

Oracle® Fusion Middleware
Performance and Tuning for Oracle WebLogic Server

11g Release 1 (10.3.1)

E13814-01

May 2009

This document is for people who monitor performance and
tune the components in a WebLogic Server environment.

Oracle Fusion Middleware Performance and Tuning for Oracle WebLogic Server, 11g Release 1 (10.3.1)

E13814-01

Copyright © 2007, 2009, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Documentation Accessibility ... xi
Conventions ... xi

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to this Document ... 1-1
1.2.1 Performance Features of this Release ... 1-2
1.2.2 One-Way Sends for Non-Persistent Messages .. 1-2
1.3 Related Documentation.. 1-2

2 Top Tuning Recommendations for WebLogic Server

2.1 Tune Pool Sizes.. 2-1
2.2 Use the Prepared Statement Cache .. 2-2
2.3 Use Logging Last Resource Optimization... 2-2
2.4 Tune Connection Backlog Buffering .. 2-2
2.5 Tune the Chunk Size .. 2-2
2.6 Use Optimistic or Read-only Concurrency ... 2-2
2.7 Use Local Interfaces .. 2-2
2.8 Use eager-relationship-caching .. 2-3
2.9 Tune HTTP Sessions... 2-3
2.10 Tune Messaging Applications... 2-3

3 Performance Tuning Roadmap

3.1 Performance Tuning Roadmap... 3-1
3.1.1 Understand Your Performance Objectives .. 3-1
3.1.2 Measure Your Performance Metrics ... 3-2
3.1.3 Monitor Disk and CPU Utilization.. 3-2
3.1.4 Monitor Data Transfers Across the Network .. 3-3
3.1.5 Locate Bottlenecks in Your System ... 3-3
3.1.6 Minimize Impact of Bottlenecks .. 3-3
3.1.7 Tune Your Application ... 3-3
3.1.8 Tune your DB ... 3-4
3.1.9 Tune WebLogic Server Performance Parameters ... 3-4
3.1.10 Tune Your JVM .. 3-4

iv

3.1.11 Tune the Operating System.. 3-4
3.1.12 Achieve Performance Objectives ... 3-4
3.2 Tuning Tips.. 3-4

4 Operating System Tuning

4.1 Basic OS Tuning Concepts... 4-1
4.2 Solaris Tuning Parameters... 4-2
4.2.1 Setting TCP Parameters With the ndd Command.. 4-2
4.2.2 Setting Parameters In the /etc/system File ... 4-2
4.2.3 CE Gigabit Network Card Settings ... 4-3
4.2.4 Additional Solaris Tuning Information.. 4-3
4.3 Linux Tuning Parameters .. 4-3
4.4 HP-UX Tuning Parameters.. 4-4
4.5 Windows Tuning Parameters ... 4-4
4.6 Other Operating System Tuning Information .. 4-5

5 Tuning Java Virtual Machines (JVMs)

5.1 JVM Tuning Considerations.. 5-1
5.2 Which JVM for Your System? ... 5-2
5.2.1 Changing To a Different JVM .. 5-2
5.3 Garbage Collection ... 5-2
5.3.1 VM Heap Size and Garbage Collection .. 5-3
5.3.2 Choosing a Garbage Collection Scheme... 5-3
5.3.3 Using Verbose Garbage Collection to Determine Heap Size .. 5-4
5.3.4 Specifying Heap Size Values.. 5-5
5.3.5 Tuning Tips for Heap Sizes .. 5-5
5.3.6 JRockit JVM Heap Size Options... 5-6
5.3.6.1 Other JRockit VM Options .. 5-7
5.3.7 Java HotSpot VM Heap Size Options ... 5-7
5.3.7.1 Other Java HotSpot VM Options ... 5-8
5.3.8 Automatically Logging Low Memory Conditions ... 5-8
5.3.9 Manually Requesting Garbage Collection ... 5-8
5.3.10 Requesting Thread Stacks... 5-8
5.4 Enable Spinning for IA32 Platforms .. 5-8
5.4.1 Sun JDK ... 5-9
5.4.2 JRockit.. 5-9

6 Tuning WebLogic Server

6.1 Setting Java Parameters for Starting WebLogic Server ... 6-1
6.2 Development vs. Production Mode Default Tuning Values .. 6-2
6.3 Deployment ... 6-3
6.3.1 On-demand Deployment of Internal Applications... 6-3
6.3.2 Use FastSwap Deployment to Minimize Redeployment Time..................................... 6-3
6.3.3 Generic Overrides.. 6-3
6.4 Thread Management ... 6-3
6.4.1 Tuning a Work Manager... 6-4

v

6.4.2 How Many Work Managers are Needed? ... 6-4
6.4.3 What are the SLA Requirements for Each Work Manager? .. 6-4
6.4.4 Tuning Execute Queues .. 6-4
6.4.5 Understanding the Differences Between Work Managers and Execute Queues 6-4
6.4.6 Migrating from Previous Releases .. 6-5
6.4.7 Tuning the Stuck Thread Detection Behavior ... 6-5
6.5 Tuning Network I/O.. 6-6
6.5.1 Tuning Muxers... 6-6
6.5.2 Which Platforms Have Performance Packs?.. 6-7
6.5.3 Enabling Performance Packs.. 6-7
6.5.4 Changing the Number of Available Socket Readers .. 6-7
6.5.5 Network Channels... 6-7
6.5.6 Tuning Message Size ... 6-8
6.5.7 Tune the Chunk Parameters .. 6-8
6.5.8 Tuning Connection Backlog Buffering ... 6-8
6.6 Setting Your Compiler Options .. 6-9
6.6.1 Compiling EJB Classes .. 6-9
6.6.2 Setting JSP Compiler Options .. 6-9
6.6.2.1 Precompile JSPs .. 6-9
6.6.2.2 Optimize Java Expressions.. 6-9
6.7 Using WebLogic Server Clusters to Improve Performance... 6-10
6.7.1 Scalability and High Availability ... 6-10
6.7.2 How to Ensure Scalability for WebLogic Clusters... 6-11
6.7.3 Database Bottlenecks.. 6-11
6.7.4 Session Replication ... 6-11
6.7.5 Asynchronous HTTP Session Replication... 6-11
6.7.5.1 Asynchronous HTTP Session Replication using a Secondary Server................ 6-12
6.7.5.2 Asynchronous HTTP Session Replication using a Database 6-12
6.7.6 Invalidation of Entity EJBs .. 6-13
6.7.7 Invalidation of HTTP sessions .. 6-13
6.7.8 JNDI Binding, Unbinding and Rebinding... 6-13
6.7.9 Performance Considerations When Running Multiple Server Instances on

Multi-CPU Machines.. 6-13
6.8 Monitoring a WebLogic Server Domain... 6-14
6.8.1 Using the Administration Console to Monitor WebLogic Server 6-14
6.8.2 Using the WebLogic Diagnostic Framework.. 6-14
6.8.3 Using JMX to Monitor WebLogic Server... 6-14
6.8.4 Using WLST to Monitor WebLogic Server ... 6-14
6.8.5 Resources to Monitor WebLogic Server .. 6-15
6.8.6 Third-Party Tools to Monitor WebLogic Server .. 6-15
6.9 Tuning Class and Resource Loading .. 6-15
6.9.1 Filtering Loader Mechanism ... 6-15

7 Tuning the WebLogic Persistent Store

7.1 Overview of Persistent Stores ... 7-1
7.1.1 Using the Default Persistent Store... 7-1
7.1.2 Using Custom File Stores and JDBC Stores ... 7-1

vi

7.1.3 Using JMS Paging Stores .. 7-2
7.2 Best Practices When Using Persistent Stores .. 7-2
7.3 Tuning JDBC Stores .. 7-3
7.4 Tuning File Stores ... 7-3
7.4.1 Tuning the File Store Block Size .. 7-3
7.4.1.1 Setting the Block Size for a File Store... 7-4
7.4.1.2 Determining the File Store Block Size ... 7-5
7.4.1.3 Determining the File System Block Size.. 7-5
7.4.1.4 Converting a Store with Pre-existing Files ... 7-5

8 DataBase Tuning

8.1 General Suggestions ... 8-1
8.2 Database-Specific Tuning .. 8-2
8.2.1 Oracle... 8-2
8.2.2 Microsoft SQL Server .. 8-3
8.2.3 Sybase .. 8-3

9 Tuning WebLogic Server EJBs

9.1 General EJB Tuning Tips.. 9-1
9.2 Tuning EJB Caches.. 9-2
9.2.1 Tuning the Stateful Session Bean Cache... 9-2
9.2.2 Tuning the Entity Bean Cache.. 9-2
9.2.2.1 Transaction-Level Caching.. 9-2
9.2.2.2 Caching between Transactions ... 9-2
9.2.2.3 Ready Bean Caching .. 9-3
9.2.3 Tuning the Query Cache... 9-3
9.3 Tuning EJB Pools... 9-3
9.3.1 Tuning the Stateless Session Bean Pool .. 9-3
9.3.2 Tuning the MDB Pool.. 9-4
9.3.3 Tuning the Entity Bean Pool .. 9-4
9.4 CMP Entity Bean Tuning ... 9-4
9.4.1 Use Eager Relationship Caching ... 9-4
9.4.1.1 Using Inner Joins .. 9-5
9.4.2 Use JDBC Batch Operations ... 9-5
9.4.3 Tuned Updates... 9-5
9.4.4 Using Field Groups.. 9-5
9.4.5 include-updates.. 9-6
9.4.6 call-by-reference... 9-6
9.4.7 Bean-level Pessimistic Locking .. 9-6
9.4.8 Concurrency Strategy.. 9-7
9.5 Tuning In Response to Monitoring Statistics.. 9-8
9.5.1 Cache Miss Ratio.. 9-8
9.5.2 Lock Waiter Ratio .. 9-8
9.5.3 Lock Timeout Ratio ... 9-9
9.5.4 Pool Miss Ratio... 9-9
9.5.5 Destroyed Bean Ratio... 9-10
9.5.6 Pool Timeout Ratio ... 9-10

vii

9.5.7 Transaction Rollback Ratio.. 9-10
9.5.8 Transaction Timeout Ratio .. 9-11
9.6 Using the JDT Compiler.. 9-11

10 Tuning Message-Driven Beans

10.1 Use Transaction Batching ... 10-1
10.2 MDB Thread Management ... 10-1
10.2.1 Determining the Number of Concurrent MDBs .. 10-1
10.2.2 Selecting a Concurrency Strategy... 10-2
10.2.3 Thread Utilization When Using WebLogic Destinations ... 10-3
10.3 Using Foreign Vendor MDBs... 10-3
10.3.1 Determining Concurrency for Foreign MDBs .. 10-3
10.3.2 Thread Utilization When Using Foreign MDBs... 10-3
10.3.3 Token-based Message Polling for Transactional MDBs Listening on Queues 10-4
10.3.4 Backwards Compatibility for WLS 10.0 and Earlier-style Polling............................. 10-4

11 Tuning JDBC Applications

11.1 Tune the Number of Database Connections .. 11-1
11.2 Waste Not.. 11-1
11.3 Use Test Connections on Reserve with Care ... 11-2
11.4 Cache Prepared and Callable Statements... 11-2
11.5 Using Pinned-To-Thread Property to Increase Performance .. 11-2
11.6 Use Best Design Practices ... 11-3

12 Tuning Logging Last Resource

12.1 What is LLR?... 12-1
12.2 LLR Tuning Guidelines... 12-1

13 Tuning WebLogic JMS

13.1 Defining Quota... 13-1
13.1.1 Quota Resources ... 13-1
13.1.2 Destination-Level Quota.. 13-2
13.1.3 JMS Server-Level Quota... 13-2
13.2 Blocking Senders During Quota Conditions ... 13-3
13.2.1 Defining a Send Timeout on Connection Factories ... 13-3
13.2.2 Specifying a Blocking Send Policy on JMS Servers.. 13-3
13.3 Tuning for Large Messages .. 13-4
13.4 Tuning MessageMaximum... 13-4
13.4.1 Tuning MessageMaximum Limitations .. 13-4
13.4.2 Setting Maximum Message Size on a Client... 13-5
13.5 Compressing Messages ... 13-5
13.6 Paging Out Messages To Free Up Memory ... 13-6
13.6.1 Specifying a Message Paging Directory .. 13-6
13.6.2 Tuning the Message Buffer Size Option.. 13-6
13.7 Controlling the Flow of Messages on JMS Servers and Destinations 13-7

viii

13.7.1 How Flow Control Works ... 13-7
13.7.2 Configuring Flow Control .. 13-7
13.7.3 Flow Control Thresholds ... 13-8
13.8 Handling Expired Messages... 13-9
13.8.1 Defining a Message Expiration Policy ... 13-9
13.8.2 Configuring an Expiration Policy on Topics .. 13-10
13.8.3 Configuring an Expiration Policy on Queues... 13-10
13.8.4 Configuring an Expiration Policy on Templates.. 13-11
13.8.5 Defining an Expiration Logging Policy ... 13-11
13.8.6 Expiration Log Output Format ... 13-12
13.8.7 Tuning Active Message Expiration .. 13-12
13.8.8 Configuring a JMS Server to Actively Scan Destinations for Expired Messages .. 13-12
13.9 Tuning Applications Using Unit-of-Order... 13-13
13.9.1 Best Practices ... 13-13
13.9.2 Using UOO and Distributed Destinations .. 13-14
13.9.3 Migrating Old Applications to Use UOO ... 13-14
13.10 Using One-Way Message Sends For Improved Non-Persistent Messaging

Performance.. 13-14
13.10.1 Configure One-Way Sends On a Connection Factory... 13-15
13.10.2 One-Way Send Support In a Cluster With a Single Destination 13-15
13.10.3 One-Way Send Support In a Cluster With Multiple Destinations 13-15
13.10.4 When One-Way Sends Are Not Supported .. 13-16
13.10.5 Different Client and Destination Hosts ... 13-16
13.10.6 XA Enabled On Client's Host Connection Factory .. 13-16
13.10.7 Higher QOS Detected... 13-16
13.10.8 Destination Quota Exceeded... 13-16
13.10.9 Change In Server Security Policy ... 13-16
13.10.10 Change In JMS Server or Destination Status .. 13-17
13.10.11 Looking Up Logical Distributed Destination Name ... 13-17
13.10.12 Hardware Failure.. 13-17
13.10.13 One-Way Send QOS Guidelines... 13-17
13.11 Tuning Destination Performance... 13-18
13.11.1 Messaging Performance Configuration Parameters.. 13-18
13.11.2 Compatibility With the Asynchronous Message Pipeline.. 13-19
13.12 Best Practices for JMS .NET Client Applications... 13-19

14 Tuning WebLogic JMS Store-and-Forward

14.1 Best Practices .. 14-1
14.2 Tuning Tips... 14-1

15 Tuning WebLogic Message Bridge

15.1 Best Practices .. 15-1
15.2 Changing the Batch Size ... 15-1
15.3 Changing the Batch Interval... 15-2
15.4 Changing the Quality of Service.. 15-2
15.5 Using Multiple Bridge Instances ... 15-2
15.6 Changing the Thread Pool Size.. 15-2

ix

15.7 Avoiding Durable Subscriptions ... 15-3
15.8 Co-locating Bridges with Their Source or Target Destination .. 15-3
15.9 Changing the Asynchronous Mode Enabled Attribute ... 15-3

16 Tuning Resource Adapters

16.1 Classloading Optimizations for Resource Adapters .. 16-1
16.2 Connection Optimizations.. 16-1
16.3 Thread Management ... 16-2
16.4 InteractionSpec Interface... 16-2

17 Tuning Web Applications

17.1 Best Practices .. 17-1
17.1.1 Disable Page Checks... 17-1
17.1.2 Use Custom JSP Tags ... 17-1
17.1.3 Precompile JSPs... 17-2
17.1.4 Disable Access Logging ... 17-2
17.1.5 Use HTML Template Compression ... 17-2
17.1.6 Use Service Level Agreements.. 17-2
17.1.7 Related Reading .. 17-2
17.2 Session Management ... 17-2
17.2.1 Managing Session Persistence .. 17-3
17.2.2 Minimizing Sessions... 17-3
17.2.3 Aggregating Session Data ... 17-4
17.3 Pub-Sub Tuning Guidelines ... 17-4

18 Tuning Web Services

18.1 Web Services Best Practices .. 18-1
18.2 Tuning Web Service Reliable Messaging Agents.. 18-2
18.3 Tuning Heavily Loaded Systems to Improve Web Service Performance 18-2
18.3.1 Setting the Buffering Sessions... 18-2
18.3.2 Releasing Asynchronous Resources .. 18-3

19 Tuning WebLogic Tuxedo Connector

19.1 Configuration Guidelines ... 19-1
19.2 Best Practices .. 19-2

A Related Reading: Performance Tools and Information

A.1 WebLogic Information .. A-1
A.2 Sun Microsystems Information.. A-2
A.3 Linux OS Information.. A-2
A.4 Hewlett-Packard Company Information.. A-3
A.5 Microsoft Information ... A-3
A.6 Web Performance Tuning Information... A-3
A.7 Network Performance Tools .. A-4
A.8 Load Testing Tools... A-4

x

A.9 Performance Analysis Tools... A-4
A.10 Production Performance Management... A-5
A.11 Benchmarking Information .. A-5
A.12 Java Virtual Machine (JVM) Information ... A-5
A.13 Enterprise JavaBeans Information... A-6
A.14 WebLogic Store Information .. A-6
A.15 Java Message Service (JMS) Information.. A-6
A.16 Java Database Connectivity (JDBC) Information .. A-6
A.17 General Performance Information... A-6

B Using the WebLogic 8.1 Thread Pool Model

B.1 How to Enable the WebLogic 8.1 Thread Pool Model ... B-1
B.2 Tuning the Default Execute Queue .. B-2
B.2.1 Should You Modify the Default Thread Count? .. B-2
B.3 Using Execute Queues to Control Thread Usage.. B-3
B.3.1 Creating Execute Queues... B-4
B.3.2 Modifying the Thread Count .. B-6
B.3.3 Tuning Execute Queues for Overflow Conditions .. B-6
B.3.4 Assigning Servlets and JSPs to Execute Queues .. B-7
B.3.5 Assigning EJBs and RMI Objects to Execute Queues .. B-8
B.4 Monitoring Execute Threads .. B-8
B.5 Allocating Execute Threads to Act as Socket Readers ... B-8
B.5.1 Setting the Number of Socket Reader Threads For a Server Instance B-9
B.5.2 Setting the Number of Socket Reader Threads on Client Machines B-9
B.6 Tuning the Stuck Thread Detection Behavior.. B-9

C Capacity Planning

C.1 Capacity Planning Factors .. C-1
C.1.1 Programmatic and Web-based Clients .. C-2
C.1.2 RMI and Server Traffic... C-2
C.1.3 SSL Connections and Performance .. C-2
C.1.4 WebLogic Server Process Load... C-3
C.1.5 Database Server Capacity and User Storage Requirements ... C-3
C.1.6 Concurrent Sessions ... C-3
C.1.7 Network Load ... C-4
C.1.8 Clustered Configurations .. C-4
C.1.9 Application Design... C-4
C.2 Assessing Your Application Performance Objectives .. C-5
C.3 Hardware Tuning .. C-5
C.3.1 Benchmarks for Evaluating Performance ... C-5
C.3.2 Supported Platforms .. C-5
C.4 Network Performance ... C-5
C.4.1 Determining Network Bandwidth ... C-5
C.5 Related Information .. C-6

xi

Preface

This preface describes the document accessibility features and conventions used in this
guide—Performance and Tuning for Oracle WebLogic Server.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Conventions
The following text conventions are used in this document:

xii

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

This section describes the contents and organization of this guide—Performance and
Tuning for Oracle WebLogic Server.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to this Document"

■ Section 1.2.1, "Performance Features of this Release"

■ Section 1.3, "Related Documentation"

1.1 Document Scope and Audience
This document is written for people who monitor performance and tune the
components in a WebLogic Server environment. It is assumed that readers know
server administration and hardware performance tuning fundamentals, WebLogic
Server, XML, and the Java programming language.

1.2 Guide to this Document
■ This chapter, Chapter 1, "Introduction and Roadmap," introduces the organization

of this guide.

■ Chapter 2, "Top Tuning Recommendations for WebLogic Server," discusses the
most frequently recommended steps for achieving optimal performance tuning for
applications running on WebLogic Server.

■ Chapter 3, "Performance Tuning Roadmap," provides a roadmap to help tune your
application environment to optimize performance.

■ Chapter 4, "Operating System Tuning," discusses operating system issues.

■ Chapter 5, "Tuning Java Virtual Machines (JVMs)," discusses JVM tuning
considerations.

■ Chapter 7, "Tuning the WebLogic Persistent Store," provides information on how
to tune a persistent store.

■ Chapter 6, "Tuning WebLogic Server," contains information on how to tune
WebLogic Server to match your application needs.

■ Chapter 8, "DataBase Tuning," provides information on how to tune your data
base.

■ Chapter 9, "Tuning WebLogic Server EJBs," provides information on how to tune
applications that use EJBs.

Related Documentation

1-2 Performance and Tuning for Oracle WebLogic Server

■ Chapter 10, "Tuning Message-Driven Beans," provides information on how to tune
Message-Driven beans.

■ Chapter 11, "Tuning JDBC Applications," provides information on how to tune
JDBC applications.

■ Chapter 12, "Tuning Logging Last Resource," provides information on how to tune
Logging Last Resource transaction optimization.

■ Chapter 13, "Tuning WebLogic JMS," provides information on how to tune
applications that use WebLogic JMS.

■ Chapter 14, "Tuning WebLogic JMS Store-and-Forward," provides information on
how to tune applications that use JMS Store-and-Forward.

■ Chapter 15, "Tuning WebLogic Message Bridge," provides information on how to
tune applications that use the Weblogic Message Bridge.

■ Chapter 16, "Tuning Resource Adapters," provides information on how to tune
applications that use resource adaptors.

■ Chapter 17, "Tuning Web Applications," provides best practices for tuning
WebLogic Web applications and application resources:

■ Chapter 18, "Tuning Web Services," provides information on how to tune
applications that use Web services.

■ Chapter 19, "Tuning WebLogic Tuxedo Connector," provides information on how
to tune applications that use WebLogic Tuxedo Connector.

■ Appendix A, "Related Reading: Performance Tools and Information," provides an
extensive performance-related reading list.

■ Appendix B, "Using the WebLogic 8.1 Thread Pool Model," provides information
on using execute queues.

■ Appendix C, "Capacity Planning," provides an introduction to capacity planning.

1.2.1 Performance Features of this Release
WebLogic Server introduces the following performance enhancements:

■ Section 1.2.2, "One-Way Sends for Non-Persistent Messages"

1.2.2 One-Way Sends for Non-Persistent Messages
You may greatly improve the performance of typical non-persistent messaging by
using one-way message sends. By enabling the "One-Way Send Mode" option on your
connection factory, its associated producers can send messages without internally
waiting for a response from the target destination's host JMS server. You can choose to
allow queue senders and topic publishers to do one-way sends, or limit this capability
to topic publishers only. You can also configure a one-way window size to determine
when a two-way message is required to regulate producer before they can continue
making additional one-way sends.

See Chapter 13, "Tuning WebLogic JMS".

1.3 Related Documentation
For related information about administering and tuning WebLogic Server, see
Appendix A, "Related Reading: Performance Tools and Information."

2

Top Tuning Recommendations for WebLogic Server 2-1

2Top Tuning Recommendations for WebLogic
Server

Performance tuning WebLogic Server and your WebLogic Server application is a
complex and iterative process. To get you started, we have created a short list of
recommendations to help you optimize your application's performance. These tuning
techniques are applicable to nearly all WebLogic applications.

■ Section 2.1, "Tune Pool Sizes"

■ Section 2.2, "Use the Prepared Statement Cache"

■ Section 2.3, "Use Logging Last Resource Optimization"

■ Section 2.4, "Tune Connection Backlog Buffering"

■ Section 2.5, "Tune the Chunk Size"

■ Section 2.6, "Use Optimistic or Read-only Concurrency"

■ Section 2.7, "Use Local Interfaces"

■ Section 2.8, "Use eager-relationship-caching"

■ Section 2.9, "Tune HTTP Sessions"

■ Section 2.10, "Tune Messaging Applications"

2.1 Tune Pool Sizes
Provide pool sizes (such as pools for JDBC connections, Stateless Session EJBs, and
MDBs) that maximize concurrency for the expected thread utilization.

■ For WebLogic Server releases 9.0 and higher—A server instance uses a self-tuned
thread-pool. The best way to determine the appropriate pool size is to monitor the
pool's current size, shrink counts, grow counts, and wait counts. See Section 6.4,
"Thread Management". Tuning MDBs are a special case, please see Chapter 10,
"Tuning Message-Driven Beans".

■ For releases prior to WebLogic Server 9.0—In general, the number of connections
should equal the number of threads that are expected to be required to process the
requests handled by the pool. The most effective way to ensure the right pool size
is to monitor it and make sure it does not shrink and grow. See Section B.1, "How
to Enable the WebLogic 8.1 Thread Pool Model".

Use the Prepared Statement Cache

2-2 Performance and Tuning for Oracle WebLogic Server

2.2 Use the Prepared Statement Cache
The prepared statement cache keeps compiled SQL statements in memory, thus
avoiding a round-trip to the database when the same statement is used later. See
Chapter 11, "Tuning JDBC Applications".

2.3 Use Logging Last Resource Optimization
When using transactional database applications, consider using the JDBC data source
Logging Last Resource (LLR) transaction policy instead of XA. The LLR optimization
can significantly improve transaction performance by safely eliminating some of the
2PC XA overhead for database processing, especially for two-phase commit database
insert, update, and delete operations. For more information, see Chapter 11, "Tuning
JDBC Applications".

2.4 Tune Connection Backlog Buffering
You can tune the number of connection requests that a WebLogic Server instance
accepts before refusing additional requests. This tunable applies primarily for Web
applications. See Section 6.5.8, "Tuning Connection Backlog Buffering".

2.5 Tune the Chunk Size
A chunk is a unit of memory that the WebLogic Server network layer, both on the
client and server side, uses to read data from and write data to sockets. A server
instance maintains a pool of these chunks. For applications that handle large amounts
of data per request, increasing the value on both the client and server sides can boost
performance. See Section 6.5.7, "Tune the Chunk Parameters".

2.6 Use Optimistic or Read-only Concurrency
Use optimistic concurrency with cache-between-transactions or read-only concurrency
with query-caching for CMP EJBs wherever possible. Both of these two options
leverage the Entity Bean cache provided by the EJB container.

■ Optimistic-concurrency with cache-between-transactions work best with
read-mostly beans. Using verify-reads in combination with these provides high
data consistency guarantees with the performance gain of caching. See Chapter 9,
"Tuning WebLogic Server EJBs".

■ Query-caching is a WebLogic Server 9.0 feature that allows the EJB container to
cache results for arbitrary non-primary-key finders defined on read-only EJBs. All
of these parameters can be set in the application/module deployment descriptors.
See Section 9.4.8, "Concurrency Strategy".

2.7 Use Local Interfaces
Use local-interfaces or use call-by-reference semantics to avoid the overhead of
serialization when one EJB calls another or an EJB is called by a servlet/JSP in the
same application. Note the following:

■ In release prior to WebLogic Server 8.1, call-by-reference is turned on by default.
For releases of WebLogic Server 8.1 and higher, call-by-reference is turned off by
default. Older applications migrating to WebLogic Server 8.1 and higher that do
not explicitly turn on call-by-reference may experience a drop in performance.

Tune Messaging Applications

Top Tuning Recommendations for WebLogic Server 2-3

■ This optimization does not apply to calls across different applications.

2.8 Use eager-relationship-caching
Use eager-relationship-caching wherever possible. This feature allows the EJB
container to load related beans using a single SQL statement. It improves performance
by reducing the number of database calls to load related beans in transactions when a
bean and it's related beans are expected to be used in that transaction. See Chapter 9,
"Tuning WebLogic Server EJBs".

2.9 Tune HTTP Sessions
Optimize your application so that it does as little work as possible when handling
session persistence and sessions. You should also design a session management
strategy that suits your environment and application. See Section 17.2, "Session
Management".

2.10 Tune Messaging Applications
Oracle provides messaging users a rich set of performance tunables. In general, you
should always configure quotas and paging. See:

■ Chapter 7, "Tuning the WebLogic Persistent Store"

■ Chapter 13, "Tuning WebLogic JMS"

■ Chapter 14, "Tuning WebLogic JMS Store-and-Forward"

■ Chapter 15, "Tuning WebLogic Message Bridge"

Tune Messaging Applications

2-4 Performance and Tuning for Oracle WebLogic Server

3

Performance Tuning Roadmap 3-1

3Performance Tuning Roadmap

Performance tuning WebLogic Server and your WebLogic Server application is a
complex and iterative process. The following sections provide a tuning roadmap and
tuning tips for you can use to improve system performance:

■ Section 3.1, "Performance Tuning Roadmap"

■ Section 3.2, "Tuning Tips"

3.1 Performance Tuning Roadmap
The following steps provide a roadmap to help tune your application environment to
optimize performance:

1. Section 3.1.1, "Understand Your Performance Objectives"

2. Section 3.1.2, "Measure Your Performance Metrics"

3. Section 3.1.5, "Locate Bottlenecks in Your System"

4. Section 3.1.6, "Minimize Impact of Bottlenecks"

5. Section 3.1.12, "Achieve Performance Objectives"

3.1.1 Understand Your Performance Objectives
To determine your performance objectives, you need to understand the application
deployed and the environmental constraints placed on the system. Gather information
about the levels of activity that components of the application are expected to meet,
such as:

■ The anticipated number of users.

■ The number and size of requests.

■ The amount of data and its consistency.

■ Determining your target CPU utilization.

Your target CPU usage should not be 100%, you should determine a target CPU
utilization based on your application needs, including CPU cycles for peak usage.
If your CPU utilization is optimized at 100% during normal load hours, you have
no capacity to handle a peak load. In applications that are latency sensitive and
maintaining the ability for a fast response time is important, high CPU usage
(approaching 100% utilization) can reduce response times while throughput stays
constant or even increases because of work queuing up in the server. For such
applications, a 70% - 80% CPU utilization recommended. A good target for
non-latency sensitive applications is about 90%.

Performance Tuning Roadmap

3-2 Performance and Tuning for Oracle WebLogic Server

Performance objectives are limited by constraints, such as

■ The configuration of hardware and software such as CPU type, disk size vs. disk
speed, sufficient memory.

There is no single formula for determining your hardware requirements. The
process of determining what type of hardware and software configuration is
required to meet application needs adequately is called capacity planning.
Capacity planning requires assessment of your system performance goals and an
understanding of your application. Capacity planning for server hardware should
focus on maximum performance requirements. See Appendix C, "Capacity
Planning."

■ The ability to interoperate between domains, use legacy systems, support legacy
data.

■ Development, implementation, and maintenance costs.

You will use this information to set realistic performance objectives for your
application environment, such as response times, throughput, and load on specific
hardware.

3.1.2 Measure Your Performance Metrics
After you have determined your performance criteria in Section 3.1.1, "Understand
Your Performance Objectives", take measurements of the metrics you will use to
quantify your performance objectives. See Section A.8, "Load Testing Tools". The
following sections provide information on measuring basic performance metrics:

■ Section 3.1.3, "Monitor Disk and CPU Utilization"

■ Section 3.1.4, "Monitor Data Transfers Across the Network"

3.1.3 Monitor Disk and CPU Utilization
Run your application under a high load while monitoring the:

■ Application server (disk and CPU utilization)

■ Database server (disk and CPU utilization)

The goal is to get to a point where the application server achieves your target CPU
utilization. If you find that the application server CPU is under utilized, confirm
whether the database is bottle necked. If the database CPU is 100 percent utilized, then
check your application SQL calls query plans. For example, are your SQL calls using
indexes or doing linear searches? Also, confirm whether there are too many ORDER BY
clauses used in your application that are affecting the database CPU. See Chapter 4,
"Operating System Tuning".

If you discover that the database disk is the bottleneck (for example, if the disk is 100
percent utilized), try moving to faster disks or to a RAID (redundant array of
independent disks) configuration, assuming the application is not doing more writes
then required.

Once you know the database server is not the bottleneck, determine whether the
application server disk is the bottleneck. Some of the disk bottlenecks for application
server disks are:

■ Persistent Store writes

■ Transaction logging (tlogs)

■ HTTP logging

Performance Tuning Roadmap

Performance Tuning Roadmap 3-3

■ Server logging

The disk I/O on an application server can be optimized using faster disks or RAID,
disabling synchronous JMS writes, using JTA direct writes for tlogs, or increasing the
HTTP log buffer.

3.1.4 Monitor Data Transfers Across the Network
Check the amount of data transferred between the application and the application
server, and between the application server and the database server. This amount
should not exceed your network bandwidth; otherwise, your network becomes the
bottleneck. See Section 4.2.1, "Setting TCP Parameters With the ndd Command".

3.1.5 Locate Bottlenecks in Your System
If you determine that neither the network nor the database server is the bottleneck,
start looking at your operating system, JVM, and WebLogic Server configurations.
Most importantly, is the machine running WebLogic Server able to get your target CPU
utilization with a high client load? If the answer is no, then check if there is any
locking taking place in the application. You should profile your application using a
commercially available tool (for example, JProbe or OptimizeIt) to pinpoint
bottlenecks and improve application performance.

For more information about application profiling tools, see Section A.9, "Performance
Analysis Tools".

3.1.6 Minimize Impact of Bottlenecks
In this step, you tune your environment to minimize the impact of bottlenecks on your
performance objectives. It is important to realize that in this step you are minimizing
the impact of bottlenecks, not eliminating them. Tuning allows you to adjust resources
to achieve your performance objectives. For the scope of this document, this includes
(from most important to least important):

■ Section 3.1.7, "Tune Your Application"

■ Section 3.1.8, "Tune your DB"

■ Section 3.1.9, "Tune WebLogic Server Performance Parameters"

■ Section 3.1.10, "Tune Your JVM"

■ Section 3.1.11, "Tune the Operating System"

■ Section 7, "Tuning the WebLogic Persistent Store"

3.1.7 Tune Your Application
To quote the authors of Mastering BEA WebLogic Server: Best Practices for Building and
Deploying J2EE Applications: "Good application performance starts with good
application design. Overly-complex or poorly-designed applications will perform
poorly regardless of the system-level tuning and best practices employed to improve
performance." In other words, a poorly designed application can create unnecessary
bottlenecks. For example, resource contention could be a case of poor design, rather
than inherent to the application domain.

Tip: Even if you find that the CPU is 100 percent utilized, you should
profile your application for performance improvements.

Tuning Tips

3-4 Performance and Tuning for Oracle WebLogic Server

For more information, see:

■ Chapter 9, "Tuning WebLogic Server EJBs"

■ Chapter 10, "Tuning Message-Driven Beans"

■ Chapter 11, "Tuning JDBC Applications"

■ Chapter 12, "Tuning Logging Last Resource"

■ Chapter 13, "Tuning WebLogic JMS"

■ Chapter 14, "Tuning WebLogic JMS Store-and-Forward"

■ Chapter 15, "Tuning WebLogic Message Bridge"

■ Chapter 16, "Tuning Resource Adapters"

■ Chapter 17, "Tuning Web Applications"

■ Chapter 18, "Tuning Web Services"

■ Chapter 19, "Tuning WebLogic Tuxedo Connector"

3.1.8 Tune your DB
Your database can be a major enterprise-level bottleneck. Database optimization can be
complex and vender dependent. See Section 8, "DataBase Tuning".

3.1.9 Tune WebLogic Server Performance Parameters
The WebLogic Server uses a number of OOTB (out-of-the-box) performance-related
parameters that can be fine-tuned depending on your environment and applications.
Tuning these parameters based on your system requirements (rather than running
with default settings) can greatly improve both single-node performance and the
scalability characteristics of an application. See Chapter 6, "Tuning WebLogic Server".

3.1.10 Tune Your JVM
The Java virtual machine (JVM) is a virtual "execution engine" instance that executes
the bytecodes in Java class files on a microprocessor. See Chapter 5, "Tuning Java
Virtual Machines (JVMs)".

3.1.11 Tune the Operating System
Each operating system sets default tuning parameters differently. For Windows
platforms, the default settings are usually sufficient. However, the UNIX and Linux
operating systems usually need to be tuned appropriately. See Chapter 4, "Operating
System Tuning".

3.1.12 Achieve Performance Objectives
Performance tuning is an iterative process. After you have minimized the impact of
bottlenecks on your system, go to Step 2, Section 3.1.2, "Measure Your Performance
Metrics" and determine if you have met your performance objectives.

3.2 Tuning Tips
This section provides tips and guidelines when tuning overall system performance:

Tuning Tips

Performance Tuning Roadmap 3-5

■ Performance tuning is not a silver bullet. Simply put, good system performance
depends on: good design, good implementation, defined performance objectives,
and performance tuning.

■ Performance tuning is ongoing process. Implement mechanisms that provide
performance metrics which you can compare against your performance objectives,
allowing you to schedule a tuning phase before your system fails.

■ The object is to meet your performance objectives, not eliminate all bottlenecks.
Resources within a system are finite. By definition, at least one resource (CPU,
memory, or I/O) will be a bottleneck in the system. Tuning allows you minimize
the impact of bottlenecks on your performance objectives.

■ Design your applications with performance in mind:

– Keep things simple - avoid inappropriate use of published patterns.

– Apply Java EE performance patterns.

– Optimize your Java code.

Tuning Tips

3-6 Performance and Tuning for Oracle WebLogic Server

4

Operating System Tuning 4-1

4Operating System Tuning

Tune your operating system according to your operating system documentation. For
Windows platforms, the default settings are usually sufficient. However, the Solaris
and Linux platforms usually need to be tuned appropriately. The following sections
describe issues related to operating system performance:

■ Section 4.1, "Basic OS Tuning Concepts"

■ Section 4.2, "Solaris Tuning Parameters"

■ Section 4.3, "Linux Tuning Parameters"

■ Section 4.4, "HP-UX Tuning Parameters"

■ Section 4.5, "Windows Tuning Parameters"

■ Section 4.6, "Other Operating System Tuning Information"

4.1 Basic OS Tuning Concepts
Proper OS tuning improves system performance by preventing the occurrence of error
conditions. Operating system error conditions always degrade performance. Typically
most error conditions are TCP tuning parameter related and are caused by the
operating system's failure to release old sockets from a close_wait call. Common
errors are "connection refused", "too many open files" on the server-side,
and "address in use: connect" on the client-side.

In most cases, these errors can be prevented by adjusting the TCP wait_time value
and the TCP queue size. Although users often find the need to make adjustments
when using tunnelling, OS tuning may be necessary for any protocol under
sufficiently heavy loads. The following sections provide information on tuning
parameters for various operating systems.

Note: Although the following sections provide information on
tuning parameters that Oracle has determined can enhance
application performance, Oracle recommends following your OS
vendor's tuning documentation for tuning parameter values and
monitoring performance changes when changing tuning parameters
in your local environment. Another resource which may provide
helpful tuning information is the "All SPEC jAppServer2004 Results
Published by SPEC" in
http://www.spec.org/jAppServer2004/results/jAppServe
r2004.html web page. It provides the OS tuning parameters used
for each reported WebLogic Server benchmark.

Solaris Tuning Parameters

4-2 Performance and Tuning for Oracle WebLogic Server

4.2 Solaris Tuning Parameters
The following sections provide information on tuning Solaris operating systems:

■ Section 4.2.1, "Setting TCP Parameters With the ndd Command"

■ Section 4.2.2, "Setting Parameters In the /etc/system File"

■ Section 4.2.3, "CE Gigabit Network Card Settings"

■ Section 4.2.4, "Additional Solaris Tuning Information"

4.2.1 Setting TCP Parameters With the ndd Command
This section lists important TCP tuning parameters that when tuned, can enhance
application performance:

■ /dev/tcp tcp_time_wait_interval

■ /dev/tcp tcp_conn_req_max_q

■ /dev/tcp tcp_conn_req_max_q0

■ /dev/tcp tcp_ip_abort_interval

■ /dev/tcp tcp_keepalive_interval

■ /dev/tcp tcp_rexmit_interval_initial

■ /dev/tcp tcp_rexmit_interval_max

■ /dev/tcp tcp_rexmit_interval_min

■ /dev/tcp tcp_smallest_anon_port

■ /dev/tcp tcp_xmit_hiwat

■ /dev/tcp tcp_recv_hiwat

■ /dev/ce instance

■ /dev/ce rx_intr_time

Set TCP-related tuning parameters using the ndd command, as demonstrated in the
following example:

ndd -set /dev/tcp tcp_conn_req_max_q 16384

4.2.2 Setting Parameters In the /etc/system File
This section lists important /etc/system file tuning parameters that when tuned,
can enhance application performance. Each socket connection to the server consumes a
file descriptor. To optimize socket performance, you may need to configure your
operating system to have the appropriate number of file descriptors. Therefore, you

Note: The following sections list common parameters that can
enhance performance. These lists are not all inclusive and parameters
may be different, have different defaults, or be out of date for different
Solaris operating systems. For more information, see Section 4.2.4,
"Additional Solaris Tuning Information".

Note: Use the netstat -s -P tcp command to view all available
TCP parameters.

Linux Tuning Parameters

Operating System Tuning 4-3

should change the default file descriptor limits, as well as the hash table size and other
tuning parameters in the /etc/system file.

■ set rlim_fd_cur

■ set rlim_fd_max

■ set tcp:tcp_conn_hash_size (Solaris 8 and 9)

■ set ip:ipcl_conn_hash_size (Solaris 10)

■ set shmsys:shminfo_shmmax Note: This should only be set for machines that
have at least 4 GB RAM or higher.

■ set autoup

■ set tune_t_fsflushr

4.2.3 CE Gigabit Network Card Settings
This section lists important CE Gigabit Network Card tuning parameters that when
tuned, can enhance application performance:

■ set ce:ce_bcopy_thresh

■ set ce:ce_dvma_thresh

■ set ce:ce_taskq_disable

■ set ce:ce_ring_size

■ set ce:ce_comp_ring_size

■ set ce:ce_tx_ring_size

4.2.4 Additional Solaris Tuning Information
For more information about Solaris tuning options, see:

■ Solaris Tunable Parameters Reference Manual (Solaris 8), at
http://docs.sun.com/app/docs/doc/806-6779

■ Solaris Tunable Parameters Reference Manual (Solaris 9), at
http://docs.sun.com/app/docs/doc/806-7009

■ Solaris Tunable Parameters Reference Manual (Solaris 10), at
http://docs.sun.com/app/docs/doc/817-0404

4.3 Linux Tuning Parameters
This section lists important Linux tuning parameters that when adjusted, can enhance
application performance:

■ /sbin/ifconfig lo mtu

■ kernel.msgmni

■ kernel.sem

■ fs.file-max

Note: You must reboot your machine anytime you modify
/etc/system parameters.

HP-UX Tuning Parameters

4-4 Performance and Tuning for Oracle WebLogic Server

■ kernel.shmmax

■ net.ipv4.tcp_max_syn_backlog

For more information about Linux tuning, you should consult your Linux vendor's
documentation. Also, the "Ipsysctl Tutorial 1.0.4", at
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html,
describes all of the IP options provided by Linux.

4.4 HP-UX Tuning Parameters
This section lists important HP-UX operating system tuning parameters that when
adjusted, can enhance application performance:

■ tcp_conn_req_max

■ tcp_xmit_hiwater_def

■ tcp_ip_abort_interval

■ tcp_rexmit_interval_initial

■ tcp_keepalive_interval

For more HP-UX tuning information, see "Tunable Kernel Parameters" reference
documentation at
http://docs.hp.com/hpux/onlinedocs/TKP-90203/TKP-90203.html.

4.5 Windows Tuning Parameters
For Windows platforms, the default settings are usually sufficient. However, under
sufficiently heavy loads it may be necessary to adjust the MaxUserPort and
TcpTimedWaitDelay. These parameters determine the availability of user ports
requested by an application.

By default, ephemeral (that is, short-lived) ports are allocated between the values of
1024 and 5000 inclusive using the MaxUserPort parameter. The
TcpTimedWaitDelay parameter, which controls the amount of time the OS waits to
reclaim a port after an application closes a TCP connection, has a default value of 4
minutes. During a heavy loads, these limits may be exceeded resulting in an address
in use: connect exception. If you experience address in use: connect
exceptions try setting the MaxUserPort and TcpTimedWaitDelay registry values
under the HKEY_LOCAL_
MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters key:

MaxUserPort = dword:00004e20 (20,000 decimal)
TcpTimedWaitDelay = dword:0000001e (30 decimal)

Increase the value of the MaxUserPort parameter if the exception persists.

For more information about Windows 2000 tuning options, see:

■ The "Microsoft Windows 2000 TCP/IP Implementation Details white paper" at
http://www.microsoft.com/windows2000/techinfo/howitworks/comm
unications/networkbasics/tcpip_implement.asp.

■ The "Windows 2000 Performance Tuning white paper" at
http://www.microsoft.com/technet/prodtechnol/windows2000serv/
maintain/optimize/perftune.mspx.

Other Operating System Tuning Information

Operating System Tuning 4-5

4.6 Other Operating System Tuning Information
For more information about Windows, HP-UX, and AIX tuning options, refer to the
following Web sites:

■ For Windows tuning information, see the "Microsoft Windows 2000 TCP/IP
Implementation Details white paper" at
http://www.microsoft.com/windows2000/techinfo/howitworks/comm
unications/networkbasics/tcpip_implement.asp.

■ For AIX tuning information, see the "AIX 5L Version 5.2 Performance Management
Guide" at http://publib16.boulder.ibm.com/pseries/en_
US/aixbman/prftungd/prftungd.htm.

■ Maximum memory for a user process — Check your operating system
documentation for the maximum memory available for a user process. In some
operating systems, this value is as low as 128 MB. Also, refer to your operating
system documentation.For more information about memory management, see
Chapter 5, "Tuning Java Virtual Machines (JVMs)".

Other Operating System Tuning Information

4-6 Performance and Tuning for Oracle WebLogic Server

5

Tuning Java Virtual Machines (JVMs) 5-1

5Tuning Java Virtual Machines (JVMs)

The Java virtual machine (JVM) is a virtual "execution engine" instance that executes
the bytecodes in Java class files on a microprocessor. How you tune your JVM affects
the performance of WebLogic Server and your applications. envelope

The following sections discuss JVM tuning options for WebLogic Server:

■ Section 5.1, "JVM Tuning Considerations"

■ Section 5.2, "Which JVM for Your System?"

■ Section 5.3, "Garbage Collection"

■ Section 5.4, "Enable Spinning for IA32 Platforms"

5.1 JVM Tuning Considerations
The following table presents general JVM tuning considerations for WebLogic Server.

Table 5–1 General JVM Tuning Considerations

Tuning Factor Information Reference

JVM vendor and version Use only production JVMs on which WebLogic Server has been
certified. This release of WebLogic Server supports only those
JVMs that are J2SE 5.0-compliant.

The Supported Configurations pages at
http://www.oracle.com/technology/software/produc
ts/ias/files/fusion_certification.html are
frequently updated and contain the latest certification
information on various platforms.

Tuning heap size and
garbage collection

For WebLogic Server heap size tuning details, see Section 5.3,
"Garbage Collection".

Choosing a GC (garbage
collection) scheme

Depending on your application, there are a number of GC
schemes available for managing your system memory, as
described in Section 5.3.2, "Choosing a Garbage Collection
Scheme".

Mixed client/server JVMs Deployments using different JVM versions for the client and
server are supported in WebLogic Server. See the support page
for Mixed Client/Server JVMs at
http://www.oracle.com/technology/software/produc
ts/ias/files/fusion_certification.html.

Which JVM for Your System?

5-2 Performance and Tuning for Oracle WebLogic Server

5.2 Which JVM for Your System?
Although this section focuses on Sun Microsystems' J2SE 5.0 JVM for the Windows,
UNIX, and Linux platforms, the JRockit JVM was developed expressly for server-side
applications and optimized for Intel architectures to ensure reliability, scalability,
manageability, and flexibility for Java applications. For more information about the
benefits of using JRockit on Windows and Linux platforms, see "Introduction to JRockit
JDK" at http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/webdocs/index.html.

For more information on JVMs in general, see "Introduction to the JVM specification" at
http://java.sun.com/docs/books/vmspec/2nd-edition/html/Introduct
ion.doc.html#3057. For links to related reading for JVM tuning, see Appendix A,
"Related Reading: Performance Tools and Information."

5.2.1 Changing To a Different JVM
When you create a domain, if you choose to customize the configuration, the
Configuration Wizard presents a list of JDKs that WebLogic Server installed. From this
list, you choose the JVM that you want to run your domain and the wizard configures
the Oracle start scripts based on your choice. After you create a domain, if you want to
use a different JVM, see "Changing the JVM That Runs Servers" in Oracle Fusion
Middleware Managing Server Startup and Shutdown for Oracle WebLogic Server.

5.3 Garbage Collection
Garbage collection is the VM's process of freeing up unused Java objects in the Java
heap. The following sections provide information on tuning your VM's garbage
collection:

■ Section 5.3.1, "VM Heap Size and Garbage Collection"

■ Section 5.3.2, "Choosing a Garbage Collection Scheme"

■ Section 5.3.3, "Using Verbose Garbage Collection to Determine Heap Size"

■ Section 5.3.4, "Specifying Heap Size Values"

■ Section 5.3.8, "Automatically Logging Low Memory Conditions"

■ Section 5.3.9, "Manually Requesting Garbage Collection"

■ Section 5.3.10, "Requesting Thread Stacks"

UNIX threading models Choices you make about Solaris threading models can have a
large impact on the performance of your JVM on Solaris. You can
choose from multiple threading models and different methods of
synchronization within the model, but this varies from JVM to
JVM.

See "Performance Documentation For the Java Hotspot Virtual
Machine: Threading" at
http://java.sun.com/docs/hotspot/threads/threads
.html.

Table 5–1 (Cont.) General JVM Tuning Considerations

Tuning Factor Information Reference

Garbage Collection

Tuning Java Virtual Machines (JVMs) 5-3

5.3.1 VM Heap Size and Garbage Collection
The Java heap is where the objects of a Java program live. It is a repository for live
objects, dead objects, and free memory. When an object can no longer be reached from
any pointer in the running program, it is considered "garbage" and ready for
collection. A best practice is to tune the time spent doing garbage collection to within
5% of execution time.

The JVM heap size determines how often and how long the VM spends collecting
garbage. An acceptable rate for garbage collection is application-specific and should be
adjusted after analyzing the actual time and frequency of garbage collections. If you
set a large heap size, full garbage collection is slower, but it occurs less frequently. If
you set your heap size in accordance with your memory needs, full garbage collection
is faster, but occurs more frequently.

The goal of tuning your heap size is to minimize the time that your JVM spends doing
garbage collection while maximizing the number of clients that WebLogic Server can
handle at a given time. To ensure maximum performance during benchmarking, you
might set high heap size values to ensure that garbage collection does not occur during
the entire run of the benchmark.

You might see the following Java error if you are running out of heap space:

java.lang.OutOfMemoryError <<no stack trace available>>
java.lang.OutOfMemoryError <<no stack trace available>>
Exception in thread "main"

To modify heap space values, see Section 5.3.4, "Specifying Heap Size Values".

To configure WebLogic Server to detect automatically when you are running out of
heap space and to address low memory conditions in the server, see Section 5.3.8,
"Automatically Logging Low Memory Conditions" and Section 5.3.4, "Specifying Heap
Size Values".

5.3.2 Choosing a Garbage Collection Scheme
Depending on which JVM you are using, you can choose from several garbage
collection schemes to manage your system memory. For example, some garbage
collection schemes are more appropriate for a given type of application. Once you
have an understanding of the workload of the application and the different garbage
collection algorithms utilized by the JVM, you can optimize the configuration of the
garbage collection.

Refer to the following links for in-depth discussions of garbage collection options for
your JVM:

■ For an overview of the garbage collection schemes available with Sun's HotSpot
VM, see "Tuning Garbage Collection with the 5.0 Java Virtual Machine" at
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html.

■ For a comprehensive explanation of the collection schemes available, see
"Improving Java Application Performance and Scalability by Reducing Garbage Collection
Times and Sizing Memory Using JDK 1.4.1" at
http://wireless.java.sun.com/midp/articles/garbagecolletion2/
.

■ For a discussion of the garbage collection schemes available with the JRockit JDK,
see "Using the JRockt Memory Management System" at
http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/webdocs/index.html.

Garbage Collection

5-4 Performance and Tuning for Oracle WebLogic Server

■ For some pointers about garbage collection from an HP perspective, see
"Performance tuning Java: Tuning steps" at
http://h21007.www2.hp.com/dspp/tech/tech_
TechDocumentDetailPage_IDX/1,1701,1604,00.html.

5.3.3 Using Verbose Garbage Collection to Determine Heap Size
The verbose garbage collection option (verbosegc) enables you to measure exactly
how much time and resources are put into garbage collection. To determine the most
effective heap size, turn on verbose garbage collection and redirect the output to a log
file for diagnostic purposes.

The following steps outline this procedure:

1. Monitor the performance of WebLogic Server under maximum load while running
your application.

2. Use the -verbosegc option to turn on verbose garbage collection output for your
JVM and redirect both the standard error and standard output to a log file.

This places thread dump information in the proper context with WebLogic Server
informational and error messages, and provides a more useful log for diagnostic
purposes.

For example, on Windows and Solaris, enter the following:

% java -ms32m -mx200m -verbosegc -classpath $CLASSPATH
-Dweblogic.Name=%SERVER_NAME% -Dbea.home="C:\Oracle\Middleware"
-Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.management.server=%ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy" weblogic.Server
>> logfile.txt 2>&1

where the logfile.txt 2>&1 command redirects both the standard error and
standard output to a log file.

On HPUX, use the following option to redirect stderr stdout to a single file:

-Xverbosegc:file=/tmp/gc$$.out

where $$ maps to the process ID (PID) of the Java process. Because the output
includes timestamps for when garbage collection ran, you can infer how often
garbage collection occurs.

3. Analyze the following data points:

a. How often is garbage collection taking place? In the weblogic.log file, compare
the time stamps around the garbage collection.

b. How long is garbage collection taking? Full garbage collection should not take
longer than 3 to 5 seconds.

c. What is your average memory footprint? In other words, what does the heap
settle back down to after each full garbage collection? If the heap always
settles to 85 percent free, you might set the heap size smaller.

4. Review the New generation heap sizes (Sun) or Nursery size (Jrockit).

■ For Jrockit: see Section 5.3.6, "JRockit JVM Heap Size Options".

■ For Sun: see Section 5.3.7, "Java HotSpot VM Heap Size Options".

Garbage Collection

Tuning Java Virtual Machines (JVMs) 5-5

1. Make sure that the heap size is not larger than the available free RAM on your
system.

Use as large a heap size as possible without causing your system to "swap" pages
to disk. The amount of free RAM on your system depends on your hardware
configuration and the memory requirements of running processes on your
machine. See your system administrator for help in determining the amount of
free RAM on your system.

2. If you find that your system is spending too much time collecting garbage (your
allocated virtual memory is more than your RAM can handle), lower your heap
size.

Typically, you should use 80 percent of the available RAM (not taken by the
operating system or other processes) for your JVM.

3. If you find that you have a large amount of available free RAM remaining, run
more instances of WebLogic Server on your machine.

Remember, the goal of tuning your heap size is to minimize the time that your
JVM spends doing garbage collection while maximizing the number of clients that
WebLogic Server can handle at a given time.

JVM vendors may provide other options to print comprehensive garbage
collection reports. For example, you can use the JRockit JVM -Xgcreport option
to print a comprehensive garbage collection report at program completion, see
"Viewing Garbage Collection Behavior", at
http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/webdocs/index.html

5.3.4 Specifying Heap Size Values
System performance is greatly influenced by the size of the Java heap available to the
JVM. This section describes the command line options you use to define the heap sizes
values.You must specify Java heap size values each time you start an instance of
WebLogic Server. This can be done either from the java command line or by
modifying the default values in the sample startup scripts that are provided with the
WebLogic distribution for starting WebLogic Server.

■ Section 5.3.5, "Tuning Tips for Heap Sizes"

■ Section 5.3.6, "JRockit JVM Heap Size Options"

■ Section 5.3.7, "Java HotSpot VM Heap Size Options"

5.3.5 Tuning Tips for Heap Sizes
The following section provides general guidelines for tuning VM heap sizes:

■ The heap sizes should be set to values such that the maximum amount of memory
used by the VM does not exceed the amount of available physical RAM. If this
value is exceeded, the OS starts paging and performance degrades significantly.
The VM always uses more memory than the heap size. The memory required for
internal VM functionality, native libraries outside of the VM, and permanent
generation memory (for the Sun VM only: memory required to store classes and
methods) is allocated in addition to the heap size settings.

■ When using a generational garbage collection scheme, the nursery size should not
exceed more than half the total Java heap size. Typically, 25% to 40% of the heap
size is adequate.

Garbage Collection

5-6 Performance and Tuning for Oracle WebLogic Server

■ In production environments, set the minimum heap size and the maximum heap
size to the same value to prevent wasting VM resources used to constantly grow
and shrink the heap. This also applies to the New generation heap sizes (Sun) or
Nursery size (Jrockit).

5.3.6 JRockit JVM Heap Size Options
Although JRockit provides automatic heap resizing heuristics, they are not optimal for
all applications. In most situations, best performance is achieved by tuning the VM for
each application by adjusting the heaps size options shown in the following table.

For example, when you start a WebLogic Server instance from a java command line,
you could specify the JRockit VM heap size values as follows:

$ java -Xns10m -Xms512m -Xmx512m

The default size for these values is measured in bytes. Append the letter 'k' or 'K' to the
value to indicate kilobytes, 'm' or 'M' to indicate megabytes, and 'g' or 'G' to indicate
gigabytes. The example above allocates 10 megabytes of memory to the Nursery heap
sizes and 512 megabytes of memory to the minimum and maximum heap sizes for the
WebLogic Server instance running in the JVM.

For detailed information about setting the appropriate heap sizes for WebLogic's
JRockit JVM, see "Tuning the JRockit JVM" at
http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/webdocs/index.html.

Table 5–2 JRockit JVM Heap Size Options

TASK Option Description

Setting the
Nursery

-Xns Optimally, you should try to make the
nursery as large as possible while still
keeping the garbage collection pause times
acceptably low. This is particularly important
if your application is creating a lot of
temporary objects.

The maximum size of a nursery cannot
exceed 95% of the maximum heap size.

Setting minimum
heap size

-Xms Oracle recommends setting the minimum
heap size (-Xms) equal to the maximum heap
size (-Xmx) to minimize garbage collections.

Setting maximum
heap size

-Xmx Setting a low maximum heap value compared
to the amount of live data decrease
performance by forcing frequent garbage
collections.

Setting garbage
collection

-Xgc: parallel

Performs adaptive
optimizations as
early as possible
in the Java
application run.

-XXaggressive:memory To do this, the bottleneck detector will run
with a higher frequency from the start and
then gradually lower its frequency. This
options also tells JRockit to use the available
memory aggressively.

Garbage Collection

Tuning Java Virtual Machines (JVMs) 5-7

5.3.6.1 Other JRockit VM Options
Oracle provides other command-line options to improve the performance of your
JRockit VM. For detailed information, see "JRockit JDK Command Line Options by Name"
at http://e-docs.bea.com/jrockit/docs50/options.html.

5.3.7 Java HotSpot VM Heap Size Options
You achieve best performance by individually tuning each application. However,
configuring the Java HotSpot VM heap size options listed in the following table when
starting WebLogic Server increases performance for most applications.

These options may differ depending on your architecture and operating system. See
your vendor's documentation for platform-specific JVM tuning options.

For example, when you start a WebLogic Server instance from a java command line,
you could specify the HotSpot VM heap size values as follows:

$ java -XX:NewSize=128m -XX:MaxNewSize=128m -XX:SurvivorRatio=8 -Xms512m -Xmx512m

The default size for these values is measured in bytes. Append the letter 'k' or 'K' to the
value to indicate kilobytes, 'm' or 'M' to indicate megabytes, and 'g' or 'G' to indicate
gigabytes. The example above allocates 128 megabytes of memory to the New
generation and maximum New generation heap sizes, and 512 megabytes of memory
to the minimum and maximum heap sizes for the WebLogic Server instance running
in the JVM.

Table 5–3 Java Heap Size Options

Task Option Comments

Setting the New
generation heap size

-XX:NewSize As a general rule, set -XX:NewSize to be
one-fourth the size of the heap size. Increase
the value of this option for larger numbers
of short-lived objects.

Be sure to increase the New generation as
you increase the number of processors.
Memory allocation can be parallel, but
garbage collection is not parallel.

Setting the maximum
New generation heap
size

-XX:MaxNewSize Set the maximum size of the New
Generation heap size.

Setting New heap size
ratios

-XX:SurvivorRatio The New generation area is divided into
three sub-areas: Eden, and two survivor
spaces that are equal in size.

Configure the ratio of the Eden/survivor
space size. Try setting this value to 8, and
then monitor your garbage collection.

Setting minimum heap
size

-Xms As a general rule, set minimum heap size
(-Xms) equal to the maximum heap size
(-Xmx) to minimize garbage collections.

Setting maximum heap
size

-Xmx Set the maximum size of the heap.

Setting Big Heaps and
Intimate Shared Memory

-XX:+UseISM
-XX:+AggressiveHeap

See
http://java.sun.com/docs/hotspot
/ism.html

Enable Spinning for IA32 Platforms

5-8 Performance and Tuning for Oracle WebLogic Server

5.3.7.1 Other Java HotSpot VM Options
Sun provides other standard and non-standard command-line options to improve the
performance of your VM. How you use these options depends on how your
application is coded.

Test both your client and server JVMs to see which options perform better for your
particular application. The Sun Microsystems document provides information on the
command-line options and environment variables that can affect the performance
characteristics of the Java HotSpot Virtual Machine. See
http://java.sun.com/docs/hotspot/VMOptions.html.

For additional examples of the HotSpot VM options, see:

■ "Standard Options for Windows (Win32) VMs" at
http://java.sun.com/javase/6/docs/tooldocs/windows/java.html.

■ "Standard Options for Solaris VMs" at
http://java.sun.com/javase/6/docs/tooldocs/solaris/java.html.

■ "Standard Options for Linux VMs" at
http://java.sun.com/j2se/1.5.0/docs/tooldocs/linux/java.html.

Sun Microsystems Java Virtual Machine document provides a detailed discussion of the
Client and Server implementations of the Java virtual machine for J2SE 5.0 at
http://java.sun.com/j2se/1.5.0/docs/guide/vm/index.html.

5.3.8 Automatically Logging Low Memory Conditions
WebLogic Server enables you to automatically log low memory conditions observed
by the server. WebLogic Server detects low memory by sampling the available free
memory a set number of times during a time interval. At the end of each interval, an
average of the free memory is recorded and compared to the average obtained at the
next interval. If the average drops by a user-configured amount after any sample
interval, the server logs a low memory warning message in the log file and sets the
server health state to "warning." See "Log low memory conditions" in Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

5.3.9 Manually Requesting Garbage Collection
You may find it necessary to manually request full garbage collection from the
Administration Console. When you do, remember that garbage collection is costly as
the JVM often examines every living object in the heap. See "Manually request garbage
collection" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help.

5.3.10 Requesting Thread Stacks
You may find it necessary to display thread stacks while tuning your applications. See
"Display thread stacks" in Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

5.4 Enable Spinning for IA32 Platforms
If you are running a high-stress application with heavily contended locks on a
multiprocessor system, you can attempt to improve performance by using spinning.
This option enables the ability to spin the lock for a short time before going to sleep.

Enable Spinning for IA32 Platforms

Tuning Java Virtual Machines (JVMs) 5-9

5.4.1 Sun JDK
Sun has changed the default lock spinning behavior in JDK 5.0 on the Windows IA32
platform. For the JDK 5.0 release, lock spinning is disabled by default. For this release,
Oracle has explicitly enabled spinning in the environment scripts used to start
WebLogic Server. To enable spinning, use the following VM option:

-XX:+UseSpinning

5.4.2 JRockit
The JRockit VM automatically adjusts the spinning for different locks, eliminating the
need set this parameter.

Enable Spinning for IA32 Platforms

5-10 Performance and Tuning for Oracle WebLogic Server

6

Tuning WebLogic Server 6-1

6Tuning WebLogic Server

The following sections describe how to tune WebLogic Server to match your
application needs.

■ Section 6.1, "Setting Java Parameters for Starting WebLogic Server"

■ Section 6.2, "Development vs. Production Mode Default Tuning Values"

■ Section 6.4, "Thread Management"

■ Section 6.5, "Tuning Network I/O"

■ Section 6.6, "Setting Your Compiler Options"

■ Section 6.7, "Using WebLogic Server Clusters to Improve Performance"

■ Section 6.8, "Monitoring a WebLogic Server Domain"

■ Section 6.9, "Tuning Class and Resource Loading"

6.1 Setting Java Parameters for Starting WebLogic Server
Java parameters must be specified whenever you start WebLogic Server. For simple
invocations, this can be done from the command line with the weblogic.Server
command. However, because the arguments needed to start WebLogic Server from the
command line can be lengthy and prone to error, Oracle recommends that you
incorporate the command into a script. To simply this process, you can modify the
default values in the sample scripts that are provided with the WebLogic distribution
to start WebLogic Server, as described in "Specifying Java Options for a WebLogic
Server Instance" in Oracle Fusion Middleware Managing Server Startup and Shutdown for
Oracle WebLogic Server.

If you used the Configuration Wizard to create your domain, the WebLogic startup
scripts are located in the domain-name directory where you specified your domain. By
default, this directory is MW_HOME\user_projects\domain\domain-name, where
MW_HOME is the Middleware Home directory containing the Oracle product
installation, and domain-name is the name of the domain directory defined by the
selected configuration template.

You need to modify some default Java values in these scripts to fit your environment
and applications. The important performance tuning parameters in these files are the
JAVA_HOME parameter and the Java heap size parameters:

■ Change the value of the variable JAVA_HOME to the location of your JDK. For
example:

set JAVA_HOME=C:\Oracle\Middleware\jdk160_11

Development vs. Production Mode Default Tuning Values

6-2 Performance and Tuning for Oracle WebLogic Server

■ For higher performance throughput, set the minimum java heap size equal to the
maximum heap size. For example:

"%JAVA_HOME%\bin\java" -server –Xms512m –Xmx512m -classpath %CLASSPATH% -

See Section 5.3.4, "Specifying Heap Size Values" for details about setting heap size
options.

6.2 Development vs. Production Mode Default Tuning Values
You can indicate whether a domain is to be used in a development environment or a
production environment. WebLogic Server uses different default values for various
services depending on the type of environment you specify. Specify the startup mode
for your domain as shown in the following table.

The following table lists the performance-related configuration parameters that differ
when switching from development to production startup mode.

Table 6–1 Startup Modes

Choose this mode when . . .

Development You are creating your applications. In this mode, the
configuration of security is relatively relaxed, allowing you to
auto-deploy applications.

Production Your application is running in its final form. In this mode,
security is fully configured.

Table 6–2 Differences Between Development and Production Modes

Tuning Parameter In development mode . . . In production mode . . .

SSL You can use the demonstration
digital certificates and the
demonstration keystores provided
by the WebLogic Server security
services. With these certificates,
you can design your application
to work within environments
secured by SSL.

For more information about
managing security, see
"Configuring SSL" in Securing
WebLogic Server.

You should not use the
demonstration digital
certificates and the
demonstration keystores. If
you do so, a warning message
is displayed.

Deploying Applications WebLogic Server instances can
automatically deploy and update
applications that reside in the
domain_name/autodeploy
directory (where domain_name is
the name of a domain).

It is recommended that this
method be used only in a
single-server development
environment.

For more information, see
"Auto-Deploying Applications in
Development Domains" in Oracle
Fusion Middleware Deploying
Applications to Oracle WebLogic
Server.

The auto-deployment feature is
disabled, so you must use the
WebLogic Server
Administration Console, the
weblogic.Deployer tool, or the
WebLogic Scripting Tool
(WLST). For more information,
see "Understanding WebLogic
Server Deployment" in Oracle
Fusion Middleware Deploying
Applications to Oracle WebLogic
Server.

Thread Management

Tuning WebLogic Server 6-3

For information on switching the startup mode from development to production, see
"Change to Production Mode" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

6.3 Deployment
The following sections provide information on how to improve deployment
performance:

■ Section 6.3.1, "On-demand Deployment of Internal Applications"

■ Section 6.3.2, "Use FastSwap Deployment to Minimize Redeployment Time"

■ Section 6.3.3, "Generic Overrides"

6.3.1 On-demand Deployment of Internal Applications
WebLogic Server deploys many internal applications during startup. Many of these
internal applications are not needed by every user. You can configure WebLogic Server
to wait and deploy these applications on the first access (on-demand) instead of
always deploying them during server startup. This can conserve memory and CPU
time during deployment as well as improving startup time and decreasing the base
memory footprint for the server.

WebLogic Server deploys many internal applications during startup. Many of these
internal applications are not needed by every user. You can configure WebLogic Server
to wait and deploy these applications on the first access (on-demand) instead of
always deploying them during server startup. This can conserve memory and CPU
time during deployment as well as improving startup time and decreasing the base
memory footprint for the server.For a development domain, the default is for WLS to
deploy internal applications on-demand. For a production-mode domain, the default
is for WLS to deploy internal applications as part of server startup. For more
information on how to use and configure this feature, see On-demand Deployment of
Internal Applications in Deploying Applications to WebLogic Server.

6.3.2 Use FastSwap Deployment to Minimize Redeployment Time
In deployment mode, you can set WebLogic Server to redefine Java classes in-place
without reloading the ClassLoader. This means that you do not have to wait for an
application to redeploy and then navigate back to wherever you were in the Web page
flow. Instead, you can make your changes, auto compile, and then see the effects
immediately. For more information on how to use and configure this feature, see Using
FastSwap Deployment to Minimize Redeployment in Deploying Applications to
WebLogic Server.

6.3.3 Generic Overrides
Generic overrides allow you to override application specific property files without
having to crack a jar file by placing application specific files to be overridden into the
AppFileOverrides optional subdirectory. For more information on how to use and
configure this feature, see Generic File Loading Overrides in Deploying Applications
to WebLogic Server.

6.4 Thread Management
WebLogic Server provides the following mechanisms to manage threads to perform
work.

Thread Management

6-4 Performance and Tuning for Oracle WebLogic Server

■ Section 6.4.1, "Tuning a Work Manager"

■ Section 6.4.4, "Tuning Execute Queues"

■ Section 6.4.5, "Understanding the Differences Between Work Managers and
Execute Queues"

■ Section 6.4.7, "Tuning the Stuck Thread Detection Behavior"

6.4.1 Tuning a Work Manager
In this release, WebLogic Server allows you to configure how your application
prioritizes the execution of its work. Based on rules you define and by monitoring
actual runtime performance, WebLogic Server can optimize the performance of your
application and maintain service level agreements (SLA).

You tune the thread utilization of a server instance by defining rules and constraints
for your application by defining a Work Manger and applying it either globally to
WebLogic Server domain or to a specific application component. The primary tuning
considerations are:

■ Section 6.4.2, "How Many Work Managers are Needed?"

■ Section 6.4.3, "What are the SLA Requirements for Each Work Manager?"

See "Using Work Managers to Optimize Scheduled Work" in Oracle Fusion Middleware
Configuring Server Environments for Oracle WebLogic Server.

6.4.2 How Many Work Managers are Needed?
Each distinct SLA requirement needs a unique work manager.

6.4.3 What are the SLA Requirements for Each Work Manager?
Service level agreement (SLA) requirements are defined by instances of request classes.
A request class expresses a scheduling guideline that a server instance uses to allocate
threads. See "Understanding Work Managers" in Oracle Fusion Middleware Configuring
Server Environments for Oracle WebLogic Server.

6.4.4 Tuning Execute Queues
In previous versions of WebLogic Server, processing was performed in multiple
execute queues. Different classes of work were executed in different queues, based on
priority and ordering requirements, and to avoid deadlocks. See Appendix B, "Using
the WebLogic 8.1 Thread Pool Model.".

6.4.5 Understanding the Differences Between Work Managers and Execute Queues
The easiest way to conceptually visualize the difference between the execute queues of
previous releases with work managers is to correlate execute queues (or rather,
execute-queue managers) with work managers and decouple the one-to-one
relationship between execute queues and thread-pools.

For releases prior to WebLogic Server 9.0, incoming requests are put into a default
execute queue or a user-defined execute queue. Each execute queue has an associated
execute queue manager that controls an exclusive, dedicated thread-pool with a fixed

Note: Oracle recommends migrating applications to use work
managers.

Thread Management

Tuning WebLogic Server 6-5

number of threads in it. Requests are added to the queue on a first-come-first-served
basis. The execute-queue manager then picks the first request from the queue and an
available thread from the associated thread-pool and dispatches the request to be
executed by that thread.

For releases of WebLogic Server 9.0 and higher, there is a single priority-based execute
queue in the server. Incoming requests are assigned an internal priority based on the
configuration of work managers you create to manage the work performed by your
applications. The server increases or decreases threads available for the execute queue
depending on the demand from the various work-managers. The position of a request
in the execute queue is determined by its internal priority:

■ The higher the priority, closer it is placed to the head of the execute queue.

■ The closer to the head of the queue, more quickly the request will be dispatched a
thread to use.

Work managers provide you the ability to better control thread utilization (server
performance) than execute-queues, primarily due to the many ways that you can
specify scheduling guidelines for the priority-based thread pool. These scheduling
guidelines can be set either as numeric values or as the capacity of a server-managed
resource, like a JDBC connection pool.

6.4.6 Migrating from Previous Releases
If you upgrade application domains from prior releases that contain execute queues,
the resulting 9.x domain will contain execute queues.

■ Migrating application domains from a previous release to WebLogic Server 9.x
does not automatically convert an execute queues to work manager.

■ If execute queues are present in the upgraded application configuration, the server
instance assigns work requests appropriately to the execute queue specified in the
dispatch-policy.

■ Requests without a dispatch-policy use the self-tuning thread pool.

See "Roadmap for Upgrading Your Application Environment" in Oracle Fusion
Middleware Upgrade Guide for Oracle WebLogic Server.

6.4.7 Tuning the Stuck Thread Detection Behavior
WebLogic Server automatically detects when a thread in an execute queue becomes
"stuck." Because a stuck thread cannot complete its current work or accept new work,
the server logs a message each time it diagnoses a stuck thread.

WebLogic Server diagnoses a thread as stuck if it is continually working (not idle) for a
set period of time. You can tune a server's thread detection behavior by changing the
length of time before a thread is diagnosed as stuck, and by changing the frequency
with which the server checks for stuck threads. Although you can change the criteria
WebLogic Server uses to determine whether a thread is stuck, you cannot change the
default behavior of setting the "warning" and "critical" health states when all threads
in a particular execute queue become stuck. For more information, see "Configuring
WebLogic Server to Avoid Overload Conditions" in Oracle Fusion Middleware
Configuring Server Environments for Oracle WebLogic Server. To configure stuck thread
detection behavior, see "Tuning execute thread detection behavior" in Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

Tuning Network I/O

6-6 Performance and Tuning for Oracle WebLogic Server

6.5 Tuning Network I/O
The following sections provide information on network communication between
clients and servers (including T3 and IIOP protocols, and their secure versions):

■ Section 6.5.1, "Tuning Muxers"

■ Section 6.5.2, "Which Platforms Have Performance Packs?"

■ Section 6.5.3, "Enabling Performance Packs"

■ Section 6.5.4, "Changing the Number of Available Socket Readers"

■ Section 6.5.5, "Network Channels"

■ Section 6.5.6, "Tuning Message Size"

■ Section 6.5.7, "Tune the Chunk Parameters"

■ Section 6.5.8, "Tuning Connection Backlog Buffering"

6.5.1 Tuning Muxers
WebLogic Server uses software modules called muxers to read incoming requests on
the server and incoming responses on the client. These muxers are of two primary
types: the Java muxer or native muxer.

A Java muxer has the following characteristics:

■ Uses pure Java to read data from sockets.

■ It is also the only muxer available for RMI clients.

■ Blocks on reads until there is data to be read from a socket. This behavior does not
scale well when there are a large number of sockets and/or when data arrives
infrequently at sockets. This is typically not an issue for clients, but it can create a
huge bottleneck for a server.

Native muxers use platform-specific native binaries to read data from sockets. The
majority of all platforms provide some mechanism to poll a socket for data. For
example, Unix systems use the poll system call and the Windows architecture uses
completion ports. Native muxers provide superior scalability because they implement
a non-blocking thread model. When a native muxer is used, the server creates a fixed
number of threads dedicated to reading incoming requests. Oracle recommends using
the default setting of true for the Enable Native IO parameter which allows the
server to automatically select the appropriate muxer to use. See "Enable native IO" in
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

If the Enable Native IO parameter is not selected, the server instance exclusively
uses the Java muxer. This maybe acceptable if there are a small number of clients and
the rate at which requests arrive at the server is fairly high. Under these conditions, the
Java muxer performs as well as a native muxer and eliminate Java Native Interface
(JNI) overhead. Unlike native muxers, the number of threads used to read requests is
not fixed and is tunable for Java muxers by configuring the Percent Socket
Readers parameter setting in the Administration Console. See Section 6.5.4,
"Changing the Number of Available Socket Readers". Ideally, you should configure
this parameter so the number of threads roughly equals the number of remote
concurrently connected clients up to 50% of the total thread pool size. Each thread
waits for a fixed amount of time for data to become available at a socket. If no data
arrives, the thread moves to the next socket.

With native muxers, you may be able to improve throughput for some cpu-bound
applications (for example, SpecJAppServer) by using the following:

Tuning Network I/O

Tuning WebLogic Server 6-7

-Dweblogic.socket.SocketMuxer.DELAY_POLL_WAKEUP=xx

where xx is the amount of time, in microseconds, to delay before checking if data is
available. The default value is 0, which corresponds to no delay.

6.5.2 Which Platforms Have Performance Packs?
Benchmarks show major performance improvements when you use native
performance packs on machines that host WebLogic Server instances. Performance
packs use a platform-optimized, native socket multiplexor to improve server
performance. For example, the native socket reader multiplexor threads have their
own execute queue and do not borrow threads from the default execute queue, which
frees up default execute threads to do application work

To see which platforms currently have performance packs available:

1. Go to the Certifications Pages at
http://www.oracle.com/technology/software/products/ias/files/
fusion_certification.html.

2. Select your platform from the list of certified platforms.

3. Use your browser's Edit > Find to locate all instances of "Performance Pack" to
verify whether it is included for the platform.

6.5.3 Enabling Performance Packs
The use of NATIVE performance packs are enabled by default in the configuration
shipped with your distribution. You can use the Administration Console to verify that
performance packs are enabled. See "Enable native IO" in Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Help.

6.5.4 Changing the Number of Available Socket Readers
If you must use the pure-Java socket reader implementation for host machines, you
can improve the performance of socket communication by configuring the proper
number of socket reader threads for each server instance and client machine. See
"Tuning the number of available socket readers" in Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

6.5.5 Network Channels
Network channels, also called network access points, allow you to specify different
quality of service (QOS) parameters for network communication. Each network
channel is associated with its own exclusive socket using a unique IP address and port.
By default, requests from a multi-threaded client are multiplexed over the same
remote connection and the server instance reads requests from the socket one at a time.
If the request size is large, this becomes a bottleneck.

Although the primary role of a network channel is to control the network traffic for a
server instance, you can leverage the ability to create multiple custom channels to
allow a multi-threaded client to communicate with server instance over multiple
connections, reducing the potential for a bottleneck. To configure custom
multi-channel communication, use the following steps:

1. Configure multiple network channels using different IP and port settings. See
"Configure custom network channels" in Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

Tuning Network I/O

6-8 Performance and Tuning for Oracle WebLogic Server

2. In your client-side code, use a JNDI URL pattern similar to the pattern used in
clustered environments. The following is an example for a client using two
network channels:

t3://<ip1>:<port1>,<ip2>:<port2>

See "Understanding Network Channels" in Oracle Fusion Middleware Configuring Server
Environments for Oracle WebLogic Server.

6.5.6 Tuning Message Size
WebLogic Server allows you to specify a maximum incoming request size to reduce
the potential for Denial of Service (DoS) attacks by preventing a server from being
bombarded by a series of large requests. You can set a global value or set specific
values for different protocols and network channels. Although it does not directly
impact performance, JMS applications that aggregate messages before sending to a
destination may be refused if the aggregated size is greater than specified value. See
"Servers: Protocols: General" in Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help and Section 13.9, "Tuning Applications Using
Unit-of-Order".

6.5.7 Tune the Chunk Parameters
A chunk is a unit of memory that the WebLogic Server network layer, both on the
client and server side, uses to read data from and write data to sockets. To reduce
memory allocation costs, a server instance maintains a pool of these chunks. For
applications that handle large amounts of data per request, increasing the value on
both the client and server sides can boost performance. The default chunk size is about
4K. Use the following properties to tune the chunk size and the chunk pool size:

■ weblogic.Chunksize—Sets the size of a chunk (in bytes). The primary situation
in which this may need to be increased is if request sizes are large. It should be set
to values that are multiples of the network's maximum transfer unit (MTU), after
subtracting from the value any Ethernet or TCP header sizes. Set this parameter to
the same value on the client and server.

■ weblogic.utils.io.chunkpoolsize—Sets the maximum size of the chunk
pool. The default value is 2048. The value may need to be increased if the server
starts to allocate and discard chunks in steady state. To determine if the value
needs to be increased, monitor the CPU profile or use a memory/ heap profiler for
call stacks invoking the constructor weblogic.utils.io.Chunk.

■ weblogic.PartitionSize—Sets the number of pool partitions used (default is
4). The chunk pool can be a source of significant lock contention as each request to
access to the pool must be synchronized. Partitioning the thread pool spreads the
potential for contention over more than one partition.

6.5.8 Tuning Connection Backlog Buffering
You can tune the number of connection requests that a WebLogic Server instance will
accept before refusing additional requests. The Accept Backlog parameter specifies
how many Transmission Control Protocol (TCP) connections can be buffered in a wait
queue. This fixed-size queue is populated with requests for connections that the TCP
stack has received, but the application has not accepted yet. For more information on
TCP tuning, see Section 4.1, "Basic OS Tuning Concepts".

Setting Your Compiler Options

Tuning WebLogic Server 6-9

You can tune the number of connection requests that a WebLogic Server instance will
accept before refusing additional requests, see "Tune connection backlog buffering" in
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

6.6 Setting Your Compiler Options
You may improve performance by tuning your server's compiler options.

6.6.1 Compiling EJB Classes
Use the weblogic.appc utility to compile EJB container classes. If you compile Jar
files for deployment into the EJB container, you must use weblogic.appc to generate
the container classes. By default, ejbc uses the javac compiler. You may be able to
improve performance by specifying a different compiler (such as IBM Jikes) using
the -compiler flag or using the Administration console. For more information, see:

■ "Implementing Enterprise Java Beans" in Oracle Fusion Middleware Programming
Enterprise JavaBeans for Oracle WebLogic Server.

■ "Configure compiler options" in Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

6.6.2 Setting JSP Compiler Options
The following sections provide information on tuning JSP compiler options:

■ Section 6.6.2.1, "Precompile JSPs"

■ Section 6.6.2.2, "Optimize Java Expressions"

6.6.2.1 Precompile JSPs
In the weblogic.xml file, the jsp-descriptor element defines parameter names and
values for servlet JSPs. Use the precompile parameter to configure WebLogic Server
to precompile your JSPs when WebLogic Server starts up. See the jsp-descriptor
element in Oracle Fusion Middleware Developing Web Applications, Servlets, and JSPs for
Oracle WebLogic Server.

If you receive the following error message received when compiling JSP files on a
UNIX machine:

failed: java.io.IOException: Not enough space

Try any or all of the following solutions:

■ Add more RAM if you have only 256 MB.

■ Raise the file descriptor limit, for example:

set rlim_fd_max = 4096
set rlim_fd_cur = 1024

6.6.2.2 Optimize Java Expressions
Set the optimize-java-expression element to optimize Java expressions to improve
runtime performance. See jsp-descriptor in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

Using WebLogic Server Clusters to Improve Performance

6-10 Performance and Tuning for Oracle WebLogic Server

6.7 Using WebLogic Server Clusters to Improve Performance
A WebLogic Server cluster is a group of WebLogic Servers instances that together
provide fail-over and replicated services to support scalable high-availability
operations for clients within a domain. A cluster appears to its clients as a single server
but is in fact a group of servers acting as one to provide increased scalability and
reliability.

A domain can include multiple WebLogic Server clusters and non-clustered WebLogic
Server instances. Clustered WebLogic Server instances within a domain behave
similarly to non-clustered instances, except that they provide failover and load
balancing. The Administration Server for the domain manages all the configuration
parameters for the clustered and non-clustered instances.

For more information about clusters, see "Understanding WebLogic Server Clustering"
in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

6.7.1 Scalability and High Availability
Scalability is the ability of a system to grow in one or more dimensions as more
resources are added to the system. Typically, these dimensions include (among other
things), the number of concurrent users that can be supported and the number of
transactions that can be processed in a given unit of time.

Given a well-designed application, it is entirely possible to increase performance by
simply adding more resources. To increase the load handling capabilities of WebLogic
Server, add another WebLogic Server instance to your cluster—without changing your
application. Clusters provide two key benefits that are not provided by a single server:
scalability and availability.

WebLogic Server clusters bring scalability and high-availability to Java EE applications
in a way that is transparent to application developers. Scalability expands the capacity
of the middle tier beyond that of a single WebLogic Server or a single computer. The
only limitation on cluster membership is that all WebLogic Servers must be able to
communicate by IP multicast. New WebLogic Servers can be added to a cluster
dynamically to increase capacity.

A WebLogic Server cluster guarantees high-availability by using the redundancy of
multiple servers to insulate clients from failures. The same service can be provided on
multiple servers in a cluster. If one server fails, another can take over. The ability to
have a functioning server take over from a failed server increases the availability of the
application to clients.

Clustering in the Messaging Service is provided through distributed destinations;
connection concentrators, and connection load-balancing (determined by connection
factory targeting); and clustered Store-and-Forward (SAF). Client load-balancing with
respect to distributed destinations is tunable on connection factories. Distributed
destination Message Driven Beans (MDBs) that are targeted to the same cluster that
hosts the distributed destination automatically deploy only on cluster servers that host
the distributed destination members and only process messages from their local
destination. Distributed queue MDBs that are targeted to a different server or cluster

Note: Provided that you have resolved all application and
environment bottleneck issues, adding additional servers to a cluster
should provide linear scalability. When doing benchmark or initial
configuration test runs, isolate issues in a single server environment
before moving to a clustered environment.

Using WebLogic Server Clusters to Improve Performance

Tuning WebLogic Server 6-11

than the host of the distributed destination automatically create consumers for every
distributed destination member. For example, each running MDB has a consumer for
each distributed destination queue member.

6.7.2 How to Ensure Scalability for WebLogic Clusters
In general, any operation that requires communication between the servers in a cluster
is a potential scalability hindrance. The following sections provide information on
issues that impact the ability to linearly scale clustered WebLogic servers:

■ Section 6.7.3, "Database Bottlenecks"

■ Section 6.7.4, "Session Replication"

■ Section 6.7.5, "Asynchronous HTTP Session Replication"

■ Section 6.7.6, "Invalidation of Entity EJBs"

■ Section 6.7.7, "Invalidation of HTTP sessions"

■ Section 6.7.8, "JNDI Binding, Unbinding and Rebinding"

6.7.3 Database Bottlenecks
In many cases where a cluster of WebLogic servers fails to scale, the database is the
bottleneck. In such situations, the only solutions are to tune the database or reduce
load on the database by exploring other options. See Chapter 8, "DataBase Tuning" and
Chapter 11, "Tuning JDBC Applications".

6.7.4 Session Replication
User session data can be stored in two standard ways in a Java EE application: stateful
session EJBs or HTTP sessions. By themselves, they are rarely a impact cluster
scalability. However, when coupled with a session replication mechanism required to
provide high-availability, bottlenecks are introduced. If a Java EE application has Web
and EJB components, you should store user session data in HTTP sessions:

■ HTTP session management provides more options for handling fail-over, such as
replication, a shared DB or file.

■ Superior scalability.

■ Replication of the HTTP session state occurs outside of any transactions. Stateful
session bean replication occurs in a transaction which is more resource intensive.

■ The HTTP session replication mechanism is more sophisticated and provides
optimizations a wider variety of situations than stateful session bean replication.

See Section 17.2, "Session Management".

6.7.5 Asynchronous HTTP Session Replication
Asynchronous replication of http sessions provides the option of choosing
asynchronous session replication using:

■ Section 6.7.5.1, "Asynchronous HTTP Session Replication using a Secondary
Server"

■ Section 6.7.5.2, "Asynchronous HTTP Session Replication using a Database"

Using WebLogic Server Clusters to Improve Performance

6-12 Performance and Tuning for Oracle WebLogic Server

6.7.5.1 Asynchronous HTTP Session Replication using a Secondary Server
Set the PersistentStoreType to async-replicated or async-replicated-if-clustered to
specify asynchronous replication of data between a primary server and a secondary
server. See session-descriptor section of Developing Web Applications, Servlets, and
JSPs for Oracle WebLogic Server. To tune batched replication, adjust the
SessionFlushThreshold parameter.

Replication behavior depends on cluster type. The following table describes how
asynchronous replication occurs for a given cluster topology.

The following section outlines asynchronous replication session behavior:

■ During undeployment or redeployment:

– The session is unregistered and removed from the update queue.

– The session on the secondary server is unregistered.

■ If the application is moved to admin mode, the sessions are flushed and replicated
to the secondary server. If secondary server is down, the system attempts to
failover to another server.

■ A server shutdown or failure state triggers the replication of any batched sessions
to minimize the potential loss of session information.

6.7.5.2 Asynchronous HTTP Session Replication using a Database
Set the PersistentStoreType to async-jdbc to specify asynchronous replication of data to
a database. See session-descriptor section of Developing Web Applications, Servlets,
and JSPs for Oracle WebLogic Server. To tune batched replication, adjust the
SessionFlushThreshold and the SessionFlushInterval parameters.

The following section outlines asynchronous replication session behavior:

■ During undeployment or redeployment:

– The session is unregistered and removed from the update queue.

– The session is removed from the database.

■ If the application is moved to admin mode, the sessions are flushed and replicated
to the database.

Table 6–3 Asynchronous Replication Behavior by Cluster Topology

Topology Behavior

LAN Replication to a secondary server within the same cluster occurs
asynchronously with the "async-replication" setting in the
webapp.

MAN Replication to a secondary server in a remote cluster. This
happens asynchronously with the "async-replication" setting in
the webapp.

WAN Replication to a secondary server within the cluster happens
asynchronously with the "async-replication" setting in the
webapp. Persistence to a database through a remote cluster
happens asynchronously regardless of whether
"async-replication" or "replication" is chosen.

Using WebLogic Server Clusters to Improve Performance

Tuning WebLogic Server 6-13

6.7.6 Invalidation of Entity EJBs
This applies to entity EJBs that use a concurrency strategy of Optimistic or
ReadOnly with a read-write pattern.

Optimistic—When an Optimistic concurrency bean is updated, the EJB container
sends a multicast message to other cluster members to invalidate their local copies of
the bean. This is done to avoid optimistic concurrency exceptions being thrown by the
other servers and hence the need to retry transactions. If updates to the EJBs are
frequent, the work done by the servers to invalidate each other's local caches become a
serious bottleneck. A flag called cluster-invalidation-disabled (default false)
is used to turn off such invalidations. This is set in the rdbms descriptor file.

ReadOnly with a read-write pattern—In this pattern, persistent data that would
otherwise be represented by a single EJB are actually represented by two EJBs: one
read-only and the other updatable. When the state of the updateable bean changes, the
container automatically invalidates corresponding read-only EJB instance. If updates
to the EJBs are frequent, the work done by the servers to invalidate the read-only EJBs
becomes a serious bottleneck.

6.7.7 Invalidation of HTTP sessions
Similar to Section 6.7.6, "Invalidation of Entity EJBs", HTTP sessions can also be
invalidated. This is not as expensive as entity EJB invalidation, since only the session
data stored in the secondary server needs to be invalidated. Oracle advises users to not
invalidate sessions unless absolutely required.

6.7.8 JNDI Binding, Unbinding and Rebinding
In general, JNDI binds, unbinds and rebinds are expensive operations. However, these
operations become a bigger bottleneck in clustered environments because JNDI tree
changes have to be propagated to all members of a cluster. If such operations are
performed too frequently, they can reduce cluster scalability significantly.

6.7.9 Performance Considerations When Running Multiple Server Instances on
Multi-CPU Machines

With multi-processor machines, additional consideration must be given to the ratio of
the number of available CPUs to clustered WebLogic Server instances. Because
WebLogic Server has no built-in limit to the number of server instances that reside in a
cluster, large, multi-processor servers, such as Sun Microsystems' Sun Enterprise
10000, can potentially host very large clusters or multiple clusters.

In order to determine the optimal ratio of CPUs to WebLogic server instances, you
must first ensure that an application is truly CPU-bound, rather than network or disk
I/O-bound. Use the following steps to determine the optional ratio of CPUs to server
instances:

1. Test your application to determine the Network Requirements.

If you discover that an application is primarily network I/O-bound, consider
measures to increase network throughput before increasing the number of
available CPUs. For truly network I/O-bound applications, installing a faster
network interface card (NIC) may increase performance more than additional
CPUs, because most CPUs would remain idle while waiting to read available
sockets.

2. Test your application to determine the Disk I/O Requirements.

Monitoring a WebLogic Server Domain

6-14 Performance and Tuning for Oracle WebLogic Server

If you discover that an application is primarily disk I/O-bound, consider
upgrading the number of disk spindles or individual disks and controllers before
allocating additional CPUs.

3. Begin performance tests using a ratio of one WebLogic Server instance for every
available CPU.

4. If CPU utilization is consistently at or near 100 percent, increase the ratio of CPUs
to server instances by adding an additional CPU. Add additional CPUs until
utilization reaches an acceptable level. Remember, always reserve some spare CPU
cycles on your production systems to perform any administration tasks that may
occur.

6.8 Monitoring a WebLogic Server Domain
The following sections provide information on how to monitor WebLogic Server
domains:

■ Section 6.8.1, "Using the Administration Console to Monitor WebLogic Server"

■ Section 6.8.2, "Using the WebLogic Diagnostic Framework"

■ Section 6.8.3, "Using JMX to Monitor WebLogic Server"

■ Section 6.8.4, "Using WLST to Monitor WebLogic Server"

■ Section 6.8.6, "Third-Party Tools to Monitor WebLogic Server"

6.8.1 Using the Administration Console to Monitor WebLogic Server
The tool for monitoring the health and performance of your WebLogic Server domain
is the Administration Console. See "Monitor servers" in Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

6.8.2 Using the WebLogic Diagnostic Framework
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic
framework that defines and implements a set of services that run within WebLogic
Server processes and participate in the standard server life cycle. See "What Is the
WebLogic Diagnostic Framework Console Extension?" in Oracle Fusion Middleware
Using the Diagnostic Framework Console Extension for Oracle WebLogic Server.

6.8.3 Using JMX to Monitor WebLogic Server
WebLogic Server provides its own set of MBeans that you can use to configure,
monitor, and manage WebLogic Server resources. See "Understanding WebLogic
Server MBeans" in Oracle Fusion Middleware Developing Custom Management Utilities
With JMX for Oracle WebLogic Server.

6.8.4 Using WLST to Monitor WebLogic Server
The WebLogic Scripting Tool (WLST) is a command-line scripting interface that system
administrators and operators use to monitor and manage WebLogic Server instances
and domains. See "Understanding WebLogic Server MBeans" in Oracle Fusion
Middleware Developing Custom Management Utilities With JMX for Oracle WebLogic
Server.

Tuning Class and Resource Loading

Tuning WebLogic Server 6-15

6.8.5 Resources to Monitor WebLogic Server
The Oracle Technology Network at
http://www.oracle.com/technology/index.html provides product
downloads, articles, sample code, product documentation, tutorials, white papers,
news groups, and other key content for WebLogic Server.

6.8.6 Third-Party Tools to Monitor WebLogic Server
Oracle partners with other companies that provide production monitoring and
management tools. See Section A.10, "Production Performance Management".

6.9 Tuning Class and Resource Loading
The default class and resource loading default behavior in WebLogic Server is to
search the classloader hierarchy beginning with the root. As a result, the full system
classpath is searched for every class or resource loading request, even if the class or
resource belongs to the application. For classes and resources that are only looked up
once (for example: classloading during deployment), the cost of the full classpath
search is typically not a serious problem. For classes and resources that are requested
repeatedly by an application at runtime (explicit application calls to loadClass or
getResource) the CPU and memory overhead of repeatedly searching a long system
and application classpath can be significant. The worst case scenario is when the
requested class or resource is missing. A missing class or resource results in the cost of
a full scan of the classpath and is compounded by the fact that if an application fails
to find the class/resource it is likely to request it repeatedly. This problem is more
common for resources than for classes.

Ideally, application code is optimized to avoid requests for missing classes and
resources and frequent repeated calls to load the same class/resource. While it is not
always possible to fix the application code (for example, a third party library), an
alternative is to use WebLogic Server's "Filtering Loader Mechanism".

6.9.1 Filtering Loader Mechanism
WebLogic Server provides a filtering loader mechanism that allows the system
classpath search to be bypassed when looking for specific application classes and
resources that are on the application classpath. This mechanism requires a user
configuration that specifies the specific classes and resources that bypass the system
classpath search. See "Using a Filtering Classloader" in Oracle Fusion Middleware
Developing Applications for Oracle WebLogic Server.

New for this release is the ability to filter resource loading requests. The basic
configuration of resource filtering is specified in
META-INF/weblogic-application.xml file and is similar to the class filtering.
The the syntax for filtering resources is shown in the following example:

<prefer-application-resources>
<resource-name>x/y</resource-name>
<resource-name>z*</resource-name>
</prefer-application-resources>

In this example, resource filtering has been configured for the exact resource name
"x/y" and for any resource whose name starts with "z". '*' is the only wild card
pattern allowed. Resources with names matching these patterns are searched for only
on the application classpath, the system classpath search is skipped.

Tuning Class and Resource Loading

6-16 Performance and Tuning for Oracle WebLogic Server

Note: If you add a class or resource to the filtering configuration and
subsequently get exceptions indicating the class or resource isn't
found, the most likely cause is that the class or resource is on the
system classpath, not on the application classpath.

7

Tuning the WebLogic Persistent Store 7-1

7Tuning the WebLogic Persistent Store

The following sections explain how to tune the persistent store, which provides a
built-in, high-performance storage solution for WebLogic Server subsystems and
services that require persistence.

■ Section 7.1, "Overview of Persistent Stores"

■ Section 7.2, "Best Practices When Using Persistent Stores"

■ Section 7.3, "Tuning JDBC Stores"

■ Section 7.4, "Tuning File Stores"

7.1 Overview of Persistent Stores
The following sections provide information on using persistent stores.

■ Section 7.1.1, "Using the Default Persistent Store"

■ Section 7.1.2, "Using Custom File Stores and JDBC Stores"

■ Section 7.1.3, "Using JMS Paging Stores"

7.1.1 Using the Default Persistent Store
Each server instance, including the administration server, has a default persistent store
that requires no configuration. The default store is a file-based store that maintains its
data in a group of files in a server instance's data\store\default directory. A directory
for the default store is automatically created if one does not already exist. This default
store is available to subsystems that do not require explicit selection of a particular
store and function best by using the system's default storage mechanism. For example,
a JMS Server with no persistent store configured will use the default store for its
Managed Server and will support persistent messaging. See:

■ Using the WebLogic Persistent Store in Oracle Fusion Middleware Configuring Server
Environments for Oracle WebLogic Server.

■ "Modify the Default Store Settings" in Oracle Fusion Middleware Oracle WebLogic
Server Administration Console Help.

7.1.2 Using Custom File Stores and JDBC Stores
In addition to using the default file store, you can also configure a file store or JDBC
store to suit your specific needs. A custom file store, like the default file store,
maintains its data in a group of files in a directory. However, you may want to create a
custom file store so that the file store's data is persisted to a particular storage device.

Best Practices When Using Persistent Stores

7-2 Performance and Tuning for Oracle WebLogic Server

When configuring a file store directory, the directory must be accessible to the server
instance on which the file store is located.

A JDBC store can be configured when a relational database is used for storage. A JDBC
store enables you to store persistent messages in a standard JDBC-capable database,
which is accessed through a designated JDBC data source. The data is stored in the
JDBC store's database table, which has a logical name of WLStore. It is up to the
database administrator to configure the database for high availability and
performance. See:

■ "When to Use a Custom Persistent Store" in Oracle Fusion Middleware Configuring
Server Environments for Oracle WebLogic Server.

■ "Comparing File Stores and JDBC Stores" in Oracle Fusion Middleware Configuring
Server Environments for Oracle WebLogic Server.

■ "Creating a Custom (User-Defined) File Store" in Oracle Fusion Middleware
Configuring Server Environments for Oracle WebLogic Server.

■ "Creating a JDBC Store" in Oracle Fusion Middleware Configuring Server
Environments for Oracle WebLogic Server.

7.1.3 Using JMS Paging Stores
Each JMS server implicitly creates a file based paging store. When the WebLogic
Server JVM runs low on memory, this store is used to page non-persistent messages as
well as JDBC store persistent messages. Depending on the application, paging stores
may generate heavy disk activity.

JMS paging stores usually require no tuning. You can optionally change the directory
location and the thresholds setting at which paging begins. See Section 13.9, "Tuning
Applications Using Unit-of-Order".

7.2 Best Practices When Using Persistent Stores
■ For subsystems that share the same server instance, share one store between

multiple subsystems rather than using a store per subsystem. Sharing a store is
more efficient for the following reasons:

– A single store batches concurrent requests into single I/Os which reduces
overall disk usage.

– Transactions in which only one resource participates are lightweight
one-phase transactions. Conversely, transactions in which multiple stores
participate become heavier weight two-phase transactions.

For example, configure all SAF agents and JMS servers that run on the same server
instance so that they share the same store.

■ Add a new store only when the old store(s) no longer scale.

Note: File store persistent messages do not page using a paging
store, such messages page directly into and out of their respective file
stores.

Tuning File Stores

Tuning the WebLogic Persistent Store 7-3

7.3 Tuning JDBC Stores
The location of the JDBC store DDL that is used to initialize empty stores is now
configurable. This simplifies the use of custom DDL for database table creation, which
is sometimes used for database specific performance tuning. For information, see
"Create JDBC stores" in Oracle Fusion Middleware Oracle WebLogic Server Administration
Console Help and "Using the WebLogic Persistent Store" in Oracle Fusion Middleware
Configuring Server Environments for Oracle WebLogic Server.

7.4 Tuning File Stores
The following section provides information on tuning File Stores:

■ Section 7.4.1, "Basic Tuning Information"

■ Section 7.4.2, "Tuning the File Store Direct-Write Policy"

■ Section 7.4.3, "Tuning the File Store Block Size"

7.4.1 Basic Tuning Information
The following section provides general information on tuning File Stores:

■ For basic (non-RAID) disk hardware, consider dedicating one disk per file store. A
store can operate up to four to five times faster if it does not have to compete with
any other store on the disk. Remember to consider the existence of the default file
store in addition to each configured store and a JMS paging store for each JMS
server.

■ Use Direct-Write synchronous write policy.

– For releases of WebLogic Server 9.0 and higher, Direct-Write is the default
write policy. In most applications Direct-Write provides better
performance than the Cache-Flush write policy.

– File stores in releases prior to WebLogic Server 9.0 default to the
Cache-Flush write policy.

■ The Disabled write-policy option can dramatically improve performance,
especially at low client loads. However, it is unsafe because writes become
asynchronous and data can be lost in the event of Operating System or power
failure.

■ When performing head-to-head vendor comparisons, make sure all the write
policies for the persistent store are equivalent. Some non-WebLogic vendors
default to the equivalent of Disabled.

■ If disk performance continues to be a bottleneck, consider purchasing disk or
RAID controller hardware that has a built-in write-back cache. These caches
significantly improve performance by temporarily storing persistent data in

Note: The Direct-Write write-policy (default) can be unsafe on
Microsoft Windows. As with other vendors that use a direct write
policy, MS-Windows system administrators must ensure that the
Windows disk configuration doesn't cache direct-writes in memory
instead of flushing them to disk. See "getSynchronousWritePolicy" in
Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help.

Tuning File Stores

7-4 Performance and Tuning for Oracle WebLogic Server

volatile memory. To ensure transactionally safe write-back caches, they must be
protected against power outages, host machine failure, and operating system
failure. Typically, such protection is provided by a battery-backed write-back
cache.

7.4.2 Tuning the File Store Direct-Write Policy
For file stores with the synchronous write policy of Direct-Write, you may be
directed by Oracle Support or a release note to set weblogic.Server options on the
command line or start script of the JVM that runs the store:

■ Globally changes all stores running in the JVM:

-Dweblogic.store.AvoidDirectIO=true

■ For a single store, where store-name is the name of the store:

-Dweblogic.store.store-name.AvoidDirectIO=true

■ For the default store, where server-name is the name of the server hosting the
store:

-Dweblogic.store._WLS_server-name.AvoidDirectIO=true

Setting AvoidDirectIO on an individual store overrides the setting of the global
-Dweblogic.store.AvoidDirectIO option. For example: If you have two stores,
A and B, and set the following options:

-Dweblogic.store.AvoidDirectIO=true
-Dweblogic.store.A.AvoidDirectIO=false

then only store B has the setting AvoidDirectIO=true.

7.4.3 Tuning the File Store Block Size
You may want to tune the file store block size for file stores that are configured with a
synchronous write policy of Direct-Write (default) or Cache-Flush, especially
when using AvoidDirectIO=true as described in Section 7.4.2, "Tuning the File
Store Direct-Write Policy" or for systems with a hard-drive-based write-back cache
where you see that performance is limited by physical storage latency.

Consider the following example:

■ A single WebLogic JMS producer sends persistent messages one by one.

■ The network overhead is known to be negligible.

■ The file store's disk drive has a 10,000 RPM rotational rate.

■ The disk drive has a battery-backed write-back cache.

and the messaging rate is measured at 166 messages per second.

In this example, the low messaging rate matches the disk drive's latency (10,000 RPM
/ 60 seconds = 166 RPS) even though a much higher rate is expected due to the
battery-backed write-back cache. Tuning the store's block size to match the file
systems' block size could result in a significant improvement.

Note: Setting the AvoidDirectIO option may have performance
implications which often can be mitigated using the block size setting
described in Section 7.4.3, "Tuning the File Store Block Size."

Tuning File Stores

Tuning the WebLogic Persistent Store 7-5

In some other cases, tuning the block size may result in marginal or no improvement:

■ The caches are observed to yield low latency (so the I/O subsystem is not a
significant bottleneck).

■ Write-back caching is not used and performance is limited by larger disk drive
latencies.

There may be a trade off between performance and file space when using higher block
sizes. Multiple application records are packed into a single block only when they are
written concurrently. Consequently, a large block size may cause a significant increase
in store file sizes for applications that have little concurrent server activity and
produce small records. In this case, one small record is stored per block and the
remaining space in each block is unused. As an example, consider a Web Service
Reliable Messaging (WS-RM) application with a single producer that sends small 100
byte length messages, where the application is the only active user of the store.

Oracle recommends tuning the store block size to match the block size of the file
system that hosts the file store (typically 4096 for most file systems) when this yields a
performance improvement. Alternately, tuning the block size to other values (such as
paging and cache units) may yield performance gains. If tuning the block size does not
yield a performance improvement, Oracle recommends leaving the block size at the
default as this helps to minimize use of file system resources.

7.4.3.1 Setting the Block Size for a File Store
To set the block size of a store, use one of the following properties on the command
line or start script of the JVM that runs the store:

■ Globally sets the block size of all file stores that don't have pre-existing files.

-Dweblogic.store.BlockSize=block-size

■ Sets the block size for a specific file store that doesn’t have pre-existing files.

-Dweblogic.store.store-name.BlockSize=block-size

■ Sets the block size for the default file store, if the store doesn’t have pre-existing
files:

-Dweblogic.store._WLS_server-name. BlockSize=block-size

The value used to set the block size is an integer between 512 and 8192 which is
automatically rounded up to the nearest multiple of 512.

Setting BlockSize on an individual store overrides the setting of the global
-Dweblogic.store.BlockSize option. For example: If you have two stores, A and
B, and set the following options:

-Dweblogic.store.BlockSize=8192
-Dweblogic.store.A.BlockSize=512

then store B has a block size of 8192 and store A has a block size of 512.

Note: Setting the block size using command line properties only
takes effect for file stores that have no pre-existing files. If a store has
pre-existing files, the store continues to use the block size that was set
when the store was first created.

Tuning File Stores

7-6 Performance and Tuning for Oracle WebLogic Server

7.4.3.2 Determining the File Store Block Size
You can verify a file store's current block size and synchronous write policy by
viewing the server log of the server that hosts the store. Search for a "280050" store
opened message.

7.4.3.3 Determining the File System Block Size
To determine your file system's actual block size, consult your operating system
documentation. For example:

■ Linux ext2 and ext3 file systems: run /sbin/dumpe2fs /dev/device-name
and look for "Block size"

■ Windows NTFS: run fsutil fsinfo ntfsinfo device letter: and look
for "Bytes Per Cluster"

7.4.3.4 Converting a Store with Pre-existing Files
If the data in a store’s pre-existing files do not need to be preserved, then simply
shutdown the host WebLogic Server instance and delete the files to allow the block
size to change when the store is restarted. If you need to preserve the data, convert a
store with pre-existing files to a different block size by creating a version of the file
store with the new block size using the compact command of the command line store
administration utility:

1. java -Dweblogic.store.BlockSize=block-size
weblogic.store.Admin

2. Type help for available commands.

3. Storeadmin->compact -dir file-store-directory

See "Store Administration Using a Java Command-line" in Oracle Fusion Middleware
Configuring Server Environments for Oracle WebLogic Server.

8

DataBase Tuning 8-1

8DataBase Tuning

Your database can be a major enterprise-level bottleneck. Configure your database for
optimal performance by following the tuning guidelines in this section and in the
product documentation for the database you are using.

■ Section 8.1, "General Suggestions"

■ Section 8.2, "Database-Specific Tuning"

8.1 General Suggestions
This section provides general database tuning suggestions:

■ Good database design — Distribute the database workload across multiple disks
to avoid or reduce disk overloading. Good design also includes proper sizing and
organization of tables, indexes, and logs.

■ Disk I/O optimization — Disk I/O optimization is related directly to throughput
and scalability. Access to even the fastest disk is orders of magnitude slower than
memory access. Whenever possible, optimize the number of disk accesses. In
general, selecting a larger block/buffer size for I/O reduces the number of disk
accesses and might substantially increase throughput in a heavily loaded
production environment.

■ Checkpointing — This mechanism periodically flushes all dirty cache data to disk,
which increases the I/O activity and system resource usage for the duration of the
checkpoint. Although frequent checkpointing can increase the consistency of
on-disk data, it can also slow database performance. Most database systems have
checkpointing capability, but not all database systems provide user-level controls.
Oracle, for example, allows administrators to set the frequency of checkpoints
while users have no control over SQLServer 7.x checkpoints. For recommended
settings, see the product documentation for the database you are using.

■ Disk and database overhead can sometimes be dramatically reduced by batching
multiple operations together and/or increasing the number of operations that run
in parallel (increasing concurrency). Examples:

– Increasing the value of the Message bridge BatchSize or the
Store-and-Forward WindowSize can improve performance as larger batch
sizes produce fewer but larger I/Os.

– Programmatically leveraging JDBC's batch APIs.

– Use the MDB transaction batching feature. See Chapter 10, "Tuning
Message-Driven Beans".

Database-Specific Tuning

8-2 Performance and Tuning for Oracle WebLogic Server

– Increasing concurrency by increasing max-beans-in-free-pool and
thread pool size for MDBs (or decreasing it if batching can be leveraged).

8.2 Database-Specific Tuning
The following sections provide basic tuning suggestions for Oracle, SQL Server, and
Sybase:

■ Section 8.2.1, "Oracle"

■ Section 8.2.2, "Microsoft SQL Server"

■ Section 8.2.3, "Sybase"

8.2.1 Oracle
This section describes performance tuning for Oracle.

■ Number of processes — On most operating systems, each connection to the Oracle
server spawns a shadow process to service the connection. Thus, the maximum
number of processes allowed for the Oracle server must account for the number of
simultaneous users, as well as the number of background processes used by the
Oracle server. The default number is usually not big enough for a system that
needs to support a large number of concurrent operations. For platform-specific
issues, see your Oracle administrator's guide. The current setting of this parameter
can be obtained with the following query:

SELECT name, value FROM v$parameter WHERE name = 'processes';

■ Buffer pool size —The buffer pool usually is the largest part of the Oracle server
system global area (SGA). This is the location where the Oracle server caches data
that it has read from disk. For read-mostly applications, the single most important
statistic that affects data base performance is the buffer cache hit ratio. The buffer
pool should be large enough to provide upwards of a 95% cache hit ratio. Set the
buffer pool size by changing the value, in data base blocks, of the db_cache_
size parameter in the init.ora file.

■ Shared pool size — The share pool in an important part of the Oracle server
system global area (SGA). The SGA is a group of shared memory structures that
contain data and control information for one Oracle database instance. If multiple
users are concurrently connected to the same instance, the data in the instance's
SGA is shared among the users. The shared pool portion of the SGA caches data
for two major areas: the library cache and the dictionary cache. The library cache
stores SQL-related information and control structures (for example, parsed SQL
statement, locks). The dictionary cache stores operational metadata for SQL
processing.

For most applications, the shared pool size is critical to Oracle performance. If the
shared pool is too small, the server must dedicate resources to managing the
limited amount of available space. This consumes CPU resources and causes
contention because Oracle imposes restrictions on the parallel management of the
various caches. The more you use triggers and stored procedures, the larger the
shared pool must be. The SHARED_POOL_SIZE initialization parameter specifies
the size of the shared pool in bytes.

Note: Always check the tuning guidelines in your database-specific
vendor documentation.

Database-Specific Tuning

DataBase Tuning 8-3

The following query monitors the amount of free memory in the share pool:

SELECT * FROM v$sgastat
WHERE name = 'free memory' AND pool = 'shared pool';

■ Maximum opened cursor — To prevent any single connection taking all the
resources in the Oracle server, the OPEN_CURSORS initialization parameter allows
administrators to limit the maximum number of opened cursors for each
connection. Unfortunately, the default value for this parameter is too small for
systems such as WebLogic Server. Cursor information can be monitored using the
following query:

SELECT name, value FROM v$sysstat
WHERE name LIKE 'opened cursor%';

■ Database block size — A block is Oracle's basic unit for storing data and the
smallest unit of I/O. One data block corresponds to a specific number of bytes of
physical database space on disk. This concept of a block is specific to Oracle
RDBMS and should not be confused with the block size of the underlying
operating system. Since the block size affects physical storage, this value can be set
only during the creation of the database; it cannot be changed once the database
has been created. The current setting of this parameter can be obtained with the
following query:

SELECT name, value FROM v$parameter WHERE name = 'db_block_size';

■ Sort area size — Increasing the sort area increases the performance of large sorts
because it allows the sort to be performed in memory during query processing.
This can be important, as there is only one sort area for each connection at any
point in time. The default value of this init.ora parameter is usually the size of
6–8 data blocks. This value is usually sufficient for OLTP operations but should be
increased for decision support operation, large bulk operations, or large
index-related operations (for example, recreating an index). When performing
these types of operations, you should tune the following init.ora parameters
(which are currently set for 8K data blocks):

sort_area_size = 65536
sort_area_retained_size = 65536

8.2.2 Microsoft SQL Server
The following guidelines pertain to performance tuning parameters for Microsoft SQL
Server databases. For more information about these parameters, see your Microsoft
SQL Server documentation.

■ Store tempdb on a fast I/O device.

■ Increase the recovery interval if perfmon shows an increase in I/O.

■ Use an I/O block size larger than 2 KB.

8.2.3 Sybase
The following guidelines pertain to performance tuning parameters for Sybase
databases. For more information about these parameters, see your Sybase
documentation.

■ Lower recovery interval setting results in more frequent checkpoint operations,
resulting in more I/O operations.

Database-Specific Tuning

8-4 Performance and Tuning for Oracle WebLogic Server

■ Use an I/O block size larger than 2 KB.

■ Sybase controls the number of engines in a symmetric multiprocessor (SMP)
environment. They recommend configuring this setting to equal the number of
CPUs minus 1.

9

Tuning WebLogic Server EJBs 9-1

9Tuning WebLogic Server EJBs

The following sections describe how to tune WebLogic Server EJBs to match your
application needs:

■ Section 9.1, "General EJB Tuning Tips"

■ Section 9.2, "Tuning EJB Caches"

■ Section 9.3, "Tuning EJB Pools"

■ Section 9.4, "CMP Entity Bean Tuning"

■ Section 9.5, "Tuning In Response to Monitoring Statistics"

■ Section 9.6, "Using the JDT Compiler"

9.1 General EJB Tuning Tips
■ Deployment descriptors are schema-based. Descriptors that are new in this release

of WebLogic Server are not available as DTD-based descriptors.

■ Avoid using the RequiresNew transaction parameter. Using RequiresNew
causes the EJB container to start a new transaction after suspending any current
transactions. This means additional resources, including a separate data base
connection are allocated.

■ Use local-interfaces or set call-by-reference to true to avoid the overhead of
serialization when one EJB calls another or an EJB is called by a servlet/JSP in the
same application. Note the following:

– In release prior to WebLogic Server 8.1, call-by-reference is turned on by
default. For releases of WebLogic Server 8.1 and higher, call-by-reference is
turned off by default. Older applications migrating to WebLogic Server 8.1
and higher that do not explicitly turn on call-by-reference may experience a
drop in performance.

– This optimization does not apply to calls across different applications.

■ Use Stateless session beans over Stateful session beans whenever possible.
Stateless session beans scale better than stateful session beans because there is no
state information to be maintained.

■ WebLogic Server provides additional transaction performance benefits for EJBs
that reside in a WebLogic Server cluster. When a single transaction uses multiple
EJBs, WebLogic Server attempts to use EJB instances from a single WebLogic
Server instance, rather than using EJBs from different servers. This approach
minimizes network traffic for the transaction. In some cases, a transaction can use
EJBs that reside on multiple WebLogic Server instances in a cluster. This can occur

Tuning EJB Caches

9-2 Performance and Tuning for Oracle WebLogic Server

in heterogeneous clusters, where all EJBs have not been deployed to all WebLogic
Server instances. In these cases, WebLogic Server uses a multitier connection to
access the datastore, rather than multiple direct connections. This approach uses
fewer resources, and yields better performance for the transaction. However, for
best performance, the cluster should be homogeneous — all EJBs should reside on
all available WebLogic Server instances.

9.2 Tuning EJB Caches
The following sections provide information on how to tune EJB caches:

■ Section 9.2.1, "Tuning the Stateful Session Bean Cache"

■ Section 9.2.2, "Tuning the Entity Bean Cache"

■ Section 9.2.3, "Tuning the Query Cache"

9.2.1 Tuning the Stateful Session Bean Cache
The EJB Container caches stateful session beans in memory up to a count specified by
the max-beans-in-cache parameter specified in weblogic-ejb-jar.xml. This
parameter should be set equal to the number of concurrent users. This ensures
minimum passivation of stateful session beans to disk and subsequent activation from
disk which yields better performance.

9.2.2 Tuning the Entity Bean Cache
Entity beans are cached at two levels by the EJB container:

■ Section 9.2.2.1, "Transaction-Level Caching"

■ Section 9.2.2.2, "Caching between Transactions"

■ Section 9.2.2.3, "Ready Bean Caching"

9.2.2.1 Transaction-Level Caching
Once an entity bean has been loaded from the database, it is always retrieved from the
cache whenever it is requested when using the findByPrimaryKey or invoked from
a cached reference in that transaction. Getting an entity bean using a non-primary key
finder always retrieves the persistent state of the bean from the data base.

9.2.2.2 Caching between Transactions
Entity bean instances are also cached between transactions. However, by default, the
persistent state of the entity beans are not cached between transactions. To enable
caching between transactions, set the value of the cache-between-transactions
parameter to true.

Is it safe to cache the state? This depends on the concurrency-strategy for that bean.
The entity-bean cache is really only useful when cache-between-transactions
can be safely set to true. In cases where ejbActivate() and ejbPassivate()
callbacks are expensive, it is still a good idea to ensure the entity-cache size is large
enough. Even though the persistent state may be reloaded at least once per
transaction, the beans in the cache are already activated. The value of the cache-size is
set by the deployment descriptor parameter max-beans-in-cache and should be
set to maximize cache-hits. In most situations, the value need not be larger than the
product of the number of rows in the table associated with the entity bean and the
number of threads expected to access the bean concurrently.

Tuning EJB Pools

Tuning WebLogic Server EJBs 9-3

9.2.2.3 Ready Bean Caching
For entity beans with a high cache miss ratio, maintaining ready bean instances can
adversely affect performance.

If you can set disable-ready-instances in the entity-cache element of an
entity-descriptor, the container does not maintain the ready instances in cache. If
the feature is enabled in the deployment descriptor, the cache only keeps the active
instances. Once the involved transaction is committed or rolled back, the bean instance
is moved from active cache to the pool immediately.

9.2.3 Tuning the Query Cache
Query Caching is a new feature in WebLogic Server 9.0 that allows read-only CMP
entity beans to cache the results of arbitrary finders. Query caching is supported for all
finders except prepared-query finders. The query cache can be an application-level
cache as well as a bean-level cache. The size of the cache is limited by the
weblogic-ejb-jar.xml parameter max-queries-in-cache. The
finder-level flag in the weblogic-cmp-rdbms descriptor file,
enable-query-caching is used to specify whether the results of that finder are to
be cached. A flag with the same name has the same purpose for internal relationship
finders when applied to the weblogic-relationship-role element. Queries are
evicted from the query-cache under the following circumstances:

■ The query is least recently used and the query-cache has hit its size limit.

■ At least one of the EJBs that satisfy the query has been evicted from the entity bean
cache, regardless of the reason.

■ The query corresponds to a finder that has eager-relationship-caching
enabled and the query for the associated internal relationship finder has been
evicted from the related bean's query cache.

It is possible to let the size of the entity-bean cache limit the size of the query-cache by
setting the max-queries-in-cache parameter to 0, since queries are evicted from
the cache when the corresponding EJB is evicted. This may avoid some lock contention
in the query cache, but the performance gain may not be significant.

9.3 Tuning EJB Pools
The following section provides information on how to tune EJB pools:

■ Section 9.3.1, "Tuning the Stateless Session Bean Pool"

■ Section 9.3.2, "Tuning the MDB Pool"

■ Section 9.3.3, "Tuning the Entity Bean Pool"

9.3.1 Tuning the Stateless Session Bean Pool
The EJB container maintains a pool of stateless session beans to avoid creating and
destroying instances. Though generally useful, this pooling is even more important for
performance when the ejbCreate() and the setSessionContext() methods are
expensive. The pool has a lower as well as an upper bound. The upper bound is the
more important of the two.

■ The upper bound is specified by the max-beans-in-free-pool parameter. It
should be set equal to the number of threads expected to invoke the EJB
concurrently. Using too small of a value impacts concurrency.

CMP Entity Bean Tuning

9-4 Performance and Tuning for Oracle WebLogic Server

■ The lower bound is specified by the initial-beans-in-free-pool parameter.
Increasing the value of initial-beans-in-free-pool increases the time it
takes to deploy the application containing the EJB and contributes to startup time
for the server. The advantage is the cost of creating EJB instances is not incurred at
run time. Setting this value too high wastes memory.

9.3.2 Tuning the MDB Pool
The life cycle of MDBs is very similar to stateless session beans. The MDB pool has the
same tuning parameters as stateless session beans and the same factors apply when
tuning them. In general, most users will find that the default values are adequate for
most applications. See Chapter 10, "Tuning Message-Driven Beans".

9.3.3 Tuning the Entity Bean Pool
The entity bean pool serves two purposes:

■ A target objects for invocation of finders via reflection.

■ A pool of bean instances the container can recruit if it cannot find an instance for a
particular primary key in the cache.

The entity pool contains anonymous instances (instances that do not have a primary
key). These beans are not yet active (meaning ejbActivate() has not been invoked
on them yet), though the EJB context has been set. Entity bean instances evicted from
the entity cache are passivated and put into the pool. The tunables are the
initial-beans-in-free-pool and max-beans-in-free-pool. Unlike stateless
session beans and MDBs, the max-beans-in-free-pool has no relation with the
thread count. You should increase the value of max-beans-in-free-pool if the
entity bean constructor or setEnityContext() methods are expensive.

9.4 CMP Entity Bean Tuning
The largest performance gains in entity beans are achieved by using caching to
minimize the number of interactions with the data base. However, in most situations,
it is not realistic to be able to cache entity beans beyond the scope of a transaction. The
following sections provide information on WebLogic Server EJB container features,
most of which are configurable, that you can use to minimize database interaction
safely:

■ Section 9.4.1, "Use Eager Relationship Caching"

■ Section 9.4.2, "Use JDBC Batch Operations"

■ Section 9.4.3, "Tuned Updates"

■ Section 9.4.4, "Using Field Groups"

■ Section 9.4.5, "include-updates"

■ Section 9.4.6, "call-by-reference"

■ Section 9.4.7, "Bean-level Pessimistic Locking"

■ Section 9.4.8, "Concurrency Strategy"

9.4.1 Use Eager Relationship Caching
Using eager relationship caching allows the EJB container to load related entity beans
using a single SQL join. Use only when the same transaction accesses related beans.

CMP Entity Bean Tuning

Tuning WebLogic Server EJBs 9-5

See "Relationship Caching" in Oracle Fusion Middleware Programming Enterprise
JavaBeans for Oracle WebLogic Server.

In this release of WebLogic Server, if a CMR field has specified both
relationship-caching and cascade-delete, the owner bean and related bean are
loaded to SQL which can provide an additional performance benefit.

9.4.1.1 Using Inner Joins
The EJB container always uses an outer join in a CMP bean finder when eager
relationship-caching is turned on. Typically, inner joins are faster to execute
than outer joins with the drawback that inner joins do not return rows which do not
have data in the corresponding joined table. Where applicable, using an inner join on
very large databases may help to free CPU resources.

In WLS 10.3, use-inner-join has been added in
weblogic-cmp-rdbms-jar.xml, as an attribute of the weblogic-rdbms-bean, as
shown here:

<weblogic-rdbms-bean>

 <ejb-name>exampleBean</ejb-name>

...

 <use-inner-join>true</use-inner-join>

</weblogic-rdbms-bean>

This element should only be set to true if the CMP bean's related beans can never be
null or an empty set.

The default value is false. If you specify its value as true, all relationship cache query
on the entity bean use an inner join instead of a left outer join to execute a select query
clause.

9.4.2 Use JDBC Batch Operations
JDBC batch operations are turned on by default in the EJB container. The EJB container
automatically re-orders and executes similar data base operations in a single batch
which increases performance by eliminating the number of data base round trips.
Oracle recommends using batch operations.

9.4.3 Tuned Updates
When an entity EJB is updated, the EJB container automatically updates in the data
base only those fields that have actually changed. As a result the update statements are
simpler and if a bean has not been modified, no data base call is made. Because
different transactions may modify different sets of fields, more than one form of
update statements may be used to store the bean in the data base. It is important that
you account for the types of update statements that may be used when setting the size
of the prepared statement cache in the JDBC connection pool. See Section 11.4, "Cache
Prepared and Callable Statements".

9.4.4 Using Field Groups
Field groups allow the user to segregate commonly used fields into a single group. If
any of the fields in the group is accessed by application/bean code, the entire group is
loaded using a single SQL statement. This group can also be associated with a finder.
When the finder is invoked and finders-load-bean is true, it loads only those

CMP Entity Bean Tuning

9-6 Performance and Tuning for Oracle WebLogic Server

fields from the data base that are included in the field group. This means that if most
transactions do not use a particular field that is slow to load, such as a BLOB, it can be
excluded from a field-group. Similarly, if an entity bean has a lot of fields, but a
transaction uses only a small number of them, the unused fields can be excluded.

9.4.5 include-updates
This flag causes the EJB container to flush all modified entity beans to the data base
before executing a finder. If the application modifies the same entity bean more than
once and executes a non-pk finder in-between in the same transaction, multiple
updates to the data base are issued. This flag is turned on by default to comply with
the EJB specification.

If the application has transactions where two invocations of the same or different
finders could return the same bean instance and that bean instance could have been
modified between the finder invocations, it makes sense leaving include-updates
turned on. If not, this flag may be safely turned off. This eliminates an unnecessary
flush to the data base if the bean is modified again after executing the second finder.
This flag is specified for each finder in the cmp-rdbms descriptor.

9.4.6 call-by-reference
When it is turned off, method parameters to an EJB are passed by value, which
involves serialization. For mutable, complex types, this can be significantly expensive.
Consider using for better performance when:

■ The application does not require call-by-value semantics, such as method
parameters are not modified by the EJB.

or

■ If modified by the EJB, the changes need not be invisible to the caller of the
method.

This flag applies to all EJBs, not just entity EJBs. It also applies to EJB invocations
between servlets/JSPs and EJBs in the same application. The flag is turned off by
default to comply with the EJB specification. This flag is specified at the bean-level in
the WebLogic-specific deployment descriptor.

9.4.7 Bean-level Pessimistic Locking
Bean-level pessimistic locking is implemented in the EJB container by acquiring a data
base lock when loading the bean. When implemented, each entity bean can only be
accessed by a single transaction in a single server at a time. All other transactions are
blocked, waiting for the owning transaction to complete. This is a useful alternative to
using a higher data base isolation level, which can be expensive at the RDBMS level.
This flag is specified at the bean level in the cmp-rdbms deployment descriptor.

Note: Be careful to ensure that fields that are accessed in the same
transaction are not configured into separate field-groups. If that
happens, multiple data base calls occur to load the same bean, when
one would have been enough.

Note: If the lock is not exclusive lock, you man encounter deadlock
conditions. If the data base lock is a shared lock, there is potential for
deadlocks when using that RDBMS.

CMP Entity Bean Tuning

Tuning WebLogic Server EJBs 9-7

9.4.8 Concurrency Strategy
The concurrency-strategy deployment descriptor tells the EJB container how to
handle concurrent access of the same entity bean by multiple threads in the same
server instance. Set this parameter to one of four values:

■ Exclusive—The EJB container ensures there is only one instance of an EJB for a
given primary key and this instance is shared among all concurrent transactions in
the server with the container serializing access to it. This concurrency setting
generally does not provide good performance unless the EJB is used infrequently
and chances of concurrent access is small.

■ Database—This is the default value and most commonly used concurrency
strategy. The EJB container defers concurrency control to the database. The
container maintains multiple instances of an EJB for a given primary-key and each
transaction gets it's own copy. In combination with this strategy, the database
isolation-level and bean level pessimistic locking play a major role in determining
if concurrent access to the persistent state should be allowed. It is possible for
multiple transactions to access the bean concurrently so long as it does not need to
go to the database, as would happen when the value of
cache-between-transactions is true. However, setting the value of
cache-between-transactions to true unsafe and not recommended with the
Dababase concurrency strategy.

■ Optimistic—The goal of the optimistic concurrency strategy is to minimize
locking at the data base and while continuing to provide data consistency. The
basic assumption is that the persistent state of the EJB is changed very rarely. The
container attempts to load the bean in a nested transaction so that the
isolation-level settings of the outer transaction does not cause locks to be acquired
at the data base. At commit-time, if the bean has been modified, a predicated
update is used to ensure it's persistent state has not been changed by some other
transaction. If so, an OptimisticConcurrencyException is thrown and must
be handled by the application.

Since EJBs that can use this concurrency strategy are rarely modified, using
cache-between-transactions on can boost performance significantly. This
strategy also allows commit-time verification of beans that have been read, but not
changed. This is done by setting the verify-rows parameter to Read in the
cmp-rdbms descriptor. This provides very high data-consistency while at the
same time minimizing locks at the data base. However, it does slow performance
somewhat. It is recommended that the optimistic verification be performed using
a version column: it is faster, followed closely by timestamp, and more distantly
by modified and read. The modified value does not apply if verify-rows is set to
Read.

When an optimistic concurrency bean is modified in a server that is part of a
cluster, the server attempts to invalidate all instances of that bean cluster-wide in
the expectation that it will prevent OptimisticConcurrencyExceptions. In
some cases, it may be more cost effective to simply let other servers throw an
OptimisticConcurrencyException. in this case, turn off the cluster-wide
invalidation by setting the cluster-invalidation-disabled flag in the
cmp-rdbms descriptor.

■ ReadOnly—The ReadOnly value is the most performant. When selected, the
container assumes the EJB is non-transactional and automatically turns on
cache-between-transactions. Bean states are updated from the data base at
periodic, configurable intervals or when the bean has been programmatically
invalidated. The interval between updates can cause the persistent state of the

Tuning In Response to Monitoring Statistics

9-8 Performance and Tuning for Oracle WebLogic Server

bean to become stale. This is the only concurrency-strategy for which
query-caching can be used. See Section 9.2.2.2, "Caching between Transactions".

9.5 Tuning In Response to Monitoring Statistics
The WebLogic Server Administration Console reports a wide variety of EJB runtime
monitoring statistics, many of which are useful for tuning your EJBs. This section
discusses how some of these statistics can help you tune the performance of EJBs.

To display the statistics in the Administration Console, see "Monitoring EJBs" in Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help. If you prefer to
write a custom monitoring application, you can access the monitoring statistics using
JMX or WLST by accessing the relevant runtime MBeans. See "Runtime MBeans" in
Oracle Fusion Middleware Oracle WebLogic Server MBean Reference.

9.5.1 Cache Miss Ratio
The cache miss ratio is a ratio of the number of times a container cannot find a bean in
the cache (cache miss) to the number of times it attempts to find a bean in the cache
(cache access):

Cache Miss Ratio = (Cache Total Miss Count / Cache Total Access Count) * 100

A high cache miss ratio could be indicative of an improperly sized cache. If your
application uses a certain subset of beans (read primary keys) more frequently than
others, it would be ideal to size your cache large enough so that the commonly used
beans can remain in the cache as less commonly used beans are cycled in and out upon
demand. If this is the nature of your application, you may be able to decrease your
cache miss ratio significantly by increasing the maximum size of your cache.

If your application doesn't necessarily use a subset of beans more frequently than
others, increasing your maximum cache size may not affect your cache miss ratio. We
recommend testing your application with different maximum cache sizes to determine
which give the lowest cache miss ratio. It is also important to keep in mind that your
server has a finite amount of memory and therefore there is always a trade-off to
increasing your cache size.

9.5.2 Lock Waiter Ratio
When using the Exclusive concurrency strategy, the lock waiter ratio is the ratio of
the number of times a thread had to wait to obtain a lock on a bean to the total amount
of lock requests issued:

Lock Waiter Ratio = (Current Waiter Count / Current Lock Entry Count) * 100

A high lock waiter ratio can indicate a suboptimal concurrency strategy for the bean. If
acceptable for your application, a concurrency strategy of Database or Optimistic will
allow for more parallelism than an Exclusive strategy and remove the need for locking
at the EJB container level.

Because locks are generally held for the duration of a transaction, reducing the
duration of your transactions will free up beans more quickly and may help reduce
your lock waiter ratio. To reduce transaction duration, avoid grouping large amounts
of work into a single transaction unless absolutely necessary.

Tuning In Response to Monitoring Statistics

Tuning WebLogic Server EJBs 9-9

9.5.3 Lock Timeout Ratio
When using the Exclusive concurrency strategy, the lock timeout ratio is the ratio of
timeouts to accesses for the lock manager:

Lock Timeout Ratio =(Lock Manager Timeout Total Count / Lock Manager Total Access
Count) * 100

The lock timeout ratio is closely related to the lock waiter ratio. If you are concerned
about the lock timeout ratio for your bean, first take a look at the lock waiter ratio and
our recommendations for reducing it (including possibly changing your concurrency
strategy). If you can reduce or eliminate the number of times a thread has to wait for a
lock on a bean, you will also reduce or eliminate the amount of timeouts that occur
while waiting.

A high lock timeout ratio may also be indicative of an improper transaction timeout
value. The maximum amount of time a thread will wait for a lock is equal to the
current transaction timeout value.

If the transaction timeout value is set too low, threads may not be waiting long enough
to obtain access to a bean and timing out prematurely. If this is the case, increasing the
trans-timeout-seconds value for the bean may help reduce the lock timeout ratio.

Take care when increasing the trans-timeout-seconds, however, because doing so can
cause threads to wait longer for a bean and threads are a valuable server resource.
Also, doing so may increase the request time, as a request ma wait longer before
timing out.

9.5.4 Pool Miss Ratio
The pool miss ratio is a ratio of the number of times a request was made to get a bean
from the pool when no beans were available, to the total number of requests for a bean
made to the pool:

Pool Miss Ratio = (Pool Total Miss Count / Pool Total Access Count) * 100

If your pool miss ratio is high, you must determine what is happening to your bean
instances. There are three things that can happen to your beans.

■ They are in use.

■ They were destroyed.

■ They were removed.

Follow these steps to diagnose the problem:

1. Check your destroyed bean ratio to verify that bean instances are not being
destroyed.

2. Investigate the cause and try to remedy the situation.

3. Examine the demand for the EJB, perhaps over a period of time.

One way to check this is via the Beans in Use Current Count and Idle Beans Count
displayed in the Administration Console. If demand for your EJB spikes during a
certain period of time, you may see a lot of pool misses as your pool is emptied and
unable to fill additional requests.

As the demand for the EJB drops and beans are returned to the pool, many of the
beans created to satisfy requests may be unable to fit in the pool and are therefore
removed. If this is the case, you may be able to reduce the number of pool misses by
increasing the maximum size of your free pool. This may allow beans that were

Tuning In Response to Monitoring Statistics

9-10 Performance and Tuning for Oracle WebLogic Server

created to satisfy demand during peak periods to remain in the pool so they can be
used again when demand once again increases.

9.5.5 Destroyed Bean Ratio
The destroyed bean ratio is a ratio of the number of beans destroyed to the total
number of requests for a bean.

Destroyed Bean Ratio = (Total Destroyed Count / Total Access Count) * 100

To reduce the number of destroyed beans, Oracle recommends against throwing
non-application exceptions from your bean code except in cases where you want the
bean instance to be destroyed. A non-application exception is an exception that is
either a java.rmi.RemoteException (including exceptions that inherit from
RemoteException) or is not defined in the throws clause of a method of an EJB's home
or component interface.

In general, you should investigate which exceptions are causing your beans to be
destroyed as they may be hurting performance and may indicate problem with the EJB
or a resource used by the EJB.

9.5.6 Pool Timeout Ratio
The pool timeout ratio is a ratio of requests that have timed out waiting for a bean
from the pool to the total number of requests made:

Pool Timeout Ratio = (Pool Total Timeout Count / Pool Total Access Count) * 100

A high pool timeout ratio could be indicative of an improperly sized free pool.
Increasing the maximum size of your free pool via the max-beans-in-free-pool
setting will increase the number of bean instances available to service requests and
may reduce your pool timeout ratio.

Another factor affecting the number of pool timeouts is the configured transaction
timeout for your bean. The maximum amount of time a thread will wait for a bean
from the pool is equal to the default transaction timeout for the bean. Increasing the
trans-timeout-seconds setting in your weblogic-ejb-jar.xml file will give
threads more time to wait for a bean instance to become available.

Users should exercise caution when increasing this value, however, since doing so
may cause threads to wait longer for a bean and threads are a valuable server resource.
Also, request time might increase because a request will wait longer before timing out.

9.5.7 Transaction Rollback Ratio
The transaction rollback ratio is the ratio of transactions that have rolled back to the
number of total transactions involving the EJB:

Transaction Rollback Ratio = (Transaction Total Rollback Count / Transaction Total
Count) * 100

Begin investigating a high transaction rollback ratio by examining the Section 9.5.8,
"Transaction Timeout Ratio" reported in the Administration Console. If the transaction
timeout ratio is higher than you expect, try to address the timeout problem first.

An unexpectedly high transaction rollback ratio could be caused by a number of
things. We recommend investigating the cause of transaction rollbacks to find
potential problems with your application or a resource used by your application.

Using the JDT Compiler

Tuning WebLogic Server EJBs 9-11

9.5.8 Transaction Timeout Ratio
The transaction timeout ratio is the ratio of transactions that have timed out to the total
number of transactions involving an EJB:

Transaction Timeout Ratio = (Transaction Total Timeout Count / Transaction Total
Count) * 100

A high transaction timeout ratio could be caused by the wrong transaction timeout
value. For example, if your transaction timeout is set too low, you may be timing out
transactions before the thread is able to complete the necessary work. Increasing your
transaction timeout value may reduce the number of transaction timeouts.

You should exercise caution when increasing this value, however, since doing so can
cause threads to wait longer for a resource before timing out. Also, request time might
increase because a request will wait longer before timing out.

A high transaction timeout ratio could be caused by a number of things such as a
bottleneck for a server resource. We recommend tracing through your transactions to
investigate what is causing the timeouts so the problem can be addressed.

9.6 Using the JDT Compiler
The JDT compiler can provide improved performance as compared to Javac. For this
release:

■ Both JDT and Javac is supported in the EJB container. JDT is the default option.

■ You can set up to use different compilers in appc and WLS. For:

– appc, use -compiler, such as -java weblogic.appc -compiler javac ...

– WLS, use the ejb-container tag in config.xml file. For example:

 <ejb-container>

<java-compiler>jdt</java-compiler>

 </ejb-container>

If you use JDT in appc, only the -keepgenerated and -forceGeneration command line
options are currently supported. These options have the same meaning as when using
Javac.

Using the JDT Compiler

9-12 Performance and Tuning for Oracle WebLogic Server

10

Tuning Message-Driven Beans 10-1

10Tuning Message-Driven Beans

The following sections provide tuning and best practice information for
Message-Driven Beans (MDBs):

■ Section 10.1, "Use Transaction Batching"

■ Section 10.2, "MDB Thread Management"

■ Section 10.3, "Using Foreign Vendor MDBs"

10.1 Use Transaction Batching
MDB transaction batching allows several JMS messages to be processed in one
container managed transaction. Batching amortizes the cost of transactions over
multiple messages and when used appropriately, can reduce or even eliminate the
throughput difference between 2PC and 1PC processing. See "Transaction Batching of
MDBs" in Oracle Fusion Middleware Programming Enterprise JavaBeans for Oracle
WebLogic Server.

■ Using batching may require reducing the number of concurrent MDB instances. If
too many MDB instances are available, messages may be processed in parallel
rather than in a batch. See Section 10.2, "MDB Thread Management".

■ While batching generally increases throughput, it may also increase latency (the
time it takes for an individual message to complete its MDB processing).

10.2 MDB Thread Management
Thread management for MDBs is described in terms of concurrency—the number of
MDB instances that can be active at the same time. The following sections provide
information on MDB concurrency:

■ Section 10.2.1, "Determining the Number of Concurrent MDBs"

■ Section 10.2.2, "Selecting a Concurrency Strategy"

■ Section 10.2.3, "Thread Utilization When Using WebLogic Destinations"

10.2.1 Determining the Number of Concurrent MDBs
Table 10–1 provides information on how to determine the of concurrently running
MDB instances for a server instance.

MDB Thread Management

10-2 Performance and Tuning for Oracle WebLogic Server

Transactional WebLogic MDBs use a synchronous polling mechanism to retrieve
messages from JMS destinations if they are either: A) listening to non-WebLogic
queues; or B) listening to a WebLogic queue and transaction batching is enabled. See
Section 10.3.3, "Token-based Message Polling for Transactional MDBs Listening on
Queues".

10.2.2 Selecting a Concurrency Strategy
The following section provides general information on selecting a concurrency
strategy for your applications:

■ In most situations, if the message stream has bursts of messages, using an
unconstrained work manager with a high fair share is adequate. Once the
messages in a burst are handled, the threads are returned to the self-tuning pool.

■ In most situations, if the message arrival rate is high and constant or if low latency
is required, it makes sense to reserve threads for MDBs. You can reserve threads by
either specifying a work manager with a min-threads-constraint or by using
a custom execute queue.

■ If you migrate WebLogic Server 8.1 applications that have custom MDB execute
queues, you can:

– Continue to use a custom MDB execute queue, see Appendix B, "Using the
WebLogic 8.1 Thread Pool Model."

– Convert the MDB execute queue to a custom work manager that has a
configured max-threads-constraint parameter and a high fair share
setting.

■ In WebLogic Server 8.1, you could increase the size of the default execute queue
knowing that a larger default pool means a larger maximum MDB concurrency.

Table 10–1 Determining Concurrency for WebLogic Server MDBs

Type of work manager or
execute queue Threads

Default work manager or
unconstrained work manager

varies due to self-tuning, up to
Min(max-beans-in-free-pool,16)

Default work manager with
self-tuning disabled

Min(default-thread-pool-size/2+1,
max-beans-in-free-pool)

This is also the default thread pool concurrency algorithm for
WebLogic Server 8.1

Custom execute queue Min(execute-queue-size, max-beans-in-free-pool)

Custom work manager with
constraint

varies due to self-tuning, between
min-thread-constraint and
Min(max-threads-constraint,
max-beans-in-free-pool)

Note: Every application is unique, select a concurrency strategy
based on how your application performs in its environment.

Note: You must configure the max-threads-constraint
parameter to override the default concurrency of 16.

Using Foreign Vendor MDBs

Tuning Message-Driven Beans 10-3

Default thread pool MDBs upgraded to WebLogic Server 9.0 will have a fixed
maximum of 16. To achieve MDB concurrency numbers higher than 16, you will
need to create a custom work manager or custom execute queue. See Table 10–1.

10.2.3 Thread Utilization When Using WebLogic Destinations
The following section provides information on how threads are allocated when
WebLogic Server interoperates with WebLogic destinations.

■ Non-transactional WebLogic MDBs allocate threads from the thread-pool
designated by the dispatch-policy as needed when there are new messages to
be processed. If the MDB has successfully connected to its source destination, but
there are no messages to be processed, then the MDB will use no threads.

■ Transactional WebLogic MDBs with transaction batching disabled work the same as
non-transactional MDBs.

■ The behavior of transactional MDBs with transaction batching enabled depends on
whether the MDB is listening on a topic or a queue:

– MDBs listening on topics — Each deployed MDB uses a dedicated daemon
polling thread that is created in Non-Pooled Threads thread group.

– MDBs listening on queues — Instead of a dedicated thread, each deployed MDB
uses a token-based, synchronous polling mechanism that always uses at least
one thread from the dispatch-policy. See Section 10.3.3, "Token-based
Message Polling for Transactional MDBs Listening on Queues".

For information on how threads are allocated when WebLogic Server interoperates
with foreign vendor MDBs, see Section 10.3.2, "Thread Utilization When Using Foreign
MDBs".

10.3 Using Foreign Vendor MDBs
The following sections provide information on the behavior of WebLogic Server when
using foreign vendor MDBs:

■ Section 10.3.1, "Determining Concurrency for Foreign MDBs"

■ Section 10.3.2, "Thread Utilization When Using Foreign MDBs"

10.3.1 Determining Concurrency for Foreign MDBs
When using foreign MDBs, WebLogic Server determines concurrency as shown in
Table 10–1.

10.3.2 Thread Utilization When Using Foreign MDBs
The following section provides information on how threads are allocated when
WebLogic Server interoperates with foreign vendor MDBs:

Table 10–2 Determining Concurrency for Foreign Vendor MDBs

Tuning Factor Information Reference

Queue Same algorithm as for WebLogic MDBs

Topic: Non-transactional Concurrency is always one.

Topic: Transactional Same algorithm as for WebLogic MDBs.

Using Foreign Vendor MDBs

10-4 Performance and Tuning for Oracle WebLogic Server

■ Non-transactional MDBs use a foreign vendor's thread, not a WebLogic Server
thread. In this situation, the dispatch-policy is ignored except for determining
concurrency.

■ Transactional MDBs run in WebLogic Server threads, as follow:

– MDBs listening on topics — Each deployed MDB uses a dedicated daemon
polling thread that is created in Non-Pooled Threads thread group.

– MDBs listening on queues — Instead of a dedicated thread, each deployed MDB
uses a token-based, synchronous polling mechanism that always uses at least
one thread from the dispatch-policy. See Section 10.3.3, "Token-based
Message Polling for Transactional MDBs Listening on Queues"

10.3.3 Token-based Message Polling for Transactional MDBs Listening on Queues
Transactional WebLogic MDBs use a synchronous polling mechanism to retrieve
messages from JMS destinations if they are either: A) listening to non-WebLogic
queues; or B) listening to a WebLogic queue and transaction batching is enabled. With
synchronous polling, one or more WebLogic polling threads synchronously receive
messages from the MDB's source destination and then invoke the MDB application's
onMessage callback.

As of WebLogic 10.3, the polling mechanism changed to a token-based approach to
provide better control of the concurrent poller thread count under changing message
loads. In previous releases, the thread count ramp-up could be too gradual in certain
use cases. Additionally, child pollers, once awoken, could not be ramped down and
returned back to the pool for certain foreign JMS providers.

When a thread is returned to the thread pool with token-based polling, the thread's
internal JMS consumer is closed rather than cached. This assures that messages will
not be implicitly pre-fetched by certain foreign JMS Providers while there is no polling
thread servicing the consumer.

In addition, each MDB maintains a single token that provides permission for a given
poller thread to create another thread.

■ On receipt of a message — A poller thread that already has the token or that is able
to acquire the token because the token is not owned, wakes up an additional poller
thread and gives the token to the new poller if the maximum concurrency has not
yet been reached. If maximum concurrency has been reached, the poller thread
simply releases the token (leaving it available to any other poller).

■ On finding an empty queue — A poller tries to acquire the token and if successful
will try to poll the queue periodically. If it fails to acquire the token, it returns itself
back to the pool. This ensures that with an empty queue, there is still at least one
poller checking for messages.

10.3.4 Backwards Compatibility for WLS 10.0 and Earlier-style Polling
In WLS 10.0 and earlier, transactional MDBs with batching enabled created a dedicated
polling thread for each deployed MDB. This polling thread was not allocated from the
pool specified by dispatch-policy, it was an entirely new thread in addition to the
all other threads running on the system. See Section 10.1, "Use Transaction Batching".

To override the token-based polling behavior and implement the WLS 10.0 and earlier
behavior, you can either:

■ At the server level, set the weblogic.mdb.message.81StylePolling system
property to True to override the token-based polling behavior.

Using Foreign Vendor MDBs

Tuning Message-Driven Beans 10-5

■ At the MDB level, set the use81-style-polling element under
message-driven-descriptor to override the token-based polling behavior.
When using foreign transactional MDBs with the WLS 8.1-style polling flag, some
foreign vendors require a permanently allocated thread per concurrent MDB
instance. These threads are drawn from the pool specified by dispatch-policy
and are not returned to the pool until the MDB is undeployed. Since these threads
are not shared, the MDB can starve other resources in the same pool. In this
situation, you may need to increase the number of threads in the pool. With the
token-based polling approach for such foreign vendors, the thread's internal JMS
message consumer is closed rather than cached to assure that messages will not be
reserved by the destination for the specific consumer.

Using Foreign Vendor MDBs

10-6 Performance and Tuning for Oracle WebLogic Server

11

Tuning JDBC Applications 11-1

11Tuning JDBC Applications

The following sections provide tips on how to get the best performance from JDBC
applications:

■ Section 11.1, "Tune the Number of Database Connections"

■ Section 11.2, "Waste Not"

■ Section 11.3, "Use Test Connections on Reserve with Care"

■ Section 11.4, "Cache Prepared and Callable Statements"

■ Section 11.5, "Using Pinned-To-Thread Property to Increase Performance"

■ Section 11.6, "Use Best Design Practices"

11.1 Tune the Number of Database Connections
A straightforward and easy way to boost performance of JDBC in WebLogic Server
applications is to set the value of Initial Capacity equal to the value for Maximum
Capacity when configuring connection pools in your data source.

Creating a database connection is a relatively expensive process in any environment.
Typically, a connection pool starts with a small number of connections. As client
demand for more connections grow, there may not be enough in the pool to satisfy the
requests. WebLogic Server creates additional connections and adds them to the pool
until the maximum pool size is reached.

One way to avoid connection creation delays for clients using the server is to initialize
all connections at server startup, rather than on-demand as clients need them. Set the
initial number of connections equal to the maximum number of connections in the
Connection Pool tab of your data source configuration. See "JDBC Data Source:
Configuration: Connection Pool" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help. You will still need to determine the optimal value for the
Maximum Capacity as part of your pre-production performance testing.

For more tuning information, see "Tuning Data Source Connection Pool Options" in
Oracle Fusion Middleware Configuring and Managing JDBC for Oracle WebLogic Server.

11.2 Waste Not
Another simple way to boost JDBC application performance avoid wasting resources.
Here are some situations where you can avoid wasting JDBC related resources:

■ JNDI lookups are relatively expensive, so caching an object that required a
looked-up in client code or application code avoids incurring this performance hit
more than once.

Use Test Connections on Reserve with Care

11-2 Performance and Tuning for Oracle WebLogic Server

■ Once client or application code has a connection, maximize the reuse of this
connection rather than closing and reacquiring a new connection. While acquiring
and returning an existing creation is much less expensive than creating a new one,
excessive acquisitions and returns to pools creates contention in the connection
pool and degrades application performance.

■ Don't hold connections any longer than is necessary to achieve the work needed.
Getting a connection once, completing all necessary work, and returning it as soon
as possible provides the best balance for overall performance.

11.3 Use Test Connections on Reserve with Care
When Test Connections on Reserve is enabled, the server instance checks a
database connection prior to returning the connection to a client. This helps reduce the
risk of passing invalid connections to clients.

However, it is a fairly expensive operation. Typically, a server instance performs the
test by executing a full-fledged SQL query with each connection prior to returning it. If
the SQL query fails, the connection is destroyed and a new one is created in its place.
A new and optional performance tunable has been provided in WebLogic Server 9.x
within this "test connection on reserve" feature. The new optional performance tunable
in 9.x allows WebLogic Server to skip this SQL-query test within a configured time
window of a prior successful client use (default is 10 seconds). When a connection is
returned to the pool by a client, the connection is timestamped by WebLogic Server.
WebLogic Server will then skip the SQL-query test if this particular connection is
returned to a client within the time window. Once the time window expires, WebLogic
Server will execute the SQL-query test. This feature can provide significant
performance boosts for busy systems using "test connection on reserve".

11.4 Cache Prepared and Callable Statements
When you use a prepared statement or callable statement in an application or EJB,
there is considerable processing overhead for the communication between the
application server and the database server and on the database server itself. To
minimize the processing costs, WebLogic Server can cache prepared and callable
statements used in your applications. When an application or EJB calls any of the
statements stored in the cache, WebLogic Server reuses the statement stored in the
cache. Reusing prepared and callable statements reduces CPU usage on the database
server, improving performance for the current statement and leaving CPU cycles for
other tasks. For more details, see "Increasing Performance with the Statement Cache"
in Oracle Fusion Middleware Configuring and Managing JDBC for Oracle WebLogic Server.

Using the statement cache can dramatically increase performance, but you must
consider its limitations before you decide to use it. For more details, see "Usage
Restrictions for the Statement Cache" in Configuring and Managing WebLogic JDBC.

11.5 Using Pinned-To-Thread Property to Increase Performance
To minimize the time it takes for an application to reserve a database connection from
a data source and to eliminate contention between threads for a database connection,
you can add the Pinned-To-Thread property in the connection Properties list for the
data source, and set its value to true.

In this release, the Pinned-To-Thread feature does not work with multi data sources,
Oracle RAC, and IdentityPool. These features rely on the ability to return a connection

Use Best Design Practices

Tuning JDBC Applications 11-3

to the connection pool and reacquire it if there is a connection failure or connection
identity does not match

See "JDBC Data Source: Configuration: Connection Pool" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

11.6 Use Best Design Practices
Most performance gains or losses in a database application is not determined by the
application language, but by how the application is designed. The number and
location of clients, size and structure of DBMS tables and indexes, and the number and
types of queries all affect application performance. See "Designing Your Application
for Best Performance" in Oracle Fusion Middleware Programming JDBC for Oracle
WebLogic Server.

Use Best Design Practices

11-4 Performance and Tuning for Oracle WebLogic Server

12

Tuning Logging Last Resource 12-1

12Tuning Logging Last Resource

The following sections provide background and tuning information for Last Logging
Resource transaction optimization (LLR):

■ Section 12.1, "What is LLR?"

■ Section 12.2, "LLR Tuning Guidelines"

12.1 What is LLR?
The Logging Last Resource (LLR) transaction optimization through JDBC data sources
safely reduces the overhead of two-phase transactions involving database inserts,
updates, and deletes. Two phase transactions occur when two different resources
participate in the same global transaction (global transactions are often referred to as
"XA" or "JTA" transactions). Consider the following:

■ Typical two-phase transactions in JMS applications usually involve both a JMS
server and a database server. The LLR option can as much as double performance
compared to XA.

■ The safety of the JDBC LLR option contrasts with well known but less-safe XA
optimizations such as "last-agent", "last-participant", and
"emulate-two-phase-commit" that are available from other vendors as well as
WebLogic.

■ JDBC LLR works by storing two-phase transaction records in a database table
rather than in the transaction manager log (the TLOG).

See "Logging Last Resource Transaction Optimization" in Oracle Fusion Middleware
Programming JTA for Oracle WebLogic Server.

12.2 LLR Tuning Guidelines
The following section provides tuning guidelines for LLR:

■ Oracle recommends that you read and understand "Logging Last Resource
Transaction Optimization" in Oracle Fusion Middleware Programming JTA for Oracle
WebLogic Server and "Transaction Options" in Oracle Fusion Middleware Configuring
and Managing JDBC for Oracle WebLogic Server. LLR has a number of important
administration and design implications.

■ JDBC LLR generally improves performance of two-phase transactions that involve
SQL updates, deletes, or inserts.

■ LLR generally reduces the performance of two-phase transactions where all SQL
operations are read-only (just selects).

LLR Tuning Guidelines

12-2 Performance and Tuning for Oracle WebLogic Server

■ JDBC LLR pools provide no performance benefit to WebLogic JDBC stores.
WebLogic JDBC stores are fully transactional but do not use JTA (XA) transactions
on their internal JDBC connections.

■ Consider using LLR instead of the less safe "last-agent" optimization for
connectors, and the less safe "emulate-two-phase-commit" option for JDBC
connection pools (formerly known as the "enable two-phase commit" option for
pools that use non-XA drivers).

■ On Oracle databases, heavily used LLR tables may become fragmented over time,
which can lead to unused extents. This is likely due to the highly transient nature
of the LLR table's data. To help avoid the issue, set PCT_FREE to 5 and PCT_USED
to 95 on the LLR table. Also periodically defragment using the ALTER
TABLESPACE [tablespace-name] COALESCE command.

13

Tuning WebLogic JMS 13-1

13Tuning WebLogic JMS

The following sections explain how to get the most out of your applications by
implementing the administrative performance tuning features available with
WebLogic JMS:

■ Section 13.1, "Defining Quota"

■ Section 13.2, "Blocking Senders During Quota Conditions"

■ Section 13.3, "Tuning for Large Messages"

■ Section 13.4, "Tuning MessageMaximum"

■ Section 13.5, "Compressing Messages"

■ Section 13.6, "Paging Out Messages To Free Up Memory"

■ Section 13.7, "Controlling the Flow of Messages on JMS Servers and Destinations"

■ Section 13.8, "Handling Expired Messages"

■ Section 13.9, "Tuning Applications Using Unit-of-Order"

■ Section 13.10, "Using One-Way Message Sends For Improved Non-Persistent
Messaging Performance"

■ Section 13.11, "Tuning Destination Performance"

■ Section 13.12, "Best Practices for JMS .NET Client Applications"

13.1 Defining Quota
In prior releases, there were multiple levels of quotas: destinations had their own
quotas and would also have to compete for quota within a JMS server. In this release,
there is only one level of quota: destinations can have their own private quota or they
can compete with other destinations using a shared quota.

In addition, a destination that defines its own quota no longer also shares space in the
JMS server's quota. Although JMS servers still allow the direct configuration of
message and byte quotas, these options are only used to provide quota for destinations
that do not refer to a quota resource.

13.1.1 Quota Resources
A quota is a named configurable JMS module resource. It defines a maximum number
of messages and bytes, and is then associated with one or more destinations and is
responsible for enforcing the defined maximums. Multiple destinations referring to the
same quota share available quota according to the sharing policy for that quota
resource.

Defining Quota

13-2 Performance and Tuning for Oracle WebLogic Server

Quota resources include the following configuration parameters:

For more information about quota configuration parameters, see QuotaBean in the
Oracle Fusion Middleware Oracle WebLogic Server MBean Reference. For instructions on
configuring a quota resource using the Administration Console, see "Create a quota for
destinations" in the Oracle Fusion Middleware Oracle WebLogic Server Administration
Console Help.

13.1.2 Destination-Level Quota
Destinations no longer define byte and messages maximums for quota, but can use a
quota resource that defines these values, along with quota policies on sharing and
competition.

The Quota parameter of a destination defines which quota resource is used to enforce
quota for the destination. This value is dynamic, so it can be changed at any time.
However, if there are unsatisfied requests for quota when the quota resource is
changed, then those requests will fail with a
javax.jms.ResourceAllocationException.

13.1.3 JMS Server-Level Quota
In some cases, there will be destinations that do not configure quotas. JMS Server
quotas allow JMS servers to limit the resources used by these quota-less destinations.
All destinations that do not explicitly set a value for the Quota attribute share the
quota of the JMS server where they are deployed. The behavior is exactly the same as
if there were a special Quota resource defined for each JMS server with the Shared
parameter enabled.

The interfaces for the JMS server quota are unchanged from prior releases. The JMS
server quota is entirely controlled using methods on the JMSServerMBean. The quota
policy for the JMS server quota is set by the Blocking Send Policy parameter on a JMS

Table 13–1 Quota Parameters

Attribute Description

Bytes Maximum and
Messages Maximum

The Messages Maximum/Bytes Maximum parameters for a quota
resource defines the maximum number of messages and/or bytes
allowed for that quota resource. No consideration is given to
messages that are pending; that is, messages that are in-flight,
delayed, or otherwise inhibited from delivery still count against the
message and/or bytes quota.

Quota Sharing The Shared parameter for a quota resource defines whether
multiple destinations referring to the same quota resource compete
for resources with each other.

Quota Policy The Policy parameter defines how individual clients compete for
quota when no quota is available. It affects the order in which send
requests are unblocked when the Send Timeout feature is enabled
on the connection factory, as described in Section 13.3, "Tuning for
Large Messages".

Note: Outstanding requests for quota will fail at such time that the
quota resource is changed. This does not mean changes to the message
and byte attributes for the quota resource, but when a destination
switches to a different quota.

Blocking Senders During Quota Conditions

Tuning WebLogic JMS 13-3

server, as explained in Section 13.2.2, "Specifying a Blocking Send Policy on JMS
Servers". It behaves just like the Policy setting of any other quota.

13.2 Blocking Senders During Quota Conditions
■ Section 13.2.1, "Defining a Send Timeout on Connection Factories"

■ Section 13.2.2, "Specifying a Blocking Send Policy on JMS Servers"

13.2.1 Defining a Send Timeout on Connection Factories
Blocking producers during quota conditions (by defining a send timeout) can
dramatically improve the performance of applications and benchmarks that
continuously retry message sends on quota failures. The Send Timeout feature
provides more control over message send operations by giving message produces the
option of waiting a specified length of time until space becomes available on a
destination. For example, if a producer makes a request and there is insufficient space,
then the producer is blocked until space becomes available, or the operation times out.
See Section 13.7, "Controlling the Flow of Messages on JMS Servers and Destinations"
for another method of flow control.

To use the Administration Console to define how long a JMS connection factory will
block message requests when a destination exceeds its maximum quota.

1. Follow the directions for navigating to the JMS Connection Factory: Configuration:
Flow Control page in "Configure message flow control" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

2. In the Send Timeout field, enter the amount of time, in milliseconds, a sender will
block messages when there is insufficient space on the message destination. Once
the specified waiting period ends, one of the following results will occur:

■ If sufficient space becomes available before the timeout period ends, the
operation continues.

■ If sufficient space does not become available before the timeout period ends,
you receive a resource allocation exception.

If you choose not to enable the blocking send policy by setting this value to 0,
then you will receive a resource allocation exception whenever sufficient space
is not available on the destination.

For more information about the Send Timeout field, see "JMS Connection
Factory: Configuration: Flow Control" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

3. Click Save.

13.2.2 Specifying a Blocking Send Policy on JMS Servers
The Blocking Send policies enable you to define the JMS server's blocking behavior on
whether to deliver smaller messages before larger ones when multiple message
producers are competing for space on a destination that has exceeded its message
quota.

To use the Administration Console to define how a JMS server will block message
requests when its destinations are at maximum quota.

1. Follow the directions for navigating to the JMS Server: Configuration: Thresholds
and Quotas page of the Administration Console in "Configure JMS server

Tuning for Large Messages

13-4 Performance and Tuning for Oracle WebLogic Server

thresholds and quota" in Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

2. From the Blocking Send Policy list box, select one of the following options:

■ FIFO — All send requests for the same destination are queued up one behind the
other until space is available. No send request is permitted to complete when there
another send request is waiting for space before it.

■ Preemptive — A send operation can preempt other blocking send operations if
space is available. That is, if there is sufficient space for the current request, then
that space is used even if there are previous requests waiting for space.

■ For more information about the Blocking Send Policy field, see "JMS Server:
Configuration: Thresholds and Quota" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

1. Click Save.

13.3 Tuning for Large Messages
The following sections provide information on how to improve JMS performance
when handling large messages:

■ Section 13.4, "Tuning MessageMaximum"

■ Section 13.5, "Compressing Messages"

■ Section 13.6, "Paging Out Messages To Free Up Memory"

13.4 Tuning MessageMaximum
WebLogic JMS pipelines messages that are delivered to asynchronous consumers
(otherwise known as message listeners) or prefetch-enabled synchronous consumers.
This action aids performance because messages are aggregated when they are
internally pushed from the server to the client. The messages backlog (the size of the
pipeline) between the JMS server and the client is tunable by configuring the
MessagesMaximum setting on the connection factory. See "Asynchronous Message
Pipeline" in Oracle Fusion Middleware Programming JMS for Oracle WebLogic Server.

In some circumstances, tuning the MessagesMaximum parameter may improve
performance dramatically, such as when the JMS application defers acknowledges or
commits. In this case, Oracle suggests setting the MessagesMaximum value to:

2 * (ack or commit interval) + 1

For example, if the JMS application acknowledges 50 messages at a time, set the
MessagesMaximum value to 101.

13.4.1 Tuning MessageMaximum Limitations
Tuning the MessagesMaximum value too high can cause:

■ Increased memory usage on the client.

■ Affinity to an existing client as its pipeline fills with messages. For example: If
MessagesMaximum has a value of 10,000,000, the first consumer client to connect
will get all messages that have already arrived at the destination. This condition
leaves other consumers without any messages and creates an unnecessary backlog
of messages in the first consumer that may cause the system to run out of memory.

Compressing Messages

Tuning WebLogic JMS 13-5

■ Packet is too large exceptions and stalled consumers. If the aggregate size of the
messages pushed to a consumer is larger than the current protocol's maximum
message size (default size is 10 MB and is configured on a per WebLogic Server
instance basis using the console and on a per client basis using the
-Dweblogic.MaxMessageSize command line property), the message delivery
fails.

13.4.2 Setting Maximum Message Size on a Client
You may need to configure WebLogic clients in addition to the WebLogic Server
instance, when sending and receiving large messages. To set the maximum message
size on a client, use the following command line property:

-Dweblogic.MaxMessageSize

13.5 Compressing Messages
A message compression threshold can be set programmatically using a JMS API
extension to the WLMessageProducer interface, or administratively by either
specifying a Default Compression Threshold value on a connection factory or on a JMS
SAF remote context. Compressed messages may actually inadvertently affect
destination quotas since some message types actually grow larger when compressed

For instructions on configuring default compression thresholds using the
Administration Console, see:

■ Connection factories — "Configure default delivery parameters" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help.

■ Store-and-Forward (SAF) remote contexts — "Configure SAF remote contexts" in
the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

Once configured, message compression is triggered on producers for client sends, on
connection factories for message receives and message browsing, or through SAF
forwarding. Messages are compressed using GZIP. Compression only occurs when
message producers and consumers are located on separate server instances where
messages must cross a JVM boundary, typically across a network connection when
WebLogic domains reside on different machines. Decompression automatically occurs
on the client side and only when the message content is accessed, except for the
following situations:

■ Using message selectors on compressed XML messages can cause decompression,
since the message body must be accessed in order to filter them. For more
information on defining XML message selectors, see "Filtering Messages" in Oracle
Fusion Middleware Programming JMS for Oracle WebLogic Server.

■ Interoperating with earlier versions of WebLogic Server can cause decompression.
For example, when using the Messaging Bridge, messages are decompressed
when sent from the current release of WebLogic Server to a receiving side that is
an earlier version of WebLogic Server.

On the server side, messages always remains compressed, even when they are written
to disk.

Note: This setting applies to all WebLogic Server network packets
delivered to the client, not just JMS related packets.

Paging Out Messages To Free Up Memory

13-6 Performance and Tuning for Oracle WebLogic Server

13.6 Paging Out Messages To Free Up Memory
With the message paging feature, JMS servers automatically attempt to free up virtual
memory during peak message load periods. This feature can greatly benefit
applications with large message spaces. Message paging is always enabled on JMS
servers, and so a message paging directory is automatically created without having to
configure one. You can, however, specify a directory using the Paging Directory
option, then paged-out messages are written to files in this directory.

JMS message paging saves memory for persistent messages, as even persistent
messages cache their data in memory. If a JMS server is associated with a file store
(either user-defined or the server's default store), paged persistent messages are
generally written to that file store, while non-persistent messages are always written to
the JMS server's paging directory. If a JMS server is associated with a JDBC store, then
both paged persistent and non-persistent messages are always written to the JMS
server's paging directory. See Section 7.2, "Best Practices When Using Persistent
Stores".

However, a paged-out message does not free all of the memory that it consumes, since
the message header with the exception of any user properties, which are paged out
along with the message body, remains in memory for use with searching, sorting, and
filtering. Queuing applications that use selectors to select paged messages may show
severely degraded performance as the paged out messages must be paged back in.
This does not apply to topics or to applications that select based only on message
header fields (such as CorrelationID).

13.6.1 Specifying a Message Paging Directory
If a paging directory is not specified, then paged-out message bodies are written to the
default \tmp directory inside the servername subdirectory of a domain's root directory.
For example, if no directory name is specified for the default paging directory, it
defaults to:

mw_home\user_projects\domains\domainname\servers\servername\tmp

where domainname is the root directory of your domain, typically
c:\Oracle\Middleware\user_projects\domains\domainname, which is
parallel to the directory in which WebLogic Server program files are stored, typically
c:\Oracle\Middleware\wlserver_10.x.

13.6.2 Tuning the Message Buffer Size Option
The Message Buffer Size option specifies the amount of memory that will be used to
store message bodies in memory before they are paged out to disk. The default value
of Message Buffer Size is approximately one-third of the maximum heap size for the
JVM, or a maximum of 512 megabytes. The larger this parameter is set, the more
memory JMS will consume when many messages are waiting on queues or topics.
Once this threshold is crossed, JMS may write message bodies to the directory
specified by the Paging Directory option in an effort to reduce memory usage below
this threshold.

It is important to remember that this parameter is not a quota. If the number of
messages on the server passes the threshold, the server writes the messages to disk
and evicts the messages from memory as fast as it can to reduce memory usage, but it
will not stop accepting new messages. It is still possible to run out of memory if
messages are arriving faster than they can be paged out. Users with high messaging
loads who wish to support the highest possible availability should consider setting a

Controlling the Flow of Messages on JMS Servers and Destinations

Tuning WebLogic JMS 13-7

quota, or setting a threshold and enabling flow control to reduce memory usage on the
server.

13.7 Controlling the Flow of Messages on JMS Servers and Destinations
With the Flow Control feature, you can direct a JMS server or destination to slow
down message producers when it determines that it is becoming overloaded. See
Section 13.5, "Compressing Messages".

The following sections describe how flow control feature works and how to configure
flow control on a connection factory.

■ Section 13.7.1, "How Flow Control Works"

■ Section 13.7.2, "Configuring Flow Control"

■ Section 13.7.3, "Flow Control Thresholds"

13.7.1 How Flow Control Works
Specifically, when either a JMS server or it's destinations exceeds its specified byte or
message threshold, it becomes armed and instructs producers to limit their message
flow (messages per second).

Producers will limit their production rate based on a set of flow control attributes
configured for producers via the JMS connection factory. Starting at a specified flow
maximum number of messages, a producer evaluates whether the server/destination is
still armed at prescribed intervals (for example, every 10 seconds for 60 seconds). If at
each interval, the server/destination is still armed, then the producer continues to
move its rate down to its prescribed flow minimum amount.

As producers slow themselves down, the threshold condition gradually corrects itself
until the server/destination is unarmed. At this point, a producer is allowed to increase
its production rate, but not necessarily to the maximum possible rate. In fact, its
message flow continues to be controlled (even though the server/destination is no
longer armed) until it reaches its prescribed flow maximum, at which point it is no
longer flow controlled.

13.7.2 Configuring Flow Control
Producers receive a set of flow control attributes from their session, which receives the
attributes from the connection, and which receives the attributes from the connection
factory. These attributes allow the producer to adjust its message flow.

Specifically, the producer receives attributes that limit its flow within a minimum and
maximum range. As conditions worsen, the producer moves toward the minimum; as
conditions improve; the producer moves toward the maximum. Movement toward the
minimum and maximum are defined by two additional attributes that specify the rate
of movement toward the minimum and maximum. Also, the need for movement
toward the minimum and maximum is evaluated at a configured interval.

Flow Control options are described in following table:

Table 13–2 Flow Control Parameters

Attribute Description

Flow Control Enabled Determines whether a producer can be flow controlled by the JMS
server.

Controlling the Flow of Messages on JMS Servers and Destinations

13-8 Performance and Tuning for Oracle WebLogic Server

For more information about the flow control fields, and the valid and default values
for them, see "JMS Connection Factory: Configuration: Flow Control" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help.

13.7.3 Flow Control Thresholds
The attributes used for configuring bytes/messages thresholds are defined as part of
the JMS server and/or its destination. Table 13–2 defines how the upper and lower
thresholds start and stop flow control on a JMS server and/or JMS destination.

Flow Maximum The maximum number of messages per second for a producer that
is experiencing a threshold condition.

If a producer is not currently limiting its flow when a threshold
condition is reached, the initial flow limit for that producer is set to
Flow Maximum. If a producer is already limiting its flow when a
threshold condition is reached (the flow limit is less than Flow
Maximum), then the producer will continue at its current flow limit
until the next time the flow is evaluated.

Once a threshold condition has subsided, the producer is not
permitted to ignore its flow limit. If its flow limit is less than the
Flow Maximum, then the producer must gradually increase its flow
to the Flow Maximum each time the flow is evaluated. When the
producer finally reaches the Flow Maximum, it can then ignore its
flow limit and send without limiting its flow.

Flow Minimum The minimum number of messages per second for a producer that
is experiencing a threshold condition. This is the lower boundary of
a producer's flow limit. That is, WebLogic JMS will not further slow
down a producer whose message flow limit is at its Flow
Minimum.

Flow Interval An adjustment period of time, defined in seconds, when a producer
adjusts its flow from the Flow Maximum number of messages to
the Flow Minimum amount, or vice versa.

Flow Steps The number of steps used when a producer is adjusting its flow
from the Flow Minimum amount of messages to the Flow
Maximum amount, or vice versa. Specifically, the Flow Interval
adjustment period is divided into the number of Flow Steps (for
example, 60 seconds divided by 6 steps is 10 seconds per step).

Also, the movement (that is, the rate of adjustment) is calculated by
dividing the difference between the Flow Maximum and the Flow
Minimum into steps. At each Flow Step, the flow is adjusted
upward or downward, as necessary, based on the current
conditions, as follows:

The downward movement (the decay) is geometric over the
specified period of time (Flow Interval) and according to the
specified number of Flow Steps. (For example, 100, 50, 25, 12.5).

The movement upward is linear. The difference is simply divided
by the number of Flow Steps.

Table 13–3 Flow Control Threshold Parameters

Attribute Description

Bytes/Messages Threshold
High

When the number of bytes/messages exceeds this threshold,
the JMS server/destination becomes armed and instructs
producers to limit their message flow.

Table 13–2 (Cont.) Flow Control Parameters

Attribute Description

Handling Expired Messages

Tuning WebLogic JMS 13-9

For detailed information about other JMS server and destination threshold and quota
fields, and the valid and default values for them, see the following pages in the
Administration Console Online Help:

■ "JMS Server: Configuration: Thresholds and Quotas"

■ "JMS Queue: Configuration: Thresholds and Quotas"

■ "JMS Topic: Configuration: Thresholds and Quotas"

13.8 Handling Expired Messages
The following sections describe two message expiration features, the message
Expiration Policy and the Active Expiration of message, which provide more control
over how the system searches for expired messages and how it handles them when
they are encountered.

Active message expiration ensures that expired messages are cleaned up immediately.
Moreover, expired message auditing gives you the option of tracking expired
messages, either by logging when a message expires or by redirecting expired
messages to a defined error destination.

■ Section 13.8.1, "Defining a Message Expiration Policy"

■ Section 13.8.7, "Tuning Active Message Expiration"

13.8.1 Defining a Message Expiration Policy
Use the message Expiration Policy feature to define an alternate action to take when
messages expire. Using the Expiration Policy attribute on the Destinations node, an
expiration policy can be set on a per destination basis. The Expiration Policy attribute
defines the action that a destination should take when an expired message is
encountered: discard the message, discard the message and log its removal, or redirect
the message to an error destination.

Also, if you use JMS templates to configure multiple destinations, you can use the
Expiration Policy field to quickly configure an expiration policy on all your
destinations. To override a template's expiration policy for specific destinations, you
can modify the expiration policy on any destination.

For instructions on configuring the Expiration Policy, click one of the following links:

■ Section 13.8.2, "Configuring an Expiration Policy on Topics"

■ Section 13.8.3, "Configuring an Expiration Policy on Queues"

■ Section 13.8.4, "Configuring an Expiration Policy on Templates"

■ Section 13.8.5, "Defining an Expiration Logging Policy"

Bytes/Messages Threshold
Low

When the number of bytes/messages falls below this
threshold, the JMS server/destination becomes unarmed and
instructs producers to begin increasing their message flow.

Flow control is still in effect for producers that are below their
message flow maximum. Producers can move their rate
upward until they reach their flow maximum, at which point
they are no longer flow controlled.

Table 13–3 (Cont.) Flow Control Threshold Parameters

Attribute Description

Handling Expired Messages

13-10 Performance and Tuning for Oracle WebLogic Server

13.8.2 Configuring an Expiration Policy on Topics
Follow these directions if you are configuring an expiration policy on topics without
using a JMS template. Expiration policies that are set on specific topics will override
the settings defined on a JMS template.

1. Follow the directions for navigating to the JMS Topic: Configuration: Delivery
Failure page in "Configure topic message delivery failure options" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help.

2. From the Expiration Policy list box, select an expiration policy option.

■ Discard — Expired messages are removed from the system. The removal is not
logged and the message is not redirected to another location.

■ Log — Removes expired messages and writes an entry to the server log file
indicating that the messages were removed from the system. You define the actual
information that will be logged in the Expiration Logging Policy field in next step.

■ Redirect — Moves expired messages from their current location into the Error
Destination defined for the topic.

For more information about the Expiration Policy options for a topic, see "JMS
Topic: Configuration: Delivery Failure" in the Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

1. If you selected the Log expiration policy in previous step, use the Expiration
Logging Policy field to define what information about the message is logged.

For more information about valid Expiration Logging Policy values, see
Section 13.8.5, "Defining an Expiration Logging Policy".

2. Click Save.

13.8.3 Configuring an Expiration Policy on Queues
Follow these directions if you are configuring an expiration policy on queues without
using a JMS template. Expiration policies that are set on specific queues will override
the settings defined on a JMS template.

1. Follow the directions for navigating to the JMS Queue: Configuration: Delivery
Failure page in "Configure queue message delivery failure options" in the Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help.

2. From the Expiration Policy list box, select an expiration policy option.

■ Discard — Expired messages are removed from the system. The removal is not
logged and the message is not redirected to another location.

■ Log — Removes expired messages from the queue and writes an entry to the
server log file indicating that the messages were removed from the system.
You define the actual information that will be logged in the Expiration
Logging Policy field described in the next step.

■ Redirect — Moves expired messages from the queue and into the Error
Destination defined for the queue.

■ For more information about the Expiration Policy options for a queue, see
"JMS Queue: Configuration: Delivery Failure" in the Oracle Fusion Middleware
Oracle WebLogic Server Administration Console Help.

3. If you selected the Log expiration policy in the previous step, use the Expiration
Logging Policy field to define what information about the message is logged.

Handling Expired Messages

Tuning WebLogic JMS 13-11

For more information about valid Expiration Logging Policy values, see
Section 13.8.5, "Defining an Expiration Logging Policy".

4. Click Save

13.8.4 Configuring an Expiration Policy on Templates
Since JMS templates provide an efficient way to define multiple destinations (topics or
queues) with similar attribute settings, you can configure a message expiration policy
on an existing template (or templates) for your destinations.

1. Follow the directions for navigating to the JMS Template: Configuration: Delivery
Failure page in "Configure JMS template message delivery failure options" in the
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

2. In the Expiration Policy list box, select an expiration policy option.

■ Discard — Expired messages are removed from the messaging system. The
removal is not logged and the message is not redirected to another location.

■ Log — Removes expired messages and writes an entry to the server log file
indicating that the messages were removed from the system. The actual
information that is logged is defined by the Expiration Logging Policy field
described in the next step.

■ Redirect — Moves expired messages from their current location into the Error
Destination defined for the destination.

■ For more information about the Expiration Policy options for a template, see
"JMS Template: Configuration: Delivery Failure" in the Oracle Fusion
Middleware Oracle WebLogic Server Administration Console Help.

3. If you selected the Log expiration policy in Step 4, use the Expiration Logging
Policy field to define what information about the message is logged.

For more information about valid Expiration Logging Policy values, see
Section 13.8.5, "Defining an Expiration Logging Policy".

4. Click Save.

13.8.5 Defining an Expiration Logging Policy
The following section provides information on the expiration policy.

The Expiration Logging Policy parameter has been deprecated in this release of
WebLogic Server. In its place, Oracle recommends using the Message Life Cycle
Logging feature, which provide a more comprehensive view of the basic events that
JMS messages will traverse through once they are accepted by a JMS server, including
detailed message expiration data. For more information about message life cycle
logging options, see "Message Life Cycle Logging" in Oracle Fusion Middleware
Configuring and Managing JMS for Oracle WebLogic Server.

For example, you could specify one of the following values:

■ JMSPriority, Name, Address, City, State, Zip

■ %header%, Name, Address, City, State, Zip

■ JMSCorrelationID, %properties%

The JMSMessageID field is always logged and cannot be turned off. Therefore, if the
Expiration Policy is not defined (that is, none) or is defined as an empty string, then
the output to the log file contains only the JMSMessageID of the message.

Handling Expired Messages

13-12 Performance and Tuning for Oracle WebLogic Server

13.8.6 Expiration Log Output Format
When an expired message is logged, the text portion of the message (not including
timestamps, severity, thread information, security identity, etc.) conforms to the
following format:

<ExpiredJMSMessage JMSMessageId='$MESSAGEID' >
 <HeaderFields Field1='Value1' [Field2='Value2'] …] />
 <UserProperties Property1='Value1' [Property='Value2'] …] />
</ExpiredJMSMessage>

where $MESSAGEID is the exact string returned by Message.getJMSMessageID().

For example:

<ExpiredJMSMessage JMSMessageID='ID:P<851839.1022176920343.0' >
 <HeaderFields JMSPriority='7' JMSRedelivered='false' />
 <UserProperties Make='Honda' Model='Civic' Color='White'Weight='2680' />
</ExpiredJMSMessage>

If no header fields are displayed, the line for header fields is not be displayed. If no
user properties are displayed, that line is not be displayed. If there are no header fields
and no properties, the closing </ExpiredJMSMessage> tag is not necessary as the
opening tag can be terminated with a closing bracket (/>).

For example:

<ExpiredJMSMessage JMSMessageID='ID:N<223476.1022177121567.1' />

All values are delimited with double quotes. All string values are limited to 32
characters in length. Requested fields and/or properties that do not exist are not
displayed. Requested fields and/or properties that exist but have no value (a null
value) are displayed as null (without single quotes). Requested fields and/or
properties that are empty strings are displayed as a pair of single quotes with no space
between them.

For example:

<ExpiredJMSMessage JMSMessageID='ID:N<851839.1022176920344.0' >
 <UserProperties First='Any string longer than 32 char ...' Second=null Third=''
/>
</ExpiredJMSMessage>

13.8.7 Tuning Active Message Expiration
Use the Active Expiration feature to define the timeliness in which expired messages
are removed from the destination to which they were sent or published. Messages are
not necessarily removed from the system at their expiration time, but they are
removed within a user-defined number of seconds. The smaller the window, the closer
the message removal is to the actual expiration time.

13.8.8 Configuring a JMS Server to Actively Scan Destinations for Expired Messages
Follow these directions to define how often a JMS server will actively scan its
destinations for expired messages. The default value is 30 seconds, which means the
JMS server waits 30 seconds between each scan interval.

1. Follow the directions for navigating to the JMS Server: Configuration: General
page of the Administration Console in "Configure general JMS server properties"
in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

Tuning Applications Using Unit-of-Order

Tuning WebLogic JMS 13-13

2. In the Scan Expiration Interval field, enter the amount of time, in seconds, that you
want the JMS server to pause between its cycles of scanning its destinations for
expired messages to process.

To disable active scanning, enter a value of 0 seconds. Expired messages are
passively removed from the system as they are discovered.

For more information about the Expiration Scan Interval attribute, see "JMS Server:
Configuration: General" in the Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

3. Click Save.

There are a number of design choices that impact performance of JMS applications.
Some others include reliability, scalability, manageability, monitoring, user
transactions, message driven bean support, and integration with an application server.
In addition, there are WebLogic JMS extensions and features have a direct impact on
performance.

For more information on designing your applications for JMS, see "Best Practices for
Application Design" in Oracle Fusion Middleware Programming JMS for Oracle WebLogic
Server.

13.9 Tuning Applications Using Unit-of-Order
Message Unit-of-Order is a WebLogic Server value-added feature that enables a
stand-alone message producer, or a group of producers acting as one, to group
messages into a single unit with respect to the processing order (a sub-ordering). This
single unit is called a Unit-of-Order (or UOO) and requires that all messages from that
unit be processed sequentially in the order they were created. UOO replaces the
following complex design patterns:

■ A dedicated consumer with a unique selector per each sub-ordering

■ A new destination per sub-ordering, one consumer per destination.

See "Using Message Unit-of-Order" in Oracle Fusion Middleware Programming JMS for
Oracle WebLogic Server.

13.9.1 Best Practices
The following sections provide best practice information when using UOO:

■ Ideal for applications that have strict message ordering requirements. UOO
simplifies administration and application design, and in most applications
improves performance.

■ Use MDB batching to:

– Speed-up processing of the messages within a single sub-ordering.

– Consume multiple messages at a time under the same transaction.

See Chapter 10, "Tuning Message-Driven Beans".

■ You can configure a default UOO for the destination. Only one consumer on the
destination processes messages for the default UOO at a time.

Using One-Way Message Sends For Improved Non-Persistent Messaging Performance

13-14 Performance and Tuning for Oracle WebLogic Server

13.9.2 Using UOO and Distributed Destinations
To ensure strict ordering when using distributed destinations, each different UOO is
pinned to a specific physical destination instance. There are two options for
automatically determining the correct physical destination for a given UOO:

■ Hashing – Is generally faster and the UOO setting. Hashing works by using a hash
function on the UOO name to determine the physical destination. It has the
following drawbacks:

– It doesn't correctly handle the administrative deleting or adding physical
destinations to a distributed destination.

– If a UOO hashes to an unavailable destination, the message send fails.

■ Path Service – Is a single server UOO directory service that maps the physical
destination for each UOO. The Path Service is generally slower than hashing if
there are many differently named UOO created per second. In this situation, each
new UOO name implicitly forces a check of the path service before sending the
message. If the number of UOOs created per second is limited, Path Service
performance is not an issue as the UOO paths are cached throughout the cluster.

13.9.3 Migrating Old Applications to Use UOO
For releases prior to WebLogic Server 9.0, applications that had strict message ordering
requirements were required to do the following:

■ Use a single physical destination with a single consumer

■ Ensure the maximum asynchronous consumer message backlog (The
MessagesMaximum parameter on the connection factory) was set to a value of 1.

UOO relaxes these requirements significantly as it allows for multiple consumers and
allows for a asynchronous consumer message backlog of any size. To migrate older
applications to take advantage of UOO, simply configure a default UOO name on the
physical destination. See "Configure connection factory unit-of-order parameters" in
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help and
"Ordered Redelivery of Messages" in Oracle Fusion Middleware Programming JMS for
Oracle WebLogic Server.

13.10 Using One-Way Message Sends For Improved Non-Persistent
Messaging Performance

One-way message sends can greatly improve the performance of applications that are
bottle-necked by senders, but do so at the risk of introducing a lower QOS
(quality-of-service). Typical message sends from a JMS producer are termed two-way
sends because they include both an internal request and an internal response. When an
producer application calls send(), the call generates a request that contains the
application's message and then waits for a response from the JMS server to confirm its
receipt of the message. This call-and-response mechanism regulates the producer, since
the producer is forced to wait for the JMS server's response before the application can
make another send call. Eliminating the response message eliminates this wait, and
yields a one-way send. WebLogic Server supports a configurable one-way send option
for non-persistent, non-transactional messaging; no application code changes are
required to leverage this feature.

By enabling the One-Way Send Mode options, you allow message producers created
by a user-defined connection factory to do one-way message sends, when possible.
When active, the associated producers can send messages without internally waiting

Using One-Way Message Sends For Improved Non-Persistent Messaging Performance

Tuning WebLogic JMS 13-15

for a response from the target destination's host JMS server. You can choose to allow
queue senders and topic publishers to do one-way sends, or to limit this capability to
topic publishers only. You must also specify a One-Way Window Size to determine
when a two-way message is required to regulate the producer before it can continue
making additional one-way sends.

13.10.1 Configure One-Way Sends On a Connection Factory
You configure one-way message send parameters on a connection factory by using the
Administration Console, as described in "Configure connection factory flow control" in
the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help. You
can also use the WebLogic Scripting Tool (WLST) or JMX via the
FlowControlParamsBean MBean.

13.10.2 One-Way Send Support In a Cluster With a Single Destination
To ensure one-way send support in a cluster with a single destination, verify that the
connection factory and the JMS server hosting the destination are targeted to the same
WebLogic server. The connection factory must not be targeted to any other WebLogic
Server instances in the cluster.

13.10.3 One-Way Send Support In a Cluster With Multiple Destinations
To ensure one-way send support in a cluster with multiple destinations that share the
same name, special care is required to ensure the WebLogic Server instance that hosts
the client connection also hosts the destination. One solution is the following:

1. Configure the cluster wide RMI load balancing algorithm to "Server Affinity".

2. Ensure that no two destinations are hosted on the same WebLogic Server instance.

3. Configure each destination to have the same local-jndi-name.

4. Configure a connection factory that is targeted to only those WebLogic Server
instances that host the destinations.

5. Ensure sender clients use the JNDI names configured in Steps 3 and 4 to obtain
their destination and connection factory from their JNDI context.

6. Ensure sender clients use URLs limited to only those WebLogic Server instances
that host the destinations in Step 3.

This solution disables RMI-level load balancing for clustered RMI objects, which
includes EJB homes and JMS connection factories. Effectively, the client will obtain a
connection and destination based only on the network address used to establish the
JNDI context. Load balancing can be achieved by leveraging network load balancing,
which occurs for URLs that include a comma-separated list of WebLogic Server
addresses, or for URLs that specify a DNS name that resolves to a round-robin set of
IP addresses (as configured by a network administrator).

For more information on Server Affinity for clusters, see "Load Balancing for EJBs and
RMI Objects" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

Note: One-way message sends are disabled if your connection
factory is configured with "XA Enabled". This setting disables
one-way sends whether or not the sender actually uses transactions.

Using One-Way Message Sends For Improved Non-Persistent Messaging Performance

13-16 Performance and Tuning for Oracle WebLogic Server

13.10.4 When One-Way Sends Are Not Supported
This section defines when one-way sends are not supported. When one-ways are not
supported, the send QOS is automatically upgraded to standard two-ways.

13.10.5 Different Client and Destination Hosts
One-way sends are supported when the client producer's connection host and the JMS
server hosting the target destination are the same WebLogic Server instance;
otherwise, the one-way mode setting will ignored and standard two-way sends will be
used instead.

13.10.6 XA Enabled On Client's Host Connection Factory
One-way message sends are disabled if the client's host connection factory is
configured with XA Enabled. This setting disables one-way sends whether or not the
sender actually uses transactions.

13.10.7 Higher QOS Detected
When the following higher QOS features are detected, then the one-way mode setting
will be ignored and standard two-way sends will be used instead:

■ XA

■ Transacted sessions

■ Persistent messaging

■ Unit-of-order

■ Unit-of-work

■ Distributed destinations

13.10.8 Destination Quota Exceeded
When the specified quota is exceeded on the targeted destination, then standard
two-way sends will be used until the quota clears.

One-way messages that exceed quota are silently deleted, without immediately
throwing exceptions back to the client. The client will eventually get a quota exception
if the destination is still over quota at the time the next two-way send occurs. (Even in
one-way mode, clients will send a two-way message every One Way Send Window Size
number of messages configured on the client's connection factory.)

A workaround that helps avoid silently-deleted messages during quota conditions is
to increase the value of the Blocking Send Timeout configured on the connection
factory, as described in Section 13.5, "Compressing Messages". The one-way messages
will not be deleted immediately, but instead will optimistically wait on the JMS server
for the specified time until the quota condition clears (presumably due to messages
getting consumed or by messages expiring). The client sender will not block until it
sends a two-way message. For each client, no more than One Way Window Size
messages will accumulate on the server waiting for quota conditions to clear.

13.10.9 Change In Server Security Policy
A change in the server-side security policy could prevent one-way message sends
without notifying the JMS client of the change in security status.

Using One-Way Message Sends For Improved Non-Persistent Messaging Performance

Tuning WebLogic JMS 13-17

13.10.10 Change In JMS Server or Destination Status
One-way sends can be disabled when a host JMS server or target destination is
administratively undeployed, or when message production is paused on either the
JMS server or the target destination using the "Production Pause/Resume" feature. See
"Production Pause and Production Resume" in Oracle Fusion Middleware Configuring
and Managing JMS for Oracle WebLogic Server.

13.10.11 Looking Up Logical Distributed Destination Name
One-way message sends work with distributed destinations provided the client looks
up the physical distributed destination members directly rather than using the logical
distributed destination's name. See "Using Distributed Destinations" in Oracle Fusion
Middleware Programming JMS for Oracle WebLogic Server.

13.10.12 Hardware Failure
A hardware or network failure will disable one-way sends. In such cases, the JMS
producer is notified by an OnException or by the next two-way message send. (Even
in one-way mode, clients will send a two-way message every One Way Send Window
Size number of messages configured on the client's connection factory.) The producer
will be closed. The worst-case scenario is that all messages can be lost up to the last
two-way message before the failure occurred.

13.10.13 One-Way Send QOS Guidelines
Use the following QOS-related guidelines when using the one-way send mode for
typical non-persistent messaging.

■ When used in conjunction with the Blocking Sends feature, then using one-way
sends on a well-running system should achieve similar QOS as when using the
two-way send mode.

■ One-way send mode for topic publishers falls within the QOS guidelines set by
the JMS Specification, but does entail a lower QOS than two-way mode (the
WebLogic Server default mode).

■ One-way send mode may not improve performance if JMS consumer applications
are a system bottleneck, as described in "Asynchronous vs. Synchronous
Consumers" in Oracle Fusion Middleware Programming JMS for Oracle WebLogic
Server.

■ Consider enlarging the JVM's heap size on the client and/or server to account for
increased batch size (the Window) of sends. The potential memory usage is
proportioned to the size of the configured Window and the number of senders.

■ The sending application will not receive all quota exceptions. One-way messages
that exceed quota are silently deleted, without throwing exceptions back to the
sending client. See Section 13.10.8, "Destination Quota Exceeded" for more
information and a possible work around.

■ Configuring one-way sends on a connection factory effectively disables any
message flow control parameters configured on the connection factory.

■ By default, the One-way Window Size is set to "1", which effectively disables
one-way sends as every one-way message will be upgraded to a two-way send.
(Even in one-way mode, clients will send a two-way message every One Way Send
Window Size number of messages configured on the client's connection factory.)
Therefore, you must set the one-way send window size much higher. It is

Tuning Destination Performance

13-18 Performance and Tuning for Oracle WebLogic Server

recommended to try setting the window size to "300" and then adjust it according
to your application requirements.

■ The client application will not immediately receive network or server failure
exceptions, some messages may be sent but silently deleted until the failure is
detected by WebLogic Server and the producer is automatically closed. See
Section 13.10.12, "Hardware Failure" for more information.

13.11 Tuning Destination Performance
The Messaging Performance Preference tuning option on JMS destinations enables you
to control how long a destination should wait (if at all) before creating full batches of
available messages for delivery to consumers. At the minimum value, batching is
disabled. Tuning above the default value increases the amount of time a destination is
willing to wait before batching available messages. The maximum message count of a
full batch is controlled by the JMS connection factory's Messages Maximum per
Session setting.

Using the Administration Console, this advanced option is available on the General
Configuration page for both standalone and uniform distributed destinations (or via
the DestinationBean API), as well as for JMS templates (or via the TemplateBean
API).

Specifically, JMS destinations include internal algorithms that attempt to automatically
optimize performance by grouping messages into batches for delivery to consumers.
In response to changes in message rate and other factors, these algorithms change
batch sizes and delivery times. However, it isn't possible for the algorithms to optimize
performance for every messaging environment. The Messaging Performance
Preference tuning option enables you to modify how these algorithms react to changes
in message rate and other factors so that you can fine-tune the performance of your
system.

13.11.1 Messaging Performance Configuration Parameters
The Message Performance Preference option includes the following configuration
parameters:

Table 13–4 Message Performance Preference Values

Administration
Console Value

MBean
Value Description

Do Not Batch
Messages

0 Effectively disables message batching. Available messages
are promptly delivered to consumers.

This is equivalent to setting the value of the connection
factory's Messages Maximum per Session field to "1".

Batch Messages
Without Waiting

25 (default) Less-than-full batches are immediately delivered with
available messages.

This is equivalent to the value set on the connection
factory's Messages Maximum per Session field.

Low Waiting
Threshold for
Message Batching

50 Wait briefly before less-than-full batches are delivered
with available messages. `

Medium Waiting
Threshold for
Message Batching

75 Possibly wait longer before less-than-full batches are
delivered with available messages.

Best Practices for JMS .NET Client Applications

Tuning WebLogic JMS 13-19

It may take some experimentation to find out which value works best for your system.
For example, if you have a queue with many concurrent message consumers, by
selecting the Administration Console's Do Not Batch Messages value (or specifying "0"
on the DestinationBean MBean), the queue will make every effort to promptly
push messages out to its consumers as soon as they are available. Conversely, if you
have a queue with only one message consumer that doesn't require fast response
times, by selecting the console's High Waiting Threshold for Message Batching value
(or specifying "100" on the DestinationBean MBean), then the queue will strongly
attempt to only push messages to that consumer in batches, which will increase the
waiting period but may improve the server's overall throughput by reducing the
number of sends.

For instructions on configuring Messaging Performance Preference parameters on a
standalone destinations, uniform distributed destinations, or JMS templates using the
Administration Console, see the following sections in the Administration Console
Online Help:

■ "Configure advanced topic parameters"

■ "Configure advanced queue parameters"

■ "Uniform distributed topics - configure advanced parameters"

■ "Uniform distributed queues - configure advanced parameters"

■ "Configure advanced JMS template parameters"

For more information about these parameters, see DestinationBean and
TemplateBean in the Oracle Fusion Middleware Oracle WebLogic Server MBean
Reference.

13.11.2 Compatibility With the Asynchronous Message Pipeline
The Message Performance Preference option is compatible with asynchronous
consumers using the Asynchronous Message Pipeline, and is also compatible with
synchronous consumers that use the Prefetch Mode for Synchronous Consumers
feature, which simulates the Asynchronous Message Pipeline. However, if the value of
the Maximum Messages value is set too low, it may negate the impact of the
destination's higher-level performance algorithms (e.g., Low, Medium, and High
Waiting Threshold for Message Batching). For more information on the Asynchronous
Message Pipeline, see "Receiving Messages" in Oracle Fusion Middleware Programming
JMS for Oracle WebLogic Server.

13.12 Best Practices for JMS .NET Client Applications
The following is a short list of performance related best practices to use when creating
a JMS .NET client application:

■ Always register a connection exception listener using an IConnection if the
application needs to take action when an idle connection fails.

High Waiting
Threshold for
Message Batching

100 Possibly wait even longer before less-than-full batches are
delivered with available messages.

Table 13–4 (Cont.) Message Performance Preference Values

Administration
Console Value

MBean
Value Description

Best Practices for JMS .NET Client Applications

13-20 Performance and Tuning for Oracle WebLogic Server

■ Have multiple .NET client threads share a single context to ensure that they use a
single socket.

■ Cache and reuse frequently accessed JMS resources, such as contexts, connections,
sessions, producers, destinations, and connection factories. Creating and closing
these resources consumes significant CPU and network bandwidth.

■ Use DNS aliases or comma separated addresses for load balancing JMS .NET
clients across multiple JMS .NET client host servers in a cluster.

For more information on best practices and other programming considerations for JMS
.NET client applications, see "Programming Considerations" in Use the WebLogic JMS
Client for Microsoft .NET.

14

Tuning WebLogic JMS Store-and-Forward 14-1

14Tuning WebLogic JMS Store-and-Forward

For WebLogic Server releases 9.0 and higher, JMS provides advanced
store-and-forward capability for high-performance message forwarding from a local
server instance to a remote JMS destination. See "Understanding the
Store-and-Forward Service" in Oracle Fusion Middleware Configuring and Managing
Store-and-Forward for Oracle WebLogic Server.

The following sections provide information on how to get the best performance from
Store-and-Forward (SAF) applications:

■ Section 14.1, "Best Practices"

■ Section 14.2, "Tuning Tips"

14.1 Best Practices
■ Avoid using SAF if remote destinations are already highly available. JMS clients

can send directly to remote destinations. Use SAF in situations where remote
destinations are not highly available, such as an unreliable network or different
maintenance schedules.

■ Use the better performing JMS SAF feature instead of using a Messaging Bridge
when forwarding messages to remote destinations. In general, a JMS SAF agent is
significantly faster than a Messaging Bridge. One exception is a configuration
when sending messages in a non-persistent exactly-once mode.

■ Configure separate SAF Agents for JMS SAF and Web Services Reliable Messaging
Agents (WS-RM) to simplify administration and tuning.

■ Sharing the same WebLogic Store between subsystems provides increased
performance for subsystems requiring persistence. For example, transactions that
include SAF and JMS operations, transactions that include multiple SAF
destinations, and transactions that include SAF and EJBs. See Section 7, "Tuning
the WebLogic Persistent Store".

14.2 Tuning Tips
■ Target imported destinations to multiple SAF agents to load balance message

sends among available SAF agents.

Note: A Messaging Bridge is still required to store-and-forward
messages to foreign destinations and destinations from releases prior
to WebLogic 9.0.

Tuning Tips

14-2 Performance and Tuning for Oracle WebLogic Server

■ Increase the JMS SAF Window Size for applications that handle small messages.
By default, a JMS SAF agent forwards messages in batches that contain up to 10
messages. For small messages size, it is possible to double or triple performance
by increasing the number of messages in each batch to be forwarded. A more
appropriate initial value for Window Size for small messages is 100. You can then
optimize this value for your environment.

■ Increase the JMS SAF Window Interval. By default, a JMS SAF agent has a
Window Interval value of 0 which forwards messages as soon as they arrive.
This can lower performance as it can make the effective Window size much
smaller than the configured value. A more appropriate initial value for Window
Interval value is 500 milliseconds. You can then optimize this value for your
environment. In this context, small messages are less than a few K, while large
messages are on the order of tens of K.

■ Set the Non-Persistent QOS value to At-Least-Once for imported
destinations if your application can tolerate duplicate messages.

Note: Changing the Window Size for applications handling large
message sizes is not likely to increase performance and is not
recommended. Window Size also tunes WS-RM SAF behavior, so it
may not be appropriate to tune this parameter for SAF Agents of type
Both.

Note: Changing the Window Interval improves performance only
in cases where the forwarder is already able to forward messages as
fast as they arrive. In this case, instead of immediately forwarding
newly arrived messages, the forwarder pauses to accumulate more
messages and forward them as a batch. The resulting larger batch size
improves forwarding throughput and reduces overall system disk and
CPU usage at the expense of increasing latency.

15

Tuning WebLogic Message Bridge 15-1

15Tuning WebLogic Message Bridge

The following sections provide information on various methods to improve message
bridge performance:

■ Section 15.1, "Best Practices"

■ Section 15.2, "Changing the Batch Size"

■ Section 15.3, "Changing the Batch Interval"

■ Section 15.4, "Changing the Quality of Service"

■ Section 15.5, "Using Multiple Bridge Instances"

■ Section 15.6, "Changing the Thread Pool Size"

■ Section 15.7, "Avoiding Durable Subscriptions"

■ Section 15.8, "Co-locating Bridges with Their Source or Target Destination"

■ Section 15.9, "Changing the Asynchronous Mode Enabled Attribute"

15.1 Best Practices
■ Avoid using a Messaging Bridge if remote destinations are already highly

available. JMS clients can send directly to remote destinations. Use messaging
bridge in situations where remote destinations are not highly available, such as an
unreliable network or different maintenance schedules.

■ Use the better performing JMS SAF feature instead of using a Messaging Bridge
when forwarding messages to remote destinations. In general, a JMS SAF agent is
significantly faster than a Messaging Bridge. One exception is a configuration
when sending messages in a non-persistent exactly-once mode.

15.2 Changing the Batch Size
When the Asynchronous Mode Enabled attribute is set to false and the quality of
service is Exactly-once, the Batch Size attribute can be used to reduce the
number of transaction commits by increasing the number of messages per transaction
(batch). The best batch size for a bridge instance depends on the combination of JMS
providers used, the hardware, operating system, and other factors in the application

Note: A Messaging Bridge is still required to store-and-forward
messages to foreign destinations and destinations from releases prior
to WebLogic 9.0.

Changing the Batch Interval

15-2 Performance and Tuning for Oracle WebLogic Server

environment. See "Configure transaction properties" in Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

15.3 Changing the Batch Interval
When the Asynchronous Mode Enabled attribute is set to false and the quality of
service is Exactly-once, the BatchInterval attribute is used to adjust the amount
of time the bridge waits for each batch to fill before forwarding batched messages. The
best batch interval for a bridge instance depends on the combination of JMS providers
used, the hardware, operating system, and other factors in the application
environment. For example, if the queue is not very busy, the bridge may frequently
stop forwarding in order to wait batches to fill, indicating the need to reduce the value
of the BatchInterval attribute. See "Configure transaction properties" in Oracle
Fusion Middleware Oracle WebLogic Server Administration Console Help.

15.4 Changing the Quality of Service
An Exactly-once quality of service may perform significantly better or worse than
At-most-once and Duplicate-okay.

When the Exactly-once quality of service is used, the bridge must undergo a
two-phase commit with both JMS servers in order to ensure the transaction semantics
and this operation can be very expensive. However, unlike the other qualities of
service, the bridge can batch multiple operations together using Exactly-once
service.

You may need to experiment with this parameter to get the best possible performance.
For example, if the queue is not very busy or if non-persistent messages are used,
Exactly-once batching may be of little benefit. See "Configure messaging bridge
instances" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help.

15.5 Using Multiple Bridge Instances
If message ordering is not required, consider deploying multiple bridges.

Multiple instances of the bridge may be deployed using the same destinations. When
this is done, each instance of the bridge runs in parallel and message throughput may
improve. If multiple bridge instances are used, messages will not be forwarded in the
same order they had in the source destination. See "Create messaging bridge instances"
in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

Consider the following factors when deciding whether to use multiple bridges:

■ Some JMS products do not seem to benefit much from using multiple bridges

■ WebLogic JMS messaging performance typically improves significantly, especially
when handling persistent messages.

■ If the CPU or disk storage is already saturated, increasing the number of bridge
instances may decrease throughput.

15.6 Changing the Thread Pool Size
A general bridge configuration rule is to provide a thread for each bridge instance
targeted to a server instance. Use one of the following options to ensure that an
adequate number of threads is available for your environment:

Changing the Asynchronous Mode Enabled Attribute

Tuning WebLogic Message Bridge 15-3

■ Use the common thread pool—A server instance changes its thread pool size
automatically to maximize throughput, including compensating for the number of
bridge instances configured. See "Understanding How WebLogic Server Uses
Thread Pools" in Oracle Fusion Middleware Configuring Server Environments for
Oracle WebLogic Server.

■ Configure a work manager for the weblogic.jms.MessagingBridge class. See
"Understanding Work Managers" in Designing and Configuring WebLogic Server
Environments.

■ Use the Administration console to set the Thread Pool Size property in the
Messaging Bridge Configuration section on the Configuration: Services page for a
server instance. To avoid competing with the default execute thread pool in the
server, messaging bridges share a separate thread pool. This thread pool is used
only in synchronous mode (Asynchronous Mode Enabled is not set). In
asynchronous mode the bridge runs in a thread created by the JMS provider for
the source destination. Deprecated in WebLogic Server 9.0.

15.7 Avoiding Durable Subscriptions
If the bridge is listening on a topic and it is acceptable that messages are lost when the
bridge is not forwarding messages, disable the Durability Enabled flag to ensure
undeliverable messages do not accumulate in the source server's store. Disabling the
flag also makes the messages non-persistent. See "Configure messaging bridge
instances" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console
Help.

15.8 Co-locating Bridges with Their Source or Target Destination
If a messaging bridge source or target is a WebLogic destination, deploy the bridge to
the same WebLogic server as the destination. Targeting a messaging bridge with one of
its destinations eliminates associated network and serialization overhead. Such
overhead can be significant in high-throughput applications, particularly if the
messages are non-persistent.

15.9 Changing the Asynchronous Mode Enabled Attribute
The Asynchronous Mode Enabled attribute determines whether the messaging
bridge receives messages asynchronously using the JMS MessageListener
interface at
http://java.sun.com/javaee/5/docs/api/javax/jms/MessageListener.
html, or whether the bridge receives messages using the synchronous JMS APIs. In
most situations, the Asynchronous Enabled attributes value is dependent on the
QOS required for the application environment as shown in Table 15–1:

Table 15–1 Asynchronous Mode Enabled Values for QOS Level

QOS Asynchronous Mode Enabled Attribute value

Exactly-once1

1 If the source destination is a non-WebLogic JMS provider and the QOS is Exactly-once, then the
Asynchronous Mode Enabled attribute is disabled and the messages are processed in synchronous mode.

false

At-least-once true

At-most-once true

Changing the Asynchronous Mode Enabled Attribute

15-4 Performance and Tuning for Oracle WebLogic Server

See "Configure messaging bridge instances" in Oracle Fusion Middleware Oracle
WebLogic Server Administration Console Help.

A quality of service of Exactly-once has a significant effect on bridge performance.
The bridge starts a new transaction for each message and performs a two-phase
commit across both JMS servers involved in the transaction. Since the two-phase
commit is usually the most expensive part of the bridge transaction, as the number of
messages being processed increases, the bridge performance tends to decrease.

16

Tuning Resource Adapters 16-1

16Tuning Resource Adapters

This appendix describes some best practices for resource adapter developers.

■ Section 16.1, "Classloading Optimizations for Resource Adapters"

■ Section 16.2, "Connection Optimizations"

■ Section 16.3, "Thread Management"

■ Section 16.4, "InteractionSpec Interface"

16.1 Classloading Optimizations for Resource Adapters
You can package resource adapter classes in one or more JAR files, and then place the
JAR files in the RAR file. These are called nested JARs. When you nest JAR files in the
RAR file, and classes need to be loaded by the classloader, the JARs within the RAR
file must be opened and closed and iterated through for each class that must be
loaded.

If there are very few JARs in the RAR file and if the JARs are relatively small in size,
there will be no significant performance impact. On the other hand, if there are many
JARs and the JARs are large in size, the performance impact can be great.

To avoid such performance issues, you can either:

1. Deploy the resource adapter in an exploded format. This eliminates the nesting of
JARs and hence reduces the performance hit involved in looking for classes.

2. If deploying the resource adapter in exploded format is not an option, the JARs
can be exploded within the RAR file. This also eliminates the nesting of JARs and
thus improves the performance of classloading significantly.

16.2 Connection Optimizations
Oracle recommends that resource adapters implement the optional enhancements
described in sections 7.14.2 and 7.14.2 of the J2CA 1.5 Specification at
http://java.sun.com/j2ee/connector/download.html. Implementing these
interfaces allows WebLogic Server to provide several features that will not be available
without them.

Lazy Connection Association, as described in section 7.14.1, allows the server to
automatically clean up unused connections and prevent applications from hogging
resources. Lazy Transaction Enlistment, as described in 7.14.2, allows applications to
start a transaction after a connection is already opened.

Thread Management

16-2 Performance and Tuning for Oracle WebLogic Server

16.3 Thread Management
Resource adapter implementations should use the WorkManager (as described in
Chapter 10, "Work Management" in the J2CA 1.5 Specification at
http://java.sun.com/j2ee/connector/download.html) to launch
operations that need to run in a new thread, rather than creating new threads directly.
This allows WebLogic Server to manage and monitor these threads.

16.4 InteractionSpec Interface
WebLogic Server supports the Common Client Interface (CCI) for EIS access, as
defined in Chapter 15, "Common Client Interface" in the J 2CA 1.5 Specification at
http://java.sun.com/j2ee/connector/. The CCI defines a standard client API
for application components that enables application components and EAI frameworks
to drive interactions across heterogeneous EISes.

As a best practice, you should not store the InteractionSpec class that the CCI
resource adapter is required to implement in the RAR file. Instead, you should
package it in a separate JAR file outside of the RAR file, so that the client can access it
without having to put the InteractionSpec interface class in the generic
CLASSPATH.

With respect to the InteractionSpec interface, it is important to remember that
when all application components (EJBs, resource adapters, Web applications) are
packaged in an EAR file, all common classes can be placed in the APP-INF/lib
directory. This is the easiest possible scenario.

This is not the case for standalone resource adapters (packaged as RAR files). If the
interface is serializable (as is the case with InteractionSpec), then both the client
and the resource adapter need access to the InteractionSpec interface as well as
the implementation classes. However, if the interface extends java.io.Remote, then
the client only needs access to the interface class.

17

Tuning Web Applications 17-1

17Tuning Web Applications

The following sections contain Oracle best practices for tuning Web applications and
managing sessions:

■ Section 17.1, "Best Practices"

■ Section 17.2, "Session Management"

■ Section 17.3, "Pub-Sub Tuning Guidelines"

17.1 Best Practices
■ Section 17.1.1, "Disable Page Checks"

■ Section 17.1.2, "Use Custom JSP Tags"

■ Section 17.1.3, "Precompile JSPs"

■ Section 17.1.4, "Disable Access Logging"

■ Section 17.1.5, "Use HTML Template Compression"

■ Section 17.1.6, "Use Service Level Agreements"

■ Section 17.1.7, "Related Reading"

17.1.1 Disable Page Checks
You can improve performance by disabling servlet and JDP page checks. Set each of
the following parameters to -1:

■ pageCheckSeconds

■ servlet-reload-check-secs

■ servlet Reload Check

These are default values for production mode.

17.1.2 Use Custom JSP Tags
Oracle provides three specialized JSP tags that you can use in your JSP pages: cache,
repeat, and process. These tags are packaged in a tag library jar file called
weblogic-tags.jar. This jar file contains classes for the tags and a tag library
descriptor (TLD). To use these tags, you copy this jar file to the Web application that
contains your JSPs and reference the tag library in your JSP. See "Using Custom
WebLogic JSP Tags (cache, process, repeat)" in Oracle Fusion Middleware Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

Session Management

17-2 Performance and Tuning for Oracle WebLogic Server

17.1.3 Precompile JSPs
You can configure WebLogic Server to precompile your JSPs when a Web Application
is deployed or re-deployed or when WebLogic Server starts up by setting the
precompile parameter to true in the jsp-descriptor element of the weblogic.xml
deployment descriptor. To avoid recompiling your JSPs each time the server restarts
and when you target additional servers, precompile them using weblogic.jspc and
place them in the WEB-INF/classes folder and archive them in a .war file. Keeping
your source files in a separate directory from the archived .war file eliminates the
possibility of errors caused by a JSP having a dependency on one of the class files. For
a complete explanation on how to avoid JSP recompilation, see "Avoiding Unnecessary
JSP Compilation" at http://www.oracle.com/technology/index.html.

17.1.4 Disable Access Logging
Setting the access-logging-disabled element can eliminate access logging of the
underlying Web application, which can improve server throughput by reducing the
logging overhead. See container-descriptor in Developing Web Applications,
Servlets, and JSPs for Oracle WebLogic Server.

17.1.5 Use HTML Template Compression
Using the compress-html-template element compresses the HTML in the JSP
template blocks which can improve runtime performance. If the JSP's HTML template
block contains the <pre> HTML tag, do not enable this feature.

See jsp-descriptor in Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

17.1.6 Use Service Level Agreements
You should assign servlets and JSPs to work managers based on the service level
agreements required by your applications. See Section 6.4, "Thread Management".

17.1.7 Related Reading
■ "Servlet Best Practices" in Oracle Fusion Middleware Developing Web Applications,

Servlets, and JSPs for Oracle WebLogic Server.

■ "Servlet and JSP Performance Tuning" at
http://www.javaworld.com/javaworld/jw-06-2004/jw-0628-perform
ance_p.html, by Rahul Chaudhary, JavaWorld, June 2004.

17.2 Session Management
As a general rule, you should optimize your application so that it does as little work as
possible when handling session persistence and sessions. The following sections
provide information on how to design a session management strategy that suits your
environment and application:

■ Section 17.2.1, "Managing Session Persistence"

■ Section 17.2.2, "Minimizing Sessions"

■ Section 17.2.3, "Aggregating Session Data"

Session Management

Tuning Web Applications 17-3

17.2.1 Managing Session Persistence
Weblogic Server offers five session persistence mechanisms that cater to the differing
requirements of your application. The session persistence mechanisms are
configurable at the Web application layer. Which session management strategy you
choose for your application depends on real-world factors like HTTP session size,
session life cycle, reliability, and session failover requirements. For example, a Web
application with no failover requirements could be maintained as a single
memory-based session; whereas, a Web application with session fail-over capability
could be maintained as replicated sessions or JDBC-based sessions, based on their life
cycle and object size.

In terms of pure performance, in-memory session persistence is a better overall choice
when compared to JDBC-based persistence for session state. According to the authors
of "Session Persistence Performance in WebLogic Server 7.0" at
http://wldj.sys-con.com/read/42784.htm: "While all session persistence
mechanisms have to deal with the overhead of data serialization and deserialization,
the additional overhead of the database interaction impacts the performance of the
JDBC-based session persistence and causes it to under-perform compared with the
in-memory replication." However, in-memory-based session persistence requires the
use of WebLogic clustering, so it isn't an option in a single-server environment.

On the other hand, an environment using JDBC-based persistence does not require the
use of WebLogic clusters and can maintain the session state for longer periods of time
in the database. One way to improve JDBC-based session persistence is to optimize
your code so that it has as high a granularity for session state persistence as possible.
Other factors that can improve the overall performance of JDBC-based session
persistence are: the choice of database, proper database server configuration, JDBC
driver, and the JDBC connection pool configuration.

For more information on managing session persistence, see:

■ "Session Persistence Performance in WebLogic Server 7.0" in the BEA WebLogic
Developers Journal provides in-depth comparisons of the five session persistence
mechanisms supported by WebLogic Server, at
http://wldj.sys-con.com/read/42784.htm.

■ "Configuring Session Persistence" in Oracle Fusion Middleware Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server

■ "HTTP Session State Replication" in Oracle Fusion Middleware Using Clusters for
Oracle WebLogic Server

■ "Using a Database for Persistent Storage (JDBC Persistence)" in Oracle Fusion
Middleware Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server

17.2.2 Minimizing Sessions
Configuring how WebLogic Server manages sessions is a key part of tuning your
application for best performance. Consider the following:

■ Use of sessions involves a scalability trade-off.

■ Use sessions sparingly. In other words, use sessions only for state that cannot
realistically be kept on the client or if URL rewriting support is required. For
example, keep simple bits of state, such as a user's name, directly in cookies. You
can also write a wrapper class to "get" and "set" these cookies, in order to simplify
the work of servlet developers working on the same project.

■ Keep frequently used values in local variables.

Pub-Sub Tuning Guidelines

17-4 Performance and Tuning for Oracle WebLogic Server

For more information, see "Setting Up Session Management" in Oracle Fusion
Middleware Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

17.2.3 Aggregating Session Data
This section provides best practices on how to aggregate session data. WebLogic
Server tracks and replicates changes in the session by attribute so you should:

■ Aggregate session data that changes in tandem into a single session attribute.

■ Aggregate session data that changes frequently and read-only session data into
separate session attributes

For example: If you use a a single large attribute that contains all the session data and
only 10% of that data changes, the entire attribute has to be replicated. This causes
unnecessary serialization/deserialization and network overhead. You should move
the 10% of the session data that changes into a separate attribute.

17.3 Pub-Sub Tuning Guidelines
The following section provides general tuning guidelines for a pub-sub server:

■ Increase file descriptors to cater for a large number of long-living connections,
especially for applications with thousands of clients.

■ Set the logging level to Warning.

■ Disable Access Logging.

■ Tune JVM options. Suggested options: -Xms1536m -Xmx1536m -Xns512m
-XXtlaSize:min=128k,preferred=256k

■ Increase the maximum message. If your application publishes messages under
high volumes, consider setting the value to
<max-message-size>10000000</max-message-size>.

18

Tuning Web Services 18-1

18Tuning Web Services

The following sections contain Oracle best practices for designing, developing, and
deploying WebLogic Web Services applications and application resources:

■ Section 18.1, "Web Services Best Practices"

■ Section 18.2, "Tuning Web Service Reliable Messaging Agents"

■ Section 18.3, "Tuning Heavily Loaded Systems to Improve Web Service
Performance"

18.1 Web Services Best Practices
Design and architectural decisions have a strong impact on runtime performance and
scalability of Web Service applications. Here are few key recommendations to achieve
best performance.

■ Design Web Service applications for course-grained service with moderate size
payloads.

■ Choose correct service (RPC or Document) and encoding (Encoded or Literal)
style.

■ Control serializer overheads and namespaces declarations to achieve better
performance.

■ Use MTOM/XOP or Fast Infoset to optimizing the format of a SOAP message.

■ Carefully design SOAP attachments and security implementations to minimize
negative performance.

■ Consider using an asynchronous messaging model for applications with:

■ Slow and unreliable transport.

■ Complex and long-running process.

■ For transactional Service Oriented Architectures (SOA) consider using the Last
Logging Resource transaction optimization (LLR) to improve performance. See
Section 12, "Tuning Logging Last Resource".

■ Use replication and caching of data and schema definitions to improve
performance by minimizing network overhead.

■ Use XML compression where the XML compression overhead is less than network
latency.

■ Applications that are heavy users of XML functionality (parsers) may encounter
performance issues or run out of file descriptors. This may occur because XML
parser instances are bootstrapped by doing a lookup in the jaxp.properties

Tuning Web Service Reliable Messaging Agents

18-2 Performance and Tuning for Oracle WebLogic Server

file (JAXP API). Oracle recommends setting the properties on the command line to
avoid unnecessary file operations at runtime and improve performance and
resource usage.

■ Follow "JWS Programming Best Practices" in Oracle Fusion Middleware Getting
Started With JAX-WS Web Services for Oracle WebLogic Server.

■ Follow best practice and tuning recommendations for all underlying components,
such as Section 9, "Tuning WebLogic Server EJBs", Section 17, "Tuning Web
Applications", Section 11, "Tuning JDBC Applications", and Section 13, "Tuning
WebLogic JMS".

18.2 Tuning Web Service Reliable Messaging Agents
Web Service Reliable Messaging provides advanced store-and-forward capability for
high-performance message forwarding from a local server instance to a remote
destination. See "Understanding the Store-and-Forward Service" in Oracle Fusion
Middleware Configuring and Managing Store-and-Forward for Oracle WebLogic Server. The
following section provides information on how to get the best performance from
Store-and-Forward (SAF) applications:

■ Configure separate SAF Agents for JMS SAF and Web Services Reliable Messaging
Agents to simplify administration and tuning.

■ Sharing the same WebLogic Store between subsystems provides increased
performance for subsystems requiring persistence. For example, transactions that
include SAF and JMS operations, transactions that include multiple SAF
destinations, and transactions that include SAF and EJBs. See Section 7, "Tuning
the WebLogic Persistent Store".

■ Consider increasing the WindowSize parameter on the remote SAF agent. For
small messages of less than 1K, tuning WindowSize as high as 300 can improve
throughput.

■ Ensure that retry delay is not set too low. This may cause the system to make
unnecessary delivery attempts.

18.3 Tuning Heavily Loaded Systems to Improve Web Service
Performance

The asynchronous request-response, reliable messaging, and buffering features are all
pre-tuned for minimum system resource usage to support a small number of clients
(under 10). If you plan on supporting a larger number of clients or high message
volumes, you should adjust the tuning parameters to accommodate the additional
load.

18.3.1 Setting the Buffering Sessions
The reliable messaging and buffering features use JMS queue sessions to send
messages to the reliability/buffer queues. By default, WebLogic Server allocates 10
sessions for buffering which enables 10 clients to enqueue messages simultaneously
onto the reliability/buffer queue.

Note: WindowSize also tunes JMS SAF behavior, so it may not be
appropriate to tune this parameter for SAF agents of type both.

Tuning Heavily Loaded Systems to Improve Web Service Performance

Tuning Web Services 18-3

For asynchronous request-response, the request and response portion of the
communication exchange count separately, as two clients. In this case, the default pool
of sessions can support five simultaneous asynchronous request-response clients. To
accommodate the number of concurrent clients you expect in your application, set the
following parameter to twice the number of expected client threads:

-Dweblogic.wsee.buffer.QueueSessionPoolSize=size

18.3.2 Releasing Asynchronous Resources
When using the asynchronous request-response feature, WebLogic Server persistently
stores information about the request until the asynchronous response is returned to the
client. These resources remain in the persistent store until they are released by a
background thread, called the store cleaner.

Often, these resources can be released sooner. Executing the store cleaner more
frequently can help to reduce the size of the persistent store and minimize the time
required to clean it.

By default, the store cleaner runs every two minutes (120000 ms). Oracle recommends
that you set the store cleaner interval to one minute (60000 ms) using the following
Java system property:

-Dweblogic.wsee.StateCleanInterval=60000

Tuning Heavily Loaded Systems to Improve Web Service Performance

18-4 Performance and Tuning for Oracle WebLogic Server

19

Tuning WebLogic Tuxedo Connector 19-1

19Tuning WebLogic Tuxedo Connector

The WebLogic Tuxedo Connector (WTC) provides interoperability between WebLogic
Server applications and Tuxedo services. WTC allows WebLogic Server clients to
invoke Tuxedo services and Tuxedo clients to invoke WebLogic Server Enterprise Java
Beans (EJBs) in response to a service request. See "WebLogic Tuxedo Connector" in
Oracle Fusion Middleware Information Roadmap for Oracle WebLogic Server.

The following sections provide information on how to get the best performance from
WTC applications:

■ Section 19.1, "Configuration Guidelines"

■ Section 19.2, "Best Practices"

19.1 Configuration Guidelines
Use the following guidelines when configuring WebLogic Tuxedo Connector:

■ You may have more than one WTC Service in your configuration.

■ You can only target one WTC Service to a server instance.

■ WTC does not support connection pooling. WTC multiplexes requests though a
single physical connection.

■ Configuration changes implemented as follows:

– Changing the session/connection configuration (local APs, remote APs,
Passwords, and Resources) before a connection/session is established. The
changes are accepted and are implemented in the new session/connection.

– Changing the session/connection configuration (local APs, remote APs,
Passwords, and Resources) after a connection/session is established.The
changes accepted but are not implemented in the existing connection/session
until the connection is disconnected and reconnected. See "Assign a WTC
Service to a Server" in Oracle Fusion Middleware Oracle WebLogic Server
Administration Console Help.

– Changing the Imported and Exported services configuration. The changes are
accepted and are implemented in the next inbound or outbound request.
Oracle does not recommend this practice as it can leave in-flight requests in an
unknown state.

– Changing the tBridge configuration. Any change in a deployed WTC service
causes an exception. You must untarget the WTC service before making any
tBridge configuration changes. After untargetting and making configuration
changes, you must target the WTC service to implement the changes.

Best Practices

19-2 Performance and Tuning for Oracle WebLogic Server

19.2 Best Practices
The following section provides best practices when using WTC:

■ When configuring the connection policy, use ON_STARTUP and INCOMING_ONLY.
ON_STARTUP and INCOMING_ONLY always paired. For example: If a WTC remote
access point is configured with ON_STARTUP, the DM_TDOMAIN section of the
Tuxedo domain configuration must be configured with the remote access point as
INCOMING_ONLY. In this case, WTC always acts as the session initiator. See
"Configuring the Connections Between Access Points" in the Oracle Fusion
Middleware Tuxedo Connector Administration Guide for Oracle WebLogic Server.

■ Avoid using connection policy ON_DEMAND. The preferred connection policy is
ON_STARTUP and INCOMING_ONLY. This reduces the chance of service request
failure due to the routing semantics of ON_DEMAND. See "Configuring the
Connections Between Access Points" in the Oracle Fusion Middleware Tuxedo
Connector Administration Guide for Oracle WebLogic Server.

■ Consider using the following WTC features: Link Level Failover, Service Level
failover and load balancing when designing your application. See "Configuring
Failover and Failback" in the Oracle Fusion Middleware Tuxedo Connector
Administration Guide for Oracle WebLogic Server.

■ Consider using WebLogic Server clusters to provide additional load balancing and
failover. To use WTC in a WebLogic Server cluster:

– Configure a WTC instance on all the nodes of the WebLogic Server cluster.

– Each WTC instance in each cluster node must have the same configuration.

See "How to Manage WebLogic Tuxedo Connector in a Clustered Environment" in
the Oracle Fusion Middleware Tuxedo Connector Administration Guide for Oracle
WebLogic Server.

■ If your WTC to Tuxedo connection uses the internet, use the following security
settings:

– Set the value of Security to DM_PW. See "Authentication of Remote Access
Points" in the Oracle Fusion Middleware Tuxedo Connector Administration Guide
for Oracle WebLogic Server.

– Enable Link-level encryption and set the min-encrypt-bits parameter to
40 and the max-encrypt-bits to 128. See "Link-Level Encryption" in the
Oracle Fusion Middleware Tuxedo Connector Administration Guide for Oracle
WebLogic Server.

■ Your application logic should provide mechanisms to manage and interpret error
conditions in your applications.

– See "Application Error Management" in the Oracle Fusion Middleware Tuxedo
Connector Programmer's Guide for Oracle WebLogic Server.

– See "System Level Debug Settings" in the Oracle Fusion Middleware Tuxedo
Connector Administration Guide for Oracle WebLogic Server.

■ Avoid using embedded TypedFML32 buffers inside TypedFML32 buffers. See
"Using FML with WebLogic Tuxedo Connector" in the Oracle Fusion Middleware
Tuxedo Connector Programmer's Guide for Oracle WebLogic Server.

■ If your application handles heavy loads, consider configuring more remote Tuxedo
access points and let WTC load balance the work load among the access points.
See "Configuring Failover and Failback" in the Oracle Fusion Middleware Tuxedo
Connector Administration Guide for Oracle WebLogic Server.

Best Practices

Tuning WebLogic Tuxedo Connector 19-3

■ When using transactional applications, try to make the remote services involved in
the same transaction available from the same remote access point. See "WebLogic
Tuxedo Connector JATMI Transactions" in the Oracle Fusion Middleware Tuxedo
Connector Programmer's Guide for Oracle WebLogic Server.

■ The number of client threads available when dispatching services from the
gateway may limit the number of concurrent services running. There is no
WebLogic Tuxedo Connector attribute to increase the number of available threads.
Use a reasonable thread model when invoking service. See Section 6.4, "Thread
Management" and "Using Work Managers to Optimize Scheduled Work" in Oracle
Fusion Middleware Configuring Server Environments for Oracle WebLogic Server.

■ WebLogic Server Releases 9.2 and higher provide improved routing algorithms
which enhance transaction performance. Specifically, performance is improved
when there are more than one Tuxedo service requests involved in a 2 phase
commit (2PC) transaction. If your application does only single service request to
the Tuxedo domain, you can disable this feature by setting the following WebLogic
Server command line parameter:

-Dweblogic.wtc.xaAffinity=false

■ Call the constructor TypedFML32 using the maximum number of objects in the
buffer. Even if the maximum number is difficult to predict, providing a reasonable
number improves performance. You approximate the maximum number by
multiplying the number of fields by 1.33.

For example:

If there are 50 fields in a TypedFML32 buffer type then the maximum number is
63. Calling the constructor TypedFML32(63, 50) performs better than
TypedFML32().

If there are 50 fields in a TypedFML32 buffer type and each can have maximum 10
occurrences, then call the constructor TypedFML32(625, 50) will give better
performance than TypedFML32()

■ When configuring Tuxedo applications that act as servers interoperating with
WTC clients, take into account of parallelism that may be achieved by carefully
configuring different servers on different Tuxedo machines.

■ Be aware of the possibility of database access deadlock in Tuxedo applications.
You can avoid deadlock through careful Tuxedo application configuration.

■ If your are using WTC load balancing or service level failover, Oracle recommends
that you do not disable WTC transaction affinity.

■ For load balancing outbound requests, configure the imported service with
multiple entries using a different key. The imported service uses composite key to
determine each record's uniqueness. The composite key is compose of "the service
name + the local access point + the primary route in the remote access point list".

The following is an example of how to correctly configure load balancing requests
for service1 between TDomainSession(WDOM1,TUXDOM1) and
TDomainSession(WDOM1,TUXDOM2:

Note: This performance tip does not apply to TypedFML buffer type.

Best Practices

19-4 Performance and Tuning for Oracle WebLogic Server

The following is an example an incorrectly configured load balancing requests. The
following configuration results in the same composite key for service1:

Table 19–1 Example of Correctly Configured Load Balancing

ResourceName LocalAccessPoint RemoteAccessPointList RemoteName

service1 WDOM1 TUXDOM1 TOLOWER

service1 WDOM1 TUXDOM2 TOLOWER2

Table 19–2 Example of Incorrectly Configured Load Balancing

ResourceName LocalAccessPoint RemoteAccessPointList RemoteName

service1 WDOM1 TUXDOM1 TOLOWER

service1 WDOM1 TUXDOM1 TOLOWER

A

Related Reading: Performance Tools and Information A-1

ARelated Reading: Performance Tools and
Information

The following sections provide an extensive performance-related reading list:

■ Section A.1, "WebLogic Information"

■ Section A.2, "Sun Microsystems Information"

■ Section A.3, "Linux OS Information"

■ Section A.4, "Hewlett-Packard Company Information"

■ Section A.5, "Microsoft Information"

■ Section A.6, "Web Performance Tuning Information"

■ Section A.7, "Network Performance Tools"

■ Section A.8, "Load Testing Tools"

■ Section A.9, "Performance Analysis Tools"

■ Section A.10, "Production Performance Management"

■ Section A.11, "Benchmarking Information"

■ Section A.12, "Java Virtual Machine (JVM) Information"

■ Section A.13, "Enterprise JavaBeans Information"

■ Section A.14, "WebLogic Store Information"

■ Section A.15, "Java Message Service (JMS) Information"

■ Section A.16, "Java Database Connectivity (JDBC) Information"

■ Section A.17, "General Performance Information"

A.1 WebLogic Information
■ For general information about Oracle, see the Oracle Web site at

http://www.oracle.com

■ Oracle Technology Network Web site at
http://www.oracle.com/technology/index.html

■ "Professional J2EE Programming with BEA WebLogic Server" at
http://www.amazon.com/exec/obidos/ASIN/1861002998/qid%3D99013
0139/107-7659827-5248549 by Paco Gomez and Peter Zadrozny, 2000

Sun Microsystems Information

A-2 Performance and Tuning for Oracle WebLogic Server

■ "BEA WebLogic Server Bible" at
http://www.amazon.com/exec/obidos/ASIN/0764548549/ref=ase_
zeeware-20/002-9563870-3452011 by Joe Zuffoletto, et al, 2002

■ "J2EE Performance Testing with BEA WebLogic Server" at
http://www.amazon.com/exec/obidos/ASIN/1904284000/qid=1024655
766/sr=8-3/ref=sr_8_3/102-8494684-1874510 by Peter Zadrozny, Philip
Aston, and Ted Osborne, 2002

■ "Mastering BEA WebLogic Server: Best Practices for Building and Deploying J2EE
Applications" at
http://www.amazon.com/exec/obidos/tg/detail/-/047128128X/104-
9412286-0155141?v=glance&me=ATVPDKIKX0DER&st=books by Gregory
Nyberg, Robert Patrick, Paul Bauerschmidt, Jeff McDaniel, and Raja Mukherjee,
2003

A.2 Sun Microsystems Information
■ For general information about Sun Microsystems, see Sun's Web site at

http://www.sun.com

■ Sun Microsystems Performance Information at
http://java.sun.com/docs/performance/index.html

■ Java Standard Edition Platform Documentation at
http://java.sun.com/docs/index.html

■ Java 2 SDK, Standard Edition Documentation
http://java.sun.com/javase/6/docs

■ "Solaris Tunable Parameters Reference Manual" at
http://docs.sun.com/app/docs/doc/819-2724?

■ For WebLogic Server and Solaris-specific details, see the SPARC Solaris links on
the Supported Configurations pages at
http://www.oracle.com/technology/software/products/ias/files/
fusion_certification.html.

■ For more about Solaris configuration, check the Solaris FAQ at
http://www.science.uva.nl/pub/solaris/solaris2/index.html.

■ "Sun Performance and Tuning: Java and the Internet" at
http://www.amazon.com/exec/obidos/ASIN/0130952494/o/qid=99013
0340/sr=8-1/ref=aps_sr_b_1_1/107-7659827-5248549 by Adrian
Cockcroft, et al, 1998

A.3 Linux OS Information
■ For general information about the Linux operating system, see

http://www.linux.org/

■ For information about the Linux Documentation Project, see
http://www.tldp.org/

■ For information about Redhat Enterprise Linux, see
http://www.redhat.com/software/rhel/

■ For information about SuSE Linux Enterprise Server, see
http://www.novell.com/products/linuxenterpriseserver/

Web Performance Tuning Information

Related Reading: Performance Tools and Information A-3

■ "Linux Performance Tuning and Capacity Planning" at
http://www.amazon.com/exec/obidos/tg/detail/-/0672320819/104-
9412286-0155141?vi=glance, by Jason R. Find, et al, 1997, Sams 2001

■ "Ipsysctl Tutorial 1.0.4" at
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html

■ "The Linux Cookbook: Tips and Techniques for Everyday Use" at
http://www.amazon.com/exec/obidos/tg/detail/-/1886411484/104-
4452937-4644719?v=glance, by Michael Stutz

A.4 Hewlett-Packard Company Information
■ General Hewlett-Packard information at http://thenew.hp.com/

■ For WebLogic Server and HP-UX-specific details, see Hewlett-Packard HP/9000
with HP-UX 11.0 and 11i on the Certifications Pages at
http://www.oracle.com/technology/software/products/ias/files/
fusion_certification.html.

■ "Java Performance Tuning on HP-UX" at
http://h21007.www2.hp.com/dspp/tech/tech_
TechDocumentDetailPage_IDX/1,1701,1602,00.html

■ Hewlett Packard JMeter at
http://www.hp.com/products1/unix/java/hpjmeter/, a tool for
analyzing profiling information

■ HP GlancePlus Pak software at
http://www.managementsoftware.hp.com/products/gplus/index.htm
l

■ Java Technology Software on HP-UX at
http://www.hp.com/products1/unix/java/java2/hpjconfig/index.h
tml

A.5 Microsoft Information
■ General Microsoft information at http://www.microsoft.com/ms.htm

■ "Windows 2000 Performance Tuning" at
http://www.microsoft.com/technet/prodtechnol/windows2000serv/
maintain/optimize/perftune.mspx

■ "Windows 2000 Performance Guide" at
http://www.amazon.com/exec/obidos/ASIN/1565924665/qid%3D10554
43647/sr%3D11-1/ref%3Dsr%5F11%5F1/104-9412286-0155141, by Mark
Friedman and Odysseas Pentakalos, 2002, O'Reilly

A.6 Web Performance Tuning Information
■ "Apache Performance Notes" at

http://httpd.apache.org/docs/misc/perf-tuning.html

■ "iPlanet Web Server 4.0 Performance Tuning, Sizing, and Scaling" at
http://docs.sun.com/source/816-5663-10/perf.htm

■ "The Art and Science of Web Server Tuning with Internet Information Services 5.0" at
http://www.microsoft.com/windows2000/techinfo/administration/
web/tuning.asp

Network Performance Tools

A-4 Performance and Tuning for Oracle WebLogic Server

■ "Web Performance Tuning: Speeding Up the Web" at
http://www.amazon.com/exec/obidos/ASIN/1565923790/qid=9953207
96/sr=1-1/ref=sc_b_1/002-2021652-9667227, by Patrick Killelea, Linda
Mui (Editor), O'Reilly Nutshell, 1998

■ "Capacity Planning for Web Performance: Metrics, Models, and Methods" at
http://www.amazon.com/exec/obidos/ASIN/0130659037/qid=1019850
167/sr=1-1/ref=sr_1_1/002-9563870-3452011, by Daniel A. Menasce,
Virgilio A. F. Almeida, Prentice Hall PTR, 1998

■ "Scaling for E-Business: Technologies, Models, Performance, and Capacity Planning" at
http://www.amazon.com/exec/obidos/tg/detail/-/0130863289/ref=
pd_bxgy_text_1/102-9088491-5954535?v=glance&s=books&st=*, by
Daniel A. Menasce, Virgilio A. F. Almeida, Prentice Hall PTR, 2000

A.7 Network Performance Tools
■ TracePlus/Ethernet at http://www.sstinc.com, a network packet analysis tool

for Windows 95/98/ME, NT 4.x, Windows 2000/XP

A.8 Load Testing Tools
■ LoadRunner at

http://welcome.hp.com/country/us/en/prodserv/software.html, a
tool that predicts enterprise-level system behavior and performance by emulating
thousands of users and employs performance monitors to identify and isolate
problems.

■ e-Load at
http://www.empirix.com/Empirix/Web+Test+Monitoring/testing+so
lutions/web+application+load+testing.html, a fast and accurate way to
perform load testing, scalability testing, stress testing of enterprise Web
applications.

■ The Grinder at http://sourceforge.net/projects/grinder/, a pure Java
load-testing framework.

A.9 Performance Analysis Tools
A profiler is a performance analysis tool that allows you to reveal hot spots in the
application that result in either high CPU utilization or high contention for shared
resources. Some common profilers are:

■ OptimizeIt Java Performance Profiler at
http://www.borland.com/optimizeit/optimizeit_
profiler/index.html from Borland, a performance debugging tool for Solaris
and Windows

■ JProbe Profiler with Memory Debugger at http://www.quest.com/jprobe/, a
family of products that provide the capability to detect performance bottlenecks,
perform code coverage and other metrics

■ Hewlett Packard JMeter at
http://www.hp.com/products1/unix/java/hpjmeter/, a tool for
analyzing profiling information

Java Virtual Machine (JVM) Information

Related Reading: Performance Tools and Information A-5

■ VTune Performance Analyzer at
http://www.intel.com/software/products/vtune/, a tool to identify
and locate performance bottlenecks in your code

■ PerformaSure at http://www.quest.com/performasure/, a tool to detect,
diagnose, and resolve performance problems in multi-tier J2EE applications

A.10 Production Performance Management
■ rClearApp at http://www.clearapp.com/ provides comprehensive, enterprise

class, fully integrated application production monitoring and diagnostic solutions
for J2EE Infrastructures.

■ Veritas i3 for Web-J2EE at
http://www.veritas.com/Products/www?c=product&refId=316, is a
monitoring, analysis, and tuning tool for Web-based J2EE Applications.

■ Wily Technology, Inc. at
http://partners.bea.com/search.portal?partnerId=192 provides
management solutions for large-scale, real-time production Web applications,
applications servers, portal solutions and integration middleware.

A.11 Benchmarking Information
■ SPECjbb2000 at

http://www.spec.org/osg/jbb2000/docs/whitepaper.html, a software
benchmark product developed by the Standard Performance Evaluation
Corporation (SPEC). SPECjbb2000 is designed to measure a system's ability to run
Java server applications.

■ SPECjAppServer2004 (Java Application Server) at
http://www.spec.org/osg/jAppServer2004/, a client/server benchmark
for measuring the performance of Java Enterprise Application Servers using a
subset of J2EE API's in a complete end-to-end web application.

A.12 Java Virtual Machine (JVM) Information
■ JRockit JDK Documentation at

http://download.oracle.com/docs/cd/E13150_01/jrockit_
jvm/jrockit/webdocs/index.html

■ JVM Corner at artima.com at http://www.artima.com/index.jsp

■ Sun Microsystems FAQ at
http://java.sun.com/docs/hotspot/PerformanceFAQ.html about Java
HotSpot technology and about performance in general

■ Performance Documentation for the Java HotSpot Virtual Machine at
http://java.sun.com/docs/hotspot/index.html.

■ Java HotSpot VM Options at
http://java.sun.com/docs/hotspot/VMOptions.html, a Sun
Microsystems document provides information on the command-line options and
environment variables that can affect the performance characteristics of the
HotSpot JVM.

■ "Improving Java Application Performance and Scalability by Reducing Garbage
Collection Times and Sizing Memory Using JDK 1.4.1" at
http://developers.sun.com/techtopics/mobility/midp/articles/g

Enterprise JavaBeans Information

A-6 Performance and Tuning for Oracle WebLogic Server

arbagecollection2/index.html, a Sun Microsystem document on how to
reduce garbage collection times with JDK 1.4.1.

■ "The Java Virtual Machines Technology" at
http://java.sun.com/javase/6/docs/technotes/guides/vm/index.h
tml

■ "Which Java VM scales best?" at
http://www.javaworld.com/jw-08-1998/jw-08-volanomark.html from
JavaWorld, results of a VolanoMark 2.0 server benchmark show how 12 virtual
machines stack up.

■ "Garbage Collection: Algorithms for Automatic Dynamic Memory Management" at
http://www.amazon.com/exec/obidos/ASIN/0471941484/richardjone
s/002-1748120-9756040 by Richard Jones, Rafael D Lins, John Wiley & Sons,
1999

A.13 Enterprise JavaBeans Information
■ Oracle Fusion Middleware Programming Enterprise JavaBeans for Oracle WebLogic

Server

■ "Enterprise JavaBeans, Second Edition", by Richard Monson-Haefel, Mike Loukides
(Editor), 2000 at
http://www.amazon.com/exec/obidos/ASIN/0471417114/o/qid=99012
9064/sr=2-1/107-7659827-5248549

■ "Mastering Enterprise JavaBeans and the Java 2 Platform, Enterprise Edition", by Ed
Roman, 1999 at
http://www.amazon.com/exec/obidos/ASIN/0471332291/qid=9901289
89/sr=1-1/ref=sc_b_1/107-7659827-5248549

■ http://www.theserverside.com/, a free online community dedicated to
Enterprise JavaBeans (EJBs) and J2EE.

■ "Seven Rules for Optimizing Entity Beans", by Akara Sucharitakul, Java Developer
Connection, 2001 at http://www.theserverside.com

A.14 WebLogic Store Information
"Using the WebLogic Persistent Store" in Oracle Fusion Middleware Configuring Server
Environments for Oracle WebLogic Server.

A.15 Java Message Service (JMS) Information
■ "Messaging"

■ JMS Specification at http://java.sun.com/products/jms/docs.html

A.16 Java Database Connectivity (JDBC) Information
■ "Performance Tuning Your JDBC Application" in Oracle Fusion Middleware

Programming JDBC for Oracle WebLogic Server

A.17 General Performance Information
■ Jack Shirazi's Java Performance Tuning Web site at

http://www.javaperformancetuning.com

General Performance Information

Related Reading: Performance Tools and Information A-7

■ The Software Testing and Quality Engineering Magazine, Web Application
Scalability, "Avoiding Scalability Shock" at
https://www.stickyminds.com/getfile.asp?ot=XML&id=5003&fn=Smz
r1XDD1814filelistfilename1%2Epdf by Bill Shea, May/June 2000

■ "High-Performance Java Platform Computing" by Thomas W. Christopher at
http://java.sun.com/developer/Books/performance2/, George K.
Thiruvathukal, 2000

■ "Performance and Idiom Guide" at
http://www.amazon.com/exec/obidos/ASIN/0130142603/qid%3D99012
9234/107-7659827-5248549 by Craig Larman and Rhett Guthrie, 1999

General Performance Information

A-8 Performance and Tuning for Oracle WebLogic Server

B

Using the WebLogic 8.1 Thread Pool Model B-1

BUsing the WebLogic 8.1 Thread Pool Model

If you have been using execute queues to improve performance prior to this release,
you may continue to use them after you upgrade your application domains to
WebLogic Server 9.x.

■ Section B.1, "How to Enable the WebLogic 8.1 Thread Pool Model"

■ Section B.2, "Tuning the Default Execute Queue"

■ Section B.3, "Using Execute Queues to Control Thread Usage"

■ Section B.4, "Monitoring Execute Threads"

■ Section B.5, "Allocating Execute Threads to Act as Socket Readers"

■ Section B.6, "Tuning the Stuck Thread Detection Behavior"

B.1 How to Enable the WebLogic 8.1 Thread Pool Model
Oracle provides a flag that enables you to disable the self-tuning execute pool and
provide backward compatibility for upgraded applications to continue to use
user-defined execute queues.

■ To use user-defined execute queues in a WebLogic Server 9.x domain, you need to
include the use81-style-execute-queues sub-element of the server
element in the config.xml file and reboot the server.

The following example code allows an instance of myserver to use execute
queues.

Note: Oracle recommends migrating from execute queues to using
the self-tuning execute queue with work managers. See "Using Work
Managers to Optimize Scheduled Work" in Oracle Fusion Middleware
Configuring Server Environments for Oracle WebLogic Server.

Note: To run WebLogic Server in the 81-style-execute-queues mode,
and be able to tune the thread count, an additional step is needed.
First, set the use81-style-execute-queues element to true in the
configuration file. Then, explicitly create the
weblogic.kernel.Default execute queue from the
Administration Console and reboot the server.

Tuning the Default Execute Queue

B-2 Performance and Tuning for Oracle WebLogic Server

Example B–1 Using the use81-style-execute-queues Element

.

.

.
<server>
 <name>myserver</name>
 <ssl>
 <name>myserver</name>
 <enabled>true</enabled>
 <listen-port>7002</listen-port>
 </ssl>
 <use81-style-execute-queues>true</use81-style-execute-queues>
 <listen-address/>
</server>
.
.
.

■ Configured work managers are converted to execute queues at runtime by the
server instance.

B.2 Tuning the Default Execute Queue
The value of the ThreadCount attribute of an ExecuteQueue element in the
config.xml file equals the number of simultaneous operations that can be performed
by applications that use the execute queue. As work enters an instance of WebLogic
Server, it is placed in an execute queue. This work is then assigned to a thread that
does the work on it. Threads consume resources, so handle this attribute with
care—you can degrade performance by increasing the value unnecessarily. WebLogic
Server uses different default values for the thread count of the default execute queue
depending on the startup mode of the server instance. See "Specify a startup mode" in
Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

Unless you configure additional execute queues, and assign applications to them, the
server instance assigns requests to the default execute queue.

B.2.1 Should You Modify the Default Thread Count?
Adding more threads to the default execute queue does not necessarily imply that you
can process more work. Even if you add more threads, you are still limited by the
power of your processor. You can degrade performance by increasing the value of the
ThreadCount attribute unnecessarily. A high execute thread count causes more

Table B–1 Default Thread Count for Startup Modes

Server Mode . . . Default Thread Count . . .

Development 15 threads

Production 25 threads

Note: If native performance packs are not being used for your
platform, you may need to tune the default number of execute queue
threads and the percentage of threads that act as socket readers to
achieve optimal performance. For more information, see Section B.5,
"Allocating Execute Threads to Act as Socket Readers".

Using Execute Queues to Control Thread Usage

Using the WebLogic 8.1 Thread Pool Model B-3

memory to be used and may increases context switching, which can degrade
performance.

The value of the ThreadCount attribute depends very much on the type of work your
application does. For example, if your client application is thin and does a lot of its
work through remote invocation, that client application will spend more time
connected — and thus will require a higher thread count — than a client application
that does a lot of client-side processing.

If you do not need to use more than 15 threads (the development default) or 25 threads
(the production default) for your work, do not change the value of this attribute. As a
general rule, if your application makes database calls that take a long time to return,
you will need more execute threads than an application that makes calls that are short
and turn over very rapidly. For the latter case, using a smaller number of execute
threads could improve performance.

To determine the ideal thread count for an execute queue, monitor the queue's
throughput while all applications in the queue are operating at maximum load.
Increase the number of threads in the queue and repeat the load test until you reach
the optimal throughput for the queue. (At some point, increasing the number of
threads will lead to enough context switching that the throughput for the queue begins
to decrease.)

Table B–2 shows default scenarios for adjusting available threads in relation to the
number of CPUs available in the WebLogic Server domain. These scenarios also
assume that WebLogic Server is running under maximum load, and that all thread
requests are satisfied by using the default execute queue. If you configure additional
execute queues and assign applications to specific queues, monitor results on a
pool-by-pool basis.

B.3 Using Execute Queues to Control Thread Usage
You can fine-tune an application's access to execute threads (and thereby optimize or
throttle its performance) by using user-defined execute queues in WebLogic Server.
However, keep in mind that unused threads represent significant wasted resources in

Note: The WebLogic Server Administration Console displays the
cumulative throughput for all of a server's execute queues. To access
this throughput value, follow steps 1-6 in Section B.3, "Using Execute
Queues to Control Thread Usage".

Table B–2 Scenarios for Modifying the Default Thread Count

When... And you see... Do This:

Thread Count < number of CPUs CPUs are under utilized,
but there is work that could
be done.

Increase the thread count.

Thread Count = number of CPUs CPUs are under utilized,
but there is work that could
be done.

Increase the thread count.

Thread Count > number of CPUs (by
a moderate number of threads)

CPUs have high utilization,
with a moderate amount of
context switching.

Tune the moderate number of
threads and compare
performance results.

Thread Count > number of CPUs (by
a large number of threads)

Too much context
switching.

Reduce the number of threads.

Using Execute Queues to Control Thread Usage

B-4 Performance and Tuning for Oracle WebLogic Server

a WebLogic Server system. You may find that available threads in configured execute
queues go unused, while tasks in other queues sit idle waiting for threads to become
available. In such a situation, the division of threads into multiple queues may yield
poorer overall performance than having a single, default execute queue.

Default WebLogic Server installations are configured with a default execute queue
which is used by all applications running on the server instance. You may want to
configure additional queues to:

■ Optimize the performance of critical applications. For example, you can assign a
single, mission-critical application to a particular execute queue, guaranteeing a
fixed number of execute threads. During peak server loads, nonessential
applications may compete for threads in the default execute queue, but the
mission-critical application has access to the same number of threads at all times.

■ Throttle the performance of nonessential applications. For an application that
can potentially consume large amounts of memory, assigning it to a dedicated
execute queue effectively limits the amount of memory it can consume. Although
the application can potentially use all threads available in its assigned execute
queue, it cannot affect thread usage in any other queue.

■ Remedy deadlocked thread usage. With certain application designs, deadlocks
can occur when all execute threads are currently utilized. For example, consider a
servlet that reads messages from a designated JMS queue. If all execute threads in
a server are used to process the servlet requests, then no threads are available to
deliver messages from the JMS queue. A deadlock condition exists, and no work
can progress. Assigning the servlet to a separate execute queue avoids potential
deadlocks, because the servlet and JMS queue do not compete for thread
resources.

Be sure to monitor each execute queue to ensure proper thread usage in the system as
a whole. See Section B.2.1, "Should You Modify the Default Thread Count?" for general
information about optimizing the number of threads.

B.3.1 Creating Execute Queues
An execute queue represents a named collection of execute threads that are available
to one or more designated servlets, JSPs, EJBs, or RMI objects.

To configure a new execute queue using the Administration Console:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will
configure an execute queue.

4. Select the Configuration > Queues tab and click New.

5. Name the execute queue and click OK.

6. On the User-Defined Execute Queues page, select the execute queue you just
created.

7. On the execute queue Configuration tab, modify the following attributes or accept
the system defaults:

Queue Length—Always leave the Queue Length at the default value of 65536
entries. The Queue Length specifies the maximum number of simultaneous
requests that the server can hold in the queue. The default of 65536 requests

Using Execute Queues to Control Thread Usage

Using the WebLogic 8.1 Thread Pool Model B-5

represents a very large number of requests; outstanding requests in the queue
should rarely, if ever reach this maximum value.

If the maximum Queue Length is reached, WebLogic Server automatically doubles
the size of the queue to account for the additional work. Exceeding 65536 requests
in the queue indicates a problem with the threads in the queue, rather than the
length of the queue itself; check for stuck threads or an insufficient thread count in
the execute queue.

Queue Length Threshold Percent—The percentage (from 1–99) of the
Queue Length size that can be reached before the server indicates an overflow
condition for the queue. All actual queue length sizes below the threshold
percentage are considered normal; sizes above the threshold percentage indicate
an overflow. When an overflow condition is reached, WebLogic Server logs an
error message and increases the number of threads in the queue by the value of
the Threads Increase attribute to help reduce the workload.

By default, the Queue Length Threshold Percent value is 90 percent. In most
situations, you should leave the value at or near 90 percent, to account for any
potential condition where additional threads may be needed to handle an
unexpected spike in work requests. Keep in mind that Queue Length Threshold
Percent must not be used as an automatic tuning parameter—the threshold should
never trigger an increase in thread count under normal operating conditions.

Thread Count—The number of threads assigned to this queue. If you do not
need to use more than 15 threads (the default) for your work, do not change the
value of this attribute. (For more information, see Section B.2.1, "Should You
Modify the Default Thread Count?".)

Threads Increase—The number of threads WebLogic Server should add to
this execute queue when it detects an overflow condition. If you specify zero
threads (the default), the server changes its health state to "warning" in response to
an overflow condition in the thread, but it does not allocate additional threads to
reduce the workload.

Threads Minimum—The minimum number of threads that WebLogic Server
should maintain in this execute queue to prevent unnecessary overflow
conditions. By default, the Threads Minimum is set to 5.

Threads Maximum—The maximum number of threads that this execute queue
can have; this value prevents WebLogic Server from creating an overly high thread
count in the queue in response to continual overflow conditions. By default, the
Threads Maximum is set to 400.

8. Click Save.

Note: If WebLogic Server increases the number of threads in
response to an overflow condition, the additional threads remain in
the execute queue until the server is rebooted. Monitor the error log to
determine the cause of overflow conditions, and reconfigure the
thread count as necessary to prevent similar conditions in the future.
Do not use the combination of Threads Increase and Queue Length
Threshold Percent as an automatic tuning tool; doing so generally
results in the execute queue allocating more threads than necessary
and suffering from poor performance due to context switching.

Using Execute Queues to Control Thread Usage

B-6 Performance and Tuning for Oracle WebLogic Server

9. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes. Not all changes take effect immediately—some require a
restart.

10. You must reboot the server to use the new thread detection behavior values.

B.3.2 Modifying the Thread Count
To modify the default execute queue thread count using the Administration Console:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will
configure thread detection behavior.

4. On the Configuration > Queues tab, select the execute queue for which you will
modify the default thread count.

5. You can only modify the default execute queue for the server or a user-defined
execute queue.

6. Locate the Thread Count value and increase or decrease it, as appropriate.

7. Click Save.

8. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes. Not all changes take effect immediately—some require a
restart.

9. You must reboot the server to use the new thread detection behavior values.

B.3.3 Tuning Execute Queues for Overflow Conditions
You can configure WebLogic Server to detect and optionally address potential
overflow conditions in the default execute queue or any user-defined execute queue.
WebLogic Server considers a queue to have a possible overflow condition when its
current size reaches a user-defined percentage of its maximum size. When this
threshold is reached, the server changes its health state to "warning" and can
optionally allocate additional threads to perform the outstanding work in the queue,
thereby reducing the queue length.

To automatically detect and address overflow conditions in a queue, you can configure
the following items:

■ The threshold at which the server indicates an overflow condition. This value is set
as a percentage of the configured size of the execute queue (the QueueLength
value).

■ The number of threads to add to the execute queue when an overflow condition is
detected. These additional threads work to reduce the size of the queue and
reduce the size of the queue to its normal operating size.

■ The minimum and maximum number of threads available to the queue. In
particular, setting the maximum number of threads prevents the server from
assigning an overly high thread count in response to overload conditions.

To tune an execute queue using the WebLogic Server Administration Console:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

Using Execute Queues to Control Thread Usage

Using the WebLogic 8.1 Thread Pool Model B-7

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will
configure overflow conditions behavior.

4. Select the Configuration > Queues tab, select the execute queue for which you
will configure overflow conditions behavior.

5. Specify how the server instance should detect an overflow condition for the
selected queue by modifying the following attributes:

Queue Length—Specifies the maximum number of simultaneous requests that
the server can hold in the queue. The default of 65536 requests represents a very
large number of requests; outstanding requests in the queue should rarely, if ever
reach this maximum value. Always leave the Queue Length at the default value of
65536 entries.

Queue Length Threshold Percent—The percentage (from 1–99) of the
Queue Length size that can be reached before the server indicates an overflow
condition for the queue. All actual queue length sizes below the threshold
percentage are considered normal; sizes above the threshold percentage indicate
an overflow. By default, the Queue Length Threshold Percent is set to 90 percent.

6. To specify how this server should address an overflow condition for the selected
queue, modify the following attribute:

Threads Increase—The number of threads WebLogic Server should add to
this execute queue when it detects an overflow condition. If you specify zero
threads (the default), the server changes its health state to "warning" in response to
an overflow condition in the execute queue, but it does not allocate additional
threads to reduce the workload.

7. To fine-tune the variable thread count of this execute queue, modify the following
attributes:

Threads Minimum—The minimum number of threads that WebLogic Server
should maintain in this execute queue to prevent unnecessary overflow
conditions. By default, the Threads Minimum is set to 5.

Threads Maximum—The maximum number of threads that this execute queue
can have; this value prevents WebLogic Server from creating an overly high thread
count in the queue in response to continual overflow conditions. By default, the
Threads Maximum is set to 400.

8. Click Save.

9. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes. Not all changes take effect immediately—some require a
restart.

10. You must reboot the server to use the new thread detection behavior values.

B.3.4 Assigning Servlets and JSPs to Execute Queues
You can assign a servlet or JSP to a configured execute queue by identifying the
execute queue name in the initialization parameters. Initialization parameters appear
within the init-param element of the servlet's or JSP's deployment descriptor file,
web.xml. To assign an execute queue, enter the queue name as the value of the
wl-dispatch-policy parameter, as in the example:

<servlet>
 <servlet-name>MainServlet</servlet-name>
 <jsp-file>/myapplication/critical.jsp</jsp-file>

Monitoring Execute Threads

B-8 Performance and Tuning for Oracle WebLogic Server

 <init-param>
 <param-name>wl-dispatch-policy</param-name>
 <param-value>CriticalAppQueue</param-value>
 </init-param>
</servlet>

See "Creating and Configuring Servlets" in Oracle Fusion Middleware Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server for more information about
specifying initialization parameters in web.xml.

B.3.5 Assigning EJBs and RMI Objects to Execute Queues
To assign an EJB object to a configured execute queue, use the new
dispatch-policy element in weblogic-ejb-jar.xml. For more information, see the
weblogic-ejb-jar.xml Deployment Descriptor.

While you can also set the dispatch policy through the appc compiler
-dispatchPolicy flag, Oracle strongly recommends you use the deployment
descriptor element instead. This way, if the EJB is recompiled, during deployment for
example, the setting will not be lost.

To assign an RMI object to a configured execute queue, use the -dispatchPolicy
option to the rmic compiler. For example:

java weblogic.rmic -dispatchPolicy CriticalAppQueue ...

B.4 Monitoring Execute Threads
To use the Administration Console to monitor the status of execute threads:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will
configure thread detection behavior.

4. Select the Monitoring > Threads tab.

5. A table of the execute queues available on this server instance is displayed.

6. Select an execute queue for which you would like to view thread information.

7. A table of execute threads for the selected execute queue is displayed.

B.5 Allocating Execute Threads to Act as Socket Readers
For best performance, Oracle recommends that you use the native socket reader
implementation, rather than the pure-Java implementation, on machines that host
WebLogic Server instances (see Section 6.4, "Thread Management"). However, if you
must use the pure-Java socket reader implementation for host machines, you can still
improve the performance of socket communication by configuring the proper number
of execute threads to act as socket reader threads for each server instance.

The ThreadPoolPercentSocketReaders attribute sets the maximum percentage
of execute threads that are set to read messages from a socket. The optimal value for
this attribute is application-specific. The default value is 33, and the valid range is
1–99.

Tuning the Stuck Thread Detection Behavior

Using the WebLogic 8.1 Thread Pool Model B-9

Allocating execute threads to act as socket reader threads increases the speed and the
ability of the server to accept client requests. It is essential to balance the number of
execute threads that are devoted to reading messages from a socket and those threads
that perform the actual execution of tasks in the server.

B.5.1 Setting the Number of Socket Reader Threads For a Server Instance
To use the Administration Console to set the maximum percentage of execute threads
that read messages from a socket:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will
configure thread detection behavior.

4. Select the Configuration > Tuning tab.

5. Specify the percentage of Java reader threads in the Socket Readers field. The
number of Java socket readers is computed as a percentage of the number of total
execute threads (as shown in the Thread Count field for the Execute Queue).

6. Click Save.

7. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes.

B.5.2 Setting the Number of Socket Reader Threads on Client Machines
On client machines, you can configure the number of available socket reader threads
in the JVM that runs the client. Specify the socket readers by defining the following
parameters in the java command line for the client:

-Dweblogic.ThreadPoolSize=value
-Dweblogic.ThreadPoolPercentSocketReaders=value

B.6 Tuning the Stuck Thread Detection Behavior
WebLogic Server automatically detects when a thread in an execute queue becomes
"stuck." Because a stuck thread cannot complete its current work or accept new work,
the server logs a message each time it diagnoses a stuck thread.

WebLogic Server diagnoses a thread as stuck if it is continually working (not idle) for a
set period of time. You can tune a server's thread detection behavior by changing the
length of time before a thread is diagnosed as stuck, and by changing the frequency
with which the server checks for stuck threads. Although you can change the criteria
WebLogic Server uses to determine whether a thread is stuck, you cannot change the
default behavior of setting the "warning" and "critical" health states when all threads
in a particular execute queue become stuck. For more information, see "Understanding
WebLogic Logging Services" in Oracle Fusion Middleware Configuring Log Files and
Filtering Log Messages for Oracle WebLogic Server.

To configure stuck thread detection behavior:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

Tuning the Stuck Thread Detection Behavior

B-10 Performance and Tuning for Oracle WebLogic Server

3. On the Summary of Servers page, select the server instance for which you will
configure thread detection behavior.

4. On the Configuration > Tuning tab, update as necessary:

Stuck Thread Max Time—Amount of time, in seconds, that a thread must be
continually working before a server instance diagnoses a thread as being stuck.

Stuck Thread Timer Interval—Amount of time, in seconds, after which a
server instance periodically scans threads to see if they have been continually
working for the configured Stuck Thread Max Time.

5. Click Save.

6. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes. Not all changes take effect immediately—some require a
restart.

7. You must reboot the server to use the new thread detection behavior values.

C

Capacity Planning C-1

CCapacity Planning

The process of determining what type of hardware and software configuration is
required to meet application needs adequately is called capacity planning. Capacity
planning is not an exact science. Every application is different and every user behavior
is different. The following sections provide an introduction to capacity planning:

■ Section C.1, "Capacity Planning Factors"

■ Section C.2, "Assessing Your Application Performance Objectives"

■ Section C.3, "Hardware Tuning"

■ Section C.4, "Network Performance"

■ Section C.5, "Related Information"

C.1 Capacity Planning Factors
A number of factors influence how much capacity a given hardware configuration will
need in order to support a WebLogic Server instance and a given application. The
hardware capacity required to support your application depends on the specifics of
the application and configuration. You should consider how each of these factors
applies to your configuration and application.

The following sections discuss several of these factors. Understanding these factors
and considering the requirements of your application will aid you in generating server
hardware requirements for your configuration. Consider the capacity planning
questions in Table C–1.

Table C–1 Capacity Planning Factors and Information Reference

Capacity Planning Questions For Information, See:

Is WebLogic Server well-tuned? Section C.2, "Assessing Your Application
Performance Objectives"

How well-designed is the user application? Section C.1.5, "Database Server Capacity and
User Storage Requirements"

Is there enough bandwidth? Section C.1.7, "Network Load"

How many transactions need to run
simultaneously?

Section C.1.6, "Concurrent Sessions"

Is the database a limiting factor? Are there
additional user storage requirements?

Section C.1.5, "Database Server Capacity and
User Storage Requirements"

What is running on the machine in addition
to WebLogic Server?

Section C.1.7, "Network Load"

Capacity Planning Factors

C-2 Performance and Tuning for Oracle WebLogic Server

C.1.1 Programmatic and Web-based Clients
Primarily, two types of clients can connect to WebLogic Server:

■ Web-based clients, such as Web browsers and HTTP proxies, use the HTTP or
HTTPS (secure) protocol to obtain HTML or servlet output.

■ Programmatic clients, such as Java applications and applets, can connect through
the T3 protocol and use RMI to connect to the server.

The stateless nature of HTTP requires that the server handle more overhead than is the
case with programmatic clients. However, the benefits of HTTP clients are numerous,
such as the availability of browsers and firewall compatibility, and are usually worth
the performance costs.

Programmatic clients are generally more efficient than HTTP clients because T3 does
more of the presentation work on the client side. Programmatic clients typically call
directly into EJBs while Web clients usually go through servlets. This eliminates the
work the server must do for presentation. The T3 protocol operates using sockets and
has a long-standing connection to the server.

A WebLogic Server installation that relies only on programmatic clients should be able
to handle more concurrent clients than an HTTP proxy that is serving installations. If
you are tunneling T3 over HTTP, you should not expect this performance benefit. In
fact, performance of T3 over HTTP is generally 15 percent worse than typical HTTP
and similarly reduces the optimum capacity of your WebLogic Server installation.

C.1.2 RMI and Server Traffic
What types of server traffic do the clients generate? If you are using T3 clients, most
interaction with the server involves Remote Method Invocation (RMI.) Clients using
RMI do not generate heavy traffic to the server because there is only one sender and
one listener.

RMI can use HTTP tunneling to allow RMI calls to traverse a firewall. RMI tunneled
through HTTP often does not deliver the higher degree of performance provided by
non-tunneled RMI.

C.1.3 SSL Connections and Performance
Secure sockets layer (SSL) is a standard for secure Internet communications. WebLogic
Server security services support X.509 digital certificates and access control lists
(ACLs) to authenticate participants and manage access to network services. For
example, SSL can protect JSP pages listing employee salaries, blocking access to
confidential information.

Do clients use SSL to connect to WebLogic
Server?

Section C.1.3, "SSL Connections and
Performance"

What types of traffic do the clients generate? Section C.1.2, "RMI and Server Traffic"

What types of clients connect to the
WebLogic Server application?

Section C.1.1, "Programmatic and Web-based
Clients"

Is your deployment configured for a cluster? Section C.1.8, "Clustered Configurations"

Table C–1 (Cont.) Capacity Planning Factors and Information Reference

Capacity Planning Questions For Information, See:

Capacity Planning Factors

Capacity Planning C-3

SSL involves intensive computing operations. When supporting the cryptography
operations in the SSL protocol, WebLogic Server can not handle as many simultaneous
connections.

The number of SSL connections required out of the total number of clients required.
Typically, for every SSL connection that the server can handle, it can handle three
non-SSL connections. SSL substantially reduces the capacity of the server depending
upon the strength of encryption used in the SSL connections. Also, the amount of
overhead SSL imposes is related to how many client interactions have SSL enabled.
WebLogic Server includes native performance packs for SSL operations.

C.1.4 WebLogic Server Process Load
What is running on the machine in addition to a WebLogic Server? The machine may
be processing much more than presentation and business logic. For example, it could
be running a Web server or maintaining a remote information feed, such as a stock
information feed from a quote service.

Consider how much of your WebLogic Server machine's processing power is
consumed by processes unrelated to WebLogic Server. In the case in which WebLogic
Server (or the machine on which it resides) is doing substantial additional work, you
need to determine how much processing power will be drained by other processes.
When a Web server proxy is running on the same machine as WebLogic Server, expect
anywhere from 25 to 50 percent of the computing capacity.

C.1.5 Database Server Capacity and User Storage Requirements
Is the database a bottleneck? Are there additional user storage requirements? Often the
database server runs out of capacity much sooner that WebLogic Server does. Plan for
a database that is sufficiently robust to handle the application. Typically, a good
application's database requires hardware three to four times more powerful than the
application server hardware. It is good practice to use a separate machine for your
database server.

Generally, you can tell if your database is the bottleneck if you are unable to maintain
WebLogic Server CPU usage in the 85 to 95 percent range. This indicates that
WebLogic Server is often idle and waiting for the database to return results. With load
balancing in a cluster, the CPU utilization across the nodes should be about even.

Some database vendors are beginning to provide capacity planning information for
application servers. Frequently this is a response to the three-tier model for
applications.

An application might require user storage for operations that do not interact with a
database. For example, in a secure system disk and memory are required to store
security information for each user. You should calculate the size required to store one
user's information, and multiply by the maximum number of expected users.

C.1.6 Concurrent Sessions
How many transactions must run concurrently? Determine the maximum number of
concurrent sessions WebLogic Server will be called upon to handle. For each session,
you will need to add more RAM for efficiency. Oracle recommends that you install a
minimum of 256 MB of memory for each WebLogic Server installation that will be
handling more than minimal capacity.

Next, research the maximum number of clients that will make requests at the same
time, and how frequently each client will be making a request. The number of user

Capacity Planning Factors

C-4 Performance and Tuning for Oracle WebLogic Server

interactions per second with WebLogic Server represents the total number of
interactions that should be handled per second by a given WebLogic Server
deployment. Typically for Web deployments, user interactions access JSP pages or
servlets. User interactions in application deployments typically access EJBs.

Consider also the maximum number of transactions in a given period to handle spikes
in demand. For example, in a stock report application, plan for a surge after the stock
market opens and before it closes. If your company is broadcasting a Web site as part
of an advertisement during the World Series or World Cup Soccer playoffs, you should
expect spikes in demand.

C.1.7 Network Load
Is the bandwidth sufficient? WebLogic Server requires enough bandwidth to handle all
connections from clients. In the case of programmatic clients, each client JVM will have
a single socket to the server. Each socket requires bandwidth. A WebLogic Server
handling programmatic clients should have 125 to 150 percent the bandwidth that a
server with Web-based clients would handle. If you are interested in the bandwidth
required to run a web server, you can assume that each 56kbps (kilobits per second) of
bandwidth can handle between seven and ten simultaneous requests depending upon
the size of the content that you are delivering. If you are handling only HTTP clients,
expect a similar bandwidth requirement as a Web server serving static pages.

The primary factor affecting the requirements for a LAN infrastructure is the use of
in-memory replication of session information for servlets and stateful session EJBs. In
a cluster, in-memory replication of session information is the biggest consumer of LAN
bandwidth. Consider whether your application will require the replication of session
information for servlets and EJBs.

To determine whether you have enough bandwidth in a given deployment, look at the
network tools provided by your network operating system vendor. In most cases,
including Windows NT, Windows 2000, and Solaris, you can inspect the load on the
network system. If the load is very high, bandwidth may be a bottleneck for your
system.

C.1.8 Clustered Configurations
Clusters greatly improve efficiency and failover. Customers using clustering should
not see any noticeable performance degradation. A number of WebLogic Server
deployments in production involve placing a cluster of WebLogic Server instances on a
single multiprocessor server.

Large clusters performing in-memory replication of session data for Enterprise
JavaBeans (EJBs) or servlets require more bandwidth than smaller clusters. Consider
the size of session data and the size of the cluster.

C.1.9 Application Design
How well-designed is the application? WebLogic Server is a platform for user
applications. Badly designed or unoptimized user applications can drastically slow
down the performance of a given configuration from 10 to 50 percent. The prudent
course is to assume that every application that is developed for WebLogic Server will
not be optimal and will not perform as well as benchmark applications. Increase the
maximum capacity that you calculate or expect. See Section 3.1.7, "Tune Your
Application".

Network Performance

Capacity Planning C-5

C.2 Assessing Your Application Performance Objectives
At this stage in capacity planning, you gather information about the level of activity
expected on your server, the anticipated number of users, the number of requests,
acceptable response time, and preferred hardware configuration. Capacity planning
for server hardware should focus on maximum performance requirements and set
measurable objectives for capacity.

The numbers that you calculate from using one of our sample applications are of
course just a rough approximation of what you may see with your application. There
is no substitute for benchmarking with the actual production application using
production hardware. In particular, your application may reveal subtle contention or
other issues not captured by our test applications.

C.3 Hardware Tuning
When you examine performance, a number of factors influence how much capacity a
given hardware configuration will need in order to support WebLogic Server and a
given application. The hardware capacity required to support your application
depends on the specifics of the application and configuration. You should consider
how each factor applies to your configuration and application.

C.3.1 Benchmarks for Evaluating Performance
The Standard Performance Evaluation Corporation, at http://www.spec.org,
provides a set of standardized benchmarks and metrics for evaluating computer
system performance.

C.3.2 Supported Platforms
The information on the Supported Configurations pages at
http://www.oracle.com/technology/software/products/ias/files/fus
ion_certification.htmlcontains the latest certification information on the
hardware/operating system platforms that are supported for each release of WebLogic
Server.

C.4 Network Performance
Network performance is affected when the supply of resources is unable to keep up
with the demand for resources. Today's enterprise-level networks are very fast and are
now rarely the direct cause of performance in well-designed applications. However, if
you find that you have a problem with one or more network components (hardware or
software), work with your network administrator to isolate and eliminate the problem.
You should also verify that you have an appropriate amount of network bandwidth
available for WebLogic Server and the connections it makes to other tiers in your
architecture, such as client and database connections. Therefore, it is important to
continually monitor your network performance to troubleshoot potential performance
bottlenecks.

C.4.1 Determining Network Bandwidth
A common definition of bandwidth is "the rate of the data communications
transmission, usually measured in bits-per-second, which is the capacity of the link to
send and receive communications." A machine running WebLogic Server requires
enough network bandwidth to handle all WebLogic Server client connections. In the
case of programmatic clients, each client JVM has a single socket to the server, and

Related Information

C-6 Performance and Tuning for Oracle WebLogic Server

each socket requires dedicated bandwidth. A WebLogic Server instance handling
programmatic clients should have 125–150 percent of the bandwidth that a similar
Web server would handle. If you are handling only HTTP clients, expect a bandwidth
requirement similar to a Web server serving static pages.

To determine whether you have enough bandwidth in a given deployment, you can
use the network monitoring tools provided by your network operating system vendor
to see what the load is on the network system. You can also use common operating
system tools, such as the netstat command for Solaris or the System Monitor
(perfmon) for Windows, to monitor your network utilization. If the load is very high,
bandwidth may be a bottleneck for your system.

Also monitor the amount of data being transferred across the your network by
checking the data transferred between the application and the application server, and
between the application server and the database server. This amount should not
exceed your network bandwidth; otherwise, your network becomes the bottleneck. To
verify this, monitor the network statistics for retransmission and duplicate packets, as
follows:

netstat -s -P tcp

For instructions on viewing other TCP parameters using the netstat -s -P
command, see Section 4.2.1, "Setting TCP Parameters With the ndd Command".

C.5 Related Information
The Oracle corporate Web site provides all documentation for WebLogic Server.

Information on topics related to capacity planning is available from numerous
third-party software sources, including the following:

■ "Capacity Planning for Web Performance: Metrics, Models, and Methods". Prentice
Hall, 1998, ISBN 0-13-693822-1 at
http://www.cs.gmu.edu/~menasce/webbook/index.html.

■ "Configuration and Capacity Planning for Solaris Servers" at
http://btobsearch.barnesandnoble.com/booksearch/isbninquiry.a
sp?userid=36YYSNN1TN&isbn=0133499529&TXT=Y&itm=1, Brian L. L.
Wong.

■ "J2EE Applications and BEA WebLogic Server". Prentice Hall, 2001, ISBN
0-13-091111-9 at
http://www.amazon.com/J2EE-Applications-BEA-WebLogic-Server/d
p/0130911119.

■ Web portal focusing on capacity-planning issues for enterprise application
deployments at http://www.capacityplanning.com/.

	Contents
	Preface
	Documentation Accessibility
	Accessibility of Code Examples in Documentation
	Accessibility of Links to External Web Sites in Documentation
	Deaf/Hard of Hearing Access to Oracle Support Services

	Conventions
	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.2.1 Performance Features of this Release
	1.2.2 One-Way Sends for Non-Persistent Messages

	1.3 Related Documentation
	2 Top Tuning Recommendations for WebLogic Server

	2.1 Tune Pool Sizes
	2.2 Use the Prepared Statement Cache
	2.3 Use Logging Last Resource Optimization
	2.4 Tune Connection Backlog Buffering
	2.5 Tune the Chunk Size
	2.6 Use Optimistic or Read-only Concurrency
	2.7 Use Local Interfaces
	2.8 Use eager-relationship-caching
	2.9 Tune HTTP Sessions
	2.10 Tune Messaging Applications
	3 Performance Tuning Roadmap

	3.1 Performance Tuning Roadmap
	1. Section 3.1.1, "Understand Your Performance Objectives"
	2. Section 3.1.2, "Measure Your Performance Metrics"
	3. Section 3.1.5, "Locate Bottlenecks in Your System"
	4. Section 3.1.6, "Minimize Impact of Bottlenecks"
	5. Section 3.1.12, "Achieve Performance Objectives"
	3.1.1 Understand Your Performance Objectives
	3.1.2 Measure Your Performance Metrics
	3.1.3 Monitor Disk and CPU Utilization
	3.1.4 Monitor Data Transfers Across the Network
	3.1.5 Locate Bottlenecks in Your System
	Tip

	3.1.6 Minimize Impact of Bottlenecks
	3.1.7 Tune Your Application
	3.1.8 Tune your DB
	3.1.9 Tune WebLogic Server Performance Parameters
	3.1.10 Tune Your JVM
	3.1.11 Tune the Operating System
	3.1.12 Achieve Performance Objectives

	3.2 Tuning Tips
	4 Operating System Tuning

	4.1 Basic OS Tuning Concepts
	Note

	4.2 Solaris Tuning Parameters
	Note
	4.2.1 Setting TCP Parameters With the ndd Command
	Note

	4.2.2 Setting Parameters In the /etc/system File
	Note

	4.2.3 CE Gigabit Network Card Settings
	4.2.4 Additional Solaris Tuning Information

	4.3 Linux Tuning Parameters
	4.4 HP-UX Tuning Parameters
	4.5 Windows Tuning Parameters
	4.6 Other Operating System Tuning Information
	5 Tuning Java Virtual Machines (JVMs)

	5.1 JVM Tuning Considerations
	Table 5-1 General JVM Tuning Considerations

	5.2 Which JVM for Your System?
	5.2.1 Changing To a Different JVM

	5.3 Garbage Collection
	5.3.1 VM Heap Size and Garbage Collection
	5.3.2 Choosing a Garbage Collection Scheme
	5.3.3 Using Verbose Garbage Collection to Determine Heap Size
	1. Monitor the performance of WebLogic Server under maximum load while running your application.
	2. Use the -verbosegc option to turn on verbose garbage collection output for your JVM and redirect both the standard error and standard output to a log file.
	3. Analyze the following data points:
	a. How often is garbage collection taking place? In the weblogic.log file, compare the time stamps around the garbage collection.
	b. How long is garbage collection taking? Full garbage collection should not take longer than 3 to 5 seconds.
	c. What is your average memory footprint? In other words, what does the heap settle back down to after each full garbage collection? If the heap always settles to 85 percent free, you might set the heap size smaller.

	4. Review the New generation heap sizes (Sun) or Nursery size (Jrockit).
	1. Make sure that the heap size is not larger than the available free RAM on your system.
	2. If you find that your system is spending too much time collecting garbage (your allocated virtual memory is more than your RAM can handle), lower your heap size.
	3. If you find that you have a large amount of available free RAM remaining, run more instances of WebLogic Server on your machine.

	5.3.4 Specifying Heap Size Values
	5.3.5 Tuning Tips for Heap Sizes
	5.3.6 JRockit JVM Heap Size Options
	Table 5-2 JRockit JVM Heap Size Options
	5.3.6.1 Other JRockit VM Options

	5.3.7 Java HotSpot VM Heap Size Options
	Table 5-3 Java Heap Size Options
	5.3.7.1 Other Java HotSpot VM Options

	5.3.8 Automatically Logging Low Memory Conditions
	5.3.9 Manually Requesting Garbage Collection
	5.3.10 Requesting Thread Stacks

	5.4 Enable Spinning for IA32 Platforms
	5.4.1 Sun JDK
	5.4.2 JRockit
	6 Tuning WebLogic Server

	6.1 Setting Java Parameters for Starting WebLogic Server
	6.2 Development vs. Production Mode Default Tuning Values
	Table 6-1 Startup Modes
	Table 6-2 Differences Between Development and Production Modes

	6.3 Deployment
	6.3.1 On-demand Deployment of Internal Applications
	6.3.2 Use FastSwap Deployment to Minimize Redeployment Time
	6.3.3 Generic Overrides

	6.4 Thread Management
	6.4.1 Tuning a Work Manager
	6.4.2 How Many Work Managers are Needed?
	6.4.3 What are the SLA Requirements for Each Work Manager?
	6.4.4 Tuning Execute Queues
	Note

	6.4.5 Understanding the Differences Between Work Managers and Execute Queues
	6.4.6 Migrating from Previous Releases
	6.4.7 Tuning the Stuck Thread Detection Behavior

	6.5 Tuning Network I/O
	6.5.1 Tuning Muxers
	6.5.2 Which Platforms Have Performance Packs?
	1. Go to the Certifications Pages at http://www.oracle.com/technology/software/products/ias/files/ fusion_certification.html.
	2. Select your platform from the list of certified platforms.
	3. Use your browser's Edit > Find to locate all instances of "Performance Pack" to verify whether it is included for the platform.

	6.5.3 Enabling Performance Packs
	6.5.4 Changing the Number of Available Socket Readers
	6.5.5 Network Channels
	1. Configure multiple network channels using different IP and port settings. See "Configure custom network channels" in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.
	2. In your client-side code, use a JNDI URL pattern similar to the pattern used in clustered environments. The following is an example for a client using two network channels:

	6.5.6 Tuning Message Size
	6.5.7 Tune the Chunk Parameters
	6.5.8 Tuning Connection Backlog Buffering

	6.6 Setting Your Compiler Options
	6.6.1 Compiling EJB Classes
	6.6.2 Setting JSP Compiler Options
	6.6.2.1 Precompile JSPs
	6.6.2.2 Optimize Java Expressions

	6.7 Using WebLogic Server Clusters to Improve Performance
	6.7.1 Scalability and High Availability
	Note

	6.7.2 How to Ensure Scalability for WebLogic Clusters
	6.7.3 Database Bottlenecks
	6.7.4 Session Replication
	6.7.5 Asynchronous HTTP Session Replication
	6.7.5.1 Asynchronous HTTP Session Replication using a Secondary Server
	Table 6-3 Asynchronous Replication Behavior by Cluster Topology

	6.7.5.2 Asynchronous HTTP Session Replication using a Database

	6.7.6 Invalidation of Entity EJBs
	6.7.7 Invalidation of HTTP sessions
	6.7.8 JNDI Binding, Unbinding and Rebinding
	6.7.9 Performance Considerations When Running Multiple Server Instances on Multi-CPU Machines
	1. Test your application to determine the Network Requirements.
	2. Test your application to determine the Disk I/O Requirements.
	3. Begin performance tests using a ratio of one WebLogic Server instance for every available CPU.
	4. If CPU utilization is consistently at or near 100 percent, increase the ratio of CPUs to server instances by adding an additi...

	6.8 Monitoring a WebLogic Server Domain
	6.8.1 Using the Administration Console to Monitor WebLogic Server
	6.8.2 Using the WebLogic Diagnostic Framework
	6.8.3 Using JMX to Monitor WebLogic Server
	6.8.4 Using WLST to Monitor WebLogic Server
	6.8.5 Resources to Monitor WebLogic Server
	6.8.6 Third-Party Tools to Monitor WebLogic Server

	6.9 Tuning Class and Resource Loading
	6.9.1 Filtering Loader Mechanism
	Note
	7 Tuning the WebLogic Persistent Store

	7.1 Overview of Persistent Stores
	7.1.1 Using the Default Persistent Store
	7.1.2 Using Custom File Stores and JDBC Stores
	7.1.3 Using JMS Paging Stores
	Note

	7.2 Best Practices When Using Persistent Stores
	7.3 Tuning JDBC Stores
	7.4 Tuning File Stores
	7.4.1 Basic Tuning Information
	Note

	7.4.2 Tuning the File Store Direct-Write Policy
	Note

	7.4.3 Tuning the File Store Block Size
	7.4.3.1 Setting the Block Size for a File Store
	Note

	7.4.3.2 Determining the File Store Block Size
	7.4.3.3 Determining the File System Block Size
	7.4.3.4 Converting a Store with Pre-existing Files
	1. java -Dweblogic.store.BlockSize=block-size weblogic.store.Admin
	2. Type help for available commands.
	3. Storeadmin->compact -dir file-store-directory
	8 DataBase Tuning

	8.1 General Suggestions
	8.2 Database-Specific Tuning
	Note
	8.2.1 Oracle
	8.2.2 Microsoft SQL Server
	8.2.3 Sybase
	9 Tuning WebLogic Server EJBs

	9.1 General EJB Tuning Tips
	9.2 Tuning EJB Caches
	9.2.1 Tuning the Stateful Session Bean Cache
	9.2.2 Tuning the Entity Bean Cache
	9.2.2.1 Transaction-Level Caching
	9.2.2.2 Caching between Transactions
	9.2.2.3 Ready Bean Caching

	9.2.3 Tuning the Query Cache

	9.3 Tuning EJB Pools
	9.3.1 Tuning the Stateless Session Bean Pool
	9.3.2 Tuning the MDB Pool
	9.3.3 Tuning the Entity Bean Pool

	9.4 CMP Entity Bean Tuning
	9.4.1 Use Eager Relationship Caching
	9.4.1.1 Using Inner Joins

	9.4.2 Use JDBC Batch Operations
	9.4.3 Tuned Updates
	9.4.4 Using Field Groups
	Note

	9.4.5 include-updates
	9.4.6 call-by-reference
	9.4.7 Bean-level Pessimistic Locking
	Note

	9.4.8 Concurrency Strategy

	9.5 Tuning In Response to Monitoring Statistics
	9.5.1 Cache Miss Ratio
	9.5.2 Lock Waiter Ratio
	9.5.3 Lock Timeout Ratio
	9.5.4 Pool Miss Ratio
	1. Check your destroyed bean ratio to verify that bean instances are not being destroyed.
	2. Investigate the cause and try to remedy the situation.
	3. Examine the demand for the EJB, perhaps over a period of time.

	9.5.5 Destroyed Bean Ratio
	9.5.6 Pool Timeout Ratio
	9.5.7 Transaction Rollback Ratio
	9.5.8 Transaction Timeout Ratio

	9.6 Using the JDT Compiler
	10 Tuning Message-Driven Beans

	10.1 Use Transaction Batching
	10.2 MDB Thread Management
	10.2.1 Determining the Number of Concurrent MDBs
	Table 10-1 Determining Concurrency for WebLogic Server MDBs

	10.2.2 Selecting a Concurrency Strategy
	Note
	Note

	10.2.3 Thread Utilization When Using WebLogic Destinations

	10.3 Using Foreign Vendor MDBs
	10.3.1 Determining Concurrency for Foreign MDBs
	Table 10-2 Determining Concurrency for Foreign Vendor MDBs

	10.3.2 Thread Utilization When Using Foreign MDBs
	10.3.3 Token-based Message Polling for Transactional MDBs Listening on Queues
	10.3.4 Backwards Compatibility for WLS 10.0 and Earlier-style Polling
	11 Tuning JDBC Applications

	11.1 Tune the Number of Database Connections
	11.2 Waste Not
	11.3 Use Test Connections on Reserve with Care
	11.4 Cache Prepared and Callable Statements
	11.5 Using Pinned-To-Thread Property to Increase Performance
	11.6 Use Best Design Practices
	12 Tuning Logging Last Resource

	12.1 What is LLR?
	12.2 LLR Tuning Guidelines
	13 Tuning WebLogic JMS

	13.1 Defining Quota
	13.1.1 Quota Resources
	Table 13-1 Quota Parameters

	13.1.2 Destination-Level Quota
	Note

	13.1.3 JMS Server-Level Quota

	13.2 Blocking Senders During Quota Conditions
	13.2.1 Defining a Send Timeout on Connection Factories
	1. Follow the directions for navigating to the JMS Connection Factory: Configuration: Flow Control page in "Configure message flow control" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.
	2. In the Send Timeout field, enter the amount of time, in milliseconds, a sender will block messages when there is insufficient space on the message destination. Once the specified waiting period ends, one of the following results will occur:
	3. Click Save.

	13.2.2 Specifying a Blocking Send Policy on JMS Servers
	1. Follow the directions for navigating to the JMS Server: Configuration: Thresholds and Quotas page of the Administration Conso...
	2. From the Blocking Send Policy list box, select one of the following options:
	1. Click Save.

	13.3 Tuning for Large Messages
	13.4 Tuning MessageMaximum
	13.4.1 Tuning MessageMaximum Limitations
	13.4.2 Setting Maximum Message Size on a Client
	Note

	13.5 Compressing Messages
	13.6 Paging Out Messages To Free Up Memory
	13.6.1 Specifying a Message Paging Directory
	13.6.2 Tuning the Message Buffer Size Option

	13.7 Controlling the Flow of Messages on JMS Servers and Destinations
	13.7.1 How Flow Control Works
	13.7.2 Configuring Flow Control
	Table 13-2 Flow Control Parameters

	13.7.3 Flow Control Thresholds
	Table 13-3 Flow Control Threshold Parameters

	13.8 Handling Expired Messages
	13.8.1 Defining a Message Expiration Policy
	13.8.2 Configuring an Expiration Policy on Topics
	1. Follow the directions for navigating to the JMS Topic: Configuration: Delivery Failure page in "Configure topic message delivery failure options" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.
	2. From the Expiration Policy list box, select an expiration policy option.
	1. If you selected the Log expiration policy in previous step, use the Expiration Logging Policy field to define what information about the message is logged.
	2. Click Save.

	13.8.3 Configuring an Expiration Policy on Queues
	1. Follow the directions for navigating to the JMS Queue: Configuration: Delivery Failure page in "Configure queue message delivery failure options" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.
	2. From the Expiration Policy list box, select an expiration policy option.
	3. If you selected the Log expiration policy in the previous step, use the Expiration Logging Policy field to define what information about the message is logged.
	4. Click Save

	13.8.4 Configuring an Expiration Policy on Templates
	1. Follow the directions for navigating to the JMS Template: Configuration: Delivery Failure page in "Configure JMS template message delivery failure options" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.
	2. In the Expiration Policy list box, select an expiration policy option.
	3. If you selected the Log expiration policy in Step 4, use the Expiration Logging Policy field to define what information about the message is logged.
	4. Click Save.

	13.8.5 Defining an Expiration Logging Policy
	13.8.6 Expiration Log Output Format
	13.8.7 Tuning Active Message Expiration
	13.8.8 Configuring a JMS Server to Actively Scan Destinations for Expired Messages
	1. Follow the directions for navigating to the JMS Server: Configuration: General page of the Administration Console in "Configure general JMS server properties" in the Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.
	2. In the Scan Expiration Interval field, enter the amount of time, in seconds, that you want the JMS server to pause between its cycles of scanning its destinations for expired messages to process.
	3. Click Save.

	13.9 Tuning Applications Using Unit-of-Order
	13.9.1 Best Practices
	13.9.2 Using UOO and Distributed Destinations
	13.9.3 Migrating Old Applications to Use UOO

	13.10 Using One-Way Message Sends For Improved Non-Persistent Messaging Performance
	13.10.1 Configure One-Way Sends On a Connection Factory
	Note

	13.10.2 One-Way Send Support In a Cluster With a Single Destination
	13.10.3 One-Way Send Support In a Cluster With Multiple Destinations
	1. Configure the cluster wide RMI load balancing algorithm to "Server Affinity".
	2. Ensure that no two destinations are hosted on the same WebLogic Server instance.
	3. Configure each destination to have the same local-jndi-name.
	4. Configure a connection factory that is targeted to only those WebLogic Server instances that host the destinations.
	5. Ensure sender clients use the JNDI names configured in Steps 3 and 4 to obtain their destination and connection factory from their JNDI context.
	6. Ensure sender clients use URLs limited to only those WebLogic Server instances that host the destinations in Step 3.

	13.10.4 When One-Way Sends Are Not Supported
	13.10.5 Different Client and Destination Hosts
	13.10.6 XA Enabled On Client's Host Connection Factory
	13.10.7 Higher QOS Detected
	13.10.8 Destination Quota Exceeded
	13.10.9 Change In Server Security Policy
	13.10.10 Change In JMS Server or Destination Status
	13.10.11 Looking Up Logical Distributed Destination Name
	13.10.12 Hardware Failure
	13.10.13 One-Way Send QOS Guidelines

	13.11 Tuning Destination Performance
	13.11.1 Messaging Performance Configuration Parameters
	Table 13-4 Message Performance Preference Values

	13.11.2 Compatibility With the Asynchronous Message Pipeline

	13.12 Best Practices for JMS .NET Client Applications
	14 Tuning WebLogic JMS Store-and-Forward

	14.1 Best Practices
	Note

	14.2 Tuning Tips
	Note
	Note
	15 Tuning WebLogic Message Bridge

	15.1 Best Practices
	Note

	15.2 Changing the Batch Size
	15.3 Changing the Batch Interval
	15.4 Changing the Quality of Service
	15.5 Using Multiple Bridge Instances
	15.6 Changing the Thread Pool Size
	15.7 Avoiding Durable Subscriptions
	15.8 Co-locating Bridges with Their Source or Target Destination
	15.9 Changing the Asynchronous Mode Enabled Attribute
	Table 15-1 Asynchronous Mode Enabled Values for QOS Level
	16 Tuning Resource Adapters

	16.1 Classloading Optimizations for Resource Adapters
	1. Deploy the resource adapter in an exploded format. This eliminates the nesting of JARs and hence reduces the performance hit involved in looking for classes.
	2. If deploying the resource adapter in exploded format is not an option, the JARs can be exploded within the RAR file. This also eliminates the nesting of JARs and thus improves the performance of classloading significantly.

	16.2 Connection Optimizations
	16.3 Thread Management
	16.4 InteractionSpec Interface
	17 Tuning Web Applications

	17.1 Best Practices
	17.1.1 Disable Page Checks
	17.1.2 Use Custom JSP Tags
	17.1.3 Precompile JSPs
	17.1.4 Disable Access Logging
	17.1.5 Use HTML Template Compression
	17.1.6 Use Service Level Agreements
	17.1.7 Related Reading

	17.2 Session Management
	17.2.1 Managing Session Persistence
	17.2.2 Minimizing Sessions
	17.2.3 Aggregating Session Data

	17.3 Pub-Sub Tuning Guidelines
	18 Tuning Web Services

	18.1 Web Services Best Practices
	18.2 Tuning Web Service Reliable Messaging Agents
	Note

	18.3 Tuning Heavily Loaded Systems to Improve Web Service Performance
	18.3.1 Setting the Buffering Sessions
	18.3.2 Releasing Asynchronous Resources
	19 Tuning WebLogic Tuxedo Connector

	19.1 Configuration Guidelines
	19.2 Best Practices
	Note
	Table 19-1 Example of Correctly Configured Load Balancing
	Table 19-2 Example of Incorrectly Configured Load Balancing

	A Related Reading: Performance Tools and Information

	A.1 WebLogic Information
	A.2 Sun Microsystems Information
	A.3 Linux OS Information
	A.4 Hewlett-Packard Company Information
	A.5 Microsoft Information
	A.6 Web Performance Tuning Information
	A.7 Network Performance Tools
	A.8 Load Testing Tools
	A.9 Performance Analysis Tools
	A.10 Production Performance Management
	A.11 Benchmarking Information
	A.12 Java Virtual Machine (JVM) Information
	A.13 Enterprise JavaBeans Information
	A.14 WebLogic Store Information
	A.15 Java Message Service (JMS) Information
	A.16 Java Database Connectivity (JDBC) Information
	A.17 General Performance Information
	B Using the WebLogic 8.1 Thread Pool Model
	Note

	B.1 How to Enable the WebLogic 8.1 Thread Pool Model
	Note
	Example B-1 Using the use81-style-execute-queues Element

	B.2 Tuning the Default Execute Queue
	Table B-1 Default Thread Count for Startup Modes
	Note
	B.2.1 Should You Modify the Default Thread Count?
	Note
	Table B-2 Scenarios for Modifying the Default Thread Count

	B.3 Using Execute Queues to Control Thread Usage
	B.3.1 Creating Execute Queues
	1. If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.
	2. In the left pane of the console, expand Environment > Servers.
	3. On the Summary of Servers page, select the server instance for which you will configure an execute queue.
	4. Select the Configuration > Queues tab and click New.
	5. Name the execute queue and click OK.
	6. On the User-Defined Execute Queues page, select the execute queue you just created.
	7. On the execute queue Configuration tab, modify the following attributes or accept the system defaults:
	Note

	8. Click Save.
	9. To activate these changes, in the Change Center of the Administration Console, click Activate Changes. Not all changes take effect immediately-some require a restart.
	10. You must reboot the server to use the new thread detection behavior values.

	B.3.2 Modifying the Thread Count
	1. If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.
	2. In the left pane of the console, expand Environment > Servers.
	3. On the Summary of Servers page, select the server instance for which you will configure thread detection behavior.
	4. On the Configuration > Queues tab, select the execute queue for which you will modify the default thread count.
	5. You can only modify the default execute queue for the server or a user-defined execute queue.
	6. Locate the Thread Count value and increase or decrease it, as appropriate.
	7. Click Save.
	8. To activate these changes, in the Change Center of the Administration Console, click Activate Changes. Not all changes take effect immediately-some require a restart.
	9. You must reboot the server to use the new thread detection behavior values.

	B.3.3 Tuning Execute Queues for Overflow Conditions
	1. If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.
	2. In the left pane of the console, expand Environment > Servers.
	3. On the Summary of Servers page, select the server instance for which you will configure overflow conditions behavior.
	4. Select the Configuration > Queues tab, select the execute queue for which you will configure overflow conditions behavior.
	5. Specify how the server instance should detect an overflow condition for the selected queue by modifying the following attributes:
	6. To specify how this server should address an overflow condition for the selected queue, modify the following attribute:
	7. To fine-tune the variable thread count of this execute queue, modify the following attributes:
	8. Click Save.
	9. To activate these changes, in the Change Center of the Administration Console, click Activate Changes. Not all changes take effect immediately-some require a restart.
	10. You must reboot the server to use the new thread detection behavior values.

	B.3.4 Assigning Servlets and JSPs to Execute Queues
	B.3.5 Assigning EJBs and RMI Objects to Execute Queues

	B.4 Monitoring Execute Threads
	1. If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.
	2. In the left pane of the console, expand Environment > Servers.
	3. On the Summary of Servers page, select the server instance for which you will configure thread detection behavior.
	4. Select the Monitoring > Threads tab.
	5. A table of the execute queues available on this server instance is displayed.
	6. Select an execute queue for which you would like to view thread information.
	7. A table of execute threads for the selected execute queue is displayed.

	B.5 Allocating Execute Threads to Act as Socket Readers
	B.5.1 Setting the Number of Socket Reader Threads For a Server Instance
	1. If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.
	2. In the left pane of the console, expand Environment > Servers.
	3. On the Summary of Servers page, select the server instance for which you will configure thread detection behavior.
	4. Select the Configuration > Tuning tab.
	5. Specify the percentage of Java reader threads in the Socket Readers field. The number of Java socket readers is computed as a percentage of the number of total execute threads (as shown in the Thread Count field for the Execute Queue).
	6. Click Save.
	7. To activate these changes, in the Change Center of the Administration Console, click Activate Changes.

	B.5.2 Setting the Number of Socket Reader Threads on Client Machines

	B.6 Tuning the Stuck Thread Detection Behavior
	1. If you have not already done so, in the Change Center of the Administration Console, click Lock & Edit.
	2. In the left pane of the console, expand Environment > Servers.
	3. On the Summary of Servers page, select the server instance for which you will configure thread detection behavior.
	4. On the Configuration > Tuning tab, update as necessary:
	5. Click Save.
	6. To activate these changes, in the Change Center of the Administration Console, click Activate Changes. Not all changes take effect immediately-some require a restart.
	7. You must reboot the server to use the new thread detection behavior values.
	C Capacity Planning

	C.1 Capacity Planning Factors
	Table C-1 Capacity Planning Factors and Information Reference
	C.1.1 Programmatic and Web-based Clients
	C.1.2 RMI and Server Traffic
	C.1.3 SSL Connections and Performance
	C.1.4 WebLogic Server Process Load
	C.1.5 Database Server Capacity and User Storage Requirements
	C.1.6 Concurrent Sessions
	C.1.7 Network Load
	C.1.8 Clustered Configurations
	C.1.9 Application Design

	C.2 Assessing Your Application Performance Objectives
	C.3 Hardware Tuning
	C.3.1 Benchmarks for Evaluating Performance
	C.3.2 Supported Platforms

	C.4 Network Performance
	C.4.1 Determining Network Bandwidth

	C.5 Related Information

