views

F-14 Oracle Fusion Middleware Developer's Guide for Oracle Portal

F.2.10 WWSBR_ATTRIBUTES
Table F–11 lists the columns in the WWSBR_ATTRIBUTES view, which describes all
attributes.

Table F–10 WWSBR_APPROVER

Column Null? Data Type Description Notes

ID NOT NULL NUMBER Internal ID, unique to each
row.

Foreign key to WWSBR_
CONTENT_AREA_
APPROVAL.ID

STEP_ID* NOT NULL NUMBER Sequential step ID of an
approval process.

APPROVER_ID* NOT NULL NUMBER User ID of the approver.

APPROVER_TYPE* NOT NULL VARCHAR2(10) The type of the approver. Valid values:

■ USER - approver is a
user

■ GROUP - approver
is a group

Note: An alternative way of uniquely identifying a row in this view
is to use the NAME, CAID, and LANGUAGE columns.

Table F–11 WWSBR_ATTRIBUTES

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER ID of the attribute.

CAID* NOT NULL NUMBER Page group ID for the
attribute.

Foreign key to WWSBR_
ALL_CONTENT_
AREAS.ID

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

NAME NOT NULL VARCHAR2(256) Internal name of the
attribute.

Functions as alternate
key (unique within page
group).

DISPLAY_NAME VARCHAR2(256) Display name, or title, of
the attribute.

IS_BASE_ATTRIBUTE NOT NULL NUMBER(1) Indicates that the attribute
is a base attribute.

Valid values:

■ 0 - not a base
attribute

■ 1 - is a base attribute

DATA_TYPE NOT NULL VARCHAR2(30) Data type of the attribute.

LENGTH NUMBER(5) Length of the attribute.

IS_TRANSLATABLE NOT NULL NUBMER(1) Indicates that the attribute
is translatable, meaning
that a different value can be
stored for each translation.
If the attribute is not
translatable, the same value
is stored for all translations.

Valid values:

■ 0 - not translatable

■ 1 - is translatable

Secure Views

Content Management APIs and Views F-15

F.2.11 WWSBR_CONTENT_AREA_APPROVAL
Table F–12 lists the columns in the WWSBR_CONTENT_AREA_APPROVAL view,
which describes the approval definition for a page group or a page. For every approval
definition there are x rows corresponding to the x steps defined in the approval
process. To determine the approvers for each step, see the WWSBR_APPROVER view.

F.2.12 WWSBR_CONTENT_AREA_ITEM_TYPES
Table F–13 lists the columns in the WWSBR_CONTENT_AREA_ITEM_TYPES view,
which describes which item types are available to which page groups. An item type
cannot be assigned to an item unless the item type is available within the item's page
group.

Table F–12 WWSBR_CONTENT_AREA_APPROVAL

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER ID of the approval process

STEP_ID NUMBER ID of the step in the
approval process

CAID NOT NULL NUMBER ID of the page group
against which the approval
process is defined.

FOLDER_ID NUMBER ID of the page against
which the approval process
is defined.

ALL_OR_ANY VARCHAR2(10) Indicates if all the
approvers need to approve
the item for it to be
published, or just one.

Valid values:

■ ALL - all approvers
must approve the
item

■ ANY - only one
approver needs to
approve the item

PARALLEL_OR_
SERIAL

VARCHAR2(10) Indicates if all the
approvers are notified at
the same time, or one after
the other.

Valid values:

■ P - all approvers are
notified at the same
time

■ S - approvers are
notified one after the
other

Table F–13 WWSBR_CONTENT_AREA_ITEM_TYPES

Column Null? Data Type Description Notes

CAID* NOT NULL NUMBER ID of the page group. Foreign key to WWSBR_
ALL_CONTENT_
AREAS.ID

ITEM_TYPE_ID* NOT NULL NUMBER ID of the item type. Foreign key to WWSBR_
ITEM_TYPES.ID

ITEM_TYPE_CAID* NOT NULL NUMBER Page group ID for the item
type.

Foreign key to WWSBR_
ITEM_TYPES.CAID

Secure Views

F-16 Oracle Fusion Middleware Developer's Guide for Oracle Portal

F.2.13 WWSBR_FOLDER_ATTRIBUTES
Table F–14 lists the columns in the WWSBR_FOLDER_ATTRIBUTES view, which
describes the attributes associated with pages viewable by the current user.

F.2.14 WWSBR_FOLDER_PERSPECTIVES
Table F–15 lists the columns in the WWSBR_FOLDER_PERSPECTIVES view, which
describes the perspectives associated with pages viewable by the current user.

Table F–14 WWSBR_FOLDER_ATTRIBUTES

Column Null? Data Type Description Notes

FOLDER_CAID* NOT NULL NUMBER Page group ID of the page. Foreign key to:

■ WWSBR_ALL_
FOLDERS.CAID

■ WWSBR_USER_
FOLDERS.CAID

FOLDER_ID* NOT NULL NUMBER ID of the page. Foreign key to:

■ WWSBR_ALL_
FOLDERS.ID

■ WWSBR_USER_
FOLDERS.ID

ATTRIBUTE_ID* NUMBER ID of the attribute. Foreign key to WWSBR_
ATTRIBUTES.ID

ATTRIBUTE_CAID* NUMBER Page group ID for the
attribute.

Foreign key to WWSBR_
ATTRIBUTES.CAID

LANGUAGE* NOT NULL VARCHAR2(30) Language code. Foreign key to:

■ WWSBR_ALL_
FOLDERS.LANGUA
GE

■ WWSBR_USER_
FOLDERS.LANGUA
GE

■ WWSBR_
ATTRIBUTES.LAN
GUAGE

VALUETYPE NOT NULL VARCHAR2(30) Data type of the attribute.

VALUE VARCHAR2(2000) Value of the attribute.

Secure Views

Content Management APIs and Views F-17

F.2.15 WWSBR_FOLDER_TYPE_ATTRIBUTES
Table F–16 lists the columns in the WWSBR_FOLDER_TYPE_ATTRIBUTES view,
which describes the attributes that are available within each page type.

Table F–15 WWSBR_FOLDER_PERSPECTIVES

Column Null? Data Type Description Notes

FOLDER_CAID* NOT NULL NUMBER ID of the page's page
group.

Foreign key to:

■ WWSBR_ALL_
FOLDERS.CAID

■ WWSBR_USER_
FOLDERS.CAID

FOLDER_ID* NOT NULL NUMBER Page group ID for the page. Foreign key to:

■ WWSBR_ALL_
FOLDERS.CAID

■ WWSBR_USER_
FOLDERS.CAID

PERSPECTIVE_ID* NOT NULL NUMBER ID of the perspective. Foreign key to WWSBR_
ALL_PERSPECTIVES.ID

PERSPECTIVE_
CAID*

NOT NULL NUMBER Page group ID for the
perspective.

Foreign key to WWSBR_
ALL_
PERSPECTIVES.CAID

PERSPECTIVE_
NAME

VARCHAR2(60) Internal name of the
perspective.

Foreign key to WWSBR_
ALL_
PERSPECTIVES.NAME

Note: An alternative way of uniquely identifying a row in this view
is to use the FOLDER_TYPE_ID, FOLDER_TYPE_CAID,
ATTRIBUTE_ID, and ATTRIBUTE_CAID columns.

Table F–16 WWSBR_FOLDER_TYPE_ATTRIBUTES

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER ID of the page type
attribute row.

CAID* NOT NULL NUMBER Page group ID. Foreign key to WWSBR_
ALL_CONTENT_
AREAS.ID

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

FOLDER_TYPE_ID NOT NULL NUMBER ID of the folder type. Foreign key to WWSBR_
FOLDER_TYPES.ID

FOLDER_TYPE_
CAID

NOT NULL NUMBER Page group ID for the page
type.

Foreign key to WWSBR_
FOLDER_TYPES.CAID

Secure Views

F-18 Oracle Fusion Middleware Developer's Guide for Oracle Portal

F.2.16 WWSBR_FOLDER_TYPES
Table F–17 lists the columns in the WWSBR_FOLDER_TYPES view, which describes all
page types.

F.2.17 WWSBR_ITEM_APPROVAL
Table F–18 lists the columns in the WWSBR_ITEM_APPROVAL view, which describes
item approval information for every item that goes through approval. You can use this
view to find information like:

■ Where is item x in the approval chain?

■ Who is currently reviewing item x?

ATTRIBUTE_ID NOT NULL NUMBER ID of the attribute. Foreign key to WWSBR_
ATTRIBUTES.ID

ATTRIBUTE_CAID NOT NULL NUMBER Page group ID for the
attribute.

Foreign key to WWSBR_
ATTRIBUTES.CAID

DEFAULT_VALUE VARCHAR2(2000) Default value of the
attribute.

The default value is
always stored as
VARCHAR2, regardless
of the attribute's base
type.

Note: An alternative way of uniquely identifying a row in this view
is to use the NAME, CAID, and LANGUAGE columns.

Table F–17 WWSBR_FOLDER_TYPES

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER ID of the page type.

CAID* NOT NULL NUMBER Page group ID for the page
type.

Foreign key to WWSBR_
ALL_CONTENT_
AREAS.ID

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

NAME VARCHAR2(30) Internal name of the page
type.

Functions as alternate
key (unique within page
group).

DISPLAY_NAME VARCHAR2(256) Display name, or title, of
the page type.

DESCRIPTION VARCHAR2(2000) Description of the page
type.

IS_BASE_FOLDER_
TYPE

NOT NULL NUMBER Indicates that the item is a
base page type.

Valid values:

■ 0 - not a base page
type

■ 1 - is a base page
type

BASE_FOLDER_
TYPE_ID

NUMBER ID of the base page type on
which this page type is
based.

Table F–16 (Cont.) WWSBR_FOLDER_TYPE_ATTRIBUTES

Column Null? Data Type Description Notes

Secure Views

Content Management APIs and Views F-19

■ Which approver rejected item x?

In addition to the information about pending items, you can also use this view to
query details on approvals, including approval date, comments, approver, and so on.

Table F–18 WWSBR_ITEM_APPROVAL

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER Internal ID.

APPROVAL_
INSTANCE_ID

NOT NULL NUMBER Internal ID.

ITEM_ID NOT NULL NUMBER ID of the item pending
approval.

CAID NOT NULL NUMBER ID of the page group that
contains the item pending
approval.

LANGUAGE NOT NULL VARCHAR2(30) Language code.

FOLDER_ID NUMBER ID of the page on which the
item pending approval
appears.

STEP_ID NUMBER ID of the step for which the
item requires approval.

APPROVAL_ID NUMBER ID of the approval process
for the item.

Foreign key to WWSBR_
CONTENT_AREA_
APPROVAL.ID

CURRENT_
APPROVER_ID

NOT NULL NUMBER ID of the approver of the
approval step.

For an ANY approval
step this value will be the
same for all rows of the
approval step. For an
ALL approval step this
value will be the same as
APPROVER_ID.

CURRENT_
APPROVER_TYPE

VARCHAR2(10) The type of the current
approver.

Valid values:

■ USER - approver is a
user

■ GROUP - approver
is a group

APPROVAL_DATE DATE Date when the item was
approved.

APPROVER_ID NUMBER ID of the approver. Use wwsec_api.user_
name to get the user
name of the approver.

APPROVER_
COMMENT

VARCHAR2(4000) Comment specified at the
time of approval or
rejection.

Secure Views

F-20 Oracle Fusion Middleware Developer's Guide for Oracle Portal

F.2.18 WWSBR_ITEM_ATTRIBUTES
Table F–19 lists the columns in the WWSBR_ITEM_ATTRIBUTES view, which
describes the attributes and attribute values associated with items viewable by the
current user.

F.2.19 WWSBR_ITEM_PERSPECTIVES
Table F–20 lists the columns in the WWSBR_ITEM_PERSPECTIVES view, which
describes the perspectives associated with items viewable by the current user.

STATUS NOT NULL NUMBER(1) Status of the item. Valid values:

■ 1 - active

■ 2 - pending approval
as new and current
version

■ 3 - pending approval
as new but not
current version

■ 9 - draft

■ 0 - pending approval

■ -1 - deleted

■ -7 - rejected

■ -9 - reject deleted

SUBMITTER VARCHAR2(256) ID of the user who
submitted the item for
approval.

VALUE1 VARCHAR2(256) Not used.

Table F–19 WWSBR_ITEM_ATTRIBUTES

Column Null? Data Type Description Notes

ITEM_CAID NOT NULL NUMBER Page group ID for the item. Foreign key to WWSBR_
ALL_ITEMS.CAID

ITEM_MASTERID NOT NULL NUMBER Master ID of the item. Foreign key to WWSBR_
ALL_ITEMS.MASTERID

ATTRIBUTE_ID NUMBER ID of the attribute. Foreign key to WWSBR_
ATTRIBUTES.ID

ATTRIBUTE_CAID NUMBER Page group ID for the
attribute.

Foreign key to WWSBR_
ATTRIBUTES.CAID

LANGUAGE NOT NULL VARCHAR2(30) Language code. Foreign key to WWSBR_
ALL_
ITEMS.LANGUAGE

VALUETYPE NOT NULL VARCHAR2(30) Date type of the attribute.

VALUE VARCHAR2(4000) Value of the attribute.

Table F–18 (Cont.) WWSBR_ITEM_APPROVAL

Column Null? Data Type Description Notes

Secure Views

Content Management APIs and Views F-21

F.2.20 WWSBR_ITEM_TYPE_ATTRIBUTES
Table F–21 lists the columns in the WWSBR_ITEM_TYPE_ATTRIBUTES view, which
describes the attributes that are available within each item type.

Table F–20 WWSBR_ITEM_PERSPECTIVES

Column Null? Data Type Description Notes

ITEM_CAID* NOT NULL NUMBER Page group ID for the item. Foreign key to WWSBR_
ALL_ITEMS.CAID

ITEM_ID* NOT NULL NUMBER ID of the item. Foreign key to WWSBR_
ALL_ITEMS.ID

ITEM_MASTERID* NUMBER Master ID of the item. Foreign key to WWSBR_
ALL_ITEMS.MASTERID

PERSPECTIVE_ID* NOT NULL NUMBER ID of the perspective. Foreign key to WWSBR_
ALL_PERSPECTIVES.ID

PERSPECTIVE_
CAID*

NOT NULL NUMBER Page group ID for the
perspective.

Foreign key to WWSBR_
ALL_
PERSPECTIVES.CAID

PERSPECTIVE_
NAME

VARCHAR2(60) Internal name of the
perspective.

Foreign key to WWSBR_
ALL_
PERSPECTIVES.NAME

Note: An alternative way of uniquely identifying a row in this view
is to use the ITEM_TYPE_ID, ITEM_TYPE_CAID, ATTRIBUTE_ID,
and ATTRIBUTE_CAID columns.

Table F–21 WWSBR_ITEM_TYPE_ATTRIBUTES

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER ID of the item type
attribute row.

CAID* NOT NULL NUMBER Page group ID. Foreign key to WWSBR_
ALL_CONTENT_
AREAS.ID

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

ITEM_TYPE_ID NOT NULL NUMBER ID of the item type. Foreign key to WWSBR_
ITEM_TYPES.ID

ITEM_TYPE_CAID NOT NULL NUMBER Page group ID for the item
type.

Foreign key to WWSBR_
ITEM_TYPES.CAID

ATTRIBUTE_ID NOT NULL NUMBER ID of the attribute. Foreign key to WWSBR_
ATTRIBUTES.ID

Secure Views

F-22 Oracle Fusion Middleware Developer's Guide for Oracle Portal

F.2.21 WWSBR_ITEM_TYPES
Table F–22 lists the columns in the WWSBR_ITEM_TYPES view, which describes all
item types.

ATTRIBUTE_CAID NOT NULL NUMBER Page group ID for the
attribute.

Foreign key to WWSBR_
ATTRIBUTES.CAID

HIDDEN_
ATTRIBUTE

NOT NULL NUMBER(1) Indicates if the attribute
should be hidden.

This column is used for
certain built-in item
types and is not intended
for customer use.

Value values:

■ 0 - is hidden

■ 1 - not hidden

DEFAULT_VALUE VARCHAR2(2000) Default value of the
attribute.

The default value is
always stored as
VARCHAR2, regardless
of the attribute's base
type.

Note: An alternative way of uniquely identifying a row in this view
is to use the NAME, CAID, and LANGUAGE columns.

Table F–22 WWSBR_ITEM_TYPES

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER ID of the item type.

CAID* NOT NULL NUMBER Page group ID for the item
type.

Foreign key to WWSBR_
ALL_CONTENT_
AREAS.ID

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

NAME VARCHAR2(30) Internal name of the item
type.

Functions as alternate
key (unique within page
group).

DISPLAY_NAME VARCHAR2(256) Display name, or title, of
the item type.

DESCRIPTION VARCHAR2(2000) Description of the item
type.

IS_BASE_ITEM_TYPE NOT NULL NUMBER Indicates that the item is a
base item type.

Only non-base item types
can be assigned to items.

Valid values:

■ 0 - not a base item
type

■ 1 - is a base item
type

BASE_ITEM_TYPE_
ID

NUMBER ID of the base item type on
which this item type is
based.

Table F–21 (Cont.) WWSBR_ITEM_TYPE_ATTRIBUTES

Column Null? Data Type Description Notes

Secure Views

Content Management APIs and Views F-23

F.2.22 WWSBR_SUBSCRIPTION
Table F–23 lists the columns in the WWSBR_SUBSCRIPTION view, which describes
user subscription to portal pages and items.

F.2.23 WWSBR_USER_FOLDERS
Table F–24 lists the columns in the WWSBR_USER_FOLDERS view, which describes
the pages on which the current user has Manage privileges or higher.

Table F–23 WWSBR_SUBSCRIPTION

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER Internal ID.

OBJECT_CONTEXT_
ID

NOT NULL NUMBER ID of the page group to
which the subscribed object
belongs.

FOLDER_ID NOT NULL NUMBER ID of the page to which the
subscribed object belongs.

OBJECT_ID NUMBER ID of the subscribed item. In the case of a page
subscription, this value is
NULL.

GROUP_ID NUMBER Not used.

RECIPIENT_ID NOT NULL NUMBER ID of the user or group
who has subscribed to the
object.

RECIPIENT_TYPE VARCHAR2(10) Not used.

Table F–24 WWSBR_USER_FOLDERS

Column Null? Data Type Description Notes

ID* NOT NULL NUMBER Unique identifier of the
page within the page
group.

CAID* NOT NULL NUMBER ID of the page group. Foreign key to WWSBR_
ALL_CONTENT_
AREAS.ID

LANGUAGE* NOT NULL VARCHAR2(30) Language code.

PARENT_ID NUMBER ID of the parent page. 0 (zero) if root page of
the page group.

NAME NOT NULL VARCHAR2(60) Internal name of the page. Must be unique within
parent page.

DISPLAY_NAME NOT NULL VARCHAR2(256) Display name, or title, of
the page.

CATEGORY_ID NUMBER ID of the category assigned
to the page.

Foreign key to WWSBR_
ALL_CATEGORIES.ID

CATEGORY_CAID NUMBER Page group ID for the
category assigned to the
page.

Foreign key to WWSBR_
ALL_
CATEGORIES.CAID

DESCRIPTION VARCHAR2(2000) Description of the page.

TYPE_ID NOT NULL NUMBER ID of the page type. Foreign key to WWSBR_
FOLDER_TYPES.ID

Secure Views

F-24 Oracle Fusion Middleware Developer's Guide for Oracle Portal

TYPE_CAID NOT NULL NUMBER Page group ID for the page
type.

Foreign key to WWSBR_
FOLDER_TYPES.CAID

BASE_TYPE_ID NOT NULL NUMBER The ID of the page base
type

Foreign key to WWSBR_
FOLDER_TYPES.ID
where WWSBR_
FOLDER_TYPES.IS_
BASE_FOLDER_TYPE=1

IS_PORTLET NOT NULL NUMBER(1) Indicates if the page is
published as a portlet.

Valid values:

■ 0 - not a portlet

■ 1- is a portlet

IS_CACHING_ON VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility
only.

CACHE_MODE NUMBER(1) The caching mode for the
page.

Valid values:

■ 2 - no caching

■ 1 - cache page
definition only

■ 0 - cache page
definition and
content for x
minutes

■ 4 - cache page
definition only at
system level

■ 3 - cache page
definition and
content at system
level for x minutes

SUB_FOLDER_
SEQUENCE

NUMBER The sequence (order) of the
page in its parent page's
sub-page region.

DISPLAY_IN_
PARENT_FOLDER

NOT NULL NUMBER(1) Indicates if the page is
displayed in its parent
page's sub page region.

ITEMVERSIONING VARCHAR2(30) Determines the level of
item versioning for the
page.

Valid values:

■ versionnone - no
versioning

■ versionsimple -
simple versioning

■ versionaudit - audit
versioning.

STYLE_ID NOT NULL NUMBER ID for the style used by the
page.

Foreign key to WWSBR_
ALL_STYLES.ID

STYLE_CAID NOT NULL NUMBER Page group ID for the style
used by the page.

Foreign key to WWSBR_
ALL_STYLES.CAID

URL_VALUE VARCHAR2(4000) URL value for a URL type
page.

Table F–24 (Cont.) WWSBR_USER_FOLDERS

Column Null? Data Type Description Notes

Secure Views

Content Management APIs and Views F-25

SEARCH_VALUE VARCHAR2(2000) DEPRECATED. This
column is retained for
backward compatibility
only.

PLSQL_VALUE VARCHAR2(2000) PL/SQL value for a
PL/SQL page.

IMAGE VARCHAR2(350) Unique name of the image
associated with the page.

Matches the NAME
column in the document
table.

TITLE_IMAGE_
NAME

VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility
only.

ROLLOVER_IMAGE_
NAME

VARCHAR2(350) The unique name of the
rollover image associated
with the page.

Matches the NAME
column in the document
table.

BANNER_IMAGE_
NAME

VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility
only.

.

NAVIGATION_BAR_
ID

VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility
only.

NAVIGATION_BAR_
CAID

VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility
only.

IS_PUBLIC NOT NULL NUMBER(1) Indicates that the page is
viewable by public users.

Valid values:

■ 0 - not public

■ 1 - is public

ITEM_LEVEL_
SECURITY

NOT NULL NUMBER(1) Indicates that item level
security is enabled for the
page.

Valid values:

■ 0 - ILS disabled

■ 1 - ILS enabled

DISPLAY_FULL_
SCREEN

VARCHAR2 DEPRECATED. This
column is retained for
backward compatibility
only.

PLSQL_FOLDER_
EXECUTOR

VARCHAR2(30) For PL/SQL type pages,
the database schema used
to execute the PL/SQL
code.

CREATEDATE DATE Date the page was created.

CREATOR VARCHAR2(256) User name of the person
who created the page.

UPDATEDATE DATE Date the page was last
updated.

UPDATOR VARCHAR2(256) User name of the person
who last updated the page.

Table F–24 (Cont.) WWSBR_USER_FOLDERS

Column Null? Data Type Description Notes

Secure Views

F-26 Oracle Fusion Middleware Developer's Guide for Oracle Portal

F.2.24 WWSBR_USER_PAGES
Table F–25 lists the columns in the WWSBR_USER_PAGES view, which describes the
pages on which the current user has Manage privileges or higher. This view is for use
with the wwsbr_api.modify folder API and contains more columns that the WWSBR_
USER_FOLDERS view.

Table F–25 WWSBR_USER_PAGES

Column Null? Data Type Description Notes

GUID NOT NULL RAW(32) Globally unique ID of the
page.

ID NOT NULL NUMBER ID of the page.

SITEID NOT NULL NUMBER Page group ID of the page.

LANGUAGE NOT NULL VARCHAR2(30) Language code.

PARENTID NUMBER ID of the parent page.

NAME NOT NULL VARCHAR2(60) Name of the page. This name is used in path
based URLs.

TITLE NOT NULL VARCHAR(256) Display name, or title, of
the page.

SETTINGSSETID NOT NULL NUMBER ID of the style used by the
page.

SETTINGSSETSITEID NOT NULL NUMBER Page group ID of the style
used by the page.

ISPUBLIC NOT NULL NUMBER(1) Indicates that the page is
viewable by public users.

Valid values:

■ 0 - not public

■ 1 - is public

IMAGE VARCHAR2(350) Unique document name of
the image associated with
the page, for example
6001.JPG.

ROLLOVERIMAGE VARCHAR2(350) Unique document name of
the rollover image
associated with the page, or
the inactive tab image for
the tab, for example
6001.JPG.

TITLEIMAGE VARCHAR2(350) Unique document name of
the active tab image for the
tab, for example 6001.JPG.

LEADER VARCHAR2(256) E-mail address of the page
contact.

DESCRIPTION VARCHAR2(2000) Description of the page.

PRODUCTION NUMBER(1) Not used.

CREATEDATE DATE Date the page was created.

CREATOR VARCHAR2((256) User name of the person
who created the page.

UPDATEDATE DATE Date the page was last
updated.

Secure Views

Content Management APIs and Views F-27

UPDATOR VARCHAR2(256) User name of the person
who last updated the page.

PUBLISHDATE DATE Not used.

ICON VARCHAR2(256) Not used.

CTXTXT VARCHAR2(1) Used internally by search.

HAVEITEMSECURIT
Y

NOT NULL NUMBER(1) Indicates that item level
security is enabled for the
page.

Valid values:

■ 0 - ILS disabled

■ 1 - ILS enabled

ITEMVERSIONING VARCHAR2(30) Indicates the level of item
versioning for the page.

Valid values:

■ versionnone - no
versioning

■ versionsimple -
simple versioning

■ versionaudit - audit
versioning

TOPICID NUMBER ID of the category assigned
to the page.

TOPIC_SITEID NUMBER Page group ID of the
category assigned to the
page.

VALUE VARCHAR2(2000) For PL/SQL pages, the
PL/SQL code.

For JSP pages, the JSP
source document name. Do
not change this value for
JSP pages.

TYPE NOT NULL NUMBER ID of the page type for the
page.

TYPE_SITEID NOT NULL NUMBER Page group ID of the page
type for the page.

BASE_TYPE NOT NULL NUMBER ID of the base page type.

IS_PORTLET NOT NULL NUMBER(1) Indicates if the page is
published as a portlet.

Valid values:

■ 0 - not a portlet

■ 1 - is a portlet

QUOTA VARCHAR2(5) Not used.

SYSPRIV_NAME NOT NULL VARCHAR2(200) The root page from which
the page inherits access
settings.

PLSQL_EXECUTOR VARCHAR2(30) For PL/SQL type pages,
the database schema used
to execute the PL/SQL
code.

Valid values:

■ $PUBLIC$

■ $CREATOR$

■ <database user
name>

KEYWORDS VARCHAR2(2000) Keywords for the page.

Table F–25 (Cont.) WWSBR_USER_PAGES

Column Null? Data Type Description Notes

Secure Views

F-28 Oracle Fusion Middleware Developer's Guide for Oracle Portal

IS_READY NUMBER(1) Indicates that page creation
is complete.

Valid values:

■ 1 - page creation is
complete

INHERIT_PRIV VARCHAR2(200) The page from which this
page inherits its privileges.

Use the following format:

<page group id>/<page
id>

CACHE_MODE NUMBER(1) Caching mode for the page. Valid values:

■ 2 - no caching

■ 1 - cache page
definition only

■ 0 - cache page
definition and
content for x
minutes

■ 4 - cache page
definition only at
system level

■ 3 - cache page
definition and
content at system
level for x minutes

CACHE_EXPIRES NUMBER(38) Cache period in minutes.

TEMPLATE_ID NUMBER(38) ID of the template on
which the page is based.

TEMPLATE_SITEID NUMBER(38) Page group ID of the
template on which the page
is based.

ALLOW_PAGE_
STYLE

NUMBER(1) For templates, indicates if
pages can use a different
style.

Valid values

■ 1 - allow pages to
use different style.

ALLOW_PAGE_ACL NUMBER(!) For templates, indicates if
pages have different access
settings.

Valid values:

■ 1 - allow pages to
have different access
settings

DAV_ID NOT NULL VARCHAR2(60)

DAV_LOCK_TOKEN VARCHAR2(36)

IS_TEMPLATE NOT NULL NUMBER(1) Indicates that the page is a
template.

Valid values:

■ 1 - is template

INIT_JSPFILE VARCHAR2(256) For JSP pages, initial JSP
file if the JSP source of the
page is a JAR or WAR file.

UI_TEMPLATE_ID NUMBER(38) ID of HTML page skin.

TEMPLATE_
ISPUBLIC

NOT NULL NUMBER(1) Indicates if the template is
ready to use.

Valid values:

■ 1 - template is ready
to use

CONTAINER_ID NOT NULL NUMBER ID of the container page.

Table F–25 (Cont.) WWSBR_USER_PAGES

Column Null? Data Type Description Notes

Secure Views

Content Management APIs and Views F-29

DEFAULT_ITEM_
REGION_ID

NUMBER ID of the default item
region for the page.

DEFAULT_
PORTLET_REGION_
ID

NUMBER ID of the default portlet
region for the page.

ITEMTYPE_
INHERIT_FLAGS

NUMBER(1) For WebDAV, indicates if
default item types are
inherited from parent page.

Valid values:

■ 7 - inherit all item
types from parent
page

■ 0 - specify all types
on this page

REGFILE_ITEMTYPE RAW(32) For WebDAV, GUID of
default item type for
regular files.

ZIPFILE_ITEMTYPE RAW(32) For WebDAV, GUID of
default item type for zip
files.

IMAGEFILE_
ITEMTYPE

RAW(32) For WebDAV, GUID of
default item type for image
files.

DISPLAYINPARENT NOT NULL NUMBER(1) Indicates if the page is
displayed in its parent
page's sub page region.

Valid values:

■ 1 - display page in
parent's sub page
region

SEQ NUMBER The sequence (order) of the
page in its parent page's
sub page region.

ALPHABETICAL_
SORT

NOT NULL NUMBER(1) Indicates that sub pages are
displayed in alphabetical
order.

Valid values:

■ 1 - display sub pages
in alphabetical order

IS_ITEM_PAGE NUMBER(1) Indicates that the template
is for items (with item
placeholder item)

Valid values:

■ 1 - is item template

ITEM_PAGE_ID NUMBER(38) ID of the item template.

ITEM_PAGE_SITE_ID NUMBER(28) Page group ID of the item
template.

ITEM_PAGE_
TABSTRING

VARCHAR2(512) Tab strings of the item
template.

Use the following format:

<tab name>:<sub tab
name>:...:<sub tab
name>

INHERIT_ITEM_
PAGE

NUMBER(1) For item template only,
indicates that items inherit
the parent page's item
template.

Valid values:

■ 1 - inherit parent
page's item template

ALLOW_ITEM_
PAGE_OVERRIDE

NUMBER(1) For item template only,
indicates that items can
have their own item
template.

Valid values:

■ 1 - allow items on
the page to have
their own item
template

Table F–25 (Cont.) WWSBR_USER_PAGES

Column Null? Data Type Description Notes

Secure Views

F-30 Oracle Fusion Middleware Developer's Guide for Oracle Portal

HAS_INPLACE_
ITEM

NOT NULL NUMBER(1) Indicates if the page or tab
has a placeholder item.

Valid values:

■ 1 - has a placeholder
item

TIMEOUT NUMBER Limit time, in seconds,
used to fetch portlets.

LAST_ITEM_
TEMPLATE_
ASSIGNMENT

DATE Set by trigger.

Table F–25 (Cont.) WWSBR_USER_PAGES

Column Null? Data Type Description Notes

G

Content Management Event Framework Events G-1

G Content Management Event Framework
Events

This appendix lists and describes the Oracle Portal actions and the CMEF events that
they generate. It contains the following sections:

■ Section G.1, "Actions and Events for Items"

■ Section G.2, "Actions and Events for Pages"

■ Section G.3, "Actions and Events for Tabs"

■ Section G.4, "Actions and Events for Page Groups"

■ Section G.5, "Actions and Events for Attributes"

■ Section G.6, "Actions and Events for Item Types"

■ Section G.7, "Actions and Events for Page Types"

■ Section G.8, "Actions and Events for Categories"

■ Section G.9, "Actions and Events for Perspectives"

■ Section G.10, "Actions and Events for Templates"

G.1 Actions and Events for Items
Table G–1 lists the actions performed when adding and updating items and the events
raised by those actions.

Table G–1 Adding and Editing Items

Description Action Event State Object Class

An item is added and
published immediately

ADD_ITEM INSERT PUBLISHED ITEM

An item is added but set to be
published some time in the
future

ADD_ITEM INSERT NOT_PUBLISHED ITEM

A portlet instance is added ADD_ITEM INSERT PUBLISHED ITEM

An item is updated but there is
no change to the state of the
item (that is, it stays as
published or unpublished)

EDIT_ITEM UPDATE GENERAL ITEM

Actions and Events for Items

G-2 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Table G–2 lists the actions performed when copying and moving items and the events
raised by those actions.

Table G–3 lists the actions performed when deleting and restoring items and the
events raised by those actions.

An item that was originally set
to be published later is edited,
and chosen to be published
now

EDIT_ITEM UPDATE PUBLISHED ITEM

A published item is updated
and set to be published some
time in the future

EDIT_ITEM UPDATE UNPUBLISHED ITEM

An expired item is updated
and unexpired

EDIT_ITEM UPDATE PUBLISHED ITEM

An item is hidden HIDE_ITEM UPDATE UNPUBLISHED ITEM

An item that was hidden is
shown

SHOW_ITEM UPDATE PUBLISHED ITEM

An item is expired EXPIRE_ITEM UPDATE UNPUBLISHED ITEM

An item is unexpired UNEXPIRE_ITEM UPDATE PUBLISHED ITEM

An item is checked-out CHECK_OUT_
ITEM

UPDATE CHECKED_OUT ITEM

An item is checked-in CHECK_IN_ITEM UPDATE CHECKED_IN ITEM

Table G–2 Copying and Moving Items

Description Action Event State Object Class

An item is copied - the copied
item is in the published state

COPY_ITEM INSERT PUBLISHED ITEM

An item is copied - the copied
item is in the unpublished state

COPY_ITEM INSERT NOT_PUBLISHED ITEM

An item is moved (within a
page or to a different page or
page group) - the item is in the
published state

MOVE_ITEM DELETE PURGED ITEM

-- MOVE_ITEM INSERT PUBLISHED ITEM

An item is moved (within a
page or to a different page or
page group) - the item is in the
unpublished state

MOVE_ITEM DELETE PURGED ITEM

-- MOVE_ITEM INSERT NOT_PUBLISHED ITEM

Table G–1 (Cont.) Adding and Editing Items

Description Action Event State Object Class

Actions and Events for Items

Content Management Event Framework Events G-3

Table G–4 lists the actions performed when defining privileges for items and the
events raised by those actions.

Table G–5 lists the actions performed when working with item versions and the events
raised by those actions.

Table G–3 Deleting and Restoring Items

Description Action Event State Object Class

An item is deleted in a page
group that is set to retain
deleted items

DELETE_ITEM DELETE MARKED_FOR_
DELETE

ITEM

An item is deleted in a page
group that is not set to retain
deleted items

DELETE_ITEM DELETE PURGED ITEM

An item in the unpublished
state is undeleted (item is
either hidden or expired or is
set to be published in the
future)

UNDELETE_ITEM UPDATE NOT_PUBLISHED ITEM

An item in the published state
is undeleted

UNDELETE_ITEM UPDATE PUBLISHED ITEM

Table G–4 Defining Item Privileges

Description Action Event State Object Class

Specify item level access
privileges

SPECIFY_ITEM_
ACL

UPDATE GENERAL ITEM

Add user to item ACL ADD_ITEM_ACL UPDATE GENERAL ITEM

User's privilege is updated on
an item

UPDATE_ITEM_
ACL

UPDATE GENERAL ITEM

Delete user from item ACL DELETE_ITEM_
ACL

UPDATE GENERAL ITEM

Choose to inherit security from
parent page

INHERIT_ITEM_
ACL

UPDATE GENERAL ITEM

Table G–5 Item Versioning

Description Action Event State Object Class

A new version of an item is
added and is set to be the
current version

ADD_ITEM_
VERSION

INSERT PUBLISHED ITEM

A new version of an item is
added but is not set to be the
current version

ADD_ITEM_
VERSION

INSERT NOT_PUBLISHED ITEM

A version of an item is deleted
in a page group that is set to
retain deleted items

DELETE_ITEM_
VERSION

DELETE MARKED_FOR_
DELETE

ITEM

A version of an item is deleted
in a site that is not set to retain
deleted items

DELETE_ITEM_
VERSION

DELETE PURGED ITEM

Actions and Events for Items

G-4 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Table G–6 lists the actions performed when working with item approvals and the
events raised by those actions.

The current version of an item
is changed (the previous
current version and the new
current version are in the
published state)

SWITCH_ITEM_
VERSION

UPDATE UNPUBLISHED ITEM

-- SWITCH_ITEM_
VERSION

UPDATE PUBLISHED ITEM

The current version of an item
is changed (the previous
current version and the new
current version are in the
unpublished state)

SWITCH_ITEM_
VERSION

UPDATE GENERAL ITEM

-- SWITCH_ITEM_
VERSION

UPDATE NOT_PUBLISHED ITEM

The current version of an item
is changed (the previous
current version was in the
published state and the new
current version is in the
unpublished state)

SWITCH_ITEM_
VERSION

UPDATE UNPUBLISHED ITEM

-- SWITCH_ITEM_
VERSION

UPDATE NOT_PUBLISHED ITEM

The current version of an item
is changed (the previous
current version was in the
unpublished state and the new
current version is in the
published state)

SWITCH_ITEM_
VERSION

UPDATE GENERAL ITEM

-- SWITCH_ITEM_
VERSION

UPDATE PUBLISHED ITEM

Table G–6 Item Approvals

Description Action Event State Object Class

An item is added in pending
mode

SUBMIT_ITEM_
FOR_APPROVAL

INSERT NOT_PUBLISHED ITEM

An item is added in draft mode ADD_DRAFT_
ITEM

INSERT NOT_PUBLISHED ITEM

A pending item is edited by an
approver

EDIT_ITEM_BY_
APPROVER

UPDATE GENERAL ITEM

An item is approved but is
pending approval from the
next approver

APPROVE_ITEM_
STEP

UPDATE GENERAL ITEM

An item is approved by all
approvers (the approved item
overwrites the current,
published version)

APPROVE_ITEM UPDATE PUBLISHED ITEM

Table G–5 (Cont.) Item Versioning

Description Action Event State Object Class

Actions and Events for Pages

Content Management Event Framework Events G-5

G.2 Actions and Events for Pages
Table G–7 lists the actions performed when adding and editing pages and the events
raised by those actions.

An item is approved by all
approvers (the approved item
becomes the new current
version)

APPROVE_ITEM INSERT PUBLISHED ITEM

-- APPROVE_ITEM UPDATE UNPUBLISHED ITEM

An item is approved by all
approvers (the approved item
becomes a new, but not current
version)

APPROVE_ITEM INSERT NOT_PUBLISHED ITEM

An item is updated and
submitted for approval

SUBMIT_ITEM_
FOR_APPROVAL

UPDATE NOT_PUBLISHED ITEM

An item is rejected REJECT_ITEM UPDATE GENERAL ITEM

A rejected item is resubmitted
for approval

SUBMIT_ITEM_
FOR_APPROVAL

UPDATE GENERAL ITEM

A draft item is updated
(attributes such as author,
description, and so on are
updated)

EDIT_DRAFT_
ITEM

UPDATE GENERAL ITEM

A draft item is updated (the
publish date is updated to
publish the item some time in
the future)

EDIT_DRAFT_
ITEM

UPDATE UNPUBLISHED ITEM

A draft item is updated (the
publish date is updated to
publish the item immediately)

EDIT_DRAFT_
ITEM

UPDATE PUBLISHED ITEM

A draft item is submitted for
approval

SUBMIT_ITEM_
FOR_APPROVAL

UPDATE NOT_PUBLISHED ITEM

An item is copied into a page
where draft items are enabled

COPY_DRAFT_
ITEM

INSERT NOT_PUBLISHED ITEM

An item is copied to a page and
is submitted for approval

SUBMIT_ITEM_
FOR_APPROVAL

INSERT NOT_PUBLISHED ITEM

Table G–7 Adding and Editing Pages

Description Action Event State Object Class

A page is created - there are
two messages: one for the page
that is added and one for the
portlet instance for the default
navigation page

ADD_PAGE INSERT PUBLISHED PAGE

-- ADD_ITEM INSERT PUBLISHED ITEM

A page based on a template is
created. The template contains
one item and one portlet

ADD_PAGE INSERT PUBLISHED PAGE

-- ADD_ITEM INSERT PUBLISHED ITEM

Table G–6 (Cont.) Item Approvals

Description Action Event State Object Class

Actions and Events for Pages

G-6 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Table G–8 lists the actions performed when deleting pages and the events raised by
those actions.

Table G–9 lists the actions performed when defining privileges for pages and the
events raised by those actions.

-- DELETE_PAGE1 DELETE PURGED PAGE

-- ADD_PAGE INSERT PUBLISHED PAGE

-- ADD_ITEM INSERT PUBLISHED ITEM

-- ADD_ITEM INSERT PUBLISHED ITEM

A page is renamed. If the root
page is renamed there are two
messages: one for the page and
one for the page group.

RENAME_PAGE UPDATE GENERAL PAGE

A page property is updated
(for example the description)

EDIT_PAGE UPDATE GENERAL PAGE

A page is copied (the page
contains one portlet instance
and one item)

ADD_PAGE INSERT PUBLISHED PAGE

-- COPY_ITEM INSERT PUBLISHED ITEM

-- COPY_ITEM INSERT PUBLISHED ITEM

A page is moved under a
different parent

MOVE_PAGE DELETE PURGED PAGE

-- MOVE_PAGE INSERT PUBLISHED PAGE

A page is translated EDIT_PAGE UPDATE GENERAL PAGE

-- EDIT_PAGE INSERT2 PUBLISHED PAGE

-- EDIT_PAGE UPDATE GENERAL PAGE

Versioning is enabled or
disabled for a page

EDIT_PAGE UPDATE GENERAL PAGE

1 As the page designer steps through the wizard, a page is created that includes the default navigation page. However, as soon as
it is determined that the page is based on a template, this page is deleted and a new page (based on the template) is created
instead.

2 The first update is for the default language, the last is for the current translation. The message of interest is the insert for the
current translation.

Table G–8 Deleting Pages

Description Action Event State Object Class

A page is deleted (if the page
has sub-pages, a message is
logged for each deleted
sub-page, however no
messages are logged for
deleted items)

DELETE_PAGE DELETE PURGED PAGE

Table G–7 (Cont.) Adding and Editing Pages

Description Action Event State Object Class

Actions and Events for Tabs

Content Management Event Framework Events G-7

G.3 Actions and Events for Tabs
Table G–10 lists the actions performed when adding and editing tabs and the events
raised by those actions.

Table G–9 Defining Page Privileges

Description Action Event State Object Class

ILS is enabled or disabled on a
page

UPDATE_PAGE_
ACL

UPDATE GENERAL PAGE

-- UPDATE_PAGE_
ILS

UPDATE GENERAL PAGE

A page is displayed to public
users

UPDATE_PAGE_
ACL

UPDATE GENERAL PAGE

-- UPDATE_PAGE_
PUBLIC_SETTING

UPDATE GENERAL PAGE

A user is added to a page ACL ADD_PAGE_ACL UPDATE GENERAL PAGE

A user is deleted from a page
ACL

DELETE_PAGE_
ACL

UPDATE GENERAL PAGE

A user's privilege is changed in
a page ACL

UPDATE_PAGE_
ACL

UPDATE GENERAL PAGE

A page is set to inherit its ACL
from its parent

INHERIT_PAGE_
ACL

UPDATE GENERAL PAGE

An ACL is specified at the page
level (the page does not inherit
its ACL from its parent)

UPDATE_PAGE_
ACL

UPDATE GENERAL PAGE

-- SPECIFY_PAGE_
ACL

UPDATE GENERAL PAGE

Table G–10 Adding and Editing Tabs

Description Action Event State Object Class

A tab is added ADD_PAGE INSERT PUBLISHED PAGE

-- ADD_ITEM INSERT PUBLISHED ITEM

A tab is added in a region that
contains two items

ADD_PAGE INSERT PUBLISHED PAGE

-- ADD_ITEM INSERT PUBLISHED ITEM

-- DELETE_ITEM1 DELETE PURGED ITEM

-- ADD_ITEM INSERT PUBLISHED ITEM

-- DELETE_ITEM DELETE PURGED ITEM

-- ADD_ITEM INSERT PUBLISHED ITEM

A tab is hidden HIDE_ITEM UPDATE UNPUBLISHED ITEM

A hidden tab is shown SHOW_ITEM UPDATE PUBLISHED ITEM

A tab is deleted DELETE_PAGE DELETE PURGED PAGE

-- DELETE_ITEM DELETE PURGED ITEM

A tab is renamed RENAME_PAGE UPDATE GENERAL PAGE

A tab property is updated (for
example, the display name)

EDIT_PAGE UPDATE GENERAL PAGE

Actions and Events for Page Groups

G-8 Oracle Fusion Middleware Developer's Guide for Oracle Portal

G.4 Actions and Events for Page Groups
Table G–11 lists the actions performed when adding and editing page groups and the
events raised by those actions.

Table G–12 lists the actions performed when deleting and purging page groups and
the events raised by those actions.

Table G–13 lists the actions performed when defining privileges for page groups and
the events raised by those actions.

1 Items on the original page are moved to the tab. So the item is first deleted from the original page and then added to the new
tab.

Table G–11 Adding and Editing Page Groups

Description Action Event State Object Class

A page group is added ADD_PAGE_
GROUP

INSERT GENERAL PAGE_GROUP

A page group is renamed RENAME_PAGE_
GROUP

UPDATE GENERAL PAGE_GROUP

Table G–12 Deleting and Purging Page Groups

Description Action Event State Object Class

A page group is deleted.
Messages are not logged for
any items or sub-pages.

DELETE_PAGE_
GROUP

DELETE PURGED PAGE_GROUP

Deleted items are purged from
a page group (one message for
each item and one message for
the actual purge operation)

DELETE_ITEM DELETE PURGED ITEM

-- PURGE_
DELETED_ITEM

DELETE PURGED PAGE_GROUP

Expired items are purged from
a page group (one message for
each item and one message for
the actual purge operation)

DELETE_ITEM DELETE PURGED ITEM

-- DELETE_ITEM DELETE PURGED ITEM

-- PURGE_
EXPIRED_ITEM

DELETE PURGED PAGE_GROUP

Choose to not retain deleted
items at the page group level,
thus purging all existing
retained deleted items (one
message for each item and one
message for the actual purge
operation)

DELETE_ITEM DELETE PURGED ITEM

-- PURGE_
DELETED_ITEM

DELETE PURGED PAGE_GROUP

Actions and Events for Item Types

Content Management Event Framework Events G-9

Table G–14 lists the actions performed when installing translations for page groups
and the events raised by those actions.

G.5 Actions and Events for Attributes
Table G–15 lists the actions performed when working with attributes and the events
raised by those actions.

G.6 Actions and Events for Item Types
Table G–16 lists the actions performed when working with item types and the events
raised by those actions.

Table G–13 Defining Page Group Privileges

Description Action Event State Object Class

A user is added to a page
group ACL

ADD_PAGE_
GROUP_ACL

UPDATE GENERAL PAGE_GROUP

An user's privilege is changed
in a page group ACL

UPDATE_PAGE_
GROUP_ACL

UPDATE GENERAL PAGE_GROUP

A user is deleted from a page
group ACL

DELETE_PAGE_
GROUP_ACL

UPDATE GENERAL PAGE_GROUP

Table G–14 Page Group Translations

Description Action Event State Object Class

A translation is installed TRANSLATE_
PAGE

INSERT PUBLISHED PAGE

Table G–15 Attributes

Description Action Event State Object Class

An attribute is added. The data
type of the attribute is stored in
the STATE field, for example,
DATA_TYPE_TEXT.

ADD_ATTRIBUTE INSERT DATA_TYPE_
TEXT

ATTRIBUTE

An attribute is updated EDIT_ATTRIBUTE UPDATE DATA_TYPE_
TEXT

ATTRIBUTE

An attribute is promoted (the
message is the same regardless
of how many items use the
attribute)

MOVE_
ATTRIBUTE

UPDATE GENERAL ATTRIBUTE

An attribute is deleted (the
message is the same even if
there are items using the
attribute)

DELETE_
ATTRIBUTE

DELETE DATA_TYPE_
TEXT

ATTRIBUTE

Actions and Events for Page Types

G-10 Oracle Fusion Middleware Developer's Guide for Oracle Portal

G.7 Actions and Events for Page Types
Table G–17 lists the actions performed when working with page types and the events
raised by those actions.

Table G–16 Item Types

Description Action Event State Object Class

A custom item type is created ADD_ITEM_TYPE INSERT GENERAL ITEM_TYPE

An item type is edited and
changes are made in the Main
tab (if you edit the name, a
different message is generated,
see following description)

EDIT_ITEM_TYPE UPDATE MAIN_TAB ITEM_TYPE

An item type is renamed RENAME_ITEM_
TYPE

UPDATE MAIN_TAB ITEM_TYPE

An attribute is attached to an
item type

EDIT_ITEM_TYPE UPDATE ATTRIBUTES_
TAB

ITEM_TYPE

An attribute is detached from
an item type

DETACH_
ATTRIBUTE

UPDATE ATTRIBUTES_
TAB

ITEM_TYPE

Attribute default values are
updated

EDIT_ITEM_TYPE UPDATE ATTRIBUTES_
TAB

ITEM_TYPE

A procedure is attached to an
item type

EDIT_ITEM_TYPE UPDATE PROCEDURES_
TAB

ITEM_TYPE

A procedure attached to an
item type is edited and new
parameters are added

EDIT_ITEM_TYPE UPDATE PROCEDURES_
TAB

ITEM_TYPE

An item type is promoted MOVE_ITEM_
TYPE

UPDATE GENERAL ITEM_TYPE

An item type is deleted (the
message is the same even if
there are items based on the
item type)

DELETE_ITEM_
TYPE

DELETE PURGED ITEM_TYPE

Table G–17 Page Types

Description Action Event State Object Class

A custom page type is created ADD_PAGE_
TYPE

INSERT GENERAL PAGE_TYPE

A page type is edited and
changes are made in the Main
tab (if you edit the name, a
different message is generated,
see following description)

EDIT_PAGE_
TYPE

UPDATE MAIN_TAB PAGE_TYPE

A page type is renamed RENAME_PAGE_
TYPE

UPDATE MAIN_TAB PAGE_TYPE

An attribute is attached to a
page type

EDIT_PAGE_
TYPE

UPDATE ATTRIBUTES_
TAB

PAGE_TYPE

Attribute default values are
added

EDIT_PAGE_
TYPE

UPDATE ATTRIBUTES_
TAB

PAGE_TYPE

An attribute is detached from a
page type

DETACH_
ATTRIBUTE

UPDATE ATTRIBUTES_
TAB

PAGE_TYPE

Actions and Events for Perspectives

Content Management Event Framework Events G-11

G.8 Actions and Events for Categories
Table G–18 lists the actions performed when working with categories and the events
raised by those actions.

G.9 Actions and Events for Perspectives
Table G–19 lists the actions performed when working with perspectives and the events
raised by those actions.

A procedure is attached to a
page type

EDIT_PAGE_
TYPE

UPDATE PROCEDURES_
TAB

PAGE_TYPE

A procedure attached to a page
type is edited and new
parameters are added

EDIT_PAGE_
TYPE

UPDATE PROCEDURES_
TAB

PAGE_TYPE

A page type is promoted MOVE_PAGE_
TYPE

UPDATE GENERAL PAGE_TYPE

A page type is deleted DELETE_PAGE_
TYPE

DELETE PURGED PAGE_TYPE

Table G–18 Categories

Description Action Event State Object Class

A category is added ADD_CATEGORY INSERT GENERAL CATEGORY

A category is renamed RENAME_
CATEGORY

UPDATE GENERAL CATEGORY

-- RENAME_PAGE UPDATE GENERAL PAGE

A category is edited and
changes are made in the Main
tab

EDIT_CATEGORY UPDATE GENERAL CATEGORY

An image is attached to a
category

EDIT_
CATEGORY_
IMAGE

UPDATE GENERAL CATEGORY

An image is detached from a
category

DELETE_
CATEGORY_
IMAGE

UPDATE GENERAL CATEGORY

A category is promoted MOVE_
CATEGORY

UPDATE GENERAL CATEGORY

A category is deleted DELETE_
CATEGORY

DELETE GENERAL CATEGORY

Table G–19 Perspectives

Description Action Event State Object Class

A perspective is added ADD_
PERSPECTIVE

INSERT GENERAL PERSPECTIVE

A perspective is renamed RENAME_
PERSPECTIVE

UPDATE GENERAL PERSPECTIVE

-- RENAME_PAGE UPDATE GENERAL PAGE

Table G–17 (Cont.) Page Types

Description Action Event State Object Class

Actions and Events for Templates

G-12 Oracle Fusion Middleware Developer's Guide for Oracle Portal

G.10 Actions and Events for Templates
Table G–20 lists the actions performed when working with templates and the events
raised by those actions.

A perspective is edited and
changes are made in the Main
tab

EDIT_
PERSPECTIVE

UPDATE GENERAL PERSPECTIVE

An image is attached to a
perspective

EDIT_
PERSPECTIVE_
IMAGE

UPDATE GENERAL PERSPECTIVE

An image is detached from a
perspective

DELETE_
PERSPECTIVE_
IMAGE

UPDATE GENERAL PERSPECTIVE

A perspective is promoted MOVE_
PERSPECTIVE

UPDATE GENERAL PERSPECTIVE

A perspective is deleted DELETE_
PERSPECTIVE

DELETE GENERAL PERSPECTIVE

Table G–20 Templates

Description Action Event State Object Class

A page based on a template is
created1

ADD_PAGE INSERT PUBLISHED PAGE

-- ADD_ITEM INSERT PUBLISHED ITEM

-- DELETE_PAGE DELETE PURGED PAGE

-- ADD_PAGE INSERT PUBLISHED PAGE

-- ADD_ITEM INSERT PUBLISHED ITEM

-- ADD_ITEM INSERT' PUBLISHED ITEM

A page is edited to be based on
a template, resulting in content
from one region being deleted

DELETE_ITEM DELETE PURGED ITEM

-- EDIT_PAGE UPDATE GENERAL PAGE

-- ADD_ITEM INSERT PUBLISHED ITEM

-- ADD_ITEM INSERT PUBLISHED ITEM

An item is added to a template.
There is a message for the item
on the template itself and then
additional messages for each
time the item is replicated on
pages based on the template

ADD_ITEM INSERT PUBLISHED ITEM

An item is deleted from a
template. There is a message
for the item on the template
itself and then additional
messages (with different page
IDs and page group IDs) for
each time the item is deleted
from pages based on the
template.

DELETE_ITEM DELETE PURGED ITEM

Table G–19 (Cont.) Perspectives

Description Action Event State Object Class

Actions and Events for Templates

Content Management Event Framework Events G-13

A page is detached from a
template. One or more
messages, as shown, is
produced for each item and
portlet that was on the
template

COPY_ITEM INSERT PUBLISHED ITEM

A template, on which one or
more pages are based, is
deleted.2

DELETE_PAGE DELETE PURGED PAGE

-- COPY_ITEM INSERT PUBLISHED ITEM

-- COPY_ITEM INSERT PUBLISHED ITEM

-- DELETE_ITEM DELETE PURGED ITEM

-- COPY_ITEM INSERT PUBLISHED ITEM
1 The first two inserts are for the page creation. The next delete is because that page gets deleted when you attach the template.

The next insert is for the new page based on the template. The following two item inserts are for item replication from the
template. There will be an insert event for every item and portlet on the template.

2 The delete event is for the deletion of the actual template. The first two inserts are when the replicated items on a page based on
the template are copied over. There will be an insert message for each item on the template. The following delete and insert
events are for a non-replicated item on the page based on the template. There will be a delete and corresponding insert event for
every non-replicated item on the page.

Table G–20 (Cont.) Templates

Description Action Event State Object Class

Actions and Events for Templates

G-14 Oracle Fusion Middleware Developer's Guide for Oracle Portal

Glossary-1

Glossary

About mode

An optional portlet Show mode that displays information about the portlet's
copyright, version, and author.

access control list

See ACL.

ACL

Access Control List. A list of groups and users authorized for specific access to an
object.

action

In the context of CMEF, an action occurs when something happens in a portal (either
through the Oracle Portal user interface, WebDAV, or PL/SQL APIs). Actions within a
portal trigger CMEF events, which cause Oracle Portal to write messages to the
WWSBR_EVENT_Q queue. A subscriber can consume these messages and perform
its own actions depending on what those messages are.

add-in

See extension.

advanced search

A search engine that enables users to:

■ Find content that contains any or all terms in the search string.

■ Search selected page groups, or search across all page groups.

■ Restrict a search to a particular page, category, perspective, item type, or
attribute.

If Oracle Text is installed and enabled, all text attributes and the actual content of
documents and URLs are searched. If Oracle Text is not installed, or is disabled, the
following metadata is searched: item attributes (Display Name, Description,
Keywords, and Author), page attributes (Display Name, Description, and Keywords)
and category/perspective attributes (Display Name and Description).

If Oracle Text is installed and enabled, you can also use advanced search to perform
near, soundex, and fuzzy searches.

See also search portlet. Contrast with basic search and custom search.

API

Glossary-2

API

Application Programming Interface. A set of exposed data structures and functions
that an application can use to invoke services on a portal object, such as a portlet,
page, or page group. Note that Oracle Portal APIs are exposed through the PDK
available from the Oracle Portal Developer Kit (PDK) page on OTN:

http://www.oracle.com/technology/products/ias/portal/pdk.html

application

INTERNAL: Obsolete terminology. DO NOT USE to refer to a provider of portlets
built using the Portlet Builder (for example, forms, reports, charts). Use database
provider instead.

Application Programming Interface

See API.

Application Service Provider

See ASP.

approval notification

A message in the Notification portlet indicating that a user whose content requires
approval has created or updated an item. The intended recipients of approval
notifications (approvers) relating to a particular page group or page are identified in
an approval process. An approver may respond to the notification by approving or
rejecting the item in question.

approval process

A series of one or more steps that determines which users (or groups) need to review
content that requires approval before it can be published. Each step in an approval
process must have one or more approvers. Routing to the approvers can be in serial
(one at a time) or in parallel (all at once), and each step can be defined to require a
response (either an approval or a rejection) by any one member or by all members.
Once the required number of responses is received during a step, the process
continues to the next step. The process ends when the item is rejected, or the final step
is reached and the document is approved.

approver

A user identified in a page group or page approval process, either explicitly or
implicitly through group membership, as someone who needs to review content that
requires approval before it can be published. An approver may choose to approve or
reject such content.

ASP

Application Service Provider. A service that provides remote hosting of applications,
maintaining and operating the hardware, software, and other resources required to
run the applications.

attribute

A portal object that stores information (or metadata) about an item or page: for
example, Create Date, Expire Date, or Author. A page group administrator can create
custom attributes to extend the functionality of item types and page types. For
example, a base attribute on a file is Display Name; a custom attribute might be a
check box to indicate whether the file is confidential. Custom attributes are useful for
assigning unique, searchable identifiers to items.

bind variable

Glossary-3

authenticated user

A user who is logged on to a portal. By default, authenticated users can access and,
based on privileges granted to the user, act on certain portal objects, such as pages.

Contrast with public users, who can access public content only.

authorization

The evaluation of security constraints to send a message or make a request.
Authorization uses specific criteria—authentication and restriction—to determine
whether the request should be permitted.

authorized user

See authenticated user.

banner

See region banner. See also navigation page.

base attribute

See attribute.

base item type

See item type.

base page type

See page type.

basic search

A search engine that enables users to find content that contains a specific search string.

If Oracle Text is installed and enabled, all text attributes and the actual content of
documents and URLs are searched. If Oracle Text is not installed, or is disabled, the
following metadata is searched: item attributes (Display Name, Description,
Keywords, and Author), page attributes (Display Name, Description, and Keywords)
and category/perspective attributes (Display Name and Description).

See also search portlet. Contrast with advanced search and custom search.

basic search box item

A navigation item that users can add to a page to enable other users to perform basic
searches. The search box can initiate a search of all page groups or a specified subset of
page groups.

batch job

The process of running a Portlet Builder portlet in the background using the Oracle
Portal batch job facility. An end user can run a portlet in batch mode by selecting
options on the portlet's personalization form. Batch processing is useful if the portlet
is based on a large amount of data, if the portlet displays many rows of data, or if the
job may take a long time to run.

bind variable

A variable in a SQL statement that must be replaced with a valid value or address of a
value in order for the statement to execute successfully. Portlet developers typically
use bind variables (for example, dept) to display a parameter entry field in a portlet's
personalization form. The entry field enables end users to choose the data that the
portlet will display.

bookmark

Glossary-4

bookmark

See favorite.

breadcrumbs

See page path item.

Builder page

See Portal Builder page.

bulk load

See zip file item.

caching

The act of storing frequently accessed information, typically Web pages or portlets in
Oracle Portal, in a location where it can be accessed quickly to avoid frequent content
generation. For example, Oracle Web Cache stores dynamically-generated portlets in
its memory, then serves them to the PPE when there is a request for the specified
portlet. This storage reduces the total time spent handling the request by avoiding
connections to the back-end database and other Web sites.

See also expiry-based caching, invalidation-based caching, system level caching,
user level caching, and validation-based caching.

calendar

A portlet created with the Portlet Builder that displays the results of a SQL query in
calendar format.

call interface

The call interface displays the arguments that were selected when a Portlet Builder
portlet was originally created or last edited.

category

A predefined attribute used to group or classify pages, items, and portlets in a page
group. A category helps users answer the question: What is this item or page? For
example, in a travel page group, you might have categories for maps, snapshots, and
hotel reviews. Users can assign only one category to a particular item or page.

See also perspective.

chart

A portlet created with the Portlet Builder that displays the results of a SQL query as a
chart, such as a bar chart, pie chart, or line chart. Bar charts are based on at least two
table or view columns: one that identifies the bars on the chart and another that
calculates the size of the bars on the chart.

check out/check in

A mechanism that allows a user to lock an item, by checking it out, so that other users
cannot edit that same item. This prevents users from overwriting each others changes.
After editing the item, the user releases it by checking it back in, making it available
again for other users to edit.

child object

An object that is part of a hierarchy. For example, sub-pages, sub-categories, and
sub-perspectives are child objects of a page, category, and perspective respectively.

content contributor

Glossary-5

See also manifest.

child page

In Oracle Instant Portal, a page created beneath a top-level page. Child pages are
listed along the left side of the top-level page to which they belong, in the navigation
area, and usually support the top-level page's main theme. You can add, delete,
re-position, or edit child pages right in the navigation area, assuming you have the
appropriate privileges.

CHTML

Compact HTML. A subset of HTML recommendations, designed for small devices.

classification

Categories and perspectives are used to classify the content of a page or item so that it
is easy for users to locate that content during a search.

See also category and perspective.

CLOB

Character Large Object. A Large Object (LOB) datatype whose value is composed of
character data corresponding to the database character set. A CLOB can be indexed
and searched by the Oracle Text search engine.

cluster

A database object used to store tables that are related to one another and that are often
joined together in the same area on a disk.

CMEF

Content Management Event Framework. A feature that enables you to extend Oracle
Portal's content management event functionality by adding programmatic hooks to
certain pre-defined portal events. The framework publishes these events to an Oracle
Streams Advanced Queuing (AQ) queue. This allows third party programs to
subscribe to these events and to use the APIs to extend the functionality of the portal.
CMEF should not be confused with the portlet events feature.

CMEF event

An action within a portal triggers a corresponding CMEF event. A developer can write
code that responds to CMEF events.

community

See Portal Community.

compact HTML

See CHTML.

content area

In Oracle Instant Portal, refers to the area in which a page's items (or content) appear,
on the right side of the screen.

content contributor

A user who has the appropriate privileges to add items to a page. Appropriate page
privileges include Manage Content and Manage Items With Approval. Appropriate item
privileges include Manage, Edit, and View.

content item type

Glossary-6

content item type

A means of classifying the actual content of an item that is being uploaded to a page,
such as a document, text, or an image.

Built-in content item types are:

■ file item and simple file item

■ text item and simple text item

■ URL item and simple URL item

■ image item and simple image item

■ image map item

■ PL/SQL item and simple PL/SQL item

■ page link item and simple page link item

■ zip file item

 See also item type. Contrast with navigation item type.

Content Management Event Framework

See CMEF.

content repository

The Oracle Portal schema within the Oracle Metadata Repository that contains the
content and metadata associated with a particular portal instance.

Contribute privileges

A privilege level on an Oracle Instant Portal page that allows the user to add, edit,
move, or delete items on the page. A user with Contribute privileges also has all View
privileges.

CSS

Cascading Style Sheet. A simple mechanism for adding style, such as fonts, colors, and
spacing, to Web documents.

current version

The version of an item that is displayed on the page. The current version is not
necessarily the most recent version of the item.

See also versioning.

custom attribute

See attribute.

custom item type

See item type.

custom page type

See page type.

custom provider

A type of provider that enables you to create and maintain portlets that access
customer-specific content or applications. You can build custom portlets in Oracle
Portal either declaratively or programmatically.

default language

Glossary-7

custom search

A search engine that enables users to define a variety of searches against information
stored in the Oracle Portal schema of the Oracle Metadata Repository. By editing the
defaults of the Custom Search portlet, you can define unique search forms and search
results pages that meet the specific search requirements, or configure portlets that
execute and return results based on predefined search criteria.

If Oracle Text is installed and enabled, all text attributes and the actual content of
documents and URLs are searched. If Oracle Text is not installed, or is disabled, the
following metadata is searched: item attributes (Display Name, Description,
Keywords, and Author), page attributes (Display Name, Description, and Keywords)
and category/perspective attributes (Display Name and Description).

See also search portlet. Contrast with advanced search and basic search.

DAD

Database Access Descriptor. A set of values that specify how an application connects
to an Oracle database to fulfill an HTTP request. The information in the DAD includes
the user name (which also specifies the schema and the privileges), password,
connect-string, error log file, standard error message, and Globalization Support
parameters such as language, date format, date language, and currency.

Database Access Descriptor

See DAD.

database administrator

See DBA.

database object

See object.

database provider

A type of provider that is written as a PL/SQL stored procedure and is used to create
portlets that reside in the database. One example of a database provider is a provider
built using the Portlet Builder to provide form, report, and chart portlets.

Contrast with Web provider.

data portlet

A portlet built using the Portlet Builder that displays data in a spreadsheet format.

DAV

See WebDAV.

DBA

Database Administrator. A user belonging to the DBA group. By default, members in
the DBA group have access to all Oracle Portal product pages, and have the Manage
privilege for all pages, page groups, database providers, and administration.

default language

The language in which a page group is originally created. After creating the page
group, you can add translations to it to enable users to add content in different
languages.

default subscriber

Glossary-8

default subscriber

The base subscriber that is installed along with the install of Oracle Portal.

de-militarized zone

See DMZ.

dequeue

The operation of retrieving a CMEF message from an Oracle Streams AQ queue.

Contrast with enqueue.

developer

A user who builds portlets for others to include on their pages. Relies heavily on the
APIs to extend the capabilities of Oracle Portal; may frequently consult the Portal
Knowledge Exchange or the forums for advice or inspiration.

Developer Services

See Portal Developer Services.

DIP

Directory Integration Platform. The provisioning platform provided by Oracle
Internet Directory to synchronize different directories and directory enabled
applications.

direct access URL

Obsolete terminology. See path-based URL.

Directory Information Tree

See DIT.

Directory Integration Platform

See DIP.

display name

An object's external name used throughout Oracle Portal, for example, in the
Navigator, on pages, and in the page editor. When the object is published as a portlet,
the display name is used as the title of the portlet in the Portlet Repository.

Distinguished Name

See DN.

DIT

Directory Information Tree. A hierarchical tree-like structure in Oracle Internet
Directory consisting of the DNs of the entries.

DN

Distinguished Name. The unique name of a directory entry in Oracle Internet
Directory. It includes all the individual names of the parent entries back to the root.
The DN tells you exactly where the entry resides in the directory's hierarchy. This
hierarchy is represented by a directory information tree (DIT).

Edit mode

Glossary-9

DMZ

De-militarized Zone. A computer host or small network inserted as a "neutral zone"
between a company's private network and the outside public network. It prevents
outside users from getting direct access to a server that has company data. A DMZ is
an optional and more secure approach to a firewall and effectively acts as a proxy
server as well. (The term comes from the geographic buffer zone that was set up
between North Korea and South Korea following the UN police action in the early
1950s.)

document control

See check out/check in.

draft item

An item that has been added to a page but has not yet been submitted for approval. In
View mode, a draft item is visible only to its author. When a draft item is ready for
approval, the author can submit it, at which point the approval process is triggered.
Draft items can be added to a page only if approvals are enabled for the page group.

durable URL

A URL that uses the item's GUID (globally unique ID) to uniquely identify it. An
item's GUID does not change so its durable URL will not break when the item is
edited, renamed, moved, or imported to a different portal instance.

Contrast with path-based URL.

dynamic page

A portlet created with the Portlet Builder that displays dynamic content on a page.
The dynamic page wizard enables you to specify one or many PL/SQL blocks within
HTML code to create a page. This code executes every time an end user requests the
page.

dynamic URL

A URL that contains a query string (one or more parameters and the characters ? and
&).

Contrast with path-based URL

edge side includes

See ESI.

Edit Defaults mode

An optional portlet Show mode that enables administrators to set the defaults of a
portlet for all users.

Contrast with Edit mode.

Edit mode

1. Page editing: Edit mode enables an authenticated user with appropriate privileges
to set page properties and to add, modify, or delete portlets and items on the page.
To switch to Edit mode, the user clicks an Edit link on the page. There are three
Edit mode views: Graphical view, Layout view, and List view.

See also Mobile Preview mode and Pending Items Preview mode.

2. Portlets: An optional portlet Show mode that enables personalization of the
portlet for each user, for each instance.

Edit mode handle bar

Glossary-10

Contrast with Edit Defaults mode.

3. Oracle Instant Portal: Opposite of View mode. When the Edit mode handle bar is
clicked, thus displaying the edit toolbar and the Add Item and Add Page buttons,
the page is said to be in Edit mode. This is the only state in which action may be
taken upon the page.

Edit mode handle bar

In Oracle Instant Portal, the gray icon that one clicks to display the edit toolbar. When
the edit toolbar is displayed, the page is in Edit mode. Users with View privileges on
the page do not see the Edit mode handle bar.

email item

In Oracle Instant Portal, an item represented by a yellow envelope and, optionally, a
title on the page. When the user clicks the envelope, an e-mail editor is opened
displaying a blank e-mail. The e-mail is pre-populated with the address specified by
the item's creator.

enqueue

The operation of publishing messages to an Oracle Streams AQ queue.

Contrast with dequeue.

Oracle Enterprise Manager

Oracle Enterprise Manager is a component of the Oracle Fusion Middleware that
enables administrators to manage Oracle Fusion Middleware services through a single
environment. For example, an administrator can use Oracle Enterprise Manager to
monitor the services that make up an Oracle Portal instance, including HTTP services,
the PPE, the Oracle database, providers, and Oracle Ultra Search.

enterprise portal

A common, integrated starting point that provides personalized access to relevant
enterprise information sources. Enterprise portals enable site visitors to personalize
their view of the resources available on the public Internet.

ESI

Edge Side Includes. A markup language to enable partial page caching (PPC) of
HTML fragments.

event

An action within a portal triggers a corresponding event. Page designers can specify
what should happen when these events occur, for example, by specifying that a
particular event forces the reloading of the current page, and passes parameters to the
newly loaded page.

Event servlet

The Event servlet implements the functionality of Oracle Portal to allow for dynamic
page navigation when accessing an event enabled portlet. The Event servlet runs in
the same container as the PPE.

expandable rich text item

In Oracle Instant Portal, a type of text item designed to conserve space on the page.
When in View mode, an expandable rich text item is represented by a white envelope,
a title, and a summary. When the user clicks the envelope, the item expands to reveal
the text associated with the item. Compare to a rich text item, in which the full text of

external object

Glossary-11

the item is never hidden. Both expandable rich text and rich text items may contain
images, hyperlinks, and tables, as well as any valid HTML code.

expiration period

The number of days after which, or an exact date on which, an item expires. After an
item expires, it is viewable only by the item's or page's owner and the page group
administrator in Edit mode. Expired items are removed from the database during a
system purge of all expired items.

expiry-based caching

A caching method that uses a retention period to specify how long the item is valid in
the cache before a refresh is required. When there is a request for the item beyond the
retention period, it is refreshed in the cache.

Oracle Web Cache uses both expiry-based caching and invalidation-based caching.
Any data saved in Oracle Web Cache is considered valid until it is invalidated or it
expires. For example, if expiry-based caching is specified for a fully assembled page,
the page content remains valid in the cache for the specified retention period before it
needs to be regenerated.

See also invalidation-based caching and validation-based caching.

expiry notification

A message automatically sent to a user or group indicating that an item on the page is
about to expire. The notification is set up by the page group administrator.

explicit object

An object which is explicitly selected, from the Navigator or Bulk Actions, for export.

See also manifest and referenced object.

export

A method of creating a set of files (transport set) that contains page groups, pages,
portlets, and other content from a single Oracle Portal instance. You can then import
this set of files into another Oracle Fusion Middleware instance.

eXtensible Markup Language

See XML.

extension

A Java class that extends the functionality of Oracle JDeveloper. For example the PDK
includes an extension to aid with the development of portlets with Oracle JDeveloper.

external application

An application external to Oracle Portal that is typically launched from the External
Applications portlet. As each external application is configured by a portal
administrator, users simply supply their user name and password information. The
Oracle Application Server Single Sign-On will present these credentials for future
authentication challenges.

external object

An object which is an external dependency of an explicit object. External objects
ensure that the explicit objects perform on the target portal.

See also manifest.

favorite

Glossary-12

favorite

A hyperlink in the Favorites portlet that provides quick access to a frequently visited
URL, either inside or outside your company firewall. An authenticated user can
personalize the Favorites portlet with his or her own preferred set of frequently
accessed URLs.

Favorite Content area

An area on the Oracle Instant Portal home page in which a user's favorite content
appears. Users select items for this area by clicking an icon that looks like a house
beside the item. The Favorite Content area is different for each user.

favorite group

A collection of favorites (and favorite groups) that are usually logically related.

Federated Portal Adapter

See FPA.

file item

A type of item that a user can add to a page. When a user adds a file item to a page,
the file is uploaded into the Oracle Portal schema of the Oracle Metadata Repository
and is displayed as a hyperlink on the page. When a user clicks the display name link,
the file may be downloaded to the user's computer or displayed in the user's Web
browser, depending on the file type and the configuration of the browser.

In Oracle Instant Portal file items are represented by a rectangle with a red asterisk at
the top and, optionally, a title and summary. When the user clicks the icon, the file
associated with the item opens in a second browser window.

firewall

A system (either hardware or software) that acts as an intermediary to protect a set of
computers or networks from outside attack. It regulates access to computers on a local
area network from outside, and regulates access to outside computers from within the
local area network. A firewall can work either by acting as a proxy server that
forwards requests so that the requests behave as though they were issued by the
firewall machine, or by examining requests and attempting to eliminate suspect calls.

form

A portlet created with the Portlet Builder that provides a transactional interface to one
or more database tables, views, or procedures. For example, you can the Portlet
Builder to build a form for entering new employee information into your Human
Resources database.

See also master-detail form.

FPA

Federated Portal Adapter. The Federated Portal Adapter is a module in the portal
instance (written in both Java and PL/SQL) that receives SOAP messages for a Web
provider, parses the SOAP, and then dispatches the messages to a database provider
as PL/SQL procedure calls. In effect, the Federated Portal Adapter makes a database
provider behave exactly the same way as a Web provider, allowing users to distribute
their database providers across database servers. All remote providers can be treated
as Web providers, hiding their implementation (database or Web) from the user. The
most common use is to share database providers (including page groups) owned by
one portal instance among other portal instances.

HA

Glossary-13

frame driver

A portlet created with the Portlet Builder consisting of a Web page divided into two
frames. A driving frame contains a SQL query that drives the contents of the second
(target) frame.

Full Screen mode

An optional portlet Show mode that provides more content than can be shown in the
portlet when it is sharing a page with other portlets.

function

A PL/SQL subprogram that performs a specified sequence of actions and then returns
a value. Functions are usually small blocks of code written to perform a specific task
within the scope of a larger application.

In a page, end users execute functions by clicking the title of a PL/SQL or custom
item.

gist

An Oracle Text summary consisting of the document paragraphs that best represent
the overall subject matter. You can use such summaries to skim the main content of the
text or assess your interest in the text's subject matter.

global privilege

A privilege that grants a certain level of access to a user or group on all objects of a
particular type. For example, you could grant a Web Designer group Manage
privileges on all styles.

grantee

A user who is given privileges on an object by another user.

Graphical view

A page editing view that renders page content in-place on the page. Graphical view
enables you to view pages and items as they appear on the finished page as you edit.

Contrast with Layout view and List view.

group

A collection of Oracle Portal users who typically share a common need or interest; for
example, Human Resources, Accounting, and so on. Groups make it easy to grant
access to an object (such as a page or portlet) to several users at once. You can also use
groups to implement user roles by assigning role-related privileges to a group, then
adding users in that role. Oracle Internet Directory tracks the membership of Oracle
Portal groups.

group owner

A user who has the privilege to add or delete members from a group, or to delete the
group itself. Groups can have more than one owner.

HA

High Availability. A collection of solutions to ensure that your applications meet the
required availability to achieve your business goals, eliminating single points of failure
with no or minimal outage in service.

Handheld Device Markup Language

Glossary-14

Handheld Device Markup Language

See HDML.

HDML

Handheld Device Markup Language. A simple language to define hypertext-like
markup content and applications for handheld devices with small display.

Help mode

An optional portlet Show mode that displays usage information about the
functionality of the portlet.

hierarchy

A portlet created with the Portlet Builder that displays data from a self-referencing
table or view. At least two columns in the table must share a recursive relationship. A
hierarchy can contain up to three levels and display data such as employees in an
organization chart or the hierarchical relationship between menus in a Web site.

home page

The page, defined within Oracle Portal, that typically displays when logging on or
when a user clicks a Home smart link item. The portal administrator chooses this
page for public users; authenticated users may choose their own. If the portal
administrator enables mobile page design, he or she can specify a separate mobile
home page to display when the portal is accessed from a mobile device.

hosted site

See stripe.

HTML

Hyper Text Markup Language. A format for encoding hypertext documents that may
contain text, graphics, and references to programs and other hypertext documents.

HTML content layout

A type of HTML Template that uses item-level substitution tags to define a
formatting scheme for individual regions. The HTML content layout repeats itself for
each item or portlet in the region.

Contrast with HTML page skin.

HTML page skin

A type of HTML Template that uses page-level substitution tags to control the
appearance of the area surrounding page content. You can apply HTML page skins to
pages or Portal Templates.

Contrast with HTML content layout.

HTML Template

A portal object built using your own HTML code that wraps around your page or
region content. You can use an Oracle Portal wizard or any third party HTML editor to
build HTML Templates.

See also HTML content layout and HTML page skin. Contrast with Portal Template.

HTTP

Hyper Text Transfer Protocol. The underlying format, or protocol, used across the
Web to format and transmit messages and determine what actions Web servers and

internal image name

Glossary-15

browsers should take in response to various commands. HTTP is the protocol typically
used between Oracle WebLogic Server and its clients.

Hyper Text Markup Language

See HTML.

Hyper Text Transfer Protocol

See HTTP.

IDE

Integrated Development Environment. A visual tool containing editors, debuggers,
screen painters, object browsers, and the like.

ILS

Item Level Security. A mechanism that controls granular access to items on a given
page. ILS authorizes item managers to grant explicit item access to users and groups
that take precedence over page-level privileges.

image item

A type of item that a user can add to a page. You can add images in JPEG, GIF, or PNG
formats.

In Oracle Instant Portal, as opposed to the images that are added as part of a rich text
item or expandable rich text item, image items are designed to standalone on the
page. An image item is added through the Add Item icon; an image that is part of a
text item is added through the Insert Image window.

image map item

A type of item that a user can add to a page. An image map is a single image with
hotspots that, when clicked, link to other URLs. For example, you can create an image
map of the world in which each continent is hyperlinked to more information about
the continent.

import

A method of transporting content and objects (for example, page groups, pages, and
portlets) into an Oracle Portal instance. For example, you can import a page, its
associated style, and its contents from one instance of Oracle Portal to another.

index

An optional structure associated with a table used to locate rows of the table quickly,
and (optionally) to guarantee that every row is unique.

in-place editing

In Oracle Instant Portal, the ability to add items or pages in context, as opposed to
having to create these objects elsewhere and then add them to the page or portal.

Integrated Development Environment

See IDE.

internal image name

The name used to identify an image that has been uploaded to the portal. Uploaded
images can be reused within the portal by referencing their internal names.

internal provider

Glossary-16

internal provider

A type of provider that makes page group objects (pages, navigation pages, and so
on) available to instances of Oracle Portal.

invalidation-based caching

A caching method where an item remains in the cache until it is explicitly invalidated.
For example, a user may update an item, requiring the item in the cache to be
invalidated. The next time there is a request for the invalidated item, it is refreshed in
the cache

Oracle Web Cache uses both expiry-based caching and invalidation-based caching.
Any data saved in Oracle Web Cache is considered valid until it is invalidated or it
expires. When the information cached in Oracle Web Cache becomes inaccurate, it
must be invalidated. For example, page metadata saved in Oracle Web Cache is
invalidated when a page designer changes the page structure or when user privileges
change. Likewise, a portlet instance is invalidated whenever it is personalized by an
end user.

See also expiry-based caching and validation-based caching.

item

1. An individual piece of content (text, hyperlink, image, and so on) that resides on a
page in an item region. Users with an appropriate privilege level can add items to
a page. Item content and metadata are stored in the Oracle Portal schema of the
Oracle Metadata Repository. Items are rendered on the page according to the
layout, style, and attribute display defined for the item region.

See also item type.

2. In Oracle Instant Portal, the means through which content is added to a page.
Available item types are rich text item, expandable rich text item, file item, URL
item, email item, and image item.

item ID

The local database reference to the content of an item. An item ID value is used in
custom item types to pass items to PL/SQL procedures. The function uses the item ID
to access the content of the item.

item level security

See ILS.

item metadata

The stored information or attributes of an item.

item placeholder item

A type of item that a user can add to a page. An item placeholder identifies where the
content from items that use a Portal Template for items will display in relation to the
rest of the template content.

item type

An object that defines the contents of an item and the attributes that are stored
(metadata) about an item. Base item types included with Oracle Portal are categorized
as content item types and navigation item types.

JSP

Glossary-17

Custom item types are item types created by page group administrators to extend the
functionality provided by base item types and store additional attribute information
about items.

item versioning

See versioning.

J2EE

Java 2 Platform, Enterprise Edition. A platform that enables application developers to
develop, deploy, and manage multitier, server-centric, enterprise level applications.
The J2EE platform offers a multitiered distributed application model, integrated
XML-based data interchange, a unified security model, and flexible transaction
control. You can build your own J2EE portlets and expose them through Web
providers.

See also Oracle WebLogic Server.

J2SE

Java 2 Platform, Standard Edition. A platform that enables application developers to
develop, deploy, and manage Java applets and applications on a desktop client
platform such as a personal computer or workstation. J2SE not only defines API
standards, but also specifies the deployment of enterprise applications, thus enabling
application server administrators to perform the deployment regardless of the vendor
of the J2SE server.

Java 2 Platform, Enterprise Edition

See J2EE.

Java 2 Platform, Standard Edition

See J2SE.

JavaScript

A scripting language developed by Netscape that enables generation of portlets that
introduce dynamic behavior in otherwise static HTML. The Portlet Builder enables
you to use JavaScript to create routines that validate entry fields in forms and
personalization forms. You can also create JavaScript event handlers for entry fields
and buttons on forms.

Java Specification Request

See JSR 168.

JavaServer Page

See JSP.

JSP

JavaServer Pages. An extension to servlet functionality that provides a simple
programmatic interface to Web pages. JSPs are HTML pages with special tags and
embedded Java code that is executed on the Web or application server. JSPs provide
dynamic functionality to HTML pages. They are actually compiled into servlets when
first requested and run in the servlet container.

See also JSP tags.

JSR 168

Glossary-18

JSR 168

Java Specification Request (JSR) 168. Defines a set of APIs for building
standards-based portlets using Java. Portlets built to this specification can be rendered
to a portal locally or deployed to a WSRP container for rendering portlets remotely.
For more information, see http://jcp.org/en/jsr/detail?id=168.

JSP tags

Tags that can be embedded in JSPs to enclose Java code. These tags use the <jsp:
syntax and enclose action elements in the JSP with begin and end tags similar to
XML elements.

keyword

An attribute used to provide additional information about a page or item so that users
can easily locate the page or item during a search.

Layout view

A page editing view that enables you to add, arrange, and remove regions on the
page. You can also hide, show, delete, or move content in this view.

Contrast with Graphical view and List view.

LBR

Load-balancing router. A very fast network device that distributes Web requests to a
large number of servers. It provides portal users with a single published address,
without their having to send each request to a specific middle tier server.

LDAP

Lightweight Directory Access Protocol. A standard for representing and accessing user
and group profile information.

level

An object used to provide structure to mobile pages and as a way to limit the amount
of content displayed on the smaller screens of mobile devices. Users drill down into
the levels on a mobile page to view more content.

library

A collection of one or more PL/SQL or Java program units. Libraries can be referenced
by several applications simultaneously.

Lightweight Directory Access Protocol

See LDAP.

Link mode

An optional portlet Show mode that enables portlets to render themselves on mobile
devices, such as cellular telephones.

List view

A page editing view that displays a listing of all page content and provides options
that enable you to perform actions (delete, move, copy, and so on) on multiple objects.

Contrast with Graphical view and Layout view.

master item ID

Glossary-19

list of objects item

A type of navigation item that a user can add to a page to list objects (for example,
pages and perspectives) as a drop-down list or as links (with or without associated
images).

list of values

See LOV.

load-balancing router

See LBR.

local provider group

The collection of providers that are defined within an instance of Oracle Portal.
Provider groups make it easier to share providers defined or registered within one
instance of Oracle Portal with other Oracle Portal instances.

See also provider group. Contrast with remote provider group.

lock

1. A setting automatically applied to a Portlet Builder portlet when it is being
edited. The setting prevents other users from editing the portlet.

2. In WebDAV the action of preventing other users from editing a file. Locking a file
in a WebDAV client checks out the corresponding item in the portal itself.

login/logout link item

A type of navigation item that a user can add to a page to enable other users to log in
or log out of the portal.

LOV

List of values. A portlet created with the Portlet Builder that enables developers to
add selectable values to entry fields in forms. A single list of values can be displayed
in different formats, such as combo boxes, radio buttons, or check boxes.

Manage privileges

A privilege level on an Oracle Instant Portal page that allows the user to edit, move,
or delete a top-level page and all its child pages. A user with Manage privileges on a
portal's home page is considered an administrator of that portal. A user with Manage
privileges also has all Contribute and View privileges.

manifest

The list of objects in a transport set and their dependents, which provides a granular
level of control over the import mode.

master-detail form

A portlet created with the Portlet Builder that displays a master table row and
multiple detail rows within a single HTML page. Values in the master row determine
which detail rows are displayed for querying, updating, inserting, and deleting.

See also form.

master item ID

An identifier for an item that is the same for all versions of that item.

menu

Glossary-20

menu

A portlet created with Portlet Builder that displays a Web page containing options
that end users can click to navigate to other menus, other Portlet Builder portlets, or
URLs.

message payload

Provides details about CMEF events such as the portal action that triggered the event,
the type of event (INSERT, UPDATE, or DELETE), and the state of the event.

metadata

Data that describes data. For example item attributes store item metadata, such as
display name, description, and author.

middle tier

Part of the Oracle Fusion Middleware architecture that handles HTTP user requests by
forwarding them to the appropriate portal database or provider, assembles portal
pages, and manages caching of portal content.

MIME type

Multipurpose Internet Mail Extension type. A message format used on the Internet to
describe the contents of a message. MIME is used by HTTP servers to describe the
type of content being delivered.

mobile page

A type of page that enables page designers to produce pages specifically for mobile
devices, for example, cellular phones.

Mobile Preview mode

A preview mode that enables you to preview how your page will look on a mobile
device.

mobile XML

See Oracle Application Server Wireless XML.

Model-View-Controller

See MVC.

mod_weblogic

The Oracle HTTP Server module that manages the communication between the
Oracle HTTP Server and Oracle WebLogic Server.

mod_plsql

The Oracle HTTP Server module that handles the database connections made from
the Oracle HTTP Server. It enables PL/SQL database procedures to generate HTTP
responses containing formatted data and HTML code that can display in a Web
browser.

MVC

A classic design pattern often used by applications that need the ability to maintain
multiple views of the same data. The MVC pattern hinges on a clean separation of
objects into one of three categories: models for maintaining data, views for displaying
all or a portion of the data, and controllers for handling events that affect the model or
views. Because of this separation, multiple views and controllers can interface with the

object map link item

Glossary-21

same model. Even new types of views and controllers that never existed before, such
as portlets, can interface with a model without forcing a change in the model design.

navigation area

In Oracle Instant Portal, the area along the left side of the page in which the search
box and a list of the page's child pages appear.

navigation item type

A means of providing navigation and access to portal-specific functions.

Built-in navigation item types include:

■ smart link item

■ smart text item

■ login/logout link item

■ basic search box item

■ list of objects item

■ object map link item

■ page path item

■ page function item

See also item type. Contrast with content item type.

navigation page

A special purpose page within a page group that is typically embedded on other
pages or Portal Templates to implement standard user interface effects such as
navigation bars and banners. Often contains navigation item types for navigation
within the portal.

Navigator

A feature for locating objects and interacting with Oracle Portal. Provides access to
objects to which the user has privileges, such as page groups, providers, and database
objects.

New Content area

An area on the Oracle Instant Portal home page in which content added anywhere in
the portal over the last 24 hours is gathered.

nondefault subscriber

A subscriber that has a stripe on a hosted Oracle Portal provided by an ASP.

object

1. Portal object: A structure such as a page group, portlet, page, or style.

2. Database object: An Oracle database structure such as a table, procedure, or
trigger. These objects can be created using Oracle Portal wizards or Oracle
database commands.

object map link item

A type of navigation item that a user can add to a page to display a map of objects
that are available in the portal.

OEM

Glossary-22

OEM

See Oracle Enterprise Manager.

OID

See Oracle Internet Directory.

OmniPortlet

A Web provider that provides portlets that can display spreadsheet, XML, and Web
Service data as tabular, chart, news, bullet, and form layouts.

Oracle Metadata Repository

An Oracle database that contains schemas and business logic used by Fusion
Middleware components (including Oracle Portal) and other pieces of the
infrastructure.

Oracle Portal uses a schema within the Oracle Metadata Repository to store and
manage the content and metadata associated with the portal instance. This is
sometimes referred to as the content repository.

Oracle Portal

A component of Oracle Fussion Middleware used for the development, deployment,
administration, and configuration of enterprise class portals. Oracle Portal
incorporates a portal building framework with self-service publishing features to
enable you to create and manage information accessed within your portal.

Oracle Portal Developer Kit

See PDK.

Oracle Application Server Single Sign-On

A component of Oracle Fussion Middleware that enables users to log in to all features
of the Oracle Fusion Middleware product suite, as well as to other Web applications,
using a single user name and password. Oracle Portal is integrated with Oracle
Application Server Single Sign-On as a partner application and delegates
authentication to it.

Oracle Web Cache

A component of Oracle Fussion Middleware that improves the performance,
scalability, and availability of frequently used Web sites. By storing frequently
accessed URLs in memory, Oracle Web Cache eliminates the need to repeatedly
process requests for those URLs on the Web server. Oracle Web Cache uses
invalidation-based caching and is integrated with Oracle Portal for improved
performance.

See also portal cache.

Oracle Application Server Wireless

A component of Portal used to deliver information and applications to mobile devices.
Using Oracle Application Server Wireless, you can create custom portal sites that use
different kinds of content, including Web pages, custom Java applications, and
XML-based applications. Oracle Application Server Wireless sites make this diverse
information accessible to mobile devices without your having to rewrite the content
for each target device platform.

Oracle PartnerNetwork Solutions Catalog

Glossary-23

Oracle Application Server Wireless XML

A device independent markup language used for communication between Oracle
Portal and Oracle Application Server Wireless.

Oracle Portal

See Oracle Portal.

Oracle Portal Verification Service

(Previously known as Portal Studio). A major component of Portal Center
(http://www.oracle.com/technology/products/ias/portal) that is
specifically tuned to the needs of the portal developer. This site provides developers a
way to test and display remote portlets exposed as Web or WSRP providers without
having to install their own copy of Oracle Portal. Developer's portlets reside on their
servers and must be accessible over the Internet. You can access Oracle Portal
Verification Service directly at http://portalstandards.oracle.com.

Oracle Enterprise Manager

See Oracle Enterprise Manager.

Oracle HTTP Server

The Web server component of Oracle Fusion Middleware, built on Apache Web server
technology and used to service HTTP requests. It is the part of the middle tier that
handles requests between the Web and Oracle Portal. Extensions to the Oracle HTTP
Server support Java servlets, JSPs, Perl, PL/SQL, and CGI applications.

Oracle Instant Portal

A product built on top of OracleAS Portal, designed to provide a common place to
share and exchange content for smaller groups of users.

Oracle Instant Portal administrator

A user who has full privileges over the entire portal. Any user with Manage
privileges on the portal's home page is considered an Oracle Instant Portal
administrator for that portal. The PORTAL and ORCLADMIN users, created during
the installation process, are Oracle Instant Portal administrators for all portals. Only an
Oracle Instant Portal administrator can change the banner or style, manage users, and
create new top-level pages.

Oracle Internet Directory

The repository for storing Oracle Portal user credentials and group memberships. By
default, the Oracle Application Server Single Sign-On authenticates user credentials
against Oracle Internet Directory information about dispersed users and network
resources. Oracle Internet Directory combines LDAP version 3 with the high
performance, scalability, robustness, and availability of the Oracle database.

Oracle JDeveloper

Oracle JDeveloper is an integrated development environment (IDE) for building
applications and Web services using the latest industry standards for Java, XML, and
SQL. Developers can use Oracle JDeveloper to create Java portlets.

Oracle PartnerNetwork Solutions Catalog

(http://solutions.oracle.com/) A collection of information on Oracle Partner
joint products and services. The Solutions Catalog includes information on partners
who offer Oracle Portal related products and services.

Oracle Streams Advanced Queuing

Glossary-24

Oracle Streams Advanced Queuing

Oracle Streams Advanced Queuing (AQ) provides database-integrated message
queuing functionality. It is built on top of Oracle Streams and leverages the functions
of the Oracle database so that messages can be stored persistently, propagated
between queues on different computers and databases, and transmitted using Oracle
Net Services and HTTP(S).

Oracle Technology Network

See OTN.

Oracle Text

A feature of Oracle9i and later that provides advanced search and retrieval services on
content stored in an Oracle repository. It is fully integrated into Oracle Portal to
provide users with the ability to perform a full text search and retrieve content
managed within the Oracle Portal schema of the Oracle Metadata Repository. It also
provides automatic grouping and classification of results by gist and theme.

Oracle Ultra Search

An Oracle Text-based application that supports crawling, indexing, and federated
searching of multiple, heterogeneous repositories including databases, file systems,
Web servers, and e-mailing list archives.

Contrast with search portlet.

Oracle WebLogic Server

A scalable, enterprise-ready Java Platform, Enterprise Edition (Java EE) application
server. The WebLogic Server (WLS) infrastructure supports the deployment of many
types of distributed applications and is an ideal foundation for building applications
based on Service Oriented Architectures (SOA). SOA is a design methodology aimed
at maximizing the reuse of application services.

The WebLogic Server complete implementation of The Sun Microsystems Java EE 5.0
specification provides a standard set of APIs for creating distributed Java applications
that can access a wide variety of services, such as databases, messaging services, and
connections to external enterprise systems. End-user clients access these applications
using Web browser clients or Java clients.

Oracle Workflow

Oracle Workflow enables you to automate and continuously improve business
processes, routing information of any type according to easily-changeable business
rules to users both inside and outside a company's enterprise.

OTN

Oracle Technology Network. The online Oracle technical community that provides a
variety of technical resources for building Oracle-based applications. You can access
OTN at http://www.oracle.com/technology/.

Overwrite mode

See Replace on Import mode.

package

A database object consisting of a PL/SQL specification and a body. The specification
includes the data types and subprograms that can be referenced by other program
units. The body includes the actual implementation of the package.

page metadata

Glossary-25

page

A portal object that contains portlets and items. Each time you display a page, it is
dynamically assembled and formatted according to the portlets and layout chosen for
that page.

See also page type.

page designer

A user with the Manage privilege on a page (also known as a page manager). A user
with this privilege can perform any action on the page and can create sub-pages under
the page. The page designer is often responsible for designing the layout (or region
configuration) of the page and assigning privileges on the page to other users (for
example, to determine who can add content to the page).

The scope of a page designer's control over a page may be limited if the page is based
on a template.

page function item

A type of navigation item that a user can add to a page. A page function is a
procedure call that a user can add to a custom page type. If there are no page functions
associated with the current page, the page function item does not display.

page group

A portal object that groups and sets properties of related portal objects, such as pages,
styles, navigation pages, and perspectives. Page groups typically contain a hierarchy
of pages and sub-pages for organizing content.

page group administrator

A user who has full privileges over an entire page group. Page group administrators
set up and maintain the page group; designate page owners; and create a taxonomy.
Page group administrators can also view and manage all the pages in the page group.

page group map

A hierarchical representation of all page groups in a portal, which enables users to
access individual pages within the page group. The page group map is tailored for
each user; only the pages the user is authorized to view or edit are displayed.

page group quota

See quota.

page link item

A type of item that a user can add to a page. A page link provides a route using a
hyperlink to another page within the portal. When the user clicks the display name
link, the page referenced by the item is displayed in the user's browser.

page manager

See page designer.

page metadata

Stored information or attributes about a page, which is used by Oracle Portal to set its
layout and cache.

page path item

Glossary-26

page path item

A type of navigation item that a user can add to a page. A page path is a chain of page
reference names. Page paths, often called breadcrumbs, describe the complete
directory path.

page toolbar

In page Edit mode, the links at the top of the page that enable you to edit various
aspects of the page, switch editing views (for example, from Graphical view to Layout
view), edit page group properties, and so on.

page type

A portal object that defines the content of a page and the information that is stored
about a page. Base page types included with Oracle Portal are: standard page, mobile
page, PL/SQL page, JSP, and URL page. Custom page types are page types created by
page group administrators to extend the functionality provided by base page types
and store additional information about pages.

Parallel Page Engine

See PPE.

parameter

A value passed between pages and portlets, or between portlets.

A page parameter is a page level parameter (created by a page designer) whose values
can be mapped to portlet parameters.

A portlet parameter is declared by a provider. Page designers map page parameters to
portlet parameters. When the PPE requests a portlet from a provider, only the portlet
parameters that the portlet declared and mapped to page parameters are sent.

parameter entry field

A field on a personalization form that enables end users to enter values that will be
passed to an Oracle Portal portlet.

partial page caching

See PPC.

partner application

An application that has delegated its authentication to Oracle Application Server
Single Sign-On. If registered with the OracleAS Single Sign-On Server, users can log
in to multiple partner applications using a single log in page. In a given session, once
users have been authenticated by the OracleAS Single Sign-On Server, they won't need
to log in again to access additional partner applications.

path aliasing

See path-based URL.

path-based URL

A path-based URL identifies the path taken through the portal to get to a particular
object. It is an easy-to-read URL but as it contains the names of portal objects, the URL
becomes invalid if the name of any object within the path changes.

For example, the path-based URL to access a top-level page (sample_page) of the page
group MyPageGroup:

personalization form

Glossary-27

http://mymachine.mycompany.com:5000/portal/page/mydad/MyPageGroup/sample_page

Contrast with durable URL.

PDK

Oracle Portal Developer Kit. The development framework used to build and integrate
Web content and applications with Oracle Portal. It includes toolkits, samples, and
technical articles that help make portal development simple. You can take existing
Java servlets, JSPs, URL-accessible content and Web Services and turn them into
portlets. It is typically used by external developers and vendors to create portlets and
services. The PDK is regularly updated on Portal Center
(http://portalcenter.oracle.com/) to provide developers with the latest tools
and techniques.

See also PDK-Java, PDK-PL/SQL, and PDK-URL Services.

PDK-Java

A toolkit for implementing portlets in Java and adding portal features. Used to
declaratively turn your existing Java servlets, JSPs, and Web services into portlets.

See also PDK. Contrast with PDK-PL/SQL.

PDK-PL/SQL

A set of articles, samples, and services that enable PL/SQL programmers to easily
create portlets and extend them by using PL/SQL APIs.

See also PDK. Contrast with PDK-Java.

PDK-URL Services

A utility for declaratively turning secured and public Web content into portlets. These
services are capable of dynamically passing parameters to target URLs, clipping and
reformatting content, and providing Oracle Application Server Single Sign-On for
applications requiring form-based or basic authentication. These services also allow
developers to take any application written in any language and easily create
integrated portlets. PDK-URL Services takes the URL of an application, parses the
content, and uses the PDK-Java framework to create a portlet.

See also PDK.

Pending Approvals Monitor

A portlet that enables you to list pending approvals in the page groups that you
administer. You can list the pending approvals by approver, date, page group, or
submitter.

Pending Items Preview mode

A preview mode that enables you to view items that are awaiting approval. This mode
can be used by content contributors to preview items they have added before they are
approved, and by approvers to preview items before they approve or reject them.

See also Edit mode.

personalization form

A page that prompts end users for values to pass to a Portlet Builder portlet. End
users can view the personalization form for a portlet, if one has been created, by
clicking the portlet's Personalize link.

personal page

Glossary-28

personal page

An area within Oracle Portal where authenticated users can store personal content
and share it with other users. The portal administrator can choose to create a personal
page for a user when creating a user account.

perspective

A cross-category grouping of items. Perspectives help users answer the question, Who
will be interested in this item? For example, you can add links to diverse vacation spots
around the world and assign perspectives like Vacations for Nordic Enthusiasts,
Archeology Expeditions, and Extreme Vacations for Adventurers to items about vacation
types. Users publishing content using an item type that includes a perspective
attribute may specify none, one, or many values.

Contrast with category.

PL/SQL item

A type of item that a user can add to a page. A PL/SQL item contains a block of
PL/SQL code. When a user clicks the item, the code is executed. The result displays in
the user's browser. PL/SQL items can also be displayed directly on the page.

PL/SQL function

See function.

PL/SQL page

A type of page. PL/SQL pages contain PL/SQL code that generates HTML when the
page is rendered.

plug-in

See extension.

poll

A set of questions used to find out information from users.

Contrast with survey and test.

portal

A common interface (that is, a Web page) that provides a personalized, single point of
interaction with Web-based applications and information relevant to individual users
or class of users. Portals built using Oracle Portal are made up of pages managed
within page groups, containing portlets and items.

portal administrator

A user with the highest level of privileges in Oracle Portal. Portal administrators can
view and modify anything in Oracle Portal, even pages and database providers
marked private. (The only exception is groups: although portal administrators can
modify the PORTAL_ADMINISTRATORS and PORTAL_PUBLISHERS groups, they
cannot modify any other group unless they have been named group owner.)

Portal Builder page

A predefined page that contains development and administrative portlets used to
build and manage portal objects and services.

Portal Services

Glossary-29

portal cache

A mechanism for storing cache entries for objects that use validation-based caching. It
also acts as a backup to the memory-based Oracle Web Cache when objects use both
validation-based caching and invalidation-based caching.

Portal Catalog

See Oracle PartnerNetwork Solutions Catalog.

Portal Center

(http://portalcenter.oracle.com/) A Web site where you can find out
everything you want to know about Oracle Portal. Updated frequently, it always has
the latest product information, and is home to the Portal Developer Services and
Oracle Portal Verification Service. This Web site contains all information about the
product (including documentation, demonstrations, and so on), and provides access to
Oracle Portal expertise.

Portal Community

A network of people dedicated to creating and exchanging information about Oracle
Portal. This community includes anyone who uses Oracle Portal; it can leverage the
Portal Knowledge Exchange for sharing Portal-related information and take
advantage of the Portal Developer Services.

Portal DB provider

See database provider.

Portal Developer Kit

See PDK.

Portal Developer Services

The network of people dedicated to creating and exchanging Oracle Portal expertise.
This program provides online testing tools through Portal Center
(http://portalcenter.oracle.com/), as well as other venues, and interaction
with the product team and other portal developers, using newsletters, surveys, and
the Portal Knowledge Exchange.

See also Portal Community.

Portal Knowledge Exchange

A self-service Web site where subscribers to the Portal Developer Services can share
white papers, techniques, and portlets with others in the Portal Community.
Contributions can also be rated so that the most valuable contributions can be easily
located.

portal page

See page.

portal repository

See Oracle Metadata Repository.

Portal Services

A set of services running in the Oracle Portal instance that are used to assemble portal
pages and to access portal and page metadata. The Parallel Page Engine (PPE) is one of
the Portal Services that assembles portal pages. Other services, like those previously
provided by mod_plsql, are incorporated into the Portal Services as well.

portal session

Glossary-30

portal session

A period of interaction between a browser and Oracle Portal, from the initial access to
log off, closure of the browser window, or expiration of the session after a period of
inactivity.

Portal smart link item

See smart link item.

Portal smart text item

See smart text item.

Portal Studio

See Oracle Portal Verification Service.

Portal Template

A portal object built declaratively using a wizard that enforces specific layouts, colors,
fonts, and backgrounds for pages and items. You can use Portal Templates with
navigation pages, standard pages, and pages based on custom page types that are
based on the standard page type. You can also use Portal Templates with text items,
PL/SQL items, URL items, and all file items with a MIME type of text/html or
text/plain.

Contrast with HTML Template.

portlet

A reusable, pluggable Web component that typically displays portions of Web content.
Portlets are the fundamental building blocks of a portal page. Using the Portlet
Builder, you can easily create your own portlets. Oracle Portal also provides several
ways to build portlets programmatically and to integrate any kind of Web content.
Portlets may be implemented using various technologies, such as Java, JSPs, Java
servlets, PL/SQL, Perl, ASP, and so on. The PDK covers the standard-based portlet
development options that Oracle Portal provides.

Portlet Builder

A collection of portlet-building wizards that are accessible through the Provider tab in
the Portal Navigator. You can use these wizards to build charts, forms, reports,
calendars, and lists of values.

portlet instance

A portlet placed on a particular page.

portlet provider

See provider.

portlet publisher

A user who can publish portal objects (pages or otherwise) as portlets so that they can
be included on pages.

portlet record

A programmatic structure that contains detailed information about a portlet, such as
its implementation style and Show mode (PL/SQL).

provider

Glossary-31

Portlet Repository

A special page group that contains the portlets available from the local providers and
any registered remote providers. When you register a provider, the provider and its
portlets are added to the Portlet Repository.

PPC

Partial Page Caching. A feature that enables Oracle Web Cache to independently
cache and manage fragments of HTML documents. A template page is configured
with Edge Side Includes (ESI) markup tags that tell Oracle Web Cache to fetch and
include the HTML fragments. The fragments themselves are HTML files containing
discrete text or other objects.

PPE

Parallel Page Engine. A multithreaded servlet engine that runs in the Portal and
services page requests. The PPE reads page metadata, calls providers for portlet
content, accepts provider responses, and assembles the requested page in the specified
page layout. The Parallel Page Engine is part of the Portal Services, which run on the
Oracle Fusion Middleware middle tier.

pretty URL

See path-based URL.

Preview mode

An optional portlet Show mode that provides users with a preview of the portlet
before they add it to a page.

primary key

One or more columns in a database table that, in combination, uniquely identify a row
in a table.

privilege

In Oracle Portal, the right to perform an action. Privileges are either global (set
through in the User or Group Profile) or specific to particular objects (usually set
through the object's Access tab). When building applications, access can also be
granted to database objects, shared portlets, portlets, and applications.

producer

See provider.

profile

The information stored about an Oracle Portal user or group, such as password, user
ID, and privileges.

property sheet

A built-in attribute that displays a summary of an item's attributes or a page's
properties.

provider

The communication link between Oracle Portal and a portlet. There are two types of
providers: Web providers and database providers. Web providers may reside
anywhere on the network and are addressed through SOAP. Web providers may be
implemented using any Web technology. You can build your own Web providers by

provider definition

Glossary-32

using the PDK-Java and the PDK-URL Services. Database providers reside within an
Oracle database and manage portlets while performing data-intensive operations.

Providers act as containers for portlets; each portlet communicates with Oracle Portal
through its provider. Providers also manage the portlets they contain.

provider definition

A declarative, XML-based configuration file (provider.xml) that describes a Web
provider, its portlets, and the location of the content to be displayed in the portlets.
This configuration file also describes the behavior of the provider and its portlets.

provider group

A logical collection of Web providers defined by a provider group service. A portal
administrator can register provider groups for use with their portal. Once registered, a
provider group simplifies the process of registering individual providers in the group.
This enables organizations that create Web providers to publish registration details of
their providers and facilitate automatic registration with any Oracle Portal instance.
The only information that must be given to the portal administrator is the name and
location of the provider group.

See also local provider group and remote provider group.

provider record

The record returned by a database provider containing specified information about a
portlet.

proxy server

A proxy server typically sits on a network firewall and enables clients behind the
firewall to access Web resources. All requests from clients go to the proxy server rather
than directly to the destination server. The proxy server forwards the request to the
destination server and passes the received information back to the client. The proxy
server channels all Web traffic at a site through a single, secure port; this enables an
organization to create a secure firewall by preventing Internet access to internal
machines, while allowing Web access.

public page

Any page in a page group that is viewable by public users (users who are not logged
onto Oracle Portal). The page designer or page group administrator must explicitly
designate a page as public.

public user

A user who can access, but is not logged onto, Oracle Portal. When users first access
Oracle Portal, they do so as public users, whether or not they have the ability to log on.
A public user can view any page that has been marked as public, but cannot
personalize or edit any content, or view pages that have any form of access control.

Contrast with authenticated user.

purge

See system purge.

query

A SQL SELECT statement that specifies which data to retrieve from one or more tables
or views in a database.

remote provider group

Glossary-33

queue

The abstract storage unit used by a messaging system, such as CMEF, to store
messages.

quota

The amount of space provided in a page group or in the Oracle Portal schema of the
Oracle Metadata Repository to store uploaded documents.

recent object

A portal object, such as a page or portlet, that has recently been displayed or edited.
Each authenticated user has his or her own Recent Objects portlet that provides links
to the last n objects accessed.

referenced object

An object which is directly or indirectly referenced by an explicit object.

See also manifest.

reference path

The path that uniquely identifies a portlet instance on a page. A reference path can be
used to target parameters to individual portlets on a given page.

region

A carved-out area on a standard page used to define the page layout, define page
content (portlets and items), and control the style and attributes for content displayed
in a region. A standard page can have one or multiple regions. Regions can be created
above, beneath, or beside other regions.

You can create the following types of regions:

■ Undefined regions are regions that have not been assigned a particular type.

■ Item regions allow you to add items such as text, images, files, and so forth.

■ Portlet regions allow you to include portlets in a region.

■ Sub-Page Links regions allow you to display a list of the current page's sub-pages
in a region.

■ Tab regions allow you to include tabs in a region.

region banner

A colored, horizontal bar with a title displayed in a region of a portal page. A banner
breaks up the visual flow of a page and groups related items that appear beneath it.

remote database

A database running on a separate machine that can be accessed over the network
through a connect string or database link.

remote provider group

The collection of providers that are defined outside of your local instance of Oracle
Portal.

See provider group. Contrast with local provider group.

Replace on Import mode

Glossary-34

Replace on Import mode

An import mode. When this option is selected, if the object exists on the target, then it
is replaced. If the object does not exist then it is created. When this option is not
selected, if the object exists on the target, it is referenced. If it does not exist on the
target, it is created.

report

A portlet created with the Portlet Builder that displays the results of a SQL query in a
tabular format.

Reuse mode

See Replace on Import mode.

rich text editor

A WYSIWIG editor that enables content contributors to easily apply formatting to text
items.

rich text item

One of the available items in Oracle Instant Portal, designed for smaller blocks of text.
A rich text item appears on the page as a title, a summary, and the full text of the item.
Compare to expandable rich text item, in which the text is hidden until the user clicks
an icon. Both expandable rich text and rich text items may contain images, hyperlinks,
and tables, as well as any valid HTML code.

root page

The top level of the page hierarchy in a page group; it contains all other sub-pages in
the page group. Also known as the page group's home page.

routing method

A mechanism for organizing an approval process. Oracle Portal provides three
approval routing methods:

■ All, Parallel enables Oracle Portal to send the approval to recipients in the step all
at the same time. All of the recipients must respond to the approval before the
item approval can move to the next step.

■ All, Serial enables Oracle Portal to send the approval to recipients in the step one
at a time in the sequence specified. All of the recipients must respond to the
approval before the item approval can move to the next step.

■ Any, Parallel enables Oracle Portal to send the approval to recipients in the step all
at the same time. However, only one of the recipients must respond to the
approval before the item approval can move to the next step.

row

A set of values in a table; for example, the values representing one employee in the
SCOTT.EMP table.

saved search

A mechanism for saving search criteria under a single name. This feature enables you
to repeat the search quickly, by choosing the saved search name rather than
re-entering the criteria manually. You can save the results of a basic search, advanced
search, or custom search. The Saved Searches portlet lists all the saved searches in a
page group.

Show mode

Glossary-35

schema

A collection of database objects, including logical structures such as tables, views,
sequences, stored procedures, synonyms, indexes, clusters, and database links. A
schema has the name of the user who controls it.

search portlet

A portlet that enables users to search for pages and content within the Oracle Portal
schema of the Oracle Metadata Repository. Users can also search based on text
strings, categories, perspectives, and attributes, and using operators such as
CONTAINS, GREATER THAN, LESS THAN, and EQUAL TO.

Contrast with Oracle Ultra Search.

secure view

A view on the data in the content repository that is guaranteed to not change between
releases. You should use the secure views to query data on the documents and items
stored in the content repository to ensure that those queries will continue to work with
later releases of Oracle Portal.

self registration

A mechanism that allows users to create new accounts for themselves through a link
in the Login portlet.

sequence

A database object used to automatically generate numbers for table rows.

servlet

A Java program that usually runs on a Web server, extending the Web server's
functionality. HTTP servlets take client HTTP requests, generate dynamic content
(such as through querying a database), and provide an HTTP response.

session

See portal session.

shared object

A portal object such as a personal page, navigation page, style, Portal Template,
perspective, category, or custom type that can be shared across page groups.

shared portlet

A portlet created with the Portlet Builder that is shared between other Portlet Builder
portlets. Each shared portlet can be displayed on multiple pages with the same
personalization.

Shared Screen mode

A portlet Show mode that renders the body of the portlet. Every portlet must have at
least a Shared Screen mode.

Show mode

The ways by which a portlet can be called to display information. These methods
include:

■ Shared Screen mode

■ Edit mode

simple file item

Glossary-36

■ Edit Defaults mode

■ Preview mode

■ Help mode

■ About mode

■ Link mode

■ Full Screen mode

simple file item

Similar to a file item except with fewer attributes, which makes it quicker and easier
to create.

simple image item

Similar to an image item except with fewer attributes, which makes it quicker and
easier to create.

Simple Object Access Protocol

See SOAP.

simple page link item

Similar to a page link item except with fewer attributes, which makes it quicker and
easier to create.

simple PL/SQL item

Similar to a PL/SQL item except with fewer attributes, which makes it quicker and
easier to create.

simple text item

Similar to a text item except with fewer attributes, which makes it quicker and easier
to create.

simple URL item

Similar to a URL item except with fewer attributes, which makes it quicker and easier
to create.

Single Sign-On

See Oracle Application Server Single Sign-On.

smart link item

A type of navigation item that is self-configuring. For example, if you add a Home
smart link to a navigation page, when a user clicks the Home link, he or she is
automatically taken to his or her home page.

smart text item

A type of navigation item that is self-configuring. For example, if you add a Current
Date smart text item to a navigation page, the current date is automatically pulled
from the server and does not need to be specified (through complex coding) by you.

snapshot

A table that contains the results of a query on one or more tables, called master tables,
in a remote database.

style

Glossary-37

snapshot log

A table associated with the master table of a snapshot tracking changes to the master
table.

SOAP

Simple Object Access Protocol. A lightweight, XML-based protocol for exchanging
information in a decentralized, distributed environment. SOAP supports different
styles of information exchange, including: Remote Procedure Call style (RPC) and
Message-oriented exchange. RPC style information exchange allows for
request-response processing, where an endpoint receives a procedure-oriented
message and replies with a correlated response message. Message-oriented
information exchange supports organizations and applications that need to exchange
business or other types of documents where a message is sent but the sender may not
expect or wait for an immediate response.

SSL accelerator card

A hardware device that handles traffic much faster than regular SSL software.

See also LBR.

SSO

See Oracle Application Server Single Sign-On.

standard page

A type of page used to contain and manage items and portlets.

state

In the context of CMEF, the state of an event provides additional information about
that event so that developers can correctly determine what a subscriber should do
when a portal action triggers an event with that particular state.

stored procedure

A set of PL/SQL procedures that are stored in a database.

stripe

A secure slice on a virtual private portal that is assigned to a particular subscriber.

structured UI template

A shared portlet that controls the look and feel of Portlet Builder portlets and runs in
standalone mode. Structured UI templates display the same image and text in the
same location around every portlet that uses the template.

See user interface (UI) template. Contrast with unstructured UI template.

struts

A development framework for Java servlet applications based upon the MVC design
paradigm.

style

A set of values and parameters that controls the colors and fonts of pages and regions.
Style settings include font style, size, color, alignment, and background color. Styles
can be created for a specific page group or as a shared object that is used by pages
within multiple page groups.

sub-category

Glossary-38

sub-category

A category that appears hierarchically beneath another (parent) category. This
provides a way of grouping closely related categories together.

sub-item

An item that appears hierarchically beneath another (parent) item. This provides a
way of grouping closely related items together, for example, the spreadsheet that is
used by a particular HTML file item could be added as a sub-item of the HTML file
item.

sub-page

A page that appears hierarchically beneath another (parent) page. Every page in a
page group (except the root page) is a sub-page.

sub-perspective

A perspective that appears hierarchically beneath another (parent) perspective. This
provides a way of grouping closely related perspectives together.

subscriber

In the context of CMEF, a subscriber consumes messages from the WWSBR_EVENT_Q
queue and performs actions based on those messages.

In the context of hosted portals, a subscriber is a company that signs up with an ASP
and receives a stripe on a hosted Oracle Portal.

subscription notification

A method by which end users can subscribe to a particular page or item so that they
are notified (through the My Notifications portlet) when that page or item is updated.
The page designer must include a Subscribe Portal smart link item for users to be able
to subscribe to a page, and must display the Subscribe attribute for users to be able to
subscribe to items. Additionally, the page group administrator must enable approvals
and notifications for the page group.

substitution tag

A special portal tag used within HTML Templates and unstructured UI templates to
dynamically embed titles, headings, and other elements into the template.

survey

A set of questions used to find out information from users. Surveys can redirect users
to different sections of the survey depending on their answers to particular questions.

Contrast with poll and test.

synonym

An additional name assigned to a table or view that can thereafter be used to refer to
it.

system level caching

A caching method where a single copy of an item is stored in the cache (on the middle
tier) for all users. Consequently, such items cannot be user specific. All users see the
same content for the item.

Contrast with user level caching.

translation

Glossary-39

system purge

A process that deletes all items in a page group from the Oracle Portal schema of the
Oracle Metadata Repository that are marked as deleted or expired. System purges are
performed by the page group administrator or portal administrator.

tab

An area on a page used to increase the amount of content that the page can display by
effectively doubling (or tripling, quadrupling, and so on) the amount of real estate
available. Tabs also allow you to group content that is common to a subject area,
organization, specific role, and so forth.

table

The basic storage structure in a relational database.

tablespace

The allocation of space in the database.

template

See HTML Template, Portal Template or user interface (UI) template.

temporary tablespace

The allocation of space in the database used for the creation of temporary table
segments for operations such as sorting table rows.

test

A set of questions used to assess a user's understanding of a particular subject or
subjects. You can provide the correct answer for questions and assign each question a
score. You can also hand score essay-type answers.

Contrast with poll and survey.

text item

A type of item that a user can add to a page. When you create a text item, you enter
text (up to 32KB) in the Item Wizard. The text block is then stored in the Oracle Portal
schema of the Oracle Metadata Repository.

theme

A snapshot generated by Oracle Text that describes a document. Rather than searching
for documents that contain specific words or phrases, users can use Oracle Text to
search for documents that are about a certain subject, even if that subject is not
mentioned explicitly in the document.

title

See display name.

top-level page

An Oracle Instant Portal page represented by a tab in the portal's tab set. May contain
one or more child pages. Page privileges applied to a top-level page are also applied
to all its child pages.

translation

A page group rendered in another language. When a page group administrator
creates a translation, content contributors can add content in that language. Page

transport set

Glossary-40

group users can also view the translated content by setting their language to one of the
supported languages.

transport set

A collection of portal objects for export or import. It can contain more than one object
of a particular type, such as multiple page groups and multiple pages.

trigger

A database object associated with a table. It executes before or after one or more
specified events.

Ultra Search

See Oracle Ultra Search.

Uniform Resource Locator

See URL.

unstructured UI template

A shared portlet that is used to insert content and HTML code to control the look and
feel of Portlet Builder portlets. Unstructured UI templates are based on HTML code
that, when executed, dynamically embeds titles, headings, and other elements that
make up a page.

See also substitution tag and user interface (UI) template. Contrast with structured
UI template.

URL

Uniform Resource Locator. A compact string representation of the location for a
resource that is available through the Internet. It is also the format Web clients use to
encode requests to Oracle WebLogic Server.

URL item

A type of item that a user can add to a page. A URL item, when clicked, provides a
route to another Web page. When a user clicks the URL item's display name, the Web
page referenced by the URL displays.

In Oracle Instant Portal, a URL item is represented on the page by a globe and,
optionally, a title and summary. When the user clicks the globe, the location specified
in the item opens in a secondary browser window.

URL page

A type of page that provides a route to another Web page, identified by its URL. When
a user clicks the page link, the Web page referenced by the link is displayed.

URL portlet

A portlet created with the Portlet Builder that displays the contents of a Web page
specified by a URL.

user interface (UI) template

A shared portlet that controls the look and feel of Portlet Builder portlets in full page
display mode. Selecting a UI template when you are building a portlet automatically
selects a title on the page where the portlet is displayed, a title background, links to
other Web pages, and background colors and images.

VPD

Glossary-41

See also structured UI template and unstructured UI template. Contrast with HTML
Template and Portal Template.

user level caching

A caching method where a copy of an item is stored in the cache (on the middle tier)
for each user. Consequently, users may see different content for the same item.

Contrast with system level caching.

validation-based caching

A caching method that uses a validation check to determine if the cached item is still
valid. This is the caching method used by the portal cache. Before an item in the portal
cache is used, the PPE contacts the portal repository or the provider that the content
came from to determine if the cached item is still valid.

Contrast with expiry-based caching and invalidation-based caching.

versioning

A mechanism that allows multiple versions of an item to simultaneously exist in the
Oracle Portal schema of the Oracle Metadata Repository. This feature is useful for
tracking document changes from one version to the next or for reverting to a previous
version if necessary.

view

A virtual table whose rows do not actually exist in the database, but which is based on
a table that is physically stored in the database.

View mode

The runtime view of a page.

Contrast with Edit mode.

View privileges

A privilege level on an Oracle Instant Portal page that allows the user to view content
on the page. All users may navigate pages, select items for the Favorite Content area
of the home page, and search for content.

virtual private database

See VPD.

virtual private portal

Features for hosting multiple companies or multiple organizations securely within the
same portal instance.

VPD

Virtual Private Database. A feature for ASPs that want to leverage the Oracle database
to host their customers. Essentially, it uses one physical database instance for all
customers, but to each customer it looks as if they have their own database. Users
cannot see any information that is not meant for them and complete customer isolation
is achieved. It requires little to no changes in the core application to take effect as most
of the work is done at the database level. Implementing VPD basically requires two
key steps: adding a context column (for example, company name) to all the database
tables, and implementing a policy to restrict queries on each table based on the context
of the logged in user. VPD provides highly secure, full subscriber isolation using this
method.

WAP

Glossary-42

WAP

Wireless Application Protocol. A set of open, global protocols for developing
applications and services that use wireless networks.

Web Cache

See Oracle Web Cache.

Web clipping

A feature that enables page designers to collect Web content into a single centralized
portal. It can be used to consolidate content from hundreds of different Web sites
scattered throughout a large organization.

WebDAV

Web-based Distributed Authoring and Versioning. A protocol extension to HTTP 1.1
that supports distributed authoring and versioning. With WebDAV, the Internet
becomes a transparent read and write medium, where content can be checked out,
edited, and checked in to a URL address.

Web Services for Remote Portlets

See WSRP.

Web provider

An entity that is called, using an HTTP request, by Oracle Portal and returns portlet
content in HTML, XML, or WSRP. A Web provider acts as a proxy for one or more
portlets that are defined within a particular application environment (for example,
Java, ASP, or Perl) and executed as applications external to Oracle Portal. Web
providers are particularly appropriate for Web-accessible information sources.

See also provider. Contrast with database provider.

Web server

A program that delivers Web pages.

Wireless Application Protocol

See WAP.

Wireless Markup Language

See WML.

wireless portal

A portal accessible from wireless devices, such as cellular telephones.

See also Oracle Application Server Wireless.

wizard

A graphical interface that guides a user step-by-step through a process. In Oracle
Portal, wizards are used for creating database providers, portlets, database objects,
pages, page groups, and items.

WML

Wireless Markup Language. An XML-based markup language used to define
hypertext-like content and applications for handheld devices.

zip file item

Glossary-43

WSRP

Web Services for Remote Portlets (WSRP). A Web services standard that allows the
plug-and-play of visual, user-facing Web services with portals or other intermediary
Web applications. Being a standard, WSRP enables interoperability between a
standards-enabled container based on a particular language (such as JSR 168, .NET,
Perl) and any WSRP portal. So, a portlet (regardless of language) deployed to a
WSRP-enabled container can be rendered on any portal that supports this standard.

XML

Extensible Markup Language. An open standard for describing data using a subset of
the SGML syntax.

XML portlet

An Oracle Portal portlet that displays the executed results of XML code. To create the
portlet, you either specify XML code or a URL that points to the XML code.

XSL

Extensible Stylesheet Language. The language used within stylesheets to transform or
render XML documents.

zip file item

A type of item that a user can add to a page. Zip file items enable you to upload many
files in a single operation. You can use them to migrate the contents of a file system or
Web site into the Oracle Portal schema of the Oracle Metadata Repository. When you
upload a zip file to Oracle Portal, then unzip the uploaded file, a page is created for
each directory and an item is created for each file. The items are published in the target
page.

zip file item

Glossary-44

Index-1

Index

A
About mode, 6-7
access control lists

see ACLs
ACLs, 7-38

portlet privileges, 7-39
privileges, 7-39
provider privileges, 7-39

add_category API, 12-3
add_content_area API, 12-1
add_folder API, 12-2
add_item API, 12-4, 12-5
add_item_ils_privileges API, 15-6
add_item_post_upload API, 12-6
add_perspective API, 12-3
ADF, 7-93
Apache struts

creating a portlet, 7-88
overview, 7-86

APIs, 1-11
content management, xix
providing access to, 9-3
supported, 9-2, F-1
wwctx_api.get_nls_language, 9-7, 14-2
wwctx_api.set_context, 10-1
wwctx_api.set_nls_language, 14-2
wwpro_invalidation_api.execute_cache_

invalidation, 9-5
wwsbr_api.add_category, 12-3
wwsbr_api.add_content_area, 12-1
wwsbr_api.add_folder, 12-2
wwsbr_api.add_item, 12-4, 12-5
wwsbr_api.add_item_ils_privileges, 15-6
wwsbr_api.add_item_post_upload, 12-6
wwsbr_api.add_perspective, 12-3
wwsbr_api.approve, 16-27
wwsbr_api.check_in_item, 11-12
wwsbr_api.check_out_item, 11-12
wwsbr_api.clear_cmef_context, 9-5
wwsbr_api.copy_folder, 11-17
wwsbr_api.copy_item, 11-16
wwsbr_api.delete_folder, 11-19
wwsbr_api.delete_ils_privilege, 15-7
wwsbr_api.delete_item, 11-17
wwsbr_api.enable_ils_for_item, 15-5

wwsbr_api.inherit_folder_privileges, 15-8
wwsbr_api.modify_folder, 11-5
wwsbr_api.modify_item, 11-11

p_addnewversion, 11-13
wwsbr_api.modify_item_post_upload, 12-8
wwsbr_api.move_category, 11-15
wwsbr_api.move_folder, 11-14
wwsbr_api.move_item, 11-14
wwsbr_api.move_perspective, 11-15
wwsbr_api.reject, 16-27
wwsbr_api.set_attribute, 11-6
wwsbr_api.undelete_item, 11-18
wwsbr_api.upload_blob, 12-6
wwsec_api.grantee_list, 15-1
wwsec_api.remove_group_acl, 15-4
wwsec_api.remove_user_acl, 15-4
wwsec_api.set_group_acl, 15-3
wwsec_api.set_user_acl, 15-3
wwsrc_api.get_all_items_xml, 13-7
wwsrc_api.get_item_xml, 13-8
wwsrc_api.item_search, 13-2
wwsrc_api.page_search, 13-3
wwsrc_api.specify_attributes, 13-4

Application Development Framework, 7-93
application.log, B-3
approve API, 16-27
attributes

events, G-9
searching, 13-4
setting for items, 11-6
values, 11-7

authenticated content
Single Sign-On and, 1-7, 5-2, 5-9

authentication, 7-35
comparison of portlet builders, 2-22
external application, 7-38
message, 7-41
none, 7-38
partner application, 7-37
proxy

Web Clipping and, B-18
server, 7-36
single sign-on, 7-37

authorization, 7-36

Index-2

B
BACK_LINK, 7-17
base attributes

values, 11-7
best practices

About mode, 6-8
CSS for Shared Screen mode, 6-4
Edit Defaults mode, 6-6
Edit mode, 6-4
error handling PL/SQL, 8-38
event handling PL/SQL, 8-42
for Java portlets, 6-2
Help mode, 6-7
HTML for Shared Screen mode, 6-3
Link mode, 6-8
navigation, 6-8
PL/SQL procedures and functions, 8-3
Preview mode, 6-7
security PL/SQL, 8-28

browsing
Web Clipping and, 5-6

C
caching, 7-63

activation, 7-64
adding, 7-65, 7-66, 7-69
expiry-based, 2-13, 7-63
expiry-based PL/SQL, 8-35
invalidation port, 7-66
invalidation-based, 2-13, 7-64
invalidation-based PL/SQL, 8-36
manually invalidating the cache, 7-68
PL/SQL, 8-31
provider servlet for invalidation based, 7-66
provider.xml for invalidation based, 7-68
style, 2-13
system-level, 2-13
user-level, 2-13
validation-based, 2-13, 7-64
validation-based PL/SQL, 8-33

categories
applying to an item, 16-17
creating, 12-3
events, G-11

character sets
Web Clipping and, 5-3, 5-27

character-separated values
building a portlet based on a spreadsheet, 4-5

chart portlets
comparison, 2-19

check_in_item API, 11-12
check_out_item API, 11-12
cipher manager, 7-59
clear_cmef_context API, 9-5
clipping sections, 5-6
CMEF

about, 16-1
applying a category, 16-17
applying a perspective, 16-17

approving an item, 16-16
creating a page, 16-13
creating a subscriber, 16-8
creating an item, 16-15
deleting a page, 16-15
deleting an item, 16-18
dequeuing messages, 16-4
enabling CMEF events, 16-9
enqueuing messages, 16-2
external workflow example, 16-30
installing examples, 16-18
item approval, 16-16
item notification example, 16-22
item verification example, 16-27
listening to messages, 16-6
message payload, 16-12
portal object event logging example, 16-19
registering a subscriber, 16-3, 16-9
running a subscriber, 16-11
updating a page group ACL, 16-14
updating page ACL, 16-14

communication
HTTPS, 7-43
security, 7-36

connection information
OmniPortlet, 3-5

connection problems
Web Clipping, B-16

constructResourceURL, 6-9
content

adding to page, 5-3
rendering inline, 2-17

content management, xix
Content Management Event Framework

see CMEF
context

setting for session, 10-1
context information

accessing PL/SQL, 8-25
function calls PL/SQL, 8-25
obtaining using wwctx_api package, 8-26

cookies
Web Clipping and, 5-26

copy_folder API, 11-17
copy_item API, 11-16
CSS

guidelines for Shared Screen mode, 6-4
customization

implementing PL/SQL session store, 8-20
preference store for PL/SQL, 8-15

customizations
transporting, 7-48

customizing
Show page, 7-12

D
data

filtering, 3-11
data sources

Index-3

filtering data, 3-11
using a spreadsheet, 3-6
using a Web Service, 3-9
using an existing Web page, 3-10
using SQL, 3-6
using with portlets, 3-3
using XML, 3-8

database providers, 2-9, 2-10
DBA Studio, 16-4
DBMS_AQADM.ADD_SUBSCRIBER

procedure, 16-3
DBMS_AQADM.REMOVE_SUBSCRIBER

procedure, 16-4
DBMS_AQ.DEQUEUE procedure, 16-4

CONSUMER_NAME parameter, 16-5
DEQUEUE_MODE parameter, 16-5
NAVIGATION parameter, 16-5

DBMS_AQ.LISTEN procedure, 16-6
debugging information

Web Clipping and, B-16
delete_folder API, 11-19
delete_ils_privilege API, 15-7
delete_item API, 11-17
deploying

properties, D-7
testing, D-6
WAR file for PDK-Java portlet, 6-40

deployment plans
creating automatically, D-5

dequeuing, 16-4
DESIGN_LINK, 7-17
develop in-place portlets, 2-15
develop-in-place portlets, 2-3
DeviceClass header, 8-51

E
EAR file, D-2

creating manually, D-4
deploying manually, D-5

Edit Defaults mode, 3-19, 6-5
Edit Defaults page, 7-10
Edit mode, 6-4
Edit page, 7-10
enable_ils_for_item API, 15-5
encryption

example, 7-58
for transport, 7-58
message, 7-36

enqueuing, 16-2
error handling

PL/SQL, 8-37
error messages

Web Clipping, B-16
errors

Web Clipping and, B-16, B-18
event handling

PL/SQL, 8-41
EVENT_LINK, 7-17
events, 7-13

adding to a portlet, 3-20
attributes, G-9
categories, G-11
configuring with portlet parameters, 4-18
enabling for CMEF, 16-9
generated code in provider.xml, 7-24
item types, G-9
items, G-1
page groups, G-8
page types, G-10
pages, G-5
perspectives, G-11
submitting, 7-23
tabs, G-7
templates, G-12
using with OmniPortlet, 3-21

examples
building an OmniPortlet on a spreadsheet, 4-5
building an OmniPortlet on a Web Service, 4-3,

4-25
building an OmniPortlet on an existing Web

page, 4-9
building an OmniPortlet on an XML data

source, 4-7
configuring portlet parameters and events, 4-18
installing for CMEF, 16-18
OmniPortlet, 4-1
using HTMLlayout, 4-25

execute_cache_invalidation API, 9-5
expiration

portlet content, 5-8
Expires field

Web Clipping and, 5-8
expiry-based caching, 2-13
export

by reference, 7-58
by reference example, 7-61
customizations, 7-48
encrypting for, 7-58
encryption example, 7-58
example of, 7-51
JNDI variable, 7-57
logging interface, 7-50
programming interface, 7-49
securing communications, 7-57
security, 7-56

exportData, 7-49, 7-50
external applications

authentication, 7-38
Web Clipping and, 1-7, 5-2, 5-9

external links, 6-9

F
file not found, B-8
files

creating file items, 12-5
uploading, 12-6

forms
building with URL types, 7-19

Index-4

Web Clipping and, 5-8, 5-18
Full Screen mode, 6-7
fuzzy matching

with Web Clipping, 1-7, 5-2

G
generator

PL/SQL, 8-4
get method

transforming for JPS portlets, B-10
get_all_items_xml API, 13-7
get_item_xml API, 13-8
get_nls_language API, 9-7, 14-2
grantee_list API, 15-1
guidelines

About mode, 6-8
CSS for Shared Screen mode, 6-4
Edit Defaults mode, 6-6
Edit mode, 6-4
error handling PL/SQL, 8-38
event handling PL/SQL, 8-42
Help mode, 6-7
HTML for Shared Screen mode, 6-3
Link mode, 6-8
mobile, PL/SQL, 6-10, 8-3
navigation, 6-8
Preview mode, 6-7
security PL/SQL, 8-28

H
Help mode, 6-7
HTML

guidelines for Shared Screen mode, 6-3
HTML layout

using with OmniPortlet, 4-25
htmlFormHiddenFields, 7-19
HTTP error code 407

Web Clipping and, B-18
httpd.conf, 7-41
HTTPS, 7-43

configuration, 7-43

I
IDs

finding, 10-2
ILS, 15-5

defining privileges, 15-6
enabling for item, 15-5
enabling for page, 15-5

images
in Web Clipping clip, B-18
resource proxy, 6-9

import
by reference, 7-58
by reference example, 7-61
customizations, 7-48
encrypting for, 7-58
encryption example., 7-58

JNDI variable, 7-57
logging interface, 7-50
programming interface, 7-49
securing communications, 7-57
security, 7-56

importData, 7-49, 7-50
inherit_folder_privileges API, 15-8
inline rendering, 2-17

Web Clipping and, 1-7, 5-2
input parameters

Web Clipping and, 5-8, 5-18
internal links, 6-9
internationalization

Web Clipping and, 5-3
intraportlet links, 6-9

URL parameters, 7-16
invalidation-based caching, 2-13
ISO-8859-1 character set, 5-27
item ID

finding, 10-4
item level security

see ILS
item types

events, G-9
item_search API, 13-2
items

applying a category, 16-17
applying a perspective, 16-17
approval, 16-16
approving, 12-9, 16-16
associating with uploaded files, 12-6
checking in, 11-12
checking out, 11-12
copying, 11-16
creating, 12-4, 16-15
creating file items, 12-5
defining privileges, 15-6
deleting, 11-17, 16-18
editing, 11-11
enabling ILS, 15-5
events, G-1
moving, 11-14
new version, 11-13
rejecting, 12-9
searching, 13-2
searching specific attributes, 13-4
security, 15-5
setting attributes, 11-6
setting perspectives, 12-8
translations, 14-3

J
J2EE application server, 2-7
Java Community Process, 2-5
Java Portlet Specification

see JPS
Java portlets

authentication for external application, 2-23
caching style, 2-14

Index-5

capturing content, 2-17
charting, 2-19
comparing to other portlet builders, 2-2
development tool, 2-14
event support, 2-21
expertise required, 2-6
guidelines, 6-2
multi-lingual support, 2-22
pagination support, 2-22
parameter support, 2-20
rendering content inline, 2-18
security, 2-21
usage suitability, 2-5
user interface, 2-17

JavaScript
Web Clipping and, 5-26

JNDI, 7-27
declaring variables, 7-27
deployment properties, D-7
for export, 7-57
for import, 7-57
retrieving variables, 7-29
setting variable values, 7-28
variable naming conventions, 7-27
variable types, 7-27
variables provided by PDK-Java, 7-30

JPS, 6-13
creating portlet, 6-15
deploying portlet, 6-24
personalizing portlets, 7-1

JSR-168, 2-2

L
language

items, 14-3
setting for session, 14-2
string loading PL/SQL, 8-45
string retrieval PL/SQL, 8-46

language support
see multi-lingual portlets

layout
bullet, 3-17
chart, 3-14
form, 3-17
news, 3-15
OmniPortlet, 3-12
tabular, 3-13

LDAP
see Oracle Internet Directory

limitations
Web Clipping and, 5-26

Link mode, 6-8
for mobile PL/SQL portlets, 8-49

links
building with URL parameters, 7-17
portlet, 6-8

load balancers
Web Clipping and, B-17

logging

application.log, B-3
provider levels, B-3
Web Clipping files, B-16
Web Clipping levels, B-16

LOGIN_LINK, 7-17
logon denied message

Web Clipping and, B-18

M
matrix, portlet technologies, 2-1
message payload, 16-12
messages

500, B-7, B-10
authentication, 7-41
dequeuing, 16-4
encryption, 7-36
enqueuing, 16-2
listening, 16-6

migration
preference store, 7-9

MIME type
setting for mobile portlets, 8-48

MLS
see multi-lingual portlets

mobile
accessing configuration data, 7-75
determining device type, 8-48
DeviceClass header for PL/SQL, 8-51
Link mode for PL/SQL, 8-49
navigation, 7-77
PL/SQL guidelines, 6-10, 8-3
portlets, PDK-Java, 7-70
portlets, PL/SQL, 8-47

mod_osso
Web Clipping and, 5-26

mode
Edit Defaults, 3-19

modes
About, 6-7
adding render, 7-4
Edit, 6-4
Edit Defaults, 6-5
Full Screen, 6-7
Help, 6-7
Link, 6-8
list of Show, 6-2
Preview, 6-6
Shared Screen, 6-3

modify_folder API, 11-5
modify_item API, 11-11

p_addnewversion, 11-13
modify_item_post_upload API, 12-8
move_category API, 11-15
move_folder API, 11-14
move_item API, 11-14
move_perspective API, 11-15
multi-lingual

PL/SQL portlets, 8-44
multi-lingual portlets

Index-6

comparison, 2-22
provider.xml, 7-82
resource bundles, 7-79
updating renderer, 7-81

N
navigation

implement within a portlet, 7-20
link API, 7-17
with Web Clipping, 1-7, 5-2
within a Java portlet, 6-8

NLS
see multi-lingual portlets
Web Clipping and, 5-3

O
OmniPortlet, 1-8

adding to a page, 4-2
authentication for external application, 2-23
building based on a spreadsheet, 4-5
building based on an existing Web page, 4-9
building based on an XML data source, 4-7
building based on character-separated values, 4-5
bullet layout, 3-17
caching style, 2-14
capturing content, 2-17
chart layout, 3-14
charting, 2-19
comparing to other portlet builders, 2-2
configuring portlet parameters and events, 4-18
connection information, 3-5
definition, 3-1
development tool, 2-14
event support, 2-21
Events tab, 3-20
examples, 4-1
expertise required, 2-6
Filter tab, 3-11
filtering data, 3-11
form layout, 3-17
HTML layout example, 4-25
Layout tab, 3-12
multi-lingual support, 2-22
news layout, 3-15
pagination support, 2-22
parameter support, 2-20
proxy authentication, 3-4
rendering content inline, 2-18
security, 2-21
Source tab, 3-4
spreadsheet example, 4-5
tabular layout, 3-13
troubleshooting, B-13
Type tab, 3-3
usage suitability, 2-4
using data sources, 3-3
using the wizard, 3-2
View tab, 3-12

Web page example, 4-9
Web Service example, 4-3, 4-25
XML example, 4-7

Oracle Diagnostics and Tuning pack, 16-4
Oracle Enterprise Manager

DBA Studio, 16-4
Oracle Internet Directory, 7-43
Oracle JDeveloper

deploying JPS portlet, 6-24
deploying PDK-Java portlet, 6-40
WAR file deployment, 6-40

Oracle Streams AQ
and CMEF, 16-1

Oracle struts portlet, 7-87
OracleAS Metadata Repository, 9-1
OracleAS Portal

repository, 2-11
using data sources, 3-3

OracleAS Portal pages
Web Clipping and, 5-26

OracleAS Web Cache
invalidation port, 7-66, 7-68
invalidation-based caching, 2-13

P
package

implementing portlet with PL/SQL, 8-10
implementing provider with PL/SQL, 8-11

page
partial refresh, 7-23

page designer, definition, xx
page groups

creating, 12-1
enabling CMEF events, 16-9
events, G-8
searching all, 13-2
searching in specific, 13-3
updating ACL, 16-14

page manager
see page designer

page metadata, 2-11
page parameters, 2-19
page types

events, G-10
PAGE_LINK, 7-17
page_search API, 13-3
pages

copying, 11-16
creating, 12-2, 16-13
creating an item, 12-4
creating file items, 12-5
deleting, 11-19, 16-15
editing, 11-1
enabling ILS, 15-5
events, G-5
moving, 11-14
searching, 13-3
setting perspectives, 12-8
updating ACL, 16-14

Index-7

pagination support in portlets, comparison, 2-22
Parallel Page Engine (PPE), 2-11
parameters, 7-13

adding, 7-14
building links with URL, 7-17
configuring portlet parameters and events, 4-18
generated code in provider.xml, 7-15
mapping public PL/SQL, 8-23
passing page PL/SQL, 8-23
passing private PL/SQL, 8-23
PL/SQL, 8-22
qualified PL/SQL, 8-23
retrieving values PL/SQL, 8-24
types, 2-19
unqualified PL/SQL, 8-23
using with OmniPortlet, 3-21
Web Clipping and, 5-8, 5-18

parameters and events
using with OmniPortlet, 3-21

partner application, 7-37
PDK, 1-11
PDK-Java, 6-29

comparing to other portlet builders, 2-2
deploying portlet, 6-40
JNDI variables, 7-30
manually packaging providers, D-1
personalizing portlets, 7-8
Portlet Wizard, 6-30
render modes, 7-4
testing portlet and provider, 6-39

PDK-PL/SQL
comparing to other portlet builders, 2-2

pending items
approving, 12-9
rejecting, 12-9

performance
caching, 7-63
caching PL/SQL, 8-31

personal pages
Web Clipping and, 5-14

personalizing
code generated by wizard, 7-10
Edit and Edit Defaults pages, 7-10
JPS portlets, 7-1
modifying generated code, 7-11
PDK-Java portlets, 7-8

personalizing content
Web Clipping, 5-14, 5-17

perspectives
applying to an item, 16-17
creating, 12-3
events, G-11
setting for items, 12-8
setting for pages, 12-8

PL/SQL
accessing context information, 8-25
building portlets, 8-9
caching, 8-31
error handling, 8-37
event handling, 8-41

generator, 8-4
implementing the portlet package, 8-10
implementing the provider package, 8-11
parameters, 8-22
preference store, 8-15
publishing generated portlets, 8-8
recommended procedures and functions, 8-3
running the generator, 8-7
security, 8-27
session store, 8-20
starter provider sample, 8-9
XML for generator, 8-4

PL/SQL portlets
authentication for external application, 2-23
building expertise required, 2-7
caching style, 2-14
capturing content, 2-17
charting, 2-19
comparing to other portlet builders, 2-2
development tool, 2-14
event support, 2-21
mobile guidelines, 6-10, 8-3
multi-lingual support, 2-22
pagination support, 2-22
parameter support, 2-20
rendering content inline, 2-19
security, 2-22
usage suitability, 2-5
user interface, 2-17

portal developer, definition, xix
portal links, 6-9
Portal schema

password and Web Clipping, B-18
Portal Tools

OmniPortlet, 3-1
portals

about, 1-1
using data sources, 3-3

portlet
refresh, 7-23

Portlet Builder
caching style, 2-14
charting, 2-19
comparing to other portlet builders, 2-2
development tool, 2-14
event support, 2-21
expertise required, 2-7
multi-lingual support, 2-22
pagination support, 2-22
parameter support, 2-20
rendering content inline, 2-18
security, 2-21
usage suitability, 2-5

portlet developer,definition, xix
portlet parameters

configuring, 4-18
Portlet Wizard

generated code for personalization, 7-10
modifying generated code, 7-11
PDK-Java, 6-30

Index-8

PortletDefintion, 7-49
PortletInstance, 7-49
PortletRenderer, 7-8
portlets

adding a header and footer, 3-12
adding events, 3-20
building with PL/SQL, 8-9
bullet layout, 3-17
caching, PL/SQL, 8-31
changing the layout, 3-12
changing view options, 3-12
chart layout, 3-14
context information PL/SQL, 8-25
creating a struts portlet, 7-88
creating JPS-compliant, 6-15
customization export, 7-48
defined, 1-1
deploying JPS compliant, 6-24
deploying PDK-Java compliant, 6-40
deployment, 2-7
development tool, 2-14
error handling PL/SQL, 8-37
event handling PL/SQL, 8-41
export of customizations, 7-48
features and characteristics, 2-1
form layout, 3-17
guidelines, Java, 6-2
guidelines, PL/SQL

best practices
PL/SQL, 8-2

implementing navigation within, 7-20
Java, 6-1, 7-1
Java Standards, 2-2
links, 6-8
mobile guidelines, 6-10, 8-3
mobile, PDK-Java, 7-70
mobile, PL/SQL, 8-47
modes list, 6-2
multi-lingual, 7-79
multi-lingual PL/SQL, 8-44
navigation link API, 7-17
news layout, 3-15
not displaying, B-12
OmniPortlet, 1-8
out of the box, 1-4
package, PL/SQL, 8-10
PDK-Java, 6-30
personalizing JPS, 7-1
personalizing PDK-Java, 7-8
PL/SQL, 8-1
PL/SQL parameters, 8-22
Portlet Builder, 1-10
privileges, 7-39
providers, 2-7
publishing generated, 8-8
record, for mobile PL/SQL, 8-47
security, 7-35
security managers, 7-39
security PL/SQL, 8-27
tabular layout, 3-13

technologies, 2-1
testing PDK-Java, 6-39
URL types, 7-17
verification service for WSRP, 6-26
Web Clipping, 1-6
Web source, 1-1

preference store, 7-9
creating and accessing in PL/SQL, 8-16
migration utility, 7-9
PL/SQL, 8-15

PrefStoreTransporter, 7-61
Preview mode, 6-6
private portlet parameters, 2-19
privileges, 7-39

defining for items, 15-6
portlet, 7-39
provider, 7-39
retrieving, 15-1

properties
Web Clipping portlet, 5-8, 5-17

provider_record, 8-52
ProviderInstance, 7-50
providers

architecture, 2-10
database providers, 2-10
logging levels, B-3
manually packaging, D-1
package, PL/SQL, 8-11
portlet deployment, 2-7
privileges, 7-39
registering for JPS, 6-26
registering for PDK-Java, 6-41
registering programmatically, 8-52
registration, 2-12
runTest, E-3
servlet for invalidation based caching, 7-66
test harness, E-2
test page, E-1

provider.xml
activating invalidation based caching, 7-68
events, 7-24
multi-lingual, 7-82
parameters, 7-15
portlet resource bundles, 7-84
preference information, 7-12
provider resource bundles, 7-82
session, 7-35
updating for render modes, 7-5

provsyns.sql script, 9-3
proxy authentication

OmniPortlet, 3-4
URL-based portlets and, 5-25
Web Clipping and, 1-7, 5-2, B-18

proxy server setting
Web Clipping and, B-17

proxy, resource, 6-9
public portlet parameters, 2-19

Index-9

Q
queues

registering a subscriber, 16-3
WWSBR_EVENT_ERR_Q, 16-6
WWSBR_EVENT_Q, 16-2

R
refresh

partial page, 7-23
registering

JPS portlet, 6-26
PDK-Java portlet, 6-41
providers programmatically, 8-52
troubleshooting, B-4

reject API, 16-27
remove_group_acl API, 15-4
remove_user_acl API, 15-4
render modes, 7-4

updating provider.xml for, 7-5
resource

proxy, 6-9
resource bundles, 7-79

updating renderer, 7-81
resource links, 6-9
reverse proxy

Web Clipping and, B-18
runTest, E-3

S
searching

all page groups, 13-2
items, 13-2
limiting results returned, 13-3
pages, 13-3
specific attributes, 13-4
specific page groups, 13-3

sections
Web Clipping and, 5-6

secure content repository views, 9-3, F-2
security, 7-35

authentication, 7-35
authorization, 7-36
coding in PL/SQL, 8-29
communication, 7-36
features, 7-35
for export, 7-56
for import, 7-56
for transport communications, 7-57
guidelines for PL/SQL, 8-28
implementing PL/SQL, 8-27
managers, 7-39
message authentication, 7-41
server, 7-41

services
default, D-4
identfier, D-2
name, D-2

session

context, 10-1
language, 14-2

session information, 7-32
checking for valid session, 7-34
enabling in provider.xml, 7-35
storage implementation, 7-33

session store
creating and accessing in PL/SQL, 8-20
PL/SQL, 8-20

set_attribute API, 11-6
set_context API, 10-1
set_group_acl API, 15-3
set_nls_language API, 14-2
set_user_acl API, 15-3
Shared Screen mode, 6-3
Show modes

list, 6-2
Show page, 7-12
Simple Object Access Protocol (SOAP), 2-7
Single Sign-On

Web Clipping and, 1-7, 5-2, 5-9
single sign-on, 7-37

comparison of portlet builders, 2-22
external application, 2-22, 7-38
partner application, 7-37

SOAP, 2-7
specify_attributes API, 13-4
spreadsheet

building a portlet based on a spreadsheet, 4-5
building an OmniPortlet, 4-5
using as a data source, 3-6

SQL
using as a data source, 3-6

SSL, 7-43
configuration, 7-43

starter provider sample, 8-9
status

checking for Web Clipping, B-16
strings

loading language PL/SQL, 8-45
retrieving language PL/SQL, 8-46

struts
building portlet in JDeveloper, 7-85
creating a portlet, 7-88
OracleAS Portal integration, 7-87
overview, 7-86

subscribers
creating, 16-8
external workflow example, 16-34
item notification example, 16-22
item verification example, 16-27
portal object event logging example, 16-20
registering, 16-3, 16-9
running, 16-11

supported APIs, 9-2
supported views, 9-3, F-2

T
tabs

Index-10

events, G-7
technologies, portlets, 2-1
templates

events, G-12
terminology, 9-3
test harness, E-2
test page

provider, E-1
Web Clipping, B-16

testing
portlet and provider for PDK-Java, 6-39

The, 4-3
Time Out field

Web Clipping and, 5-8
timeout

troubleshooting, B-9
translations

creating, 14-3
transport

by reference, 7-58
by reference example, 7-61
customizations, 7-48
encrypting for, 7-58
encryption example, 7-58
example, 7-51
JNDI variable, 7-57
logging interface, 7-50
programming interface, 7-49
securing communications, 7-57
security, 7-56

troubleshooting
adding a portlet to your page, B-9
adding a portlet to your provider, B-7
installation and deployment, B-3
java portlets, B-2
OmniPortlet, B-13
portlet does not compile, B-10
portlets not displaying, B-12
registration, B-4
template.ear, B-4
timeout, B-9
Web Clipping, B-15
XML parser, B-8

U
undelete_item API, 11-18
upload_blob API, 12-6
URL rewriting field

Web Clipping and, 5-8
URL-based portlets

migrating to Web Clipping, 1-7, 5-2
URLs

in forms, 7-19
specifying for Web Clipping, 5-5, 5-12
types for portlets, 7-17

UrlUtils.constructLink, 7-17
users

page designer, xx
portal developer, xix

portlet developer, xix
UTF-8 character sets

Web Clipping and, 5-3

V
validation-based caching, 2-13
variables

declaring JNDI, 7-27
JNDI, 7-27
JNDI naming conventions, 7-27
JNDI provided by PDK-Java, 7-30
JNDI types, 7-27
retrieving JNDI variables, 7-29
setting values for JNDI, 7-28

verification service
WSRP, 6-26

versions
new, 11-13

View mode, 6-3
views

providing access to, 9-3
supported, 9-3, F-2
WWSBR_ALL_CATEGORIES, F-3
WWSBR_ALL_CONTENT_AREAS, F-4
WWSBR_ALL_FOLDER_REGIONS, F-4
WWSBR_ALL_FOLDERS, F-5
WWSBR_ALL_ITEMS, 10-4, F-8
WWSBR_ALL_NAVIGATION_BARS, F-12
WWSBR_ALL_PERSPECTIVES, F-12
WWSBR_ALL_STYLES, F-13
WWSBR_APPROVER, F-13
WWSBR_ATTRIBUTES, F-14
WWSBR_CONTENT_AREA_APPROVAL, F-15
WWSBR_CONTENT_AREA_ITEM_TYPES, F-15
WWSBR_FOLDER_ATTRIBUTES, F-16
WWSBR_FOLDER_PERSPECTIVES, F-16
WWSBR_FOLDER_TYPE_ATTRIBUTES, F-17
WWSBR_FOLDER_TYPES, F-18
WWSBR_ITEM_APPROVAL, F-18
WWSBR_ITEM_ATTRIBUTES, F-20
WWSBR_ITEM_PERSPECTIVES, F-20
WWSBR_ITEM_TYPE_ATTRIBUTES, F-21
WWSBR_ITEM_TYPES, F-22
WWSBR_SUBSCRIPTION, F-23
WWSBR_USER_FOLDERS, F-23
WWSBR_USER_PAGES, F-26

W
WAR file, D-2

creating manually, D-4
for PDK-Java, 6-40

Web Clipping
authentication for external application, 2-22
caching style, 2-14
capturing content, 2-17
charting, 2-19
comparing to other portlet builders, 2-2
connection problems, B-16

Index-11

development tool, 2-14
event support, 2-21
expertise required, 2-6
firewalls and, B-17
forms and, 5-8, 5-18
limitations, 5-26
load balancers and, B-17
logging levels and, B-16
multi-lingual support, 2-22
parameter support, 2-20
personal pages and, 5-14
proxy authentication, B-18
proxy servers and, B-17
rendering content inline, 2-18
reverse proxy and, B-18
searching, 5-15
security, 2-21
test page, B-16
troubleshooting, B-15
usage suitability, 2-4
user interface, 2-16

Web Clipping portlet, 1-6, 5-1
adding, 5-3
properties, 5-8, 5-17

Web Clipping provider, 5-1
Web Clipping Studio

using, 5-4
Web content

adding to page, 5-3
browsing for, 5-4
expiration, 5-8
reuse, 1-7, 5-2
specifying, 5-5, 5-12
timeout value, 5-8

Web page
building a portlet based on an existing Web

page, 4-9
building an OmniPortlet, 4-9
using as a data source, 3-10

Web providers, 2-8
Web Service

building an OmniPortlet, 4-3, 4-25
using as a data source, 3-9

Web Services for Remote Portlets
see WSRP

Web source, 1-1
web.xml file

for Web Clipping, B-18
WSRP, 2-2, 2-7, 6-13

verification service, 6-26
WSRP producers, 2-8
wwctx_api

context information, 8-26
WWCTX_API package

get_nls_language API, 9-7, 14-2
set_context API, 10-1
set_nls_language API, 14-2

WWPRO_API_INVALIDATION package
execute_cache_invalidation API, 9-5

wwpro_api_provider_registry.register_

provider, 8-53
WWSBR_ALL_CATEGORIES view, F-3
WWSBR_ALL_CONTENT_AREAS view, F-4
WWSBR_ALL_FOLDER_REGIONS view, F-4
WWSBR_ALL_FOLDERS view, F-5
WWSBR_ALL_ITEMS view, 10-4, F-8
WWSBR_ALL_NAVIGATION_BARS view, F-12
WWSBR_ALL_PERSPECTIVES view, F-12
WWSBR_ALL_STYLES view, F-13
WWSBR_API package

add_category API, 12-3
add_content_area API, 12-1
add_folder API, 12-2
add_item API, 12-4, 12-5
add_item_ils_privileges API, 15-6
add_item_post_upload API, 12-6
add_perspective API, 12-3
approve API, 16-27
check_in_item API, 11-12
check_out_item API, 11-12
clear_cmef_context API, 9-5
copy_folder API, 11-17
copy_item API, 11-16
delete_folder API, 11-19
delete_ils_privilege API, 15-7
delete_item API, 11-17
enable_ils_for_item API, 15-5
inherit_folder_privileges API, 15-8
modify_folder API, 11-5
modify_item API, 11-11

p_addnewversion, 11-13
modify_item_post_upload API, 12-8
move_category API, 11-15
move_folder API, 11-14
move_item API, 11-14
move_perspective API, 11-15
reject API, 16-27
set_attribute API, 11-6
undelete_item API, 11-18
upload_blob API, 12-6

WWSBR_APPROVER view, F-13
WWSBR_ATTRIBUTES view, F-14
WWSBR_CONTENT_AREA_APPROVAL

view, F-15
WWSBR_CONTENT_AREA_ITEM_TYPES

view, F-15
WWSBR_EVENT_ERR_Q queue, 16-6
WWSBR_EVENT_Q queue

dequeuing, 16-4
enqueuing, 16-2

WWSBR_FOLDER_ATTRIBUTES view, F-16
WWSBR_FOLDER_PERSPECTIVES view, F-16
WWSBR_FOLDER_TYPE_ATTRIBUTES view, F-17
WWSBR_FOLDER_TYPES view, F-18
WWSBR_ITEM_APPROVAL view, F-18
WWSBR_ITEM_ATTRIBUTES view, F-20
WWSBR_ITEM_PERSPECTIVES view, F-20
WWSBR_ITEM_TYPE_ATTRIBUTES view, F-21
WWSBR_ITEM_TYPES view, F-22
WWSBR_SUBSCRIPTION view, F-23

Index-12

WWSBR_USER_FOLDERS view, F-23
WWSBR_USER_PAGES view, F-26
WWSEC_API package

grantee_list API, 15-1
remove_group_acl API, 15-4
remove_user_acl API, 15-4
set_group_acl API, 15-3
set_user_acl API, 15-3

WWSRC_API package
get_all_items_xml API, 13-7
get_item_xml API, 13-8
item_search API, 13-2
page_search API, 13-3
specify_attributes API, 13-4

X
XML

building a portlet based on XML, 4-7
building an OmniPortlet, 4-7
for PL/SQL Generator, 8-4
troubleshooting, B-8
using as a data source, 3-8

XML provider definition
see provider.xml

	Contents
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Portlet Overview
	1 Understanding Portlets
	1.1 Introduction to Portal Development
	1.2 Understanding Portlets
	1.3 Portlet Anatomy
	1.4 Portlet Resources
	1.4.1 Out-of-the-Box Portlets
	1.4.2 Other Sources of Prebuilt Portlets
	1.4.3 Web Clipping
	1.4.4 OmniPortlet
	1.4.5 Portlet Builder
	1.4.6 JSF Portlets
	1.4.7 Programmatic Portlets
	1.4.8 Deciding Which Tool to Use

	2 Portlet Technologies Matrix
	2.1 The Portlet Technologies Matrix
	2.2 General Suitability
	2.2.1 Web Clipping
	2.2.2 OmniPortlet
	2.2.3 Java Portlets
	2.2.4 Portlet Builder
	2.2.5 PL/SQL Portlets

	2.3 Expertise Required
	2.3.1 Web Clipping
	2.3.2 OmniPortlet
	2.3.3 Java Portlets
	2.3.4 Portlet Builder
	2.3.5 PL/SQL Portlets

	2.4 Deployment Type
	2.4.1 Web Providers
	2.4.2 WSRP Producers
	2.4.3 Database Providers
	2.4.4 Provider Architecture
	2.4.5 Provider Registration

	2.5 Caching Style
	2.5.1 Web Clipping, OmniPortlet, and Portlet Builder
	2.5.2 Java Portlets
	2.5.3 PL/SQL Portlets

	2.6 Development Tool
	2.6.1 Web Clipping, OmniPortlet, and Portlet Builder
	2.6.2 Java Portlets
	2.6.3 PL/SQL Portlets

	2.7 Portlet Creation Style
	2.7.1 OmniPortlet and Web Clipping
	2.7.2 Java Portlets
	2.7.3 Portlet Builder
	2.7.4 PL/SQL Portlets

	2.8 User Interface Flexibility
	2.8.1 Web Clipping
	2.8.2 OmniPortlet
	2.8.3 Java Portlets and PL/SQL Portlets
	2.8.4 Portlet Builder

	2.9 Ability to Capture Content from Web Sites
	2.9.1 Web Clipping
	2.9.2 OmniPortlet
	2.9.3 Java Portlets
	2.9.4 PL/SQL Portlets

	2.10 Ability to Render Content Inline
	2.10.1 Web Clipping
	2.10.2 OmniPortlet
	2.10.3 Java Portlets
	2.10.4 Portlet Builder
	2.10.5 PL/SQL Portlets

	2.11 Charting Capability
	2.11.1 Web Clipping
	2.11.2 OmniPortlet
	2.11.3 Java Portlets
	2.11.4 Portlet Builder
	2.11.5 PL/SQL Portlets

	2.12 Public Portlet Parameters Support
	2.13 Private Portlet Parameter Support
	2.13.1 OmniPortlet, Web Clipping, and Portlet Builder
	2.13.2 Java Portlets and PL/SQL Portlets

	2.14 Event Support
	2.14.1 Web Clipping, OmniPortlet, and Java Portlets
	2.14.2 Portlet Builder and PL/SQL Portlets

	2.15 Ability to Hide and Show Portlets Based on User Privileges
	2.15.1 Web Clipping and OmniPortlet
	2.15.2 Java Portlets
	2.15.3 Portlet Builder
	2.15.4 PL/SQL Portlets

	2.16 Multilingual Support
	2.16.1 Web Clipping, OmniPortlet, Java Portlets, and PL/SQL Portlets
	2.16.2 Portlet Builder

	2.17 Pagination Support
	2.17.1 Web Clipping
	2.17.2 OmniPortlet
	2.17.3 Java Portlets and PL/SQL Portlets
	2.17.4 Portlet Builder

	2.18 Single Sign-On and External Application Integration
	2.18.1 Web Clipping
	2.18.2 OmniPortlet
	2.18.3 Java Portlets
	2.18.4 PL/SQL Portlets

	Part II Creating Portlets
	3 Creating Portlets with OmniPortlet
	3.1 Introduction to OmniPortlet
	3.2 The OmniPortlet Wizard
	3.2.1 Type
	3.2.2 Source
	3.2.2.1 Proxy Authentication
	3.2.2.2 Connection Information
	3.2.2.3 Spreadsheet
	3.2.2.4 SQL
	3.2.2.4.1 SQL Connection Information
	3.2.2.4.2 Using Stored Procedures

	3.2.2.5 XML
	3.2.2.6 Web Service
	3.2.2.7 Web Page

	3.2.3 Filter
	3.2.4 View
	3.2.5 Layout
	3.2.5.1 Tabular Layout
	3.2.5.2 Chart Layout
	3.2.5.3 News Layout
	3.2.5.4 Bullet Layout
	3.2.5.5 Form Layout
	3.2.5.6 HTML Layout

	3.2.6 Edit Defaults mode
	3.2.7 Events

	3.3 Parameters and Events
	3.3.1 Portlet Parameters and Events
	3.3.2 Page Parameters and Events

	4 Building Example Portlets with OmniPortlet
	4.1 Adding an OmniPortlet Instance to a Portal Page
	4.2 Building an OmniPortlet Based on a Web Service
	4.3 Building an OmniPortlet Based on a Spreadsheet (CSV)
	4.4 Building an OmniPortlet Based on an XML Data Source
	4.5 Building an OmniPortlet Based on a Web Page Data Source
	4.6 Setting Up Portlet Parameters and Events
	4.6.1 Configure Portlets to Accept Parameters
	4.6.2 Map the Page Parameter to the Portlet Parameters
	4.6.3 Configure the Chart Portlet to Use Events
	4.6.4 Map the Chart Event to the Page

	4.7 Building an OmniPortlet Using the HTML Layout

	5 Creating Content-Based Portlets with Web Clipping
	5.1 What Is Web Clipping?
	5.2 Adding Web Page Content to a Portal Page
	5.2.1 Adding a Web Clipping Portlet to a Page
	5.2.2 Selecting a Section of a Web Page to Display in the Web Clipping Portlet
	5.2.3 Setting Web Clipping Portlet Properties

	5.3 Integrating Authenticated Web Content Using Single Sign-On
	5.4 Adding a Web Clipping That Users Can Personalize
	5.4.1 Adding a Web Clipping Portlet to a Personal Page
	5.4.2 Selecting a Clipping in OTN
	5.4.3 Personalizing a Web Clipping Portlet

	5.5 Using Web Clipping Open Transport API
	5.6 Migrating from URL-Based Portlets
	5.6.1 Preparing for Migration
	5.6.2 Performing the Migration
	5.6.3 Post-Migration Configuration
	5.6.4 Maintaining Migrated Portlets
	5.6.5 Limitations in Migrating URL-Based Portlets

	5.7 Current Limitations for Web Clipping

	6 Creating Java Portlets
	6.1 Guidelines for Writing Java Portlets
	6.1.1 Guidelines for Show Modes
	6.1.1.1 Shared Screen Mode (View Mode for JPS)
	6.1.1.1.1 HTML Guidelines for Rendering Portlets
	6.1.1.1.2 Cascading Style Sheet Guidelines for Rendering Portlets

	6.1.1.2 Edit Mode (JPS and Pdk-Java)
	6.1.1.2.1 Guidelines for Edit Mode Operations
	6.1.1.2.2 Guidelines for Buttons in Edit Mode
	6.1.1.2.3 Guidelines for Rendering Personalization Values

	6.1.1.3 Edit Defaults Mode (JPS and PDK-Java)
	6.1.1.3.1 Guidelines for Edit Defaults Mode Options
	6.1.1.3.2 Guidelines for Buttons in Edit Defaults Mode
	6.1.1.3.3 Guidelines for Rendering Personalization Values

	6.1.1.4 Preview Mode (JPS and PDK-Java)
	6.1.1.5 Full Screen Mode (PDK-Java)
	6.1.1.6 Help Mode (JPS and Oracle Portal)
	6.1.1.7 About Mode (JPS and PDK-Java)
	6.1.1.8 Link Mode (PDK-Java)

	6.1.2 Guidelines for Navigation within a Portlet
	6.1.2.1 Types of Links for Portlets
	6.1.2.1.1 Intraportlet Links
	6.1.2.1.2 Portal Links
	6.1.2.1.3 External Links
	6.1.2.1.4 Internal/Resource Links

	6.1.3 Guidelines for JavaScript
	6.1.4 Guidelines for Mobile Portlets
	6.1.4.1 Declare Capabilities
	6.1.4.2 Declare a Short Title
	6.1.4.3 Implement Personalization of the Short Title
	6.1.4.4 Implement Link Mode
	6.1.4.5 Heed Device Information
	6.1.4.6 Tailor Personalization Pages

	6.2 Introduction to Java Portlet Specification (JPS) and WSRP
	6.3 Building JPS-Compliant Portlets with Oracle JDeveloper
	6.3.1 Creating a JSR 168 Portlet
	6.3.2 Adding Portlet Logic to Your JSR 168 Portlet
	6.3.3 Deploying Your JSR 168 Portlet to the Oracle WebLogic Server
	6.3.4 Registering and Viewing Your JSR 168 Portlet

	6.4 Introduction to Oracle PDK-Java
	6.5 Building Oracle PDK-Java Portlets with Oracle JDeveloper
	6.5.1 Creating an Oracle PDK-Java Portlet and Provider
	6.5.2 Adding Portlet Logic to Your Oracle PDK-Java Portlet
	6.5.3 Validating Your Oracle PDK-Java Portlet and Provider
	6.5.4 Deploying Your Oracle PDK-Java Portlet to an Application Server
	6.5.5 Registering and Viewing Your Oracle PDK-Java Portlet

	7 Enhancing Java Portlets
	7.1 Enhancing JPS Portlets
	7.1.1 Adding Personalization
	7.1.1.1 Assumptions
	7.1.1.2 Implementing Personalization

	7.2 Enhancing PDK-Java Portlets
	7.2.1 Adding Show Modes
	7.2.1.1 Assumptions
	7.2.1.2 Implementing Extra Show Modes
	7.2.1.3 Updating the XML Provider Definition
	7.2.1.4 Viewing the Portlet

	7.2.2 Adding Personalization
	7.2.2.1 Assumptions
	7.2.2.2 Implementing Personalization for Edit and Edit Defaults Pages
	7.2.2.2.1 Reviewing the Generated Code
	7.2.2.2.2 Modifying the Generated Code

	7.2.2.3 Implementing Personalization for Show Pages
	7.2.2.4 Preference Information Within the XML Provider Definition
	7.2.2.5 Viewing the Portlet

	7.2.3 Passing Parameters and Submitting Events
	7.2.3.1 Assumptions
	7.2.3.2 Adding Public Parameters
	7.2.3.3 Passing Private Portlet Parameters
	7.2.3.3.1 Portlet URL Types
	7.2.3.3.2 Building Links with the Portlet URL Types
	7.2.3.3.3 Building Forms with the Portlet URL Types
	7.2.3.3.4 Implementing Navigation within a Portlet

	7.2.3.4 Submitting Events

	7.2.4 Using JNDI Variables
	7.2.4.1 Declaring JNDI Variables
	7.2.4.1.1 Variable Types
	7.2.4.1.2 Variable Naming Conventions
	7.2.4.1.3 Examples

	7.2.4.2 Setting JNDI Variable Values
	7.2.4.3 Retrieving JNDI Variables

	7.2.5 Creating Private Events
	7.2.6 Accessing Session Information
	7.2.6.1 Assumptions
	7.2.6.2 Implementing Session Storage
	7.2.6.3 Viewing the Portlet

	7.2.7 Implementing Portlet Security
	7.2.7.1 Assumptions
	7.2.7.2 Introduction to Portlet Security Features
	7.2.7.2.1 Authentication
	7.2.7.2.2 Authorization
	7.2.7.2.3 Communication Security

	7.2.7.3 Single Sign-On
	7.2.7.3.1 Partner Application
	7.2.7.3.2 External Application
	7.2.7.3.3 No Application Authentication

	7.2.7.4 Oracle Portal Access Control Lists (ACLs)
	7.2.7.5 Portlet Security Managers
	7.2.7.5.1 Viewing the Portlet
	7.2.7.5.2 Implementing Your Own Security Manager

	7.2.7.6 Oracle Portal Server Security
	7.2.7.7 Message Authentication
	7.2.7.8 HTTPS Communication
	7.2.7.9 LDAP (Oracle Internet Directory) Security
	7.2.7.9.1 Implementing Oracle Internet Directory Security
	7.2.7.9.2 Viewing Your Portlets

	7.2.7.10 User Input Escape
	7.2.7.10.1 Default Container Encoding
	7.2.7.10.2 Escape Methods

	7.2.8 Controlling the Export/Import of Portlet Personalizations
	7.2.8.1 Import/Export Programming Interface
	7.2.8.2 Exporting Personalizations Example
	7.2.8.3 Implementing Security for Export/Import
	7.2.8.3.1 Securing Provider Communications
	7.2.8.3.2 Disabling Export/Import of Personalizations
	7.2.8.3.3 Obfuscating Data for Transport (Automatic)
	7.2.8.3.4 Encrypting Personalization Data for Transport
	7.2.8.3.5 Exporting by Reference
	7.2.8.3.6 Encrypting Personalization Data Example
	7.2.8.3.7 Exporting by Reference Example

	7.2.9 Enhancing Portlet Performance with Caching
	7.2.9.1 Assumptions
	7.2.9.2 Activating Caching
	7.2.9.3 Adding Expiry-Based Caching
	7.2.9.4 Adding Invalidation Based Caching
	7.2.9.4.1 Configuring the Provider Servlet
	7.2.9.4.2 Defining the Oracle Web Cache Invalidation Port
	7.2.9.4.3 Configuring the XML Provider Definition
	7.2.9.4.4 Manually Invalidating the Cache

	7.2.9.5 Adding Validation-Based Caching

	7.2.10 Enhancing Portlets for Mobile Devices
	7.2.10.1 Accessing Configuration, User, and Device Information
	7.2.10.1.1 Configuration Data
	7.2.10.1.2 User Data
	7.2.10.1.3 Device Information

	7.2.10.2 Modifying Navigation for Mobile Portlets

	7.2.11 Writing Multilingual Portlets
	7.2.11.1 Assumptions
	7.2.11.2 Internationalizing Your Portlet
	7.2.11.2.1 Providing Translations for Portlet Content
	7.2.11.2.2 Providing Translation for Portlet Attributes

	7.2.11.3 Viewing the Portlet

	7.3 Building Struts Portlets with Oracle JDeveloper
	7.3.1 Oracle Portal and the Apache Struts Framework
	7.3.1.1 Model View Controller Overview
	7.3.1.2 Apache Struts Overview
	7.3.1.3 Oracle Portal Integration with Struts
	7.3.1.4 Summary

	7.3.2 Creating a Struts Portlet
	7.3.2.1 Creating a Struts Portlet
	7.3.2.1.1 Create a new flow and view to host the portlet actions
	7.3.2.1.2 Creating the new JSPs
	7.3.2.1.3 Creating a Portlet
	7.3.2.1.4 Extending the portlet to add Portal Business Logic

	7.3.2.2 Registering the Provider
	7.3.2.3 Summary

	7.3.3 Creating an Oracle Application Development Framework (ADF) Portlet

	8 Creating PL/SQL Portlets
	8.1 Guidelines for Creating PL/SQL Portlets
	8.1.1 Portlet Show Modes
	8.1.2 Recommended Portlet Procedures and Functions
	8.1.3 Guidelines for Mobile Portlets

	8.2 Building PL/SQL Portlets with the PL/SQL Generator
	8.2.1 Creating the Input XML File
	8.2.2 Running the PL/SQL Generator
	8.2.3 Publishing the Generated PL/SQL Portlet
	8.2.3.1 Installing the Packages in the Database
	8.2.3.2 Registering the Database Provider
	8.2.3.3 Adding Your Portlet to a Page

	8.3 Building PL/SQL Portlets Manually
	8.3.1 Implementing the Portlet Package
	8.3.2 Implementing the Provider Package
	8.3.3 Adding Your Portlet to a Page

	8.4 Implementing Information Storage
	8.4.1 Implementing a Preference Store
	8.4.1.1 Using a Preference Store
	8.4.1.2 Creating and Accessing a Preference Store

	8.4.2 Implementing a Session Store

	8.5 Using Parameters
	8.5.1 Passing Private Parameters
	8.5.2 Passing Page Parameters and Mapping Public Portlet Parameters
	8.5.3 Retrieving Parameter Values

	8.6 Accessing Context Information
	8.6.1 Using Context Information
	8.6.2 Using wwctx_api to Obtain Context Information

	8.7 Implementing Portlet Security
	8.7.1 Using Security
	8.7.2 Coding Security

	8.8 Improving Portlet Performance with Caching
	8.8.1 Using Caching
	8.8.1.1 Validation-Based Caching
	8.8.1.2 Expiry-Based Caching
	8.8.1.3 Invalidation-Based Caching

	8.8.2 Configuring and Monitoring the Cache
	8.8.3 Implementing Validation-Based Caching
	8.8.4 Implementing Expiry-Based Caching
	8.8.5 Implementing Invalidation-Based Caching

	8.9 Implementing Error Handling
	8.9.1 Using Error Handling
	8.9.2 Adding Error Handling

	8.10 Implementing Event Logging
	8.10.1 Using Event Logging
	8.10.2 Adding Event Logging

	8.11 Writing Multilingual Portlets
	8.11.1 Using Multilingual Support
	8.11.2 Adding Multilingual Support
	8.11.2.1 Loading Language Strings
	8.11.2.2 Retrieving Language Strings

	8.12 Enhancing Portlets for Mobile Devices
	8.13 Registering Providers Programmatically
	8.13.1 Registration Prerequisites
	8.13.2 Provider Record Input
	8.13.3 Registration Example

	Part III Content Management APIs
	9 Content Management API Introduction
	9.1 Overview
	9.2 Content Management APIs
	9.2.1 Secure Content Repository Views
	9.2.2 Terminology

	9.3 Providing Access to the APIs and Secure Views
	9.4 Guidelines for Using the APIs
	9.4.1 Using a Separate Schema
	9.4.2 Using Constants
	9.4.3 Invalidating the Cache
	9.4.4 Issuing Commits
	9.4.5 Resetting CMEF Global Variables
	9.4.6 Using Predefined Exceptions
	9.4.7 Naming Objects

	9.5 Guidelines for Using the Secure Views
	9.5.1 Identifying Primary Keys
	9.5.2 Querying Translatable Objects
	9.5.3 Selecting Data for the Current User

	9.6 Code Samples

	10 Getting Started with Content Management APIs
	10.1 Setting the Session Context
	10.2 API Parameters
	10.3 Finding an Object ID
	10.3.1 Finding a Page Group ID
	10.3.2 Finding a Page ID
	10.3.3 Finding Region IDs
	10.3.4 Finding an Item ID

	11 Performing Simple Content Management Tasks
	11.1 Editing Page Properties
	11.2 Editing Content
	11.2.1 Setting Item Attributes
	11.2.2 Editing an Item
	11.2.3 Checking Items Out and In
	11.2.4 Using Version Control

	11.3 Reorganizing Content
	11.3.1 Moving an Item to a Different Page
	11.3.2 Moving Pages
	11.3.3 Moving Categories and Perspectives

	11.4 Copying Content
	11.4.1 Copying Items
	11.4.2 Copying Pages

	11.5 Deleting Content
	11.5.1 Deleting Items
	11.5.2 Deleting Pages

	12 Extending Your Portal
	12.1 Creating a Page Group
	12.2 Creating Pages
	12.3 Creating Categories and Perspectives
	12.4 Creating Items
	12.5 Setting Perspectives Attributes of Pages and Items
	12.6 Approving and Rejecting Items

	13 Searching Portal Content
	13.1 Searching For Items Across All Page Groups
	13.2 Searching For Pages in Specific Page Groups
	13.3 Searching For Items By Attribute
	13.4 Transforming Search Results into XML
	13.4.1 Creating a Directory for the XML File
	13.4.2 Creating an XML File from a CLOB
	13.4.3 Generating Search Results in XML
	13.4.4 Workaround for get_item_xml

	13.5 Displaying Search Results
	13.5.1 Displaying XML Search Results in OmniPortlet
	13.5.2 Displaying Search Results in a Dynamic Page

	14 Creating Multi-Lingual Content
	14.1 Introduction to Multi-Lingual Support
	14.2 Querying the Default Language
	14.3 Setting the Session Language
	14.4 Modifying an Existing Translation
	14.5 Creating a Translation for an Item
	14.6 Translations and Item Versioning

	15 Implementing Content Security
	15.1 Retrieving Object Privileges
	15.2 Setting Page Level Privileges
	15.2.1 Granting Page Level Privileges
	15.2.2 Removing Page Level Privileges

	15.3 Setting Item Level Privileges
	15.3.1 Granting Item Level Privileges
	15.3.2 Removing Item Level Privileges
	15.3.3 Inheriting Item Level Privileges from the Page

	16 Using the Content Management Event Framework
	16.1 What Is the Content Management Event Framework?
	16.2 How Does the Content Management Event Framework Work?
	16.2.1 Enqueuing Messages
	16.2.2 Subscribers and Dequeuing Messages
	16.2.2.1 Adding a Subscriber to the WWSBR_EVENT_Q Queue
	16.2.2.2 Subscriber Queue Management
	16.2.2.3 Dequeuing Messages

	16.2.3 Exception Handling
	16.2.4 Listening for Messages

	16.3 Using the Content Management Event Framework
	16.3.1 Creating Subscriber Code
	16.3.2 Adding a Subscriber to WWSBR_EVENT_Q
	16.3.3 Enabling CMEF Events at the Page Group Level
	16.3.4 Examining CMEF Events
	16.3.5 Running a CMEF Subscriber
	16.3.6 CMEF Message Payload
	16.3.7 Oracle Portal Actions and CMEF Events
	16.3.7.1 Page and Page Group Actions
	16.3.7.1.1 Creating a Page
	16.3.7.1.2 Updating the Access Control List of a Page
	16.3.7.1.3 Updating the Access Control List of a Page Group
	16.3.7.1.4 Deleting a Page

	16.3.7.2 Item Actions
	16.3.7.2.1 Creating an Item and Publishing it at the Same Time
	16.3.7.2.2 Adding an Item That Requires Approval
	16.3.7.2.3 Approving an Item
	16.3.7.2.4 Applying a Category or Perspective to an Item
	16.3.7.2.5 Deleting an Item

	16.4 Installing the Examples
	16.5 Example: Portal Object Event Logging
	16.6 Example: Item Notification
	16.7 Example: Item Validation
	16.8 Example: Integrating External Workflow
	16.8.1 Integrating Workflow with Oracle Portal
	16.8.2 Example Overview
	16.8.3 Detailed Example Description
	16.8.3.1 Enable Approvals and Notifications in Oracle Portal
	16.8.3.2 Grant Users the Manage Items With Approval Privileges
	16.8.3.3 Run Scripts Required for the CMEF Workflow Integration Example
	16.8.3.4 Create Subscriber and Check Procedures
	16.8.3.5 Register the WF_CHECKURL Process with Oracle Workflow
	16.8.3.6 Add the CMEF_WORKFLOW Subscriber to the WWSBR_EVENT_Q Queue

	Part IV Appendixes
	A Creating Portlets with the Portlet Builder
	B Troubleshooting Portlets and Providers
	B.1 Diagnosing General Portlet Problems
	B.1.1 Portlet Refresh Failure
	B.1.2 HTML Tags Appearing in Portlet

	B.2 Diagnosing Java Portlet Problems
	B.2.1 Portlet Logging
	B.2.2 Installation and Deployment Problems
	B.2.2.1 Cannot Find a Java Class Object
	B.2.2.2 Cannot Deploy the template.ear File
	B.2.2.3 Error When Attempting to Register Provider
	B.2.2.4 Error Adding a Portlet to a Provider
	B.2.2.5 Portlet Does Not Exist
	B.2.2.6 File Not Found
	B.2.2.7 XML Parser Error
	B.2.2.8 Error Adding Portlets
	B.2.2.9 Content Request Timed Out
	B.2.2.10 Message 500 Returned
	B.2.2.11 JPS Portlets with the get Method not Working
	B.2.2.12 Portlet Displays Session Expired Message After Redeployment

	B.2.3 Portlet Code Does Not Compile
	B.2.4 Application Server Connection Test Fails
	B.2.5 Provider Test Page Shows Error
	B.2.6 Web Provider Not Appearing in Portlet Repository
	B.2.7 Portlet Does Not Display on Page
	B.2.8 After Initial Successful Display, Portlet Does Not Display on Page

	B.3 Diagnosing OmniPortlet Problems
	B.3.1 OmniPortlet Cannot Access the Specified URL
	B.3.2 Portlet Content Is Not Refreshed
	B.3.3 Edit Defaults Changes are Not Reflected in the Personalized Portlet

	B.4 Diagnosing Web Clipping Problems
	B.4.1 Setting Logging Levels
	B.4.2 Reviewing Error Messages
	B.4.3 Checking the Status of the Provider with the Test Page
	B.4.4 Problem Connecting to the Web Site for Clipping
	B.4.5 HTTP Error Code 407 When Clipping Outside Firewall
	B.4.6 Cannot Clip a Page
	B.4.7 Images Not Retrieved with Clipping
	B.4.8 Resolving Problems with Migration of URL-based Portlets
	B.4.8.1 File Not Found Exception When Running Migration Tool
	B.4.8.2 Null Pointer Exception When Running Migration Tool
	B.4.8.3 Target provider.xml is Already Migrated Error
	B.4.8.4 Cannot Migrate provider.xml with Class Error

	B.5 Need More Help?

	C Mapping Profile Items to Attributes
	C.1 Mapping userProfileItems to Attributes

	D Manually Packaging and Deploying PDK-Java Providers
	D.1 Introduction
	D.1.1 WAR and EAR files
	D.1.2 Service Identifiers

	D.2 Packaging and Deploying Your Providers
	D.2.1 Packaging Your Provider
	D.2.1.1 Preparing Your Directories
	D.2.1.2 Specifying Your Default Service
	D.2.1.3 Creating Your WAR File
	D.2.1.4 Creating Your EAR File

	D.2.2 Deploying Your EAR File Using Fusion Middleware Control
	D.2.3 Testing Deployment
	D.2.4 Setting Deployment Properties
	D.2.5 Securing Your Provider
	D.2.6 Registering Your Provider

	E Oracle Portal Provider Test Suite
	E.1 Provider Test Page
	E.2 Test Harness
	E.2.1 Test Definition File
	E.2.2 runTest Command
	E.2.3 Running a Test with Test Harness

	F Content Management APIs and Views
	F.1 Supported APIs
	F.1.1 The WWSBR_API Package
	F.1.2 The WWSRC_API Package
	F.1.3 The WWSEC_API Package
	F.1.4 The WWCTX_API Package
	F.1.5 The WWPRO_API_INVALIDATION Package

	F.2 Secure Views
	F.2.1 WWSBR_ALL_CATEGORIES
	F.2.2 WWSBR_ALL_CONTENT_AREAS
	F.2.3 WWSBR_ALL_FOLDER_REGIONS
	F.2.4 WWSBR_ALL_FOLDERS
	F.2.5 WWSBR_ALL_ITEMS
	F.2.6 WWSBR_ALL_NAVIGATION_BARS
	F.2.7 WWSBR_ALL_PERSPECTIVES
	F.2.8 WWSBR_ALL_STYLES
	F.2.9 WWSBR_APPROVER
	F.2.10 WWSBR_ATTRIBUTES
	F.2.11 WWSBR_CONTENT_AREA_APPROVAL
	F.2.12 WWSBR_CONTENT_AREA_ITEM_TYPES
	F.2.13 WWSBR_FOLDER_ATTRIBUTES
	F.2.14 WWSBR_FOLDER_PERSPECTIVES
	F.2.15 WWSBR_FOLDER_TYPE_ATTRIBUTES
	F.2.16 WWSBR_FOLDER_TYPES
	F.2.17 WWSBR_ITEM_APPROVAL
	F.2.18 WWSBR_ITEM_ATTRIBUTES
	F.2.19 WWSBR_ITEM_PERSPECTIVES
	F.2.20 WWSBR_ITEM_TYPE_ATTRIBUTES
	F.2.21 WWSBR_ITEM_TYPES
	F.2.22 WWSBR_SUBSCRIPTION
	F.2.23 WWSBR_USER_FOLDERS
	F.2.24 WWSBR_USER_PAGES

	G Content Management Event Framework Events
	G.1 Actions and Events for Items
	G.2 Actions and Events for Pages
	G.3 Actions and Events for Tabs
	G.4 Actions and Events for Page Groups
	G.5 Actions and Events for Attributes
	G.6 Actions and Events for Item Types
	G.7 Actions and Events for Page Types
	G.8 Actions and Events for Categories
	G.9 Actions and Events for Perspectives
	G.10 Actions and Events for Templates

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

