

Oracle® Fusion Middleware
Tuxedo Connector Programmer’s Guide for Oracle WebLogic
Server

11g Release 1 (10.3.1)

E13723-01

May 2009

This document introduces the Oracle WebLogic Tuxedo
Connector application development environment. It
describes how to develop EJBs that allow Oracle WebLogic
Server to interoperate with Oracle Tuxedo objects.

Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server, 11g Release
1 (10.3.1)

E13723-01

Copyright © 2007, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Conventions ... viii

1 Introduction to Oracle WebLogic Tuxedo Connector Programming

1.1 Guide to this Document ... 1-1
1.2 Developing Oracle WebLogic Tuxedo Connector Applications.. 1-2
1.2.1 Developing Oracle WebLogic Tuxedo Connector Clients... 1-2
1.2.2 Developing Oracle WebLogic Tuxedo Connector Servers .. 1-2
1.2.3 Oracle WebLogic Tuxedo Connector Interoperability with Oracle Tuxedo

CORBA objects ... 1-3
1.3 Oracle WebLogic Tuxedo Connector JATMI Primitives... 1-3
1.4 Oracle WebLogic Tuxedo Connector TypedBuffers .. 1-4

2 Developing Oracle WebLogic Tuxedo Connector Client EJBs

2.1 Joining and Leaving Applications .. 2-1
2.1.1 Joining an Application .. 2-1
2.1.2 Leaving an Application... 2-2
2.2 Basic Client Operation.. 2-2
2.2.1 Get an Oracle Tuxedo Object ... 2-2
2.2.2 Perform Message Buffering.. 2-3
2.2.3 Send and Receive Messages ... 2-3
2.2.3.1 Request/Response Communication.. 2-3
2.2.3.1.1 Using Synchronous Service Calls.. 2-4
2.2.3.1.2 Using Deferred Synchronous Service Calls... 2-4
2.2.3.1.3 Using Asynchronous Calls... 2-4
2.2.3.2 Conversational Communication .. 2-5
2.2.3.3 Enqueuing and Dequeuing Messages ... 2-6
2.2.4 Close a Connection to an Oracle Tuxedo Object ... 2-6
2.3 Example Client EJB ... 2-6

3 Developing Oracle WebLogic Tuxedo Connector Service EJBs

3.1 Basic Service EJB Operation .. 3-1
3.1.1 Access Service Information .. 3-1
3.1.2 Buffer Messages ... 3-1

iv

3.1.3 Perform the Requested Service .. 3-2
3.1.3.1 Return Client Messages for Request/Response Communication 3-2
3.1.3.2 Use tpsend and tprecv for Conversational Communication 3-2
3.2 Example Service EJB ... 3-3

4 Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA
Interoperability

4.1 How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA
Java API .. 4-1

4.1.1 Using CosNaming Service.. 4-2
4.1.1.1 Example ToupperCorbaBean.java Code ... 4-3
4.1.2 Using FactoryFinder.. 4-4
4.1.2.1 WLEC to Oracle WebLogic Tuxedo Connector Migration..................................... 4-4
4.1.2.2 Example Code ... 4-4
4.2 How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector . 4-6
4.2.1 How to Modify Inbound RMI/IIOP Applications to use the Oracle WebLogic

Tuxedo Connector ... 4-6
4.2.2 How to Develop Outbound RMI/IIOP Applications to use the Oracle

WebLogic Tuxedo Connector .. 4-7
4.2.2.1 How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs.................. 4-7
4.2.2.1.1 Assign env-entry-name .. 4-8
4.2.2.1.2 Assign env-entry-type .. 4-8
4.2.2.1.3 Assign env-entry-value .. 4-8
4.2.2.2 How to Modify EJBs to Use FederationURL to Access an Object 4-8
4.3 How to Use FederationURL Formats... 4-9
4.3.1 Using corbaloc URL Format.. 4-10
4.3.1.1 Examples of corbaloc:tgiop .. 4-10
4.3.1.2 Examples using -ORBInitRef ... 4-10
4.3.1.3 Examples Using -ORBDefaultInitRef ... 4-10
4.3.2 Using the corbaname URL Format... 4-10
4.3.2.1 Examples Using -ORBInitRef... 4-10
4.4 How to Manage Transactions for Oracle Tuxedo CORBA Applications 4-11

5 Oracle WebLogic Tuxedo Connector JATMI Transactions

5.1 Global Transactions .. 5-1
5.2 JTA Transaction API... 5-1
5.2.1 Types of JTA Interfaces ... 5-2
5.2.1.1 Transaction .. 5-2
5.2.1.2 TransactionManager .. 5-2
5.2.1.3 UserTransaction .. 5-2
5.2.2 JTA Transaction Primitives .. 5-2
5.3 Defining a Transaction ... 5-2
5.3.1 Starting a Transaction ... 5-3
5.3.1.1 Using TPNOTRAN... 5-3
5.3.2 Terminating a Transaction ... 5-3
5.4 Oracle WebLogic Tuxedo Connector Transaction Rules .. 5-4
5.5 Example Transaction Code.. 5-5

v

6 Oracle WebLogic Tuxedo Connector JATMI Conversations

6.1 Overview of Oracle WebLogic Tuxedo Connector Conversational Communication 6-1
6.2 Oracle WebLogic Tuxedo Connector Conversation Characteristics 6-2
6.3 Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives 6-2
6.4 Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers........ 6-3
6.4.1 Creating Conversational Clients.. 6-3
6.4.1.1 Establishing a Connection to an Oracle Tuxedo Conversational Service 6-3
6.4.1.2 Example TuxedoConversationBean.java Code .. 6-3
6.4.2 Creating Oracle WebLogic Tuxedo Connector Conversational Servers...................... 6-4
6.5 Sending and Receiving Messages... 6-4
6.5.1 Sending Messages.. 6-5
6.5.2 Receiving Messages... 6-5
6.6 Ending a Conversation .. 6-6
6.6.1 Oracle Tuxedo Application Originates Conversation.. 6-6
6.6.2 Oracle WebLogic Tuxedo Connector Application Originates Conversation.............. 6-6
6.6.3 Ending Hierarchical Conversations .. 6-6
6.7 Executing a Disorderly Disconnect .. 6-7
6.8 Understanding Conversational Communication Events ... 6-7
6.9 Oracle WebLogic Tuxedo Connector Conversation Guidelines .. 6-8

7 Using FML with Oracle WebLogic Tuxedo Connector

7.1 Overview of FML.. 7-1
7.2 The Oracle WebLogic Tuxedo Connector FML API .. 7-2
7.3 FML Field Table Administration .. 7-2
7.3.1 Using the DynRdHdr Property for mkfldclass32 Class ... 7-3
7.4 Using TypedFML32 Constructors .. 7-4
7.4.1 Gaining TypedFML32 Performance Improvements... 7-4
7.5 tBridge XML/FML32 Translation .. 7-5
7.5.1 FLAT .. 7-5
7.5.2 NO.. 7-5
7.5.3 FML32 Considerations .. 7-6
7.6 Using the XmlFmlCnv Class for XML to and From FML/FML32 Translation 7-7
7.6.1 Limitations of XmlFmlCnv Class .. 7-7
7.7 MBSTRING Usage .. 7-7
7.7.1 Sending MBSTRING Data to an Oracle Tuxedo Domain .. 7-7
7.7.2 Receiving MBSTRING Data from an Oracle Tuxedo Domain 7-8
7.7.3 Using FML with Oracle WebLogic Tuxedo Connector.. 7-8

8 Oracle WebLogic Tuxedo Connector JATMI VIEWs

8.1 Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers....................................... 8-1
8.2 How to Create a VIEW Description File.. 8-2
8.2.1 Example VIEW Description File .. 8-3
8.3 How to Use the viewj Compiler ... 8-3
8.4 How to Pass Information to and from a VIEW Buffer .. 8-5
8.5 How to Use VIEW Buffers in JATMI Applications.. 8-5
8.5.1 How to Get VIEW32 Data In and Out of FML32 Buffers... 8-6

vi

8.6 Using the XmlViewCnv Class for XML to and From View/View(32) Translation 8-7

9 How to Create a Custom AppKey Plug-in

9.1 How to Create a Custom Plug-In ... 9-1
9.2 Example Custom Plug-in ... 9-1

10 Application Error Management

10.1 Testing for Application Errors ... 10-1
10.1.1 Exception Classes.. 10-1
10.1.2 Fatal Transaction Errors... 10-1
10.2 Oracle WebLogic Tuxedo Connector Time-Out Conditions ... 10-2
10.2.1 Blocking vs. Transaction Time-out... 10-2
10.2.2 Effect on commit() .. 10-2
10.2.3 Effect of TPNOTRAN... 10-2
10.3 Guidelines for Tracking Application Events ... 10-3

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—WebLogic Tuxedo Connector Programmer’s Guide.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Conventions
The following text conventions are used in this document:

viii

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to Oracle WebLogic Tuxedo Connector Programming 1-1

1Introduction to Oracle WebLogic Tuxedo
Connector Programming

The following sections provide information about the development environment you
will be using to write code for applications that interoperate between Oracle WebLogic
Server and Oracle Tuxedo:

■ Section 1.1, "Guide to this Document"

■ Section 1.2, "Developing Oracle WebLogic Tuxedo Connector Applications"

■ Section 1.3, "Oracle WebLogic Tuxedo Connector JATMI Primitives"

■ Section 1.4, "Oracle WebLogic Tuxedo Connector TypedBuffers"

1.1 Guide to this Document
This document introduces the Oracle WebLogic Tuxedo Connector application
development environment. It describes how to develop EJBs that allow Oracle
WebLogic Server to interoperate with Oracle Tuxedo objects.

The document is organized as follows:

■ Chapter 1, "Introduction to Oracle WebLogic Tuxedo Connector Programming,"
provides information about the development environment you will be using to
write code for applications that interoperate between Oracle WebLogic Server and
Oracle Tuxedo.

■ Chapter 2, "Developing Oracle WebLogic Tuxedo Connector Client EJBs," provides
information on how to create client EJBs.

■ Chapter 3, "Developing Oracle WebLogic Tuxedo Connector Service EJBs,"
provides information on how to create service EJBs.

■ Chapter 4, "Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA
Interoperability," provides information on how to develop CORBA applications for
the Oracle WebLogic Tuxedo Connector.

■ Chapter 5, "Oracle WebLogic Tuxedo Connector JATMI Transactions," provides
information on global transactions and how to define and manage them in your
applications.

Note: For information on how to develop Oracle WebLogic Server
Enterprise JavaBeans (EJBs), see Oracle Fusion Middleware Programming
Enterprise JavaBeans for Oracle WebLogic Server.

Developing Oracle WebLogic Tuxedo Connector Applications

1-2 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

■ Chapter 6, "Oracle WebLogic Tuxedo Connector JATMI Conversations," provides
information on conversations and how to define and manage them in your
applications.

■ Chapter 7, "Using FML with Oracle WebLogic Tuxedo Connector," discusses the
Field Manipulation Language (FML) and describes how the Oracle WebLogic
Tuxedo Connector uses FML.

■ Chapter 8, "Oracle WebLogic Tuxedo Connector JATMI VIEWs," provides
information on View buffers and how to define and manage them in your
applications.

■ Chapter 9, "How to Create a Custom AppKey Plug-in," provides information on
how to develop a Custom AppKey Plug-in.

■ Chapter 10, "Application Error Management," provide mechanisms to manage and
interpret error conditions.

1.2 Developing Oracle WebLogic Tuxedo Connector Applications

In addition to the Java code that expresses the logic of your application, you will be
using the Java Application -to-Transaction Monitor Interface (JATMI) to provide the
interface between Oracle WebLogic Server and Oracle Tuxedo.

1.2.1 Developing Oracle WebLogic Tuxedo Connector Clients

A client process takes user input and sends a service request to a server process that
offers the requested service. Oracle WebLogic Tuxedo Connector JATMI client classes
are used to create clients that access services found in Oracle Tuxedo. These client
classes are available to any service that is made available through a the Oracle
WebLogic Tuxedo Connector WTCServer MBean.

1.2.2 Developing Oracle WebLogic Tuxedo Connector Servers

Servers are processes that provide one or more services. They continually check their
message queue for service requests and dispatch them to the appropriate service
subroutines. Oracle WebLogic Tuxedo Connector uses EJBs to implement services
which Oracle Tuxedo clients invoke.

Note: For more information on the Oracle WebLogic Tuxedo
Connector JATMI, view the Javadocs for WebLogic Classes. The
Oracle WebLogic Tuxedo Connector classes are located in the
weblogic.wtc.jatmi and weblogic.wtc.gwt packages.

Note: For more information, see Chapter 2, "Developing Oracle
WebLogic Tuxedo Connector Client EJBs."

Note: For more information, see Chapter 3, "Developing Oracle
WebLogic Tuxedo Connector Service EJBs."

Oracle WebLogic Tuxedo Connector JATMI Primitives

Introduction to Oracle WebLogic Tuxedo Connector Programming 1-3

1.2.3 Oracle WebLogic Tuxedo Connector Interoperability with Oracle Tuxedo CORBA
objects

The Oracle WebLogic Tuxedo Connector provides bi-directional interoperability
between Oracle WebLogic Server and Oracle Tuxedo CORBA objects. The Oracle
WebLogic Tuxedo Connector:

■ Enables Oracle Tuxedo CORBA objects to invoke upon EJBs deployed in Oracle
WebLogic Server using the RMI/IIOP API (Inbound).

■ Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects
deployed in Oracle Tuxedo using the RMI/IIOP API (Outbound).

■ Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects
deployed in Oracle Tuxedo using a CORBA Java API (Outbound).

1.3 Oracle WebLogic Tuxedo Connector JATMI Primitives
The JATMI is a set of primitives used to begin and end transactions, allocate and free
buffers, and provide the communication between clients and servers.

Note: For more information, see Chapter 4, "Using Oracle WebLogic
Tuxedo Connector for RMI/IIOP and CORBA Interoperability."

Table 1–1 JATMI Primitives

Name Operation

tpacall Use for asynchronous invocations of an Oracle Tuxedo service during
request/response communication.tpacall has two forms:

■ deferred synchronous

■ asynchronous

tpcall Use for synchronous invocation of an Oracle Tuxedo service during
request/response communication.

tpconnect Use to establish a connection to an Oracle Tuxedo conversational
service.

tpdiscon Use to abort a conversational connection and generate a TPEV_
DISCONIMM event when executed by the process controlling the
conversation.

tpdequeue Use for receiving messages from an Oracle Tuxedo /Q during
request/response communication.

tpenqueue Use for placing a message on an Oracle Tuxedo /Q during
request/response communication.

tpgetrply Use for retrieving replies from an Oracle Tuxedo service during
request/response communication.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application during conversational communication.

tpsend Use to send data across a open connection to an Oracle Tuxedo
application during conversational communication.

tpterm Use to close a connection to an Oracle Tuxedo object.

Oracle WebLogic Tuxedo Connector TypedBuffers

1-4 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

1.4 Oracle WebLogic Tuxedo Connector TypedBuffers
Oracle WebLogic Tuxedo Connector provides an interface called TypedBuffers that
corresponds to Oracle Tuxedo typed buffers. Messages are passed to servers in typed
buffers. The Oracle WebLogic Tuxedo Connector provides the following buffer types:

Table 1–2 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that terminates
with the null character. Oracle Tuxedo equivalent: STRING.

TypedCArray Buffer type used when the data is an undefined array of characters (byte
array), any of which can be null. Oracle Tuxedo equivalent: CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field carries its
own identifier, an occurrence number, and possibly a length indicator.
Oracle Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields,
more fields, and larger overall buffers. Oracle Tuxedo equivalent:
FML32.

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo
equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define
the buffer structure using a view description file. Oracle Tuxedo
equivalent: VIEW

TypedView32 Buffer type similar to View but allows for larger character fields, more
fields, and larger overall buffers. Oracle Tuxedo equivalent: VIEW32.

TypedMBString Buffer type used when the data is a wide array of characters to support
multi-byte characters. Oracle Tuxedo equivalent: MBSTRING.

2

Developing Oracle WebLogic Tuxedo Connector Client EJBs 2-1

2Developing Oracle WebLogic Tuxedo
Connector Client EJBs

The following sections describe how to create client EJBs that take user input and send
service requests to a server process or outbound object that offers a requested service.

■ Section 2.1, "Joining and Leaving Applications"

■ Section 2.2, "Basic Client Operation"

■ Section 2.3, "Example Client EJB"

Oracle WebLogic Tuxedo Connector JATMI client classes are used to create clients that
access services found in Oracle Tuxedo.

2.1 Joining and Leaving Applications
Oracle Tuxedo and Oracle WebLogic Tuxedo Connector have different approaches to
connect to services.

2.1.1 Joining an Application
The following section compares how Oracle Tuxedo and Oracle WebLogic Tuxedo
Connector join an application:

■ Oracle Tuxedo uses tpinit() to join an application.

■ Oracle WebLogic Tuxedo Connector uses a WTCServer MBean to provide
information required to create a path to the Oracle Tuxedo service. Security and
client authentication is provided by configuring the Remote TDM and Imported
Services MBean components of a WTCServer MBean. This pathway is created
when the Oracle WebLogic Server is started and a WTCServer MBean is present in
the config.xml file and assigned (targeted) to a server.

■ Oracle WebLogic Tuxedo Connector uses TuxedoConnectionFactory to
get a TuxedoConnection object and then uses getTuxedoConnection() to make a
connection to the Oracle Tuxedo object. The following example shows how a
Oracle WebLogic Server application joins an Oracle Tuxedo application using
Oracle WebLogic Tuxedo Connector.

Note: For more information on the Oracle WebLogic Tuxedo
Connector JATMI, view the Javadocs for WebLogic Classes. The
Oracle WebLogic Tuxedo Connector classes are located in the
weblogic.wtc.jatmi and weblogic.wtc.gwt packages.

Basic Client Operation

2-2 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

Example 2–1 Example Client Code to Join an Oracle Tuxedo Application

.

.

.
try {
 ctx = new InitialContext();
 tcf =
 (TuxedoConnectionFactory)
 ctx.lookup("tuxedo.services.TuxedoConnection");
 } catch (NamingException ne) {

// Could not get the tuxedo object, throw TPENOENT
throw new TPException(TPException.TPENOENT,
 "Could not get TuxedoConnectionFactory : " + ne);
 }

myTux = tcf.getTuxedoConnection();
.
.
.

2.1.2 Leaving an Application
The following section compares how Oracle Tuxedo and Oracle WebLogic Tuxedo
Connector leave an application:

■ Oracle Tuxedo uses tpterm() to leave an application.

■ Oracle WebLogic Tuxedo Connector uses the JATMI primitive tpterm() to close a
connection to an Oracle Tuxedo object.

■ Oracle WebLogic Tuxedo Connector closes the pathway to an Oracle Tuxedo
service when a WTCServer MBean is assigned a new target server or the server is
shutdown.

2.2 Basic Client Operation
A client process uses Java and JATMI primitives to provide the following basic
application tasks:

■ Get an Oracle Tuxedo Object

■ Perform Message Buffering

■ Send and Receive Messages

■ Close a Connection to an Oracle Tuxedo Object

A client may send and receive any number of service requests before leaving the
application.

2.2.1 Get an Oracle Tuxedo Object
Establish a connection to a remote domain by looking up
tuxedo.services.TuxedoConnection in the JNDI tree to get
TuxedoConnectionFactory, and use it to get a TuxedoConnection object.

Basic Client Operation

Developing Oracle WebLogic Tuxedo Connector Client EJBs 2-3

2.2.2 Perform Message Buffering
Use the following TypedBuffers when sending and receiving messages between your
application and Oracle Tuxedo:

2.2.3 Send and Receive Messages
Oracle WebLogic Tuxedo Connector clients support three types of communications
with Oracle Tuxedo service applications:

■ Request/Response Communication

■ Conversational Communication

■ Enqueuing and Dequeuing Messages

2.2.3.1 Request/Response Communication

Use the following JATMI primitives to request and receive response messages between
your Oracle WebLogic Tuxedo Connector client application and Oracle Tuxedo:

Table 2–1 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that terminates
with the null character. Oracle Tuxedo equivalent: STRING.

TypedCArray Buffer type used when the data is an undefined array of characters (byte
array), any of which can be null. Oracle Tuxedo equivalent: CARRAY.

TypedFML Buffer type used when the data is self-defined. Each data field carries its
own identifier, an occurrence number, and possibly a length indicator.
Oracle Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields,
more fields, and larger overall buffers. Oracle Tuxedo equivalent:
FML32.

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo
equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define
the buffer structure using a view description file. Oracle Tuxedo
equivalent: View

TypedView32 Buffer type similar to View but allows for larger character fields, more
fields, and larger overall buffers. Oracle Tuxedo equivalent: View32.

TypedMBString Buffer type used when the data is a wide array of characters to support
multi-byte characters. Oracle Tuxedo equivalent: MBSTRING.

Note: Oracle WebLogic Tuxedo Connector does not provide a JATMI
primitive to support setting the priority of a message request. All
messages originating from a Oracle WebLogic Tuxedo Connector
client have a message priority of 50.

Basic Client Operation

2-4 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

2.2.3.1.1 Using Synchronous Service Calls Use tpcall to send a request to a service and
synchronously await for the reply. The service specified must be advertised by your
Oracle Tuxedo application. Logically, tpcall() has the same functionality as calling
tpacall() and immediately calling tpgetreply().

2.2.3.1.2 Using Deferred Synchronous Service Calls A deferred synchronous tpacall
allows you to send a request to an Oracle Tuxedo service and not immediately wait for
the reply. This allows you to send a request, perform other work, and then retrieve the
reply.

A deferred tpacall() service call sends a request to an Oracle Tuxedo service and
immediately returns from the call. The service specified must be advertised by your
Oracle Tuxedo application. Upon successful completion of the call, tpacall()
returns an object that serves as a descriptor. The calling thread is now available to
perform other tasks. You can use the call descriptor to:

■ Get the correct reply for the sent request using tpgetreply()

■ Cancel an outstanding message reply using tpcancel().

When you are ready to retrieve the reply, use tpgetreply() to dequeue the reply
using the call descriptor returned by tpacall(). If the reply is not immediately
available, the calling thread polls for the reply.

If tpacall() is in a transaction, you must receive the reply using tpgetreply()
before the transaction can commit. You can not use tpcancel to cancel a call
descriptor associated with a transaction. For example: If you make three tpacall()
requests in a transaction, you must make three tpgetreply() calls and successfully
dequeue a reply for each of the three requests for the transaction to commit.

2.2.3.1.3 Using Asynchronous Calls The asynchronous tpacall allows you to send a
request to an Oracle Tuxedo service and release the thread resource that performed the
call to the thread pool. This allows a very large number of outstanding requests to be
serviced with a much smaller number of threads.

An asynchronous tpacall() service call sends a request to an Oracle Tuxedo service.
The service specified must be advertised by your Oracle Tuxedo application. Upon
successful completion of the call, asynchronous tpacall() returns an object that
serves as a descriptor. The calling thread is now available to perform other tasks. You
can use the call descriptor to identify the correct message reply from

Table 2–2 JATMI Primitives

Name Operation

tpacall Use for asynchronous invocations of an Oracle Tuxedo service.This
JATMI primitive has two forms:

■ deferred synchronous

■ asynchronous

tpcall Use for synchronous invocation of an Oracle Tuxedo service.

tpgetrply Use for retrieving replies from deferred synchronous calls to an Oracle
Tuxedo service.

tpcancel Use to cancel an outstanding message reply for a call descriptor returned
by tpacall.

Note: You can not use tpcancel to cancel a call descriptor associated
with a transaction.

Basic Client Operation

Developing Oracle WebLogic Tuxedo Connector Client EJBs 2-5

TpacallAsynchReply for a sent message request or cancel an outstanding message
reply using tpcancel().

When the service reply is ready, the callback object is invoked on a different thread.
If the original request succeeded, the TpacallAsynchReply.sucess method
returns the reply from the service. If the original request failed, the
TpacallAsynchReply.failure method returns a failure code.

You should implement the callback object using the following guidelines:

■ The reply thread is obtained from the threadpool. The thread making the
asynchronous tpacall() does not wait for the reply message.

■ The user context of the reply thread will be restored to that of the original caller of
asynchronous tpacall().

■ It is up to the callback object to restore any additional context and resume
whatever processing was interrupted when the original asynchronous tpacall()
was made.

■ It is up to you to synchronize work within the multi threaded environment. For
example: If an asynchronous tpacall() request is made and the reply is
returned immediately, it is possible for the call back object to be modified by the
reply thread before the calling thread has finished.

■ The reply thread will not retain the transaction context of the calling thread.

■ If asynchronous tpacall() is in a transaction, you must receive the reply using
TpacallAsynchReply before the transaction can commit. You can not use
tpcancel to cancel a call descriptor associated with a transaction.

2.2.3.2 Conversational Communication

Use the following conversational primitives when creating conversational clients that
communicate with Oracle Tuxedo services:

Note: You can not use the call descriptor to invoke tpgetreply().

Note: For more information on Conversational Communication, see
Chapter 6, "Oracle WebLogic Tuxedo Connector JATMI
Conversations."

Table 2–3 Oracle WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to an Oracle Tuxedo conversational service.

tpdiscon Use to abort a connection and generate a TPEV_DISCONIMM event when
executed by the process controlling the conversation.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application.

tpsend Use to send data across an open connection to an Oracle Tuxedo
application.

Example Client EJB

2-6 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

2.2.3.3 Enqueuing and Dequeuing Messages
Use the following JATMI primitives to enqueue and dequeue messages between your
Oracle WebLogic Tuxedo Connector client application and Oracle Tuxedo:

2.2.4 Close a Connection to an Oracle Tuxedo Object
Use tpterm() to close a connection to an object and prevent future operations on this
object.

2.3 Example Client EJB
The following Java code provides an example of the ToupperBean.java client EJB
which sends a string argument to a server and receives a reply string from the server.

Example 2–2 Example Client Application

.

.

.
public String Toupper(String toConvert)
 throws TPException, TPReplyException
{
 Context ctx;
 TuxedoConnectionFactory tcf;
 TuxedoConnection myTux;
 TypedString myData;
 Reply myRtn;
 int status;

 log("toupper called, converting " + toConvert);

 try {
 ctx = new InitialContext();
 tcf = (TuxedoConnectionFactory) ctx.lookup(
 "tuxedo.services.TuxedoConnection");
 }
 catch (NamingException ne) {
 // Could not get the tuxedo object, throw TPENOENT
 throw new TPException(TPException.TPENOENT, "Could not get
 TuxedoConnectionFactory : " + ne);
 }

 myTux = tcf.getTuxedoConnection();

 myData = new TypedString(toConvert);

 log("About to call tpcall");
 try {
 myRtn = myTux.tpcall("TOUPPER", myData, 0);
}
 catch (TPReplyException tre) {
 log("tpcall threw TPReplyExcption " + tre);

Table 2–4 JATMI Primitives

Name Operation

tpdequeue Use for receiving messages from an Oracle Tuxedo /Q.

tpenqueue Use for placing a message on an Oracle Tuxedo /Q.

Example Client EJB

Developing Oracle WebLogic Tuxedo Connector Client EJBs 2-7

 throw tre;
 }
 catch (TPException te) {
 log("tpcall threw TPException " + te);
 throw te;
 }
 catch (Exception ee) {
 log("tpcall threw exception: " + ee);
 throw new TPException(TPException.TPESYSTEM, "Exception: " + ee);
 }
 log("tpcall successfull!");

 myData = (TypedString) myRtn.getReplyBuffer();

 myTux.tpterm();// Closing the association with Tuxedo

 return (myData.toString());
}
.
.
.

Example Client EJB

2-8 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

3

Developing Oracle WebLogic Tuxedo Connector Service EJBs 3-1

3Developing Oracle WebLogic Tuxedo
Connector Service EJBs

The following sections provide information on how to create Oracle WebLogic Tuxedo
Connector service EJBs:

■ Section 3.1, "Basic Service EJB Operation"

■ Section 3.2, "Example Service EJB"

3.1 Basic Service EJB Operation
A service application uses Java and JATMI primitives to provide the following tasks:

■ Access Service Information

■ Buffer Messages

■ Perform the Requested Service

3.1.1 Access Service Information
Use the TPServiceInformation class to access service information sent by the Oracle
Tuxedo client to run the service.

3.1.2 Buffer Messages
Use the following TypedBuffers when sending and receiving messages between your
application and Oracle Tuxedo:

Table 3–1 JATMI TPServiceInformation Primitives

Buffer Type Description

getServiceData() Use to return the service data sent from the Oracle Tuxedo Client.

getServiceFlags() Use to return the service flags sent from the Oracle Tuxedo Client.

getServiceName() Use to return the service name that was called.

Table 3–2 TypedBuffers

Buffer Type Description

TypedString Buffer type used when the data is an array of characters that terminates
with the null character. Oracle Tuxedo equivalent: STRING.

TypedCArray Buffer type used when the data is an undefined array of characters (byte
array), any of which can be null. Oracle Tuxedo equivalent: CARRAY.

Basic Service EJB Operation

3-2 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

3.1.3 Perform the Requested Service
Use Java code to express the logic required to provide your service.

3.1.3.1 Return Client Messages for Request/Response Communication
Use the TuxedoReply class setReplyBuffer() method to respond to client requests.

3.1.3.2 Use tpsend and tprecv for Conversational Communication

Use the following JATMI primitives when creating conversational servers that
communicate with Oracle Tuxedo clients:

TypedFML Buffer type used when the data is self-defined. Each data field carries its
own identifier, an occurrence number, and possibly a length indicator.
Oracle Tuxedo equivalent: FML.

TypedFML32 Buffer type similar to TypeFML but allows for larger character fields,
more fields, and larger overall buffers. Oracle Tuxedo equivalent:
FML32.

TypedXML Buffer type used when data is an XML based message. Oracle Tuxedo
equivalent: XML for Tuxedo Release 7.1 and higher.

TypedView Buffer type used when the application uses a Java structure to define
the buffer structure using a view description file. Tuxedo equivalent:
VIEW

TypedView32 Buffer type similar to View but allows for larger character fields, more
fields, and larger overall buffers. Oracle Tuxedo equivalent: VIEW32.

TypedXOctet Buffer type used when the data is an undefined array of characters (byte
array) any of which can be null. X_OCTET is identical in semantics to
CARRAY. Oracle Tuxedo equivalent: X_OCTET.

TypedXCommon Buffer type identical in semantics to View. Oracle Tuxedo equivalent:
VIEW.

TypedXCType Buffer type identical in semantics to View. Oracle Tuxedo equivalent:
VIEW.

TypedMBString Buffer type used when the data is a wide array of characters to support
multi-byte characters. Oracle Tuxedo equivalent: MBSTRING.

Note: For more information on Conversational Communication, see
Chapter 6, "Oracle WebLogic Tuxedo Connector JATMI
Conversations."

Table 3–3 Oracle WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to an Oracle Tuxedo conversational service.

tpdiscon Use to abort a connection and generate a TPEV_DISCONIMM event when
executed by the process controlling the conversation.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application.

tpsend Use to send data across a open connection to an Oracle Tuxedo application.

Table 3–2 (Cont.) TypedBuffers

Buffer Type Description

Example Service EJB

Developing Oracle WebLogic Tuxedo Connector Service EJBs 3-3

3.2 Example Service EJB
The following provides an example of the TolowerBean.java service EJB which
receives a string argument, converts the string to all lower case, and returns the
converted string to the client.

Example 3–1 Example Service EJB

.

.

.

public Reply service(TPServiceInformation mydata) throws TPException {
 TypedString data;
 String lowered;
 TypedString return_data;

 log("service tolower called");

 data = (TypedString) mydata.getServiceData();
 lowered = data.toString().toLowerCase();
 return_data = new TypedString(lowered);

 mydata.setReplyBuffer(return_data);
 return (mydata);
}
.
.
.

Example Service EJB

3-4 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

4

Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability 4-1

4Using Oracle WebLogic Tuxedo Connector
for RMI/IIOP and CORBA Interoperability

The following sections provide information on how to modify your applications to use
Oracle WebLogic Tuxedo Connector to support interoperability between Oracle
WebLogic Server and Oracle Tuxedo CORBA objects:

■ Section 4.1, "How to Develop Oracle WebLogic Tuxedo Connector Client Beans
using the CORBA Java API"

■ Section 4.2, "How to Develop RMI/IIOP Applications for the Oracle WebLogic
Tuxedo Connector"

■ Section 4.3, "How to Use FederationURL Formats"

■ Section 4.4, "How to Manage Transactions for Oracle Tuxedo CORBA
Applications"

4.1 How to Develop Oracle WebLogic Tuxedo Connector Client Beans
using the CORBA Java API

The Oracle WebLogic Tuxedo Connector enables objects (such as EJBs or RMI objects)
to invoke upon CORBA objects deployed in Oracle Tuxedo using the CORBA Java API
(Outbound). Oracle WebLogic Tuxedo Connector implements a WTC ORB which uses
Oracle WebLogic Server RMI-IIOP runtime and CORBA support. This enhancement
provides the following features:

■ Support of out and inout parameters

■ Support for a call a CORBA service from Oracle WebLogic Server using
transactions and security.

Note: You will need to perform some administration tasks to
configure the Oracle WebLogic Tuxedo Connector for CORBA
interoperability. For information on how to administer the Oracle
WebLogic Tuxedo Connector for CORBA interoperability, see
"Administration of Corba Applications" in Oracle Fusion Middleware
Tuxedo Connector Administration Guide for Oracle WebLogic Server.

For information on how to develop Oracle Tuxedo CORBA
applications, see CORBA Programming at
http://download.oracle.com/docs/cd/E13203_
01/tuxedo/tux100/interm/corbaprog.html.

How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API

4-2 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

■ Support for an ORB hosted in JNDI rather than an instance of the JDK ORB used
in previous releases.

■ A wrapper is provided to allow users with legacy applications to use the new ORB
without modifying their existing applications. Oracle recommends that users
migrate to the new method of looking up the ORB in JNDI instead of doing:

ORB orb = ORB.init(args, Prop);

To use CORBA Java API, you must use the WTC ORB. Use one of the following
methods to obtain an ORB in your Bean:

Properties Prop;
Prop = new Properties();
Prop.put("org.omg.CORBA.ORBClass","weblogic.wtc.corba.ORB");
ORB orb = ORB.init(new String[0], Prop);

or

ORB orb = (ORB)(new InitialContext().lookup("java:comp/ORB"));

or

ORB orb = ORB.init();

You can use either of the following methods to reference objects deployed in Oracle
Tuxedo:

■ Section 4.1.1, "Using CosNaming Service"

■ Section 4.1.2, "Using FactoryFinder"

4.1.1 Using CosNaming Service

1. The Oracle WebLogic Tuxedo Connector uses the CosNaming service to get a
reference to an object in the remote Oracle Tuxedo CORBA domain. This is
accomplished by using a corbaloc:tgiop or corbaname:tgiop object
reference. The following statements use the CosNaming service to get a reference
to an Oracle Tuxedo CORBA Object:

// Get the simple factory.
org.omg.CORBA.Object simple_fact_oref =
 orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");

Where:

■ simpapp is the domain id of the Oracle Tuxedo domain specified in the Oracle
Tuxedo UBB.

■ simple_factory is the name that the object reference was bound to in the Oracle
Tuxedo CORBA CosNaming server.

Note: For more information on object references, see Section 4.3,
"How to Use FederationURL Formats".

How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API

Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability 4-3

4.1.1.1 Example ToupperCorbaBean.java Code

Example 4–1 Example Service Application

.

.

.
public String Toupper(String toConvert)
throws RemoteException
{
 log("toupper called, converting " + toConvert);

 try {
 // Initialize the ORB.
 String args[] = null;
 Properties Prop;
 Prop = new Properties();
 Prop.put("org.omg.CORBA.ORBClass",
 "weblogic.wtc.corba.ORB");

 ORB orb = (ORB) new InitialContext().lookup("java:comp/ORB");

 // Get the simple factory.
 org.omg.CORBA.Object simple_fact_oref =
 orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");

 //Narrow the simple factory.
 SimpleFactory simple_factory_ref =
 SimpleFactoryHelper.narrow(simple_fact_oref);

 // Find the simple object.
 Simple simple = simple_factory_ref.find_simple();

 // Convert the string to upper case.
 org.omg.CORBA.StringHolder buf =
 new org.omg.CORBA.StringHolder(toConvert);
 simple.to_upper(buf);
 return buf.value;
 }
 catch (Exception e) {
 throw new RemoteException("Can't call TUXEDO CORBA server: " +e);
 }
}
.
.
.

Note: For an example on how to develop client beans for outbound
Oracle Tuxedo CORBA objects, see the SAMPLES_
HOME\server\examples\src\examples\wtc\corba\simpappc
ns package in your Oracle WebLogic Server examples distribution.

The following ToupperCorbaBean.java code provides an example
of how to call the WTC ORB and get an object reference using the
COSNaming Service.

How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API

4-4 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

4.1.2 Using FactoryFinder

Oracle WebLogic Tuxedo Connector provides support for FactoryFinder objects using
the find_one_factory_by_id method. This is accomplished by using a
corbaloc:tgiop or corbaname:tgiop object reference. Use the following method
to obtain the FactoryFinder object using the ORB:

// String to Object.
org.omg.CORBA.Object fact_finder_oref =
 orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");

// Narrow the factory finder.
FactoryFinder fact_finder_ref =
 FactoryFinderHelper.narrow(fact_finder_oref);

// Use the factory finder to find the simple factory.
org.omg.CORBA.Object simple_fact_oref =
 fact_finder_ref.find_one_factory_by_id(SimpleFactoryHelper.id());

Where:

■ simpapp is the domain id of the Oracle Tuxedo domain specified in the Oracle
Tuxedo UBB.

■ FactoryFinder is the name that the object reference was bound to in the Oracle
Tuxedo CORBA server.

4.1.2.1 WLEC to Oracle WebLogic Tuxedo Connector Migration
WLEC is no longer available or supported in Oracle WebLogic Server. WLEC users
should migrate their applications to Oracle WebLogic Tuxedo Connector. For more
information, see Oracle Fusion Middleware Tuxedo Connector Migration Guide for WLEC to
Oracle WebLogic Server.

4.1.2.2 Example Code
The following code provides an example of how to call the WTC ORB and get an
object reference using FactoryFinder.

Example 4–2 Example FactoryFinder Code

.

.

.
public ConverterResult convert (String changeCase, String mixed)
throws ProcessingErrorException
{
 String result;
 try {
 // Initialize the ORB.
 String args[] = null;
 Properties Prop;
 Prop = new Properties();
 Prop.put("org.omg.CORBA.ORBClass","weblogic.wtc.corba.ORB");
 ORB orb = (ORB)new InitialContext().lookup("java:comp/ORB");

Note: For more information on object references, see Section 4.3,
"How to Use FederationURL Formats".

How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability 4-5

 org.omg.CORBA.Object fact_finder_oref =
 orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");

 // Narrow the factory finder.
 FactoryFinder fact_finder_ref =
 FactoryFinderHelper.narrow(fact_finder_oref);

 // find_one_factory_by_id
 org.omg.CORBA.Object simple_fact_oref =
 fact_finder_ref.find_one_factory_by_id(FactoryFinderHelper.id());

 // Narrow the simple factory.
 SimpleFactory simple_factory_ref =
 SimpleFactoryHelper.narrow(simple_fact_oref);

 // Find the simple object.
 Simple simple = simple_factory_ref.find_simple();

 if (changeCase.equals("UPPER")) {
 // Invoke the to_upper opeation on M3 Simple object
 org.omg.CORBA.StringHolder buf =
 new org.omg.CORBA.StringHolder(mixed);
 simple.to_upper(buf);
 result = buf.value;
 }
 else
 {
 result = simple.to_lower(mixed);
 }

 }
 catch (org.omg.CORBA.SystemException e) {e.printStackTrace();

 throw new ProcessingErrorException("Converter error: Corba system exception:
" + e);
 }
 catch (Exception e) {
 e.printStackTrace();
 throw new ProcessingErrorException("Converter error: " + e);
 }
return new ConverterResult(result);
}
.
.
.

4.2 How to Develop RMI/IIOP Applications for the Oracle WebLogic
Tuxedo Connector

Note: For more information on how to develop RMI/IIOP
applications, see Oracle Fusion Middleware Programming RMI for Oracle
WebLogic Server.

How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

4-6 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

RMI over IIOP (Internet Inter-ORB Protocol) extends RMI so that Java programs can
interact with Common Object Request Broker Architecture (CORBA) clients and
execute CORBA objects. The Oracle WebLogic Tuxedo Connector:

■ Enables Oracle Tuxedo CORBA objects to invoke upon EJBs deployed in Oracle
WebLogic Server (Inbound).

■ Enables objects (such as EJBs or RMI objects) to invoke upon CORBA objects
deployed in Oracle Tuxedo (Outbound).

The following sections provide information on how to modify RMI/IIOP applications
to use the Oracle WebLogic Tuxedo Connector to interoperate with Oracle Tuxedo
CORBA applications:

■ Section 4.2.1, "How to Modify Inbound RMI/IIOP Applications to use the Oracle
WebLogic Tuxedo Connector"

■ Section 4.2.2, "How to Develop Outbound RMI/IIOP Applications to use the
Oracle WebLogic Tuxedo Connector"

4.2.1 How to Modify Inbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo
Connector

A client must pass the correct name to which the Oracle WebLogic Server's name
service has been bound to the COSNaming Service.

The following code provides an example for obtaining a naming context. "WLS" is the
bind name specified in the cnsbind command detailed in "Administration of Corba
Applications" in Oracle Fusion Middleware Tuxedo Connector Administration Guide for
Oracle WebLogic Server.

Example 4–3 Example Code to Obtain a Naming Context

.

.

.
// obtain a naming context
 TP::userlog("Narrowing to a naming context");
 CosNaming::NamingContext_var context =
 CosNaming::NamingContext::_narrow(o);
 CosNaming::Name name;
 name.length(1);
 name[0].id = CORBA::string_dup("WLS");
 name[0].kind = CORBA::string_dup("");
.
.
.

4.2.2 How to Develop Outbound RMI/IIOP Applications to use the Oracle WebLogic
Tuxedo Connector

An EJB must use a FederationURL to obtain the initial context used to access a remote
Oracle Tuxedo CORBA object. Use the following sections to modify outbound
RMI/IIOP applications to use the Oracle WebLogic Tuxedo Connector:

■ Section 4.2.2.1, "How to Modify the ejb-jar.xml File to Pass a FederationURL to
EJBs"

■ Section 4.2.2.2, "How to Modify EJBs to Use FederationURL to Access an Object"

How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability 4-7

4.2.2.1 How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs
The following code provides an example of how to configure an ejb-jar.xml file to
pass a FederationURL format to the EJB at run-time.

Example 4–4 Example ejb-jar.xml File Passing a FederationURL to an EJB

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN' 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>
 <small-icon>images/green-cube.gif</small-icon>
 <enterprise-beans>
 <session>
 <small-icon>images/orange-cube.gif</small-icon>
 <ejb-name>IIOPStatelessSession</ejb-name>
 <home>examples.iiop.ejb.stateless.TraderHome</home>
 <remote>examples.iiop.ejb.stateless.Trader</remote>
 <ejb-class>examples.iiop.ejb.stateless.TraderBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <env-entry-name>foreignOrb</env-entry-name>
 <env-entry-type>java.lang.String </env-entry-type>
 <env-entry-value>corbaloc:tgiop:simpapp</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>WEBL</env-entry-name>
 <env-entry-type>java.lang.Double </env-entry-type>
 <env-entry-value>10.0</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>INTL</env-entry-name>
 <env-entry-type>java.lang.Double </env-entry-type>
 <env-entry-value>15.0</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>tradeLimit</env-entry-name>
 <env-entry-type>java.lang.Integer </env-entry-type>
 <env-entry-value>500</env-entry-value>
 </env-entry>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>IIOPStatelessSession</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>
 <trans-attribute>NotSupported</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

To pass the FederationURL to the EJB at run-time, add an env-entry for the EJB in
the ejb-jar.xml file for your application. You must assign the following
env-entry sub-elements:

How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector

4-8 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

■ Section 4.2.2.1.1, "Assign env-entry-name"

■ Section 4.2.2.1.2, "Assign env-entry-type"

■ Section 4.2.2.1.3, "Assign env-entry-value"

4.2.2.1.1 Assign env-entry-name The env-entry-name element is used to specify the
name of the variable used to pass the value in the env-entry-value element to the
EJB. The example code shown in Example 4–4 specifies the env-entry-name as
foreignOrb.

4.2.2.1.2 Assign env-entry-type The env-entry-type element is used to specify the
data type (example String, Integer, Double) of the env-entry-value element that is
passed to the EJB. The example code shown in Example 4–4 specifies that the
foreignOrb variable passes String data to the EJB.

4.2.2.1.3 Assign env-entry-value The env-entry-value element is used to specify the
data that is passed to the EJB. The example code shown in Example 4–4 specifies that
the foreignOrb variable passes the following FederationURL format to the EJB:

corbaloc:tgiop:simpapp

Where simpapp is the DOMAINID of the Oracle Tuxedo remote service specified in the
Oracle Tuxedo UBB.

4.2.2.2 How to Modify EJBs to Use FederationURL to Access an Object
This section provides information on how to use the FederationURL to obtain the
InitialContext used to access a remote Oracle Tuxedo CORBA object.

The following code provides an example of how to use FederationURL to get an
InitialContext.

Example 4–5 Example TraderBean.java Code to get InitialContext

.

.

.
public void createRemote() throws CreateException {
 log("createRemote() called");

 try {
 InitialContext ic = new InitialContext();

 // Lookup a EJB-like CORBA server in a remote CORBA domain
 Hashtable env = new Hashtable();
 env.put(Context.PROVIDER_URL, (String)
 ic.lookup("java:/comp/env/foreignOrb")
 + "/NameService");

 InitialContext cos = new InitialContext(env);
 TraderHome thome =
 (TraderHome)PortableRemoteObject.narrow(
 cos.lookup("TraderHome_iiop"),TraderHome.class);
 remoteTrader = thome.create();
}
 catch (NamingException ne) {
 throw new CreateException("Failed to find value "+ne);
}
 catch (RemoteException re) {

How to Use FederationURL Formats

Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability 4-9

 throw new CreateException("Error creating remote ejb "+re);
}
}
.
.
.

Use the following steps to use FederationURL to obtain an InitialContext for a remote
Oracle Tuxedo CORBA object:

1. Retrieve the FederationURL format defined in the ejb-jar.xml file.

Example:

"ic.lookup("java:/comp/env/foreignOrb")

The example code shown in Example 4–4 specifies that the foreignOrb variable
passes the following FederationURL format to the EJB:

corbaloc:tgiop:simpapp

2. Concatenate the FederationURL format with "/NameService" to form the
FederationURL.

Example:

"ic.lookup("java:/comp/env/foreignOrb") + "/NameService"

The resulting FederationURL is:

corbaloc:tgiop:simpapp/NameService

3. Get the InitialContext.

Example:

env.put(Context.PROVIDER_URL, (String)
 ic.lookup("java:/comp/env/foreignOrb") + "/NameService");
InitialContext cos = new InitialContext(env);

The result is the InitialContext of the Oracle Tuxedo CORBA object.

4.3 How to Use FederationURL Formats
This section provides information on the syntax for the following FederationURL
formats:

■ The CORBA URL syntax is described in the CORBA specification. For more
information, see the OMG Web Site at http://www.omg.org/.

■ The corbaloc:tgiop form is specific to the Oracle tgiop protocol.

4.3.1 Using corbaloc URL Format
This section provides the syntax for corbaloc URL format:

<corbaloc> = "corbaloc:tgiop":[<version>] <domain>["/"<key_string>]
<version> = <major> "." <minor> "@" | empty_string
<domain> = TUXEDO CORBA domain name
<major> = number
<minor> = number
<key_string> = <string> | empty_string

How to Use FederationURL Formats

4-10 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

4.3.1.1 Examples of corbaloc:tgiop
This section provides examples on how to use corbaloc:tgiop.

orb.string_to_object("corbaloc:tgiop:simpapp/NameService");
orb.string_to_object("corbaloc:tgiop:simpapp/FactoryFinder");
orb.string_to_object("corbaloc:tgiop:simpapp/InterfaceRepository");
orb.string_to_object("corbaloc:tgiop:simpapp/Tobj_SimpleEventsService");
orb.string_to_object("corbaloc:tgiop:simpapp/NotificationService");
orb.string_to_object("corbaloc:tgiop:1.1@simpapp/NotificationService);

4.3.1.2 Examples using -ORBInitRef
You can also use the -ORBInitRef option to orb.init and resolve_initial_
reference.

Given the following -ORBInitRef definitions:

-ORBInitRef FactoryFinder=corbaloc:tgiop:simp/FactoryFinder
-ORBInitRef InterfaceRepository=corbaloc:tgiop:simp/InterfaceRepository
-ORBInitRef Tobj_SimpleEventService=corbaloc:tgiop:simp/Tobj_SimpleEventsService
-ORBInitRef NotificationService=corbaloc:tgiop:simp/NotificationService

then:

orb.resolve_initial_references("NameService");
orb.resolve_initial_references("FactoryFinder");
orb.resolve_initial_references("InterfaceRepository");
orb.resolve_initial_references("Tobj_SimpleEventService");
orb.resolve_initial_references("NotificationService");

4.3.1.3 Examples Using -ORBDefaultInitRef
You can use the -ORBDefaultInitRef and resolve_initial_reference.

Given the following -ORBDefaultInitRef definition:

-ORBDefaultInitRef corbaloc:tgiop:simpapp

then:

orb.resolve_initial_references("NameService");

4.3.2 Using the corbaname URL Format
You can also use the corbaname format instead of the corbaloc format.

4.3.2.1 Examples Using -ORBInitRef
Given the following -ORBInitRef definition:

-ORBInitRef NameService=corbaloc:tgiop:simpapp/NameService

then:

orb.string_to_object("corbaname:rir:#simple_factory");
orb.string_to_object("corbaname:tgiop:simpapp#simple_factory");
orb.string_to_object("corbaname:tgiop:1.1@simpapp#simple_factory");
orb.string_to_object("corbaname:tgiop:simpapp#simple/simple_factory");

How to Manage Transactions for Oracle Tuxedo CORBA Applications

Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability 4-11

4.4 How to Manage Transactions for Oracle Tuxedo CORBA Applications

The Oracle WebLogic Tuxedo Connector uses the Java Transaction API (JTA) to
manage transactions with Oracle Tuxedo Corba Applications. For more detailed
information, see:

■ Oracle Fusion Middleware Programming JTA for Oracle WebLogic Server

■ "Transaction Design and Management Options" in Oracle Fusion Middleware
Programming Enterprise JavaBeans for Oracle WebLogic Server

Note: For more information on managing transactions in Oracle
Tuxedo CORBA applications, see "Overview of Transactions in Tuxedo
CORBA Applications" in Using CORBA Transactions at
http://download.oracle.com/docs/cd/E13203_
01/tuxedo/tux100/trans/gstrx.html.

How to Manage Transactions for Oracle Tuxedo CORBA Applications

4-12 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

5

Oracle WebLogic Tuxedo Connector JATMI Transactions 5-1

5Oracle WebLogic Tuxedo Connector JATMI
Transactions

The following sections provide information on global transactions and how to define
and manage them in your applications:

■ Section 5.1, "Global Transactions"

■ Section 5.2, "JTA Transaction API"

■ Section 5.3, "Defining a Transaction"

■ Section 5.4, "Oracle WebLogic Tuxedo Connector Transaction Rules"

■ Section 5.5, "Example Transaction Code"

5.1 Global Transactions
A global transaction is a transaction that allows work involving more than one
resource manager and spanning more than one physical site to be treated as one
logical unit. A global transaction is always treated as a specific sequence of operations
that is characterized by the following four properties:

■ Atomicity: All portions either succeed or have no effect.

■ Consistency: Operations are performed that correctly transform the resources from
one consistent state to another.

■ Isolation: Intermediate results are not accessible to other transactions, although
other processes in the same transaction may access the data.

■ Durability: All effects of a completed sequence cannot be altered by any kind of
failure.

5.2 JTA Transaction API

The Oracle WebLogic Tuxedo Connector uses the Java Transaction API (JTA) to
manage transactions.

Note: For more detailed information, see the JTA API at
http://java.sun.com/javaee/technologies/jta/index.js
p.

Defining a Transaction

5-2 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

5.2.1 Types of JTA Interfaces
JTA offers three types of transaction interfaces:

■ Transaction

■ TransactionManager

■ UserTransaction

5.2.1.1 Transaction
The Transaction interface allows operations to be performed against a transaction
in the target Transaction object. A transaction object is created to correspond to each
global transaction created. Use the Transaction interface to enlist resources,
synchronize registration, and perform transaction completion and status query
operations.

5.2.1.2 TransactionManager
The TransactionManager interface allows the application server to communicate to
the Transaction Manager for transaction boundaries demarcation on behalf of the
application. Use the TransactionManager interface to communicate to the
transaction manager on behalf of container-managed EJB components.

5.2.1.3 UserTransaction
The UserTransaction interface is a subset of the TransactionManager interface.
Use the UserTransaction interface when it is necessary to restrict access to
Transaction object.

5.2.2 JTA Transaction Primitives
The following table maps the functionality of Oracle Tuxedo transaction primitives to
equivalent JTA transaction primitives.

5.3 Defining a Transaction
Transactions can be defined in either client or server processes. A transaction has three
parts: a starting point, the program statements that are in transaction mode, and a
termination point.

To explicitly define a transaction, call the begin() method. The same process that
makes the call, the initiator, must also be the one that terminates it by invoking a
commit(), setRollbackOnly(), or rollback(). Any service subroutines that are
called between the transaction delimiter become part of the current transaction.

Table 5–1 Mapping Oracle Tuxedo Transaction Primitives to JTA Equivalents

Oracle Tuxedo Oracle Tuxedo Functionality JTA Equivalent

tpabort Use to end a transaction. or rollback

tpcommit Use to complete a transaction. commit

tpgetlev Use to determine if a service
routine is in transaction mode.

getStatus

tpbegin Use to begin a transaction. setTransactionTimeout
begin

Oracle WebLogic Tuxedo Connector Transaction Rules

Oracle WebLogic Tuxedo Connector JATMI Transactions 5-3

5.3.1 Starting a Transaction

A transaction is started by a call to begin(). To specify a time-out value, precede the
begin() statement with a setTransactionTimeout(int seconds) statement.

To propagate the transaction to Oracle Tuxedo, you must do the following:

■ Look up a TuxedoConnectionFactory object in the JNDI.

■ Get a TuxedoConnection object using getTuxedoConnection().

5.3.1.1 Using TPNOTRAN
Service routines that are called within the transaction delimiter are part of the current
transaction. However, if tpcall() or tpacall() have the flags parameter set to
TPNOTRAN, the operations performed by the called service do not become part of
that transaction. As a result, services performed by the called process are not affected
by the outcome of the current transaction.

5.3.2 Terminating a Transaction
A transaction is terminated by a call to commit(), rollback(), or
setRollbackOnly(). When commit() returns successfully, all changes to the
resource as a result of the current transaction become permanent. In order for a
commit() to succeed, the following two conditions must be met:

■ The calling process must be the same one that initiated the transaction with a
begin()

■ The calling process must have no transaction replies outstanding

If either condition is not true, the call fails and an exception is thrown.

setRollbackOnly() and rollback() are used to indicate an abnormal condition
and to roll back any call descriptors to their original state.

■ Use setRollbackOnly() if further processing or cleanup is needed before
rolling back the transaction.

■ Use rollback() if no further processing or cleanup is required before rolling
back the transaction.

5.4 Oracle WebLogic Tuxedo Connector Transaction Rules
You must follow certain rules while in transaction mode to insure successful
completion of a transaction. The basic rules of etiquette that must be observed while in
a transaction mode follow:

■ You must propagate the transaction to Oracle Tuxedo using a TuxedoConnection
object after you initiate a transaction with a begin().

Note: Setting setTransactionTimeout() to unrealistically large
values delays system detection and reporting of errors. Use time-out
values to ensure response to service requests occur within a
reasonable time and to terminate transactions that have encountered
problem, such as a network failure. For productions environments,
adjust the time-out value to accommodate expected delays due to
system load and database contention.

Example Transaction Code

5-4 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

■ tpterm() closes a connection to an object and prevents future operations on this
object.

■ Processes that are participants in the same transaction must require replies for
their requests.

■ Requests requiring no reply can be made only if the flags parameter of tpacall() is
set to TPNOREPLY.

■ A service must retrieve all asynchronous transaction replies before calling
commit().

■ The initiator must retrieve all asynchronous transaction replies before calling
begin().

■ The asynchronous replies that must be retrieved include those that are expected
from non-participants of the transaction, that is, replies expected for requests
made with a tpacall() suppressing the transaction but not the reply.

■ If a transaction has not timed out but is marked abort-only, further communication
should be performed with the TPNOTRAN flag set so that the work done as a
result of the communication has lasting effect after the transaction is rolled back.

■ If a transaction has timed out:

– the descriptor for the timed out call becomes stale and any further reference to
it will return TPEBADDESC.

– further calls to tpgetrply() or tprecv() for any outstanding descriptors will
return the global state of transaction time-out by setting tperrono to
TPETIME.

– asynchronous calls can be make with the flags parameter of tpacall() set to
TPNOREPLY | TPNOBLOCK | TPNOTRAN.

■ Once a transaction has been marked abort-only for reasons other than time-out, a
call to tpgetrply() will return whatever represents the local state of the call, that is,
it can either return success or an error code that represents the local condition.

■ Once a descriptor is used with tpgetrply() to retrieve a reply, it becomes invalid
and any further reference to it will return TPEBADDESC.

■ Once a descriptor is used with tpsend() or tprecv() to report an error condition, it
becomes invalid and any further reference to it will return TPEV_DISCONIMM.

■ Once a transaction is aborted, all outstanding transaction call descriptions (made
without the TPNOTRAN flag) become stale, and any further reference to them will
return TPEBADDESC.

■ Oracle WebLogic Tuxedo Connector does not guarantee that all calls for a
particular transaction Id are routed to a particular server instance when load
balancing. Load balancing is performed on a per call basis.

5.5 Example Transaction Code
The following provides a code example for a transaction:

Example 5–1 Example Transaction Code

public class TransactionSampleBean implements SessionBean {

.....

Example Transaction Code

Oracle WebLogic Tuxedo Connector JATMI Transactions 5-5

public int transaction_sample () {

 int ret = 0;
 try {
 javax.naming.Context myContext = new InitialContext();
 TransactionManager tm = (javax.transaction.TransactionManager)
 myContext.lookup("javax.transaction.TransactionManager");

// Begin Transaction
 tm.begin ();

 TuxedoConnectionFactory tuxConFactory = (TuxedoConnectionFactory)
 ctxt.lookup("tuxedo.services.TuxedoConnection");

// You could do a local JDBC/XA-database operation here
// which will be part of this transaction.
.....

// NOTE 1: Get the Tuxedo Connection only after
// you begin the transaction if you want the
// Tuxedo call to be part of the transaction!

// NOTE 2: If you get the Tuxedo Connection before
// the transaction was started, all calls made from
// that Tuxedo Connection are out of scope of the
// transaction.

 TuxedoConnection myTux = tuxConFactory.getTuxedoConnection();

// Do a tpcall. This tpcall is part of the transaction.
 TypedString depositData = new TypedString("somecharacters,5000.00");

 Reply depositReply = myTux.tpcall("DEPOSIT", depositData, 0);

// You could also do tpcalls which are not part of
// transaction (For example, Logging all attempted
// operations etc.) by setting the TPNOTRAN Flag!
 TypedString logData =
 new TypedString("DEPOSIT:somecharacters,5000.00");

 Reply logReply = myTux.tpcall("LOGTRAN", logData,
 ApplicationToMonitorInterface.TPNOTRAN);

// Done with the Tuxedo Connection. Do tpterm.
 myTux.tpterm ();

// Commit Transaction...
 tm.commit ();

// NOTE: The TuxedoConnection object which has been
// used in this transaction, can be used after the
// transaction only if TPNOTRAN flag is set.
}
 catch (NamingException ne) {
 System.out.println ("ERROR: Naming Exception looking up JNDI: " + ne);
 ret = -1;
}
 catch (RollbackException re) {
 System.out.println("ERROR: TRANSACTION ROLLED BACK: " + re);
 ret = 0;

Example Transaction Code

5-6 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

}
 catch (TPException te) {
 System.out.println("ERROR: tpcall failed: TpException: " + te);
 ret = -1;
}
 catch (Exception e) {
 log ("ERROR: Exception: " + e);
 ret = -1;
}

 return ret;
}

6

Oracle WebLogic Tuxedo Connector JATMI Conversations 6-1

6Oracle WebLogic Tuxedo Connector JATMI
Conversations

The following sections provide information on conversations and how to define and
manage them in your applications:

■ Section 6.1, "Overview of Oracle WebLogic Tuxedo Connector Conversational
Communication"

■ Section 6.2, "Oracle WebLogic Tuxedo Connector Conversation Characteristics"

■ Section 6.3, "Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives"

■ Section 6.4, "Creating Oracle WebLogic Tuxedo Connector Conversational Clients
and Servers"

■ Section 6.5, "Sending and Receiving Messages"

■ Section 6.6, "Ending a Conversation"

■ Section 6.7, "Executing a Disorderly Disconnect"

■ Section 6.8, "Understanding Conversational Communication Events"

■ Section 6.9, "Oracle WebLogic Tuxedo Connector Conversation Guidelines"

6.1 Overview of Oracle WebLogic Tuxedo Connector Conversational
Communication

Oracle WebLogic Tuxedo Connector supports Oracle Tuxedo conversations as a
method to exchange messages between Oracle WebLogic Server and Oracle Tuxedo
applications. In this form of communication, a virtual connection is maintained
between the client and the server and each side maintains information about the state
of the conversation. The process that opens a connection and starts a conversation is
the originator of the conversation. The process with control of the connection is the
initiator; the process without control is called the subordinate. The connection remains
active until an event occurs to terminate it.

Note: For more information on conversational communications for
Oracle Tuxedo, see "Writing Conversational Clients and Servers" in
Programming a Tuxedo ATMI Application in C at
http://download.oracle.com/docs/cd/E13203_
01/tuxedo/tux100/pgc/pgconv.html.

Oracle WebLogic Tuxedo Connector Conversation Characteristics

6-2 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

During conversational communication, a half-duplex connection is established
between the initiator and the subordinate. Control of the connection is passed between
the initiator and the subordinate. The process that has control can send messages (the
initiator); the process that does not have control can only receive messages (the
subordinate).

6.2 Oracle WebLogic Tuxedo Connector Conversation Characteristics
Oracle WebLogic Tuxedo Connector JATMI conversations have the following
characteristics:

■ Data is passed using TypedBuffers. The type and sub-type of the data must match
one of the types and sub-types recognized by the service.

■ The logical connection between the conversational client and the conversational
server remains active until it is terminated.

■ Any number of messages can be transmitted across a connection between a
conversational client and the conversational server.

■ A Oracle WebLogic Tuxedo Connector conversational client initiates a request
for service using tpconnect rather than a tpcall or tpacall.

■ Oracle WebLogic Tuxedo Connector conversational clients and servers use the
JATMI primitives tpsend to send data and tprecv to receive data.

■ A conversational client only sends service requests to a conversational server.

■ Conversational servers are prohibited from making calls to tpforward.

6.3 Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives
Use the following Oracle WebLogic Tuxedo Connector primitives when creating
conversational clients and servers that communicate between Oracle WebLogic Server
and Oracle Tuxedo:

6.4 Creating Oracle WebLogic Tuxedo Connector Conversational Clients
and Servers

The following sections provide information on how to create conversational clients
and servers.

6.4.1 Creating Conversational Clients
Follow the steps outlined in Chapter 2, "Developing Oracle WebLogic Tuxedo
Connector Client EJBs" to create Oracle WebLogic Tuxedo Connector

Table 6–1 Oracle WebLogic Tuxedo Connector Conversational Client Primitives

Name Operation

tpconnect Use to establish a connection to an Oracle Tuxedo conversational service.

tpdiscon Use to abort a connection and generate a TPEV_DISCONIMM event.

tprecv Use to receive data across an open connection from an Oracle Tuxedo
application.

tpsend Use to send data across a open connection to an Oracle Tuxedo
application.

Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers

Oracle WebLogic Tuxedo Connector JATMI Conversations 6-3

conversational clients. The following section provide information on how to use
tpconnect to open a connection and start a conversation.

6.4.1.1 Establishing a Connection to an Oracle Tuxedo Conversational Service
A Oracle WebLogic Tuxedo Connector conversational client must establish a
connection to the Oracle Tuxedo conversational service. Use the JATMI primitive
tpconnect to open a connection and start a conversation. A successful call returns an
object that can be used to send and receive data for a conversation.

The following table describes tpconnect parameters:

6.4.1.2 Example TuxedoConversationBean.java Code
The following provides a code example to use tpconnect to start a conversation:

Example 6–1 Example Conversation Code

.

.

.
Context ctx;
Conversation myConv;
TuxedoConnection myTux;
TuxedoConnectionFactory tcf;
.
.
.

Table 6–2 Oracle WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

svc Character pointer to a conversational service name. If you do not
specify a svc, the call will fail and TPException is set to TPEV_
DISCONIMM.

data Pointer to the data buffer. When establishing a connection, you can send
data simultaneously by setting the data parameter to point to a buffer.
The type and subtype of the buffer must be recognized by the service
being called. You can set the value of data to NULL to specify that no
data is to be sent.

flags Use flags or combinations of flags as required by your application
needs. Valid flag values are:

TPSENDONLY: specifies that the control is being retained by the
originator. The called service is subordinate and can only receive data.
Do not use in combination with TPRECVONLY.

TPRECVONLY: specifies that control is being passed to the called
service.The originator becomes subordinate and can only receive data.
Do not use in combination with TPSENDONLY.

TPNOTRAN: specifies that when svc is invoked and the originator is
transaction mode, svc is not part of the originator's transaction. A call
remains subject to transaction timeouts. If svc fails, the originator's
transaction is unaffected.

TPNOBLOCK: specifies that a request is not sent if a blocking condition
exists. If TPNOBLOCK is not specified, the originator blocks until the
condition subsides, a transaction timeout occurs, or a blocking timeout
occurs.

TPNOTIME: specifies that the originator will block indefinitely and is
immune to blocking timeouts. If the originator is in transaction mode,
the call is subject to transaction timeouts.

Sending and Receiving Messages

6-4 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

ctx = new InitialContext();
tcf = (TuxedoConnectionFactory) ctx.lookup ("tuxedo.services.TuxedoConnection");
myTux = tcf.getTuxedoConnection();
flags =ApplicationToMonitorInterface.TPSENDONLY;
myConv = myTux.tpconnect("CONNECT_SVC",null,flags);
.
.
.

6.4.2 Creating Oracle WebLogic Tuxedo Connector Conversational Servers
Follow the steps outlined in Chapter 3, "Developing Oracle WebLogic Tuxedo
Connector Service EJBs," to create Oracle WebLogic Tuxedo Connector conversational
servers.

6.5 Sending and Receiving Messages
Once a conversational connection is established between a Oracle WebLogic Server
application and an Oracle Tuxedo application, the communication between the
initiator (sends message) and subordinate (receives message) is accomplished using
send and receive calls. The following sections describe how Oracle WebLogic
Tuxedo Connector applications use the JATMI primitives tpsend and tprecv:

■ Section 6.5.1, "Sending Messages"

■ Section 6.5.2, "Receiving Messages"

6.5.1 Sending Messages
Use the JATMI primitive tpsend to send a message to an Oracle Tuxedo application.

The following table describes tpsend parameters:

6.5.2 Receiving Messages
Use the JATMI primitive tprecv to receive messages from an Oracle Tuxedo
application.

The following table describes tprecv parameters:

Table 6–3 Oracle WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

data Pointer to the buffer containing the data sent with this conversation.

flags The flag can be one of the following:

TPRECVONLY: specifies that after the initiator's data is sent, the
initiator gives up control of the connection. The initiator becomes
subordinate and can only receive data.

TPNOBLOCK: specifies that the request is not sent if a blocking
condition exists. If TPNOBLOCK is not specified, the originator blocks
until the condition subsides, a transaction timeout occurs, or a blocking
timeout occurs.

TPNOTIME: specifies that an initiator is willing to block indefinitely
and is immune from blocking timeouts. The call is subject to transaction
timeouts.

Ending a Conversation

Oracle WebLogic Tuxedo Connector JATMI Conversations 6-5

6.6 Ending a Conversation
A conversation between Oracle WebLogic Server and Oracle Tuxedo ends when the
server process successfully completes its tasks. The following sections describe how a
conversation ends:

■ Section 6.6.1, "Oracle Tuxedo Application Originates Conversation"

■ Section 6.6.2, "Oracle WebLogic Tuxedo Connector Application Originates
Conversation"

■ Section 6.6.3, "Ending Hierarchical Conversations"

6.6.1 Oracle Tuxedo Application Originates Conversation
An Oracle WebLogic Server conversational server ends a conversation by a successful
call to return. A TPEV_SVCSUCC event is sent to the Oracle Tuxedo client that
originated connection to indicate that the service finished successfully. The connection
is then disconnected in an orderly manner.

6.6.2 Oracle WebLogic Tuxedo Connector Application Originates Conversation
An Oracle Tuxedo conversational server ends a conversation by a successful call to
tpreturn. A TPEV_SVCSUCC event is sent to the Oracle WebLogic Tuxedo
Connector client that originated connection to indicate that the service finished
successfully. The connection is then disconnected in an orderly manner.

6.6.3 Ending Hierarchical Conversations
The order in which an conversation ends is important to gracefully end hierarchal
conversations.

Assume there are two active connections: A-B and B-C. If B is a Oracle WebLogic
Tuxedo Connector application in control of both connections, a call to return has
the following effect: the call fails and a TPEV_SVCERR event is posted on all open
connections, and the connections are closed in a disorderly manner.

In order to terminate both connections in an orderly manner, the application must
execute the following sequence:

1. B calls tpsend with TPRECVONLY to transfer control of the B-C connection to the
Oracle Tuxedo application C.

2. C calls departure with rval set to TPSUCCESS, TPFAIL, or TPEXIT.

Table 6–4 Oracle WebLogic Tuxedo Connector JATMI tpconnect Parameters

Parameter Description

flags The flag can be one of the following:

TPNOBLOCK: specifies that tprecv does not wait for a reply to arrive.
If a reply is available, tprecv gets the reply and returns. If this flag is
not specified and a reply is not available, tprecv waits for one of the
following to occur: a reply, a transaction timeout, or a blocking timeout.

TPNOTIME: specifies that tprecv waits indefinitely for a reply. With
this flag, tprecv is immuned from blocking timeouts but is still subject
to transaction timeouts.

A flag value of 0 specifies that the initiator blocks until the condition
subsides or a timeout occurs.

Executing a Disorderly Disconnect

6-6 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

3. B calls return and posts an event (TPEV_SVCSUCC or TPEV_SVCFAIL) for A.

Conversational services can make request/response calls. Therefore, in the preceding
example, the calls from B to C may be executed using tpacall() or tpcall() instead of
tpconnect. Conversational services are not permitted to make calls to tpforward.

6.7 Executing a Disorderly Disconnect
Oracle WebLogic Server conversational clients or servers execute a disorderly
disconnect is through a call to tpdiscon. This is the equivalent of "pulling the plug" on
a connection.

A call to tpdiscon:

■ Immediately tears down the connection and generates a TPEV_DISCONIMM at
the other end of the connection. Any data that has not yet reached its destination
may be lost. If the conversation is part of a transaction, the transaction must be
rolled back.

■ Can only be called by the initiator of the conversation.

6.8 Understanding Conversational Communication Events
Oracle WebLogic Tuxedo Connector JATMI uses five events to manage
conversational communication. The following table lists the events, the functions for
which they are returned, and a detailed description of each.

Table 6–5 Oracle WebLogic Tuxedo Connector Conversational Communication Events

Event Received by Description

TPEV_SENDONLY Tuxedo tprecv Control of the connection has passed; this
Oracle Tuxedo process can now call tpsend

TPEV_SENDONLY JATMI tprecv Control of the connection has passed; this
JATMI process can now call tpsend

TPEV_DISCONIMM Tuxedo tprecv,
tpsend, tpreturn

The connection has been torn down and no
further communication is possible. The JATMI
tpdiscon posts this event in the originator of
the connection. The originator sends it to all
open connections when tpreturn is called.
Connections are closed in a disorderly manner
and if a transaction exists, it is aborted.

TPEV_DISCONIMM JATMI tprecv,
tpsend, return

The connection has been torn down and no
further communication is possible. The Oracle
Tuxedo tpdiscon posts this event in the
originator of the connection. The originator
sends it to all open connections when return
is called. Connections are closed in a
disorderly manner and if a transaction exists,
it is aborted.

TPEV_SVCERR Tuxedo tpsend or
JATMI tpsend

Received by the originator of the connection
indicating that the subordinate program
issued a tpreturn (Oracle Tuxedo) or
return (JATMI) and ended without control of
the connection.

Oracle WebLogic Tuxedo Connector Conversation Guidelines

Oracle WebLogic Tuxedo Connector JATMI Conversations 6-7

6.9 Oracle WebLogic Tuxedo Connector Conversation Guidelines
Use the following guidelines while in conversation mode to insure successful
completion of a conversation:

■ Use the JATMI conversational primitives as defined in the Oracle WebLogic
Tuxedo Connector Conversation interface and ApplicationToMonitorInterface
interface.

– Always use a flag.

– Only use flags defined in the Oracle WebLogic Tuxedo Connector JATMI.

■ Oracle WebLogic Tuxedo Connector does not have a parameter that can be used to
limit the number of simultaneous conversations to prevent overloading the Oracle
WebLogic Server network.

■ If Oracle Tuxedo exceeds the maximum number of possible conversations (defined
by the MAXCONV parameter), TPEV_DISCONIMM is the expected Oracle
WebLogic Tuxedo Connector exception value.

■ A tprecv to an unauthorized Oracle Tuxedo service results in a TPEV_
DISCONIMM exception value.

■ If a Oracle WebLogic Tuxedo Connector client is connected to an Oracle
Tuxedo conversational service which does tpforward to another conversational
service, TPEV_DISCONIMM is the expected Oracle WebLogic Tuxedo Connector
exception value.

■ Conversations may be initiated within a transaction. Start the conversation as part
of the program statements in transaction mode. For more information on

TPEV_SVCERR Tuxedo tprecv or
JATMI tprecv

Received by the originator of the connection
indicating that the subordinate program
issued a successful tpreturn (Oracle Tuxedo)
or a successful return (JATMI) without
control of the connection, but an error
occurred before the call completed.

TPEV_SVCSUCC Tuxedo tprecv Received by the originator of the connection,
indicating that the subordinate service
finished successfully; that is, return was
successfully called.

TPEV_SVCSUCC JATMI tprecv Received by the originator of the connection,
indicating that the subordinate service
finished successfully; that is, tpreturn was
called with TPSUCCESS.

TPEV_SVCFAIL Tuxedo tpsend or
JATMI tpsend

Received by the originator of the connection
indicating that the subordinate program
issued a tpreturn (Oracle Tuxedo) or
return (JATMI) and ended without control of
the connection. The service completed with
status of TPFAIL or TPEXIT and the data is set
to null.

TPEV_SVCFAIL Tuxedo tprecv or
JATMI tprecv

Received by the originator of the connection
indicating that the subordinate program
finished unsuccessfully. The service completed
with status of TPFAIL or TPEXIT.

Table 6–5 (Cont.) Oracle WebLogic Tuxedo Connector Conversational Communication

Event Received by Description

Oracle WebLogic Tuxedo Connector Conversation Guidelines

6-8 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

transactions, see Chapter 5, "Oracle WebLogic Tuxedo Connector JATMI
Transactions."

■ If an Oracle WebLogic Tuxedo Connector remote domain experiences a
TPENOENT, the remote domain will send back a disconnect event message and be
caught on the Oracle WebLogic Tuxedo Connector application tprecv as a TPEV_
DISCONIMM exception.

7

Using FML with Oracle WebLogic Tuxedo Connector 7-1

7Using FML with Oracle WebLogic Tuxedo
Connector

The following sections discuss the Field Manipulation Language (FML) and describe
how the Oracle WebLogic Tuxedo Connector uses FML.

■ Section 7.1, "Overview of FML"

■ Section 7.2, "The Oracle WebLogic Tuxedo Connector FML API"

■ Section 7.3, "FML Field Table Administration"

■ Section 7.5, "tBridge XML/FML32 Translation"

■ Section 7.6, "Using the XmlFmlCnv Class for XML to and From FML/FML32
Translation"

■ Section 7.7, "MBSTRING Usage"

7.1 Overview of FML

FML is a set of java language functions for defining and manipulating storage
structures called fielded buffers. Each fielded buffer contains attribute-value pairs in
fields. For each field:

■ The attribute is the field's identifier.

■ The associated value represents the field's data content.

■ An occurrence number.

There are two types of FML:

■ FML16 based on 16-bit values for field lengths and identifiers. It is limited to 8191
unique fields, individual field lengths of 64K bytes, and a total fielded buffer size
of 64K bytes.

■ FML32 based on 32-bit values for the field lengths and identifiers. It allows for
about 30 million fields, and field and buffer lengths of about 2 billion bytes.

Note: For more information about using FML, see Programming a
Tuxedo ATMI Application Using FML at
http://download.oracle.com/docs/cd/E13203_
01/tuxedo/tux100/fml/fml01.html.

The Oracle WebLogic Tuxedo Connector FML API

7-2 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

7.2 The Oracle WebLogic Tuxedo Connector FML API

The FML application program interface (API) is documented in the
weblogic.wtc.jatmi package included in the Javadocs for WebLogic Server
Classes.

7.3 FML Field Table Administration
Field tables are generated in a manner similar to Oracle Tuxedo field tables. The field
tables are text files that provide the field name definitions, field types, and
identification numbers that are common between the two systems. To interoperate
with an Oracle Tuxedo system using FML, the following steps are required:

1. Copy the field tables from the Oracle Tuxedo system to Oracle WebLogic Tuxedo
Connector environment.

For example: Your Oracle Tuxedo distribution contains a bank application
example called bankapp. It contains a file called bankflds that has the following
structure:

#Copyright (c) 1990 Unix System Laboratories, Inc.
#All rights reserved
#ident "@(#) apps/bankapp/bankflds $Revision: 1.3 $"
Fields for database bankdb
name number type flags comments
ACCOUNT_ID 110 long - -
ACCT_TYPE 112 char - -
ADDRESS 109 string - -
.
.
.

2. Converted the field table definition into Java source files. Use the mkfldclass
utility supplied in the weblogic.wtc.jatmi package. This class is a utility
function that reads a FML32 Field Table and produces a Java file which
implements the FldTbl interface. There are two instances of this utility:

■ mkfldclass

■ mkfldclass32

Use the correct instance of the command to convert the bankflds field table into
FML32 java source. The following example uses mkfldclass.

java weblogic.wtc.jatmi.mkfldclass bankflds

The resulting file is called bankflds.java and has the following structure:

import java.io.*;
import java.lang.*;
import java.util.*;
import weblogic.wtc.jatmi.*;

public final class bankflds

Note: The Oracle WebLogic Tuxedo Connector implements a subset
of FML functionality. For more information regarding FML32, refer to
Section 7.5.3, "FML32 Considerations".

FML Field Table Administration

Using FML with Oracle WebLogic Tuxedo Connector 7-3

 implements weblogic.wtc.jatmi.FldTbl
{
 /** number: 110 type: long */
 public final static int ACCOUNT_ID = 33554542;
 /** number: 112 type: char */
 public final static int ACCT_TYPE = 67108976;
 /** number: 109 type: string */
 public final static int ADDRESS = 167772269;
 /** number: 117 type: float */
.
.
.

3. Compile the resulting bankflds.java file using the following command:

javac bankflds.java

The result is a bankflds.class file. When loaded, the Oracle WebLogic Tuxedo
Connector uses the class file to add, retrieve and delete field entries from an
FML32 field.

4. Add the field table class file to your application CLASSPATH.

5. Update your WTCServer MBean.

■ Update the WTCResources MBean to reflect the fully qualified location of the
field table class file.

■ Use the keywords required to describe the FML buffer type: fml16 or fml32.

■ You can enter multiple field table classes in a comma separated list.

For example:

<wtc-resources>
 <name>BankappResources</name>
 <fld-tbl16-class>my.bankflds</fld-tbl16-class>
 <fld-tbl16-class>your.bankflds</fld-tbl16-class>
 <fld-tbl16-class>more.bankflds</fld-tbl16-class>
</wtc-resources>

6. Restart your Oracle WebLogic Server to load the field table class definitions.

7.3.1 Using the DynRdHdr Property for mkfldclass32 Class
Oracle WebLogic Tuxedo Connector provides a property that provides an alternate
method to compile FML tables. You may need to use the DynRdHdr utility if:

■ You are using very large FML tables and the .java method created by the
mkfldclass32 class exceeds the internal Java Virtual Machine limit on the total
complexity of a single class or interface.

■ You are using very large FML tables and are unable to load the class created when
compiling the .java method.

Use the following steps to use the DynRdHdr property when compiling your FML
tables:

1. Convert the field table definition into Java source files.

java -DDynRdHdr=Path_to_Your_FML_Table weblogic.wtc.jatmi.mkfldclass32
userTable

The arguments for this command are defined as follows:

Using TypedFML32 Constructors

7-4 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

2. Compile the userTable file using the following command:

javac userTable.java

3. Add the userTable.class file to your application CLASSPATH.

4. Update the WTCResources MBean to reflect the fully qualified location of the
userTable.class file.

5. Target your WTCServer. The userTable.class is loaded when the WTCServer
service starts.

Once you have created the userTable.class file, you can modify the FML table and
deploy the changes without having to manually create an updated
userTable.class. When the WTC Service is started, Oracle WebLogic Tuxedo
Connector will load the updated FML table using the location specified in the
Resources tab of your WTC service configuration. If the Path_to_Your_FML_Table
attribute changes, you will need to use the preceding procedure to update your
userTable.java and userTable.class files.

7.4 Using TypedFML32 Constructors
Two new constructors for TypedFML32 are available to improve performance. The
following topic provides explanation as to when to use these constructors.

The constructors are defined in the Javadocs for WebLogic Server Classes.

7.4.1 Gaining TypedFML32 Performance Improvements
To gain TypedFML32 performance improvements, you can choose to give size hints to
TypedFML32 constructors. There are two parameters that are available to those
constructor:

■ A parameter that hints for maximum number of fields. This includes all the
occurrences.

■ A parameter for the total number of field IDs used in the buffer.

For instance, a field table used by the buffer contains 20 field IDs, and each field can
occur 20 times. In this case, the first parameter should be 400 for the maximum
number of fields. The second parameter should be 20 for the total number of field IDs.

TypeFML32 mybuffer = new TypeFML32(400, 20);

Attribute Description

-DDynRdHdr Oracle WebLogic Tuxedo Connector property used to
compile an FML table.

Path_to_Your_FML_Table Path name of your FML table. This may be either a
fully qualified path or a relative path that can be
found as a resource file using the server's
CLASSPATH.

weblogic.wtc.jatmi.mkfldclass32 This class is a utility function that reads an FML32
Field Table and produces a Java file which implements
the FldTbl interface.

userTable Name of the .java method created by the
mkfldclass32 class.

tBridge XML/FML32 Translation

Using FML with Oracle WebLogic Tuxedo Connector 7-5

If you have an extremely small buffer, use those constructor without hints. An example
of an extremely small buffer is a buffer with less than 16 total occurrences. If the buffer
is extremely large, for example contains more than 250000 total field occurrences, then
the application should consider splitting it into several buffers smaller than 250000
total field occurrences.

7.5 tBridge XML/FML32 Translation

The TranslateFML element of the WTCtBridgeRedirect MBean is used to indicate if
FML32 translation is performed on the message payload. There are two types of
FML32 translation: FLAT and NO.

7.5.1 FLAT
The message payload is translated using the Oracle WebLogic Tuxedo Connector
internal FML32/XML translator. Fields are converted field-by-field values without
knowledge of the message structure (hierarchy) and repeated grouping.

In order to convert an FML32 buffer to XML, the tBridge pulls each instance of each
field in the FML32 buffer, converts it to a string, and places it within a tag consisting of
the field name. All of these fields are placed within a tag consisting of the service
name. For example, an FML32 buffer consisting of the following fields:

NAME JOE
ADDRESS CENTRAL CITY
PRODUCTNAME BOLT
PRICE 1.95
PRODUCTNAME SCREW
PRICE 2.50

The resulting XML buffer would be:

<FML32>
 <NAME>JOE</NAME>
 <ADDRESS>CENTRAL CITY</ADDRESS>
 <PRODUCTNAME>BOLT</PRODUCTNAME>
 <PRODUCTNAME>SCREW</PRODUCTNAME>
 <PRICE>1.95</PRICE>
 <PRICE>2.50</PRICE>
</FML32>

7.5.2 NO
No translation is used.

For JMS to Oracle Tuxedo, the tBridge maps a JMS TextMessage into an Oracle Tuxedo
TypedBuffer (TypedString) and vice versa depending on the direction of the
redirection. JMS BytesMessage are mapped into Oracle Tuxedo TypedBuffer
(TypedCarray) and vice versa.

Note: This usually works well with any size of buffer; however, it
does not work well with extremely small buffers.

Note: The data type specified must be FLAT or NO. If any other data
type is specified, the redirection fails.

tBridge XML/FML32 Translation

7-6 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

For Oracle Tuxedo to JMS, passing an FML/FML32 buffer behaves as if
translateFML is set to FLAT. Therefore, in this case, setting translateFML to NO
has no effect and if the Oracle Tuxedo buffer is of type FML/FML32, the translation
takes place automatically.

7.5.3 FML32 Considerations
Remember to consider the following information when working with FML32:

■ For XML input, the root element is required but ignored.

■ For XML output, the root element is always <FML32>.

■ The field table names must be loaded as described in Section 7.3, "FML Field Table
Administration".

■ The tBridge translator is capable of only "flat" or linear grouping. This means that
information describing FML32 ordering is not maintained, therefore buffers that
contain a series of repeating data could be presented in an unexpected fashion. For
example, consider a FML32 buffer that contains a list of parts and their associated
price. The expectation would be PART A, PRICE A, PART B, PRICE B, etc.
however since there is no structural group information contained within the
tBridge, the resulting XML could be PART A, PART B, etc., PRICE A, PRICE B, etc.

■ When translating XML into FML32, the translator ignores STRING values. For
example, <STRING></STRING> is skipped in the resulting FML32 buffer. All
other types cause WTC to log an error resulting in translation failure.

■ Embedded FML is not supported in this release.

■ Embedded VIEW fields within FML32 buffers are supported in this release.

■ TypedCArray is supported for FML/FML32 to XML conversion. Select from the
following list of supported field types:

– SHORT

– LONG

– CHAR

– FLOAT

– DOUBLE

– STRING

– CARRAY

– INT (FML32)

– DECIMAL (FML32)

■ If you need to pass binary data, encode to a field type of your choice and decode
the XML on the receiving side.

■ If you need to use CARRAY fields in an XML input buffer, you must first encode
the content using base64. You must decode the base64 data after it is received and
before it is processed by an application.

MBSTRING Usage

Using FML with Oracle WebLogic Tuxedo Connector 7-7

7.6 Using the XmlFmlCnv Class for XML to and From FML/FML32
Translation

An alternative option to using the tBridge to automatically translate XML buffers to
and from FML/FML32 is to use the XmlFmlCnv class which supports ordering,
grouping and beautifying functionality. The following code listing is an example that
uses the XmlFmlCnv class for conversion to and from XML buffer formats.

import weblogic.wtc.jatmi.TypedFML32;
import weblogic.wtc.jatmi.FldTbl;
import weblogic.wtc.gwt.XmlFmlCnv;

public class xml2fml
{
 public static void main(String[] args) {
 String xmlDoc = "<XML><MyString>hello</MyString></XML>";
 TypedFML32 fmlBuffer = new TypedFML32(new MyFieldTable());
 XmlFmlCnv c = new XmlFmlCnv();
 fmlBuffer = c.XMLtoFML32(xmlDoc, fmlBuffer.getFieldTables());
 String result = c.FML32toXML(fmlBuffer);
 System.out.println(result);
}
}

See Class XmlFmlCnv.

7.6.1 Limitations of XmlFmlCnv Class
The FLD_MBSTRING field in FML32 is not supported by the
XmlFmlCnv.FML32toXML method in this release.

7.7 MBSTRING Usage
A TypedMBString object can be used almost identically as a TypedString object in
a WTC application code. The only difference is that TypedMBString has a codeset
encoding name associated to the string data.

This section includes the following topics.

■ Section 7.7.1, "Sending MBSTRING Data to an Oracle Tuxedo Domain"

■ Section 7.7.2, "Receiving MBSTRING Data from an Oracle Tuxedo Domain"

■ Section 7.7.3, "Using FML with Oracle WebLogic Tuxedo Connector"

7.7.1 Sending MBSTRING Data to an Oracle Tuxedo Domain
When an Oracle Tuxedo message that contains an MBSTRING data is sent to another
Oracle Tuxedo domain, TypedMBString uses the conversion function of
java.lang.String class to convert between Unicode and an external encoding. The
TypedMBString has a codeset encoding name associated to the string data.

When a TypedMBString object is created by a WTC application code, the encoding
name is set to null. The null value of the encoding name means that the default
encoding name is used for Unicode string to byte array conversion while sending the
MBSTRING data to a remote domain. By default, the Java's default encoding name for
byte array string is used for the default encoding name.You can specify encoding or

MBSTRING Usage

7-8 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

accept the default encoding. The following order defines the order of precedence for
TypedMBString.

1. Specify the encoding name by setMBEncoding() method.

2. Specify the encoding name through the setDefaultMBEncoding() method of
weblogic.wtc.jatmi.MBEncoding class.

3. Specify the encoding name through the RemoteMBEncoding attribute of the
WTCResourcesMBean.

4. MBENCODINGPROPERTY system property value.

5. Accept the Java default encoding name.

7.7.2 Receiving MBSTRING Data from an Oracle Tuxedo Domain
When an Oracle Tuxedo message that contains an MBSTRING data is received from a
remote domain, the following actions take place.

1. WTC determines the encoding of the MBSTRING data by the codeset tcm in the
received message.

2. WTC creates a TypedMBString object.

A TypedMBString object can be used almost identically as a TyepdString
object in WTC application code. However, the TypedMBString has a codeset
encoding name associated to the string data.

3. WTC passes the TypedMBString object to the WTC application code. The
application code knows the encoding of the received MBSTRING data by the
instance method getMBEncoding().

7.7.3 Using FML with Oracle WebLogic Tuxedo Connector
FLD_MBSTRING is a field type added to TypedFML32. In this case, a
TypedMBString object is passed to the TypedFML32 method as the associated object
type of FLD_MBSTRING. You can specify the encoding name used for the MBSTRING
conversion for a FLD_MBSTRING field.

The following order defines the order of precedence for TypedFML32.

1. Specify the encoding name by setMBEncoding() method of the TypedMBString
object for the field.

2. Specify the encoding name by setMBEncoding() method of the TypedFML32
object.

3. Specify the encoding name through the setDefaultMBEncoding() method of
weblogic.wtc.jatmi.MBEncoding class.

4. Specify the encoding name through the RemoteMBEncoding attribute of the
WTCResourcesMBean.

5. MBENCODINGPROPERTY system property value.

6. Accept the Java default encoding name.

MBSTRING Usage

Using FML with Oracle WebLogic Tuxedo Connector 7-9

Note: The following methods must be updated when using FLD_
MBSTRING: Fldtype(), Fchg(), Fadd(), Fget(), and Fdel().

The on-demand encoding methods and auto-conversion methods
needed in Oracle Tuxedo, such as Fmbpack32() and
Fmbunpack32() are not needed by Oracle WebLogic Tuxedo
Connector.

MBSTRING Usage

7-10 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

8

Oracle WebLogic Tuxedo Connector JATMI VIEWs 8-1

8Oracle WebLogic Tuxedo Connector JATMI
VIEWs

The following sections provide information about how to use Oracle WebLogic Tuxedo
Connector VIEW buffers:

■ Section 8.1, "Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers"

■ Section 8.2, "How to Create a VIEW Description File"

■ Section 8.3, "How to Use the viewj Compiler"

■ Section 8.4, "How to Pass Information to and from a VIEW Buffer"

■ Section 8.5, "How to Use VIEW Buffers in JATMI Applications"

■ Section 8.6, "Using the XmlViewCnv Class for XML to and From View/View(32)
Translation"

8.1 Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers

Oracle WebLogic Tuxedo Connector allows you to create a Java VIEW buffer type
analogous to an Oracle Tuxedo VIEW buffer type derived from an independent C
structure. This allows Oracle WebLogic Server applications and Oracle Tuxedo
applications to pass information using a common structure. Oracle WebLogic Tuxedo
Connector VIEW buffers do not support FML VIEWs or FML VIEWs/Java
conversions.

8.2 How to Create a VIEW Description File

Note: For more information on Oracle Tuxedo VIEW buffers, see
"Using a VIEW Typed Buffer" in Programming a Tuxedo ATMI
Application Using C at
http://download.oracle.com/docs/cd/E13203_
01/tuxedo/tux100/pgc/pgbuf.html.

Note: fbname and null fields are not relevant for independent Java
and C structures and are ignored by the Java and C VIEW compiler.
You must include a value (for example, a dash) as a placeholder in
these fields.

How to Create a VIEW Description File

8-2 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

Your Oracle WebLogic Server application and your Oracle Tuxedo application must
share the same information structure as defined by the VIEW description. The
following format is used for each structure in the VIEW description file:

$ /* VIEW structure */
VIEW viewname
type cname fbname count flag size null

where

■ The file name is the same as the VIEW name.

■ You can have only one VIEW description per file.

■ The VIEW description file is the same file used for both the Oracle WebLogic
Tuxedo Connector viewj compiler and the Oracle Tuxedo viewc compiler.

■ viewname is the name of the information structure.

■ You can include a comment line by prefixing it with the # or $ character.

■ The following table describes the fields that must be specified in the VIEW
description file for each structure.

Table 8–1 VIEW Description File Fields

Field Description

type Data type of the field. Can be set to short, long, float, double,
char, string, carray, or dec_t (packed decimal).

cname Name of the field as it appears in the information structure.

fbname Ignored.

count Number of times field occurs.

flag Specifies any of the following optional flag settings:

■ N—zero-way mapping

■ C—generate additional field for associated count member
(ACM)

■ L—hold number of bytes transferred for STRING and CARRAY

size For STRING and CARRAY buffer types, specifies the maximum length
of the value. This field is ignored for all other buffer types.

null User-specified NULL value, or minus sign (-) to indicate the default
value for a field. NULL values are used in VIEW typed buffers to
indicate empty C structure members.

The default NULL value for all numeric types is 0 (0.0 for dec_t). For
character types, the default NULL value is `\0'. For STRING and
CARRAY types, the default NULL value is " ".

Constants used, by convention, as escape characters can also be used
to specify a NULL value. The VIEW compiler recognizes the
following escape constants: \ddd (where d is an octal digit), \0, \n,
\t, \v, \r, \f, \\, \', and \".

You may enclose STRING, CARRAY, and char NULL values in
double or single quotes. The VIEW compiler does not accept
unescaped quotes within a user-specified NULL value.

You can also specify the keyword NONE in the NULL field of a
VIEW member description, which means that there is no NULL
value for the member. The maximum size of default values for string
and character array members is 2660 characters.

How to Use the viewj Compiler

Oracle WebLogic Tuxedo Connector JATMI VIEWs 8-3

8.2.1 Example VIEW Description File
The following provides an example VIEW description which uses VIEW buffers to
send information to and receive information from an Oracle Tuxedo application. The
file name for this VIEW is infoenc.

Example 8–1 Example VIEW Description

VIEW infoenc
#type cname fbname count flag size null
float amount AMOUNT 2 - - 0.0
short status STATUS 2 - - 0
int term TERM 2 - - 0
char mychar MYCHAR 2 - - -
string name NAME 1 - 16 -
carray carray1 CARRAY1 1 - 10 -
dec_t decimal DECIMAL 1 - 9 - #size ignored by viewj/viewj32
END

8.3 How to Use the viewj Compiler
To compile a VIEW typed buffer, run the viewj command, specifying the package
name and the name of the VIEW description file as arguments. The output file is
written to the current directory.

To use the viewj compiler, enter the following command:

java weblogic.wtc.jatmi.viewj [options] [package] viewfile

To use the viewj32 compiler, enter the following command:

java weblogic.wtc.jatmi.viewj32 [options] [package] viewfile

The arguments for this command are defined as follows:

How to Pass Information to and from a VIEW Buffer

8-4 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

For example:

■ A VIEW buffer is compiled as follows:

java weblogic.wtc.jatmi.viewj -compat_names examples.wtc.atmi.simpview infoenc

■ A VIEW32 buffer is compiled as follows:

java weblogic.wtc.jatmi.viewj32 -compat_names -modify_strings
examples.wtc.atmi.simpview infoenc

8.4 How to Pass Information to and from a VIEW Buffer
The output of the viewj and viewj32 command is a .java source file that contains
set and get accessor methods for each field in the VIEW description file. Use these
set and get accessor methods in your Java applications to pass information to and
from a VIEW buffer.

Argument Description

options ■ -associated_fields:

Use to set AssociatedFieldHandling to true. This allows set and
get accessor methods to use the values of the associated length and
count fields if they are specified in the VIEW description file. If not
specified, the default value for AssociatedFieldHandling is false.

■ -bean_names:

Use to create set and get accessor names that follow JavaBeans
naming conventions. The first character of the field name is changed to
upper case before the set or get prefix is added. The signature of
indexed set accessors for array fields changes from the default
signature of void setAfield(T value, int index) to void
setAfield(int index, T value).

■ -compat_names:

Use to create set and get accessor names that are formed by taking
the field name from the VIEW description file and adding a set or get
prefix. Provides compatibility with releases prior to WebLogic Server
8.1 SP2. Default value is -compat_names if -bean_names or
-compat_names is not specified.

■ -modify_strings:

Use to generate different Java code for encoding strings sent to Oracle
Tuxedo and decoding strings received from Oracle Tuxedo. Encoding
code adds a null character to the end of each string. Decoding code
truncates each string at the first null character received.

■ -xcommon:

Use to generate output class as extending TypedXCommon instead of
TypedView.

■ -xtype:

Use to generate output class as extending TypedXCType instead of
TypedView.

Note: -compat_names and -bean_names are mutually exclusive options.

package The package name to be included in the .java source file.

Example: examples.wtc.atmi.simpview

viewfile Name of the VIEW description file.

Example: Infoenc

How to Use VIEW Buffers in JATMI Applications

Oracle WebLogic Tuxedo Connector JATMI VIEWs 8-5

The AssociatedFieldHandling flag is used to specify if the set and get methods
use the values of the associated length and count fields if they are specified in the
VIEW description file.

■ set methods set the count for an array field and set the length for a string or
carray field.

■ Array get methods return an array that is at most the size of the associated count
field.

■ String and carray get methods return data that is at most the length of the
associated length field.

Use one of the following to set or get the state of the AssociatedFieldHandling
flag:

■ Use the -associated_fields option for the viewj and viewj32 compiler to
set the AssociatedFieldHandling flag to true.

■ Invoke the void setAssociatedFieldHandling(boolean state) method
in your Java application to set the state of the AssociatedFieldHandling flag.

– If false, the set and get methods ignore the length and count fields.

– If true, the set and get methods use the values of the associated length and
count fields if they are specified in the VIEW description file.

– The default state is false.

■ Invoke the boolean getAssociatedFieldHandling() method in your Java
application to return the current state of AssociatedFieldHandling.

8.5 How to Use VIEW Buffers in JATMI Applications
Use the following steps when incorporating VIEW buffers in your JATMI applications:

1. Create a VIEW description file for your application as described in Section 8.2,
"How to Create a VIEW Description File".

2. Compile the VIEW description file as described in Section 8.3, "How to Use the
viewj Compiler".

3. Use the set and get accessor methods to pass information to and receive
information from a VIEW buffer as described in Section 8.4, "How to Pass
Information to and from a VIEW Buffer".

See the examples/wtc/atmi/simpview/ViewClient.java file in your
Oracle WebLogic Server distribution for an example of how a client uses accessors
to pass information to and from a VIEW buffer.

4. Import the output of the VIEW compiler into your source code.

5. If necessary, compile the VIEW description file for your Oracle Tuxedo application
and include the output in your C source file as described in "Using a VIEW Typed
Buffer" in Programming a Tuxedo ATMI Application Using C at
http://download.oracle.com/docs/cd/E13203_
01/tuxedo/tux100/pgc/pgbuf.html.

6. Configure a WTCServer MBean with a Resources Mbean that specifies the VIEW
buffer type (VIEW or VIEW32) and the fully qualified class name of the compiled
Java VIEW description file. The class of the compiled Java VIEW description file
should be in your CLASSPATH.

7. Build and launch your Oracle Tuxedo application.

How to Use VIEW Buffers in JATMI Applications

8-6 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

8. Build and launch your Oracle WebLogic Server Application.

8.5.1 How to Get VIEW32 Data In and Out of FML32 Buffers
A helper class is available to add and get VIEW32 data in and out of an FML32 buffer.
The class name is wtc.jatmi.FViewFld. This class assists programmers in
developing JATMI-based applications that use VIEW32 field type for FML32 buffers.

No change to configuration is required. You still configure the VIEW32 class path
using the ViewTbl32Classes attribute in the WTCResources section of the WLS
configuration file.

The following access methods are available in this helper class.

■ FViewFld(String vname, TypedView32 vdata);

■ FviewFld(FviewFld to_b_clone);

■ void setViewName(String vname)

■ String getViewName();

■ void setViewData(TypedView32 vdata)

■ void TypedView32 getViewData();

Example 8–2 How to Add and Retrieve an Embedded TypedView32 buffer in a
TypedFML32 Buffer

String toConvert = new String("hello world");
TypedFML32 MyData = new TypedFML32(new MyFieldTable());
Long d1 = new Long(1234);
Float d2 = new Float(12.32);
MyView data = new myView();
FviewFld vfld;
data.setamount((float)100.96);
data.setstatus((short)3);
vfld = new FviewFld("myView", data);

try {
 myData.Fchg(MyFieldTable.FLD0, 0, toConvert);
 myData.Fchg(MyFieldTable.FLD1, 0, 1234);
 myData.Fchg(MyFieldTable.FLD2, 0, d2);
 myData.Fchg(MyFieldTable.myview, 0, vfld);
} catch (Ferror fe) {
 log("An error occurred putting data into the FML32 buffer. The error is " +
fe);
}

try {
 myRtn = myTux.tpcall("FMLVIEW", myData, 0);
} catch(TPReplyException tre) {
….
}
TypedFML32 myDataBack = (TypedFML32)myRtn.getReplyBuffer();
 Integer myNewLong;
 Float myNewFloat;
 myView View;
 String myNewString;

try {
 myNewString = (String)myDataBack.Fget(MyFieldTable.FLD0, 0);
 myNewLong = (Integer)myDataBack.Fget(MyFieldTable.FLD1, 0);

Using the XmlViewCnv Class for XML to and From View/View(32) Translation

Oracle WebLogic Tuxedo Connector JATMI VIEWs 8-7

 myNewFloat = (Float)myDataBack.Fget(MyFieldTable.FLD2, 0);
 vfld = (FviewFld)myDataBack.Fget(MyFieldTable.myview, 0);
 view = (myView)vfld.getViewData();
} catch (Ferror fe) {
 ….
}

The following code listing is an example FML Description(MyFieldTable) related to the
example in Example 8–2.

*base 20000
#name number type flags comments
FLD0 10 string - -
FLD1 20 long - -
FLD2 30 float - -
myview 50 view32 - defined in View description file

8.6 Using the XmlViewCnv Class for XML to and From View/View(32)
Translation

Use the XmlViewCnv class to perform XML to View /View(32) or View/View(32) to
XML translation. The following code listing is an example that uses the XmlViewCnv
class for conversion to and from XML buffer formats.

import examples.wtc.atmi.simpview.infoenc; // View class import
weblogic.wtc.gwt.XmlViewCnv;
import weblogic.wtc.jatmi.TypedBuffer;

public class xml2view
{
 public static void main(String[] args) {
 String xmlDoc =
 "<VIEW32><infoenc><amount>1000.0</amount><infoenc></VIEW32>";

 infoenc convertMe = new infoenc();
 convertMe = (infoenc) XmlViewCnv.XMLToView(
 xmlDoc,
 convertMe.getClass(),
 convertMe.getSubtype());

 convertMe = (infoenc) echo.Echo(convertMe);

 result = XmlViewCnv.ViewToXML(
 (TypedBuffer) convertMe,
 convertMe.getClass(),
 true);

 System.out.println(result);
 }
}

Using the XmlViewCnv Class for XML to and From View/View(32) Translation

8-8 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

9

How to Create a Custom AppKey Plug-in 9-1

9How to Create a Custom AppKey Plug-in

The following sections provide information about how to create custom AppKey
generator plug-ins:

■ Section 9.1, "How to Create a Custom Plug-In"

■ Section 9.2, "Example Custom Plug-in"

9.1 How to Create a Custom Plug-In

1. Create your custom Java plug-in using the AppKey and UserRec interfaces. You
can provide any required initialization parameters or a property file using the
param parameter of the init method.

2. Compile your plug-in. Example:

javac exampleAppKey.java

3. Update your CLASSPATH to include the path to your compiled plug-in. Example:

export CLASSPATH=$CLASSPATH:/home/mywork

4. Start your server.

5. Configure your WTC Service to use the Custom Plug-in. For more information, see
the "Custom Plug-in" in Oracle Fusion Middleware Tuxedo Connector Administration
Guide for Oracle WebLogic Server.

9.2 Example Custom Plug-in
The exampleAppKey.java file is an example of a custom plug-in. It utilizes a
tpusrfile file as the database to store the AppKey.

Example 9–1 exampleAppKey.Java Custom Plug-In

import java.io.*;
import java.lang.*;
import java.util.*;
import java.security.Principal;
import weblogic.wtc.jatmi.AppKey;
import weblogic.wtc.jatmi.UserRec;
import weblogic.wtc.jatmi.DefaultUserRec;

Note: You cannot customize Oracle Tuxedo AAA tokens.

Example Custom Plug-in

9-2 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

import weblogic.wtc.jatmi.TPException;
import weblogic.security.acl.internal.AuthenticatedSubject;
import weblogic.security.WLSPrincipals;

/**
 * @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
 */

/**
 * @exclude
 * Sample AppKey plug-in using TPUSRFILE as the database for APPKEY.
 * It is installed through "Custom" option.
 * The syntax for option custom plug parameter input contains the full
 * pathname to the <tpusrfile>
 *
 * @author BEA Systems, Inc.
 */
public class exampleAppKey implements AppKey {
 private String anon_user = null;
 private String tpusrfile = null;
 private File myfile;
 private HashMap userMap;
 private long l_time;
 private int dfltAppkey;
 private boolean allowAnon;
 private final static int USRIDX = 0;
 private final static int PWDIDX = 1;
 private final static int UIDIDX = 2;
 private final static int GIDIDX = 3;
 private final static int CLTIDX = 4;

 private final static byte[] tpsysadm_string = {
 (byte)'t', (byte)'p', (byte)'s', (byte)'y', (byte)'s',
 (byte)'a', (byte)'d', (byte)'m' };
 private final static byte[] tpsysop_string = {
 (byte)'t', (byte)'p', (byte)'s', (byte)'y', (byte)'s', (byte)'o',
 (byte)'p' };

 public void init(String param, boolean anonAllowed, int dfltAppKey)
 throws TPException {

 if (param == null) {
 System.out.println("Error: tpusrAppKey.init@param == null");
 throw new TPException(TPException.TPESYSTEM,
 "Invalid input parameter");
 }

 // get the tpusrfile name
 parseParam(param);

 myfile = new File(tpusrfile);
 if (myfile.exists() != true) {
 System.out.println("Error: exampleAppKey.init@file \"" + param
 + "\" does not exist");
 throw new TPException(TPException.TPESYSTEM,
 "Failed to find TPUSR file");
 }
 if (myfile.isFile() != true) {
 System.out.println("Error: exampleAppKey.init@the specified name \"" +
 param + "\" is not a file");

Example Custom Plug-in

How to Create a Custom AppKey Plug-in 9-3

 throw new TPException(TPException.TPESYSTEM,
 "Invalid TPUSR file");
 }
 if (myfile.canRead() != true) {
 System.out.println("Error: exampleAppKey.init@file \"" + param +
 "\" is not readable");
 throw new TPException(TPException.TPESYSTEM,
 "Bad TPUSR file permission");
 }

 userMap = new HashMap();

 // create the cache
 if (createCache(tpusrfile) == -1) {
 System.out.println("Error: exampleAppkey.init@fail to create user cache");
 throw new TPException(TPException.TPESYSTEM,
 "fail to create user cache");
 }

 l_time = myfile.lastModified();
 anon_user = weblogic.security.WLSPrincipals.getAnonymousUsername();
 allowAnon = anonAllowed;
 dfltAppkey = dfltAppKey;

 System.out.println("exampleAppKey installed!");

 return;
 }

 public void uninit() throws TPException {
 if (userMap != null) {
 userMap.clear();
 }
 return;
 }

 public UserRec getTuxedoUserRecord(AuthenticatedSubject subj) {
 Object[] obj = subj.getPrincipals().toArray();
 if (obj == null || obj.length == 0) {
 // a subject without principals is an anonymous user
 if (allowAnon) {
 return new DefaultUserRec(anon_user, dfltAppkey);
 }
 System.out.println("Error: exampleAppKey.
 getTuxedoUserRecord@return " +
 "anonymous user not allowed");
 return null;
 }

 // looping through all Principal names if necessary to get first user
 // name defined in tpuser file
 Principal user;
 String username;
 int key;
 UserRec rec;

 for (int i = 0; i < obj.length; i++) {
 user = (Principal)obj[i];
 username = user.getName();
 if (username.equals(anon_user)) {

Example Custom Plug-in

9-4 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

 return new DefaultUserRec(anon_user, dfltAppkey);
 }
 if ((rec = (UserRec)userMap.get(username)) != null) {
 return rec;
 }
 }
 System.out.println("WARN: exampleAppKey.getTuxedoUserRecord@return " +
 "null UserRec");
 return null;
 }

 private int createCache(String fname) {
 FileInputStream fin;
 byte[] line;

 try {
 fin = new FileInputStream(fname);

 while ((line = readOneLine(fin)) != null) {
 DefaultUserRec newUser = parseOneLine(line);
 if (newUser != null) {
 userMap.put(newUser.getRemoteUserName(), newUser);
 }
 }
 fin.close();
 }
 catch (FileNotFoundException fnfe) {
 System.out.println("Error: exampleAppKey.createCache@reason: " + fnfe);
 return -1;
 }
 catch (SecurityException se) {
 System.out.println("Error: exampleAppKey.createCache@reason: " + se);
 return -1;
 }
 catch (IOException ioe) {
 System.out.println("Error: exampleAppKey.createCache@reason: " + ioe);
 return -1;
 }
 catch (Exception e) {
 System.out.println("Error: exampleAppKey.createCache@reason: " + e);
 return -1;
 }
 return 0;
 }

 private byte[] readOneLine(FileInputStream fh) {
 int len = 80;
 byte[] line = new byte[len];
 int inp = -1;
 int idx = 0;

 try {
 while ((inp = fh.read()) != -1) {
 if (idx == 0 && (inp == '\n' || inp == '\0')) {
 continue;
 }
 if (inp == '\n') {
 break;
 }
 if (idx == (len - 1)) {

Example Custom Plug-in

How to Create a Custom AppKey Plug-in 9-5

 byte[] tmp = new byte[len + 80];
 System.arraycopy(line, 0, tmp, 0, len);
 line = tmp;
 len += 80;
 }
 line[idx] = (byte)inp;
 idx++;
 }
 }
 catch (Exception e) {
 System.out.println("Error: exampleAppKey.readOneLine@reason: " + e);
 return null;
 }

 if (inp == -1 && idx == 0) {
 return null;
 }

 byte[] tmp = new byte[idx];
 System.arraycopy(line, 0, tmp, 0, idx);

 return tmp;
 }

 private DefaultUserRec parseOneLine(byte[] line) {
 String name;
 int key = 0;
 DefaultUserRec usr;
 int firstCharacter;
 int i;
 int sidx;
 int fldlen;
 int fn;
 byte[] buid = null;
 byte[] bgid = null;
 byte[] clt = null;
 byte[] uname = null;

 firstCharacter = (int)line[0];
 if (firstCharacter == '#' || firstCharacter == '\n' ||
 firstCharacter == '!' || firstCharacter == '\0' ||
 firstCharacter == '\r') {
 return null;
 }
 fldlen = 0;
 sidx = 0;
 for (i = 0, fn = 0; i < line.length && fn <= CLTIDX; i++) {
 if (line[i] == (byte)':') {
 switch (fn) {
 case USRIDX:
 uname = new byte[fldlen];
 System.arraycopy(line, sidx, uname, 0, fldlen);
 break;
 case UIDIDX:
 buid = new byte[fldlen];
 System.arraycopy(line, sidx, buid, 0, fldlen);
 break;
 case GIDIDX:
 bgid = new byte[fldlen];
 System.arraycopy(line, sidx, bgid, 0, fldlen);

Example Custom Plug-in

9-6 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

 break;
 case CLTIDX:
 if (line[sidx] == (byte)'T' &&
 line[sidx+1] == (byte)'P' &&
 line[sidx+2] == (byte)'C' &&
 line[sidx+3] == (byte)'L' &&
 line[sidx+4] == (byte)'T' &&
 line[sidx+5] == (byte)'N' &&
 line[sidx+6] == (byte)'M' &&
 line[sidx+7] == (byte)',') {
 sidx += 8;
 fldlen -= 8;
 }
 if (fldlen > 0) {
 clt = new byte[fldlen];
 System.arraycopy(line, sidx, clt, 0, fldlen);
 }
 break;
 default:
 break;
 } // end of switch
 fn++;
 fldlen = 0;
 sidx = i + 1;
 } // end of if
 else {
 fldlen++;
 }
 }

 // try to tolerate incomplete line
 if (fn <= CLTIDX && fldlen > 0) {
 switch (fn) {
 case USRIDX:
 uname = new byte[fldlen];
 System.arraycopy(line, sidx, uname, 0, fldlen);
 break;
 case UIDIDX:
 buid = new byte[fldlen];
 System.arraycopy(line, sidx, buid, 0, fldlen);
 break;
 case GIDIDX:
 bgid = new byte[fldlen];
 System.arraycopy(line, sidx, bgid, 0, fldlen);
 break;
 case CLTIDX:
 if (line[sidx] == (byte)'T' &&
 line[sidx+1] == (byte)'P' &&
 line[sidx+2] == (byte)'C' &&
 line[sidx+3] == (byte)'L' &&
 line[sidx+4] == (byte)'T' &&
 line[sidx+5] == (byte)'N' &&
 line[sidx+6] == (byte)'M' &&
 line[sidx+7] == (byte)',') {
 sidx += 8;
 fldlen -= 8;
 }
 clt = new byte[fldlen];
 System.arraycopy(line, sidx, clt, 0, fldlen);
 break;

Example Custom Plug-in

How to Create a Custom AppKey Plug-in 9-7

 }
 }

 if (uname == null || buid == null || bgid == null) {
 return null;
 }

 name = new String(uname);
 if (clt != null) {
 if (Arrays.equals(tpsysadm_string, clt) == true) {
 key = TPSYSADM_KEY;
 }
 else if (Arrays.equals(tpsysop_string, clt) == true) {
 key = TPSYSOP_KEY;
 }
 }

 if (key == 0) {
 Integer u_val;
 Integer g_val;
 int uid = 0;
 int gid = 0;

 try {
 u_val = new Integer(new String(buid));
 g_val = new Integer(new String(bgid));
 uid = u_val.intValue();
 gid = g_val.intValue();
 uid &= UIDMASK;
 gid &= GIDMASK;
 key = uid | (gid << GIDSHIFT);
 }
 catch (NumberFormatException nfe) {
 System.out.println("Error: exampleAppKey.readOneLine@reason: " + nfe);
 return null;
 }
 }

 return new DefaultUserRec(name, key);
 }

 private void parseParam(String param) {
 String str;

 // trim the input
 tpusrfile = param.trim();

 return;
 }
}

Example Custom Plug-in

9-8 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

10

Application Error Management 10-1

10Application Error Management

The following sections provide mechanisms to manage and interpret error conditions
in your applications:

■ Section 10.1, "Testing for Application Errors"

■ Section 10.2, "Oracle WebLogic Tuxedo Connector Time-Out Conditions"

■ Section 10.3, "Guidelines for Tracking Application Events"

10.1 Testing for Application Errors

Your application logic should test for error conditions after the calls that have return
values and take suitable steps based on those conditions. In the event that a function
returned a value, you may invoke a functions that tests for specific values and
performs the appropriate application logic for each condition.

10.1.1 Exception Classes
The Oracle WebLogic Tuxedo Connector throws the following exception classes:

■ Ferror: Exception thrown for errors occurring while manipulating FML.

■ TPException: Exception thrown that represents a TPException failure.

■ TPReplyException: Exception thrown that represents a TPException failure when
user data is associated with the exception thrown.

10.1.2 Fatal Transaction Errors
In managing transactions, it is important to understand which errors prove fatal to
transactions. When these errors are encountered, transactions should be explicitly
aborted on the application level by having the initiator of the transaction call
commit(). Transactions fail for the following reasons:

■ The initiator or participant of the transaction caused it to be marked for rollback.

■ The transaction timed out.

■ A commit() was called by a participant rather than by the originator of a
transaction.

Note: To view an example that demonstrates how to test for error
conditions, see Section 5.5, "Example Transaction Code".

Oracle WebLogic Tuxedo Connector Time-Out Conditions

10-2 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

10.2 Oracle WebLogic Tuxedo Connector Time-Out Conditions
There are two types of time-out which can occur when using the Oracle WebLogic
Tuxedo Connector:

■ Blocking time-out.

■ Transaction time-out.

10.2.1 Blocking vs. Transaction Time-out
Blocking time-out is exceeding the amount of time a call can wait for a blocking
condition to clear up. Transaction time-out occurs when a transaction takes longer
than the amount of timed defined for it in setTransactionTimeout(). By default,
if a process is not in transaction mode, blocking time-outs are performed. When the
flags parameter of a a communication call is set to TPNOTIME, it applies to blocking
time-outs only. If a process is in transaction mode, blocking time-out and the
TPNOTIME flag are not relevant. The process is sensitive to transaction time-out only as
it has been defined for it when the transaction was started. The implications of the two
different types of time-out follow:

■ If a process is not in transaction mode and a blocking time-out occurs on an
asynchronous call, the communication call that blocked will fail, but the call
descriptor is still valid and may be used on a re-issue call. Further communication
in general is unaffected.

■ In the case of transaction time-out, the call descriptor to an asynchronous
transaction reply (done without the TPNOTRAN flag) becomes stale and may no
longer be referenced. The only further communication allowed is the one case
described earlier of no reply, no blocking, and no transaction.

10.2.2 Effect on commit()
The state of a transaction if time-out occurs after the call to commit() is
undetermined. If the transaction timed out and the system knows that it was aborted,
setRollbackOnly() or rollback() returns with an error.

If the state of the transaction is in doubt, you must query the resource to determine if
any of the changes that were part of that transaction have been applied to it in order to
discover whether the transaction committed or aborted.

10.2.3 Effect of TPNOTRAN

When a process is in transaction and makes a communications call with flags set to
TPNOTRAN, it prohibits the called service from becoming a participant of that
transaction. The success or failure of the service does not influence the outcome of that
transaction.

10.3 Guidelines for Tracking Application Events
You can track the execution of your applications by using System.out.println()
to write messages to the Oracle WebLogic Server trace log. Create a log() method
that takes a variable of type String and use the variable name as the argument to

Note: A transaction can time-out while waiting for a reply that is due
from a service that is not part of that transaction.

Guidelines for Tracking Application Events

Application Error Management 10-3

the call, or include the message as a literal within quotation marks as the argument to
the call. In the following example, a series of messages are used to track the progress of
a tpcall().

Example 10–1 Example Event Logging

.

.

.
log("About to call tpcall");
try {
myRtn = myTux.tpcall("TOUPPER", myData, 0);
}
catch (TPReplyException tre) {
log("tpcall threw TPReplyExcption " + tre);
throw tre;
}
catch (TPException te) {
log("tpcall threw TPException " + te);
throw te;
}
catch (Exception ee) {
log("tpcall threw exception: " + ee);
throw new TPException(TPException.TPESYSTEM, "Exception: " + ee);
}
log("tpcall successfull!");
.
.
.
private static void
log(String s)
{System.out.println(s);}
.
.
.

Guidelines for Tracking Application Events

10-4 Oracle Fusion Middleware Tuxedo Connector Programmer's Guide for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction to Oracle WebLogic Tuxedo Connector Programming
	1.1 Guide to this Document
	1.2 Developing Oracle WebLogic Tuxedo Connector Applications
	1.2.1 Developing Oracle WebLogic Tuxedo Connector Clients
	1.2.2 Developing Oracle WebLogic Tuxedo Connector Servers
	1.2.3 Oracle WebLogic Tuxedo Connector Interoperability with Oracle Tuxedo CORBA objects

	1.3 Oracle WebLogic Tuxedo Connector JATMI Primitives
	1.4 Oracle WebLogic Tuxedo Connector TypedBuffers

	2 Developing Oracle WebLogic Tuxedo Connector Client EJBs
	2.1 Joining and Leaving Applications
	2.1.1 Joining an Application
	2.1.2 Leaving an Application

	2.2 Basic Client Operation
	2.2.1 Get an Oracle Tuxedo Object
	2.2.2 Perform Message Buffering
	2.2.3 Send and Receive Messages
	2.2.3.1 Request/Response Communication
	2.2.3.1.1 Using Synchronous Service Calls
	2.2.3.1.2 Using Deferred Synchronous Service Calls
	2.2.3.1.3 Using Asynchronous Calls

	2.2.3.2 Conversational Communication
	2.2.3.3 Enqueuing and Dequeuing Messages

	2.2.4 Close a Connection to an Oracle Tuxedo Object

	2.3 Example Client EJB

	3 Developing Oracle WebLogic Tuxedo Connector Service EJBs
	3.1 Basic Service EJB Operation
	3.1.1 Access Service Information
	3.1.2 Buffer Messages
	3.1.3 Perform the Requested Service
	3.1.3.1 Return Client Messages for Request/Response Communication
	3.1.3.2 Use tpsend and tprecv for Conversational Communication

	3.2 Example Service EJB

	4 Using Oracle WebLogic Tuxedo Connector for RMI/IIOP and CORBA Interoperability
	4.1 How to Develop Oracle WebLogic Tuxedo Connector Client Beans using the CORBA Java API
	4.1.1 Using CosNaming Service
	4.1.1.1 Example ToupperCorbaBean.java Code

	4.1.2 Using FactoryFinder
	4.1.2.1 WLEC to Oracle WebLogic Tuxedo Connector Migration
	4.1.2.2 Example Code

	4.2 How to Develop RMI/IIOP Applications for the Oracle WebLogic Tuxedo Connector
	4.2.1 How to Modify Inbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo Connector
	4.2.2 How to Develop Outbound RMI/IIOP Applications to use the Oracle WebLogic Tuxedo Connector
	4.2.2.1 How to Modify the ejb-jar.xml File to Pass a FederationURL to EJBs
	4.2.2.1.1 Assign env-entry-name
	4.2.2.1.2 Assign env-entry-type
	4.2.2.1.3 Assign env-entry-value

	4.2.2.2 How to Modify EJBs to Use FederationURL to Access an Object

	4.3 How to Use FederationURL Formats
	4.3.1 Using corbaloc URL Format
	4.3.1.1 Examples of corbaloc:tgiop
	4.3.1.2 Examples using -ORBInitRef
	4.3.1.3 Examples Using -ORBDefaultInitRef

	4.3.2 Using the corbaname URL Format
	4.3.2.1 Examples Using -ORBInitRef

	4.4 How to Manage Transactions for Oracle Tuxedo CORBA Applications

	5 Oracle WebLogic Tuxedo Connector JATMI Transactions
	5.1 Global Transactions
	5.2 JTA Transaction API
	5.2.1 Types of JTA Interfaces
	5.2.1.1 Transaction
	5.2.1.2 TransactionManager
	5.2.1.3 UserTransaction

	5.2.2 JTA Transaction Primitives

	5.3 Defining a Transaction
	5.3.1 Starting a Transaction
	5.3.1.1 Using TPNOTRAN

	5.3.2 Terminating a Transaction

	5.4 Oracle WebLogic Tuxedo Connector Transaction Rules
	5.5 Example Transaction Code

	6 Oracle WebLogic Tuxedo Connector JATMI Conversations
	6.1 Overview of Oracle WebLogic Tuxedo Connector Conversational Communication
	6.2 Oracle WebLogic Tuxedo Connector Conversation Characteristics
	6.3 Oracle WebLogic Tuxedo Connector JATMI Conversation Primitives
	6.4 Creating Oracle WebLogic Tuxedo Connector Conversational Clients and Servers
	6.4.1 Creating Conversational Clients
	6.4.1.1 Establishing a Connection to an Oracle Tuxedo Conversational Service
	6.4.1.2 Example TuxedoConversationBean.java Code

	6.4.2 Creating Oracle WebLogic Tuxedo Connector Conversational Servers

	6.5 Sending and Receiving Messages
	6.5.1 Sending Messages
	6.5.2 Receiving Messages

	6.6 Ending a Conversation
	6.6.1 Oracle Tuxedo Application Originates Conversation
	6.6.2 Oracle WebLogic Tuxedo Connector Application Originates Conversation
	6.6.3 Ending Hierarchical Conversations

	6.7 Executing a Disorderly Disconnect
	6.8 Understanding Conversational Communication Events
	6.9 Oracle WebLogic Tuxedo Connector Conversation Guidelines

	7 Using FML with Oracle WebLogic Tuxedo Connector
	7.1 Overview of FML
	7.2 The Oracle WebLogic Tuxedo Connector FML API
	7.3 FML Field Table Administration
	7.3.1 Using the DynRdHdr Property for mkfldclass32 Class

	7.4 Using TypedFML32 Constructors
	7.4.1 Gaining TypedFML32 Performance Improvements

	7.5 tBridge XML/FML32 Translation
	7.5.1 FLAT
	7.5.2 NO
	7.5.3 FML32 Considerations

	7.6 Using the XmlFmlCnv Class for XML to and From FML/FML32 Translation
	7.6.1 Limitations of XmlFmlCnv Class

	7.7 MBSTRING Usage
	7.7.1 Sending MBSTRING Data to an Oracle Tuxedo Domain
	7.7.2 Receiving MBSTRING Data from an Oracle Tuxedo Domain
	7.7.3 Using FML with Oracle WebLogic Tuxedo Connector

	8 Oracle WebLogic Tuxedo Connector JATMI VIEWs
	8.1 Overview of Oracle WebLogic Tuxedo Connector VIEW Buffers
	8.2 How to Create a VIEW Description File
	8.2.1 Example VIEW Description File

	8.3 How to Use the viewj Compiler
	8.4 How to Pass Information to and from a VIEW Buffer
	8.5 How to Use VIEW Buffers in JATMI Applications
	8.5.1 How to Get VIEW32 Data In and Out of FML32 Buffers

	8.6 Using the XmlViewCnv Class for XML to and From View/View(32) Translation

	9 How to Create a Custom AppKey Plug-in
	9.1 How to Create a Custom Plug-In
	9.2 Example Custom Plug-in

	10 Application Error Management
	10.1 Testing for Application Errors
	10.1.1 Exception Classes
	10.1.2 Fatal Transaction Errors

	10.2 Oracle WebLogic Tuxedo Connector Time-Out Conditions
	10.2.1 Blocking vs. Transaction Time-out
	10.2.2 Effect on commit()
	10.2.3 Effect of TPNOTRAN

	10.3 Guidelines for Tracking Application Events

